aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slob.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slob.c')
-rw-r--r--mm/slob.c538
1 files changed, 385 insertions, 153 deletions
diff --git a/mm/slob.c b/mm/slob.c
index 71976c5d40d3..b4899079d8b0 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -3,57 +3,159 @@
3 * 3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03 4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 * 5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
6 * How SLOB works: 8 * How SLOB works:
7 * 9 *
8 * The core of SLOB is a traditional K&R style heap allocator, with 10 * The core of SLOB is a traditional K&R style heap allocator, with
9 * support for returning aligned objects. The granularity of this 11 * support for returning aligned objects. The granularity of this
10 * allocator is 8 bytes on x86, though it's perhaps possible to reduce 12 * allocator is as little as 2 bytes, however typically most architectures
11 * this to 4 if it's deemed worth the effort. The slob heap is a 13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
12 * singly-linked list of pages from __get_free_page, grown on demand 14 *
13 * and allocation from the heap is currently first-fit. 15 * The slob heap is a linked list of pages from alloc_pages(), and
16 * within each page, there is a singly-linked list of free blocks (slob_t).
17 * The heap is grown on demand and allocation from the heap is currently
18 * first-fit.
14 * 19 *
15 * Above this is an implementation of kmalloc/kfree. Blocks returned 20 * Above this is an implementation of kmalloc/kfree. Blocks returned
16 * from kmalloc are 8-byte aligned and prepended with a 8-byte header. 21 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
17 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls 22 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
18 * __get_free_pages directly so that it can return page-aligned blocks 23 * alloc_pages() directly, allocating compound pages so the page order
19 * and keeps a linked list of such pages and their orders. These 24 * does not have to be separately tracked, and also stores the exact
20 * objects are detected in kfree() by their page alignment. 25 * allocation size in page->private so that it can be used to accurately
26 * provide ksize(). These objects are detected in kfree() because slob_page()
27 * is false for them.
21 * 28 *
22 * SLAB is emulated on top of SLOB by simply calling constructors and 29 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with 30 * destructors for every SLAB allocation. Objects are returned with the
24 * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is 31 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
25 * set, in which case the low-level allocator will fragment blocks to 32 * case the low-level allocator will fragment blocks to create the proper
26 * create the proper alignment. Again, objects of page-size or greater 33 * alignment. Again, objects of page-size or greater are allocated by
27 * are allocated by calling __get_free_pages. As SLAB objects know 34 * calling alloc_pages(). As SLAB objects know their size, no separate
28 * their size, no separate size bookkeeping is necessary and there is 35 * size bookkeeping is necessary and there is essentially no allocation
29 * essentially no allocation space overhead. 36 * space overhead, and compound pages aren't needed for multi-page
37 * allocations.
38 *
39 * NUMA support in SLOB is fairly simplistic, pushing most of the real
40 * logic down to the page allocator, and simply doing the node accounting
41 * on the upper levels. In the event that a node id is explicitly
42 * provided, alloc_pages_node() with the specified node id is used
43 * instead. The common case (or when the node id isn't explicitly provided)
44 * will default to the current node, as per numa_node_id().
45 *
46 * Node aware pages are still inserted in to the global freelist, and
47 * these are scanned for by matching against the node id encoded in the
48 * page flags. As a result, block allocations that can be satisfied from
49 * the freelist will only be done so on pages residing on the same node,
50 * in order to prevent random node placement.
30 */ 51 */
31 52
53#include <linux/kernel.h>
32#include <linux/slab.h> 54#include <linux/slab.h>
33#include <linux/mm.h> 55#include <linux/mm.h>
34#include <linux/cache.h> 56#include <linux/cache.h>
35#include <linux/init.h> 57#include <linux/init.h>
36#include <linux/module.h> 58#include <linux/module.h>
37#include <linux/timer.h>
38#include <linux/rcupdate.h> 59#include <linux/rcupdate.h>
60#include <linux/list.h>
61#include <asm/atomic.h>
62
63/*
64 * slob_block has a field 'units', which indicates size of block if +ve,
65 * or offset of next block if -ve (in SLOB_UNITs).
