diff options
Diffstat (limited to 'mm/slab.c')
-rw-r--r-- | mm/slab.c | 3060 |
1 files changed, 3060 insertions, 0 deletions
diff --git a/mm/slab.c b/mm/slab.c new file mode 100644 index 000000000000..ec660d85ddd7 --- /dev/null +++ b/mm/slab.c | |||
@@ -0,0 +1,3060 @@ | |||
1 | /* | ||
2 | * linux/mm/slab.c | ||
3 | * Written by Mark Hemment, 1996/97. | ||
4 | * (markhe@nextd.demon.co.uk) | ||
5 | * | ||
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | ||
7 | * | ||
8 | * Major cleanup, different bufctl logic, per-cpu arrays | ||
9 | * (c) 2000 Manfred Spraul | ||
10 | * | ||
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | ||
12 | * (c) 2002 Manfred Spraul | ||
13 | * | ||
14 | * An implementation of the Slab Allocator as described in outline in; | ||
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | ||
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | ||
17 | * or with a little more detail in; | ||
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | ||
19 | * Jeff Bonwick (Sun Microsystems). | ||
20 | * Presented at: USENIX Summer 1994 Technical Conference | ||
21 | * | ||
22 | * The memory is organized in caches, one cache for each object type. | ||
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | ||
24 | * Each cache consists out of many slabs (they are small (usually one | ||
25 | * page long) and always contiguous), and each slab contains multiple | ||
26 | * initialized objects. | ||
27 | * | ||
28 | * This means, that your constructor is used only for newly allocated | ||
29 | * slabs and you must pass objects with the same intializations to | ||
30 | * kmem_cache_free. | ||
31 | * | ||
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | ||
33 | * normal). If you need a special memory type, then must create a new | ||
34 | * cache for that memory type. | ||
35 | * | ||
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | ||
37 | * full slabs with 0 free objects | ||
38 | * partial slabs | ||
39 | * empty slabs with no allocated objects | ||
40 | * | ||
41 | * If partial slabs exist, then new allocations come from these slabs, | ||
42 | * otherwise from empty slabs or new slabs are allocated. | ||
43 | * | ||
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | ||
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | ||
46 | * | ||
47 | * Each cache has a short per-cpu head array, most allocs | ||
48 | * and frees go into that array, and if that array overflows, then 1/2 | ||
49 | * of the entries in the array are given back into the global cache. | ||
50 | * The head array is strictly LIFO and should improve the cache hit rates. | ||
51 | * On SMP, it additionally reduces the spinlock operations. | ||
52 | * | ||
53 | * The c_cpuarray may not be read with enabled local interrupts - | ||
54 | * it's changed with a smp_call_function(). | ||
55 | * | ||
56 | * SMP synchronization: | ||
57 | * constructors and destructors are called without any locking. | ||
58 | * Several members in kmem_cache_t and struct slab never change, they | ||
59 | * are accessed without any locking. | ||
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | ||
61 | * and local interrupts are disabled so slab code is preempt-safe. | ||
62 | * The non-constant members are protected with a per-cache irq spinlock. | ||
63 | * | ||
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | ||
65 | * in 2000 - many ideas in the current implementation are derived from | ||
66 | * his patch. | ||
67 | * | ||
68 | * Further notes from the original documentation: | ||
69 | * | ||
70 | * 11 April '97. Started multi-threading - markhe | ||
71 | * The global cache-chain is protected by the semaphore 'cache_chain_sem'. | ||
72 | * The sem is only needed when accessing/extending the cache-chain, which | ||
73 | * can never happen inside an interrupt (kmem_cache_create(), | ||
74 | * kmem_cache_shrink() and kmem_cache_reap()). | ||
75 | * | ||
76 | * At present, each engine can be growing a cache. This should be blocked. | ||
77 | * | ||
78 | */ | ||
79 | |||
80 | #include <linux/config.h> | ||
81 | #include <linux/slab.h> | ||
82 | #include <linux/mm.h> | ||
83 | #include <linux/swap.h> | ||
84 | #include <linux/cache.h> | ||
85 | #include <linux/interrupt.h> | ||
86 | #include <linux/init.h> | ||
87 | #include <linux/compiler.h> | ||
88 | #include <linux/seq_file.h> | ||
89 | #include <linux/notifier.h> | ||
90 | #include <linux/kallsyms.h> | ||
91 | #include <linux/cpu.h> | ||
92 | #include <linux/sysctl.h> | ||
93 | #include <linux/module.h> | ||
94 | #include <linux/rcupdate.h> | ||
95 | |||
96 | #include <asm/uaccess.h> | ||
97 | #include <asm/cacheflush.h> | ||
98 | #include <asm/tlbflush.h> | ||
99 | #include <asm/page.h> | ||
100 | |||
101 | /* | ||
102 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | ||
103 | * SLAB_RED_ZONE & SLAB_POISON. | ||
104 | * 0 for faster, smaller code (especially in the critical paths). | ||
105 | * | ||
106 | * STATS - 1 to collect stats for /proc/slabinfo. | ||
107 | * 0 for faster, smaller code (especially in the critical paths). | ||
108 | * | ||
109 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | ||
110 | */ | ||
111 | |||
112 | #ifdef CONFIG_DEBUG_SLAB | ||
113 | #define DEBUG 1 | ||
114 | #define STATS 1 | ||
115 | #define FORCED_DEBUG 1 | ||
116 | #else | ||
117 | #define DEBUG 0 | ||
118 | #define STATS 0 | ||
119 | #define FORCED_DEBUG 0 | ||
120 | #endif | ||
121 | |||
122 | |||
123 | /* Shouldn't this be in a header file somewhere? */ | ||
124 | #define BYTES_PER_WORD sizeof(void *) | ||
125 | |||
126 | #ifndef cache_line_size | ||
127 | #define cache_line_size() L1_CACHE_BYTES | ||
128 | #endif | ||
129 | |||
130 | #ifndef ARCH_KMALLOC_MINALIGN | ||
131 | /* | ||
132 | * Enforce a minimum alignment for the kmalloc caches. | ||
133 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | ||
134 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | ||
135 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | ||
136 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | ||
137 | * Note that this flag disables some debug features. | ||
138 | */ | ||
139 | #define ARCH_KMALLOC_MINALIGN 0 | ||
140 | #endif | ||
141 | |||
142 | #ifndef ARCH_SLAB_MINALIGN | ||
143 | /* | ||
144 | * Enforce a minimum alignment for all caches. | ||
145 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | ||
146 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | ||
147 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | ||
148 | * some debug features. | ||
149 | */ | ||
150 | #define ARCH_SLAB_MINALIGN 0 | ||
151 | #endif | ||
152 | |||
153 | #ifndef ARCH_KMALLOC_FLAGS | ||
154 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | ||
155 | #endif | ||
156 | |||
157 | /* Legal flag mask for kmem_cache_create(). */ | ||
158 | #if DEBUG | ||
159 | # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | ||
160 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | ||
161 | SLAB_NO_REAP | SLAB_CACHE_DMA | \ | ||
162 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ | ||
163 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | ||
164 | SLAB_DESTROY_BY_RCU) | ||
165 | #else | ||
166 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ | ||
167 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ | ||
168 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | ||
169 | SLAB_DESTROY_BY_RCU) | ||
170 | #endif | ||
171 | |||
172 | /* | ||
173 | * kmem_bufctl_t: | ||
174 | * | ||
175 | * Bufctl's are used for linking objs within a slab | ||
176 | * linked offsets. | ||
177 | * | ||
178 | * This implementation relies on "struct page" for locating the cache & | ||
179 | * slab an object belongs to. | ||
180 | * This allows the bufctl structure to be small (one int), but limits | ||
181 | * the number of objects a slab (not a cache) can contain when off-slab | ||
182 | * bufctls are used. The limit is the size of the largest general cache | ||
183 | * that does not use off-slab slabs. | ||
184 | * For 32bit archs with 4 kB pages, is this 56. | ||
185 | * This is not serious, as it is only for large objects, when it is unwise | ||
186 | * to have too many per slab. | ||
187 | * Note: This limit can be raised by introducing a general cache whose size | ||
188 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | ||
189 | */ | ||
190 | |||
191 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) | ||
192 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | ||
193 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) | ||
194 | |||
195 | /* Max number of objs-per-slab for caches which use off-slab slabs. | ||
196 | * Needed to avoid a possible looping condition in cache_grow(). | ||
197 | */ | ||
198 | static unsigned long offslab_limit; | ||
199 | |||
200 | /* | ||
201 | * struct slab | ||
202 | * | ||
203 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | ||
204 | * for a slab, or allocated from an general cache. | ||
205 | * Slabs are chained into three list: fully used, partial, fully free slabs. | ||
206 | */ | ||
207 | struct slab { | ||
208 | struct list_head list; | ||
209 | unsigned long colouroff; | ||
210 | void *s_mem; /* including colour offset */ | ||
211 | unsigned int inuse; /* num of objs active in slab */ | ||
212 | kmem_bufctl_t free; | ||
213 | }; | ||
214 | |||
215 | /* | ||
216 | * struct slab_rcu | ||
217 | * | ||
218 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | ||
219 | * arrange for kmem_freepages to be called via RCU. This is useful if | ||
220 | * we need to approach a kernel structure obliquely, from its address | ||
221 | * obtained without the usual locking. We can lock the structure to | ||
222 | * stabilize it and check it's still at the given address, only if we | ||
223 | * can be sure that the memory has not been meanwhile reused for some | ||
224 | * other kind of object (which our subsystem's lock might corrupt). | ||
225 | * | ||
226 | * rcu_read_lock before reading the address, then rcu_read_unlock after | ||
227 | * taking the spinlock within the structure expected at that address. | ||
228 | * | ||
229 | * We assume struct slab_rcu can overlay struct slab when destroying. | ||
230 | */ | ||
231 | struct slab_rcu { | ||
232 | struct rcu_head head; | ||
233 | kmem_cache_t *cachep; | ||
234 | void *addr; | ||
235 | }; | ||
236 | |||
237 | /* | ||
238 | * struct array_cache | ||
239 | * | ||
240 | * Per cpu structures | ||
241 | * Purpose: | ||
242 | * - LIFO ordering, to hand out cache-warm objects from _alloc | ||
243 | * - reduce the number of linked list operations | ||
244 | * - reduce spinlock operations | ||
245 | * | ||
246 | * The limit is stored in the per-cpu structure to reduce the data cache | ||
247 | * footprint. | ||
248 | * | ||
249 | */ | ||
250 | struct array_cache { | ||
251 | unsigned int avail; | ||
252 | unsigned int limit; | ||
253 | unsigned int batchcount; | ||
254 | unsigned int touched; | ||
255 | }; | ||
256 | |||
257 | /* bootstrap: The caches do not work without cpuarrays anymore, | ||
258 | * but the cpuarrays are allocated from the generic caches... | ||
259 | */ | ||
260 | #define BOOT_CPUCACHE_ENTRIES 1 | ||
261 | struct arraycache_init { | ||
262 | struct array_cache cache; | ||
263 | void * entries[BOOT_CPUCACHE_ENTRIES]; | ||
264 | }; | ||
265 | |||
266 | /* | ||
267 | * The slab lists of all objects. | ||
268 | * Hopefully reduce the internal fragmentation | ||
269 | * NUMA: The spinlock could be moved from the kmem_cache_t | ||
270 | * into this structure, too. Figure out what causes | ||
271 | * fewer cross-node spinlock operations. | ||
272 | */ | ||
273 | struct kmem_list3 { | ||
274 | struct list_head slabs_partial; /* partial list first, better asm code */ | ||
275 | struct list_head slabs_full; | ||
276 | struct list_head slabs_free; | ||
277 | unsigned long free_objects; | ||
278 | int free_touched; | ||
279 | unsigned long next_reap; | ||
280 | struct array_cache *shared; | ||
281 | }; | ||
282 | |||
283 | #define LIST3_INIT(parent) \ | ||
284 | { \ | ||
285 | .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \ | ||
286 | .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \ | ||
287 | .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \ | ||
288 | } | ||
289 | #define list3_data(cachep) \ | ||
290 | (&(cachep)->lists) | ||
291 | |||
292 | /* NUMA: per-node */ | ||
293 | #define list3_data_ptr(cachep, ptr) \ | ||
294 | list3_data(cachep) | ||
295 | |||
296 | /* | ||
297 | * kmem_cache_t | ||
298 | * | ||
299 | * manages a cache. | ||
300 | */ | ||
301 | |||
302 | struct kmem_cache_s { | ||
303 | /* 1) per-cpu data, touched during every alloc/free */ | ||
304 | struct array_cache *array[NR_CPUS]; | ||
305 | unsigned int batchcount; | ||
306 | unsigned int limit; | ||
307 | /* 2) touched by every alloc & free from the backend */ | ||
308 | struct kmem_list3 lists; | ||
309 | /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */ | ||
310 | unsigned int objsize; | ||
311 | unsigned int flags; /* constant flags */ | ||
312 | unsigned int num; /* # of objs per slab */ | ||
313 | unsigned int free_limit; /* upper limit of objects in the lists */ | ||
314 | spinlock_t spinlock; | ||
315 | |||
316 | /* 3) cache_grow/shrink */ | ||
317 | /* order of pgs per slab (2^n) */ | ||
318 | unsigned int gfporder; | ||
319 | |||
320 | /* force GFP flags, e.g. GFP_DMA */ | ||
321 | unsigned int gfpflags; | ||
322 | |||
323 | size_t colour; /* cache colouring range */ | ||
324 | unsigned int colour_off; /* colour offset */ | ||
325 | unsigned int colour_next; /* cache colouring */ | ||
326 | kmem_cache_t *slabp_cache; | ||
327 | unsigned int slab_size; | ||
328 | unsigned int dflags; /* dynamic flags */ | ||
329 | |||
330 | /* constructor func */ | ||
331 | void (*ctor)(void *, kmem_cache_t *, unsigned long); | ||
332 | |||
333 | /* de-constructor func */ | ||
334 | void (*dtor)(void *, kmem_cache_t *, unsigned long); | ||
335 | |||
336 | /* 4) cache creation/removal */ | ||
337 | const char *name; | ||
