diff options
Diffstat (limited to 'mm/swapfile.c')
-rw-r--r-- | mm/swapfile.c | 1672 |
1 files changed, 1672 insertions, 0 deletions
diff --git a/mm/swapfile.c b/mm/swapfile.c new file mode 100644 index 000000000000..a60e0075d55b --- /dev/null +++ b/mm/swapfile.c | |||
@@ -0,0 +1,1672 @@ | |||
1 | /* | ||
2 | * linux/mm/swapfile.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | ||
5 | * Swap reorganised 29.12.95, Stephen Tweedie | ||
6 | */ | ||
7 | |||
8 | #include <linux/config.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/hugetlb.h> | ||
11 | #include <linux/mman.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/kernel_stat.h> | ||
14 | #include <linux/swap.h> | ||
15 | #include <linux/vmalloc.h> | ||
16 | #include <linux/pagemap.h> | ||
17 | #include <linux/namei.h> | ||
18 | #include <linux/shm.h> | ||
19 | #include <linux/blkdev.h> | ||
20 | #include <linux/writeback.h> | ||
21 | #include <linux/proc_fs.h> | ||
22 | #include <linux/seq_file.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/rmap.h> | ||
26 | #include <linux/security.h> | ||
27 | #include <linux/backing-dev.h> | ||
28 | #include <linux/syscalls.h> | ||
29 | |||
30 | #include <asm/pgtable.h> | ||
31 | #include <asm/tlbflush.h> | ||
32 | #include <linux/swapops.h> | ||
33 | |||
34 | DEFINE_SPINLOCK(swaplock); | ||
35 | unsigned int nr_swapfiles; | ||
36 | long total_swap_pages; | ||
37 | static int swap_overflow; | ||
38 | |||
39 | EXPORT_SYMBOL(total_swap_pages); | ||
40 | |||
41 | static const char Bad_file[] = "Bad swap file entry "; | ||
42 | static const char Unused_file[] = "Unused swap file entry "; | ||
43 | static const char Bad_offset[] = "Bad swap offset entry "; | ||
44 | static const char Unused_offset[] = "Unused swap offset entry "; | ||
45 | |||
46 | struct swap_list_t swap_list = {-1, -1}; | ||
47 | |||
48 | struct swap_info_struct swap_info[MAX_SWAPFILES]; | ||
49 | |||
50 | static DECLARE_MUTEX(swapon_sem); | ||
51 | |||
52 | /* | ||
53 | * We need this because the bdev->unplug_fn can sleep and we cannot | ||
54 | * hold swap_list_lock while calling the unplug_fn. And swap_list_lock | ||
55 | * cannot be turned into a semaphore. | ||
56 | */ | ||
57 | static DECLARE_RWSEM(swap_unplug_sem); | ||
58 | |||
59 | #define SWAPFILE_CLUSTER 256 | ||
60 | |||
61 | void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) | ||
62 | { | ||
63 | swp_entry_t entry; | ||
64 | |||
65 | down_read(&swap_unplug_sem); | ||
66 | entry.val = page->private; | ||
67 | if (PageSwapCache(page)) { | ||
68 | struct block_device *bdev = swap_info[swp_type(entry)].bdev; | ||
69 | struct backing_dev_info *bdi; | ||
70 | |||
71 | /* | ||
72 | * If the page is removed from swapcache from under us (with a | ||
73 | * racy try_to_unuse/swapoff) we need an additional reference | ||
74 | * count to avoid reading garbage from page->private above. If | ||
75 | * the WARN_ON triggers during a swapoff it maybe the race | ||
76 | * condition and it's harmless. However if it triggers without | ||
77 | * swapoff it signals a problem. | ||
78 | */ | ||
79 | WARN_ON(page_count(page) <= 1); | ||
80 | |||
81 | bdi = bdev->bd_inode->i_mapping->backing_dev_info; | ||
82 | bdi->unplug_io_fn(bdi, page); | ||
83 | } | ||
84 | up_read(&swap_unplug_sem); | ||
85 | } | ||
86 | |||
87 | static inline int scan_swap_map(struct swap_info_struct *si) | ||
88 | { | ||
89 | unsigned long offset; | ||
90 | /* | ||
91 | * We try to cluster swap pages by allocating them | ||
92 | * sequentially in swap. Once we've allocated | ||
93 | * SWAPFILE_CLUSTER pages this way, however, we resort to | ||
94 | * first-free allocation, starting a new cluster. This | ||
95 | * prevents us from scattering swap pages all over the entire | ||
96 | * swap partition, so that we reduce overall disk seek times | ||
97 | * between swap pages. -- sct */ | ||
98 | if (si->cluster_nr) { | ||
99 | while (si->cluster_next <= si->highest_bit) { | ||
100 | offset = si->cluster_next++; | ||
101 | if (si->swap_map[offset]) | ||
102 | continue; | ||
103 | si->cluster_nr--; | ||
104 | goto got_page; | ||
105 | } | ||
106 | } | ||
107 | si->cluster_nr = SWAPFILE_CLUSTER; | ||
108 | |||
109 | /* try to find an empty (even not aligned) cluster. */ | ||
110 | offset = si->lowest_bit; | ||
111 | check_next_cluster: | ||
112 | if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit) | ||
113 | { | ||
114 | unsigned long nr; | ||
115 | for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++) | ||
116 | if (si->swap_map[nr]) | ||
117 | { | ||
118 | offset = nr+1; | ||
119 | goto check_next_cluster; | ||
120 | } | ||
121 | /* We found a completly empty cluster, so start | ||
122 | * using it. | ||
123 | */ | ||
124 | goto got_page; | ||
125 | } | ||
126 | /* No luck, so now go finegrined as usual. -Andrea */ | ||
127 | for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) { | ||
128 | if (si->swap_map[offset]) | ||
129 | continue; | ||
130 | si->lowest_bit = offset+1; | ||
131 | got_page: | ||
132 | if (offset == si->lowest_bit) | ||
133 | si->lowest_bit++; | ||
134 | if (offset == si->highest_bit) | ||
135 | si->highest_bit--; | ||
136 | if (si->lowest_bit > si->highest_bit) { | ||
137 | si->lowest_bit = si->max; | ||
138 | si->highest_bit = 0; | ||
139 | } | ||
140 | si->swap_map[offset] = 1; | ||
141 | si->inuse_pages++; | ||
142 | nr_swap_pages--; | ||
143 | si->cluster_next = offset+1; | ||
144 | return offset; | ||
145 | } | ||
146 | si->lowest_bit = si->max; | ||
147 | si->highest_bit = 0; | ||
148 | return 0; | ||
149 | } | ||
150 | |||
151 | swp_entry_t get_swap_page(void) | ||
152 | { | ||
153 | struct swap_info_struct * p; | ||
154 | unsigned long offset; | ||
155 | swp_entry_t entry; | ||
156 | int type, wrapped = 0; | ||
157 | |||
158 | entry.val = 0; /* Out of memory */ | ||
159 | swap_list_lock(); | ||
160 | type = swap_list.next; | ||
161 | if (type < 0) | ||
162 | goto out; | ||
163 | if (nr_swap_pages <= 0) | ||
164 | goto out; | ||
165 | |||
166 | while (1) { | ||
167 | p = &swap_info[type]; | ||
168 | if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { | ||
169 | swap_device_lock(p); | ||
170 | offset = scan_swap_map(p); | ||
171 | swap_device_unlock(p); | ||
172 | if (offset) { | ||
173 | entry = swp_entry(type,offset); | ||
174 | type = swap_info[type].next; | ||
175 | if (type < 0 || | ||
176 | p->prio != swap_info[type].prio) { | ||
177 | swap_list.next = swap_list.head; | ||
178 | } else { | ||
179 | swap_list.next = type; | ||
180 | } | ||
181 | goto out; | ||
182 | } | ||
183 | } | ||
184 | type = p->next; | ||
185 | if (!wrapped) { | ||
186 | if (type < 0 || p->prio != swap_info[type].prio) { | ||
187 | type = swap_list.head; | ||
188 | wrapped = 1; | ||
189 | } | ||
190 | } else | ||
191 | if (type < 0) | ||
192 | goto out; /* out of swap space */ | ||
193 | } | ||
194 | out: | ||
195 | swap_list_unlock(); | ||
196 | return entry; | ||
197 | } | ||
198 | |||
199 | static struct swap_info_struct * swap_info_get(swp_entry_t entry) | ||
200 | { | ||
201 | struct swap_info_struct * p; | ||
202 | unsigned long offset, type; | ||
203 | |||
204 | if (!entry.val) | ||
205 | goto out; | ||
206 | type = swp_type(entry); | ||
207 | if (type >= nr_swapfiles) | ||
208 | goto bad_nofile; | ||
209 | p = & swap_info[type]; | ||
