aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slob.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slob.c')
-rw-r--r--mm/slob.c422
1 files changed, 325 insertions, 97 deletions
diff --git a/mm/slob.c b/mm/slob.c
index 71976c5d40d3..8ee64fed2bb5 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -7,53 +7,148 @@
7 * 7 *
8 * The core of SLOB is a traditional K&R style heap allocator, with 8 * The core of SLOB is a traditional K&R style heap allocator, with
9 * support for returning aligned objects. The granularity of this 9 * support for returning aligned objects. The granularity of this
10 * allocator is 8 bytes on x86, though it's perhaps possible to reduce 10 * allocator is 4 bytes on 32-bit and 8 bytes on 64-bit, though it
11 * this to 4 if it's deemed worth the effort. The slob heap is a 11 * could be as low as 2 if the compiler alignment requirements allow.
12 * singly-linked list of pages from __get_free_page, grown on demand 12 *
13 * and allocation from the heap is currently first-fit. 13 * The slob heap is a linked list of pages from __get_free_page, and
14 * within each page, there is a singly-linked list of free blocks (slob_t).
15 * The heap is grown on demand and allocation from the heap is currently
16 * first-fit.
14 * 17 *
15 * Above this is an implementation of kmalloc/kfree. Blocks returned 18 * Above this is an implementation of kmalloc/kfree. Blocks returned
16 * from kmalloc are 8-byte aligned and prepended with a 8-byte header. 19 * from kmalloc are 4-byte aligned and prepended with a 4-byte header.
17 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls 20 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
18 * __get_free_pages directly so that it can return page-aligned blocks 21 * __get_free_pages directly so that it can return page-aligned blocks
19 * and keeps a linked list of such pages and their orders. These 22 * and keeps a linked list of such pages and their orders. These
20 * objects are detected in kfree() by their page alignment. 23 * objects are detected in kfree() by their page alignment.
21 * 24 *
22 * SLAB is emulated on top of SLOB by simply calling constructors and 25 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with 26 * destructors for every SLAB allocation. Objects are returned with the
24 * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is 27 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
25 * set, in which case the low-level allocator will fragment blocks to 28 * case the low-level allocator will fragment blocks to create the proper
26 * create the proper alignment. Again, objects of page-size or greater 29 * alignment. Again, objects of page-size or greater are allocated by
27 * are allocated by calling __get_free_pages. As SLAB objects know 30 * calling __get_free_pages. As SLAB objects know their size, no separate
28 * their size, no separate size bookkeeping is necessary and there is 31 * size bookkeeping is necessary and there is essentially no allocation
29 * essentially no allocation space overhead. 32 * space overhead.
30 */ 33 */
31 34
35#include <linux/kernel.h>
32#include <linux/slab.h> 36#include <linux/slab.h>
33#include <linux/mm.h> 37#include <linux/mm.h>
34#include <linux/cache.h> 38#include <linux/cache.h>
35#include <linux/init.h> 39#include <linux/init.h>
36#include <linux/module.h> 40#include <linux/module.h>
37#include <linux/timer.h>
38#include <linux/rcupdate.h> 41#include <linux/rcupdate.h>
42#include <linux/list.h>
43#include <asm/atomic.h>
44
45/* SLOB_MIN_ALIGN == sizeof(long) */
46#if BITS_PER_BYTE == 32
47#define SLOB_MIN_ALIGN 4
48#else
49#define SLOB_MIN_ALIGN 8
50#endif
39 51
52/*
53 * slob_block has a field 'units', which indicates size of block if +ve,
54 * or offset of next block if -ve (in SLOB_UNITs).
55 *
56 * Free blocks of size 1 unit simply contain the offset of the next block.
57 * Those with larger size contain their size in the first SLOB_UNIT of
58 * memory, and the offset of the next free block in the second SLOB_UNIT.
59 */
60#if PAGE_SIZE <= (32767 * SLOB_MIN_ALIGN)
61typedef s16 slobidx_t;
62#else
63typedef s32 slobidx_t;
64#endif
65
66/*
67 * Align struct slob_block to long for now, but can some embedded
68 * architectures get away with less?
