diff options
Diffstat (limited to 'mm/migrate.c')
-rw-r--r-- | mm/migrate.c | 655 |
1 files changed, 655 insertions, 0 deletions
diff --git a/mm/migrate.c b/mm/migrate.c new file mode 100644 index 000000000000..09f6e4aa87fc --- /dev/null +++ b/mm/migrate.c | |||
@@ -0,0 +1,655 @@ | |||
1 | /* | ||
2 | * Memory Migration functionality - linux/mm/migration.c | ||
3 | * | ||
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | ||
5 | * | ||
6 | * Page migration was first developed in the context of the memory hotplug | ||
7 | * project. The main authors of the migration code are: | ||
8 | * | ||
9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | ||
10 | * Hirokazu Takahashi <taka@valinux.co.jp> | ||
11 | * Dave Hansen <haveblue@us.ibm.com> | ||
12 | * Christoph Lameter <clameter@sgi.com> | ||
13 | */ | ||
14 | |||
15 | #include <linux/migrate.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/swap.h> | ||
18 | #include <linux/pagemap.h> | ||
19 | #include <linux/buffer_head.h> /* for try_to_release_page(), | ||
20 | buffer_heads_over_limit */ | ||
21 | #include <linux/mm_inline.h> | ||
22 | #include <linux/pagevec.h> | ||
23 | #include <linux/rmap.h> | ||
24 | #include <linux/topology.h> | ||
25 | #include <linux/cpu.h> | ||
26 | #include <linux/cpuset.h> | ||
27 | #include <linux/swapops.h> | ||
28 | |||
29 | #include "internal.h" | ||
30 | |||
31 | #include "internal.h" | ||
32 | |||
33 | /* The maximum number of pages to take off the LRU for migration */ | ||
34 | #define MIGRATE_CHUNK_SIZE 256 | ||
35 | |||
36 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | ||
37 | |||
38 | /* | ||
39 | * Isolate one page from the LRU lists. If successful put it onto | ||
40 | * the indicated list with elevated page count. | ||
41 | * | ||
42 | * Result: | ||
43 | * -EBUSY: page not on LRU list | ||
44 | * 0: page removed from LRU list and added to the specified list. | ||
45 | */ | ||
46 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | ||
47 | { | ||
48 | int ret = -EBUSY; | ||
49 | |||
50 | if (PageLRU(page)) { | ||
51 | struct zone *zone = page_zone(page); | ||
52 | |||
53 | spin_lock_irq(&zone->lru_lock); | ||
54 | if (PageLRU(page)) { | ||
55 | ret = 0; | ||
56 | get_page(page); | ||
57 | ClearPageLRU(page); | ||
58 | if (PageActive(page)) | ||
59 | del_page_from_active_list(zone, page); | ||
60 | else | ||
61 | del_page_from_inactive_list(zone, page); | ||
62 | list_add_tail(&page->lru, pagelist); | ||
63 | } | ||
64 | spin_unlock_irq(&zone->lru_lock); | ||
65 | } | ||
66 | return ret; | ||
67 | } | ||
68 | |||
69 | /* | ||
70 | * migrate_prep() needs to be called after we have compiled the list of pages | ||
71 | * to be migrated using isolate_lru_page() but before we begin a series of calls | ||
72 | * to migrate_pages(). | ||
73 | */ | ||
74 | int migrate_prep(void) | ||
75 | { | ||
76 | /* Must have swap device for migration */ | ||
77 | if (nr_swap_pages <= 0) | ||
78 | return -ENODEV; | ||
79 | |||
80 | /* | ||
81 | * Clear the LRU lists so pages can be isolated. | ||
82 | * Note that pages may be moved off the LRU after we have | ||
83 | * drained them. Those pages will fail to migrate like other | ||
84 | * pages that may be busy. | ||
85 | */ | ||
86 | lru_add_drain_all(); | ||
87 | |||
88 | return 0; | ||
89 | } | ||
90 | |||
91 | static inline void move_to_lru(struct page *page) | ||
92 | { | ||
93 | list_del(&page->lru); | ||
94 | if (PageActive(page)) { | ||
95 | /* | ||
96 | * lru_cache_add_active checks that | ||
97 | * the PG_active bit is off. | ||
98 | */ | ||
