diff options
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r-- | mm/page_alloc.c | 2220 |
1 files changed, 2220 insertions, 0 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c new file mode 100644 index 000000000000..c73dbbc1cd8f --- /dev/null +++ b/mm/page_alloc.c | |||
@@ -0,0 +1,2220 @@ | |||
1 | /* | ||
2 | * linux/mm/page_alloc.c | ||
3 | * | ||
4 | * Manages the free list, the system allocates free pages here. | ||
5 | * Note that kmalloc() lives in slab.c | ||
6 | * | ||
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | ||
8 | * Swap reorganised 29.12.95, Stephen Tweedie | ||
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | ||
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | ||
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | ||
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | ||
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | ||
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | ||
15 | */ | ||
16 | |||
17 | #include <linux/config.h> | ||
18 | #include <linux/stddef.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/pagemap.h> | ||
23 | #include <linux/bootmem.h> | ||
24 | #include <linux/compiler.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/suspend.h> | ||
27 | #include <linux/pagevec.h> | ||
28 | #include <linux/blkdev.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/notifier.h> | ||
31 | #include <linux/topology.h> | ||
32 | #include <linux/sysctl.h> | ||
33 | #include <linux/cpu.h> | ||
34 | #include <linux/cpuset.h> | ||
35 | #include <linux/nodemask.h> | ||
36 | #include <linux/vmalloc.h> | ||
37 | |||
38 | #include <asm/tlbflush.h> | ||
39 | #include "internal.h" | ||
40 | |||
41 | /* | ||
42 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this | ||
43 | * initializer cleaner | ||
44 | */ | ||
45 | nodemask_t node_online_map = { { [0] = 1UL } }; | ||
46 | nodemask_t node_possible_map = NODE_MASK_ALL; | ||
47 | struct pglist_data *pgdat_list; | ||
48 | unsigned long totalram_pages; | ||
49 | unsigned long totalhigh_pages; | ||
50 | long nr_swap_pages; | ||
51 | |||
52 | /* | ||
53 | * results with 256, 32 in the lowmem_reserve sysctl: | ||
54 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | ||
55 | * 1G machine -> (16M dma, 784M normal, 224M high) | ||
56 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | ||
57 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | ||
58 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | ||
59 | */ | ||
60 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; | ||
61 | |||
62 | EXPORT_SYMBOL(totalram_pages); | ||
63 | EXPORT_SYMBOL(nr_swap_pages); | ||
64 | |||
65 | /* | ||
66 | * Used by page_zone() to look up the address of the struct zone whose | ||
67 | * id is encoded in the upper bits of page->flags | ||
68 | */ | ||
69 | struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)]; | ||
70 | EXPORT_SYMBOL(zone_table); | ||
71 | |||
72 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; | ||
73 | int min_free_kbytes = 1024; | ||
74 | |||
75 | unsigned long __initdata nr_kernel_pages; | ||
76 | unsigned long __initdata nr_all_pages; | ||
77 | |||
78 | /* | ||
79 | * Temporary debugging check for pages not lying within a given zone. | ||
80 | */ | ||
81 | static int bad_range(struct zone *zone, struct page *page) | ||
82 | { | ||
83 | if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) | ||
84 | return 1; | ||
85 | if (page_to_pfn(page) < zone->zone_start_pfn) | ||
86 | return 1; | ||
87 | #ifdef CONFIG_HOLES_IN_ZONE | ||
88 | if (!pfn_valid(page_to_pfn(page))) | ||
89 | return 1; | ||
90 | #endif | ||
91 | if (zone != page_zone(page)) | ||
92 | return 1; | ||
93 | return 0; | ||
94 | } | ||
95 | |||
96 | static void bad_page(const char *function, struct page *page) | ||
97 | { | ||
98 | printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", | ||
99 | function, current->comm, page); | ||
100 | printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", | ||
101 | (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, | ||
102 | page->mapping, page_mapcount(page), page_count(page)); | ||
103 | printk(KERN_EMERG "Backtrace:\n"); | ||
104 | dump_stack(); | ||
105 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); | ||
106 | page->flags &= ~(1 << PG_private | | ||
107 | 1 << PG_locked | | ||
108 | 1 << PG_lru | | ||
109 | 1 << PG_active | | ||
110 | 1 << PG_dirty | | ||
111 | 1 << PG_swapcache | | ||
112 | 1 << PG_writeback); | ||
113 | set_page_count(page, 0); | ||
114 | reset_page_mapcount(page); | ||
115 | page->mapping = NULL; | ||
116 | tainted |= TAINT_BAD_PAGE; | ||
117 | } | ||
118 | |||
119 | #ifndef CONFIG_HUGETLB_PAGE | ||
120 | #define prep_compound_page(page, order) do { } while (0) | ||
121 | #define destroy_compound_page(page, order) do { } while (0) | ||
122 | #else | ||
123 | /* | ||
124 | * Higher-order pages are called "compound pages". They are structured thusly: | ||
125 | * | ||
126 | * The first PAGE_SIZE page is called the "head page". | ||
127 | * | ||
128 | * The remaining PAGE_SIZE pages are called "tail pages". | ||
129 | * | ||
130 | * All pages have PG_compound set. All pages have their ->private pointing at | ||
131 | * the head page (even the head page has this). | ||
132 | * | ||
133 | * The first tail page's ->mapping, if non-zero, holds the address of the | ||
134 | * compound page's put_page() function. | ||
135 | * | ||
136 | * The order of the allocation is stored in the first tail page's ->index | ||
137 | * This is only for debug at present. This usage means that zero-order pages | ||
138 | * may not be compound. | ||
139 | */ | ||
140 | static void prep_compound_page(struct page *page, unsigned long order) | ||
141 | { | ||
142 | int i; | ||
143 | int nr_pages = 1 << order; | ||
144 | |||
145 | page[1].mapping = NULL; | ||
146 | page[1].index = order; | ||
147 | for (i = 0; i < nr_pages; i++) { | ||
148 | struct page *p = page + i; | ||
149 | |||
150 | SetPageCompound(p); | ||
151 | p->private = (unsigned long)page; | ||
152 | } | ||
153 | } | ||
154 | |||
155 | static void destroy_compound_page(struct page *page, unsigned long order) | ||
156 | { | ||
157 | int i; | ||
158 | int nr_pages = 1 << order; | ||
159 | |||
160 | if (!PageCompound(page)) | ||
161 | return; | ||
162 | |||
163 | if (page[1].index != order) | ||
164 | bad_page(__FUNCTION__, page); | ||
165 | |||
166 | for (i = 0; i < nr_pages; i++) { | ||
167 | struct page *p = page + i; | ||
168 | |||
169 | if (!PageCompound(p)) | ||
170 | bad_page(__FUNCTION__, page); | ||
171 | if (p->private != (unsigned long)page) | ||
172 | bad_page(__FUNCTION__, page); | ||
173 | ClearPageCompound(p); | ||
174 | } | ||
175 | } | ||
176 | #endif /* CONFIG_HUGETLB_PAGE */ | ||
177 | |||
178 | /* | ||
179 | * function for dealing with page's order in buddy system. | ||
180 | * zone->lock is already acquired when we use these. | ||
181 | * So, we don't need atomic page->flags operations here. | ||
182 | */ | ||
183 | static inline unsigned long page_order(struct page *page) { | ||
184 | return page->private; | ||
185 | } | ||
186 | |||
187 | static inline void set_page_order(struct page *page, int order) { | ||
188 | page->private = order; | ||
189 | __SetPagePrivate(page); | ||
190 | } | ||
191 | |||
192 | static inline void rmv_page_order(struct page *page) | ||
193 | { | ||
194 | __ClearPagePrivate(page); | ||
195 | page->private = 0; | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * Locate the struct page for both the matching buddy in our | ||
200 | * pair (buddy1) and the combined O(n+1) page they form (page). | ||
201 | * | ||
202 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | ||
203 | * the following equation: | ||
204 | * B2 = B1 ^ (1 << O) | ||
205 | * For example, if the starting buddy (buddy2) is #8 its order | ||
206 | * 1 buddy is #10: | ||
207 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | ||
208 | * | ||
209 | * 2) Any buddy B will have an order O+1 parent P which | ||
210 | * satisfies the following equation: | ||
211 | * P = B & ~(1 << O) | ||
212 | * | ||
213 | * Assumption: *_mem_map is contigious at least up to MAX_ORDER | ||
214 | */ | ||
215 | static inline struct page * | ||
216 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | ||
217 | { | ||
218 | unsigned long buddy_idx = page_idx ^ (1 << order); | ||
219 | |||
220 | return page + (buddy_idx - page_idx); | ||
221 | } | ||
222 | |||
223 | static inline unsigned long | ||
224 | __find_combined_index(unsigned long page_idx, unsigned int order) | ||
225 | { | ||
226 | return (page_idx & ~(1 << order)); | ||
227 | } | ||
228 | |||
229 | /* | ||
230 | * This function checks whether a page is free && is the buddy | ||
231 | * we can do coalesce a page and its buddy if | ||
232 | * (a) the buddy is free && | ||
233 | * (b) the buddy is on the buddy system && | ||
234 | * (c) a page and its buddy have the same order. | ||
235 | * for recording page's order, we use page->private and PG_private. | ||
236 | * | ||
237 | */ | ||
238 | static inline int page_is_buddy(struct page *page, int order) | ||
239 | { | ||
240 | if (PagePrivate(page) && | ||
241 | (page_order(page) == order) && | ||
242 | !PageReserved(page) && | ||
243 | page_count(page) == 0) | ||
244 | return 1; | ||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | /* | ||
249 | * Freeing function for a buddy system allocator. | ||
250 | * | ||
251 | * The concept of a buddy system is to maintain direct-mapped table | ||
252 | * (containing bit values) for memory blocks of various "orders". | ||
253 | * The bottom level table contains the map for the smallest allocatable | ||
254 | * units of memory (here, pages), and each level above it describes | ||
255 | * pairs of units from the levels below, hence, "buddies". | ||
256 | * At a high level, all that happens here is marking the table entry | ||
257 | * at the bottom level available, and propagating the changes upward | ||
258 | * as necessary, plus some accounting needed to play nicely with other | ||
259 | * parts of the VM system. | ||
260 | * At each level, we keep a list of pages, which are heads of continuous | ||
261 | * free pages of length of (1 << order) and marked with PG_Private.Page's | ||
262 | * order is recorded in page->private field. | ||
263 | * So when we are allocating or freeing one, we can derive the state of the | ||
264 | * other. That is, if we allocate a small block, and both were | ||
265 | * free, the remainder of the region must be split into blocks. | ||
266 | * If a block is freed, and its buddy is also free, then this | ||
267 | * triggers coalescing into a block of larger size. | ||
268 | * | ||
269 | * -- wli | ||
270 | */ | ||
271 | |||
272 | static inline void __free_pages_bulk (struct page *page, | ||
273 | struct zone *zone, unsigned int order) | ||
274 | { | ||
275 | unsigned long page_idx; | ||
276 | int order_size = 1 << order; | ||
277 | |||
278 | if (unlikely(order)) | ||
279 | destroy_compound_page(page, order); | ||
280 | |||
281 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | ||
282 | |||
283 | BUG_ON(page_idx & (order_size - 1)); | ||
284 | BUG_ON(bad_range(zone, page)); | ||
285 | |||
286 | zone->free_pages += order_size; | ||
287 | while (order < MAX_ORDER-1) { | ||
288 | unsigned long combined_idx; | ||
289 | struct free_area *area; | ||
290 | struct page *buddy; | ||
291 | |||
292 | combined_idx = __find_combined_index(page_idx, order); | ||
293 | buddy = __page_find_buddy(page, page_idx, order); | ||
294 | |||
295 | if (bad_range(zone, buddy)) | ||
296 | break; | ||
297 | if (!page_is_buddy(buddy, order)) | ||
298 | break; /* Move the buddy up one level. */ | ||
299 | list_del(&buddy->lru); | ||
300 | area = zone->free_area + order; | ||
301 | area->nr_free--; | ||
302 | rmv_page_order(buddy); | ||
303 | page = page + (combined_idx - page_idx); | ||
304 | page_idx = combined_idx; | ||
305 | order++; | ||
306 | } | ||
307 | set_page_order(page, order); | ||
308 | list_add(&page->lru, &zone->free_area[order].free_list); | ||
309 | zone->free_area[order].nr_free++; | ||
310 | } | ||
311 | |||
312 | static inline void free_pages_check(const char *function, struct page *page) | ||
313 | { | ||
314 | if ( page_mapcount(page) || | ||
315 | page->mapping != NULL || | ||
316 | page_count(page) != 0 || | ||
317 | (page->flags & ( | ||
318 | 1 << PG_lru | | ||
319 | 1 << PG_private | | ||
320 | 1 << PG_locked | | ||
321 | 1 << PG_active | | ||
322 | 1 << PG_reclaim | | ||
323 | 1 << PG_slab | | ||
324 | 1 << PG_swapcache | | ||
325 | 1 << PG_writeback ))) | ||
326 | bad_page(function, page); | ||
327 | if (PageDirty(page)) | ||
328 | ClearPageDirty(page); | ||
329 | } | ||
330 | |||
331 | /* | ||
332 | * Frees a list of pages. | ||
333 | * Assumes all pages on list are in same zone, and of same order. | ||
334 | * count is the number of pages to free, or 0 for all on the list. | ||
335 | * | ||
336 | * If the zone was previously in an "all pages pinned" state then look to | ||
337 | * see if this freeing clears that state. | ||
338 | * | ||
339 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | ||
340 | * pinned" detection logic. | ||
341 | */ | ||
342 | static int | ||
343 | free_pages_bulk(struct zone *zone, int count, | ||
344 | struct list_head *list, unsigned int order) | ||
345 | { | ||
346 | unsigned long flags; | ||
347 | struct page *page = NULL; | ||
348 | int ret = 0; | ||
349 | |||
350 | spin_lock_irqsave(&zone->lock, flags); | ||
351 | zone->all_unreclaimable = 0; | ||
352 | zone->pages_scanned = 0; | ||
353 | while (!list_empty(list) && count--) { | ||
354 | page = list_entry(list->prev, struct page, lru); | ||
355 | /* have to delete it as __free_pages_bulk list manipulates */ | ||
356 | list_del(&page->lru); | ||
357 | __free_pages_bulk(page, zone, order); | ||
358 | ret++; | ||
359 | } | ||
360 | spin_unlock_irqrestore(&zone->lock, flags); | ||
361 | return ret; | ||
362 | } | ||
363 | |||
364 | void __free_pages_ok(struct page *page, unsigned int order) | ||
365 | { | ||
366 | LIST_HEAD(list); | ||
367 | int i; | ||
368 | |||
369 | arch_free_page(page, order); | ||
370 | |||
371 | mod_page_state(pgfree, 1 << order); | ||
372 | |||
373 | #ifndef CONFIG_MMU | ||
374 | if (order > 0) | ||
375 | for (i = 1 ; i < (1 << order) ; ++i) | ||
376 | __put_page(page + i); | ||
377 | #endif | ||
378 | |||
379 | for (i = 0 ; i < (1 << order) ; ++i) | ||
380 | free_pages_check(__FUNCTION__, page + i); | ||
381 | list_add(&page->lru, &list); | ||
382 | kernel_map_pages(page, 1<<order, 0); | ||
383 | free_pages_bulk(page_zone(page), 1, &list, order); | ||
384 | } | ||
385 | |||
386 | |||
387 | /* | ||
388 | * The order of subdivision here is critical for the IO subsystem. | ||
389 | * Please do not alter this order without good reasons and regression | ||
390 | * testing. Specifically, as large blocks of memory are subdivided, | ||
391 | * the order in which smaller blocks are delivered depends on the order | ||
392 | * they're subdivided in this function. This is the primary factor | ||
393 | * influencing the order in which pages are delivered to the IO | ||
394 | * subsystem according to empirical testing, and this is also justified | ||
395 | * by considering the behavior of a buddy system containing a single | ||
396 | * large block of memory acted on by a series of small allocations. | ||
397 | * This behavior is a critical factor in sglist merging's success. | ||
398 | * | ||
399 | * -- wli | ||
400 | */ | ||
401 | static inline struct page * | ||
402 | expand(struct zone *zone, struct page *page, | ||
403 | int low, int high, struct free_area *area) | ||
404 | { | ||
405 | unsigned long size = 1 << high; | ||
406 | |||
407 | while (high > low) { | ||
408 | area--; | ||
409 | high--; | ||
410 | size >>= 1; | ||
411 | BUG_ON(bad_range(zone, &page[size])); | ||
412 | list_add(&page[size].lru, &area->free_list); | ||
413 | area->nr_free++; | ||
414 | set_page_order(&page[size], high); | ||
415 | } | ||
416 | return page; | ||
417 | } | ||
418 | |||
419 | void set_page_refs(struct page *page, int order) | ||
420 | { | ||
421 | #ifdef CONFIG_MMU | ||
422 | set_page_count(page, 1); | ||
423 | #else | ||
424 | int i; | ||
425 | |||
426 | /* | ||
427 | * We need to reference all the pages for this order, otherwise if | ||
428 | * anyone accesses one of the pages with (get/put) it will be freed. | ||
429 | * - eg: access_process_vm() | ||
430 | */ | ||
431 | for (i = 0; i < (1 << order); i++) | ||
432 | set_page_count(page + i, 1); | ||
433 | #endif /* CONFIG_MMU */ | ||
434 | } | ||
435 | |||
436 | /* | ||
437 | * This page is about to be returned from the page allocator | ||
438 | */ | ||
439 | static void prep_new_page(struct page *page, int order) | ||
440 | { | ||
441 | if (page->mapping || page_mapcount(page) || | ||
442 | (page->flags & ( | ||
443 | 1 << PG_private | | ||
444 | 1 << PG_locked | | ||
445 | 1 << PG_lru | | ||
446 | 1 << PG_active | | ||
447 | 1 << PG_dirty | | ||
448 | 1 << PG_reclaim | | ||
449 | 1 << PG_swapcache | | ||
450 | 1 << PG_writeback ))) | ||
451 | bad_page(__FUNCTION__, page); | ||
452 | |||
453 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | ||
454 | 1 << PG_referenced | 1 << PG_arch_1 | | ||
455 | 1 << PG_checked | 1 << PG_mappedtodisk); | ||
456 | page->private = 0; | ||
457 | set_page_refs(page, order); | ||
458 | kernel_map_pages(page, 1 << order, 1); | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Do the hard work of removing an element from the buddy allocator. | ||
463 | * Call me with the zone->lock already held. | ||
464 | */ | ||
465 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | ||
466 | { | ||
467 | struct free_area * area; | ||
468 | unsigned int current_order; | ||
469 | struct page *page; | ||
470 | |||
471 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | ||
472 | area = zone->free_area + current_order; | ||
473 | if (list_empty(&area->free_list)) | ||
474 | continue; | ||
475 | |||
476 | page = list_entry(area->free_list.next, struct page, lru); | ||
477 | list_del(&page->lru); | ||
478 | rmv_page_order(page); | ||
479 | area->nr_free--; | ||
480 | zone->free_pages -= 1UL << order; | ||
481 | return expand(zone, page, order, current_order, area); | ||
482 | } | ||
483 | |||
484 | return NULL; | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * Obtain a specified number of elements from the buddy allocator, all under | ||
489 | * a single hold of the lock, for efficiency. Add them to the supplied list. | ||
490 | * Returns the number of new pages which were placed at *list. | ||
491 | */ | ||
492 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | ||
493 | unsigned long count, struct list_head *list) | ||
494 | { | ||
495 | unsigned long flags; | ||
496 | int i; | ||
497 | int allocated = 0; | ||
498 | struct page *page; | ||
499 | |||
500 | spin_lock_irqsave(&zone->lock, flags); | ||
501 | for (i = 0; i < count; ++i) { | ||
502 | page = __rmqueue(zone, order); | ||
503 | if (page == NULL) | ||
504 | break; | ||
505 | allocated++; | ||
506 | list_add_tail(&page->lru, list); | ||
507 | } | ||
508 | spin_unlock_irqrestore(&zone->lock, flags); | ||
509 | return allocated; | ||
510 | } | ||
511 | |||
512 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | ||
513 | static void __drain_pages(unsigned int cpu) | ||
514 | { | ||
515 | struct zone *zone; | ||
516 | int i; | ||
517 | |||
518 | for_each_zone(zone) { | ||
519 | struct per_cpu_pageset *pset; | ||
520 | |||
521 | pset = &zone->pageset[cpu]; | ||
522 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | ||
523 | struct per_cpu_pages *pcp; | ||
524 | |||
525 | pcp = &pset->pcp[i]; | ||
526 | pcp->count -= free_pages_bulk(zone, pcp->count, | ||
527 | &pcp->list, 0); | ||
528 | } | ||
529 | } | ||
530 | } | ||
531 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | ||
532 | |||
533 | #ifdef CONFIG_PM | ||
534 | |||
535 | void mark_free_pages(struct zone *zone) | ||
536 | { | ||
537 | unsigned long zone_pfn, flags; | ||
538 | int order; | ||
539 | struct list_head *curr; | ||
540 | |||
541 | if (!zone->spanned_pages) | ||
542 | return; | ||
543 | |||
544 | spin_lock_irqsave(&zone->lock, flags); | ||
545 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | ||
546 | ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | ||
547 | |||
548 | for (order = MAX_ORDER - 1; order >= 0; --order) | ||
549 | list_for_each(curr, &zone->free_area[order].free_list) { | ||
550 | unsigned long start_pfn, i; | ||
551 | |||
552 | start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | ||
553 | |||
554 | for (i=0; i < (1<<order); i++) | ||
555 | SetPageNosaveFree(pfn_to_page(start_pfn+i)); | ||
556 | } | ||
557 | spin_unlock_irqrestore(&zone->lock, flags); | ||
558 | } | ||
559 | |||
560 | /* | ||
561 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | ||
562 | */ | ||
563 | void drain_local_pages(void) | ||
564 | { | ||
565 | unsigned long flags; | ||
566 | |||
567 | local_irq_save(flags); | ||
568 | __drain_pages(smp_processor_id()); | ||
569 | local_irq_restore(flags); | ||
570 | } | ||
571 | #endif /* CONFIG_PM */ | ||
572 | |||
573 | static void zone_statistics(struct zonelist *zonelist, struct zone *z) | ||
574 | { | ||
575 | #ifdef CONFIG_NUMA | ||
576 | unsigned long flags; | ||
577 | int cpu; | ||
578 | pg_data_t *pg = z->zone_pgdat; | ||
579 | pg_data_t *orig = zonelist->zones[0]->zone_pgdat; | ||
580 | struct per_cpu_pageset *p; | ||
581 | |||
582 | local_irq_save(flags); | ||
583 | cpu = smp_processor_id(); | ||
584 | p = &z->pageset[cpu]; | ||
585 | if (pg == orig) { | ||
586 | z->pageset[cpu].numa_hit++; | ||
587 | } else { | ||
588 | p->numa_miss++; | ||
589 | zonelist->zones[0]->pageset[cpu].numa_foreign++; | ||
590 | } | ||
591 | if (pg == NODE_DATA(numa_node_id())) | ||
592 | p->local_node++; | ||
593 | else | ||
594 | p->other_node++; | ||
595 | local_irq_restore(flags); | ||
596 | #endif | ||
597 | } | ||
598 | |||
599 | /* | ||
600 | * Free a 0-order page | ||
601 | */ | ||
602 | static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); | ||
603 | static void fastcall free_hot_cold_page(struct page *page, int cold) | ||
604 | { | ||
605 | struct zone *zone = page_zone(page); | ||
606 | struct per_cpu_pages *pcp; | ||
607 | unsigned long flags; | ||
608 | |||
609 | arch_free_page(page, 0); | ||
610 | |||
611 | kernel_map_pages(page, 1, 0); | ||
612 | inc_page_state(pgfree); | ||
613 | if (PageAnon(page)) | ||
614 | page->mapping = NULL; | ||
615 | free_pages_check(__FUNCTION__, page); | ||
616 | pcp = &zone->pageset[get_cpu()].pcp[cold]; | ||
617 | local_irq_save(flags); | ||
618 | if (pcp->count >= pcp->high) | ||
619 | pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | ||
620 | list_add(&page->lru, &pcp->list); | ||
621 | pcp->count++; | ||
622 | local_irq_restore(flags); | ||
623 | put_cpu(); | ||
624 | } | ||
625 | |||
626 | void fastcall free_hot_page(struct page *page) | ||
627 | { | ||
628 | free_hot_cold_page(page, 0); | ||
629 | } | ||
630 | |||
631 | void fastcall free_cold_page(struct page *page) | ||
632 | { | ||
633 | free_hot_cold_page(page, 1); | ||
634 | } | ||
635 | |||
636 | static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) | ||
637 | { | ||
638 | int i; | ||
639 | |||
640 | BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | ||
641 | for(i = 0; i < (1 << order); i++) | ||
642 | clear_highpage(page + i); | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | ||
647 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | ||
648 | * or two. | ||
649 | */ | ||
650 | static struct page * | ||
651 | buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) | ||
652 | { | ||
653 | unsigned long flags; | ||
654 | struct page *page = NULL; | ||
655 | int cold = !!(gfp_flags & __GFP_COLD); | ||
656 | |||
657 | if (order == 0) { | ||
658 | struct per_cpu_pages *pcp; | ||
659 | |||
660 | pcp = &zone->pageset[get_cpu()].pcp[cold]; | ||
661 | local_irq_save(flags); | ||
662 | if (pcp->count <= pcp->low) | ||
663 | pcp->count += rmqueue_bulk(zone, 0, | ||
664 | pcp->batch, &pcp->list); | ||
665 | if (pcp->count) { | ||
666 | page = list_entry(pcp->list.next, struct page, lru); | ||
667 | list_del(&page->lru); | ||
668 | pcp->count--; | ||
669 | } | ||
670 | local_irq_restore(flags); | ||
671 | put_cpu(); | ||
672 | } | ||
673 | |||
674 | if (page == NULL) { | ||
675 | spin_lock_irqsave(&zone->lock, flags); | ||
676 | page = __rmqueue(zone, order); | ||
677 | spin_unlock_irqrestore(&zone->lock, flags); | ||
678 | } | ||
679 | |||
680 | if (page != NULL) { | ||
681 | BUG_ON(bad_range(zone, page)); | ||
682 | mod_page_state_zone(zone, pgalloc, 1 << order); | ||
683 | prep_new_page(page, order); | ||
684 | |||
685 | if (gfp_flags & __GFP_ZERO) | ||
686 | prep_zero_page(page, order, gfp_flags); | ||
687 | |||
688 | if (order && (gfp_flags & __GFP_COMP)) | ||
689 | prep_compound_page(page, order); | ||
690 | } | ||
691 | return page; | ||
692 | } | ||
693 | |||
694 | /* | ||
695 | * Return 1 if free pages are above 'mark'. This takes into account the order | ||
696 | * of the allocation. | ||
697 | */ | ||
698 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | ||
699 | int classzone_idx, int can_try_harder, int gfp_high) | ||
700 | { | ||
701 | /* free_pages my go negative - that's OK */ | ||
702 | long min = mark, free_pages = z->free_pages - (1 << order) + 1; | ||
703 | int o; | ||
704 | |||
705 | if (gfp_high) | ||
706 | min -= min / 2; | ||
707 | if (can_try_harder) | ||
708 | min -= min / 4; | ||
709 | |||
710 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | ||
711 | return 0; | ||
712 | for (o = 0; o < order; o++) { | ||
713 | /* At the next order, this order's pages become unavailable */ | ||
714 | free_pages -= z->free_area[o].nr_free << o; | ||
715 | |||
716 | /* Require fewer higher order pages to be free */ | ||
717 | min >>= 1; | ||
718 | |||
719 | if (free_pages <= min) | ||
720 | return 0; | ||
721 | } | ||
722 | return 1; | ||
723 | } | ||
724 | |||
725 | /* | ||
726 | * This is the 'heart' of the zoned buddy allocator. | ||
727 | */ | ||
728 | struct page * fastcall | ||
729 | __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, | ||
730 | struct zonelist *zonelist) | ||
731 | { | ||
732 | const int wait = gfp_mask & __GFP_WAIT; | ||
733 | struct zone **zones, *z; | ||
734 | struct page *page; | ||
735 | struct reclaim_state reclaim_state; | ||
736 | struct task_struct *p = current; | ||
737 | int i; | ||
738 | int classzone_idx; | ||
739 | int do_retry; | ||
740 | int can_try_harder; | ||
741 | int did_some_progress; | ||
742 | |||
743 | might_sleep_if(wait); | ||
744 | |||
745 | /* | ||
746 | * The caller may dip into page reserves a bit more if the caller | ||
747 | * cannot run direct reclaim, or is the caller has realtime scheduling | ||
748 | * policy | ||
749 | */ | ||
750 | can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; | ||
751 | |||
752 | zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ | ||
753 | |||
754 | if (unlikely(zones[0] == NULL)) { | ||
755 | /* Should this ever happen?? */ | ||
756 | return NULL; | ||
757 | } | ||
758 | |||
759 | classzone_idx = zone_idx(zones[0]); | ||
760 | |||
761 | restart: | ||
762 | /* Go through the zonelist once, looking for a zone with enough free */ | ||
763 | for (i = 0; (z = zones[i]) != NULL; i++) { | ||
764 | |||
765 | if (!zone_watermark_ok(z, order, z->pages_low, | ||
766 | classzone_idx, 0, 0)) | ||
767 | continue; | ||
768 | |||
769 | if (!cpuset_zone_allowed(z)) | ||
770 | continue; | ||
771 | |||
772 | page = buffered_rmqueue(z, order, gfp_mask); | ||
773 | if (page) | ||
774 | goto got_pg; | ||
775 | } | ||
776 | |||
777 | for (i = 0; (z = zones[i]) != NULL; i++) | ||
778 | wakeup_kswapd(z, order); | ||
779 | |||
780 | /* | ||
781 | * Go through the zonelist again. Let __GFP_HIGH and allocations | ||
782 | * coming from realtime tasks to go deeper into reserves | ||
783 | * | ||
784 | * This is the last chance, in general, before the goto nopage. | ||
785 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | ||
786 | */ | ||
787 | for (i = 0; (z = zones[i]) != NULL; i++) { | ||
788 | if (!zone_watermark_ok(z, order, z->pages_min, | ||
789 | classzone_idx, can_try_harder, | ||
790 | gfp_mask & __GFP_HIGH)) | ||
791 | continue; | ||
792 | |||
793 | if (wait && !cpuset_zone_allowed(z)) | ||
794 | continue; | ||
795 | |||
796 | page = buffered_rmqueue(z, order, gfp_mask); | ||
797 | if (page) | ||
798 | goto got_pg; | ||
799 | } | ||
800 | |||
801 | /* This allocation should allow future memory freeing. */ | ||
802 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) && !in_interrupt()) { | ||
803 | /* go through the zonelist yet again, ignoring mins */ | ||
804 | for (i = 0; (z = zones[i]) != NULL; i++) { | ||
805 | if (!cpuset_zone_allowed(z)) | ||
806 | continue; | ||
807 | page = buffered_rmqueue(z, order, gfp_mask); | ||
808 | if (page) | ||
809 | goto got_pg; | ||
810 | } | ||
811 | goto nopage; | ||
812 | } | ||
813 | |||
814 | /* Atomic allocations - we can't balance anything */ | ||
815 | if (!wait) | ||
816 | goto nopage; | ||
817 | |||
818 | rebalance: | ||
819 | cond_resched(); | ||
820 | |||
821 | /* We now go into synchronous reclaim */ | ||
822 | p->flags |= PF_MEMALLOC; | ||
823 | reclaim_state.reclaimed_slab = 0; | ||
824 | p->reclaim_state = &reclaim_state; | ||
825 | |||
826 | did_some_progress = try_to_free_pages(zones, gfp_mask, order); | ||
827 | |||
828 | p->reclaim_state = NULL; | ||
829 | p->flags &= ~PF_MEMALLOC; | ||
830 | |||
831 | cond_resched(); | ||
832 | |||
833 | if (likely(did_some_progress)) { | ||
834 | /* | ||
835 | * Go through the zonelist yet one more time, keep | ||
836 | * very high watermark here, this is only to catch | ||
837 | * a parallel oom killing, we must fail if we're still | ||
838 | * under heavy pressure. | ||
839 | */ | ||
840 | for (i = 0; (z = zones[i]) != NULL; i++) { | ||
841 | if (!zone_watermark_ok(z, order, z->pages_min, | ||
842 | classzone_idx, can_try_harder, | ||
843 | gfp_mask & __GFP_HIGH)) | ||
844 | continue; | ||
845 | |||
846 | if (!cpuset_zone_allowed(z)) | ||
847 | continue; | ||
848 | |||
849 | page = buffered_rmqueue(z, order, gfp_mask); | ||
850 | if (page) | ||
851 | goto got_pg; | ||
852 | } | ||
853 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | ||
854 | /* | ||
855 | * Go through the zonelist yet one more time, keep | ||
856 | * very high watermark here, this is only to catch | ||
857 | * a parallel oom killing, we must fail if we're still | ||
858 | * under heavy pressure. | ||
859 | */ | ||
860 | for (i = 0; (z = zones[i]) != NULL; i++) { | ||
861 | if (!zone_watermark_ok(z, order, z->pages_high, | ||
862 | classzone_idx, 0, 0)) | ||
863 | continue; | ||
864 | |||
865 | if (!cpuset_zone_allowed(z)) | ||
866 | continue; | ||
867 | |||
868 | page = buffered_rmqueue(z, order, gfp_mask); | ||
869 | if (page) | ||
870 | goto got_pg; | ||
871 | } | ||
872 | |||
873 | out_of_memory(gfp_mask); | ||
874 | goto restart; | ||
875 | } | ||
876 | |||
877 | /* | ||
878 | * Don't let big-order allocations loop unless the caller explicitly | ||
879 | * requests that. Wait for some write requests to complete then retry. | ||
880 | * | ||
881 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | ||
882 | * <= 3, but that may not be true in other implementations. | ||
883 | */ | ||
884 | do_retry = 0; | ||
885 | if (!(gfp_mask & __GFP_NORETRY)) { | ||
886 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | ||
887 | do_retry = 1; | ||
888 | if (gfp_mask & __GFP_NOFAIL) | ||
889 | do_retry = 1; | ||
890 | } | ||
891 | if (do_retry) { | ||
892 | blk_congestion_wait(WRITE, HZ/50); | ||
893 | goto rebalance; | ||
894 | } | ||
895 | |||
896 | nopage: | ||
897 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | ||
898 | printk(KERN_WARNING "%s: page allocation failure." | ||
899 | " order:%d, mode:0x%x\n", | ||
900 | p->comm, order, gfp_mask); | ||
901 | dump_stack(); | ||
902 | } | ||
903 | return NULL; | ||
904 | got_pg: | ||
905 | zone_statistics(zonelist, z); | ||
906 | return page; | ||
907 | } | ||
908 | |||
909 | EXPORT_SYMBOL(__alloc_pages); | ||
910 | |||
911 | /* | ||
912 | * Common helper functions. | ||
913 | */ | ||
914 | fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) | ||
915 | { | ||
916 | struct page * page; | ||
917 | page = alloc_pages(gfp_mask, order); | ||
918 | if (!page) | ||
919 | return 0; | ||
920 | return (unsigned long) page_address(page); | ||
921 | } | ||
922 | |||
923 | EXPORT_SYMBOL(__get_free_pages); | ||
924 | |||
925 | fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) | ||
926 | { | ||
927 | struct page * page; | ||
928 | |||
929 | /* | ||
930 | * get_zeroed_page() returns a 32-bit address, which cannot represent | ||
931 | * a highmem page | ||
932 | */ | ||
933 | BUG_ON(gfp_mask & __GFP_HIGHMEM); | ||
934 | |||
935 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | ||
936 | if (page) | ||
937 | return (unsigned long) page_address(page); | ||
938 | return 0; | ||
939 | } | ||
940 | |||
941 | EXPORT_SYMBOL(get_zeroed_page); | ||
942 | |||
943 | void __pagevec_free(struct pagevec *pvec) | ||
944 | { | ||
945 | int i = pagevec_count(pvec); | ||
946 | |||
947 | while (--i >= 0) | ||
948 | free_hot_cold_page(pvec->pages[i], pvec->cold); | ||
949 | } | ||
950 | |||
951 | fastcall void __free_pages(struct page *page, unsigned int order) | ||
952 | { | ||
953 | if (!PageReserved(page) && put_page_testzero(page)) { | ||
954 | if (order == 0) | ||
955 | free_hot_page(page); | ||
956 | else | ||
957 | __free_pages_ok(page, order); | ||
958 | } | ||
959 | } | ||
960 | |||
961 | EXPORT_SYMBOL(__free_pages); | ||
962 | |||
963 | fastcall void free_pages(unsigned long addr, unsigned int order) | ||
964 | { | ||
965 | if (addr != 0) { | ||
966 | BUG_ON(!virt_addr_valid((void *)addr)); | ||
967 | __free_pages(virt_to_page((void *)addr), order); | ||
968 | } | ||
969 | } | ||
970 | |||
971 | EXPORT_SYMBOL(free_pages); | ||
972 | |||
973 | /* | ||
974 | * Total amount of free (allocatable) RAM: | ||
975 | */ | ||
976 | unsigned int nr_free_pages(void) | ||
977 | { | ||
978 | unsigned int sum = 0; | ||
979 | struct zone *zone; | ||
980 | |||
981 | for_each_zone(zone) | ||
982 | sum += zone->free_pages; | ||
983 | |||
984 | return sum; | ||
985 | } | ||
986 | |||
987 | EXPORT_SYMBOL(nr_free_pages); | ||
988 | |||
989 | #ifdef CONFIG_NUMA | ||
990 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | ||
991 | { | ||
992 | unsigned int i, sum = 0; | ||
993 | |||
994 | for (i = 0; i < MAX_NR_ZONES; i++) | ||
995 | sum += pgdat->node_zones[i].free_pages; | ||
996 | |||
997 | return sum; | ||
998 | } | ||
999 | #endif | ||
1000 | |||
1001 | static unsigned int nr_free_zone_pages(int offset) | ||
1002 | { | ||
1003 | pg_data_t *pgdat; | ||
1004 | unsigned int sum = 0; | ||
1005 | |||
1006 | for_each_pgdat(pgdat) { | ||
1007 | struct zonelist *zonelist = pgdat->node_zonelists + offset; | ||
1008 | struct zone **zonep = zonelist->zones; | ||
1009 | struct zone *zone; | ||
1010 | |||
1011 | for (zone = *zonep++; zone; zone = *zonep++) { | ||
1012 | unsigned long size = zone->present_pages; | ||
1013 | unsigned long high = zone->pages_high; | ||
1014 | if (size > high) | ||
1015 | sum += size - high; | ||
1016 | } | ||
1017 | } | ||
1018 | |||
1019 | return sum; | ||
1020 | } | ||
1021 | |||
1022 | /* | ||
1023 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | ||
1024 | */ | ||
1025 | unsigned int nr_free_buffer_pages(void) | ||
1026 | { | ||
1027 | return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); | ||
1028 | } | ||
1029 | |||
1030 | /* | ||
1031 | * Amount of free RAM allocatable within all zones | ||
1032 | */ | ||
1033 | unsigned int nr_free_pagecache_pages(void) | ||
1034 | { | ||
1035 | return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); | ||
1036 | } | ||
1037 | |||
1038 | #ifdef CONFIG_HIGHMEM | ||
1039 | unsigned int nr_free_highpages (void) | ||
1040 | { | ||
1041 | pg_data_t *pgdat; | ||
1042 | unsigned int pages = 0; | ||
1043 | |||
1044 | for_each_pgdat(pgdat) | ||
1045 | pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | ||
1046 | |||
1047 | return pages; | ||
1048 | } | ||
1049 | #endif | ||
1050 | |||
1051 | #ifdef CONFIG_NUMA | ||
1052 | static void show_node(struct zone *zone) | ||
1053 | { | ||
1054 | printk("Node %d ", zone->zone_pgdat->node_id); | ||
1055 | } | ||
1056 | #else | ||
1057 | #define show_node(zone) do { } while (0) | ||
1058 | #endif | ||
1059 | |||
1060 | /* | ||
1061 | * Accumulate the page_state information across all CPUs. | ||
1062 | * The result is unavoidably approximate - it can change | ||
1063 | * during and after execution of this function. | ||
1064 | */ | ||
1065 | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; | ||
1066 | |||
1067 | atomic_t nr_pagecache = ATOMIC_INIT(0); | ||
1068 | EXPORT_SYMBOL(nr_pagecache); | ||
1069 | #ifdef CONFIG_SMP | ||
1070 | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; | ||
1071 | #endif | ||
1072 | |||
1073 | void __get_page_state(struct page_state *ret, int nr) | ||
1074 | { | ||
1075 | int cpu = 0; | ||
1076 | |||
1077 | memset(ret, 0, sizeof(*ret)); | ||
1078 | |||
1079 | cpu = first_cpu(cpu_online_map); | ||
1080 | while (cpu < NR_CPUS) { | ||
1081 | unsigned long *in, *out, off; | ||
1082 | |||
1083 | in = (unsigned long *)&per_cpu(page_states, cpu); | ||
1084 | |||
1085 | cpu = next_cpu(cpu, cpu_online_map); | ||
1086 | |||
1087 | if (cpu < NR_CPUS) | ||
1088 | prefetch(&per_cpu(page_states, cpu)); | ||
1089 | |||
1090 | out = (unsigned long *)ret; | ||
1091 | for (off = 0; off < nr; off++) | ||
1092 | *out++ += *in++; | ||
1093 | } | ||
1094 | } | ||
1095 | |||
1096 | void get_page_state(struct page_state *ret) | ||
1097 | { | ||
1098 | int nr; | ||
1099 | |||
1100 | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | ||
1101 | nr /= sizeof(unsigned long); | ||
1102 | |||
1103 | __get_page_state(ret, nr + 1); | ||
1104 | } | ||
1105 | |||
1106 | void get_full_page_state(struct page_state *ret) | ||
1107 | { | ||
1108 | __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long)); | ||
1109 | } | ||
1110 | |||
1111 | unsigned long __read_page_state(unsigned offset) | ||
1112 | { | ||
1113 | unsigned long ret = 0; | ||
1114 | int cpu; | ||
1115 | |||
1116 | for_each_online_cpu(cpu) { | ||
1117 | unsigned long in; | ||
1118 | |||
1119 | in = (unsigned long)&per_cpu(page_states, cpu) + offset; | ||
1120 | ret += *((unsigned long *)in); | ||
1121 | } | ||
1122 | return ret; | ||
1123 | } | ||
1124 | |||
1125 | void __mod_page_state(unsigned offset, unsigned long delta) | ||
1126 | { | ||
1127 | unsigned long flags; | ||
1128 | void* ptr; | ||
1129 | |||
1130 | local_irq_save(flags); | ||
1131 | ptr = &__get_cpu_var(page_states); | ||
1132 | *(unsigned long*)(ptr + offset) += delta; | ||
1133 | local_irq_restore(flags); | ||
1134 | } | ||
1135 | |||
1136 | EXPORT_SYMBOL(__mod_page_state); | ||
1137 | |||
1138 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | ||
1139 | unsigned long *free, struct pglist_data *pgdat) | ||
1140 | { | ||
1141 | struct zone *zones = pgdat->node_zones; | ||
1142 | int i; | ||
1143 | |||
1144 | *active = 0; | ||
1145 | *inactive = 0; | ||
1146 | *free = 0; | ||
1147 | for (i = 0; i < MAX_NR_ZONES; i++) { | ||
1148 | *active += zones[i].nr_active; | ||
1149 | *inactive += zones[i].nr_inactive; | ||
1150 | *free += zones[i].free_pages; | ||
1151 | } | ||
1152 | } | ||
1153 | |||
1154 | void get_zone_counts(unsigned long *active, | ||
1155 | unsigned long *inactive, unsigned long *free) | ||
1156 | { | ||
1157 | struct pglist_data *pgdat; | ||
1158 | |||
1159 | *active = 0; | ||
1160 | *inactive = 0; | ||
1161 | *free = 0; | ||
1162 | for_each_pgdat(pgdat) { | ||
1163 | unsigned long l, m, n; | ||
1164 | __get_zone_counts(&l, &m, &n, pgdat); | ||
1165 | *active += l; | ||
1166 | *inactive += m; | ||
1167 | *free += n; | ||
1168 | } | ||
1169 | } | ||
1170 | |||
1171 | void si_meminfo(struct sysinfo *val) | ||
1172 | { | ||
1173 | val->totalram = totalram_pages; | ||
1174 | val->sharedram = 0; | ||
1175 | val->freeram = nr_free_pages(); | ||
1176 | val->bufferram = nr_blockdev_pages(); | ||
1177 | #ifdef CONFIG_HIGHMEM | ||
1178 | val->totalhigh = totalhigh_pages; | ||
1179 | val->freehigh = nr_free_highpages(); | ||
1180 | #else | ||
1181 | val->totalhigh = 0; | ||
1182 | val->freehigh = 0; | ||
1183 | #endif | ||
1184 | val->mem_unit = PAGE_SIZE; | ||
1185 | } | ||
1186 | |||
1187 | EXPORT_SYMBOL(si_meminfo); | ||
1188 | |||
1189 | #ifdef CONFIG_NUMA | ||
1190 | void si_meminfo_node(struct sysinfo *val, int nid) | ||
1191 | { | ||
1192 | pg_data_t *pgdat = NODE_DATA(nid); | ||
1193 | |||
1194 | val->totalram = pgdat->node_present_pages; | ||
1195 | val->freeram = nr_free_pages_pgdat(pgdat); | ||
1196 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | ||
1197 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | ||
1198 | val->mem_unit = PAGE_SIZE; | ||
1199 | } | ||
1200 | #endif | ||
1201 | |||
1202 | #define K(x) ((x) << (PAGE_SHIFT-10)) | ||
1203 | |||
1204 | /* | ||
1205 | * Show free area list (used inside shift_scroll-lock stuff) | ||
1206 | * We also calculate the percentage fragmentation. We do this by counting the | ||
1207 | * memory on each free list with the exception of the first item on the list. | ||
1208 | */ | ||
1209 | void show_free_areas(void) | ||
1210 | { | ||
1211 | struct page_state ps; | ||
1212 | int cpu, temperature; | ||
1213 | unsigned long active; | ||
1214 | unsigned long inactive; | ||
1215 | unsigned long free; | ||
1216 | struct zone *zone; | ||
1217 | |||
1218 | for_each_zone(zone) { | ||
1219 | show_node(zone); | ||
1220 | printk("%s per-cpu:", zone->name); | ||
1221 | |||
1222 | if (!zone->present_pages) { | ||
1223 | printk(" empty\n"); | ||
1224 | continue; | ||
1225 | } else | ||
1226 | printk("\n"); | ||
1227 | |||
1228 | for (cpu = 0; cpu < NR_CPUS; ++cpu) { | ||
1229 | struct per_cpu_pageset *pageset; | ||
1230 | |||
1231 | if (!cpu_possible(cpu)) | ||
1232 | continue; | ||
1233 | |||
1234 | pageset = zone->pageset + cpu; | ||
1235 | |||
1236 | for (temperature = 0; temperature < 2; temperature++) | ||
1237 | printk("cpu %d %s: low %d, high %d, batch %d\n", | ||
1238 | cpu, | ||
1239 | temperature ? "cold" : "hot", | ||
1240 | pageset->pcp[temperature].low, | ||
1241 | pageset->pcp[temperature].high, | ||
1242 | pageset->pcp[temperature].batch); | ||
1243 | } | ||
1244 | } | ||
1245 | |||
1246 | get_page_state(&ps); | ||
1247 | get_zone_counts(&active, &inactive, &free); | ||
1248 | |||
1249 | printk("\nFree pages: %11ukB (%ukB HighMem)\n", | ||
1250 | K(nr_free_pages()), | ||
1251 | K(nr_free_highpages())); | ||
1252 | |||
1253 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | ||
1254 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | ||
1255 | active, | ||
1256 | inactive, | ||
1257 | ps.nr_dirty, | ||
1258 | ps.nr_writeback, | ||
1259 | ps.nr_unstable, | ||
1260 | nr_free_pages(), | ||
1261 | ps.nr_slab, | ||
1262 | ps.nr_mapped, | ||
1263 | ps.nr_page_table_pages); | ||
1264 | |||
1265 | for_each_zone(zone) { | ||
1266 | int i; | ||
1267 | |||
1268 | show_node(zone); | ||
1269 | printk("%s" | ||
1270 | " free:%lukB" | ||
1271 | " min:%lukB" | ||
1272 | " low:%lukB" | ||
1273 | " high:%lukB" | ||
1274 | " active:%lukB" | ||
1275 | " inactive:%lukB" | ||
1276 | " present:%lukB" | ||
1277 | " pages_scanned:%lu" | ||
1278 | " all_unreclaimable? %s" | ||
1279 | "\n", | ||
1280 | zone->name, | ||
1281 | K(zone->free_pages), | ||
1282 | K(zone->pages_min), | ||
1283 | K(zone->pages_low), | ||
1284 | K(zone->pages_high), | ||
1285 | K(zone->nr_active), | ||
1286 | K(zone->nr_inactive), | ||
1287 | K(zone->present_pages), | ||
1288 | zone->pages_scanned, | ||
1289 | (zone->all_unreclaimable ? "yes" : "no") | ||
1290 | ); | ||
1291 | printk("lowmem_reserve[]:"); | ||
1292 | for (i = 0; i < MAX_NR_ZONES; i++) | ||
1293 | printk(" %lu", zone->lowmem_reserve[i]); | ||
1294 | printk("\n"); | ||
1295 | } | ||
1296 | |||
1297 | for_each_zone(zone) { | ||
1298 | unsigned long nr, flags, order, total = 0; | ||
1299 | |||
1300 | show_node(zone); | ||
1301 | printk("%s: ", zone->name); | ||
1302 | if (!zone->present_pages) { | ||
1303 | printk("empty\n"); | ||
1304 | continue; | ||
1305 | } | ||
1306 | |||
1307 | spin_lock_irqsave(&zone->lock, flags); | ||
1308 | for (order = 0; order < MAX_ORDER; order++) { | ||
1309 | nr = zone->free_area[order].nr_free; | ||
1310 | total += nr << order; | ||
1311 | printk("%lu*%lukB ", nr, K(1UL) << order); | ||
1312 | } | ||
1313 | spin_unlock_irqrestore(&zone->lock, flags); | ||
1314 | printk("= %lukB\n", K(total)); | ||
1315 | } | ||
1316 | |||
1317 | show_swap_cache_info(); | ||
1318 | } | ||
1319 | |||
1320 | /* | ||
1321 | * Builds allocation fallback zone lists. | ||
1322 | */ | ||
1323 | static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) | ||
1324 | { | ||
1325 | switch (k) { | ||
1326 | struct zone *zone; | ||
1327 | default: | ||
1328 | BUG(); | ||
1329 | case ZONE_HIGHMEM: | ||
1330 | zone = pgdat->node_zones + ZONE_HIGHMEM; | ||
1331 | if (zone->present_pages) { | ||
1332 | #ifndef CONFIG_HIGHMEM | ||
1333 | BUG(); | ||
1334 | #endif | ||
1335 | zonelist->zones[j++] = zone; | ||
1336 | } | ||
1337 | case ZONE_NORMAL: | ||
1338 | zone = pgdat->node_zones + ZONE_NORMAL; | ||
1339 | if (zone->present_pages) | ||
1340 | zonelist->zones[j++] = zone; | ||
1341 | case ZONE_DMA: | ||
1342 | zone = pgdat->node_zones + ZONE_DMA; | ||
1343 | if (zone->present_pages) | ||
1344 | zonelist->zones[j++] = zone; | ||
1345 | } | ||
1346 | |||
1347 | return j; | ||
1348 | } | ||
1349 | |||
1350 | #ifdef CONFIG_NUMA | ||
1351 | #define MAX_NODE_LOAD (num_online_nodes()) | ||
1352 | static int __initdata node_load[MAX_NUMNODES]; | ||
1353 | /** | ||
1354 | * find_next_best_node - find the next node that should appear in a given | ||
1355 | * node's fallback list | ||
1356 | * @node: node whose fallback list we're appending | ||
1357 | * @used_node_mask: nodemask_t of already used nodes | ||
1358 | * | ||
1359 | * We use a number of factors to determine which is the next node that should | ||
1360 | * appear on a given node's fallback list. The node should not have appeared | ||
1361 | * already in @node's fallback list, and it should be the next closest node | ||
1362 | * according to the distance array (which contains arbitrary distance values | ||
1363 | * from each node to each node in the system), and should also prefer nodes | ||
1364 | * with no CPUs, since presumably they'll have very little allocation pressure | ||
1365 | * on them otherwise. | ||
1366 | * It returns -1 if no node is found. | ||
1367 | */ | ||
1368 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | ||
1369 | { | ||
1370 | int i, n, val; | ||
1371 | int min_val = INT_MAX; | ||
1372 | int best_node = -1; | ||
1373 | |||
1374 | for_each_online_node(i) { | ||
1375 | cpumask_t tmp; | ||
1376 | |||
1377 | /* Start from local node */ | ||
1378 | n = (node+i) % num_online_nodes(); | ||
1379 | |||
1380 | /* Don't want a node to appear more than once */ | ||
1381 | if (node_isset(n, *used_node_mask)) | ||
1382 | continue; | ||
1383 | |||
1384 | /* Use the local node if we haven't already */ | ||
1385 | if (!node_isset(node, *used_node_mask)) { | ||
1386 | best_node = node; | ||
1387 | break; | ||
1388 | } | ||
1389 | |||
1390 | /* Use the distance array to find the distance */ | ||
1391 | val = node_distance(node, n); | ||
1392 | |||
1393 | /* Give preference to headless and unused nodes */ | ||
1394 | tmp = node_to_cpumask(n); | ||
1395 | if (!cpus_empty(tmp)) | ||
1396 | val += PENALTY_FOR_NODE_WITH_CPUS; | ||
1397 | |||
1398 | /* Slight preference for less loaded node */ | ||
1399 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | ||
1400 | val += node_load[n]; | ||
1401 | |||
1402 | if (val < min_val) { | ||
1403 | min_val = val; | ||
1404 | best_node = n; | ||
1405 | } | ||
1406 | } | ||
1407 | |||
1408 | if (best_node >= 0) | ||
1409 | node_set(best_node, *used_node_mask); | ||
1410 | |||
1411 | return best_node; | ||
1412 | } | ||
1413 | |||
1414 | static void __init build_zonelists(pg_data_t *pgdat) | ||
1415 | { | ||
1416 | int i, j, k, node, local_node; | ||
1417 | int prev_node, load; | ||
1418 | struct zonelist *zonelist; | ||
1419 | nodemask_t used_mask; | ||
1420 | |||
1421 | /* initialize zonelists */ | ||
1422 | for (i = 0; i < GFP_ZONETYPES; i++) { | ||
1423 | zonelist = pgdat->node_zonelists + i; | ||
1424 | zonelist->zones[0] = NULL; | ||
1425 | } | ||
1426 | |||
1427 | /* NUMA-aware ordering of nodes */ | ||
1428 | local_node = pgdat->node_id; | ||
1429 | load = num_online_nodes(); | ||
1430 | prev_node = local_node; | ||
1431 | nodes_clear(used_mask); | ||
1432 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | ||
1433 | /* | ||
1434 | * We don't want to pressure a particular node. | ||
1435 | * So adding penalty to the first node in same | ||
1436 | * distance group to make it round-robin. | ||
1437 | */ | ||
1438 | if (node_distance(local_node, node) != | ||
1439 | node_distance(local_node, prev_node)) | ||
1440 | node_load[node] += load; | ||
1441 | prev_node = node; | ||
1442 | load--; | ||
1443 | for (i = 0; i < GFP_ZONETYPES; i++) { | ||
1444 | zonelist = pgdat->node_zonelists + i; | ||
1445 | for (j = 0; zonelist->zones[j] != NULL; j++); | ||
1446 | |||
1447 | k = ZONE_NORMAL; | ||
1448 | if (i & __GFP_HIGHMEM) | ||
1449 | k = ZONE_HIGHMEM; | ||
1450 | if (i & __GFP_DMA) | ||
1451 | k = ZONE_DMA; | ||
1452 | |||
1453 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | ||
1454 | zonelist->zones[j] = NULL; | ||
1455 | } | ||
1456 | } | ||
1457 | } | ||
1458 | |||
1459 | #else /* CONFIG_NUMA */ | ||
1460 | |||
1461 | static void __init build_zonelists(pg_data_t *pgdat) | ||
1462 | { | ||
1463 | int i, j, k, node, local_node; | ||
1464 | |||
1465 | local_node = pgdat->node_id; | ||
1466 | for (i = 0; i < GFP_ZONETYPES; i++) { | ||
1467 | struct zonelist *zonelist; | ||
1468 | |||
1469 | zonelist = pgdat->node_zonelists + i; | ||
1470 | |||
1471 | j = 0; | ||
1472 | k = ZONE_NORMAL; | ||
1473 | if (i & __GFP_HIGHMEM) | ||
1474 | k = ZONE_HIGHMEM; | ||
1475 | if (i & __GFP_DMA) | ||
1476 | k = ZONE_DMA; | ||
1477 | |||
1478 | j = build_zonelists_node(pgdat, zonelist, j, k); | ||
1479 | /* | ||
1480 | * Now we build the zonelist so that it contains the zones | ||
1481 | * of all the other nodes. | ||
1482 | * We don't want to pressure a particular node, so when | ||
1483 | * building the zones for node N, we make sure that the | ||
1484 | * zones coming right after the local ones are those from | ||
1485 | * node N+1 (modulo N) | ||
1486 | */ | ||
1487 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | ||
1488 | if (!node_online(node)) | ||
1489 | continue; | ||
1490 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | ||
1491 | } | ||
1492 | for (node = 0; node < local_node; node++) { | ||
1493 | if (!node_online(node)) | ||
1494 | continue; | ||
1495 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | ||
1496 | } | ||
1497 | |||
1498 | zonelist->zones[j] = NULL; | ||
1499 | } | ||
1500 | } | ||
1501 | |||
1502 | #endif /* CONFIG_NUMA */ | ||
1503 | |||
1504 | void __init build_all_zonelists(void) | ||
1505 | { | ||
1506 | int i; | ||
1507 | |||
1508 | for_each_online_node(i) | ||
1509 | build_zonelists(NODE_DATA(i)); | ||
1510 | printk("Built %i zonelists\n", num_online_nodes()); | ||
1511 | cpuset_init_current_mems_allowed(); | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * Helper functions to size the waitqueue hash table. | ||
1516 | * Essentially these want to choose hash table sizes sufficiently | ||
1517 | * large so that collisions trying to wait on pages are rare. | ||
1518 | * But in fact, the number of active page waitqueues on typical | ||
1519 | * systems is ridiculously low, less than 200. So this is even | ||
1520 | * conservative, even though it seems large. | ||
1521 | * | ||
1522 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | ||
1523 | * waitqueues, i.e. the size of the waitq table given the number of pages. | ||
1524 | */ | ||
1525 | #define PAGES_PER_WAITQUEUE 256 | ||
1526 | |||
1527 | static inline unsigned long wait_table_size(unsigned long pages) | ||
1528 | { | ||
1529 | unsigned long size = 1; | ||
1530 | |||
1531 | pages /= PAGES_PER_WAITQUEUE; | ||
1532 | |||
1533 | while (size < pages) | ||
1534 | size <<= 1; | ||
1535 | |||
1536 | /* | ||
1537 | * Once we have dozens or even hundreds of threads sleeping | ||
1538 | * on IO we've got bigger problems than wait queue collision. | ||
1539 | * Limit the size of the wait table to a reasonable size. | ||
1540 | */ | ||
1541 | size = min(size, 4096UL); | ||
1542 | |||
1543 | return max(size, 4UL); | ||
1544 | } | ||
1545 | |||
1546 | /* | ||
1547 | * This is an integer logarithm so that shifts can be used later | ||
1548 | * to extract the more random high bits from the multiplicative | ||
1549 | * hash function before the remainder is taken. | ||
1550 | */ | ||
1551 | static inline unsigned long wait_table_bits(unsigned long size) | ||
1552 | { | ||
1553 | return ffz(~size); | ||
1554 | } | ||
1555 | |||
1556 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | ||
1557 | |||
1558 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | ||
1559 | unsigned long *zones_size, unsigned long *zholes_size) | ||
1560 | { | ||
1561 | unsigned long realtotalpages, totalpages = 0; | ||
1562 | int i; | ||
1563 | |||
1564 | for (i = 0; i < MAX_NR_ZONES; i++) | ||
1565 | totalpages += zones_size[i]; | ||
1566 | pgdat->node_spanned_pages = totalpages; | ||
1567 | |||
1568 | realtotalpages = totalpages; | ||
1569 | if (zholes_size) | ||
1570 | for (i = 0; i < MAX_NR_ZONES; i++) | ||
1571 | realtotalpages -= zholes_size[i]; | ||
1572 | pgdat->node_present_pages = realtotalpages; | ||
1573 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | ||
1574 | } | ||
1575 | |||
1576 | |||
1577 | /* | ||
1578 | * Initially all pages are reserved - free ones are freed | ||
1579 | * up by free_all_bootmem() once the early boot process is | ||
1580 | * done. Non-atomic initialization, single-pass. | ||
1581 | */ | ||
1582 | void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, | ||
1583 | unsigned long start_pfn) | ||
1584 | { | ||
1585 | struct page *start = pfn_to_page(start_pfn); | ||
1586 | struct page *page; | ||
1587 | |||
1588 | for (page = start; page < (start + size); page++) { | ||
1589 | set_page_zone(page, NODEZONE(nid, zone)); | ||
1590 | set_page_count(page, 0); | ||
1591 | reset_page_mapcount(page); | ||
1592 | SetPageReserved(page); | ||
1593 | INIT_LIST_HEAD(&page->lru); | ||
1594 | #ifdef WANT_PAGE_VIRTUAL | ||
1595 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | ||
1596 | if (!is_highmem_idx(zone)) | ||
1597 | set_page_address(page, __va(start_pfn << PAGE_SHIFT)); | ||
1598 | #endif | ||
1599 | start_pfn++; | ||
1600 | } | ||
1601 | } | ||
1602 | |||
1603 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | ||
1604 | unsigned long size) | ||
1605 | { | ||
1606 | int order; | ||
1607 | for (order = 0; order < MAX_ORDER ; order++) { | ||
1608 | INIT_LIST_HEAD(&zone->free_area[order].free_list); | ||
1609 | zone->free_area[order].nr_free = 0; | ||
1610 | } | ||
1611 | } | ||
1612 | |||
1613 | #ifndef __HAVE_ARCH_MEMMAP_INIT | ||
1614 | #define memmap_init(size, nid, zone, start_pfn) \ | ||
1615 | memmap_init_zone((size), (nid), (zone), (start_pfn)) | ||
1616 | #endif | ||
1617 | |||
1618 | /* | ||
1619 | * Set up the zone data structures: | ||
1620 | * - mark all pages reserved | ||
1621 | * - mark all memory queues empty | ||
1622 | * - clear the memory bitmaps | ||
1623 | */ | ||
1624 | static void __init free_area_init_core(struct pglist_data *pgdat, | ||
1625 | unsigned long *zones_size, unsigned long *zholes_size) | ||
1626 | { | ||
1627 | unsigned long i, j; | ||
1628 | const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); | ||
1629 | int cpu, nid = pgdat->node_id; | ||
1630 | unsigned long zone_start_pfn = pgdat->node_start_pfn; | ||
1631 | |||
1632 | pgdat->nr_zones = 0; | ||
1633 | init_waitqueue_head(&pgdat->kswapd_wait); | ||
1634 | pgdat->kswapd_max_order = 0; | ||
1635 | |||
1636 | for (j = 0; j < MAX_NR_ZONES; j++) { | ||
1637 | struct zone *zone = pgdat->node_zones + j; | ||
1638 | unsigned long size, realsize; | ||
1639 | unsigned long batch; | ||
1640 | |||
1641 | zone_table[NODEZONE(nid, j)] = zone; | ||
1642 | realsize = size = zones_size[j]; | ||
1643 | if (zholes_size) | ||
1644 | realsize -= zholes_size[j]; | ||
1645 | |||
1646 | if (j == ZONE_DMA || j == ZONE_NORMAL) | ||
1647 | nr_kernel_pages += realsize; | ||
1648 | nr_all_pages += realsize; | ||
1649 | |||
1650 | zone->spanned_pages = size; | ||
1651 | zone->present_pages = realsize; | ||
1652 | zone->name = zone_names[j]; | ||
1653 | spin_lock_init(&zone->lock); | ||
1654 | spin_lock_init(&zone->lru_lock); | ||
1655 | zone->zone_pgdat = pgdat; | ||
1656 | zone->free_pages = 0; | ||
1657 | |||
1658 | zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | ||
1659 | |||
1660 | /* | ||
1661 | * The per-cpu-pages pools are set to around 1000th of the | ||
1662 | * size of the zone. But no more than 1/4 of a meg - there's | ||
1663 | * no point in going beyond the size of L2 cache. | ||
1664 | * | ||
1665 | * OK, so we don't know how big the cache is. So guess. | ||
1666 | */ | ||
1667 | batch = zone->present_pages / 1024; | ||
1668 | if (batch * PAGE_SIZE > 256 * 1024) | ||
1669 | batch = (256 * 1024) / PAGE_SIZE; | ||
1670 | batch /= 4; /* We effectively *= 4 below */ | ||
1671 | if (batch < 1) | ||
1672 | batch = 1; | ||
1673 | |||
1674 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
1675 | struct per_cpu_pages *pcp; | ||
1676 | |||
1677 | pcp = &zone->pageset[cpu].pcp[0]; /* hot */ | ||
1678 | pcp->count = 0; | ||
1679 | pcp->low = 2 * batch; | ||
1680 | pcp->high = 6 * batch; | ||
1681 | pcp->batch = 1 * batch; | ||
1682 | INIT_LIST_HEAD(&pcp->list); | ||
1683 | |||
1684 | pcp = &zone->pageset[cpu].pcp[1]; /* cold */ | ||
1685 | pcp->count = 0; | ||
1686 | pcp->low = 0; | ||
1687 | pcp->high = 2 * batch; | ||
1688 | pcp->batch = 1 * batch; | ||
1689 | INIT_LIST_HEAD(&pcp->list); | ||
1690 | } | ||
1691 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", | ||
1692 | zone_names[j], realsize, batch); | ||
1693 | INIT_LIST_HEAD(&zone->active_list); | ||
1694 | INIT_LIST_HEAD(&zone->inactive_list); | ||
1695 | zone->nr_scan_active = 0; | ||
1696 | zone->nr_scan_inactive = 0; | ||
1697 | zone->nr_active = 0; | ||
1698 | zone->nr_inactive = 0; | ||
1699 | if (!size) | ||
1700 | continue; | ||
1701 | |||
1702 | /* | ||
1703 | * The per-page waitqueue mechanism uses hashed waitqueues | ||
1704 | * per zone. | ||
1705 | */ | ||
1706 | zone->wait_table_size = wait_table_size(size); | ||
1707 | zone->wait_table_bits = | ||
1708 | wait_table_bits(zone->wait_table_size); | ||
1709 | zone->wait_table = (wait_queue_head_t *) | ||
1710 | alloc_bootmem_node(pgdat, zone->wait_table_size | ||
1711 | * sizeof(wait_queue_head_t)); | ||
1712 | |||
1713 | for(i = 0; i < zone->wait_table_size; ++i) | ||
1714 | init_waitqueue_head(zone->wait_table + i); | ||
1715 | |||
1716 | pgdat->nr_zones = j+1; | ||
1717 | |||
1718 | zone->zone_mem_map = pfn_to_page(zone_start_pfn); | ||
1719 | zone->zone_start_pfn = zone_start_pfn; | ||
1720 | |||
1721 | if ((zone_start_pfn) & (zone_required_alignment-1)) | ||
1722 | printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n"); | ||
1723 | |||
1724 | memmap_init(size, nid, j, zone_start_pfn); | ||
1725 | |||
1726 | zone_start_pfn += size; | ||
1727 | |||
1728 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); | ||
1729 | } | ||
1730 | } | ||
1731 | |||
1732 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | ||
1733 | { | ||
1734 | unsigned long size; | ||
1735 | |||
1736 | /* Skip empty nodes */ | ||
1737 | if (!pgdat->node_spanned_pages) | ||
1738 | return; | ||
1739 | |||
1740 | /* ia64 gets its own node_mem_map, before this, without bootmem */ | ||
1741 | if (!pgdat->node_mem_map) { | ||
1742 | size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); | ||
1743 | pgdat->node_mem_map = alloc_bootmem_node(pgdat, size); | ||
1744 | } | ||
1745 | #ifndef CONFIG_DISCONTIGMEM | ||
1746 | /* | ||
1747 | * With no DISCONTIG, the global mem_map is just set as node 0's | ||
1748 | */ | ||
1749 | if (pgdat == NODE_DATA(0)) | ||
1750 | mem_map = NODE_DATA(0)->node_mem_map; | ||
1751 | #endif | ||
1752 | } | ||
1753 | |||
1754 | void __init free_area_init_node(int nid, struct pglist_data *pgdat, | ||
1755 | unsigned long *zones_size, unsigned long node_start_pfn, | ||
1756 | unsigned long *zholes_size) | ||
1757 | { | ||
1758 | pgdat->node_id = nid; | ||
1759 | pgdat->node_start_pfn = node_start_pfn; | ||
1760 | calculate_zone_totalpages(pgdat, zones_size, zholes_size); | ||
1761 | |||
1762 | alloc_node_mem_map(pgdat); | ||
1763 | |||
1764 | free_area_init_core(pgdat, zones_size, zholes_size); | ||
1765 | } | ||
1766 | |||
1767 | #ifndef CONFIG_DISCONTIGMEM | ||
1768 | static bootmem_data_t contig_bootmem_data; | ||
1769 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | ||
1770 | |||
1771 | EXPORT_SYMBOL(contig_page_data); | ||
1772 | |||
1773 | void __init free_area_init(unsigned long *zones_size) | ||
1774 | { | ||
1775 | free_area_init_node(0, &contig_page_data, zones_size, | ||
1776 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | ||
1777 | } | ||
1778 | #endif | ||
1779 | |||
1780 | #ifdef CONFIG_PROC_FS | ||
1781 | |||
1782 | #include <linux/seq_file.h> | ||
1783 | |||
1784 | static void *frag_start(struct seq_file *m, loff_t *pos) | ||
1785 | { | ||
1786 | pg_data_t *pgdat; | ||
1787 | loff_t node = *pos; | ||
1788 | |||
1789 | for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) | ||
1790 | --node; | ||
1791 | |||
1792 | return pgdat; | ||
1793 | } | ||
1794 | |||
1795 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | ||
1796 | { | ||
1797 | pg_data_t *pgdat = (pg_data_t *)arg; | ||
1798 | |||
1799 | (*pos)++; | ||
1800 | return pgdat->pgdat_next; | ||
1801 | } | ||
1802 | |||
1803 | static void frag_stop(struct seq_file *m, void *arg) | ||
1804 | { | ||
1805 | } | ||
1806 | |||
1807 | /* | ||
1808 | * This walks the free areas for each zone. | ||
1809 | */ | ||
1810 | static int frag_show(struct seq_file *m, void *arg) | ||
1811 | { | ||
1812 | pg_data_t *pgdat = (pg_data_t *)arg; | ||
1813 | struct zone *zone; | ||
1814 | struct zone *node_zones = pgdat->node_zones; | ||
1815 | unsigned long flags; | ||
1816 | int order; | ||
1817 | |||
1818 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | ||
1819 | if (!zone->present_pages) | ||
1820 | continue; | ||
1821 | |||
1822 | spin_lock_irqsave(&zone->lock, flags); | ||
1823 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | ||
1824 | for (order = 0; order < MAX_ORDER; ++order) | ||
1825 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | ||
1826 | spin_unlock_irqrestore(&zone->lock, flags); | ||
1827 | seq_putc(m, '\n'); | ||
1828 | } | ||
1829 | return 0; | ||
1830 | } | ||
1831 | |||
1832 | struct seq_operations fragmentation_op = { | ||
1833 | .start = frag_start, | ||
1834 | .next = frag_next, | ||
1835 | .stop = frag_stop, | ||
1836 | .show = frag_show, | ||
1837 | }; | ||
1838 | |||
1839 | static char *vmstat_text[] = { | ||
1840 | "nr_dirty", | ||
1841 | "nr_writeback", | ||
1842 | "nr_unstable", | ||
1843 | "nr_page_table_pages", | ||
1844 | "nr_mapped", | ||
1845 | "nr_slab", | ||
1846 | |||
1847 | "pgpgin", | ||
1848 | "pgpgout", | ||
1849 | "pswpin", | ||
1850 | "pswpout", | ||
1851 | "pgalloc_high", | ||
1852 | |||
1853 | "pgalloc_normal", | ||
1854 | "pgalloc_dma", | ||
1855 | "pgfree", | ||
1856 | "pgactivate", | ||
1857 | "pgdeactivate", | ||
1858 | |||
1859 | "pgfault", | ||
1860 | "pgmajfault", | ||
1861 | "pgrefill_high", | ||
1862 | "pgrefill_normal", | ||
1863 | "pgrefill_dma", | ||
1864 | |||
1865 | "pgsteal_high", | ||
1866 | "pgsteal_normal", | ||
1867 | "pgsteal_dma", | ||
1868 | "pgscan_kswapd_high", | ||
1869 | "pgscan_kswapd_normal", | ||
1870 | |||
1871 | "pgscan_kswapd_dma", | ||
1872 | "pgscan_direct_high", | ||
1873 | "pgscan_direct_normal", | ||
1874 | "pgscan_direct_dma", | ||
1875 | "pginodesteal", | ||
1876 | |||
1877 | "slabs_scanned", | ||
1878 | "kswapd_steal", | ||
1879 | "kswapd_inodesteal", | ||
1880 | "pageoutrun", | ||
1881 | "allocstall", | ||
1882 | |||
1883 | "pgrotated", | ||
1884 | }; | ||
1885 | |||
1886 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | ||
1887 | { | ||
1888 | struct page_state *ps; | ||
1889 | |||
1890 | if (*pos >= ARRAY_SIZE(vmstat_text)) | ||
1891 | return NULL; | ||
1892 | |||
1893 | ps = kmalloc(sizeof(*ps), GFP_KERNEL); | ||
1894 | m->private = ps; | ||
1895 | if (!ps) | ||
1896 | return ERR_PTR(-ENOMEM); | ||
1897 | get_full_page_state(ps); | ||
1898 | ps->pgpgin /= 2; /* sectors -> kbytes */ | ||
1899 | ps->pgpgout /= 2; | ||
1900 | return (unsigned long *)ps + *pos; | ||
1901 | } | ||
1902 | |||
1903 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | ||
1904 | { | ||
1905 | (*pos)++; | ||
1906 | if (*pos >= ARRAY_SIZE(vmstat_text)) | ||
1907 | return NULL; | ||
1908 | return (unsigned long *)m->private + *pos; | ||
1909 | } | ||
1910 | |||
1911 | static int vmstat_show(struct seq_file *m, void *arg) | ||
1912 | { | ||
1913 | unsigned long *l = arg; | ||
1914 | unsigned long off = l - (unsigned long *)m->private; | ||
1915 | |||
1916 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | ||
1917 | return 0; | ||
1918 | } | ||
1919 | |||
1920 | static void vmstat_stop(struct seq_file *m, void *arg) | ||
1921 | { | ||
1922 | kfree(m->private); | ||
1923 | m->private = NULL; | ||
1924 | } | ||
1925 | |||
1926 | struct seq_operations vmstat_op = { | ||
1927 | .start = vmstat_start, | ||
1928 | .next = vmstat_next, | ||
1929 | .stop = vmstat_stop, | ||
1930 | .show = vmstat_show, | ||
1931 | }; | ||
1932 | |||
1933 | #endif /* CONFIG_PROC_FS */ | ||
1934 | |||
1935 | #ifdef CONFIG_HOTPLUG_CPU | ||
1936 | static int page_alloc_cpu_notify(struct notifier_block *self, | ||
1937 | unsigned long action, void *hcpu) | ||
1938 | { | ||
1939 | int cpu = (unsigned long)hcpu; | ||
1940 | long *count; | ||
1941 | unsigned long *src, *dest; | ||
1942 | |||
1943 | if (action == CPU_DEAD) { | ||
1944 | int i; | ||
1945 | |||
1946 | /* Drain local pagecache count. */ | ||
1947 | count = &per_cpu(nr_pagecache_local, cpu); | ||
1948 | atomic_add(*count, &nr_pagecache); | ||
1949 | *count = 0; | ||
1950 | local_irq_disable(); | ||
1951 | __drain_pages(cpu); | ||
1952 | |||
1953 | /* Add dead cpu's page_states to our own. */ | ||
1954 | dest = (unsigned long *)&__get_cpu_var(page_states); | ||
1955 | src = (unsigned long *)&per_cpu(page_states, cpu); | ||
1956 | |||
1957 | for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); | ||
1958 | i++) { | ||
1959 | dest[i] += src[i]; | ||
1960 | src[i] = 0; | ||
1961 | } | ||
1962 | |||
1963 | local_irq_enable(); | ||
1964 | } | ||
1965 | return NOTIFY_OK; | ||
1966 | } | ||
1967 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
1968 | |||
1969 | void __init page_alloc_init(void) | ||
1970 | { | ||
1971 | hotcpu_notifier(page_alloc_cpu_notify, 0); | ||
1972 | } | ||
1973 | |||
1974 | /* | ||
1975 | * setup_per_zone_lowmem_reserve - called whenever | ||
1976 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | ||
1977 | * has a correct pages reserved value, so an adequate number of | ||
1978 | * pages are left in the zone after a successful __alloc_pages(). | ||
1979 | */ | ||
1980 | static void setup_per_zone_lowmem_reserve(void) | ||
1981 | { | ||
1982 | struct pglist_data *pgdat; | ||
1983 | int j, idx; | ||
1984 | |||
1985 | for_each_pgdat(pgdat) { | ||
1986 | for (j = 0; j < MAX_NR_ZONES; j++) { | ||
1987 | struct zone *zone = pgdat->node_zones + j; | ||
1988 | unsigned long present_pages = zone->present_pages; | ||
1989 | |||
1990 | zone->lowmem_reserve[j] = 0; | ||
1991 | |||
1992 | for (idx = j-1; idx >= 0; idx--) { | ||
1993 | struct zone *lower_zone; | ||
1994 | |||
1995 | if (sysctl_lowmem_reserve_ratio[idx] < 1) | ||
1996 | sysctl_lowmem_reserve_ratio[idx] = 1; | ||
1997 | |||
1998 | lower_zone = pgdat->node_zones + idx; | ||
1999 | lower_zone->lowmem_reserve[j] = present_pages / | ||
2000 | sysctl_lowmem_reserve_ratio[idx]; | ||
2001 | present_pages += lower_zone->present_pages; | ||
2002 | } | ||
2003 | } | ||
2004 | } | ||
2005 | } | ||
2006 | |||
2007 | /* | ||
2008 | * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures | ||
2009 | * that the pages_{min,low,high} values for each zone are set correctly | ||
2010 | * with respect to min_free_kbytes. | ||
2011 | */ | ||
2012 | static void setup_per_zone_pages_min(void) | ||
2013 | { | ||
2014 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | ||
2015 | unsigned long lowmem_pages = 0; | ||
2016 | struct zone *zone; | ||
2017 | unsigned long flags; | ||
2018 | |||
2019 | /* Calculate total number of !ZONE_HIGHMEM pages */ | ||
2020 | for_each_zone(zone) { | ||
2021 | if (!is_highmem(zone)) | ||
2022 | lowmem_pages += zone->present_pages; | ||
2023 | } | ||
2024 | |||
2025 | for_each_zone(zone) { | ||
2026 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
2027 | if (is_highmem(zone)) { | ||
2028 | /* | ||
2029 | * Often, highmem doesn't need to reserve any pages. | ||
2030 | * But the pages_min/low/high values are also used for | ||
2031 | * batching up page reclaim activity so we need a | ||
2032 | * decent value here. | ||
2033 | */ | ||
2034 | int min_pages; | ||
2035 | |||
2036 | min_pages = zone->present_pages / 1024; | ||
2037 | if (min_pages < SWAP_CLUSTER_MAX) | ||
2038 | min_pages = SWAP_CLUSTER_MAX; | ||
2039 | if (min_pages > 128) | ||
2040 | min_pages = 128; | ||
2041 | zone->pages_min = min_pages; | ||
2042 | } else { | ||
2043 | /* if it's a lowmem zone, reserve a number of pages | ||
2044 | * proportionate to the zone's size. | ||
2045 | */ | ||
2046 | zone->pages_min = (pages_min * zone->present_pages) / | ||
2047 | lowmem_pages; | ||
2048 | } | ||
2049 | |||
2050 | /* | ||
2051 | * When interpreting these watermarks, just keep in mind that: | ||
2052 | * zone->pages_min == (zone->pages_min * 4) / 4; | ||
2053 | */ | ||
2054 | zone->pages_low = (zone->pages_min * 5) / 4; | ||
2055 | zone->pages_high = (zone->pages_min * 6) / 4; | ||
2056 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
2057 | } | ||
2058 | } | ||
2059 | |||
2060 | /* | ||
2061 | * Initialise min_free_kbytes. | ||
2062 | * | ||
2063 | * For small machines we want it small (128k min). For large machines | ||
2064 | * we want it large (64MB max). But it is not linear, because network | ||
2065 | * bandwidth does not increase linearly with machine size. We use | ||
2066 | * | ||
2067 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | ||
2068 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | ||
2069 | * | ||
2070 | * which yields | ||
2071 | * | ||
2072 | * 16MB: 512k | ||
2073 | * 32MB: 724k | ||
2074 | * 64MB: 1024k | ||
2075 | * 128MB: 1448k | ||
2076 | * 256MB: 2048k | ||
2077 | * 512MB: 2896k | ||
2078 | * 1024MB: 4096k | ||
2079 | * 2048MB: 5792k | ||
2080 | * 4096MB: 8192k | ||
2081 | * 8192MB: 11584k | ||
2082 | * 16384MB: 16384k | ||
2083 | */ | ||
2084 | static int __init init_per_zone_pages_min(void) | ||
2085 | { | ||
2086 | unsigned long lowmem_kbytes; | ||
2087 | |||
2088 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | ||
2089 | |||
2090 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | ||
2091 | if (min_free_kbytes < 128) | ||
2092 | min_free_kbytes = 128; | ||
2093 | if (min_free_kbytes > 65536) | ||
2094 | min_free_kbytes = 65536; | ||
2095 | setup_per_zone_pages_min(); | ||
2096 | setup_per_zone_lowmem_reserve(); | ||
2097 | return 0; | ||
2098 | } | ||
2099 | module_init(init_per_zone_pages_min) | ||
2100 | |||
2101 | /* | ||
2102 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | ||
2103 | * that we can call two helper functions whenever min_free_kbytes | ||
2104 | * changes. | ||
2105 | */ | ||
2106 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | ||
2107 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | ||
2108 | { | ||
2109 | proc_dointvec(table, write, file, buffer, length, ppos); | ||
2110 | setup_per_zone_pages_min(); | ||
2111 | return 0; | ||
2112 | } | ||
2113 | |||
2114 | /* | ||
2115 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | ||
2116 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | ||
2117 | * whenever sysctl_lowmem_reserve_ratio changes. | ||
2118 | * | ||
2119 | * The reserve ratio obviously has absolutely no relation with the | ||
2120 | * pages_min watermarks. The lowmem reserve ratio can only make sense | ||
2121 | * if in function of the boot time zone sizes. | ||
2122 | */ | ||
2123 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | ||
2124 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | ||
2125 | { | ||
2126 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | ||
2127 | setup_per_zone_lowmem_reserve(); | ||
2128 | return 0; | ||
2129 | } | ||
2130 | |||
2131 | __initdata int hashdist = HASHDIST_DEFAULT; | ||
2132 | |||
2133 | #ifdef CONFIG_NUMA | ||
2134 | static int __init set_hashdist(char *str) | ||
2135 | { | ||
2136 | if (!str) | ||
2137 | return 0; | ||
2138 | hashdist = simple_strtoul(str, &str, 0); | ||
2139 | return 1; | ||
2140 | } | ||
2141 | __setup("hashdist=", set_hashdist); | ||
2142 | #endif | ||
2143 | |||
2144 | /* | ||
2145 | * allocate a large system hash table from bootmem | ||
2146 | * - it is assumed that the hash table must contain an exact power-of-2 | ||
2147 | * quantity of entries | ||
2148 | * - limit is the number of hash buckets, not the total allocation size | ||
2149 | */ | ||
2150 | void *__init alloc_large_system_hash(const char *tablename, | ||
2151 | unsigned long bucketsize, | ||
2152 | unsigned long numentries, | ||
2153 | int scale, | ||
2154 | int flags, | ||
2155 | unsigned int *_hash_shift, | ||
2156 | unsigned int *_hash_mask, | ||
2157 | unsigned long limit) | ||
2158 | { | ||
2159 | unsigned long long max = limit; | ||
2160 | unsigned long log2qty, size; | ||
2161 | void *table = NULL; | ||
2162 | |||
2163 | /* allow the kernel cmdline to have a say */ | ||
2164 | if (!numentries) { | ||
2165 | /* round applicable memory size up to nearest megabyte */ | ||
2166 | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | ||
2167 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | ||
2168 | numentries >>= 20 - PAGE_SHIFT; | ||
2169 | numentries <<= 20 - PAGE_SHIFT; | ||
2170 | |||
2171 | /* limit to 1 bucket per 2^scale bytes of low memory */ | ||
2172 | if (scale > PAGE_SHIFT) | ||
2173 | numentries >>= (scale - PAGE_SHIFT); | ||
2174 | else | ||
2175 | numentries <<= (PAGE_SHIFT - scale); | ||
2176 | } | ||
2177 | /* rounded up to nearest power of 2 in size */ | ||
2178 | numentries = 1UL << (long_log2(numentries) + 1); | ||
2179 | |||
2180 | /* limit allocation size to 1/16 total memory by default */ | ||
2181 | if (max == 0) { | ||
2182 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | ||
2183 | do_div(max, bucketsize); | ||
2184 | } | ||
2185 | |||
2186 | if (numentries > max) | ||
2187 | numentries = max; | ||
2188 | |||
2189 | log2qty = long_log2(numentries); | ||
2190 | |||
2191 | do { | ||
2192 | size = bucketsize << log2qty; | ||
2193 | if (flags & HASH_EARLY) | ||
2194 | table = alloc_bootmem(size); | ||
2195 | else if (hashdist) | ||
2196 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | ||
2197 | else { | ||
2198 | unsigned long order; | ||
2199 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | ||
2200 | ; | ||
2201 | table = (void*) __get_free_pages(GFP_ATOMIC, order); | ||
2202 | } | ||
2203 | } while (!table && size > PAGE_SIZE && --log2qty); | ||
2204 | |||
2205 | if (!table) | ||
2206 | panic("Failed to allocate %s hash table\n", tablename); | ||
2207 | |||
2208 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | ||
2209 | tablename, | ||
2210 | (1U << log2qty), | ||
2211 | long_log2(size) - PAGE_SHIFT, | ||
2212 | size); | ||
2213 | |||
2214 | if (_hash_shift) | ||
2215 | *_hash_shift = log2qty; | ||
2216 | if (_hash_mask) | ||
2217 | *_hash_mask = (1 << log2qty) - 1; | ||
2218 | |||
2219 | return table; | ||
2220 | } | ||