aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c1898
1 files changed, 1532 insertions, 366 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 866dcc7eeb0c..8e4be9cb2a6a 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -21,11 +21,13 @@
21#include <linux/memcontrol.h> 21#include <linux/memcontrol.h>
22#include <linux/cgroup.h> 22#include <linux/cgroup.h>
23#include <linux/mm.h> 23#include <linux/mm.h>
24#include <linux/pagemap.h>
24#include <linux/smp.h> 25#include <linux/smp.h>
25#include <linux/page-flags.h> 26#include <linux/page-flags.h>
26#include <linux/backing-dev.h> 27#include <linux/backing-dev.h>
27#include <linux/bit_spinlock.h> 28#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h> 29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
29#include <linux/slab.h> 31#include <linux/slab.h>
30#include <linux/swap.h> 32#include <linux/swap.h>
31#include <linux/spinlock.h> 33#include <linux/spinlock.h>
@@ -34,12 +36,23 @@
34#include <linux/vmalloc.h> 36#include <linux/vmalloc.h>
35#include <linux/mm_inline.h> 37#include <linux/mm_inline.h>
36#include <linux/page_cgroup.h> 38#include <linux/page_cgroup.h>
39#include "internal.h"
37 40
38#include <asm/uaccess.h> 41#include <asm/uaccess.h>
39 42
40struct cgroup_subsys mem_cgroup_subsys __read_mostly; 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
41#define MEM_CGROUP_RECLAIM_RETRIES 5 44#define MEM_CGROUP_RECLAIM_RETRIES 5
42 45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
55
43/* 56/*
44 * Statistics for memory cgroup. 57 * Statistics for memory cgroup.
45 */ 58 */
@@ -60,7 +73,7 @@ struct mem_cgroup_stat_cpu {
60} ____cacheline_aligned_in_smp; 73} ____cacheline_aligned_in_smp;
61 74
62struct mem_cgroup_stat { 75struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; 76 struct mem_cgroup_stat_cpu cpustat[0];
64}; 77};
65 78
66/* 79/*
@@ -89,9 +102,10 @@ struct mem_cgroup_per_zone {
89 /* 102 /*
90 * spin_lock to protect the per cgroup LRU 103 * spin_lock to protect the per cgroup LRU
91 */ 104 */
92 spinlock_t lru_lock;
93 struct list_head lists[NR_LRU_LISTS]; 105 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS]; 106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
95}; 109};
96/* Macro for accessing counter */ 110/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
@@ -122,44 +136,74 @@ struct mem_cgroup {
122 */ 136 */
123 struct res_counter res; 137 struct res_counter res;
124 /* 138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
142 /*
125 * Per cgroup active and inactive list, similar to the 143 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists. 144 * per zone LRU lists.
127 */ 145 */
128 struct mem_cgroup_lru_info info; 146 struct mem_cgroup_lru_info info;
129 147
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
130 int prev_priority; /* for recording reclaim priority */ 153 int prev_priority; /* for recording reclaim priority */
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
158 */
159 struct mem_cgroup *last_scanned_child;
131 /* 160 /*
132 * statistics. 161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169 /*
170 * statistics. This must be placed at the end of memcg.
133 */ 171 */
134 struct mem_cgroup_stat stat; 172 struct mem_cgroup_stat stat;
135}; 173};
136static struct mem_cgroup init_mem_cgroup;
137 174
138enum charge_type { 175enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED, 177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
143 NR_CHARGE_TYPE, 181 NR_CHARGE_TYPE,
144}; 182};
145 183
146/* only for here (for easy reading.) */ 184/* only for here (for easy reading.) */
147#define PCGF_CACHE (1UL << PCG_CACHE) 185#define PCGF_CACHE (1UL << PCG_CACHE)
148#define PCGF_USED (1UL << PCG_USED) 186#define PCGF_USED (1UL << PCG_USED)
149#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150#define PCGF_LOCK (1UL << PCG_LOCK) 187#define PCGF_LOCK (1UL << PCG_LOCK)
151#define PCGF_FILE (1UL << PCG_FILE)
152static const unsigned long 188static const unsigned long
153pcg_default_flags[NR_CHARGE_TYPE] = { 189pcg_default_flags[NR_CHARGE_TYPE] = {
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */ 190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */ 191 PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ 192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */ 193 0, /* FORCE */
158}; 194};
159 195
160/* 196/* for encoding cft->private value on file */