99 | ClearPageActive(page); | ||
100 | lru_cache_add_active(page); | ||
101 | } else { | ||
102 | lru_cache_add(page); | ||
103 | } | ||
104 | put_page(page); | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * Add isolated pages on the list back to the LRU. | ||
109 | * | ||
110 | * returns the number of pages put back. | ||
111 | */ | ||
112 | int putback_lru_pages(struct list_head *l) | ||
113 | { | ||
114 | struct page *page; | ||
115 | struct page *page2; | ||
116 | int count = 0; | ||
117 | |||
118 | list_for_each_entry_safe(page, page2, l, lru) { | ||
119 | move_to_lru(page); | ||
120 | count++; | ||
121 | } | ||
122 | return count; | ||
123 | } | ||
124 | |||
125 | /* | ||
126 | * Non migratable page | ||
127 | */ | ||
128 | int fail_migrate_page(struct page *newpage, struct page *page) | ||
129 | { | ||
130 | return -EIO; | ||
131 | } | ||
132 | EXPORT_SYMBOL(fail_migrate_page); | ||
133 | |||
134 | /* | ||
135 | * swapout a single page | ||
136 | * page is locked upon entry, unlocked on exit | ||
137 | */ | ||
138 | static int swap_page(struct page *page) | ||
139 | { | ||
140 | struct address_space *mapping = page_mapping(page); | ||
141 | |||
142 | if (page_mapped(page) && mapping) | ||
143 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) | ||
144 | goto unlock_retry; | ||
145 | |||
146 | if (PageDirty(page)) { | ||
147 | /* Page is dirty, try to write it out here */ | ||
148 | switch(pageout(page, mapping)) { | ||
149 | case PAGE_KEEP: | ||
150 | case PAGE_ACTIVATE: | ||
151 | goto unlock_retry; | ||
152 | |||
153 | case PAGE_SUCCESS: | ||
154 | goto retry; | ||
155 | |||
156 | case PAGE_CLEAN: | ||
157 | ; /* try to free the page below */ | ||
158 | } | ||
159 | } | ||
160 | |||
161 | if (PagePrivate(page)) { | ||
162 | if (!try_to_release_page(page, GFP_KERNEL) || | ||
163 | (!mapping && page_count(page) == 1)) | ||
164 | goto unlock_retry; | ||
165 | } | ||
166 | |||
167 | if (remove_mapping(mapping, page)) { | ||
168 | /* Success */ | ||
169 | unlock_page(page); | ||
170 | return 0; | ||
171 | } | ||
172 | |||
173 | unlock_retry: | ||
174 | unlock_page(page); | ||
175 | |||
176 | retry: | ||
177 | return -EAGAIN; | ||
178 | } | ||
179 | EXPORT_SYMBOL(swap_page); | ||
180 | |||
181 | /* | ||
182 | * Remove references for a page and establish the new page with the correct | ||
183 | * basic settings to be able to stop accesses to the page. | ||
184 | */ | ||
185 | int migrate_page_remove_references(struct page *newpage, | ||
186 | struct page *page, int nr_refs) | ||
187 | { | ||
188 | struct address_space *mapping = page_mapping(page); | ||
189 | struct page **radix_pointer; | ||
190 | |||
191 | /* | ||
192 | * Avoid doing any of the following work if the page count | ||
193 | * indicates that the page is in use or truncate has removed | ||
194 | * the page. | ||
195 | */ | ||
196 | if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | ||
197 | return -EAGAIN; | ||
198 | |||
199 | /* | ||
200 | * Establish swap ptes for anonymous pages or destroy pte | ||
201 | * maps for files. | ||
202 | * | ||
203 | * In order to reestablish file backed mappings the fault handlers | ||
204 | * will take the radix tree_lock which may then be used to stop | ||
205 | * processses from accessing this page until the new page is ready. | ||
206 | * | ||
207 | * A process accessing via a swap pte (an anonymous page) will take a | ||
208 | * page_lock on the old page which will block the process until the | ||
209 | * migration attempt is complete. At that time the PageSwapCache bit | ||
