diff options
Diffstat (limited to 'mm/memory.c')
| -rw-r--r-- | mm/memory.c | 993 | 
1 files changed, 471 insertions, 522 deletions
| diff --git a/mm/memory.c b/mm/memory.c index 1db40e935e55..0f60baf6f69b 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
| @@ -114,6 +114,7 @@ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) | |||
| 114 | { | 114 | { | 
| 115 | struct page *page = pmd_page(*pmd); | 115 | struct page *page = pmd_page(*pmd); | 
| 116 | pmd_clear(pmd); | 116 | pmd_clear(pmd); | 
| 117 | pte_lock_deinit(page); | ||
| 117 | pte_free_tlb(tlb, page); | 118 | pte_free_tlb(tlb, page); | 
| 118 | dec_page_state(nr_page_table_pages); | 119 | dec_page_state(nr_page_table_pages); | 
| 119 | tlb->mm->nr_ptes--; | 120 | tlb->mm->nr_ptes--; | 
| @@ -249,7 +250,7 @@ void free_pgd_range(struct mmu_gather **tlb, | |||
| 249 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 250 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
| 250 | } while (pgd++, addr = next, addr != end); | 251 | } while (pgd++, addr = next, addr != end); | 
| 251 | 252 | ||
| 252 | if (!tlb_is_full_mm(*tlb)) | 253 | if (!(*tlb)->fullmm) | 
| 253 | flush_tlb_pgtables((*tlb)->mm, start, end); | 254 | flush_tlb_pgtables((*tlb)->mm, start, end); | 
| 254 | } | 255 | } | 
| 255 | 256 | ||
| @@ -260,6 +261,12 @@ void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |||
| 260 | struct vm_area_struct *next = vma->vm_next; | 261 | struct vm_area_struct *next = vma->vm_next; | 
| 261 | unsigned long addr = vma->vm_start; | 262 | unsigned long addr = vma->vm_start; | 
| 262 | 263 | ||
| 264 | /* | ||
| 265 | * Hide vma from rmap and vmtruncate before freeing pgtables | ||
| 266 | */ | ||
| 267 | anon_vma_unlink(vma); | ||
| 268 | unlink_file_vma(vma); | ||
| 269 | |||
| 263 | if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { | 270 | if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { | 
| 264 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 271 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
| 265 | floor, next? next->vm_start: ceiling); | 272 | floor, next? next->vm_start: ceiling); | 
| @@ -272,6 +279,8 @@ void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |||
| 272 | HPAGE_SIZE)) { | 279 | HPAGE_SIZE)) { | 
| 273 | vma = next; | 280 | vma = next; | 
| 274 | next = vma->vm_next; | 281 | next = vma->vm_next; | 
| 282 | anon_vma_unlink(vma); | ||
| 283 | unlink_file_vma(vma); | ||
| 275 | } | 284 | } | 
| 276 | free_pgd_range(tlb, addr, vma->vm_end, | 285 | free_pgd_range(tlb, addr, vma->vm_end, | 
| 277 | floor, next? next->vm_start: ceiling); | 286 | floor, next? next->vm_start: ceiling); | 
| @@ -280,72 +289,78 @@ void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |||
| 280 | } | 289 | } | 
| 281 | } | 290 | } | 
| 282 | 291 | ||
| 283 | pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, | 292 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
| 284 | unsigned long address) | ||
| 285 | { | 293 | { | 
| 286 | if (!pmd_present(*pmd)) { | 294 | struct page *new = pte_alloc_one(mm, address); | 
| 287 | struct page *new; | 295 | if (!new) | 
| 288 | 296 | return -ENOMEM; | |
| 289 | spin_unlock(&mm->page_table_lock); | 297 | |
| 290 | new = pte_alloc_one(mm, address); | 298 | pte_lock_init(new); | 
| 291 | spin_lock(&mm->page_table_lock); | 299 | spin_lock(&mm->page_table_lock); | 
| 292 | if (!new) | 300 | if (pmd_present(*pmd)) { /* Another has populated it */ | 
| 293 | return NULL; | 301 | pte_lock_deinit(new); | 
| 294 | /* | 302 | pte_free(new); | 
| 295 | * Because we dropped the lock, we should re-check the | 303 | } else { | 
| 296 | * entry, as somebody else could have populated it.. | ||
| 297 | */ | ||
| 298 | if (pmd_present(*pmd)) { | ||
| 299 | pte_free(new); | ||
| 300 | goto out; | ||
| 301 | } | ||
| 302 | mm->nr_ptes++; | 304 | mm->nr_ptes++; | 
| 303 | inc_page_state(nr_page_table_pages); | 305 | inc_page_state(nr_page_table_pages); | 
| 304 | pmd_populate(mm, pmd, new); | 306 | pmd_populate(mm, pmd, new); | 
| 305 | } | 307 | } | 
| 306 | out: | 308 | spin_unlock(&mm->page_table_lock); | 
| 307 | return pte_offset_map(pmd, address); | 309 | return 0; | 
| 308 | } | 310 | } | 
| 309 | 311 | ||
| 310 | pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 312 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
| 311 | { | 313 | { | 
| 312 | if (!pmd_present(*pmd)) { | 314 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
| 313 | pte_t *new; | 315 | if (!new) | 
| 316 | return -ENOMEM; | ||
| 314 | 317 | ||
| 315 | spin_unlock(&mm->page_table_lock); | 318 | spin_lock(&init_mm.page_table_lock); | 
| 316 | new = pte_alloc_one_kernel(mm, address); | 319 | if (pmd_present(*pmd)) /* Another has populated it */ | 
| 317 | spin_lock(&mm->page_table_lock); | 320 | pte_free_kernel(new); | 
| 318 | if (!new) | 321 | else | 
| 319 | return NULL; | 322 | pmd_populate_kernel(&init_mm, pmd, new); | 
| 323 | spin_unlock(&init_mm.page_table_lock); | ||
| 324 | return 0; | ||
| 325 | } | ||
| 320 | 326 | ||
| 321 | /* | 327 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | 
| 322 | * Because we dropped the lock, we should re-check the | 328 | { | 
| 323 | * entry, as somebody else could have populated it.. | 329 | if (file_rss) | 
| 324 | */ | 330 | add_mm_counter(mm, file_rss, file_rss); | 
| 325 | if (pmd_present(*pmd)) { | 331 | if (anon_rss) | 
| 326 | pte_free_kernel(new); | 332 | add_mm_counter(mm, anon_rss, anon_rss); | 
| 327 | goto out; | 333 | } | 
| 328 | } | 334 | |
| 329 | pmd_populate_kernel(mm, pmd, new); | 335 | /* | 
| 330 | } | 336 | * This function is called to print an error when a pte in a | 
| 331 | out: | 337 | * !VM_RESERVED region is found pointing to an invalid pfn (which | 
| 332 | return pte_offset_kernel(pmd, address); | 338 | * is an error. | 
| 339 | * | ||
| 340 | * The calling function must still handle the error. | ||
| 341 | */ | ||
| 342 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | ||
| 343 | { | ||
| 344 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | ||
| 345 | "vm_flags = %lx, vaddr = %lx\n", | ||
| 346 | (long long)pte_val(pte), | ||
| 347 | (vma->vm_mm == current->mm ? current->comm : "???"), | ||
| 348 | vma->vm_flags, vaddr); | ||
| 349 | dump_stack(); | ||
| 333 | } | 350 | } | 
| 334 | 351 | ||
| 335 | /* | 352 | /* | 
| 336 | * copy one vm_area from one task to the other. Assumes the page tables | 353 | * copy one vm_area from one task to the other. Assumes the page tables | 
| 337 | * already present in the new task to be cleared in the whole range | 354 | * already present in the new task to be cleared in the whole range | 
| 338 | * covered by this vma. | 355 | * covered by this vma. | 
| 339 | * | ||
| 340 | * dst->page_table_lock is held on entry and exit, | ||
| 341 | * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). | ||
| 342 | */ | 356 | */ | 
| 343 | 357 | ||
| 344 | static inline void | 358 | static inline void | 
| 345 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 359 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
| 346 | pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, | 360 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
| 347 | unsigned long addr) | 361 | unsigned long addr, int *rss) | 
| 348 | { | 362 | { | 
| 363 | unsigned long vm_flags = vma->vm_flags; | ||
| 349 | pte_t pte = *src_pte; | 364 | pte_t pte = *src_pte; | 
| 350 | struct page *page; | 365 | struct page *page; | 
| 351 | unsigned long pfn; | 366 | unsigned long pfn; | 
| @@ -357,29 +372,32 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
| 357 | /* make sure dst_mm is on swapoff's mmlist. */ | 372 | /* make sure dst_mm is on swapoff's mmlist. */ | 
| 358 | if (unlikely(list_empty(&dst_mm->mmlist))) { | 373 | if (unlikely(list_empty(&dst_mm->mmlist))) { | 
| 359 | spin_lock(&mmlist_lock); | 374 | spin_lock(&mmlist_lock); | 
| 360 | list_add(&dst_mm->mmlist, &src_mm->mmlist); | 375 | if (list_empty(&dst_mm->mmlist)) | 
| 376 | list_add(&dst_mm->mmlist, | ||
| 377 | &src_mm->mmlist); | ||
| 361 | spin_unlock(&mmlist_lock); | 378 | spin_unlock(&mmlist_lock); | 
| 362 | } | 379 | } | 
| 363 | } | 380 | } | 
| 364 | set_pte_at(dst_mm, addr, dst_pte, pte); | 381 | goto out_set_pte; | 
| 365 | return; | ||
| 366 | } | 382 | } | 
| 367 | 383 | ||
| 368 | pfn = pte_pfn(pte); | 384 | /* If the region is VM_RESERVED, the mapping is not | 
| 369 | /* the pte points outside of valid memory, the | 385 | * mapped via rmap - duplicate the pte as is. | 
| 370 | * mapping is assumed to be good, meaningful | ||
| 371 | * and not mapped via rmap - duplicate the | ||
| 372 | * mapping as is. | ||
| 373 | */ | 386 | */ | 
| 374 | page = NULL; | 387 | if (vm_flags & VM_RESERVED) | 
| 375 | if (pfn_valid(pfn)) | 388 | goto out_set_pte; | 
| 376 | page = pfn_to_page(pfn); | ||
| 377 | 389 | ||
| 378 | if (!page || PageReserved(page)) { | 390 | pfn = pte_pfn(pte); | 
| 379 | set_pte_at(dst_mm, addr, dst_pte, pte); | 391 | /* If the pte points outside of valid memory but | 
| 380 | return; | 392 | * the region is not VM_RESERVED, we have a problem. | 
| 393 | */ | ||
| 394 | if (unlikely(!pfn_valid(pfn))) { | ||
| 395 | print_bad_pte(vma, pte, addr); | ||
| 396 | goto out_set_pte; /* try to do something sane */ | ||
| 381 | } | 397 | } | 
| 382 | 398 | ||
| 399 | page = pfn_to_page(pfn); | ||
| 400 | |||
| 383 | /* | 401 | /* | 
| 384 | * If it's a COW mapping, write protect it both | 402 | * If it's a COW mapping, write protect it both | 
| 385 | * in the parent and the child | 403 | * in the parent and the child | 
| @@ -397,11 +415,11 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
| 397 | pte = pte_mkclean(pte); | 415 | pte = pte_mkclean(pte); | 
| 398 | pte = pte_mkold(pte); | 416 | pte = pte_mkold(pte); | 
| 399 | get_page(page); | 417 | get_page(page); | 
| 400 | inc_mm_counter(dst_mm, rss); | ||
| 401 | if (PageAnon(page)) | ||
| 402 | inc_mm_counter(dst_mm, anon_rss); | ||
| 403 | set_pte_at(dst_mm, addr, dst_pte, pte); | ||
| 404 | page_dup_rmap(page); | 418 | page_dup_rmap(page); | 
| 419 | rss[!!PageAnon(page)]++; | ||
| 420 | |||
| 421 | out_set_pte: | ||
| 422 | set_pte_at(dst_mm, addr, dst_pte, pte); | ||
| 405 | } | 423 | } | 
| 406 | 424 | ||
| 407 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 425 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
| @@ -409,38 +427,44 @@ static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