69 */
40struct slob_block { 70struct slob_block {
41 int units; 71 slobidx_t units;
42 struct slob_block *next; 72} __attribute__((aligned(SLOB_MIN_ALIGN)));
43};
44typedef struct slob_block slob_t; 73typedef struct slob_block slob_t;
45 74
75/*
76 * We use struct page fields to manage some slob allocation aspects,
77 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
78 * just define our own struct page type variant here.
79 */
80struct slob_page {
81 union {
82 struct {
83 unsigned long flags; /* mandatory */
84 atomic_t _count; /* mandatory */
85 slobidx_t units; /* free units left in page */
86 unsigned long pad[2];
87 slob_t *free; /* first free slob_t in page */
88 struct list_head list; /* linked list of free pages */
89 };
90 struct page page;
91 };
92};
93static inline void struct_slob_page_wrong_size(void)
94{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
95
96/*
97 * free_slob_page: call before a slob_page is returned to the page allocator.
98 */
99static inline void free_slob_page(struct slob_page *sp)
100{
101 reset_page_mapcount(&sp->page);
102 sp->page.mapping = NULL;
103}
104
105/*
106 * All (partially) free slob pages go on this list.
107 */
108static LIST_HEAD(free_slob_pages);
109
110/*
111 * slob_page: True for all slob pages (false for bigblock pages)
112 */
113static inline int slob_page(struct slob_page *sp)
114{
115 return test_bit(PG_active, &sp->flags);
116}
117
118static inline void set_slob_page(struct slob_page *sp)
119{
120 __set_bit(PG_active, &sp->flags);
121}
122
123static inline void clear_slob_page(struct slob_page *sp)
124{
125 __clear_bit(PG_active, &sp->flags);
126}
127
128/*
129 * slob_page_free: true for pages on free_slob_pages list.
130 */
131static inline int slob_page_free(struct slob_page *sp)
132{
133 return test_bit(PG_private, &sp->flags);
134}
135
136static inline void set_slob_page_free(struct slob_page *sp)
137{
138 list_add(&sp->list, &free_slob_pages);
139 __set_bit(PG_private, &sp->flags);
140}
141
142static inline void clear_slob_page_free(struct slob_page *sp)
143{
144 list_del(&sp->list);
145 __clear_bit(PG_private, &sp->flags);
146}
147
46#define SLOB_UNIT sizeof(slob_t) 148#define SLOB_UNIT sizeof(slob_t)
47#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) 149#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
48#define SLOB_ALIGN L1_CACHE_BYTES 150#define SLOB_ALIGN L1_CACHE_BYTES
49 151
50struct bigblock {
51 int order;
52 void *pages;
53 struct bigblock *next;
54};
55typedef struct bigblock bigblock_t;
56
57/* 152/*
58 * struct slob_rcu is inserted at the tail of allocated slob blocks, which 153 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
59 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free 154 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
@@ -64,103 +159,240 @@ struct slob_rcu {
64 int size; 159 int size;
65}; 160};
66 161
67static slob_t arena = { .next = &arena, .units = 1 }; 162/*
68static slob_t *slobfree = &arena; 163 * slob_lock protects all slob allocator structures.
69static bigblock_t *bigblocks; 164 */
70static DEFINE_SPINLOCK(slob_lock); 165static DEFINE_SPINLOCK(slob_lock);
71static DEFINE_SPINLOCK(block_lock);
72 166
73static void slob_free(void *b, int size); 167/*
74static void slob_timer_cbk(void); 168 * Encode the given size and next info into a free slob block s.
169 */
170static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
171{
172 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
173 slobidx_t offset = next - base;
75 174
175 if (size > 1) {
176 s[0].units = size;
177 s[1].units = offset;
178 } else
179 s[0].units = -offset;
180}
76 181
77static void *slob_alloc(size_t size, gfp_t gfp, int align) 182/*
183 * Return the size of a slob block.
184 */
185static slobidx_t slob_units(slob_t *s)
186{
187 if (s->units > 0)
188 return s->units;
189 return 1;
190}
191
192/*
193 * Return the next free slob block pointer after this one.
194 */
195static slob_t *slob_next(slob_t *s)
196{
197 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
198 slobidx_t next;
199
200 if (s[0].units < 0)
201 next = -s[0].units;
202 else
203 next = s[1].units;
204 return base+next;
205}
206
207/*
208 * Returns true if s is the last free block in its page.