66 *
67 * Free blocks of size 1 unit simply contain the offset of the next block.
68 * Those with larger size contain their size in the first SLOB_UNIT of
69 * memory, and the offset of the next free block in the second SLOB_UNIT.
70 */
71#if PAGE_SIZE <= (32767 * 2)
72typedef s16 slobidx_t;
73#else
74typedef s32 slobidx_t;
75#endif
39 76
40struct slob_block { 77struct slob_block {
41 int units; 78 slobidx_t units;
42 struct slob_block *next;
43}; 79};
44typedef struct slob_block slob_t; 80typedef struct slob_block slob_t;
45 81
82/*
83 * We use struct page fields to manage some slob allocation aspects,
84 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
85 * just define our own struct page type variant here.
86 */
87struct slob_page {
88 union {
89 struct {
90 unsigned long flags; /* mandatory */
91 atomic_t _count; /* mandatory */
92 slobidx_t units; /* free units left in page */
93 unsigned long pad[2];
94 slob_t *free; /* first free slob_t in page */
95 struct list_head list; /* linked list of free pages */
96 };
97 struct page page;
98 };
99};
100static inline void struct_slob_page_wrong_size(void)
101{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
102
103/*
104 * free_slob_page: call before a slob_page is returned to the page allocator.
105 */
106static inline void free_slob_page(struct slob_page *sp)
107{
108 reset_page_mapcount(&sp->page);
109 sp->page.mapping = NULL;
110}
111
112/*
113 * All (partially) free slob pages go on this list.
114 */
115static LIST_HEAD(free_slob_pages);
116
117/*
118 * slob_page: True for all slob pages (false for bigblock pages)
119 */
120static inline int slob_page(struct slob_page *sp)
121{
122 return test_bit(PG_active, &sp->flags);
123}
124
125static inline void set_slob_page(struct slob_page *sp)
126{
127 __set_bit(PG_active, &sp->flags);
128}
129
130static inline void clear_slob_page(struct slob_page *sp)
131{
132 __clear_bit(PG_active, &sp->flags);
133}
134
135/*
136 * slob_page_free: true for pages on free_slob_pages list.
137 */
138static inline int slob_page_free(struct slob_page *sp)
139{
140 return test_bit(PG_private, &sp->flags);
141}
142
143static inline void set_slob_page_free(struct slob_page *sp)
144{
145 list_add(&sp->list, &free_slob_pages);
146 __set_bit(PG_private, &sp->flags);
147}
148
149static inline void clear_slob_page_free(struct slob_page *sp)
150{
151 list_del(&sp->list);
152 __clear_bit(PG_private, &sp->flags);
153}
154
46#define SLOB_UNIT sizeof(slob_t) 155#define SLOB_UNIT sizeof(slob_t)
47#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) 156#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
48#define SLOB_ALIGN L1_CACHE_BYTES 157#define SLOB_ALIGN L1_CACHE_BYTES
49 158
50struct bigblock {
51 int order;
52 void *pages;
53 struct bigblock *next;
54};
55typedef struct bigblock bigblock_t;
56
57/* 159/*
58 * struct slob_rcu is inserted at the tail of allocated slob blocks, which 160 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
59 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free 161 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
@@ -64,133 +166,285 @@ struct slob_rcu {
64 int size; 166 int size;
65}; 167};
66 168
67static slob_t arena = { .next = &arena, .units = 1 }; 169/*
68static slob_t *slobfree = &arena; 170 * slob_lock protects all slob allocator structures.
69static bigblock_t *bigblocks; 171 */
70static DEFINE_SPINLOCK(slob_lock); 172static DEFINE_SPINLOCK(slob_lock);
71static DEFINE_SPINLOCK(block_lock);
72 173
73static void slob_free(void *b, int size); 174/*
74static void slob_timer_cbk(void); 175 * Encode the given size and next info into a free slob block s.
