diff options
Diffstat (limited to 'mm/slab.c')
-rw-r--r-- | mm/slab.c | 620 |
1 files changed, 354 insertions, 266 deletions
@@ -89,6 +89,7 @@ | |||
89 | #include <linux/config.h> | 89 | #include <linux/config.h> |
90 | #include <linux/slab.h> | 90 | #include <linux/slab.h> |
91 | #include <linux/mm.h> | 91 | #include <linux/mm.h> |
92 | #include <linux/poison.h> | ||
92 | #include <linux/swap.h> | 93 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | 94 | #include <linux/cache.h> |
94 | #include <linux/interrupt.h> | 95 | #include <linux/interrupt.h> |
@@ -106,6 +107,7 @@ | |||
106 | #include <linux/nodemask.h> | 107 | #include <linux/nodemask.h> |
107 | #include <linux/mempolicy.h> | 108 | #include <linux/mempolicy.h> |
108 | #include <linux/mutex.h> | 109 | #include <linux/mutex.h> |
110 | #include <linux/rtmutex.h> | ||
109 | 111 | ||
110 | #include <asm/uaccess.h> | 112 | #include <asm/uaccess.h> |
111 | #include <asm/cacheflush.h> | 113 | #include <asm/cacheflush.h> |
@@ -307,6 +309,13 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | |||
307 | #define SIZE_AC 1 | 309 | #define SIZE_AC 1 |
308 | #define SIZE_L3 (1 + MAX_NUMNODES) | 310 | #define SIZE_L3 (1 + MAX_NUMNODES) |
309 | 311 | ||
312 | static int drain_freelist(struct kmem_cache *cache, | ||
313 | struct kmem_list3 *l3, int tofree); | ||
314 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | ||
315 | int node); | ||
316 | static int enable_cpucache(struct kmem_cache *cachep); | ||
317 | static void cache_reap(void *unused); | ||
318 | |||
310 | /* | 319 | /* |
311 | * This function must be completely optimized away if a constant is passed to | 320 | * This function must be completely optimized away if a constant is passed to |
312 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | 321 | * it. Mostly the same as what is in linux/slab.h except it returns an index. |
@@ -454,7 +463,7 @@ struct kmem_cache { | |||
454 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | 463 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) |
455 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | 464 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) |
456 | #define STATS_INC_GROWN(x) ((x)->grown++) | 465 | #define STATS_INC_GROWN(x) ((x)->grown++) |
457 | #define STATS_INC_REAPED(x) ((x)->reaped++) | 466 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
458 | #define STATS_SET_HIGH(x) \ | 467 | #define STATS_SET_HIGH(x) \ |
459 | do { \ | 468 | do { \ |
460 | if ((x)->num_active > (x)->high_mark) \ | 469 | if ((x)->num_active > (x)->high_mark) \ |
@@ -478,7 +487,7 @@ struct kmem_cache { | |||
478 | #define STATS_DEC_ACTIVE(x) do { } while (0) | 487 | #define STATS_DEC_ACTIVE(x) do { } while (0) |
479 | #define STATS_INC_ALLOCED(x) do { } while (0) | 488 | #define STATS_INC_ALLOCED(x) do { } while (0) |
480 | #define STATS_INC_GROWN(x) do { } while (0) | 489 | #define STATS_INC_GROWN(x) do { } while (0) |
481 | #define STATS_INC_REAPED(x) do { } while (0) | 490 | #define STATS_ADD_REAPED(x,y) do { } while (0) |
482 | #define STATS_SET_HIGH(x) do { } while (0) | 491 | #define STATS_SET_HIGH(x) do { } while (0) |
483 | #define STATS_INC_ERR(x) do { } while (0) | 492 | #define STATS_INC_ERR(x) do { } while (0) |
484 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | 493 | #define STATS_INC_NODEALLOCS(x) do { } while (0) |
@@ -492,17 +501,6 @@ struct kmem_cache { | |||
492 | #endif | 501 | #endif |
493 | 502 | ||
494 | #if DEBUG | 503 | #if DEBUG |
495 | /* | ||
496 | * Magic nums for obj red zoning. | ||
497 | * Placed in the first word before and the first word after an obj. | ||
498 | */ | ||
499 | #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ | ||
500 | #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ | ||
501 | |||
502 | /* ...and for poisoning */ | ||
503 | #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ | ||
504 | #define POISON_FREE 0x6b /* for use-after-free poisoning */ | ||
505 | #define POISON_END 0xa5 /* end-byte of poisoning */ | ||
506 | 504 | ||
507 | /* | 505 | /* |
508 | * memory layout of objects: | 506 | * memory layout of objects: |
@@ -676,17 +674,66 @@ static struct kmem_cache cache_cache = { | |||
676 | #endif | 674 | #endif |
677 | }; | 675 | }; |
678 | 676 | ||
679 | /* Guard access to the cache-chain. */ | 677 | #define BAD_ALIEN_MAGIC 0x01020304ul |
680 | static DEFINE_MUTEX(cache_chain_mutex); | 678 | |
681 | static struct list_head cache_chain; | 679 | #ifdef CONFIG_LOCKDEP |
682 | 680 | ||
683 | /* | 681 | /* |
684 | * vm_enough_memory() looks at this to determine how many slab-allocated pages | 682 | * Slab sometimes uses the kmalloc slabs to store the slab headers |
685 | * are possibly freeable under pressure | 683 | * for other slabs "off slab". |
684 | * The locking for this is tricky in that it nests within the locks | ||
685 | * of all other slabs in a few places; to deal with this special | ||
686 | * locking we put on-slab caches into a separate lock-class. | ||
686 | * | 687 | * |
687 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | 688 | * We set lock class for alien array caches which are up during init. |
689 | * The lock annotation will be lost if all cpus of a node goes down and | ||
690 | * then comes back up during hotplug | ||
688 | */ | 691 | */ |
689 | atomic_t slab_reclaim_pages; | 692 | static struct lock_class_key on_slab_l3_key; |
693 | static struct lock_class_key on_slab_alc_key; | ||
694 | |||
695 | static inline void init_lock_keys(void) | ||
696 | |||
697 | { | ||
698 | int q; | ||
699 | struct cache_sizes *s = malloc_sizes; | ||
700 | |||
701 | while (s->cs_size != ULONG_MAX) { | ||
702 | for_each_node(q) { | ||
703 | struct array_cache **alc; | ||
704 | int r; | ||
705 | struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; | ||
706 | if (!l3 || OFF_SLAB(s->cs_cachep)) | ||
707 | continue; | ||
708 | lockdep_set_class(&l3->list_lock, &on_slab_l3_key); | ||
709 | alc = l3->alien; | ||
710 | /* | ||
711 | * FIXME: This check for BAD_ALIEN_MAGIC | ||
712 | * should go away when common slab code is taught to | ||
713 | * work even without alien caches. | ||
