diff options
Diffstat (limited to 'mm/percpu.c')
-rw-r--r-- | mm/percpu.c | 585 |
1 files changed, 112 insertions, 473 deletions
diff --git a/mm/percpu.c b/mm/percpu.c index 6e09741ddc62..39f7dfd59585 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
@@ -1,5 +1,5 @@ | |||
1 | /* | 1 | /* |
2 | * linux/mm/percpu.c - percpu memory allocator | 2 | * mm/percpu.c - percpu memory allocator |
3 | * | 3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | 4 | * Copyright (C) 2009 SUSE Linux Products GmbH |
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> |
@@ -7,14 +7,13 @@ | |||
7 | * This file is released under the GPLv2. | 7 | * This file is released under the GPLv2. |
8 | * | 8 | * |
9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * chunk is consisted of boot-time determined number of units and the | 11 | * consisted of boot-time determined number of units and the first |
12 | * first chunk is used for static percpu variables in the kernel image | 12 | * chunk is used for static percpu variables in the kernel image |
13 | * (special boot time alloc/init handling necessary as these areas | 13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | 14 | * need to be brought up before allocation services are running). |
15 | * Unit grows as necessary and all units grow or shrink in unison. | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
16 | * When a chunk is filled up, another chunk is allocated. ie. in | 16 | * When a chunk is filled up, another chunk is allocated. |
17 | * vmalloc area | ||
18 | * | 17 | * |
19 | * c0 c1 c2 | 18 | * c0 c1 c2 |
20 | * ------------------- ------------------- ------------ | 19 | * ------------------- ------------------- ------------ |
@@ -99,7 +98,7 @@ struct pcpu_chunk { | |||
99 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
100 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
101 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
102 | struct vm_struct **vms; /* mapped vmalloc regions */ | 101 | void *data; /* chunk data */ |
103 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
104 | unsigned long populated[]; /* populated bitmap */ | 103 | unsigned long populated[]; /* populated bitmap */ |
105 | }; | 104 | }; |
@@ -177,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | |||
177 | static void pcpu_reclaim(struct work_struct *work); | 176 | static void pcpu_reclaim(struct work_struct *work); |
178 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 177 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); |
179 | 178 | ||
179 | static bool pcpu_addr_in_first_chunk(void *addr) | ||
180 | { | ||
181 | void *first_start = pcpu_first_chunk->base_addr; | ||
182 | |||
183 | return addr >= first_start && addr < first_start + pcpu_unit_size; | ||
184 | } | ||
185 | |||
186 | static bool pcpu_addr_in_reserved_chunk(void *addr) | ||
187 | { | ||
188 | void *first_start = pcpu_first_chunk->base_addr; | ||
189 | |||
190 | return addr >= first_start && | ||
191 | addr < first_start + pcpu_reserved_chunk_limit; | ||
192 | } | ||
193 | |||
180 | static int __pcpu_size_to_slot(int size) | 194 | static int __pcpu_size_to_slot(int size) |
181 | { | 195 | { |
182 | int highbit = fls(size); /* size is in bytes */ | 196 | int highbit = fls(size); /* size is in bytes */ |
@@ -198,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
198 | return pcpu_size_to_slot(chunk->free_size); | 212 | return pcpu_size_to_slot(chunk->free_size); |
199 | } | 213 | } |
200 | 214 | ||
201 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
202 | { | ||
203 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
204 | } | ||
205 | |||
206 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
207 | unsigned int cpu, int page_idx) | ||
208 | { | ||
209 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
210 | (page_idx << PAGE_SHIFT); | ||
211 | } | ||
212 | |||
213 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
214 | unsigned int cpu, int page_idx) | ||
215 | { | ||
216 | /* must not be used on pre-mapped chunk */ | ||
217 | WARN_ON(chunk->immutable); | ||
218 | |||
219 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
220 | } | ||
221 | |||
222 | /* set the pointer to a chunk in a page struct */ | 215 | /* set the pointer to a chunk in a page struct */ |
223 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 216 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) |
224 | { | 217 | { |
@@ -231,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
231 | return (struct pcpu_chunk *)page->index; | 224 | return (struct pcpu_chunk *)page->index; |
232 | } | 225 | } |
233 | 226 | ||
234 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 227 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) |
228 | { | ||
229 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
230 | } | ||
231 | |||
