diff options
Diffstat (limited to 'mm/percpu.c')
| -rw-r--r-- | mm/percpu.c | 1326 |
1 files changed, 1326 insertions, 0 deletions
diff --git a/mm/percpu.c b/mm/percpu.c new file mode 100644 index 000000000000..1aa5d8fbca12 --- /dev/null +++ b/mm/percpu.c | |||
| @@ -0,0 +1,1326 @@ | |||
| 1 | /* | ||
| 2 | * linux/mm/percpu.c - percpu memory allocator | ||
| 3 | * | ||
| 4 | * Copyright (C) 2009 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * This is percpu allocator which can handle both static and dynamic | ||
| 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | ||
| 11 | * chunk is consisted of num_possible_cpus() units and the first chunk | ||
| 12 | * is used for static percpu variables in the kernel image (special | ||
| 13 | * boot time alloc/init handling necessary as these areas need to be | ||
| 14 | * brought up before allocation services are running). Unit grows as | ||
| 15 | * necessary and all units grow or shrink in unison. When a chunk is | ||
| 16 | * filled up, another chunk is allocated. ie. in vmalloc area | ||
| 17 | * | ||
| 18 | * c0 c1 c2 | ||
| 19 | * ------------------- ------------------- ------------ | ||
| 20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | ||
| 21 | * ------------------- ...... ------------------- .... ------------ | ||
| 22 | * | ||
| 23 | * Allocation is done in offset-size areas of single unit space. Ie, | ||
| 24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | ||
| 25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | ||
| 26 | * percpu base registers UNIT_SIZE apart. | ||
| 27 | * | ||
| 28 | * There are usually many small percpu allocations many of them as | ||
| 29 | * small as 4 bytes. The allocator organizes chunks into lists | ||
| 30 | * according to free size and tries to allocate from the fullest one. | ||
| 31 | * Each chunk keeps the maximum contiguous area size hint which is | ||
| 32 | * guaranteed to be eqaul to or larger than the maximum contiguous | ||
| 33 | * area in the chunk. This helps the allocator not to iterate the | ||
| 34 | * chunk maps unnecessarily. | ||
| 35 | * | ||
| 36 | * Allocation state in each chunk is kept using an array of integers | ||
| 37 | * on chunk->map. A positive value in the map represents a free | ||
| 38 | * region and negative allocated. Allocation inside a chunk is done | ||
| 39 | * by scanning this map sequentially and serving the first matching | ||
| 40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | ||
| 41 | * Chunks are also linked into a rb tree to ease address to chunk | ||
| 42 | * mapping during free. | ||
| 43 | * | ||
| 44 | * To use this allocator, arch code should do the followings. | ||
| 45 | * | ||
| 46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
| 47 | * | ||
| 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | ||
| 49 | * regular address to percpu pointer and back if they need to be | ||
| 50 | * different from the default | ||
| 51 | * | ||
| 52 | * - use pcpu_setup_first_chunk() during percpu area initialization to | ||
| 53 | * setup the first chunk containing the kernel static percpu area | ||
| 54 | */ | ||
| 55 | |||
| 56 | #include <linux/bitmap.h> | ||
| 57 | #include <linux/bootmem.h> | ||
| 58 | #include <linux/list.h> | ||
| 59 | #include <linux/mm.h> | ||
| 60 | #include <linux/module.h> | ||
| 61 | #include <linux/mutex.h> | ||
| 62 | #include <linux/percpu.h> | ||
| 63 | #include <linux/pfn.h> | ||
| 64 | #include <linux/rbtree.h> | ||
| 65 | #include <linux/slab.h> | ||
| 66 | #include <linux/spinlock.h> | ||
| 67 | #include <linux/vmalloc.h> | ||
| 68 | #include <linux/workqueue.h> | ||
| 69 | |||
| 70 | #include <asm/cacheflush.h> | ||
| 71 | #include <asm/sections.h> | ||
| 72 | #include <asm/tlbflush.h> | ||
| 73 | |||
| 74 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ | ||
| 75 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | ||
| 76 | |||
| 77 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | ||
| 78 | #ifndef __addr_to_pcpu_ptr | ||
| 79 | #define __addr_to_pcpu_ptr(addr) \ | ||
| 80 | (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ | ||
| 81 | + (unsigned long)__per_cpu_start) | ||
| 82 | #endif | ||
| 83 | #ifndef __pcpu_ptr_to_addr | ||
| 84 | #define __pcpu_ptr_to_addr(ptr) \ | ||
| 85 | (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ | ||
| 86 | - (unsigned long)__per_cpu_start) | ||
| 87 | #endif | ||
| 88 | |||
| 89 | struct pcpu_chunk { | ||
| 90 | struct list_head list; /* linked to pcpu_slot lists */ | ||
| 91 | struct rb_node rb_node; /* key is chunk->vm->addr */ | ||
| 92 | int free_size; /* free bytes in the chunk */ | ||
| 93 | int contig_hint; /* max contiguous size hint */ | ||
| 94 | struct vm_struct *vm; /* mapped vmalloc region */ | ||
| 95 | int map_used; /* # of map entries used */ | ||
| 96 | int map_alloc; /* # of map entries allocated */ | ||
| 97 | int *map; /* allocation map */ | ||
| 98 | bool immutable; /* no [de]population allowed */ | ||
| 99 | struct page **page; /* points to page array */ | ||
| 100 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
| 101 | }; | ||
| 102 | |||
| 103 | static int pcpu_unit_pages __read_mostly; | ||
| 104 | static int pcpu_unit_size __read_mostly; | ||
| 105 | static int pcpu_chunk_size __read_mostly; | ||
| 106 | static int pcpu_nr_slots __read_mostly; | ||
| 107 | static size_t pcpu_chunk_struct_size __read_mostly; | ||
| 108 | |||
| 109 | /* the address of the first chunk which starts with the kernel static area */ | ||
| 110 | void *pcpu_base_addr __read_mostly; | ||
| 111 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | ||
| 112 | |||
| 113 | /* optional reserved chunk, only accessible for reserved allocations */ | ||
| 114 | static struct pcpu_chunk *pcpu_reserved_chunk; | ||
| 115 | /* offset limit of the reserved chunk */ | ||
| 116 | static int pcpu_reserved_chunk_limit; | ||
| 117 | |||
| 118 | /* | ||
| 119 | * Synchronization rules. | ||
| 120 | * | ||
| 121 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | ||
| 122 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | ||
| 123 | * The latter is a spinlock and protects the index data structures - | ||
| 124 | * chunk slots, rbtree, chunks and area maps in chunks. | ||
| 125 | * | ||
| 126 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | ||
| 127 | * pcpu_lock is grabbed and released as necessary. All actual memory | ||
| 128 | * allocations are done using GFP_KERNEL with pcpu_lock released. | ||
| 129 | * | ||