176 */
177static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
178{
179 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
180 slobidx_t offset = next - base;
75 181
182 if (size > 1) {
183 s[0].units = size;
184 s[1].units = offset;
185 } else
186 s[0].units = -offset;
187}
76 188
77static void *slob_alloc(size_t size, gfp_t gfp, int align) 189/*
190 * Return the size of a slob block.
191 */
192static slobidx_t slob_units(slob_t *s)
193{
194 if (s->units > 0)
195 return s->units;
196 return 1;
197}
198
199/*
200 * Return the next free slob block pointer after this one.
201 */
202static slob_t *slob_next(slob_t *s)
203{
204 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
205 slobidx_t next;
206
207 if (s[0].units < 0)
208 next = -s[0].units;
209 else
210 next = s[1].units;
211 return base+next;
212}
213
214/*
215 * Returns true if s is the last free block in its page.
216 */
217static int slob_last(slob_t *s)
218{
219 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
220}
221
222static void *slob_new_page(gfp_t gfp, int order, int node)
223{
224 void *page;
225
226#ifdef CONFIG_NUMA
227 if (node != -1)
228 page = alloc_pages_node(node, gfp, order);
229 else
230#endif
231 page = alloc_pages(gfp, order);
232
233 if (!page)
234 return NULL;
235
236 return page_address(page);
237}
238
239/*
240 * Allocate a slob block within a given slob_page sp.
241 */
242static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
78{ 243{
79 slob_t *prev, *cur, *aligned = 0; 244 slob_t *prev, *cur, *aligned = 0;
80 int delta = 0, units = SLOB_UNITS(size); 245 int delta = 0, units = SLOB_UNITS(size);
81 unsigned long flags;
82 246
83 spin_lock_irqsave(&slob_lock, flags); 247 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
84 prev = slobfree; 248 slobidx_t avail = slob_units(cur);
85 for (cur = prev->next; ; prev = cur, cur = cur->next) { 249
86 if (align) { 250 if (align) {
87 aligned = (slob_t *)ALIGN((unsigned long)cur, align); 251 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
88 delta = aligned - cur; 252 delta = aligned - cur;
89 } 253 }
90 if (cur->units >= units + delta) { /* room enough? */ 254 if (avail >= units + delta) { /* room enough? */
255 slob_t *next;
256
91 if (delta) { /* need to fragment head to align? */ 257 if (delta) { /* need to fragment head to align? */
92 aligned->units = cur->units - delta; 258 next = slob_next(cur);
93 aligned->next = cur->next; 259 set_slob(aligned, avail - delta, next);
94 cur->next = aligned; 260 set_slob(cur, delta, aligned);
95 cur->units = delta;
96 prev = cur; 261 prev = cur;
97 cur = aligned; 262 cur = aligned;
263 avail = slob_units(cur);
98 } 264 }
99 265
100 if (cur->units == units) /* exact fit? */ 266 next = slob_next(cur);
101 prev->next = cur->next; /* unlink */ 267 if (avail == units) { /* exact fit? unlink. */
102 else { /* fragment */ 268 if (prev)
103 prev->next = cur + units; 269 set_slob(prev, slob_units(prev), next);
104 prev->next->units = cur->units - units; 270 else
105 prev->next->next = cur->next; 271 sp->free = next;
106 cur->units = units; 272 } else { /* fragment */
273 if (prev)
274 set_slob(prev, slob_units(prev), cur + units);
275 else
276 sp->free = cur + units;
277 set_slob(cur + units, avail - units, next);
107 } 278 }
108 279
109 slobfree = prev; 280 sp->units -= units;
110 spin_unlock_irqrestore(&slob_lock, flags); 281 if (!sp->units)
282 clear_slob_page_free(sp);
111 return cur; 283 return cur;
112 } 284 }
113 if (cur == slobfree) { 285 if (slob_last(cur))
114 spin_unlock_irqrestore(&slob_lock, flags); 286 return NULL;
115 287 }
116 if (size == PAGE_SIZE) /* trying to shrink arena? */ 288}
117 return 0;
118 289
119 cur = (slob_t *)__get_free_page(gfp); 290/*
120 if (!cur) 291 * slob_alloc: entry point into the slob allocator.
