aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slab.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c639
1 files changed, 362 insertions, 277 deletions
diff --git a/mm/slab.c b/mm/slab.c
index 6f8495e2185b..71370256a7eb 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -55,7 +55,7 @@
55 * 55 *
56 * SMP synchronization: 56 * SMP synchronization:
57 * constructors and destructors are called without any locking. 57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they 58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking. 59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe. 61 * and local interrupts are disabled so slab code is preempt-safe.
@@ -244,7 +244,7 @@ struct slab {
244 */ 244 */
245struct slab_rcu { 245struct slab_rcu {
246 struct rcu_head head; 246 struct rcu_head head;
247 kmem_cache_t *cachep; 247 struct kmem_cache *cachep;
248 void *addr; 248 void *addr;
249}; 249};
250 250
@@ -316,6 +316,8 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
316 */ 316 */
317static __always_inline int index_of(const size_t size) 317static __always_inline int index_of(const size_t size)
318{ 318{
319 extern void __bad_size(void);
320
319 if (__builtin_constant_p(size)) { 321 if (__builtin_constant_p(size)) {
320 int i = 0; 322 int i = 0;
321 323
@@ -326,19 +328,16 @@ static __always_inline int index_of(const size_t size)
326 i++; 328 i++;
327#include "linux/kmalloc_sizes.h" 329#include "linux/kmalloc_sizes.h"
328#undef CACHE 330#undef CACHE
329 { 331 __bad_size();
330 extern void __bad_size(void);
331 __bad_size();
332 }
333 } else 332 } else
334 BUG(); 333 __bad_size();
335 return 0; 334 return 0;
336} 335}
337 336
338#define INDEX_AC index_of(sizeof(struct arraycache_init)) 337#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3)) 338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 339
341static inline void kmem_list3_init(struct kmem_list3 *parent) 340static void kmem_list3_init(struct kmem_list3 *parent)
342{ 341{
343 INIT_LIST_HEAD(&parent->slabs_full); 342 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial); 343 INIT_LIST_HEAD(&parent->slabs_partial);
@@ -364,7 +363,7 @@ static inline void kmem_list3_init(struct kmem_list3 *parent)
364 } while (0) 363 } while (0)
365 364
366/* 365/*
367 * kmem_cache_t 366 * struct kmem_cache
368 * 367 *
369 * manages a cache. 368 * manages a cache.
370 */ 369 */
@@ -375,7 +374,7 @@ struct kmem_cache {
375 unsigned int batchcount; 374 unsigned int batchcount;
376 unsigned int limit; 375 unsigned int limit;
377 unsigned int shared; 376 unsigned int shared;
378 unsigned int objsize; 377 unsigned int buffer_size;
379/* 2) touched by every alloc & free from the backend */ 378/* 2) touched by every alloc & free from the backend */
380 struct kmem_list3 *nodelists[MAX_NUMNODES]; 379 struct kmem_list3 *nodelists[MAX_NUMNODES];
381 unsigned int flags; /* constant flags */ 380 unsigned int flags; /* constant flags */
@@ -392,15 +391,15 @@ struct kmem_cache {
392 size_t colour; /* cache colouring range */ 391 size_t colour; /* cache colouring range */
393 unsigned int colour_off; /* colour offset */ 392 unsigned int colour_off; /* colour offset */
394 unsigned int colour_next; /* cache colouring */ 393 unsigned int colour_next; /* cache colouring */
395 kmem_cache_t *slabp_cache; 394 struct kmem_cache *slabp_cache;
396 unsigned int slab_size; 395 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */ 396 unsigned int dflags; /* dynamic flags */
398 397
399 /* constructor func */ 398 /* constructor func */
400 void (*ctor) (void *, kmem_cache_t *, unsigned long); 399 void (*ctor) (void *, struct kmem_cache *, unsigned long);
401 400
402 /* de-constructor func */ 401 /* de-constructor func */
403 void (*dtor) (void *, kmem_cache_t *, unsigned long); 402 void (*dtor) (void *, struct kmem_cache *, unsigned long);
404 403
405/* 4) cache creation/removal */ 404/* 4) cache creation/removal */
406 const char *name; 405 const char *name;
@@ -423,8 +422,14 @@ struct kmem_cache {
423 atomic_t freemiss; 422 atomic_t freemiss;
424#endif 423#endif
425#if DEBUG 424#if DEBUG
426 int dbghead; 425 /*
427 int reallen; 426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
428#endif 433#endif
429}; 434};
430 435
@@ -495,50 +500,50 @@ struct kmem_cache {
495 500
496/* memory layout of objects: 501/* memory layout of objects:
497 * 0 : objp 502 * 0 : objp
498 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that 503 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
499 * the end of an object is aligned with the end of the real 504 * the end of an object is aligned with the end of the real
500 * allocation. Catches writes behind the end of the allocation. 505 * allocation. Catches writes behind the end of the allocation.
501 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: 506 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
502 * redzone word. 507 * redzone word.
503 * cachep->dbghead: The real object. 508 * cachep->obj_offset: The real object.
504 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 509 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
505 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] 510 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
506 */ 511 */
507static int obj_dbghead(kmem_cache_t *cachep) 512static int obj_offset(struct kmem_cache *cachep)
508{ 513{
509 return cachep->dbghead; 514 return cachep->obj_offset;
510} 515}
511 516
512static int obj_reallen(kmem_cache_t *cachep) 517static int obj_size(struct kmem_cache *cachep)
513{ 518{
514 return cachep->reallen; 519 return cachep->obj_size;
515} 520}
516 521
517static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) 522static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
518{ 523{
519 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
520 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); 525 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
521} 526}
522 527
523static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) 528static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
524{ 529{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 if (cachep->flags & SLAB_STORE_USER) 531 if (cachep->flags & SLAB_STORE_USER)
527 return (unsigned long *)(objp + cachep->objsize - 532 return (unsigned long *)(objp + cachep->buffer_size -
528 2 * BYTES_PER_WORD); 533 2 * BYTES_PER_WORD);
529 return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD); 534 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
530} 535}
531 536
532static void **dbg_userword(kmem_cache_t *cachep, void *objp) 537static void **dbg_userword(struct kmem_cache *cachep, void *objp)
533{ 538{
534 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 539 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
535 return (void **)(objp + cachep->objsize - BYTES_PER_WORD); 540 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
536} 541}
537 542
538#else 543#else
539 544
540#define obj_dbghead(x) 0 545#define obj_offset(x) 0
541#define obj_reallen(cachep) (cachep->objsize) 546#define obj_size(cachep) (cachep->buffer_size)
542#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) 547#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
543#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) 548#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
544#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 549#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
@@ -591,6 +596,18 @@ static inline struct slab *page_get_slab(struct page *page)
591 return (struct slab *)page->lru.prev; 596 return (struct slab *)page->lru.prev;
592} 597}
593 598
599static inline struct kmem_cache *virt_to_cache(const void *obj)
600{
601 struct page *page = virt_to_page(obj);
602 return page_get_cache(page);
603}
604
605static inline struct slab *virt_to_slab(const void *obj)
606{
607 struct page *page = virt_to_page(obj);
608 return page_get_slab(page);
609}
610
594/* These are the default caches for kmalloc. Custom caches can have other sizes. */ 611/* These are the default caches for kmalloc. Custom caches can have other sizes. */
595struct cache_sizes malloc_sizes[] = { 612struct cache_sizes malloc_sizes[] = {
596#define CACHE(x) { .cs_size = (x) }, 613#define CACHE(x) { .cs_size = (x) },
@@ -619,16 +636,16 @@ static struct arraycache_init initarray_generic =
619 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 636 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
620 637
621/* internal cache of cache description objs */ 638/* internal cache of cache description objs */
622static kmem_cache_t cache_cache = { 639static struct kmem_cache cache_cache = {
623 .batchcount = 1, 640 .batchcount = 1,
624 .limit = BOOT_CPUCACHE_ENTRIES, 641 .limit = BOOT_CPUCACHE_ENTRIES,
625 .shared = 1, 642 .shared = 1,
626 .objsize = sizeof(kmem_cache_t), 643 .buffer_size = sizeof(struct kmem_cache),
627 .flags = SLAB_NO_REAP, 644 .flags = SLAB_NO_REAP,
628 .spinlock = SPIN_LOCK_UNLOCKED, 645 .spinlock = SPIN_LOCK_UNLOCKED,
629 .name = "kmem_cache", 646 .name = "kmem_cache",
630#if DEBUG 647#if DEBUG
631 .reallen = sizeof(kmem_cache_t), 648 .obj_size = sizeof(struct kmem_cache),
632#endif 649#endif
633}; 650};
634 651
@@ -657,17 +674,17 @@ static enum {
657 674
658static DEFINE_PER_CPU(struct work_struct, reap_work); 675static DEFINE_PER_CPU(struct work_struct, reap_work);
659 676
660static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node); 677static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
661static void enable_cpucache(kmem_cache_t *cachep); 678static void enable_cpucache(struct kmem_cache *cachep);
662static void cache_reap(void *unused); 679static void cache_reap(void *unused);
663static int __node_shrink(kmem_cache_t *cachep, int node); 680static int __node_shrink(struct kmem_cache *cachep, int node);
664 681
665static inline struct array_cache *ac_data(kmem_cache_t *cachep) 682static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
666{ 683{
667 return cachep->array[smp_processor_id()]; 684 return cachep->array[smp_processor_id()];
668} 685}
669 686
670static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags) 687static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
671{ 688{
672 struct cache_sizes *csizep = malloc_sizes; 689 struct cache_sizes *csizep = malloc_sizes;
673 690
@@ -691,43 +708,80 @@ static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
691 return csizep->cs_cachep; 708 return csizep->cs_cachep;
692} 709}
693 710
694kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 711struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
695{ 712{
696 return __find_general_cachep(size, gfpflags); 713 return __find_general_cachep(size, gfpflags);
697} 714}
698EXPORT_SYMBOL(kmem_find_general_cachep); 715EXPORT_SYMBOL(kmem_find_general_cachep);
699 716
700/* Cal the num objs, wastage, and bytes left over for a given slab size. */ 717static size_t slab_mgmt_size(size_t nr_objs, size_t align)
701static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
702 int flags, size_t *left_over, unsigned int *num)
703{ 718{
704 int i; 719 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
705 size_t wastage = PAGE_SIZE << gfporder; 720}
706 size_t extra = 0;
707 size_t base = 0;
708 721
709 if (!(flags & CFLGS_OFF_SLAB)) { 722/* Calculate the number of objects and left-over bytes for a given
710 base = sizeof(struct slab); 723 buffer size. */
711 extra = sizeof(kmem_bufctl_t); 724static void cache_estimate(unsigned long gfporder, size_t buffer_size,
712 } 725 size_t align, int flags, size_t *left_over,
713 i = 0; 726 unsigned int *num)
714 while (i * size + ALIGN(base + i * extra, align) <= wastage) 727{
715 i++; 728 int nr_objs;
716 if (i > 0) 729 size_t mgmt_size;
717 i--; 730 size_t slab_size = PAGE_SIZE << gfporder;
731
732 /*
733 * The slab management structure can be either off the slab or
734 * on it. For the latter case, the memory allocated for a
735 * slab is used for:
736 *
737 * - The struct slab
738 * - One kmem_bufctl_t for each object
739 * - Padding to respect alignment of @align
740 * - @buffer_size bytes for each object
741 *
742 * If the slab management structure is off the slab, then the
743 * alignment will already be calculated into the size. Because
744 * the slabs are all pages aligned, the objects will be at the
745 * correct alignment when allocated.