| 130 | * Free path accesses and alters only the index data structures, so it | ||
| 131 | * can be safely called from atomic context. When memory needs to be | ||
| 132 | * returned to the system, free path schedules reclaim_work which | ||
| 133 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | ||
| 134 | * reclaimed, release both locks and frees the chunks. Note that it's | ||
| 135 | * necessary to grab both locks to remove a chunk from circulation as | ||
| 136 | * allocation path might be referencing the chunk with only | ||
| 137 | * pcpu_alloc_mutex locked. | ||
| 138 | */ | ||
| 139 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ | ||
| 140 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | ||
| 141 | |||
| 142 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | ||
| 143 | static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ | ||
| 144 | |||
| 145 | /* reclaim work to release fully free chunks, scheduled from free path */ | ||
| 146 | static void pcpu_reclaim(struct work_struct *work); | ||
| 147 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | ||
| 148 | |||
| 149 | static int __pcpu_size_to_slot(int size) | ||
| 150 | { | ||
| 151 | int highbit = fls(size); /* size is in bytes */ | ||
| 152 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | ||
| 153 | } | ||
| 154 | |||
| 155 | static int pcpu_size_to_slot(int size) | ||
| 156 | { | ||
| 157 | if (size == pcpu_unit_size) | ||
| 158 | return pcpu_nr_slots - 1; | ||
| 159 | return __pcpu_size_to_slot(size); | ||
| 160 | } | ||
| 161 | |||
| 162 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | ||
| 163 | { | ||
| 164 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | ||
| 165 | return 0; | ||
| 166 | |||
| 167 | return pcpu_size_to_slot(chunk->free_size); | ||
| 168 | } | ||
| 169 | |||
| 170 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
| 171 | { | ||
| 172 | return cpu * pcpu_unit_pages + page_idx; | ||
| 173 | } | ||
| 174 | |||
| 175 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
| 176 | unsigned int cpu, int page_idx) | ||
| 177 | { | ||
| 178 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
| 179 | } | ||
| 180 | |||
| 181 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 182 | unsigned int cpu, int page_idx) | ||
| 183 | { | ||
| 184 | return (unsigned long)chunk->vm->addr + | ||
| 185 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | ||
| 186 | } | ||
| 187 | |||
| 188 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | ||
| 189 | int page_idx) | ||
| 190 | { | ||
| 191 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | ||
| 192 | } | ||
| 193 | |||
| 194 | /** | ||
| 195 | * pcpu_mem_alloc - allocate memory | ||
| 196 | * @size: bytes to allocate | ||
| 197 | * | ||
| 198 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, | ||
| 199 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | ||
| 200 | * memory is always zeroed. | ||
| 201 | * | ||
| 202 | * CONTEXT: | ||
| 203 | * Does GFP_KERNEL allocation. | ||
| 204 | * | ||
| 205 | * RETURNS: | ||
| 206 | * Pointer to the allocated area on success, NULL on failure. | ||
| 207 | */ | ||
| 208 | static void *pcpu_mem_alloc(size_t size) | ||
| 209 | { | ||
| 210 | if (size <= PAGE_SIZE) | ||
| 211 | return kzalloc(size, GFP_KERNEL); | ||
| 212 | else { | ||
| 213 | void *ptr = vmalloc(size); | ||
| 214 | if (ptr) | ||
| 215 | memset(ptr, 0, size); | ||
| 216 | return ptr; | ||
| 217 | } | ||
| 218 | } | ||
| 219 | |||
| 220 | /** | ||
| 221 | * pcpu_mem_free - free memory | ||
| 222 | * @ptr: memory to free | ||
| 223 | * @size: size of the area | ||
| 224 | * | ||
| 225 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | ||
| 226 | */ | ||
| 227 | static void pcpu_mem_free(void *ptr, size_t size) | ||
| 228 | { | ||
| 229 | if (size <= PAGE_SIZE) | ||
| 230 | kfree(ptr); | ||
| 231 | else | ||
| 232 | vfree(ptr); | ||
| 233 | } | ||
| 234 | |||
| 235 | /** | ||
| 236 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | ||
| 237 | * @chunk: chunk of interest | ||
| 238 | * @oslot: the previous slot it was on | ||
| 239 | * | ||
| 240 | * This function is called after an allocation or free changed @chunk. | ||
| 241 | * New slot according to the changed state is determined and @chunk is | ||
| 242 | * moved to the slot. Note that the reserved chunk is never put on | ||
| 243 | * chunk slots. | ||
| 244 | * | ||
| 245 | * CONTEXT: | ||
| 246 | * pcpu_lock. | ||
| 247 | */ | ||
| 248 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | ||
| 249 | { | ||
| 250 | int nslot = pcpu_chunk_slot(chunk); | ||
| 251 | |||
| 252 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { | ||
| 253 | if (oslot < nslot) | ||
| 254 | list_move(&chunk->list, &pcpu_slot[nslot]); | ||
| 255 | else | ||
| 256 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | ||
| 257 | } | ||
| 258 | } | ||
| 259 | |||
| 260 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | ||
| 261 | struct rb_node **parentp) | ||
| 262 | { | ||
| 263 | struct rb_node **p = &pcpu_addr_root.rb_node; | ||
| 264 | struct rb_node *parent = NULL; | ||
| 265 | struct pcpu_chunk *chunk; | ||
| 266 | |||
| 267 | while (*p) { | ||
| 268 | parent = *p; | ||
| 269 | chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | ||
| 270 | |||
| 271 | if (addr < chunk->vm->addr) | ||
| 272 | p = &(*p)->rb_left; | ||
| 273 | else if (addr > chunk->vm->addr) | ||
| 274 | p = &(*p)->rb_right; | ||
| 275 | else | ||
| 276 | break; | ||
| 277 | } | ||
| 278 | |||
| 279 | if (parentp) | ||
| 280 | *parentp = parent; | ||
| 281 | return p; | ||
| 282 | } | ||
| 283 | |||
| 284 | /** | ||
| 285 | * pcpu_chunk_addr_search - search for chunk containing specified address | ||
| 286 | * @addr: address to search for | ||
| 287 | * | ||
| 288 | * Look for chunk which might contain @addr. More specifically, it | ||
| 289 | * searchs for the chunk with the highest start address which isn't | ||
| 290 | * beyond @addr. | ||
| 291 | * | ||
| 292 | * CONTEXT: | ||
| 293 | * pcpu_lock. | ||
| 294 | * | ||
| 295 | * RETURNS: | ||
| 296 | * The address of the found chunk. | ||
| 297 | */ | ||
| 298 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
| 299 | { | ||
| 300 | struct rb_node *n, *parent; | ||
| 301 | struct pcpu_chunk *chunk; | ||
| 302 | |||
| 303 | /* is it in the reserved chunk? */ | ||
| 304 | if (pcpu_reserved_chunk) { | ||
| 305 | void *start = pcpu_reserved_chunk->vm->addr; | ||
| 306 | |||