| 409 | unsigned long addr, unsigned long end) | 427 | unsigned long addr, unsigned long end) | 
| 410 | { | 428 | { | 
| 411 | pte_t *src_pte, *dst_pte; | 429 | pte_t *src_pte, *dst_pte; | 
| 412 | unsigned long vm_flags = vma->vm_flags; | 430 | spinlock_t *src_ptl, *dst_ptl; | 
| 413 | int progress; | 431 | int progress = 0; | 
| 432 | int rss[2]; | ||
| 414 | 433 | ||
| 415 | again: | 434 | again: | 
| 416 | dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); | 435 | rss[1] = rss[0] = 0; | 
| 436 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | ||
| 417 | if (!dst_pte) | 437 | if (!dst_pte) | 
| 418 | return -ENOMEM; | 438 | return -ENOMEM; | 
| 419 | src_pte = pte_offset_map_nested(src_pmd, addr); | 439 | src_pte = pte_offset_map_nested(src_pmd, addr); | 
| 440 | src_ptl = pte_lockptr(src_mm, src_pmd); | ||
| 441 | spin_lock(src_ptl); | ||
| 420 | 442 | ||
| 421 | progress = 0; | ||
| 422 | spin_lock(&src_mm->page_table_lock); | ||
| 423 | do { | 443 | do { | 
| 424 | /* | 444 | /* | 
| 425 | * We are holding two locks at this point - either of them | 445 | * We are holding two locks at this point - either of them | 
| 426 | * could generate latencies in another task on another CPU. | 446 | * could generate latencies in another task on another CPU. | 
| 427 | */ | 447 | */ | 
| 428 | if (progress >= 32 && (need_resched() || | 448 | if (progress >= 32) { | 
| 429 | need_lockbreak(&src_mm->page_table_lock) || | 449 | progress = 0; | 
| 430 | need_lockbreak(&dst_mm->page_table_lock))) | 450 | if (need_resched() || | 
| 431 | break; | 451 | need_lockbreak(src_ptl) || | 
| 452 | need_lockbreak(dst_ptl)) | ||
| 453 | break; | ||
| 454 | } | ||
| 432 | if (pte_none(*src_pte)) { | 455 | if (pte_none(*src_pte)) { | 
| 433 | progress++; | 456 | progress++; | 
| 434 | continue; | 457 | continue; | 
| 435 | } | 458 | } | 
| 436 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); | 459 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); | 
| 437 | progress += 8; | 460 | progress += 8; | 
| 438 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 461 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
| 439 | spin_unlock(&src_mm->page_table_lock); | ||
| 440 | 462 | ||
| 463 | spin_unlock(src_ptl); | ||
| 441 | pte_unmap_nested(src_pte - 1); | 464 | pte_unmap_nested(src_pte - 1); | 
| 442 | pte_unmap(dst_pte - 1); | 465 | add_mm_rss(dst_mm, rss[0], rss[1]); | 
| 443 | cond_resched_lock(&dst_mm->page_table_lock); | 466 | pte_unmap_unlock(dst_pte - 1, dst_ptl); | 
| 467 | cond_resched(); | ||
| 444 | if (addr != end) | 468 | if (addr != end) | 
| 445 | goto again; | 469 | goto again; | 
| 446 | return 0; | 470 | return 0; | 
| @@ -525,24 +549,30 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
| 525 | return 0; | 549 | return 0; | 
| 526 | } | 550 | } | 
| 527 | 551 | ||
| 528 | static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 552 | static void zap_pte_range(struct mmu_gather *tlb, | 
| 553 | struct vm_area_struct *vma, pmd_t *pmd, | ||
| 529 | unsigned long addr, unsigned long end, | 554 | unsigned long addr, unsigned long end, | 
| 530 | struct zap_details *details) | 555 | struct zap_details *details) | 
| 531 | { | 556 | { | 
| 557 | struct mm_struct *mm = tlb->mm; | ||
| 532 | pte_t *pte; | 558 | pte_t *pte; | 
| 559 | spinlock_t *ptl; | ||
| 560 | int file_rss = 0; | ||
| 561 | int anon_rss = 0; | ||
| 533 | 562 | ||
| 534 | pte = pte_offset_map(pmd, addr); | 563 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
| 535 | do { | 564 | do { | 
| 536 | pte_t ptent = *pte; | 565 | pte_t ptent = *pte; | 
| 537 | if (pte_none(ptent)) | 566 | if (pte_none(ptent)) | 
| 538 | continue; | 567 | continue; | 
| 539 | if (pte_present(ptent)) { | 568 | if (pte_present(ptent)) { | 
| 540 | struct page *page = NULL; | 569 | struct page *page = NULL; | 
| 541 | unsigned long pfn = pte_pfn(ptent); | 570 | if (!(vma->vm_flags & VM_RESERVED)) { | 
| 542 | if (pfn_valid(pfn)) { | 571 | unsigned long pfn = pte_pfn(ptent); | 
| 543 | page = pfn_to_page(pfn); | 572 | if (unlikely(!pfn_valid(pfn))) | 
| 544 | if (PageReserved(page)) | 573 | print_bad_pte(vma, ptent, addr); | 
| 545 | page = NULL; | 574 | else | 
| 575 | page = pfn_to_page(pfn); | ||
| 546 | } | 576 | } | 
| 547 | if (unlikely(details) && page) { | 577 | if (unlikely(details) && page) { | 
| 548 | /* | 578 | /* | 
| @@ -562,7 +592,7 @@ static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | |||
| 562 | page->index > details->last_index)) | 592 | page->index > details->last_index)) | 
| 563 | continue; | 593 | continue; | 
| 564 | } | 594 | } | 
| 565 | ptent = ptep_get_and_clear_full(tlb->mm, addr, pte, | 595 | ptent = ptep_get_and_clear_full(mm, addr, pte, | 
| 566 | tlb->fullmm); | 596 | tlb->fullmm); | 
| 567 | tlb_remove_tlb_entry(tlb, pte, addr); | 597 | tlb_remove_tlb_entry(tlb, pte, addr); | 
| 568 | if (unlikely(!page)) | 598 | if (unlikely(!page)) | 
| @@ -570,15 +600,17 @@ static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | |||
| 570 | if (unlikely(details) && details->nonlinear_vma | 600 | if (unlikely(details) && details->nonlinear_vma | 
| 571 | && linear_page_index(details->nonlinear_vma, | 601 | && linear_page_index(details->nonlinear_vma, | 
| 572 | addr) != page->index) | 602 | addr) != page->index) | 
| 573 | set_pte_at(tlb->mm, addr, pte, | 603 | set_pte_at(mm, addr, pte, | 
| 574 | pgoff_to_pte(page->index)); | 604 | pgoff_to_pte(page->index)); | 
| 575 | if (pte_dirty(ptent)) | ||
| 576 | set_page_dirty(page); | ||
| 577 | if (PageAnon(page)) | 605 | if (PageAnon(page)) | 
| 578 | dec_mm_counter(tlb->mm, anon_rss); | 606 | anon_rss--; | 
| 579 | else if (pte_young(ptent)) | 607 | else { | 
| 580 | mark_page_accessed(page); | 608 | if (pte_dirty(ptent)) | 
| 581 | tlb->freed++; | 609 | set_page_dirty(page); | 
| 610 | if (pte_young(ptent)) | ||
| 611 | mark_page_accessed(page); | ||
| 612 | file_rss--; | ||
| 613 | } | ||
| 582 | page_remove_rmap(page); | 614 | page_remove_rmap(page); | 
| 583 | tlb_remove_page(tlb, page); | 615 | tlb_remove_page(tlb, page); | 
| 584 | continue; | 616 | continue; | 
| @@ -591,12 +623,15 @@ static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | |||
| 591 | continue; | 623 | continue; | 
| 592 | if (!pte_file(ptent)) | 624 | if (!pte_file(ptent)) | 
| 593 | free_swap_and_cache(pte_to_swp_entry(ptent)); | 625 | free_swap_and_cache(pte_to_swp_entry(ptent)); | 
| 594 | pte_clear_full(tlb->mm, addr, pte, tlb->fullmm); | 626 | pte_clear_full(mm, addr, pte, tlb->fullmm); | 
| 595 | } while (pte++, addr += PAGE_SIZE, addr != end); | 627 | } while (pte++, addr += PAGE_SIZE, addr != end); | 
| 596 | pte_unmap(pte - 1); | 628 | |
| 629 | add_mm_rss(mm, file_rss, anon_rss); | ||
| 630 | pte_unmap_unlock(pte - 1, ptl); | ||
| 597 | } | 631 | } | 
| 598 | 632 | ||
| 599 | static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 633 | static inline void zap_pmd_range(struct mmu_gather *tlb, | 
| 634 | struct vm_area_struct *vma, pud_t *pud, | ||
| 600 | unsigned long addr, unsigned long end, | 635 | unsigned long addr, unsigned long end, | 
| 601 | struct zap_details *details) | 636 | struct zap_details *details) | 
| 602 | { | 637 | { | 
| @@ -608,11 +643,12 @@ static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, | |||
| 608 | next = pmd_addr_end(addr, end); | 643 | next = pmd_addr_end(addr, end); | 
| 609 | if (pmd_none_or_clear_bad(pmd)) | 644 | if (pmd_none_or_clear_bad(pmd)) | 
| 610 | continue; | 645 | continue; | 
| 611 | zap_pte_range(tlb, pmd, addr, next, details); | 646 | zap_pte_range(tlb, vma, pmd, addr, next, details); | 
| 612 | } while (pmd++, addr = next, addr != end); | 647 | } while (pmd++, addr = next, addr != end); | 
| 613 | } | 648 | } | 
| 614 | 649 | ||
| 615 | static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 650 | static inline void zap_pud_range(struct mmu_gather *tlb, | 
| 651 | struct vm_area_struct *vma, pgd_t *pgd, | ||
| 616 | unsigned long addr, unsigned long end, | 652 | unsigned long addr, unsigned long end, | 
| 617 | struct zap_details *details) | 653 | struct zap_details *details) | 
| 618 | { | 654 | { | 
| @@ -624,7 +660,7 @@ static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | |||
| 624 | next = pud_addr_end(addr, end); | 660 | next = pud_addr_end(addr, end); | 
| 625 | if (pud_none_or_clear_bad(pud)) | 661 | if (pud_none_or_clear_bad(pud)) | 
| 626 | continue; | 662 | continue; | 
| 627 | zap_pmd_range(tlb, pud, addr, next, details); | 663 | zap_pmd_range(tlb, vma, pud, addr, next, details); | 
| 628 | } while (pud++, addr = next, addr != end); | 664 | } while (pud++, addr = next, addr != end); | 
| 629 | } | 665 | } | 
| 630 | 666 | ||
| @@ -645,7 +681,7 @@ static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | |||
| 645 | next = pgd_addr_end(addr, end); | 681 | next = pgd_addr_end(addr, end); | 
| 646 | if (pgd_none_or_clear_bad(pgd)) | 682 | if (pgd_none_or_clear_bad(pgd)) | 
| 647 | continue; | 683 | continue; | 
| 648 | zap_pud_range(tlb, pgd, addr, next, details); | 684 | zap_pud_range(tlb, vma, pgd, addr, next, details); | 
| 649 | } while (pgd++, addr = next, addr != end); | 685 | } while (pgd++, addr = next, addr != end); | 
| 650 | tlb_end_vma(tlb, vma); | 686 | tlb_end_vma(tlb, vma); | 
| 651 | } | 687 | } | 
| @@ -660,7 +696,6 @@ static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | |||
| 660 | /** | 696 | /** | 
| 661 | * unmap_vmas - unmap a range of memory covered by a list of vma's | 697 | * unmap_vmas - unmap a range of memory covered by a list of vma's | 
| 662 | * @tlbp: address of the caller's struct mmu_gather | 698 | * @tlbp: address of the caller's struct mmu_gather | 
| 663 | * @mm: the controlling mm_struct | ||
| 664 | * @vma: the starting vma | 699 | * @vma: the starting vma | 
| 665 | * @start_addr: virtual address at which to start unmapping | 700 | * @start_addr: virtual address at which to start unmapping | 
| 666 | * @end_addr: virtual address at which to end unmapping | 701 | * @end_addr: virtual address at which to end unmapping | 
| @@ -669,10 +704,10 @@ static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | |||
| 669 | * | 704 | * | 
| 670 | * Returns the end address of the unmapping (restart addr if interrupted). | 705 | * Returns the end address of the unmapping (restart addr if interrupted). | 
| 671 | * | 706 | * | 
