diff options
Diffstat (limited to 'mm/percpu.c')
| -rw-r--r-- | mm/percpu.c | 979 |
1 files changed, 979 insertions, 0 deletions
diff --git a/mm/percpu.c b/mm/percpu.c new file mode 100644 index 000000000000..3d0f5456827c --- /dev/null +++ b/mm/percpu.c | |||
| @@ -0,0 +1,979 @@ | |||
| 1 | /* | ||
| 2 | * linux/mm/percpu.c - percpu memory allocator | ||
| 3 | * | ||
| 4 | * Copyright (C) 2009 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * This is percpu allocator which can handle both static and dynamic | ||
| 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | ||
| 11 | * chunk is consisted of num_possible_cpus() units and the first chunk | ||
| 12 | * is used for static percpu variables in the kernel image (special | ||
| 13 | * boot time alloc/init handling necessary as these areas need to be | ||
| 14 | * brought up before allocation services are running). Unit grows as | ||
| 15 | * necessary and all units grow or shrink in unison. When a chunk is | ||
| 16 | * filled up, another chunk is allocated. ie. in vmalloc area | ||
| 17 | * | ||
| 18 | * c0 c1 c2 | ||
| 19 | * ------------------- ------------------- ------------ | ||
| 20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | ||
| 21 | * ------------------- ...... ------------------- .... ------------ | ||
| 22 | * | ||
| 23 | * Allocation is done in offset-size areas of single unit space. Ie, | ||
| 24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | ||
| 25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | ||
| 26 | * percpu base registers UNIT_SIZE apart. | ||
| 27 | * | ||
| 28 | * There are usually many small percpu allocations many of them as | ||
| 29 | * small as 4 bytes. The allocator organizes chunks into lists | ||
| 30 | * according to free size and tries to allocate from the fullest one. | ||
| 31 | * Each chunk keeps the maximum contiguous area size hint which is | ||
| 32 | * guaranteed to be eqaul to or larger than the maximum contiguous | ||
| 33 | * area in the chunk. This helps the allocator not to iterate the | ||
| 34 | * chunk maps unnecessarily. | ||
| 35 | * | ||
| 36 | * Allocation state in each chunk is kept using an array of integers | ||
| 37 | * on chunk->map. A positive value in the map represents a free | ||
| 38 | * region and negative allocated. Allocation inside a chunk is done | ||
| 39 | * by scanning this map sequentially and serving the first matching | ||
| 40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | ||
| 41 | * Chunks are also linked into a rb tree to ease address to chunk | ||
| 42 | * mapping during free. | ||
| 43 | * | ||
| 44 | * To use this allocator, arch code should do the followings. | ||
| 45 | * | ||
| 46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
| 47 | * | ||
| 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | ||
| 49 | * regular address to percpu pointer and back | ||
| 50 | * | ||
| 51 | * - use pcpu_setup_first_chunk() during percpu area initialization to | ||
| 52 | * setup the first chunk containing the kernel static percpu area | ||
| 53 | */ | ||
| 54 | |||
| 55 | #include <linux/bitmap.h> | ||
| 56 | #include <linux/bootmem.h> | ||
| 57 | #include <linux/list.h> | ||
| 58 | #include <linux/mm.h> | ||
| 59 | #include <linux/module.h> | ||
| 60 | #include <linux/mutex.h> | ||
| 61 | #include <linux/percpu.h> | ||
| 62 | #include <linux/pfn.h> | ||
| 63 | #include <linux/rbtree.h> | ||
| 64 | #include <linux/slab.h> | ||
| 65 | #include <linux/vmalloc.h> | ||
| 66 | |||
| 67 | #include <asm/cacheflush.h> | ||
| 68 | #include <asm/tlbflush.h> | ||
| 69 | |||
| 70 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ | ||
| 71 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | ||
| 72 | |||
| 73 | struct pcpu_chunk { | ||
| 74 | struct list_head list; /* linked to pcpu_slot lists */ | ||
| 75 | struct rb_node rb_node; /* key is chunk->vm->addr */ | ||
| 76 | int free_size; /* free bytes in the chunk */ | ||
| 77 | int contig_hint; /* max contiguous size hint */ | ||
| 78 | struct vm_struct *vm; /* mapped vmalloc region */ | ||
| 79 | int map_used; /* # of map entries used */ | ||
| 80 | int map_alloc; /* # of map entries allocated */ | ||
| 81 | int *map; /* allocation map */ | ||
| 82 | bool immutable; /* no [de]population allowed */ | ||
| 83 | struct page *page[]; /* #cpus * UNIT_PAGES */ | ||
| 84 | }; | ||
| 85 | |||
| 86 | static int pcpu_unit_pages __read_mostly; | ||
| 87 | static int pcpu_unit_size __read_mostly; | ||
| 88 | static int pcpu_chunk_size __read_mostly; | ||
| 89 | static int pcpu_nr_slots __read_mostly; | ||
| 90 | static size_t pcpu_chunk_struct_size __read_mostly; | ||
| 91 | |||
