aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memory-failure.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory-failure.c')
-rw-r--r--mm/memory-failure.c560
1 files changed, 506 insertions, 54 deletions
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 50d4f8d7024a..6a0466ed5bfd 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -34,12 +34,16 @@
34#include <linux/kernel.h> 34#include <linux/kernel.h>
35#include <linux/mm.h> 35#include <linux/mm.h>
36#include <linux/page-flags.h> 36#include <linux/page-flags.h>
37#include <linux/kernel-page-flags.h>
37#include <linux/sched.h> 38#include <linux/sched.h>
38#include <linux/ksm.h> 39#include <linux/ksm.h>
39#include <linux/rmap.h> 40#include <linux/rmap.h>
40#include <linux/pagemap.h> 41#include <linux/pagemap.h>
41#include <linux/swap.h> 42#include <linux/swap.h>
42#include <linux/backing-dev.h> 43#include <linux/backing-dev.h>
44#include <linux/migrate.h>
45#include <linux/page-isolation.h>
46#include <linux/suspend.h>
43#include "internal.h" 47#include "internal.h"
44 48
45int sysctl_memory_failure_early_kill __read_mostly = 0; 49int sysctl_memory_failure_early_kill __read_mostly = 0;
@@ -48,6 +52,120 @@ int sysctl_memory_failure_recovery __read_mostly = 1;
48 52
49atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 53atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
50 54
55u32 hwpoison_filter_enable = 0;
56u32 hwpoison_filter_dev_major = ~0U;
57u32 hwpoison_filter_dev_minor = ~0U;
58u64 hwpoison_filter_flags_mask;
59u64 hwpoison_filter_flags_value;
60EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
61EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
62EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
63EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
64EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
65
66static int hwpoison_filter_dev(struct page *p)
67{
68 struct address_space *mapping;
69 dev_t dev;
70
71 if (hwpoison_filter_dev_major == ~0U &&
72 hwpoison_filter_dev_minor == ~0U)
73 return 0;
74
75 /*
76 * page_mapping() does not accept slab page
77 */
78 if (PageSlab(p))
79 return -EINVAL;
80
81 mapping = page_mapping(p);
82 if (mapping == NULL || mapping->host == NULL)
83 return -EINVAL;
84
85 dev = mapping->host->i_sb->s_dev;
86 if (hwpoison_filter_dev_major != ~0U &&
87 hwpoison_filter_dev_major != MAJOR(dev))
88 return -EINVAL;
89 if (hwpoison_filter_dev_minor != ~0U &&
90 hwpoison_filter_dev_minor != MINOR(dev))
91 return -EINVAL;
92
93 return 0;
94}
95
96static int hwpoison_filter_flags(struct page *p)
97{
98 if (!hwpoison_filter_flags_mask)
99 return 0;
100
101 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
102 hwpoison_filter_flags_value)
103 return 0;
104 else
105 return -EINVAL;
106}
107
108/*
109 * This allows stress tests to limit test scope to a collection of tasks
110 * by putting them under some memcg. This prevents killing unrelated/important
111 * processes such as /sbin/init. Note that the target task may share clean
112 * pages with init (eg. libc text), which is harmless. If the target task
113 * share _dirty_ pages with another task B, the test scheme must make sure B
114 * is also included in the memcg. At last, due to race conditions this filter
115 * can only guarantee that the page either belongs to the memcg tasks, or is
116 * a freed page.
117 */
118#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
119u64 hwpoison_filter_memcg;
120EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
121static int hwpoison_filter_task(struct page *p)
122{
123 struct mem_cgroup *mem;
124 struct cgroup_subsys_state *css;
125 unsigned long ino;
126
127 if (!hwpoison_filter_memcg)
128 return 0;
129
130 mem = try_get_mem_cgroup_from_page(p);
131 if (!mem)
132 return -EINVAL;
133
134 css = mem_cgroup_css(mem);
135 /* root_mem_cgroup has NULL dentries */
136 if (!css->cgroup->dentry)
137 return -EINVAL;
138
139 ino = css->cgroup->dentry->d_inode->i_ino;
140 css_put(css);
141
142 if (ino != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
151int hwpoison_filter(struct page *p)
152{
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166}
167EXPORT_SYMBOL_GPL(hwpoison_filter);
168
51/* 169/*
52 * Send all the processes who have the page mapped an ``action optional'' 170 * Send all the processes who have the page mapped an ``action optional''
53 * signal. 171 * signal.
