diff options
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r-- | mm/memcontrol.c | 1898 |
1 files changed, 1532 insertions, 366 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 866dcc7eeb0c..8e4be9cb2a6a 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -21,11 +21,13 @@ | |||
21 | #include <linux/memcontrol.h> | 21 | #include <linux/memcontrol.h> |
22 | #include <linux/cgroup.h> | 22 | #include <linux/cgroup.h> |
23 | #include <linux/mm.h> | 23 | #include <linux/mm.h> |
24 | #include <linux/pagemap.h> | ||
24 | #include <linux/smp.h> | 25 | #include <linux/smp.h> |
25 | #include <linux/page-flags.h> | 26 | #include <linux/page-flags.h> |
26 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
27 | #include <linux/bit_spinlock.h> | 28 | #include <linux/bit_spinlock.h> |
28 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
30 | #include <linux/mutex.h> | ||
29 | #include <linux/slab.h> | 31 | #include <linux/slab.h> |
30 | #include <linux/swap.h> | 32 | #include <linux/swap.h> |
31 | #include <linux/spinlock.h> | 33 | #include <linux/spinlock.h> |
@@ -34,12 +36,23 @@ | |||
34 | #include <linux/vmalloc.h> | 36 | #include <linux/vmalloc.h> |
35 | #include <linux/mm_inline.h> | 37 | #include <linux/mm_inline.h> |
36 | #include <linux/page_cgroup.h> | 38 | #include <linux/page_cgroup.h> |
39 | #include "internal.h" | ||
37 | 40 | ||
38 | #include <asm/uaccess.h> | 41 | #include <asm/uaccess.h> |
39 | 42 | ||
40 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 43 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
41 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 44 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
42 | 45 | ||
46 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
47 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ | ||
48 | int do_swap_account __read_mostly; | ||
49 | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | ||
50 | #else | ||
51 | #define do_swap_account (0) | ||
52 | #endif | ||
53 | |||
54 | static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ | ||
55 | |||
43 | /* | 56 | /* |
44 | * Statistics for memory cgroup. | 57 | * Statistics for memory cgroup. |
45 | */ | 58 | */ |
@@ -60,7 +73,7 @@ struct mem_cgroup_stat_cpu { | |||
60 | } ____cacheline_aligned_in_smp; | 73 | } ____cacheline_aligned_in_smp; |
61 | 74 | ||
62 | struct mem_cgroup_stat { | 75 | struct mem_cgroup_stat { |
63 | struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | 76 | struct mem_cgroup_stat_cpu cpustat[0]; |
64 | }; | 77 | }; |
65 | 78 | ||
66 | /* | 79 | /* |
@@ -89,9 +102,10 @@ struct mem_cgroup_per_zone { | |||
89 | /* | 102 | /* |
90 | * spin_lock to protect the per cgroup LRU | 103 | * spin_lock to protect the per cgroup LRU |
91 | */ | 104 | */ |
92 | spinlock_t lru_lock; | ||
93 | struct list_head lists[NR_LRU_LISTS]; | 105 | struct list_head lists[NR_LRU_LISTS]; |
94 | unsigned long count[NR_LRU_LISTS]; | 106 | unsigned long count[NR_LRU_LISTS]; |
107 | |||
108 | struct zone_reclaim_stat reclaim_stat; | ||
95 | }; | 109 | }; |
96 | /* Macro for accessing counter */ | 110 | /* Macro for accessing counter */ |
97 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | 111 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) |
@@ -122,44 +136,74 @@ struct mem_cgroup { | |||
122 | */ | 136 | */ |
123 | struct res_counter res; | 137 | struct res_counter res; |
124 | /* | 138 | /* |
139 | * the counter to account for mem+swap usage. | ||
140 | */ | ||
141 | struct res_counter memsw; | ||
142 | /* | ||
125 | * Per cgroup active and inactive list, similar to the | 143 | * Per cgroup active and inactive list, similar to the |
126 | * per zone LRU lists. | 144 | * per zone LRU lists. |
127 | */ | 145 | */ |
128 | struct mem_cgroup_lru_info info; | 146 | struct mem_cgroup_lru_info info; |
129 | 147 | ||
148 | /* | ||
149 | protect against reclaim related member. | ||
150 | */ | ||
151 | spinlock_t reclaim_param_lock; | ||
152 | |||
130 | int prev_priority; /* for recording reclaim priority */ | 153 | int prev_priority; /* for recording reclaim priority */ |
154 | |||
155 | /* | ||
156 | * While reclaiming in a hiearchy, we cache the last child we | ||
157 | * reclaimed from. Protected by hierarchy_mutex | ||
158 | */ | ||
159 | struct mem_cgroup *last_scanned_child; | ||
131 | /* | 160 | /* |
132 | * statistics. | 161 | * Should the accounting and control be hierarchical, per subtree? |
162 | */ | ||
163 | bool use_hierarchy; | ||
164 | unsigned long last_oom_jiffies; | ||
165 | atomic_t refcnt; | ||
166 | |||
167 | unsigned int swappiness; | ||
168 | |||
169 | /* | ||
170 | * statistics. This must be placed at the end of memcg. | ||
133 | */ | 171 | */ |
134 | struct mem_cgroup_stat stat; | 172 | struct mem_cgroup_stat stat; |
135 | }; | 173 | }; |
136 | static struct mem_cgroup init_mem_cgroup; | ||
137 | 174 | ||
138 | enum charge_type { | 175 | enum charge_type { |
139 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 176 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
140 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 177 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
141 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ | 178 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
142 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | 179 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
180 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | ||
143 | NR_CHARGE_TYPE, | 181 | NR_CHARGE_TYPE, |
144 | }; | 182 | }; |
145 | 183 | ||
146 | /* only for here (for easy reading.) */ | 184 | /* only for here (for easy reading.) */ |
147 | #define PCGF_CACHE (1UL << PCG_CACHE) | 185 | #define PCGF_CACHE (1UL << PCG_CACHE) |
148 | #define PCGF_USED (1UL << PCG_USED) | 186 | #define PCGF_USED (1UL << PCG_USED) |
149 | #define PCGF_ACTIVE (1UL << PCG_ACTIVE) | ||
150 | #define PCGF_LOCK (1UL << PCG_LOCK) | 187 | #define PCGF_LOCK (1UL << PCG_LOCK) |
151 | #define PCGF_FILE (1UL << PCG_FILE) | ||
152 | static const unsigned long | 188 | static const unsigned long |
153 | pcg_default_flags[NR_CHARGE_TYPE] = { | 189 | pcg_default_flags[NR_CHARGE_TYPE] = { |
154 | PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */ | 190 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ |
155 | PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */ | 191 | PCGF_USED | PCGF_LOCK, /* Anon */ |
156 | PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ | 192 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ |
157 | 0, /* FORCE */ | 193 | 0, /* FORCE */ |
158 | }; | 194 | }; |
159 | 195 | ||
160 | /* | 196 | /* for encoding cft->private value on file */ |
161 | * Always modified under lru lock. Then, not necessary to preempt_disable() | 197 | #define _MEM (0) |
162 | */ | 198 | #define _MEMSWAP (1) |
199 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) | ||
200 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | ||
201 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | ||
202 | |||
203 | static void mem_cgroup_get(struct mem_cgroup *mem); | ||
204 | static void mem_cgroup_put(struct mem_cgroup *mem); | ||
205 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); | ||
206 | |||
163 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | 207 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
164 | struct page_cgroup *pc, | 208 | struct page_cgroup *pc, |
165 | bool charge) | 209 | bool charge) |
@@ -167,10 +211,9 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
167 | int val = (charge)? 1 : -1; | 211 | int val = (charge)? 1 : -1; |
168 | struct mem_cgroup_stat *stat = &mem->stat; | 212 | struct mem_cgroup_stat *stat = &mem->stat; |
169 | struct mem_cgroup_stat_cpu *cpustat; | 213 | struct mem_cgroup_stat_cpu *cpustat; |
214 | int cpu = get_cpu(); | ||
170 | 215 | ||
171 | VM_BUG_ON(!irqs_disabled()); | 216 | cpustat = &stat->cpustat[cpu]; |
172 | |||
173 | cpustat = &stat->cpustat[smp_processor_id()]; | ||
174 | if (PageCgroupCache(pc)) | 217 | if (PageCgroupCache(pc)) |
175 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); | 218 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); |
176 | else | 219 | else |
@@ -182,6 +225,7 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
182 | else | 225 | else |
183 | __mem_cgroup_stat_add_safe(cpustat, | 226 | __mem_cgroup_stat_add_safe(cpustat, |
184 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 227 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
228 | put_cpu(); | ||
185 | } | 229 | } |
186 | 230 | ||
187 | static struct mem_cgroup_per_zone * | 231 | static struct mem_cgroup_per_zone * |
@@ -197,6 +241,9 @@ page_cgroup_zoneinfo(struct page_cgroup *pc) | |||
197 | int nid = page_cgroup_nid(pc); | 241 | int nid = page_cgroup_nid(pc); |
198 | int zid = page_cgroup_zid(pc); | 242 | int zid = page_cgroup_zid(pc); |
199 | 243 | ||
244 | if (!mem) | ||
245 | return NULL; | ||
246 | |||
200 | return mem_cgroup_zoneinfo(mem, nid, zid); | 247 | return mem_cgroup_zoneinfo(mem, nid, zid); |
201 | } | 248 | } |
202 | 249 | ||
@@ -236,118 +283,169 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |||
236 | struct mem_cgroup, css); | 283 | struct mem_cgroup, css); |
237 | } | 284 | } |
238 | 285 | ||
239 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | 286 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
240 | struct page_cgroup *pc) | ||
241 | { | 287 | { |
242 | int lru = LRU_BASE; | 288 | struct mem_cgroup *mem = NULL; |
243 | 289 | /* | |
244 | if (PageCgroupUnevictable(pc)) | 290 | * Because we have no locks, mm->owner's may be being moved to other |
245 | lru = LRU_UNEVICTABLE; | 291 | * cgroup. We use css_tryget() here even if this looks |
246 | else { | 292 | * pessimistic (rather than adding locks here). |
247 | if (PageCgroupActive(pc)) | 293 | */ |
248 | lru += LRU_ACTIVE; | 294 | rcu_read_lock(); |
249 | if (PageCgroupFile(pc)) | 295 | do { |
250 | lru += LRU_FILE; | 296 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
251 | } | 297 | if (unlikely(!mem)) |
252 | 298 | break; | |
253 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | 299 | } while (!css_tryget(&mem->css)); |
254 | 300 | rcu_read_unlock(); | |
255 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false); | 301 | return mem; |
256 | list_del(&pc->lru); | ||
257 | } | 302 | } |
258 | 303 | ||
259 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 304 | static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem) |
260 | struct page_cgroup *pc) | ||
261 | { | 305 | { |
262 | int lru = LRU_BASE; | 306 | if (!mem) |
307 | return true; | ||
308 | return css_is_removed(&mem->css); | ||
309 | } | ||
263 | 310 | ||
264 | if (PageCgroupUnevictable(pc)) | 311 | /* |
265 | lru = LRU_UNEVICTABLE; | 312 | * Following LRU functions are allowed to be used without PCG_LOCK. |
266 | else { | 313 | * Operations are called by routine of global LRU independently from memcg. |
267 | if (PageCgroupActive(pc)) | 314 | * What we have to take care of here is validness of pc->mem_cgroup. |
268 | lru += LRU_ACTIVE; | 315 | * |
269 | if (PageCgroupFile(pc)) | 316 | * Changes to pc->mem_cgroup happens when |
270 | lru += LRU_FILE; | 317 | * 1. charge |
271 | } | 318 | * 2. moving account |
319 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | ||
320 | * It is added to LRU before charge. | ||
321 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | ||
322 | * When moving account, the page is not on LRU. It's isolated. | ||
323 | */ | ||
272 | 324 | ||
273 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 325 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
274 | list_add(&pc->lru, &mz->lists[lru]); | 326 | { |
327 | struct page_cgroup *pc; | ||
328 | struct mem_cgroup *mem; | ||
329 | struct mem_cgroup_per_zone *mz; | ||
275 | 330 | ||
276 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true); | 331 | if (mem_cgroup_disabled()) |