746 */
747 if (flags & CFLGS_OFF_SLAB) {
748 mgmt_size = 0;
749 nr_objs = slab_size / buffer_size;
718 750
719 if (i > SLAB_LIMIT) 751 if (nr_objs > SLAB_LIMIT)
720 i = SLAB_LIMIT; 752 nr_objs = SLAB_LIMIT;
753 } else {
754 /*
755 * Ignore padding for the initial guess. The padding
756 * is at most @align-1 bytes, and @buffer_size is at
757 * least @align. In the worst case, this result will
758 * be one greater than the number of objects that fit
759 * into the memory allocation when taking the padding
760 * into account.
761 */
762 nr_objs = (slab_size - sizeof(struct slab)) /
763 (buffer_size + sizeof(kmem_bufctl_t));
764
765 /*
766 * This calculated number will be either the right
767 * amount, or one greater than what we want.
768 */
769 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
770 > slab_size)
771 nr_objs--;
721 772
722 *num = i; 773 if (nr_objs > SLAB_LIMIT)
723 wastage -= i * size; 774 nr_objs = SLAB_LIMIT;
724 wastage -= ALIGN(base + i * extra, align); 775
725 *left_over = wastage; 776 mgmt_size = slab_mgmt_size(nr_objs, align);
777 }
778 *num = nr_objs;
779 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
726} 780}
727 781
728#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) 782#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
729 783
730static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) 784static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
731{ 785{
732 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 786 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
733 function, cachep->name, msg); 787 function, cachep->name, msg);
@@ -774,9 +828,9 @@ static struct array_cache *alloc_arraycache(int node, int entries,
774} 828}
775 829
776#ifdef CONFIG_NUMA 830#ifdef CONFIG_NUMA
777static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int); 831static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
778 832
779static inline struct array_cache **alloc_alien_cache(int node, int limit) 833static struct array_cache **alloc_alien_cache(int node, int limit)
780{ 834{
781 struct array_cache **ac_ptr; 835 struct array_cache **ac_ptr;
782 int memsize = sizeof(void *) * MAX_NUMNODES; 836 int memsize = sizeof(void *) * MAX_NUMNODES;
@@ -803,7 +857,7 @@ static inline struct array_cache **alloc_alien_cache(int node, int limit)
803 return ac_ptr; 857 return ac_ptr;
804} 858}
805 859
806static inline void free_alien_cache(struct array_cache **ac_ptr) 860static void free_alien_cache(struct array_cache **ac_ptr)
807{ 861{
808 int i; 862 int i;
809 863
@@ -816,8 +870,8 @@ static inline void free_alien_cache(struct array_cache **ac_ptr)
816 kfree(ac_ptr); 870 kfree(ac_ptr);
817} 871}
818 872
819static inline void __drain_alien_cache(kmem_cache_t *cachep, 873static void __drain_alien_cache(struct kmem_cache *cachep,
820 struct array_cache *ac, int node) 874 struct array_cache *ac, int node)
821{ 875{
822 struct kmem_list3 *rl3 = cachep->nodelists[node]; 876 struct kmem_list3 *rl3 = cachep->nodelists[node];
823 877
@@ -829,7 +883,7 @@ static inline void __drain_alien_cache(kmem_cache_t *cachep,
829 } 883 }
830} 884}
831 885
832static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) 886static void drain_alien_cache(struct kmem_cache *cachep, struct kmem_list3 *l3)
833{ 887{
834 int i = 0; 888 int i = 0;
835 struct array_cache *ac; 889 struct array_cache *ac;
@@ -854,7 +908,7 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
854 unsigned long action, void *hcpu) 908 unsigned long action, void *hcpu)
855{ 909{
856 long cpu = (long)hcpu; 910 long cpu = (long)hcpu;
857 kmem_cache_t *cachep; 911 struct kmem_cache *cachep;
858 struct kmem_list3 *l3 = NULL; 912 struct kmem_list3 *l3 = NULL;
859 int node = cpu_to_node(cpu); 913 int node = cpu_to_node(cpu);
860 int memsize = sizeof(struct kmem_list3); 914 int memsize = sizeof(struct kmem_list3);
@@ -992,7 +1046,7 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
992/* 1046/*
993 * swap the static kmem_list3 with kmalloced memory 1047 * swap the static kmem_list3 with kmalloced memory
994 */ 1048 */
995static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid) 1049static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
996{ 1050{
997 struct kmem_list3 *ptr; 1051 struct kmem_list3 *ptr;
998 1052
@@ -1032,14 +1086,14 @@ void __init kmem_cache_init(void)
1032 1086
1033 /* Bootstrap is tricky, because several objects are allocated 1087 /* Bootstrap is tricky, because several objects are allocated
1034 * from caches that do not exist yet: 1088 * from caches that do not exist yet:
1035 * 1) initialize the cache_cache cache: it contains the kmem_cache_t 1089 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1036 * structures of all caches, except cache_cache itself: cache_cache 1090 * structures of all caches, except cache_cache itself: cache_cache
1037 * is statically allocated. 1091 * is statically allocated.
1038 * Initially an __init data area is used for the head array and the 1092 * Initially an __init data area is used for the head array and the
1039 * kmem_list3 structures, it's replaced with a kmalloc allocated 1093 * kmem_list3 structures, it's replaced with a kmalloc allocated
1040 * array at the end of the bootstrap. 1094 * array at the end of the bootstrap.
1041 * 2) Create the first kmalloc cache. 1095 * 2) Create the first kmalloc cache.
1042 * The kmem_cache_t for the new cache is allocated normally. 1096 * The struct kmem_cache for the new cache is allocated normally.
1043 * An __init data area is used for the head array. 1097 * An __init data area is used for the head array.
1044 * 3) Create the remaining kmalloc caches, with minimally sized 1098 * 3) Create the remaining kmalloc caches, with minimally sized
1045 * head arrays. 1099 * head arrays.
@@ -1057,9 +1111,9 @@ void __init kmem_cache_init(void)
1057 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1111 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1058 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; 1112 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1059 1113
1060 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); 1114 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1061 1115
1062 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, 1116 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
1063 &left_over, &cache_cache.num); 1117 &left_over, &cache_cache.num);
1064 if (!cache_cache.num) 1118 if (!cache_cache.num)
1065 BUG(); 1119 BUG();
@@ -1132,8 +1186,8 @@ void __init kmem_cache_init(void)
1132 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1186 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1133 1187
1134 local_irq_disable(); 1188 local_irq_disable();
1135 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); 1189 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1136 memcpy(ptr, ac_data(&cache_cache), 1190 memcpy(ptr, cpu_cache_get(&cache_cache),
1137 sizeof(struct arraycache_init)); 1191 sizeof(struct arraycache_init));
1138 cache_cache.array[smp_processor_id()] = ptr; 1192 cache_cache.array[smp_processor_id()] = ptr;
1139 local_irq_enable(); 1193 local_irq_enable();
@@ -1141,9 +1195,9 @@ void __init kmem_cache_init(void)
1141 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1195 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1142 1196
1143 local_irq_disable(); 1197 local_irq_disable();
1144 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) 1198 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1145 != &initarray_generic.cache); 1199 != &initarray_generic.cache);
1146 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), 1200 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1147 sizeof(struct arraycache_init)); 1201 sizeof(struct arraycache_init));
1148 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1202 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1149 ptr; 1203 ptr;
@@ -1170,7 +1224,7 @@ void __init kmem_cache_init(void)
1170 1224
1171 /* 6) resize the head arrays to their final sizes */ 1225 /* 6) resize the head arrays to their final sizes */
1172 { 1226 {
1173 kmem_cache_t *cachep; 1227 struct kmem_cache *cachep;
1174 mutex_lock(&cache_chain_mutex); 1228 mutex_lock(&cache_chain_mutex);
1175 list_for_each_entry(cachep, &cache_chain, next) 1229 list_for_each_entry(cachep, &cache_chain, next)
1176 enable_cpucache(cachep); 1230 enable_cpucache(cachep);
@@ -1181,7 +1235,7 @@ void __init kmem_cache_init(void)
1181 g_cpucache_up = FULL; 1235 g_cpucache_up = FULL;
1182 1236
1183 /* Register a cpu startup notifier callback 1237 /* Register a cpu startup notifier callback
1184 * that initializes ac_data for all new cpus 1238 * that initializes cpu_cache_get for all new cpus
1185 */ 1239 */
1186 register_cpu_notifier(&cpucache_notifier); 1240 register_cpu_notifier(&cpucache_notifier);
1187 1241
@@ -1213,7 +1267,7 @@ __initcall(cpucache_init);
1213 * did not request dmaable memory, we might get it, but that 1267 * did not request dmaable memory, we might get it, but that
1214 * would be relatively rare and ignorable. 1268 * would be relatively rare and ignorable.
