diff options
Diffstat (limited to 'mm/rmap.c')
-rw-r--r-- | mm/rmap.c | 862 |
1 files changed, 862 insertions, 0 deletions
diff --git a/mm/rmap.c b/mm/rmap.c new file mode 100644 index 000000000000..884d6d1928bc --- /dev/null +++ b/mm/rmap.c | |||
@@ -0,0 +1,862 @@ | |||
1 | /* | ||
2 | * mm/rmap.c - physical to virtual reverse mappings | ||
3 | * | ||
4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | ||
5 | * Released under the General Public License (GPL). | ||
6 | * | ||
7 | * Simple, low overhead reverse mapping scheme. | ||
8 | * Please try to keep this thing as modular as possible. | ||
9 | * | ||
10 | * Provides methods for unmapping each kind of mapped page: | ||
11 | * the anon methods track anonymous pages, and | ||
12 | * the file methods track pages belonging to an inode. | ||
13 | * | ||
14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | ||
15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | ||
16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | ||
17 | * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 | ||
18 | */ | ||
19 | |||
20 | /* | ||
21 | * Lock ordering in mm: | ||
22 | * | ||
23 | * inode->i_sem (while writing or truncating, not reading or faulting) | ||
24 | * inode->i_alloc_sem | ||
25 | * | ||
26 | * When a page fault occurs in writing from user to file, down_read | ||
27 | * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within | ||
28 | * down_read of mmap_sem; i_sem and down_write of mmap_sem are never | ||
29 | * taken together; in truncation, i_sem is taken outermost. | ||
30 | * | ||
31 | * mm->mmap_sem | ||
32 | * page->flags PG_locked (lock_page) | ||
33 | * mapping->i_mmap_lock | ||
34 | * anon_vma->lock | ||
35 | * mm->page_table_lock | ||
36 | * zone->lru_lock (in mark_page_accessed) | ||
37 | * swap_list_lock (in swap_free etc's swap_info_get) | ||
38 | * mmlist_lock (in mmput, drain_mmlist and others) | ||
39 | * swap_device_lock (in swap_duplicate, swap_info_get) | ||
40 | * mapping->private_lock (in __set_page_dirty_buffers) | ||
41 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | ||
42 | * sb_lock (within inode_lock in fs/fs-writeback.c) | ||
43 | * mapping->tree_lock (widely used, in set_page_dirty, | ||
44 | * in arch-dependent flush_dcache_mmap_lock, | ||
45 | * within inode_lock in __sync_single_inode) | ||
46 | */ | ||
47 | |||
48 | #include <linux/mm.h> | ||
49 | #include <linux/pagemap.h> | ||
50 | #include <linux/swap.h> | ||
51 | #include <linux/swapops.h> | ||
52 | #include <linux/slab.h> | ||
53 | #include <linux/init.h> | ||
54 | #include <linux/rmap.h> | ||
55 | #include <linux/rcupdate.h> | ||
56 | |||
57 | #include <asm/tlbflush.h> | ||
58 | |||
59 | //#define RMAP_DEBUG /* can be enabled only for debugging */ | ||
60 | |||
61 | kmem_cache_t *anon_vma_cachep; | ||
62 | |||
63 | static inline void validate_anon_vma(struct vm_area_struct *find_vma) | ||
64 | { | ||
65 | #ifdef RMAP_DEBUG | ||
66 | struct anon_vma *anon_vma = find_vma->anon_vma; | ||
67 | struct vm_area_struct *vma; | ||
68 | unsigned int mapcount = 0; | ||
69 | int found = 0; | ||
70 | |||
71 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | ||
72 | mapcount++; | ||
73 | BUG_ON(mapcount > 100000); | ||
74 | if (vma == find_vma) | ||
75 | found = 1; | ||
76 | } | ||
77 | BUG_ON(!found); | ||
78 | #endif | ||
79 | } | ||
80 | |||
81 | /* This must be called under the mmap_sem. */ | ||
82 | int anon_vma_prepare(struct vm_area_struct *vma) | ||
83 | { | ||
84 | struct anon_vma *anon_vma = vma->anon_vma; | ||
85 | |||
86 | might_sleep(); | ||
87 | if (unlikely(!anon_vma)) { | ||
88 | struct mm_struct *mm = vma->vm_mm; | ||
89 | struct anon_vma *allocated, *locked; | ||
90 | |||
91 | anon_vma = find_mergeable_anon_vma(vma); | ||
92 | if (anon_vma) { | ||
93 | allocated = NULL; | ||
94 | locked = anon_vma; | ||
95 | spin_lock(&locked->lock); | ||