332 | return; | ||
333 | pc = lookup_page_cgroup(page); | ||
334 | /* can happen while we handle swapcache. */ | ||
335 | if (list_empty(&pc->lru) || !pc->mem_cgroup) | ||
336 | return; | ||
337 | /* | ||
338 | * We don't check PCG_USED bit. It's cleared when the "page" is finally | ||
339 | * removed from global LRU. | ||
340 | */ | ||
341 | mz = page_cgroup_zoneinfo(pc); | ||
342 | mem = pc->mem_cgroup; | ||
343 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | ||
344 | list_del_init(&pc->lru); | ||
345 | return; | ||
277 | } | 346 | } |
278 | 347 | ||
279 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru) | 348 | void mem_cgroup_del_lru(struct page *page) |
280 | { | 349 | { |
281 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 350 | mem_cgroup_del_lru_list(page, page_lru(page)); |
282 | int active = PageCgroupActive(pc); | 351 | } |
283 | int file = PageCgroupFile(pc); | ||
284 | int unevictable = PageCgroupUnevictable(pc); | ||
285 | enum lru_list from = unevictable ? LRU_UNEVICTABLE : | ||
286 | (LRU_FILE * !!file + !!active); | ||
287 | 352 | ||
288 | if (lru == from) | 353 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
354 | { | ||
355 | struct mem_cgroup_per_zone *mz; | ||
356 | struct page_cgroup *pc; | ||
357 | |||
358 | if (mem_cgroup_disabled()) | ||
289 | return; | 359 | return; |
290 | 360 | ||
291 | MEM_CGROUP_ZSTAT(mz, from) -= 1; | 361 | pc = lookup_page_cgroup(page); |
292 | /* | 362 | /* |
293 | * However this is done under mz->lru_lock, another flags, which | 363 | * Used bit is set without atomic ops but after smp_wmb(). |
294 | * are not related to LRU, will be modified from out-of-lock. | 364 | * For making pc->mem_cgroup visible, insert smp_rmb() here. |
295 | * We have to use atomic set/clear flags. | ||
296 | */ | 365 | */ |
297 | if (is_unevictable_lru(lru)) { | 366 | smp_rmb(); |
298 | ClearPageCgroupActive(pc); | 367 | /* unused page is not rotated. */ |
299 | SetPageCgroupUnevictable(pc); | 368 | if (!PageCgroupUsed(pc)) |
300 | } else { | 369 | return; |
301 | if (is_active_lru(lru)) | 370 | mz = page_cgroup_zoneinfo(pc); |
302 | SetPageCgroupActive(pc); | ||
303 | else | ||
304 | ClearPageCgroupActive(pc); | ||
305 | ClearPageCgroupUnevictable(pc); | ||
306 | } | ||
307 | |||
308 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
309 | list_move(&pc->lru, &mz->lists[lru]); | 371 | list_move(&pc->lru, &mz->lists[lru]); |
310 | } | 372 | } |
311 | 373 | ||
312 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 374 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
313 | { | 375 | { |
314 | int ret; | 376 | struct page_cgroup *pc; |
377 | struct mem_cgroup_per_zone *mz; | ||
315 | 378 | ||
316 | task_lock(task); | 379 | if (mem_cgroup_disabled()) |
317 | ret = task->mm && mm_match_cgroup(task->mm, mem); | 380 | return; |
318 | task_unlock(task); | 381 | pc = lookup_page_cgroup(page); |
319 | return ret; | 382 | /* |
383 | * Used bit is set without atomic ops but after smp_wmb(). | ||
384 | * For making pc->mem_cgroup visible, insert smp_rmb() here. | ||
385 | */ | ||
386 | smp_rmb(); | ||
387 | if (!PageCgroupUsed(pc)) | ||
388 | return; | ||
389 | |||
390 | mz = page_cgroup_zoneinfo(pc); | ||
391 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
392 | list_add(&pc->lru, &mz->lists[lru]); | ||
320 | } | 393 | } |
321 | 394 | ||
322 | /* | 395 | /* |
323 | * This routine assumes that the appropriate zone's lru lock is already held | 396 | * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to |
397 | * lru because the page may.be reused after it's fully uncharged (because of | ||
398 | * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | ||
399 | * it again. This function is only used to charge SwapCache. It's done under | ||
400 | * lock_page and expected that zone->lru_lock is never held. | ||
324 | */ | 401 | */ |
325 | void mem_cgroup_move_lists(struct page *page, enum lru_list lru) | 402 | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) |
326 | { | 403 | { |
327 | struct page_cgroup *pc; | ||
328 | struct mem_cgroup_per_zone *mz; | ||
329 | unsigned long flags; | 404 | unsigned long flags; |
405 | struct zone *zone = page_zone(page); | ||
406 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
330 | 407 | ||
331 | if (mem_cgroup_subsys.disabled) | 408 | spin_lock_irqsave(&zone->lru_lock, flags); |
332 | return; | ||
333 | |||
334 | /* | 409 | /* |
335 | * We cannot lock_page_cgroup while holding zone's lru_lock, | 410 | * Forget old LRU when this page_cgroup is *not* used. This Used bit |
336 | * because other holders of lock_page_cgroup can be interrupted | 411 | * is guarded by lock_page() because the page is SwapCache. |
337 | * with an attempt to rotate_reclaimable_page. But we cannot | ||
338 | * safely get to page_cgroup without it, so just try_lock it: | ||
339 | * mem_cgroup_isolate_pages allows for page left on wrong list. | ||
340 | */ | 412 | */ |
341 | pc = lookup_page_cgroup(page); | 413 | if (!PageCgroupUsed(pc)) |
342 | if (!trylock_page_cgroup(pc)) | 414 | mem_cgroup_del_lru_list(page, page_lru(page)); |
415 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
416 | } | ||
417 | |||
418 | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) | ||
419 | { | ||
420 | unsigned long flags; | ||
421 | struct zone *zone = page_zone(page); | ||
422 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
423 | |||
424 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
425 | /* link when the page is linked to LRU but page_cgroup isn't */ | ||
426 | if (PageLRU(page) && list_empty(&pc->lru)) | ||
427 | mem_cgroup_add_lru_list(page, page_lru(page)); | ||
428 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
429 | } | ||
430 | |||
431 | |||
432 | void mem_cgroup_move_lists(struct page *page, | ||
433 | enum lru_list from, enum lru_list to) | ||
434 | { | ||
435 | if (mem_cgroup_disabled()) | ||
343 | return; | 436 | return; |
344 | if (pc && PageCgroupUsed(pc)) { | 437 | mem_cgroup_del_lru_list(page, from); |
345 | mz = page_cgroup_zoneinfo(pc); | 438 | mem_cgroup_add_lru_list(page, to); |
346 | spin_lock_irqsave(&mz->lru_lock, flags); | 439 | } |
347 | __mem_cgroup_move_lists(pc, lru); | 440 | |
348 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 441 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
349 | } | 442 | { |
350 | unlock_page_cgroup(pc); | 443 | int ret; |
444 | |||
445 | task_lock(task); | ||
446 | ret = task->mm && mm_match_cgroup(task->mm, mem); | ||
447 | task_unlock(task); | ||
448 | return ret; | ||
351 | } | 449 | } |
352 | 450 | ||
353 | /* | 451 | /* |
@@ -372,39 +470,116 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |||
372 | */ | 470 | */ |
373 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 471 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
374 | { | 472 | { |
375 | return mem->prev_priority; | 473 | int prev_priority; |
474 | |||
475 | spin_lock(&mem->reclaim_param_lock); | ||
476 | prev_priority = mem->prev_priority; | ||
477 | spin_unlock(&mem->reclaim_param_lock); | ||
478 | |||
479 | return prev_priority; | ||
376 | } | 480 | } |
377 | 481 | ||
378 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 482 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) |
379 | { | 483 | { |
484 | spin_lock(&mem->reclaim_param_lock); | ||
380 | if (priority < mem->prev_priority) | 485 | if (priority < mem->prev_priority) |
381 | mem->prev_priority = priority; | 486 | mem->prev_priority = priority; |
487 | spin_unlock(&mem->reclaim_param_lock); | ||
382 | } | 488 | } |
383 | 489 | ||
384 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 490 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) |
385 | { | 491 | { |
492 | spin_lock(&mem->reclaim_param_lock); | ||
386 | mem->prev_priority = priority; | 493 | mem->prev_priority = priority; |
494 | spin_unlock(&mem->reclaim_param_lock); | ||
387 | } | 495 | } |
388 | 496 | ||
389 | /* | 497 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
390 | * Calculate # of pages to be scanned in this priority/zone. | 498 | { |
391 | * See also vmscan.c | 499 | unsigned long active; |
392 | * | 500 | unsigned long inactive; |
393 | * priority starts from "DEF_PRIORITY" and decremented in each loop. | 501 | unsigned long gb; |
394 | * (see include/linux/mmzone.h) | 502 | unsigned long inactive_ratio; |
395 | */ | 503 | |
504 | inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); | ||
505 | active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); | ||
506 | |||
507 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | ||
508 | if (gb) | ||
509 | inactive_ratio = int_sqrt(10 * gb); | ||
510 | else | ||
511 | inactive_ratio = 1; | ||
512 | |||
513 | if (present_pages) { | ||
514 | present_pages[0] = inactive; | ||
515 | present_pages[1] = active; | ||
516 | } | ||
517 | |||
518 | return inactive_ratio; | ||
519 | } | ||
396 | 520 | ||
397 | long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, | 521 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) |
398 | int priority, enum lru_list lru) | 522 | { |
523 | unsigned long active; | ||
524 | unsigned long inactive; | ||
525 | unsigned long present_pages[2]; | ||
526 | unsigned long inactive_ratio; | ||
527 | |||
528 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); | ||
529 | |||
530 | inactive = present_pages[0]; | ||
531 | active = present_pages[1]; | ||
532 | |||
533 | if (inactive * inactive_ratio < active) | ||
534 | return 1; | ||
535 | |||
536 | return 0; | ||
537 | } | ||
538 | |||
539 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | ||
540 | struct zone *zone, | ||
541 | enum lru_list lru) | ||
399 | { | 542 | { |
400 | long nr_pages; | ||
401 | int nid = zone->zone_pgdat->node_id; | 543 | int nid = zone->zone_pgdat->node_id; |
402 | int zid = zone_idx(zone); | 544 | int zid = zone_idx(zone); |
403 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 545 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
404 | 546 | ||
405 | nr_pages = MEM_CGROUP_ZSTAT(mz, lru); | 547 | return MEM_CGROUP_ZSTAT(mz, lru); |
548 | } | ||
549 | |||
550 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | ||
551 | struct zone *zone) | ||
552 | { | ||
553 | int nid = zone->zone_pgdat->node_id; | ||
554 | int zid = zone_idx(zone); | ||
555 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | ||
406 | 556 | ||
407 | return (nr_pages >> priority); | 557 | return &mz->reclaim_stat; |
558 | } | ||
559 | |||
560 | struct zone_reclaim_stat * | ||
561 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | ||
562 | { | ||
563 | struct page_cgroup *pc; | ||
564 | struct mem_cgroup_per_zone *mz; | ||
565 | |||
566 | if (mem_cgroup_disabled()) | ||
567 | return NULL; | ||
568 | |||
569 | pc = lookup_page_cgroup(page); | ||
570 | /* | ||
571 | * Used bit is set without atomic ops but after smp_wmb(). | ||
572 | * For making pc->mem_cgroup visible, insert smp_rmb() here. | ||
573 | */ | ||
574 | smp_rmb(); | ||
575 | if (!PageCgroupUsed(pc)) | ||
576 | return NULL; | ||
577 | |||
578 | mz = page_cgroup_zoneinfo(pc); | ||
579 | if (!mz) | ||
580 | return NULL; | ||
581 | |||
582 | return &mz->reclaim_stat; | ||
408 | } | 583 | } |
409 | 584 | ||
410 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 585 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
@@ -429,94 +604,279 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
429 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 604 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
430 | src = &mz->lists[lru]; | 605 | src = &mz->lists[lru]; |
431 | 606 | ||
432 | spin_lock(&mz->lru_lock); | ||
433 | scan = 0; | 607 | scan = 0; |
434 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 608 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
435 | if (scan >= nr_to_scan) | 609 | if (scan >= nr_to_scan) |