210 | * will be examined. If the page was migrated then the PageSwapCache | ||
211 | * bit will be clear and the operation to retrieve the page will be | ||
212 | * retried which will find the new page in the radix tree. Then a new | ||
213 | * direct mapping may be generated based on the radix tree contents. | ||
214 | * | ||
215 | * If the page was not migrated then the PageSwapCache bit | ||
216 | * is still set and the operation may continue. | ||
217 | */ | ||
218 | if (try_to_unmap(page, 1) == SWAP_FAIL) | ||
219 | /* A vma has VM_LOCKED set -> permanent failure */ | ||
220 | return -EPERM; | ||
221 | |||
222 | /* | ||
223 | * Give up if we were unable to remove all mappings. | ||
224 | */ | ||
225 | if (page_mapcount(page)) | ||
226 | return -EAGAIN; | ||
227 | |||
228 | write_lock_irq(&mapping->tree_lock); | ||
229 | |||
230 | radix_pointer = (struct page **)radix_tree_lookup_slot( | ||
231 | &mapping->page_tree, | ||
232 | page_index(page)); | ||
233 | |||
234 | if (!page_mapping(page) || page_count(page) != nr_refs || | ||
235 | *radix_pointer != page) { | ||
236 | write_unlock_irq(&mapping->tree_lock); | ||
237 | return 1; | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * Now we know that no one else is looking at the page. | ||
242 | * | ||
243 | * Certain minimal information about a page must be available | ||
244 | * in order for other subsystems to properly handle the page if they | ||
245 | * find it through the radix tree update before we are finished | ||
246 | * copying the page. | ||
247 | */ | ||
248 | get_page(newpage); | ||
249 | newpage->index = page->index; | ||
250 | newpage->mapping = page->mapping; | ||
251 | if (PageSwapCache(page)) { | ||
252 | SetPageSwapCache(newpage); | ||
253 | set_page_private(newpage, page_private(page)); | ||
254 | } | ||
255 | |||
256 | *radix_pointer = newpage; | ||
257 | __put_page(page); | ||
258 | write_unlock_irq(&mapping->tree_lock); | ||
259 | |||
260 | return 0; | ||
261 | } | ||
262 | EXPORT_SYMBOL(migrate_page_remove_references); | ||
263 | |||
264 | /* | ||
265 | * Copy the page to its new location | ||
266 | */ | ||
267 | void migrate_page_copy(struct page *newpage, struct page *page) | ||
268 | { | ||
269 | copy_highpage(newpage, page); | ||
270 | |||
271 | if (PageError(page)) | ||
272 | SetPageError(newpage); | ||
273 | if (PageReferenced(page)) | ||
274 | SetPageReferenced(newpage); | ||
275 | if (PageUptodate(page)) | ||
276 | SetPageUptodate(newpage); | ||
277 | if (PageActive(page)) | ||
278 | SetPageActive(newpage); | ||
279 | if (PageChecked(page)) | ||
280 | SetPageChecked(newpage); | ||
281 | if (PageMappedToDisk(page)) | ||
282 | SetPageMappedToDisk(newpage); | ||
283 | |||
284 | if (PageDirty(page)) { | ||
285 | clear_page_dirty_for_io(page); | ||
286 | set_page_dirty(newpage); | ||
287 | } | ||
288 | |||
289 | ClearPageSwapCache(page); | ||
290 | ClearPageActive(page); | ||
291 | ClearPagePrivate(page); | ||
292 | set_page_private(page, 0); | ||
293 | page->mapping = NULL; | ||
294 | |||
295 | /* | ||
296 | * If any waiters have accumulated on the new page then | ||
297 | * wake them up. | ||
298 | */ | ||
299 | if (PageWriteback(newpage)) | ||
300 | end_page_writeback(newpage); | ||
301 | } | ||
302 | EXPORT_SYMBOL(migrate_page_copy); | ||
303 | |||
304 | /* | ||
305 | * Common logic to directly migrate a single page suitable for | ||
306 | * pages that do not use PagePrivate. | ||
307 | * | ||
308 | * Pages are locked upon entry and exit. | ||
309 | */ | ||
310 | int migrate_page(struct page *newpage, struct page *page) | ||