@@ -83,6 +201,36 @@ static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
83} 201}
84 202
85/* 203/*
204 * When a unknown page type is encountered drain as many buffers as possible
205 * in the hope to turn the page into a LRU or free page, which we can handle.
206 */
207void shake_page(struct page *p, int access)
208{
209 if (!PageSlab(p)) {
210 lru_add_drain_all();
211 if (PageLRU(p))
212 return;
213 drain_all_pages();
214 if (PageLRU(p) || is_free_buddy_page(p))
215 return;
216 }
217
218 /*
219 * Only all shrink_slab here (which would also
220 * shrink other caches) if access is not potentially fatal.
221 */
222 if (access) {
223 int nr;
224 do {
225 nr = shrink_slab(1000, GFP_KERNEL, 1000);
226 if (page_count(p) == 0)
227 break;
228 } while (nr > 10);
229 }
230}
231EXPORT_SYMBOL_GPL(shake_page);
232
233/*
86 * Kill all processes that have a poisoned page mapped and then isolate 234 * Kill all processes that have a poisoned page mapped and then isolate
87 * the page. 235 * the page.
88 * 236 *
@@ -177,7 +325,6 @@ static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
177 * In case something went wrong with munmapping 325 * In case something went wrong with munmapping
178 * make sure the process doesn't catch the 326 * make sure the process doesn't catch the
179 * signal and then access the memory. Just kill it. 327 * signal and then access the memory. Just kill it.
180 * the signal handlers
181 */ 328 */
182 if (fail || tk->addr_valid == 0) { 329 if (fail || tk->addr_valid == 0) {
183 printk(KERN_ERR 330 printk(KERN_ERR
@@ -314,33 +461,49 @@ static void collect_procs(struct page *page, struct list_head *tokill)
314 */ 461 */
315 462
316enum outcome { 463enum outcome {
317 FAILED, /* Error handling failed */ 464 IGNORED, /* Error: cannot be handled */
465 FAILED, /* Error: handling failed */
318 DELAYED, /* Will be handled later */ 466 DELAYED, /* Will be handled later */
319 IGNORED, /* Error safely ignored */
320 RECOVERED, /* Successfully recovered */ 467 RECOVERED, /* Successfully recovered */
321}; 468};
322 469
323static const char *action_name[] = { 470static const char *action_name[] = {
471 [IGNORED] = "Ignored",
324 [FAILED] = "Failed", 472 [FAILED] = "Failed",
325 [DELAYED] = "Delayed", 473 [DELAYED] = "Delayed",
326 [IGNORED] = "Ignored",
327 [RECOVERED] = "Recovered", 474 [RECOVERED] = "Recovered",
328}; 475};
329 476
330/* 477/*
331 * Error hit kernel page. 478 * XXX: It is possible that a page is isolated from LRU cache,
332 * Do nothing, try to be lucky and not touch this instead. For a few cases we 479 * and then kept in swap cache or failed to remove from page cache.
333 * could be more sophisticated. 480 * The page count will stop it from being freed by unpoison.
481 * Stress tests should be aware of this memory leak problem.
334 */ 482 */
335static int me_kernel(struct page *p, unsigned long pfn) 483static int delete_from_lru_cache(struct page *p)
336{ 484{
337 return DELAYED; 485 if (!isolate_lru_page(p)) {
486 /*
487 * Clear sensible page flags, so that the buddy system won't
488 * complain when the page is unpoison-and-freed.
489 */
490 ClearPageActive(p);
491 ClearPageUnevictable(p);
492 /*
493 * drop the page count elevated by isolate_lru_page()
494 */
495 page_cache_release(p);
496 return 0;
497 }
498 return -EIO;
338} 499}
339 500
340/* 501/*
341 * Already poisoned page. 502 * Error hit kernel page.
503 * Do nothing, try to be lucky and not touch this instead. For a few cases we
504 * could be more sophisticated.