1215 */ 1269 */
1216static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid) 1270static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1217{ 1271{
1218 struct page *page; 1272 struct page *page;
1219 void *addr; 1273 void *addr;
@@ -1239,7 +1293,7 @@ static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1239/* 1293/*
1240 * Interface to system's page release. 1294 * Interface to system's page release.
1241 */ 1295 */
1242static void kmem_freepages(kmem_cache_t *cachep, void *addr) 1296static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1243{ 1297{
1244 unsigned long i = (1 << cachep->gfporder); 1298 unsigned long i = (1 << cachep->gfporder);
1245 struct page *page = virt_to_page(addr); 1299 struct page *page = virt_to_page(addr);
@@ -1261,7 +1315,7 @@ static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1261static void kmem_rcu_free(struct rcu_head *head) 1315static void kmem_rcu_free(struct rcu_head *head)
1262{ 1316{
1263 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1317 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1264 kmem_cache_t *cachep = slab_rcu->cachep; 1318 struct kmem_cache *cachep = slab_rcu->cachep;
1265 1319
1266 kmem_freepages(cachep, slab_rcu->addr); 1320 kmem_freepages(cachep, slab_rcu->addr);
1267 if (OFF_SLAB(cachep)) 1321 if (OFF_SLAB(cachep))
@@ -1271,12 +1325,12 @@ static void kmem_rcu_free(struct rcu_head *head)
1271#if DEBUG 1325#if DEBUG
1272 1326
1273#ifdef CONFIG_DEBUG_PAGEALLOC 1327#ifdef CONFIG_DEBUG_PAGEALLOC
1274static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, 1328static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1275 unsigned long caller) 1329 unsigned long caller)
1276{ 1330{
1277 int size = obj_reallen(cachep); 1331 int size = obj_size(cachep);
1278 1332
1279 addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)]; 1333 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1280 1334
1281 if (size < 5 * sizeof(unsigned long)) 1335 if (size < 5 * sizeof(unsigned long))
1282 return; 1336 return;
@@ -1304,10 +1358,10 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1304} 1358}
1305#endif 1359#endif
1306 1360
1307static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) 1361static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1308{ 1362{
1309 int size = obj_reallen(cachep); 1363 int size = obj_size(cachep);
1310 addr = &((char *)addr)[obj_dbghead(cachep)]; 1364 addr = &((char *)addr)[obj_offset(cachep)];
1311 1365
1312 memset(addr, val, size); 1366 memset(addr, val, size);
1313 *(unsigned char *)(addr + size - 1) = POISON_END; 1367 *(unsigned char *)(addr + size - 1) = POISON_END;
@@ -1326,7 +1380,7 @@ static void dump_line(char *data, int offset, int limit)
1326 1380
1327#if DEBUG 1381#if DEBUG
1328 1382
1329static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) 1383static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1330{ 1384{
1331 int i, size; 1385 int i, size;
1332 char *realobj; 1386 char *realobj;
@@ -1344,8 +1398,8 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1344 (unsigned long)*dbg_userword(cachep, objp)); 1398 (unsigned long)*dbg_userword(cachep, objp));
1345 printk("\n"); 1399 printk("\n");
1346 } 1400 }
1347 realobj = (char *)objp + obj_dbghead(cachep); 1401 realobj = (char *)objp + obj_offset(cachep);
1348 size = obj_reallen(cachep); 1402 size = obj_size(cachep);
1349 for (i = 0; i < size && lines; i += 16, lines--) { 1403 for (i = 0; i < size && lines; i += 16, lines--) {
1350 int limit; 1404 int limit;
1351 limit = 16; 1405 limit = 16;
@@ -1355,14 +1409,14 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1355 } 1409 }
1356} 1410}
1357 1411
1358static void check_poison_obj(kmem_cache_t *cachep, void *objp) 1412static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1359{ 1413{
1360 char *realobj; 1414 char *realobj;
1361 int size, i; 1415 int size, i;
1362 int lines = 0; 1416 int lines = 0;
1363 1417
1364 realobj = (char *)objp + obj_dbghead(cachep); 1418 realobj = (char *)objp + obj_offset(cachep);
1365 size = obj_reallen(cachep); 1419 size = obj_size(cachep);
1366 1420
1367 for (i = 0; i < size; i++) { 1421 for (i = 0; i < size; i++) {
1368 char exp = POISON_FREE; 1422 char exp = POISON_FREE;
@@ -1395,20 +1449,20 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1395 /* Print some data about the neighboring objects, if they 1449 /* Print some data about the neighboring objects, if they
1396 * exist: 1450 * exist:
1397 */ 1451 */
1398 struct slab *slabp = page_get_slab(virt_to_page(objp)); 1452 struct slab *slabp = virt_to_slab(objp);
1399 int objnr; 1453 int objnr;
1400 1454
1401 objnr = (objp - slabp->s_mem) / cachep->objsize; 1455 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1402 if (objnr) { 1456 if (objnr) {
1403 objp = slabp->s_mem + (objnr - 1) * cachep->objsize; 1457 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1404 realobj = (char *)objp + obj_dbghead(cachep); 1458 realobj = (char *)objp + obj_offset(cachep);
1405 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1459 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1406 realobj, size); 1460 realobj, size);
1407 print_objinfo(cachep, objp, 2); 1461 print_objinfo(cachep, objp, 2);
1408 } 1462 }
1409 if (objnr + 1 < cachep->num) { 1463 if (objnr + 1 < cachep->num) {
1410 objp = slabp->s_mem + (objnr + 1) * cachep->objsize; 1464 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1411 realobj = (char *)objp + obj_dbghead(cachep); 1465 realobj = (char *)objp + obj_offset(cachep);
1412 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1466 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1413 realobj, size); 1467 realobj, size);
1414 print_objinfo(cachep, objp, 2); 1468 print_objinfo(cachep, objp, 2);
@@ -1417,25 +1471,23 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1417} 1471}
1418#endif 1472#endif
1419 1473
1420/* Destroy all the objs in a slab, and release the mem back to the system. 1474#if DEBUG
1421 * Before calling the slab must have been unlinked from the cache. 1475/**
1422 * The cache-lock is not held/needed. 1476 * slab_destroy_objs - call the registered destructor for each object in
1477 * a slab that is to be destroyed.
1423 */ 1478 */
1424static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp) 1479static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1425{ 1480{
1426 void *addr = slabp->s_mem - slabp->colouroff;
1427
1428#if DEBUG
1429 int i; 1481 int i;
1430 for (i = 0; i < cachep->num; i++) { 1482 for (i = 0; i < cachep->num; i++) {
1431 void *objp = slabp->s_mem + cachep->objsize * i; 1483 void *objp = slabp->s_mem + cachep->buffer_size * i;
1432 1484
1433 if (cachep->flags & SLAB_POISON) { 1485 if (cachep->flags & SLAB_POISON) {
1434#ifdef CONFIG_DEBUG_PAGEALLOC 1486#ifdef CONFIG_DEBUG_PAGEALLOC
1435 if ((cachep->objsize % PAGE_SIZE) == 0 1487 if ((cachep->buffer_size % PAGE_SIZE) == 0
1436 && OFF_SLAB(cachep)) 1488 && OFF_SLAB(cachep))
1437 kernel_map_pages(virt_to_page(objp), 1489 kernel_map_pages(virt_to_page(objp),
1438 cachep->objsize / PAGE_SIZE, 1490 cachep->buffer_size / PAGE_SIZE,
1439 1); 1491 1);
1440 else 1492 else
1441 check_poison_obj(cachep, objp); 1493 check_poison_obj(cachep, objp);
@@ -1452,18 +1504,32 @@ static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1452 "was overwritten"); 1504 "was overwritten");
1453 } 1505 }
1454 if (cachep->dtor && !(cachep->flags & SLAB_POISON)) 1506 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1455 (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0); 1507 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1456 } 1508 }
1509}
1457#else 1510#else
1511static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1512{
1458 if (cachep->dtor) { 1513 if (cachep->dtor) {
1459 int i; 1514 int i;
1460 for (i = 0; i < cachep->num; i++) { 1515 for (i = 0; i < cachep->num; i++) {
1461 void *objp = slabp->s_mem + cachep->objsize * i; 1516 void *objp = slabp->s_mem + cachep->buffer_size * i;
1462 (cachep->dtor) (objp, cachep, 0); 1517 (cachep->dtor) (objp, cachep, 0);
1463 } 1518 }
1464 } 1519 }
1520}
1465#endif 1521#endif
1466 1522
1523/**
1524 * Destroy all the objs in a slab, and release the mem back to the system.
1525 * Before calling the slab must have been unlinked from the cache.
1526 * The cache-lock is not held/needed.