| 92 | /* the address of the first chunk which starts with the kernel static area */ | ||
| 93 | void *pcpu_base_addr __read_mostly; | ||
| 94 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | ||
| 95 | |||
| 96 | /* the size of kernel static area */ | ||
| 97 | static int pcpu_static_size __read_mostly; | ||
| 98 | |||
| 99 | /* | ||
| 100 | * One mutex to rule them all. | ||
| 101 | * | ||
| 102 | * The following mutex is grabbed in the outermost public alloc/free | ||
| 103 | * interface functions and released only when the operation is | ||
| 104 | * complete. As such, every function in this file other than the | ||
| 105 | * outermost functions are called under pcpu_mutex. | ||
| 106 | * | ||
| 107 | * It can easily be switched to use spinlock such that only the area | ||
| 108 | * allocation and page population commit are protected with it doing | ||
| 109 | * actual [de]allocation without holding any lock. However, given | ||
| 110 | * what this allocator does, I think it's better to let them run | ||
| 111 | * sequentially. | ||
| 112 | */ | ||
| 113 | static DEFINE_MUTEX(pcpu_mutex); | ||
| 114 | |||
| 115 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | ||
| 116 | static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ | ||
| 117 | |||
| 118 | static int __pcpu_size_to_slot(int size) | ||
| 119 | { | ||
| 120 | int highbit = fls(size); /* size is in bytes */ | ||
| 121 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | ||
| 122 | } | ||
| 123 | |||
| 124 | static int pcpu_size_to_slot(int size) | ||
| 125 | { | ||
| 126 | if (size == pcpu_unit_size) | ||
| 127 | return pcpu_nr_slots - 1; | ||
| 128 | return __pcpu_size_to_slot(size); | ||
| 129 | } | ||
| 130 | |||
| 131 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | ||
| 132 | { | ||
| 133 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | ||
| 134 | return 0; | ||
| 135 | |||
| 136 | return pcpu_size_to_slot(chunk->free_size); | ||
| 137 | } | ||
| 138 | |||
| 139 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
| 140 | { | ||
| 141 | return cpu * pcpu_unit_pages + page_idx; | ||
| 142 | } | ||
| 143 | |||
| 144 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
| 145 | unsigned int cpu, int page_idx) | ||
| 146 | { | ||
| 147 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
| 148 | } | ||
| 149 | |||
| 150 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 151 | unsigned int cpu, int page_idx) | ||
| 152 | { | ||
| 153 | return (unsigned long)chunk->vm->addr + | ||
| 154 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | ||
| 155 | } | ||
| 156 | |||
| 157 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | ||
| 158 | int page_idx) | ||
| 159 | { | ||
| 160 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | ||
| 161 | } | ||
| 162 | |||
| 163 | /** | ||
| 164 | * pcpu_realloc - versatile realloc | ||
| 165 | * @p: the current pointer (can be NULL for new allocations) | ||
| 166 | * @size: the current size in bytes (can be 0 for new allocations) | ||
| 167 | * @new_size: the wanted new size in bytes (can be 0 for free) | ||
| 168 | * | ||
| 169 | * More robust realloc which can be used to allocate, resize or free a | ||
| 170 | * memory area of arbitrary size. If the needed size goes over | ||
| 171 | * PAGE_SIZE, kernel VM is used. | ||
| 172 | * | ||
| 173 | * RETURNS: | ||
| 174 | * The new pointer on success, NULL on failure. | ||
| 175 | */ | ||
| 176 | static void *pcpu_realloc(void *p, size_t size, size_t new_size) | ||
| 177 | { | ||
| 178 | void *new; | ||
| 179 | |||
| 180 | if (new_size <= PAGE_SIZE) | ||
| 181 | new = kmalloc(new_size, GFP_KERNEL); | ||
| 182 | else | ||
| 183 | new = vmalloc(new_size); | ||
| 184 | if (new_size && !new) | ||
| 185 | return NULL; | ||
| 186 | |||
| 187 | memcpy(new, p, min(size, new_size)); | ||
| 188 | if (new_size > size) | ||
| 189 | memset(new + size, 0, new_size - size); | ||
| 190 | |||
| 191 | if (size <= PAGE_SIZE) | ||
| 192 | kfree(p); | ||
| 193 | else | ||
| 194 | vfree(p); | ||
| 195 | |||
| 196 | return new; | ||
| 197 | } | ||
| 198 | |||
| 199 | /** | ||
| 200 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | ||
| 201 | * @chunk: chunk of interest | ||
| 202 | * @oslot: the previous slot it was on | ||
| 203 | * | ||
| 204 | * This function is called after an allocation or free changed @chunk. | ||
| 205 | * New slot according to the changed state is determined and @chunk is | ||
| 206 | * moved to the slot. | ||
| 207 | */ | ||
| 208 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | ||
| 209 | { | ||
| 210 | int nslot = pcpu_chunk_slot(chunk); | ||
| 211 | |||
| 212 | if (oslot != nslot) { | ||
| 213 | if (oslot < nslot) | ||
| 214 | list_move(&chunk->list, &pcpu_slot[nslot]); | ||