| 672 | * Unmap all pages in the vma list. Called under page_table_lock. | 707 | * Unmap all pages in the vma list. | 
| 673 | * | 708 | * | 
| 674 | * We aim to not hold page_table_lock for too long (for scheduling latency | 709 | * We aim to not hold locks for too long (for scheduling latency reasons). | 
| 675 | * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | 710 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | 
| 676 | * return the ending mmu_gather to the caller. | 711 | * return the ending mmu_gather to the caller. | 
| 677 | * | 712 | * | 
| 678 | * Only addresses between `start' and `end' will be unmapped. | 713 | * Only addresses between `start' and `end' will be unmapped. | 
| @@ -684,7 +719,7 @@ static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | |||
| 684 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 719 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
| 685 | * drops the lock and schedules. | 720 | * drops the lock and schedules. | 
| 686 | */ | 721 | */ | 
| 687 | unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, | 722 | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 
| 688 | struct vm_area_struct *vma, unsigned long start_addr, | 723 | struct vm_area_struct *vma, unsigned long start_addr, | 
| 689 | unsigned long end_addr, unsigned long *nr_accounted, | 724 | unsigned long end_addr, unsigned long *nr_accounted, | 
| 690 | struct zap_details *details) | 725 | struct zap_details *details) | 
| @@ -694,7 +729,7 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, | |||
| 694 | int tlb_start_valid = 0; | 729 | int tlb_start_valid = 0; | 
| 695 | unsigned long start = start_addr; | 730 | unsigned long start = start_addr; | 
| 696 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 731 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 
| 697 | int fullmm = tlb_is_full_mm(*tlbp); | 732 | int fullmm = (*tlbp)->fullmm; | 
| 698 | 733 | ||
| 699 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 734 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 
| 700 | unsigned long end; | 735 | unsigned long end; | 
| @@ -734,19 +769,15 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, | |||
| 734 | tlb_finish_mmu(*tlbp, tlb_start, start); | 769 | tlb_finish_mmu(*tlbp, tlb_start, start); | 
| 735 | 770 | ||
| 736 | if (need_resched() || | 771 | if (need_resched() || | 
| 737 | need_lockbreak(&mm->page_table_lock) || | ||
| 738 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { | 772 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { | 
| 739 | if (i_mmap_lock) { | 773 | if (i_mmap_lock) { | 
| 740 | /* must reset count of rss freed */ | 774 | *tlbp = NULL; | 
| 741 | *tlbp = tlb_gather_mmu(mm, fullmm); | ||
| 742 | goto out; | 775 | goto out; | 
| 743 | } | 776 | } | 
| 744 | spin_unlock(&mm->page_table_lock); | ||
| 745 | cond_resched(); | 777 | cond_resched(); | 
| 746 | spin_lock(&mm->page_table_lock); | ||
| 747 | } | 778 | } | 
| 748 | 779 | ||
| 749 | *tlbp = tlb_gather_mmu(mm, fullmm); | 780 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 
| 750 | tlb_start_valid = 0; | 781 | tlb_start_valid = 0; | 
| 751 | zap_bytes = ZAP_BLOCK_SIZE; | 782 | zap_bytes = ZAP_BLOCK_SIZE; | 
| 752 | } | 783 | } | 
| @@ -770,123 +801,93 @@ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | |||
| 770 | unsigned long end = address + size; | 801 | unsigned long end = address + size; | 
| 771 | unsigned long nr_accounted = 0; | 802 | unsigned long nr_accounted = 0; | 
| 772 | 803 | ||
| 773 | if (is_vm_hugetlb_page(vma)) { | ||
| 774 | zap_hugepage_range(vma, address, size); | ||
| 775 | return end; | ||
| 776 | } | ||
| 777 | |||
| 778 | lru_add_drain(); | 804 | lru_add_drain(); | 
| 779 | spin_lock(&mm->page_table_lock); | ||
| 780 | tlb = tlb_gather_mmu(mm, 0); | 805 | tlb = tlb_gather_mmu(mm, 0); | 
| 781 | end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); | 806 | update_hiwater_rss(mm); | 
| 782 | tlb_finish_mmu(tlb, address, end); | 807 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 
| 783 | spin_unlock(&mm->page_table_lock); | 808 | if (tlb) | 
| 809 | tlb_finish_mmu(tlb, address, end); | ||
| 784 | return end; | 810 | return end; | 
| 785 | } | 811 | } | 
| 786 | 812 | ||
| 787 | /* | 813 | /* | 
| 788 | * Do a quick page-table lookup for a single page. | 814 | * Do a quick page-table lookup for a single page. | 
| 789 | * mm->page_table_lock must be held. | ||
| 790 | */ | 815 | */ | 
| 791 | static struct page *__follow_page(struct mm_struct *mm, unsigned long address, | 816 | struct page *follow_page(struct mm_struct *mm, unsigned long address, | 
| 792 | int read, int write, int accessed) | 817 | unsigned int flags) | 
| 793 | { | 818 | { | 
| 794 | pgd_t *pgd; | 819 | pgd_t *pgd; | 
| 795 | pud_t *pud; | 820 | pud_t *pud; | 
| 796 | pmd_t *pmd; | 821 | pmd_t *pmd; | 
| 797 | pte_t *ptep, pte; | 822 | pte_t *ptep, pte; | 
| 823 | spinlock_t *ptl; | ||
| 798 | unsigned long pfn; | 824 | unsigned long pfn; | 
| 799 | struct page *page; | 825 | struct page *page; | 
| 800 | 826 | ||
| 801 | page = follow_huge_addr(mm, address, write); | 827 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
| 802 | if (! IS_ERR(page)) | 828 | if (!IS_ERR(page)) { | 
| 803 | return page; | 829 | BUG_ON(flags & FOLL_GET); | 
| 830 | goto out; | ||
| 831 | } | ||
| 804 | 832 | ||
| 833 | page = NULL; | ||
| 805 | pgd = pgd_offset(mm, address); | 834 | pgd = pgd_offset(mm, address); | 
| 806 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 835 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
| 807 | goto out; | 836 | goto no_page_table; | 
| 808 | 837 | ||
| 809 | pud = pud_offset(pgd, address); | 838 | pud = pud_offset(pgd, address); | 
| 810 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 839 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
| 811 | goto out; | 840 | goto no_page_table; | 
| 812 | 841 | ||
| 813 | pmd = pmd_offset(pud, address); | 842 | pmd = pmd_offset(pud, address); | 
| 814 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 843 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
| 844 | goto no_page_table; | ||
| 845 | |||
| 846 | if (pmd_huge(*pmd)) { | ||
| 847 | BUG_ON(flags & FOLL_GET); | ||
| 848 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | ||
| 815 | goto out; | 849 | goto out; | 
| 816 | if (pmd_huge(*pmd)) | 850 | } | 
| 817 | return follow_huge_pmd(mm, address, pmd, write); | ||
| 818 | 851 | ||
| 819 | ptep = pte_offset_map(pmd, address); | 852 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 820 | if (!ptep) | 853 | if (!ptep) | 
| 821 | goto out; | 854 | goto out; | 
| 822 | 855 | ||
| 823 | pte = *ptep; | 856 | pte = *ptep; | 
| 824 | pte_unmap(ptep); | 857 | if (!pte_present(pte)) | 
| 825 | if (pte_present(pte)) { | 858 | goto unlock; | 
| 826 | if (write && !pte_write(pte)) | 859 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
| 827 | goto out; | 860 | goto unlock; | 
| 828 | if (read && !pte_read(pte)) | 861 | pfn = pte_pfn(pte); | 
| 829 | goto out; | 862 | if (!pfn_valid(pfn)) | 
| 830 | pfn = pte_pfn(pte); | 863 | goto unlock; | 
| 831 | if (pfn_valid(pfn)) { | 864 | |
| 832 | page = pfn_to_page(pfn); | 865 | page = pfn_to_page(pfn); | 
| 833 | if (accessed) { | 866 | if (flags & FOLL_GET) | 
| 834 | if (write && !pte_dirty(pte) &&!PageDirty(page)) | 867 | get_page(page); | 
| 835 | set_page_dirty(page); | 868 | if (flags & FOLL_TOUCH) { | 
| 836 | mark_page_accessed(page); | 869 | if ((flags & FOLL_WRITE) && | 
| 837 | } | 870 | !pte_dirty(pte) && !PageDirty(page)) | 
| 838 | return page; | 871 | set_page_dirty(page); | 
| 839 | } | 872 | mark_page_accessed(page); | 
| 840 | } | 873 | } | 
| 841 | 874 | unlock: | |
| 875 | pte_unmap_unlock(ptep, ptl); | ||
| 842 | out: | 876 | out: | 
| 843 | return NULL; | 877 | return page; | 
| 844 | } | ||
| 845 | |||
| 846 | inline struct page * | ||
| 847 | follow_page(struct mm_struct *mm, unsigned long address, int write) | ||
| 848 | { | ||
| 849 | return __follow_page(mm, address, 0, write, 1); | ||
| 850 | } | ||
| 851 | |||
| 852 | /* | ||
| 853 | * check_user_page_readable() can be called frm niterrupt context by oprofile, | ||
| 854 | * so we need to avoid taking any non-irq-safe locks | ||
| 855 | */ | ||
| 856 | int check_user_page_readable(struct mm_struct *mm, unsigned long address) | ||
| 857 | { | ||
| 858 | return __follow_page(mm, address, 1, 0, 0) != NULL; | ||
| 859 | } | ||
| 860 | EXPORT_SYMBOL(check_user_page_readable); | ||
| 861 | |||
| 862 | static inline int | ||
| 863 | untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, | ||
| 864 | unsigned long address) | ||
| 865 | { | ||
| 866 | pgd_t *pgd; | ||
| 867 | pud_t *pud; | ||
| 868 | pmd_t *pmd; | ||
| 869 | |||
| 870 | /* Check if the vma is for an anonymous mapping. */ | ||
| 871 | if (vma->vm_ops && vma->vm_ops->nopage) | ||
| 872 | return 0; | ||
| 873 | |||
| 874 | /* Check if page directory entry exists. */ | ||
| 875 | pgd = pgd_offset(mm, address); | ||
| 876 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | ||
| 877 | return 1; | ||
| 878 | |||
| 879 | pud = pud_offset(pgd, address); | ||
| 880 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | ||
| 881 | return 1; | ||
| 882 | |||
| 883 | /* Check if page middle directory entry exists. */ | ||
| 884 | pmd = pmd_offset(pud, address); | ||
| 885 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | ||
| 886 | return 1; | ||
| 887 | 878 | ||
| 888 | /* There is a pte slot for 'address' in 'mm'. */ | 879 | no_page_table: | 
| 889 | return 0; | 880 | /* | 
| 881 | * When core dumping an enormous anonymous area that nobody | ||
| 882 | * has touched so far, we don't want to allocate page tables. | ||
| 883 | */ | ||
| 884 | if (flags & FOLL_ANON) { | ||
| 885 | page = ZERO_PAGE(address); | ||
| 886 | if (flags & FOLL_GET) | ||
| 887 | get_page(page); | ||
| 888 | BUG_ON(flags & FOLL_WRITE); | ||
| 889 | } | ||
| 890 | return page; | ||
| 890 | } | 891 | } | 
| 891 | 892 | ||
| 892 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 893 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
| @@ -894,18 +895,19 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 894 | struct page **pages, struct vm_area_struct **vmas) | 895 | struct page **pages, struct vm_area_struct **vmas) | 
| 895 | { | 896 | { | 
| 896 | int i; | 897 | int i; | 
| 897 | unsigned int flags; | 898 | unsigned int vm_flags; | 
| 898 | 899 | ||
| 899 | /* | 900 | /* | 