210 | if (!(p->flags & SWP_USED)) | ||
211 | goto bad_device; | ||
212 | offset = swp_offset(entry); | ||
213 | if (offset >= p->max) | ||
214 | goto bad_offset; | ||
215 | if (!p->swap_map[offset]) | ||
216 | goto bad_free; | ||
217 | swap_list_lock(); | ||
218 | if (p->prio > swap_info[swap_list.next].prio) | ||
219 | swap_list.next = type; | ||
220 | swap_device_lock(p); | ||
221 | return p; | ||
222 | |||
223 | bad_free: | ||
224 | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); | ||
225 | goto out; | ||
226 | bad_offset: | ||
227 | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); | ||
228 | goto out; | ||
229 | bad_device: | ||
230 | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); | ||
231 | goto out; | ||
232 | bad_nofile: | ||
233 | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); | ||
234 | out: | ||
235 | return NULL; | ||
236 | } | ||
237 | |||
238 | static void swap_info_put(struct swap_info_struct * p) | ||
239 | { | ||
240 | swap_device_unlock(p); | ||
241 | swap_list_unlock(); | ||
242 | } | ||
243 | |||
244 | static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) | ||
245 | { | ||
246 | int count = p->swap_map[offset]; | ||
247 | |||
248 | if (count < SWAP_MAP_MAX) { | ||
249 | count--; | ||
250 | p->swap_map[offset] = count; | ||
251 | if (!count) { | ||
252 | if (offset < p->lowest_bit) | ||
253 | p->lowest_bit = offset; | ||
254 | if (offset > p->highest_bit) | ||
255 | p->highest_bit = offset; | ||
256 | nr_swap_pages++; | ||
257 | p->inuse_pages--; | ||
258 | } | ||
259 | } | ||
260 | return count; | ||
261 | } | ||
262 | |||
263 | /* | ||
264 | * Caller has made sure that the swapdevice corresponding to entry | ||
265 | * is still around or has not been recycled. | ||
266 | */ | ||
267 | void swap_free(swp_entry_t entry) | ||
268 | { | ||
269 | struct swap_info_struct * p; | ||
270 | |||
271 | p = swap_info_get(entry); | ||
272 | if (p) { | ||
273 | swap_entry_free(p, swp_offset(entry)); | ||
274 | swap_info_put(p); | ||
275 | } | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * Check if we're the only user of a swap page, | ||
280 | * when the page is locked. | ||
281 | */ | ||
282 | static int exclusive_swap_page(struct page *page) | ||
283 | { | ||
284 | int retval = 0; | ||
285 | struct swap_info_struct * p; | ||
286 | swp_entry_t entry; | ||
287 | |||
288 | entry.val = page->private; | ||
289 | p = swap_info_get(entry); | ||
290 | if (p) { | ||
291 | /* Is the only swap cache user the cache itself? */ | ||
292 | if (p->swap_map[swp_offset(entry)] == 1) { | ||
293 | /* Recheck the page count with the swapcache lock held.. */ | ||
294 | write_lock_irq(&swapper_space.tree_lock); | ||
295 | if (page_count(page) == 2) | ||
296 | retval = 1; | ||
297 | write_unlock_irq(&swapper_space.tree_lock); | ||
298 | } | ||
299 | swap_info_put(p); | ||
300 | } | ||
301 | return retval; | ||
302 | } | ||
303 | |||
304 | /* | ||
305 | * We can use this swap cache entry directly | ||
306 | * if there are no other references to it. | ||
307 | * | ||
308 | * Here "exclusive_swap_page()" does the real | ||
309 | * work, but we opportunistically check whether | ||
310 | * we need to get all the locks first.. | ||
311 | */ | ||
312 | int can_share_swap_page(struct page *page) | ||
313 | { | ||
314 | int retval = 0; | ||
315 | |||
316 | if (!PageLocked(page)) | ||
317 | BUG(); | ||
318 | switch (page_count(page)) { | ||
319 | case 3: | ||
320 | if (!PagePrivate(page)) | ||
321 | break; | ||
322 | /* Fallthrough */ | ||
323 | case 2: | ||
324 | if (!PageSwapCache(page)) | ||
325 | break; | ||
326 | retval = exclusive_swap_page(page); | ||
327 | break; | ||
328 | case 1: | ||
329 | if (PageReserved(page)) | ||
330 | break; | ||
331 | retval = 1; | ||
332 | } | ||
333 | return retval; | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * Work out if there are any other processes sharing this | ||
338 | * swap cache page. Free it if you can. Return success. | ||
339 | */ | ||
340 | int remove_exclusive_swap_page(struct page *page) | ||
341 | { | ||
342 | int retval; | ||
343 | struct swap_info_struct * p; | ||
344 | swp_entry_t entry; | ||
345 | |||
346 | BUG_ON(PagePrivate(page)); | ||
347 | BUG_ON(!PageLocked(page)); | ||
348 | |||
349 | if (!PageSwapCache(page)) | ||
350 | return 0; | ||
351 | if (PageWriteback(page)) | ||
352 | return 0; | ||
353 | if (page_count(page) != 2) /* 2: us + cache */ | ||
354 | return 0; | ||
355 | |||
356 | entry.val = page->private; | ||
357 | p = swap_info_get(entry); | ||
358 | if (!p) | ||
359 | return 0; | ||
360 | |||
361 | /* Is the only swap cache user the cache itself? */ | ||
362 | retval = 0; | ||
363 | if (p->swap_map[swp_offset(entry)] == 1) { | ||
364 | /* Recheck the page count with the swapcache lock held.. */ | ||
365 | write_lock_irq(&swapper_space.tree_lock); | ||
366 | if ((page_count(page) == 2) && !PageWriteback(page)) { | ||
367 | __delete_from_swap_cache(page); | ||
368 | SetPageDirty(page); | ||
369 | retval = 1; | ||
370 | } | ||
371 | write_unlock_irq(&swapper_space.tree_lock); | ||
372 | } | ||
373 | swap_info_put(p); | ||
374 | |||
375 | if (retval) { | ||
376 | swap_free(entry); | ||
377 | page_cache_release(page); | ||
378 | } | ||
379 | |||
380 | return retval; | ||
381 | } | ||
382 | |||
383 | /* | ||
384 | * Free the swap entry like above, but also try to | ||
385 | * free the page cache entry if it is the last user. | ||
386 | */ | ||
387 | void free_swap_and_cache(swp_entry_t entry) | ||
388 | { | ||
389 | struct swap_info_struct * p; | ||
390 | struct page *page = NULL; | ||
391 | |||
392 | p = swap_info_get(entry); | ||
393 | if (p) { | ||
394 | if (swap_entry_free(p, swp_offset(entry)) == 1) | ||
395 | page = find_trylock_page(&swapper_space, entry.val); | ||
396 | swap_info_put(p); | ||
397 | } | ||
398 | if (page) { | ||
399 | int one_user; | ||
400 | |||
401 | BUG_ON(PagePrivate(page)); | ||
402 | page_cache_get(page); | ||
403 | one_user = (page_count(page) == 2); | ||
404 | /* Only cache user (+us), or swap space full? Free it! */ | ||
405 | if (!PageWriteback(page) && (one_user || vm_swap_full())) { | ||
406 | delete_from_swap_cache(page); | ||
407 | SetPageDirty(page); | ||
408 | } | ||
409 | unlock_page(page); | ||
410 | page_cache_release(page); | ||
411 | } | ||
412 | } | ||
413 | |||
414 | /* | ||
415 | * Always set the resulting pte to be nowrite (the same as COW pages | ||
416 | * after one process has exited). We don't know just how many PTEs will | ||
417 | * share this swap entry, so be cautious and let do_wp_page work out | ||
418 | * what to do if a write is requested later. | ||
419 | * | ||
420 | * vma->vm_mm->page_table_lock is held. | ||
421 | */ | ||
422 | static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, | ||
423 | unsigned long addr, swp_entry_t entry, struct page *page) | ||
424 | { | ||
425 | inc_mm_counter(vma->vm_mm, rss); | ||
426 | get_page(page); | ||
427 | set_pte_at(vma->vm_mm, addr, pte, | ||
428 | pte_mkold(mk_pte(page, vma->vm_page_prot))); | ||
429 | page_add_anon_rmap(page, vma, addr); | ||
430 | swap_free(entry); | ||
431 | /* | ||
432 | * Move the page to the active list so it is not | ||
433 | * immediately swapped out again after swapon. | ||
434 | */ | ||
435 | activate_page(page); | ||
436 | } | ||