| 215 | else | ||
| 216 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | ||
| 217 | } | ||
| 218 | } | ||
| 219 | |||
| 220 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | ||
| 221 | struct rb_node **parentp) | ||
| 222 | { | ||
| 223 | struct rb_node **p = &pcpu_addr_root.rb_node; | ||
| 224 | struct rb_node *parent = NULL; | ||
| 225 | struct pcpu_chunk *chunk; | ||
| 226 | |||
| 227 | while (*p) { | ||
| 228 | parent = *p; | ||
| 229 | chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | ||
| 230 | |||
| 231 | if (addr < chunk->vm->addr) | ||
| 232 | p = &(*p)->rb_left; | ||
| 233 | else if (addr > chunk->vm->addr) | ||
| 234 | p = &(*p)->rb_right; | ||
| 235 | else | ||
| 236 | break; | ||
| 237 | } | ||
| 238 | |||
| 239 | if (parentp) | ||
| 240 | *parentp = parent; | ||
| 241 | return p; | ||
| 242 | } | ||
| 243 | |||
| 244 | /** | ||
| 245 | * pcpu_chunk_addr_search - search for chunk containing specified address | ||
| 246 | * @addr: address to search for | ||
| 247 | * | ||
| 248 | * Look for chunk which might contain @addr. More specifically, it | ||
| 249 | * searchs for the chunk with the highest start address which isn't | ||
| 250 | * beyond @addr. | ||
| 251 | * | ||
| 252 | * RETURNS: | ||
| 253 | * The address of the found chunk. | ||
| 254 | */ | ||
| 255 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
| 256 | { | ||
| 257 | struct rb_node *n, *parent; | ||
| 258 | struct pcpu_chunk *chunk; | ||
| 259 | |||
| 260 | n = *pcpu_chunk_rb_search(addr, &parent); | ||
| 261 | if (!n) { | ||
| 262 | /* no exactly matching chunk, the parent is the closest */ | ||
| 263 | n = parent; | ||
| 264 | BUG_ON(!n); | ||
| 265 | } | ||
| 266 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
| 267 | |||
| 268 | if (addr < chunk->vm->addr) { | ||
| 269 | /* the parent was the next one, look for the previous one */ | ||
| 270 | n = rb_prev(n); | ||
| 271 | BUG_ON(!n); | ||
| 272 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
| 273 | } | ||
| 274 | |||
| 275 | return chunk; | ||
| 276 | } | ||
| 277 | |||
| 278 | /** | ||
| 279 | * pcpu_chunk_addr_insert - insert chunk into address rb tree | ||
| 280 | * @new: chunk to insert | ||
| 281 | * | ||
| 282 | * Insert @new into address rb tree. | ||
| 283 | */ | ||
| 284 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | ||
| 285 | { | ||
| 286 | struct rb_node **p, *parent; | ||
| 287 | |||
| 288 | p = pcpu_chunk_rb_search(new->vm->addr, &parent); | ||
| 289 | BUG_ON(*p); | ||
| 290 | rb_link_node(&new->rb_node, parent, p); | ||
| 291 | rb_insert_color(&new->rb_node, &pcpu_addr_root); | ||
| 292 | } | ||
| 293 | |||
| 294 | /** | ||
| 295 | * pcpu_split_block - split a map block | ||
| 296 | * @chunk: chunk of interest | ||
| 297 | * @i: index of map block to split | ||
| 298 | * @head: head size in bytes (can be 0) | ||
| 299 | * @tail: tail size in bytes (can be 0) | ||
| 300 | * | ||
| 301 | * Split the @i'th map block into two or three blocks. If @head is | ||
| 302 | * non-zero, @head bytes block is inserted before block @i moving it | ||
| 303 | * to @i+1 and reducing its size by @head bytes. | ||
| 304 | * | ||
| 305 | * If @tail is non-zero, the target block, which can be @i or @i+1 | ||
| 306 | * depending on @head, is reduced by @tail bytes and @tail byte block | ||
| 307 | * is inserted after the target block. | ||
| 308 | * | ||
| 309 | * RETURNS: | ||
| 310 | * 0 on success, -errno on failure. | ||
| 311 | */ | ||
| 312 | static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail) | ||
| 313 | { | ||
| 314 | int nr_extra = !!head + !!tail; | ||
| 315 | int target = chunk->map_used + nr_extra; | ||
| 316 | |||
| 317 | /* reallocation required? */ | ||
| 318 | if (chunk->map_alloc < target) { | ||
| 319 | int new_alloc = chunk->map_alloc; | ||
| 320 | int *new; | ||
| 321 | |||
| 322 | while (new_alloc < target) | ||
| 323 | new_alloc *= 2; | ||
| 324 | |||
| 325 | new = pcpu_realloc(chunk->map, | ||
| 326 | chunk->map_alloc * sizeof(new[0]), | ||
| 327 | new_alloc * sizeof(new[0])); | ||
| 328 | if (!new) | ||
| 329 | return -ENOMEM; | ||
| 330 | |||
| 331 | chunk->map_alloc = new_alloc; | ||
| 332 | chunk->map = new; | ||
| 333 | } | ||
| 334 | |||
| 335 | /* insert a new subblock */ | ||
| 336 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | ||
| 337 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | ||
| 338 | chunk->map_used += nr_extra; | ||
| 339 | |||
| 340 | if (head) { | ||
| 341 | chunk->map[i + 1] = chunk->map[i] - head; | ||
| 342 | chunk->map[i++] = head; | ||
| 343 | } | ||
| 344 | if (tail) { | ||
| 345 | chunk->map[i++] -= tail; | ||
| 346 | chunk->map[i] = tail; | ||
| 347 | } | ||