338 | struct list_head next; | ||
339 | |||
340 | /* 5) statistics */ | ||
341 | #if STATS | ||
342 | unsigned long num_active; | ||
343 | unsigned long num_allocations; | ||
344 | unsigned long high_mark; | ||
345 | unsigned long grown; | ||
346 | unsigned long reaped; | ||
347 | unsigned long errors; | ||
348 | unsigned long max_freeable; | ||
349 | unsigned long node_allocs; | ||
350 | atomic_t allochit; | ||
351 | atomic_t allocmiss; | ||
352 | atomic_t freehit; | ||
353 | atomic_t freemiss; | ||
354 | #endif | ||
355 | #if DEBUG | ||
356 | int dbghead; | ||
357 | int reallen; | ||
358 | #endif | ||
359 | }; | ||
360 | |||
361 | #define CFLGS_OFF_SLAB (0x80000000UL) | ||
362 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | ||
363 | |||
364 | #define BATCHREFILL_LIMIT 16 | ||
365 | /* Optimization question: fewer reaps means less | ||
366 | * probability for unnessary cpucache drain/refill cycles. | ||
367 | * | ||
368 | * OTHO the cpuarrays can contain lots of objects, | ||
369 | * which could lock up otherwise freeable slabs. | ||
370 | */ | ||
371 | #define REAPTIMEOUT_CPUC (2*HZ) | ||
372 | #define REAPTIMEOUT_LIST3 (4*HZ) | ||
373 | |||
374 | #if STATS | ||
375 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | ||
376 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | ||
377 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | ||
378 | #define STATS_INC_GROWN(x) ((x)->grown++) | ||
379 | #define STATS_INC_REAPED(x) ((x)->reaped++) | ||
380 | #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ | ||
381 | (x)->high_mark = (x)->num_active; \ | ||
382 | } while (0) | ||
383 | #define STATS_INC_ERR(x) ((x)->errors++) | ||
384 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | ||
385 | #define STATS_SET_FREEABLE(x, i) \ | ||
386 | do { if ((x)->max_freeable < i) \ | ||
387 | (x)->max_freeable = i; \ | ||
388 | } while (0) | ||
389 | |||
390 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) | ||
391 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | ||
392 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | ||
393 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | ||
394 | #else | ||
395 | #define STATS_INC_ACTIVE(x) do { } while (0) | ||
396 | #define STATS_DEC_ACTIVE(x) do { } while (0) | ||
397 | #define STATS_INC_ALLOCED(x) do { } while (0) | ||
398 | #define STATS_INC_GROWN(x) do { } while (0) | ||
399 | #define STATS_INC_REAPED(x) do { } while (0) | ||
400 | #define STATS_SET_HIGH(x) do { } while (0) | ||
401 | #define STATS_INC_ERR(x) do { } while (0) | ||
402 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | ||
403 | #define STATS_SET_FREEABLE(x, i) \ | ||
404 | do { } while (0) | ||
405 | |||
406 | #define STATS_INC_ALLOCHIT(x) do { } while (0) | ||
407 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | ||
408 | #define STATS_INC_FREEHIT(x) do { } while (0) | ||
409 | #define STATS_INC_FREEMISS(x) do { } while (0) | ||
410 | #endif | ||
411 | |||
412 | #if DEBUG | ||
413 | /* Magic nums for obj red zoning. | ||
414 | * Placed in the first word before and the first word after an obj. | ||
415 | */ | ||
416 | #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ | ||
417 | #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ | ||
418 | |||
419 | /* ...and for poisoning */ | ||
420 | #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ | ||
421 | #define POISON_FREE 0x6b /* for use-after-free poisoning */ | ||
422 | #define POISON_END 0xa5 /* end-byte of poisoning */ | ||
423 | |||
424 | /* memory layout of objects: | ||
425 | * 0 : objp | ||
426 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | ||
427 | * the end of an object is aligned with the end of the real | ||
428 | * allocation. Catches writes behind the end of the allocation. | ||
429 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | ||
430 | * redzone word. | ||
431 | * cachep->dbghead: The real object. | ||
432 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | ||
433 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | ||
434 | */ | ||
435 | static int obj_dbghead(kmem_cache_t *cachep) | ||
436 | { | ||
437 | return cachep->dbghead; | ||
438 | } | ||
439 | |||
440 | static int obj_reallen(kmem_cache_t *cachep) | ||
441 | { | ||
442 | return cachep->reallen; | ||
443 | } | ||
444 | |||
445 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | ||
446 | { | ||
447 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | ||
448 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | ||
449 | } | ||
450 | |||
451 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | ||
452 | { | ||
453 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | ||
454 | if (cachep->flags & SLAB_STORE_USER) | ||
455 | return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); | ||
456 | return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); | ||
457 | } | ||
458 | |||
459 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | ||
460 | { | ||
461 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | ||
462 | return (void**)(objp+cachep->objsize-BYTES_PER_WORD); | ||
463 | } | ||
464 | |||
465 | #else | ||
466 | |||
467 | #define obj_dbghead(x) 0 | ||
468 | #define obj_reallen(cachep) (cachep->objsize) | ||
469 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | ||
470 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | ||
471 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) | ||
472 | |||
473 | #endif | ||
474 | |||
475 | /* | ||
476 | * Maximum size of an obj (in 2^order pages) | ||
477 | * and absolute limit for the gfp order. | ||
478 | */ | ||
479 | #if defined(CONFIG_LARGE_ALLOCS) | ||
480 | #define MAX_OBJ_ORDER 13 /* up to 32Mb */ | ||
481 | #define MAX_GFP_ORDER 13 /* up to 32Mb */ | ||
482 | #elif defined(CONFIG_MMU) | ||
483 | #define MAX_OBJ_ORDER 5 /* 32 pages */ | ||
484 | #define MAX_GFP_ORDER 5 /* 32 pages */ | ||
485 | #else | ||
486 | #define MAX_OBJ_ORDER 8 /* up to 1Mb */ | ||
487 | #define MAX_GFP_ORDER 8 /* up to 1Mb */ | ||
488 | #endif | ||
489 | |||
490 | /* | ||
491 | * Do not go above this order unless 0 objects fit into the slab. | ||
492 | */ | ||
493 | #define BREAK_GFP_ORDER_HI 1 | ||
494 | #define BREAK_GFP_ORDER_LO 0 | ||
495 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | ||
496 | |||
497 | /* Macros for storing/retrieving the cachep and or slab from the | ||
498 | * global 'mem_map'. These are used to find the slab an obj belongs to. | ||
499 | * With kfree(), these are used to find the cache which an obj belongs to. | ||
500 | */ | ||
501 | #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x)) | ||
502 | #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next) | ||
503 | #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x)) | ||
504 | #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev) | ||
505 | |||
506 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | ||
507 | struct cache_sizes malloc_sizes[] = { | ||
508 | #define CACHE(x) { .cs_size = (x) }, | ||
509 | #include <linux/kmalloc_sizes.h> | ||
510 | CACHE(ULONG_MAX) | ||
511 | #undef CACHE | ||
512 | }; | ||
513 | EXPORT_SYMBOL(malloc_sizes); | ||
514 | |||
515 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | ||
516 | struct cache_names { | ||
517 | char *name; | ||
518 | char *name_dma; | ||
519 | }; | ||
520 | |||
521 | static struct cache_names __initdata cache_names[] = { | ||
522 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | ||
523 | #include <linux/kmalloc_sizes.h> | ||
524 | { NULL, } | ||
525 | #undef CACHE | ||
526 | }; | ||
527 | |||
528 | static struct arraycache_init initarray_cache __initdata = | ||
529 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | ||
530 | static struct arraycache_init initarray_generic = | ||
531 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | ||
532 | |||
533 | /* internal cache of cache description objs */ | ||
534 | static kmem_cache_t cache_cache = { | ||
535 | .lists = LIST3_INIT(cache_cache.lists), | ||
536 | .batchcount = 1, | ||
537 | .limit = BOOT_CPUCACHE_ENTRIES, | ||
538 | .objsize = sizeof(kmem_cache_t), | ||
539 | .flags = SLAB_NO_REAP, | ||
540 | .spinlock = SPIN_LOCK_UNLOCKED, | ||
541 | .name = "kmem_cache", | ||
542 | #if DEBUG | ||
543 | .reallen = sizeof(kmem_cache_t), | ||
544 | #endif | ||
545 | }; | ||
546 | |||
547 | /* Guard access to the cache-chain. */ | ||
548 | static struct semaphore cache_chain_sem; | ||
549 | static struct list_head cache_chain; | ||
550 | |||
551 | /* | ||
552 | * vm_enough_memory() looks at this to determine how many | ||
553 | * slab-allocated pages are possibly freeable under pressure | ||
554 | * | ||
555 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | ||
556 | */ | ||
557 | atomic_t slab_reclaim_pages; | ||
558 | EXPORT_SYMBOL(slab_reclaim_pages); | ||
559 | |||
560 | /* | ||
561 | * chicken and egg problem: delay the per-cpu array allocation | ||
562 | * until the general caches are up. | ||
563 | */ | ||
564 | static enum { | ||
565 | NONE, | ||
566 | PARTIAL, | ||
567 | FULL | ||
568 | } g_cpucache_up; | ||
569 | |||
570 | static DEFINE_PER_CPU(struct work_struct, reap_work); | ||
571 | |||
572 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); | ||
573 | static void enable_cpucache (kmem_cache_t *cachep); | ||
574 | static void cache_reap (void *unused); | ||
575 | |||
576 | static inline void **ac_entry(struct array_cache *ac) | ||
577 | { | ||
578 | return (void**)(ac+1); | ||
579 | } | ||
580 | |||
581 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | ||
582 | { | ||
583 | return cachep->array[smp_processor_id()]; | ||
584 | } | ||
585 | |||
586 | static inline kmem_cache_t *kmem_find_general_cachep(size_t size, int gfpflags) | ||
587 | { | ||
588 | struct cache_sizes *csizep = malloc_sizes; | ||
589 | |||
590 | #if DEBUG | ||
591 | /* This happens if someone tries to call | ||
592 | * kmem_cache_create(), or __kmalloc(), before | ||
593 | * the generic caches are initialized. | ||
594 | */ | ||
595 | BUG_ON(csizep->cs_cachep == NULL); | ||
596 | #endif | ||
597 | while (size > csizep->cs_size) | ||
598 | csizep++; | ||
599 | |||
600 | /* | ||
601 | * Really subtile: The last entry with cs->cs_size==ULONG_MAX | ||
602 | * has cs_{dma,}cachep==NULL. Thus no special case | ||
603 | * for large kmalloc calls required. | ||
604 | */ | ||
605 | if (unlikely(gfpflags & GFP_DMA)) | ||
606 | return csizep->cs_dmacachep; | ||
607 | return csizep->cs_cachep; | ||
608 | } | ||
609 | |||
610 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ | ||
611 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | ||
612 | int flags, size_t *left_over, unsigned int *num) | ||
613 | { | ||
614 | int i; | ||
615 | size_t wastage = PAGE_SIZE<<gfporder; | ||
616 | size_t extra = 0; | ||
617 | size_t base = 0; | ||
618 | |||
619 | if (!(flags & CFLGS_OFF_SLAB)) { | ||
620 | base = sizeof(struct slab); | ||
621 | extra = sizeof(kmem_bufctl_t); | ||
622 | } | ||
623 | i = 0; | ||
624 | while (i*size + ALIGN(base+i*extra, align) <= wastage) | ||
625 | i++; | ||
626 | if (i > 0) | ||
627 | i--; | ||
628 | |||
629 | if (i > SLAB_LIMIT) | ||
630 | i = SLAB_LIMIT; | ||
631 | |||
632 | *num = i; | ||
633 | wastage -= i*size; | ||
634 | wastage -= ALIGN(base+i*extra, align); | ||
635 | *left_over = wastage; | ||
636 | } | ||
637 | |||
638 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | ||
639 | |||
640 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | ||
641 | { | ||
642 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | ||
643 | function, cachep->name, msg); | ||
644 | dump_stack(); | ||
645 | } | ||
646 | |||
647 | /* | ||
648 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | ||
649 | * via the workqueue/eventd. | ||
650 | * Add the CPU number into the expiration time to minimize the possibility of | ||
651 | * the CPUs getting into lockstep and contending for the global cache chain | ||
652 | * lock. | ||
653 | */ | ||
654 | static void __devinit start_cpu_timer(int cpu) | ||
655 | { | ||
656 | struct work_struct *reap_work = &per_cpu(reap_work, cpu); | ||
657 | |||
658 | /* | ||
659 | * When this gets called from do_initcalls via cpucache_init(), | ||
660 | * init_workqueues() has already run, so keventd will be setup | ||
661 | * at that time. | ||
662 | */ | ||
663 | if (keventd_up() && reap_work->func == NULL) { | ||
664 | INIT_WORK(reap_work, cache_reap, NULL); | ||
665 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | ||
666 | } | ||
667 | } | ||
668 | |||
669 | static struct array_cache *alloc_arraycache(int cpu, int entries, | ||
670 | int batchcount) | ||
671 | { | ||
672 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | ||
673 | struct array_cache *nc = NULL; | ||
674 | |||
675 | if (cpu != -1) { | ||
676 | kmem_cache_t *cachep; | ||
677 | cachep = kmem_find_general_cachep(memsize, GFP_KERNEL); | ||
678 | if (cachep) | ||
679 | nc = kmem_cache_alloc_node(cachep, cpu_to_node(cpu)); | ||
680 | } | ||
681 | if (!nc) | ||
682 | nc = kmalloc(memsize, GFP_KERNEL); | ||
683 | if (nc) { | ||
684 | nc->avail = 0; | ||
685 | nc->limit = entries; | ||
686 | nc->batchcount = batchcount; | ||
687 | nc->touched = 0; | ||
688 | } | ||
689 | return nc; | ||
690 | } | ||
691 | |||
692 | static int __devinit cpuup_callback(struct notifier_block *nfb, | ||
693 | unsigned long action, void *hcpu) | ||
694 | { | ||
695 | long cpu = (long)hcpu; | ||
696 | kmem_cache_t* cachep; | ||
697 | |||
698 | switch (action) { | ||
699 | case CPU_UP_PREPARE: | ||
700 | down(&cache_chain_sem); | ||
701 | list_for_each_entry(cachep, &cache_chain, next) { | ||
702 | struct array_cache *nc; | ||
703 | |||
704 | nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); | ||
705 | if (!nc) | ||
706 | goto bad; | ||
707 | |||
708 | spin_lock_irq(&cachep->spinlock); | ||
709 | cachep->array[cpu] = nc; | ||
710 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | ||
711 | + cachep->num; | ||
712 | spin_unlock_irq(&cachep->spinlock); | ||
713 | |||
714 | } | ||