96 | } else { | ||
97 | anon_vma = anon_vma_alloc(); | ||
98 | if (unlikely(!anon_vma)) | ||
99 | return -ENOMEM; | ||
100 | allocated = anon_vma; | ||
101 | locked = NULL; | ||
102 | } | ||
103 | |||
104 | /* page_table_lock to protect against threads */ | ||
105 | spin_lock(&mm->page_table_lock); | ||
106 | if (likely(!vma->anon_vma)) { | ||
107 | vma->anon_vma = anon_vma; | ||
108 | list_add(&vma->anon_vma_node, &anon_vma->head); | ||
109 | allocated = NULL; | ||
110 | } | ||
111 | spin_unlock(&mm->page_table_lock); | ||
112 | |||
113 | if (locked) | ||
114 | spin_unlock(&locked->lock); | ||
115 | if (unlikely(allocated)) | ||
116 | anon_vma_free(allocated); | ||
117 | } | ||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | ||
122 | { | ||
123 | BUG_ON(vma->anon_vma != next->anon_vma); | ||
124 | list_del(&next->anon_vma_node); | ||
125 | } | ||
126 | |||
127 | void __anon_vma_link(struct vm_area_struct *vma) | ||
128 | { | ||
129 | struct anon_vma *anon_vma = vma->anon_vma; | ||
130 | |||
131 | if (anon_vma) { | ||
132 | list_add(&vma->anon_vma_node, &anon_vma->head); | ||
133 | validate_anon_vma(vma); | ||
134 | } | ||
135 | } | ||
136 | |||
137 | void anon_vma_link(struct vm_area_struct *vma) | ||
138 | { | ||
139 | struct anon_vma *anon_vma = vma->anon_vma; | ||
140 | |||
141 | if (anon_vma) { | ||
142 | spin_lock(&anon_vma->lock); | ||
143 | list_add(&vma->anon_vma_node, &anon_vma->head); | ||
144 | validate_anon_vma(vma); | ||
145 | spin_unlock(&anon_vma->lock); | ||
146 | } | ||
147 | } | ||
148 | |||
149 | void anon_vma_unlink(struct vm_area_struct *vma) | ||
150 | { | ||
151 | struct anon_vma *anon_vma = vma->anon_vma; | ||
152 | int empty; | ||
153 | |||
154 | if (!anon_vma) | ||
155 | return; | ||
156 | |||
157 | spin_lock(&anon_vma->lock); | ||
158 | validate_anon_vma(vma); | ||
159 | list_del(&vma->anon_vma_node); | ||
160 | |||
161 | /* We must garbage collect the anon_vma if it's empty */ | ||
162 | empty = list_empty(&anon_vma->head); | ||
163 | spin_unlock(&anon_vma->lock); | ||
164 | |||
165 | if (empty) | ||
166 | anon_vma_free(anon_vma); | ||
167 | } | ||
168 | |||
169 | static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) | ||
170 | { | ||
171 | if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == | ||
172 | SLAB_CTOR_CONSTRUCTOR) { | ||
173 | struct anon_vma *anon_vma = data; | ||
174 | |||
175 | spin_lock_init(&anon_vma->lock); | ||
176 | INIT_LIST_HEAD(&anon_vma->head); | ||
177 | } | ||
178 | } | ||
179 | |||
180 | void __init anon_vma_init(void) | ||
181 | { | ||
182 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | ||
183 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); | ||
184 | } | ||
185 | |||
186 | /* | ||
187 | * Getting a lock on a stable anon_vma from a page off the LRU is | ||
188 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | ||
189 | */ | ||
190 | static struct anon_vma *page_lock_anon_vma(struct page *page) | ||
191 | { | ||
192 | struct anon_vma *anon_vma = NULL; | ||
193 | unsigned long anon_mapping; | ||
194 | |||
195 | rcu_read_lock(); | ||
196 | anon_mapping = (unsigned long) page->mapping; | ||
197 | if (!(anon_mapping & PAGE_MAPPING_ANON)) | ||
198 | goto out; | ||
199 | if (!page_mapped(page)) | ||
200 | goto out; | ||
201 | |||
202 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | ||
203 | spin_lock(&anon_vma->lock); | ||
204 | out: | ||
205 | rcu_read_unlock(); | ||
206 | return anon_vma; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * At what user virtual address is page expected in vma? | ||
211 | */ | ||
212 | static inline unsigned long | ||
213 | vma_address(struct page *page, struct vm_area_struct *vma) | ||
214 | { | ||
215 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
216 | unsigned long address; | ||
217 | |||
218 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | ||