232 | static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
233 | unsigned int cpu, int page_idx) | ||
234 | { | ||
235 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
236 | (page_idx << PAGE_SHIFT); | ||
237 | } | ||
238 | |||
239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | ||
240 | int *rs, int *re, int end) | ||
235 | { | 241 | { |
236 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | 242 | *rs = find_next_zero_bit(chunk->populated, end, *rs); |
237 | *re = find_next_bit(chunk->populated, end, *rs + 1); | 243 | *re = find_next_bit(chunk->populated, end, *rs + 1); |
238 | } | 244 | } |
239 | 245 | ||
240 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 246 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
247 | int *rs, int *re, int end) | ||
241 | { | 248 | { |
242 | *rs = find_next_bit(chunk->populated, end, *rs); | 249 | *rs = find_next_bit(chunk->populated, end, *rs); |
243 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | 250 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); |
@@ -326,36 +333,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
326 | } | 333 | } |
327 | 334 | ||
328 | /** | 335 | /** |
329 | * pcpu_chunk_addr_search - determine chunk containing specified address | ||
330 | * @addr: address for which the chunk needs to be determined. | ||
331 | * | ||
332 | * RETURNS: | ||
333 | * The address of the found chunk. | ||
334 | */ | ||
335 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
336 | { | ||
337 | void *first_start = pcpu_first_chunk->base_addr; | ||
338 | |||
339 | /* is it in the first chunk? */ | ||
340 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { | ||
341 | /* is it in the reserved area? */ | ||
342 | if (addr < first_start + pcpu_reserved_chunk_limit) | ||
343 | return pcpu_reserved_chunk; | ||
344 | return pcpu_first_chunk; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * The address is relative to unit0 which might be unused and | ||
349 | * thus unmapped. Offset the address to the unit space of the | ||
350 | * current processor before looking it up in the vmalloc | ||
351 | * space. Note that any possible cpu id can be used here, so | ||
352 | * there's no need to worry about preemption or cpu hotplug. | ||
353 | */ | ||
354 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | ||
355 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | ||
356 | } | ||
357 | |||
358 | /** | ||
359 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended | 336 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
360 | * @chunk: chunk of interest | 337 | * @chunk: chunk of interest |
361 | * | 338 | * |
@@ -623,434 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
623 | pcpu_chunk_relocate(chunk, oslot); | 600 | pcpu_chunk_relocate(chunk, oslot); |
624 | } | 601 | } |
625 | 602 | ||
626 | /** | 603 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
627 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
628 | * @chunk: chunk of interest | ||
629 | * @bitmapp: output parameter for bitmap | ||
630 | * @may_alloc: may allocate the array | ||
631 | * | ||
632 | * Returns pointer to array of pointers to struct page and bitmap, | ||
633 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
634 | * array is cleared to zero and *@bitmapp is copied from | ||
635 | * @chunk->populated. Note that there is only one array and bitmap | ||
636 | * and access exclusion is the caller's responsibility. | ||
637 | * | ||
638 | * CONTEXT: | ||
639 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
640 | * Otherwise, don't care. | ||
641 | * | ||
642 | * RETURNS: | ||
643 | * Pointer to temp pages array on success, NULL on failure. | ||
644 | */ | ||
645 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
646 | unsigned long **bitmapp, | ||
647 | bool may_alloc) | ||
648 | { | ||
649 | static struct page **pages; | ||
650 | static unsigned long *bitmap; | ||
651 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
652 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
653 | sizeof(unsigned long); | ||
654 | |||
655 | if (!pages || !bitmap) { | ||
656 | if (may_alloc && !pages) | ||
657 | pages = pcpu_mem_alloc(pages_size); | ||
658 | if (may_alloc && !bitmap) | ||
659 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
660 | if (!pages || !bitmap) | ||
661 | return NULL; | ||
662 | } | ||
663 | |||
664 | memset(pages, 0, pages_size); | ||
665 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
666 | |||
667 | *bitmapp = bitmap; | ||
668 | return pages; | ||
669 | } | ||
670 | |||
671 | /** | ||
672 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
673 | * @chunk: chunk pages were allocated for | ||
674 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
675 | * @populated: populated bitmap | ||
676 | * @page_start: page index of the first page to be freed | ||