715 | up(&cache_chain_sem); | ||
716 | break; | ||
717 | case CPU_ONLINE: | ||
718 | start_cpu_timer(cpu); | ||
719 | break; | ||
720 | #ifdef CONFIG_HOTPLUG_CPU | ||
721 | case CPU_DEAD: | ||
722 | /* fall thru */ | ||
723 | case CPU_UP_CANCELED: | ||
724 | down(&cache_chain_sem); | ||
725 | |||
726 | list_for_each_entry(cachep, &cache_chain, next) { | ||
727 | struct array_cache *nc; | ||
728 | |||
729 | spin_lock_irq(&cachep->spinlock); | ||
730 | /* cpu is dead; no one can alloc from it. */ | ||
731 | nc = cachep->array[cpu]; | ||
732 | cachep->array[cpu] = NULL; | ||
733 | cachep->free_limit -= cachep->batchcount; | ||
734 | free_block(cachep, ac_entry(nc), nc->avail); | ||
735 | spin_unlock_irq(&cachep->spinlock); | ||
736 | kfree(nc); | ||
737 | } | ||
738 | up(&cache_chain_sem); | ||
739 | break; | ||
740 | #endif | ||
741 | } | ||
742 | return NOTIFY_OK; | ||
743 | bad: | ||
744 | up(&cache_chain_sem); | ||
745 | return NOTIFY_BAD; | ||
746 | } | ||
747 | |||
748 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | ||
749 | |||
750 | /* Initialisation. | ||
751 | * Called after the gfp() functions have been enabled, and before smp_init(). | ||
752 | */ | ||
753 | void __init kmem_cache_init(void) | ||
754 | { | ||
755 | size_t left_over; | ||
756 | struct cache_sizes *sizes; | ||
757 | struct cache_names *names; | ||
758 | |||
759 | /* | ||
760 | * Fragmentation resistance on low memory - only use bigger | ||
761 | * page orders on machines with more than 32MB of memory. | ||
762 | */ | ||
763 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | ||
764 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | ||
765 | |||
766 | |||
767 | /* Bootstrap is tricky, because several objects are allocated | ||
768 | * from caches that do not exist yet: | ||
769 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | ||
770 | * structures of all caches, except cache_cache itself: cache_cache | ||
771 | * is statically allocated. | ||
772 | * Initially an __init data area is used for the head array, it's | ||
773 | * replaced with a kmalloc allocated array at the end of the bootstrap. | ||
774 | * 2) Create the first kmalloc cache. | ||
775 | * The kmem_cache_t for the new cache is allocated normally. An __init | ||
776 | * data area is used for the head array. | ||
777 | * 3) Create the remaining kmalloc caches, with minimally sized head arrays. | ||
778 | * 4) Replace the __init data head arrays for cache_cache and the first | ||
779 | * kmalloc cache with kmalloc allocated arrays. | ||
780 | * 5) Resize the head arrays of the kmalloc caches to their final sizes. | ||
781 | */ | ||
782 | |||
783 | /* 1) create the cache_cache */ | ||
784 | init_MUTEX(&cache_chain_sem); | ||
785 | INIT_LIST_HEAD(&cache_chain); | ||
786 | list_add(&cache_cache.next, &cache_chain); | ||
787 | cache_cache.colour_off = cache_line_size(); | ||
788 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | ||
789 | |||
790 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | ||
791 | |||
792 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | ||
793 | &left_over, &cache_cache.num); | ||
794 | if (!cache_cache.num) | ||
795 | BUG(); | ||
796 | |||
797 | cache_cache.colour = left_over/cache_cache.colour_off; | ||
798 | cache_cache.colour_next = 0; | ||
799 | cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + | ||
800 | sizeof(struct slab), cache_line_size()); | ||
801 | |||
802 | /* 2+3) create the kmalloc caches */ | ||
803 | sizes = malloc_sizes; | ||
804 | names = cache_names; | ||
805 | |||
806 | while (sizes->cs_size != ULONG_MAX) { | ||
807 | /* For performance, all the general caches are L1 aligned. | ||
808 | * This should be particularly beneficial on SMP boxes, as it | ||
809 | * eliminates "false sharing". | ||
810 | * Note for systems short on memory removing the alignment will | ||
811 | * allow tighter packing of the smaller caches. */ | ||
812 | sizes->cs_cachep = kmem_cache_create(names->name, | ||
813 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | ||
814 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | ||
815 | |||
816 | /* Inc off-slab bufctl limit until the ceiling is hit. */ | ||
817 | if (!(OFF_SLAB(sizes->cs_cachep))) { | ||
818 | offslab_limit = sizes->cs_size-sizeof(struct slab); | ||
819 | offslab_limit /= sizeof(kmem_bufctl_t); | ||
820 | } | ||
821 | |||
822 | sizes->cs_dmacachep = kmem_cache_create(names->name_dma, | ||
823 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | ||
824 | (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), | ||
825 | NULL, NULL); | ||
826 | |||
827 | sizes++; | ||
828 | names++; | ||
829 | } | ||
830 | /* 4) Replace the bootstrap head arrays */ | ||
831 | { | ||
832 | void * ptr; | ||
833 | |||
834 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | ||
835 | local_irq_disable(); | ||
836 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | ||
837 | memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); | ||
838 | cache_cache.array[smp_processor_id()] = ptr; | ||
839 | local_irq_enable(); | ||
840 | |||
841 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | ||
842 | local_irq_disable(); | ||
843 | BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); | ||
844 | memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), | ||
845 | sizeof(struct arraycache_init)); | ||
846 | malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; | ||
847 | local_irq_enable(); | ||
848 | } | ||
849 | |||
850 | /* 5) resize the head arrays to their final sizes */ | ||
851 | { | ||
852 | kmem_cache_t *cachep; | ||
853 | down(&cache_chain_sem); | ||
854 | list_for_each_entry(cachep, &cache_chain, next) | ||
855 | enable_cpucache(cachep); | ||
856 | up(&cache_chain_sem); | ||
857 | } | ||
858 | |||
859 | /* Done! */ | ||
860 | g_cpucache_up = FULL; | ||
861 | |||
862 | /* Register a cpu startup notifier callback | ||
863 | * that initializes ac_data for all new cpus | ||
864 | */ | ||
865 | register_cpu_notifier(&cpucache_notifier); | ||
866 | |||
867 | |||
868 | /* The reap timers are started later, with a module init call: | ||
869 | * That part of the kernel is not yet operational. | ||
870 | */ | ||
871 | } | ||
872 | |||
873 | static int __init cpucache_init(void) | ||
874 | { | ||
875 | int cpu; | ||
876 | |||
877 | /* | ||
878 | * Register the timers that return unneeded | ||
879 | * pages to gfp. | ||
880 | */ | ||
881 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
882 | if (cpu_online(cpu)) | ||
883 | start_cpu_timer(cpu); | ||
884 | } | ||
885 | |||
886 | return 0; | ||
887 | } | ||
888 | |||
889 | __initcall(cpucache_init); | ||
890 | |||
891 | /* | ||
892 | * Interface to system's page allocator. No need to hold the cache-lock. | ||
893 | * | ||
894 | * If we requested dmaable memory, we will get it. Even if we | ||
895 | * did not request dmaable memory, we might get it, but that | ||
896 | * would be relatively rare and ignorable. | ||
897 | */ | ||
898 | static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | ||
899 | { | ||
900 | struct page *page; | ||
901 | void *addr; | ||
902 | int i; | ||
903 | |||
904 | flags |= cachep->gfpflags; | ||
905 | if (likely(nodeid == -1)) { | ||
906 | page = alloc_pages(flags, cachep->gfporder); | ||
907 | } else { | ||
908 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | ||
909 | } | ||
910 | if (!page) | ||
911 | return NULL; | ||
912 | addr = page_address(page); | ||
913 | |||
914 | i = (1 << cachep->gfporder); | ||
915 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | ||
916 | atomic_add(i, &slab_reclaim_pages); | ||
917 | add_page_state(nr_slab, i); | ||
918 | while (i--) { | ||
919 | SetPageSlab(page); | ||
920 | page++; | ||
921 | } | ||
922 | return addr; | ||
923 | } | ||
924 | |||
925 | /* | ||
926 | * Interface to system's page release. | ||
927 | */ | ||
928 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | ||
929 | { | ||
930 | unsigned long i = (1<<cachep->gfporder); | ||
931 | struct page *page = virt_to_page(addr); | ||
932 | const unsigned long nr_freed = i; | ||
933 | |||
934 | while (i--) { | ||
935 | if (!TestClearPageSlab(page)) | ||
936 | BUG(); | ||
937 | page++; | ||
938 | } | ||
939 | sub_page_state(nr_slab, nr_freed); | ||
940 | if (current->reclaim_state) | ||
941 | current->reclaim_state->reclaimed_slab += nr_freed; | ||
942 | free_pages((unsigned long)addr, cachep->gfporder); | ||
943 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | ||
944 | atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); | ||
945 | } | ||
946 | |||
947 | static void kmem_rcu_free(struct rcu_head *head) | ||
948 | { | ||
949 | struct slab_rcu *slab_rcu = (struct slab_rcu *) head; | ||
950 | kmem_cache_t *cachep = slab_rcu->cachep; | ||
951 | |||
952 | kmem_freepages(cachep, slab_rcu->addr); | ||
953 | if (OFF_SLAB(cachep)) | ||
954 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | ||
955 | } | ||
956 | |||
957 | #if DEBUG | ||
958 | |||
959 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
960 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | ||
961 | unsigned long caller) | ||
962 | { | ||
963 | int size = obj_reallen(cachep); | ||
964 | |||
965 | addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; | ||
966 | |||
967 | if (size < 5*sizeof(unsigned long)) | ||
968 | return; | ||
969 | |||
970 | *addr++=0x12345678; | ||
971 | *addr++=caller; | ||
972 | *addr++=smp_processor_id(); | ||
973 | size -= 3*sizeof(unsigned long); | ||
974 | { | ||
975 | unsigned long *sptr = &caller; | ||
976 | unsigned long svalue; | ||
977 | |||
978 | while (!kstack_end(sptr)) { | ||
979 | svalue = *sptr++; | ||
980 | if (kernel_text_address(svalue)) { | ||
981 | *addr++=svalue; | ||
982 | size -= sizeof(unsigned long); | ||
983 | if (size <= sizeof(unsigned long)) | ||
984 | break; | ||
985 | } | ||
986 | } | ||
987 | |||
988 | } | ||
989 | *addr++=0x87654321; | ||
990 | } | ||
991 | #endif | ||
992 | |||
993 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | ||
994 | { | ||
995 | int size = obj_reallen(cachep); | ||
996 | addr = &((char*)addr)[obj_dbghead(cachep)]; | ||
997 | |||
998 | memset(addr, val, size); | ||
999 | *(unsigned char *)(addr+size-1) = POISON_END; | ||
1000 | } | ||
1001 | |||
1002 | static void dump_line(char *data, int offset, int limit) | ||
1003 | { | ||
1004 | int i; | ||
1005 | printk(KERN_ERR "%03x:", offset); | ||
1006 | for (i=0;i<limit;i++) { | ||
1007 | printk(" %02x", (unsigned char)data[offset+i]); | ||
1008 | } | ||
1009 | printk("\n"); | ||
1010 | } | ||
1011 | #endif | ||
1012 | |||
1013 | #if DEBUG | ||
1014 | |||
1015 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | ||
1016 | { | ||
1017 | int i, size; | ||
1018 | char *realobj; | ||
1019 | |||
1020 | if (cachep->flags & SLAB_RED_ZONE) { | ||
1021 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | ||
1022 | *dbg_redzone1(cachep, objp), | ||
1023 | *dbg_redzone2(cachep, objp)); | ||
1024 | } | ||
1025 | |||
1026 | if (cachep->flags & SLAB_STORE_USER) { | ||
1027 | printk(KERN_ERR "Last user: [<%p>]", | ||
1028 | *dbg_userword(cachep, objp)); | ||
1029 | print_symbol("(%s)", | ||
1030 | (unsigned long)*dbg_userword(cachep, objp)); | ||
1031 | printk("\n"); | ||
1032 | } | ||
1033 | realobj = (char*)objp+obj_dbghead(cachep); | ||
1034 | size = obj_reallen(cachep); | ||
1035 | for (i=0; i<size && lines;i+=16, lines--) { | ||
1036 | int limit; | ||
1037 | limit = 16; | ||
1038 | if (i+limit > size) | ||
1039 | limit = size-i; | ||
1040 | dump_line(realobj, i, limit); | ||
1041 | } | ||
1042 | } | ||
1043 | |||
1044 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | ||
1045 | { | ||
1046 | char *realobj; | ||
1047 | int size, i; | ||
1048 | int lines = 0; | ||
1049 | |||
1050 | realobj = (char*)objp+obj_dbghead(cachep); | ||
1051 | size = obj_reallen(cachep); | ||
1052 | |||
1053 | for (i=0;i<size;i++) { | ||
1054 | char exp = POISON_FREE; | ||
1055 | if (i == size-1) | ||
1056 | exp = POISON_END; | ||
1057 | if (realobj[i] != exp) { | ||
1058 | int limit; | ||
1059 | /* Mismatch ! */ | ||
1060 | /* Print header */ | ||
1061 | if (lines == 0) { | ||
1062 | printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", | ||
1063 | realobj, size); | ||
1064 | print_objinfo(cachep, objp, 0); | ||
1065 | } | ||
1066 | /* Hexdump the affected line */ | ||
1067 | i = (i/16)*16; | ||
1068 | limit = 16; | ||
1069 | if (i+limit > size) | ||
1070 | limit = size-i; | ||
1071 | dump_line(realobj, i, limit); | ||
1072 | i += 16; | ||
1073 | lines++; | ||
1074 | /* Limit to 5 lines */ | ||
1075 | if (lines > 5) | ||
1076 | break; | ||
1077 | } | ||
1078 | } | ||
1079 | if (lines != 0) { | ||
1080 | /* Print some data about the neighboring objects, if they | ||
1081 | * exist: | ||
1082 | */ | ||
1083 | struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); | ||
1084 | int objnr; | ||
1085 | |||
1086 | objnr = (objp-slabp->s_mem)/cachep->objsize; | ||
1087 | if (objnr) { | ||
1088 | objp = slabp->s_mem+(objnr-1)*cachep->objsize; | ||
1089 | realobj = (char*)objp+obj_dbghead(cachep); | ||
1090 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | ||
1091 | realobj, size); | ||
1092 | print_objinfo(cachep, objp, 2); | ||
1093 | } | ||
1094 | if (objnr+1 < cachep->num) { | ||
1095 | objp = slabp->s_mem+(objnr+1)*cachep->objsize; | ||
1096 | realobj = (char*)objp+obj_dbghead(cachep); | ||
1097 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | ||
1098 | realobj, size); | ||
1099 | print_objinfo(cachep, objp, 2); | ||
1100 | } | ||
1101 | } | ||
1102 | } | ||
1103 | #endif | ||
1104 | |||
1105 | /* Destroy all the objs in a slab, and release the mem back to the system. | ||
1106 | * Before calling the slab must have been unlinked from the cache. | ||
1107 | * The cache-lock is not held/needed. | ||
1108 | */ | ||
1109 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | ||
1110 | { | ||
1111 | void *addr = slabp->s_mem - slabp->colouroff; | ||
1112 | |||
1113 | #if DEBUG | ||
1114 | int i; | ||