219 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | ||
220 | /* page should be within any vma from prio_tree_next */ | ||
221 | BUG_ON(!PageAnon(page)); | ||
222 | return -EFAULT; | ||
223 | } | ||
224 | return address; | ||
225 | } | ||
226 | |||
227 | /* | ||
228 | * At what user virtual address is page expected in vma? checking that the | ||
229 | * page matches the vma: currently only used by unuse_process, on anon pages. | ||
230 | */ | ||
231 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | ||
232 | { | ||
233 | if (PageAnon(page)) { | ||
234 | if ((void *)vma->anon_vma != | ||
235 | (void *)page->mapping - PAGE_MAPPING_ANON) | ||
236 | return -EFAULT; | ||
237 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | ||
238 | if (vma->vm_file->f_mapping != page->mapping) | ||
239 | return -EFAULT; | ||
240 | } else | ||
241 | return -EFAULT; | ||
242 | return vma_address(page, vma); | ||
243 | } | ||
244 | |||
245 | /* | ||
246 | * Subfunctions of page_referenced: page_referenced_one called | ||
247 | * repeatedly from either page_referenced_anon or page_referenced_file. | ||
248 | */ | ||
249 | static int page_referenced_one(struct page *page, | ||
250 | struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) | ||
251 | { | ||
252 | struct mm_struct *mm = vma->vm_mm; | ||
253 | unsigned long address; | ||
254 | pgd_t *pgd; | ||
255 | pud_t *pud; | ||
256 | pmd_t *pmd; | ||
257 | pte_t *pte; | ||
258 | int referenced = 0; | ||
259 | |||
260 | if (!get_mm_counter(mm, rss)) | ||
261 | goto out; | ||
262 | address = vma_address(page, vma); | ||
263 | if (address == -EFAULT) | ||
264 | goto out; | ||
265 | |||
266 | spin_lock(&mm->page_table_lock); | ||
267 | |||
268 | pgd = pgd_offset(mm, address); | ||
269 | if (!pgd_present(*pgd)) | ||
270 | goto out_unlock; | ||
271 | |||
272 | pud = pud_offset(pgd, address); | ||
273 | if (!pud_present(*pud)) | ||
274 | goto out_unlock; | ||
275 | |||
276 | pmd = pmd_offset(pud, address); | ||
277 | if (!pmd_present(*pmd)) | ||
278 | goto out_unlock; | ||
279 | |||
280 | pte = pte_offset_map(pmd, address); | ||
281 | if (!pte_present(*pte)) | ||
282 | goto out_unmap; | ||
283 | |||
284 | if (page_to_pfn(page) != pte_pfn(*pte)) | ||
285 | goto out_unmap; | ||
286 | |||
287 | if (ptep_clear_flush_young(vma, address, pte)) | ||
288 | referenced++; | ||
289 | |||
290 | if (mm != current->mm && !ignore_token && has_swap_token(mm)) | ||
291 | referenced++; | ||
292 | |||
293 | (*mapcount)--; | ||
294 | |||
295 | out_unmap: | ||
296 | pte_unmap(pte); | ||
297 | out_unlock: | ||
298 | spin_unlock(&mm->page_table_lock); | ||
299 | out: | ||
300 | return referenced; | ||
301 | } | ||
302 | |||
303 | static int page_referenced_anon(struct page *page, int ignore_token) | ||
304 | { | ||
305 | unsigned int mapcount; | ||
306 | struct anon_vma *anon_vma; | ||
307 | struct vm_area_struct *vma; | ||
308 | int referenced = 0; | ||
309 | |||
310 | anon_vma = page_lock_anon_vma(page); | ||
311 | if (!anon_vma) | ||
312 | return referenced; | ||
313 | |||
314 | mapcount = page_mapcount(page); | ||
315 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | ||
316 | referenced += page_referenced_one(page, vma, &mapcount, | ||
317 | ignore_token); | ||
318 | if (!mapcount) | ||
319 | break; | ||
320 | } | ||
321 | spin_unlock(&anon_vma->lock); | ||
322 | return referenced; | ||
323 | } | ||
324 | |||
325 | /** | ||
326 | * page_referenced_file - referenced check for object-based rmap | ||
327 | * @page: the page we're checking references on. | ||
328 | * | ||
329 | * For an object-based mapped page, find all the places it is mapped and | ||
330 | * check/clear the referenced flag. This is done by following the page->mapping | ||
331 | * pointer, then walking the chain of vmas it holds. It returns the number | ||
332 | * of references it found. | ||
333 | * | ||
