diff options
Diffstat (limited to 'mm/memory-failure.c')
-rw-r--r-- | mm/memory-failure.c | 832 |
1 files changed, 832 insertions, 0 deletions
diff --git a/mm/memory-failure.c b/mm/memory-failure.c new file mode 100644 index 000000000000..729d4b15b645 --- /dev/null +++ b/mm/memory-failure.c | |||
@@ -0,0 +1,832 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008, 2009 Intel Corporation | ||
3 | * Authors: Andi Kleen, Fengguang Wu | ||
4 | * | ||
5 | * This software may be redistributed and/or modified under the terms of | ||
6 | * the GNU General Public License ("GPL") version 2 only as published by the | ||
7 | * Free Software Foundation. | ||
8 | * | ||
9 | * High level machine check handler. Handles pages reported by the | ||
10 | * hardware as being corrupted usually due to a 2bit ECC memory or cache | ||
11 | * failure. | ||
12 | * | ||
13 | * Handles page cache pages in various states. The tricky part | ||
14 | * here is that we can access any page asynchronous to other VM | ||
15 | * users, because memory failures could happen anytime and anywhere, | ||
16 | * possibly violating some of their assumptions. This is why this code | ||
17 | * has to be extremely careful. Generally it tries to use normal locking | ||
18 | * rules, as in get the standard locks, even if that means the | ||
19 | * error handling takes potentially a long time. | ||
20 | * | ||
21 | * The operation to map back from RMAP chains to processes has to walk | ||
22 | * the complete process list and has non linear complexity with the number | ||
23 | * mappings. In short it can be quite slow. But since memory corruptions | ||
24 | * are rare we hope to get away with this. | ||
25 | */ | ||
26 | |||
27 | /* | ||
28 | * Notebook: | ||
29 | * - hugetlb needs more code | ||
30 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | ||
31 | * - pass bad pages to kdump next kernel | ||
32 | */ | ||
33 | #define DEBUG 1 /* remove me in 2.6.34 */ | ||
34 | #include <linux/kernel.h> | ||
35 | #include <linux/mm.h> | ||
36 | #include <linux/page-flags.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <linux/rmap.h> | ||
39 | #include <linux/pagemap.h> | ||
40 | #include <linux/swap.h> | ||
41 | #include <linux/backing-dev.h> | ||
42 | #include "internal.h" | ||
43 | |||
44 | int sysctl_memory_failure_early_kill __read_mostly = 0; | ||
45 | |||
46 | int sysctl_memory_failure_recovery __read_mostly = 1; | ||
47 | |||
48 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); | ||
49 | |||
50 | /* | ||
51 | * Send all the processes who have the page mapped an ``action optional'' | ||
52 | * signal. | ||
53 | */ | ||
54 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, | ||
55 | unsigned long pfn) | ||
56 | { | ||
57 | struct siginfo si; | ||
58 | int ret; | ||
59 | |||
60 | printk(KERN_ERR | ||
61 | "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", | ||
62 | pfn, t->comm, t->pid); | ||
63 | si.si_signo = SIGBUS; | ||
64 | si.si_errno = 0; | ||
65 | si.si_code = BUS_MCEERR_AO; | ||
66 | si.si_addr = (void *)addr; | ||
67 | #ifdef __ARCH_SI_TRAPNO | ||
68 | si.si_trapno = trapno; | ||
69 | #endif | ||
70 | si.si_addr_lsb = PAGE_SHIFT; | ||
71 | /* | ||
72 | * Don't use force here, it's convenient if the signal | ||
73 | * can be temporarily blocked. | ||
74 | * This could cause a loop when the user sets SIGBUS | ||
75 | * to SIG_IGN, but hopefully noone will do that? | ||
76 | */ | ||
77 | ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ | ||
78 | if (ret < 0) | ||
79 | printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", | ||
80 | t->comm, t->pid, ret); | ||
81 | return ret; | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * Kill all processes that have a poisoned page mapped and then isolate | ||
86 | * the page. | ||
87 | * | ||
88 | * General strategy: | ||