342 */ 505 */
343static int me_ignore(struct page *p, unsigned long pfn) 506static int me_kernel(struct page *p, unsigned long pfn)
344{ 507{
345 return IGNORED; 508 return IGNORED;
346} 509}
@@ -355,14 +518,6 @@ static int me_unknown(struct page *p, unsigned long pfn)
355} 518}
356 519
357/* 520/*
358 * Free memory
359 */
360static int me_free(struct page *p, unsigned long pfn)
361{
362 return DELAYED;
363}
364
365/*
366 * Clean (or cleaned) page cache page. 521 * Clean (or cleaned) page cache page.
367 */ 522 */
368static int me_pagecache_clean(struct page *p, unsigned long pfn) 523static int me_pagecache_clean(struct page *p, unsigned long pfn)
@@ -371,6 +526,8 @@ static int me_pagecache_clean(struct page *p, unsigned long pfn)
371 int ret = FAILED; 526 int ret = FAILED;
372 struct address_space *mapping; 527 struct address_space *mapping;
373 528
529 delete_from_lru_cache(p);
530
374 /* 531 /*
375 * For anonymous pages we're done the only reference left 532 * For anonymous pages we're done the only reference left
376 * should be the one m_f() holds. 533 * should be the one m_f() holds.
@@ -500,14 +657,20 @@ static int me_swapcache_dirty(struct page *p, unsigned long pfn)
500 /* Trigger EIO in shmem: */ 657 /* Trigger EIO in shmem: */
501 ClearPageUptodate(p); 658 ClearPageUptodate(p);
502 659
503 return DELAYED; 660 if (!delete_from_lru_cache(p))
661 return DELAYED;
662 else
663 return FAILED;
504} 664}
505 665
506static int me_swapcache_clean(struct page *p, unsigned long pfn) 666static int me_swapcache_clean(struct page *p, unsigned long pfn)
507{ 667{
508 delete_from_swap_cache(p); 668 delete_from_swap_cache(p);
509 669
510 return RECOVERED; 670 if (!delete_from_lru_cache(p))
671 return RECOVERED;
672 else
673 return FAILED;
511} 674}
512 675
513/* 676/*
@@ -550,7 +713,6 @@ static int me_huge_page(struct page *p, unsigned long pfn)
550#define tail (1UL << PG_tail) 713#define tail (1UL << PG_tail)
551#define compound (1UL << PG_compound) 714#define compound (1UL << PG_compound)
552#define slab (1UL << PG_slab) 715#define slab (1UL << PG_slab)
553#define buddy (1UL << PG_buddy)
554#define reserved (1UL << PG_reserved) 716#define reserved (1UL << PG_reserved)
555 717
556static struct page_state { 718static struct page_state {
@@ -559,8 +721,11 @@ static struct page_state {
559 char *msg; 721 char *msg;
560 int (*action)(struct page *p, unsigned long pfn); 722 int (*action)(struct page *p, unsigned long pfn);
561} error_states[] = { 723} error_states[] = {
562 { reserved, reserved, "reserved kernel", me_ignore }, 724 { reserved, reserved, "reserved kernel", me_kernel },
563 { buddy, buddy, "free kernel", me_free }, 725 /*
726 * free pages are specially detected outside this table:
727 * PG_buddy pages only make a small fraction of all free pages.
728 */
564 729
565 /* 730 /*
566 * Could in theory check if slab page is free or if we can drop 731 * Could in theory check if slab page is free or if we can drop
@@ -587,7 +752,6 @@ static struct page_state {
587 752
588 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 753 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
589 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 754 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
590 { swapbacked, swapbacked, "anonymous", me_pagecache_clean },
591 755
592 /* 756 /*
593 * Catchall entry: must be at end. 757 * Catchall entry: must be at end.