714 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | ||
715 | * for alloc_alien_cache, | ||
716 | */ | ||
717 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | ||
718 | continue; | ||
719 | for_each_node(r) { | ||
720 | if (alc[r]) | ||
721 | lockdep_set_class(&alc[r]->lock, | ||
722 | &on_slab_alc_key); | ||
723 | } | ||
724 | } | ||
725 | s++; | ||
726 | } | ||
727 | } | ||
728 | #else | ||
729 | static inline void init_lock_keys(void) | ||
730 | { | ||
731 | } | ||
732 | #endif | ||
733 | |||
734 | /* Guard access to the cache-chain. */ | ||
735 | static DEFINE_MUTEX(cache_chain_mutex); | ||
736 | static struct list_head cache_chain; | ||
690 | 737 | ||
691 | /* | 738 | /* |
692 | * chicken and egg problem: delay the per-cpu array allocation | 739 | * chicken and egg problem: delay the per-cpu array allocation |
@@ -709,12 +756,6 @@ int slab_is_available(void) | |||
709 | 756 | ||
710 | static DEFINE_PER_CPU(struct work_struct, reap_work); | 757 | static DEFINE_PER_CPU(struct work_struct, reap_work); |
711 | 758 | ||
712 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | ||
713 | int node); | ||
714 | static void enable_cpucache(struct kmem_cache *cachep); | ||
715 | static void cache_reap(void *unused); | ||
716 | static int __node_shrink(struct kmem_cache *cachep, int node); | ||
717 | |||
718 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | 759 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
719 | { | 760 | { |
720 | return cachep->array[smp_processor_id()]; | 761 | return cachep->array[smp_processor_id()]; |
@@ -745,11 +786,10 @@ static inline struct kmem_cache *__find_general_cachep(size_t size, | |||
745 | return csizep->cs_cachep; | 786 | return csizep->cs_cachep; |
746 | } | 787 | } |
747 | 788 | ||
748 | struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) | 789 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
749 | { | 790 | { |
750 | return __find_general_cachep(size, gfpflags); | 791 | return __find_general_cachep(size, gfpflags); |
751 | } | 792 | } |
752 | EXPORT_SYMBOL(kmem_find_general_cachep); | ||
753 | 793 | ||
754 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) | 794 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
755 | { | 795 | { |
@@ -932,7 +972,39 @@ static int transfer_objects(struct array_cache *to, | |||
932 | return nr; | 972 | return nr; |
933 | } | 973 | } |
934 | 974 | ||
935 | #ifdef CONFIG_NUMA | 975 | #ifndef CONFIG_NUMA |
976 | |||
977 | #define drain_alien_cache(cachep, alien) do { } while (0) | ||
978 | #define reap_alien(cachep, l3) do { } while (0) | ||
979 | |||
980 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | ||
981 | { | ||
982 | return (struct array_cache **)BAD_ALIEN_MAGIC; | ||
983 | } | ||
984 | |||
985 | static inline void free_alien_cache(struct array_cache **ac_ptr) | ||
986 | { | ||
987 | } | ||
988 | |||
989 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | ||
990 | { | ||
991 | return 0; | ||
992 | } | ||
993 | |||
994 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | ||
995 | gfp_t flags) | ||
996 | { | ||
997 | return NULL; | ||
998 | } | ||
999 | |||
1000 | static inline void *__cache_alloc_node(struct kmem_cache *cachep, | ||
1001 | gfp_t flags, int nodeid) | ||
1002 | { | ||
1003 | return NULL; | ||
1004 | } | ||
1005 | |||
1006 | #else /* CONFIG_NUMA */ | ||
1007 | |||
936 | static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int); | 1008 | static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int); |
937 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); | 1009 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
938 | 1010 | ||
@@ -1061,29 +1133,9 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1061 | } | 1133 | } |
1062 | return 1; | 1134 | return 1; |
1063 | } | 1135 | } |
1064 | |||
1065 | #else | ||
1066 | |||
1067 | #define drain_alien_cache(cachep, alien) do { } while (0) | ||
1068 | #define reap_alien(cachep, l3) do { } while (0) | ||
1069 | |||
1070 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | ||
1071 | { | ||
1072 | return (struct array_cache **) 0x01020304ul; | ||
1073 | } | ||
1074 | |||
1075 | static inline void free_alien_cache(struct array_cache **ac_ptr) | ||
1076 | { | ||
1077 | } | ||
1078 | |||
1079 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | ||
1080 | { | ||
1081 | return 0; | ||
1082 | } | ||
1083 | |||
1084 | #endif | 1136 | #endif |
1085 | 1137 | ||
1086 | static int cpuup_callback(struct notifier_block *nfb, | 1138 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, |
1087 | unsigned long action, void *hcpu) | 1139 | unsigned long action, void *hcpu) |
1088 | { | 1140 | { |
1089 | long cpu = (long)hcpu; | 1141 | long cpu = (long)hcpu; |
@@ -1250,10 +1302,7 @@ free_array_cache: | |||
1250 | l3 = cachep->nodelists[node]; | 1302 | l3 = cachep->nodelists[node]; |
1251 | if (!l3) | 1303 | if (!l3) |
1252 | continue; | 1304 | continue; |
1253 | spin_lock_irq(&l3->list_lock); | 1305 | drain_freelist(cachep, l3, l3->free_objects); |
1254 | /* free slabs belonging to this node */ | ||
1255 | __node_shrink(cachep, node); | ||
1256 | spin_unlock_irq(&l3->list_lock); | ||
1257 | } | 1306 | } |
1258 | mutex_unlock(&cache_chain_mutex); | 1307 | mutex_unlock(&cache_chain_mutex); |
1259 | break; | 1308 | break; |
@@ -1265,7 +1314,9 @@ bad: | |||
1265 | return NOTIFY_BAD; | 1314 | return NOTIFY_BAD; |
1266 | } | 1315 | } |
1267 | 1316 | ||
1268 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | 1317 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1318 | &cpuup_callback, NULL, 0 | ||
1319 | }; | ||
1269 | 1320 | ||
1270 | /* | 1321 | /* |
1271 | * swap the static kmem_list3 with kmalloced memory | 1322 | * swap the static kmem_list3 with kmalloced memory |
@@ -1281,6 +1332,11 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | |||
1281 | 1332 | ||
1282 | local_irq_disable(); | 1333 | local_irq_disable(); |
1283 | memcpy(ptr, list, sizeof(struct kmem_list3)); | 1334 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
1335 | /* | ||
1336 | * Do not assume that spinlocks can be initialized via memcpy: | ||
1337 | */ | ||
1338 | spin_lock_init(&ptr->list_lock); | ||
1339 | |||