437 | |||
438 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | ||
439 | unsigned long addr, unsigned long end, | ||
440 | swp_entry_t entry, struct page *page) | ||
441 | { | ||
442 | pte_t *pte; | ||
443 | pte_t swp_pte = swp_entry_to_pte(entry); | ||
444 | |||
445 | pte = pte_offset_map(pmd, addr); | ||
446 | do { | ||
447 | /* | ||
448 | * swapoff spends a _lot_ of time in this loop! | ||
449 | * Test inline before going to call unuse_pte. | ||
450 | */ | ||
451 | if (unlikely(pte_same(*pte, swp_pte))) { | ||
452 | unuse_pte(vma, pte, addr, entry, page); | ||
453 | pte_unmap(pte); | ||
454 | return 1; | ||
455 | } | ||
456 | } while (pte++, addr += PAGE_SIZE, addr != end); | ||
457 | pte_unmap(pte - 1); | ||
458 | return 0; | ||
459 | } | ||
460 | |||
461 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | ||
462 | unsigned long addr, unsigned long end, | ||
463 | swp_entry_t entry, struct page *page) | ||
464 | { | ||
465 | pmd_t *pmd; | ||
466 | unsigned long next; | ||
467 | |||
468 | pmd = pmd_offset(pud, addr); | ||
469 | do { | ||
470 | next = pmd_addr_end(addr, end); | ||
471 | if (pmd_none_or_clear_bad(pmd)) | ||
472 | continue; | ||
473 | if (unuse_pte_range(vma, pmd, addr, next, entry, page)) | ||
474 | return 1; | ||
475 | } while (pmd++, addr = next, addr != end); | ||
476 | return 0; | ||
477 | } | ||
478 | |||
479 | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, | ||
480 | unsigned long addr, unsigned long end, | ||
481 | swp_entry_t entry, struct page *page) | ||
482 | { | ||
483 | pud_t *pud; | ||
484 | unsigned long next; | ||
485 | |||
486 | pud = pud_offset(pgd, addr); | ||
487 | do { | ||
488 | next = pud_addr_end(addr, end); | ||
489 | if (pud_none_or_clear_bad(pud)) | ||
490 | continue; | ||
491 | if (unuse_pmd_range(vma, pud, addr, next, entry, page)) | ||
492 | return 1; | ||
493 | } while (pud++, addr = next, addr != end); | ||
494 | return 0; | ||
495 | } | ||
496 | |||
497 | static int unuse_vma(struct vm_area_struct *vma, | ||
498 | swp_entry_t entry, struct page *page) | ||
499 | { | ||
500 | pgd_t *pgd; | ||
501 | unsigned long addr, end, next; | ||
502 | |||
503 | if (page->mapping) { | ||
504 | addr = page_address_in_vma(page, vma); | ||
505 | if (addr == -EFAULT) | ||
506 | return 0; | ||
507 | else | ||
508 | end = addr + PAGE_SIZE; | ||
509 | } else { | ||
510 | addr = vma->vm_start; | ||
511 | end = vma->vm_end; | ||
512 | } | ||
513 | |||
514 | pgd = pgd_offset(vma->vm_mm, addr); | ||
515 | do { | ||
516 | next = pgd_addr_end(addr, end); | ||
517 | if (pgd_none_or_clear_bad(pgd)) | ||
518 | continue; | ||
519 | if (unuse_pud_range(vma, pgd, addr, next, entry, page)) | ||
520 | return 1; | ||
521 | } while (pgd++, addr = next, addr != end); | ||
522 | return 0; | ||
523 | } | ||
524 | |||
525 | static int unuse_mm(struct mm_struct *mm, | ||
526 | swp_entry_t entry, struct page *page) | ||
527 | { | ||
528 | struct vm_area_struct *vma; | ||
529 | |||
530 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
531 | /* | ||
532 | * Our reference to the page stops try_to_unmap_one from | ||
533 | * unmapping its ptes, so swapoff can make progress. | ||
534 | */ | ||
535 | unlock_page(page); | ||
536 | down_read(&mm->mmap_sem); | ||
537 | lock_page(page); | ||
538 | } | ||
539 | spin_lock(&mm->page_table_lock); | ||
540 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
541 | if (vma->anon_vma && unuse_vma(vma, entry, page)) | ||
542 | break; | ||
543 | } | ||
544 | spin_unlock(&mm->page_table_lock); | ||
545 | up_read(&mm->mmap_sem); | ||
546 | /* | ||
547 | * Currently unuse_mm cannot fail, but leave error handling | ||
548 | * at call sites for now, since we change it from time to time. | ||
549 | */ | ||
550 | return 0; | ||
551 | } | ||
552 | |||
553 | /* | ||
554 | * Scan swap_map from current position to next entry still in use. | ||
555 | * Recycle to start on reaching the end, returning 0 when empty. | ||
556 | */ | ||
557 | static int find_next_to_unuse(struct swap_info_struct *si, int prev) | ||
558 | { | ||
559 | int max = si->max; | ||
560 | int i = prev; | ||
561 | int count; | ||
562 | |||
563 | /* | ||
564 | * No need for swap_device_lock(si) here: we're just looking | ||
565 | * for whether an entry is in use, not modifying it; false | ||
566 | * hits are okay, and sys_swapoff() has already prevented new | ||
567 | * allocations from this area (while holding swap_list_lock()). | ||
568 | */ | ||
569 | for (;;) { | ||
570 | if (++i >= max) { | ||
571 | if (!prev) { | ||
572 | i = 0; | ||
573 | break; | ||
574 | } | ||
575 | /* | ||
576 | * No entries in use at top of swap_map, | ||
577 | * loop back to start and recheck there. | ||
578 | */ | ||
579 | max = prev + 1; | ||
580 | prev = 0; | ||
581 | i = 1; | ||
582 | } | ||
583 | count = si->swap_map[i]; | ||
584 | if (count && count != SWAP_MAP_BAD) | ||
585 | break; | ||
586 | } | ||
587 | return i; | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * We completely avoid races by reading each swap page in advance, | ||
592 | * and then search for the process using it. All the necessary | ||
593 | * page table adjustments can then be made atomically. | ||
594 | */ | ||
595 | static int try_to_unuse(unsigned int type) | ||
596 | { | ||
597 | struct swap_info_struct * si = &swap_info[type]; | ||
598 | struct mm_struct *start_mm; | ||
599 | unsigned short *swap_map; | ||
600 | unsigned short swcount; | ||
601 | struct page *page; | ||
602 | swp_entry_t entry; | ||
603 | int i = 0; | ||
604 | int retval = 0; | ||
605 | int reset_overflow = 0; | ||
606 | int shmem; | ||
607 | |||
608 | /* | ||
609 | * When searching mms for an entry, a good strategy is to | ||
610 | * start at the first mm we freed the previous entry from | ||
611 | * (though actually we don't notice whether we or coincidence | ||
612 | * freed the entry). Initialize this start_mm with a hold. | ||
613 | * | ||
614 | * A simpler strategy would be to start at the last mm we | ||
615 | * freed the previous entry from; but that would take less | ||
616 | * advantage of mmlist ordering, which clusters forked mms | ||
617 | * together, child after parent. If we race with dup_mmap(), we | ||
618 | * prefer to resolve parent before child, lest we miss entries | ||
619 | * duplicated after we scanned child: using last mm would invert | ||
620 | * that. Though it's only a serious concern when an overflowed | ||
621 | * swap count is reset from SWAP_MAP_MAX, preventing a rescan. | ||
622 | */ | ||
623 | start_mm = &init_mm; | ||
624 | atomic_inc(&init_mm.mm_users); | ||
625 | |||
626 | /* | ||
627 | * Keep on scanning until all entries have gone. Usually, | ||
628 | * one pass through swap_map is enough, but not necessarily: | ||
629 | * there are races when an instance of an entry might be missed. | ||
630 | */ | ||
631 | while ((i = find_next_to_unuse(si, i)) != 0) { | ||
632 | if (signal_pending(current)) { | ||
633 | retval = -EINTR; | ||
634 | break; | ||
635 | } | ||
636 | |||
637 | /* | ||
638 | * Get a page for the entry, using the existing swap | ||
639 | * cache page if there is one. Otherwise, get a clean | ||
640 | * page and read the swap into it. | ||
641 | */ | ||
642 | swap_map = &si->swap_map[i]; | ||
643 | entry = swp_entry(type, i); | ||