@@ -595,20 +759,31 @@ static struct page_state {
595 { 0, 0, "unknown page state", me_unknown }, 759 { 0, 0, "unknown page state", me_unknown },
596}; 760};
597 761
762#undef dirty
763#undef sc
764#undef unevict
765#undef mlock
766#undef writeback
767#undef lru
768#undef swapbacked
769#undef head
770#undef tail
771#undef compound
772#undef slab
773#undef reserved
774
598static void action_result(unsigned long pfn, char *msg, int result) 775static void action_result(unsigned long pfn, char *msg, int result)
599{ 776{
600 struct page *page = NULL; 777 struct page *page = pfn_to_page(pfn);
601 if (pfn_valid(pfn))
602 page = pfn_to_page(pfn);
603 778
604 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 779 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
605 pfn, 780 pfn,
606 page && PageDirty(page) ? "dirty " : "", 781 PageDirty(page) ? "dirty " : "",
607 msg, action_name[result]); 782 msg, action_name[result]);
608} 783}
609 784
610static int page_action(struct page_state *ps, struct page *p, 785static int page_action(struct page_state *ps, struct page *p,
611 unsigned long pfn, int ref) 786 unsigned long pfn)
612{ 787{
613 int result; 788 int result;
614 int count; 789 int count;
@@ -616,18 +791,22 @@ static int page_action(struct page_state *ps, struct page *p,
616 result = ps->action(p, pfn); 791 result = ps->action(p, pfn);
617 action_result(pfn, ps->msg, result); 792 action_result(pfn, ps->msg, result);
618 793
619 count = page_count(p) - 1 - ref; 794 count = page_count(p) - 1;
620 if (count != 0) 795 if (ps->action == me_swapcache_dirty && result == DELAYED)
796 count--;
797 if (count != 0) {
621 printk(KERN_ERR 798 printk(KERN_ERR
622 "MCE %#lx: %s page still referenced by %d users\n", 799 "MCE %#lx: %s page still referenced by %d users\n",
623 pfn, ps->msg, count); 800 pfn, ps->msg, count);
801 result = FAILED;
802 }
624 803
625 /* Could do more checks here if page looks ok */ 804 /* Could do more checks here if page looks ok */
626 /* 805 /*
627 * Could adjust zone counters here to correct for the missing page. 806 * Could adjust zone counters here to correct for the missing page.
628 */ 807 */
629 808
630 return result == RECOVERED ? 0 : -EBUSY; 809 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
631} 810}
632 811
633#define N_UNMAP_TRIES 5 812#define N_UNMAP_TRIES 5
@@ -636,7 +815,7 @@ static int page_action(struct page_state *ps, struct page *p,
636 * Do all that is necessary to remove user space mappings. Unmap 815 * Do all that is necessary to remove user space mappings. Unmap
637 * the pages and send SIGBUS to the processes if the data was dirty. 816 * the pages and send SIGBUS to the processes if the data was dirty.
638 */ 817 */
639static void hwpoison_user_mappings(struct page *p, unsigned long pfn, 818static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
640 int trapno) 819 int trapno)
641{ 820{
642 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 821 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
@@ -646,15 +825,18 @@ static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
646 int i; 825 int i;
647 int kill = 1; 826 int kill = 1;
648 827
649 if (PageReserved(p) || PageCompound(p) || PageSlab(p) || PageKsm(p)) 828 if (PageReserved(p) || PageSlab(p))
650 return; 829 return SWAP_SUCCESS;
651 830
652 /* 831 /*
653 * This check implies we don't kill processes if their pages 832 * This check implies we don't kill processes if their pages
654 * are in the swap cache early. Those are always late kills. 833 * are in the swap cache early. Those are always late kills.
655 */ 834 */
656 if (!page_mapped(p)) 835 if (!page_mapped(p))
657 return; 836 return SWAP_SUCCESS;
837
838 if (PageCompound(p) || PageKsm(p))
839 return SWAP_FAIL;
658 840
659 if (PageSwapCache(p)) { 841 if (PageSwapCache(p)) {
660 printk(KERN_ERR 842 printk(KERN_ERR
@@ -665,6 +847,8 @@ static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
665 /* 847 /*
666 * Propagate the dirty bit from PTEs to struct page first, because we 848 * Propagate the dirty bit from PTEs to struct page first, because we
667 * need this to decide if we should kill or just drop the page. 849 * need this to decide if we should kill or just drop the page.
850 * XXX: the dirty test could be racy: set_page_dirty() may not always
851 * be called inside page lock (it's recommended but not enforced).