89 | * Find all processes having the page mapped and kill them. | ||
90 | * But we keep a page reference around so that the page is not | ||
91 | * actually freed yet. | ||
92 | * Then stash the page away | ||
93 | * | ||
94 | * There's no convenient way to get back to mapped processes | ||
95 | * from the VMAs. So do a brute-force search over all | ||
96 | * running processes. | ||
97 | * | ||
98 | * Remember that machine checks are not common (or rather | ||
99 | * if they are common you have other problems), so this shouldn't | ||
100 | * be a performance issue. | ||
101 | * | ||
102 | * Also there are some races possible while we get from the | ||
103 | * error detection to actually handle it. | ||
104 | */ | ||
105 | |||
106 | struct to_kill { | ||
107 | struct list_head nd; | ||
108 | struct task_struct *tsk; | ||
109 | unsigned long addr; | ||
110 | unsigned addr_valid:1; | ||
111 | }; | ||
112 | |||
113 | /* | ||
114 | * Failure handling: if we can't find or can't kill a process there's | ||
115 | * not much we can do. We just print a message and ignore otherwise. | ||
116 | */ | ||
117 | |||
118 | /* | ||
119 | * Schedule a process for later kill. | ||
120 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | ||
121 | * TBD would GFP_NOIO be enough? | ||
122 | */ | ||
123 | static void add_to_kill(struct task_struct *tsk, struct page *p, | ||
124 | struct vm_area_struct *vma, | ||
125 | struct list_head *to_kill, | ||
126 | struct to_kill **tkc) | ||
127 | { | ||
128 | struct to_kill *tk; | ||
129 | |||
130 | if (*tkc) { | ||
131 | tk = *tkc; | ||
132 | *tkc = NULL; | ||
133 | } else { | ||
134 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | ||
135 | if (!tk) { | ||
136 | printk(KERN_ERR | ||
137 | "MCE: Out of memory while machine check handling\n"); | ||
138 | return; | ||
139 | } | ||
140 | } | ||
141 | tk->addr = page_address_in_vma(p, vma); | ||
142 | tk->addr_valid = 1; | ||
143 | |||
144 | /* | ||
145 | * In theory we don't have to kill when the page was | ||
146 | * munmaped. But it could be also a mremap. Since that's | ||
147 | * likely very rare kill anyways just out of paranoia, but use | ||
148 | * a SIGKILL because the error is not contained anymore. | ||
149 | */ | ||
150 | if (tk->addr == -EFAULT) { | ||
151 | pr_debug("MCE: Unable to find user space address %lx in %s\n", | ||
152 | page_to_pfn(p), tsk->comm); | ||
153 | tk->addr_valid = 0; | ||
154 | } | ||
155 | get_task_struct(tsk); | ||
156 | tk->tsk = tsk; | ||
157 | list_add_tail(&tk->nd, to_kill); | ||
158 | } | ||
159 | |||
160 | /* | ||
161 | * Kill the processes that have been collected earlier. | ||
162 | * | ||
163 | * Only do anything when DOIT is set, otherwise just free the list | ||
164 | * (this is used for clean pages which do not need killing) | ||
165 | * Also when FAIL is set do a force kill because something went | ||
166 | * wrong earlier. | ||
167 | */ | ||
168 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, | ||
169 | int fail, unsigned long pfn) | ||
170 | { | ||
171 | struct to_kill *tk, *next; | ||
172 | |||
173 | list_for_each_entry_safe (tk, next, to_kill, nd) { | ||
174 | if (doit) { | ||
175 | /* | ||
176 | * In case something went wrong with munmaping | ||
177 | * make sure the process doesn't catch the | ||
178 | * signal and then access the memory. Just kill it. | ||
179 | * the signal handlers | ||
180 | */ | ||
181 | if (fail || tk->addr_valid == 0) { | ||
182 | printk(KERN_ERR | ||
183 | "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | ||
184 | pfn, tk->tsk->comm, tk->tsk->pid); | ||
185 | force_sig(SIGKILL, tk->tsk); | ||
186 | } | ||
187 | |||
188 | /* | ||
189 | * In theory the process could have mapped | ||
190 | * something else on the address in-between. We could | ||
191 | * check for that, but we need to tell the | ||
192 | * process anyways. | ||
193 | */ | ||