| 307 | if (addr >= start && addr < start + pcpu_reserved_chunk_limit) | ||
| 308 | return pcpu_reserved_chunk; | ||
| 309 | } | ||
| 310 | |||
| 311 | /* nah... search the regular ones */ | ||
| 312 | n = *pcpu_chunk_rb_search(addr, &parent); | ||
| 313 | if (!n) { | ||
| 314 | /* no exactly matching chunk, the parent is the closest */ | ||
| 315 | n = parent; | ||
| 316 | BUG_ON(!n); | ||
| 317 | } | ||
| 318 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
| 319 | |||
| 320 | if (addr < chunk->vm->addr) { | ||
| 321 | /* the parent was the next one, look for the previous one */ | ||
| 322 | n = rb_prev(n); | ||
| 323 | BUG_ON(!n); | ||
| 324 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
| 325 | } | ||
| 326 | |||
| 327 | return chunk; | ||
| 328 | } | ||
| 329 | |||
| 330 | /** | ||
| 331 | * pcpu_chunk_addr_insert - insert chunk into address rb tree | ||
| 332 | * @new: chunk to insert | ||
| 333 | * | ||
| 334 | * Insert @new into address rb tree. | ||
| 335 | * | ||
| 336 | * CONTEXT: | ||
| 337 | * pcpu_lock. | ||
| 338 | */ | ||
| 339 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | ||
| 340 | { | ||
| 341 | struct rb_node **p, *parent; | ||
| 342 | |||
| 343 | p = pcpu_chunk_rb_search(new->vm->addr, &parent); | ||
| 344 | BUG_ON(*p); | ||
| 345 | rb_link_node(&new->rb_node, parent, p); | ||
| 346 | rb_insert_color(&new->rb_node, &pcpu_addr_root); | ||
| 347 | } | ||
| 348 | |||
| 349 | /** | ||
| 350 | * pcpu_extend_area_map - extend area map for allocation | ||
| 351 | * @chunk: target chunk | ||
| 352 | * | ||
| 353 | * Extend area map of @chunk so that it can accomodate an allocation. | ||
| 354 | * A single allocation can split an area into three areas, so this | ||
| 355 | * function makes sure that @chunk->map has at least two extra slots. | ||
| 356 | * | ||
| 357 | * CONTEXT: | ||
| 358 | * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired | ||
| 359 | * if area map is extended. | ||
| 360 | * | ||
| 361 | * RETURNS: | ||
| 362 | * 0 if noop, 1 if successfully extended, -errno on failure. | ||
| 363 | */ | ||
| 364 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | ||
| 365 | { | ||
| 366 | int new_alloc; | ||
| 367 | int *new; | ||
| 368 | size_t size; | ||
| 369 | |||
| 370 | /* has enough? */ | ||
| 371 | if (chunk->map_alloc >= chunk->map_used + 2) | ||
| 372 | return 0; | ||
| 373 | |||
| 374 | spin_unlock_irq(&pcpu_lock); | ||
| 375 | |||
| 376 | new_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 377 | while (new_alloc < chunk->map_used + 2) | ||
| 378 | new_alloc *= 2; | ||
| 379 | |||
| 380 | new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | ||
| 381 | if (!new) { | ||
| 382 | spin_lock_irq(&pcpu_lock); | ||
| 383 | return -ENOMEM; | ||
| 384 | } | ||
| 385 | |||
| 386 | /* | ||
| 387 | * Acquire pcpu_lock and switch to new area map. Only free | ||
| 388 | * could have happened inbetween, so map_used couldn't have | ||
| 389 | * grown. | ||
| 390 | */ | ||
| 391 | spin_lock_irq(&pcpu_lock); | ||
| 392 | BUG_ON(new_alloc < chunk->map_used + 2); | ||
| 393 | |||
| 394 | size = chunk->map_alloc * sizeof(chunk->map[0]); | ||
| 395 | memcpy(new, chunk->map, size); | ||
| 396 | |||
| 397 | /* | ||
| 398 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | ||
| 399 | * one of the first chunks and still using static map. | ||
| 400 | */ | ||
| 401 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | ||
| 402 | pcpu_mem_free(chunk->map, size); | ||
| 403 | |||
| 404 | chunk->map_alloc = new_alloc; | ||
| 405 | chunk->map = new; | ||
| 406 | return 0; | ||
| 407 | } | ||
| 408 | |||
| 409 | /** | ||
| 410 | * pcpu_split_block - split a map block | ||
| 411 | * @chunk: chunk of interest | ||
| 412 | * @i: index of map block to split | ||
| 413 | * @head: head size in bytes (can be 0) | ||
| 414 | * @tail: tail size in bytes (can be 0) | ||
| 415 | * | ||
| 416 | * Split the @i'th map block into two or three blocks. If @head is | ||
| 417 | * non-zero, @head bytes block is inserted before block @i moving it | ||
| 418 | * to @i+1 and reducing its size by @head bytes. | ||
| 419 | * | ||
| 420 | * If @tail is non-zero, the target block, which can be @i or @i+1 | ||
| 421 | * depending on @head, is reduced by @tail bytes and @tail byte block | ||
| 422 | * is inserted after the target block. | ||
| 423 | * | ||
| 424 | * @chunk->map must have enough free slots to accomodate the split. | ||
| 425 | * | ||
| 426 | * CONTEXT: | ||
| 427 | * pcpu_lock. | ||
| 428 | */ | ||
| 429 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | ||
| 430 | int head, int tail) | ||
| 431 | { | ||
| 432 | int nr_extra = !!head + !!tail; | ||
| 433 | |||
| 434 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | ||
| 435 | |||
| 436 | /* insert new subblocks */ | ||
| 437 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | ||
| 438 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | ||
| 439 | chunk->map_used += nr_extra; | ||
| 440 | |||
| 441 | if (head) { | ||
| 442 | chunk->map[i + 1] = chunk->map[i] - head; | ||
| 443 | chunk->map[i++] = head; | ||
| 444 | } | ||
| 445 | if (tail) { | ||
| 446 | chunk->map[i++] -= tail; | ||
| 447 | chunk->map[i] = tail; | ||
| 448 | } | ||
| 449 | } | ||
| 450 | |||
| 451 | /** | ||
| 452 | * pcpu_alloc_area - allocate area from a pcpu_chunk | ||
| 453 | * @chunk: chunk of interest | ||
| 454 | * @size: wanted size in bytes | ||
| 455 | * @align: wanted align | ||
| 456 | * | ||
| 457 | * Try to allocate @size bytes area aligned at @align from @chunk. | ||
| 458 | * Note that this function only allocates the offset. It doesn't | ||
| 459 | * populate or map the area. | ||
| 460 | * | ||
| 461 | * @chunk->map must have at least two free slots. | ||
| 462 | * | ||
| 463 | * CONTEXT: | ||
| 464 | * pcpu_lock. | ||
| 465 | * | ||
| 466 | * RETURNS: | ||
| 467 | * Allocated offset in @chunk on success, -1 if no matching area is | ||
| 468 | * found. | ||
| 469 | */ | ||
| 470 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | ||
| 471 | { | ||
| 472 | int oslot = pcpu_chunk_slot(chunk); | ||
| 473 | int max_contig = 0; | ||
| 474 | int i, off; | ||
| 475 | |||
| 476 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | ||
| 477 | bool is_last = i + 1 == chunk->map_used; | ||
| 478 | int head, tail; | ||
| 479 | |||
| 480 | /* extra for alignment requirement */ | ||
| 481 | head = ALIGN(off, align) - off; | ||
| 482 | BUG_ON(i == 0 && head != 0); | ||
| 483 | |||
| 484 | if (chunk->map[i] < 0) | ||
| 485 | continue; | ||