121 return 0; 292 */
293static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
294{
295 struct slob_page *sp;
296 slob_t *b = NULL;
297 unsigned long flags;
122 298
123 slob_free(cur, PAGE_SIZE); 299 spin_lock_irqsave(&slob_lock, flags);
124 spin_lock_irqsave(&slob_lock, flags); 300 /* Iterate through each partially free page, try to find room */
125 cur = slobfree; 301 list_for_each_entry(sp, &free_slob_pages, list) {
302#ifdef CONFIG_NUMA
303 /*
304 * If there's a node specification, search for a partial
305 * page with a matching node id in the freelist.
306 */
307 if (node != -1 && page_to_nid(&sp->page) != node)
308 continue;
309#endif
310
311 if (sp->units >= SLOB_UNITS(size)) {
312 b = slob_page_alloc(sp, size, align);
313 if (b)
314 break;
126 } 315 }
127 } 316 }
317 spin_unlock_irqrestore(&slob_lock, flags);
318
319 /* Not enough space: must allocate a new page */
320 if (!b) {
321 b = slob_new_page(gfp, 0, node);
322 if (!b)
323 return 0;
324 sp = (struct slob_page *)virt_to_page(b);
325 set_slob_page(sp);
326
327 spin_lock_irqsave(&slob_lock, flags);
328 sp->units = SLOB_UNITS(PAGE_SIZE);
329 sp->free = b;
330 INIT_LIST_HEAD(&sp->list);
331 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
332 set_slob_page_free(sp);
333 b = slob_page_alloc(sp, size, align);
334 BUG_ON(!b);
335 spin_unlock_irqrestore(&slob_lock, flags);
336 }
337 return b;
128} 338}
129 339
340/*
341 * slob_free: entry point into the slob allocator.
342 */
130static void slob_free(void *block, int size) 343static void slob_free(void *block, int size)
131{ 344{
132 slob_t *cur, *b = (slob_t *)block; 345 struct slob_page *sp;
346 slob_t *prev, *next, *b = (slob_t *)block;
347 slobidx_t units;
133 unsigned long flags; 348 unsigned long flags;
134 349
135 if (!block) 350 if (!block)
136 return; 351 return;
352 BUG_ON(!size);
137 353
138 if (size) 354 sp = (struct slob_page *)virt_to_page(block);
139 b->units = SLOB_UNITS(size); 355 units = SLOB_UNITS(size);
140 356
141 /* Find reinsertion point */
142 spin_lock_irqsave(&slob_lock, flags); 357 spin_lock_irqsave(&slob_lock, flags);
143 for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
144 if (cur >= cur->next && (b > cur || b < cur->next))
145 break;
146 358
147 if (b + b->units == cur->next) { 359 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
148 b->units += cur->next->units; 360 /* Go directly to page allocator. Do not pass slob allocator */
149 b->next = cur->next->next; 361 if (slob_page_free(sp))
150 } else 362 clear_slob_page_free(sp);
151 b->next = cur->next; 363 clear_slob_page(sp);
364 free_slob_page(sp);
365 free_page((unsigned long)b);
366 goto out;
367 }
152 368
153 if (cur + cur->units == b) { 369 if (!slob_page_free(sp)) {
154 cur->units += b->units; 370 /* This slob page is about to become partially free. Easy! */
155 cur->next = b->next; 371 sp->units = units;
156 } else 372 sp->free = b;
157 cur->next = b; 373 set_slob(b, units,
374 (void *)((unsigned long)(b +
375 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
376 set_slob_page_free(sp);
377 goto out;
378 }
158 379
159 slobfree = cur; 380 /*
381 * Otherwise the page is already partially free, so find reinsertion
382 * point.