1284 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | 1340 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1285 | cachep->nodelists[nodeid] = ptr; | 1341 | cachep->nodelists[nodeid] = ptr; |
1286 | local_irq_enable(); | 1342 | local_irq_enable(); |
@@ -1407,7 +1463,7 @@ void __init kmem_cache_init(void) | |||
1407 | } | 1463 | } |
1408 | /* 4) Replace the bootstrap head arrays */ | 1464 | /* 4) Replace the bootstrap head arrays */ |
1409 | { | 1465 | { |
1410 | void *ptr; | 1466 | struct array_cache *ptr; |
1411 | 1467 | ||
1412 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 1468 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
1413 | 1469 | ||
@@ -1415,6 +1471,11 @@ void __init kmem_cache_init(void) | |||
1415 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); | 1471 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1416 | memcpy(ptr, cpu_cache_get(&cache_cache), | 1472 | memcpy(ptr, cpu_cache_get(&cache_cache), |
1417 | sizeof(struct arraycache_init)); | 1473 | sizeof(struct arraycache_init)); |
1474 | /* | ||
1475 | * Do not assume that spinlocks can be initialized via memcpy: | ||
1476 | */ | ||
1477 | spin_lock_init(&ptr->lock); | ||
1478 | |||
1418 | cache_cache.array[smp_processor_id()] = ptr; | 1479 | cache_cache.array[smp_processor_id()] = ptr; |
1419 | local_irq_enable(); | 1480 | local_irq_enable(); |
1420 | 1481 | ||
@@ -1425,6 +1486,11 @@ void __init kmem_cache_init(void) | |||
1425 | != &initarray_generic.cache); | 1486 | != &initarray_generic.cache); |
1426 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), | 1487 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
1427 | sizeof(struct arraycache_init)); | 1488 | sizeof(struct arraycache_init)); |
1489 | /* | ||
1490 | * Do not assume that spinlocks can be initialized via memcpy: | ||
1491 | */ | ||
1492 | spin_lock_init(&ptr->lock); | ||
1493 | |||
1428 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = | 1494 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
1429 | ptr; | 1495 | ptr; |
1430 | local_irq_enable(); | 1496 | local_irq_enable(); |
@@ -1453,10 +1519,15 @@ void __init kmem_cache_init(void) | |||
1453 | struct kmem_cache *cachep; | 1519 | struct kmem_cache *cachep; |
1454 | mutex_lock(&cache_chain_mutex); | 1520 | mutex_lock(&cache_chain_mutex); |
1455 | list_for_each_entry(cachep, &cache_chain, next) | 1521 | list_for_each_entry(cachep, &cache_chain, next) |
1456 | enable_cpucache(cachep); | 1522 | if (enable_cpucache(cachep)) |
1523 | BUG(); | ||
1457 | mutex_unlock(&cache_chain_mutex); | 1524 | mutex_unlock(&cache_chain_mutex); |
1458 | } | 1525 | } |
1459 | 1526 | ||
1527 | /* Annotate slab for lockdep -- annotate the malloc caches */ | ||
1528 | init_lock_keys(); | ||
1529 | |||
1530 | |||
1460 | /* Done! */ | 1531 | /* Done! */ |
1461 | g_cpucache_up = FULL; | 1532 | g_cpucache_up = FULL; |
1462 | 1533 | ||
@@ -1505,7 +1576,13 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) | |||
1505 | */ | 1576 | */ |
1506 | flags |= __GFP_COMP; | 1577 | flags |= __GFP_COMP; |
1507 | #endif | 1578 | #endif |
1508 | flags |= cachep->gfpflags; | 1579 | |
1580 | /* | ||
1581 | * Under NUMA we want memory on the indicated node. We will handle | ||
1582 | * the needed fallback ourselves since we want to serve from our | ||
1583 | * per node object lists first for other nodes. | ||
1584 | */ | ||
1585 | flags |= cachep->gfpflags | GFP_THISNODE; | ||
1509 | 1586 | ||
1510 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | 1587 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); |
1511 | if (!page) | 1588 | if (!page) |
@@ -1513,8 +1590,11 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) | |||
1513 | 1590 | ||
1514 | nr_pages = (1 << cachep->gfporder); | 1591 | nr_pages = (1 << cachep->gfporder); |
1515 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 1592 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1516 | atomic_add(nr_pages, &slab_reclaim_pages); | 1593 | add_zone_page_state(page_zone(page), |
1517 | add_page_state(nr_slab, nr_pages); | 1594 | NR_SLAB_RECLAIMABLE, nr_pages); |
1595 | else | ||
1596 | add_zone_page_state(page_zone(page), | ||
1597 | NR_SLAB_UNRECLAIMABLE, nr_pages); | ||
1518 | for (i = 0; i < nr_pages; i++) | 1598 | for (i = 0; i < nr_pages; i++) |
1519 | __SetPageSlab(page + i); | 1599 | __SetPageSlab(page + i); |
1520 | return page_address(page); | 1600 | return page_address(page); |
@@ -1529,17 +1609,20 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr) | |||
1529 | struct page *page = virt_to_page(addr); | 1609 | struct page *page = virt_to_page(addr); |
1530 | const unsigned long nr_freed = i; | 1610 | const unsigned long nr_freed = i; |
1531 | 1611 | ||
1612 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | ||
1613 | sub_zone_page_state(page_zone(page), | ||
1614 | NR_SLAB_RECLAIMABLE, nr_freed); | ||
1615 | else | ||
1616 | sub_zone_page_state(page_zone(page), | ||
1617 | NR_SLAB_UNRECLAIMABLE, nr_freed); | ||
1532 | while (i--) { | 1618 | while (i--) { |
1533 | BUG_ON(!PageSlab(page)); | 1619 | BUG_ON(!PageSlab(page)); |
1534 | __ClearPageSlab(page); | 1620 | __ClearPageSlab(page); |
1535 | page++; | 1621 | page++; |
1536 | } | 1622 | } |
1537 | sub_page_state(nr_slab, nr_freed); | ||
1538 | if (current->reclaim_state) | 1623 | if (current->reclaim_state) |
1539 | current->reclaim_state->reclaimed_slab += nr_freed; | 1624 | current->reclaim_state->reclaimed_slab += nr_freed; |
1540 | free_pages((unsigned long)addr, cachep->gfporder); | 1625 | free_pages((unsigned long)addr, cachep->gfporder); |
1541 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | ||
1542 | atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages); | ||
1543 | } | 1626 | } |
1544 | 1627 | ||
1545 | static void kmem_rcu_free(struct rcu_head *head) | 1628 | static void kmem_rcu_free(struct rcu_head *head) |
@@ -1600,10 +1683,32 @@ static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) | |||
1600 | static void dump_line(char *data, int offset, int limit) | 1683 | static void dump_line(char *data, int offset, int limit) |
1601 | { | 1684 | { |
1602 | int i; | 1685 | int i; |
1686 | unsigned char error = 0; | ||