| 486 | if (chunk->map[i] < head + size) { | ||
| 487 | max_contig = max(chunk->map[i], max_contig); | ||
| 488 | continue; | ||
| 489 | } | ||
| 490 | |||
| 491 | /* | ||
| 492 | * If head is small or the previous block is free, | ||
| 493 | * merge'em. Note that 'small' is defined as smaller | ||
| 494 | * than sizeof(int), which is very small but isn't too | ||
| 495 | * uncommon for percpu allocations. | ||
| 496 | */ | ||
| 497 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | ||
| 498 | if (chunk->map[i - 1] > 0) | ||
| 499 | chunk->map[i - 1] += head; | ||
| 500 | else { | ||
| 501 | chunk->map[i - 1] -= head; | ||
| 502 | chunk->free_size -= head; | ||
| 503 | } | ||
| 504 | chunk->map[i] -= head; | ||
| 505 | off += head; | ||
| 506 | head = 0; | ||
| 507 | } | ||
| 508 | |||
| 509 | /* if tail is small, just keep it around */ | ||
| 510 | tail = chunk->map[i] - head - size; | ||
| 511 | if (tail < sizeof(int)) | ||
| 512 | tail = 0; | ||
| 513 | |||
| 514 | /* split if warranted */ | ||
| 515 | if (head || tail) { | ||
| 516 | pcpu_split_block(chunk, i, head, tail); | ||
| 517 | if (head) { | ||
| 518 | i++; | ||
| 519 | off += head; | ||
| 520 | max_contig = max(chunk->map[i - 1], max_contig); | ||
| 521 | } | ||
| 522 | if (tail) | ||
| 523 | max_contig = max(chunk->map[i + 1], max_contig); | ||
| 524 | } | ||
| 525 | |||
| 526 | /* update hint and mark allocated */ | ||
| 527 | if (is_last) | ||
| 528 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
| 529 | else | ||
| 530 | chunk->contig_hint = max(chunk->contig_hint, | ||
| 531 | max_contig); | ||
| 532 | |||
| 533 | chunk->free_size -= chunk->map[i]; | ||
| 534 | chunk->map[i] = -chunk->map[i]; | ||
| 535 | |||
| 536 | pcpu_chunk_relocate(chunk, oslot); | ||
| 537 | return off; | ||
| 538 | } | ||
| 539 | |||
| 540 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
| 541 | pcpu_chunk_relocate(chunk, oslot); | ||
| 542 | |||
| 543 | /* tell the upper layer that this chunk has no matching area */ | ||
| 544 | return -1; | ||
| 545 | } | ||
| 546 | |||
| 547 | /** | ||
| 548 | * pcpu_free_area - free area to a pcpu_chunk | ||
| 549 | * @chunk: chunk of interest | ||
| 550 | * @freeme: offset of area to free | ||
| 551 | * | ||
| 552 | * Free area starting from @freeme to @chunk. Note that this function | ||
| 553 | * only modifies the allocation map. It doesn't depopulate or unmap | ||
| 554 | * the area. | ||
| 555 | * | ||
| 556 | * CONTEXT: | ||
| 557 | * pcpu_lock. | ||
| 558 | */ | ||
| 559 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | ||
| 560 | { | ||
| 561 | int oslot = pcpu_chunk_slot(chunk); | ||
| 562 | int i, off; | ||
| 563 | |||
| 564 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | ||
| 565 | if (off == freeme) | ||
| 566 | break; | ||
| 567 | BUG_ON(off != freeme); | ||
| 568 | BUG_ON(chunk->map[i] > 0); | ||
| 569 | |||
| 570 | chunk->map[i] = -chunk->map[i]; | ||
| 571 | chunk->free_size += chunk->map[i]; | ||
| 572 | |||
| 573 | /* merge with previous? */ | ||
| 574 | if (i > 0 && chunk->map[i - 1] >= 0) { | ||
| 575 | chunk->map[i - 1] += chunk->map[i]; | ||
| 576 | chunk->map_used--; | ||
| 577 | memmove(&chunk->map[i], &chunk->map[i + 1], | ||
| 578 | (chunk->map_used - i) * sizeof(chunk->map[0])); | ||
| 579 | i--; | ||
| 580 | } | ||
| 581 | /* merge with next? */ | ||
| 582 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | ||
| 583 | chunk->map[i] += chunk->map[i + 1]; | ||
| 584 | chunk->map_used--; | ||
| 585 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | ||
| 586 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | ||
| 587 | } | ||
| 588 | |||
| 589 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | ||
| 590 | pcpu_chunk_relocate(chunk, oslot); | ||
| 591 | } | ||
| 592 | |||
| 593 | /** | ||
| 594 | * pcpu_unmap - unmap pages out of a pcpu_chunk | ||
| 595 | * @chunk: chunk of interest | ||
| 596 | * @page_start: page index of the first page to unmap | ||
| 597 | * @page_end: page index of the last page to unmap + 1 | ||
| 598 | * @flush: whether to flush cache and tlb or not | ||
| 599 | * | ||
| 600 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 601 | * If @flush is true, vcache is flushed before unmapping and tlb | ||
| 602 | * after. | ||
| 603 | */ | ||
| 604 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | ||
| 605 | bool flush) | ||
| 606 | { | ||
| 607 | unsigned int last = num_possible_cpus() - 1; | ||
| 608 | unsigned int cpu; | ||
| 609 | |||
| 610 | /* unmap must not be done on immutable chunk */ | ||
| 611 | WARN_ON(chunk->immutable); | ||
| 612 | |||
| 613 | /* | ||
| 614 | * Each flushing trial can be very expensive, issue flush on | ||
| 615 | * the whole region at once rather than doing it for each cpu. | ||
| 616 | * This could be an overkill but is more scalable. | ||
| 617 | */ | ||
| 618 | if (flush) | ||
| 619 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 620 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 621 | |||
| 622 | for_each_possible_cpu(cpu) | ||
| 623 | unmap_kernel_range_noflush( | ||
| 624 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 625 | (page_end - page_start) << PAGE_SHIFT); | ||
| 626 | |||
| 627 | /* ditto as flush_cache_vunmap() */ | ||
| 628 | if (flush) | ||
| 629 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 630 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 631 | } | ||
| 632 | |||
| 633 | /** | ||
| 634 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 635 | * @chunk: chunk to depopulate | ||
| 636 | * @off: offset to the area to depopulate | ||
| 637 | * @size: size of the area to depopulate in bytes | ||
| 638 | * @flush: whether to flush cache and tlb or not | ||
| 639 | * | ||
| 640 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 641 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 642 | * and tlb after. | ||
| 643 | * | ||
| 644 | * CONTEXT: | ||
| 645 | * pcpu_alloc_mutex. | ||
| 646 | */ | ||
| 647 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | ||
| 648 | bool flush) | ||
| 649 | { | ||
| 650 | int page_start = PFN_DOWN(off); | ||
| 651 | int page_end = PFN_UP(off + size); | ||
| 652 | int unmap_start = -1; | ||
| 653 | int uninitialized_var(unmap_end); | ||
| 654 | unsigned int cpu; | ||
| 655 | int i; | ||
| 656 | |||
| 657 | for (i = page_start; i < page_end; i++) { | ||
| 658 | for_each_possible_cpu(cpu) { | ||
| 659 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
| 660 | |||
| 661 | if (!*pagep) | ||