334 | * This function is only called from page_referenced for object-based pages. | ||
335 | */ | ||
336 | static int page_referenced_file(struct page *page, int ignore_token) | ||
337 | { | ||
338 | unsigned int mapcount; | ||
339 | struct address_space *mapping = page->mapping; | ||
340 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
341 | struct vm_area_struct *vma; | ||
342 | struct prio_tree_iter iter; | ||
343 | int referenced = 0; | ||
344 | |||
345 | /* | ||
346 | * The caller's checks on page->mapping and !PageAnon have made | ||
347 | * sure that this is a file page: the check for page->mapping | ||
348 | * excludes the case just before it gets set on an anon page. | ||
349 | */ | ||
350 | BUG_ON(PageAnon(page)); | ||
351 | |||
352 | /* | ||
353 | * The page lock not only makes sure that page->mapping cannot | ||
354 | * suddenly be NULLified by truncation, it makes sure that the | ||
355 | * structure at mapping cannot be freed and reused yet, | ||
356 | * so we can safely take mapping->i_mmap_lock. | ||
357 | */ | ||
358 | BUG_ON(!PageLocked(page)); | ||
359 | |||
360 | spin_lock(&mapping->i_mmap_lock); | ||
361 | |||
362 | /* | ||
363 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | ||
364 | * is more likely to be accurate if we note it after spinning. | ||
365 | */ | ||
366 | mapcount = page_mapcount(page); | ||
367 | |||
368 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
369 | if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) | ||
370 | == (VM_LOCKED|VM_MAYSHARE)) { | ||
371 | referenced++; | ||
372 | break; | ||
373 | } | ||
374 | referenced += page_referenced_one(page, vma, &mapcount, | ||
375 | ignore_token); | ||
376 | if (!mapcount) | ||
377 | break; | ||
378 | } | ||
379 | |||
380 | spin_unlock(&mapping->i_mmap_lock); | ||
381 | return referenced; | ||
382 | } | ||
383 | |||
384 | /** | ||
385 | * page_referenced - test if the page was referenced | ||
386 | * @page: the page to test | ||
387 | * @is_locked: caller holds lock on the page | ||
388 | * | ||
389 | * Quick test_and_clear_referenced for all mappings to a page, | ||
390 | * returns the number of ptes which referenced the page. | ||
391 | */ | ||
392 | int page_referenced(struct page *page, int is_locked, int ignore_token) | ||
393 | { | ||
394 | int referenced = 0; | ||
395 | |||
396 | if (!swap_token_default_timeout) | ||
397 | ignore_token = 1; | ||
398 | |||
399 | if (page_test_and_clear_young(page)) | ||
400 | referenced++; | ||
401 | |||
402 | if (TestClearPageReferenced(page)) | ||
403 | referenced++; | ||
404 | |||
405 | if (page_mapped(page) && page->mapping) { | ||
406 | if (PageAnon(page)) | ||
407 | referenced += page_referenced_anon(page, ignore_token); | ||
408 | else if (is_locked) | ||
409 | referenced += page_referenced_file(page, ignore_token); | ||
410 | else if (TestSetPageLocked(page)) | ||
411 | referenced++; | ||
412 | else { | ||
413 | if (page->mapping) | ||
414 | referenced += page_referenced_file(page, | ||
415 | ignore_token); | ||
416 | unlock_page(page); | ||
417 | } | ||
418 | } | ||
419 | return referenced; | ||
420 | } | ||
421 | |||
422 | /** | ||
423 | * page_add_anon_rmap - add pte mapping to an anonymous page | ||
424 | * @page: the page to add the mapping to | ||
425 | * @vma: the vm area in which the mapping is added | ||
426 | * @address: the user virtual address mapped | ||
427 | * | ||
428 | * The caller needs to hold the mm->page_table_lock. | ||
429 | */ | ||
430 | void page_add_anon_rmap(struct page *page, | ||
431 | struct vm_area_struct *vma, unsigned long address) | ||
432 | { | ||
433 | struct anon_vma *anon_vma = vma->anon_vma; | ||
434 | pgoff_t index; | ||
435 | |||
436 | BUG_ON(PageReserved(page)); | ||
437 | BUG_ON(!anon_vma); | ||
438 | |||
439 | inc_mm_counter(vma->vm_mm, anon_rss); | ||
440 | |||
441 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | ||