311 | { | ||
312 | int rc; | ||
313 | |||
314 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | ||
315 | |||
316 | rc = migrate_page_remove_references(newpage, page, 2); | ||
317 | |||
318 | if (rc) | ||
319 | return rc; | ||
320 | |||
321 | migrate_page_copy(newpage, page); | ||
322 | |||
323 | /* | ||
324 | * Remove auxiliary swap entries and replace | ||
325 | * them with real ptes. | ||
326 | * | ||
327 | * Note that a real pte entry will allow processes that are not | ||
328 | * waiting on the page lock to use the new page via the page tables | ||
329 | * before the new page is unlocked. | ||
330 | */ | ||
331 | remove_from_swap(newpage); | ||
332 | return 0; | ||
333 | } | ||
334 | EXPORT_SYMBOL(migrate_page); | ||
335 | |||
336 | /* | ||
337 | * migrate_pages | ||
338 | * | ||
339 | * Two lists are passed to this function. The first list | ||
340 | * contains the pages isolated from the LRU to be migrated. | ||
341 | * The second list contains new pages that the pages isolated | ||
342 | * can be moved to. If the second list is NULL then all | ||
343 | * pages are swapped out. | ||
344 | * | ||
345 | * The function returns after 10 attempts or if no pages | ||
346 | * are movable anymore because to has become empty | ||
347 | * or no retryable pages exist anymore. | ||
348 | * | ||
349 | * Return: Number of pages not migrated when "to" ran empty. | ||
350 | */ | ||
351 | int migrate_pages(struct list_head *from, struct list_head *to, | ||
352 | struct list_head *moved, struct list_head *failed) | ||
353 | { | ||
354 | int retry; | ||
355 | int nr_failed = 0; | ||
356 | int pass = 0; | ||
357 | struct page *page; | ||
358 | struct page *page2; | ||
359 | int swapwrite = current->flags & PF_SWAPWRITE; | ||
360 | int rc; | ||
361 | |||
362 | if (!swapwrite) | ||
363 | current->flags |= PF_SWAPWRITE; | ||
364 | |||
365 | redo: | ||
366 | retry = 0; | ||
367 | |||
368 | list_for_each_entry_safe(page, page2, from, lru) { | ||
369 | struct page *newpage = NULL; | ||
370 | struct address_space *mapping; | ||
371 | |||
372 | cond_resched(); | ||
373 | |||
374 | rc = 0; | ||
375 | if (page_count(page) == 1) | ||
376 | /* page was freed from under us. So we are done. */ | ||
377 | goto next; | ||
378 | |||
379 | if (to && list_empty(to)) | ||
380 | break; | ||
381 | |||
382 | /* | ||
383 | * Skip locked pages during the first two passes to give the | ||
384 | * functions holding the lock time to release the page. Later we | ||
385 | * use lock_page() to have a higher chance of acquiring the | ||
386 | * lock. | ||
387 | */ | ||
388 | rc = -EAGAIN; | ||
389 | if (pass > 2) | ||
390 | lock_page(page); | ||
391 | else | ||
392 | if (TestSetPageLocked(page)) | ||
393 | goto next; | ||
394 | |||
395 | /* | ||
396 | * Only wait on writeback if we have already done a pass where | ||
397 | * we we may have triggered writeouts for lots of pages. | ||
398 | */ | ||
399 | if (pass > 0) { | ||
400 | wait_on_page_writeback(page); | ||
401 | } else { | ||
402 | if (PageWriteback(page)) | ||
403 | goto unlock_page; | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * Anonymous pages must have swap cache references otherwise | ||
408 | * the information contained in the page maps cannot be | ||
409 | * preserved. | ||
410 | */ | ||
411 | if (PageAnon(page) && !PageSwapCache(page)) { | ||
412 | if (!add_to_swap(page, GFP_KERNEL)) { | ||
413 | rc = -ENOMEM; | ||
414 | goto unlock_page; | ||
415 | } | ||
416 | } | ||
417 | |||
418 | if (!to) { | ||
419 | rc = swap_page(page); | ||
420 | goto next; | ||