1687 | int bad_count = 0; | ||
1688 | |||
1603 | printk(KERN_ERR "%03x:", offset); | 1689 | printk(KERN_ERR "%03x:", offset); |
1604 | for (i = 0; i < limit; i++) | 1690 | for (i = 0; i < limit; i++) { |
1691 | if (data[offset + i] != POISON_FREE) { | ||
1692 | error = data[offset + i]; | ||
1693 | bad_count++; | ||
1694 | } | ||
1605 | printk(" %02x", (unsigned char)data[offset + i]); | 1695 | printk(" %02x", (unsigned char)data[offset + i]); |
1696 | } | ||
1606 | printk("\n"); | 1697 | printk("\n"); |
1698 | |||
1699 | if (bad_count == 1) { | ||
1700 | error ^= POISON_FREE; | ||
1701 | if (!(error & (error - 1))) { | ||
1702 | printk(KERN_ERR "Single bit error detected. Probably " | ||
1703 | "bad RAM.\n"); | ||
1704 | #ifdef CONFIG_X86 | ||
1705 | printk(KERN_ERR "Run memtest86+ or a similar memory " | ||
1706 | "test tool.\n"); | ||
1707 | #else | ||
1708 | printk(KERN_ERR "Run a memory test tool.\n"); | ||
1709 | #endif | ||
1710 | } | ||
1711 | } | ||
1607 | } | 1712 | } |
1608 | #endif | 1713 | #endif |
1609 | 1714 | ||
@@ -1796,6 +1901,27 @@ static void set_up_list3s(struct kmem_cache *cachep, int index) | |||
1796 | } | 1901 | } |
1797 | } | 1902 | } |
1798 | 1903 | ||
1904 | static void __kmem_cache_destroy(struct kmem_cache *cachep) | ||
1905 | { | ||
1906 | int i; | ||
1907 | struct kmem_list3 *l3; | ||
1908 | |||
1909 | for_each_online_cpu(i) | ||
1910 | kfree(cachep->array[i]); | ||
1911 | |||
1912 | /* NUMA: free the list3 structures */ | ||
1913 | for_each_online_node(i) { | ||
1914 | l3 = cachep->nodelists[i]; | ||
1915 | if (l3) { | ||
1916 | kfree(l3->shared); | ||
1917 | free_alien_cache(l3->alien); | ||
1918 | kfree(l3); | ||
1919 | } | ||
1920 | } | ||
1921 | kmem_cache_free(&cache_cache, cachep); | ||
1922 | } | ||
1923 | |||
1924 | |||
1799 | /** | 1925 | /** |
1800 | * calculate_slab_order - calculate size (page order) of slabs | 1926 | * calculate_slab_order - calculate size (page order) of slabs |
1801 | * @cachep: pointer to the cache that is being created | 1927 | * @cachep: pointer to the cache that is being created |
@@ -1866,12 +1992,11 @@ static size_t calculate_slab_order(struct kmem_cache *cachep, | |||
1866 | return left_over; | 1992 | return left_over; |
1867 | } | 1993 | } |
1868 | 1994 | ||
1869 | static void setup_cpu_cache(struct kmem_cache *cachep) | 1995 | static int setup_cpu_cache(struct kmem_cache *cachep) |
1870 | { | 1996 | { |
1871 | if (g_cpucache_up == FULL) { | 1997 | if (g_cpucache_up == FULL) |
1872 | enable_cpucache(cachep); | 1998 | return enable_cpucache(cachep); |
1873 | return; | 1999 | |
1874 | } | ||
1875 | if (g_cpucache_up == NONE) { | 2000 | if (g_cpucache_up == NONE) { |
1876 | /* | 2001 | /* |
1877 | * Note: the first kmem_cache_create must create the cache | 2002 | * Note: the first kmem_cache_create must create the cache |
@@ -1918,6 +2043,7 @@ static void setup_cpu_cache(struct kmem_cache *cachep) | |||
1918 | cpu_cache_get(cachep)->touched = 0; | 2043 | cpu_cache_get(cachep)->touched = 0; |
1919 | cachep->batchcount = 1; | 2044 | cachep->batchcount = 1; |
1920 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 2045 | cachep->limit = BOOT_CPUCACHE_ENTRIES; |
2046 | return 0; | ||
1921 | } | 2047 | } |
1922 | 2048 | ||
1923 | /** | 2049 | /** |
@@ -2059,6 +2185,15 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2059 | } else { | 2185 | } else { |
2060 | ralign = BYTES_PER_WORD; | 2186 | ralign = BYTES_PER_WORD; |
2061 | } | 2187 | } |
2188 | |||
2189 | /* | ||
2190 | * Redzoning and user store require word alignment. Note this will be | ||
2191 | * overridden by architecture or caller mandated alignment if either | ||
2192 | * is greater than BYTES_PER_WORD. | ||
2193 | */ | ||
2194 | if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER) | ||
2195 | ralign = BYTES_PER_WORD; | ||
2196 | |||
2062 | /* 2) arch mandated alignment: disables debug if necessary */ | 2197 | /* 2) arch mandated alignment: disables debug if necessary */ |
2063 | if (ralign < ARCH_SLAB_MINALIGN) { | 2198 | if (ralign < ARCH_SLAB_MINALIGN) { |
2064 | ralign = ARCH_SLAB_MINALIGN; | 2199 | ralign = ARCH_SLAB_MINALIGN; |
@@ -2072,8 +2207,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2072 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 2207 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
2073 | } | 2208 | } |
2074 | /* | 2209 | /* |
2075 | * 4) Store it. Note that the debug code below can reduce | 2210 | * 4) Store it. |
2076 | * the alignment to BYTES_PER_WORD. | ||
2077 | */ | 2211 | */ |
2078 | align = ralign; | 2212 | align = ralign; |
2079 | 2213 | ||
@@ -2085,20 +2219,19 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2085 | #if DEBUG | 2219 | #if DEBUG |
2086 | cachep->obj_size = size; | 2220 | cachep->obj_size = size; |
2087 | 2221 | ||
2222 | /* | ||
2223 | * Both debugging options require word-alignment which is calculated | ||
2224 | * into align above. | ||
2225 | */ | ||
2088 | if (flags & SLAB_RED_ZONE) { | 2226 | if (flags & SLAB_RED_ZONE) { |
2089 | /* redzoning only works with word aligned caches */ | ||
2090 | align = BYTES_PER_WORD; | ||
2091 | |||
2092 | /* add space for red zone words */ | 2227 | /* add space for red zone words */ |
2093 | cachep->obj_offset += BYTES_PER_WORD; | 2228 | cachep->obj_offset += BYTES_PER_WORD; |
2094 | size += 2 * BYTES_PER_WORD; | 2229 | size += 2 * BYTES_PER_WORD; |
2095 | } | 2230 | } |
2096 | if (flags & SLAB_STORE_USER) { | 2231 | if (flags & SLAB_STORE_USER) { |
2097 | /* user store requires word alignment and | 2232 | /* user store requires one word storage behind the end of |
2098 | * one word storage behind the end of the real | 2233 | * the real object. |
2099 | * object. | ||
2100 | */ | 2234 | */ |
2101 | align = BYTES_PER_WORD; | ||
2102 | size += BYTES_PER_WORD; | 2235 | size += BYTES_PER_WORD; |
2103 | } | 2236 | } |
2104 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 2237 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
@@ -2162,14 +2295,26 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2162 | cachep->gfpflags |= GFP_DMA; | 2295 | cachep->gfpflags |= GFP_DMA; |
2163 | cachep->buffer_size = size; | 2296 | cachep->buffer_size = size; |