442 | index = (address - vma->vm_start) >> PAGE_SHIFT; | ||
443 | index += vma->vm_pgoff; | ||
444 | index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; | ||
445 | |||
446 | if (atomic_inc_and_test(&page->_mapcount)) { | ||
447 | page->index = index; | ||
448 | page->mapping = (struct address_space *) anon_vma; | ||
449 | inc_page_state(nr_mapped); | ||
450 | } | ||
451 | /* else checking page index and mapping is racy */ | ||
452 | } | ||
453 | |||
454 | /** | ||
455 | * page_add_file_rmap - add pte mapping to a file page | ||
456 | * @page: the page to add the mapping to | ||
457 | * | ||
458 | * The caller needs to hold the mm->page_table_lock. | ||
459 | */ | ||
460 | void page_add_file_rmap(struct page *page) | ||
461 | { | ||
462 | BUG_ON(PageAnon(page)); | ||
463 | if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) | ||
464 | return; | ||
465 | |||
466 | if (atomic_inc_and_test(&page->_mapcount)) | ||
467 | inc_page_state(nr_mapped); | ||
468 | } | ||
469 | |||
470 | /** | ||
471 | * page_remove_rmap - take down pte mapping from a page | ||
472 | * @page: page to remove mapping from | ||
473 | * | ||
474 | * Caller needs to hold the mm->page_table_lock. | ||
475 | */ | ||
476 | void page_remove_rmap(struct page *page) | ||
477 | { | ||
478 | BUG_ON(PageReserved(page)); | ||
479 | |||
480 | if (atomic_add_negative(-1, &page->_mapcount)) { | ||
481 | BUG_ON(page_mapcount(page) < 0); | ||
482 | /* | ||
483 | * It would be tidy to reset the PageAnon mapping here, | ||
484 | * but that might overwrite a racing page_add_anon_rmap | ||
485 | * which increments mapcount after us but sets mapping | ||
486 | * before us: so leave the reset to free_hot_cold_page, | ||
487 | * and remember that it's only reliable while mapped. | ||
488 | * Leaving it set also helps swapoff to reinstate ptes | ||
489 | * faster for those pages still in swapcache. | ||
490 | */ | ||
491 | if (page_test_and_clear_dirty(page)) | ||
492 | set_page_dirty(page); | ||
493 | dec_page_state(nr_mapped); | ||
494 | } | ||
495 | } | ||
496 | |||
497 | /* | ||
498 | * Subfunctions of try_to_unmap: try_to_unmap_one called | ||
499 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | ||
500 | */ | ||
501 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) | ||
502 | { | ||
503 | struct mm_struct *mm = vma->vm_mm; | ||
504 | unsigned long address; | ||
505 | pgd_t *pgd; | ||
506 | pud_t *pud; | ||
507 | pmd_t *pmd; | ||
508 | pte_t *pte; | ||
509 | pte_t pteval; | ||
510 | int ret = SWAP_AGAIN; | ||
511 | |||
512 | if (!get_mm_counter(mm, rss)) | ||
513 | goto out; | ||
514 | address = vma_address(page, vma); | ||
515 | if (address == -EFAULT) | ||
516 | goto out; | ||
517 | |||
518 | /* | ||
519 | * We need the page_table_lock to protect us from page faults, | ||
520 | * munmap, fork, etc... | ||
521 | */ | ||
522 | spin_lock(&mm->page_table_lock); | ||
523 | |||
524 | pgd = pgd_offset(mm, address); | ||
525 | if (!pgd_present(*pgd)) | ||
526 | goto out_unlock; | ||
527 | |||
528 | pud = pud_offset(pgd, address); | ||
529 | if (!pud_present(*pud)) | ||
530 | goto out_unlock; | ||
531 | |||
532 | pmd = pmd_offset(pud, address); | ||
533 | if (!pmd_present(*pmd)) | ||
534 | goto out_unlock; | ||
535 | |||
536 | pte = pte_offset_map(pmd, address); | ||
537 | if (!pte_present(*pte)) | ||
538 | goto out_unmap; | ||
539 | |||
540 | if (page_to_pfn(page) != pte_pfn(*pte)) | ||
541 | goto out_unmap; | ||
542 | |||
543 | /* | ||
544 | * If the page is mlock()d, we cannot swap it out. | ||
545 | * If it's recently referenced (perhaps page_referenced | ||
546 | * skipped over this mm) then we should reactivate it. | ||
547 | */ | ||
548 | if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || | ||
549 | ptep_clear_flush_young(vma, address, pte)) { | ||
550 | ret = SWAP_FAIL; | ||