383 */
384 sp->units += units;
160 385
386 if (b < sp->free) {
387 set_slob(b, units, sp->free);
388 sp->free = b;
389 } else {
390 prev = sp->free;
391 next = slob_next(prev);
392 while (b > next) {
393 prev = next;
394 next = slob_next(prev);
395 }
396
397 if (!slob_last(prev) && b + units == next) {
398 units += slob_units(next);
399 set_slob(b, units, slob_next(next));
400 } else
401 set_slob(b, units, next);
402
403 if (prev + slob_units(prev) == b) {
404 units = slob_units(b) + slob_units(prev);
405 set_slob(prev, units, slob_next(b));
406 } else
407 set_slob(prev, slob_units(prev), b);
408 }
409out:
161 spin_unlock_irqrestore(&slob_lock, flags); 410 spin_unlock_irqrestore(&slob_lock, flags);
162} 411}
163 412
164void *__kmalloc(size_t size, gfp_t gfp) 413/*
165{ 414 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
166 slob_t *m; 415 */
167 bigblock_t *bb;
168 unsigned long flags;
169 416
170 if (size < PAGE_SIZE - SLOB_UNIT) { 417#ifndef ARCH_KMALLOC_MINALIGN
171 m = slob_alloc(size + SLOB_UNIT, gfp, 0); 418#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
172 return m ? (void *)(m + 1) : 0; 419#endif
173 }
174 420
175 bb = slob_alloc(sizeof(bigblock_t), gfp, 0); 421#ifndef ARCH_SLAB_MINALIGN
176 if (!bb) 422#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
177 return 0; 423#endif
178 424
179 bb->order = get_order(size); 425void *__kmalloc_node(size_t size, gfp_t gfp, int node)
180 bb->pages = (void *)__get_free_pages(gfp, bb->order); 426{
427 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
428
429 if (size < PAGE_SIZE - align) {
430 unsigned int *m;
431 m = slob_alloc(size + align, gfp, align, node);
432 if (m)
433 *m = size;
434 return (void *)m + align;
435 } else {
436 void *ret;
181 437
182 if (bb->pages) { 438 ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
183 spin_lock_irqsave(&block_lock, flags); 439 if (ret) {
184 bb->next = bigblocks; 440 struct page *page;
185 bigblocks = bb; 441 page = virt_to_page(ret);
186 spin_unlock_irqrestore(&block_lock, flags); 442 page->private = size;
187 return bb->pages; 443 }
444 return ret;
188 } 445 }
189
190 slob_free(bb, sizeof(bigblock_t));
191 return 0;
192} 446}
193EXPORT_SYMBOL(__kmalloc); 447EXPORT_SYMBOL(__kmalloc_node);
194 448
195/** 449/**
196 * krealloc - reallocate memory. The contents will remain unchanged. 450 * krealloc - reallocate memory. The contents will remain unchanged.
@@ -227,52 +481,34 @@ EXPORT_SYMBOL(krealloc);
227 481
228void kfree(const void *block) 482void kfree(const void *block)
229{ 483{
230 bigblock_t *bb, **last = &bigblocks; 484 struct slob_page *sp;
231 unsigned long flags;
232 485
233 if (!block) 486 if (!block)
234 return; 487 return;
235 488
236 if (!((unsigned long)block & (PAGE_SIZE-1))) { 489 sp = (struct slob_page *)virt_to_page(block);
237 /* might be on the big block list */ 490 if (slob_page(sp)) {
238 spin_lock_irqsave(&block_lock, flags); 491 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
239 for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { 492 unsigned int *m = (unsigned int *)(block - align);
240 if (bb->pages == block) { 493 slob_free(m, *m + align);
241 *last = bb->next; 494 } else
242 spin_unlock_irqrestore(&block_lock, flags); 495 put_page(&sp->page);
243 free_pages((unsigned long)block, bb->order);
244 slob_free(bb, sizeof(bigblock_t));
245 return;
246 }
247 }
248 spin_unlock_irqrestore(&block_lock, flags);
249 }
250
251 slob_free((slob_t *)block - 1, 0);
252 return;
253} 496}
254
255EXPORT_SYMBOL(kfree); 497EXPORT_SYMBOL(kfree);
256 498
499/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
257size_t ksize(const void *block) 500size_t ksize(const void *block)