2164 | 2297 | ||
2165 | if (flags & CFLGS_OFF_SLAB) | 2298 | if (flags & CFLGS_OFF_SLAB) { |
2166 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); | 2299 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
2300 | /* | ||
2301 | * This is a possibility for one of the malloc_sizes caches. | ||
2302 | * But since we go off slab only for object size greater than | ||
2303 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | ||
2304 | * this should not happen at all. | ||
2305 | * But leave a BUG_ON for some lucky dude. | ||
2306 | */ | ||
2307 | BUG_ON(!cachep->slabp_cache); | ||
2308 | } | ||
2167 | cachep->ctor = ctor; | 2309 | cachep->ctor = ctor; |
2168 | cachep->dtor = dtor; | 2310 | cachep->dtor = dtor; |
2169 | cachep->name = name; | 2311 | cachep->name = name; |
2170 | 2312 | ||
2171 | 2313 | if (setup_cpu_cache(cachep)) { | |
2172 | setup_cpu_cache(cachep); | 2314 | __kmem_cache_destroy(cachep); |
2315 | cachep = NULL; | ||
2316 | goto oops; | ||
2317 | } | ||
2173 | 2318 | ||
2174 | /* cache setup completed, link it into the list */ | 2319 | /* cache setup completed, link it into the list */ |
2175 | list_add(&cachep->next, &cache_chain); | 2320 | list_add(&cachep->next, &cache_chain); |
@@ -2255,32 +2400,45 @@ static void drain_cpu_caches(struct kmem_cache *cachep) | |||
2255 | } | 2400 | } |
2256 | } | 2401 | } |
2257 | 2402 | ||
2258 | static int __node_shrink(struct kmem_cache *cachep, int node) | 2403 | /* |
2404 | * Remove slabs from the list of free slabs. | ||
2405 | * Specify the number of slabs to drain in tofree. | ||
2406 | * | ||
2407 | * Returns the actual number of slabs released. | ||
2408 | */ | ||
2409 | static int drain_freelist(struct kmem_cache *cache, | ||
2410 | struct kmem_list3 *l3, int tofree) | ||
2259 | { | 2411 | { |
2412 | struct list_head *p; | ||
2413 | int nr_freed; | ||
2260 | struct slab *slabp; | 2414 | struct slab *slabp; |
2261 | struct kmem_list3 *l3 = cachep->nodelists[node]; | ||
2262 | int ret; | ||
2263 | 2415 | ||
2264 | for (;;) { | 2416 | nr_freed = 0; |
2265 | struct list_head *p; | 2417 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { |
2266 | 2418 | ||
2419 | spin_lock_irq(&l3->list_lock); | ||
2267 | p = l3->slabs_free.prev; | 2420 | p = l3->slabs_free.prev; |
2268 | if (p == &l3->slabs_free) | 2421 | if (p == &l3->slabs_free) { |
2269 | break; | 2422 | spin_unlock_irq(&l3->list_lock); |
2423 | goto out; | ||
2424 | } | ||
2270 | 2425 | ||
2271 | slabp = list_entry(l3->slabs_free.prev, struct slab, list); | 2426 | slabp = list_entry(p, struct slab, list); |
2272 | #if DEBUG | 2427 | #if DEBUG |
2273 | BUG_ON(slabp->inuse); | 2428 | BUG_ON(slabp->inuse); |
2274 | #endif | 2429 | #endif |
2275 | list_del(&slabp->list); | 2430 | list_del(&slabp->list); |
2276 | 2431 | /* | |
2277 | l3->free_objects -= cachep->num; | 2432 | * Safe to drop the lock. The slab is no longer linked |
2433 | * to the cache. | ||
2434 | */ | ||
2435 | l3->free_objects -= cache->num; | ||
2278 | spin_unlock_irq(&l3->list_lock); | 2436 | spin_unlock_irq(&l3->list_lock); |
2279 | slab_destroy(cachep, slabp); | 2437 | slab_destroy(cache, slabp); |
2280 | spin_lock_irq(&l3->list_lock); | 2438 | nr_freed++; |
2281 | } | 2439 | } |
2282 | ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial); | 2440 | out: |
2283 | return ret; | 2441 | return nr_freed; |
2284 | } | 2442 | } |
2285 | 2443 | ||
2286 | static int __cache_shrink(struct kmem_cache *cachep) | 2444 | static int __cache_shrink(struct kmem_cache *cachep) |
@@ -2293,11 +2451,13 @@ static int __cache_shrink(struct kmem_cache *cachep) | |||
2293 | check_irq_on(); | 2451 | check_irq_on(); |
2294 | for_each_online_node(i) { | 2452 | for_each_online_node(i) { |
2295 | l3 = cachep->nodelists[i]; | 2453 | l3 = cachep->nodelists[i]; |
2296 | if (l3) { | 2454 | if (!l3) |
2297 | spin_lock_irq(&l3->list_lock); | 2455 | continue; |
2298 | ret += __node_shrink(cachep, i); | 2456 | |
2299 | spin_unlock_irq(&l3->list_lock); | 2457 | drain_freelist(cachep, l3, l3->free_objects); |
2300 | } | 2458 | |
2459 | ret += !list_empty(&l3->slabs_full) || | ||
2460 | !list_empty(&l3->slabs_partial); | ||
2301 | } | 2461 | } |
2302 | return (ret ? 1 : 0); | 2462 | return (ret ? 1 : 0); |
2303 | } | 2463 | } |
@@ -2322,7 +2482,6 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2322 | * @cachep: the cache to destroy | 2482 | * @cachep: the cache to destroy |
2323 | * | 2483 | * |
2324 | * Remove a struct kmem_cache object from the slab cache. | 2484 | * Remove a struct kmem_cache object from the slab cache. |
2325 | * Returns 0 on success. | ||
2326 | * | 2485 | * |
2327 | * It is expected this function will be called by a module when it is | 2486 | * It is expected this function will be called by a module when it is |
2328 | * unloaded. This will remove the cache completely, and avoid a duplicate | 2487 | * unloaded. This will remove the cache completely, and avoid a duplicate |
@@ -2334,11 +2493,8 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2334 | * The caller must guarantee that noone will allocate memory from the cache | 2493 | * The caller must guarantee that noone will allocate memory from the cache |
2335 | * during the kmem_cache_destroy(). | 2494 | * during the kmem_cache_destroy(). |
2336 | */ | 2495 | */ |
2337 | int kmem_cache_destroy(struct kmem_cache *cachep) | 2496 | void kmem_cache_destroy(struct kmem_cache *cachep) |
2338 | { | 2497 | { |
2339 | int i; | ||
2340 | struct kmem_list3 *l3; | ||
2341 | |||
2342 | BUG_ON(!cachep || in_interrupt()); | 2498 | BUG_ON(!cachep || in_interrupt()); |
2343 | 2499 | ||
2344 | /* Don't let CPUs to come and go */ | 2500 | /* Don't let CPUs to come and go */ |
@@ -2358,31 +2514,28 @@ int kmem_cache_destroy(struct kmem_cache *cachep) | |||
2358 | list_add(&cachep->next, &cache_chain); | 2514 | list_add(&cachep->next, &cache_chain); |
2359 | mutex_unlock(&cache_chain_mutex); | 2515 | mutex_unlock(&cache_chain_mutex); |
2360 | unlock_cpu_hotplug(); | 2516 | unlock_cpu_hotplug(); |
2361 | return 1; | 2517 | return; |
2362 | } | 2518 | } |
2363 | 2519 | ||