677 | * @page_end: page index of the last page to be freed + 1 | ||
678 | * | ||
679 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
680 | * The pages were allocated for @chunk. | ||
681 | */ | ||
682 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
683 | struct page **pages, unsigned long *populated, | ||
684 | int page_start, int page_end) | ||
685 | { | 604 | { |
686 | unsigned int cpu; | 605 | struct pcpu_chunk *chunk; |
687 | int i; | ||
688 | 606 | ||
689 | for_each_possible_cpu(cpu) { | 607 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); |
690 | for (i = page_start; i < page_end; i++) { | 608 | if (!chunk) |
691 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | 609 | return NULL; |
692 | 610 | ||
693 | if (page) | 611 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
694 | __free_page(page); | 612 | if (!chunk->map) { |
695 | } | 613 | kfree(chunk); |
614 | return NULL; | ||
696 | } | 615 | } |
697 | } | ||
698 | 616 | ||
699 | /** | 617 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
700 | * pcpu_alloc_pages - allocates pages for @chunk | 618 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
701 | * @chunk: target chunk | ||
702 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
703 | * @populated: populated bitmap | ||
704 | * @page_start: page index of the first page to be allocated | ||
705 | * @page_end: page index of the last page to be allocated + 1 | ||
706 | * | ||
707 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
708 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
709 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
710 | */ | ||
711 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
712 | struct page **pages, unsigned long *populated, | ||
713 | int page_start, int page_end) | ||
714 | { | ||
715 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
716 | unsigned int cpu; | ||
717 | int i; | ||
718 | 619 | ||
719 | for_each_possible_cpu(cpu) { | 620 | INIT_LIST_HEAD(&chunk->list); |
720 | for (i = page_start; i < page_end; i++) { | 621 | chunk->free_size = pcpu_unit_size; |
721 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | 622 | chunk->contig_hint = pcpu_unit_size; |
722 | |||
723 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
724 | if (!*pagep) { | ||
725 | pcpu_free_pages(chunk, pages, populated, | ||
726 | page_start, page_end); | ||
727 | return -ENOMEM; | ||
728 | } | ||
729 | } | ||
730 | } | ||
731 | return 0; | ||
732 | } | ||
733 | 623 | ||
734 | /** | 624 | return chunk; |
735 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
736 | * @chunk: chunk the regions to be flushed belongs to | ||
737 | * @page_start: page index of the first page to be flushed | ||
738 | * @page_end: page index of the last page to be flushed + 1 | ||
739 | * | ||
740 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
741 | * unmapped. Flush cache. As each flushing trial can be very | ||
742 | * expensive, issue flush on the whole region at once rather than | ||
743 | * doing it for each cpu. This could be an overkill but is more | ||
744 | * scalable. | ||
745 | */ | ||
746 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
747 | int page_start, int page_end) | ||
748 | { | ||
749 | flush_cache_vunmap( | ||
750 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
751 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
752 | } | 625 | } |
753 | 626 | ||
754 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | 627 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) |
755 | { | 628 | { |
756 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | 629 | if (!chunk) |
630 | return; | ||
631 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
632 | kfree(chunk); | ||
757 | } | 633 | } |
758 | 634 | ||
759 | /** | 635 | /* |
760 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | 636 | * Chunk management implementation. |
761 | * @chunk: chunk of interest | 637 | * |
762 | * @pages: pages array which can be used to pass information to free | 638 | * To allow different implementations, chunk alloc/free and |
763 | * @populated: populated bitmap | 639 | * [de]population are implemented in a separate file which is pulled |
764 | * @page_start: page index of the first page to unmap | 640 | * into this file and compiled together. The following functions |
765 | * @page_end: page index of the last page to unmap + 1 | 641 | * should be implemented. |
766 | * | 642 | * |
767 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 643 | * pcpu_populate_chunk - populate the specified range of a chunk |
768 | * Corresponding elements in @pages were cleared by the caller and can | 644 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
769 | * be used to carry information to pcpu_free_pages() which will be | 645 | * pcpu_create_chunk - create a new chunk |