436 | break; | 610 | break; |
611 | |||
612 | page = pc->page; | ||
437 | if (unlikely(!PageCgroupUsed(pc))) | 613 | if (unlikely(!PageCgroupUsed(pc))) |
438 | continue; | 614 | continue; |
439 | page = pc->page; | ||
440 | |||
441 | if (unlikely(!PageLRU(page))) | 615 | if (unlikely(!PageLRU(page))) |
442 | continue; | 616 | continue; |
443 | 617 | ||
444 | /* | ||
445 | * TODO: play better with lumpy reclaim, grabbing anything. | ||
446 | */ | ||
447 | if (PageUnevictable(page) || | ||
448 | (PageActive(page) && !active) || | ||
449 | (!PageActive(page) && active)) { | ||
450 | __mem_cgroup_move_lists(pc, page_lru(page)); | ||
451 | continue; | ||
452 | } | ||
453 | |||
454 | scan++; | 618 | scan++; |
455 | list_move(&pc->lru, &pc_list); | ||
456 | |||
457 | if (__isolate_lru_page(page, mode, file) == 0) { | 619 | if (__isolate_lru_page(page, mode, file) == 0) { |
458 | list_move(&page->lru, dst); | 620 | list_move(&page->lru, dst); |
459 | nr_taken++; | 621 | nr_taken++; |
460 | } | 622 | } |
461 | } | 623 | } |
462 | 624 | ||
463 | list_splice(&pc_list, src); | ||
464 | spin_unlock(&mz->lru_lock); | ||
465 | |||
466 | *scanned = scan; | 625 | *scanned = scan; |
467 | return nr_taken; | 626 | return nr_taken; |
468 | } | 627 | } |
469 | 628 | ||
629 | #define mem_cgroup_from_res_counter(counter, member) \ | ||
630 | container_of(counter, struct mem_cgroup, member) | ||
631 | |||
470 | /* | 632 | /* |
471 | * Charge the memory controller for page usage. | 633 | * This routine finds the DFS walk successor. This routine should be |
472 | * Return | 634 | * called with hierarchy_mutex held |
473 | * 0 if the charge was successful | ||
474 | * < 0 if the cgroup is over its limit | ||
475 | */ | 635 | */ |
476 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 636 | static struct mem_cgroup * |
477 | gfp_t gfp_mask, enum charge_type ctype, | 637 | __mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem) |
478 | struct mem_cgroup *memcg) | ||
479 | { | 638 | { |
639 | struct cgroup *cgroup, *curr_cgroup, *root_cgroup; | ||
640 | |||
641 | curr_cgroup = curr->css.cgroup; | ||
642 | root_cgroup = root_mem->css.cgroup; | ||
643 | |||
644 | if (!list_empty(&curr_cgroup->children)) { | ||
645 | /* | ||
646 | * Walk down to children | ||
647 | */ | ||
648 | cgroup = list_entry(curr_cgroup->children.next, | ||
649 | struct cgroup, sibling); | ||
650 | curr = mem_cgroup_from_cont(cgroup); | ||
651 | goto done; | ||
652 | } | ||
653 | |||
654 | visit_parent: | ||
655 | if (curr_cgroup == root_cgroup) { | ||
656 | /* caller handles NULL case */ | ||
657 | curr = NULL; | ||
658 | goto done; | ||
659 | } | ||
660 | |||
661 | /* | ||
662 | * Goto next sibling | ||
663 | */ | ||
664 | if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) { | ||
665 | cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup, | ||
666 | sibling); | ||
667 | curr = mem_cgroup_from_cont(cgroup); | ||
668 | goto done; | ||
669 | } | ||
670 | |||
671 | /* | ||
672 | * Go up to next parent and next parent's sibling if need be | ||
673 | */ | ||
674 | curr_cgroup = curr_cgroup->parent; | ||
675 | goto visit_parent; | ||
676 | |||
677 | done: | ||
678 | return curr; | ||
679 | } | ||
680 | |||
681 | /* | ||
682 | * Visit the first child (need not be the first child as per the ordering | ||
683 | * of the cgroup list, since we track last_scanned_child) of @mem and use | ||
684 | * that to reclaim free pages from. | ||
685 | */ | ||
686 | static struct mem_cgroup * | ||
687 | mem_cgroup_get_next_node(struct mem_cgroup *root_mem) | ||
688 | { | ||
689 | struct cgroup *cgroup; | ||
690 | struct mem_cgroup *orig, *next; | ||
691 | bool obsolete; | ||
692 | |||
693 | /* | ||
694 | * Scan all children under the mem_cgroup mem | ||
695 | */ | ||
696 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | ||
697 | |||
698 | orig = root_mem->last_scanned_child; | ||
699 | obsolete = mem_cgroup_is_obsolete(orig); | ||
700 | |||
701 | if (list_empty(&root_mem->css.cgroup->children)) { | ||
702 | /* | ||
703 | * root_mem might have children before and last_scanned_child | ||
704 | * may point to one of them. We put it later. | ||
705 | */ | ||
706 | if (orig) | ||
707 | VM_BUG_ON(!obsolete); | ||
708 | next = NULL; | ||
709 | goto done; | ||
710 | } | ||
711 | |||
712 | if (!orig || obsolete) { | ||
713 | cgroup = list_first_entry(&root_mem->css.cgroup->children, | ||
714 | struct cgroup, sibling); | ||
715 | next = mem_cgroup_from_cont(cgroup); | ||
716 | } else | ||
717 | next = __mem_cgroup_get_next_node(orig, root_mem); | ||
718 | |||
719 | done: | ||
720 | if (next) | ||
721 | mem_cgroup_get(next); | ||
722 | root_mem->last_scanned_child = next; | ||
723 | if (orig) | ||
724 | mem_cgroup_put(orig); | ||
725 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | ||
726 | return (next) ? next : root_mem; | ||
727 | } | ||
728 | |||
729 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | ||
730 | { | ||
731 | if (do_swap_account) { | ||
732 | if (res_counter_check_under_limit(&mem->res) && | ||
733 | res_counter_check_under_limit(&mem->memsw)) | ||
734 | return true; | ||
735 | } else | ||
736 | if (res_counter_check_under_limit(&mem->res)) | ||
737 | return true; | ||
738 | return false; | ||
739 | } | ||
740 | |||
741 | static unsigned int get_swappiness(struct mem_cgroup *memcg) | ||
742 | { | ||
743 | struct cgroup *cgrp = memcg->css.cgroup; | ||
744 | unsigned int swappiness; | ||
745 | |||
746 | /* root ? */ | ||
747 | if (cgrp->parent == NULL) | ||
748 | return vm_swappiness; | ||
749 | |||
750 | spin_lock(&memcg->reclaim_param_lock); | ||
751 | swappiness = memcg->swappiness; | ||
752 | spin_unlock(&memcg->reclaim_param_lock); | ||
753 | |||
754 | return swappiness; | ||
755 | } | ||
756 | |||
757 | /* | ||
758 | * Dance down the hierarchy if needed to reclaim memory. We remember the | ||
759 | * last child we reclaimed from, so that we don't end up penalizing | ||
760 | * one child extensively based on its position in the children list. | ||
761 | * | ||
762 | * root_mem is the original ancestor that we've been reclaim from. | ||
763 | */ | ||
764 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | ||
765 | gfp_t gfp_mask, bool noswap) | ||
766 | { | ||
767 | struct mem_cgroup *next_mem; | ||
768 | int ret = 0; | ||
769 | |||
770 | /* | ||
771 | * Reclaim unconditionally and don't check for return value. | ||
772 | * We need to reclaim in the current group and down the tree. | ||
773 | * One might think about checking for children before reclaiming, | ||
774 | * but there might be left over accounting, even after children | ||
775 | * have left. | ||
776 | */ | ||
777 | ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, | ||
778 | get_swappiness(root_mem)); | ||
779 | if (mem_cgroup_check_under_limit(root_mem)) | ||
780 | return 1; /* indicate reclaim has succeeded */ | ||
781 | if (!root_mem->use_hierarchy) | ||
782 | return ret; | ||
783 | |||
784 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
785 | |||
786 | while (next_mem != root_mem) { | ||
787 | if (mem_cgroup_is_obsolete(next_mem)) { | ||
788 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
789 | continue; | ||
790 | } | ||
791 | ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, | ||
792 | get_swappiness(next_mem)); | ||
793 | if (mem_cgroup_check_under_limit(root_mem)) | ||
794 | return 1; /* indicate reclaim has succeeded */ | ||
795 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
796 | } | ||
797 | return ret; | ||
798 | } | ||
799 | |||
800 | bool mem_cgroup_oom_called(struct task_struct *task) | ||
801 | { | ||
802 | bool ret = false; | ||
480 | struct mem_cgroup *mem; | 803 | struct mem_cgroup *mem; |
481 | struct page_cgroup *pc; | 804 | struct mm_struct *mm; |
482 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
483 | struct mem_cgroup_per_zone *mz; | ||
484 | unsigned long flags; | ||
485 | 805 | ||
486 | pc = lookup_page_cgroup(page); | 806 | rcu_read_lock(); |
487 | /* can happen at boot */ | 807 | mm = task->mm; |
488 | if (unlikely(!pc)) | 808 | if (!mm) |
809 | mm = &init_mm; | ||
810 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
811 | if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) | ||
812 | ret = true; | ||
813 | rcu_read_unlock(); | ||
814 | return ret; | ||
815 | } | ||
816 | /* | ||
817 | * Unlike exported interface, "oom" parameter is added. if oom==true, | ||
818 | * oom-killer can be invoked. | ||
819 | */ | ||
820 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | ||
821 | gfp_t gfp_mask, struct mem_cgroup **memcg, | ||
822 | bool oom) | ||
823 | { | ||
824 | struct mem_cgroup *mem, *mem_over_limit; | ||
825 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
826 | struct res_counter *fail_res; | ||
827 | |||
828 | if (unlikely(test_thread_flag(TIF_MEMDIE))) { | ||
829 | /* Don't account this! */ | ||
830 | *memcg = NULL; | ||
489 | return 0; | 831 | return 0; |
490 | prefetchw(pc); | 832 | } |
833 | |||
491 | /* | 834 | /* |
492 | * We always charge the cgroup the mm_struct belongs to. | 835 | * We always charge the cgroup the mm_struct belongs to. |
493 | * The mm_struct's mem_cgroup changes on task migration if the | 836 | * The mm_struct's mem_cgroup changes on task migration if the |
494 | * thread group leader migrates. It's possible that mm is not | 837 | * thread group leader migrates. It's possible that mm is not |
495 | * set, if so charge the init_mm (happens for pagecache usage). | 838 | * set, if so charge the init_mm (happens for pagecache usage). |
496 | */ | 839 | */ |
497 | 840 | mem = *memcg; | |
498 | if (likely(!memcg)) { | 841 | if (likely(!mem)) { |
499 | rcu_read_lock(); | 842 | mem = try_get_mem_cgroup_from_mm(mm); |
500 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 843 | *memcg = mem; |
501 | if (unlikely(!mem)) { | ||
502 | rcu_read_unlock(); | ||
503 | return 0; | ||
504 | } | ||
505 | /* | ||
506 | * For every charge from the cgroup, increment reference count | ||
507 | */ | ||
508 | css_get(&mem->css); | ||
509 | rcu_read_unlock(); | ||
510 | } else { | 844 | } else { |
511 | mem = memcg; | 845 | css_get(&mem->css); |
512 | css_get(&memcg->css); | ||
513 | } | 846 | } |
847 | if (unlikely(!mem)) | ||
848 | return 0; | ||
849 | |||
850 | VM_BUG_ON(mem_cgroup_is_obsolete(mem)); | ||
851 | |||
852 | while (1) { | ||
853 | int ret; | ||
854 | bool noswap = false; | ||
855 | |||
856 | ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); | ||
857 | if (likely(!ret)) { | ||
858 | if (!do_swap_account) | ||
859 | break; | ||
860 | ret = res_counter_charge(&mem->memsw, PAGE_SIZE, | ||
861 | &fail_res); | ||
862 | if (likely(!ret)) | ||
863 | break; | ||
864 | /* mem+swap counter fails */ | ||
865 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
866 | noswap = true; | ||
867 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
868 | memsw); | ||
869 | } else | ||
870 | /* mem counter fails */ | ||
871 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
872 | res); | ||
514 | 873 | ||
515 | while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) { | ||
516 | if (!(gfp_mask & __GFP_WAIT)) | 874 | if (!(gfp_mask & __GFP_WAIT)) |
517 | goto out; | 875 | goto nomem; |
518 | 876 | ||
519 | if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | 877 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, |
878 | noswap); | ||
879 | if (ret) | ||
520 | continue; | 880 | continue; |
521 | 881 | ||
522 | /* | 882 | /* |
@@ -525,49 +885,221 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
525 | * moved to swap cache or just unmapped from the cgroup. | 885 | * moved to swap cache or just unmapped from the cgroup. |
526 | * Check the limit again to see if the reclaim reduced the | 886 | * Check the limit again to see if the reclaim reduced the |
527 | * current usage of the cgroup before giving up | 887 | * current usage of the cgroup before giving up |