668 */ 852 */
669 mapping = page_mapping(p); 853 mapping = page_mapping(p);
670 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { 854 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
@@ -716,11 +900,12 @@ static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
716 */ 900 */
717 kill_procs_ao(&tokill, !!PageDirty(p), trapno, 901 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
718 ret != SWAP_SUCCESS, pfn); 902 ret != SWAP_SUCCESS, pfn);
903
904 return ret;
719} 905}
720 906
721int __memory_failure(unsigned long pfn, int trapno, int ref) 907int __memory_failure(unsigned long pfn, int trapno, int flags)
722{ 908{
723 unsigned long lru_flag;
724 struct page_state *ps; 909 struct page_state *ps;
725 struct page *p; 910 struct page *p;
726 int res; 911 int res;
@@ -729,13 +914,15 @@ int __memory_failure(unsigned long pfn, int trapno, int ref)
729 panic("Memory failure from trap %d on page %lx", trapno, pfn); 914 panic("Memory failure from trap %d on page %lx", trapno, pfn);
730 915
731 if (!pfn_valid(pfn)) { 916 if (!pfn_valid(pfn)) {
732 action_result(pfn, "memory outside kernel control", IGNORED); 917 printk(KERN_ERR
733 return -EIO; 918 "MCE %#lx: memory outside kernel control\n",
919 pfn);
920 return -ENXIO;
734 } 921 }
735 922
736 p = pfn_to_page(pfn); 923 p = pfn_to_page(pfn);
737 if (TestSetPageHWPoison(p)) { 924 if (TestSetPageHWPoison(p)) {
738 action_result(pfn, "already hardware poisoned", IGNORED); 925 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
739 return 0; 926 return 0;
740 } 927 }
741 928
@@ -752,9 +939,15 @@ int __memory_failure(unsigned long pfn, int trapno, int ref)
752 * In fact it's dangerous to directly bump up page count from 0, 939 * In fact it's dangerous to directly bump up page count from 0,
753 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 940 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
754 */ 941 */
755 if (!get_page_unless_zero(compound_head(p))) { 942 if (!(flags & MF_COUNT_INCREASED) &&
756 action_result(pfn, "free or high order kernel", IGNORED); 943 !get_page_unless_zero(compound_head(p))) {
757 return PageBuddy(compound_head(p)) ? 0 : -EBUSY; 944 if (is_free_buddy_page(p)) {
945 action_result(pfn, "free buddy", DELAYED);
946 return 0;
947 } else {
948 action_result(pfn, "high order kernel", IGNORED);
949 return -EBUSY;
950 }
758 } 951 }
759 952
760 /* 953 /*
@@ -766,14 +959,19 @@ int __memory_failure(unsigned long pfn, int trapno, int ref)
766 * walked by the page reclaim code, however that's not a big loss. 959 * walked by the page reclaim code, however that's not a big loss.
767 */ 960 */
768 if (!PageLRU(p)) 961 if (!PageLRU(p))
769 lru_add_drain_all(); 962 shake_page(p, 0);
770 lru_flag = p->flags & lru; 963 if (!PageLRU(p)) {
771 if (isolate_lru_page(p)) { 964 /*
965 * shake_page could have turned it free.
966 */
967 if (is_free_buddy_page(p)) {
968 action_result(pfn, "free buddy, 2nd try", DELAYED);
969 return 0;
970 }
772 action_result(pfn, "non LRU", IGNORED); 971 action_result(pfn, "non LRU", IGNORED);
773 put_page(p); 972 put_page(p);
774 return -EBUSY; 973 return -EBUSY;
775 } 974 }
776 page_cache_release(p);
777 975
778 /* 976 /*
779 * Lock the page and wait for writeback to finish. 977 * Lock the page and wait for writeback to finish.
@@ -781,26 +979,48 @@ int __memory_failure(unsigned long pfn, int trapno, int ref)
781 * and in many cases impossible, so we just avoid it here. 979 * and in many cases impossible, so we just avoid it here.
782 */ 980 */
783 lock_page_nosync(p); 981 lock_page_nosync(p);
982
983 /*
984 * unpoison always clear PG_hwpoison inside page lock
985 */
986 if (!PageHWPoison(p)) {
987 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
988 res = 0;
989 goto out;
990 }
991 if (hwpoison_filter(p)) {
992 if (TestClearPageHWPoison(p))
993 atomic_long_dec(&mce_bad_pages);
994 unlock_page(p);
995 put_page(p);
996 return 0;
997 }
998
784 wait_on_page_writeback(p); 999 wait_on_page_writeback(p);
785 1000
786 /* 1001 /*
787 * Now take care of user space mappings. 1002 * Now take care of user space mappings.