770 | * called after all unmaps are finished. The caller should call | 646 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
771 | * proper pre/post flush functions. | 647 | * pcpu_addr_to_page - translate address to physical address |
648 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | ||
772 | */ | 649 | */ |
773 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | 650 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
774 | struct page **pages, unsigned long *populated, | 651 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); |
775 | int page_start, int page_end) | 652 | static struct pcpu_chunk *pcpu_create_chunk(void); |
776 | { | 653 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
777 | unsigned int cpu; | 654 | static struct page *pcpu_addr_to_page(void *addr); |
778 | int i; | 655 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
779 | 656 | ||
780 | for_each_possible_cpu(cpu) { | 657 | #ifdef CONFIG_NEED_PER_CPU_KM |
781 | for (i = page_start; i < page_end; i++) { | 658 | #include "percpu-km.c" |
782 | struct page *page; | 659 | #else |
783 | 660 | #include "percpu-vm.c" | |
784 | page = pcpu_chunk_page(chunk, cpu, i); | 661 | #endif |
785 | WARN_ON(!page); | ||
786 | pages[pcpu_page_idx(cpu, i)] = page; | ||
787 | } | ||
788 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
789 | page_end - page_start); | ||
790 | } | ||
791 | |||
792 | for (i = page_start; i < page_end; i++) | ||
793 | __clear_bit(i, populated); | ||
794 | } | ||
795 | 662 | ||
796 | /** | 663 | /** |
797 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | 664 | * pcpu_chunk_addr_search - determine chunk containing specified address |
798 | * @chunk: pcpu_chunk the regions to be flushed belong to | 665 | * @addr: address for which the chunk needs to be determined. |
799 | * @page_start: page index of the first page to be flushed | ||
800 | * @page_end: page index of the last page to be flushed + 1 | ||
801 | * | ||
802 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
803 | * TLB for the regions. This can be skipped if the area is to be | ||
804 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
805 | * | 666 | * |
806 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 667 | * RETURNS: |
807 | * for the whole region. | 668 | * The address of the found chunk. |
808 | */ | ||
809 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
810 | int page_start, int page_end) | ||
811 | { | ||
812 | flush_tlb_kernel_range( | ||
813 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
814 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
815 | } | ||
816 | |||
817 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
818 | int nr_pages) | ||
819 | { | ||
820 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
821 | PAGE_KERNEL, pages); | ||
822 | } | ||
823 | |||
824 | /** | ||
825 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
826 | * @chunk: chunk of interest | ||
827 | * @pages: pages array containing pages to be mapped | ||
828 | * @populated: populated bitmap | ||
829 | * @page_start: page index of the first page to map | ||
830 | * @page_end: page index of the last page to map + 1 | ||
831 | * | ||
832 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
833 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
834 | * mappings are complete. | ||
835 | * | ||
836 | * This function is responsible for setting corresponding bits in | ||
837 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
838 | * lookup (addr -> chunk). | ||
839 | */ | 669 | */ |
840 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | 670 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
841 | struct page **pages, unsigned long *populated, | ||
842 | int page_start, int page_end) | ||
843 | { | 671 | { |
844 | unsigned int cpu, tcpu; | 672 | /* is it in the first chunk? */ |
845 | int i, err; | 673 | if (pcpu_addr_in_first_chunk(addr)) { |
846 | 674 | /* is it in the reserved area? */ | |
847 | for_each_possible_cpu(cpu) { | 675 | if (pcpu_addr_in_reserved_chunk(addr)) |
848 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 676 | return pcpu_reserved_chunk; |
849 | &pages[pcpu_page_idx(cpu, page_start)], | 677 | return pcpu_first_chunk; |
850 | page_end - page_start); | ||
851 | if (err < 0) | ||
852 | goto err; | ||
853 | } | ||
854 | |||
855 | /* mapping successful, link chunk and mark populated */ | ||
856 | for (i = page_start; i < page_end; i++) { | ||
857 | for_each_possible_cpu(cpu) | ||
858 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
859 | chunk); | ||
860 | __set_bit(i, populated); | ||
861 | } | ||
862 | |||
863 | return 0; | ||
864 | |||
865 | err: | ||
866 | for_each_possible_cpu(tcpu) { | ||
867 | if (tcpu == cpu) | ||
868 | break; | ||
869 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
870 | page_end - page_start); | ||
871 | } | 678 | } |
872 | return err; | ||