888 | * | ||
528 | */ | 889 | */ |
529 | if (res_counter_check_under_limit(&mem->res)) | 890 | if (mem_cgroup_check_under_limit(mem_over_limit)) |
530 | continue; | 891 | continue; |
531 | 892 | ||
532 | if (!nr_retries--) { | 893 | if (!nr_retries--) { |
533 | mem_cgroup_out_of_memory(mem, gfp_mask); | 894 | if (oom) { |
534 | goto out; | 895 | mutex_lock(&memcg_tasklist); |
896 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); | ||
897 | mutex_unlock(&memcg_tasklist); | ||
898 | mem_over_limit->last_oom_jiffies = jiffies; | ||
899 | } | ||
900 | goto nomem; | ||
535 | } | 901 | } |
536 | } | 902 | } |
903 | return 0; | ||
904 | nomem: | ||
905 | css_put(&mem->css); | ||
906 | return -ENOMEM; | ||
907 | } | ||
908 | |||
909 | static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) | ||
910 | { | ||
911 | struct mem_cgroup *mem; | ||
912 | swp_entry_t ent; | ||
913 | |||
914 | if (!PageSwapCache(page)) | ||
915 | return NULL; | ||
537 | 916 | ||
917 | ent.val = page_private(page); | ||
918 | mem = lookup_swap_cgroup(ent); | ||
919 | if (!mem) | ||
920 | return NULL; | ||
921 | if (!css_tryget(&mem->css)) | ||
922 | return NULL; | ||
923 | return mem; | ||
924 | } | ||
925 | |||
926 | /* | ||
927 | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be | ||
928 | * USED state. If already USED, uncharge and return. | ||
929 | */ | ||
930 | |||
931 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | ||
932 | struct page_cgroup *pc, | ||
933 | enum charge_type ctype) | ||
934 | { | ||
935 | /* try_charge() can return NULL to *memcg, taking care of it. */ | ||
936 | if (!mem) | ||
937 | return; | ||
538 | 938 | ||
539 | lock_page_cgroup(pc); | 939 | lock_page_cgroup(pc); |
540 | if (unlikely(PageCgroupUsed(pc))) { | 940 | if (unlikely(PageCgroupUsed(pc))) { |
541 | unlock_page_cgroup(pc); | 941 | unlock_page_cgroup(pc); |
542 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 942 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
943 | if (do_swap_account) | ||
944 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
543 | css_put(&mem->css); | 945 | css_put(&mem->css); |
544 | 946 | return; | |
545 | goto done; | ||
546 | } | 947 | } |
547 | pc->mem_cgroup = mem; | 948 | pc->mem_cgroup = mem; |
548 | /* | 949 | smp_wmb(); |
549 | * If a page is accounted as a page cache, insert to inactive list. | ||
550 | * If anon, insert to active list. | ||
551 | */ | ||
552 | pc->flags = pcg_default_flags[ctype]; | 950 | pc->flags = pcg_default_flags[ctype]; |
553 | 951 | ||
554 | mz = page_cgroup_zoneinfo(pc); | 952 | mem_cgroup_charge_statistics(mem, pc, true); |
555 | 953 | ||
556 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
557 | __mem_cgroup_add_list(mz, pc); | ||
558 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
559 | unlock_page_cgroup(pc); | 954 | unlock_page_cgroup(pc); |
955 | } | ||
560 | 956 | ||
561 | done: | 957 | /** |
562 | return 0; | 958 | * mem_cgroup_move_account - move account of the page |
959 | * @pc: page_cgroup of the page. | ||
960 | * @from: mem_cgroup which the page is moved from. | ||
961 | * @to: mem_cgroup which the page is moved to. @from != @to. | ||
962 | * | ||
963 | * The caller must confirm following. | ||
964 | * - page is not on LRU (isolate_page() is useful.) | ||
965 | * | ||
966 | * returns 0 at success, | ||
967 | * returns -EBUSY when lock is busy or "pc" is unstable. | ||
968 | * | ||
969 | * This function does "uncharge" from old cgroup but doesn't do "charge" to | ||
970 | * new cgroup. It should be done by a caller. | ||
971 | */ | ||
972 | |||
973 | static int mem_cgroup_move_account(struct page_cgroup *pc, | ||
974 | struct mem_cgroup *from, struct mem_cgroup *to) | ||
975 | { | ||
976 | struct mem_cgroup_per_zone *from_mz, *to_mz; | ||
977 | int nid, zid; | ||
978 | int ret = -EBUSY; | ||
979 | |||
980 | VM_BUG_ON(from == to); | ||
981 | VM_BUG_ON(PageLRU(pc->page)); | ||
982 | |||
983 | nid = page_cgroup_nid(pc); | ||
984 | zid = page_cgroup_zid(pc); | ||
985 | from_mz = mem_cgroup_zoneinfo(from, nid, zid); | ||
986 | to_mz = mem_cgroup_zoneinfo(to, nid, zid); | ||
987 | |||
988 | if (!trylock_page_cgroup(pc)) | ||
989 | return ret; | ||
990 | |||
991 | if (!PageCgroupUsed(pc)) | ||
992 | goto out; | ||
993 | |||
994 | if (pc->mem_cgroup != from) | ||
995 | goto out; | ||
996 | |||
997 | res_counter_uncharge(&from->res, PAGE_SIZE); | ||
998 | mem_cgroup_charge_statistics(from, pc, false); | ||
999 | if (do_swap_account) | ||
1000 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | ||
1001 | css_put(&from->css); | ||
1002 | |||
1003 | css_get(&to->css); | ||
1004 | pc->mem_cgroup = to; | ||
1005 | mem_cgroup_charge_statistics(to, pc, true); | ||
1006 | ret = 0; | ||
563 | out: | 1007 | out: |
564 | css_put(&mem->css); | 1008 | unlock_page_cgroup(pc); |
565 | return -ENOMEM; | 1009 | return ret; |
1010 | } | ||
1011 | |||
1012 | /* | ||
1013 | * move charges to its parent. | ||
1014 | */ | ||
1015 | |||
1016 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | ||
1017 | struct mem_cgroup *child, | ||
1018 | gfp_t gfp_mask) | ||
1019 | { | ||
1020 | struct page *page = pc->page; | ||
1021 | struct cgroup *cg = child->css.cgroup; | ||
1022 | struct cgroup *pcg = cg->parent; | ||
1023 | struct mem_cgroup *parent; | ||
1024 | int ret; | ||
1025 | |||
1026 | /* Is ROOT ? */ | ||
1027 | if (!pcg) | ||
1028 | return -EINVAL; | ||
1029 | |||
1030 | |||
1031 | parent = mem_cgroup_from_cont(pcg); | ||
1032 | |||
1033 | |||
1034 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); | ||
1035 | if (ret || !parent) | ||
1036 | return ret; | ||
1037 | |||
1038 | if (!get_page_unless_zero(page)) { | ||
1039 | ret = -EBUSY; | ||
1040 | goto uncharge; | ||
1041 | } | ||
1042 | |||
1043 | ret = isolate_lru_page(page); | ||
1044 | |||
1045 | if (ret) | ||
1046 | goto cancel; | ||
1047 | |||
1048 | ret = mem_cgroup_move_account(pc, child, parent); | ||
1049 | |||
1050 | putback_lru_page(page); | ||
1051 | if (!ret) { | ||
1052 | put_page(page); | ||
1053 | /* drop extra refcnt by try_charge() */ | ||
1054 | css_put(&parent->css); | ||
1055 | return 0; | ||
1056 | } | ||
1057 | |||
1058 | cancel: | ||
1059 | put_page(page); | ||
1060 | uncharge: | ||
1061 | /* drop extra refcnt by try_charge() */ | ||
1062 | css_put(&parent->css); | ||
1063 | /* uncharge if move fails */ | ||
1064 | res_counter_uncharge(&parent->res, PAGE_SIZE); | ||
1065 | if (do_swap_account) | ||
1066 | res_counter_uncharge(&parent->memsw, PAGE_SIZE); | ||
1067 | return ret; | ||
1068 | } | ||
1069 | |||
1070 | /* | ||
1071 | * Charge the memory controller for page usage. | ||
1072 | * Return | ||
1073 | * 0 if the charge was successful | ||
1074 | * < 0 if the cgroup is over its limit | ||
1075 | */ | ||
1076 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | ||
1077 | gfp_t gfp_mask, enum charge_type ctype, | ||
1078 | struct mem_cgroup *memcg) | ||
1079 | { | ||
1080 | struct mem_cgroup *mem; | ||
1081 | struct page_cgroup *pc; | ||
1082 | int ret; | ||
1083 | |||
1084 | pc = lookup_page_cgroup(page); | ||
1085 | /* can happen at boot */ | ||
1086 | if (unlikely(!pc)) | ||
1087 | return 0; | ||
1088 | prefetchw(pc); | ||
1089 | |||
1090 | mem = memcg; | ||
1091 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | ||
1092 | if (ret || !mem) | ||
1093 | return ret; | ||
1094 | |||
1095 | __mem_cgroup_commit_charge(mem, pc, ctype); | ||
1096 | return 0; | ||
566 | } | 1097 | } |
567 | 1098 | ||
568 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 1099 | int mem_cgroup_newpage_charge(struct page *page, |
1100 | struct mm_struct *mm, gfp_t gfp_mask) | ||
569 | { | 1101 | { |
570 | if (mem_cgroup_subsys.disabled) | 1102 | if (mem_cgroup_disabled()) |
571 | return 0; | 1103 | return 0; |
572 | if (PageCompound(page)) | 1104 | if (PageCompound(page)) |
573 | return 0; | 1105 | return 0; |
@@ -589,7 +1121,10 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | |||
589 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 1121 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
590 | gfp_t gfp_mask) | 1122 | gfp_t gfp_mask) |
591 | { | 1123 | { |
592 | if (mem_cgroup_subsys.disabled) | 1124 | struct mem_cgroup *mem = NULL; |
1125 | int ret; | ||
1126 | |||
1127 | if (mem_cgroup_disabled()) | ||
593 | return 0; | 1128 | return 0; |
594 | if (PageCompound(page)) | 1129 | if (PageCompound(page)) |
595 | return 0; | 1130 | return 0; |
@@ -601,6 +1136,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
601 | * For GFP_NOWAIT case, the page may be pre-charged before calling | 1136 | * For GFP_NOWAIT case, the page may be pre-charged before calling |
602 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | 1137 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call |
603 | * charge twice. (It works but has to pay a bit larger cost.) | 1138 | * charge twice. (It works but has to pay a bit larger cost.) |
1139 | * And when the page is SwapCache, it should take swap information | ||
1140 | * into account. This is under lock_page() now. | ||
604 | */ | 1141 | */ |
605 | if (!(gfp_mask & __GFP_WAIT)) { | 1142 | if (!(gfp_mask & __GFP_WAIT)) { |
606 | struct page_cgroup *pc; | 1143 | struct page_cgroup *pc; |
@@ -617,58 +1154,198 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
617 | unlock_page_cgroup(pc); | 1154 | unlock_page_cgroup(pc); |
618 | } | 1155 | } |
619 | 1156 | ||
620 | if (unlikely(!mm)) | 1157 | if (do_swap_account && PageSwapCache(page)) { |
1158 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1159 | if (mem) | ||
1160 | mm = NULL; | ||
1161 | else | ||
1162 | mem = NULL; | ||
1163 | /* SwapCache may be still linked to LRU now. */ | ||
1164 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
1165 | } | ||
1166 | |||
1167 | if (unlikely(!mm && !mem)) | ||
621 | mm = &init_mm; | 1168 | mm = &init_mm; |
622 | 1169 | ||
623 | if (page_is_file_cache(page)) | 1170 | if (page_is_file_cache(page)) |
624 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1171 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
625 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 1172 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
626 | else | 1173 | |
627 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1174 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
628 | MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); | 1175 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); |
1176 | if (mem) | ||
1177 | css_put(&mem->css); | ||
1178 | if (PageSwapCache(page)) | ||
1179 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
1180 | |||
1181 | if (do_swap_account && !ret && PageSwapCache(page)) { | ||
1182 | swp_entry_t ent = {.val = page_private(page)}; | ||
1183 | /* avoid double counting */ | ||
1184 | mem = swap_cgroup_record(ent, NULL); | ||
1185 | if (mem) { | ||
1186 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1187 | mem_cgroup_put(mem); | ||
1188 | } | ||
1189 | } | ||
1190 | return ret; | ||
1191 | } | ||
1192 | |||
1193 | /* | ||
1194 | * While swap-in, try_charge -> commit or cancel, the page is locked. | ||
1195 | * And when try_charge() successfully returns, one refcnt to memcg without | ||
1196 | * struct page_cgroup is aquired. This refcnt will be cumsumed by | ||
1197 | * "commit()" or removed by "cancel()" | ||
1198 | */ | ||
1199 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | ||
1200 | struct page *page, | ||
1201 | gfp_t mask, struct mem_cgroup **ptr) | ||
1202 | { | ||
1203 | struct mem_cgroup *mem; | ||
1204 | int ret; | ||
1205 | |||
1206 | if (mem_cgroup_disabled()) | ||
1207 | return 0; | ||
1208 | |||
1209 | if (!do_swap_account) | ||
1210 | goto charge_cur_mm; | ||
1211 | /* | ||
1212 | * A racing thread's fault, or swapoff, may have already updated | ||
1213 | * the pte, and even removed page from swap cache: return success | ||