161 * Always modified under lru lock. Then, not necessary to preempt_disable() 197#define _MEM (0)
162 */ 198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
206
163static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 207static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc, 208 struct page_cgroup *pc,
165 bool charge) 209 bool charge)
@@ -167,10 +211,9 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
167 int val = (charge)? 1 : -1; 211 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat; 212 struct mem_cgroup_stat *stat = &mem->stat;
169 struct mem_cgroup_stat_cpu *cpustat; 213 struct mem_cgroup_stat_cpu *cpustat;
214 int cpu = get_cpu();
170 215
171 VM_BUG_ON(!irqs_disabled()); 216 cpustat = &stat->cpustat[cpu];
172
173 cpustat = &stat->cpustat[smp_processor_id()];
174 if (PageCgroupCache(pc)) 217 if (PageCgroupCache(pc))
175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 218 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
176 else 219 else
@@ -182,6 +225,7 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
182 else 225 else
183 __mem_cgroup_stat_add_safe(cpustat, 226 __mem_cgroup_stat_add_safe(cpustat,
184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 227 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
228 put_cpu();
185} 229}
186 230
187static struct mem_cgroup_per_zone * 231static struct mem_cgroup_per_zone *
@@ -197,6 +241,9 @@ page_cgroup_zoneinfo(struct page_cgroup *pc)
197 int nid = page_cgroup_nid(pc); 241 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc); 242 int zid = page_cgroup_zid(pc);
199 243
244 if (!mem)
245 return NULL;
246
200 return mem_cgroup_zoneinfo(mem, nid, zid); 247 return mem_cgroup_zoneinfo(mem, nid, zid);
201} 248}
202 249
@@ -236,118 +283,169 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
236 struct mem_cgroup, css); 283 struct mem_cgroup, css);
237} 284}
238 285
239static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, 286static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
240 struct page_cgroup *pc)
241{ 287{
242 int lru = LRU_BASE; 288 struct mem_cgroup *mem = NULL;
243 289 /*
244 if (PageCgroupUnevictable(pc)) 290 * Because we have no locks, mm->owner's may be being moved to other
245 lru = LRU_UNEVICTABLE; 291 * cgroup. We use css_tryget() here even if this looks
246 else { 292 * pessimistic (rather than adding locks here).
247 if (PageCgroupActive(pc)) 293 */
248 lru += LRU_ACTIVE; 294 rcu_read_lock();
249 if (PageCgroupFile(pc)) 295 do {
250 lru += LRU_FILE; 296 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
251 } 297 if (unlikely(!mem))
252 298 break;
253 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 299 } while (!css_tryget(&mem->css));
254 300 rcu_read_unlock();
255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false); 301 return mem;
256 list_del(&pc->lru);
257} 302}
258 303
259static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, 304static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
260 struct page_cgroup *pc)
261{ 305{
262 int lru = LRU_BASE; 306 if (!mem)
307 return true;
308 return css_is_removed(&mem->css);
309}
263 310
264 if (PageCgroupUnevictable(pc)) 311/*
265 lru = LRU_UNEVICTABLE; 312 * Following LRU functions are allowed to be used without PCG_LOCK.
266 else { 313 * Operations are called by routine of global LRU independently from memcg.
267 if (PageCgroupActive(pc)) 314 * What we have to take care of here is validness of pc->mem_cgroup.
268 lru += LRU_ACTIVE; 315 *
269 if (PageCgroupFile(pc)) 316 * Changes to pc->mem_cgroup happens when
270 lru += LRU_FILE; 317 * 1. charge
271 } 318 * 2. moving account
319 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
320 * It is added to LRU before charge.
321 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
322 * When moving account, the page is not on LRU. It's isolated.
323 */
272 324
273 MEM_CGROUP_ZSTAT(mz, lru) += 1; 325void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
274 list_add(&pc->lru, &mz->lists[lru]); 326{
327 struct page_cgroup *pc;
328 struct mem_cgroup *mem;
329 struct mem_cgroup_per_zone *mz;
275 330
276 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true); 331 if (mem_cgroup_disabled())
332 return;
333 pc = lookup_page_cgroup(page);
334 /* can happen while we handle swapcache. */
335 if (list_empty(&pc->lru) || !pc->mem_cgroup)
336 return;
337 /*
338 * We don't check PCG_USED bit. It's cleared when the "page" is finally
339 * removed from global LRU.
340 */
341 mz = page_cgroup_zoneinfo(pc);
342 mem = pc->mem_cgroup;
343 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
344 list_del_init(&pc->lru);
345 return;
277} 346}
278 347
279static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru) 348void mem_cgroup_del_lru(struct page *page)
280{ 349{
281 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); 350 mem_cgroup_del_lru_list(page, page_lru(page));
282 int active = PageCgroupActive(pc); 351}
283 int file = PageCgroupFile(pc);
284 int unevictable = PageCgroupUnevictable(pc);
285 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
286 (LRU_FILE * !!file + !!active);
287 352
288 if (lru == from) 353void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
354{
355 struct mem_cgroup_per_zone *mz;
356 struct page_cgroup *pc;
357
358 if (mem_cgroup_disabled())
289 return; 359 return;
290 360
291 MEM_CGROUP_ZSTAT(mz, from) -= 1; 361 pc = lookup_page_cgroup(page);
292 /* 362 /*
293 * However this is done under mz->lru_lock, another flags, which 363 * Used bit is set without atomic ops but after smp_wmb().
294 * are not related to LRU, will be modified from out-of-lock. 364 * For making pc->mem_cgroup visible, insert smp_rmb() here.
295 * We have to use atomic set/clear flags.
296 */ 365 */
297 if (is_unevictable_lru(lru)) { 366 smp_rmb();
298 ClearPageCgroupActive(pc); 367 /* unused page is not rotated. */
299 SetPageCgroupUnevictable(pc); 368 if (!PageCgroupUsed(pc))
300 } else { 369 return;
301 if (is_active_lru(lru)) 370 mz = page_cgroup_zoneinfo(pc);
302 SetPageCgroupActive(pc);
303 else
304 ClearPageCgroupActive(pc);
305 ClearPageCgroupUnevictable(pc);
306 }
307
308 MEM_CGROUP_ZSTAT(mz, lru) += 1;
309 list_move(&pc->lru, &mz->lists[lru]); 371 list_move(&pc->lru, &mz->lists[lru]);
310} 372}
311 373
312int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 374void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
313{ 375{
314 int ret; 376 struct page_cgroup *pc;
377 struct mem_cgroup_per_zone *mz;
315 378
316 task_lock(task); 379 if (mem_cgroup_disabled())
317 ret = task->mm && mm_match_cgroup(task->mm, mem); 380 return;
318 task_unlock(task); 381 pc = lookup_page_cgroup(page);
319 return ret; 382 /*
383 * Used bit is set without atomic ops but after smp_wmb().
384 * For making pc->mem_cgroup visible, insert smp_rmb() here.
385 */
386 smp_rmb();
387 if (!PageCgroupUsed(pc))
388 return;
389
390 mz = page_cgroup_zoneinfo(pc);
391 MEM_CGROUP_ZSTAT(mz, lru) += 1;
392 list_add(&pc->lru, &mz->lists[lru]);
320} 393}
321 394
322/* 395/*
323 * This routine assumes that the appropriate zone's lru lock is already held 396 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
397 * lru because the page may.be reused after it's fully uncharged (because of
398 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
399 * it again. This function is only used to charge SwapCache. It's done under
400 * lock_page and expected that zone->lru_lock is never held.
324 */ 401 */
325void mem_cgroup_move_lists(struct page *page, enum lru_list lru) 402static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
326{ 403{
327 struct page_cgroup *pc;
328 struct mem_cgroup_per_zone *mz;
329 unsigned long flags; 404 unsigned long flags;
405 struct zone *zone = page_zone(page);
406 struct page_cgroup *pc = lookup_page_cgroup(page);
330 407
331 if (mem_cgroup_subsys.disabled) 408 spin_lock_irqsave(&zone->lru_lock, flags);
332 return;
333
334 /* 409 /*
335 * We cannot lock_page_cgroup while holding zone's lru_lock, 410 * Forget old LRU when this page_cgroup is *not* used. This Used bit
336 * because other holders of lock_page_cgroup can be interrupted 411 * is guarded by lock_page() because the page is SwapCache.
337 * with an attempt to rotate_reclaimable_page. But we cannot
338 * safely get to page_cgroup without it, so just try_lock it:
339 * mem_cgroup_isolate_pages allows for page left on wrong list.
340 */ 412 */
341 pc = lookup_page_cgroup(page); 413 if (!PageCgroupUsed(pc))
342 if (!trylock_page_cgroup(pc)) 414 mem_cgroup_del_lru_list(page, page_lru(page));
415 spin_unlock_irqrestore(&zone->lru_lock, flags);
416}
417
418static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
419{
420 unsigned long flags;
421 struct zone *zone = page_zone(page);
422 struct page_cgroup *pc = lookup_page_cgroup(page);
423
424 spin_lock_irqsave(&zone->lru_lock, flags);
425 /* link when the page is linked to LRU but page_cgroup isn't */
426 if (PageLRU(page) && list_empty(&pc->lru))
427 mem_cgroup_add_lru_list(page, page_lru(page));
428 spin_unlock_irqrestore(&zone->lru_lock, flags);
429}
430
431
432void mem_cgroup_move_lists(struct page *page,
433 enum lru_list from, enum lru_list to)
434{
435 if (mem_cgroup_disabled())
343 return; 436 return;
344 if (pc && PageCgroupUsed(pc)) { 437 mem_cgroup_del_lru_list(page, from);
345 mz = page_cgroup_zoneinfo(pc); 438 mem_cgroup_add_lru_list(page, to);
346 spin_lock_irqsave(&mz->lru_lock, flags); 439}
347 __mem_cgroup_move_lists(pc, lru); 440
348 spin_unlock_irqrestore(&mz->lru_lock, flags); 441int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
349 } 442{
350 unlock_page_cgroup(pc); 443 int ret;
444
445 task_lock(task);
446 ret = task->mm && mm_match_cgroup(task->mm, mem);
447 task_unlock(task);
448 return ret;
351} 449}
352 450
353/* 451/*
@@ -372,39 +470,116 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
372 */ 470 */
373int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 471int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
374{ 472{
375 return mem->prev_priority; 473 int prev_priority;
474
475 spin_lock(&mem->reclaim_param_lock);
476 prev_priority = mem->prev_priority;
477 spin_unlock(&mem->reclaim_param_lock);
478
479 return prev_priority;
376} 480}
377 481
378void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 482void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
379{ 483{
484 spin_lock(&mem->reclaim_param_lock);
380 if (priority < mem->prev_priority) 485 if (priority < mem->prev_priority)
381 mem->prev_priority = priority; 486 mem->prev_priority = priority;
487 spin_unlock(&mem->reclaim_param_lock);
382} 488}
383 489
384void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 490void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
385{ 491{
492 spin_lock(&mem->reclaim_param_lock);
386 mem->prev_priority = priority; 493 mem->prev_priority = priority;
494 spin_unlock(&mem->reclaim_param_lock);
387} 495}
388 496
389/* 497static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
390 * Calculate # of pages to be scanned in this priority/zone. 498{
391 * See also vmscan.c 499 unsigned long active;
392 * 500 unsigned long inactive;
393 * priority starts from "DEF_PRIORITY" and decremented in each loop. 501 unsigned long gb;
394 * (see include/linux/mmzone.h) 502 unsigned long inactive_ratio;
395 */ 503
504 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
505 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
506
507 gb = (inactive + active) >> (30 - PAGE_SHIFT);
508 if (gb)
509 inactive_ratio = int_sqrt(10 * gb);
510 else
511 inactive_ratio = 1;
512
513 if (present_pages) {
514 present_pages[0] = inactive;
515 present_pages[1] = active;
516 }
517
518 return inactive_ratio;
519}
396 520
397long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, 521int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
398 int priority, enum lru_list lru) 522{
523 unsigned long active;
524 unsigned long inactive;
525 unsigned long present_pages[2];
526 unsigned long inactive_ratio;
527
528 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
529
530 inactive = present_pages[0];
531 active = present_pages[1];
532
533 if (inactive * inactive_ratio < active)
534 return 1;
535
536 return 0;
537}
538
539unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
540 struct zone *zone,
541 enum lru_list lru)
399{ 542{
400 long nr_pages;
401 int nid = zone->zone_pgdat->node_id; 543 int nid = zone->zone_pgdat->node_id;
402 int zid = zone_idx(zone); 544 int zid = zone_idx(zone);
403 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); 545 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
404 546
405 nr_pages = MEM_CGROUP_ZSTAT(mz, lru); 547 return MEM_CGROUP_ZSTAT(mz, lru);
548}
549
550struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
551 struct zone *zone)
552{
553 int nid = zone->zone_pgdat->node_id;
554 int zid = zone_idx(zone);
555 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
406 556
407 return (nr_pages >> priority); 557 return &mz->reclaim_stat;
558}
559
560struct zone_reclaim_stat *
561mem_cgroup_get_reclaim_stat_from_page(struct page *page)
562{
563 struct page_cgroup *pc;
564 struct mem_cgroup_per_zone *mz;
565
566 if (mem_cgroup_disabled())
567 return NULL;
568
569 pc = lookup_page_cgroup(page);
570 /*
571 * Used bit is set without atomic ops but after smp_wmb().
572 * For making pc->mem_cgroup visible, insert smp_rmb() here.
573 */
574 smp_rmb();
575 if (!PageCgroupUsed(pc))
576 return NULL;
577
578 mz = page_cgroup_zoneinfo(pc);
579 if (!mz)
580 return NULL;
581
582 return &mz->reclaim_stat;
408} 583}
409 584
410unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 585unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
@@ -429,94 +604,279 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
429 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 604 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
430 src = &mz->lists[lru]; 605 src = &mz->lists[lru];
431 606
432 spin_lock(&mz->lru_lock);
433 scan = 0; 607 scan = 0;
434 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 608 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
435 if (scan >= nr_to_scan) 609 if (scan >= nr_to_scan)
436 break; 610 break;
611
612 page = pc->page;
437 if (unlikely(!PageCgroupUsed(pc))) 613 if (unlikely(!PageCgroupUsed(pc)))
438 continue; 614 continue;
439 page = pc->page;
440
441 if (unlikely(!PageLRU(page))) 615 if (unlikely(!PageLRU(page)))
442 continue; 616 continue;
443 617
444 /*
445 * TODO: play better with lumpy reclaim, grabbing anything.
446 */
447 if (PageUnevictable(page) ||
448 (PageActive(page) && !active) ||
449 (!PageActive(page) && active)) {
450 __mem_cgroup_move_lists(pc, page_lru(page));
451 continue;
452 }
453
454 scan++; 618 scan++;
455 list_move(&pc->lru, &pc_list);
456
457 if (__isolate_lru_page(page, mode, file) == 0) { 619 if (__isolate_lru_page(page, mode, file) == 0) {
458 list_move(&page->lru, dst); 620 list_move(&page->lru, dst);
459 nr_taken++; 621 nr_taken++;
460 } 622 }
461 } 623 }
462 624
463 list_splice(&pc_list, src);
464 spin_unlock(&mz->lru_lock);
465
466 *scanned = scan; 625 *scanned = scan;
467 return nr_taken; 626 return nr_taken;
468} 627}
469 628
629#define mem_cgroup_from_res_counter(counter, member) \
630 container_of(counter, struct mem_cgroup, member)
631
470/* 632/*
471 * Charge the memory controller for page usage. 633 * This routine finds the DFS walk successor. This routine should be
472 * Return 634 * called with hierarchy_mutex held
473 * 0 if the charge was successful
474 * < 0 if the cgroup is over its limit
475 */ 635 */
476static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 636static struct mem_cgroup *
477 gfp_t gfp_mask, enum charge_type ctype, 637__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
478 struct mem_cgroup *memcg)
479{ 638{
639 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
640
641 curr_cgroup = curr->css.cgroup;
642 root_cgroup = root_mem->css.cgroup;
643
644 if (!list_empty(&curr_cgroup->children)) {
645 /*
646 * Walk down to children
647 */
648 cgroup = list_entry(curr_cgroup->children.next,
649 struct cgroup, sibling);
650 curr = mem_cgroup_from_cont(cgroup);
651 goto done;
652 }
653
654visit_parent:
655 if (curr_cgroup == root_cgroup) {
656 /* caller handles NULL case */
657 curr = NULL;
658 goto done;
659 }
660
661 /*
662 * Goto next sibling
663 */
664 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
665 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
666 sibling);
667 curr = mem_cgroup_from_cont(cgroup);
668 goto done;
669 }
670
671 /*
672 * Go up to next parent and next parent's sibling if need be
673 */
674 curr_cgroup = curr_cgroup->parent;
675 goto visit_parent;
676
677done:
678 return curr;
679}
680
681/*
682 * Visit the first child (need not be the first child as per the ordering
683 * of the cgroup list, since we track last_scanned_child) of @mem and use
684 * that to reclaim free pages from.
685 */
686static struct mem_cgroup *
687mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
688{
689 struct cgroup *cgroup;
690 struct mem_cgroup *orig, *next;
691 bool obsolete;
692
693 /*
694 * Scan all children under the mem_cgroup mem
695 */
696 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
697
698 orig = root_mem->last_scanned_child;
699 obsolete = mem_cgroup_is_obsolete(orig);
700
701 if (list_empty(&root_mem->css.cgroup->children)) {
702 /*
703 * root_mem might have children before and last_scanned_child
704 * may point to one of them. We put it later.
705 */
706 if (orig)
707 VM_BUG_ON(!obsolete);
708 next = NULL;
709 goto done;
710 }
711
712 if (!orig || obsolete) {
713 cgroup = list_first_entry(&root_mem->css.cgroup->children,
714 struct cgroup, sibling);
715 next = mem_cgroup_from_cont(cgroup);
716 } else
717 next = __mem_cgroup_get_next_node(orig, root_mem);
718
719done:
720 if (next)
721 mem_cgroup_get(next);
722 root_mem->last_scanned_child = next;
723 if (orig)
724 mem_cgroup_put(orig);
725 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
726 return (next) ? next : root_mem;
727}
728
729static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
730{
731 if (do_swap_account) {
732 if (res_counter_check_under_limit(&mem->res) &&
733 res_counter_check_under_limit(&mem->memsw))
734 return true;
735 } else
736 if (res_counter_check_under_limit(&mem->res))
737 return true;
738 return false;
739}
740
741static unsigned int get_swappiness(struct mem_cgroup *memcg)
742{
743 struct cgroup *cgrp = memcg->css.cgroup;
744 unsigned int swappiness;
745
746 /* root ? */
747 if (cgrp->parent == NULL)
748 return vm_swappiness;
749
750 spin_lock(&memcg->reclaim_param_lock);
751 swappiness = memcg->swappiness;
752 spin_unlock(&memcg->reclaim_param_lock);
753
754 return swappiness;
755}
756
757/*
758 * Dance down the hierarchy if needed to reclaim memory. We remember the
759 * last child we reclaimed from, so that we don't end up penalizing
760 * one child extensively based on its position in the children list.
761 *
762 * root_mem is the original ancestor that we've been reclaim from.
763 */
764static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
765 gfp_t gfp_mask, bool noswap)
766{
767 struct mem_cgroup *next_mem;
768 int ret = 0;
769
770 /*
771 * Reclaim unconditionally and don't check for return value.
772 * We need to reclaim in the current group and down the tree.
773 * One might think about checking for children before reclaiming,
774 * but there might be left over accounting, even after children
775 * have left.
776 */
777 ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
778 get_swappiness(root_mem));
779 if (mem_cgroup_check_under_limit(root_mem))
780 return 1; /* indicate reclaim has succeeded */
781 if (!root_mem->use_hierarchy)
782 return ret;
783
784 next_mem = mem_cgroup_get_next_node(root_mem);
785
786 while (next_mem != root_mem) {
787 if (mem_cgroup_is_obsolete(next_mem)) {
788 next_mem = mem_cgroup_get_next_node(root_mem);
789 continue;
790 }
791 ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
792 get_swappiness(next_mem));
793 if (mem_cgroup_check_under_limit(root_mem))
794 return 1; /* indicate reclaim has succeeded */
795 next_mem = mem_cgroup_get_next_node(root_mem);
796 }
797 return ret;
798}
799
800bool mem_cgroup_oom_called(struct task_struct *task)
801{
802 bool ret = false;
480 struct mem_cgroup *mem; 803 struct mem_cgroup *mem;
481 struct page_cgroup *pc; 804 struct mm_struct *mm;
482 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
483 struct mem_cgroup_per_zone *mz;
484 unsigned long flags;
485 805
486 pc = lookup_page_cgroup(page); 806 rcu_read_lock();
487 /* can happen at boot */ 807 mm = task->mm;
488 if (unlikely(!pc)) 808 if (!mm)
809 mm = &init_mm;
810 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
811 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
812 ret = true;
813 rcu_read_unlock();
814 return ret;
815}
816/*
817 * Unlike exported interface, "oom" parameter is added. if oom==true,
818 * oom-killer can be invoked.
819 */
820static int __mem_cgroup_try_charge(struct mm_struct *mm,
821 gfp_t gfp_mask, struct mem_cgroup **memcg,
822 bool oom)
823{
824 struct mem_cgroup *mem, *mem_over_limit;
825 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
826 struct res_counter *fail_res;
827
828 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
829 /* Don't account this! */
830 *memcg = NULL;
489 return 0; 831 return 0;
490 prefetchw(pc); 832 }
833
491 /* 834 /*
492 * We always charge the cgroup the mm_struct belongs to. 835 * We always charge the cgroup the mm_struct belongs to.
493 * The mm_struct's mem_cgroup changes on task migration if the 836 * The mm_struct's mem_cgroup changes on task migration if the
494 * thread group leader migrates. It's possible that mm is not 837 * thread group leader migrates. It's possible that mm is not
495 * set, if so charge the init_mm (happens for pagecache usage). 838 * set, if so charge the init_mm (happens for pagecache usage).