551 | goto out_unmap; | ||
552 | } | ||
553 | |||
554 | /* | ||
555 | * Don't pull an anonymous page out from under get_user_pages. | ||
556 | * GUP carefully breaks COW and raises page count (while holding | ||
557 | * page_table_lock, as we have here) to make sure that the page | ||
558 | * cannot be freed. If we unmap that page here, a user write | ||
559 | * access to the virtual address will bring back the page, but | ||
560 | * its raised count will (ironically) be taken to mean it's not | ||
561 | * an exclusive swap page, do_wp_page will replace it by a copy | ||
562 | * page, and the user never get to see the data GUP was holding | ||
563 | * the original page for. | ||
564 | * | ||
565 | * This test is also useful for when swapoff (unuse_process) has | ||
566 | * to drop page lock: its reference to the page stops existing | ||
567 | * ptes from being unmapped, so swapoff can make progress. | ||
568 | */ | ||
569 | if (PageSwapCache(page) && | ||
570 | page_count(page) != page_mapcount(page) + 2) { | ||
571 | ret = SWAP_FAIL; | ||
572 | goto out_unmap; | ||
573 | } | ||
574 | |||
575 | /* Nuke the page table entry. */ | ||
576 | flush_cache_page(vma, address, page_to_pfn(page)); | ||
577 | pteval = ptep_clear_flush(vma, address, pte); | ||
578 | |||
579 | /* Move the dirty bit to the physical page now the pte is gone. */ | ||
580 | if (pte_dirty(pteval)) | ||
581 | set_page_dirty(page); | ||
582 | |||
583 | if (PageAnon(page)) { | ||
584 | swp_entry_t entry = { .val = page->private }; | ||
585 | /* | ||
586 | * Store the swap location in the pte. | ||
587 | * See handle_pte_fault() ... | ||
588 | */ | ||
589 | BUG_ON(!PageSwapCache(page)); | ||
590 | swap_duplicate(entry); | ||
591 | if (list_empty(&mm->mmlist)) { | ||
592 | spin_lock(&mmlist_lock); | ||
593 | list_add(&mm->mmlist, &init_mm.mmlist); | ||
594 | spin_unlock(&mmlist_lock); | ||
595 | } | ||
596 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | ||
597 | BUG_ON(pte_file(*pte)); | ||
598 | dec_mm_counter(mm, anon_rss); | ||
599 | } | ||
600 | |||
601 | inc_mm_counter(mm, rss); | ||
602 | page_remove_rmap(page); | ||
603 | page_cache_release(page); | ||
604 | |||
605 | out_unmap: | ||
606 | pte_unmap(pte); | ||
607 | out_unlock: | ||
608 | spin_unlock(&mm->page_table_lock); | ||
609 | out: | ||
610 | return ret; | ||
611 | } | ||
612 | |||
613 | /* | ||
614 | * objrmap doesn't work for nonlinear VMAs because the assumption that | ||
615 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | ||
616 | * Consequently, given a particular page and its ->index, we cannot locate the | ||
617 | * ptes which are mapping that page without an exhaustive linear search. | ||
618 | * | ||
619 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | ||
620 | * maps the file to which the target page belongs. The ->vm_private_data field | ||
621 | * holds the current cursor into that scan. Successive searches will circulate | ||
622 | * around the vma's virtual address space. | ||
623 | * | ||
624 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | ||
625 | * more scanning pressure is placed against them as well. Eventually pages | ||
626 | * will become fully unmapped and are eligible for eviction. | ||
627 | * | ||
628 | * For very sparsely populated VMAs this is a little inefficient - chances are | ||
629 | * there there won't be many ptes located within the scan cluster. In this case | ||
630 | * maybe we could scan further - to the end of the pte page, perhaps. | ||
631 | */ | ||
632 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | ||
633 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | ||
634 | |||
635 | static void try_to_unmap_cluster(unsigned long cursor, | ||
636 | unsigned int *mapcount, struct vm_area_struct *vma) | ||
637 | { | ||
638 | struct mm_struct *mm = vma->vm_mm; | ||
639 | pgd_t *pgd; | ||
640 | pud_t *pud; | ||