644 | page = read_swap_cache_async(entry, NULL, 0); | ||
645 | if (!page) { | ||
646 | /* | ||
647 | * Either swap_duplicate() failed because entry | ||
648 | * has been freed independently, and will not be | ||
649 | * reused since sys_swapoff() already disabled | ||
650 | * allocation from here, or alloc_page() failed. | ||
651 | */ | ||
652 | if (!*swap_map) | ||
653 | continue; | ||
654 | retval = -ENOMEM; | ||
655 | break; | ||
656 | } | ||
657 | |||
658 | /* | ||
659 | * Don't hold on to start_mm if it looks like exiting. | ||
660 | */ | ||
661 | if (atomic_read(&start_mm->mm_users) == 1) { | ||
662 | mmput(start_mm); | ||
663 | start_mm = &init_mm; | ||
664 | atomic_inc(&init_mm.mm_users); | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * Wait for and lock page. When do_swap_page races with | ||
669 | * try_to_unuse, do_swap_page can handle the fault much | ||
670 | * faster than try_to_unuse can locate the entry. This | ||
671 | * apparently redundant "wait_on_page_locked" lets try_to_unuse | ||
672 | * defer to do_swap_page in such a case - in some tests, | ||
673 | * do_swap_page and try_to_unuse repeatedly compete. | ||
674 | */ | ||
675 | wait_on_page_locked(page); | ||
676 | wait_on_page_writeback(page); | ||
677 | lock_page(page); | ||
678 | wait_on_page_writeback(page); | ||
679 | |||
680 | /* | ||
681 | * Remove all references to entry. | ||
682 | * Whenever we reach init_mm, there's no address space | ||
683 | * to search, but use it as a reminder to search shmem. | ||
684 | */ | ||
685 | shmem = 0; | ||
686 | swcount = *swap_map; | ||
687 | if (swcount > 1) { | ||
688 | if (start_mm == &init_mm) | ||
689 | shmem = shmem_unuse(entry, page); | ||
690 | else | ||
691 | retval = unuse_mm(start_mm, entry, page); | ||
692 | } | ||
693 | if (*swap_map > 1) { | ||
694 | int set_start_mm = (*swap_map >= swcount); | ||
695 | struct list_head *p = &start_mm->mmlist; | ||
696 | struct mm_struct *new_start_mm = start_mm; | ||
697 | struct mm_struct *prev_mm = start_mm; | ||
698 | struct mm_struct *mm; | ||
699 | |||
700 | atomic_inc(&new_start_mm->mm_users); | ||
701 | atomic_inc(&prev_mm->mm_users); | ||
702 | spin_lock(&mmlist_lock); | ||
703 | while (*swap_map > 1 && !retval && | ||
704 | (p = p->next) != &start_mm->mmlist) { | ||
705 | mm = list_entry(p, struct mm_struct, mmlist); | ||
706 | if (atomic_inc_return(&mm->mm_users) == 1) { | ||
707 | atomic_dec(&mm->mm_users); | ||
708 | continue; | ||
709 | } | ||
710 | spin_unlock(&mmlist_lock); | ||
711 | mmput(prev_mm); | ||
712 | prev_mm = mm; | ||
713 | |||
714 | cond_resched(); | ||
715 | |||
716 | swcount = *swap_map; | ||
717 | if (swcount <= 1) | ||
718 | ; | ||
719 | else if (mm == &init_mm) { | ||
720 | set_start_mm = 1; | ||
721 | shmem = shmem_unuse(entry, page); | ||
722 | } else | ||
723 | retval = unuse_mm(mm, entry, page); | ||
724 | if (set_start_mm && *swap_map < swcount) { | ||
725 | mmput(new_start_mm); | ||
726 | atomic_inc(&mm->mm_users); | ||
727 | new_start_mm = mm; | ||
728 | set_start_mm = 0; | ||
729 | } | ||
730 | spin_lock(&mmlist_lock); | ||
731 | } | ||
732 | spin_unlock(&mmlist_lock); | ||
733 | mmput(prev_mm); | ||
734 | mmput(start_mm); | ||
735 | start_mm = new_start_mm; | ||
736 | } | ||
737 | if (retval) { | ||
738 | unlock_page(page); | ||
739 | page_cache_release(page); | ||
740 | break; | ||
741 | } | ||
742 | |||
743 | /* | ||
744 | * How could swap count reach 0x7fff when the maximum | ||
745 | * pid is 0x7fff, and there's no way to repeat a swap | ||
746 | * page within an mm (except in shmem, where it's the | ||
747 | * shared object which takes the reference count)? | ||
748 | * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. | ||
749 | * | ||
750 | * If that's wrong, then we should worry more about | ||
751 | * exit_mmap() and do_munmap() cases described above: | ||
752 | * we might be resetting SWAP_MAP_MAX too early here. | ||
753 | * We know "Undead"s can happen, they're okay, so don't | ||
754 | * report them; but do report if we reset SWAP_MAP_MAX. | ||
755 | */ | ||
756 | if (*swap_map == SWAP_MAP_MAX) { | ||
757 | swap_device_lock(si); | ||
758 | *swap_map = 1; | ||
759 | swap_device_unlock(si); | ||
760 | reset_overflow = 1; | ||
761 | } | ||
762 | |||
763 | /* | ||
764 | * If a reference remains (rare), we would like to leave | ||
765 | * the page in the swap cache; but try_to_unmap could | ||
766 | * then re-duplicate the entry once we drop page lock, | ||
767 | * so we might loop indefinitely; also, that page could | ||
768 | * not be swapped out to other storage meanwhile. So: | ||
769 | * delete from cache even if there's another reference, | ||
770 | * after ensuring that the data has been saved to disk - | ||
771 | * since if the reference remains (rarer), it will be | ||
772 | * read from disk into another page. Splitting into two | ||
773 | * pages would be incorrect if swap supported "shared | ||
774 | * private" pages, but they are handled by tmpfs files. | ||
775 | * | ||
776 | * Note shmem_unuse already deleted a swappage from | ||
777 | * the swap cache, unless the move to filepage failed: | ||
778 | * in which case it left swappage in cache, lowered its | ||
779 | * swap count to pass quickly through the loops above, | ||
780 | * and now we must reincrement count to try again later. | ||
781 | */ | ||
782 | if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { | ||
783 | struct writeback_control wbc = { | ||
784 | .sync_mode = WB_SYNC_NONE, | ||
785 | }; | ||
786 | |||
787 | swap_writepage(page, &wbc); | ||
788 | lock_page(page); | ||
789 | wait_on_page_writeback(page); | ||
790 | } | ||
791 | if (PageSwapCache(page)) { | ||
792 | if (shmem) | ||
793 | swap_duplicate(entry); | ||
794 | else | ||
795 | delete_from_swap_cache(page); | ||
796 | } | ||
797 | |||
798 | /* | ||
799 | * So we could skip searching mms once swap count went | ||
800 | * to 1, we did not mark any present ptes as dirty: must | ||
801 | * mark page dirty so shrink_list will preserve it. | ||
802 | */ | ||
803 | SetPageDirty(page); | ||
804 | unlock_page(page); | ||
805 | page_cache_release(page); | ||
806 | |||
807 | /* | ||
808 | * Make sure that we aren't completely killing | ||
809 | * interactive performance. | ||
810 | */ | ||
811 | cond_resched(); | ||
812 | } | ||
813 | |||
814 | mmput(start_mm); | ||
815 | if (reset_overflow) { | ||
816 | printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); | ||
817 | swap_overflow = 0; | ||
818 | } | ||
819 | return retval; | ||
820 | } | ||
821 | |||
822 | /* | ||
823 | * After a successful try_to_unuse, if no swap is now in use, we know we | ||
824 | * can empty the mmlist. swap_list_lock must be held on entry and exit. | ||
825 | * Note that mmlist_lock nests inside swap_list_lock, and an mm must be | ||
826 | * added to the mmlist just after page_duplicate - before would be racy. | ||
827 | */ | ||
828 | static void drain_mmlist(void) | ||
829 | { | ||
830 | struct list_head *p, *next; | ||
831 | unsigned int i; | ||
832 | |||
833 | for (i = 0; i < nr_swapfiles; i++) | ||
834 | if (swap_info[i].inuse_pages) | ||
835 | return; | ||
836 | spin_lock(&mmlist_lock); | ||
837 | list_for_each_safe(p, next, &init_mm.mmlist) | ||
838 | list_del_init(p); | ||
839 | spin_unlock(&mmlist_lock); | ||
840 | } | ||
841 | |||