194 | else if (kill_proc_ao(tk->tsk, tk->addr, trapno, | ||
195 | pfn) < 0) | ||
196 | printk(KERN_ERR | ||
197 | "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", | ||
198 | pfn, tk->tsk->comm, tk->tsk->pid); | ||
199 | } | ||
200 | put_task_struct(tk->tsk); | ||
201 | kfree(tk); | ||
202 | } | ||
203 | } | ||
204 | |||
205 | static int task_early_kill(struct task_struct *tsk) | ||
206 | { | ||
207 | if (!tsk->mm) | ||
208 | return 0; | ||
209 | if (tsk->flags & PF_MCE_PROCESS) | ||
210 | return !!(tsk->flags & PF_MCE_EARLY); | ||
211 | return sysctl_memory_failure_early_kill; | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * Collect processes when the error hit an anonymous page. | ||
216 | */ | ||
217 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | ||
218 | struct to_kill **tkc) | ||
219 | { | ||
220 | struct vm_area_struct *vma; | ||
221 | struct task_struct *tsk; | ||
222 | struct anon_vma *av; | ||
223 | |||
224 | read_lock(&tasklist_lock); | ||
225 | av = page_lock_anon_vma(page); | ||
226 | if (av == NULL) /* Not actually mapped anymore */ | ||
227 | goto out; | ||
228 | for_each_process (tsk) { | ||
229 | if (!task_early_kill(tsk)) | ||
230 | continue; | ||
231 | list_for_each_entry (vma, &av->head, anon_vma_node) { | ||
232 | if (!page_mapped_in_vma(page, vma)) | ||
233 | continue; | ||
234 | if (vma->vm_mm == tsk->mm) | ||
235 | add_to_kill(tsk, page, vma, to_kill, tkc); | ||
236 | } | ||
237 | } | ||
238 | page_unlock_anon_vma(av); | ||
239 | out: | ||
240 | read_unlock(&tasklist_lock); | ||
241 | } | ||
242 | |||
243 | /* | ||
244 | * Collect processes when the error hit a file mapped page. | ||
245 | */ | ||
246 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | ||
247 | struct to_kill **tkc) | ||
248 | { | ||
249 | struct vm_area_struct *vma; | ||
250 | struct task_struct *tsk; | ||
251 | struct prio_tree_iter iter; | ||
252 | struct address_space *mapping = page->mapping; | ||
253 | |||
254 | /* | ||
255 | * A note on the locking order between the two locks. | ||
256 | * We don't rely on this particular order. | ||
257 | * If you have some other code that needs a different order | ||
258 | * feel free to switch them around. Or add a reverse link | ||
259 | * from mm_struct to task_struct, then this could be all | ||
260 | * done without taking tasklist_lock and looping over all tasks. | ||
261 | */ | ||
262 | |||
263 | read_lock(&tasklist_lock); | ||
264 | spin_lock(&mapping->i_mmap_lock); | ||
265 | for_each_process(tsk) { | ||
266 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
267 | |||
268 | if (!task_early_kill(tsk)) | ||
269 | continue; | ||
270 | |||
271 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, | ||
272 | pgoff) { | ||
273 | /* | ||
274 | * Send early kill signal to tasks where a vma covers | ||
275 | * the page but the corrupted page is not necessarily | ||
276 | * mapped it in its pte. | ||
277 | * Assume applications who requested early kill want | ||
278 | * to be informed of all such data corruptions. | ||
279 | */ | ||
280 | if (vma->vm_mm == tsk->mm) | ||
281 | add_to_kill(tsk, page, vma, to_kill, tkc); | ||
282 | } | ||
283 | } | ||
284 | spin_unlock(&mapping->i_mmap_lock); | ||
285 | read_unlock(&tasklist_lock); | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Collect the processes who have the corrupted page mapped to kill. | ||
290 | * This is done in two steps for locking reasons. | ||
291 | * First preallocate one tokill structure outside the spin locks, | ||
292 | * so that we can kill at least one process reasonably reliable. | ||
293 | */ | ||
294 | static void collect_procs(struct page *page, struct list_head *tokill) | ||
295 | { | ||
296 | struct to_kill *tk; | ||
297 | |||
298 | if (!page->mapping) | ||
299 | return; | ||
300 | |||
301 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | ||