1527 */
1528static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1529{
1530 void *addr = slabp->s_mem - slabp->colouroff;
1531
1532 slab_destroy_objs(cachep, slabp);
1467 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1533 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1468 struct slab_rcu *slab_rcu; 1534 struct slab_rcu *slab_rcu;
1469 1535
@@ -1478,9 +1544,9 @@ static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1478 } 1544 }
1479} 1545}
1480 1546
1481/* For setting up all the kmem_list3s for cache whose objsize is same 1547/* For setting up all the kmem_list3s for cache whose buffer_size is same
1482 as size of kmem_list3. */ 1548 as size of kmem_list3. */
1483static inline void set_up_list3s(kmem_cache_t *cachep, int index) 1549static void set_up_list3s(struct kmem_cache *cachep, int index)
1484{ 1550{
1485 int node; 1551 int node;
1486 1552
@@ -1493,15 +1559,20 @@ static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1493} 1559}
1494 1560
1495/** 1561/**
1496 * calculate_slab_order - calculate size (page order) of slabs and the number 1562 * calculate_slab_order - calculate size (page order) of slabs
1497 * of objects per slab. 1563 * @cachep: pointer to the cache that is being created
1564 * @size: size of objects to be created in this cache.
1565 * @align: required alignment for the objects.
1566 * @flags: slab allocation flags
1567 *
1568 * Also calculates the number of objects per slab.
1498 * 1569 *
1499 * This could be made much more intelligent. For now, try to avoid using 1570 * This could be made much more intelligent. For now, try to avoid using
1500 * high order pages for slabs. When the gfp() functions are more friendly 1571 * high order pages for slabs. When the gfp() functions are more friendly
1501 * towards high-order requests, this should be changed. 1572 * towards high-order requests, this should be changed.
1502 */ 1573 */
1503static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size, 1574static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1504 size_t align, gfp_t flags) 1575 size_t size, size_t align, unsigned long flags)
1505{ 1576{
1506 size_t left_over = 0; 1577 size_t left_over = 0;
1507 1578
@@ -1572,13 +1643,13 @@ static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1572 * cacheline. This can be beneficial if you're counting cycles as closely 1643 * cacheline. This can be beneficial if you're counting cycles as closely
1573 * as davem. 1644 * as davem.
1574 */ 1645 */
1575kmem_cache_t * 1646struct kmem_cache *
1576kmem_cache_create (const char *name, size_t size, size_t align, 1647kmem_cache_create (const char *name, size_t size, size_t align,
1577 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), 1648 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1578 void (*dtor)(void*, kmem_cache_t *, unsigned long)) 1649 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1579{ 1650{
1580 size_t left_over, slab_size, ralign; 1651 size_t left_over, slab_size, ralign;
1581 kmem_cache_t *cachep = NULL; 1652 struct kmem_cache *cachep = NULL;
1582 struct list_head *p; 1653 struct list_head *p;
1583 1654
1584 /* 1655 /*
@@ -1596,7 +1667,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1596 mutex_lock(&cache_chain_mutex); 1667 mutex_lock(&cache_chain_mutex);
1597 1668
1598 list_for_each(p, &cache_chain) { 1669 list_for_each(p, &cache_chain) {
1599 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); 1670 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1600 mm_segment_t old_fs = get_fs(); 1671 mm_segment_t old_fs = get_fs();
1601 char tmp; 1672 char tmp;
1602 int res; 1673 int res;
@@ -1611,7 +1682,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1611 set_fs(old_fs); 1682 set_fs(old_fs);
1612 if (res) { 1683 if (res) {
1613 printk("SLAB: cache with size %d has lost its name\n", 1684 printk("SLAB: cache with size %d has lost its name\n",
1614 pc->objsize); 1685 pc->buffer_size);
1615 continue; 1686 continue;
1616 } 1687 }
1617 1688
@@ -1696,20 +1767,20 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1696 align = ralign; 1767 align = ralign;
1697 1768
1698 /* Get cache's description obj. */ 1769 /* Get cache's description obj. */
1699 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); 1770 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1700 if (!cachep) 1771 if (!cachep)
1701 goto oops; 1772 goto oops;
1702 memset(cachep, 0, sizeof(kmem_cache_t)); 1773 memset(cachep, 0, sizeof(struct kmem_cache));
1703 1774
1704#if DEBUG 1775#if DEBUG
1705 cachep->reallen = size; 1776 cachep->obj_size = size;
1706 1777
1707 if (flags & SLAB_RED_ZONE) { 1778 if (flags & SLAB_RED_ZONE) {
1708 /* redzoning only works with word aligned caches */ 1779 /* redzoning only works with word aligned caches */
1709 align = BYTES_PER_WORD; 1780 align = BYTES_PER_WORD;
1710 1781
1711 /* add space for red zone words */ 1782 /* add space for red zone words */
1712 cachep->dbghead += BYTES_PER_WORD; 1783 cachep->obj_offset += BYTES_PER_WORD;
1713 size += 2 * BYTES_PER_WORD; 1784 size += 2 * BYTES_PER_WORD;
1714 } 1785 }
1715 if (flags & SLAB_STORE_USER) { 1786 if (flags & SLAB_STORE_USER) {
@@ -1722,8 +1793,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1722 } 1793 }
1723#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 1794#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1724 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 1795 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1725 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { 1796 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1726 cachep->dbghead += PAGE_SIZE - size; 1797 cachep->obj_offset += PAGE_SIZE - size;
1727 size = PAGE_SIZE; 1798 size = PAGE_SIZE;
1728 } 1799 }
1729#endif 1800#endif
@@ -1786,7 +1857,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1786 if (flags & SLAB_CACHE_DMA) 1857 if (flags & SLAB_CACHE_DMA)
1787 cachep->gfpflags |= GFP_DMA; 1858 cachep->gfpflags |= GFP_DMA;
1788 spin_lock_init(&cachep->spinlock); 1859 spin_lock_init(&cachep->spinlock);
1789 cachep->objsize = size; 1860 cachep->buffer_size = size;
1790 1861
1791 if (flags & CFLGS_OFF_SLAB) 1862 if (flags & CFLGS_OFF_SLAB)
1792 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 1863 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
@@ -1843,11 +1914,11 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1843 jiffies + REAPTIMEOUT_LIST3 + 1914 jiffies + REAPTIMEOUT_LIST3 +
1844 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1915 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1845 1916
1846 BUG_ON(!ac_data(cachep)); 1917 BUG_ON(!cpu_cache_get(cachep));
1847 ac_data(cachep)->avail = 0; 1918 cpu_cache_get(cachep)->avail = 0;
1848 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1919 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1849 ac_data(cachep)->batchcount = 1; 1920 cpu_cache_get(cachep)->batchcount = 1;
1850 ac_data(cachep)->touched = 0; 1921 cpu_cache_get(cachep)->touched = 0;
1851 cachep->batchcount = 1; 1922 cachep->batchcount = 1;
1852 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1923 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1853 } 1924 }
@@ -1875,7 +1946,7 @@ static void check_irq_on(void)
1875 BUG_ON(irqs_disabled()); 1946 BUG_ON(irqs_disabled());
1876} 1947}
1877 1948
1878static void check_spinlock_acquired(kmem_cache_t *cachep) 1949static void check_spinlock_acquired(struct kmem_cache *cachep)
1879{ 1950{
1880#ifdef CONFIG_SMP 1951#ifdef CONFIG_SMP
1881 check_irq_off(); 1952 check_irq_off();
@@ -1883,7 +1954,7 @@ static void check_spinlock_acquired(kmem_cache_t *cachep)
1883#endif 1954#endif
1884} 1955}
1885 1956
1886static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) 1957static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
1887{ 1958{
1888#ifdef CONFIG_SMP 1959#ifdef CONFIG_SMP
1889 check_irq_off(); 1960 check_irq_off();
@@ -1916,24 +1987,24 @@ static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1916 preempt_enable(); 1987 preempt_enable();
1917} 1988}
1918 1989
1919static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, 1990static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
1920 int force, int node); 1991 int force, int node);
1921 1992
1922static void do_drain(void *arg) 1993static void do_drain(void *arg)
1923{ 1994{
1924 kmem_cache_t *cachep = (kmem_cache_t *) arg; 1995 struct kmem_cache *cachep = (struct kmem_cache *) arg;
1925 struct array_cache *ac; 1996 struct array_cache *ac;
1926 int node = numa_node_id(); 1997 int node = numa_node_id();
1927 1998
1928 check_irq_off(); 1999 check_irq_off();
1929 ac = ac_data(cachep); 2000 ac = cpu_cache_get(cachep);
1930 spin_lock(&cachep->nodelists[node]->list_lock); 2001 spin_lock(&cachep->nodelists[node]->list_lock);
1931 free_block(cachep, ac->entry, ac->avail, node); 2002 free_block(cachep, ac->entry, ac->avail, node);
1932 spin_unlock(&cachep->nodelists[node]->list_lock); 2003 spin_unlock(&cachep->nodelists[node]->list_lock);
1933 ac->avail = 0; 2004 ac->avail = 0;
1934} 2005}
1935 2006
1936static void drain_cpu_caches(kmem_cache_t *cachep) 2007static void drain_cpu_caches(struct kmem_cache *cachep)
1937{ 2008{
1938 struct kmem_list3 *l3; 2009 struct kmem_list3 *l3;
1939 int node; 2010 int node;
@@ -1954,7 +2025,7 @@ static void drain_cpu_caches(kmem_cache_t *cachep)
1954 spin_unlock_irq(&cachep->spinlock); 2025 spin_unlock_irq(&cachep->spinlock);
1955} 2026}
1956 2027
1957static int __node_shrink(kmem_cache_t *cachep, int node) 2028static int __node_shrink(struct kmem_cache *cachep, int node)
1958{ 2029{
1959 struct slab *slabp; 2030 struct slab *slabp;
1960 struct kmem_list3 *l3 = cachep->nodelists[node]; 2031 struct kmem_list3 *l3 = cachep->nodelists[node];
@@ -1983,7 +2054,7 @@ static int __node_shrink(kmem_cache_t *cachep, int node)
1983 return ret; 2054 return ret;
1984} 2055}
1985 2056
1986static int __cache_shrink(kmem_cache_t *cachep) 2057static int __cache_shrink(struct kmem_cache *cachep)
1987{ 2058{
1988 int ret = 0, i = 0; 2059 int ret = 0, i = 0;
1989 struct kmem_list3 *l3; 2060 struct kmem_list3 *l3;
@@ -2009,7 +2080,7 @@ static int __cache_shrink(kmem_cache_t *cachep)
2009 * Releases as many slabs as possible for a cache. 2080 * Releases as many slabs as possible for a cache.