842 | /* | ||
843 | * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | ||
844 | * corresponds to page offset `offset'. | ||
845 | */ | ||
846 | sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) | ||
847 | { | ||
848 | struct swap_extent *se = sis->curr_swap_extent; | ||
849 | struct swap_extent *start_se = se; | ||
850 | |||
851 | for ( ; ; ) { | ||
852 | struct list_head *lh; | ||
853 | |||
854 | if (se->start_page <= offset && | ||
855 | offset < (se->start_page + se->nr_pages)) { | ||
856 | return se->start_block + (offset - se->start_page); | ||
857 | } | ||
858 | lh = se->list.prev; | ||
859 | if (lh == &sis->extent_list) | ||
860 | lh = lh->prev; | ||
861 | se = list_entry(lh, struct swap_extent, list); | ||
862 | sis->curr_swap_extent = se; | ||
863 | BUG_ON(se == start_se); /* It *must* be present */ | ||
864 | } | ||
865 | } | ||
866 | |||
867 | /* | ||
868 | * Free all of a swapdev's extent information | ||
869 | */ | ||
870 | static void destroy_swap_extents(struct swap_info_struct *sis) | ||
871 | { | ||
872 | while (!list_empty(&sis->extent_list)) { | ||
873 | struct swap_extent *se; | ||
874 | |||
875 | se = list_entry(sis->extent_list.next, | ||
876 | struct swap_extent, list); | ||
877 | list_del(&se->list); | ||
878 | kfree(se); | ||
879 | } | ||
880 | sis->nr_extents = 0; | ||
881 | } | ||
882 | |||
883 | /* | ||
884 | * Add a block range (and the corresponding page range) into this swapdev's | ||
885 | * extent list. The extent list is kept sorted in block order. | ||
886 | * | ||
887 | * This function rather assumes that it is called in ascending sector_t order. | ||
888 | * It doesn't look for extent coalescing opportunities. | ||
889 | */ | ||
890 | static int | ||
891 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | ||
892 | unsigned long nr_pages, sector_t start_block) | ||
893 | { | ||
894 | struct swap_extent *se; | ||
895 | struct swap_extent *new_se; | ||
896 | struct list_head *lh; | ||
897 | |||
898 | lh = sis->extent_list.next; /* The highest-addressed block */ | ||
899 | while (lh != &sis->extent_list) { | ||
900 | se = list_entry(lh, struct swap_extent, list); | ||
901 | if (se->start_block + se->nr_pages == start_block && | ||
902 | se->start_page + se->nr_pages == start_page) { | ||
903 | /* Merge it */ | ||
904 | se->nr_pages += nr_pages; | ||
905 | return 0; | ||
906 | } | ||
907 | lh = lh->next; | ||
908 | } | ||
909 | |||
910 | /* | ||
911 | * No merge. Insert a new extent, preserving ordering. | ||
912 | */ | ||
913 | new_se = kmalloc(sizeof(*se), GFP_KERNEL); | ||
914 | if (new_se == NULL) | ||
915 | return -ENOMEM; | ||
916 | new_se->start_page = start_page; | ||
917 | new_se->nr_pages = nr_pages; | ||
918 | new_se->start_block = start_block; | ||
919 | |||
920 | lh = sis->extent_list.prev; /* The lowest block */ | ||
921 | while (lh != &sis->extent_list) { | ||
922 | se = list_entry(lh, struct swap_extent, list); | ||
923 | if (se->start_block > start_block) | ||
924 | break; | ||
925 | lh = lh->prev; | ||
926 | } | ||
927 | list_add_tail(&new_se->list, lh); | ||
928 | sis->nr_extents++; | ||
929 | return 0; | ||
930 | } | ||
931 | |||
932 | /* | ||
933 | * A `swap extent' is a simple thing which maps a contiguous range of pages | ||
934 | * onto a contiguous range of disk blocks. An ordered list of swap extents | ||
935 | * is built at swapon time and is then used at swap_writepage/swap_readpage | ||
936 | * time for locating where on disk a page belongs. | ||
937 | * | ||
938 | * If the swapfile is an S_ISBLK block device, a single extent is installed. | ||
939 | * This is done so that the main operating code can treat S_ISBLK and S_ISREG | ||
940 | * swap files identically. | ||
941 | * | ||
942 | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | ||
943 | * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK | ||
944 | * swapfiles are handled *identically* after swapon time. | ||
945 | * | ||
946 | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | ||
947 | * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If | ||
948 | * some stray blocks are found which do not fall within the PAGE_SIZE alignment | ||
949 | * requirements, they are simply tossed out - we will never use those blocks | ||
950 | * for swapping. | ||
951 | * | ||
952 | * For S_ISREG swapfiles we hold i_sem across the life of the swapon. This | ||
953 | * prevents root from shooting her foot off by ftruncating an in-use swapfile, | ||
954 | * which will scribble on the fs. | ||
955 | * | ||
956 | * The amount of disk space which a single swap extent represents varies. | ||
957 | * Typically it is in the 1-4 megabyte range. So we can have hundreds of | ||
958 | * extents in the list. To avoid much list walking, we cache the previous | ||
959 | * search location in `curr_swap_extent', and start new searches from there. | ||
960 | * This is extremely effective. The average number of iterations in | ||
961 | * map_swap_page() has been measured at about 0.3 per page. - akpm. | ||
962 | */ | ||
963 | static int setup_swap_extents(struct swap_info_struct *sis) | ||
964 | { | ||
965 | struct inode *inode; | ||
966 | unsigned blocks_per_page; | ||
967 | unsigned long page_no; | ||
968 | unsigned blkbits; | ||
969 | sector_t probe_block; | ||
970 | sector_t last_block; | ||
971 | int ret; | ||
972 | |||
973 | inode = sis->swap_file->f_mapping->host; | ||
974 | if (S_ISBLK(inode->i_mode)) { | ||
975 | ret = add_swap_extent(sis, 0, sis->max, 0); | ||
976 | goto done; | ||
977 | } | ||
978 | |||
979 | blkbits = inode->i_blkbits; | ||
980 | blocks_per_page = PAGE_SIZE >> blkbits; | ||
981 | |||
982 | /* | ||
983 | * Map all the blocks into the extent list. This code doesn't try | ||
984 | * to be very smart. | ||
985 | */ | ||
986 | probe_block = 0; | ||
987 | page_no = 0; | ||
988 | last_block = i_size_read(inode) >> blkbits; | ||
989 | while ((probe_block + blocks_per_page) <= last_block && | ||
990 | page_no < sis->max) { | ||
991 | unsigned block_in_page; | ||
992 | sector_t first_block; | ||
993 | |||
994 | first_block = bmap(inode, probe_block); | ||
995 | if (first_block == 0) | ||
996 | goto bad_bmap; | ||
997 | |||
998 | /* | ||
999 | * It must be PAGE_SIZE aligned on-disk | ||
1000 | */ | ||
1001 | if (first_block & (blocks_per_page - 1)) { | ||
1002 | probe_block++; | ||
1003 | goto reprobe; | ||
1004 | } | ||
1005 | |||
1006 | for (block_in_page = 1; block_in_page < blocks_per_page; | ||
1007 | block_in_page++) { | ||
1008 | sector_t block; | ||
1009 | |||
1010 | block = bmap(inode, probe_block + block_in_page); | ||
1011 | if (block == 0) | ||
1012 | goto bad_bmap; | ||
1013 | if (block != first_block + block_in_page) { | ||
1014 | /* Discontiguity */ | ||
1015 | probe_block++; | ||
1016 | goto reprobe; | ||
1017 | } | ||
1018 | } | ||
1019 | |||
1020 | /* | ||
1021 | * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks | ||
1022 | */ | ||
1023 | ret = add_swap_extent(sis, page_no, 1, | ||
1024 | first_block >> (PAGE_SHIFT - blkbits)); | ||
1025 | if (ret) | ||
1026 | goto out; | ||
1027 | page_no++; | ||
1028 | probe_block += blocks_per_page; | ||
1029 | reprobe: | ||
1030 | continue; | ||
1031 | } | ||
1032 | ret = 0; | ||
1033 | if (page_no == 0) | ||
1034 | ret = -EINVAL; | ||
1035 | sis->max = page_no; | ||