2364 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | 2520 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) |
2365 | synchronize_rcu(); | 2521 | synchronize_rcu(); |
2366 | 2522 | ||
2367 | for_each_online_cpu(i) | 2523 | __kmem_cache_destroy(cachep); |
2368 | kfree(cachep->array[i]); | ||
2369 | |||
2370 | /* NUMA: free the list3 structures */ | ||
2371 | for_each_online_node(i) { | ||
2372 | l3 = cachep->nodelists[i]; | ||
2373 | if (l3) { | ||
2374 | kfree(l3->shared); | ||
2375 | free_alien_cache(l3->alien); | ||
2376 | kfree(l3); | ||
2377 | } | ||
2378 | } | ||
2379 | kmem_cache_free(&cache_cache, cachep); | ||
2380 | unlock_cpu_hotplug(); | 2524 | unlock_cpu_hotplug(); |
2381 | return 0; | ||
2382 | } | 2525 | } |
2383 | EXPORT_SYMBOL(kmem_cache_destroy); | 2526 | EXPORT_SYMBOL(kmem_cache_destroy); |
2384 | 2527 | ||
2385 | /* Get the memory for a slab management obj. */ | 2528 | /* |
2529 | * Get the memory for a slab management obj. | ||
2530 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | ||
2531 | * always come from malloc_sizes caches. The slab descriptor cannot | ||
2532 | * come from the same cache which is getting created because, | ||
2533 | * when we are searching for an appropriate cache for these | ||
2534 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | ||
2535 | * If we are creating a malloc_sizes cache here it would not be visible to | ||
2536 | * kmem_find_general_cachep till the initialization is complete. | ||
2537 | * Hence we cannot have slabp_cache same as the original cache. | ||
2538 | */ | ||
2386 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, | 2539 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
2387 | int colour_off, gfp_t local_flags, | 2540 | int colour_off, gfp_t local_flags, |
2388 | int nodeid) | 2541 | int nodeid) |
@@ -2915,14 +3068,6 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
2915 | void *objp; | 3068 | void *objp; |
2916 | struct array_cache *ac; | 3069 | struct array_cache *ac; |
2917 | 3070 | ||
2918 | #ifdef CONFIG_NUMA | ||
2919 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | ||
2920 | objp = alternate_node_alloc(cachep, flags); | ||
2921 | if (objp != NULL) | ||
2922 | return objp; | ||
2923 | } | ||
2924 | #endif | ||
2925 | |||
2926 | check_irq_off(); | 3071 | check_irq_off(); |
2927 | ac = cpu_cache_get(cachep); | 3072 | ac = cpu_cache_get(cachep); |
2928 | if (likely(ac->avail)) { | 3073 | if (likely(ac->avail)) { |
@@ -2940,12 +3085,24 @@ static __always_inline void *__cache_alloc(struct kmem_cache *cachep, | |||
2940 | gfp_t flags, void *caller) | 3085 | gfp_t flags, void *caller) |
2941 | { | 3086 | { |
2942 | unsigned long save_flags; | 3087 | unsigned long save_flags; |
2943 | void *objp; | 3088 | void *objp = NULL; |
2944 | 3089 | ||
2945 | cache_alloc_debugcheck_before(cachep, flags); | 3090 | cache_alloc_debugcheck_before(cachep, flags); |
2946 | 3091 | ||
2947 | local_irq_save(save_flags); | 3092 | local_irq_save(save_flags); |
2948 | objp = ____cache_alloc(cachep, flags); | 3093 | |
3094 | if (unlikely(NUMA_BUILD && | ||
3095 | current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) | ||
3096 | objp = alternate_node_alloc(cachep, flags); | ||
3097 | |||
3098 | if (!objp) | ||
3099 | objp = ____cache_alloc(cachep, flags); | ||
3100 | /* | ||
3101 | * We may just have run out of memory on the local node. | ||
3102 | * __cache_alloc_node() knows how to locate memory on other nodes | ||
3103 | */ | ||
3104 | if (NUMA_BUILD && !objp) | ||
3105 | objp = __cache_alloc_node(cachep, flags, numa_node_id()); | ||
2949 | local_irq_restore(save_flags); | 3106 | local_irq_restore(save_flags); |
2950 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, | 3107 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, |
2951 | caller); | 3108 | caller); |
@@ -2964,7 +3121,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
2964 | { | 3121 | { |
2965 | int nid_alloc, nid_here; | 3122 | int nid_alloc, nid_here; |
2966 | 3123 | ||
2967 | if (in_interrupt()) | 3124 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
2968 | return NULL; | 3125 | return NULL; |
2969 | nid_alloc = nid_here = numa_node_id(); | 3126 | nid_alloc = nid_here = numa_node_id(); |
2970 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | 3127 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
@@ -2977,6 +3134,28 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
2977 | } | 3134 | } |
2978 | 3135 | ||
2979 | /* | 3136 | /* |
3137 | * Fallback function if there was no memory available and no objects on a | ||
3138 | * certain node and we are allowed to fall back. We mimick the behavior of | ||
3139 | * the page allocator. We fall back according to a zonelist determined by | ||
3140 | * the policy layer while obeying cpuset constraints. | ||
3141 | */ | ||
3142 | void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) | ||
3143 | { | ||
3144 | struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy)) | ||
3145 | ->node_zonelists[gfp_zone(flags)]; | ||
3146 | struct zone **z; | ||
3147 | void *obj = NULL; | ||
3148 | |||
3149 | for (z = zonelist->zones; *z && !obj; z++) | ||
3150 | if (zone_idx(*z) <= ZONE_NORMAL && | ||
3151 | cpuset_zone_allowed(*z, flags)) | ||
3152 | obj = __cache_alloc_node(cache, | ||
3153 | flags | __GFP_THISNODE, | ||
3154 | zone_to_nid(*z)); | ||
3155 | return obj; | ||
3156 | } | ||
3157 | |||
3158 | /* | ||
2980 | * A interface to enable slab creation on nodeid | 3159 | * A interface to enable slab creation on nodeid |
2981 | */ | 3160 | */ |
2982 | static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | 3161 | static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
@@ -3029,11 +3208,15 @@ retry: | |||
3029 | must_grow: | 3208 | must_grow: |
3030 | spin_unlock(&l3->list_lock); | 3209 | spin_unlock(&l3->list_lock); |
3031 | x = cache_grow(cachep, flags, nodeid); | 3210 | x = cache_grow(cachep, flags, nodeid); |
3211 | if (x) | ||
3212 | goto retry; | ||
3032 | 3213 | ||
3033 | if (!x) | 3214 | if (!(flags & __GFP_THISNODE)) |
3034 | return NULL; | 3215 | /* Unable to grow the cache. Fall back to other nodes. */ |
3216 | return fallback_alloc(cachep, flags); | ||
3217 | |||