641 | pmd_t *pmd; | ||
642 | pte_t *pte; | ||
643 | pte_t pteval; | ||
644 | struct page *page; | ||
645 | unsigned long address; | ||
646 | unsigned long end; | ||
647 | unsigned long pfn; | ||
648 | |||
649 | /* | ||
650 | * We need the page_table_lock to protect us from page faults, | ||
651 | * munmap, fork, etc... | ||
652 | */ | ||
653 | spin_lock(&mm->page_table_lock); | ||
654 | |||
655 | address = (vma->vm_start + cursor) & CLUSTER_MASK; | ||
656 | end = address + CLUSTER_SIZE; | ||
657 | if (address < vma->vm_start) | ||
658 | address = vma->vm_start; | ||
659 | if (end > vma->vm_end) | ||
660 | end = vma->vm_end; | ||
661 | |||
662 | pgd = pgd_offset(mm, address); | ||
663 | if (!pgd_present(*pgd)) | ||
664 | goto out_unlock; | ||
665 | |||
666 | pud = pud_offset(pgd, address); | ||
667 | if (!pud_present(*pud)) | ||
668 | goto out_unlock; | ||
669 | |||
670 | pmd = pmd_offset(pud, address); | ||
671 | if (!pmd_present(*pmd)) | ||
672 | goto out_unlock; | ||
673 | |||
674 | for (pte = pte_offset_map(pmd, address); | ||
675 | address < end; pte++, address += PAGE_SIZE) { | ||
676 | |||
677 | if (!pte_present(*pte)) | ||
678 | continue; | ||
679 | |||
680 | pfn = pte_pfn(*pte); | ||
681 | if (!pfn_valid(pfn)) | ||
682 | continue; | ||
683 | |||
684 | page = pfn_to_page(pfn); | ||
685 | BUG_ON(PageAnon(page)); | ||
686 | if (PageReserved(page)) | ||
687 | continue; | ||
688 | |||
689 | if (ptep_clear_flush_young(vma, address, pte)) | ||
690 | continue; | ||
691 | |||
692 | /* Nuke the page table entry. */ | ||
693 | flush_cache_page(vma, address, pfn); | ||
694 | pteval = ptep_clear_flush(vma, address, pte); | ||
695 | |||
696 | /* If nonlinear, store the file page offset in the pte. */ | ||
697 | if (page->index != linear_page_index(vma, address)) | ||
698 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | ||
699 | |||
700 | /* Move the dirty bit to the physical page now the pte is gone. */ | ||
701 | if (pte_dirty(pteval)) | ||
702 | set_page_dirty(page); | ||
703 | |||
704 | page_remove_rmap(page); | ||
705 | page_cache_release(page); | ||
706 | dec_mm_counter(mm, rss); | ||
707 | (*mapcount)--; | ||
708 | } | ||
709 | |||
710 | pte_unmap(pte); | ||
711 | |||
712 | out_unlock: | ||
713 | spin_unlock(&mm->page_table_lock); | ||
714 | } | ||
715 | |||
716 | static int try_to_unmap_anon(struct page *page) | ||
717 | { | ||
718 | struct anon_vma *anon_vma; | ||
719 | struct vm_area_struct *vma; | ||
720 | int ret = SWAP_AGAIN; | ||
721 | |||
722 | anon_vma = page_lock_anon_vma(page); | ||
723 | if (!anon_vma) | ||
724 | return ret; | ||
725 | |||
726 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | ||
727 | ret = try_to_unmap_one(page, vma); | ||
728 | if (ret == SWAP_FAIL || !page_mapped(page)) | ||
729 | break; | ||
730 | } | ||
731 | spin_unlock(&anon_vma->lock); | ||
732 | return ret; | ||
733 | } | ||
734 | |||
735 | /** | ||
736 | * try_to_unmap_file - unmap file page using the object-based rmap method | ||
737 | * @page: the page to unmap | ||
738 | * | ||
739 | * Find all the mappings of a page using the mapping pointer and the vma chains | ||
740 | * contained in the address_space struct it points to. | ||
741 | * | ||
742 | * This function is only called from try_to_unmap for object-based pages. | ||
743 | */ | ||
744 | static int try_to_unmap_file(struct page *page) | ||
745 | { | ||
746 | struct address_space *mapping = page->mapping; | ||
747 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
748 | struct vm_area_struct *vma; | ||
749 | struct prio_tree_iter iter; | ||
750 | int ret = SWAP_AGAIN; | ||
751 | unsigned long cursor; | ||
752 | unsigned long max_nl_cursor = 0; | ||
753 | unsigned long max_nl_size = 0; | ||
754 | unsigned int mapcount; | ||
755 | |||
756 | spin_lock(&mapping->i_mmap_lock); | ||
757 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