1003 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
788 */ 1004 */
789 hwpoison_user_mappings(p, pfn, trapno); 1005 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1006 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1007 res = -EBUSY;
1008 goto out;
1009 }
790 1010
791 /* 1011 /*
792 * Torn down by someone else? 1012 * Torn down by someone else?
793 */ 1013 */
794 if ((lru_flag & lru) && !PageSwapCache(p) && p->mapping == NULL) { 1014 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
795 action_result(pfn, "already truncated LRU", IGNORED); 1015 action_result(pfn, "already truncated LRU", IGNORED);
796 res = 0; 1016 res = -EBUSY;
797 goto out; 1017 goto out;
798 } 1018 }
799 1019
800 res = -EBUSY; 1020 res = -EBUSY;
801 for (ps = error_states;; ps++) { 1021 for (ps = error_states;; ps++) {
802 if (((p->flags | lru_flag)& ps->mask) == ps->res) { 1022 if ((p->flags & ps->mask) == ps->res) {
803 res = page_action(ps, p, pfn, ref); 1023 res = page_action(ps, p, pfn);
804 break; 1024 break;
805 } 1025 }
806 } 1026 }
@@ -831,3 +1051,235 @@ void memory_failure(unsigned long pfn, int trapno)
831{ 1051{
832 __memory_failure(pfn, trapno, 0); 1052 __memory_failure(pfn, trapno, 0);
833} 1053}
1054
1055/**
1056 * unpoison_memory - Unpoison a previously poisoned page
1057 * @pfn: Page number of the to be unpoisoned page
1058 *
1059 * Software-unpoison a page that has been poisoned by
1060 * memory_failure() earlier.
1061 *
1062 * This is only done on the software-level, so it only works
1063 * for linux injected failures, not real hardware failures
1064 *
1065 * Returns 0 for success, otherwise -errno.
1066 */
1067int unpoison_memory(unsigned long pfn)
1068{
1069 struct page *page;
1070 struct page *p;
1071 int freeit = 0;
1072
1073 if (!pfn_valid(pfn))
1074 return -ENXIO;
1075
1076 p = pfn_to_page(pfn);
1077 page = compound_head(p);
1078
1079 if (!PageHWPoison(p)) {
1080 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1081 return 0;
1082 }
1083
1084 if (!get_page_unless_zero(page)) {
1085 if (TestClearPageHWPoison(p))
1086 atomic_long_dec(&mce_bad_pages);
1087 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1088 return 0;
1089 }
1090
1091 lock_page_nosync(page);
1092 /*
1093 * This test is racy because PG_hwpoison is set outside of page lock.
1094 * That's acceptable because that won't trigger kernel panic. Instead,
1095 * the PG_hwpoison page will be caught and isolated on the entrance to
1096 * the free buddy page pool.
1097 */
1098 if (TestClearPageHWPoison(p)) {
1099 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1100 atomic_long_dec(&mce_bad_pages);
1101 freeit = 1;
1102 }
1103 unlock_page(page);
1104
1105 put_page(page);
1106 if (freeit)
1107 put_page(page);
1108
1109 return 0;
1110}
1111EXPORT_SYMBOL(unpoison_memory);
1112
1113static struct page *new_page(struct page *p, unsigned long private, int **x)
1114{
1115 int nid = page_to_nid(p);
1116 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1117}
1118
1119/*
1120 * Safely get reference count of an arbitrary page.
1121 * Returns 0 for a free page, -EIO for a zero refcount page
1122 * that is not free, and 1 for any other page type.
1123 * For 1 the page is returned with increased page count, otherwise not.
1124 */
1125static int get_any_page(struct page *p, unsigned long pfn, int flags)
1126{
1127 int ret;
1128
1129 if (flags & MF_COUNT_INCREASED)
1130 return 1;
1131
1132 /*
1133 * The lock_system_sleep prevents a race with memory hotplug,
1134 * because the isolation assumes there's only a single user.
1135 * This is a big hammer, a better would be nicer.