1115 | for (i = 0; i < cachep->num; i++) { | ||
1116 | void *objp = slabp->s_mem + cachep->objsize * i; | ||
1117 | |||
1118 | if (cachep->flags & SLAB_POISON) { | ||
1119 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
1120 | if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) | ||
1121 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); | ||
1122 | else | ||
1123 | check_poison_obj(cachep, objp); | ||
1124 | #else | ||
1125 | check_poison_obj(cachep, objp); | ||
1126 | #endif | ||
1127 | } | ||
1128 | if (cachep->flags & SLAB_RED_ZONE) { | ||
1129 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | ||
1130 | slab_error(cachep, "start of a freed object " | ||
1131 | "was overwritten"); | ||
1132 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | ||
1133 | slab_error(cachep, "end of a freed object " | ||
1134 | "was overwritten"); | ||
1135 | } | ||
1136 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | ||
1137 | (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); | ||
1138 | } | ||
1139 | #else | ||
1140 | if (cachep->dtor) { | ||
1141 | int i; | ||
1142 | for (i = 0; i < cachep->num; i++) { | ||
1143 | void* objp = slabp->s_mem+cachep->objsize*i; | ||
1144 | (cachep->dtor)(objp, cachep, 0); | ||
1145 | } | ||
1146 | } | ||
1147 | #endif | ||
1148 | |||
1149 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | ||
1150 | struct slab_rcu *slab_rcu; | ||
1151 | |||
1152 | slab_rcu = (struct slab_rcu *) slabp; | ||
1153 | slab_rcu->cachep = cachep; | ||
1154 | slab_rcu->addr = addr; | ||
1155 | call_rcu(&slab_rcu->head, kmem_rcu_free); | ||
1156 | } else { | ||
1157 | kmem_freepages(cachep, addr); | ||
1158 | if (OFF_SLAB(cachep)) | ||
1159 | kmem_cache_free(cachep->slabp_cache, slabp); | ||
1160 | } | ||
1161 | } | ||
1162 | |||
1163 | /** | ||
1164 | * kmem_cache_create - Create a cache. | ||
1165 | * @name: A string which is used in /proc/slabinfo to identify this cache. | ||
1166 | * @size: The size of objects to be created in this cache. | ||
1167 | * @align: The required alignment for the objects. | ||
1168 | * @flags: SLAB flags | ||
1169 | * @ctor: A constructor for the objects. | ||
1170 | * @dtor: A destructor for the objects. | ||
1171 | * | ||
1172 | * Returns a ptr to the cache on success, NULL on failure. | ||
1173 | * Cannot be called within a int, but can be interrupted. | ||
1174 | * The @ctor is run when new pages are allocated by the cache | ||
1175 | * and the @dtor is run before the pages are handed back. | ||
1176 | * | ||
1177 | * @name must be valid until the cache is destroyed. This implies that | ||
1178 | * the module calling this has to destroy the cache before getting | ||
1179 | * unloaded. | ||
1180 | * | ||
1181 | * The flags are | ||
1182 | * | ||
1183 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | ||
1184 | * to catch references to uninitialised memory. | ||
1185 | * | ||
1186 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | ||
1187 | * for buffer overruns. | ||
1188 | * | ||
1189 | * %SLAB_NO_REAP - Don't automatically reap this cache when we're under | ||
1190 | * memory pressure. | ||
1191 | * | ||
1192 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | ||
1193 | * cacheline. This can be beneficial if you're counting cycles as closely | ||
1194 | * as davem. | ||
1195 | */ | ||
1196 | kmem_cache_t * | ||
1197 | kmem_cache_create (const char *name, size_t size, size_t align, | ||
1198 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | ||
1199 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) | ||
1200 | { | ||
1201 | size_t left_over, slab_size, ralign; | ||
1202 | kmem_cache_t *cachep = NULL; | ||
1203 | |||
1204 | /* | ||
1205 | * Sanity checks... these are all serious usage bugs. | ||
1206 | */ | ||
1207 | if ((!name) || | ||
1208 | in_interrupt() || | ||
1209 | (size < BYTES_PER_WORD) || | ||
1210 | (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || | ||
1211 | (dtor && !ctor)) { | ||
1212 | printk(KERN_ERR "%s: Early error in slab %s\n", | ||
1213 | __FUNCTION__, name); | ||
1214 | BUG(); | ||
1215 | } | ||
1216 | |||
1217 | #if DEBUG | ||
1218 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | ||
1219 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | ||
1220 | /* No constructor, but inital state check requested */ | ||
1221 | printk(KERN_ERR "%s: No con, but init state check " | ||
1222 | "requested - %s\n", __FUNCTION__, name); | ||
1223 | flags &= ~SLAB_DEBUG_INITIAL; | ||
1224 | } | ||
1225 | |||
1226 | #if FORCED_DEBUG | ||
1227 | /* | ||
1228 | * Enable redzoning and last user accounting, except for caches with | ||
1229 | * large objects, if the increased size would increase the object size | ||
1230 | * above the next power of two: caches with object sizes just above a | ||
1231 | * power of two have a significant amount of internal fragmentation. | ||
1232 | */ | ||
1233 | if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) | ||
1234 | flags |= SLAB_RED_ZONE|SLAB_STORE_USER; | ||
1235 | if (!(flags & SLAB_DESTROY_BY_RCU)) | ||
1236 | flags |= SLAB_POISON; | ||
1237 | #endif | ||
1238 | if (flags & SLAB_DESTROY_BY_RCU) | ||
1239 | BUG_ON(flags & SLAB_POISON); | ||
1240 | #endif | ||
1241 | if (flags & SLAB_DESTROY_BY_RCU) | ||
1242 | BUG_ON(dtor); | ||
1243 | |||
1244 | /* | ||
1245 | * Always checks flags, a caller might be expecting debug | ||
1246 | * support which isn't available. | ||
1247 | */ | ||
1248 | if (flags & ~CREATE_MASK) | ||
1249 | BUG(); | ||
1250 | |||
1251 | /* Check that size is in terms of words. This is needed to avoid | ||
1252 | * unaligned accesses for some archs when redzoning is used, and makes | ||
1253 | * sure any on-slab bufctl's are also correctly aligned. | ||
1254 | */ | ||
1255 | if (size & (BYTES_PER_WORD-1)) { | ||
1256 | size += (BYTES_PER_WORD-1); | ||
1257 | size &= ~(BYTES_PER_WORD-1); | ||
1258 | } | ||
1259 | |||
1260 | /* calculate out the final buffer alignment: */ | ||
1261 | /* 1) arch recommendation: can be overridden for debug */ | ||
1262 | if (flags & SLAB_HWCACHE_ALIGN) { | ||
1263 | /* Default alignment: as specified by the arch code. | ||
1264 | * Except if an object is really small, then squeeze multiple | ||
1265 | * objects into one cacheline. | ||
1266 | */ | ||
1267 | ralign = cache_line_size(); | ||
1268 | while (size <= ralign/2) | ||
1269 | ralign /= 2; | ||
1270 | } else { | ||
1271 | ralign = BYTES_PER_WORD; | ||
1272 | } | ||
1273 | /* 2) arch mandated alignment: disables debug if necessary */ | ||
1274 | if (ralign < ARCH_SLAB_MINALIGN) { | ||
1275 | ralign = ARCH_SLAB_MINALIGN; | ||
1276 | if (ralign > BYTES_PER_WORD) | ||
1277 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | ||
1278 | } | ||
1279 | /* 3) caller mandated alignment: disables debug if necessary */ | ||
1280 | if (ralign < align) { | ||
1281 | ralign = align; | ||
1282 | if (ralign > BYTES_PER_WORD) | ||
1283 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | ||
1284 | } | ||
1285 | /* 4) Store it. Note that the debug code below can reduce | ||
1286 | * the alignment to BYTES_PER_WORD. | ||
1287 | */ | ||
1288 | align = ralign; | ||
1289 | |||
1290 | /* Get cache's description obj. */ | ||
1291 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | ||
1292 | if (!cachep) | ||
1293 | goto opps; | ||
1294 | memset(cachep, 0, sizeof(kmem_cache_t)); | ||
1295 | |||
1296 | #if DEBUG | ||
1297 | cachep->reallen = size; | ||
1298 | |||
1299 | if (flags & SLAB_RED_ZONE) { | ||
1300 | /* redzoning only works with word aligned caches */ | ||
1301 | align = BYTES_PER_WORD; | ||
1302 | |||
1303 | /* add space for red zone words */ | ||
1304 | cachep->dbghead += BYTES_PER_WORD; | ||
1305 | size += 2*BYTES_PER_WORD; | ||
1306 | } | ||
1307 | if (flags & SLAB_STORE_USER) { | ||
1308 | /* user store requires word alignment and | ||
1309 | * one word storage behind the end of the real | ||
1310 | * object. | ||
1311 | */ | ||
1312 | align = BYTES_PER_WORD; | ||
1313 | size += BYTES_PER_WORD; | ||
1314 | } | ||
1315 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | ||
1316 | if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { | ||
1317 | cachep->dbghead += PAGE_SIZE - size; | ||
1318 | size = PAGE_SIZE; | ||
1319 | } | ||
1320 | #endif | ||
1321 | #endif | ||
1322 | |||
1323 | /* Determine if the slab management is 'on' or 'off' slab. */ | ||
1324 | if (size >= (PAGE_SIZE>>3)) | ||
1325 | /* | ||
1326 | * Size is large, assume best to place the slab management obj | ||
1327 | * off-slab (should allow better packing of objs). | ||
1328 | */ | ||
1329 | flags |= CFLGS_OFF_SLAB; | ||
1330 | |||
1331 | size = ALIGN(size, align); | ||
1332 | |||
1333 | if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { | ||
1334 | /* | ||
1335 | * A VFS-reclaimable slab tends to have most allocations | ||
1336 | * as GFP_NOFS and we really don't want to have to be allocating | ||
1337 | * higher-order pages when we are unable to shrink dcache. | ||
1338 | */ | ||
1339 | cachep->gfporder = 0; | ||
1340 | cache_estimate(cachep->gfporder, size, align, flags, | ||
1341 | &left_over, &cachep->num); | ||
1342 | } else { | ||
1343 | /* | ||
1344 | * Calculate size (in pages) of slabs, and the num of objs per | ||
1345 | * slab. This could be made much more intelligent. For now, | ||
1346 | * try to avoid using high page-orders for slabs. When the | ||
1347 | * gfp() funcs are more friendly towards high-order requests, | ||
1348 | * this should be changed. | ||
1349 | */ | ||
1350 | do { | ||
1351 | unsigned int break_flag = 0; | ||
1352 | cal_wastage: | ||
1353 | cache_estimate(cachep->gfporder, size, align, flags, | ||
1354 | &left_over, &cachep->num); | ||
1355 | if (break_flag) | ||
1356 | break; | ||
1357 | if (cachep->gfporder >= MAX_GFP_ORDER) | ||
1358 | break; | ||
1359 | if (!cachep->num) | ||
1360 | goto next; | ||
1361 | if (flags & CFLGS_OFF_SLAB && | ||
1362 | cachep->num > offslab_limit) { | ||
1363 | /* This num of objs will cause problems. */ | ||
1364 | cachep->gfporder--; | ||
1365 | break_flag++; | ||
1366 | goto cal_wastage; | ||
1367 | } | ||
1368 | |||
1369 | /* | ||
1370 | * Large num of objs is good, but v. large slabs are | ||
1371 | * currently bad for the gfp()s. | ||
1372 | */ | ||
1373 | if (cachep->gfporder >= slab_break_gfp_order) | ||
1374 | break; | ||
1375 | |||
1376 | if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) | ||
1377 | break; /* Acceptable internal fragmentation. */ | ||
1378 | next: | ||
1379 | cachep->gfporder++; | ||
1380 | } while (1); | ||
1381 | } | ||
1382 | |||
1383 | if (!cachep->num) { | ||
1384 | printk("kmem_cache_create: couldn't create cache %s.\n", name); | ||
1385 | kmem_cache_free(&cache_cache, cachep); | ||
1386 | cachep = NULL; | ||
1387 | goto opps; | ||
1388 | } | ||
1389 | slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) | ||
1390 | + sizeof(struct slab), align); | ||
1391 | |||
1392 | /* | ||
1393 | * If the slab has been placed off-slab, and we have enough space then | ||
1394 | * move it on-slab. This is at the expense of any extra colouring. | ||
1395 | */ | ||
1396 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | ||
1397 | flags &= ~CFLGS_OFF_SLAB; | ||
1398 | left_over -= slab_size; | ||
1399 | } | ||
1400 | |||
1401 | if (flags & CFLGS_OFF_SLAB) { | ||
1402 | /* really off slab. No need for manual alignment */ | ||
1403 | slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); | ||
1404 | } | ||
1405 | |||
1406 | cachep->colour_off = cache_line_size(); | ||
1407 | /* Offset must be a multiple of the alignment. */ | ||
1408 | if (cachep->colour_off < align) | ||
1409 | cachep->colour_off = align; | ||
1410 | cachep->colour = left_over/cachep->colour_off; | ||
1411 | cachep->slab_size = slab_size; | ||
1412 | cachep->flags = flags; | ||
1413 | cachep->gfpflags = 0; | ||
1414 | if (flags & SLAB_CACHE_DMA) | ||
1415 | cachep->gfpflags |= GFP_DMA; | ||
1416 | spin_lock_init(&cachep->spinlock); | ||
1417 | cachep->objsize = size; | ||
1418 | /* NUMA */ | ||
1419 | INIT_LIST_HEAD(&cachep->lists.slabs_full); | ||
1420 | INIT_LIST_HEAD(&cachep->lists.slabs_partial); | ||
1421 | INIT_LIST_HEAD(&cachep->lists.slabs_free); | ||
1422 | |||
1423 | if (flags & CFLGS_OFF_SLAB) | ||
1424 | cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); | ||
1425 | cachep->ctor = ctor; | ||
1426 | cachep->dtor = dtor; | ||
1427 | cachep->name = name; | ||
1428 | |||
1429 | /* Don't let CPUs to come and go */ | ||
1430 | lock_cpu_hotplug(); | ||
1431 | |||
1432 | if (g_cpucache_up == FULL) { | ||
1433 | enable_cpucache(cachep); | ||
1434 | } else { | ||
1435 | if (g_cpucache_up == NONE) { | ||
1436 | /* Note: the first kmem_cache_create must create | ||
1437 | * the cache that's used by kmalloc(24), otherwise | ||
1438 | * the creation of further caches will BUG(). | ||
1439 | */ | ||
1440 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | ||
1441 | g_cpucache_up = PARTIAL; | ||
1442 | } else { | ||
1443 | cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); | ||
1444 | } | ||
1445 | BUG_ON(!ac_data(cachep)); | ||
1446 | ac_data(cachep)->avail = 0; | ||
1447 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | ||
1448 | ac_data(cachep)->batchcount = 1; | ||
1449 | ac_data(cachep)->touched = 0; | ||
1450 | cachep->batchcount = 1; | ||
1451 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | ||
1452 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | ||
1453 | + cachep->num; | ||
1454 | } | ||
1455 | |||
1456 | cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
1457 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
1458 | |||
1459 | /* Need the semaphore to access the chain. */ | ||
1460 | down(&cache_chain_sem); | ||
1461 | { | ||
1462 | struct list_head *p; | ||
1463 | mm_segment_t old_fs; | ||
1464 | |||
1465 | old_fs = get_fs(); | ||
1466 | set_fs(KERNEL_DS); | ||
1467 | list_for_each(p, &cache_chain) { | ||
1468 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | ||
1469 | char tmp; | ||