| 662 | continue; | ||
| 663 | |||
| 664 | __free_page(*pagep); | ||
| 665 | |||
| 666 | /* | ||
| 667 | * If it's partial depopulation, it might get | ||
| 668 | * populated or depopulated again. Mark the | ||
| 669 | * page gone. | ||
| 670 | */ | ||
| 671 | *pagep = NULL; | ||
| 672 | |||
| 673 | unmap_start = unmap_start < 0 ? i : unmap_start; | ||
| 674 | unmap_end = i + 1; | ||
| 675 | } | ||
| 676 | } | ||
| 677 | |||
| 678 | if (unmap_start >= 0) | ||
| 679 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | ||
| 680 | } | ||
| 681 | |||
| 682 | /** | ||
| 683 | * pcpu_map - map pages into a pcpu_chunk | ||
| 684 | * @chunk: chunk of interest | ||
| 685 | * @page_start: page index of the first page to map | ||
| 686 | * @page_end: page index of the last page to map + 1 | ||
| 687 | * | ||
| 688 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | ||
| 689 | * vcache is flushed afterwards. | ||
| 690 | */ | ||
| 691 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | ||
| 692 | { | ||
| 693 | unsigned int last = num_possible_cpus() - 1; | ||
| 694 | unsigned int cpu; | ||
| 695 | int err; | ||
| 696 | |||
| 697 | /* map must not be done on immutable chunk */ | ||
| 698 | WARN_ON(chunk->immutable); | ||
| 699 | |||
| 700 | for_each_possible_cpu(cpu) { | ||
| 701 | err = map_kernel_range_noflush( | ||
| 702 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 703 | (page_end - page_start) << PAGE_SHIFT, | ||
| 704 | PAGE_KERNEL, | ||
| 705 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
| 706 | if (err < 0) | ||
| 707 | return err; | ||
| 708 | } | ||
| 709 | |||
| 710 | /* flush at once, please read comments in pcpu_unmap() */ | ||
| 711 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 712 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 713 | return 0; | ||
| 714 | } | ||
| 715 | |||
| 716 | /** | ||
| 717 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 718 | * @chunk: chunk of interest | ||
| 719 | * @off: offset to the area to populate | ||
| 720 | * @size: size of the area to populate in bytes | ||
| 721 | * | ||
| 722 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 723 | * @chunk. The area is cleared on return. | ||
| 724 | * | ||
| 725 | * CONTEXT: | ||
| 726 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 727 | */ | ||
| 728 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 729 | { | ||
| 730 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 731 | int page_start = PFN_DOWN(off); | ||
| 732 | int page_end = PFN_UP(off + size); | ||
| 733 | int map_start = -1; | ||
| 734 | int uninitialized_var(map_end); | ||
| 735 | unsigned int cpu; | ||
| 736 | int i; | ||
| 737 | |||
| 738 | for (i = page_start; i < page_end; i++) { | ||
| 739 | if (pcpu_chunk_page_occupied(chunk, i)) { | ||
| 740 | if (map_start >= 0) { | ||
| 741 | if (pcpu_map(chunk, map_start, map_end)) | ||
| 742 | goto err; | ||
| 743 | map_start = -1; | ||
| 744 | } | ||
| 745 | continue; | ||
| 746 | } | ||
| 747 | |||
| 748 | map_start = map_start < 0 ? i : map_start; | ||
| 749 | map_end = i + 1; | ||
| 750 | |||
| 751 | for_each_possible_cpu(cpu) { | ||
| 752 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
| 753 | |||
| 754 | *pagep = alloc_pages_node(cpu_to_node(cpu), | ||
| 755 | alloc_mask, 0); | ||
| 756 | if (!*pagep) | ||
| 757 | goto err; | ||
| 758 | } | ||
| 759 | } | ||
| 760 | |||
| 761 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | ||
| 762 | goto err; | ||
| 763 | |||
| 764 | for_each_possible_cpu(cpu) | ||
| 765 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | ||
| 766 | size); | ||
| 767 | |||
| 768 | return 0; | ||
| 769 | err: | ||
| 770 | /* likely under heavy memory pressure, give memory back */ | ||
| 771 | pcpu_depopulate_chunk(chunk, off, size, true); | ||
| 772 | return -ENOMEM; | ||
| 773 | } | ||
| 774 | |||
| 775 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
| 776 | { | ||
| 777 | if (!chunk) | ||
| 778 | return; | ||
| 779 | if (chunk->vm) | ||
| 780 | free_vm_area(chunk->vm); | ||
| 781 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
| 782 | kfree(chunk); | ||
| 783 | } | ||
| 784 | |||
| 785 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
| 786 | { | ||
| 787 | struct pcpu_chunk *chunk; | ||
| 788 | |||
| 789 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
| 790 | if (!chunk) | ||
| 791 | return NULL; | ||
| 792 | |||
| 793 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
| 794 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 795 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
| 796 | chunk->page = chunk->page_ar; | ||
| 797 | |||
| 798 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | ||
| 799 | if (!chunk->vm) { | ||
| 800 | free_pcpu_chunk(chunk); | ||
| 801 | return NULL; | ||
| 802 | } | ||
| 803 | |||
| 804 | INIT_LIST_HEAD(&chunk->list); | ||
| 805 | chunk->free_size = pcpu_unit_size; | ||
| 806 | chunk->contig_hint = pcpu_unit_size; | ||
| 807 | |||
| 808 | return chunk; | ||
| 809 | } | ||
| 810 | |||
| 811 | /** | ||
| 812 | * pcpu_alloc - the percpu allocator | ||
| 813 | * @size: size of area to allocate in bytes | ||
| 814 | * @align: alignment of area (max PAGE_SIZE) | ||
| 815 | * @reserved: allocate from the reserved chunk if available | ||
| 816 | * | ||
| 817 | * Allocate percpu area of @size bytes aligned at @align. | ||
| 818 | * | ||
| 819 | * CONTEXT: | ||
| 820 | * Does GFP_KERNEL allocation. | ||
| 821 | * | ||
| 822 | * RETURNS: | ||
| 823 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
| 824 | */ | ||
| 825 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) | ||
| 826 | { | ||
| 827 | struct pcpu_chunk *chunk; | ||
| 828 | int slot, off; | ||
| 829 | |||
| 830 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | ||
| 831 | WARN(true, "illegal size (%zu) or align (%zu) for " | ||
| 832 | "percpu allocation\n", size, align); | ||
| 833 | return NULL; | ||
| 834 | } | ||
| 835 | |||
| 836 | mutex_lock(&pcpu_alloc_mutex); | ||
| 837 | spin_lock_irq(&pcpu_lock); | ||
| 838 | |||
| 839 | /* serve reserved allocations from the reserved chunk if available */ | ||
| 840 | if (reserved && pcpu_reserved_chunk) { | ||
| 841 | chunk = pcpu_reserved_chunk; | ||
| 842 | if (size > chunk->contig_hint || | ||
| 843 | pcpu_extend_area_map(chunk) < 0) | ||
| 844 | goto fail_unlock; | ||
| 845 | off = pcpu_alloc_area(chunk, size, align); | ||
| 846 | if (off >= 0) | ||
| 847 | goto area_found; | ||
| 848 | goto fail_unlock; | ||