209 */
210static int slob_last(slob_t *s)
211{
212 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
213}
214
215/*
216 * Allocate a slob block within a given slob_page sp.
217 */
218static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
78{ 219{
79 slob_t *prev, *cur, *aligned = 0; 220 slob_t *prev, *cur, *aligned = 0;
80 int delta = 0, units = SLOB_UNITS(size); 221 int delta = 0, units = SLOB_UNITS(size);
81 unsigned long flags;
82 222
83 spin_lock_irqsave(&slob_lock, flags); 223 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
84 prev = slobfree; 224 slobidx_t avail = slob_units(cur);
85 for (cur = prev->next; ; prev = cur, cur = cur->next) { 225
86 if (align) { 226 if (align) {
87 aligned = (slob_t *)ALIGN((unsigned long)cur, align); 227 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
88 delta = aligned - cur; 228 delta = aligned - cur;
89 } 229 }
90 if (cur->units >= units + delta) { /* room enough? */ 230 if (avail >= units + delta) { /* room enough? */
231 slob_t *next;
232
91 if (delta) { /* need to fragment head to align? */ 233 if (delta) { /* need to fragment head to align? */
92 aligned->units = cur->units - delta; 234 next = slob_next(cur);
93 aligned->next = cur->next; 235 set_slob(aligned, avail - delta, next);
94 cur->next = aligned; 236 set_slob(cur, delta, aligned);
95 cur->units = delta;
96 prev = cur; 237 prev = cur;
97 cur = aligned; 238 cur = aligned;
239 avail = slob_units(cur);
98 } 240 }
99 241
100 if (cur->units == units) /* exact fit? */ 242 next = slob_next(cur);
101 prev->next = cur->next; /* unlink */ 243 if (avail == units) { /* exact fit? unlink. */
102 else { /* fragment */ 244 if (prev)
103 prev->next = cur + units; 245 set_slob(prev, slob_units(prev), next);
104 prev->next->units = cur->units - units; 246 else
105 prev->next->next = cur->next; 247 sp->free = next;
106 cur->units = units; 248 } else { /* fragment */
249 if (prev)
250 set_slob(prev, slob_units(prev), cur + units);
251 else
252 sp->free = cur + units;
253 set_slob(cur + units, avail - units, next);
107 } 254 }
108 255
109 slobfree = prev; 256 sp->units -= units;
110 spin_unlock_irqrestore(&slob_lock, flags); 257 if (!sp->units)
258 clear_slob_page_free(sp);
111 return cur; 259 return cur;
112 } 260 }
113 if (cur == slobfree) { 261 if (slob_last(cur))
114 spin_unlock_irqrestore(&slob_lock, flags); 262 return NULL;
115 263 }
116 if (size == PAGE_SIZE) /* trying to shrink arena? */ 264}
117 return 0;
118 265
119 cur = (slob_t *)__get_free_page(gfp); 266/*
120 if (!cur) 267 * slob_alloc: entry point into the slob allocator.
121 return 0; 268 */
269static void *slob_alloc(size_t size, gfp_t gfp, int align)
270{
271 struct slob_page *sp;
272 slob_t *b = NULL;
273 unsigned long flags;
122 274
123 slob_free(cur, PAGE_SIZE); 275 spin_lock_irqsave(&slob_lock, flags);
124 spin_lock_irqsave(&slob_lock, flags); 276 /* Iterate through each partially free page, try to find room */
125 cur = slobfree; 277 list_for_each_entry(sp, &free_slob_pages, list) {
278 if (sp->units >= SLOB_UNITS(size)) {
279 b = slob_page_alloc(sp, size, align);
280 if (b)
281 break;
126 } 282 }
127 } 283 }
284 spin_unlock_irqrestore(&slob_lock, flags);
285
286 /* Not enough space: must allocate a new page */
287 if (!b) {
288 b = (slob_t *)__get_free_page(gfp);
289 if (!b)
290 return 0;
291 sp = (struct slob_page *)virt_to_page(b);
292 set_slob_page(sp);
293
294 spin_lock_irqsave(&slob_lock, flags);
295 sp->units = SLOB_UNITS(PAGE_SIZE);
296 sp->free = b;
297 INIT_LIST_HEAD(&sp->list);
298 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
299 set_slob_page_free(sp);
300 b = slob_page_alloc(sp, size, align);
301 BUG_ON(!b);
302 spin_unlock_irqrestore(&slob_lock, flags);
303 }
304 return b;
128} 305}
129 306
307/*
308 * slob_free: entry point into the slob allocator.