1470 | /* This happens when the module gets unloaded and doesn't | ||
1471 | destroy its slab cache and noone else reuses the vmalloc | ||
1472 | area of the module. Print a warning. */ | ||
1473 | if (__get_user(tmp,pc->name)) { | ||
1474 | printk("SLAB: cache with size %d has lost its name\n", | ||
1475 | pc->objsize); | ||
1476 | continue; | ||
1477 | } | ||
1478 | if (!strcmp(pc->name,name)) { | ||
1479 | printk("kmem_cache_create: duplicate cache %s\n",name); | ||
1480 | up(&cache_chain_sem); | ||
1481 | unlock_cpu_hotplug(); | ||
1482 | BUG(); | ||
1483 | } | ||
1484 | } | ||
1485 | set_fs(old_fs); | ||
1486 | } | ||
1487 | |||
1488 | /* cache setup completed, link it into the list */ | ||
1489 | list_add(&cachep->next, &cache_chain); | ||
1490 | up(&cache_chain_sem); | ||
1491 | unlock_cpu_hotplug(); | ||
1492 | opps: | ||
1493 | if (!cachep && (flags & SLAB_PANIC)) | ||
1494 | panic("kmem_cache_create(): failed to create slab `%s'\n", | ||
1495 | name); | ||
1496 | return cachep; | ||
1497 | } | ||
1498 | EXPORT_SYMBOL(kmem_cache_create); | ||
1499 | |||
1500 | #if DEBUG | ||
1501 | static void check_irq_off(void) | ||
1502 | { | ||
1503 | BUG_ON(!irqs_disabled()); | ||
1504 | } | ||
1505 | |||
1506 | static void check_irq_on(void) | ||
1507 | { | ||
1508 | BUG_ON(irqs_disabled()); | ||
1509 | } | ||
1510 | |||
1511 | static void check_spinlock_acquired(kmem_cache_t *cachep) | ||
1512 | { | ||
1513 | #ifdef CONFIG_SMP | ||
1514 | check_irq_off(); | ||
1515 | BUG_ON(spin_trylock(&cachep->spinlock)); | ||
1516 | #endif | ||
1517 | } | ||
1518 | #else | ||
1519 | #define check_irq_off() do { } while(0) | ||
1520 | #define check_irq_on() do { } while(0) | ||
1521 | #define check_spinlock_acquired(x) do { } while(0) | ||
1522 | #endif | ||
1523 | |||
1524 | /* | ||
1525 | * Waits for all CPUs to execute func(). | ||
1526 | */ | ||
1527 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | ||
1528 | { | ||
1529 | check_irq_on(); | ||
1530 | preempt_disable(); | ||
1531 | |||
1532 | local_irq_disable(); | ||
1533 | func(arg); | ||
1534 | local_irq_enable(); | ||
1535 | |||
1536 | if (smp_call_function(func, arg, 1, 1)) | ||
1537 | BUG(); | ||
1538 | |||
1539 | preempt_enable(); | ||
1540 | } | ||
1541 | |||
1542 | static void drain_array_locked(kmem_cache_t* cachep, | ||
1543 | struct array_cache *ac, int force); | ||
1544 | |||
1545 | static void do_drain(void *arg) | ||
1546 | { | ||
1547 | kmem_cache_t *cachep = (kmem_cache_t*)arg; | ||
1548 | struct array_cache *ac; | ||
1549 | |||
1550 | check_irq_off(); | ||
1551 | ac = ac_data(cachep); | ||
1552 | spin_lock(&cachep->spinlock); | ||
1553 | free_block(cachep, &ac_entry(ac)[0], ac->avail); | ||
1554 | spin_unlock(&cachep->spinlock); | ||
1555 | ac->avail = 0; | ||
1556 | } | ||
1557 | |||
1558 | static void drain_cpu_caches(kmem_cache_t *cachep) | ||
1559 | { | ||
1560 | smp_call_function_all_cpus(do_drain, cachep); | ||
1561 | check_irq_on(); | ||
1562 | spin_lock_irq(&cachep->spinlock); | ||
1563 | if (cachep->lists.shared) | ||
1564 | drain_array_locked(cachep, cachep->lists.shared, 1); | ||
1565 | spin_unlock_irq(&cachep->spinlock); | ||
1566 | } | ||
1567 | |||
1568 | |||
1569 | /* NUMA shrink all list3s */ | ||
1570 | static int __cache_shrink(kmem_cache_t *cachep) | ||
1571 | { | ||
1572 | struct slab *slabp; | ||
1573 | int ret; | ||
1574 | |||
1575 | drain_cpu_caches(cachep); | ||
1576 | |||
1577 | check_irq_on(); | ||
1578 | spin_lock_irq(&cachep->spinlock); | ||
1579 | |||
1580 | for(;;) { | ||
1581 | struct list_head *p; | ||
1582 | |||
1583 | p = cachep->lists.slabs_free.prev; | ||
1584 | if (p == &cachep->lists.slabs_free) | ||
1585 | break; | ||
1586 | |||
1587 | slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); | ||
1588 | #if DEBUG | ||
1589 | if (slabp->inuse) | ||
1590 | BUG(); | ||
1591 | #endif | ||
1592 | list_del(&slabp->list); | ||
1593 | |||
1594 | cachep->lists.free_objects -= cachep->num; | ||
1595 | spin_unlock_irq(&cachep->spinlock); | ||
1596 | slab_destroy(cachep, slabp); | ||
1597 | spin_lock_irq(&cachep->spinlock); | ||
1598 | } | ||
1599 | ret = !list_empty(&cachep->lists.slabs_full) || | ||
1600 | !list_empty(&cachep->lists.slabs_partial); | ||
1601 | spin_unlock_irq(&cachep->spinlock); | ||
1602 | return ret; | ||
1603 | } | ||
1604 | |||
1605 | /** | ||
1606 | * kmem_cache_shrink - Shrink a cache. | ||
1607 | * @cachep: The cache to shrink. | ||
1608 | * | ||
1609 | * Releases as many slabs as possible for a cache. | ||
1610 | * To help debugging, a zero exit status indicates all slabs were released. | ||
1611 | */ | ||
1612 | int kmem_cache_shrink(kmem_cache_t *cachep) | ||
1613 | { | ||
1614 | if (!cachep || in_interrupt()) | ||
1615 | BUG(); | ||
1616 | |||
1617 | return __cache_shrink(cachep); | ||
1618 | } | ||
1619 | EXPORT_SYMBOL(kmem_cache_shrink); | ||
1620 | |||
1621 | /** | ||
1622 | * kmem_cache_destroy - delete a cache | ||
1623 | * @cachep: the cache to destroy | ||
1624 | * | ||
1625 | * Remove a kmem_cache_t object from the slab cache. | ||
1626 | * Returns 0 on success. | ||
1627 | * | ||
1628 | * It is expected this function will be called by a module when it is | ||
1629 | * unloaded. This will remove the cache completely, and avoid a duplicate | ||
1630 | * cache being allocated each time a module is loaded and unloaded, if the | ||
1631 | * module doesn't have persistent in-kernel storage across loads and unloads. | ||
1632 | * | ||
1633 | * The cache must be empty before calling this function. | ||
1634 | * | ||
1635 | * The caller must guarantee that noone will allocate memory from the cache | ||
1636 | * during the kmem_cache_destroy(). | ||
1637 | */ | ||
1638 | int kmem_cache_destroy(kmem_cache_t * cachep) | ||
1639 | { | ||
1640 | int i; | ||
1641 | |||
1642 | if (!cachep || in_interrupt()) | ||
1643 | BUG(); | ||
1644 | |||
1645 | /* Don't let CPUs to come and go */ | ||
1646 | lock_cpu_hotplug(); | ||
1647 | |||
1648 | /* Find the cache in the chain of caches. */ | ||
1649 | down(&cache_chain_sem); | ||
1650 | /* | ||
1651 | * the chain is never empty, cache_cache is never destroyed | ||
1652 | */ | ||
1653 | list_del(&cachep->next); | ||
1654 | up(&cache_chain_sem); | ||
1655 | |||
1656 | if (__cache_shrink(cachep)) { | ||
1657 | slab_error(cachep, "Can't free all objects"); | ||
1658 | down(&cache_chain_sem); | ||
1659 | list_add(&cachep->next,&cache_chain); | ||
1660 | up(&cache_chain_sem); | ||
1661 | unlock_cpu_hotplug(); | ||
1662 | return 1; | ||
1663 | } | ||
1664 | |||
1665 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | ||
1666 | synchronize_kernel(); | ||
1667 | |||
1668 | /* no cpu_online check required here since we clear the percpu | ||
1669 | * array on cpu offline and set this to NULL. | ||
1670 | */ | ||
1671 | for (i = 0; i < NR_CPUS; i++) | ||
1672 | kfree(cachep->array[i]); | ||
1673 | |||
1674 | /* NUMA: free the list3 structures */ | ||
1675 | kfree(cachep->lists.shared); | ||
1676 | cachep->lists.shared = NULL; | ||
1677 | kmem_cache_free(&cache_cache, cachep); | ||
1678 | |||
1679 | unlock_cpu_hotplug(); | ||
1680 | |||
1681 | return 0; | ||
1682 | } | ||
1683 | EXPORT_SYMBOL(kmem_cache_destroy); | ||
1684 | |||
1685 | /* Get the memory for a slab management obj. */ | ||
1686 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, | ||
1687 | void *objp, int colour_off, unsigned int __nocast local_flags) | ||
1688 | { | ||
1689 | struct slab *slabp; | ||
1690 | |||
1691 | if (OFF_SLAB(cachep)) { | ||
1692 | /* Slab management obj is off-slab. */ | ||
1693 | slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); | ||
1694 | if (!slabp) | ||
1695 | return NULL; | ||
1696 | } else { | ||
1697 | slabp = objp+colour_off; | ||
1698 | colour_off += cachep->slab_size; | ||
1699 | } | ||
1700 | slabp->inuse = 0; | ||
1701 | slabp->colouroff = colour_off; | ||
1702 | slabp->s_mem = objp+colour_off; | ||
1703 | |||
1704 | return slabp; | ||
1705 | } | ||
1706 | |||
1707 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | ||
1708 | { | ||
1709 | return (kmem_bufctl_t *)(slabp+1); | ||
1710 | } | ||
1711 | |||
1712 | static void cache_init_objs(kmem_cache_t *cachep, | ||
1713 | struct slab *slabp, unsigned long ctor_flags) | ||
1714 | { | ||
1715 | int i; | ||
1716 | |||
1717 | for (i = 0; i < cachep->num; i++) { | ||
1718 | void* objp = slabp->s_mem+cachep->objsize*i; | ||
1719 | #if DEBUG | ||
1720 | /* need to poison the objs? */ | ||
1721 | if (cachep->flags & SLAB_POISON) | ||
1722 | poison_obj(cachep, objp, POISON_FREE); | ||
1723 | if (cachep->flags & SLAB_STORE_USER) | ||
1724 | *dbg_userword(cachep, objp) = NULL; | ||
1725 | |||
1726 | if (cachep->flags & SLAB_RED_ZONE) { | ||
1727 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | ||
1728 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | ||
1729 | } | ||
1730 | /* | ||
1731 | * Constructors are not allowed to allocate memory from | ||
1732 | * the same cache which they are a constructor for. | ||
1733 | * Otherwise, deadlock. They must also be threaded. | ||
1734 | */ | ||
1735 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | ||
1736 | cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); | ||
1737 | |||
1738 | if (cachep->flags & SLAB_RED_ZONE) { | ||
1739 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | ||
1740 | slab_error(cachep, "constructor overwrote the" | ||
1741 | " end of an object"); | ||
1742 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | ||
1743 | slab_error(cachep, "constructor overwrote the" | ||
1744 | " start of an object"); | ||
1745 | } | ||
1746 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | ||
1747 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | ||
1748 | #else | ||
1749 | if (cachep->ctor) | ||
1750 | cachep->ctor(objp, cachep, ctor_flags); | ||
1751 | #endif | ||
1752 | slab_bufctl(slabp)[i] = i+1; | ||
1753 | } | ||
1754 | slab_bufctl(slabp)[i-1] = BUFCTL_END; | ||
1755 | slabp->free = 0; | ||
1756 | } | ||
1757 | |||
1758 | static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags) | ||
1759 | { | ||
1760 | if (flags & SLAB_DMA) { | ||
1761 | if (!(cachep->gfpflags & GFP_DMA)) | ||
1762 | BUG(); | ||
1763 | } else { | ||
1764 | if (cachep->gfpflags & GFP_DMA) | ||
1765 | BUG(); | ||
1766 | } | ||
1767 | } | ||
1768 | |||
1769 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | ||
1770 | { | ||
1771 | int i; | ||
1772 | struct page *page; | ||
1773 | |||
1774 | /* Nasty!!!!!! I hope this is OK. */ | ||
1775 | i = 1 << cachep->gfporder; | ||
1776 | page = virt_to_page(objp); | ||
1777 | do { | ||
1778 | SET_PAGE_CACHE(page, cachep); | ||
1779 | SET_PAGE_SLAB(page, slabp); | ||
1780 | page++; | ||
1781 | } while (--i); | ||
1782 | } | ||
1783 | |||
1784 | /* | ||
1785 | * Grow (by 1) the number of slabs within a cache. This is called by | ||
1786 | * kmem_cache_alloc() when there are no active objs left in a cache. | ||
1787 | */ | ||
1788 | static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | ||
1789 | { | ||
1790 | struct slab *slabp; | ||
1791 | void *objp; | ||
1792 | size_t offset; | ||
1793 | unsigned int local_flags; | ||
1794 | unsigned long ctor_flags; | ||
1795 | |||
1796 | /* Be lazy and only check for valid flags here, | ||
1797 | * keeping it out of the critical path in kmem_cache_alloc(). | ||
1798 | */ | ||
1799 | if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) | ||
1800 | BUG(); | ||
1801 | if (flags & SLAB_NO_GROW) | ||
1802 | return 0; | ||
1803 | |||
1804 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; | ||
1805 | local_flags = (flags & SLAB_LEVEL_MASK); | ||
1806 | if (!(local_flags & __GFP_WAIT)) | ||
1807 | /* | ||
1808 | * Not allowed to sleep. Need to tell a constructor about | ||
1809 | * this - it might need to know... | ||
1810 | */ | ||
1811 | ctor_flags |= SLAB_CTOR_ATOMIC; | ||
1812 | |||
1813 | /* About to mess with non-constant members - lock. */ | ||
1814 | check_irq_off(); | ||
1815 | spin_lock(&cachep->spinlock); | ||
1816 | |||
1817 | /* Get colour for the slab, and cal the next value. */ | ||
1818 | offset = cachep->colour_next; | ||
1819 | cachep->colour_next++; | ||
1820 | if (cachep->colour_next >= cachep->colour) | ||
1821 | cachep->colour_next = 0; | ||
1822 | offset *= cachep->colour_off; | ||
1823 | |||
1824 | spin_unlock(&cachep->spinlock); | ||
1825 | |||
1826 | if (local_flags & __GFP_WAIT) | ||
1827 | local_irq_enable(); | ||
1828 | |||
1829 | /* | ||
1830 | * The test for missing atomic flag is performed here, rather than | ||
1831 | * the more obvious place, simply to reduce the critical path length | ||
1832 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | ||
1833 | * will eventually be caught here (where it matters). | ||
1834 | */ | ||
1835 | kmem_flagcheck(cachep, flags); | ||
1836 | |||
1837 | |||
1838 | /* Get mem for the objs. */ | ||
1839 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) | ||
1840 | goto failed; | ||
1841 | |||
1842 | /* Get slab management. */ | ||
1843 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | ||
1844 | goto opps1; | ||
1845 | |||
1846 | set_slab_attr(cachep, slabp, objp); | ||
1847 | |||
1848 | cache_init_objs(cachep, slabp, ctor_flags); | ||
1849 | |||
1850 | if (local_flags & __GFP_WAIT) | ||
1851 | local_irq_disable(); | ||
1852 | check_irq_off(); | ||
1853 | spin_lock(&cachep->spinlock); | ||
1854 | |||
1855 | /* Make slab active. */ | ||
1856 | list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); | ||
1857 | STATS_INC_GROWN(cachep); | ||
1858 | list3_data(cachep)->free_objects += cachep->num; | ||
1859 | spin_unlock(&cachep->spinlock); | ||
1860 | return 1; | ||
1861 | opps1: | ||
1862 | kmem_freepages(cachep, objp); | ||
1863 | failed: | ||
1864 | if (local_flags & __GFP_WAIT) | ||
1865 | local_irq_disable(); | ||
1866 | return 0; | ||
1867 | } | ||
1868 | |||
1869 | #if DEBUG | ||
1870 | |||
1871 | /* | ||
1872 | * Perform extra freeing checks: | ||
1873 | * - detect bad pointers. | ||