421 | } | ||
422 | |||
423 | newpage = lru_to_page(to); | ||
424 | lock_page(newpage); | ||
425 | |||
426 | /* | ||
427 | * Pages are properly locked and writeback is complete. | ||
428 | * Try to migrate the page. | ||
429 | */ | ||
430 | mapping = page_mapping(page); | ||
431 | if (!mapping) | ||
432 | goto unlock_both; | ||
433 | |||
434 | if (mapping->a_ops->migratepage) { | ||
435 | /* | ||
436 | * Most pages have a mapping and most filesystems | ||
437 | * should provide a migration function. Anonymous | ||
438 | * pages are part of swap space which also has its | ||
439 | * own migration function. This is the most common | ||
440 | * path for page migration. | ||
441 | */ | ||
442 | rc = mapping->a_ops->migratepage(newpage, page); | ||
443 | goto unlock_both; | ||
444 | } | ||
445 | |||
446 | /* | ||
447 | * Default handling if a filesystem does not provide | ||
448 | * a migration function. We can only migrate clean | ||
449 | * pages so try to write out any dirty pages first. | ||
450 | */ | ||
451 | if (PageDirty(page)) { | ||
452 | switch (pageout(page, mapping)) { | ||
453 | case PAGE_KEEP: | ||
454 | case PAGE_ACTIVATE: | ||
455 | goto unlock_both; | ||
456 | |||
457 | case PAGE_SUCCESS: | ||
458 | unlock_page(newpage); | ||
459 | goto next; | ||
460 | |||
461 | case PAGE_CLEAN: | ||
462 | ; /* try to migrate the page below */ | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * Buffers are managed in a filesystem specific way. | ||
468 | * We must have no buffers or drop them. | ||
469 | */ | ||
470 | if (!page_has_buffers(page) || | ||
471 | try_to_release_page(page, GFP_KERNEL)) { | ||
472 | rc = migrate_page(newpage, page); | ||
473 | goto unlock_both; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * On early passes with mapped pages simply | ||
478 | * retry. There may be a lock held for some | ||
479 | * buffers that may go away. Later | ||
480 | * swap them out. | ||
481 | */ | ||
482 | if (pass > 4) { | ||
483 | /* | ||
484 | * Persistently unable to drop buffers..... As a | ||
485 | * measure of last resort we fall back to | ||
486 | * swap_page(). | ||
487 | */ | ||
488 | unlock_page(newpage); | ||
489 | newpage = NULL; | ||
490 | rc = swap_page(page); | ||
491 | goto next; | ||
492 | } | ||
493 | |||
494 | unlock_both: | ||
495 | unlock_page(newpage); | ||
496 | |||
497 | unlock_page: | ||
498 | unlock_page(page); | ||
499 | |||
500 | next: | ||
501 | if (rc == -EAGAIN) { | ||
502 | retry++; | ||
503 | } else if (rc) { | ||
504 | /* Permanent failure */ | ||
505 | list_move(&page->lru, failed); | ||
506 | nr_failed++; | ||
507 | } else { | ||
508 | if (newpage) { | ||
509 | /* Successful migration. Return page to LRU */ | ||
510 | move_to_lru(newpage); | ||
511 | } | ||
512 | list_move(&page->lru, moved); | ||
513 | } | ||
514 | } | ||
515 | if (retry && pass++ < 10) | ||
516 | goto redo; | ||
517 | |||
518 | if (!swapwrite) | ||
519 | current->flags &= ~PF_SWAPWRITE; | ||
520 | |||
521 | return nr_failed + retry; | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * Migration function for pages with buffers. This function can only be used | ||
526 | * if the underlying filesystem guarantees that no other references to "page" | ||
527 | * exist. | ||
528 | */ | ||
529 | int buffer_migrate_page(struct page *newpage, struct page *page) | ||
530 | { | ||
531 | struct address_space *mapping = page->mapping; | ||
532 | struct buffer_head *bh, *head; | ||
533 | int rc; | ||
534 | |||
535 | if (!mapping) | ||
536 | return -EAGAIN; | ||
537 | |||
538 | if (!page_has_buffers(page)) | ||