496 */ 839 */
497 840 mem = *memcg;
498 if (likely(!memcg)) { 841 if (likely(!mem)) {
499 rcu_read_lock(); 842 mem = try_get_mem_cgroup_from_mm(mm);
500 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 843 *memcg = mem;
501 if (unlikely(!mem)) {
502 rcu_read_unlock();
503 return 0;
504 }
505 /*
506 * For every charge from the cgroup, increment reference count
507 */
508 css_get(&mem->css);
509 rcu_read_unlock();
510 } else { 844 } else {
511 mem = memcg; 845 css_get(&mem->css);
512 css_get(&memcg->css);
513 } 846 }
847 if (unlikely(!mem))
848 return 0;
849
850 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
851
852 while (1) {
853 int ret;
854 bool noswap = false;
855
856 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
857 if (likely(!ret)) {
858 if (!do_swap_account)
859 break;
860 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
861 &fail_res);
862 if (likely(!ret))
863 break;
864 /* mem+swap counter fails */
865 res_counter_uncharge(&mem->res, PAGE_SIZE);
866 noswap = true;
867 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
868 memsw);
869 } else
870 /* mem counter fails */
871 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
872 res);
514 873
515 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
516 if (!(gfp_mask & __GFP_WAIT)) 874 if (!(gfp_mask & __GFP_WAIT))
517 goto out; 875 goto nomem;
518 876
519 if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) 877 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
878 noswap);
879 if (ret)
520 continue; 880 continue;
521 881
522 /* 882 /*
@@ -525,49 +885,221 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
525 * moved to swap cache or just unmapped from the cgroup. 885 * moved to swap cache or just unmapped from the cgroup.
526 * Check the limit again to see if the reclaim reduced the 886 * Check the limit again to see if the reclaim reduced the
527 * current usage of the cgroup before giving up 887 * current usage of the cgroup before giving up
888 *
528 */ 889 */
529 if (res_counter_check_under_limit(&mem->res)) 890 if (mem_cgroup_check_under_limit(mem_over_limit))
530 continue; 891 continue;
531 892
532 if (!nr_retries--) { 893 if (!nr_retries--) {
533 mem_cgroup_out_of_memory(mem, gfp_mask); 894 if (oom) {
534 goto out; 895 mutex_lock(&memcg_tasklist);
896 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897 mutex_unlock(&memcg_tasklist);
898 mem_over_limit->last_oom_jiffies = jiffies;
899 }
900 goto nomem;
535 } 901 }
536 } 902 }
903 return 0;
904nomem:
905 css_put(&mem->css);
906 return -ENOMEM;
907}
908
909static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910{
911 struct mem_cgroup *mem;
912 swp_entry_t ent;
913
914 if (!PageSwapCache(page))
915 return NULL;
537 916
917 ent.val = page_private(page);
918 mem = lookup_swap_cgroup(ent);
919 if (!mem)
920 return NULL;
921 if (!css_tryget(&mem->css))
922 return NULL;
923 return mem;
924}
925
926/*
927 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 * USED state. If already USED, uncharge and return.
929 */
930
931static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
932 struct page_cgroup *pc,
933 enum charge_type ctype)
934{
935 /* try_charge() can return NULL to *memcg, taking care of it. */
936 if (!mem)
937 return;
538 938
539 lock_page_cgroup(pc); 939 lock_page_cgroup(pc);
540 if (unlikely(PageCgroupUsed(pc))) { 940 if (unlikely(PageCgroupUsed(pc))) {
541 unlock_page_cgroup(pc); 941 unlock_page_cgroup(pc);
542 res_counter_uncharge(&mem->res, PAGE_SIZE); 942 res_counter_uncharge(&mem->res, PAGE_SIZE);
943 if (do_swap_account)
944 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
543 css_put(&mem->css); 945 css_put(&mem->css);
544 946 return;
545 goto done;
546 } 947 }
547 pc->mem_cgroup = mem; 948 pc->mem_cgroup = mem;
548 /* 949 smp_wmb();
549 * If a page is accounted as a page cache, insert to inactive list.
550 * If anon, insert to active list.
551 */
552 pc->flags = pcg_default_flags[ctype]; 950 pc->flags = pcg_default_flags[ctype];
553 951
554 mz = page_cgroup_zoneinfo(pc); 952 mem_cgroup_charge_statistics(mem, pc, true);
555 953
556 spin_lock_irqsave(&mz->lru_lock, flags);
557 __mem_cgroup_add_list(mz, pc);
558 spin_unlock_irqrestore(&mz->lru_lock, flags);
559 unlock_page_cgroup(pc); 954 unlock_page_cgroup(pc);
955}
560 956
561done: 957/**
562 return 0; 958 * mem_cgroup_move_account - move account of the page
959 * @pc: page_cgroup of the page.
960 * @from: mem_cgroup which the page is moved from.
961 * @to: mem_cgroup which the page is moved to. @from != @to.
962 *
963 * The caller must confirm following.