| 900 | * Require read or write permissions. | 901 | * Require read or write permissions. | 
| 901 | * If 'force' is set, we only require the "MAY" flags. | 902 | * If 'force' is set, we only require the "MAY" flags. | 
| 902 | */ | 903 | */ | 
| 903 | flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 904 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
| 904 | flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 905 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
| 905 | i = 0; | 906 | i = 0; | 
| 906 | 907 | ||
| 907 | do { | 908 | do { | 
| 908 | struct vm_area_struct * vma; | 909 | struct vm_area_struct *vma; | 
| 910 | unsigned int foll_flags; | ||
| 909 | 911 | ||
| 910 | vma = find_extend_vma(mm, start); | 912 | vma = find_extend_vma(mm, start); | 
| 911 | if (!vma && in_gate_area(tsk, start)) { | 913 | if (!vma && in_gate_area(tsk, start)) { | 
| @@ -945,8 +947,8 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 945 | continue; | 947 | continue; | 
| 946 | } | 948 | } | 
| 947 | 949 | ||
| 948 | if (!vma || (vma->vm_flags & VM_IO) | 950 | if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED)) | 
| 949 | || !(flags & vma->vm_flags)) | 951 | || !(vm_flags & vma->vm_flags)) | 
| 950 | return i ? : -EFAULT; | 952 | return i ? : -EFAULT; | 
| 951 | 953 | ||
| 952 | if (is_vm_hugetlb_page(vma)) { | 954 | if (is_vm_hugetlb_page(vma)) { | 
| @@ -954,29 +956,25 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 954 | &start, &len, i); | 956 | &start, &len, i); | 
| 955 | continue; | 957 | continue; | 
| 956 | } | 958 | } | 
| 957 | spin_lock(&mm->page_table_lock); | 959 | |
| 960 | foll_flags = FOLL_TOUCH; | ||
| 961 | if (pages) | ||
| 962 | foll_flags |= FOLL_GET; | ||
| 963 | if (!write && !(vma->vm_flags & VM_LOCKED) && | ||
| 964 | (!vma->vm_ops || !vma->vm_ops->nopage)) | ||
| 965 | foll_flags |= FOLL_ANON; | ||
| 966 | |||
| 958 | do { | 967 | do { | 
| 959 | int write_access = write; | ||
| 960 | struct page *page; | 968 | struct page *page; | 
| 961 | 969 | ||
| 962 | cond_resched_lock(&mm->page_table_lock); | 970 | if (write) | 
| 963 | while (!(page = follow_page(mm, start, write_access))) { | 971 | foll_flags |= FOLL_WRITE; | 
| 964 | int ret; | ||
| 965 | |||
| 966 | /* | ||
| 967 | * Shortcut for anonymous pages. We don't want | ||
| 968 | * to force the creation of pages tables for | ||
| 969 | * insanely big anonymously mapped areas that | ||
| 970 | * nobody touched so far. This is important | ||
| 971 | * for doing a core dump for these mappings. | ||
| 972 | */ | ||
| 973 | if (!write && untouched_anonymous_page(mm,vma,start)) { | ||
| 974 | page = ZERO_PAGE(start); | ||
| 975 | break; | ||
| 976 | } | ||
| 977 | spin_unlock(&mm->page_table_lock); | ||
| 978 | ret = __handle_mm_fault(mm, vma, start, write_access); | ||
| 979 | 972 | ||
| 973 | cond_resched(); | ||
| 974 | while (!(page = follow_page(mm, start, foll_flags))) { | ||
| 975 | int ret; | ||
| 976 | ret = __handle_mm_fault(mm, vma, start, | ||
| 977 | foll_flags & FOLL_WRITE); | ||
| 980 | /* | 978 | /* | 
| 981 | * The VM_FAULT_WRITE bit tells us that do_wp_page has | 979 | * The VM_FAULT_WRITE bit tells us that do_wp_page has | 
| 982 | * broken COW when necessary, even if maybe_mkwrite | 980 | * broken COW when necessary, even if maybe_mkwrite | 
| @@ -984,7 +982,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 984 | * subsequent page lookups as if they were reads. | 982 | * subsequent page lookups as if they were reads. | 
| 985 | */ | 983 | */ | 
| 986 | if (ret & VM_FAULT_WRITE) | 984 | if (ret & VM_FAULT_WRITE) | 
| 987 | write_access = 0; | 985 | foll_flags &= ~FOLL_WRITE; | 
| 988 | 986 | ||
| 989 | switch (ret & ~VM_FAULT_WRITE) { | 987 | switch (ret & ~VM_FAULT_WRITE) { | 
| 990 | case VM_FAULT_MINOR: | 988 | case VM_FAULT_MINOR: | 
| @@ -1000,13 +998,10 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 1000 | default: | 998 | default: | 
| 1001 | BUG(); | 999 | BUG(); | 
| 1002 | } | 1000 | } | 
| 1003 | spin_lock(&mm->page_table_lock); | ||
| 1004 | } | 1001 | } | 
| 1005 | if (pages) { | 1002 | if (pages) { | 
| 1006 | pages[i] = page; | 1003 | pages[i] = page; | 
| 1007 | flush_dcache_page(page); | 1004 | flush_dcache_page(page); | 
| 1008 | if (!PageReserved(page)) | ||
| 1009 | page_cache_get(page); | ||
| 1010 | } | 1005 | } | 
| 1011 | if (vmas) | 1006 | if (vmas) | 
| 1012 | vmas[i] = vma; | 1007 | vmas[i] = vma; | 
| @@ -1014,7 +1009,6 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
| 1014 | start += PAGE_SIZE; | 1009 | start += PAGE_SIZE; | 
| 1015 | len--; | 1010 | len--; | 
| 1016 | } while (len && start < vma->vm_end); | 1011 | } while (len && start < vma->vm_end); | 
| 1017 | spin_unlock(&mm->page_table_lock); | ||
| 1018 | } while (len); | 1012 | } while (len); | 
| 1019 | return i; | 1013 | return i; | 
| 1020 | } | 1014 | } | 
| @@ -1024,16 +1018,21 @@ static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |||
| 1024 | unsigned long addr, unsigned long end, pgprot_t prot) | 1018 | unsigned long addr, unsigned long end, pgprot_t prot) | 
| 1025 | { | 1019 | { | 
| 1026 | pte_t *pte; | 1020 | pte_t *pte; | 
| 1021 | spinlock_t *ptl; | ||
| 1027 | 1022 | ||
| 1028 | pte = pte_alloc_map(mm, pmd, addr); | 1023 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
| 1029 | if (!pte) | 1024 | if (!pte) | 
| 1030 | return -ENOMEM; | 1025 | return -ENOMEM; | 
| 1031 | do { | 1026 | do { | 
| 1032 | pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); | 1027 | struct page *page = ZERO_PAGE(addr); | 
| 1028 | pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); | ||
| 1029 | page_cache_get(page); | ||
| 1030 | page_add_file_rmap(page); | ||
| 1031 | inc_mm_counter(mm, file_rss); | ||
| 1033 | BUG_ON(!pte_none(*pte)); | 1032 | BUG_ON(!pte_none(*pte)); | 
| 1034 | set_pte_at(mm, addr, pte, zero_pte); | 1033 | set_pte_at(mm, addr, pte, zero_pte); | 
| 1035 | } while (pte++, addr += PAGE_SIZE, addr != end); | 1034 | } while (pte++, addr += PAGE_SIZE, addr != end); | 
| 1036 | pte_unmap(pte - 1); | 1035 | pte_unmap_unlock(pte - 1, ptl); | 
| 1037 | return 0; | 1036 | return 0; | 
| 1038 | } | 1037 | } | 
| 1039 | 1038 | ||
| @@ -1083,14 +1082,12 @@ int zeromap_page_range(struct vm_area_struct *vma, | |||
| 1083 | BUG_ON(addr >= end); | 1082 | BUG_ON(addr >= end); | 
| 1084 | pgd = pgd_offset(mm, addr); | 1083 | pgd = pgd_offset(mm, addr); | 
| 1085 | flush_cache_range(vma, addr, end); | 1084 | flush_cache_range(vma, addr, end); | 
| 1086 | spin_lock(&mm->page_table_lock); | ||
| 1087 | do { | 1085 | do { | 
| 1088 | next = pgd_addr_end(addr, end); | 1086 | next = pgd_addr_end(addr, end); | 
| 1089 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | 1087 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | 
| 1090 | if (err) | 1088 | if (err) | 
| 1091 | break; | 1089 | break; | 
| 1092 | } while (pgd++, addr = next, addr != end); | 1090 | } while (pgd++, addr = next, addr != end); | 
| 1093 | spin_unlock(&mm->page_table_lock); | ||
| 1094 | return err; | 1091 | return err; | 
| 1095 | } | 1092 | } | 
| 1096 | 1093 | ||
| @@ -1104,17 +1101,17 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |||
| 1104 | unsigned long pfn, pgprot_t prot) | 1101 | unsigned long pfn, pgprot_t prot) | 
| 1105 | { | 1102 | { | 
| 1106 | pte_t *pte; | 1103 | pte_t *pte; | 
| 1104 | spinlock_t *ptl; | ||
| 1107 | 1105 | ||
| 1108 | pte = pte_alloc_map(mm, pmd, addr); | 1106 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
| 1109 | if (!pte) | 1107 | if (!pte) | 
| 1110 | return -ENOMEM; | 1108 | return -ENOMEM; | 
| 1111 | do { | 1109 | do { | 
| 1112 | BUG_ON(!pte_none(*pte)); | 1110 | BUG_ON(!pte_none(*pte)); | 
| 1113 | if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) | 1111 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | 
| 1114 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | ||
| 1115 | pfn++; | 1112 | pfn++; | 
| 1116 | } while (pte++, addr += PAGE_SIZE, addr != end); | 1113 | } while (pte++, addr += PAGE_SIZE, addr != end); | 
| 1117 | pte_unmap(pte - 1); | 1114 | pte_unmap_unlock(pte - 1, ptl); | 
| 1118 | return 0; | 1115 | return 0; | 
| 1119 | } | 1116 | } | 
| 1120 | 1117 | ||
| @@ -1173,8 +1170,8 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |||
| 1173 | * rest of the world about it: | 1170 | * rest of the world about it: | 
| 1174 | * VM_IO tells people not to look at these pages | 1171 | * VM_IO tells people not to look at these pages | 
| 1175 | * (accesses can have side effects). | 1172 | * (accesses can have side effects). | 
| 1176 | * VM_RESERVED tells swapout not to try to touch | 1173 | * VM_RESERVED tells the core MM not to "manage" these pages | 
| 1177 | * this region. | 1174 | * (e.g. refcount, mapcount, try to swap them out). | 
| 1178 | */ | 1175 | */ | 
| 1179 | vma->vm_flags |= VM_IO | VM_RESERVED; | 1176 | vma->vm_flags |= VM_IO | VM_RESERVED; | 
| 1180 | 1177 | ||
| @@ -1182,7 +1179,6 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |||
| 1182 | pfn -= addr >> PAGE_SHIFT; | 1179 | pfn -= addr >> PAGE_SHIFT; | 
| 1183 | pgd = pgd_offset(mm, addr); | 1180 | pgd = pgd_offset(mm, addr); | 
| 1184 | flush_cache_range(vma, addr, end); | 1181 | flush_cache_range(vma, addr, end); | 
| 1185 | spin_lock(&mm->page_table_lock); | ||
| 1186 | do { | 1182 | do { | 
| 1187 | next = pgd_addr_end(addr, end); | 1183 | next = pgd_addr_end(addr, end); | 
| 1188 | err = remap_pud_range(mm, pgd, addr, next, | 1184 | err = remap_pud_range(mm, pgd, addr, next, | 
| @@ -1190,12 +1186,36 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |||
| 1190 | if (err) | 1186 | if (err) | 
| 1191 | break; | 1187 | break; | 
| 1192 | } while (pgd++, addr = next, addr != end); | 1188 | } while (pgd++, addr = next, addr != end); | 
| 1193 | spin_unlock(&mm->page_table_lock); | ||
| 1194 | return err; | 1189 | return err; | 
| 1195 | } | 1190 | } | 
| 1196 | EXPORT_SYMBOL(remap_pfn_range); | 1191 | EXPORT_SYMBOL(remap_pfn_range); | 
| 1197 | 1192 | ||
| 1198 | /* | 1193 | /* | 
| 1194 | * handle_pte_fault chooses page fault handler according to an entry | ||
| 1195 | * which was read non-atomically. Before making any commitment, on | ||
| 1196 | * those architectures or configurations (e.g. i386 with PAE) which | ||
| 1197 | * might give a mix of unmatched parts, do_swap_page and do_file_page | ||
| 1198 | * must check under lock before unmapping the pte and proceeding | ||