309 */
130static void slob_free(void *block, int size) 310static void slob_free(void *block, int size)
131{ 311{
132 slob_t *cur, *b = (slob_t *)block; 312 struct slob_page *sp;
313 slob_t *prev, *next, *b = (slob_t *)block;
314 slobidx_t units;
133 unsigned long flags; 315 unsigned long flags;
134 316
135 if (!block) 317 if (!block)
136 return; 318 return;
319 BUG_ON(!size);
137 320
138 if (size) 321 sp = (struct slob_page *)virt_to_page(block);
139 b->units = SLOB_UNITS(size); 322 units = SLOB_UNITS(size);
140 323
141 /* Find reinsertion point */
142 spin_lock_irqsave(&slob_lock, flags); 324 spin_lock_irqsave(&slob_lock, flags);
143 for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
144 if (cur >= cur->next && (b > cur || b < cur->next))
145 break;
146 325
147 if (b + b->units == cur->next) { 326 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
148 b->units += cur->next->units; 327 /* Go directly to page allocator. Do not pass slob allocator */
149 b->next = cur->next->next; 328 if (slob_page_free(sp))
150 } else 329 clear_slob_page_free(sp);
151 b->next = cur->next; 330 clear_slob_page(sp);
331 free_slob_page(sp);
332 free_page((unsigned long)b);
333 goto out;
334 }
152 335
153 if (cur + cur->units == b) { 336 if (!slob_page_free(sp)) {
154 cur->units += b->units; 337 /* This slob page is about to become partially free. Easy! */
155 cur->next = b->next; 338 sp->units = units;
156 } else 339 sp->free = b;
157 cur->next = b; 340 set_slob(b, units,
341 (void *)((unsigned long)(b +
342 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
343 set_slob_page_free(sp);
344 goto out;
345 }
346
347 /*
348 * Otherwise the page is already partially free, so find reinsertion
349 * point.
350 */
351 sp->units += units;
158 352
159 slobfree = cur; 353 if (b < sp->free) {
354 set_slob(b, units, sp->free);
355 sp->free = b;
356 } else {
357 prev = sp->free;
358 next = slob_next(prev);
359 while (b > next) {
360 prev = next;
361 next = slob_next(prev);
362 }
160 363
364 if (!slob_last(prev) && b + units == next) {
365 units += slob_units(next);
366 set_slob(b, units, slob_next(next));
367 } else
368 set_slob(b, units, next);
369
370 if (prev + slob_units(prev) == b) {
371 units = slob_units(b) + slob_units(prev);
372 set_slob(prev, units, slob_next(b));
373 } else
374 set_slob(prev, slob_units(prev), b);
375 }
376out:
161 spin_unlock_irqrestore(&slob_lock, flags); 377 spin_unlock_irqrestore(&slob_lock, flags);
162} 378}
163 379
380/*
381 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
382 */
383
384struct bigblock {
385 int order;
386 void *pages;
387 struct bigblock *next;
388};
389typedef struct bigblock bigblock_t;
390
391static bigblock_t *bigblocks;
392
393static DEFINE_SPINLOCK(block_lock);
394
395
164void *__kmalloc(size_t size, gfp_t gfp) 396void *__kmalloc(size_t size, gfp_t gfp)
165{ 397{
166 slob_t *m; 398 slob_t *m;
@@ -169,7 +401,9 @@ void *__kmalloc(size_t size, gfp_t gfp)
169 401
170 if (size < PAGE_SIZE - SLOB_UNIT) { 402 if (size < PAGE_SIZE - SLOB_UNIT) {
171 m = slob_alloc(size + SLOB_UNIT, gfp, 0); 403 m = slob_alloc(size + SLOB_UNIT, gfp, 0);
172 return m ? (void *)(m + 1) : 0; 404 if (m)
405 m->units = size;