| 348 | return 0; | ||
| 349 | } | ||
| 350 | |||
| 351 | /** | ||
| 352 | * pcpu_alloc_area - allocate area from a pcpu_chunk | ||
| 353 | * @chunk: chunk of interest | ||
| 354 | * @size: wanted size in bytes | ||
| 355 | * @align: wanted align | ||
| 356 | * | ||
| 357 | * Try to allocate @size bytes area aligned at @align from @chunk. | ||
| 358 | * Note that this function only allocates the offset. It doesn't | ||
| 359 | * populate or map the area. | ||
| 360 | * | ||
| 361 | * RETURNS: | ||
| 362 | * Allocated offset in @chunk on success, -errno on failure. | ||
| 363 | */ | ||
| 364 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | ||
| 365 | { | ||
| 366 | int oslot = pcpu_chunk_slot(chunk); | ||
| 367 | int max_contig = 0; | ||
| 368 | int i, off; | ||
| 369 | |||
| 370 | /* | ||
| 371 | * The static chunk initially doesn't have map attached | ||
| 372 | * because kmalloc wasn't available during init. Give it one. | ||
| 373 | */ | ||
| 374 | if (unlikely(!chunk->map)) { | ||
| 375 | chunk->map = pcpu_realloc(NULL, 0, | ||
| 376 | PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
| 377 | if (!chunk->map) | ||
| 378 | return -ENOMEM; | ||
| 379 | |||
| 380 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 381 | chunk->map[chunk->map_used++] = -pcpu_static_size; | ||
| 382 | if (chunk->free_size) | ||
| 383 | chunk->map[chunk->map_used++] = chunk->free_size; | ||
| 384 | } | ||
| 385 | |||
| 386 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | ||
| 387 | bool is_last = i + 1 == chunk->map_used; | ||
| 388 | int head, tail; | ||
| 389 | |||
| 390 | /* extra for alignment requirement */ | ||
| 391 | head = ALIGN(off, align) - off; | ||
| 392 | BUG_ON(i == 0 && head != 0); | ||
| 393 | |||
| 394 | if (chunk->map[i] < 0) | ||
| 395 | continue; | ||
| 396 | if (chunk->map[i] < head + size) { | ||
| 397 | max_contig = max(chunk->map[i], max_contig); | ||
| 398 | continue; | ||
| 399 | } | ||
| 400 | |||
| 401 | /* | ||
| 402 | * If head is small or the previous block is free, | ||
| 403 | * merge'em. Note that 'small' is defined as smaller | ||
| 404 | * than sizeof(int), which is very small but isn't too | ||
| 405 | * uncommon for percpu allocations. | ||
| 406 | */ | ||
| 407 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | ||
| 408 | if (chunk->map[i - 1] > 0) | ||
| 409 | chunk->map[i - 1] += head; | ||
| 410 | else { | ||
| 411 | chunk->map[i - 1] -= head; | ||
| 412 | chunk->free_size -= head; | ||
| 413 | } | ||
| 414 | chunk->map[i] -= head; | ||
| 415 | off += head; | ||
| 416 | head = 0; | ||
| 417 | } | ||
| 418 | |||
| 419 | /* if tail is small, just keep it around */ | ||
| 420 | tail = chunk->map[i] - head - size; | ||
| 421 | if (tail < sizeof(int)) | ||
| 422 | tail = 0; | ||
| 423 | |||
| 424 | /* split if warranted */ | ||
| 425 | if (head || tail) { | ||
| 426 | if (pcpu_split_block(chunk, i, head, tail)) | ||
| 427 | return -ENOMEM; | ||
| 428 | if (head) { | ||
| 429 | i++; | ||
| 430 | off += head; | ||
| 431 | max_contig = max(chunk->map[i - 1], max_contig); | ||
| 432 | } | ||
| 433 | if (tail) | ||
| 434 | max_contig = max(chunk->map[i + 1], max_contig); | ||
| 435 | } | ||
| 436 | |||
| 437 | /* update hint and mark allocated */ | ||
| 438 | if (is_last) | ||
| 439 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
| 440 | else | ||
| 441 | chunk->contig_hint = max(chunk->contig_hint, | ||
| 442 | max_contig); | ||
| 443 | |||
| 444 | chunk->free_size -= chunk->map[i]; | ||
| 445 | chunk->map[i] = -chunk->map[i]; | ||
| 446 | |||
| 447 | pcpu_chunk_relocate(chunk, oslot); | ||
| 448 | return off; | ||
| 449 | } | ||
| 450 | |||
| 451 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
| 452 | pcpu_chunk_relocate(chunk, oslot); | ||
| 453 | |||
| 454 | /* | ||
| 455 | * Tell the upper layer that this chunk has no area left. | ||
| 456 | * Note that this is not an error condition but a notification | ||
| 457 | * to upper layer that it needs to look at other chunks. | ||
| 458 | * -ENOSPC is chosen as it isn't used in memory subsystem and | ||
| 459 | * matches the meaning in a way. | ||
| 460 | */ | ||
| 461 | return -ENOSPC; | ||
| 462 | } | ||
| 463 | |||
| 464 | /** | ||
| 465 | * pcpu_free_area - free area to a pcpu_chunk | ||
| 466 | * @chunk: chunk of interest | ||
| 467 | * @freeme: offset of area to free | ||
| 468 | * | ||
| 469 | * Free area starting from @freeme to @chunk. Note that this function | ||
| 470 | * only modifies the allocation map. It doesn't depopulate or unmap | ||
| 471 | * the area. | ||
| 472 | */ | ||
| 473 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | ||
| 474 | { | ||
| 475 | int oslot = pcpu_chunk_slot(chunk); | ||