| 1199 | * (but do_wp_page is only called after already making such a check; | ||
| 1200 | * and do_anonymous_page and do_no_page can safely check later on). | ||
| 1201 | */ | ||
| 1202 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | ||
| 1203 | pte_t *page_table, pte_t orig_pte) | ||
| 1204 | { | ||
| 1205 | int same = 1; | ||
| 1206 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | ||
| 1207 | if (sizeof(pte_t) > sizeof(unsigned long)) { | ||
| 1208 | spinlock_t *ptl = pte_lockptr(mm, pmd); | ||
| 1209 | spin_lock(ptl); | ||
| 1210 | same = pte_same(*page_table, orig_pte); | ||
| 1211 | spin_unlock(ptl); | ||
| 1212 | } | ||
| 1213 | #endif | ||
| 1214 | pte_unmap(page_table); | ||
| 1215 | return same; | ||
| 1216 | } | ||
| 1217 | |||
| 1218 | /* | ||
| 1199 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | 1219 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | 
| 1200 | * servicing faults for write access. In the normal case, do always want | 1220 | * servicing faults for write access. In the normal case, do always want | 
| 1201 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | 1221 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | 
| @@ -1209,28 +1229,10 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |||
| 1209 | } | 1229 | } | 
| 1210 | 1230 | ||
| 1211 | /* | 1231 | /* | 
| 1212 | * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock | ||
| 1213 | */ | ||
| 1214 | static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, | ||
| 1215 | pte_t *page_table) | ||
| 1216 | { | ||
| 1217 | pte_t entry; | ||
| 1218 | |||
| 1219 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), | ||
| 1220 | vma); | ||
| 1221 | ptep_establish(vma, address, page_table, entry); | ||
| 1222 | update_mmu_cache(vma, address, entry); | ||
| 1223 | lazy_mmu_prot_update(entry); | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* | ||
| 1227 | * This routine handles present pages, when users try to write | 1232 | * This routine handles present pages, when users try to write | 
| 1228 | * to a shared page. It is done by copying the page to a new address | 1233 | * to a shared page. It is done by copying the page to a new address | 
| 1229 | * and decrementing the shared-page counter for the old page. | 1234 | * and decrementing the shared-page counter for the old page. | 
| 1230 | * | 1235 | * | 
| 1231 | * Goto-purists beware: the only reason for goto's here is that it results | ||
| 1232 | * in better assembly code.. The "default" path will see no jumps at all. | ||
| 1233 | * | ||
| 1234 | * Note that this routine assumes that the protection checks have been | 1236 | * Note that this routine assumes that the protection checks have been | 
| 1235 | * done by the caller (the low-level page fault routine in most cases). | 1237 | * done by the caller (the low-level page fault routine in most cases). | 
| 1236 | * Thus we can safely just mark it writable once we've done any necessary | 1238 | * Thus we can safely just mark it writable once we've done any necessary | 
| @@ -1240,28 +1242,28 @@ static inline void break_cow(struct vm_area_struct * vma, struct page * new_page | |||
| 1240 | * change only once the write actually happens. This avoids a few races, | 1242 | * change only once the write actually happens. This avoids a few races, | 
| 1241 | * and potentially makes it more efficient. | 1243 | * and potentially makes it more efficient. | 
| 1242 | * | 1244 | * | 
| 1243 | * We hold the mm semaphore and the page_table_lock on entry and exit | 1245 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
| 1244 | * with the page_table_lock released. | 1246 | * but allow concurrent faults), with pte both mapped and locked. | 
| 1247 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
| 1245 | */ | 1248 | */ | 
| 1246 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | 1249 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 1247 | unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) | 1250 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
| 1251 | spinlock_t *ptl, pte_t orig_pte) | ||
| 1248 | { | 1252 | { | 
| 1249 | struct page *old_page, *new_page; | 1253 | struct page *old_page, *new_page; | 
| 1250 | unsigned long pfn = pte_pfn(pte); | 1254 | unsigned long pfn = pte_pfn(orig_pte); | 
| 1251 | pte_t entry; | 1255 | pte_t entry; | 
| 1252 | int ret; | 1256 | int ret = VM_FAULT_MINOR; | 
| 1257 | |||
| 1258 | BUG_ON(vma->vm_flags & VM_RESERVED); | ||
| 1253 | 1259 | ||
| 1254 | if (unlikely(!pfn_valid(pfn))) { | 1260 | if (unlikely(!pfn_valid(pfn))) { | 
| 1255 | /* | 1261 | /* | 
| 1256 | * This should really halt the system so it can be debugged or | 1262 | * Page table corrupted: show pte and kill process. | 
| 1257 | * at least the kernel stops what it's doing before it corrupts | ||
| 1258 | * data, but for the moment just pretend this is OOM. | ||
| 1259 | */ | 1263 | */ | 
| 1260 | pte_unmap(page_table); | 1264 | print_bad_pte(vma, orig_pte, address); | 
| 1261 | printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", | 1265 | ret = VM_FAULT_OOM; | 
| 1262 | address); | 1266 | goto unlock; | 
| 1263 | spin_unlock(&mm->page_table_lock); | ||
| 1264 | return VM_FAULT_OOM; | ||
| 1265 | } | 1267 | } | 
| 1266 | old_page = pfn_to_page(pfn); | 1268 | old_page = pfn_to_page(pfn); | 
| 1267 | 1269 | ||
| @@ -1270,52 +1272,51 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | |||
| 1270 | unlock_page(old_page); | 1272 | unlock_page(old_page); | 
| 1271 | if (reuse) { | 1273 | if (reuse) { | 
| 1272 | flush_cache_page(vma, address, pfn); | 1274 | flush_cache_page(vma, address, pfn); | 
| 1273 | entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), | 1275 | entry = pte_mkyoung(orig_pte); | 
| 1274 | vma); | 1276 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
| 1275 | ptep_set_access_flags(vma, address, page_table, entry, 1); | 1277 | ptep_set_access_flags(vma, address, page_table, entry, 1); | 
| 1276 | update_mmu_cache(vma, address, entry); | 1278 | update_mmu_cache(vma, address, entry); | 
| 1277 | lazy_mmu_prot_update(entry); | 1279 | lazy_mmu_prot_update(entry); | 
| 1278 | pte_unmap(page_table); | 1280 | ret |= VM_FAULT_WRITE; | 
| 1279 | spin_unlock(&mm->page_table_lock); | 1281 | goto unlock; | 
| 1280 | return VM_FAULT_MINOR|VM_FAULT_WRITE; | ||
| 1281 | } | 1282 | } | 
| 1282 | } | 1283 | } | 
| 1283 | pte_unmap(page_table); | ||
| 1284 | 1284 | ||
| 1285 | /* | 1285 | /* | 
| 1286 | * Ok, we need to copy. Oh, well.. | 1286 | * Ok, we need to copy. Oh, well.. | 
| 1287 | */ | 1287 | */ | 
| 1288 | if (!PageReserved(old_page)) | 1288 | page_cache_get(old_page); | 
| 1289 | page_cache_get(old_page); | 1289 | pte_unmap_unlock(page_table, ptl); | 
| 1290 | spin_unlock(&mm->page_table_lock); | ||
| 1291 | 1290 | ||
| 1292 | if (unlikely(anon_vma_prepare(vma))) | 1291 | if (unlikely(anon_vma_prepare(vma))) | 
| 1293 | goto no_new_page; | 1292 | goto oom; | 
| 1294 | if (old_page == ZERO_PAGE(address)) { | 1293 | if (old_page == ZERO_PAGE(address)) { | 
| 1295 | new_page = alloc_zeroed_user_highpage(vma, address); | 1294 | new_page = alloc_zeroed_user_highpage(vma, address); | 
| 1296 | if (!new_page) | 1295 | if (!new_page) | 
| 1297 | goto no_new_page; | 1296 | goto oom; | 
| 1298 | } else { | 1297 | } else { | 
| 1299 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 1298 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
| 1300 | if (!new_page) | 1299 | if (!new_page) | 
| 1301 | goto no_new_page; | 1300 | goto oom; | 
| 1302 | copy_user_highpage(new_page, old_page, address); | 1301 | copy_user_highpage(new_page, old_page, address); | 
| 1303 | } | 1302 | } | 
| 1303 | |||
| 1304 | /* | 1304 | /* | 
| 1305 | * Re-check the pte - we dropped the lock | 1305 | * Re-check the pte - we dropped the lock | 
| 1306 | */ | 1306 | */ | 
| 1307 | ret = VM_FAULT_MINOR; | 1307 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 1308 | spin_lock(&mm->page_table_lock); | 1308 | if (likely(pte_same(*page_table, orig_pte))) { | 
| 1309 | page_table = pte_offset_map(pmd, address); | 1309 | page_remove_rmap(old_page); | 
| 1310 | if (likely(pte_same(*page_table, pte))) { | 1310 | if (!PageAnon(old_page)) { | 
| 1311 | if (PageAnon(old_page)) | 1311 | inc_mm_counter(mm, anon_rss); | 
| 1312 | dec_mm_counter(mm, anon_rss); | 1312 | dec_mm_counter(mm, file_rss); | 
| 1313 | if (PageReserved(old_page)) | 1313 | } | 
| 1314 | inc_mm_counter(mm, rss); | ||
| 1315 | else | ||
| 1316 | page_remove_rmap(old_page); | ||
| 1317 | flush_cache_page(vma, address, pfn); | 1314 | flush_cache_page(vma, address, pfn); | 
| 1318 | break_cow(vma, new_page, address, page_table); | 1315 | entry = mk_pte(new_page, vma->vm_page_prot); | 
| 1316 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
| 1317 | ptep_establish(vma, address, page_table, entry); | ||
| 1318 | update_mmu_cache(vma, address, entry); | ||
| 1319 | lazy_mmu_prot_update(entry); | ||
| 1319 | lru_cache_add_active(new_page); | 1320 | lru_cache_add_active(new_page); | 
| 1320 | page_add_anon_rmap(new_page, vma, address); | 1321 | page_add_anon_rmap(new_page, vma, address); | 
| 1321 | 1322 | ||
| @@ -1323,13 +1324,12 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | |||
| 1323 | new_page = old_page; | 1324 | new_page = old_page; | 
| 1324 | ret |= VM_FAULT_WRITE; | 1325 | ret |= VM_FAULT_WRITE; | 
| 1325 | } | 1326 | } | 
| 1326 | pte_unmap(page_table); | ||
| 1327 | page_cache_release(new_page); | 1327 | page_cache_release(new_page); | 
| 1328 | page_cache_release(old_page); | 1328 | page_cache_release(old_page); | 
| 1329 | spin_unlock(&mm->page_table_lock); | 1329 | unlock: | 
| 1330 | pte_unmap_unlock(page_table, ptl); | ||
| 1330 | return ret; | 1331 | return ret; | 
| 1331 | 1332 | oom: | |
| 1332 | no_new_page: | ||
| 1333 | page_cache_release(old_page); | 1333 | page_cache_release(old_page); | 
| 1334 | return VM_FAULT_OOM; | 1334 | return VM_FAULT_OOM; | 
| 1335 | } | 1335 | } | 
| @@ -1399,13 +1399,6 @@ again: | |||
| 1399 | 1399 | ||
| 1400 | restart_addr = zap_page_range(vma, start_addr, | 1400 | restart_addr = zap_page_range(vma, start_addr, | 
| 1401 | end_addr - start_addr, details); | 1401 | end_addr - start_addr, details); | 
| 1402 | |||
| 1403 | /* | ||
| 1404 | * We cannot rely on the break test in unmap_vmas: | ||
| 1405 | * on the one hand, we don't want to restart our loop | ||
| 1406 | * just because that broke out for the page_table_lock; | ||