302 | if (!tk) | ||
303 | return; | ||
304 | if (PageAnon(page)) | ||
305 | collect_procs_anon(page, tokill, &tk); | ||
306 | else | ||
307 | collect_procs_file(page, tokill, &tk); | ||
308 | kfree(tk); | ||
309 | } | ||
310 | |||
311 | /* | ||
312 | * Error handlers for various types of pages. | ||
313 | */ | ||
314 | |||
315 | enum outcome { | ||
316 | FAILED, /* Error handling failed */ | ||
317 | DELAYED, /* Will be handled later */ | ||
318 | IGNORED, /* Error safely ignored */ | ||
319 | RECOVERED, /* Successfully recovered */ | ||
320 | }; | ||
321 | |||
322 | static const char *action_name[] = { | ||
323 | [FAILED] = "Failed", | ||
324 | [DELAYED] = "Delayed", | ||
325 | [IGNORED] = "Ignored", | ||
326 | [RECOVERED] = "Recovered", | ||
327 | }; | ||
328 | |||
329 | /* | ||
330 | * Error hit kernel page. | ||
331 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | ||
332 | * could be more sophisticated. | ||
333 | */ | ||
334 | static int me_kernel(struct page *p, unsigned long pfn) | ||
335 | { | ||
336 | return DELAYED; | ||
337 | } | ||
338 | |||
339 | /* | ||
340 | * Already poisoned page. | ||
341 | */ | ||
342 | static int me_ignore(struct page *p, unsigned long pfn) | ||
343 | { | ||
344 | return IGNORED; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Page in unknown state. Do nothing. | ||
349 | */ | ||
350 | static int me_unknown(struct page *p, unsigned long pfn) | ||
351 | { | ||
352 | printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); | ||
353 | return FAILED; | ||
354 | } | ||
355 | |||
356 | /* | ||
357 | * Free memory | ||
358 | */ | ||
359 | static int me_free(struct page *p, unsigned long pfn) | ||
360 | { | ||
361 | return DELAYED; | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * Clean (or cleaned) page cache page. | ||
366 | */ | ||
367 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | ||
368 | { | ||
369 | int err; | ||
370 | int ret = FAILED; | ||
371 | struct address_space *mapping; | ||
372 | |||
373 | if (!isolate_lru_page(p)) | ||
374 | page_cache_release(p); | ||
375 | |||
376 | /* | ||
377 | * For anonymous pages we're done the only reference left | ||
378 | * should be the one m_f() holds. | ||
379 | */ | ||
380 | if (PageAnon(p)) | ||
381 | return RECOVERED; | ||
382 | |||
383 | /* | ||
384 | * Now truncate the page in the page cache. This is really | ||
385 | * more like a "temporary hole punch" | ||
386 | * Don't do this for block devices when someone else | ||
387 | * has a reference, because it could be file system metadata | ||
388 | * and that's not safe to truncate. | ||
389 | */ | ||
390 | mapping = page_mapping(p); | ||
391 | if (!mapping) { | ||
392 | /* | ||
393 | * Page has been teared down in the meanwhile | ||
394 | */ | ||
395 | return FAILED; | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * Truncation is a bit tricky. Enable it per file system for now. | ||
400 | * | ||
401 | * Open: to take i_mutex or not for this? Right now we don't. | ||
402 | */ | ||
403 | if (mapping->a_ops->error_remove_page) { | ||
404 | err = mapping->a_ops->error_remove_page(mapping, p); | ||
405 | if (err != 0) { | ||
406 | printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", | ||
407 | pfn, err); | ||
408 | } else if (page_has_private(p) && | ||
409 | !try_to_release_page(p, GFP_NOIO)) { | ||
410 | pr_debug("MCE %#lx: failed to release buffers\n", pfn); | ||
411 | } else { | ||
412 | ret = RECOVERED; | ||
413 | } | ||
414 | } else { | ||
415 | /* | ||
416 | * If the file system doesn't support it just invalidate | ||
417 | * This fails on dirty or anything with private pages | ||
418 | */ | ||
419 | if (invalidate_inode_page(p)) | ||
420 | ret = RECOVERED; | ||
421 | else | ||
422 | printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", | ||
423 | pfn); | ||
424 | } | ||
425 | return ret; | ||
426 | } | ||