| 476 | int i, off; | ||
| 477 | |||
| 478 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | ||
| 479 | if (off == freeme) | ||
| 480 | break; | ||
| 481 | BUG_ON(off != freeme); | ||
| 482 | BUG_ON(chunk->map[i] > 0); | ||
| 483 | |||
| 484 | chunk->map[i] = -chunk->map[i]; | ||
| 485 | chunk->free_size += chunk->map[i]; | ||
| 486 | |||
| 487 | /* merge with previous? */ | ||
| 488 | if (i > 0 && chunk->map[i - 1] >= 0) { | ||
| 489 | chunk->map[i - 1] += chunk->map[i]; | ||
| 490 | chunk->map_used--; | ||
| 491 | memmove(&chunk->map[i], &chunk->map[i + 1], | ||
| 492 | (chunk->map_used - i) * sizeof(chunk->map[0])); | ||
| 493 | i--; | ||
| 494 | } | ||
| 495 | /* merge with next? */ | ||
| 496 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | ||
| 497 | chunk->map[i] += chunk->map[i + 1]; | ||
| 498 | chunk->map_used--; | ||
| 499 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | ||
| 500 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | ||
| 501 | } | ||
| 502 | |||
| 503 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | ||
| 504 | pcpu_chunk_relocate(chunk, oslot); | ||
| 505 | } | ||
| 506 | |||
| 507 | /** | ||
| 508 | * pcpu_unmap - unmap pages out of a pcpu_chunk | ||
| 509 | * @chunk: chunk of interest | ||
| 510 | * @page_start: page index of the first page to unmap | ||
| 511 | * @page_end: page index of the last page to unmap + 1 | ||
| 512 | * @flush: whether to flush cache and tlb or not | ||
| 513 | * | ||
| 514 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 515 | * If @flush is true, vcache is flushed before unmapping and tlb | ||
| 516 | * after. | ||
| 517 | */ | ||
| 518 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | ||
| 519 | bool flush) | ||
| 520 | { | ||
| 521 | unsigned int last = num_possible_cpus() - 1; | ||
| 522 | unsigned int cpu; | ||
| 523 | |||
| 524 | /* unmap must not be done on immutable chunk */ | ||
| 525 | WARN_ON(chunk->immutable); | ||
| 526 | |||
| 527 | /* | ||
| 528 | * Each flushing trial can be very expensive, issue flush on | ||
| 529 | * the whole region at once rather than doing it for each cpu. | ||
| 530 | * This could be an overkill but is more scalable. | ||
| 531 | */ | ||
| 532 | if (flush) | ||
| 533 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 534 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 535 | |||
| 536 | for_each_possible_cpu(cpu) | ||
| 537 | unmap_kernel_range_noflush( | ||
| 538 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 539 | (page_end - page_start) << PAGE_SHIFT); | ||
| 540 | |||
| 541 | /* ditto as flush_cache_vunmap() */ | ||
| 542 | if (flush) | ||
| 543 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 544 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 545 | } | ||
| 546 | |||
| 547 | /** | ||
| 548 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 549 | * @chunk: chunk to depopulate | ||
| 550 | * @off: offset to the area to depopulate | ||
| 551 | * @size: size of the area to depopulate in bytes | ||
| 552 | * @flush: whether to flush cache and tlb or not | ||
| 553 | * | ||
| 554 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 555 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 556 | * and tlb after. | ||
| 557 | */ | ||
| 558 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | ||
| 559 | bool flush) | ||
| 560 | { | ||
| 561 | int page_start = PFN_DOWN(off); | ||
| 562 | int page_end = PFN_UP(off + size); | ||
| 563 | int unmap_start = -1; | ||
| 564 | int uninitialized_var(unmap_end); | ||
| 565 | unsigned int cpu; | ||
| 566 | int i; | ||
| 567 | |||
| 568 | for (i = page_start; i < page_end; i++) { | ||
| 569 | for_each_possible_cpu(cpu) { | ||
| 570 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
| 571 | |||
| 572 | if (!*pagep) | ||
| 573 | continue; | ||
| 574 | |||
| 575 | __free_page(*pagep); | ||
| 576 | |||
| 577 | /* | ||
| 578 | * If it's partial depopulation, it might get | ||
| 579 | * populated or depopulated again. Mark the | ||
| 580 | * page gone. | ||
| 581 | */ | ||
| 582 | *pagep = NULL; | ||
| 583 | |||
| 584 | unmap_start = unmap_start < 0 ? i : unmap_start; | ||
| 585 | unmap_end = i + 1; | ||
| 586 | } | ||
| 587 | } | ||
| 588 | |||
| 589 | if (unmap_start >= 0) | ||
| 590 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | ||
| 591 | } | ||
| 592 | |||
| 593 | /** | ||
| 594 | * pcpu_map - map pages into a pcpu_chunk | ||
| 595 | * @chunk: chunk of interest | ||
| 596 | * @page_start: page index of the first page to map | ||
| 597 | * @page_end: page index of the last page to map + 1 | ||
| 598 | * | ||
| 599 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | ||
| 600 | * vcache is flushed afterwards. | ||