3218 | return NULL; | ||
3035 | 3219 | ||
3036 | goto retry; | ||
3037 | done: | 3220 | done: |
3038 | return obj; | 3221 | return obj; |
3039 | } | 3222 | } |
@@ -3066,6 +3249,12 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3066 | if (slabp->inuse == 0) { | 3249 | if (slabp->inuse == 0) { |
3067 | if (l3->free_objects > l3->free_limit) { | 3250 | if (l3->free_objects > l3->free_limit) { |
3068 | l3->free_objects -= cachep->num; | 3251 | l3->free_objects -= cachep->num; |
3252 | /* No need to drop any previously held | ||
3253 | * lock here, even if we have a off-slab slab | ||
3254 | * descriptor it is guaranteed to come from | ||
3255 | * a different cache, refer to comments before | ||
3256 | * alloc_slabmgmt. | ||
3257 | */ | ||
3069 | slab_destroy(cachep, slabp); | 3258 | slab_destroy(cachep, slabp); |
3070 | } else { | 3259 | } else { |
3071 | list_add(&slabp->list, &l3->slabs_free); | 3260 | list_add(&slabp->list, &l3->slabs_free); |
@@ -3171,7 +3360,7 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
3171 | EXPORT_SYMBOL(kmem_cache_alloc); | 3360 | EXPORT_SYMBOL(kmem_cache_alloc); |
3172 | 3361 | ||
3173 | /** | 3362 | /** |
3174 | * kmem_cache_alloc - Allocate an object. The memory is set to zero. | 3363 | * kmem_cache_zalloc - Allocate an object. The memory is set to zero. |
3175 | * @cache: The cache to allocate from. | 3364 | * @cache: The cache to allocate from. |
3176 | * @flags: See kmalloc(). | 3365 | * @flags: See kmalloc(). |
3177 | * | 3366 | * |
@@ -3264,7 +3453,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | |||
3264 | } | 3453 | } |
3265 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 3454 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3266 | 3455 | ||
3267 | void *kmalloc_node(size_t size, gfp_t flags, int node) | 3456 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3268 | { | 3457 | { |
3269 | struct kmem_cache *cachep; | 3458 | struct kmem_cache *cachep; |
3270 | 3459 | ||
@@ -3273,7 +3462,7 @@ void *kmalloc_node(size_t size, gfp_t flags, int node) | |||
3273 | return NULL; | 3462 | return NULL; |
3274 | return kmem_cache_alloc_node(cachep, flags, node); | 3463 | return kmem_cache_alloc_node(cachep, flags, node); |
3275 | } | 3464 | } |
3276 | EXPORT_SYMBOL(kmalloc_node); | 3465 | EXPORT_SYMBOL(__kmalloc_node); |
3277 | #endif | 3466 | #endif |
3278 | 3467 | ||
3279 | /** | 3468 | /** |
@@ -3317,55 +3506,6 @@ void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) | |||
3317 | EXPORT_SYMBOL(__kmalloc_track_caller); | 3506 | EXPORT_SYMBOL(__kmalloc_track_caller); |
3318 | #endif | 3507 | #endif |
3319 | 3508 | ||
3320 | #ifdef CONFIG_SMP | ||
3321 | /** | ||
3322 | * __alloc_percpu - allocate one copy of the object for every present | ||
3323 | * cpu in the system, zeroing them. | ||
3324 | * Objects should be dereferenced using the per_cpu_ptr macro only. | ||
3325 | * | ||
3326 | * @size: how many bytes of memory are required. | ||
3327 | */ | ||
3328 | void *__alloc_percpu(size_t size) | ||
3329 | { | ||
3330 | int i; | ||
3331 | struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); | ||
3332 | |||
3333 | if (!pdata) | ||
3334 | return NULL; | ||
3335 | |||
3336 | /* | ||
3337 | * Cannot use for_each_online_cpu since a cpu may come online | ||
3338 | * and we have no way of figuring out how to fix the array | ||
3339 | * that we have allocated then.... | ||
3340 | */ | ||
3341 | for_each_possible_cpu(i) { | ||
3342 | int node = cpu_to_node(i); | ||
3343 | |||
3344 | if (node_online(node)) | ||
3345 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node); | ||
3346 | else | ||
3347 | pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); | ||
3348 | |||
3349 | if (!pdata->ptrs[i]) | ||
3350 | goto unwind_oom; | ||
3351 | memset(pdata->ptrs[i], 0, size); | ||
3352 | } | ||
3353 | |||
3354 | /* Catch derefs w/o wrappers */ | ||
3355 | return (void *)(~(unsigned long)pdata); | ||
3356 | |||
3357 | unwind_oom: | ||
3358 | while (--i >= 0) { | ||
3359 | if (!cpu_possible(i)) | ||
3360 | continue; | ||
3361 | kfree(pdata->ptrs[i]); | ||
3362 | } | ||
3363 | kfree(pdata); | ||
3364 | return NULL; | ||
3365 | } | ||
3366 | EXPORT_SYMBOL(__alloc_percpu); | ||
3367 | #endif | ||
3368 | |||
3369 | /** | 3509 | /** |
3370 | * kmem_cache_free - Deallocate an object | 3510 | * kmem_cache_free - Deallocate an object |
3371 | * @cachep: The cache the allocation was from. | 3511 | * @cachep: The cache the allocation was from. |
@@ -3405,35 +3545,12 @@ void kfree(const void *objp) | |||
3405 | local_irq_save(flags); | 3545 | local_irq_save(flags); |
3406 | kfree_debugcheck(objp); | 3546 | kfree_debugcheck(objp); |
3407 | c = virt_to_cache(objp); | 3547 | c = virt_to_cache(objp); |
3408 | mutex_debug_check_no_locks_freed(objp, obj_size(c)); | 3548 | debug_check_no_locks_freed(objp, obj_size(c)); |
3409 | __cache_free(c, (void *)objp); | 3549 | __cache_free(c, (void *)objp); |
3410 | local_irq_restore(flags); | 3550 | local_irq_restore(flags); |
3411 | } | 3551 | } |
3412 | EXPORT_SYMBOL(kfree); | 3552 | EXPORT_SYMBOL(kfree); |
3413 | 3553 | ||
3414 | #ifdef CONFIG_SMP | ||
3415 | /** | ||
3416 | * free_percpu - free previously allocated percpu memory | ||
3417 | * @objp: pointer returned by alloc_percpu. | ||
3418 | * | ||
3419 | * Don't free memory not originally allocated by alloc_percpu() | ||
3420 | * The complemented objp is to check for that. | ||
3421 | */ | ||
3422 | void free_percpu(const void *objp) | ||
3423 | { | ||
3424 | int i; | ||
3425 | struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp); | ||
3426 | |||
3427 | /* | ||
3428 | * We allocate for all cpus so we cannot use for online cpu here. | ||
3429 | */ | ||
3430 | for_each_possible_cpu(i) | ||
3431 | kfree(p->ptrs[i]); | ||
3432 | kfree(p); | ||
3433 | } | ||
3434 | EXPORT_SYMBOL(free_percpu); | ||
3435 | #endif | ||
3436 | |||
3437 | unsigned int kmem_cache_size(struct kmem_cache *cachep) | 3554 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
3438 | { | 3555 | { |
3439 | return obj_size(cachep); | 3556 | return obj_size(cachep); |
@@ -3550,22 +3667,26 @@ static void do_ccupdate_local(void *info) | |||