539 | return migrate_page(newpage, page); | ||
540 | |||
541 | head = page_buffers(page); | ||
542 | |||
543 | rc = migrate_page_remove_references(newpage, page, 3); | ||
544 | |||
545 | if (rc) | ||
546 | return rc; | ||
547 | |||
548 | bh = head; | ||
549 | do { | ||
550 | get_bh(bh); | ||
551 | lock_buffer(bh); | ||
552 | bh = bh->b_this_page; | ||
553 | |||
554 | } while (bh != head); | ||
555 | |||
556 | ClearPagePrivate(page); | ||
557 | set_page_private(newpage, page_private(page)); | ||
558 | set_page_private(page, 0); | ||
559 | put_page(page); | ||
560 | get_page(newpage); | ||
561 | |||
562 | bh = head; | ||
563 | do { | ||
564 | set_bh_page(bh, newpage, bh_offset(bh)); | ||
565 | bh = bh->b_this_page; | ||
566 | |||
567 | } while (bh != head); | ||
568 | |||
569 | SetPagePrivate(newpage); | ||
570 | |||
571 | migrate_page_copy(newpage, page); | ||
572 | |||
573 | bh = head; | ||
574 | do { | ||
575 | unlock_buffer(bh); | ||
576 | put_bh(bh); | ||
577 | bh = bh->b_this_page; | ||
578 | |||
579 | } while (bh != head); | ||
580 | |||
581 | return 0; | ||
582 | } | ||
583 | EXPORT_SYMBOL(buffer_migrate_page); | ||
584 | |||
585 | /* | ||
586 | * Migrate the list 'pagelist' of pages to a certain destination. | ||
587 | * | ||
588 | * Specify destination with either non-NULL vma or dest_node >= 0 | ||
589 | * Return the number of pages not migrated or error code | ||
590 | */ | ||
591 | int migrate_pages_to(struct list_head *pagelist, | ||
592 | struct vm_area_struct *vma, int dest) | ||
593 | { | ||
594 | LIST_HEAD(newlist); | ||
595 | LIST_HEAD(moved); | ||
596 | LIST_HEAD(failed); | ||
597 | int err = 0; | ||
598 | unsigned long offset = 0; | ||
599 | int nr_pages; | ||
600 | struct page *page; | ||
601 | struct list_head *p; | ||
602 | |||
603 | redo: | ||
604 | nr_pages = 0; | ||
605 | list_for_each(p, pagelist) { | ||
606 | if (vma) { | ||
607 | /* | ||
608 | * The address passed to alloc_page_vma is used to | ||
609 | * generate the proper interleave behavior. We fake | ||
610 | * the address here by an increasing offset in order | ||
611 | * to get the proper distribution of pages. | ||
612 | * | ||
613 | * No decision has been made as to which page | ||
614 | * a certain old page is moved to so we cannot | ||
615 | * specify the correct address. | ||
616 | */ | ||
617 | page = alloc_page_vma(GFP_HIGHUSER, vma, | ||
618 | offset + vma->vm_start); | ||
619 | offset += PAGE_SIZE; | ||
620 | } | ||
621 | else | ||
622 | page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | ||
623 | |||
624 | if (!page) { | ||
625 | err = -ENOMEM; | ||
626 | goto out; | ||
627 | } | ||
628 | list_add_tail(&page->lru, &newlist); | ||
629 | nr_pages++; | ||
630 | if (nr_pages > MIGRATE_CHUNK_SIZE) | ||
631 | break; | ||
632 | } | ||
633 | err = migrate_pages(pagelist, &newlist, &moved, &failed); | ||
634 | |||
635 | putback_lru_pages(&moved); /* Call release pages instead ?? */ | ||
636 | |||
637 | if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | ||
638 | goto redo; | ||
639 | out: | ||
640 | /* Return leftover allocated pages */ | ||
641 | while (!list_empty(&newlist)) { | ||
642 | page = list_entry(newlist.next, struct page, lru); | ||
643 | list_del(&page->lru); | ||
644 | __free_page(page); | ||
645 | } | ||
646 | list_splice(&failed, pagelist); | ||
647 | if (err < 0) | ||
648 | return err; | ||
649 | |||
650 | /* Calculate number of leftover pages */ | ||
651 | nr_pages = 0; | ||
652 | list_for_each(p, pagelist) | ||
653 | nr_pages++; | ||
654 | return nr_pages; | ||
655 | } | ||