1136 */
1137 lock_system_sleep();
1138
1139 /*
1140 * Isolate the page, so that it doesn't get reallocated if it
1141 * was free.
1142 */
1143 set_migratetype_isolate(p);
1144 if (!get_page_unless_zero(compound_head(p))) {
1145 if (is_free_buddy_page(p)) {
1146 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1147 /* Set hwpoison bit while page is still isolated */
1148 SetPageHWPoison(p);
1149 ret = 0;
1150 } else {
1151 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1152 pfn, p->flags);
1153 ret = -EIO;
1154 }
1155 } else {
1156 /* Not a free page */
1157 ret = 1;
1158 }
1159 unset_migratetype_isolate(p);
1160 unlock_system_sleep();
1161 return ret;
1162}
1163
1164/**
1165 * soft_offline_page - Soft offline a page.
1166 * @page: page to offline
1167 * @flags: flags. Same as memory_failure().
1168 *
1169 * Returns 0 on success, otherwise negated errno.
1170 *
1171 * Soft offline a page, by migration or invalidation,
1172 * without killing anything. This is for the case when
1173 * a page is not corrupted yet (so it's still valid to access),
1174 * but has had a number of corrected errors and is better taken
1175 * out.
1176 *
1177 * The actual policy on when to do that is maintained by
1178 * user space.
1179 *
1180 * This should never impact any application or cause data loss,
1181 * however it might take some time.
1182 *
1183 * This is not a 100% solution for all memory, but tries to be
1184 * ``good enough'' for the majority of memory.
1185 */
1186int soft_offline_page(struct page *page, int flags)
1187{
1188 int ret;
1189 unsigned long pfn = page_to_pfn(page);
1190
1191 ret = get_any_page(page, pfn, flags);
1192 if (ret < 0)
1193 return ret;
1194 if (ret == 0)
1195 goto done;
1196
1197 /*
1198 * Page cache page we can handle?
1199 */
1200 if (!PageLRU(page)) {
1201 /*
1202 * Try to free it.
1203 */
1204 put_page(page);
1205 shake_page(page, 1);
1206
1207 /*
1208 * Did it turn free?
1209 */
1210 ret = get_any_page(page, pfn, 0);
1211 if (ret < 0)
1212 return ret;
1213 if (ret == 0)
1214 goto done;
1215 }
1216 if (!PageLRU(page)) {
1217 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1218 pfn, page->flags);
1219 return -EIO;
1220 }
1221
1222 lock_page(page);
1223 wait_on_page_writeback(page);
1224
1225 /*
1226 * Synchronized using the page lock with memory_failure()
1227 */
1228 if (PageHWPoison(page)) {
1229 unlock_page(page);
1230 put_page(page);
1231 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1232 return -EBUSY;
1233 }
1234
1235 /*
1236 * Try to invalidate first. This should work for
1237 * non dirty unmapped page cache pages.
1238 */
1239 ret = invalidate_inode_page(page);
1240 unlock_page(page);
1241
1242 /*
1243 * Drop count because page migration doesn't like raised
1244 * counts. The page could get re-allocated, but if it becomes
1245 * LRU the isolation will just fail.
1246 * RED-PEN would be better to keep it isolated here, but we
1247 * would need to fix isolation locking first.
1248 */
1249 put_page(page);
1250 if (ret == 1) {
1251 ret = 0;
1252 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1253 goto done;
1254 }
1255
1256 /*
1257 * Simple invalidation didn't work.
1258 * Try to migrate to a new page instead. migrate.c
1259 * handles a large number of cases for us.
1260 */
1261 ret = isolate_lru_page(page);
1262 if (!ret) {
1263 LIST_HEAD(pagelist);
1264
1265 list_add(&page->lru, &pagelist);
1266 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1267 if (ret) {
1268 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1269 pfn, ret, page->flags);
1270 if (ret > 0)
1271 ret = -EIO;
1272 }
1273 } else {
1274 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1275 pfn, ret, page_count(page), page->flags);
1276 }
1277 if (ret)
1278 return ret;
1279
1280done:
1281 atomic_long_add(1, &mce_bad_pages);
1282 SetPageHWPoison(page);
1283 /* keep elevated page count for bad page */
1284 return ret;
1285}