3550 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | 3667 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3551 | int batchcount, int shared) | 3668 | int batchcount, int shared) |
3552 | { | 3669 | { |
3553 | struct ccupdate_struct new; | 3670 | struct ccupdate_struct *new; |
3554 | int i, err; | 3671 | int i; |
3672 | |||
3673 | new = kzalloc(sizeof(*new), GFP_KERNEL); | ||
3674 | if (!new) | ||
3675 | return -ENOMEM; | ||
3555 | 3676 | ||
3556 | memset(&new.new, 0, sizeof(new.new)); | ||
3557 | for_each_online_cpu(i) { | 3677 | for_each_online_cpu(i) { |
3558 | new.new[i] = alloc_arraycache(cpu_to_node(i), limit, | 3678 | new->new[i] = alloc_arraycache(cpu_to_node(i), limit, |
3559 | batchcount); | 3679 | batchcount); |
3560 | if (!new.new[i]) { | 3680 | if (!new->new[i]) { |
3561 | for (i--; i >= 0; i--) | 3681 | for (i--; i >= 0; i--) |
3562 | kfree(new.new[i]); | 3682 | kfree(new->new[i]); |
3683 | kfree(new); | ||
3563 | return -ENOMEM; | 3684 | return -ENOMEM; |
3564 | } | 3685 | } |
3565 | } | 3686 | } |
3566 | new.cachep = cachep; | 3687 | new->cachep = cachep; |
3567 | 3688 | ||
3568 | on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1); | 3689 | on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); |
3569 | 3690 | ||
3570 | check_irq_on(); | 3691 | check_irq_on(); |
3571 | cachep->batchcount = batchcount; | 3692 | cachep->batchcount = batchcount; |
@@ -3573,7 +3694,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | |||
3573 | cachep->shared = shared; | 3694 | cachep->shared = shared; |
3574 | 3695 | ||
3575 | for_each_online_cpu(i) { | 3696 | for_each_online_cpu(i) { |
3576 | struct array_cache *ccold = new.new[i]; | 3697 | struct array_cache *ccold = new->new[i]; |
3577 | if (!ccold) | 3698 | if (!ccold) |
3578 | continue; | 3699 | continue; |
3579 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); | 3700 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
@@ -3581,18 +3702,12 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | |||
3581 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); | 3702 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
3582 | kfree(ccold); | 3703 | kfree(ccold); |
3583 | } | 3704 | } |
3584 | 3705 | kfree(new); | |
3585 | err = alloc_kmemlist(cachep); | 3706 | return alloc_kmemlist(cachep); |
3586 | if (err) { | ||
3587 | printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", | ||
3588 | cachep->name, -err); | ||
3589 | BUG(); | ||
3590 | } | ||
3591 | return 0; | ||
3592 | } | 3707 | } |
3593 | 3708 | ||
3594 | /* Called with cache_chain_mutex held always */ | 3709 | /* Called with cache_chain_mutex held always */ |
3595 | static void enable_cpucache(struct kmem_cache *cachep) | 3710 | static int enable_cpucache(struct kmem_cache *cachep) |
3596 | { | 3711 | { |
3597 | int err; | 3712 | int err; |
3598 | int limit, shared; | 3713 | int limit, shared; |
@@ -3644,6 +3759,7 @@ static void enable_cpucache(struct kmem_cache *cachep) | |||
3644 | if (err) | 3759 | if (err) |
3645 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 3760 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", |
3646 | cachep->name, -err); | 3761 | cachep->name, -err); |
3762 | return err; | ||
3647 | } | 3763 | } |
3648 | 3764 | ||
3649 | /* | 3765 | /* |
@@ -3701,10 +3817,6 @@ static void cache_reap(void *unused) | |||
3701 | } | 3817 | } |
3702 | 3818 | ||
3703 | list_for_each_entry(searchp, &cache_chain, next) { | 3819 | list_for_each_entry(searchp, &cache_chain, next) { |
3704 | struct list_head *p; | ||
3705 | int tofree; | ||
3706 | struct slab *slabp; | ||
3707 | |||
3708 | check_irq_on(); | 3820 | check_irq_on(); |
3709 | 3821 | ||
3710 | /* | 3822 | /* |
@@ -3729,47 +3841,22 @@ static void cache_reap(void *unused) | |||
3729 | 3841 | ||
3730 | drain_array(searchp, l3, l3->shared, 0, node); | 3842 | drain_array(searchp, l3, l3->shared, 0, node); |
3731 | 3843 | ||
3732 | if (l3->free_touched) { | 3844 | if (l3->free_touched) |
3733 | l3->free_touched = 0; | 3845 | l3->free_touched = 0; |
3734 | goto next; | 3846 | else { |
3735 | } | 3847 | int freed; |
3736 | 3848 | ||
3737 | tofree = (l3->free_limit + 5 * searchp->num - 1) / | 3849 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
3738 | (5 * searchp->num); | 3850 | 5 * searchp->num - 1) / (5 * searchp->num)); |
3739 | do { | 3851 | STATS_ADD_REAPED(searchp, freed); |
3740 | /* | 3852 | } |
3741 | * Do not lock if there are no free blocks. | ||
3742 | */ | ||
3743 | if (list_empty(&l3->slabs_free)) | ||
3744 | break; | ||
3745 | |||
3746 | spin_lock_irq(&l3->list_lock); | ||
3747 | p = l3->slabs_free.next; | ||
3748 | if (p == &(l3->slabs_free)) { | ||
3749 | spin_unlock_irq(&l3->list_lock); | ||
3750 | break; | ||
3751 | } | ||
3752 | |||
3753 | slabp = list_entry(p, struct slab, list); | ||
3754 | BUG_ON(slabp->inuse); | ||
3755 | list_del(&slabp->list); | ||
3756 | STATS_INC_REAPED(searchp); | ||
3757 | |||
3758 | /* | ||
3759 | * Safe to drop the lock. The slab is no longer linked | ||
3760 | * to the cache. searchp cannot disappear, we hold | ||
3761 | * cache_chain_lock | ||
3762 | */ | ||
3763 | l3->free_objects -= searchp->num; | ||
3764 | spin_unlock_irq(&l3->list_lock); | ||
3765 | slab_destroy(searchp, slabp); | ||
3766 | } while (--tofree > 0); | ||
3767 | next: | 3853 | next: |
3768 | cond_resched(); | 3854 | cond_resched(); |
3769 | } | 3855 | } |
3770 | check_irq_on(); | 3856 | check_irq_on(); |
3771 | mutex_unlock(&cache_chain_mutex); | 3857 | mutex_unlock(&cache_chain_mutex); |
3772 | next_reap_node(); | 3858 | next_reap_node(); |
3859 | refresh_cpu_vm_stats(smp_processor_id()); | ||
3773 | /* Set up the next iteration */ | 3860 | /* Set up the next iteration */ |
3774 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); | 3861 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); |
3775 | } | 3862 | } |
@@ -4133,6 +4220,7 @@ static int leaks_show(struct seq_file *m, void *p) | |||
4133 | show_symbol(m, n[2*i+2]); | 4220 | show_symbol(m, n[2*i+2]); |
4134 | seq_putc(m, '\n'); | 4221 | seq_putc(m, '\n'); |
4135 | } | 4222 | } |
4223 | |||
4136 | return 0; | 4224 | return 0; |
4137 | } | 4225 | } |
4138 | 4226 | ||