873 | } | ||
874 | |||
875 | /** | ||
876 | * pcpu_post_map_flush - flush cache after mapping | ||
877 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
878 | * @page_start: page index of the first page to be flushed | ||
879 | * @page_end: page index of the last page to be flushed + 1 | ||
880 | * | ||
881 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
882 | * cache. | ||
883 | * | ||
884 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
885 | * for the whole region. | ||
886 | */ | ||
887 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
888 | int page_start, int page_end) | ||
889 | { | ||
890 | flush_cache_vmap( | ||
891 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
892 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
893 | } | ||
894 | |||
895 | /** | ||
896 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
897 | * @chunk: chunk to depopulate | ||
898 | * @off: offset to the area to depopulate | ||
899 | * @size: size of the area to depopulate in bytes | ||
900 | * @flush: whether to flush cache and tlb or not | ||
901 | * | ||
902 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
903 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
904 | * and tlb after. | ||
905 | * | ||
906 | * CONTEXT: | ||
907 | * pcpu_alloc_mutex. | ||
908 | */ | ||
909 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
910 | { | ||
911 | int page_start = PFN_DOWN(off); | ||
912 | int page_end = PFN_UP(off + size); | ||
913 | struct page **pages; | ||
914 | unsigned long *populated; | ||
915 | int rs, re; | ||
916 | |||
917 | /* quick path, check whether it's empty already */ | ||
918 | rs = page_start; | ||
919 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
920 | if (rs == page_start && re == page_end) | ||
921 | return; | ||
922 | |||
923 | /* immutable chunks can't be depopulated */ | ||
924 | WARN_ON(chunk->immutable); | ||
925 | 679 | ||
926 | /* | 680 | /* |
927 | * If control reaches here, there must have been at least one | 681 | * The address is relative to unit0 which might be unused and |
928 | * successful population attempt so the temp pages array must | 682 | * thus unmapped. Offset the address to the unit space of the |
929 | * be available now. | 683 | * current processor before looking it up in the vmalloc |
684 | * space. Note that any possible cpu id can be used here, so | ||
685 | * there's no need to worry about preemption or cpu hotplug. | ||
930 | */ | 686 | */ |
931 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | 687 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
932 | BUG_ON(!pages); | 688 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
933 | |||
934 | /* unmap and free */ | ||
935 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
936 | |||
937 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
938 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
939 | |||
940 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
941 | |||
942 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
943 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
944 | |||
945 | /* commit new bitmap */ | ||
946 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
947 | } | ||
948 | |||
949 | /** | ||
950 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
951 | * @chunk: chunk of interest | ||
952 | * @off: offset to the area to populate | ||
953 | * @size: size of the area to populate in bytes | ||
954 | * | ||
955 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
956 | * @chunk. The area is cleared on return. | ||
957 | * | ||
958 | * CONTEXT: | ||
959 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
960 | */ | ||
961 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
962 | { | ||
963 | int page_start = PFN_DOWN(off); | ||
964 | int page_end = PFN_UP(off + size); | ||
965 | int free_end = page_start, unmap_end = page_start; | ||
966 | struct page **pages; | ||
967 | unsigned long *populated; | ||
968 | unsigned int cpu; | ||
969 | int rs, re, rc; | ||
970 | |||
971 | /* quick path, check whether all pages are already there */ | ||
972 | rs = page_start; | ||
973 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
974 | if (rs == page_start && re == page_end) | ||
975 | goto clear; | ||
976 | |||
977 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
978 | WARN_ON(chunk->immutable); | ||
979 | |||
980 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
981 | if (!pages) | ||
982 | return -ENOMEM; | ||
983 | |||
984 | /* alloc and map */ | ||
985 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
986 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
987 | if (rc) | ||
988 | goto err_free; | ||
989 | free_end = re; | ||
990 | } | ||
991 | |||
992 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
993 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
994 | if (rc) | ||
