aboutsummaryrefslogtreecommitdiffstats
path: root/mm/rmap.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/rmap.c')
-rw-r--r--mm/rmap.c319
1 files changed, 267 insertions, 52 deletions
diff --git a/mm/rmap.c b/mm/rmap.c
index 0383acfcb068..10993942d6c9 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -53,9 +53,47 @@
53 53
54#include <asm/tlbflush.h> 54#include <asm/tlbflush.h>
55 55
56struct kmem_cache *anon_vma_cachep; 56#include "internal.h"
57 57
58/* This must be called under the mmap_sem. */ 58static struct kmem_cache *anon_vma_cachep;
59
60static inline struct anon_vma *anon_vma_alloc(void)
61{
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63}
64
65static inline void anon_vma_free(struct anon_vma *anon_vma)
66{
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68}
69
70/**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
59int anon_vma_prepare(struct vm_area_struct *vma) 97int anon_vma_prepare(struct vm_area_struct *vma)
60{ 98{
61 struct anon_vma *anon_vma = vma->anon_vma; 99 struct anon_vma *anon_vma = vma->anon_vma;
@@ -63,20 +101,17 @@ int anon_vma_prepare(struct vm_area_struct *vma)
63 might_sleep(); 101 might_sleep();
64 if (unlikely(!anon_vma)) { 102 if (unlikely(!anon_vma)) {
65 struct mm_struct *mm = vma->vm_mm; 103 struct mm_struct *mm = vma->vm_mm;
66 struct anon_vma *allocated, *locked; 104 struct anon_vma *allocated;
67 105
68 anon_vma = find_mergeable_anon_vma(vma); 106 anon_vma = find_mergeable_anon_vma(vma);
69 if (anon_vma) { 107 allocated = NULL;
70 allocated = NULL; 108 if (!anon_vma) {
71 locked = anon_vma;
72 spin_lock(&locked->lock);
73 } else {
74 anon_vma = anon_vma_alloc(); 109 anon_vma = anon_vma_alloc();
75 if (unlikely(!anon_vma)) 110 if (unlikely(!anon_vma))
76 return -ENOMEM; 111 return -ENOMEM;
77 allocated = anon_vma; 112 allocated = anon_vma;
78 locked = NULL;
79 } 113 }
114 spin_lock(&anon_vma->lock);
80 115
81 /* page_table_lock to protect against threads */ 116 /* page_table_lock to protect against threads */
82 spin_lock(&mm->page_table_lock); 117 spin_lock(&mm->page_table_lock);
@@ -87,8 +122,7 @@ int anon_vma_prepare(struct vm_area_struct *vma)
87 } 122 }
88 spin_unlock(&mm->page_table_lock); 123 spin_unlock(&mm->page_table_lock);
89 124
90 if (locked) 125 spin_unlock(&anon_vma->lock);
91 spin_unlock(&locked->lock);
92 if (unlikely(allocated)) 126 if (unlikely(allocated))
93 anon_vma_free(allocated); 127 anon_vma_free(allocated);
94 } 128 }
@@ -157,7 +191,7 @@ void __init anon_vma_init(void)
157 * Getting a lock on a stable anon_vma from a page off the LRU is 191 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 */ 193 */
160static struct anon_vma *page_lock_anon_vma(struct page *page) 194struct anon_vma *page_lock_anon_vma(struct page *page)
161{ 195{
162 struct anon_vma *anon_vma; 196 struct anon_vma *anon_vma;
163 unsigned long anon_mapping; 197 unsigned long anon_mapping;
@@ -177,7 +211,7 @@ out:
177 return NULL; 211 return NULL;
178} 212}
179 213
180static void page_unlock_anon_vma(struct anon_vma *anon_vma) 214void page_unlock_anon_vma(struct anon_vma *anon_vma)
181{ 215{
182 spin_unlock(&anon_vma->lock); 216 spin_unlock(&anon_vma->lock);
183 rcu_read_unlock(); 217 rcu_read_unlock();
@@ -268,6 +302,32 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 return NULL; 302 return NULL;
269} 303}
270 304
305/**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315{
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329}
330
271/* 331/*
272 * Subfunctions of page_referenced: page_referenced_one called 332 * Subfunctions of page_referenced: page_referenced_one called
273 * repeatedly from either page_referenced_anon or page_referenced_file. 333 * repeatedly from either page_referenced_anon or page_referenced_file.