| 1407 | * on the other hand, it does no test when vma is small. | ||
| 1408 | */ | ||
| 1409 | need_break = need_resched() || | 1402 | need_break = need_resched() || | 
| 1410 | need_lockbreak(details->i_mmap_lock); | 1403 | need_lockbreak(details->i_mmap_lock); | 
| 1411 | 1404 | ||
| @@ -1654,38 +1647,37 @@ void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struc | |||
| 1654 | } | 1647 | } | 
| 1655 | 1648 | ||
| 1656 | /* | 1649 | /* | 
| 1657 | * We hold the mm semaphore and the page_table_lock on entry and | 1650 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
| 1658 | * should release the pagetable lock on exit.. | 1651 | * but allow concurrent faults), and pte mapped but not yet locked. | 
| 1652 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
| 1659 | */ | 1653 | */ | 
| 1660 | static int do_swap_page(struct mm_struct * mm, | 1654 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 1661 | struct vm_area_struct * vma, unsigned long address, | 1655 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
| 1662 | pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) | 1656 | int write_access, pte_t orig_pte) | 
| 1663 | { | 1657 | { | 
| 1658 | spinlock_t *ptl; | ||
| 1664 | struct page *page; | 1659 | struct page *page; | 
| 1665 | swp_entry_t entry = pte_to_swp_entry(orig_pte); | 1660 | swp_entry_t entry; | 
| 1666 | pte_t pte; | 1661 | pte_t pte; | 
| 1667 | int ret = VM_FAULT_MINOR; | 1662 | int ret = VM_FAULT_MINOR; | 
| 1668 | 1663 | ||
| 1669 | pte_unmap(page_table); | 1664 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
| 1670 | spin_unlock(&mm->page_table_lock); | 1665 | goto out; | 
| 1666 | |||
| 1667 | entry = pte_to_swp_entry(orig_pte); | ||
| 1671 | page = lookup_swap_cache(entry); | 1668 | page = lookup_swap_cache(entry); | 
| 1672 | if (!page) { | 1669 | if (!page) { | 
| 1673 | swapin_readahead(entry, address, vma); | 1670 | swapin_readahead(entry, address, vma); | 
| 1674 | page = read_swap_cache_async(entry, vma, address); | 1671 | page = read_swap_cache_async(entry, vma, address); | 
| 1675 | if (!page) { | 1672 | if (!page) { | 
| 1676 | /* | 1673 | /* | 
| 1677 | * Back out if somebody else faulted in this pte while | 1674 | * Back out if somebody else faulted in this pte | 
| 1678 | * we released the page table lock. | 1675 | * while we released the pte lock. | 
| 1679 | */ | 1676 | */ | 
| 1680 | spin_lock(&mm->page_table_lock); | 1677 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 1681 | page_table = pte_offset_map(pmd, address); | ||
| 1682 | if (likely(pte_same(*page_table, orig_pte))) | 1678 | if (likely(pte_same(*page_table, orig_pte))) | 
| 1683 | ret = VM_FAULT_OOM; | 1679 | ret = VM_FAULT_OOM; | 
| 1684 | else | 1680 | goto unlock; | 
| 1685 | ret = VM_FAULT_MINOR; | ||
| 1686 | pte_unmap(page_table); | ||
| 1687 | spin_unlock(&mm->page_table_lock); | ||
| 1688 | goto out; | ||
| 1689 | } | 1681 | } | 
| 1690 | 1682 | ||
| 1691 | /* Had to read the page from swap area: Major fault */ | 1683 | /* Had to read the page from swap area: Major fault */ | 
| @@ -1698,15 +1690,11 @@ static int do_swap_page(struct mm_struct * mm, | |||
| 1698 | lock_page(page); | 1690 | lock_page(page); | 
| 1699 | 1691 | ||
| 1700 | /* | 1692 | /* | 
| 1701 | * Back out if somebody else faulted in this pte while we | 1693 | * Back out if somebody else already faulted in this pte. | 
| 1702 | * released the page table lock. | ||
| 1703 | */ | 1694 | */ | 
| 1704 | spin_lock(&mm->page_table_lock); | 1695 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 1705 | page_table = pte_offset_map(pmd, address); | 1696 | if (unlikely(!pte_same(*page_table, orig_pte))) | 
| 1706 | if (unlikely(!pte_same(*page_table, orig_pte))) { | ||
| 1707 | ret = VM_FAULT_MINOR; | ||
| 1708 | goto out_nomap; | 1697 | goto out_nomap; | 
| 1709 | } | ||
| 1710 | 1698 | ||
| 1711 | if (unlikely(!PageUptodate(page))) { | 1699 | if (unlikely(!PageUptodate(page))) { | 
| 1712 | ret = VM_FAULT_SIGBUS; | 1700 | ret = VM_FAULT_SIGBUS; | 
| @@ -1715,7 +1703,7 @@ static int do_swap_page(struct mm_struct * mm, | |||
| 1715 | 1703 | ||
| 1716 | /* The page isn't present yet, go ahead with the fault. */ | 1704 | /* The page isn't present yet, go ahead with the fault. */ | 
| 1717 | 1705 | ||
| 1718 | inc_mm_counter(mm, rss); | 1706 | inc_mm_counter(mm, anon_rss); | 
| 1719 | pte = mk_pte(page, vma->vm_page_prot); | 1707 | pte = mk_pte(page, vma->vm_page_prot); | 
| 1720 | if (write_access && can_share_swap_page(page)) { | 1708 | if (write_access && can_share_swap_page(page)) { | 
| 1721 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 1709 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
| @@ -1733,7 +1721,7 @@ static int do_swap_page(struct mm_struct * mm, | |||
| 1733 | 1721 | ||
| 1734 | if (write_access) { | 1722 | if (write_access) { | 
| 1735 | if (do_wp_page(mm, vma, address, | 1723 | if (do_wp_page(mm, vma, address, | 
| 1736 | page_table, pmd, pte) == VM_FAULT_OOM) | 1724 | page_table, pmd, ptl, pte) == VM_FAULT_OOM) | 
| 1737 | ret = VM_FAULT_OOM; | 1725 | ret = VM_FAULT_OOM; | 
| 1738 | goto out; | 1726 | goto out; | 
| 1739 | } | 1727 | } | 
| @@ -1741,74 +1729,76 @@ static int do_swap_page(struct mm_struct * mm, | |||
| 1741 | /* No need to invalidate - it was non-present before */ | 1729 | /* No need to invalidate - it was non-present before */ | 
| 1742 | update_mmu_cache(vma, address, pte); | 1730 | update_mmu_cache(vma, address, pte); | 
| 1743 | lazy_mmu_prot_update(pte); | 1731 | lazy_mmu_prot_update(pte); | 
| 1744 | pte_unmap(page_table); | 1732 | unlock: | 
| 1745 | spin_unlock(&mm->page_table_lock); | 1733 | pte_unmap_unlock(page_table, ptl); | 
| 1746 | out: | 1734 | out: | 
| 1747 | return ret; | 1735 | return ret; | 
| 1748 | out_nomap: | 1736 | out_nomap: | 
| 1749 | pte_unmap(page_table); | 1737 | pte_unmap_unlock(page_table, ptl); | 
| 1750 | spin_unlock(&mm->page_table_lock); | ||
| 1751 | unlock_page(page); | 1738 | unlock_page(page); | 
| 1752 | page_cache_release(page); | 1739 | page_cache_release(page); | 
| 1753 | goto out; | 1740 | return ret; | 
| 1754 | } | 1741 | } | 
| 1755 | 1742 | ||
| 1756 | /* | 1743 | /* | 
| 1757 | * We are called with the MM semaphore and page_table_lock | 1744 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
| 1758 | * spinlock held to protect against concurrent faults in | 1745 | * but allow concurrent faults), and pte mapped but not yet locked. | 
| 1759 | * multithreaded programs. | 1746 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
| 1760 | */ | 1747 | */ | 
| 1761 | static int | 1748 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 1762 | do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1749 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
| 1763 | pte_t *page_table, pmd_t *pmd, int write_access, | 1750 | int write_access) | 
| 1764 | unsigned long addr) | ||
| 1765 | { | 1751 | { | 
| 1752 | struct page *page; | ||
| 1753 | spinlock_t *ptl; | ||
| 1766 | pte_t entry; | 1754 | pte_t entry; | 
| 1767 | struct page * page = ZERO_PAGE(addr); | ||
| 1768 | |||
| 1769 | /* Read-only mapping of ZERO_PAGE. */ | ||
| 1770 | entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); | ||
| 1771 | 1755 | ||
| 1772 | /* ..except if it's a write access */ | ||
| 1773 | if (write_access) { | 1756 | if (write_access) { | 
| 1774 | /* Allocate our own private page. */ | 1757 | /* Allocate our own private page. */ | 
| 1775 | pte_unmap(page_table); | 1758 | pte_unmap(page_table); | 
| 1776 | spin_unlock(&mm->page_table_lock); | ||
| 1777 | 1759 | ||
| 1778 | if (unlikely(anon_vma_prepare(vma))) | 1760 | if (unlikely(anon_vma_prepare(vma))) | 
| 1779 | goto no_mem; | 1761 | goto oom; | 
| 1780 | page = alloc_zeroed_user_highpage(vma, addr); | 1762 | page = alloc_zeroed_user_highpage(vma, address); | 
| 1781 | if (!page) | 1763 | if (!page) | 
| 1782 | goto no_mem; | 1764 | goto oom; | 
| 1783 | 1765 | ||
| 1784 | spin_lock(&mm->page_table_lock); | 1766 | entry = mk_pte(page, vma->vm_page_prot); | 
| 1785 | page_table = pte_offset_map(pmd, addr); | 1767 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
| 1786 | 1768 | ||
| 1787 | if (!pte_none(*page_table)) { | 1769 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 1788 | pte_unmap(page_table); | 1770 | if (!pte_none(*page_table)) | 
| 1789 | page_cache_release(page); | 1771 | goto release; | 
| 1790 | spin_unlock(&mm->page_table_lock); | 1772 | inc_mm_counter(mm, anon_rss); | 
| 1791 | goto out; | ||
| 1792 | } | ||
| 1793 | inc_mm_counter(mm, rss); | ||
| 1794 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, | ||
| 1795 | vma->vm_page_prot)), | ||
| 1796 | vma); | ||
| 1797 | lru_cache_add_active(page); | 1773 | lru_cache_add_active(page); | 
| 1798 | SetPageReferenced(page); | 1774 | SetPageReferenced(page); | 
| 1799 | page_add_anon_rmap(page, vma, addr); | 1775 | page_add_anon_rmap(page, vma, address); | 
| 1776 | } else { | ||
| 1777 | /* Map the ZERO_PAGE - vm_page_prot is readonly */ | ||
| 1778 | page = ZERO_PAGE(address); | ||
| 1779 | page_cache_get(page); | ||
| 1780 | entry = mk_pte(page, vma->vm_page_prot); | ||
| 1781 | |||
| 1782 | ptl = pte_lockptr(mm, pmd); | ||
| 1783 | spin_lock(ptl); | ||
| 1784 | if (!pte_none(*page_table)) | ||
| 1785 | goto release; | ||
| 1786 | inc_mm_counter(mm, file_rss); | ||
| 1787 | page_add_file_rmap(page); | ||
| 1800 | } | 1788 | } | 
| 1801 | 1789 | ||
| 1802 | set_pte_at(mm, addr, page_table, entry); | 1790 | set_pte_at(mm, address, page_table, entry); | 
| 1803 | pte_unmap(page_table); | ||
| 1804 | 1791 | ||
| 1805 | /* No need to invalidate - it was non-present before */ | 1792 | /* No need to invalidate - it was non-present before */ | 
| 1806 | update_mmu_cache(vma, addr, entry); | 1793 | update_mmu_cache(vma, address, entry); | 
| 1807 | lazy_mmu_prot_update(entry); | 1794 | lazy_mmu_prot_update(entry); | 
| 1808 | spin_unlock(&mm->page_table_lock); | 1795 | unlock: | 
| 1809 | out: | 1796 | pte_unmap_unlock(page_table, ptl); | 
| 1810 | return VM_FAULT_MINOR; | 1797 | return VM_FAULT_MINOR; | 
| 1811 | no_mem: | 1798 | release: | 
| 1799 | page_cache_release(page); | ||
| 1800 | goto unlock; | ||
| 1801 | oom: | ||
| 1812 | return VM_FAULT_OOM; | 1802 | return VM_FAULT_OOM; | 
| 1813 | } | 1803 | } | 
| 1814 | 1804 | ||
| @@ -1821,25 +1811,23 @@ no_mem: | |||