2010 * To help debugging, a zero exit status indicates all slabs were released. 2081 * To help debugging, a zero exit status indicates all slabs were released.
2011 */ 2082 */
2012int kmem_cache_shrink(kmem_cache_t *cachep) 2083int kmem_cache_shrink(struct kmem_cache *cachep)
2013{ 2084{
2014 if (!cachep || in_interrupt()) 2085 if (!cachep || in_interrupt())
2015 BUG(); 2086 BUG();
@@ -2022,7 +2093,7 @@ EXPORT_SYMBOL(kmem_cache_shrink);
2022 * kmem_cache_destroy - delete a cache 2093 * kmem_cache_destroy - delete a cache
2023 * @cachep: the cache to destroy 2094 * @cachep: the cache to destroy
2024 * 2095 *
2025 * Remove a kmem_cache_t object from the slab cache. 2096 * Remove a struct kmem_cache object from the slab cache.
2026 * Returns 0 on success. 2097 * Returns 0 on success.
2027 * 2098 *
2028 * It is expected this function will be called by a module when it is 2099 * It is expected this function will be called by a module when it is
@@ -2035,7 +2106,7 @@ EXPORT_SYMBOL(kmem_cache_shrink);
2035 * The caller must guarantee that noone will allocate memory from the cache 2106 * The caller must guarantee that noone will allocate memory from the cache
2036 * during the kmem_cache_destroy(). 2107 * during the kmem_cache_destroy().
2037 */ 2108 */
2038int kmem_cache_destroy(kmem_cache_t *cachep) 2109int kmem_cache_destroy(struct kmem_cache *cachep)
2039{ 2110{
2040 int i; 2111 int i;
2041 struct kmem_list3 *l3; 2112 struct kmem_list3 *l3;
@@ -2086,7 +2157,7 @@ int kmem_cache_destroy(kmem_cache_t *cachep)
2086EXPORT_SYMBOL(kmem_cache_destroy); 2157EXPORT_SYMBOL(kmem_cache_destroy);
2087 2158
2088/* Get the memory for a slab management obj. */ 2159/* Get the memory for a slab management obj. */
2089static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp, 2160static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2090 int colour_off, gfp_t local_flags) 2161 int colour_off, gfp_t local_flags)
2091{ 2162{
2092 struct slab *slabp; 2163 struct slab *slabp;
@@ -2112,13 +2183,13 @@ static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2112 return (kmem_bufctl_t *) (slabp + 1); 2183 return (kmem_bufctl_t *) (slabp + 1);
2113} 2184}
2114 2185
2115static void cache_init_objs(kmem_cache_t *cachep, 2186static void cache_init_objs(struct kmem_cache *cachep,
2116 struct slab *slabp, unsigned long ctor_flags) 2187 struct slab *slabp, unsigned long ctor_flags)
2117{ 2188{
2118 int i; 2189 int i;
2119 2190
2120 for (i = 0; i < cachep->num; i++) { 2191 for (i = 0; i < cachep->num; i++) {
2121 void *objp = slabp->s_mem + cachep->objsize * i; 2192 void *objp = slabp->s_mem + cachep->buffer_size * i;
2122#if DEBUG 2193#if DEBUG
2123 /* need to poison the objs? */ 2194 /* need to poison the objs? */
2124 if (cachep->flags & SLAB_POISON) 2195 if (cachep->flags & SLAB_POISON)
@@ -2136,7 +2207,7 @@ static void cache_init_objs(kmem_cache_t *cachep,
2136 * Otherwise, deadlock. They must also be threaded. 2207 * Otherwise, deadlock. They must also be threaded.
2137 */ 2208 */
2138 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2209 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2139 cachep->ctor(objp + obj_dbghead(cachep), cachep, 2210 cachep->ctor(objp + obj_offset(cachep), cachep,
2140 ctor_flags); 2211 ctor_flags);
2141 2212
2142 if (cachep->flags & SLAB_RED_ZONE) { 2213 if (cachep->flags & SLAB_RED_ZONE) {
@@ -2147,10 +2218,10 @@ static void cache_init_objs(kmem_cache_t *cachep,
2147 slab_error(cachep, "constructor overwrote the" 2218 slab_error(cachep, "constructor overwrote the"
2148 " start of an object"); 2219 " start of an object");
2149 } 2220 }
2150 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) 2221 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2151 && cachep->flags & SLAB_POISON) 2222 && cachep->flags & SLAB_POISON)
2152 kernel_map_pages(virt_to_page(objp), 2223 kernel_map_pages(virt_to_page(objp),
2153 cachep->objsize / PAGE_SIZE, 0); 2224 cachep->buffer_size / PAGE_SIZE, 0);
2154#else 2225#else
2155 if (cachep->ctor) 2226 if (cachep->ctor)
2156 cachep->ctor(objp, cachep, ctor_flags); 2227 cachep->ctor(objp, cachep, ctor_flags);
@@ -2161,7 +2232,7 @@ static void cache_init_objs(kmem_cache_t *cachep,
2161 slabp->free = 0; 2232 slabp->free = 0;
2162} 2233}
2163 2234
2164static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags) 2235static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2165{ 2236{
2166 if (flags & SLAB_DMA) { 2237 if (flags & SLAB_DMA) {
2167 if (!(cachep->gfpflags & GFP_DMA)) 2238 if (!(cachep->gfpflags & GFP_DMA))
@@ -2172,7 +2243,43 @@ static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2172 } 2243 }
2173} 2244}
2174 2245
2175static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) 2246static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2247{
2248 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2249 kmem_bufctl_t next;
2250
2251 slabp->inuse++;
2252 next = slab_bufctl(slabp)[slabp->free];
2253#if DEBUG
2254 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2255 WARN_ON(slabp->nodeid != nodeid);
2256#endif
2257 slabp->free = next;
2258
2259 return objp;
2260}
2261
2262static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2263 int nodeid)
2264{
2265 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2266
2267#if DEBUG
2268 /* Verify that the slab belongs to the intended node */
2269 WARN_ON(slabp->nodeid != nodeid);
2270
2271 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2272 printk(KERN_ERR "slab: double free detected in cache "
2273 "'%s', objp %p\n", cachep->name, objp);
2274 BUG();
2275 }
2276#endif
2277 slab_bufctl(slabp)[objnr] = slabp->free;
2278 slabp->free = objnr;
2279 slabp->inuse--;
2280}
2281
2282static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
2176{ 2283{
2177 int i; 2284 int i;
2178 struct page *page; 2285 struct page *page;
@@ -2191,7 +2298,7 @@ static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2191 * Grow (by 1) the number of slabs within a cache. This is called by 2298 * Grow (by 1) the number of slabs within a cache. This is called by
2192 * kmem_cache_alloc() when there are no active objs left in a cache. 2299 * kmem_cache_alloc() when there are no active objs left in a cache.
2193 */ 2300 */
2194static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) 2301static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2195{ 2302{
2196 struct slab *slabp; 2303 struct slab *slabp;
2197 void *objp; 2304 void *objp;
@@ -2302,14 +2409,14 @@ static void kfree_debugcheck(const void *objp)
2302 } 2409 }
2303} 2410}
2304 2411
2305static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, 2412static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2306 void *caller) 2413 void *caller)
2307{ 2414{
2308 struct page *page; 2415 struct page *page;
2309 unsigned int objnr; 2416 unsigned int objnr;
2310 struct slab *slabp; 2417 struct slab *slabp;
2311 2418
2312 objp -= obj_dbghead(cachep); 2419 objp -= obj_offset(cachep);
2313 kfree_debugcheck(objp); 2420 kfree_debugcheck(objp);
2314 page = virt_to_page(objp); 2421 page = virt_to_page(objp);
2315 2422
@@ -2341,31 +2448,31 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2341 if (cachep->flags & SLAB_STORE_USER) 2448 if (cachep->flags & SLAB_STORE_USER)
2342 *dbg_userword(cachep, objp) = caller; 2449 *dbg_userword(cachep, objp) = caller;
2343 2450
2344 objnr = (objp - slabp->s_mem) / cachep->objsize; 2451 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2345 2452
2346 BUG_ON(objnr >= cachep->num); 2453 BUG_ON(objnr >= cachep->num);
2347 BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize); 2454 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2348 2455
2349 if (cachep->flags & SLAB_DEBUG_INITIAL) { 2456 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2350 /* Need to call the slab's constructor so the 2457 /* Need to call the slab's constructor so the
2351 * caller can perform a verify of its state (debugging). 2458 * caller can perform a verify of its state (debugging).
2352 * Called without the cache-lock held. 2459 * Called without the cache-lock held.