1874 | * - POISON/RED_ZONE checking | ||
1875 | * - destructor calls, for caches with POISON+dtor | ||
1876 | */ | ||
1877 | static void kfree_debugcheck(const void *objp) | ||
1878 | { | ||
1879 | struct page *page; | ||
1880 | |||
1881 | if (!virt_addr_valid(objp)) { | ||
1882 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | ||
1883 | (unsigned long)objp); | ||
1884 | BUG(); | ||
1885 | } | ||
1886 | page = virt_to_page(objp); | ||
1887 | if (!PageSlab(page)) { | ||
1888 | printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); | ||
1889 | BUG(); | ||
1890 | } | ||
1891 | } | ||
1892 | |||
1893 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | ||
1894 | void *caller) | ||
1895 | { | ||
1896 | struct page *page; | ||
1897 | unsigned int objnr; | ||
1898 | struct slab *slabp; | ||
1899 | |||
1900 | objp -= obj_dbghead(cachep); | ||
1901 | kfree_debugcheck(objp); | ||
1902 | page = virt_to_page(objp); | ||
1903 | |||
1904 | if (GET_PAGE_CACHE(page) != cachep) { | ||
1905 | printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", | ||
1906 | GET_PAGE_CACHE(page),cachep); | ||
1907 | printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); | ||
1908 | printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); | ||
1909 | WARN_ON(1); | ||
1910 | } | ||
1911 | slabp = GET_PAGE_SLAB(page); | ||
1912 | |||
1913 | if (cachep->flags & SLAB_RED_ZONE) { | ||
1914 | if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { | ||
1915 | slab_error(cachep, "double free, or memory outside" | ||
1916 | " object was overwritten"); | ||
1917 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | ||
1918 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | ||
1919 | } | ||
1920 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | ||
1921 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | ||
1922 | } | ||
1923 | if (cachep->flags & SLAB_STORE_USER) | ||
1924 | *dbg_userword(cachep, objp) = caller; | ||
1925 | |||
1926 | objnr = (objp-slabp->s_mem)/cachep->objsize; | ||
1927 | |||
1928 | BUG_ON(objnr >= cachep->num); | ||
1929 | BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); | ||
1930 | |||
1931 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | ||
1932 | /* Need to call the slab's constructor so the | ||
1933 | * caller can perform a verify of its state (debugging). | ||
1934 | * Called without the cache-lock held. | ||
1935 | */ | ||
1936 | cachep->ctor(objp+obj_dbghead(cachep), | ||
1937 | cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); | ||
1938 | } | ||
1939 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | ||
1940 | /* we want to cache poison the object, | ||
1941 | * call the destruction callback | ||
1942 | */ | ||
1943 | cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); | ||
1944 | } | ||
1945 | if (cachep->flags & SLAB_POISON) { | ||
1946 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
1947 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | ||
1948 | store_stackinfo(cachep, objp, (unsigned long)caller); | ||
1949 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | ||
1950 | } else { | ||
1951 | poison_obj(cachep, objp, POISON_FREE); | ||
1952 | } | ||
1953 | #else | ||
1954 | poison_obj(cachep, objp, POISON_FREE); | ||
1955 | #endif | ||
1956 | } | ||
1957 | return objp; | ||
1958 | } | ||
1959 | |||
1960 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | ||
1961 | { | ||
1962 | kmem_bufctl_t i; | ||
1963 | int entries = 0; | ||
1964 | |||
1965 | check_spinlock_acquired(cachep); | ||
1966 | /* Check slab's freelist to see if this obj is there. */ | ||
1967 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | ||
1968 | entries++; | ||
1969 | if (entries > cachep->num || i >= cachep->num) | ||
1970 | goto bad; | ||
1971 | } | ||
1972 | if (entries != cachep->num - slabp->inuse) { | ||
1973 | bad: | ||
1974 | printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", | ||
1975 | cachep->name, cachep->num, slabp, slabp->inuse); | ||
1976 | for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { | ||
1977 | if ((i%16)==0) | ||
1978 | printk("\n%03x:", i); | ||
1979 | printk(" %02x", ((unsigned char*)slabp)[i]); | ||
1980 | } | ||
1981 | printk("\n"); | ||
1982 | BUG(); | ||
1983 | } | ||
1984 | } | ||
1985 | #else | ||
1986 | #define kfree_debugcheck(x) do { } while(0) | ||
1987 | #define cache_free_debugcheck(x,objp,z) (objp) | ||
1988 | #define check_slabp(x,y) do { } while(0) | ||
1989 | #endif | ||
1990 | |||
1991 | static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags) | ||
1992 | { | ||
1993 | int batchcount; | ||
1994 | struct kmem_list3 *l3; | ||
1995 | struct array_cache *ac; | ||
1996 | |||
1997 | check_irq_off(); | ||
1998 | ac = ac_data(cachep); | ||
1999 | retry: | ||
2000 | batchcount = ac->batchcount; | ||
2001 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | ||
2002 | /* if there was little recent activity on this | ||
2003 | * cache, then perform only a partial refill. | ||
2004 | * Otherwise we could generate refill bouncing. | ||
2005 | */ | ||
2006 | batchcount = BATCHREFILL_LIMIT; | ||
2007 | } | ||
2008 | l3 = list3_data(cachep); | ||
2009 | |||
2010 | BUG_ON(ac->avail > 0); | ||
2011 | spin_lock(&cachep->spinlock); | ||
2012 | if (l3->shared) { | ||
2013 | struct array_cache *shared_array = l3->shared; | ||
2014 | if (shared_array->avail) { | ||
2015 | if (batchcount > shared_array->avail) | ||
2016 | batchcount = shared_array->avail; | ||
2017 | shared_array->avail -= batchcount; | ||
2018 | ac->avail = batchcount; | ||
2019 | memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], | ||
2020 | sizeof(void*)*batchcount); | ||
2021 | shared_array->touched = 1; | ||
2022 | goto alloc_done; | ||
2023 | } | ||
2024 | } | ||
2025 | while (batchcount > 0) { | ||
2026 | struct list_head *entry; | ||
2027 | struct slab *slabp; | ||
2028 | /* Get slab alloc is to come from. */ | ||
2029 | entry = l3->slabs_partial.next; | ||
2030 | if (entry == &l3->slabs_partial) { | ||
2031 | l3->free_touched = 1; | ||
2032 | entry = l3->slabs_free.next; | ||
2033 | if (entry == &l3->slabs_free) | ||
2034 | goto must_grow; | ||
2035 | } | ||
2036 | |||
2037 | slabp = list_entry(entry, struct slab, list); | ||
2038 | check_slabp(cachep, slabp); | ||
2039 | check_spinlock_acquired(cachep); | ||
2040 | while (slabp->inuse < cachep->num && batchcount--) { | ||
2041 | kmem_bufctl_t next; | ||
2042 | STATS_INC_ALLOCED(cachep); | ||
2043 | STATS_INC_ACTIVE(cachep); | ||
2044 | STATS_SET_HIGH(cachep); | ||
2045 | |||
2046 | /* get obj pointer */ | ||
2047 | ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; | ||
2048 | |||
2049 | slabp->inuse++; | ||
2050 | next = slab_bufctl(slabp)[slabp->free]; | ||
2051 | #if DEBUG | ||
2052 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2053 | #endif | ||
2054 | slabp->free = next; | ||
2055 | } | ||
2056 | check_slabp(cachep, slabp); | ||
2057 | |||
2058 | /* move slabp to correct slabp list: */ | ||
2059 | list_del(&slabp->list); | ||
2060 | if (slabp->free == BUFCTL_END) | ||
2061 | list_add(&slabp->list, &l3->slabs_full); | ||
2062 | else | ||
2063 | list_add(&slabp->list, &l3->slabs_partial); | ||
2064 | } | ||
2065 | |||
2066 | must_grow: | ||
2067 | l3->free_objects -= ac->avail; | ||
2068 | alloc_done: | ||
2069 | spin_unlock(&cachep->spinlock); | ||
2070 | |||
2071 | if (unlikely(!ac->avail)) { | ||
2072 | int x; | ||
2073 | x = cache_grow(cachep, flags, -1); | ||
2074 | |||
2075 | // cache_grow can reenable interrupts, then ac could change. | ||
2076 | ac = ac_data(cachep); | ||
2077 | if (!x && ac->avail == 0) // no objects in sight? abort | ||
2078 | return NULL; | ||
2079 | |||
2080 | if (!ac->avail) // objects refilled by interrupt? | ||
2081 | goto retry; | ||
2082 | } | ||
2083 | ac->touched = 1; | ||
2084 | return ac_entry(ac)[--ac->avail]; | ||
2085 | } | ||
2086 | |||
2087 | static inline void | ||
2088 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags) | ||
2089 | { | ||
2090 | might_sleep_if(flags & __GFP_WAIT); | ||
2091 | #if DEBUG | ||
2092 | kmem_flagcheck(cachep, flags); | ||
2093 | #endif | ||
2094 | } | ||
2095 | |||
2096 | #if DEBUG | ||
2097 | static void * | ||
2098 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, | ||
2099 | unsigned long flags, void *objp, void *caller) | ||
2100 | { | ||
2101 | if (!objp) | ||
2102 | return objp; | ||
2103 | if (cachep->flags & SLAB_POISON) { | ||
2104 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
2105 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | ||
2106 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); | ||
2107 | else | ||
2108 | check_poison_obj(cachep, objp); | ||
2109 | #else | ||
2110 | check_poison_obj(cachep, objp); | ||
2111 | #endif | ||
2112 | poison_obj(cachep, objp, POISON_INUSE); | ||
2113 | } | ||
2114 | if (cachep->flags & SLAB_STORE_USER) | ||
2115 | *dbg_userword(cachep, objp) = caller; | ||
2116 | |||
2117 | if (cachep->flags & SLAB_RED_ZONE) { | ||
2118 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | ||
2119 | slab_error(cachep, "double free, or memory outside" | ||
2120 | " object was overwritten"); | ||
2121 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | ||
2122 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | ||
2123 | } | ||
2124 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | ||
2125 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | ||
2126 | } | ||
2127 | objp += obj_dbghead(cachep); | ||
2128 | if (cachep->ctor && cachep->flags & SLAB_POISON) { | ||
2129 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; | ||
2130 | |||
2131 | if (!(flags & __GFP_WAIT)) | ||
2132 | ctor_flags |= SLAB_CTOR_ATOMIC; | ||
2133 | |||
2134 | cachep->ctor(objp, cachep, ctor_flags); | ||
2135 | } | ||
2136 | return objp; | ||
2137 | } | ||
2138 | #else | ||
2139 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | ||
2140 | #endif | ||
2141 | |||
2142 | |||
2143 | static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | ||
2144 | { | ||
2145 | unsigned long save_flags; | ||
2146 | void* objp; | ||
2147 | struct array_cache *ac; | ||
2148 | |||
2149 | cache_alloc_debugcheck_before(cachep, flags); | ||
2150 | |||
2151 | local_irq_save(save_flags); | ||
2152 | ac = ac_data(cachep); | ||
2153 | if (likely(ac->avail)) { | ||
2154 | STATS_INC_ALLOCHIT(cachep); | ||
2155 | ac->touched = 1; | ||
2156 | objp = ac_entry(ac)[--ac->avail]; | ||
2157 | } else { | ||
2158 | STATS_INC_ALLOCMISS(cachep); | ||
2159 | objp = cache_alloc_refill(cachep, flags); | ||
2160 | } | ||
2161 | local_irq_restore(save_flags); | ||
2162 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0)); | ||
2163 | return objp; | ||
2164 | } | ||
2165 | |||
2166 | /* | ||
2167 | * NUMA: different approach needed if the spinlock is moved into | ||
2168 | * the l3 structure | ||
2169 | */ | ||
2170 | |||
2171 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | ||
2172 | { | ||
2173 | int i; | ||
2174 | |||
2175 | check_spinlock_acquired(cachep); | ||
2176 | |||
2177 | /* NUMA: move add into loop */ | ||
2178 | cachep->lists.free_objects += nr_objects; | ||
2179 | |||
2180 | for (i = 0; i < nr_objects; i++) { | ||
2181 | void *objp = objpp[i]; | ||
2182 | struct slab *slabp; | ||
2183 | unsigned int objnr; | ||
2184 | |||
2185 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | ||
2186 | list_del(&slabp->list); | ||
2187 | objnr = (objp - slabp->s_mem) / cachep->objsize; | ||
2188 | check_slabp(cachep, slabp); | ||
2189 | #if DEBUG | ||
2190 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | ||
2191 | printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", | ||
2192 | cachep->name, objp); | ||
2193 | BUG(); | ||
2194 | } | ||
2195 | #endif | ||
2196 | slab_bufctl(slabp)[objnr] = slabp->free; | ||
2197 | slabp->free = objnr; | ||
2198 | STATS_DEC_ACTIVE(cachep); | ||
2199 | slabp->inuse--; | ||
2200 | check_slabp(cachep, slabp); | ||
2201 | |||
2202 | /* fixup slab chains */ | ||
2203 | if (slabp->inuse == 0) { | ||
2204 | if (cachep->lists.free_objects > cachep->free_limit) { | ||
2205 | cachep->lists.free_objects -= cachep->num; | ||
2206 | slab_destroy(cachep, slabp); | ||
2207 | } else { | ||
2208 | list_add(&slabp->list, | ||
2209 | &list3_data_ptr(cachep, objp)->slabs_free); | ||
2210 | } | ||
2211 | } else { | ||
2212 | /* Unconditionally move a slab to the end of the | ||
2213 | * partial list on free - maximum time for the | ||
2214 | * other objects to be freed, too. | ||
2215 | */ | ||
2216 | list_add_tail(&slabp->list, | ||
2217 | &list3_data_ptr(cachep, objp)->slabs_partial); | ||
2218 | } | ||
2219 | } | ||
2220 | } | ||
2221 | |||
2222 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | ||
2223 | { | ||
2224 | int batchcount; | ||
2225 | |||
2226 | batchcount = ac->batchcount; | ||
2227 | #if DEBUG | ||
2228 | BUG_ON(!batchcount || batchcount > ac->avail); | ||
2229 | #endif | ||
2230 | check_irq_off(); | ||
2231 | spin_lock(&cachep->spinlock); | ||
2232 | if (cachep->lists.shared) { | ||
2233 | struct array_cache *shared_array = cachep->lists.shared; | ||
2234 | int max = shared_array->limit-shared_array->avail; | ||
2235 | if (max) { | ||
2236 | if (batchcount > max) | ||
2237 | batchcount = max; | ||
2238 | memcpy(&ac_entry(shared_array)[shared_array->avail], | ||
2239 | &ac_entry(ac)[0], | ||
2240 | sizeof(void*)*batchcount); | ||
2241 | shared_array->avail += batchcount; | ||
2242 | goto free_done; | ||
2243 | } | ||
2244 | } | ||
2245 | |||
2246 | free_block(cachep, &ac_entry(ac)[0], batchcount); | ||
2247 | free_done: | ||
2248 | #if STATS | ||
2249 | { | ||
2250 | int i = 0; | ||
2251 | struct list_head *p; | ||
2252 | |||
2253 | p = list3_data(cachep)->slabs_free.next; | ||
2254 | while (p != &(list3_data(cachep)->slabs_free)) { | ||
2255 | struct slab *slabp; | ||
2256 | |||
2257 | slabp = list_entry(p, struct slab, list); | ||
2258 | BUG_ON(slabp->inuse); | ||
2259 | |||
2260 | i++; | ||
2261 | p = p->next; | ||
2262 | } | ||
2263 | STATS_SET_FREEABLE(cachep, i); | ||