| 1821 | * As this is called only for pages that do not currently exist, we | 1811 | * As this is called only for pages that do not currently exist, we | 
| 1822 | * do not need to flush old virtual caches or the TLB. | 1812 | * do not need to flush old virtual caches or the TLB. | 
| 1823 | * | 1813 | * | 
| 1824 | * This is called with the MM semaphore held and the page table | 1814 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
| 1825 | * spinlock held. Exit with the spinlock released. | 1815 | * but allow concurrent faults), and pte mapped but not yet locked. | 
| 1816 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
| 1826 | */ | 1817 | */ | 
| 1827 | static int | 1818 | static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 1828 | do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1819 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
| 1829 | unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) | 1820 | int write_access) | 
| 1830 | { | 1821 | { | 
| 1831 | struct page * new_page; | 1822 | spinlock_t *ptl; | 
| 1823 | struct page *new_page; | ||
| 1832 | struct address_space *mapping = NULL; | 1824 | struct address_space *mapping = NULL; | 
| 1833 | pte_t entry; | 1825 | pte_t entry; | 
| 1834 | unsigned int sequence = 0; | 1826 | unsigned int sequence = 0; | 
| 1835 | int ret = VM_FAULT_MINOR; | 1827 | int ret = VM_FAULT_MINOR; | 
| 1836 | int anon = 0; | 1828 | int anon = 0; | 
| 1837 | 1829 | ||
| 1838 | if (!vma->vm_ops || !vma->vm_ops->nopage) | ||
| 1839 | return do_anonymous_page(mm, vma, page_table, | ||
| 1840 | pmd, write_access, address); | ||
| 1841 | pte_unmap(page_table); | 1830 | pte_unmap(page_table); | 
| 1842 | spin_unlock(&mm->page_table_lock); | ||
| 1843 | 1831 | ||
| 1844 | if (vma->vm_file) { | 1832 | if (vma->vm_file) { | 
| 1845 | mapping = vma->vm_file->f_mapping; | 1833 | mapping = vma->vm_file->f_mapping; | 
| @@ -1847,7 +1835,6 @@ do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
| 1847 | smp_rmb(); /* serializes i_size against truncate_count */ | 1835 | smp_rmb(); /* serializes i_size against truncate_count */ | 
| 1848 | } | 1836 | } | 
| 1849 | retry: | 1837 | retry: | 
| 1850 | cond_resched(); | ||
| 1851 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 1838 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 
| 1852 | /* | 1839 | /* | 
| 1853 | * No smp_rmb is needed here as long as there's a full | 1840 | * No smp_rmb is needed here as long as there's a full | 
| @@ -1880,19 +1867,20 @@ retry: | |||
| 1880 | anon = 1; | 1867 | anon = 1; | 
| 1881 | } | 1868 | } | 
| 1882 | 1869 | ||
| 1883 | spin_lock(&mm->page_table_lock); | 1870 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
| 1884 | /* | 1871 | /* | 
| 1885 | * For a file-backed vma, someone could have truncated or otherwise | 1872 | * For a file-backed vma, someone could have truncated or otherwise | 
| 1886 | * invalidated this page. If unmap_mapping_range got called, | 1873 | * invalidated this page. If unmap_mapping_range got called, | 
| 1887 | * retry getting the page. | 1874 | * retry getting the page. | 
| 1888 | */ | 1875 | */ | 
| 1889 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | 1876 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | 
| 1890 | sequence = mapping->truncate_count; | 1877 | pte_unmap_unlock(page_table, ptl); | 
| 1891 | spin_unlock(&mm->page_table_lock); | ||
| 1892 | page_cache_release(new_page); | 1878 | page_cache_release(new_page); | 
| 1879 | cond_resched(); | ||
| 1880 | sequence = mapping->truncate_count; | ||
| 1881 | smp_rmb(); | ||
| 1893 | goto retry; | 1882 | goto retry; | 
| 1894 | } | 1883 | } | 
| 1895 | page_table = pte_offset_map(pmd, address); | ||
| 1896 | 1884 | ||
| 1897 | /* | 1885 | /* | 
| 1898 | * This silly early PAGE_DIRTY setting removes a race | 1886 | * This silly early PAGE_DIRTY setting removes a race | 
| @@ -1906,68 +1894,67 @@ retry: | |||
| 1906 | */ | 1894 | */ | 
| 1907 | /* Only go through if we didn't race with anybody else... */ | 1895 | /* Only go through if we didn't race with anybody else... */ | 
| 1908 | if (pte_none(*page_table)) { | 1896 | if (pte_none(*page_table)) { | 
| 1909 | if (!PageReserved(new_page)) | ||
| 1910 | inc_mm_counter(mm, rss); | ||
| 1911 | |||
| 1912 | flush_icache_page(vma, new_page); | 1897 | flush_icache_page(vma, new_page); | 
| 1913 | entry = mk_pte(new_page, vma->vm_page_prot); | 1898 | entry = mk_pte(new_page, vma->vm_page_prot); | 
| 1914 | if (write_access) | 1899 | if (write_access) | 
| 1915 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 1900 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
| 1916 | set_pte_at(mm, address, page_table, entry); | 1901 | set_pte_at(mm, address, page_table, entry); | 
| 1917 | if (anon) { | 1902 | if (anon) { | 
| 1903 | inc_mm_counter(mm, anon_rss); | ||
| 1918 | lru_cache_add_active(new_page); | 1904 | lru_cache_add_active(new_page); | 
| 1919 | page_add_anon_rmap(new_page, vma, address); | 1905 | page_add_anon_rmap(new_page, vma, address); | 
| 1920 | } else | 1906 | } else if (!(vma->vm_flags & VM_RESERVED)) { | 
| 1907 | inc_mm_counter(mm, file_rss); | ||
| 1921 | page_add_file_rmap(new_page); | 1908 | page_add_file_rmap(new_page); | 
| 1922 | pte_unmap(page_table); | 1909 | } | 
| 1923 | } else { | 1910 | } else { | 
| 1924 | /* One of our sibling threads was faster, back out. */ | 1911 | /* One of our sibling threads was faster, back out. */ | 
| 1925 | pte_unmap(page_table); | ||
| 1926 | page_cache_release(new_page); | 1912 | page_cache_release(new_page); | 
| 1927 | spin_unlock(&mm->page_table_lock); | 1913 | goto unlock; | 
| 1928 | goto out; | ||
| 1929 | } | 1914 | } | 
| 1930 | 1915 | ||
| 1931 | /* no need to invalidate: a not-present page shouldn't be cached */ | 1916 | /* no need to invalidate: a not-present page shouldn't be cached */ | 
| 1932 | update_mmu_cache(vma, address, entry); | 1917 | update_mmu_cache(vma, address, entry); | 
| 1933 | lazy_mmu_prot_update(entry); | 1918 | lazy_mmu_prot_update(entry); | 
| 1934 | spin_unlock(&mm->page_table_lock); | 1919 | unlock: | 
| 1935 | out: | 1920 | pte_unmap_unlock(page_table, ptl); | 
| 1936 | return ret; | 1921 | return ret; | 
| 1937 | oom: | 1922 | oom: | 
| 1938 | page_cache_release(new_page); | 1923 | page_cache_release(new_page); | 
| 1939 | ret = VM_FAULT_OOM; | 1924 | return VM_FAULT_OOM; | 
| 1940 | goto out; | ||
| 1941 | } | 1925 | } | 
| 1942 | 1926 | ||
| 1943 | /* | 1927 | /* | 
| 1944 | * Fault of a previously existing named mapping. Repopulate the pte | 1928 | * Fault of a previously existing named mapping. Repopulate the pte | 
| 1945 | * from the encoded file_pte if possible. This enables swappable | 1929 | * from the encoded file_pte if possible. This enables swappable | 
| 1946 | * nonlinear vmas. | 1930 | * nonlinear vmas. | 
| 1931 | * | ||
| 1932 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | ||
| 1933 | * but allow concurrent faults), and pte mapped but not yet locked. | ||
| 1934 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
| 1947 | */ | 1935 | */ | 
| 1948 | static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, | 1936 | static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 1949 | unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) | 1937 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
| 1938 | int write_access, pte_t orig_pte) | ||
| 1950 | { | 1939 | { | 
| 1951 | unsigned long pgoff; | 1940 | pgoff_t pgoff; | 
| 1952 | int err; | 1941 | int err; | 
| 1953 | 1942 | ||
| 1954 | BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); | 1943 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
| 1955 | /* | 1944 | return VM_FAULT_MINOR; | 
| 1956 | * Fall back to the linear mapping if the fs does not support | ||
| 1957 | * ->populate: | ||
| 1958 | */ | ||
| 1959 | if (!vma->vm_ops->populate || | ||
| 1960 | (write_access && !(vma->vm_flags & VM_SHARED))) { | ||
| 1961 | pte_clear(mm, address, pte); | ||
| 1962 | return do_no_page(mm, vma, address, write_access, pte, pmd); | ||
| 1963 | } | ||
| 1964 | |||
| 1965 | pgoff = pte_to_pgoff(*pte); | ||
| 1966 | 1945 | ||
| 1967 | pte_unmap(pte); | 1946 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 
| 1968 | spin_unlock(&mm->page_table_lock); | 1947 | /* | 
| 1948 | * Page table corrupted: show pte and kill process. | ||
| 1949 | */ | ||
| 1950 | print_bad_pte(vma, orig_pte, address); | ||
| 1951 | return VM_FAULT_OOM; | ||
| 1952 | } | ||
| 1953 | /* We can then assume vm->vm_ops && vma->vm_ops->populate */ | ||
| 1969 | 1954 | ||
| 1970 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); | 1955 | pgoff = pte_to_pgoff(orig_pte); | 
| 1956 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, | ||
| 1957 | vma->vm_page_prot, pgoff, 0); | ||
| 1971 | if (err == -ENOMEM) | 1958 | if (err == -ENOMEM) | 
| 1972 | return VM_FAULT_OOM; | 1959 | return VM_FAULT_OOM; | 
| 1973 | if (err) | 1960 | if (err) | 
| @@ -1984,56 +1971,68 @@ static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, | |||
| 1984 | * with external mmu caches can use to update those (ie the Sparc or | 1971 | * with external mmu caches can use to update those (ie the Sparc or | 
| 1985 | * PowerPC hashed page tables that act as extended TLBs). | 1972 | * PowerPC hashed page tables that act as extended TLBs). | 
| 1986 | * | 1973 | * | 
| 1987 | * Note the "page_table_lock". It is to protect against kswapd removing | 1974 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
| 1988 | * pages from under us. Note that kswapd only ever _removes_ pages, never | 1975 | * but allow concurrent faults), and pte mapped but not yet locked. | 
| 1989 | * adds them. As such, once we have noticed that the page is not present, | 1976 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
| 1990 | * we can drop the lock early. | ||
| 1991 | * | ||
| 1992 | * The adding of pages is protected by the MM semaphore (which we hold), | ||
| 1993 | * so we don't need to worry about a page being suddenly been added into | ||
| 1994 | * our VM. | ||
| 1995 | * | ||
| 1996 | * We enter with the pagetable spinlock held, we are supposed to | ||
| 1997 | * release it when done. | ||
| 1998 | */ | 1977 | */ | 
| 1999 | static inline int handle_pte_fault(struct mm_struct *mm, | 1978 | static inline int handle_pte_fault(struct mm_struct *mm, | 
| 2000 | struct vm_area_struct * vma, unsigned long address, | 1979 | struct vm_area_struct *vma, unsigned long address, | 