| 601 | */ | ||
| 602 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | ||
| 603 | { | ||
| 604 | unsigned int last = num_possible_cpus() - 1; | ||
| 605 | unsigned int cpu; | ||
| 606 | int err; | ||
| 607 | |||
| 608 | /* map must not be done on immutable chunk */ | ||
| 609 | WARN_ON(chunk->immutable); | ||
| 610 | |||
| 611 | for_each_possible_cpu(cpu) { | ||
| 612 | err = map_kernel_range_noflush( | ||
| 613 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 614 | (page_end - page_start) << PAGE_SHIFT, | ||
| 615 | PAGE_KERNEL, | ||
| 616 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
| 617 | if (err < 0) | ||
| 618 | return err; | ||
| 619 | } | ||
| 620 | |||
| 621 | /* flush at once, please read comments in pcpu_unmap() */ | ||
| 622 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 623 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 624 | return 0; | ||
| 625 | } | ||
| 626 | |||
| 627 | /** | ||
| 628 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 629 | * @chunk: chunk of interest | ||
| 630 | * @off: offset to the area to populate | ||
| 631 | * @size: size of the area to populate in bytes | ||
| 632 | * | ||
| 633 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 634 | * @chunk. The area is cleared on return. | ||
| 635 | */ | ||
| 636 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 637 | { | ||
| 638 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 639 | int page_start = PFN_DOWN(off); | ||
| 640 | int page_end = PFN_UP(off + size); | ||
| 641 | int map_start = -1; | ||
| 642 | int uninitialized_var(map_end); | ||
| 643 | unsigned int cpu; | ||
| 644 | int i; | ||
| 645 | |||
| 646 | for (i = page_start; i < page_end; i++) { | ||
| 647 | if (pcpu_chunk_page_occupied(chunk, i)) { | ||
| 648 | if (map_start >= 0) { | ||
| 649 | if (pcpu_map(chunk, map_start, map_end)) | ||
| 650 | goto err; | ||
| 651 | map_start = -1; | ||
| 652 | } | ||
| 653 | continue; | ||
| 654 | } | ||
| 655 | |||
| 656 | map_start = map_start < 0 ? i : map_start; | ||
| 657 | map_end = i + 1; | ||
| 658 | |||
| 659 | for_each_possible_cpu(cpu) { | ||
| 660 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
| 661 | |||
| 662 | *pagep = alloc_pages_node(cpu_to_node(cpu), | ||
| 663 | alloc_mask, 0); | ||
| 664 | if (!*pagep) | ||
| 665 | goto err; | ||
| 666 | } | ||
| 667 | } | ||
| 668 | |||
| 669 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | ||
| 670 | goto err; | ||
| 671 | |||
| 672 | for_each_possible_cpu(cpu) | ||
| 673 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | ||
| 674 | size); | ||
| 675 | |||
| 676 | return 0; | ||
| 677 | err: | ||
| 678 | /* likely under heavy memory pressure, give memory back */ | ||
| 679 | pcpu_depopulate_chunk(chunk, off, size, true); | ||
| 680 | return -ENOMEM; | ||
| 681 | } | ||
| 682 | |||
| 683 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
| 684 | { | ||
| 685 | if (!chunk) | ||
| 686 | return; | ||
| 687 | if (chunk->vm) | ||
| 688 | free_vm_area(chunk->vm); | ||
| 689 | pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0); | ||
| 690 | kfree(chunk); | ||
| 691 | } | ||
| 692 | |||
| 693 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
| 694 | { | ||
| 695 | struct pcpu_chunk *chunk; | ||
| 696 | |||
| 697 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
| 698 | if (!chunk) | ||
| 699 | return NULL; | ||
| 700 | |||
| 701 | chunk->map = pcpu_realloc(NULL, 0, | ||
| 702 | PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
| 703 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 704 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
| 705 | |||
| 706 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | ||
| 707 | if (!chunk->vm) { | ||
| 708 | free_pcpu_chunk(chunk); | ||
| 709 | return NULL; | ||
| 710 | } | ||
| 711 | |||
| 712 | INIT_LIST_HEAD(&chunk->list); | ||
| 713 | chunk->free_size = pcpu_unit_size; | ||
| 714 | chunk->contig_hint = pcpu_unit_size; | ||
| 715 | |||
| 716 | return chunk; | ||
| 717 | } | ||
| 718 | |||
| 719 | /** | ||
| 720 | * __alloc_percpu - allocate percpu area | ||
| 721 | * @size: size of area to allocate in bytes | ||
| 722 | * @align: alignment of area (max PAGE_SIZE) | ||
| 723 | * | ||
| 724 | * Allocate percpu area of @size bytes aligned at @align. Might | ||
| 725 | * sleep. Might trigger writeouts. | ||
| 726 | * | ||
| 727 | * RETURNS: | ||
| 728 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
| 729 | */ | ||
| 730 | void *__alloc_percpu(size_t size, size_t align) | ||
| 731 | { | ||
| 732 | void *ptr = NULL; | ||
| 733 | struct pcpu_chunk *chunk; | ||
| 734 | int slot, off; | ||
| 735 | |||
| 736 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | ||