427 | |||
428 | /* | ||
429 | * Dirty cache page page | ||
430 | * Issues: when the error hit a hole page the error is not properly | ||
431 | * propagated. | ||
432 | */ | ||
433 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | ||
434 | { | ||
435 | struct address_space *mapping = page_mapping(p); | ||
436 | |||
437 | SetPageError(p); | ||
438 | /* TBD: print more information about the file. */ | ||
439 | if (mapping) { | ||
440 | /* | ||
441 | * IO error will be reported by write(), fsync(), etc. | ||
442 | * who check the mapping. | ||
443 | * This way the application knows that something went | ||
444 | * wrong with its dirty file data. | ||
445 | * | ||
446 | * There's one open issue: | ||
447 | * | ||
448 | * The EIO will be only reported on the next IO | ||
449 | * operation and then cleared through the IO map. | ||
450 | * Normally Linux has two mechanisms to pass IO error | ||
451 | * first through the AS_EIO flag in the address space | ||
452 | * and then through the PageError flag in the page. | ||
453 | * Since we drop pages on memory failure handling the | ||
454 | * only mechanism open to use is through AS_AIO. | ||
455 | * | ||
456 | * This has the disadvantage that it gets cleared on | ||
457 | * the first operation that returns an error, while | ||
458 | * the PageError bit is more sticky and only cleared | ||
459 | * when the page is reread or dropped. If an | ||
460 | * application assumes it will always get error on | ||
461 | * fsync, but does other operations on the fd before | ||
462 | * and the page is dropped inbetween then the error | ||
463 | * will not be properly reported. | ||
464 | * | ||
465 | * This can already happen even without hwpoisoned | ||
466 | * pages: first on metadata IO errors (which only | ||
467 | * report through AS_EIO) or when the page is dropped | ||
468 | * at the wrong time. | ||
469 | * | ||
470 | * So right now we assume that the application DTRT on | ||
471 | * the first EIO, but we're not worse than other parts | ||
472 | * of the kernel. | ||
473 | */ | ||
474 | mapping_set_error(mapping, EIO); | ||
475 | } | ||
476 | |||
477 | return me_pagecache_clean(p, pfn); | ||
478 | } | ||
479 | |||
480 | /* | ||
481 | * Clean and dirty swap cache. | ||
482 | * | ||
483 | * Dirty swap cache page is tricky to handle. The page could live both in page | ||
484 | * cache and swap cache(ie. page is freshly swapped in). So it could be | ||
485 | * referenced concurrently by 2 types of PTEs: | ||
486 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | ||
487 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | ||
488 | * and then | ||
489 | * - clear dirty bit to prevent IO | ||
490 | * - remove from LRU | ||
491 | * - but keep in the swap cache, so that when we return to it on | ||
492 | * a later page fault, we know the application is accessing | ||
493 | * corrupted data and shall be killed (we installed simple | ||
494 | * interception code in do_swap_page to catch it). | ||
495 | * | ||
496 | * Clean swap cache pages can be directly isolated. A later page fault will | ||
497 | * bring in the known good data from disk. | ||
498 | */ | ||
499 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | ||
500 | { | ||
501 | int ret = FAILED; | ||
502 | |||
503 | ClearPageDirty(p); | ||
504 | /* Trigger EIO in shmem: */ | ||
505 | ClearPageUptodate(p); | ||
506 | |||
507 | if (!isolate_lru_page(p)) { | ||
508 | page_cache_release(p); | ||
509 | ret = DELAYED; | ||
510 | } | ||
511 | |||
512 | return ret; | ||
513 | } | ||
514 | |||
515 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | ||
516 | { | ||
517 | int ret = FAILED; | ||
518 | |||
519 | if (!isolate_lru_page(p)) { | ||
520 | page_cache_release(p); | ||
521 | ret = RECOVERED; | ||
522 | } | ||
523 | delete_from_swap_cache(p); | ||
524 | return ret; | ||
525 | } | ||
526 | |||