1214 | * to go on to do_swap_page()'s pte_same() test, which should fail. | ||
1215 | */ | ||
1216 | if (!PageSwapCache(page)) | ||
1217 | return 0; | ||
1218 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1219 | if (!mem) | ||
1220 | goto charge_cur_mm; | ||
1221 | *ptr = mem; | ||
1222 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | ||
1223 | /* drop extra refcnt from tryget */ | ||
1224 | css_put(&mem->css); | ||
1225 | return ret; | ||
1226 | charge_cur_mm: | ||
1227 | if (unlikely(!mm)) | ||
1228 | mm = &init_mm; | ||
1229 | return __mem_cgroup_try_charge(mm, mask, ptr, true); | ||
1230 | } | ||
1231 | |||
1232 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | ||
1233 | { | ||
1234 | struct page_cgroup *pc; | ||
1235 | |||
1236 | if (mem_cgroup_disabled()) | ||
1237 | return; | ||
1238 | if (!ptr) | ||
1239 | return; | ||
1240 | pc = lookup_page_cgroup(page); | ||
1241 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
1242 | __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
1243 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
1244 | /* | ||
1245 | * Now swap is on-memory. This means this page may be | ||
1246 | * counted both as mem and swap....double count. | ||
1247 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable | ||
1248 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | ||
1249 | * may call delete_from_swap_cache() before reach here. | ||
1250 | */ | ||
1251 | if (do_swap_account && PageSwapCache(page)) { | ||
1252 | swp_entry_t ent = {.val = page_private(page)}; | ||
1253 | struct mem_cgroup *memcg; | ||
1254 | memcg = swap_cgroup_record(ent, NULL); | ||
1255 | if (memcg) { | ||
1256 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
1257 | mem_cgroup_put(memcg); | ||
1258 | } | ||
1259 | |||
1260 | } | ||
1261 | /* add this page(page_cgroup) to the LRU we want. */ | ||
1262 | |||
1263 | } | ||
1264 | |||
1265 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | ||
1266 | { | ||
1267 | if (mem_cgroup_disabled()) | ||
1268 | return; | ||
1269 | if (!mem) | ||
1270 | return; | ||
1271 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
1272 | if (do_swap_account) | ||
1273 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1274 | css_put(&mem->css); | ||
629 | } | 1275 | } |
630 | 1276 | ||
1277 | |||
631 | /* | 1278 | /* |
632 | * uncharge if !page_mapped(page) | 1279 | * uncharge if !page_mapped(page) |
633 | */ | 1280 | */ |
634 | static void | 1281 | static struct mem_cgroup * |
635 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | 1282 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
636 | { | 1283 | { |
637 | struct page_cgroup *pc; | 1284 | struct page_cgroup *pc; |
638 | struct mem_cgroup *mem; | 1285 | struct mem_cgroup *mem = NULL; |
639 | struct mem_cgroup_per_zone *mz; | 1286 | struct mem_cgroup_per_zone *mz; |
640 | unsigned long flags; | ||
641 | 1287 | ||
642 | if (mem_cgroup_subsys.disabled) | 1288 | if (mem_cgroup_disabled()) |
643 | return; | 1289 | return NULL; |
1290 | |||
1291 | if (PageSwapCache(page)) | ||
1292 | return NULL; | ||
644 | 1293 | ||
645 | /* | 1294 | /* |
646 | * Check if our page_cgroup is valid | 1295 | * Check if our page_cgroup is valid |
647 | */ | 1296 | */ |
648 | pc = lookup_page_cgroup(page); | 1297 | pc = lookup_page_cgroup(page); |
649 | if (unlikely(!pc || !PageCgroupUsed(pc))) | 1298 | if (unlikely(!pc || !PageCgroupUsed(pc))) |
650 | return; | 1299 | return NULL; |
651 | 1300 | ||
652 | lock_page_cgroup(pc); | 1301 | lock_page_cgroup(pc); |
653 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page)) | 1302 | |
654 | || !PageCgroupUsed(pc)) { | 1303 | mem = pc->mem_cgroup; |
655 | /* This happens at race in zap_pte_range() and do_swap_page()*/ | 1304 | |
656 | unlock_page_cgroup(pc); | 1305 | if (!PageCgroupUsed(pc)) |
657 | return; | 1306 | goto unlock_out; |
1307 | |||
1308 | switch (ctype) { | ||
1309 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | ||
1310 | if (page_mapped(page)) | ||
1311 | goto unlock_out; | ||
1312 | break; | ||
1313 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | ||
1314 | if (!PageAnon(page)) { /* Shared memory */ | ||
1315 | if (page->mapping && !page_is_file_cache(page)) | ||
1316 | goto unlock_out; | ||
1317 | } else if (page_mapped(page)) /* Anon */ | ||
1318 | goto unlock_out; | ||
1319 | break; | ||
1320 | default: | ||
1321 | break; | ||
658 | } | 1322 | } |
1323 | |||
1324 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
1325 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) | ||
1326 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1327 | |||
1328 | mem_cgroup_charge_statistics(mem, pc, false); | ||
659 | ClearPageCgroupUsed(pc); | 1329 | ClearPageCgroupUsed(pc); |
660 | mem = pc->mem_cgroup; | 1330 | /* |
1331 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | ||
1332 | * freed from LRU. This is safe because uncharged page is expected not | ||
1333 | * to be reused (freed soon). Exception is SwapCache, it's handled by | ||
1334 | * special functions. | ||
1335 | */ | ||
661 | 1336 | ||
662 | mz = page_cgroup_zoneinfo(pc); | 1337 | mz = page_cgroup_zoneinfo(pc); |
663 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
664 | __mem_cgroup_remove_list(mz, pc); | ||
665 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
666 | unlock_page_cgroup(pc); | 1338 | unlock_page_cgroup(pc); |
667 | 1339 | ||
668 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 1340 | /* at swapout, this memcg will be accessed to record to swap */ |
669 | css_put(&mem->css); | 1341 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
1342 | css_put(&mem->css); | ||
670 | 1343 | ||
671 | return; | 1344 | return mem; |
1345 | |||
1346 | unlock_out: | ||
1347 | unlock_page_cgroup(pc); | ||
1348 | return NULL; | ||
672 | } | 1349 | } |
673 | 1350 | ||
674 | void mem_cgroup_uncharge_page(struct page *page) | 1351 | void mem_cgroup_uncharge_page(struct page *page) |
@@ -689,16 +1366,55 @@ void mem_cgroup_uncharge_cache_page(struct page *page) | |||
689 | } | 1366 | } |
690 | 1367 | ||
691 | /* | 1368 | /* |
692 | * Before starting migration, account against new page. | 1369 | * called from __delete_from_swap_cache() and drop "page" account. |
1370 | * memcg information is recorded to swap_cgroup of "ent" | ||
693 | */ | 1371 | */ |
694 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | 1372 | void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) |
1373 | { | ||
1374 | struct mem_cgroup *memcg; | ||
1375 | |||
1376 | memcg = __mem_cgroup_uncharge_common(page, | ||
1377 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); | ||
1378 | /* record memcg information */ | ||
1379 | if (do_swap_account && memcg) { | ||
1380 | swap_cgroup_record(ent, memcg); | ||
1381 | mem_cgroup_get(memcg); | ||
1382 | } | ||
1383 | if (memcg) | ||
1384 | css_put(&memcg->css); | ||
1385 | } | ||
1386 | |||
1387 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
1388 | /* | ||
1389 | * called from swap_entry_free(). remove record in swap_cgroup and | ||
1390 | * uncharge "memsw" account. | ||
1391 | */ | ||
1392 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | ||
1393 | { | ||
1394 | struct mem_cgroup *memcg; | ||
1395 | |||
1396 | if (!do_swap_account) | ||
1397 | return; | ||
1398 | |||
1399 | memcg = swap_cgroup_record(ent, NULL); | ||
1400 | if (memcg) { | ||
1401 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
1402 | mem_cgroup_put(memcg); | ||
1403 | } | ||
1404 | } | ||
1405 | #endif | ||
1406 | |||
1407 | /* | ||
1408 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | ||
1409 | * page belongs to. | ||
1410 | */ | ||
1411 | int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) | ||
695 | { | 1412 | { |
696 | struct page_cgroup *pc; | 1413 | struct page_cgroup *pc; |
697 | struct mem_cgroup *mem = NULL; | 1414 | struct mem_cgroup *mem = NULL; |
698 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
699 | int ret = 0; | 1415 | int ret = 0; |
700 | 1416 | ||
701 | if (mem_cgroup_subsys.disabled) | 1417 | if (mem_cgroup_disabled()) |
702 | return 0; | 1418 | return 0; |
703 | 1419 | ||
704 | pc = lookup_page_cgroup(page); | 1420 | pc = lookup_page_cgroup(page); |
@@ -706,41 +1422,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | |||
706 | if (PageCgroupUsed(pc)) { | 1422 | if (PageCgroupUsed(pc)) { |
707 | mem = pc->mem_cgroup; | 1423 | mem = pc->mem_cgroup; |
708 | css_get(&mem->css); | 1424 | css_get(&mem->css); |
709 | if (PageCgroupCache(pc)) { | ||
710 | if (page_is_file_cache(page)) | ||
711 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
712 | else | ||
713 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
714 | } | ||
715 | } | 1425 | } |
716 | unlock_page_cgroup(pc); | 1426 | unlock_page_cgroup(pc); |
1427 | |||
717 | if (mem) { | 1428 | if (mem) { |
718 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | 1429 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); |
719 | ctype, mem); | ||
720 | css_put(&mem->css); | 1430 | css_put(&mem->css); |
721 | } | 1431 | } |
1432 | *ptr = mem; | ||
722 | return ret; | 1433 | return ret; |
723 | } | 1434 | } |
724 | 1435 | ||
725 | /* remove redundant charge if migration failed*/ | 1436 | /* remove redundant charge if migration failed*/ |
726 | void mem_cgroup_end_migration(struct page *newpage) | 1437 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
1438 | struct page *oldpage, struct page *newpage) | ||
727 | { | 1439 | { |
1440 | struct page *target, *unused; | ||
1441 | struct page_cgroup *pc; | ||
1442 | enum charge_type ctype; | ||
1443 | |||
1444 | if (!mem) | ||
1445 | return; | ||
1446 | |||
1447 | /* at migration success, oldpage->mapping is NULL. */ | ||
1448 | if (oldpage->mapping) { | ||
1449 | target = oldpage; | ||
1450 | unused = NULL; | ||
1451 | } else { | ||
1452 | target = newpage; | ||
1453 | unused = oldpage; | ||
1454 | } | ||
1455 | |||
1456 | if (PageAnon(target)) | ||
1457 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
1458 | else if (page_is_file_cache(target)) | ||
1459 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
1460 | else | ||
1461 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
1462 | |||
1463 | /* unused page is not on radix-tree now. */ | ||
1464 | if (unused) | ||
1465 | __mem_cgroup_uncharge_common(unused, ctype); | ||
1466 | |||
1467 | pc = lookup_page_cgroup(target); | ||
728 | /* | 1468 | /* |
729 | * At success, page->mapping is not NULL. | 1469 | * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. |
730 | * special rollback care is necessary when | 1470 | * So, double-counting is effectively avoided. |
731 | * 1. at migration failure. (newpage->mapping is cleared in this case) | ||
732 | * 2. the newpage was moved but not remapped again because the task | ||
733 | * exits and the newpage is obsolete. In this case, the new page | ||
734 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | ||
735 | * always for avoiding mess. The page_cgroup will be removed if | ||
736 | * unnecessary. File cache pages is still on radix-tree. Don't | ||
737 | * care it. | ||
738 | */ | 1471 | */ |
739 | if (!newpage->mapping) | 1472 | __mem_cgroup_commit_charge(mem, pc, ctype); |
740 | __mem_cgroup_uncharge_common(newpage, | 1473 | |
741 | MEM_CGROUP_CHARGE_TYPE_FORCE); | 1474 | /* |
742 | else if (PageAnon(newpage)) | 1475 | * Both of oldpage and newpage are still under lock_page(). |
743 | mem_cgroup_uncharge_page(newpage); | 1476 | * Then, we don't have to care about race in radix-tree. |
1477 | * But we have to be careful that this page is unmapped or not. | ||
1478 | * | ||
1479 | * There is a case for !page_mapped(). At the start of | ||
1480 | * migration, oldpage was mapped. But now, it's zapped. | ||
1481 | * But we know *target* page is not freed/reused under us. | ||
1482 | * mem_cgroup_uncharge_page() does all necessary checks. | ||