| 737 | WARN(true, "illegal size (%zu) or align (%zu) for " | ||
| 738 | "percpu allocation\n", size, align); | ||
| 739 | return NULL; | ||
| 740 | } | ||
| 741 | |||
| 742 | mutex_lock(&pcpu_mutex); | ||
| 743 | |||
| 744 | /* allocate area */ | ||
| 745 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | ||
| 746 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | ||
| 747 | if (size > chunk->contig_hint) | ||
| 748 | continue; | ||
| 749 | off = pcpu_alloc_area(chunk, size, align); | ||
| 750 | if (off >= 0) | ||
| 751 | goto area_found; | ||
| 752 | if (off != -ENOSPC) | ||
| 753 | goto out_unlock; | ||
| 754 | } | ||
| 755 | } | ||
| 756 | |||
| 757 | /* hmmm... no space left, create a new chunk */ | ||
| 758 | chunk = alloc_pcpu_chunk(); | ||
| 759 | if (!chunk) | ||
| 760 | goto out_unlock; | ||
| 761 | pcpu_chunk_relocate(chunk, -1); | ||
| 762 | pcpu_chunk_addr_insert(chunk); | ||
| 763 | |||
| 764 | off = pcpu_alloc_area(chunk, size, align); | ||
| 765 | if (off < 0) | ||
| 766 | goto out_unlock; | ||
| 767 | |||
| 768 | area_found: | ||
| 769 | /* populate, map and clear the area */ | ||
| 770 | if (pcpu_populate_chunk(chunk, off, size)) { | ||
| 771 | pcpu_free_area(chunk, off); | ||
| 772 | goto out_unlock; | ||
| 773 | } | ||
| 774 | |||
| 775 | ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off); | ||
| 776 | out_unlock: | ||
| 777 | mutex_unlock(&pcpu_mutex); | ||
| 778 | return ptr; | ||
| 779 | } | ||
| 780 | EXPORT_SYMBOL_GPL(__alloc_percpu); | ||
| 781 | |||
| 782 | static void pcpu_kill_chunk(struct pcpu_chunk *chunk) | ||
| 783 | { | ||
| 784 | WARN_ON(chunk->immutable); | ||
| 785 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | ||
| 786 | list_del(&chunk->list); | ||
| 787 | rb_erase(&chunk->rb_node, &pcpu_addr_root); | ||
| 788 | free_pcpu_chunk(chunk); | ||
| 789 | } | ||
| 790 | |||
| 791 | /** | ||
| 792 | * free_percpu - free percpu area | ||
| 793 | * @ptr: pointer to area to free | ||
| 794 | * | ||
| 795 | * Free percpu area @ptr. Might sleep. | ||
| 796 | */ | ||
| 797 | void free_percpu(void *ptr) | ||
| 798 | { | ||
| 799 | void *addr = __pcpu_ptr_to_addr(ptr); | ||
| 800 | struct pcpu_chunk *chunk; | ||
| 801 | int off; | ||
| 802 | |||
| 803 | if (!ptr) | ||
| 804 | return; | ||
| 805 | |||
| 806 | mutex_lock(&pcpu_mutex); | ||
| 807 | |||
| 808 | chunk = pcpu_chunk_addr_search(addr); | ||
| 809 | off = addr - chunk->vm->addr; | ||
| 810 | |||
| 811 | pcpu_free_area(chunk, off); | ||
| 812 | |||
| 813 | /* the chunk became fully free, kill one if there are other free ones */ | ||
| 814 | if (chunk->free_size == pcpu_unit_size) { | ||
| 815 | struct pcpu_chunk *pos; | ||
| 816 | |||
| 817 | list_for_each_entry(pos, | ||
| 818 | &pcpu_slot[pcpu_chunk_slot(chunk)], list) | ||
| 819 | if (pos != chunk) { | ||
| 820 | pcpu_kill_chunk(pos); | ||
| 821 | break; | ||
| 822 | } | ||
| 823 | } | ||
| 824 | |||
| 825 | mutex_unlock(&pcpu_mutex); | ||
| 826 | } | ||
| 827 | EXPORT_SYMBOL_GPL(free_percpu); | ||
| 828 | |||
| 829 | /** | ||
| 830 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
| 831 | * @get_page_fn: callback to fetch page pointer | ||
| 832 | * @static_size: the size of static percpu area in bytes | ||
| 833 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto | ||
| 834 | * @free_size: free size in bytes, 0 for auto | ||
| 835 | * @base_addr: mapped address, NULL for auto | ||
| 836 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | ||
| 837 | * | ||
| 838 | * Initialize the first percpu chunk which contains the kernel static | ||
| 839 | * perpcu area. This function is to be called from arch percpu area | ||
| 840 | * setup path. The first two parameters are mandatory. The rest are | ||
| 841 | * optional. | ||
| 842 | * | ||
| 843 | * @get_page_fn() should return pointer to percpu page given cpu | ||
| 844 | * number and page number. It should at least return enough pages to | ||
| 845 | * cover the static area. The returned pages for static area should | ||
| 846 | * have been initialized with valid data. If @unit_size is specified, | ||
| 847 | * it can also return pages after the static area. NULL return | ||
| 848 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
| 849 | * return the same number of pages for all cpus. | ||
| 850 | * | ||
| 851 | * @unit_size, if non-zero, determines unit size and must be aligned | ||
| 852 | * to PAGE_SIZE and equal to or larger than @static_size + @free_size. | ||
| 853 | * | ||
| 854 | * @free_size determines the number of free bytes after the static | ||
| 855 | * area in the first chunk. If zero, whatever left is available. | ||
| 856 | * Specifying non-zero value make percpu leave the area after | ||