527 | /* | ||
528 | * Huge pages. Needs work. | ||
529 | * Issues: | ||
530 | * No rmap support so we cannot find the original mapper. In theory could walk | ||
531 | * all MMs and look for the mappings, but that would be non atomic and racy. | ||
532 | * Need rmap for hugepages for this. Alternatively we could employ a heuristic, | ||
533 | * like just walking the current process and hoping it has it mapped (that | ||
534 | * should be usually true for the common "shared database cache" case) | ||
535 | * Should handle free huge pages and dequeue them too, but this needs to | ||
536 | * handle huge page accounting correctly. | ||
537 | */ | ||
538 | static int me_huge_page(struct page *p, unsigned long pfn) | ||
539 | { | ||
540 | return FAILED; | ||
541 | } | ||
542 | |||
543 | /* | ||
544 | * Various page states we can handle. | ||
545 | * | ||
546 | * A page state is defined by its current page->flags bits. | ||
547 | * The table matches them in order and calls the right handler. | ||
548 | * | ||
549 | * This is quite tricky because we can access page at any time | ||
550 | * in its live cycle, so all accesses have to be extremly careful. | ||
551 | * | ||
552 | * This is not complete. More states could be added. | ||
553 | * For any missing state don't attempt recovery. | ||
554 | */ | ||
555 | |||
556 | #define dirty (1UL << PG_dirty) | ||
557 | #define sc (1UL << PG_swapcache) | ||
558 | #define unevict (1UL << PG_unevictable) | ||
559 | #define mlock (1UL << PG_mlocked) | ||
560 | #define writeback (1UL << PG_writeback) | ||
561 | #define lru (1UL << PG_lru) | ||
562 | #define swapbacked (1UL << PG_swapbacked) | ||
563 | #define head (1UL << PG_head) | ||
564 | #define tail (1UL << PG_tail) | ||
565 | #define compound (1UL << PG_compound) | ||
566 | #define slab (1UL << PG_slab) | ||
567 | #define buddy (1UL << PG_buddy) | ||
568 | #define reserved (1UL << PG_reserved) | ||
569 | |||
570 | static struct page_state { | ||
571 | unsigned long mask; | ||
572 | unsigned long res; | ||
573 | char *msg; | ||
574 | int (*action)(struct page *p, unsigned long pfn); | ||
575 | } error_states[] = { | ||
576 | { reserved, reserved, "reserved kernel", me_ignore }, | ||
577 | { buddy, buddy, "free kernel", me_free }, | ||
578 | |||
579 | /* | ||
580 | * Could in theory check if slab page is free or if we can drop | ||
581 | * currently unused objects without touching them. But just | ||
582 | * treat it as standard kernel for now. | ||
583 | */ | ||
584 | { slab, slab, "kernel slab", me_kernel }, | ||
585 | |||
586 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | ||
587 | { head, head, "huge", me_huge_page }, | ||
588 | { tail, tail, "huge", me_huge_page }, | ||
589 | #else | ||
590 | { compound, compound, "huge", me_huge_page }, | ||
591 | #endif | ||
592 | |||
593 | { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, | ||
594 | { sc|dirty, sc, "swapcache", me_swapcache_clean }, | ||
595 | |||
596 | { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, | ||
597 | { unevict, unevict, "unevictable LRU", me_pagecache_clean}, | ||
598 | |||
599 | #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT | ||
600 | { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, | ||
601 | { mlock, mlock, "mlocked LRU", me_pagecache_clean }, | ||
602 | #endif | ||
603 | |||
604 | { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, | ||
605 | { lru|dirty, lru, "clean LRU", me_pagecache_clean }, | ||
606 | { swapbacked, swapbacked, "anonymous", me_pagecache_clean }, | ||
607 | |||
608 | /* | ||
609 | * Catchall entry: must be at end. | ||
610 | */ | ||
611 | { 0, 0, "unknown page state", me_unknown }, | ||
612 | }; | ||
613 | |||
614 | #undef lru | ||
615 | |||
616 | static void action_result(unsigned long pfn, char *msg, int result) | ||
617 | { | ||
618 | struct page *page = NULL; | ||