1036 | sis->highest_bit = page_no - 1; | ||
1037 | done: | ||
1038 | sis->curr_swap_extent = list_entry(sis->extent_list.prev, | ||
1039 | struct swap_extent, list); | ||
1040 | goto out; | ||
1041 | bad_bmap: | ||
1042 | printk(KERN_ERR "swapon: swapfile has holes\n"); | ||
1043 | ret = -EINVAL; | ||
1044 | out: | ||
1045 | return ret; | ||
1046 | } | ||
1047 | |||
1048 | #if 0 /* We don't need this yet */ | ||
1049 | #include <linux/backing-dev.h> | ||
1050 | int page_queue_congested(struct page *page) | ||
1051 | { | ||
1052 | struct backing_dev_info *bdi; | ||
1053 | |||
1054 | BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ | ||
1055 | |||
1056 | if (PageSwapCache(page)) { | ||
1057 | swp_entry_t entry = { .val = page->private }; | ||
1058 | struct swap_info_struct *sis; | ||
1059 | |||
1060 | sis = get_swap_info_struct(swp_type(entry)); | ||
1061 | bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; | ||
1062 | } else | ||
1063 | bdi = page->mapping->backing_dev_info; | ||
1064 | return bdi_write_congested(bdi); | ||
1065 | } | ||
1066 | #endif | ||
1067 | |||
1068 | asmlinkage long sys_swapoff(const char __user * specialfile) | ||
1069 | { | ||
1070 | struct swap_info_struct * p = NULL; | ||
1071 | unsigned short *swap_map; | ||
1072 | struct file *swap_file, *victim; | ||
1073 | struct address_space *mapping; | ||
1074 | struct inode *inode; | ||
1075 | char * pathname; | ||
1076 | int i, type, prev; | ||
1077 | int err; | ||
1078 | |||
1079 | if (!capable(CAP_SYS_ADMIN)) | ||
1080 | return -EPERM; | ||
1081 | |||
1082 | pathname = getname(specialfile); | ||
1083 | err = PTR_ERR(pathname); | ||
1084 | if (IS_ERR(pathname)) | ||
1085 | goto out; | ||
1086 | |||
1087 | victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); | ||
1088 | putname(pathname); | ||
1089 | err = PTR_ERR(victim); | ||
1090 | if (IS_ERR(victim)) | ||
1091 | goto out; | ||
1092 | |||
1093 | mapping = victim->f_mapping; | ||
1094 | prev = -1; | ||
1095 | swap_list_lock(); | ||
1096 | for (type = swap_list.head; type >= 0; type = swap_info[type].next) { | ||
1097 | p = swap_info + type; | ||
1098 | if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { | ||
1099 | if (p->swap_file->f_mapping == mapping) | ||
1100 | break; | ||
1101 | } | ||
1102 | prev = type; | ||
1103 | } | ||
1104 | if (type < 0) { | ||
1105 | err = -EINVAL; | ||
1106 | swap_list_unlock(); | ||
1107 | goto out_dput; | ||
1108 | } | ||
1109 | if (!security_vm_enough_memory(p->pages)) | ||
1110 | vm_unacct_memory(p->pages); | ||
1111 | else { | ||
1112 | err = -ENOMEM; | ||
1113 | swap_list_unlock(); | ||
1114 | goto out_dput; | ||
1115 | } | ||
1116 | if (prev < 0) { | ||
1117 | swap_list.head = p->next; | ||
1118 | } else { | ||
1119 | swap_info[prev].next = p->next; | ||
1120 | } | ||
1121 | if (type == swap_list.next) { | ||
1122 | /* just pick something that's safe... */ | ||
1123 | swap_list.next = swap_list.head; | ||
1124 | } | ||
1125 | nr_swap_pages -= p->pages; | ||
1126 | total_swap_pages -= p->pages; | ||
1127 | p->flags &= ~SWP_WRITEOK; | ||
1128 | swap_list_unlock(); | ||
1129 | current->flags |= PF_SWAPOFF; | ||
1130 | err = try_to_unuse(type); | ||
1131 | current->flags &= ~PF_SWAPOFF; | ||
1132 | |||
1133 | /* wait for any unplug function to finish */ | ||
1134 | down_write(&swap_unplug_sem); | ||
1135 | up_write(&swap_unplug_sem); | ||
1136 | |||
1137 | if (err) { | ||
1138 | /* re-insert swap space back into swap_list */ | ||
1139 | swap_list_lock(); | ||
1140 | for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) | ||
1141 | if (p->prio >= swap_info[i].prio) | ||
1142 | break; | ||
1143 | p->next = i; | ||
1144 | if (prev < 0) | ||
1145 | swap_list.head = swap_list.next = p - swap_info; | ||
1146 | else | ||
1147 | swap_info[prev].next = p - swap_info; | ||
1148 | nr_swap_pages += p->pages; | ||
1149 | total_swap_pages += p->pages; | ||
1150 | p->flags |= SWP_WRITEOK; | ||
1151 | swap_list_unlock(); | ||
1152 | goto out_dput; | ||
1153 | } | ||
1154 | down(&swapon_sem); | ||
1155 | swap_list_lock(); | ||
1156 | drain_mmlist(); | ||
1157 | swap_device_lock(p); | ||
1158 | swap_file = p->swap_file; | ||
1159 | p->swap_file = NULL; | ||
1160 | p->max = 0; | ||
1161 | swap_map = p->swap_map; | ||
1162 | p->swap_map = NULL; | ||
1163 | p->flags = 0; | ||
1164 | destroy_swap_extents(p); | ||
1165 | swap_device_unlock(p); | ||
1166 | swap_list_unlock(); | ||
1167 | up(&swapon_sem); | ||
1168 | vfree(swap_map); | ||
1169 | inode = mapping->host; | ||
1170 | if (S_ISBLK(inode->i_mode)) { | ||
1171 | struct block_device *bdev = I_BDEV(inode); | ||
1172 | set_blocksize(bdev, p->old_block_size); | ||
1173 | bd_release(bdev); | ||
1174 | } else { | ||
1175 | down(&inode->i_sem); | ||
1176 | inode->i_flags &= ~S_SWAPFILE; | ||
1177 | up(&inode->i_sem); | ||
1178 | } | ||
1179 | filp_close(swap_file, NULL); | ||
1180 | err = 0; | ||
1181 | |||
1182 | out_dput: | ||
1183 | filp_close(victim, NULL); | ||
1184 | out: | ||
1185 | return err; | ||
1186 | } | ||
1187 | |||
1188 | #ifdef CONFIG_PROC_FS | ||
1189 | /* iterator */ | ||
1190 | static void *swap_start(struct seq_file *swap, loff_t *pos) | ||
1191 | { | ||
1192 | struct swap_info_struct *ptr = swap_info; | ||
1193 | int i; | ||
1194 | loff_t l = *pos; | ||
1195 | |||
1196 | down(&swapon_sem); | ||
1197 | |||
1198 | for (i = 0; i < nr_swapfiles; i++, ptr++) { | ||
1199 | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) | ||
1200 | continue; | ||
1201 | if (!l--) | ||
1202 | return ptr; | ||
1203 | } | ||
1204 | |||
1205 | return NULL; | ||
1206 | } | ||
1207 | |||
1208 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | ||
1209 | { | ||
1210 | struct swap_info_struct *ptr = v; | ||
1211 | struct swap_info_struct *endptr = swap_info + nr_swapfiles; | ||
1212 | |||
1213 | for (++ptr; ptr < endptr; ptr++) { | ||
1214 | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) | ||
1215 | continue; | ||
1216 | ++*pos; | ||
1217 | return ptr; | ||
1218 | } | ||
1219 | |||
1220 | return NULL; | ||
1221 | } | ||
1222 | |||
1223 | static void swap_stop(struct seq_file *swap, void *v) | ||
1224 | { | ||
1225 | up(&swapon_sem); | ||
1226 | } | ||
1227 | |||
1228 | static int swap_show(struct seq_file *swap, void *v) | ||
1229 | { | ||
1230 | struct swap_info_struct *ptr = v; | ||
1231 | struct file *file; | ||
1232 | int len; | ||
1233 | |||
1234 | if (v == swap_info) | ||
1235 | seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | ||
1236 | |||
1237 | file = ptr->swap_file; | ||
1238 | len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); | ||
1239 | seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n", | ||
1240 | len < 40 ? 40 - len : 1, " ", | ||
1241 | S_ISBLK(file->f_dentry->d_inode->i_mode) ? | ||
1242 | "partition" : "file\t", | ||
1243 | ptr->pages << (PAGE_SHIFT - 10), | ||
1244 | ptr->inuse_pages << (PAGE_SHIFT - 10), | ||
1245 | ptr->prio); | ||
1246 | return 0; | ||
1247 | } | ||
1248 | |||
1249 | static struct seq_operations swaps_op = { | ||
1250 | .start = swap_start, | ||
1251 | .next = swap_next, | ||
1252 | .stop = swap_stop, | ||
1253 | .show = swap_show | ||
1254 | }; | ||
1255 | |||
1256 | static int swaps_open(struct inode *inode, struct file *file) | ||
1257 | { | ||
1258 | return seq_open(file, &swaps_op); | ||