@@ -289,10 +349,17 @@ static int page_referenced_one(struct page *page,
289 if (!pte) 349 if (!pte)
290 goto out; 350 goto out;
291 351
352 /*
353 * Don't want to elevate referenced for mlocked page that gets this far,
354 * in order that it progresses to try_to_unmap and is moved to the
355 * unevictable list.
356 */
292 if (vma->vm_flags & VM_LOCKED) { 357 if (vma->vm_flags & VM_LOCKED) {
293 referenced++;
294 *mapcount = 1; /* break early from loop */ 358 *mapcount = 1; /* break early from loop */
295 } else if (ptep_clear_flush_young_notify(vma, address, pte)) 359 goto out_unmap;
360 }
361
362 if (ptep_clear_flush_young_notify(vma, address, pte))
296 referenced++; 363 referenced++;
297 364
298 /* Pretend the page is referenced if the task has the 365 /* Pretend the page is referenced if the task has the
@@ -301,6 +368,7 @@ static int page_referenced_one(struct page *page,
301 rwsem_is_locked(&mm->mmap_sem)) 368 rwsem_is_locked(&mm->mmap_sem))
302 referenced++; 369 referenced++;
303 370
371out_unmap:
304 (*mapcount)--; 372 (*mapcount)--;
305 pte_unmap_unlock(pte, ptl); 373 pte_unmap_unlock(pte, ptl);
306out: 374out:
@@ -390,11 +458,6 @@ static int page_referenced_file(struct page *page,
390 */ 458 */
391 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 459 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
392 continue; 460 continue;
393 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
394 == (VM_LOCKED|VM_MAYSHARE)) {
395 referenced++;
396 break;
397 }
398 referenced += page_referenced_one(page, vma, &mapcount); 461 referenced += page_referenced_one(page, vma, &mapcount);
399 if (!mapcount) 462 if (!mapcount)
400 break; 463 break;
@@ -674,8 +737,8 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
674 page_clear_dirty(page); 737 page_clear_dirty(page);
675 set_page_dirty(page); 738 set_page_dirty(page);
676 } 739 }
677 740 if (PageAnon(page))
678 mem_cgroup_uncharge_page(page); 741 mem_cgroup_uncharge_page(page);
679 __dec_zone_page_state(page, 742 __dec_zone_page_state(page,
680 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 743 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
681 /* 744 /*
@@ -717,11 +780,16 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
717 * If it's recently referenced (perhaps page_referenced 780 * If it's recently referenced (perhaps page_referenced
718 * skipped over this mm) then we should reactivate it. 781 * skipped over this mm) then we should reactivate it.
719 */ 782 */
720 if (!migration && ((vma->vm_flags & VM_LOCKED) || 783 if (!migration) {
721 (ptep_clear_flush_young_notify(vma, address, pte)))) { 784 if (vma->vm_flags & VM_LOCKED) {
722 ret = SWAP_FAIL; 785 ret = SWAP_MLOCK;
723 goto out_unmap; 786 goto out_unmap;
724 } 787 }
788 if (ptep_clear_flush_young_notify(vma, address, pte)) {
789 ret = SWAP_FAIL;
790 goto out_unmap;
791 }
792 }
725 793
726 /* Nuke the page table entry. */ 794 /* Nuke the page table entry. */
727 flush_cache_page(vma, address, page_to_pfn(page)); 795 flush_cache_page(vma, address, page_to_pfn(page));
@@ -802,12 +870,17 @@ out:
802 * For very sparsely populated VMAs this is a little inefficient - chances are 870 * For very sparsely populated VMAs this is a little inefficient - chances are
803 * there there won't be many ptes located within the scan cluster. In this case 871 * there there won't be many ptes located within the scan cluster. In this case
804 * maybe we could scan further - to the end of the pte page, perhaps. 872 * maybe we could scan further - to the end of the pte page, perhaps.