619 | if (pfn_valid(pfn)) | ||
620 | page = pfn_to_page(pfn); | ||
621 | |||
622 | printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", | ||
623 | pfn, | ||
624 | page && PageDirty(page) ? "dirty " : "", | ||
625 | msg, action_name[result]); | ||
626 | } | ||
627 | |||
628 | static int page_action(struct page_state *ps, struct page *p, | ||
629 | unsigned long pfn, int ref) | ||
630 | { | ||
631 | int result; | ||
632 | |||
633 | result = ps->action(p, pfn); | ||
634 | action_result(pfn, ps->msg, result); | ||
635 | if (page_count(p) != 1 + ref) | ||
636 | printk(KERN_ERR | ||
637 | "MCE %#lx: %s page still referenced by %d users\n", | ||
638 | pfn, ps->msg, page_count(p) - 1); | ||
639 | |||
640 | /* Could do more checks here if page looks ok */ | ||
641 | /* | ||
642 | * Could adjust zone counters here to correct for the missing page. | ||
643 | */ | ||
644 | |||
645 | return result == RECOVERED ? 0 : -EBUSY; | ||
646 | } | ||
647 | |||
648 | #define N_UNMAP_TRIES 5 | ||
649 | |||
650 | /* | ||
651 | * Do all that is necessary to remove user space mappings. Unmap | ||
652 | * the pages and send SIGBUS to the processes if the data was dirty. | ||
653 | */ | ||
654 | static void hwpoison_user_mappings(struct page *p, unsigned long pfn, | ||
655 | int trapno) | ||
656 | { | ||
657 | enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | ||
658 | struct address_space *mapping; | ||
659 | LIST_HEAD(tokill); | ||
660 | int ret; | ||
661 | int i; | ||
662 | int kill = 1; | ||
663 | |||
664 | if (PageReserved(p) || PageCompound(p) || PageSlab(p)) | ||
665 | return; | ||
666 | |||
667 | if (!PageLRU(p)) | ||
668 | lru_add_drain_all(); | ||
669 | |||
670 | /* | ||
671 | * This check implies we don't kill processes if their pages | ||
672 | * are in the swap cache early. Those are always late kills. | ||
673 | */ | ||
674 | if (!page_mapped(p)) | ||
675 | return; | ||
676 | |||
677 | if (PageSwapCache(p)) { | ||
678 | printk(KERN_ERR | ||
679 | "MCE %#lx: keeping poisoned page in swap cache\n", pfn); | ||
680 | ttu |= TTU_IGNORE_HWPOISON; | ||
681 | } | ||
682 | |||
683 | /* | ||
684 | * Propagate the dirty bit from PTEs to struct page first, because we | ||
685 | * need this to decide if we should kill or just drop the page. | ||
686 | */ | ||
687 | mapping = page_mapping(p); | ||
688 | if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { | ||
689 | if (page_mkclean(p)) { | ||
690 | SetPageDirty(p); | ||
691 | } else { | ||
692 | kill = 0; | ||
693 | ttu |= TTU_IGNORE_HWPOISON; | ||
694 | printk(KERN_INFO | ||
695 | "MCE %#lx: corrupted page was clean: dropped without side effects\n", | ||
696 | pfn); | ||
697 | } | ||
698 | } | ||
699 | |||
700 | /* | ||
701 | * First collect all the processes that have the page | ||
702 | * mapped in dirty form. This has to be done before try_to_unmap, | ||
703 | * because ttu takes the rmap data structures down. | ||
704 | * | ||
705 | * Error handling: We ignore errors here because | ||
706 | * there's nothing that can be done. | ||
707 | */ | ||
708 | if (kill) | ||
709 | collect_procs(p, &tokill); | ||
710 | |||
711 | /* | ||
712 | * try_to_unmap can fail temporarily due to races. | ||
713 | * Try a few times (RED-PEN better strategy?) | ||
714 | */ | ||
715 | for (i = 0; i < N_UNMAP_TRIES; i++) { | ||
716 | ret = try_to_unmap(p, ttu); | ||
717 | if (ret == SWAP_SUCCESS) | ||
718 | break; | ||
719 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); | ||
720 | } | ||
721 | |||
722 | if (ret != SWAP_SUCCESS) | ||
723 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | ||
724 | pfn, page_mapcount(p)); | ||
725 | |||
726 | /* | ||
727 | * Now that the dirty bit has been propagated to the | ||
728 | * struct page and all unmaps done we can decide if | ||
729 | * killing is needed or not. Only kill when the page | ||