| 2001 | int write_access, pte_t *pte, pmd_t *pmd) | 1980 | pte_t *pte, pmd_t *pmd, int write_access) | 
| 2002 | { | 1981 | { | 
| 2003 | pte_t entry; | 1982 | pte_t entry; | 
| 1983 | pte_t old_entry; | ||
| 1984 | spinlock_t *ptl; | ||
| 2004 | 1985 | ||
| 2005 | entry = *pte; | 1986 | old_entry = entry = *pte; | 
| 2006 | if (!pte_present(entry)) { | 1987 | if (!pte_present(entry)) { | 
| 2007 | /* | 1988 | if (pte_none(entry)) { | 
| 2008 | * If it truly wasn't present, we know that kswapd | 1989 | if (!vma->vm_ops || !vma->vm_ops->nopage) | 
| 2009 | * and the PTE updates will not touch it later. So | 1990 | return do_anonymous_page(mm, vma, address, | 
| 2010 | * drop the lock. | 1991 | pte, pmd, write_access); | 
| 2011 | */ | 1992 | return do_no_page(mm, vma, address, | 
| 2012 | if (pte_none(entry)) | 1993 | pte, pmd, write_access); | 
| 2013 | return do_no_page(mm, vma, address, write_access, pte, pmd); | 1994 | } | 
| 2014 | if (pte_file(entry)) | 1995 | if (pte_file(entry)) | 
| 2015 | return do_file_page(mm, vma, address, write_access, pte, pmd); | 1996 | return do_file_page(mm, vma, address, | 
| 2016 | return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); | 1997 | pte, pmd, write_access, entry); | 
| 1998 | return do_swap_page(mm, vma, address, | ||
| 1999 | pte, pmd, write_access, entry); | ||
| 2017 | } | 2000 | } | 
| 2018 | 2001 | ||
| 2002 | ptl = pte_lockptr(mm, pmd); | ||
| 2003 | spin_lock(ptl); | ||
| 2004 | if (unlikely(!pte_same(*pte, entry))) | ||
| 2005 | goto unlock; | ||
| 2019 | if (write_access) { | 2006 | if (write_access) { | 
| 2020 | if (!pte_write(entry)) | 2007 | if (!pte_write(entry)) | 
| 2021 | return do_wp_page(mm, vma, address, pte, pmd, entry); | 2008 | return do_wp_page(mm, vma, address, | 
| 2009 | pte, pmd, ptl, entry); | ||
| 2022 | entry = pte_mkdirty(entry); | 2010 | entry = pte_mkdirty(entry); | 
| 2023 | } | 2011 | } | 
| 2024 | entry = pte_mkyoung(entry); | 2012 | entry = pte_mkyoung(entry); | 
| 2025 | ptep_set_access_flags(vma, address, pte, entry, write_access); | 2013 | if (!pte_same(old_entry, entry)) { | 
| 2026 | update_mmu_cache(vma, address, entry); | 2014 | ptep_set_access_flags(vma, address, pte, entry, write_access); | 
| 2027 | lazy_mmu_prot_update(entry); | 2015 | update_mmu_cache(vma, address, entry); | 
| 2028 | pte_unmap(pte); | 2016 | lazy_mmu_prot_update(entry); | 
| 2029 | spin_unlock(&mm->page_table_lock); | 2017 | } else { | 
| 2018 | /* | ||
| 2019 | * This is needed only for protection faults but the arch code | ||
| 2020 | * is not yet telling us if this is a protection fault or not. | ||
| 2021 | * This still avoids useless tlb flushes for .text page faults | ||
| 2022 | * with threads. | ||
| 2023 | */ | ||
| 2024 | if (write_access) | ||
| 2025 | flush_tlb_page(vma, address); | ||
| 2026 | } | ||
| 2027 | unlock: | ||
| 2028 | pte_unmap_unlock(pte, ptl); | ||
| 2030 | return VM_FAULT_MINOR; | 2029 | return VM_FAULT_MINOR; | 
| 2031 | } | 2030 | } | 
| 2032 | 2031 | ||
| 2033 | /* | 2032 | /* | 
| 2034 | * By the time we get here, we already hold the mm semaphore | 2033 | * By the time we get here, we already hold the mm semaphore | 
| 2035 | */ | 2034 | */ | 
| 2036 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, | 2035 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
| 2037 | unsigned long address, int write_access) | 2036 | unsigned long address, int write_access) | 
| 2038 | { | 2037 | { | 
| 2039 | pgd_t *pgd; | 2038 | pgd_t *pgd; | 
| @@ -2048,100 +2047,66 @@ int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, | |||
| 2048 | if (unlikely(is_vm_hugetlb_page(vma))) | 2047 | if (unlikely(is_vm_hugetlb_page(vma))) | 
| 2049 | return hugetlb_fault(mm, vma, address, write_access); | 2048 | return hugetlb_fault(mm, vma, address, write_access); | 
| 2050 | 2049 | ||
| 2051 | /* | ||
| 2052 | * We need the page table lock to synchronize with kswapd | ||
| 2053 | * and the SMP-safe atomic PTE updates. | ||
| 2054 | */ | ||
| 2055 | pgd = pgd_offset(mm, address); | 2050 | pgd = pgd_offset(mm, address); | 
| 2056 | spin_lock(&mm->page_table_lock); | ||
| 2057 | |||
| 2058 | pud = pud_alloc(mm, pgd, address); | 2051 | pud = pud_alloc(mm, pgd, address); | 
| 2059 | if (!pud) | 2052 | if (!pud) | 
| 2060 | goto oom; | 2053 | return VM_FAULT_OOM; | 
| 2061 | |||
| 2062 | pmd = pmd_alloc(mm, pud, address); | 2054 | pmd = pmd_alloc(mm, pud, address); | 
| 2063 | if (!pmd) | 2055 | if (!pmd) | 
| 2064 | goto oom; | 2056 | return VM_FAULT_OOM; | 
| 2065 | |||
| 2066 | pte = pte_alloc_map(mm, pmd, address); | 2057 | pte = pte_alloc_map(mm, pmd, address); | 
| 2067 | if (!pte) | 2058 | if (!pte) | 
| 2068 | goto oom; | 2059 | return VM_FAULT_OOM; | 
| 2069 | |||
| 2070 | return handle_pte_fault(mm, vma, address, write_access, pte, pmd); | ||
| 2071 | 2060 | ||
| 2072 | oom: | 2061 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); | 
| 2073 | spin_unlock(&mm->page_table_lock); | ||
| 2074 | return VM_FAULT_OOM; | ||
| 2075 | } | 2062 | } | 
| 2076 | 2063 | ||
| 2077 | #ifndef __PAGETABLE_PUD_FOLDED | 2064 | #ifndef __PAGETABLE_PUD_FOLDED | 
| 2078 | /* | 2065 | /* | 
| 2079 | * Allocate page upper directory. | 2066 | * Allocate page upper directory. | 
| 2080 | * | 2067 | * We've already handled the fast-path in-line. | 
| 2081 | * We've already handled the fast-path in-line, and we own the | ||
| 2082 | * page table lock. | ||
| 2083 | */ | 2068 | */ | 
| 2084 | pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 2069 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
| 2085 | { | 2070 | { | 
| 2086 | pud_t *new; | 2071 | pud_t *new = pud_alloc_one(mm, address); | 
| 2087 | |||
| 2088 | spin_unlock(&mm->page_table_lock); | ||
| 2089 | new = pud_alloc_one(mm, address); | ||
| 2090 | spin_lock(&mm->page_table_lock); | ||
| 2091 | if (!new) | 2072 | if (!new) | 
| 2092 | return NULL; | 2073 | return -ENOMEM; | 
| 2093 | 2074 | ||
| 2094 | /* | 2075 | spin_lock(&mm->page_table_lock); | 
| 2095 | * Because we dropped the lock, we should re-check the | 2076 | if (pgd_present(*pgd)) /* Another has populated it */ | 
| 2096 | * entry, as somebody else could have populated it.. | ||
| 2097 | */ | ||
| 2098 | if (pgd_present(*pgd)) { | ||
| 2099 | pud_free(new); | 2077 | pud_free(new); | 
| 2100 | goto out; | 2078 | else | 
| 2101 | } | 2079 | pgd_populate(mm, pgd, new); | 
| 2102 | pgd_populate(mm, pgd, new); | 2080 | spin_unlock(&mm->page_table_lock); | 
| 2103 | out: | 2081 | return 0; | 
| 2104 | return pud_offset(pgd, address); | ||
| 2105 | } | 2082 | } | 
| 2106 | #endif /* __PAGETABLE_PUD_FOLDED */ | 2083 | #endif /* __PAGETABLE_PUD_FOLDED */ | 
| 2107 | 2084 | ||
| 2108 | #ifndef __PAGETABLE_PMD_FOLDED | 2085 | #ifndef __PAGETABLE_PMD_FOLDED | 
| 2109 | /* | 2086 | /* | 
| 2110 | * Allocate page middle directory. | 2087 | * Allocate page middle directory. | 
| 2111 | * | 2088 | * We've already handled the fast-path in-line. | 
| 2112 | * We've already handled the fast-path in-line, and we own the | ||
| 2113 | * page table lock. | ||
| 2114 | */ | 2089 | */ | 
| 2115 | pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 2090 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
| 2116 | { | 2091 | { | 
| 2117 | pmd_t *new; | 2092 | pmd_t *new = pmd_alloc_one(mm, address); | 
| 2118 | |||
| 2119 | spin_unlock(&mm->page_table_lock); | ||
| 2120 | new = pmd_alloc_one(mm, address); | ||
| 2121 | spin_lock(&mm->page_table_lock); | ||
| 2122 | if (!new) | 2093 | if (!new) | 
| 2123 | return NULL; | 2094 | return -ENOMEM; | 
| 2124 | 2095 | ||
| 2125 | /* | 2096 | spin_lock(&mm->page_table_lock); | 
| 2126 | * Because we dropped the lock, we should re-check the | ||
| 2127 | * entry, as somebody else could have populated it.. | ||
| 2128 | */ | ||
| 2129 | #ifndef __ARCH_HAS_4LEVEL_HACK | 2097 | #ifndef __ARCH_HAS_4LEVEL_HACK | 
| 2130 | if (pud_present(*pud)) { | 2098 | if (pud_present(*pud)) /* Another has populated it */ | 
| 2131 | pmd_free(new); | 2099 | pmd_free(new); | 
| 2132 | goto out; | 2100 | else | 
| 2133 | } | 2101 | pud_populate(mm, pud, new); | 
| 2134 | pud_populate(mm, pud, new); | ||
| 2135 | #else | 2102 | #else | 
| 2136 | if (pgd_present(*pud)) { | 2103 | if (pgd_present(*pud)) /* Another has populated it */ | 
| 2137 | pmd_free(new); | 2104 | pmd_free(new); | 
| 2138 | goto out; | 2105 | else | 
| 2139 | } | 2106 | pgd_populate(mm, pud, new); | 
| 2140 | pgd_populate(mm, pud, new); | ||
| 2141 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 2107 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
| 2142 | 2108 | spin_unlock(&mm->page_table_lock); | |
| 2143 | out: | 2109 | return 0; | 
| 2144 | return pmd_offset(pud, address); | ||
| 2145 | } | 2110 | } | 
| 2146 | #endif /* __PAGETABLE_PMD_FOLDED */ | 2111 | #endif /* __PAGETABLE_PMD_FOLDED */ | 
| 2147 | 2112 | ||
| @@ -2206,22 +2171,6 @@ unsigned long vmalloc_to_pfn(void * vmalloc_addr) | |||
| 2206 | 2171 | ||
| 2207 | EXPORT_SYMBOL(vmalloc_to_pfn); | 2172 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
| 2208 | 2173 | ||
| 2209 | /* | ||
| 2210 | * update_mem_hiwater | ||
| 2211 | * - update per process rss and vm high water data | ||
| 2212 | */ | ||
| 2213 | void update_mem_hiwater(struct task_struct *tsk) | ||
| 2214 | { | ||
| 2215 | if (tsk->mm) { | ||
| 2216 | unsigned long rss = get_mm_counter(tsk->mm, rss); | ||
| 2217 | |||
| 2218 | if (tsk->mm->hiwater_rss < rss) | ||
| 2219 | tsk->mm->hiwater_rss = rss; | ||
| 2220 | if (tsk->mm->hiwater_vm < tsk->mm->total_vm) | ||
| 2221 | tsk->mm->hiwater_vm = tsk->mm->total_vm; | ||
| 2222 | } | ||
| 2223 | } | ||
| 2224 | |||
| 2225 | #if !defined(__HAVE_ARCH_GATE_AREA) | 2174 | #if !defined(__HAVE_ARCH_GATE_AREA) | 
| 2226 | 2175 | ||
| 2227 | #if defined(AT_SYSINFO_EHDR) | 2176 | #if defined(AT_SYSINFO_EHDR) | 
| @@ -2233,7 +2182,7 @@ static int __init gate_vma_init(void) | |||
| 2233 | gate_vma.vm_start = FIXADDR_USER_START; | 2182 | gate_vma.vm_start = FIXADDR_USER_START; | 
| 2234 | gate_vma.vm_end = FIXADDR_USER_END; | 2183 | gate_vma.vm_end = FIXADDR_USER_END; | 
| 2235 | gate_vma.vm_page_prot = PAGE_READONLY; | 2184 | gate_vma.vm_page_prot = PAGE_READONLY; | 
| 2236 | gate_vma.vm_flags = 0; | 2185 | gate_vma.vm_flags = VM_RESERVED; | 
| 2237 | return 0; | 2186 | return 0; | 
| 2238 | } | 2187 | } | 
| 2239 | __initcall(gate_vma_init); | 2188 | __initcall(gate_vma_init); | 