2264 | } | ||
2265 | #endif | ||
2266 | spin_unlock(&cachep->spinlock); | ||
2267 | ac->avail -= batchcount; | ||
2268 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], | ||
2269 | sizeof(void*)*ac->avail); | ||
2270 | } | ||
2271 | |||
2272 | /* | ||
2273 | * __cache_free | ||
2274 | * Release an obj back to its cache. If the obj has a constructed | ||
2275 | * state, it must be in this state _before_ it is released. | ||
2276 | * | ||
2277 | * Called with disabled ints. | ||
2278 | */ | ||
2279 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | ||
2280 | { | ||
2281 | struct array_cache *ac = ac_data(cachep); | ||
2282 | |||
2283 | check_irq_off(); | ||
2284 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | ||
2285 | |||
2286 | if (likely(ac->avail < ac->limit)) { | ||
2287 | STATS_INC_FREEHIT(cachep); | ||
2288 | ac_entry(ac)[ac->avail++] = objp; | ||
2289 | return; | ||
2290 | } else { | ||
2291 | STATS_INC_FREEMISS(cachep); | ||
2292 | cache_flusharray(cachep, ac); | ||
2293 | ac_entry(ac)[ac->avail++] = objp; | ||
2294 | } | ||
2295 | } | ||
2296 | |||
2297 | /** | ||
2298 | * kmem_cache_alloc - Allocate an object | ||
2299 | * @cachep: The cache to allocate from. | ||
2300 | * @flags: See kmalloc(). | ||
2301 | * | ||
2302 | * Allocate an object from this cache. The flags are only relevant | ||
2303 | * if the cache has no available objects. | ||
2304 | */ | ||
2305 | void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | ||
2306 | { | ||
2307 | return __cache_alloc(cachep, flags); | ||
2308 | } | ||
2309 | EXPORT_SYMBOL(kmem_cache_alloc); | ||
2310 | |||
2311 | /** | ||
2312 | * kmem_ptr_validate - check if an untrusted pointer might | ||
2313 | * be a slab entry. | ||
2314 | * @cachep: the cache we're checking against | ||
2315 | * @ptr: pointer to validate | ||
2316 | * | ||
2317 | * This verifies that the untrusted pointer looks sane: | ||
2318 | * it is _not_ a guarantee that the pointer is actually | ||
2319 | * part of the slab cache in question, but it at least | ||
2320 | * validates that the pointer can be dereferenced and | ||
2321 | * looks half-way sane. | ||
2322 | * | ||
2323 | * Currently only used for dentry validation. | ||
2324 | */ | ||
2325 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | ||
2326 | { | ||
2327 | unsigned long addr = (unsigned long) ptr; | ||
2328 | unsigned long min_addr = PAGE_OFFSET; | ||
2329 | unsigned long align_mask = BYTES_PER_WORD-1; | ||
2330 | unsigned long size = cachep->objsize; | ||
2331 | struct page *page; | ||
2332 | |||
2333 | if (unlikely(addr < min_addr)) | ||
2334 | goto out; | ||
2335 | if (unlikely(addr > (unsigned long)high_memory - size)) | ||
2336 | goto out; | ||
2337 | if (unlikely(addr & align_mask)) | ||
2338 | goto out; | ||
2339 | if (unlikely(!kern_addr_valid(addr))) | ||
2340 | goto out; | ||
2341 | if (unlikely(!kern_addr_valid(addr + size - 1))) | ||
2342 | goto out; | ||
2343 | page = virt_to_page(ptr); | ||
2344 | if (unlikely(!PageSlab(page))) | ||
2345 | goto out; | ||
2346 | if (unlikely(GET_PAGE_CACHE(page) != cachep)) | ||
2347 | goto out; | ||
2348 | return 1; | ||
2349 | out: | ||
2350 | return 0; | ||
2351 | } | ||
2352 | |||
2353 | #ifdef CONFIG_NUMA | ||
2354 | /** | ||
2355 | * kmem_cache_alloc_node - Allocate an object on the specified node | ||
2356 | * @cachep: The cache to allocate from. | ||
2357 | * @flags: See kmalloc(). | ||
2358 | * @nodeid: node number of the target node. | ||
2359 | * | ||
2360 | * Identical to kmem_cache_alloc, except that this function is slow | ||
2361 | * and can sleep. And it will allocate memory on the given node, which | ||
2362 | * can improve the performance for cpu bound structures. | ||
2363 | */ | ||
2364 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int nodeid) | ||
2365 | { | ||
2366 | int loop; | ||
2367 | void *objp; | ||
2368 | struct slab *slabp; | ||
2369 | kmem_bufctl_t next; | ||
2370 | |||
2371 | for (loop = 0;;loop++) { | ||
2372 | struct list_head *q; | ||
2373 | |||
2374 | objp = NULL; | ||
2375 | check_irq_on(); | ||
2376 | spin_lock_irq(&cachep->spinlock); | ||
2377 | /* walk through all partial and empty slab and find one | ||
2378 | * from the right node */ | ||
2379 | list_for_each(q,&cachep->lists.slabs_partial) { | ||
2380 | slabp = list_entry(q, struct slab, list); | ||
2381 | |||
2382 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | ||
2383 | loop > 2) | ||
2384 | goto got_slabp; | ||
2385 | } | ||
2386 | list_for_each(q, &cachep->lists.slabs_free) { | ||
2387 | slabp = list_entry(q, struct slab, list); | ||
2388 | |||
2389 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | ||
2390 | loop > 2) | ||
2391 | goto got_slabp; | ||
2392 | } | ||
2393 | spin_unlock_irq(&cachep->spinlock); | ||
2394 | |||
2395 | local_irq_disable(); | ||
2396 | if (!cache_grow(cachep, GFP_KERNEL, nodeid)) { | ||
2397 | local_irq_enable(); | ||
2398 | return NULL; | ||
2399 | } | ||
2400 | local_irq_enable(); | ||
2401 | } | ||
2402 | got_slabp: | ||
2403 | /* found one: allocate object */ | ||
2404 | check_slabp(cachep, slabp); | ||
2405 | check_spinlock_acquired(cachep); | ||
2406 | |||
2407 | STATS_INC_ALLOCED(cachep); | ||
2408 | STATS_INC_ACTIVE(cachep); | ||
2409 | STATS_SET_HIGH(cachep); | ||
2410 | STATS_INC_NODEALLOCS(cachep); | ||
2411 | |||
2412 | objp = slabp->s_mem + slabp->free*cachep->objsize; | ||
2413 | |||
2414 | slabp->inuse++; | ||
2415 | next = slab_bufctl(slabp)[slabp->free]; | ||
2416 | #if DEBUG | ||
2417 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2418 | #endif | ||
2419 | slabp->free = next; | ||
2420 | check_slabp(cachep, slabp); | ||
2421 | |||
2422 | /* move slabp to correct slabp list: */ | ||
2423 | list_del(&slabp->list); | ||
2424 | if (slabp->free == BUFCTL_END) | ||
2425 | list_add(&slabp->list, &cachep->lists.slabs_full); | ||
2426 | else | ||
2427 | list_add(&slabp->list, &cachep->lists.slabs_partial); | ||
2428 | |||
2429 | list3_data(cachep)->free_objects--; | ||
2430 | spin_unlock_irq(&cachep->spinlock); | ||
2431 | |||
2432 | objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, | ||
2433 | __builtin_return_address(0)); | ||
2434 | return objp; | ||
2435 | } | ||
2436 | EXPORT_SYMBOL(kmem_cache_alloc_node); | ||
2437 | |||
2438 | #endif | ||
2439 | |||
2440 | /** | ||
2441 | * kmalloc - allocate memory | ||
2442 | * @size: how many bytes of memory are required. | ||
2443 | * @flags: the type of memory to allocate. | ||
2444 | * | ||
2445 | * kmalloc is the normal method of allocating memory | ||
2446 | * in the kernel. | ||
2447 | * | ||
2448 | * The @flags argument may be one of: | ||
2449 | * | ||
2450 | * %GFP_USER - Allocate memory on behalf of user. May sleep. | ||
2451 | * | ||
2452 | * %GFP_KERNEL - Allocate normal kernel ram. May sleep. | ||
2453 | * | ||
2454 | * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers. | ||
2455 | * | ||
2456 | * Additionally, the %GFP_DMA flag may be set to indicate the memory | ||
2457 | * must be suitable for DMA. This can mean different things on different | ||
2458 | * platforms. For example, on i386, it means that the memory must come | ||
2459 | * from the first 16MB. | ||
2460 | */ | ||
2461 | void *__kmalloc(size_t size, unsigned int __nocast flags) | ||
2462 | { | ||
2463 | kmem_cache_t *cachep; | ||
2464 | |||
2465 | cachep = kmem_find_general_cachep(size, flags); | ||
2466 | if (unlikely(cachep == NULL)) | ||
2467 | return NULL; | ||
2468 | return __cache_alloc(cachep, flags); | ||
2469 | } | ||
2470 | EXPORT_SYMBOL(__kmalloc); | ||
2471 | |||
2472 | #ifdef CONFIG_SMP | ||
2473 | /** | ||
2474 | * __alloc_percpu - allocate one copy of the object for every present | ||
2475 | * cpu in the system, zeroing them. | ||
2476 | * Objects should be dereferenced using the per_cpu_ptr macro only. | ||
2477 | * | ||
2478 | * @size: how many bytes of memory are required. | ||
2479 | * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. | ||
2480 | */ | ||
2481 | void *__alloc_percpu(size_t size, size_t align) | ||
2482 | { | ||
2483 | int i; | ||
2484 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | ||
2485 | |||
2486 | if (!pdata) | ||
2487 | return NULL; | ||
2488 | |||
2489 | for (i = 0; i < NR_CPUS; i++) { | ||
2490 | if (!cpu_possible(i)) | ||
2491 | continue; | ||
2492 | pdata->ptrs[i] = kmem_cache_alloc_node( | ||
2493 | kmem_find_general_cachep(size, GFP_KERNEL), | ||
2494 | cpu_to_node(i)); | ||
2495 | |||
2496 | if (!pdata->ptrs[i]) | ||
2497 | goto unwind_oom; | ||
2498 | memset(pdata->ptrs[i], 0, size); | ||
2499 | } | ||
2500 | |||
2501 | /* Catch derefs w/o wrappers */ | ||
2502 | return (void *) (~(unsigned long) pdata); | ||
2503 | |||
2504 | unwind_oom: | ||
2505 | while (--i >= 0) { | ||
2506 | if (!cpu_possible(i)) | ||
2507 | continue; | ||
2508 | kfree(pdata->ptrs[i]); | ||
2509 | } | ||
2510 | kfree(pdata); | ||
2511 | return NULL; | ||
2512 | } | ||
2513 | EXPORT_SYMBOL(__alloc_percpu); | ||
2514 | #endif | ||
2515 | |||
2516 | /** | ||
2517 | * kmem_cache_free - Deallocate an object | ||
2518 | * @cachep: The cache the allocation was from. | ||
2519 | * @objp: The previously allocated object. | ||
2520 | * | ||
2521 | * Free an object which was previously allocated from this | ||
2522 | * cache. | ||
2523 | */ | ||
2524 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | ||
2525 | { | ||
2526 | unsigned long flags; | ||
2527 | |||
2528 | local_irq_save(flags); | ||
2529 | __cache_free(cachep, objp); | ||
2530 | local_irq_restore(flags); | ||
2531 | } | ||
2532 | EXPORT_SYMBOL(kmem_cache_free); | ||
2533 | |||
2534 | /** | ||
2535 | * kcalloc - allocate memory for an array. The memory is set to zero. | ||
2536 | * @n: number of elements. | ||
2537 | * @size: element size. | ||
2538 | * @flags: the type of memory to allocate. | ||
2539 | */ | ||
2540 | void *kcalloc(size_t n, size_t size, unsigned int __nocast flags) | ||
2541 | { | ||
2542 | void *ret = NULL; | ||
2543 | |||
2544 | if (n != 0 && size > INT_MAX / n) | ||
2545 | return ret; | ||
2546 | |||
2547 | ret = kmalloc(n * size, flags); | ||
2548 | if (ret) | ||
2549 | memset(ret, 0, n * size); | ||
2550 | return ret; | ||
2551 | } | ||
2552 | EXPORT_SYMBOL(kcalloc); | ||
2553 | |||
2554 | /** | ||
2555 | * kfree - free previously allocated memory | ||
2556 | * @objp: pointer returned by kmalloc. | ||
2557 | * | ||
2558 | * Don't free memory not originally allocated by kmalloc() | ||
2559 | * or you will run into trouble. | ||
2560 | */ | ||
2561 | void kfree(const void *objp) | ||
2562 | { | ||
2563 | kmem_cache_t *c; | ||
2564 | unsigned long flags; | ||
2565 | |||
2566 | if (unlikely(!objp)) | ||
2567 | return; | ||
2568 | local_irq_save(flags); | ||
2569 | kfree_debugcheck(objp); | ||
2570 | c = GET_PAGE_CACHE(virt_to_page(objp)); | ||
2571 | __cache_free(c, (void*)objp); | ||
2572 | local_irq_restore(flags); | ||
2573 | } | ||
2574 | EXPORT_SYMBOL(kfree); | ||
2575 | |||
2576 | #ifdef CONFIG_SMP | ||
2577 | /** | ||
2578 | * free_percpu - free previously allocated percpu memory | ||
2579 | * @objp: pointer returned by alloc_percpu. | ||
2580 | * | ||
2581 | * Don't free memory not originally allocated by alloc_percpu() | ||
2582 | * The complemented objp is to check for that. | ||
2583 | */ | ||
2584 | void | ||
2585 | free_percpu(const void *objp) | ||
2586 | { | ||
2587 | int i; | ||
2588 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | ||
2589 | |||
2590 | for (i = 0; i < NR_CPUS; i++) { | ||
2591 | if (!cpu_possible(i)) | ||
2592 | continue; | ||
2593 | kfree(p->ptrs[i]); | ||
2594 | } | ||
2595 | kfree(p); | ||
2596 | } | ||
2597 | EXPORT_SYMBOL(free_percpu); | ||
2598 | #endif | ||
2599 | |||
2600 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | ||
2601 | { | ||
2602 | return obj_reallen(cachep); | ||
2603 | } | ||
2604 | EXPORT_SYMBOL(kmem_cache_size); | ||
2605 | |||
2606 | struct ccupdate_struct { | ||
2607 | kmem_cache_t *cachep; | ||
2608 | struct array_cache *new[NR_CPUS]; | ||
2609 | }; | ||
2610 | |||
2611 | static void do_ccupdate_local(void *info) | ||
2612 | { | ||
2613 | struct ccupdate_struct *new = (struct ccupdate_struct *)info; | ||
2614 | struct array_cache *old; | ||
2615 | |||
2616 | check_irq_off(); | ||
2617 | old = ac_data(new->cachep); | ||
2618 | |||
2619 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | ||
2620 | new->new[smp_processor_id()] = old; | ||
2621 | } | ||
2622 | |||
2623 | |||
2624 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | ||
2625 | int shared) | ||
2626 | { | ||
2627 | struct ccupdate_struct new; | ||
2628 | struct array_cache *new_shared; | ||
2629 | int i; | ||
2630 | |||
2631 | memset(&new.new,0,sizeof(new.new)); | ||
2632 | for (i = 0; i < NR_CPUS; i++) { | ||
2633 | if (cpu_online(i)) { | ||
2634 | new.new[i] = alloc_arraycache(i, limit, batchcount); | ||
2635 | if (!new.new[i]) { | ||
2636 | for (i--; i >= 0; i--) kfree(new.new[i]); | ||
2637 | return -ENOMEM; | ||
2638 | } | ||
2639 | } else { | ||
2640 | new.new[i] = NULL; | ||
2641 | } | ||
2642 | } | ||
2643 | new.cachep = cachep; | ||
2644 | |||
2645 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | ||
2646 | |||
2647 | check_irq_on(); | ||
2648 | spin_lock_irq(&cachep->spinlock); | ||
2649 | cachep->batchcount = batchcount; | ||
2650 | cachep->limit = limit; | ||
2651 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; | ||
2652 | spin_unlock_irq(&cachep->spinlock); | ||
2653 | |||
2654 | for (i = 0; i < NR_CPUS; i++) { | ||
2655 | struct array_cache *ccold = new.new[i]; | ||
2656 | if (!ccold) | ||
2657 | continue; | ||
2658 | spin_lock_irq(&cachep->spinlock); | ||
2659 | free_block(cachep, ac_entry(ccold), ccold->avail); | ||
2660 | spin_unlock_irq(&cachep->spinlock); | ||
2661 | kfree(ccold); | ||
2662 | } | ||
2663 | new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); | ||
2664 | if (new_shared) { | ||
2665 | struct array_cache *old; | ||
2666 | |||
2667 | spin_lock_irq(&cachep->spinlock); | ||