1483 | */ | ||
1484 | if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) | ||
1485 | mem_cgroup_uncharge_page(target); | ||
744 | } | 1486 | } |
745 | 1487 | ||
746 | /* | 1488 | /* |
@@ -748,29 +1490,26 @@ void mem_cgroup_end_migration(struct page *newpage) | |||
748 | * This is typically used for page reclaiming for shmem for reducing side | 1490 | * This is typically used for page reclaiming for shmem for reducing side |
749 | * effect of page allocation from shmem, which is used by some mem_cgroup. | 1491 | * effect of page allocation from shmem, which is used by some mem_cgroup. |
750 | */ | 1492 | */ |
751 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | 1493 | int mem_cgroup_shrink_usage(struct page *page, |
1494 | struct mm_struct *mm, | ||
1495 | gfp_t gfp_mask) | ||
752 | { | 1496 | { |
753 | struct mem_cgroup *mem; | 1497 | struct mem_cgroup *mem = NULL; |
754 | int progress = 0; | 1498 | int progress = 0; |
755 | int retry = MEM_CGROUP_RECLAIM_RETRIES; | 1499 | int retry = MEM_CGROUP_RECLAIM_RETRIES; |
756 | 1500 | ||
757 | if (mem_cgroup_subsys.disabled) | 1501 | if (mem_cgroup_disabled()) |
758 | return 0; | 1502 | return 0; |
759 | if (!mm) | 1503 | if (page) |
1504 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1505 | if (!mem && mm) | ||
1506 | mem = try_get_mem_cgroup_from_mm(mm); | ||
1507 | if (unlikely(!mem)) | ||
760 | return 0; | 1508 | return 0; |
761 | 1509 | ||
762 | rcu_read_lock(); | ||
763 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
764 | if (unlikely(!mem)) { | ||
765 | rcu_read_unlock(); | ||
766 | return 0; | ||
767 | } | ||
768 | css_get(&mem->css); | ||
769 | rcu_read_unlock(); | ||
770 | |||
771 | do { | 1510 | do { |
772 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); | 1511 | progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); |
773 | progress += res_counter_check_under_limit(&mem->res); | 1512 | progress += mem_cgroup_check_under_limit(mem); |
774 | } while (!progress && --retry); | 1513 | } while (!progress && --retry); |
775 | 1514 | ||
776 | css_put(&mem->css); | 1515 | css_put(&mem->css); |
@@ -779,116 +1518,295 @@ int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | |||
779 | return 0; | 1518 | return 0; |
780 | } | 1519 | } |
781 | 1520 | ||
782 | int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) | 1521 | static DEFINE_MUTEX(set_limit_mutex); |
1522 | |||
1523 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | ||
1524 | unsigned long long val) | ||
783 | { | 1525 | { |
784 | 1526 | ||
785 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | 1527 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; |
786 | int progress; | 1528 | int progress; |
1529 | u64 memswlimit; | ||
787 | int ret = 0; | 1530 | int ret = 0; |
788 | 1531 | ||
789 | while (res_counter_set_limit(&memcg->res, val)) { | 1532 | while (retry_count) { |
790 | if (signal_pending(current)) { | 1533 | if (signal_pending(current)) { |
791 | ret = -EINTR; | 1534 | ret = -EINTR; |
792 | break; | 1535 | break; |
793 | } | 1536 | } |
794 | if (!retry_count) { | 1537 | /* |
795 | ret = -EBUSY; | 1538 | * Rather than hide all in some function, I do this in |
1539 | * open coded manner. You see what this really does. | ||
1540 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
1541 | */ | ||
1542 | mutex_lock(&set_limit_mutex); | ||
1543 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1544 | if (memswlimit < val) { | ||
1545 | ret = -EINVAL; | ||
1546 | mutex_unlock(&set_limit_mutex); | ||
796 | break; | 1547 | break; |
797 | } | 1548 | } |
798 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | 1549 | ret = res_counter_set_limit(&memcg->res, val); |
799 | if (!progress) | 1550 | mutex_unlock(&set_limit_mutex); |
800 | retry_count--; | 1551 | |
1552 | if (!ret) | ||
1553 | break; | ||
1554 | |||
1555 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, | ||
1556 | false); | ||
1557 | if (!progress) retry_count--; | ||
801 | } | 1558 | } |
1559 | |||
802 | return ret; | 1560 | return ret; |
803 | } | 1561 | } |
804 | 1562 | ||
1563 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | ||
1564 | unsigned long long val) | ||
1565 | { | ||
1566 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | ||
1567 | u64 memlimit, oldusage, curusage; | ||
1568 | int ret; | ||
1569 | |||
1570 | if (!do_swap_account) | ||
1571 | return -EINVAL; | ||
1572 | |||
1573 | while (retry_count) { | ||
1574 | if (signal_pending(current)) { | ||
1575 | ret = -EINTR; | ||
1576 | break; | ||
1577 | } | ||
1578 | /* | ||
1579 | * Rather than hide all in some function, I do this in | ||
1580 | * open coded manner. You see what this really does. | ||
1581 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
1582 | */ | ||
1583 | mutex_lock(&set_limit_mutex); | ||
1584 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1585 | if (memlimit > val) { | ||
1586 | ret = -EINVAL; | ||
1587 | mutex_unlock(&set_limit_mutex); | ||
1588 | break; | ||
1589 | } | ||
1590 | ret = res_counter_set_limit(&memcg->memsw, val); | ||
1591 | mutex_unlock(&set_limit_mutex); | ||
1592 | |||
1593 | if (!ret) | ||
1594 | break; | ||
1595 | |||
1596 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
1597 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true); | ||
1598 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
1599 | if (curusage >= oldusage) | ||
1600 | retry_count--; | ||
1601 | } | ||
1602 | return ret; | ||
1603 | } | ||
805 | 1604 | ||
806 | /* | 1605 | /* |
807 | * This routine traverse page_cgroup in given list and drop them all. | 1606 | * This routine traverse page_cgroup in given list and drop them all. |
808 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 1607 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
809 | */ | 1608 | */ |
810 | #define FORCE_UNCHARGE_BATCH (128) | 1609 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
811 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 1610 | int node, int zid, enum lru_list lru) |
812 | struct mem_cgroup_per_zone *mz, | ||
813 | enum lru_list lru) | ||
814 | { | 1611 | { |
815 | struct page_cgroup *pc; | 1612 | struct zone *zone; |
816 | struct page *page; | 1613 | struct mem_cgroup_per_zone *mz; |
817 | int count = FORCE_UNCHARGE_BATCH; | 1614 | struct page_cgroup *pc, *busy; |
818 | unsigned long flags; | 1615 | unsigned long flags, loop; |
819 | struct list_head *list; | 1616 | struct list_head *list; |
1617 | int ret = 0; | ||
820 | 1618 | ||
1619 | zone = &NODE_DATA(node)->node_zones[zid]; | ||
1620 | mz = mem_cgroup_zoneinfo(mem, node, zid); | ||
821 | list = &mz->lists[lru]; | 1621 | list = &mz->lists[lru]; |
822 | 1622 | ||
823 | spin_lock_irqsave(&mz->lru_lock, flags); | 1623 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
824 | while (!list_empty(list)) { | 1624 | /* give some margin against EBUSY etc...*/ |
825 | pc = list_entry(list->prev, struct page_cgroup, lru); | 1625 | loop += 256; |
826 | page = pc->page; | 1626 | busy = NULL; |
827 | if (!PageCgroupUsed(pc)) | 1627 | while (loop--) { |
828 | break; | 1628 | ret = 0; |
829 | get_page(page); | 1629 | spin_lock_irqsave(&zone->lru_lock, flags); |
830 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1630 | if (list_empty(list)) { |
831 | /* | 1631 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
832 | * Check if this page is on LRU. !LRU page can be found | ||
833 | * if it's under page migration. | ||
834 | */ | ||
835 | if (PageLRU(page)) { | ||
836 | __mem_cgroup_uncharge_common(page, | ||
837 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
838 | put_page(page); | ||
839 | if (--count <= 0) { | ||
840 | count = FORCE_UNCHARGE_BATCH; | ||
841 | cond_resched(); | ||
842 | } | ||
843 | } else { | ||
844 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
845 | break; | 1632 | break; |
846 | } | 1633 | } |
847 | spin_lock_irqsave(&mz->lru_lock, flags); | 1634 | pc = list_entry(list->prev, struct page_cgroup, lru); |
1635 | if (busy == pc) { | ||
1636 | list_move(&pc->lru, list); | ||
1637 | busy = 0; | ||
1638 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
1639 | continue; | ||
1640 | } | ||
1641 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
1642 | |||
1643 | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); | ||
1644 | if (ret == -ENOMEM) | ||
1645 | break; | ||
1646 | |||
1647 | if (ret == -EBUSY || ret == -EINVAL) { | ||
1648 | /* found lock contention or "pc" is obsolete. */ | ||
1649 | busy = pc; | ||
1650 | cond_resched(); | ||
1651 | } else | ||
1652 | busy = NULL; | ||
848 | } | 1653 | } |
849 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1654 | |
1655 | if (!ret && !list_empty(list)) | ||
1656 | return -EBUSY; | ||
1657 | return ret; | ||
850 | } | 1658 | } |
851 | 1659 | ||
852 | /* | 1660 | /* |
853 | * make mem_cgroup's charge to be 0 if there is no task. | 1661 | * make mem_cgroup's charge to be 0 if there is no task. |
854 | * This enables deleting this mem_cgroup. | 1662 | * This enables deleting this mem_cgroup. |
855 | */ | 1663 | */ |
856 | static int mem_cgroup_force_empty(struct mem_cgroup *mem) | 1664 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
857 | { | 1665 | { |
858 | int ret = -EBUSY; | 1666 | int ret; |
859 | int node, zid; | 1667 | int node, zid, shrink; |
1668 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
1669 | struct cgroup *cgrp = mem->css.cgroup; | ||
860 | 1670 | ||
861 | css_get(&mem->css); | 1671 | css_get(&mem->css); |
862 | /* | 1672 | |
863 | * page reclaim code (kswapd etc..) will move pages between | 1673 | shrink = 0; |
864 | * active_list <-> inactive_list while we don't take a lock. | 1674 | /* should free all ? */ |
865 | * So, we have to do loop here until all lists are empty. | 1675 | if (free_all) |
866 | */ | 1676 | goto try_to_free; |
1677 | move_account: | ||
867 | while (mem->res.usage > 0) { | 1678 | while (mem->res.usage > 0) { |
868 | if (atomic_read(&mem->css.cgroup->count) > 0) | 1679 | ret = -EBUSY; |
1680 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | ||
1681 | goto out; | ||
1682 | ret = -EINTR; | ||
1683 | if (signal_pending(current)) | ||
869 | goto out; | 1684 | goto out; |
870 | /* This is for making all *used* pages to be on LRU. */ | 1685 | /* This is for making all *used* pages to be on LRU. */ |
871 | lru_add_drain_all(); | 1686 | lru_add_drain_all(); |
872 | for_each_node_state(node, N_POSSIBLE) | 1687 | ret = 0; |
873 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 1688 | for_each_node_state(node, N_HIGH_MEMORY) { |
874 | struct mem_cgroup_per_zone *mz; | 1689 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
875 | enum lru_list l; | 1690 | enum lru_list l; |
876 | mz = mem_cgroup_zoneinfo(mem, node, zid); | 1691 | for_each_lru(l) { |
877 | for_each_lru(l) | 1692 | ret = mem_cgroup_force_empty_list(mem, |
878 | mem_cgroup_force_empty_list(mem, mz, l); | 1693 | node, zid, l); |
1694 | if (ret) | ||
1695 | break; | ||
1696 | } | ||
879 | } | 1697 | } |
1698 | if (ret) | ||
1699 | break; | ||
1700 | } | ||
1701 | /* it seems parent cgroup doesn't have enough mem */ | ||
1702 | if (ret == -ENOMEM) | ||
1703 | goto try_to_free; | ||
880 | cond_resched(); | 1704 | cond_resched(); |
881 | } | 1705 | } |
882 | ret = 0; | 1706 | ret = 0; |
883 | out: | 1707 | out: |
884 | css_put(&mem->css); | 1708 | css_put(&mem->css); |
885 | return ret; | 1709 | return ret; |
1710 | |||
1711 | try_to_free: | ||
1712 | /* returns EBUSY if there is a task or if we come here twice. */ | ||
1713 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | ||
1714 | ret = -EBUSY; | ||
1715 | goto out; | ||
1716 | } | ||
1717 | /* we call try-to-free pages for make this cgroup empty */ | ||
1718 | lru_add_drain_all(); | ||
1719 | /* try to free all pages in this cgroup */ | ||
1720 | shrink = 1; | ||