| 849 | } | ||
| 850 | |||
| 851 | restart: | ||
| 852 | /* search through normal chunks */ | ||
| 853 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | ||
| 854 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | ||
| 855 | if (size > chunk->contig_hint) | ||
| 856 | continue; | ||
| 857 | |||
| 858 | switch (pcpu_extend_area_map(chunk)) { | ||
| 859 | case 0: | ||
| 860 | break; | ||
| 861 | case 1: | ||
| 862 | goto restart; /* pcpu_lock dropped, restart */ | ||
| 863 | default: | ||
| 864 | goto fail_unlock; | ||
| 865 | } | ||
| 866 | |||
| 867 | off = pcpu_alloc_area(chunk, size, align); | ||
| 868 | if (off >= 0) | ||
| 869 | goto area_found; | ||
| 870 | } | ||
| 871 | } | ||
| 872 | |||
| 873 | /* hmmm... no space left, create a new chunk */ | ||
| 874 | spin_unlock_irq(&pcpu_lock); | ||
| 875 | |||
| 876 | chunk = alloc_pcpu_chunk(); | ||
| 877 | if (!chunk) | ||
| 878 | goto fail_unlock_mutex; | ||
| 879 | |||
| 880 | spin_lock_irq(&pcpu_lock); | ||
| 881 | pcpu_chunk_relocate(chunk, -1); | ||
| 882 | pcpu_chunk_addr_insert(chunk); | ||
| 883 | goto restart; | ||
| 884 | |||
| 885 | area_found: | ||
| 886 | spin_unlock_irq(&pcpu_lock); | ||
| 887 | |||
| 888 | /* populate, map and clear the area */ | ||
| 889 | if (pcpu_populate_chunk(chunk, off, size)) { | ||
| 890 | spin_lock_irq(&pcpu_lock); | ||
| 891 | pcpu_free_area(chunk, off); | ||
| 892 | goto fail_unlock; | ||
| 893 | } | ||
| 894 | |||
| 895 | mutex_unlock(&pcpu_alloc_mutex); | ||
| 896 | |||
| 897 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | ||
| 898 | |||
| 899 | fail_unlock: | ||
| 900 | spin_unlock_irq(&pcpu_lock); | ||
| 901 | fail_unlock_mutex: | ||
| 902 | mutex_unlock(&pcpu_alloc_mutex); | ||
| 903 | return NULL; | ||
| 904 | } | ||
| 905 | |||
| 906 | /** | ||
| 907 | * __alloc_percpu - allocate dynamic percpu area | ||
| 908 | * @size: size of area to allocate in bytes | ||
| 909 | * @align: alignment of area (max PAGE_SIZE) | ||
| 910 | * | ||
| 911 | * Allocate percpu area of @size bytes aligned at @align. Might | ||
| 912 | * sleep. Might trigger writeouts. | ||
| 913 | * | ||
| 914 | * CONTEXT: | ||
| 915 | * Does GFP_KERNEL allocation. | ||
| 916 | * | ||
| 917 | * RETURNS: | ||
| 918 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
| 919 | */ | ||
| 920 | void *__alloc_percpu(size_t size, size_t align) | ||
| 921 | { | ||
| 922 | return pcpu_alloc(size, align, false); | ||
| 923 | } | ||
| 924 | EXPORT_SYMBOL_GPL(__alloc_percpu); | ||
| 925 | |||
| 926 | /** | ||
| 927 | * __alloc_reserved_percpu - allocate reserved percpu area | ||
| 928 | * @size: size of area to allocate in bytes | ||
| 929 | * @align: alignment of area (max PAGE_SIZE) | ||
| 930 | * | ||
| 931 | * Allocate percpu area of @size bytes aligned at @align from reserved | ||
| 932 | * percpu area if arch has set it up; otherwise, allocation is served | ||
| 933 | * from the same dynamic area. Might sleep. Might trigger writeouts. | ||
| 934 | * | ||
| 935 | * CONTEXT: | ||
| 936 | * Does GFP_KERNEL allocation. | ||
| 937 | * | ||
| 938 | * RETURNS: | ||
| 939 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
| 940 | */ | ||
| 941 | void *__alloc_reserved_percpu(size_t size, size_t align) | ||
| 942 | { | ||
| 943 | return pcpu_alloc(size, align, true); | ||
| 944 | } | ||
| 945 | |||
| 946 | /** | ||
| 947 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | ||
| 948 | * @work: unused | ||
| 949 | * | ||
| 950 | * Reclaim all fully free chunks except for the first one. | ||
| 951 | * | ||
| 952 | * CONTEXT: | ||
| 953 | * workqueue context. | ||
| 954 | */ | ||
| 955 | static void pcpu_reclaim(struct work_struct *work) | ||
| 956 | { | ||
| 957 | LIST_HEAD(todo); | ||
| 958 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | ||
| 959 | struct pcpu_chunk *chunk, *next; | ||
| 960 | |||
| 961 | mutex_lock(&pcpu_alloc_mutex); | ||
| 962 | spin_lock_irq(&pcpu_lock); | ||
| 963 | |||
| 964 | list_for_each_entry_safe(chunk, next, head, list) { | ||
| 965 | WARN_ON(chunk->immutable); | ||
| 966 | |||
| 967 | /* spare the first one */ | ||
| 968 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | ||
| 969 | continue; | ||
| 970 | |||
| 971 | rb_erase(&chunk->rb_node, &pcpu_addr_root); | ||
| 972 | list_move(&chunk->list, &todo); | ||
| 973 | } | ||
| 974 | |||
| 975 | spin_unlock_irq(&pcpu_lock); | ||
| 976 | mutex_unlock(&pcpu_alloc_mutex); | ||
| 977 | |||
| 978 | list_for_each_entry_safe(chunk, next, &todo, list) { | ||
| 979 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | ||
| 980 | free_pcpu_chunk(chunk); | ||
| 981 | } | ||
| 982 | } | ||
| 983 | |||
| 984 | /** | ||
| 985 | * free_percpu - free percpu area | ||
| 986 | * @ptr: pointer to area to free | ||
| 987 | * | ||
| 988 | * Free percpu area @ptr. | ||
| 989 | * | ||
| 990 | * CONTEXT: | ||
| 991 | * Can be called from atomic context. | ||
| 992 | */ | ||
| 993 | void free_percpu(void *ptr) | ||
| 994 | { | ||
| 995 | void *addr = __pcpu_ptr_to_addr(ptr); | ||
| 996 | struct pcpu_chunk *chunk; | ||
| 997 | unsigned long flags; | ||
| 998 | int off; | ||
| 999 | |||
| 1000 | if (!ptr) | ||
| 1001 | return; | ||
| 1002 | |||
| 1003 | spin_lock_irqsave(&pcpu_lock, flags); | ||
| 1004 | |||
| 1005 | chunk = pcpu_chunk_addr_search(addr); | ||
| 1006 | off = addr - chunk->vm->addr; | ||
| 1007 | |||
| 1008 | pcpu_free_area(chunk, off); | ||
| 1009 | |||
| 1010 | /* if there are more than one fully free chunks, wake up grim reaper */ | ||
| 1011 | if (chunk->free_size == pcpu_unit_size) { | ||
| 1012 | struct pcpu_chunk *pos; | ||
| 1013 | |||
| 1014 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | ||
| 1015 | if (pos != chunk) { | ||
| 1016 | schedule_work(&pcpu_reclaim_work); | ||
| 1017 | break; | ||
| 1018 | } | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | spin_unlock_irqrestore(&pcpu_lock, flags); | ||
| 1022 | } | ||
| 1023 | EXPORT_SYMBOL_GPL(free_percpu); | ||
| 1024 | |||
| 1025 | /** | ||
| 1026 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
| 1027 | * @get_page_fn: callback to fetch page pointer | ||
| 1028 | * @static_size: the size of static percpu area in bytes | ||
| 1029 | * @reserved_size: the size of reserved percpu area in bytes | ||
| 1030 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
| 1031 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
| 1032 | * @base_addr: mapped address, NULL for auto | ||
| 1033 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | ||
| 1034 | * | ||