406 return m+1;
173 } 407 }
174 408
175 bb = slob_alloc(sizeof(bigblock_t), gfp, 0); 409 bb = slob_alloc(sizeof(bigblock_t), gfp, 0);
@@ -227,14 +461,17 @@ EXPORT_SYMBOL(krealloc);
227 461
228void kfree(const void *block) 462void kfree(const void *block)
229{ 463{
464 struct slob_page *sp;
465 slob_t *m;
230 bigblock_t *bb, **last = &bigblocks; 466 bigblock_t *bb, **last = &bigblocks;
231 unsigned long flags; 467 unsigned long flags;
232 468
233 if (!block) 469 if (!block)
234 return; 470 return;
235 471
236 if (!((unsigned long)block & (PAGE_SIZE-1))) { 472 sp = (struct slob_page *)virt_to_page(block);
237 /* might be on the big block list */ 473 if (!slob_page(sp)) {
474 /* on the big block list */
238 spin_lock_irqsave(&block_lock, flags); 475 spin_lock_irqsave(&block_lock, flags);
239 for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { 476 for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) {
240 if (bb->pages == block) { 477 if (bb->pages == block) {
@@ -246,9 +483,12 @@ void kfree(const void *block)
246 } 483 }
247 } 484 }
248 spin_unlock_irqrestore(&block_lock, flags); 485 spin_unlock_irqrestore(&block_lock, flags);
486 WARN_ON(1);
487 return;
249 } 488 }
250 489
251 slob_free((slob_t *)block - 1, 0); 490 m = (slob_t *)block - 1;
491 slob_free(m, m->units + SLOB_UNIT);
252 return; 492 return;
253} 493}
254 494
@@ -256,13 +496,15 @@ EXPORT_SYMBOL(kfree);
256 496
257size_t ksize(const void *block) 497size_t ksize(const void *block)
258{ 498{
499 struct slob_page *sp;
259 bigblock_t *bb; 500 bigblock_t *bb;
260 unsigned long flags; 501 unsigned long flags;
261 502
262 if (!block) 503 if (!block)
263 return 0; 504 return 0;
264 505
265 if (!((unsigned long)block & (PAGE_SIZE-1))) { 506 sp = (struct slob_page *)virt_to_page(block);
507 if (!slob_page(sp)) {
266 spin_lock_irqsave(&block_lock, flags); 508 spin_lock_irqsave(&block_lock, flags);
267 for (bb = bigblocks; bb; bb = bb->next) 509 for (bb = bigblocks; bb; bb = bb->next)
268 if (bb->pages == block) { 510 if (bb->pages == block) {
@@ -272,7 +514,7 @@ size_t ksize(const void *block)
272 spin_unlock_irqrestore(&block_lock, flags); 514 spin_unlock_irqrestore(&block_lock, flags);
273 } 515 }
274 516
275 return ((slob_t *)block - 1)->units * SLOB_UNIT; 517 return ((slob_t *)block - 1)->units + SLOB_UNIT;
276} 518}
277 519
278struct kmem_cache { 520struct kmem_cache {
@@ -385,9 +627,6 @@ const char *kmem_cache_name(struct kmem_cache *c)
385} 627}
386EXPORT_SYMBOL(kmem_cache_name); 628EXPORT_SYMBOL(kmem_cache_name);
387 629
388static struct timer_list slob_timer = TIMER_INITIALIZER(
389 (void (*)(unsigned long))slob_timer_cbk, 0, 0);
390
391int kmem_cache_shrink(struct kmem_cache *d) 630int kmem_cache_shrink(struct kmem_cache *d)
392{ 631{
393 return 0; 632 return 0;
@@ -401,15 +640,4 @@ int kmem_ptr_validate(struct kmem_cache *a, const void *b)
401 640
402void __init kmem_cache_init(void) 641void __init kmem_cache_init(void)
403{ 642{
404 slob_timer_cbk();
405}
406
407static void slob_timer_cbk(void)
408{
409 void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1);
410
411 if (p)
412 free_page((unsigned long)p);
413
414 mod_timer(&slob_timer, jiffies + HZ);
415} 643}