758 | ret = try_to_unmap_one(page, vma); | ||
759 | if (ret == SWAP_FAIL || !page_mapped(page)) | ||
760 | goto out; | ||
761 | } | ||
762 | |||
763 | if (list_empty(&mapping->i_mmap_nonlinear)) | ||
764 | goto out; | ||
765 | |||
766 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | ||
767 | shared.vm_set.list) { | ||
768 | if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) | ||
769 | continue; | ||
770 | cursor = (unsigned long) vma->vm_private_data; | ||
771 | if (cursor > max_nl_cursor) | ||
772 | max_nl_cursor = cursor; | ||
773 | cursor = vma->vm_end - vma->vm_start; | ||
774 | if (cursor > max_nl_size) | ||
775 | max_nl_size = cursor; | ||
776 | } | ||
777 | |||
778 | if (max_nl_size == 0) { /* any nonlinears locked or reserved */ | ||
779 | ret = SWAP_FAIL; | ||
780 | goto out; | ||
781 | } | ||
782 | |||
783 | /* | ||
784 | * We don't try to search for this page in the nonlinear vmas, | ||
785 | * and page_referenced wouldn't have found it anyway. Instead | ||
786 | * just walk the nonlinear vmas trying to age and unmap some. | ||
787 | * The mapcount of the page we came in with is irrelevant, | ||
788 | * but even so use it as a guide to how hard we should try? | ||
789 | */ | ||
790 | mapcount = page_mapcount(page); | ||
791 | if (!mapcount) | ||
792 | goto out; | ||
793 | cond_resched_lock(&mapping->i_mmap_lock); | ||
794 | |||
795 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | ||
796 | if (max_nl_cursor == 0) | ||
797 | max_nl_cursor = CLUSTER_SIZE; | ||
798 | |||
799 | do { | ||
800 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | ||
801 | shared.vm_set.list) { | ||
802 | if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) | ||
803 | continue; | ||
804 | cursor = (unsigned long) vma->vm_private_data; | ||
805 | while (get_mm_counter(vma->vm_mm, rss) && | ||
806 | cursor < max_nl_cursor && | ||
807 | cursor < vma->vm_end - vma->vm_start) { | ||
808 | try_to_unmap_cluster(cursor, &mapcount, vma); | ||
809 | cursor += CLUSTER_SIZE; | ||
810 | vma->vm_private_data = (void *) cursor; | ||
811 | if ((int)mapcount <= 0) | ||
812 | goto out; | ||
813 | } | ||
814 | vma->vm_private_data = (void *) max_nl_cursor; | ||
815 | } | ||
816 | cond_resched_lock(&mapping->i_mmap_lock); | ||
817 | max_nl_cursor += CLUSTER_SIZE; | ||
818 | } while (max_nl_cursor <= max_nl_size); | ||
819 | |||
820 | /* | ||
821 | * Don't loop forever (perhaps all the remaining pages are | ||
822 | * in locked vmas). Reset cursor on all unreserved nonlinear | ||
823 | * vmas, now forgetting on which ones it had fallen behind. | ||
824 | */ | ||
825 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | ||
826 | shared.vm_set.list) { | ||
827 | if (!(vma->vm_flags & VM_RESERVED)) | ||
828 | vma->vm_private_data = NULL; | ||
829 | } | ||
830 | out: | ||
831 | spin_unlock(&mapping->i_mmap_lock); | ||
832 | return ret; | ||
833 | } | ||
834 | |||
835 | /** | ||
836 | * try_to_unmap - try to remove all page table mappings to a page | ||
837 | * @page: the page to get unmapped | ||
838 | * | ||
839 | * Tries to remove all the page table entries which are mapping this | ||
840 | * page, used in the pageout path. Caller must hold the page lock. | ||
841 | * Return values are: | ||
842 | * | ||
843 | * SWAP_SUCCESS - we succeeded in removing all mappings | ||
844 | * SWAP_AGAIN - we missed a mapping, try again later | ||
845 | * SWAP_FAIL - the page is unswappable | ||
846 | */ | ||
847 | int try_to_unmap(struct page *page) | ||
848 | { | ||
849 | int ret; | ||
850 | |||
851 | BUG_ON(PageReserved(page)); | ||
852 | BUG_ON(!PageLocked(page)); | ||
853 | |||
854 | if (PageAnon(page)) | ||
855 | ret = try_to_unmap_anon(page); | ||
856 | else | ||
857 | ret = try_to_unmap_file(page); | ||
858 | |||
859 | if (!page_mapped(page)) | ||
860 | ret = SWAP_SUCCESS; | ||
861 | return ret; | ||
862 | } | ||