| 1035 | * Initialize the first percpu chunk which contains the kernel static | ||
| 1036 | * perpcu area. This function is to be called from arch percpu area | ||
| 1037 | * setup path. The first two parameters are mandatory. The rest are | ||
| 1038 | * optional. | ||
| 1039 | * | ||
| 1040 | * @get_page_fn() should return pointer to percpu page given cpu | ||
| 1041 | * number and page number. It should at least return enough pages to | ||
| 1042 | * cover the static area. The returned pages for static area should | ||
| 1043 | * have been initialized with valid data. If @unit_size is specified, | ||
| 1044 | * it can also return pages after the static area. NULL return | ||
| 1045 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
| 1046 | * return the same number of pages for all cpus. | ||
| 1047 | * | ||
| 1048 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
| 1049 | * reserve after the static area in the first chunk. This reserves | ||
| 1050 | * the first chunk such that it's available only through reserved | ||
| 1051 | * percpu allocation. This is primarily used to serve module percpu | ||
| 1052 | * static areas on architectures where the addressing model has | ||
| 1053 | * limited offset range for symbol relocations to guarantee module | ||
| 1054 | * percpu symbols fall inside the relocatable range. | ||
| 1055 | * | ||
| 1056 | * @dyn_size, if non-negative, determines the number of bytes | ||
| 1057 | * available for dynamic allocation in the first chunk. Specifying | ||
| 1058 | * non-negative value makes percpu leave alone the area beyond | ||
| 1059 | * @static_size + @reserved_size + @dyn_size. | ||
| 1060 | * | ||
| 1061 | * @unit_size, if non-negative, specifies unit size and must be | ||
| 1062 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | ||
| 1063 | * @reserved_size + if non-negative, @dyn_size. | ||
| 1064 | * | ||
| 1065 | * Non-null @base_addr means that the caller already allocated virtual | ||
| 1066 | * region for the first chunk and mapped it. percpu must not mess | ||
| 1067 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
| 1068 | * @populate_pte_fn doesn't make any sense. | ||
| 1069 | * | ||
| 1070 | * @populate_pte_fn is used to populate the pagetable. NULL means the | ||
| 1071 | * caller already populated the pagetable. | ||
| 1072 | * | ||
| 1073 | * If the first chunk ends up with both reserved and dynamic areas, it | ||
| 1074 | * is served by two chunks - one to serve the core static and reserved | ||
| 1075 | * areas and the other for the dynamic area. They share the same vm | ||
| 1076 | * and page map but uses different area allocation map to stay away | ||
| 1077 | * from each other. The latter chunk is circulated in the chunk slots | ||
| 1078 | * and available for dynamic allocation like any other chunks. | ||
| 1079 | * | ||
| 1080 | * RETURNS: | ||
| 1081 | * The determined pcpu_unit_size which can be used to initialize | ||
| 1082 | * percpu access. | ||
| 1083 | */ | ||
| 1084 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | ||
| 1085 | size_t static_size, size_t reserved_size, | ||
| 1086 | ssize_t dyn_size, ssize_t unit_size, | ||
| 1087 | void *base_addr, | ||
| 1088 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
| 1089 | { | ||
| 1090 | static struct vm_struct first_vm; | ||
| 1091 | static int smap[2], dmap[2]; | ||
| 1092 | size_t size_sum = static_size + reserved_size + | ||
| 1093 | (dyn_size >= 0 ? dyn_size : 0); | ||
| 1094 | struct pcpu_chunk *schunk, *dchunk = NULL; | ||
| 1095 | unsigned int cpu; | ||
| 1096 | int nr_pages; | ||
| 1097 | int err, i; | ||
| 1098 | |||
| 1099 | /* santiy checks */ | ||
| 1100 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | ||
| 1101 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | ||
| 1102 | BUG_ON(!static_size); | ||
| 1103 | if (unit_size >= 0) { | ||
| 1104 | BUG_ON(unit_size < size_sum); | ||
| 1105 | BUG_ON(unit_size & ~PAGE_MASK); | ||
| 1106 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | ||
| 1107 | } else | ||
| 1108 | BUG_ON(base_addr); | ||
| 1109 | BUG_ON(base_addr && populate_pte_fn); | ||
| 1110 | |||
| 1111 | if (unit_size >= 0) | ||
| 1112 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | ||
| 1113 | else | ||
| 1114 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | ||
| 1115 | PFN_UP(size_sum)); | ||
| 1116 | |||
| 1117 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
| 1118 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | ||
| 1119 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
| 1120 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | ||
| 1121 | |||
| 1122 | if (dyn_size < 0) | ||
| 1123 | dyn_size = pcpu_unit_size - static_size - reserved_size; | ||
| 1124 | |||
| 1125 | /* | ||
| 1126 | * Allocate chunk slots. The additional last slot is for | ||
| 1127 | * empty chunks. | ||
| 1128 | */ | ||
| 1129 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | ||
| 1130 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | ||
| 1131 | for (i = 0; i < pcpu_nr_slots; i++) | ||
| 1132 | INIT_LIST_HEAD(&pcpu_slot[i]); | ||
| 1133 | |||
| 1134 | /* | ||
| 1135 | * Initialize static chunk. If reserved_size is zero, the | ||
| 1136 | * static chunk covers static area + dynamic allocation area | ||
| 1137 | * in the first chunk. If reserved_size is not zero, it | ||
| 1138 | * covers static area + reserved area (mostly used for module | ||
| 1139 | * static percpu allocation). | ||
| 1140 | */ | ||
| 1141 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | ||
| 1142 | INIT_LIST_HEAD(&schunk->list); | ||
| 1143 | schunk->vm = &first_vm; | ||
| 1144 | schunk->map = smap; | ||
| 1145 | schunk->map_alloc = ARRAY_SIZE(smap); | ||
| 1146 | schunk->page = schunk->page_ar; | ||
| 1147 | |||
| 1148 | if (reserved_size) { | ||
| 1149 | schunk->free_size = reserved_size; | ||
| 1150 | pcpu_reserved_chunk = schunk; /* not for dynamic alloc */ | ||
| 1151 | } else { | ||
| 1152 | schunk->free_size = dyn_size; | ||
| 1153 | dyn_size = 0; /* dynamic area covered */ | ||
| 1154 | } | ||
| 1155 | schunk->contig_hint = schunk->free_size; | ||
| 1156 | |||
| 1157 | schunk->map[schunk->map_used++] = -static_size; | ||
| 1158 | if (schunk->free_size) | ||
| 1159 | schunk->map[schunk->map_used++] = schunk->free_size; | ||
| 1160 | |||
| 1161 | pcpu_reserved_chunk_limit = static_size + schunk->free_size; | ||
| 1162 | |||
| 1163 | /* init dynamic chunk if necessary */ | ||
| 1164 | if (dyn_size) { | ||