873 *
874 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
875 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
876 * rather than unmapping them. If we encounter the "check_page" that vmscan is
877 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
805 */ 878 */
806#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 879#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
807#define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 880#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
808 881
809static void try_to_unmap_cluster(unsigned long cursor, 882static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
810 unsigned int *mapcount, struct vm_area_struct *vma) 883 struct vm_area_struct *vma, struct page *check_page)
811{ 884{
812 struct mm_struct *mm = vma->vm_mm; 885 struct mm_struct *mm = vma->vm_mm;
813 pgd_t *pgd; 886 pgd_t *pgd;
@@ -819,6 +892,8 @@ static void try_to_unmap_cluster(unsigned long cursor,
819 struct page *page; 892 struct page *page;
820 unsigned long address; 893 unsigned long address;
821 unsigned long end; 894 unsigned long end;
895 int ret = SWAP_AGAIN;
896 int locked_vma = 0;
822 897
823 address = (vma->vm_start + cursor) & CLUSTER_MASK; 898 address = (vma->vm_start + cursor) & CLUSTER_MASK;
824 end = address + CLUSTER_SIZE; 899 end = address + CLUSTER_SIZE;
@@ -829,15 +904,26 @@ static void try_to_unmap_cluster(unsigned long cursor,
829 904
830 pgd = pgd_offset(mm, address); 905 pgd = pgd_offset(mm, address);
831 if (!pgd_present(*pgd)) 906 if (!pgd_present(*pgd))
832 return; 907 return ret;
833 908
834 pud = pud_offset(pgd, address); 909 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud)) 910 if (!pud_present(*pud))
836 return; 911 return ret;
837 912
838 pmd = pmd_offset(pud, address); 913 pmd = pmd_offset(pud, address);
839 if (!pmd_present(*pmd)) 914 if (!pmd_present(*pmd))
840 return; 915 return ret;
916
917 /*
918 * MLOCK_PAGES => feature is configured.
919 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
920 * keep the sem while scanning the cluster for mlocking pages.
921 */
922 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
923 locked_vma = (vma->vm_flags & VM_LOCKED);
924 if (!locked_vma)
925 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
926 }
841 927
842 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 928 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
843 929
@@ -850,6 +936,13 @@ static void try_to_unmap_cluster(unsigned long cursor,
850 page = vm_normal_page(vma, address, *pte); 936 page = vm_normal_page(vma, address, *pte);
851 BUG_ON(!page || PageAnon(page)); 937 BUG_ON(!page || PageAnon(page));
852 938
939 if (locked_vma) {
940 mlock_vma_page(page); /* no-op if already mlocked */
941 if (page == check_page)
942 ret = SWAP_MLOCK;
943 continue; /* don't unmap */
944 }
945
853 if (ptep_clear_flush_young_notify(vma, address, pte)) 946 if (ptep_clear_flush_young_notify(vma, address, pte))
854 continue; 947 continue;
855 948
@@ -871,39 +964,104 @@ static void try_to_unmap_cluster(unsigned long cursor,
871 (*mapcount)--; 964 (*mapcount)--;
872 } 965 }
873 pte_unmap_unlock(pte - 1, ptl); 966 pte_unmap_unlock(pte - 1, ptl);
967 if (locked_vma)
968 up_read(&vma->vm_mm->mmap_sem);
969 return ret;
874} 970}
875 971
876static int try_to_unmap_anon(struct page *page, int migration) 972/*
973 * common handling for pages mapped in VM_LOCKED vmas
974 */
975static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
976{
977 int mlocked = 0;
978
979 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
980 if (vma->vm_flags & VM_LOCKED) {
981 mlock_vma_page(page);
982 mlocked++; /* really mlocked the page */
983 }
984 up_read(&vma->vm_mm->mmap_sem);
985 }
986 return mlocked;
987}
988
989/**
990 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
991 * rmap method
992 * @page: the page to unmap/unlock
993 * @unlock: request for unlock rather than unmap [unlikely]
994 * @migration: unmapping for migration - ignored if @unlock
995 *
996 * Find all the mappings of a page using the mapping pointer and the vma chains
997 * contained in the anon_vma struct it points to.
998 *
999 * This function is only called from try_to_unmap/try_to_munlock for
1000 * anonymous pages.
1001 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1002 * where the page was found will be held for write. So, we won't recheck
1003 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1004 * 'LOCKED.