2353 */ 2460 */
2354 cachep->ctor(objp + obj_dbghead(cachep), 2461 cachep->ctor(objp + obj_offset(cachep),
2355 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); 2462 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2356 } 2463 }
2357 if (cachep->flags & SLAB_POISON && cachep->dtor) { 2464 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2358 /* we want to cache poison the object, 2465 /* we want to cache poison the object,
2359 * call the destruction callback 2466 * call the destruction callback
2360 */ 2467 */
2361 cachep->dtor(objp + obj_dbghead(cachep), cachep, 0); 2468 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2362 } 2469 }
2363 if (cachep->flags & SLAB_POISON) { 2470 if (cachep->flags & SLAB_POISON) {
2364#ifdef CONFIG_DEBUG_PAGEALLOC 2471#ifdef CONFIG_DEBUG_PAGEALLOC
2365 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { 2472 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2366 store_stackinfo(cachep, objp, (unsigned long)caller); 2473 store_stackinfo(cachep, objp, (unsigned long)caller);
2367 kernel_map_pages(virt_to_page(objp), 2474 kernel_map_pages(virt_to_page(objp),
2368 cachep->objsize / PAGE_SIZE, 0); 2475 cachep->buffer_size / PAGE_SIZE, 0);
2369 } else { 2476 } else {
2370 poison_obj(cachep, objp, POISON_FREE); 2477 poison_obj(cachep, objp, POISON_FREE);
2371 } 2478 }
@@ -2376,7 +2483,7 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2376 return objp; 2483 return objp;
2377} 2484}
2378 2485
2379static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) 2486static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2380{ 2487{
2381 kmem_bufctl_t i; 2488 kmem_bufctl_t i;
2382 int entries = 0; 2489 int entries = 0;
@@ -2409,14 +2516,14 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2409#define check_slabp(x,y) do { } while(0) 2516#define check_slabp(x,y) do { } while(0)
2410#endif 2517#endif
2411 2518
2412static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) 2519static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2413{ 2520{
2414 int batchcount; 2521 int batchcount;
2415 struct kmem_list3 *l3; 2522 struct kmem_list3 *l3;
2416 struct array_cache *ac; 2523 struct array_cache *ac;
2417 2524
2418 check_irq_off(); 2525 check_irq_off();
2419 ac = ac_data(cachep); 2526 ac = cpu_cache_get(cachep);
2420 retry: 2527 retry:
2421 batchcount = ac->batchcount; 2528 batchcount = ac->batchcount;
2422 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2529 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
@@ -2461,22 +2568,12 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2461 check_slabp(cachep, slabp); 2568 check_slabp(cachep, slabp);
2462 check_spinlock_acquired(cachep); 2569 check_spinlock_acquired(cachep);
2463 while (slabp->inuse < cachep->num && batchcount--) { 2570 while (slabp->inuse < cachep->num && batchcount--) {
2464 kmem_bufctl_t next;
2465 STATS_INC_ALLOCED(cachep); 2571 STATS_INC_ALLOCED(cachep);
2466 STATS_INC_ACTIVE(cachep); 2572 STATS_INC_ACTIVE(cachep);
2467 STATS_SET_HIGH(cachep); 2573 STATS_SET_HIGH(cachep);
2468 2574
2469 /* get obj pointer */ 2575 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2470 ac->entry[ac->avail++] = slabp->s_mem + 2576 numa_node_id());
2471 slabp->free * cachep->objsize;
2472
2473 slabp->inuse++;
2474 next = slab_bufctl(slabp)[slabp->free];
2475#if DEBUG
2476 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2477 WARN_ON(numa_node_id() != slabp->nodeid);
2478#endif
2479 slabp->free = next;
2480 } 2577 }
2481 check_slabp(cachep, slabp); 2578 check_slabp(cachep, slabp);
2482 2579
@@ -2498,7 +2595,7 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2498 x = cache_grow(cachep, flags, numa_node_id()); 2595 x = cache_grow(cachep, flags, numa_node_id());
2499 2596
2500 // cache_grow can reenable interrupts, then ac could change. 2597 // cache_grow can reenable interrupts, then ac could change.
2501 ac = ac_data(cachep); 2598 ac = cpu_cache_get(cachep);
2502 if (!x && ac->avail == 0) // no objects in sight? abort 2599 if (!x && ac->avail == 0) // no objects in sight? abort
2503 return NULL; 2600 return NULL;
2504 2601
@@ -2510,7 +2607,7 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2510} 2607}
2511 2608
2512static inline void 2609static inline void
2513cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags) 2610cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2514{ 2611{
2515 might_sleep_if(flags & __GFP_WAIT); 2612 might_sleep_if(flags & __GFP_WAIT);
2516#if DEBUG 2613#if DEBUG
@@ -2519,16 +2616,16 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2519} 2616}
2520 2617
2521#if DEBUG 2618#if DEBUG
2522static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags, 2619static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
2523 void *objp, void *caller) 2620 void *objp, void *caller)
2524{ 2621{
2525 if (!objp) 2622 if (!objp)
2526 return objp; 2623 return objp;
2527 if (cachep->flags & SLAB_POISON) { 2624 if (cachep->flags & SLAB_POISON) {
2528#ifdef CONFIG_DEBUG_PAGEALLOC 2625#ifdef CONFIG_DEBUG_PAGEALLOC
2529 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 2626 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2530 kernel_map_pages(virt_to_page(objp), 2627 kernel_map_pages(virt_to_page(objp),
2531 cachep->objsize / PAGE_SIZE, 1); 2628 cachep->buffer_size / PAGE_SIZE, 1);
2532 else 2629 else
2533 check_poison_obj(cachep, objp); 2630 check_poison_obj(cachep, objp);
2534#else 2631#else
@@ -2553,7 +2650,7 @@ static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2553 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2650 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2554 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2651 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2555 } 2652 }
2556 objp += obj_dbghead(cachep); 2653 objp += obj_offset(cachep);
2557 if (cachep->ctor && cachep->flags & SLAB_POISON) { 2654 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2558 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; 2655 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2559 2656
@@ -2568,7 +2665,7 @@ static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2568#define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2665#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2569#endif 2666#endif
2570 2667
2571static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) 2668static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2572{ 2669{
2573 void *objp; 2670 void *objp;
2574 struct array_cache *ac; 2671 struct array_cache *ac;
@@ -2583,7 +2680,7 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2583#endif 2680#endif
2584 2681
2585 check_irq_off(); 2682 check_irq_off();
2586 ac = ac_data(cachep); 2683 ac = cpu_cache_get(cachep);
2587 if (likely(ac->avail)) { 2684 if (likely(ac->avail)) {
2588 STATS_INC_ALLOCHIT(cachep); 2685 STATS_INC_ALLOCHIT(cachep);
2589 ac->touched = 1; 2686 ac->touched = 1;
@@ -2595,7 +2692,8 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2595 return objp; 2692 return objp;
2596} 2693}
2597 2694
2598static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) 2695static __always_inline void *
2696__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2599{ 2697{
2600 unsigned long save_flags; 2698 unsigned long save_flags;
2601 void *objp; 2699 void *objp;
@@ -2606,7 +2704,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2606 objp = ____cache_alloc(cachep, flags); 2704 objp = ____cache_alloc(cachep, flags);
2607 local_irq_restore(save_flags); 2705 local_irq_restore(save_flags);
2608 objp = cache_alloc_debugcheck_after(cachep, flags, objp, 2706 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2609 __builtin_return_address(0)); 2707 caller);
2610 prefetchw(objp); 2708 prefetchw(objp);
2611 return objp; 2709 return objp;
2612} 2710}
@@ -2615,13 +2713,12 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2615/* 2713/*
2616 * A interface to enable slab creation on nodeid 2714 * A interface to enable slab creation on nodeid
2617 */ 2715 */
2618static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) 2716static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2619{ 2717{
2620 struct list_head *entry; 2718 struct list_head *entry;
2621 struct slab *slabp; 2719 struct slab *slabp;
2622 struct kmem_list3 *l3; 2720 struct kmem_list3 *l3;
2623 void *obj; 2721 void *obj;
2624 kmem_bufctl_t next;
2625 int x; 2722 int x;
2626 2723
2627 l3 = cachep->nodelists[nodeid]; 2724 l3 = cachep->nodelists[nodeid];
@@ -2647,14 +2744,7 @@ static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2647 2744
2648 BUG_ON(slabp->inuse == cachep->num); 2745 BUG_ON(slabp->inuse == cachep->num);
2649 2746
2650 /* get obj pointer */ 2747 obj = slab_get_obj(cachep, slabp, nodeid);
2651 obj = slabp->s_mem + slabp->free * cachep->objsize;
2652 slabp->inuse++;
2653 next = slab_bufctl(slabp)[slabp->free];
2654#if DEBUG
2655 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2656#endif
2657 slabp->free = next;
2658 check_slabp(cachep, slabp); 2748 check_slabp(cachep, slabp);
2659 l3->free_objects--; 2749 l3->free_objects--;
2660 /* move slabp to correct slabp list: */ 2750 /* move slabp to correct slabp list: */
@@ -2685,7 +2775,7 @@ static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2685/* 2775/*
2686 * Caller needs to acquire correct kmem_list's list_lock 2776 * Caller needs to acquire correct kmem_list's list_lock
2687 */ 2777 */
2688static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, 2778static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2689 int node) 2779 int node)
2690{ 2780{
2691 int i; 2781 int i;
@@ -2694,29 +2784,14 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2694 for (i = 0; i < nr_objects; i++) { 2784 for (i = 0; i < nr_objects; i++) {
2695 void *objp = objpp[i]; 2785 void *objp = objpp[i];
2696 struct slab *slabp; 2786 struct slab *slabp;
2697 unsigned int objnr;
2698 2787
2699 slabp = page_get_slab(virt_to_page(objp)); 2788 slabp = virt_to_slab(objp);
2700 l3 = cachep->nodelists[node]; 2789 l3 = cachep->nodelists[node];
2701 list_del(&slabp->list); 2790 list_del(&slabp->list);
2702 objnr = (objp - slabp->s_mem) / cachep->objsize;
2703 check_spinlock_acquired_node(cachep, node); 2791 check_spinlock_acquired_node(cachep, node);
2704 check_slabp(cachep, slabp); 2792 check_slabp(cachep, slabp);
2705 2793 slab_put_obj(cachep, slabp, objp, node);
2706#if DEBUG
2707 /* Verify that the slab belongs to the intended node */
2708 WARN_ON(slabp->nodeid != node);
2709
2710 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2711 printk(KERN_ERR "slab: double free detected in cache "
2712 "'%s', objp %p\n", cachep->name, objp);
2713 BUG();
2714 }
2715#endif
2716 slab_bufctl(slabp)[objnr] = slabp->free;
2717 slabp->free = objnr;
2718 STATS_DEC_ACTIVE(cachep); 2794 STATS_DEC_ACTIVE(cachep);
2719 slabp->inuse--;
2720 l3->free_objects++; 2795 l3->free_objects++;
2721 check_slabp(cachep, slabp); 2796 check_slabp(cachep, slabp);
2722 2797
@@ -2738,7 +2813,7 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2738 } 2813 }
2739} 2814}
2740 2815
2741static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) 2816static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2742{ 2817{
2743 int batchcount; 2818 int batchcount;
2744 struct kmem_list3 *l3; 2819 struct kmem_list3 *l3;
@@ -2797,9 +2872,9 @@ static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2797 * 2872 *
2798 * Called with disabled ints. 2873 * Called with disabled ints.