2668 | old = cachep->lists.shared; | ||
2669 | cachep->lists.shared = new_shared; | ||
2670 | if (old) | ||
2671 | free_block(cachep, ac_entry(old), old->avail); | ||
2672 | spin_unlock_irq(&cachep->spinlock); | ||
2673 | kfree(old); | ||
2674 | } | ||
2675 | |||
2676 | return 0; | ||
2677 | } | ||
2678 | |||
2679 | |||
2680 | static void enable_cpucache(kmem_cache_t *cachep) | ||
2681 | { | ||
2682 | int err; | ||
2683 | int limit, shared; | ||
2684 | |||
2685 | /* The head array serves three purposes: | ||
2686 | * - create a LIFO ordering, i.e. return objects that are cache-warm | ||
2687 | * - reduce the number of spinlock operations. | ||
2688 | * - reduce the number of linked list operations on the slab and | ||
2689 | * bufctl chains: array operations are cheaper. | ||
2690 | * The numbers are guessed, we should auto-tune as described by | ||
2691 | * Bonwick. | ||
2692 | */ | ||
2693 | if (cachep->objsize > 131072) | ||
2694 | limit = 1; | ||
2695 | else if (cachep->objsize > PAGE_SIZE) | ||
2696 | limit = 8; | ||
2697 | else if (cachep->objsize > 1024) | ||
2698 | limit = 24; | ||
2699 | else if (cachep->objsize > 256) | ||
2700 | limit = 54; | ||
2701 | else | ||
2702 | limit = 120; | ||
2703 | |||
2704 | /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound | ||
2705 | * allocation behaviour: Most allocs on one cpu, most free operations | ||
2706 | * on another cpu. For these cases, an efficient object passing between | ||
2707 | * cpus is necessary. This is provided by a shared array. The array | ||
2708 | * replaces Bonwick's magazine layer. | ||
2709 | * On uniprocessor, it's functionally equivalent (but less efficient) | ||
2710 | * to a larger limit. Thus disabled by default. | ||
2711 | */ | ||
2712 | shared = 0; | ||
2713 | #ifdef CONFIG_SMP | ||
2714 | if (cachep->objsize <= PAGE_SIZE) | ||
2715 | shared = 8; | ||
2716 | #endif | ||
2717 | |||
2718 | #if DEBUG | ||
2719 | /* With debugging enabled, large batchcount lead to excessively | ||
2720 | * long periods with disabled local interrupts. Limit the | ||
2721 | * batchcount | ||
2722 | */ | ||
2723 | if (limit > 32) | ||
2724 | limit = 32; | ||
2725 | #endif | ||
2726 | err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); | ||
2727 | if (err) | ||
2728 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | ||
2729 | cachep->name, -err); | ||
2730 | } | ||
2731 | |||
2732 | static void drain_array_locked(kmem_cache_t *cachep, | ||
2733 | struct array_cache *ac, int force) | ||
2734 | { | ||
2735 | int tofree; | ||
2736 | |||
2737 | check_spinlock_acquired(cachep); | ||
2738 | if (ac->touched && !force) { | ||
2739 | ac->touched = 0; | ||
2740 | } else if (ac->avail) { | ||
2741 | tofree = force ? ac->avail : (ac->limit+4)/5; | ||
2742 | if (tofree > ac->avail) { | ||
2743 | tofree = (ac->avail+1)/2; | ||
2744 | } | ||
2745 | free_block(cachep, ac_entry(ac), tofree); | ||
2746 | ac->avail -= tofree; | ||
2747 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], | ||
2748 | sizeof(void*)*ac->avail); | ||
2749 | } | ||
2750 | } | ||
2751 | |||
2752 | /** | ||
2753 | * cache_reap - Reclaim memory from caches. | ||
2754 | * | ||
2755 | * Called from workqueue/eventd every few seconds. | ||
2756 | * Purpose: | ||
2757 | * - clear the per-cpu caches for this CPU. | ||
2758 | * - return freeable pages to the main free memory pool. | ||
2759 | * | ||
2760 | * If we cannot acquire the cache chain semaphore then just give up - we'll | ||
2761 | * try again on the next iteration. | ||
2762 | */ | ||
2763 | static void cache_reap(void *unused) | ||
2764 | { | ||
2765 | struct list_head *walk; | ||
2766 | |||
2767 | if (down_trylock(&cache_chain_sem)) { | ||
2768 | /* Give up. Setup the next iteration. */ | ||
2769 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | ||
2770 | return; | ||
2771 | } | ||
2772 | |||
2773 | list_for_each(walk, &cache_chain) { | ||
2774 | kmem_cache_t *searchp; | ||
2775 | struct list_head* p; | ||
2776 | int tofree; | ||
2777 | struct slab *slabp; | ||
2778 | |||
2779 | searchp = list_entry(walk, kmem_cache_t, next); | ||
2780 | |||
2781 | if (searchp->flags & SLAB_NO_REAP) | ||
2782 | goto next; | ||
2783 | |||
2784 | check_irq_on(); | ||
2785 | |||
2786 | spin_lock_irq(&searchp->spinlock); | ||
2787 | |||
2788 | drain_array_locked(searchp, ac_data(searchp), 0); | ||
2789 | |||
2790 | if(time_after(searchp->lists.next_reap, jiffies)) | ||
2791 | goto next_unlock; | ||
2792 | |||
2793 | searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; | ||
2794 | |||
2795 | if (searchp->lists.shared) | ||
2796 | drain_array_locked(searchp, searchp->lists.shared, 0); | ||
2797 | |||
2798 | if (searchp->lists.free_touched) { | ||
2799 | searchp->lists.free_touched = 0; | ||
2800 | goto next_unlock; | ||
2801 | } | ||
2802 | |||
2803 | tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); | ||
2804 | do { | ||
2805 | p = list3_data(searchp)->slabs_free.next; | ||
2806 | if (p == &(list3_data(searchp)->slabs_free)) | ||
2807 | break; | ||
2808 | |||
2809 | slabp = list_entry(p, struct slab, list); | ||
2810 | BUG_ON(slabp->inuse); | ||
2811 | list_del(&slabp->list); | ||
2812 | STATS_INC_REAPED(searchp); | ||
2813 | |||
2814 | /* Safe to drop the lock. The slab is no longer | ||
2815 | * linked to the cache. | ||
2816 | * searchp cannot disappear, we hold | ||
2817 | * cache_chain_lock | ||
2818 | */ | ||
2819 | searchp->lists.free_objects -= searchp->num; | ||
2820 | spin_unlock_irq(&searchp->spinlock); | ||
2821 | slab_destroy(searchp, slabp); | ||
2822 | spin_lock_irq(&searchp->spinlock); | ||
2823 | } while(--tofree > 0); | ||
2824 | next_unlock: | ||
2825 | spin_unlock_irq(&searchp->spinlock); | ||
2826 | next: | ||
2827 | cond_resched(); | ||
2828 | } | ||
2829 | check_irq_on(); | ||
2830 | up(&cache_chain_sem); | ||
2831 | /* Setup the next iteration */ | ||
2832 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | ||
2833 | } | ||
2834 | |||
2835 | #ifdef CONFIG_PROC_FS | ||
2836 | |||
2837 | static void *s_start(struct seq_file *m, loff_t *pos) | ||
2838 | { | ||
2839 | loff_t n = *pos; | ||
2840 | struct list_head *p; | ||
2841 | |||
2842 | down(&cache_chain_sem); | ||
2843 | if (!n) { | ||
2844 | /* | ||
2845 | * Output format version, so at least we can change it | ||
2846 | * without _too_ many complaints. | ||
2847 | */ | ||
2848 | #if STATS | ||
2849 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | ||
2850 | #else | ||
2851 | seq_puts(m, "slabinfo - version: 2.1\n"); | ||
2852 | #endif | ||
2853 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | ||
2854 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | ||
2855 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | ||
2856 | #if STATS | ||
2857 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | ||
2858 | " <error> <maxfreeable> <freelimit> <nodeallocs>"); | ||
2859 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | ||
2860 | #endif | ||
2861 | seq_putc(m, '\n'); | ||
2862 | } | ||
2863 | p = cache_chain.next; | ||
2864 | while (n--) { | ||
2865 | p = p->next; | ||
2866 | if (p == &cache_chain) | ||
2867 | return NULL; | ||
2868 | } | ||
2869 | return list_entry(p, kmem_cache_t, next); | ||
2870 | } | ||
2871 | |||
2872 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | ||
2873 | { | ||
2874 | kmem_cache_t *cachep = p; | ||
2875 | ++*pos; | ||
2876 | return cachep->next.next == &cache_chain ? NULL | ||
2877 | : list_entry(cachep->next.next, kmem_cache_t, next); | ||
2878 | } | ||
2879 | |||
2880 | static void s_stop(struct seq_file *m, void *p) | ||
2881 | { | ||
2882 | up(&cache_chain_sem); | ||
2883 | } | ||
2884 | |||
2885 | static int s_show(struct seq_file *m, void *p) | ||
2886 | { | ||
2887 | kmem_cache_t *cachep = p; | ||
2888 | struct list_head *q; | ||
2889 | struct slab *slabp; | ||
2890 | unsigned long active_objs; | ||
2891 | unsigned long num_objs; | ||
2892 | unsigned long active_slabs = 0; | ||
2893 | unsigned long num_slabs; | ||
2894 | const char *name; | ||
2895 | char *error = NULL; | ||
2896 | |||
2897 | check_irq_on(); | ||
2898 | spin_lock_irq(&cachep->spinlock); | ||
2899 | active_objs = 0; | ||
2900 | num_slabs = 0; | ||
2901 | list_for_each(q,&cachep->lists.slabs_full) { | ||
2902 | slabp = list_entry(q, struct slab, list); | ||
2903 | if (slabp->inuse != cachep->num && !error) | ||
2904 | error = "slabs_full accounting error"; | ||
2905 | active_objs += cachep->num; | ||
2906 | active_slabs++; | ||
2907 | } | ||
2908 | list_for_each(q,&cachep->lists.slabs_partial) { | ||
2909 | slabp = list_entry(q, struct slab, list); | ||
2910 | if (slabp->inuse == cachep->num && !error) | ||
2911 | error = "slabs_partial inuse accounting error"; | ||
2912 | if (!slabp->inuse && !error) | ||
2913 | error = "slabs_partial/inuse accounting error"; | ||
2914 | active_objs += slabp->inuse; | ||
2915 | active_slabs++; | ||
2916 | } | ||
2917 | list_for_each(q,&cachep->lists.slabs_free) { | ||
2918 | slabp = list_entry(q, struct slab, list); | ||
2919 | if (slabp->inuse && !error) | ||
2920 | error = "slabs_free/inuse accounting error"; | ||
2921 | num_slabs++; | ||
2922 | } | ||
2923 | num_slabs+=active_slabs; | ||
2924 | num_objs = num_slabs*cachep->num; | ||
2925 | if (num_objs - active_objs != cachep->lists.free_objects && !error) | ||
2926 | error = "free_objects accounting error"; | ||
2927 | |||
2928 | name = cachep->name; | ||
2929 | if (error) | ||
2930 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | ||
2931 | |||
2932 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | ||
2933 | name, active_objs, num_objs, cachep->objsize, | ||
2934 | cachep->num, (1<<cachep->gfporder)); | ||
2935 | seq_printf(m, " : tunables %4u %4u %4u", | ||
2936 | cachep->limit, cachep->batchcount, | ||
2937 | cachep->lists.shared->limit/cachep->batchcount); | ||
2938 | seq_printf(m, " : slabdata %6lu %6lu %6u", | ||
2939 | active_slabs, num_slabs, cachep->lists.shared->avail); | ||
2940 | #if STATS | ||
2941 | { /* list3 stats */ | ||
2942 | unsigned long high = cachep->high_mark; | ||
2943 | unsigned long allocs = cachep->num_allocations; | ||
2944 | unsigned long grown = cachep->grown; | ||
2945 | unsigned long reaped = cachep->reaped; | ||
2946 | unsigned long errors = cachep->errors; | ||
2947 | unsigned long max_freeable = cachep->max_freeable; | ||
2948 | unsigned long free_limit = cachep->free_limit; | ||
2949 | unsigned long node_allocs = cachep->node_allocs; | ||
2950 | |||
2951 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", | ||
2952 | allocs, high, grown, reaped, errors, | ||
2953 | max_freeable, free_limit, node_allocs); | ||
2954 | } | ||
2955 | /* cpu stats */ | ||
2956 | { | ||
2957 | unsigned long allochit = atomic_read(&cachep->allochit); | ||
2958 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | ||
2959 | unsigned long freehit = atomic_read(&cachep->freehit); | ||
2960 | unsigned long freemiss = atomic_read(&cachep->freemiss); | ||
2961 | |||
2962 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | ||
2963 | allochit, allocmiss, freehit, freemiss); | ||
2964 | } | ||
2965 | #endif | ||
2966 | seq_putc(m, '\n'); | ||
2967 | spin_unlock_irq(&cachep->spinlock); | ||
2968 | return 0; | ||
2969 | } | ||
2970 | |||
2971 | /* | ||
2972 | * slabinfo_op - iterator that generates /proc/slabinfo | ||
2973 | * | ||
2974 | * Output layout: | ||
2975 | * cache-name | ||
2976 | * num-active-objs | ||
2977 | * total-objs | ||
2978 | * object size | ||
2979 | * num-active-slabs | ||
2980 | * total-slabs | ||
2981 | * num-pages-per-slab | ||
2982 | * + further values on SMP and with statistics enabled | ||
2983 | */ | ||
2984 | |||
2985 | struct seq_operations slabinfo_op = { | ||
2986 | .start = s_start, | ||
2987 | .next = s_next, | ||
2988 | .stop = s_stop, | ||
2989 | .show = s_show, | ||
2990 | }; | ||
2991 | |||
2992 | #define MAX_SLABINFO_WRITE 128 | ||
2993 | /** | ||
2994 | * slabinfo_write - Tuning for the slab allocator | ||
2995 | * @file: unused | ||
2996 | * @buffer: user buffer | ||
2997 | * @count: data length | ||
2998 | * @ppos: unused | ||
2999 | */ | ||
3000 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | ||
3001 | size_t count, loff_t *ppos) | ||
3002 | { | ||
3003 | char kbuf[MAX_SLABINFO_WRITE+1], *tmp; | ||
3004 | int limit, batchcount, shared, res; | ||
3005 | struct list_head *p; | ||
3006 | |||
3007 | if (count > MAX_SLABINFO_WRITE) | ||
3008 | return -EINVAL; | ||
3009 | if (copy_from_user(&kbuf, buffer, count)) | ||
3010 | return -EFAULT; | ||
3011 | kbuf[MAX_SLABINFO_WRITE] = '\0'; | ||
3012 | |||
3013 | tmp = strchr(kbuf, ' '); | ||
3014 | if (!tmp) | ||
3015 | return -EINVAL; | ||
3016 | *tmp = '\0'; | ||
3017 | tmp++; | ||
3018 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | ||
3019 | return -EINVAL; | ||
3020 | |||
3021 | /* Find the cache in the chain of caches. */ | ||
3022 | down(&cache_chain_sem); | ||
3023 | res = -EINVAL; | ||
3024 | list_for_each(p,&cache_chain) { | ||
3025 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | ||
3026 | |||
3027 | if (!strcmp(cachep->name, kbuf)) { | ||
3028 | if (limit < 1 || | ||
3029 | batchcount < 1 || | ||
3030 | batchcount > limit || | ||
3031 | shared < 0) { | ||
3032 | res = -EINVAL; | ||
3033 | } else { | ||
3034 | res = do_tune_cpucache(cachep, limit, batchcount, shared); | ||
3035 | } | ||
3036 | break; | ||
3037 | } | ||
3038 | } | ||
3039 | up(&cache_chain_sem); | ||
3040 | if (res >= 0) | ||
3041 | res = count; | ||
3042 | return res; | ||
3043 | } | ||
3044 | #endif | ||
3045 | |||
3046 | unsigned int ksize(const void *objp) | ||
3047 | { | ||
3048 | kmem_cache_t *c; | ||
3049 | unsigned long flags; | ||
3050 | unsigned int size = 0; | ||
3051 | |||
3052 | if (likely(objp != NULL)) { | ||
3053 | local_irq_save(flags); | ||
3054 | c = GET_PAGE_CACHE(virt_to_page(objp)); | ||
3055 | size = kmem_cache_size(c); | ||
3056 | local_irq_restore(flags); | ||
3057 | } | ||
3058 | |||
3059 | return size; | ||
3060 | } | ||