1005 */
1006static int try_to_unmap_anon(struct page *page, int unlock, int migration)
877{ 1007{
878 struct anon_vma *anon_vma; 1008 struct anon_vma *anon_vma;
879 struct vm_area_struct *vma; 1009 struct vm_area_struct *vma;
1010 unsigned int mlocked = 0;
880 int ret = SWAP_AGAIN; 1011 int ret = SWAP_AGAIN;
881 1012
1013 if (MLOCK_PAGES && unlikely(unlock))
1014 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1015
882 anon_vma = page_lock_anon_vma(page); 1016 anon_vma = page_lock_anon_vma(page);
883 if (!anon_vma) 1017 if (!anon_vma)
884 return ret; 1018 return ret;
885 1019
886 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 1020 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
887 ret = try_to_unmap_one(page, vma, migration); 1021 if (MLOCK_PAGES && unlikely(unlock)) {
888 if (ret == SWAP_FAIL || !page_mapped(page)) 1022 if (!((vma->vm_flags & VM_LOCKED) &&
889 break; 1023 page_mapped_in_vma(page, vma)))
1024 continue; /* must visit all unlocked vmas */
1025 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1026 } else {
1027 ret = try_to_unmap_one(page, vma, migration);
1028 if (ret == SWAP_FAIL || !page_mapped(page))
1029 break;
1030 }
1031 if (ret == SWAP_MLOCK) {
1032 mlocked = try_to_mlock_page(page, vma);
1033 if (mlocked)
1034 break; /* stop if actually mlocked page */
1035 }
890 } 1036 }
891 1037
892 page_unlock_anon_vma(anon_vma); 1038 page_unlock_anon_vma(anon_vma);
1039
1040 if (mlocked)
1041 ret = SWAP_MLOCK; /* actually mlocked the page */
1042 else if (ret == SWAP_MLOCK)
1043 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1044
893 return ret; 1045 return ret;
894} 1046}
895 1047
896/** 1048/**
897 * try_to_unmap_file - unmap file page using the object-based rmap method 1049 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
898 * @page: the page to unmap 1050 * @page: the page to unmap/unlock
899 * @migration: migration flag 1051 * @unlock: request for unlock rather than unmap [unlikely]
1052 * @migration: unmapping for migration - ignored if @unlock
900 * 1053 *
901 * Find all the mappings of a page using the mapping pointer and the vma chains 1054 * Find all the mappings of a page using the mapping pointer and the vma chains
902 * contained in the address_space struct it points to. 1055 * contained in the address_space struct it points to.
903 * 1056 *
904 * This function is only called from try_to_unmap for object-based pages. 1057 * This function is only called from try_to_unmap/try_to_munlock for
1058 * object-based pages.
1059 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1060 * where the page was found will be held for write. So, we won't recheck
1061 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1062 * 'LOCKED.
905 */ 1063 */
906static int try_to_unmap_file(struct page *page, int migration) 1064static int try_to_unmap_file(struct page *page, int unlock, int migration)
907{ 1065{
908 struct address_space *mapping = page->mapping; 1066 struct address_space *mapping = page->mapping;
909 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1067 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
@@ -914,20 +1072,44 @@ static int try_to_unmap_file(struct page *page, int migration)
914 unsigned long max_nl_cursor = 0; 1072 unsigned long max_nl_cursor = 0;
915 unsigned long max_nl_size = 0; 1073 unsigned long max_nl_size = 0;
916 unsigned int mapcount; 1074 unsigned int mapcount;
1075 unsigned int mlocked = 0;
1076
1077 if (MLOCK_PAGES && unlikely(unlock))
1078 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
917 1079
918 spin_lock(&mapping->i_mmap_lock); 1080 spin_lock(&mapping->i_mmap_lock);
919 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1081 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
920 ret = try_to_unmap_one(page, vma, migration); 1082 if (MLOCK_PAGES && unlikely(unlock)) {
921 if (ret == SWAP_FAIL || !page_mapped(page)) 1083 if (!(vma->vm_flags & VM_LOCKED))
922 goto out; 1084 continue; /* must visit all vmas */
1085 ret = SWAP_MLOCK;
1086 } else {
1087 ret = try_to_unmap_one(page, vma, migration);
1088 if (ret == SWAP_FAIL || !page_mapped(page))
1089 goto out;
1090 }
1091 if (ret == SWAP_MLOCK) {
1092 mlocked = try_to_mlock_page(page, vma);
1093 if (mlocked)
1094 break; /* stop if actually mlocked page */
1095 }
923 } 1096 }
924 1097
1098 if (mlocked)
1099 goto out;
1100
925 if (list_empty(&mapping->i_mmap_nonlinear)) 1101 if (list_empty(&mapping->i_mmap_nonlinear))
926 goto out; 1102 goto out;
927 1103