1721 | while (nr_retries && mem->res.usage > 0) { | ||
1722 | int progress; | ||
1723 | |||
1724 | if (signal_pending(current)) { | ||
1725 | ret = -EINTR; | ||
1726 | goto out; | ||
1727 | } | ||
1728 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, | ||
1729 | false, get_swappiness(mem)); | ||
1730 | if (!progress) { | ||
1731 | nr_retries--; | ||
1732 | /* maybe some writeback is necessary */ | ||
1733 | congestion_wait(WRITE, HZ/10); | ||
1734 | } | ||
1735 | |||
1736 | } | ||
1737 | lru_add_drain(); | ||
1738 | /* try move_account...there may be some *locked* pages. */ | ||
1739 | if (mem->res.usage) | ||
1740 | goto move_account; | ||
1741 | ret = 0; | ||
1742 | goto out; | ||
1743 | } | ||
1744 | |||
1745 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | ||
1746 | { | ||
1747 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | ||
1748 | } | ||
1749 | |||
1750 | |||
1751 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | ||
1752 | { | ||
1753 | return mem_cgroup_from_cont(cont)->use_hierarchy; | ||
1754 | } | ||
1755 | |||
1756 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | ||
1757 | u64 val) | ||
1758 | { | ||
1759 | int retval = 0; | ||
1760 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | ||
1761 | struct cgroup *parent = cont->parent; | ||
1762 | struct mem_cgroup *parent_mem = NULL; | ||
1763 | |||
1764 | if (parent) | ||
1765 | parent_mem = mem_cgroup_from_cont(parent); | ||
1766 | |||
1767 | cgroup_lock(); | ||
1768 | /* | ||
1769 | * If parent's use_hiearchy is set, we can't make any modifications | ||
1770 | * in the child subtrees. If it is unset, then the change can | ||
1771 | * occur, provided the current cgroup has no children. | ||
1772 | * | ||
1773 | * For the root cgroup, parent_mem is NULL, we allow value to be | ||
1774 | * set if there are no children. | ||
1775 | */ | ||
1776 | if ((!parent_mem || !parent_mem->use_hierarchy) && | ||
1777 | (val == 1 || val == 0)) { | ||
1778 | if (list_empty(&cont->children)) | ||
1779 | mem->use_hierarchy = val; | ||
1780 | else | ||
1781 | retval = -EBUSY; | ||
1782 | } else | ||
1783 | retval = -EINVAL; | ||
1784 | cgroup_unlock(); | ||
1785 | |||
1786 | return retval; | ||
886 | } | 1787 | } |
887 | 1788 | ||
888 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 1789 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
889 | { | 1790 | { |
890 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 1791 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
891 | cft->private); | 1792 | u64 val = 0; |
1793 | int type, name; | ||
1794 | |||
1795 | type = MEMFILE_TYPE(cft->private); | ||
1796 | name = MEMFILE_ATTR(cft->private); | ||
1797 | switch (type) { | ||
1798 | case _MEM: | ||
1799 | val = res_counter_read_u64(&mem->res, name); | ||
1800 | break; | ||
1801 | case _MEMSWAP: | ||
1802 | if (do_swap_account) | ||
1803 | val = res_counter_read_u64(&mem->memsw, name); | ||
1804 | break; | ||
1805 | default: | ||
1806 | BUG(); | ||
1807 | break; | ||
1808 | } | ||
1809 | return val; | ||
892 | } | 1810 | } |
893 | /* | 1811 | /* |
894 | * The user of this function is... | 1812 | * The user of this function is... |
@@ -898,15 +1816,22 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
898 | const char *buffer) | 1816 | const char *buffer) |
899 | { | 1817 | { |
900 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 1818 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
1819 | int type, name; | ||
901 | unsigned long long val; | 1820 | unsigned long long val; |
902 | int ret; | 1821 | int ret; |
903 | 1822 | ||
904 | switch (cft->private) { | 1823 | type = MEMFILE_TYPE(cft->private); |
1824 | name = MEMFILE_ATTR(cft->private); | ||
1825 | switch (name) { | ||
905 | case RES_LIMIT: | 1826 | case RES_LIMIT: |
906 | /* This function does all necessary parse...reuse it */ | 1827 | /* This function does all necessary parse...reuse it */ |
907 | ret = res_counter_memparse_write_strategy(buffer, &val); | 1828 | ret = res_counter_memparse_write_strategy(buffer, &val); |
908 | if (!ret) | 1829 | if (ret) |
1830 | break; | ||
1831 | if (type == _MEM) | ||
909 | ret = mem_cgroup_resize_limit(memcg, val); | 1832 | ret = mem_cgroup_resize_limit(memcg, val); |
1833 | else | ||
1834 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | ||
910 | break; | 1835 | break; |
911 | default: | 1836 | default: |
912 | ret = -EINVAL; /* should be BUG() ? */ | 1837 | ret = -EINVAL; /* should be BUG() ? */ |
@@ -915,27 +1840,59 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
915 | return ret; | 1840 | return ret; |
916 | } | 1841 | } |
917 | 1842 | ||
1843 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | ||
1844 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | ||
1845 | { | ||
1846 | struct cgroup *cgroup; | ||
1847 | unsigned long long min_limit, min_memsw_limit, tmp; | ||
1848 | |||
1849 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1850 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1851 | cgroup = memcg->css.cgroup; | ||
1852 | if (!memcg->use_hierarchy) | ||
1853 | goto out; | ||
1854 | |||
1855 | while (cgroup->parent) { | ||
1856 | cgroup = cgroup->parent; | ||
1857 | memcg = mem_cgroup_from_cont(cgroup); | ||
1858 | if (!memcg->use_hierarchy) | ||
1859 | break; | ||
1860 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1861 | min_limit = min(min_limit, tmp); | ||
1862 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1863 | min_memsw_limit = min(min_memsw_limit, tmp); | ||
1864 | } | ||
1865 | out: | ||
1866 | *mem_limit = min_limit; | ||
1867 | *memsw_limit = min_memsw_limit; | ||
1868 | return; | ||
1869 | } | ||
1870 | |||
918 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 1871 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
919 | { | 1872 | { |
920 | struct mem_cgroup *mem; | 1873 | struct mem_cgroup *mem; |
1874 | int type, name; | ||
921 | 1875 | ||
922 | mem = mem_cgroup_from_cont(cont); | 1876 | mem = mem_cgroup_from_cont(cont); |
923 | switch (event) { | 1877 | type = MEMFILE_TYPE(event); |
1878 | name = MEMFILE_ATTR(event); | ||
1879 | switch (name) { | ||
924 | case RES_MAX_USAGE: | 1880 | case RES_MAX_USAGE: |
925 | res_counter_reset_max(&mem->res); | 1881 | if (type == _MEM) |
1882 | res_counter_reset_max(&mem->res); | ||
1883 | else | ||
1884 | res_counter_reset_max(&mem->memsw); | ||
926 | break; | 1885 | break; |
927 | case RES_FAILCNT: | 1886 | case RES_FAILCNT: |
928 | res_counter_reset_failcnt(&mem->res); | 1887 | if (type == _MEM) |
1888 | res_counter_reset_failcnt(&mem->res); | ||
1889 | else | ||
1890 | res_counter_reset_failcnt(&mem->memsw); | ||
929 | break; | 1891 | break; |
930 | } | 1892 | } |
931 | return 0; | 1893 | return 0; |
932 | } | 1894 | } |
933 | 1895 | ||
934 | static int mem_force_empty_write(struct cgroup *cont, unsigned int event) | ||
935 | { | ||
936 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); | ||
937 | } | ||
938 | |||
939 | static const struct mem_cgroup_stat_desc { | 1896 | static const struct mem_cgroup_stat_desc { |
940 | const char *msg; | 1897 | const char *msg; |
941 | u64 unit; | 1898 | u64 unit; |
@@ -984,42 +1941,170 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | |||
984 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); | 1941 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); |
985 | 1942 | ||
986 | } | 1943 | } |
1944 | { | ||
1945 | unsigned long long limit, memsw_limit; | ||
1946 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | ||
1947 | cb->fill(cb, "hierarchical_memory_limit", limit); | ||
1948 | if (do_swap_account) | ||
1949 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | ||
1950 | } | ||
1951 | |||
1952 | #ifdef CONFIG_DEBUG_VM | ||
1953 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | ||
1954 | |||
1955 | { | ||
1956 | int nid, zid; | ||
1957 | struct mem_cgroup_per_zone *mz; | ||
1958 | unsigned long recent_rotated[2] = {0, 0}; | ||
1959 | unsigned long recent_scanned[2] = {0, 0}; | ||
1960 | |||
1961 | for_each_online_node(nid) | ||
1962 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | ||
1963 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | ||
1964 | |||
1965 | recent_rotated[0] += | ||
1966 | mz->reclaim_stat.recent_rotated[0]; | ||
1967 | recent_rotated[1] += | ||
1968 | mz->reclaim_stat.recent_rotated[1]; | ||
1969 | recent_scanned[0] += | ||
1970 | mz->reclaim_stat.recent_scanned[0]; | ||
1971 | recent_scanned[1] += | ||
1972 | mz->reclaim_stat.recent_scanned[1]; | ||
1973 | } | ||
1974 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | ||
1975 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | ||
1976 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | ||
1977 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | ||
1978 | } | ||
1979 | #endif | ||
1980 | |||
987 | return 0; | 1981 | return 0; |
988 | } | 1982 | } |
989 | 1983 | ||
1984 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | ||
1985 | { | ||
1986 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
1987 | |||
1988 | return get_swappiness(memcg); | ||
1989 | } | ||
1990 | |||
1991 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | ||
1992 | u64 val) | ||
1993 | { | ||
1994 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
1995 | struct mem_cgroup *parent; | ||
1996 | |||
1997 | if (val > 100) | ||
1998 | return -EINVAL; | ||
1999 | |||
2000 | if (cgrp->parent == NULL) | ||
2001 | return -EINVAL; | ||
2002 | |||
2003 | parent = mem_cgroup_from_cont(cgrp->parent); | ||
2004 | |||
2005 | cgroup_lock(); | ||
2006 | |||
2007 | /* If under hierarchy, only empty-root can set this value */ | ||
2008 | if ((parent->use_hierarchy) || | ||
2009 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { | ||
2010 | cgroup_unlock(); | ||
2011 | return -EINVAL; | ||
2012 | } | ||
2013 | |||
2014 | spin_lock(&memcg->reclaim_param_lock); | ||
2015 | memcg->swappiness = val; | ||
2016 | spin_unlock(&memcg->reclaim_param_lock); | ||
2017 | |||
2018 | cgroup_unlock(); | ||
2019 | |||
2020 | return 0; | ||
2021 | } | ||
2022 | |||
2023 | |||
990 | static struct cftype mem_cgroup_files[] = { | 2024 | static struct cftype mem_cgroup_files[] = { |
991 | { | 2025 | { |
992 | .name = "usage_in_bytes", | 2026 | .name = "usage_in_bytes", |
993 | .private = RES_USAGE, | 2027 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
994 | .read_u64 = mem_cgroup_read, | 2028 | .read_u64 = mem_cgroup_read, |
995 | }, | 2029 | }, |
996 | { | 2030 | { |
997 | .name = "max_usage_in_bytes", | 2031 | .name = "max_usage_in_bytes", |
998 | .private = RES_MAX_USAGE, | 2032 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
999 | .trigger = mem_cgroup_reset, | 2033 | .trigger = mem_cgroup_reset, |
1000 | .read_u64 = mem_cgroup_read, | 2034 | .read_u64 = mem_cgroup_read, |
1001 | }, | 2035 | }, |
1002 | { | 2036 | { |
1003 | .name = "limit_in_bytes", | 2037 | .name = "limit_in_bytes", |
1004 | .private = RES_LIMIT, | 2038 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
1005 | .write_string = mem_cgroup_write, | 2039 | .write_string = mem_cgroup_write, |
1006 | .read_u64 = mem_cgroup_read, | 2040 | .read_u64 = mem_cgroup_read, |
1007 | }, | 2041 | }, |
1008 | { | 2042 | { |
1009 | .name = "failcnt", | 2043 | .name = "failcnt", |
1010 | .private = RES_FAILCNT, | 2044 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
1011 | .trigger = mem_cgroup_reset, | 2045 | .trigger = mem_cgroup_reset, |
1012 | .read_u64 = mem_cgroup_read, | 2046 | .read_u64 = mem_cgroup_read, |
1013 | }, | 2047 | }, |
1014 | { | 2048 | { |
2049 | .name = "stat", | ||
2050 | .read_map = mem_control_stat_show, | ||
2051 | }, | ||
2052 | { | ||
1015 | .name = "force_empty", | 2053 | .name = "force_empty", |
1016 | .trigger = mem_force_empty_write, | 2054 | .trigger = mem_cgroup_force_empty_write, |
1017 | }, | 2055 | }, |
1018 | { | 2056 | { |
1019 | .name = "stat", | 2057 | .name = "use_hierarchy", |