995 | goto err_unmap; | ||
996 | unmap_end = re; | ||
997 | } | ||
998 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
999 | |||
1000 | /* commit new bitmap */ | ||
1001 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
1002 | clear: | ||
1003 | for_each_possible_cpu(cpu) | ||
1004 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
1005 | return 0; | ||
1006 | |||
1007 | err_unmap: | ||
1008 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
1009 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
1010 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
1011 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
1012 | err_free: | ||
1013 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
1014 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
1015 | return rc; | ||
1016 | } | ||
1017 | |||
1018 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
1019 | { | ||
1020 | if (!chunk) | ||
1021 | return; | ||
1022 | if (chunk->vms) | ||
1023 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); | ||
1024 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
1025 | kfree(chunk); | ||
1026 | } | ||
1027 | |||
1028 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
1029 | { | ||
1030 | struct pcpu_chunk *chunk; | ||
1031 | |||
1032 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
1033 | if (!chunk) | ||
1034 | return NULL; | ||
1035 | |||
1036 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
1037 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
1038 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
1039 | |||
1040 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
1041 | pcpu_nr_groups, pcpu_atom_size, | ||
1042 | GFP_KERNEL); | ||
1043 | if (!chunk->vms) { | ||
1044 | free_pcpu_chunk(chunk); | ||
1045 | return NULL; | ||
1046 | } | ||
1047 | |||
1048 | INIT_LIST_HEAD(&chunk->list); | ||
1049 | chunk->free_size = pcpu_unit_size; | ||
1050 | chunk->contig_hint = pcpu_unit_size; | ||
1051 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
1052 | |||
1053 | return chunk; | ||
1054 | } | 689 | } |
1055 | 690 | ||
1056 | /** | 691 | /** |
@@ -1142,7 +777,7 @@ restart: | |||
1142 | /* hmmm... no space left, create a new chunk */ | 777 | /* hmmm... no space left, create a new chunk */ |
1143 | spin_unlock_irqrestore(&pcpu_lock, flags); | 778 | spin_unlock_irqrestore(&pcpu_lock, flags); |
1144 | 779 | ||
1145 | chunk = alloc_pcpu_chunk(); | 780 | chunk = pcpu_create_chunk(); |
1146 | if (!chunk) { | 781 | if (!chunk) { |
1147 | err = "failed to allocate new chunk"; | 782 | err = "failed to allocate new chunk"; |
1148 | goto fail_unlock_mutex; | 783 | goto fail_unlock_mutex; |
@@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work) | |||
1254 | 889 | ||
1255 | list_for_each_entry_safe(chunk, next, &todo, list) { | 890 | list_for_each_entry_safe(chunk, next, &todo, list) { |
1256 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); | 891 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
1257 | free_pcpu_chunk(chunk); | 892 | pcpu_destroy_chunk(chunk); |
1258 | } | 893 | } |
1259 | 894 | ||
1260 | mutex_unlock(&pcpu_alloc_mutex); | 895 | mutex_unlock(&pcpu_alloc_mutex); |
@@ -1343,11 +978,14 @@ bool is_kernel_percpu_address(unsigned long addr) | |||
1343 | */ | 978 | */ |
1344 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 979 | phys_addr_t per_cpu_ptr_to_phys(void *addr) |
1345 | { | 980 | { |
1346 | if ((unsigned long)addr < VMALLOC_START || | 981 | if (pcpu_addr_in_first_chunk(addr)) { |
1347 | (unsigned long)addr >= VMALLOC_END) | 982 | if ((unsigned long)addr < VMALLOC_START || |
1348 | return __pa(addr); | 983 | (unsigned long)addr >= VMALLOC_END) |
1349 | else | 984 | return __pa(addr); |
1350 | return page_to_phys(vmalloc_to_page(addr)); | 985 | else |
986 | return page_to_phys(vmalloc_to_page(addr)); | ||
987 | } else | ||
988 | return page_to_phys(pcpu_addr_to_page(addr)); | ||
1351 | } | 989 | } |
1352 | 990 | ||
1353 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | 991 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, |
@@ -1719,6 +1357,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
1719 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1357 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
1720 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1358 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
1721 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1359 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
1360 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | ||
1722 | 1361 | ||
1723 | /* process group information and build config tables accordingly */ | 1362 | /* process group information and build config tables accordingly */ |
1724 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 1363 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |