diff options
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r-- | mm/page-writeback.c | 819 |
1 files changed, 819 insertions, 0 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c new file mode 100644 index 000000000000..6ddd6a29c73b --- /dev/null +++ b/mm/page-writeback.c | |||
@@ -0,0 +1,819 @@ | |||
1 | /* | ||
2 | * mm/page-writeback.c. | ||
3 | * | ||
4 | * Copyright (C) 2002, Linus Torvalds. | ||
5 | * | ||
6 | * Contains functions related to writing back dirty pages at the | ||
7 | * address_space level. | ||
8 | * | ||
9 | * 10Apr2002 akpm@zip.com.au | ||
10 | * Initial version | ||
11 | */ | ||
12 | |||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/spinlock.h> | ||
16 | #include <linux/fs.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/pagemap.h> | ||
21 | #include <linux/writeback.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/backing-dev.h> | ||
24 | #include <linux/blkdev.h> | ||
25 | #include <linux/mpage.h> | ||
26 | #include <linux/percpu.h> | ||
27 | #include <linux/notifier.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/sysctl.h> | ||
30 | #include <linux/cpu.h> | ||
31 | #include <linux/syscalls.h> | ||
32 | |||
33 | /* | ||
34 | * The maximum number of pages to writeout in a single bdflush/kupdate | ||
35 | * operation. We do this so we don't hold I_LOCK against an inode for | ||
36 | * enormous amounts of time, which would block a userspace task which has | ||
37 | * been forced to throttle against that inode. Also, the code reevaluates | ||
38 | * the dirty each time it has written this many pages. | ||
39 | */ | ||
40 | #define MAX_WRITEBACK_PAGES 1024 | ||
41 | |||
42 | /* | ||
43 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | ||
44 | * will look to see if it needs to force writeback or throttling. | ||
45 | */ | ||
46 | static long ratelimit_pages = 32; | ||
47 | |||
48 | static long total_pages; /* The total number of pages in the machine. */ | ||
49 | static int dirty_exceeded; /* Dirty mem may be over limit */ | ||
50 | |||
51 | /* | ||
52 | * When balance_dirty_pages decides that the caller needs to perform some | ||
53 | * non-background writeback, this is how many pages it will attempt to write. | ||
54 | * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably | ||
55 | * large amounts of I/O are submitted. | ||
56 | */ | ||
57 | static inline long sync_writeback_pages(void) | ||
58 | { | ||
59 | return ratelimit_pages + ratelimit_pages / 2; | ||
60 | } | ||
61 | |||
62 | /* The following parameters are exported via /proc/sys/vm */ | ||
63 | |||
64 | /* | ||
65 | * Start background writeback (via pdflush) at this percentage | ||
66 | */ | ||
67 | int dirty_background_ratio = 10; | ||
68 | |||
69 | /* | ||
70 | * The generator of dirty data starts writeback at this percentage | ||
71 | */ | ||
72 | int vm_dirty_ratio = 40; | ||
73 | |||
74 | /* | ||
75 | * The interval between `kupdate'-style writebacks, in centiseconds | ||
76 | * (hundredths of a second) | ||
77 | */ | ||
78 | int dirty_writeback_centisecs = 5 * 100; | ||
79 | |||
80 | /* | ||
81 | * The longest number of centiseconds for which data is allowed to remain dirty | ||
82 | */ | ||
83 | int dirty_expire_centisecs = 30 * 100; | ||
84 | |||
85 | /* | ||
86 | * Flag that makes the machine dump writes/reads and block dirtyings. | ||
87 | */ | ||
88 | int block_dump; | ||
89 | |||
90 | /* | ||
91 | * Flag that puts the machine in "laptop mode". | ||
92 | */ | ||
93 | int laptop_mode; | ||
94 | |||
95 | EXPORT_SYMBOL(laptop_mode); | ||
96 | |||
97 | /* End of sysctl-exported parameters */ | ||
98 | |||
99 | |||
100 | static void background_writeout(unsigned long _min_pages); | ||
101 | |||
102 | struct writeback_state | ||
103 | { | ||
104 | unsigned long nr_dirty; | ||
105 | unsigned long nr_unstable; | ||
106 | unsigned long nr_mapped; | ||
107 | unsigned long nr_writeback; | ||
108 | }; | ||
109 | |||
110 | static void get_writeback_state(struct writeback_state *wbs) | ||
111 | { | ||
112 | wbs->nr_dirty = read_page_state(nr_dirty); | ||
113 | wbs->nr_unstable = read_page_state(nr_unstable); | ||
114 | wbs->nr_mapped = read_page_state(nr_mapped); | ||
115 | wbs->nr_writeback = read_page_state(nr_writeback); | ||
116 | } | ||
117 | |||
118 | /* | ||
119 | * Work out the current dirty-memory clamping and background writeout | ||
120 | * thresholds. | ||
121 | * | ||
122 | * The main aim here is to lower them aggressively if there is a lot of mapped | ||
123 | * memory around. To avoid stressing page reclaim with lots of unreclaimable | ||
124 | * pages. It is better to clamp down on writers than to start swapping, and | ||
125 | * performing lots of scanning. | ||
126 | * | ||
127 | * We only allow 1/2 of the currently-unmapped memory to be dirtied. | ||
128 | * | ||
129 | * We don't permit the clamping level to fall below 5% - that is getting rather | ||
130 | * excessive. | ||
131 | * | ||
132 | * We make sure that the background writeout level is below the adjusted | ||
133 | * clamping level. | ||
134 | */ | ||
135 | static void | ||
136 | get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, | ||
137 | struct address_space *mapping) | ||
138 | { | ||
139 | int background_ratio; /* Percentages */ | ||
140 | int dirty_ratio; | ||
141 | int unmapped_ratio; | ||
142 | long background; | ||
143 | long dirty; | ||
144 | unsigned long available_memory = total_pages; | ||
145 | struct task_struct *tsk; | ||
146 | |||
147 | get_writeback_state(wbs); | ||
148 | |||
149 | #ifdef CONFIG_HIGHMEM | ||
150 | /* | ||
151 | * If this mapping can only allocate from low memory, | ||
152 | * we exclude high memory from our count. | ||
153 | */ | ||
154 | if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) | ||
155 | available_memory -= totalhigh_pages; | ||
156 | #endif | ||
157 | |||
158 | |||
159 | unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; | ||
160 | |||
161 | dirty_ratio = vm_dirty_ratio; | ||
162 | if (dirty_ratio > unmapped_ratio / 2) | ||
163 | dirty_ratio = unmapped_ratio / 2; | ||
164 | |||
165 | if (dirty_ratio < 5) | ||
166 | dirty_ratio = 5; | ||
167 | |||
168 | background_ratio = dirty_background_ratio; | ||
169 | if (background_ratio >= dirty_ratio) | ||
170 | background_ratio = dirty_ratio / 2; | ||
171 | |||
172 | background = (background_ratio * available_memory) / 100; | ||
173 | dirty = (dirty_ratio * available_memory) / 100; | ||
174 | tsk = current; | ||
175 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { | ||
176 | background += background / 4; | ||
177 | dirty += dirty / 4; | ||
178 | } | ||
179 | *pbackground = background; | ||
180 | *pdirty = dirty; | ||
181 | } | ||
182 | |||
183 | /* | ||
184 | * balance_dirty_pages() must be called by processes which are generating dirty | ||
185 | * data. It looks at the number of dirty pages in the machine and will force | ||
186 | * the caller to perform writeback if the system is over `vm_dirty_ratio'. | ||
187 | * If we're over `background_thresh' then pdflush is woken to perform some | ||
188 | * writeout. | ||
189 | */ | ||
190 | static void balance_dirty_pages(struct address_space *mapping) | ||
191 | { | ||
192 | struct writeback_state wbs; | ||
193 | long nr_reclaimable; | ||
194 | long background_thresh; | ||
195 | long dirty_thresh; | ||
196 | unsigned long pages_written = 0; | ||
197 | unsigned long write_chunk = sync_writeback_pages(); | ||
198 | |||
199 | struct backing_dev_info *bdi = mapping->backing_dev_info; | ||
200 | |||
201 | for (;;) { | ||
202 | struct writeback_control wbc = { | ||
203 | .bdi = bdi, | ||
204 | .sync_mode = WB_SYNC_NONE, | ||
205 | .older_than_this = NULL, | ||
206 | .nr_to_write = write_chunk, | ||
207 | }; | ||
208 | |||
209 | get_dirty_limits(&wbs, &background_thresh, | ||
210 | &dirty_thresh, mapping); | ||
211 | nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; | ||
212 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) | ||
213 | break; | ||
214 | |||
215 | dirty_exceeded = 1; | ||
216 | |||
217 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
218 | * Unstable writes are a feature of certain networked | ||
219 | * filesystems (i.e. NFS) in which data may have been | ||
220 | * written to the server's write cache, but has not yet | ||
221 | * been flushed to permanent storage. | ||
222 | */ | ||
223 | if (nr_reclaimable) { | ||
224 | writeback_inodes(&wbc); | ||
225 | get_dirty_limits(&wbs, &background_thresh, | ||
226 | &dirty_thresh, mapping); | ||
227 | nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; | ||
228 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) | ||
229 | break; | ||
230 | pages_written += write_chunk - wbc.nr_to_write; | ||
231 | if (pages_written >= write_chunk) | ||
232 | break; /* We've done our duty */ | ||
233 | } | ||
234 | blk_congestion_wait(WRITE, HZ/10); | ||
235 | } | ||
236 | |||
237 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) | ||
238 | dirty_exceeded = 0; | ||
239 | |||
240 | if (writeback_in_progress(bdi)) | ||
241 | return; /* pdflush is already working this queue */ | ||
242 | |||
243 | /* | ||
244 | * In laptop mode, we wait until hitting the higher threshold before | ||
245 | * starting background writeout, and then write out all the way down | ||
246 | * to the lower threshold. So slow writers cause minimal disk activity. | ||
247 | * | ||
248 | * In normal mode, we start background writeout at the lower | ||
249 | * background_thresh, to keep the amount of dirty memory low. | ||
250 | */ | ||
251 | if ((laptop_mode && pages_written) || | ||
252 | (!laptop_mode && (nr_reclaimable > background_thresh))) | ||
253 | pdflush_operation(background_writeout, 0); | ||
254 | } | ||
255 | |||
256 | /** | ||
257 | * balance_dirty_pages_ratelimited - balance dirty memory state | ||
258 | * @mapping - address_space which was dirtied | ||
259 | * | ||
260 | * Processes which are dirtying memory should call in here once for each page | ||
261 | * which was newly dirtied. The function will periodically check the system's | ||
262 | * dirty state and will initiate writeback if needed. | ||
263 | * | ||
264 | * On really big machines, get_writeback_state is expensive, so try to avoid | ||
265 | * calling it too often (ratelimiting). But once we're over the dirty memory | ||
266 | * limit we decrease the ratelimiting by a lot, to prevent individual processes | ||
267 | * from overshooting the limit by (ratelimit_pages) each. | ||
268 | */ | ||
269 | void balance_dirty_pages_ratelimited(struct address_space *mapping) | ||
270 | { | ||
271 | static DEFINE_PER_CPU(int, ratelimits) = 0; | ||
272 | long ratelimit; | ||
273 | |||
274 | ratelimit = ratelimit_pages; | ||
275 | if (dirty_exceeded) | ||
276 | ratelimit = 8; | ||
277 | |||
278 | /* | ||
279 | * Check the rate limiting. Also, we do not want to throttle real-time | ||
280 | * tasks in balance_dirty_pages(). Period. | ||
281 | */ | ||
282 | if (get_cpu_var(ratelimits)++ >= ratelimit) { | ||
283 | __get_cpu_var(ratelimits) = 0; | ||
284 | put_cpu_var(ratelimits); | ||
285 | balance_dirty_pages(mapping); | ||
286 | return; | ||
287 | } | ||
288 | put_cpu_var(ratelimits); | ||
289 | } | ||
290 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); | ||
291 | |||
292 | void throttle_vm_writeout(void) | ||
293 | { | ||
294 | struct writeback_state wbs; | ||
295 | long background_thresh; | ||
296 | long dirty_thresh; | ||
297 | |||
298 | for ( ; ; ) { | ||
299 | get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); | ||
300 | |||
301 | /* | ||
302 | * Boost the allowable dirty threshold a bit for page | ||
303 | * allocators so they don't get DoS'ed by heavy writers | ||
304 | */ | ||
305 | dirty_thresh += dirty_thresh / 10; /* wheeee... */ | ||
306 | |||
307 | if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) | ||
308 | break; | ||
309 | blk_congestion_wait(WRITE, HZ/10); | ||
310 | } | ||
311 | } | ||
312 | |||
313 | |||
314 | /* | ||
315 | * writeback at least _min_pages, and keep writing until the amount of dirty | ||
316 | * memory is less than the background threshold, or until we're all clean. | ||
317 | */ | ||
318 | static void background_writeout(unsigned long _min_pages) | ||
319 | { | ||
320 | long min_pages = _min_pages; | ||
321 | struct writeback_control wbc = { | ||
322 | .bdi = NULL, | ||
323 | .sync_mode = WB_SYNC_NONE, | ||
324 | .older_than_this = NULL, | ||
325 | .nr_to_write = 0, | ||
326 | .nonblocking = 1, | ||
327 | }; | ||
328 | |||
329 | for ( ; ; ) { | ||
330 | struct writeback_state wbs; | ||
331 | long background_thresh; | ||
332 | long dirty_thresh; | ||
333 | |||
334 | get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); | ||
335 | if (wbs.nr_dirty + wbs.nr_unstable < background_thresh | ||
336 | && min_pages <= 0) | ||
337 | break; | ||
338 | wbc.encountered_congestion = 0; | ||
339 | wbc.nr_to_write = MAX_WRITEBACK_PAGES; | ||
340 | wbc.pages_skipped = 0; | ||
341 | writeback_inodes(&wbc); | ||
342 | min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; | ||
343 | if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { | ||
344 | /* Wrote less than expected */ | ||
345 | blk_congestion_wait(WRITE, HZ/10); | ||
346 | if (!wbc.encountered_congestion) | ||
347 | break; | ||
348 | } | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back | ||
354 | * the whole world. Returns 0 if a pdflush thread was dispatched. Returns | ||
355 | * -1 if all pdflush threads were busy. | ||
356 | */ | ||
357 | int wakeup_bdflush(long nr_pages) | ||
358 | { | ||
359 | if (nr_pages == 0) { | ||
360 | struct writeback_state wbs; | ||
361 | |||
362 | get_writeback_state(&wbs); | ||
363 | nr_pages = wbs.nr_dirty + wbs.nr_unstable; | ||
364 | } | ||
365 | return pdflush_operation(background_writeout, nr_pages); | ||
366 | } | ||
367 | |||
368 | static void wb_timer_fn(unsigned long unused); | ||
369 | static void laptop_timer_fn(unsigned long unused); | ||
370 | |||
371 | static struct timer_list wb_timer = | ||
372 | TIMER_INITIALIZER(wb_timer_fn, 0, 0); | ||
373 | static struct timer_list laptop_mode_wb_timer = | ||
374 | TIMER_INITIALIZER(laptop_timer_fn, 0, 0); | ||
375 | |||
376 | /* | ||
377 | * Periodic writeback of "old" data. | ||
378 | * | ||
379 | * Define "old": the first time one of an inode's pages is dirtied, we mark the | ||
380 | * dirtying-time in the inode's address_space. So this periodic writeback code | ||
381 | * just walks the superblock inode list, writing back any inodes which are | ||
382 | * older than a specific point in time. | ||
383 | * | ||
384 | * Try to run once per dirty_writeback_centisecs. But if a writeback event | ||
385 | * takes longer than a dirty_writeback_centisecs interval, then leave a | ||
386 | * one-second gap. | ||
387 | * | ||
388 | * older_than_this takes precedence over nr_to_write. So we'll only write back | ||
389 | * all dirty pages if they are all attached to "old" mappings. | ||
390 | */ | ||
391 | static void wb_kupdate(unsigned long arg) | ||
392 | { | ||
393 | unsigned long oldest_jif; | ||
394 | unsigned long start_jif; | ||
395 | unsigned long next_jif; | ||
396 | long nr_to_write; | ||
397 | struct writeback_state wbs; | ||
398 | struct writeback_control wbc = { | ||
399 | .bdi = NULL, | ||
400 | .sync_mode = WB_SYNC_NONE, | ||
401 | .older_than_this = &oldest_jif, | ||
402 | .nr_to_write = 0, | ||
403 | .nonblocking = 1, | ||
404 | .for_kupdate = 1, | ||
405 | }; | ||
406 | |||
407 | sync_supers(); | ||
408 | |||
409 | get_writeback_state(&wbs); | ||
410 | oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100; | ||
411 | start_jif = jiffies; | ||
412 | next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100; | ||
413 | nr_to_write = wbs.nr_dirty + wbs.nr_unstable + | ||
414 | (inodes_stat.nr_inodes - inodes_stat.nr_unused); | ||
415 | while (nr_to_write > 0) { | ||
416 | wbc.encountered_congestion = 0; | ||
417 | wbc.nr_to_write = MAX_WRITEBACK_PAGES; | ||
418 | writeback_inodes(&wbc); | ||
419 | if (wbc.nr_to_write > 0) { | ||
420 | if (wbc.encountered_congestion) | ||
421 | blk_congestion_wait(WRITE, HZ/10); | ||
422 | else | ||
423 | break; /* All the old data is written */ | ||
424 | } | ||
425 | nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; | ||
426 | } | ||
427 | if (time_before(next_jif, jiffies + HZ)) | ||
428 | next_jif = jiffies + HZ; | ||
429 | if (dirty_writeback_centisecs) | ||
430 | mod_timer(&wb_timer, next_jif); | ||
431 | } | ||
432 | |||
433 | /* | ||
434 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | ||
435 | */ | ||
436 | int dirty_writeback_centisecs_handler(ctl_table *table, int write, | ||
437 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | ||
438 | { | ||
439 | proc_dointvec(table, write, file, buffer, length, ppos); | ||
440 | if (dirty_writeback_centisecs) { | ||
441 | mod_timer(&wb_timer, | ||
442 | jiffies + (dirty_writeback_centisecs * HZ) / 100); | ||
443 | } else { | ||
444 | del_timer(&wb_timer); | ||
445 | } | ||
446 | return 0; | ||
447 | } | ||
448 | |||
449 | static void wb_timer_fn(unsigned long unused) | ||
450 | { | ||
451 | if (pdflush_operation(wb_kupdate, 0) < 0) | ||
452 | mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ | ||
453 | } | ||
454 | |||
455 | static void laptop_flush(unsigned long unused) | ||
456 | { | ||
457 | sys_sync(); | ||
458 | } | ||
459 | |||
460 | static void laptop_timer_fn(unsigned long unused) | ||
461 | { | ||
462 | pdflush_operation(laptop_flush, 0); | ||
463 | } | ||
464 | |||
465 | /* | ||
466 | * We've spun up the disk and we're in laptop mode: schedule writeback | ||
467 | * of all dirty data a few seconds from now. If the flush is already scheduled | ||
468 | * then push it back - the user is still using the disk. | ||
469 | */ | ||
470 | void laptop_io_completion(void) | ||
471 | { | ||
472 | mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ); | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * We're in laptop mode and we've just synced. The sync's writes will have | ||
477 | * caused another writeback to be scheduled by laptop_io_completion. | ||
478 | * Nothing needs to be written back anymore, so we unschedule the writeback. | ||
479 | */ | ||
480 | void laptop_sync_completion(void) | ||
481 | { | ||
482 | del_timer(&laptop_mode_wb_timer); | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * If ratelimit_pages is too high then we can get into dirty-data overload | ||
487 | * if a large number of processes all perform writes at the same time. | ||
488 | * If it is too low then SMP machines will call the (expensive) | ||
489 | * get_writeback_state too often. | ||
490 | * | ||
491 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | ||
492 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | ||
493 | * thresholds before writeback cuts in. | ||
494 | * | ||
495 | * But the limit should not be set too high. Because it also controls the | ||
496 | * amount of memory which the balance_dirty_pages() caller has to write back. | ||
497 | * If this is too large then the caller will block on the IO queue all the | ||
498 | * time. So limit it to four megabytes - the balance_dirty_pages() caller | ||
499 | * will write six megabyte chunks, max. | ||
500 | */ | ||
501 | |||
502 | static void set_ratelimit(void) | ||
503 | { | ||
504 | ratelimit_pages = total_pages / (num_online_cpus() * 32); | ||
505 | if (ratelimit_pages < 16) | ||
506 | ratelimit_pages = 16; | ||
507 | if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) | ||
508 | ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; | ||
509 | } | ||
510 | |||
511 | static int | ||
512 | ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) | ||
513 | { | ||
514 | set_ratelimit(); | ||
515 | return 0; | ||
516 | } | ||
517 | |||
518 | static struct notifier_block ratelimit_nb = { | ||
519 | .notifier_call = ratelimit_handler, | ||
520 | .next = NULL, | ||
521 | }; | ||
522 | |||
523 | /* | ||
524 | * If the machine has a large highmem:lowmem ratio then scale back the default | ||
525 | * dirty memory thresholds: allowing too much dirty highmem pins an excessive | ||
526 | * number of buffer_heads. | ||
527 | */ | ||
528 | void __init page_writeback_init(void) | ||
529 | { | ||
530 | long buffer_pages = nr_free_buffer_pages(); | ||
531 | long correction; | ||
532 | |||
533 | total_pages = nr_free_pagecache_pages(); | ||
534 | |||
535 | correction = (100 * 4 * buffer_pages) / total_pages; | ||
536 | |||
537 | if (correction < 100) { | ||
538 | dirty_background_ratio *= correction; | ||
539 | dirty_background_ratio /= 100; | ||
540 | vm_dirty_ratio *= correction; | ||
541 | vm_dirty_ratio /= 100; | ||
542 | |||
543 | if (dirty_background_ratio <= 0) | ||
544 | dirty_background_ratio = 1; | ||
545 | if (vm_dirty_ratio <= 0) | ||
546 | vm_dirty_ratio = 1; | ||
547 | } | ||
548 | mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100); | ||
549 | set_ratelimit(); | ||
550 | register_cpu_notifier(&ratelimit_nb); | ||
551 | } | ||
552 | |||
553 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) | ||
554 | { | ||
555 | if (wbc->nr_to_write <= 0) | ||
556 | return 0; | ||
557 | if (mapping->a_ops->writepages) | ||
558 | return mapping->a_ops->writepages(mapping, wbc); | ||
559 | return generic_writepages(mapping, wbc); | ||
560 | } | ||
561 | |||
562 | /** | ||
563 | * write_one_page - write out a single page and optionally wait on I/O | ||
564 | * | ||
565 | * @page - the page to write | ||
566 | * @wait - if true, wait on writeout | ||
567 | * | ||
568 | * The page must be locked by the caller and will be unlocked upon return. | ||
569 | * | ||
570 | * write_one_page() returns a negative error code if I/O failed. | ||
571 | */ | ||
572 | int write_one_page(struct page *page, int wait) | ||
573 | { | ||
574 | struct address_space *mapping = page->mapping; | ||
575 | int ret = 0; | ||
576 | struct writeback_control wbc = { | ||
577 | .sync_mode = WB_SYNC_ALL, | ||
578 | .nr_to_write = 1, | ||
579 | }; | ||
580 | |||
581 | BUG_ON(!PageLocked(page)); | ||
582 | |||
583 | if (wait) | ||
584 | wait_on_page_writeback(page); | ||
585 | |||
586 | if (clear_page_dirty_for_io(page)) { | ||
587 | page_cache_get(page); | ||
588 | ret = mapping->a_ops->writepage(page, &wbc); | ||
589 | if (ret == 0 && wait) { | ||
590 | wait_on_page_writeback(page); | ||
591 | if (PageError(page)) | ||
592 | ret = -EIO; | ||
593 | } | ||
594 | page_cache_release(page); | ||
595 | } else { | ||
596 | unlock_page(page); | ||
597 | } | ||
598 | return ret; | ||
599 | } | ||
600 | EXPORT_SYMBOL(write_one_page); | ||
601 | |||
602 | /* | ||
603 | * For address_spaces which do not use buffers. Just tag the page as dirty in | ||
604 | * its radix tree. | ||
605 | * | ||
606 | * This is also used when a single buffer is being dirtied: we want to set the | ||
607 | * page dirty in that case, but not all the buffers. This is a "bottom-up" | ||
608 | * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. | ||
609 | * | ||
610 | * Most callers have locked the page, which pins the address_space in memory. | ||
611 | * But zap_pte_range() does not lock the page, however in that case the | ||
612 | * mapping is pinned by the vma's ->vm_file reference. | ||
613 | * | ||
614 | * We take care to handle the case where the page was truncated from the | ||
615 | * mapping by re-checking page_mapping() insode tree_lock. | ||
616 | */ | ||
617 | int __set_page_dirty_nobuffers(struct page *page) | ||
618 | { | ||
619 | int ret = 0; | ||
620 | |||
621 | if (!TestSetPageDirty(page)) { | ||
622 | struct address_space *mapping = page_mapping(page); | ||
623 | struct address_space *mapping2; | ||
624 | |||
625 | if (mapping) { | ||
626 | write_lock_irq(&mapping->tree_lock); | ||
627 | mapping2 = page_mapping(page); | ||
628 | if (mapping2) { /* Race with truncate? */ | ||
629 | BUG_ON(mapping2 != mapping); | ||
630 | if (mapping_cap_account_dirty(mapping)) | ||
631 | inc_page_state(nr_dirty); | ||
632 | radix_tree_tag_set(&mapping->page_tree, | ||
633 | page_index(page), PAGECACHE_TAG_DIRTY); | ||
634 | } | ||
635 | write_unlock_irq(&mapping->tree_lock); | ||
636 | if (mapping->host) { | ||
637 | /* !PageAnon && !swapper_space */ | ||
638 | __mark_inode_dirty(mapping->host, | ||
639 | I_DIRTY_PAGES); | ||
640 | } | ||
641 | } | ||
642 | } | ||
643 | return ret; | ||
644 | } | ||
645 | EXPORT_SYMBOL(__set_page_dirty_nobuffers); | ||
646 | |||
647 | /* | ||
648 | * When a writepage implementation decides that it doesn't want to write this | ||
649 | * page for some reason, it should redirty the locked page via | ||
650 | * redirty_page_for_writepage() and it should then unlock the page and return 0 | ||
651 | */ | ||
652 | int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) | ||
653 | { | ||
654 | wbc->pages_skipped++; | ||
655 | return __set_page_dirty_nobuffers(page); | ||
656 | } | ||
657 | EXPORT_SYMBOL(redirty_page_for_writepage); | ||
658 | |||
659 | /* | ||
660 | * If the mapping doesn't provide a set_page_dirty a_op, then | ||
661 | * just fall through and assume that it wants buffer_heads. | ||
662 | */ | ||
663 | int fastcall set_page_dirty(struct page *page) | ||
664 | { | ||
665 | struct address_space *mapping = page_mapping(page); | ||
666 | |||
667 | if (likely(mapping)) { | ||
668 | int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; | ||
669 | if (spd) | ||
670 | return (*spd)(page); | ||
671 | return __set_page_dirty_buffers(page); | ||
672 | } | ||
673 | if (!PageDirty(page)) | ||
674 | SetPageDirty(page); | ||
675 | return 0; | ||
676 | } | ||
677 | EXPORT_SYMBOL(set_page_dirty); | ||
678 | |||
679 | /* | ||
680 | * set_page_dirty() is racy if the caller has no reference against | ||
681 | * page->mapping->host, and if the page is unlocked. This is because another | ||
682 | * CPU could truncate the page off the mapping and then free the mapping. | ||
683 | * | ||
684 | * Usually, the page _is_ locked, or the caller is a user-space process which | ||
685 | * holds a reference on the inode by having an open file. | ||
686 | * | ||
687 | * In other cases, the page should be locked before running set_page_dirty(). | ||
688 | */ | ||
689 | int set_page_dirty_lock(struct page *page) | ||
690 | { | ||
691 | int ret; | ||
692 | |||
693 | lock_page(page); | ||
694 | ret = set_page_dirty(page); | ||
695 | unlock_page(page); | ||
696 | return ret; | ||
697 | } | ||
698 | EXPORT_SYMBOL(set_page_dirty_lock); | ||
699 | |||
700 | /* | ||
701 | * Clear a page's dirty flag, while caring for dirty memory accounting. | ||
702 | * Returns true if the page was previously dirty. | ||
703 | */ | ||
704 | int test_clear_page_dirty(struct page *page) | ||
705 | { | ||
706 | struct address_space *mapping = page_mapping(page); | ||
707 | unsigned long flags; | ||
708 | |||
709 | if (mapping) { | ||
710 | write_lock_irqsave(&mapping->tree_lock, flags); | ||
711 | if (TestClearPageDirty(page)) { | ||
712 | radix_tree_tag_clear(&mapping->page_tree, | ||
713 | page_index(page), | ||
714 | PAGECACHE_TAG_DIRTY); | ||
715 | write_unlock_irqrestore(&mapping->tree_lock, flags); | ||
716 | if (mapping_cap_account_dirty(mapping)) | ||
717 | dec_page_state(nr_dirty); | ||
718 | return 1; | ||
719 | } | ||
720 | write_unlock_irqrestore(&mapping->tree_lock, flags); | ||
721 | return 0; | ||
722 | } | ||
723 | return TestClearPageDirty(page); | ||
724 | } | ||
725 | EXPORT_SYMBOL(test_clear_page_dirty); | ||
726 | |||
727 | /* | ||
728 | * Clear a page's dirty flag, while caring for dirty memory accounting. | ||
729 | * Returns true if the page was previously dirty. | ||
730 | * | ||
731 | * This is for preparing to put the page under writeout. We leave the page | ||
732 | * tagged as dirty in the radix tree so that a concurrent write-for-sync | ||
733 | * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage | ||
734 | * implementation will run either set_page_writeback() or set_page_dirty(), | ||
735 | * at which stage we bring the page's dirty flag and radix-tree dirty tag | ||
736 | * back into sync. | ||
737 | * | ||
738 | * This incoherency between the page's dirty flag and radix-tree tag is | ||
739 | * unfortunate, but it only exists while the page is locked. | ||
740 | */ | ||
741 | int clear_page_dirty_for_io(struct page *page) | ||
742 | { | ||
743 | struct address_space *mapping = page_mapping(page); | ||
744 | |||
745 | if (mapping) { | ||
746 | if (TestClearPageDirty(page)) { | ||
747 | if (mapping_cap_account_dirty(mapping)) | ||
748 | dec_page_state(nr_dirty); | ||
749 | return 1; | ||
750 | } | ||
751 | return 0; | ||
752 | } | ||
753 | return TestClearPageDirty(page); | ||
754 | } | ||
755 | EXPORT_SYMBOL(clear_page_dirty_for_io); | ||
756 | |||
757 | int test_clear_page_writeback(struct page *page) | ||
758 | { | ||
759 | struct address_space *mapping = page_mapping(page); | ||
760 | int ret; | ||
761 | |||
762 | if (mapping) { | ||
763 | unsigned long flags; | ||
764 | |||
765 | write_lock_irqsave(&mapping->tree_lock, flags); | ||
766 | ret = TestClearPageWriteback(page); | ||
767 | if (ret) | ||
768 | radix_tree_tag_clear(&mapping->page_tree, | ||
769 | page_index(page), | ||
770 | PAGECACHE_TAG_WRITEBACK); | ||
771 | write_unlock_irqrestore(&mapping->tree_lock, flags); | ||
772 | } else { | ||
773 | ret = TestClearPageWriteback(page); | ||
774 | } | ||
775 | return ret; | ||
776 | } | ||
777 | |||
778 | int test_set_page_writeback(struct page *page) | ||
779 | { | ||
780 | struct address_space *mapping = page_mapping(page); | ||
781 | int ret; | ||
782 | |||
783 | if (mapping) { | ||
784 | unsigned long flags; | ||
785 | |||
786 | write_lock_irqsave(&mapping->tree_lock, flags); | ||
787 | ret = TestSetPageWriteback(page); | ||
788 | if (!ret) | ||
789 | radix_tree_tag_set(&mapping->page_tree, | ||
790 | page_index(page), | ||
791 | PAGECACHE_TAG_WRITEBACK); | ||
792 | if (!PageDirty(page)) | ||
793 | radix_tree_tag_clear(&mapping->page_tree, | ||
794 | page_index(page), | ||
795 | PAGECACHE_TAG_DIRTY); | ||
796 | write_unlock_irqrestore(&mapping->tree_lock, flags); | ||
797 | } else { | ||
798 | ret = TestSetPageWriteback(page); | ||
799 | } | ||
800 | return ret; | ||
801 | |||
802 | } | ||
803 | EXPORT_SYMBOL(test_set_page_writeback); | ||
804 | |||
805 | /* | ||
806 | * Return true if any of the pages in the mapping are marged with the | ||
807 | * passed tag. | ||
808 | */ | ||
809 | int mapping_tagged(struct address_space *mapping, int tag) | ||
810 | { | ||
811 | unsigned long flags; | ||
812 | int ret; | ||
813 | |||
814 | read_lock_irqsave(&mapping->tree_lock, flags); | ||
815 | ret = radix_tree_tagged(&mapping->page_tree, tag); | ||
816 | read_unlock_irqrestore(&mapping->tree_lock, flags); | ||
817 | return ret; | ||
818 | } | ||
819 | EXPORT_SYMBOL(mapping_tagged); | ||