1259 | } | ||
1260 | |||
1261 | static struct file_operations proc_swaps_operations = { | ||
1262 | .open = swaps_open, | ||
1263 | .read = seq_read, | ||
1264 | .llseek = seq_lseek, | ||
1265 | .release = seq_release, | ||
1266 | }; | ||
1267 | |||
1268 | static int __init procswaps_init(void) | ||
1269 | { | ||
1270 | struct proc_dir_entry *entry; | ||
1271 | |||
1272 | entry = create_proc_entry("swaps", 0, NULL); | ||
1273 | if (entry) | ||
1274 | entry->proc_fops = &proc_swaps_operations; | ||
1275 | return 0; | ||
1276 | } | ||
1277 | __initcall(procswaps_init); | ||
1278 | #endif /* CONFIG_PROC_FS */ | ||
1279 | |||
1280 | /* | ||
1281 | * Written 01/25/92 by Simmule Turner, heavily changed by Linus. | ||
1282 | * | ||
1283 | * The swapon system call | ||
1284 | */ | ||
1285 | asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | ||
1286 | { | ||
1287 | struct swap_info_struct * p; | ||
1288 | char *name = NULL; | ||
1289 | struct block_device *bdev = NULL; | ||
1290 | struct file *swap_file = NULL; | ||
1291 | struct address_space *mapping; | ||
1292 | unsigned int type; | ||
1293 | int i, prev; | ||
1294 | int error; | ||
1295 | static int least_priority; | ||
1296 | union swap_header *swap_header = NULL; | ||
1297 | int swap_header_version; | ||
1298 | int nr_good_pages = 0; | ||
1299 | unsigned long maxpages = 1; | ||
1300 | int swapfilesize; | ||
1301 | unsigned short *swap_map; | ||
1302 | struct page *page = NULL; | ||
1303 | struct inode *inode = NULL; | ||
1304 | int did_down = 0; | ||
1305 | |||
1306 | if (!capable(CAP_SYS_ADMIN)) | ||
1307 | return -EPERM; | ||
1308 | swap_list_lock(); | ||
1309 | p = swap_info; | ||
1310 | for (type = 0 ; type < nr_swapfiles ; type++,p++) | ||
1311 | if (!(p->flags & SWP_USED)) | ||
1312 | break; | ||
1313 | error = -EPERM; | ||
1314 | /* | ||
1315 | * Test if adding another swap device is possible. There are | ||
1316 | * two limiting factors: 1) the number of bits for the swap | ||
1317 | * type swp_entry_t definition and 2) the number of bits for | ||
1318 | * the swap type in the swap ptes as defined by the different | ||
1319 | * architectures. To honor both limitations a swap entry | ||
1320 | * with swap offset 0 and swap type ~0UL is created, encoded | ||
1321 | * to a swap pte, decoded to a swp_entry_t again and finally | ||
1322 | * the swap type part is extracted. This will mask all bits | ||
1323 | * from the initial ~0UL that can't be encoded in either the | ||
1324 | * swp_entry_t or the architecture definition of a swap pte. | ||
1325 | */ | ||
1326 | if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { | ||
1327 | swap_list_unlock(); | ||
1328 | goto out; | ||
1329 | } | ||
1330 | if (type >= nr_swapfiles) | ||
1331 | nr_swapfiles = type+1; | ||
1332 | INIT_LIST_HEAD(&p->extent_list); | ||
1333 | p->flags = SWP_USED; | ||
1334 | p->nr_extents = 0; | ||
1335 | p->swap_file = NULL; | ||
1336 | p->old_block_size = 0; | ||
1337 | p->swap_map = NULL; | ||
1338 | p->lowest_bit = 0; | ||
1339 | p->highest_bit = 0; | ||
1340 | p->cluster_nr = 0; | ||
1341 | p->inuse_pages = 0; | ||
1342 | spin_lock_init(&p->sdev_lock); | ||
1343 | p->next = -1; | ||
1344 | if (swap_flags & SWAP_FLAG_PREFER) { | ||
1345 | p->prio = | ||
1346 | (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; | ||
1347 | } else { | ||
1348 | p->prio = --least_priority; | ||
1349 | } | ||
1350 | swap_list_unlock(); | ||
1351 | name = getname(specialfile); | ||
1352 | error = PTR_ERR(name); | ||
1353 | if (IS_ERR(name)) { | ||
1354 | name = NULL; | ||
1355 | goto bad_swap_2; | ||
1356 | } | ||
1357 | swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); | ||
1358 | error = PTR_ERR(swap_file); | ||
1359 | if (IS_ERR(swap_file)) { | ||
1360 | swap_file = NULL; | ||
1361 | goto bad_swap_2; | ||
1362 | } | ||
1363 | |||
1364 | p->swap_file = swap_file; | ||
1365 | mapping = swap_file->f_mapping; | ||
1366 | inode = mapping->host; | ||
1367 | |||
1368 | error = -EBUSY; | ||
1369 | for (i = 0; i < nr_swapfiles; i++) { | ||
1370 | struct swap_info_struct *q = &swap_info[i]; | ||
1371 | |||
1372 | if (i == type || !q->swap_file) | ||
1373 | continue; | ||
1374 | if (mapping == q->swap_file->f_mapping) | ||
1375 | goto bad_swap; | ||
1376 | } | ||
1377 | |||
1378 | error = -EINVAL; | ||
1379 | if (S_ISBLK(inode->i_mode)) { | ||
1380 | bdev = I_BDEV(inode); | ||
1381 | error = bd_claim(bdev, sys_swapon); | ||
1382 | if (error < 0) { | ||
1383 | bdev = NULL; | ||
1384 | goto bad_swap; | ||
1385 | } | ||
1386 | p->old_block_size = block_size(bdev); | ||
1387 | error = set_blocksize(bdev, PAGE_SIZE); | ||
1388 | if (error < 0) | ||
1389 | goto bad_swap; | ||
1390 | p->bdev = bdev; | ||
1391 | } else if (S_ISREG(inode->i_mode)) { | ||
1392 | p->bdev = inode->i_sb->s_bdev; | ||
1393 | down(&inode->i_sem); | ||
1394 | did_down = 1; | ||
1395 | if (IS_SWAPFILE(inode)) { | ||
1396 | error = -EBUSY; | ||
1397 | goto bad_swap; | ||
1398 | } | ||
1399 | } else { | ||
1400 | goto bad_swap; | ||
1401 | } | ||
1402 | |||
1403 | swapfilesize = i_size_read(inode) >> PAGE_SHIFT; | ||
1404 | |||
1405 | /* | ||
1406 | * Read the swap header. | ||
1407 | */ | ||
1408 | if (!mapping->a_ops->readpage) { | ||
1409 | error = -EINVAL; | ||
1410 | goto bad_swap; | ||
1411 | } | ||
1412 | page = read_cache_page(mapping, 0, | ||
1413 | (filler_t *)mapping->a_ops->readpage, swap_file); | ||
1414 | if (IS_ERR(page)) { | ||
1415 | error = PTR_ERR(page); | ||
1416 | goto bad_swap; | ||
1417 | } | ||
1418 | wait_on_page_locked(page); | ||
1419 | if (!PageUptodate(page)) | ||
1420 | goto bad_swap; | ||
1421 | kmap(page); | ||
1422 | swap_header = page_address(page); | ||
1423 | |||
1424 | if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) | ||
1425 | swap_header_version = 1; | ||
1426 | else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) | ||
1427 | swap_header_version = 2; | ||
1428 | else { | ||
1429 | printk("Unable to find swap-space signature\n"); | ||
1430 | error = -EINVAL; | ||
1431 | goto bad_swap; | ||
1432 | } | ||
1433 | |||
1434 | switch (swap_header_version) { | ||
1435 | case 1: | ||
1436 | printk(KERN_ERR "version 0 swap is no longer supported. " | ||
1437 | "Use mkswap -v1 %s\n", name); | ||
1438 | error = -EINVAL; | ||
1439 | goto bad_swap; | ||
1440 | case 2: | ||
1441 | /* Check the swap header's sub-version and the size of | ||
1442 | the swap file and bad block lists */ | ||
1443 | if (swap_header->info.version != 1) { | ||
1444 | printk(KERN_WARNING | ||
1445 | "Unable to handle swap header version %d\n", | ||
1446 | swap_header->info.version); | ||
1447 | error = -EINVAL; | ||
1448 | goto bad_swap; | ||
1449 | } | ||
1450 | |||
1451 | p->lowest_bit = 1; | ||
1452 | /* | ||
1453 | * Find out how many pages are allowed for a single swap | ||
1454 | * device. There are two limiting factors: 1) the number of | ||
1455 | * bits for the swap offset in the swp_entry_t type and | ||
1456 | * 2) the number of bits in the a swap pte as defined by | ||
1457 | * the different architectures. In order to find the | ||
1458 | * largest possible bit mask a swap entry with swap type 0 | ||
1459 | * and swap offset ~0UL is created, encoded to a swap pte, | ||
1460 | * decoded to a swp_entry_t again and finally the swap | ||