258{ 501{
259 bigblock_t *bb; 502 struct slob_page *sp;
260 unsigned long flags;
261 503
262 if (!block) 504 if (!block)
263 return 0; 505 return 0;
264 506
265 if (!((unsigned long)block & (PAGE_SIZE-1))) { 507 sp = (struct slob_page *)virt_to_page(block);
266 spin_lock_irqsave(&block_lock, flags); 508 if (slob_page(sp))
267 for (bb = bigblocks; bb; bb = bb->next) 509 return ((slob_t *)block - 1)->units + SLOB_UNIT;
268 if (bb->pages == block) { 510 else
269 spin_unlock_irqrestore(&slob_lock, flags); 511 return sp->page.private;
270 return PAGE_SIZE << bb->order;
271 }
272 spin_unlock_irqrestore(&block_lock, flags);
273 }
274
275 return ((slob_t *)block - 1)->units * SLOB_UNIT;
276} 512}
277 513
278struct kmem_cache { 514struct kmem_cache {
@@ -289,7 +525,7 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
289{ 525{
290 struct kmem_cache *c; 526 struct kmem_cache *c;
291 527
292 c = slob_alloc(sizeof(struct kmem_cache), flags, 0); 528 c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1);
293 529
294 if (c) { 530 if (c) {
295 c->name = name; 531 c->name = name;
@@ -302,6 +538,8 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
302 c->ctor = ctor; 538 c->ctor = ctor;
303 /* ignore alignment unless it's forced */ 539 /* ignore alignment unless it's forced */
304 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; 540 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
541 if (c->align < ARCH_SLAB_MINALIGN)
542 c->align = ARCH_SLAB_MINALIGN;
305 if (c->align < align) 543 if (c->align < align)
306 c->align = align; 544 c->align = align;
307 } else if (flags & SLAB_PANIC) 545 } else if (flags & SLAB_PANIC)
@@ -317,21 +555,21 @@ void kmem_cache_destroy(struct kmem_cache *c)
317} 555}
318EXPORT_SYMBOL(kmem_cache_destroy); 556EXPORT_SYMBOL(kmem_cache_destroy);
319 557
320void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) 558void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
321{ 559{
322 void *b; 560 void *b;
323 561
324 if (c->size < PAGE_SIZE) 562 if (c->size < PAGE_SIZE)
325 b = slob_alloc(c->size, flags, c->align); 563 b = slob_alloc(c->size, flags, c->align, node);
326 else 564 else
327 b = (void *)__get_free_pages(flags, get_order(c->size)); 565 b = slob_new_page(flags, get_order(c->size), node);
328 566
329 if (c->ctor) 567 if (c->ctor)
330 c->ctor(b, c, 0); 568 c->ctor(b, c, 0);
331 569
332 return b; 570 return b;
333} 571}
334EXPORT_SYMBOL(kmem_cache_alloc); 572EXPORT_SYMBOL(kmem_cache_alloc_node);
335 573
336void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) 574void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags)
337{ 575{
@@ -385,9 +623,6 @@ const char *kmem_cache_name(struct kmem_cache *c)
385} 623}
386EXPORT_SYMBOL(kmem_cache_name); 624EXPORT_SYMBOL(kmem_cache_name);
387 625
388static struct timer_list slob_timer = TIMER_INITIALIZER(
389 (void (*)(unsigned long))slob_timer_cbk, 0, 0);
390
391int kmem_cache_shrink(struct kmem_cache *d) 626int kmem_cache_shrink(struct kmem_cache *d)
392{ 627{
393 return 0; 628 return 0;
@@ -399,17 +634,14 @@ int kmem_ptr_validate(struct kmem_cache *a, const void *b)
399 return 0; 634 return 0;
400} 635}
401 636
402void __init kmem_cache_init(void) 637static unsigned int slob_ready __read_mostly;
638
639int slab_is_available(void)
403{ 640{
404 slob_timer_cbk(); 641 return slob_ready;
405} 642}
406 643
407static void slob_timer_cbk(void) 644void __init kmem_cache_init(void)
408{ 645{
409 void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1); 646 slob_ready = 1;
410
411 if (p)
412 free_page((unsigned long)p);
413
414 mod_timer(&slob_timer, jiffies + HZ);
415} 647}