1020 | .read_map = mem_control_stat_show, | 2058 | .write_u64 = mem_cgroup_hierarchy_write, |
2059 | .read_u64 = mem_cgroup_hierarchy_read, | ||
1021 | }, | 2060 | }, |
2061 | { | ||
2062 | .name = "swappiness", | ||
2063 | .read_u64 = mem_cgroup_swappiness_read, | ||
2064 | .write_u64 = mem_cgroup_swappiness_write, | ||
2065 | }, | ||
2066 | }; | ||
2067 | |||
2068 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2069 | static struct cftype memsw_cgroup_files[] = { | ||
2070 | { | ||
2071 | .name = "memsw.usage_in_bytes", | ||
2072 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | ||
2073 | .read_u64 = mem_cgroup_read, | ||
2074 | }, | ||
2075 | { | ||
2076 | .name = "memsw.max_usage_in_bytes", | ||
2077 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | ||
2078 | .trigger = mem_cgroup_reset, | ||
2079 | .read_u64 = mem_cgroup_read, | ||
2080 | }, | ||
2081 | { | ||
2082 | .name = "memsw.limit_in_bytes", | ||
2083 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | ||
2084 | .write_string = mem_cgroup_write, | ||
2085 | .read_u64 = mem_cgroup_read, | ||
2086 | }, | ||
2087 | { | ||
2088 | .name = "memsw.failcnt", | ||
2089 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | ||
2090 | .trigger = mem_cgroup_reset, | ||
2091 | .read_u64 = mem_cgroup_read, | ||
2092 | }, | ||
2093 | }; | ||
2094 | |||
2095 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
2096 | { | ||
2097 | if (!do_swap_account) | ||
2098 | return 0; | ||
2099 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | ||
2100 | ARRAY_SIZE(memsw_cgroup_files)); | ||
1022 | }; | 2101 | }; |
2102 | #else | ||
2103 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
2104 | { | ||
2105 | return 0; | ||
2106 | } | ||
2107 | #endif | ||
1023 | 2108 | ||
1024 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 2109 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
1025 | { | 2110 | { |
@@ -1046,7 +2131,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1046 | 2131 | ||
1047 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 2132 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
1048 | mz = &pn->zoneinfo[zone]; | 2133 | mz = &pn->zoneinfo[zone]; |
1049 | spin_lock_init(&mz->lru_lock); | ||
1050 | for_each_lru(l) | 2134 | for_each_lru(l) |
1051 | INIT_LIST_HEAD(&mz->lists[l]); | 2135 | INIT_LIST_HEAD(&mz->lists[l]); |
1052 | } | 2136 | } |
@@ -1058,55 +2142,133 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1058 | kfree(mem->info.nodeinfo[node]); | 2142 | kfree(mem->info.nodeinfo[node]); |
1059 | } | 2143 | } |
1060 | 2144 | ||
2145 | static int mem_cgroup_size(void) | ||
2146 | { | ||
2147 | int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); | ||
2148 | return sizeof(struct mem_cgroup) + cpustat_size; | ||
2149 | } | ||
2150 | |||
1061 | static struct mem_cgroup *mem_cgroup_alloc(void) | 2151 | static struct mem_cgroup *mem_cgroup_alloc(void) |
1062 | { | 2152 | { |
1063 | struct mem_cgroup *mem; | 2153 | struct mem_cgroup *mem; |
2154 | int size = mem_cgroup_size(); | ||
1064 | 2155 | ||
1065 | if (sizeof(*mem) < PAGE_SIZE) | 2156 | if (size < PAGE_SIZE) |
1066 | mem = kmalloc(sizeof(*mem), GFP_KERNEL); | 2157 | mem = kmalloc(size, GFP_KERNEL); |
1067 | else | 2158 | else |
1068 | mem = vmalloc(sizeof(*mem)); | 2159 | mem = vmalloc(size); |
1069 | 2160 | ||
1070 | if (mem) | 2161 | if (mem) |
1071 | memset(mem, 0, sizeof(*mem)); | 2162 | memset(mem, 0, size); |
1072 | return mem; | 2163 | return mem; |
1073 | } | 2164 | } |
1074 | 2165 | ||
1075 | static void mem_cgroup_free(struct mem_cgroup *mem) | 2166 | /* |
2167 | * At destroying mem_cgroup, references from swap_cgroup can remain. | ||
2168 | * (scanning all at force_empty is too costly...) | ||
2169 | * | ||
2170 | * Instead of clearing all references at force_empty, we remember | ||
2171 | * the number of reference from swap_cgroup and free mem_cgroup when | ||
2172 | * it goes down to 0. | ||
2173 | * | ||
2174 | * Removal of cgroup itself succeeds regardless of refs from swap. | ||
2175 | */ | ||
2176 | |||
2177 | static void __mem_cgroup_free(struct mem_cgroup *mem) | ||
1076 | { | 2178 | { |
1077 | if (sizeof(*mem) < PAGE_SIZE) | 2179 | int node; |
2180 | |||
2181 | for_each_node_state(node, N_POSSIBLE) | ||
2182 | free_mem_cgroup_per_zone_info(mem, node); | ||
2183 | |||
2184 | if (mem_cgroup_size() < PAGE_SIZE) | ||
1078 | kfree(mem); | 2185 | kfree(mem); |
1079 | else | 2186 | else |
1080 | vfree(mem); | 2187 | vfree(mem); |
1081 | } | 2188 | } |
1082 | 2189 | ||
2190 | static void mem_cgroup_get(struct mem_cgroup *mem) | ||
2191 | { | ||
2192 | atomic_inc(&mem->refcnt); | ||
2193 | } | ||
1083 | 2194 | ||
1084 | static struct cgroup_subsys_state * | 2195 | static void mem_cgroup_put(struct mem_cgroup *mem) |
2196 | { | ||
2197 | if (atomic_dec_and_test(&mem->refcnt)) { | ||
2198 | struct mem_cgroup *parent = parent_mem_cgroup(mem); | ||
2199 | __mem_cgroup_free(mem); | ||
2200 | if (parent) | ||
2201 | mem_cgroup_put(parent); | ||
2202 | } | ||
2203 | } | ||
2204 | |||
2205 | /* | ||
2206 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | ||
2207 | */ | ||
2208 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) | ||
2209 | { | ||
2210 | if (!mem->res.parent) | ||
2211 | return NULL; | ||
2212 | return mem_cgroup_from_res_counter(mem->res.parent, res); | ||
2213 | } | ||
2214 | |||
2215 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2216 | static void __init enable_swap_cgroup(void) | ||
2217 | { | ||
2218 | if (!mem_cgroup_disabled() && really_do_swap_account) | ||
2219 | do_swap_account = 1; | ||
2220 | } | ||
2221 | #else | ||
2222 | static void __init enable_swap_cgroup(void) | ||
2223 | { | ||
2224 | } | ||
2225 | #endif | ||
2226 | |||
2227 | static struct cgroup_subsys_state * __ref | ||
1085 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 2228 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
1086 | { | 2229 | { |
1087 | struct mem_cgroup *mem; | 2230 | struct mem_cgroup *mem, *parent; |
1088 | int node; | 2231 | int node; |
1089 | 2232 | ||
1090 | if (unlikely((cont->parent) == NULL)) { | 2233 | mem = mem_cgroup_alloc(); |
1091 | mem = &init_mem_cgroup; | 2234 | if (!mem) |
1092 | } else { | 2235 | return ERR_PTR(-ENOMEM); |
1093 | mem = mem_cgroup_alloc(); | ||
1094 | if (!mem) | ||
1095 | return ERR_PTR(-ENOMEM); | ||
1096 | } | ||
1097 | |||
1098 | res_counter_init(&mem->res); | ||
1099 | 2236 | ||
1100 | for_each_node_state(node, N_POSSIBLE) | 2237 | for_each_node_state(node, N_POSSIBLE) |
1101 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 2238 | if (alloc_mem_cgroup_per_zone_info(mem, node)) |
1102 | goto free_out; | 2239 | goto free_out; |
2240 | /* root ? */ | ||
2241 | if (cont->parent == NULL) { | ||
2242 | enable_swap_cgroup(); | ||
2243 | parent = NULL; | ||
2244 | } else { | ||
2245 | parent = mem_cgroup_from_cont(cont->parent); | ||
2246 | mem->use_hierarchy = parent->use_hierarchy; | ||
2247 | } | ||
1103 | 2248 | ||
2249 | if (parent && parent->use_hierarchy) { | ||
2250 | res_counter_init(&mem->res, &parent->res); | ||
2251 | res_counter_init(&mem->memsw, &parent->memsw); | ||
2252 | /* | ||
2253 | * We increment refcnt of the parent to ensure that we can | ||
2254 | * safely access it on res_counter_charge/uncharge. | ||
2255 | * This refcnt will be decremented when freeing this | ||
2256 | * mem_cgroup(see mem_cgroup_put). | ||
2257 | */ | ||
2258 | mem_cgroup_get(parent); | ||
2259 | } else { | ||
2260 | res_counter_init(&mem->res, NULL); | ||
2261 | res_counter_init(&mem->memsw, NULL); | ||
2262 | } | ||
2263 | mem->last_scanned_child = NULL; | ||
2264 | spin_lock_init(&mem->reclaim_param_lock); | ||
2265 | |||
2266 | if (parent) | ||
2267 | mem->swappiness = get_swappiness(parent); | ||
2268 | atomic_set(&mem->refcnt, 1); | ||
1104 | return &mem->css; | 2269 | return &mem->css; |
1105 | free_out: | 2270 | free_out: |
1106 | for_each_node_state(node, N_POSSIBLE) | 2271 | __mem_cgroup_free(mem); |
1107 | free_mem_cgroup_per_zone_info(mem, node); | ||
1108 | if (cont->parent != NULL) | ||
1109 | mem_cgroup_free(mem); | ||
1110 | return ERR_PTR(-ENOMEM); | 2272 | return ERR_PTR(-ENOMEM); |
1111 | } | 2273 | } |
1112 | 2274 | ||
@@ -1114,26 +2276,33 @@ static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | |||
1114 | struct cgroup *cont) | 2276 | struct cgroup *cont) |
1115 | { | 2277 | { |
1116 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2278 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
1117 | mem_cgroup_force_empty(mem); | 2279 | mem_cgroup_force_empty(mem, false); |
1118 | } | 2280 | } |
1119 | 2281 | ||
1120 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 2282 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
1121 | struct cgroup *cont) | 2283 | struct cgroup *cont) |
1122 | { | 2284 | { |
1123 | int node; | ||
1124 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2285 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
2286 | struct mem_cgroup *last_scanned_child = mem->last_scanned_child; | ||
1125 | 2287 | ||
1126 | for_each_node_state(node, N_POSSIBLE) | 2288 | if (last_scanned_child) { |
1127 | free_mem_cgroup_per_zone_info(mem, node); | 2289 | VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child)); |
1128 | 2290 | mem_cgroup_put(last_scanned_child); | |
1129 | mem_cgroup_free(mem_cgroup_from_cont(cont)); | 2291 | } |
2292 | mem_cgroup_put(mem); | ||
1130 | } | 2293 | } |
1131 | 2294 | ||
1132 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 2295 | static int mem_cgroup_populate(struct cgroup_subsys *ss, |
1133 | struct cgroup *cont) | 2296 | struct cgroup *cont) |
1134 | { | 2297 | { |
1135 | return cgroup_add_files(cont, ss, mem_cgroup_files, | 2298 | int ret; |
1136 | ARRAY_SIZE(mem_cgroup_files)); | 2299 | |
2300 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | ||
2301 | ARRAY_SIZE(mem_cgroup_files)); | ||
2302 | |||
2303 | if (!ret) | ||
2304 | ret = register_memsw_files(cont, ss); | ||
2305 | return ret; | ||
1137 | } | 2306 | } |
1138 | 2307 | ||
1139 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 2308 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
@@ -1141,25 +2310,12 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
1141 | struct cgroup *old_cont, | 2310 | struct cgroup *old_cont, |
1142 | struct task_struct *p) | 2311 | struct task_struct *p) |
1143 | { | 2312 | { |
1144 | struct mm_struct *mm; | 2313 | mutex_lock(&memcg_tasklist); |
1145 | struct mem_cgroup *mem, *old_mem; | ||
1146 | |||
1147 | mm = get_task_mm(p); | ||
1148 | if (mm == NULL) | ||
1149 | return; | ||
1150 | |||
1151 | mem = mem_cgroup_from_cont(cont); | ||
1152 | old_mem = mem_cgroup_from_cont(old_cont); | ||
1153 | |||
1154 | /* | 2314 | /* |
1155 | * Only thread group leaders are allowed to migrate, the mm_struct is | 2315 | * FIXME: It's better to move charges of this process from old |
1156 | * in effect owned by the leader | 2316 | * memcg to new memcg. But it's just on TODO-List now. |
1157 | */ | 2317 | */ |
1158 | if (!thread_group_leader(p)) | 2318 | mutex_unlock(&memcg_tasklist); |
1159 | goto out; | ||
1160 | |||
1161 | out: | ||
1162 | mmput(mm); | ||
1163 | } | 2319 | } |
1164 | 2320 | ||
1165 | struct cgroup_subsys mem_cgroup_subsys = { | 2321 | struct cgroup_subsys mem_cgroup_subsys = { |
@@ -1172,3 +2328,13 @@ struct cgroup_subsys mem_cgroup_subsys = { | |||
1172 | .attach = mem_cgroup_move_task, | 2328 | .attach = mem_cgroup_move_task, |
1173 | .early_init = 0, | 2329 | .early_init = 0, |
1174 | }; | 2330 | }; |
2331 | |||
2332 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2333 | |||
2334 | static int __init disable_swap_account(char *s) | ||
2335 | { | ||
2336 | really_do_swap_account = 0; | ||
2337 | return 1; | ||
2338 | } | ||
2339 | __setup("noswapaccount", disable_swap_account); | ||
2340 | #endif | ||