| 1165 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | ||
| 1166 | INIT_LIST_HEAD(&dchunk->list); | ||
| 1167 | dchunk->vm = &first_vm; | ||
| 1168 | dchunk->map = dmap; | ||
| 1169 | dchunk->map_alloc = ARRAY_SIZE(dmap); | ||
| 1170 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | ||
| 1171 | |||
| 1172 | dchunk->contig_hint = dchunk->free_size = dyn_size; | ||
| 1173 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | ||
| 1174 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | ||
| 1175 | } | ||
| 1176 | |||
| 1177 | /* allocate vm address */ | ||
| 1178 | first_vm.flags = VM_ALLOC; | ||
| 1179 | first_vm.size = pcpu_chunk_size; | ||
| 1180 | |||
| 1181 | if (!base_addr) | ||
| 1182 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
| 1183 | else { | ||
| 1184 | /* | ||
| 1185 | * Pages already mapped. No need to remap into | ||
| 1186 | * vmalloc area. In this case the first chunks can't | ||
| 1187 | * be mapped or unmapped by percpu and are marked | ||
| 1188 | * immutable. | ||
| 1189 | */ | ||
| 1190 | first_vm.addr = base_addr; | ||
| 1191 | schunk->immutable = true; | ||
| 1192 | if (dchunk) | ||
| 1193 | dchunk->immutable = true; | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | /* assign pages */ | ||
| 1197 | nr_pages = -1; | ||
| 1198 | for_each_possible_cpu(cpu) { | ||
| 1199 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
| 1200 | struct page *page = get_page_fn(cpu, i); | ||
| 1201 | |||
| 1202 | if (!page) | ||
| 1203 | break; | ||
| 1204 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
| 1205 | } | ||
| 1206 | |||
| 1207 | BUG_ON(i < PFN_UP(static_size)); | ||
| 1208 | |||
| 1209 | if (nr_pages < 0) | ||
| 1210 | nr_pages = i; | ||
| 1211 | else | ||
| 1212 | BUG_ON(nr_pages != i); | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* map them */ | ||
| 1216 | if (populate_pte_fn) { | ||
| 1217 | for_each_possible_cpu(cpu) | ||
| 1218 | for (i = 0; i < nr_pages; i++) | ||
| 1219 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
| 1220 | cpu, i)); | ||
| 1221 | |||
| 1222 | err = pcpu_map(schunk, 0, nr_pages); | ||
| 1223 | if (err) | ||
| 1224 | panic("failed to setup static percpu area, err=%d\n", | ||
| 1225 | err); | ||
| 1226 | } | ||
| 1227 | |||
| 1228 | /* link the first chunk in */ | ||
| 1229 | if (!dchunk) { | ||
| 1230 | pcpu_chunk_relocate(schunk, -1); | ||
| 1231 | pcpu_chunk_addr_insert(schunk); | ||
| 1232 | } else { | ||
| 1233 | pcpu_chunk_relocate(dchunk, -1); | ||
| 1234 | pcpu_chunk_addr_insert(dchunk); | ||
| 1235 | } | ||
| 1236 | |||
| 1237 | /* we're done */ | ||
| 1238 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | ||
| 1239 | return pcpu_unit_size; | ||
| 1240 | } | ||
| 1241 | |||
| 1242 | /* | ||
| 1243 | * Embedding first chunk setup helper. | ||
| 1244 | */ | ||
| 1245 | static void *pcpue_ptr __initdata; | ||
| 1246 | static size_t pcpue_size __initdata; | ||
| 1247 | static size_t pcpue_unit_size __initdata; | ||
| 1248 | |||
| 1249 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | ||
| 1250 | { | ||
| 1251 | size_t off = (size_t)pageno << PAGE_SHIFT; | ||
| 1252 | |||
| 1253 | if (off >= pcpue_size) | ||
| 1254 | return NULL; | ||
| 1255 | |||
| 1256 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | /** | ||
| 1260 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | ||
| 1261 | * @static_size: the size of static percpu area in bytes | ||
| 1262 | * @reserved_size: the size of reserved percpu area in bytes | ||
| 1263 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
| 1264 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
| 1265 | * | ||
| 1266 | * This is a helper to ease setting up embedded first percpu chunk and | ||
| 1267 | * can be called where pcpu_setup_first_chunk() is expected. | ||
| 1268 | * | ||
| 1269 | * If this function is used to setup the first chunk, it is allocated | ||
| 1270 | * as a contiguous area using bootmem allocator and used as-is without | ||
| 1271 | * being mapped into vmalloc area. This enables the first chunk to | ||
| 1272 | * piggy back on the linear physical mapping which often uses larger | ||
| 1273 | * page size. | ||
| 1274 | * | ||
| 1275 | * When @dyn_size is positive, dynamic area might be larger than | ||
| 1276 | * specified to fill page alignment. Also, when @dyn_size is auto, | ||
| 1277 | * @dyn_size does not fill the whole first chunk but only what's | ||
| 1278 | * necessary for page alignment after static and reserved areas. | ||
| 1279 | * | ||
| 1280 | * If the needed size is smaller than the minimum or specified unit | ||
| 1281 | * size, the leftover is returned to the bootmem allocator. | ||
| 1282 | * | ||
| 1283 | * RETURNS: | ||
| 1284 | * The determined pcpu_unit_size which can be used to initialize | ||
| 1285 | * percpu access on success, -errno on failure. | ||
| 1286 | */ | ||
| 1287 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | ||
| 1288 | ssize_t dyn_size, ssize_t unit_size) | ||
| 1289 | { | ||
| 1290 | unsigned int cpu; | ||
| 1291 | |||
| 1292 | /* determine parameters and allocate */ | ||
| 1293 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | ||
| 1294 | (dyn_size >= 0 ? dyn_size : 0)); | ||
| 1295 | if (dyn_size != 0) | ||
| 1296 | dyn_size = pcpue_size - static_size - reserved_size; | ||
| 1297 | |||
| 1298 | if (unit_size >= 0) { | ||
| 1299 | BUG_ON(unit_size < pcpue_size); | ||
| 1300 | pcpue_unit_size = unit_size; | ||
| 1301 | } else | ||
| 1302 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | ||
| 1303 | |||
| 1304 | pcpue_ptr = __alloc_bootmem_nopanic( | ||
| 1305 | num_possible_cpus() * pcpue_unit_size, | ||
| 1306 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | ||
| 1307 | if (!pcpue_ptr) | ||
| 1308 | return -ENOMEM; | ||
| 1309 | |||
| 1310 | /* return the leftover and copy */ | ||
| 1311 | for_each_possible_cpu(cpu) { | ||
| 1312 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | ||
| 1313 | |||
| 1314 | free_bootmem(__pa(ptr + pcpue_size), | ||
| 1315 | pcpue_unit_size - pcpue_size); | ||
| 1316 | memcpy(ptr, __per_cpu_load, static_size); | ||
| 1317 | } | ||
| 1318 | |||
| 1319 | /* we're ready, commit */ | ||
| 1320 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | ||
| 1321 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | ||
| 1322 | |||
| 1323 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | ||
| 1324 | reserved_size, dyn_size, | ||
| 1325 | pcpue_unit_size, pcpue_ptr, NULL); | ||
| 1326 | } | ||