2799 */ 2874 */
2800static inline void __cache_free(kmem_cache_t *cachep, void *objp) 2875static inline void __cache_free(struct kmem_cache *cachep, void *objp)
2801{ 2876{
2802 struct array_cache *ac = ac_data(cachep); 2877 struct array_cache *ac = cpu_cache_get(cachep);
2803 2878
2804 check_irq_off(); 2879 check_irq_off();
2805 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 2880 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
@@ -2810,7 +2885,7 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2810#ifdef CONFIG_NUMA 2885#ifdef CONFIG_NUMA
2811 { 2886 {
2812 struct slab *slabp; 2887 struct slab *slabp;
2813 slabp = page_get_slab(virt_to_page(objp)); 2888 slabp = virt_to_slab(objp);
2814 if (unlikely(slabp->nodeid != numa_node_id())) { 2889 if (unlikely(slabp->nodeid != numa_node_id())) {
2815 struct array_cache *alien = NULL; 2890 struct array_cache *alien = NULL;
2816 int nodeid = slabp->nodeid; 2891 int nodeid = slabp->nodeid;
@@ -2856,9 +2931,9 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2856 * Allocate an object from this cache. The flags are only relevant 2931 * Allocate an object from this cache. The flags are only relevant
2857 * if the cache has no available objects. 2932 * if the cache has no available objects.
2858 */ 2933 */
2859void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags) 2934void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2860{ 2935{
2861 return __cache_alloc(cachep, flags); 2936 return __cache_alloc(cachep, flags, __builtin_return_address(0));
2862} 2937}
2863EXPORT_SYMBOL(kmem_cache_alloc); 2938EXPORT_SYMBOL(kmem_cache_alloc);
2864 2939
@@ -2876,12 +2951,12 @@ EXPORT_SYMBOL(kmem_cache_alloc);
2876 * 2951 *
2877 * Currently only used for dentry validation. 2952 * Currently only used for dentry validation.
2878 */ 2953 */
2879int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) 2954int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
2880{ 2955{
2881 unsigned long addr = (unsigned long)ptr; 2956 unsigned long addr = (unsigned long)ptr;
2882 unsigned long min_addr = PAGE_OFFSET; 2957 unsigned long min_addr = PAGE_OFFSET;
2883 unsigned long align_mask = BYTES_PER_WORD - 1; 2958 unsigned long align_mask = BYTES_PER_WORD - 1;
2884 unsigned long size = cachep->objsize; 2959 unsigned long size = cachep->buffer_size;
2885 struct page *page; 2960 struct page *page;
2886 2961
2887 if (unlikely(addr < min_addr)) 2962 if (unlikely(addr < min_addr))
@@ -2917,32 +2992,23 @@ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2917 * New and improved: it will now make sure that the object gets 2992 * New and improved: it will now make sure that the object gets
2918 * put on the correct node list so that there is no false sharing. 2993 * put on the correct node list so that there is no false sharing.
2919 */ 2994 */
2920void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) 2995void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2921{ 2996{
2922 unsigned long save_flags; 2997 unsigned long save_flags;
2923 void *ptr; 2998 void *ptr;
2924 2999
2925 if (nodeid == -1)
2926 return __cache_alloc(cachep, flags);
2927
2928 if (unlikely(!cachep->nodelists[nodeid])) {
2929 /* Fall back to __cache_alloc if we run into trouble */
2930 printk(KERN_WARNING
2931 "slab: not allocating in inactive node %d for cache %s\n",
2932 nodeid, cachep->name);
2933 return __cache_alloc(cachep, flags);
2934 }
2935
2936 cache_alloc_debugcheck_before(cachep, flags); 3000 cache_alloc_debugcheck_before(cachep, flags);
2937 local_irq_save(save_flags); 3001 local_irq_save(save_flags);
2938 if (nodeid == numa_node_id()) 3002
3003 if (nodeid == -1 || nodeid == numa_node_id() ||
3004 !cachep->nodelists[nodeid])
2939 ptr = ____cache_alloc(cachep, flags); 3005 ptr = ____cache_alloc(cachep, flags);
2940 else 3006 else
2941 ptr = __cache_alloc_node(cachep, flags, nodeid); 3007 ptr = __cache_alloc_node(cachep, flags, nodeid);
2942 local_irq_restore(save_flags); 3008 local_irq_restore(save_flags);
2943 ptr = 3009
2944 cache_alloc_debugcheck_after(cachep, flags, ptr, 3010 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
2945 __builtin_return_address(0)); 3011 __builtin_return_address(0));
2946 3012
2947 return ptr; 3013 return ptr;
2948} 3014}
@@ -2950,7 +3016,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
2950 3016
2951void *kmalloc_node(size_t size, gfp_t flags, int node) 3017void *kmalloc_node(size_t size, gfp_t flags, int node)
2952{ 3018{
2953 kmem_cache_t *cachep; 3019 struct kmem_cache *cachep;
2954 3020
2955 cachep = kmem_find_general_cachep(size, flags); 3021 cachep = kmem_find_general_cachep(size, flags);
2956 if (unlikely(cachep == NULL)) 3022 if (unlikely(cachep == NULL))
@@ -2981,9 +3047,10 @@ EXPORT_SYMBOL(kmalloc_node);
2981 * platforms. For example, on i386, it means that the memory must come 3047 * platforms. For example, on i386, it means that the memory must come
2982 * from the first 16MB. 3048 * from the first 16MB.
2983 */ 3049 */
2984void *__kmalloc(size_t size, gfp_t flags) 3050static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3051 void *caller)
2985{ 3052{
2986 kmem_cache_t *cachep; 3053 struct kmem_cache *cachep;
2987 3054
2988 /* If you want to save a few bytes .text space: replace 3055 /* If you want to save a few bytes .text space: replace
2989 * __ with kmem_. 3056 * __ with kmem_.
@@ -2993,10 +3060,27 @@ void *__kmalloc(size_t size, gfp_t flags)
2993 cachep = __find_general_cachep(size, flags); 3060 cachep = __find_general_cachep(size, flags);
2994 if (unlikely(cachep == NULL)) 3061 if (unlikely(cachep == NULL))
2995 return NULL; 3062 return NULL;
2996 return __cache_alloc(cachep, flags); 3063 return __cache_alloc(cachep, flags, caller);
3064}
3065
3066#ifndef CONFIG_DEBUG_SLAB
3067
3068void *__kmalloc(size_t size, gfp_t flags)
3069{
3070 return __do_kmalloc(size, flags, NULL);
2997} 3071}
2998EXPORT_SYMBOL(__kmalloc); 3072EXPORT_SYMBOL(__kmalloc);
2999 3073
3074#else
3075
3076void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3077{
3078 return __do_kmalloc(size, flags, caller);
3079}
3080EXPORT_SYMBOL(__kmalloc_track_caller);
3081
3082#endif
3083
3000#ifdef CONFIG_SMP 3084#ifdef CONFIG_SMP
3001/** 3085/**
3002 * __alloc_percpu - allocate one copy of the object for every present 3086 * __alloc_percpu - allocate one copy of the object for every present
@@ -3054,7 +3138,7 @@ EXPORT_SYMBOL(__alloc_percpu);
3054 * Free an object which was previously allocated from this 3138 * Free an object which was previously allocated from this
3055 * cache. 3139 * cache.