| 857 | * @static_size + @free_size alone. | ||
| 858 | * | ||
| 859 | * Non-null @base_addr means that the caller already allocated virtual | ||
| 860 | * region for the first chunk and mapped it. percpu must not mess | ||
| 861 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
| 862 | * @populate_pte_fn doesn't make any sense. | ||
| 863 | * | ||
| 864 | * @populate_pte_fn is used to populate the pagetable. NULL means the | ||
| 865 | * caller already populated the pagetable. | ||
| 866 | * | ||
| 867 | * RETURNS: | ||
| 868 | * The determined pcpu_unit_size which can be used to initialize | ||
| 869 | * percpu access. | ||
| 870 | */ | ||
| 871 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | ||
| 872 | size_t static_size, size_t unit_size, | ||
| 873 | size_t free_size, void *base_addr, | ||
| 874 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
| 875 | { | ||
| 876 | static struct vm_struct static_vm; | ||
| 877 | struct pcpu_chunk *static_chunk; | ||
| 878 | unsigned int cpu; | ||
| 879 | int nr_pages; | ||
| 880 | int err, i; | ||
| 881 | |||
| 882 | /* santiy checks */ | ||
| 883 | BUG_ON(!static_size); | ||
| 884 | BUG_ON(!unit_size && free_size); | ||
| 885 | BUG_ON(unit_size && unit_size < static_size + free_size); | ||
| 886 | BUG_ON(unit_size & ~PAGE_MASK); | ||
| 887 | BUG_ON(base_addr && !unit_size); | ||
| 888 | BUG_ON(base_addr && populate_pte_fn); | ||
| 889 | |||
| 890 | if (unit_size) | ||
| 891 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | ||
| 892 | else | ||
| 893 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | ||
| 894 | PFN_UP(static_size)); | ||
| 895 | |||
| 896 | pcpu_static_size = static_size; | ||
| 897 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
| 898 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | ||
| 899 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
| 900 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | ||
| 901 | |||
| 902 | /* | ||
| 903 | * Allocate chunk slots. The additional last slot is for | ||
| 904 | * empty chunks. | ||
| 905 | */ | ||
| 906 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | ||
| 907 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | ||
| 908 | for (i = 0; i < pcpu_nr_slots; i++) | ||
| 909 | INIT_LIST_HEAD(&pcpu_slot[i]); | ||
| 910 | |||
| 911 | /* init static_chunk */ | ||
| 912 | static_chunk = alloc_bootmem(pcpu_chunk_struct_size); | ||
| 913 | INIT_LIST_HEAD(&static_chunk->list); | ||
| 914 | static_chunk->vm = &static_vm; | ||
| 915 | |||
| 916 | if (free_size) | ||
| 917 | static_chunk->free_size = free_size; | ||
| 918 | else | ||
| 919 | static_chunk->free_size = pcpu_unit_size - pcpu_static_size; | ||
| 920 | |||
| 921 | static_chunk->contig_hint = static_chunk->free_size; | ||
| 922 | |||
| 923 | /* allocate vm address */ | ||
| 924 | static_vm.flags = VM_ALLOC; | ||
| 925 | static_vm.size = pcpu_chunk_size; | ||
| 926 | |||
| 927 | if (!base_addr) | ||
| 928 | vm_area_register_early(&static_vm, PAGE_SIZE); | ||
| 929 | else { | ||
| 930 | /* | ||
| 931 | * Pages already mapped. No need to remap into | ||
| 932 | * vmalloc area. In this case the static chunk can't | ||
| 933 | * be mapped or unmapped by percpu and is marked | ||
| 934 | * immutable. | ||
| 935 | */ | ||
| 936 | static_vm.addr = base_addr; | ||
| 937 | static_chunk->immutable = true; | ||
| 938 | } | ||
| 939 | |||
| 940 | /* assign pages */ | ||
| 941 | nr_pages = -1; | ||
| 942 | for_each_possible_cpu(cpu) { | ||
| 943 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
| 944 | struct page *page = get_page_fn(cpu, i); | ||
| 945 | |||
| 946 | if (!page) | ||
| 947 | break; | ||
| 948 | *pcpu_chunk_pagep(static_chunk, cpu, i) = page; | ||
| 949 | } | ||
| 950 | |||
| 951 | BUG_ON(i < PFN_UP(pcpu_static_size)); | ||
| 952 | |||
| 953 | if (nr_pages < 0) | ||
| 954 | nr_pages = i; | ||
| 955 | else | ||
| 956 | BUG_ON(nr_pages != i); | ||
| 957 | } | ||
| 958 | |||
| 959 | /* map them */ | ||
| 960 | if (populate_pte_fn) { | ||
| 961 | for_each_possible_cpu(cpu) | ||
| 962 | for (i = 0; i < nr_pages; i++) | ||
| 963 | populate_pte_fn(pcpu_chunk_addr(static_chunk, | ||
| 964 | cpu, i)); | ||
| 965 | |||
| 966 | err = pcpu_map(static_chunk, 0, nr_pages); | ||
| 967 | if (err) | ||
| 968 | panic("failed to setup static percpu area, err=%d\n", | ||
| 969 | err); | ||
| 970 | } | ||
| 971 | |||
| 972 | /* link static_chunk in */ | ||
| 973 | pcpu_chunk_relocate(static_chunk, -1); | ||
| 974 | pcpu_chunk_addr_insert(static_chunk); | ||
| 975 | |||
| 976 | /* we're done */ | ||
| 977 | pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0); | ||
| 978 | return pcpu_unit_size; | ||
| 979 | } | ||