928 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1104 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
929 shared.vm_set.list) { 1105 shared.vm_set.list) {
930 if ((vma->vm_flags & VM_LOCKED) && !migration) 1106 if (MLOCK_PAGES && unlikely(unlock)) {
1107 if (!(vma->vm_flags & VM_LOCKED))
1108 continue; /* must visit all vmas */
1109 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1110 goto out; /* no need to look further */
1111 }
1112 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
931 continue; 1113 continue;
932 cursor = (unsigned long) vma->vm_private_data; 1114 cursor = (unsigned long) vma->vm_private_data;
933 if (cursor > max_nl_cursor) 1115 if (cursor > max_nl_cursor)
@@ -937,7 +1119,7 @@ static int try_to_unmap_file(struct page *page, int migration)
937 max_nl_size = cursor; 1119 max_nl_size = cursor;
938 } 1120 }
939 1121
940 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 1122 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
941 ret = SWAP_FAIL; 1123 ret = SWAP_FAIL;
942 goto out; 1124 goto out;
943 } 1125 }
@@ -961,12 +1143,16 @@ static int try_to_unmap_file(struct page *page, int migration)
961 do { 1143 do {
962 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1144 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
963 shared.vm_set.list) { 1145 shared.vm_set.list) {
964 if ((vma->vm_flags & VM_LOCKED) && !migration) 1146 if (!MLOCK_PAGES && !migration &&
1147 (vma->vm_flags & VM_LOCKED))
965 continue; 1148 continue;
966 cursor = (unsigned long) vma->vm_private_data; 1149 cursor = (unsigned long) vma->vm_private_data;
967 while ( cursor < max_nl_cursor && 1150 while ( cursor < max_nl_cursor &&
968 cursor < vma->vm_end - vma->vm_start) { 1151 cursor < vma->vm_end - vma->vm_start) {
969 try_to_unmap_cluster(cursor, &mapcount, vma); 1152 ret = try_to_unmap_cluster(cursor, &mapcount,
1153 vma, page);
1154 if (ret == SWAP_MLOCK)
1155 mlocked = 2; /* to return below */
970 cursor += CLUSTER_SIZE; 1156 cursor += CLUSTER_SIZE;
971 vma->vm_private_data = (void *) cursor; 1157 vma->vm_private_data = (void *) cursor;
972 if ((int)mapcount <= 0) 1158 if ((int)mapcount <= 0)
@@ -987,6 +1173,10 @@ static int try_to_unmap_file(struct page *page, int migration)
987 vma->vm_private_data = NULL; 1173 vma->vm_private_data = NULL;
988out: 1174out:
989 spin_unlock(&mapping->i_mmap_lock); 1175 spin_unlock(&mapping->i_mmap_lock);
1176 if (mlocked)
1177 ret = SWAP_MLOCK; /* actually mlocked the page */
1178 else if (ret == SWAP_MLOCK)
1179 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
990 return ret; 1180 return ret;
991} 1181}
992 1182
@@ -1002,6 +1192,7 @@ out:
1002 * SWAP_SUCCESS - we succeeded in removing all mappings 1192 * SWAP_SUCCESS - we succeeded in removing all mappings
1003 * SWAP_AGAIN - we missed a mapping, try again later 1193 * SWAP_AGAIN - we missed a mapping, try again later
1004 * SWAP_FAIL - the page is unswappable 1194 * SWAP_FAIL - the page is unswappable
1195 * SWAP_MLOCK - page is mlocked.
1005 */ 1196 */
1006int try_to_unmap(struct page *page, int migration) 1197int try_to_unmap(struct page *page, int migration)
1007{ 1198{
@@ -1010,12 +1201,36 @@ int try_to_unmap(struct page *page, int migration)
1010 BUG_ON(!PageLocked(page)); 1201 BUG_ON(!PageLocked(page));
1011 1202
1012 if (PageAnon(page)) 1203 if (PageAnon(page))
1013 ret = try_to_unmap_anon(page, migration); 1204 ret = try_to_unmap_anon(page, 0, migration);
1014 else 1205 else
1015 ret = try_to_unmap_file(page, migration); 1206 ret = try_to_unmap_file(page, 0, migration);
1016 1207 if (ret != SWAP_MLOCK && !page_mapped(page))
1017 if (!page_mapped(page))
1018 ret = SWAP_SUCCESS; 1208 ret = SWAP_SUCCESS;
1019 return ret; 1209 return ret;
1020} 1210}
1021 1211
1212#ifdef CONFIG_UNEVICTABLE_LRU
1213/**
1214 * try_to_munlock - try to munlock a page
1215 * @page: the page to be munlocked
1216 *
1217 * Called from munlock code. Checks all of the VMAs mapping the page
1218 * to make sure nobody else has this page mlocked. The page will be
1219 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1220 *
1221 * Return values are:
1222 *
1223 * SWAP_SUCCESS - no vma's holding page mlocked.
1224 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1225 * SWAP_MLOCK - page is now mlocked.
1226 */
1227int try_to_munlock(struct page *page)
1228{
1229 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1230
1231 if (PageAnon(page))
1232 return try_to_unmap_anon(page, 1, 0);
1233 else
1234 return try_to_unmap_file(page, 1, 0);
1235}
1236#endif