1461 | * offset is extracted. This will mask all the bits from | ||
1462 | * the initial ~0UL mask that can't be encoded in either | ||
1463 | * the swp_entry_t or the architecture definition of a | ||
1464 | * swap pte. | ||
1465 | */ | ||
1466 | maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; | ||
1467 | if (maxpages > swap_header->info.last_page) | ||
1468 | maxpages = swap_header->info.last_page; | ||
1469 | p->highest_bit = maxpages - 1; | ||
1470 | |||
1471 | error = -EINVAL; | ||
1472 | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | ||
1473 | goto bad_swap; | ||
1474 | |||
1475 | /* OK, set up the swap map and apply the bad block list */ | ||
1476 | if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { | ||
1477 | error = -ENOMEM; | ||
1478 | goto bad_swap; | ||
1479 | } | ||
1480 | |||
1481 | error = 0; | ||
1482 | memset(p->swap_map, 0, maxpages * sizeof(short)); | ||
1483 | for (i=0; i<swap_header->info.nr_badpages; i++) { | ||
1484 | int page = swap_header->info.badpages[i]; | ||
1485 | if (page <= 0 || page >= swap_header->info.last_page) | ||
1486 | error = -EINVAL; | ||
1487 | else | ||
1488 | p->swap_map[page] = SWAP_MAP_BAD; | ||
1489 | } | ||
1490 | nr_good_pages = swap_header->info.last_page - | ||
1491 | swap_header->info.nr_badpages - | ||
1492 | 1 /* header page */; | ||
1493 | if (error) | ||
1494 | goto bad_swap; | ||
1495 | } | ||
1496 | |||
1497 | if (swapfilesize && maxpages > swapfilesize) { | ||
1498 | printk(KERN_WARNING | ||
1499 | "Swap area shorter than signature indicates\n"); | ||
1500 | error = -EINVAL; | ||
1501 | goto bad_swap; | ||
1502 | } | ||
1503 | if (!nr_good_pages) { | ||
1504 | printk(KERN_WARNING "Empty swap-file\n"); | ||
1505 | error = -EINVAL; | ||
1506 | goto bad_swap; | ||
1507 | } | ||
1508 | p->swap_map[0] = SWAP_MAP_BAD; | ||
1509 | p->max = maxpages; | ||
1510 | p->pages = nr_good_pages; | ||
1511 | |||
1512 | error = setup_swap_extents(p); | ||
1513 | if (error) | ||
1514 | goto bad_swap; | ||
1515 | |||
1516 | down(&swapon_sem); | ||
1517 | swap_list_lock(); | ||
1518 | swap_device_lock(p); | ||
1519 | p->flags = SWP_ACTIVE; | ||
1520 | nr_swap_pages += nr_good_pages; | ||
1521 | total_swap_pages += nr_good_pages; | ||
1522 | printk(KERN_INFO "Adding %dk swap on %s. Priority:%d extents:%d\n", | ||
1523 | nr_good_pages<<(PAGE_SHIFT-10), name, | ||
1524 | p->prio, p->nr_extents); | ||
1525 | |||
1526 | /* insert swap space into swap_list: */ | ||
1527 | prev = -1; | ||
1528 | for (i = swap_list.head; i >= 0; i = swap_info[i].next) { | ||
1529 | if (p->prio >= swap_info[i].prio) { | ||
1530 | break; | ||
1531 | } | ||
1532 | prev = i; | ||
1533 | } | ||
1534 | p->next = i; | ||
1535 | if (prev < 0) { | ||
1536 | swap_list.head = swap_list.next = p - swap_info; | ||
1537 | } else { | ||
1538 | swap_info[prev].next = p - swap_info; | ||
1539 | } | ||
1540 | swap_device_unlock(p); | ||
1541 | swap_list_unlock(); | ||
1542 | up(&swapon_sem); | ||
1543 | error = 0; | ||
1544 | goto out; | ||
1545 | bad_swap: | ||
1546 | if (bdev) { | ||
1547 | set_blocksize(bdev, p->old_block_size); | ||
1548 | bd_release(bdev); | ||
1549 | } | ||
1550 | bad_swap_2: | ||
1551 | swap_list_lock(); | ||
1552 | swap_map = p->swap_map; | ||
1553 | p->swap_file = NULL; | ||
1554 | p->swap_map = NULL; | ||
1555 | p->flags = 0; | ||
1556 | if (!(swap_flags & SWAP_FLAG_PREFER)) | ||
1557 | ++least_priority; | ||
1558 | swap_list_unlock(); | ||
1559 | destroy_swap_extents(p); | ||
1560 | vfree(swap_map); | ||
1561 | if (swap_file) | ||
1562 | filp_close(swap_file, NULL); | ||
1563 | out: | ||
1564 | if (page && !IS_ERR(page)) { | ||
1565 | kunmap(page); | ||
1566 | page_cache_release(page); | ||
1567 | } | ||
1568 | if (name) | ||
1569 | putname(name); | ||
1570 | if (did_down) { | ||
1571 | if (!error) | ||
1572 | inode->i_flags |= S_SWAPFILE; | ||
1573 | up(&inode->i_sem); | ||
1574 | } | ||
1575 | return error; | ||
1576 | } | ||
1577 | |||
1578 | void si_swapinfo(struct sysinfo *val) | ||
1579 | { | ||
1580 | unsigned int i; | ||
1581 | unsigned long nr_to_be_unused = 0; | ||
1582 | |||
1583 | swap_list_lock(); | ||
1584 | for (i = 0; i < nr_swapfiles; i++) { | ||
1585 | if (!(swap_info[i].flags & SWP_USED) || | ||
1586 | (swap_info[i].flags & SWP_WRITEOK)) | ||
1587 | continue; | ||
1588 | nr_to_be_unused += swap_info[i].inuse_pages; | ||
1589 | } | ||
1590 | val->freeswap = nr_swap_pages + nr_to_be_unused; | ||
1591 | val->totalswap = total_swap_pages + nr_to_be_unused; | ||
1592 | swap_list_unlock(); | ||
1593 | } | ||
1594 | |||
1595 | /* | ||
1596 | * Verify that a swap entry is valid and increment its swap map count. | ||
1597 | * | ||
1598 | * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as | ||
1599 | * "permanent", but will be reclaimed by the next swapoff. | ||
1600 | */ | ||
1601 | int swap_duplicate(swp_entry_t entry) | ||
1602 | { | ||
1603 | struct swap_info_struct * p; | ||
1604 | unsigned long offset, type; | ||
1605 | int result = 0; | ||
1606 | |||
1607 | type = swp_type(entry); | ||
1608 | if (type >= nr_swapfiles) | ||
1609 | goto bad_file; | ||
1610 | p = type + swap_info; | ||
1611 | offset = swp_offset(entry); | ||
1612 | |||
1613 | swap_device_lock(p); | ||
1614 | if (offset < p->max && p->swap_map[offset]) { | ||
1615 | if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { | ||
1616 | p->swap_map[offset]++; | ||
1617 | result = 1; | ||
1618 | } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { | ||
1619 | if (swap_overflow++ < 5) | ||
1620 | printk(KERN_WARNING "swap_dup: swap entry overflow\n"); | ||
1621 | p->swap_map[offset] = SWAP_MAP_MAX; | ||
1622 | result = 1; | ||
1623 | } | ||
1624 | } | ||
1625 | swap_device_unlock(p); | ||
1626 | out: | ||
1627 | return result; | ||
1628 | |||
1629 | bad_file: | ||
1630 | printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); | ||
1631 | goto out; | ||
1632 | } | ||
1633 | |||
1634 | struct swap_info_struct * | ||
1635 | get_swap_info_struct(unsigned type) | ||
1636 | { | ||
1637 | return &swap_info[type]; | ||
1638 | } | ||
1639 | |||
1640 | /* | ||
1641 | * swap_device_lock prevents swap_map being freed. Don't grab an extra | ||
1642 | * reference on the swaphandle, it doesn't matter if it becomes unused. | ||
1643 | */ | ||
1644 | int valid_swaphandles(swp_entry_t entry, unsigned long *offset) | ||
1645 | { | ||
1646 | int ret = 0, i = 1 << page_cluster; | ||
1647 | unsigned long toff; | ||
1648 | struct swap_info_struct *swapdev = swp_type(entry) + swap_info; | ||
1649 | |||
1650 | if (!page_cluster) /* no readahead */ | ||
1651 | return 0; | ||
1652 | toff = (swp_offset(entry) >> page_cluster) << page_cluster; | ||
1653 | if (!toff) /* first page is swap header */ | ||
1654 | toff++, i--; | ||
1655 | *offset = toff; | ||
1656 | |||
1657 | swap_device_lock(swapdev); | ||
1658 | do { | ||
1659 | /* Don't read-ahead past the end of the swap area */ | ||
1660 | if (toff >= swapdev->max) | ||
1661 | break; | ||
1662 | /* Don't read in free or bad pages */ | ||
1663 | if (!swapdev->swap_map[toff]) | ||
1664 | break; | ||
1665 | if (swapdev->swap_map[toff] == SWAP_MAP_BAD) | ||
1666 | break; | ||
1667 | toff++; | ||
1668 | ret++; | ||
1669 | } while (--i); | ||
1670 | swap_device_unlock(swapdev); | ||
1671 | return ret; | ||
1672 | } | ||