3056 */ 3140 */
3057void kmem_cache_free(kmem_cache_t *cachep, void *objp) 3141void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3058{ 3142{
3059 unsigned long flags; 3143 unsigned long flags;
3060 3144
@@ -3075,15 +3159,15 @@ EXPORT_SYMBOL(kmem_cache_free);
3075 */ 3159 */
3076void kfree(const void *objp) 3160void kfree(const void *objp)
3077{ 3161{
3078 kmem_cache_t *c; 3162 struct kmem_cache *c;
3079 unsigned long flags; 3163 unsigned long flags;
3080 3164
3081 if (unlikely(!objp)) 3165 if (unlikely(!objp))
3082 return; 3166 return;
3083 local_irq_save(flags); 3167 local_irq_save(flags);
3084 kfree_debugcheck(objp); 3168 kfree_debugcheck(objp);
3085 c = page_get_cache(virt_to_page(objp)); 3169 c = virt_to_cache(objp);
3086 mutex_debug_check_no_locks_freed(objp, obj_reallen(c)); 3170 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3087 __cache_free(c, (void *)objp); 3171 __cache_free(c, (void *)objp);
3088 local_irq_restore(flags); 3172 local_irq_restore(flags);
3089} 3173}
@@ -3112,13 +3196,13 @@ void free_percpu(const void *objp)
3112EXPORT_SYMBOL(free_percpu); 3196EXPORT_SYMBOL(free_percpu);
3113#endif 3197#endif
3114 3198
3115unsigned int kmem_cache_size(kmem_cache_t *cachep) 3199unsigned int kmem_cache_size(struct kmem_cache *cachep)
3116{ 3200{
3117 return obj_reallen(cachep); 3201 return obj_size(cachep);
3118} 3202}
3119EXPORT_SYMBOL(kmem_cache_size); 3203EXPORT_SYMBOL(kmem_cache_size);
3120 3204
3121const char *kmem_cache_name(kmem_cache_t *cachep) 3205const char *kmem_cache_name(struct kmem_cache *cachep)
3122{ 3206{
3123 return cachep->name; 3207 return cachep->name;
3124} 3208}
@@ -3127,7 +3211,7 @@ EXPORT_SYMBOL_GPL(kmem_cache_name);
3127/* 3211/*
3128 * This initializes kmem_list3 for all nodes. 3212 * This initializes kmem_list3 for all nodes.
3129 */ 3213 */
3130static int alloc_kmemlist(kmem_cache_t *cachep) 3214static int alloc_kmemlist(struct kmem_cache *cachep)
3131{ 3215{
3132 int node; 3216 int node;
3133 struct kmem_list3 *l3; 3217 struct kmem_list3 *l3;
@@ -3183,7 +3267,7 @@ static int alloc_kmemlist(kmem_cache_t *cachep)
3183} 3267}
3184 3268
3185struct ccupdate_struct { 3269struct ccupdate_struct {
3186 kmem_cache_t *cachep; 3270 struct kmem_cache *cachep;
3187 struct array_cache *new[NR_CPUS]; 3271 struct array_cache *new[NR_CPUS];
3188}; 3272};
3189 3273
@@ -3193,13 +3277,13 @@ static void do_ccupdate_local(void *info)
3193 struct array_cache *old; 3277 struct array_cache *old;
3194 3278
3195 check_irq_off(); 3279 check_irq_off();
3196 old = ac_data(new->cachep); 3280 old = cpu_cache_get(new->cachep);
3197 3281
3198 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3282 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3199 new->new[smp_processor_id()] = old; 3283 new->new[smp_processor_id()] = old;
3200} 3284}
3201 3285
3202static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, 3286static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
3203 int shared) 3287 int shared)
3204{ 3288{
3205 struct ccupdate_struct new; 3289 struct ccupdate_struct new;
@@ -3245,7 +3329,7 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3245 return 0; 3329 return 0;
3246} 3330}
3247 3331
3248static void enable_cpucache(kmem_cache_t *cachep) 3332static void enable_cpucache(struct kmem_cache *cachep)
3249{ 3333{
3250 int err; 3334 int err;
3251 int limit, shared; 3335 int limit, shared;
@@ -3258,13 +3342,13 @@ static void enable_cpucache(kmem_cache_t *cachep)
3258 * The numbers are guessed, we should auto-tune as described by 3342 * The numbers are guessed, we should auto-tune as described by
3259 * Bonwick. 3343 * Bonwick.
3260 */ 3344 */
3261 if (cachep->objsize > 131072) 3345 if (cachep->buffer_size > 131072)
3262 limit = 1; 3346 limit = 1;
3263 else if (cachep->objsize > PAGE_SIZE) 3347 else if (cachep->buffer_size > PAGE_SIZE)
3264 limit = 8; 3348 limit = 8;
3265 else if (cachep->objsize > 1024) 3349 else if (cachep->buffer_size > 1024)
3266 limit = 24; 3350 limit = 24;
3267 else if (cachep->objsize > 256) 3351 else if (cachep->buffer_size > 256)
3268 limit = 54; 3352 limit = 54;
3269 else 3353 else
3270 limit = 120; 3354 limit = 120;
@@ -3279,7 +3363,7 @@ static void enable_cpucache(kmem_cache_t *cachep)
3279 */ 3363 */
3280 shared = 0; 3364 shared = 0;
3281#ifdef CONFIG_SMP 3365#ifdef CONFIG_SMP
3282 if (cachep->objsize <= PAGE_SIZE) 3366 if (cachep->buffer_size <= PAGE_SIZE)
3283 shared = 8; 3367 shared = 8;
3284#endif 3368#endif
3285 3369
@@ -3297,7 +3381,7 @@ static void enable_cpucache(kmem_cache_t *cachep)
3297 cachep->name, -err); 3381 cachep->name, -err);
3298} 3382}
3299 3383
3300static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, 3384static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
3301 int force, int node) 3385 int force, int node)
3302{ 3386{
3303 int tofree; 3387 int tofree;
@@ -3342,12 +3426,12 @@ static void cache_reap(void *unused)
3342 } 3426 }
3343 3427
3344 list_for_each(walk, &cache_chain) { 3428 list_for_each(walk, &cache_chain) {
3345 kmem_cache_t *searchp; 3429 struct kmem_cache *searchp;
3346 struct list_head *p; 3430 struct list_head *p;
3347 int tofree; 3431 int tofree;
3348 struct slab *slabp; 3432 struct slab *slabp;
3349 3433
3350 searchp = list_entry(walk, kmem_cache_t, next); 3434 searchp = list_entry(walk, struct kmem_cache, next);
3351 3435
3352 if (searchp->flags & SLAB_NO_REAP) 3436 if (searchp->flags & SLAB_NO_REAP)
3353 goto next; 3437 goto next;
@@ -3359,7 +3443,7 @@ static void cache_reap(void *unused)
3359 drain_alien_cache(searchp, l3); 3443 drain_alien_cache(searchp, l3);
3360 spin_lock_irq(&l3->list_lock); 3444 spin_lock_irq(&l3->list_lock);
3361 3445
3362 drain_array_locked(searchp, ac_data(searchp), 0, 3446 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3363 numa_node_id()); 3447 numa_node_id());
3364 3448
3365 if (time_after(l3->next_reap, jiffies)) 3449 if (time_after(l3->next_reap, jiffies))
@@ -3450,15 +3534,15 @@ static void *s_start(struct seq_file *m, loff_t *pos)
3450 if (p == &cache_chain) 3534 if (p == &cache_chain)
3451 return NULL; 3535 return NULL;
3452 } 3536 }
3453 return list_entry(p, kmem_cache_t, next); 3537 return list_entry(p, struct kmem_cache, next);
3454} 3538}
3455 3539
3456static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3540static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3457{ 3541{
3458 kmem_cache_t *cachep = p; 3542 struct kmem_cache *cachep = p;
3459 ++*pos; 3543 ++*pos;
3460 return cachep->next.next == &cache_chain ? NULL 3544 return cachep->next.next == &cache_chain ? NULL
3461 : list_entry(cachep->next.next, kmem_cache_t, next); 3545 : list_entry(cachep->next.next, struct kmem_cache, next);
3462} 3546}
3463 3547
3464static void s_stop(struct seq_file *m, void *p) 3548static void s_stop(struct seq_file *m, void *p)
@@ -3468,7 +3552,7 @@ static void s_stop(struct seq_file *m, void *p)
3468 3552
3469static int s_show(struct seq_file *m, void *p) 3553static int s_show(struct seq_file *m, void *p)
3470{ 3554{
3471 kmem_cache_t *cachep = p; 3555 struct kmem_cache *cachep = p;
3472 struct list_head *q; 3556 struct list_head *q;
3473 struct slab *slabp; 3557 struct slab *slabp;
3474 unsigned long active_objs; 3558 unsigned long active_objs;
@@ -3528,7 +3612,7 @@ static int s_show(struct seq_file *m, void *p)
3528 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 3612 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3529 3613
3530 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 3614 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3531 name, active_objs, num_objs, cachep->objsize, 3615 name, active_objs, num_objs, cachep->buffer_size,
3532 cachep->num, (1 << cachep->gfporder)); 3616 cachep->num, (1 << cachep->gfporder));
3533 seq_printf(m, " : tunables %4u %4u %4u", 3617 seq_printf(m, " : tunables %4u %4u %4u",
3534 cachep->limit, cachep->batchcount, cachep->shared); 3618 cachep->limit, cachep->batchcount, cachep->shared);
@@ -3618,7 +3702,8 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3618 mutex_lock(&cache_chain_mutex); 3702 mutex_lock(&cache_chain_mutex);
3619 res = -EINVAL; 3703 res = -EINVAL;
3620 list_for_each(p, &cache_chain) { 3704 list_for_each(p, &cache_chain) {
3621 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); 3705 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3706 next);
3622 3707
3623 if (!strcmp(cachep->name, kbuf)) { 3708 if (!strcmp(cachep->name, kbuf)) {
3624 if (limit < 1 || 3709 if (limit < 1 ||
@@ -3656,5 +3741,5 @@ unsigned int ksize(const void *objp)
3656 if (unlikely(objp == NULL)) 3741 if (unlikely(objp == NULL))
3657 return 0; 3742 return 0;
3658 3743
3659 return obj_reallen(page_get_cache(virt_to_page(objp))); 3744 return obj_size(virt_to_cache(objp));
3660} 3745}