730 | * was dirty, otherwise the tokill list is merely | ||
731 | * freed. When there was a problem unmapping earlier | ||
732 | * use a more force-full uncatchable kill to prevent | ||
733 | * any accesses to the poisoned memory. | ||
734 | */ | ||
735 | kill_procs_ao(&tokill, !!PageDirty(p), trapno, | ||
736 | ret != SWAP_SUCCESS, pfn); | ||
737 | } | ||
738 | |||
739 | int __memory_failure(unsigned long pfn, int trapno, int ref) | ||
740 | { | ||
741 | struct page_state *ps; | ||
742 | struct page *p; | ||
743 | int res; | ||
744 | |||
745 | if (!sysctl_memory_failure_recovery) | ||
746 | panic("Memory failure from trap %d on page %lx", trapno, pfn); | ||
747 | |||
748 | if (!pfn_valid(pfn)) { | ||
749 | action_result(pfn, "memory outside kernel control", IGNORED); | ||
750 | return -EIO; | ||
751 | } | ||
752 | |||
753 | p = pfn_to_page(pfn); | ||
754 | if (TestSetPageHWPoison(p)) { | ||
755 | action_result(pfn, "already hardware poisoned", IGNORED); | ||
756 | return 0; | ||
757 | } | ||
758 | |||
759 | atomic_long_add(1, &mce_bad_pages); | ||
760 | |||
761 | /* | ||
762 | * We need/can do nothing about count=0 pages. | ||
763 | * 1) it's a free page, and therefore in safe hand: | ||
764 | * prep_new_page() will be the gate keeper. | ||
765 | * 2) it's part of a non-compound high order page. | ||
766 | * Implies some kernel user: cannot stop them from | ||
767 | * R/W the page; let's pray that the page has been | ||
768 | * used and will be freed some time later. | ||
769 | * In fact it's dangerous to directly bump up page count from 0, | ||
770 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | ||
771 | */ | ||
772 | if (!get_page_unless_zero(compound_head(p))) { | ||
773 | action_result(pfn, "free or high order kernel", IGNORED); | ||
774 | return PageBuddy(compound_head(p)) ? 0 : -EBUSY; | ||
775 | } | ||
776 | |||
777 | /* | ||
778 | * Lock the page and wait for writeback to finish. | ||
779 | * It's very difficult to mess with pages currently under IO | ||
780 | * and in many cases impossible, so we just avoid it here. | ||
781 | */ | ||
782 | lock_page_nosync(p); | ||
783 | wait_on_page_writeback(p); | ||
784 | |||
785 | /* | ||
786 | * Now take care of user space mappings. | ||
787 | */ | ||
788 | hwpoison_user_mappings(p, pfn, trapno); | ||
789 | |||
790 | /* | ||
791 | * Torn down by someone else? | ||
792 | */ | ||
793 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | ||
794 | action_result(pfn, "already truncated LRU", IGNORED); | ||
795 | res = 0; | ||
796 | goto out; | ||
797 | } | ||
798 | |||
799 | res = -EBUSY; | ||
800 | for (ps = error_states;; ps++) { | ||
801 | if ((p->flags & ps->mask) == ps->res) { | ||
802 | res = page_action(ps, p, pfn, ref); | ||
803 | break; | ||
804 | } | ||
805 | } | ||
806 | out: | ||
807 | unlock_page(p); | ||
808 | return res; | ||
809 | } | ||
810 | EXPORT_SYMBOL_GPL(__memory_failure); | ||
811 | |||
812 | /** | ||
813 | * memory_failure - Handle memory failure of a page. | ||
814 | * @pfn: Page Number of the corrupted page | ||
815 | * @trapno: Trap number reported in the signal to user space. | ||
816 | * | ||
817 | * This function is called by the low level machine check code | ||
818 | * of an architecture when it detects hardware memory corruption | ||
819 | * of a page. It tries its best to recover, which includes | ||
820 | * dropping pages, killing processes etc. | ||
821 | * | ||
822 | * The function is primarily of use for corruptions that | ||
823 | * happen outside the current execution context (e.g. when | ||
824 | * detected by a background scrubber) | ||
825 | * | ||
826 | * Must run in process context (e.g. a work queue) with interrupts | ||
827 | * enabled and no spinlocks hold. | ||
828 | */ | ||
829 | void memory_failure(unsigned long pfn, int trapno) | ||
830 | { | ||
831 | __memory_failure(pfn, trapno, 0); | ||
832 | } | ||