964 * - page is not on LRU (isolate_page() is useful.)
965 *
966 * returns 0 at success,
967 * returns -EBUSY when lock is busy or "pc" is unstable.
968 *
969 * This function does "uncharge" from old cgroup but doesn't do "charge" to
970 * new cgroup. It should be done by a caller.
971 */
972
973static int mem_cgroup_move_account(struct page_cgroup *pc,
974 struct mem_cgroup *from, struct mem_cgroup *to)
975{
976 struct mem_cgroup_per_zone *from_mz, *to_mz;
977 int nid, zid;
978 int ret = -EBUSY;
979
980 VM_BUG_ON(from == to);
981 VM_BUG_ON(PageLRU(pc->page));
982
983 nid = page_cgroup_nid(pc);
984 zid = page_cgroup_zid(pc);
985 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
986 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
987
988 if (!trylock_page_cgroup(pc))
989 return ret;
990
991 if (!PageCgroupUsed(pc))
992 goto out;
993
994 if (pc->mem_cgroup != from)
995 goto out;
996
997 res_counter_uncharge(&from->res, PAGE_SIZE);
998 mem_cgroup_charge_statistics(from, pc, false);
999 if (do_swap_account)
1000 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1001 css_put(&from->css);
1002
1003 css_get(&to->css);
1004 pc->mem_cgroup = to;
1005 mem_cgroup_charge_statistics(to, pc, true);
1006 ret = 0;
563out: 1007out:
564 css_put(&mem->css); 1008 unlock_page_cgroup(pc);
565 return -ENOMEM; 1009 return ret;
1010}
1011
1012/*
1013 * move charges to its parent.
1014 */
1015
1016static int mem_cgroup_move_parent(struct page_cgroup *pc,
1017 struct mem_cgroup *child,
1018 gfp_t gfp_mask)
1019{
1020 struct page *page = pc->page;
1021 struct cgroup *cg = child->css.cgroup;
1022 struct cgroup *pcg = cg->parent;
1023 struct mem_cgroup *parent;
1024 int ret;
1025
1026 /* Is ROOT ? */
1027 if (!pcg)
1028 return -EINVAL;
1029
1030
1031 parent = mem_cgroup_from_cont(pcg);
1032
1033
1034 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1035 if (ret || !parent)
1036 return ret;
1037
1038 if (!get_page_unless_zero(page)) {
1039 ret = -EBUSY;
1040 goto uncharge;
1041 }
1042
1043 ret = isolate_lru_page(page);
1044
1045 if (ret)
1046 goto cancel;
1047
1048 ret = mem_cgroup_move_account(pc, child, parent);
1049
1050 putback_lru_page(page);
1051 if (!ret) {
1052 put_page(page);
1053 /* drop extra refcnt by try_charge() */
1054 css_put(&parent->css);
1055 return 0;
1056 }
1057
1058cancel:
1059 put_page(page);
1060uncharge:
1061 /* drop extra refcnt by try_charge() */
1062 css_put(&parent->css);
1063 /* uncharge if move fails */
1064 res_counter_uncharge(&parent->res, PAGE_SIZE);
1065 if (do_swap_account)
1066 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1067 return ret;
1068}
1069
1070/*
1071 * Charge the memory controller for page usage.
1072 * Return
1073 * 0 if the charge was successful
1074 * < 0 if the cgroup is over its limit
1075 */
1076static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1077 gfp_t gfp_mask, enum charge_type ctype,
1078 struct mem_cgroup *memcg)
1079{
1080 struct mem_cgroup *mem;
1081 struct page_cgroup *pc;
1082 int ret;
1083
1084 pc = lookup_page_cgroup(page);
1085 /* can happen at boot */
1086 if (unlikely(!pc))
1087 return 0;
1088 prefetchw(pc);
1089
1090 mem = memcg;
1091 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1092 if (ret || !mem)
1093 return ret;
1094
1095 __mem_cgroup_commit_charge(mem, pc, ctype);
1096 return 0;
566} 1097}
567 1098
568int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 1099int mem_cgroup_newpage_charge(struct page *page,
1100 struct mm_struct *mm, gfp_t gfp_mask)
569{ 1101{
570 if (mem_cgroup_subsys.disabled) 1102 if (mem_cgroup_disabled())
571 return 0; 1103 return 0;
572 if (PageCompound(page)) 1104 if (PageCompound(page))
573 return 0; 1105 return 0;
@@ -589,7 +1121,10 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
589int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1121int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
590 gfp_t gfp_mask) 1122 gfp_t gfp_mask)
591{ 1123{
592 if (mem_cgroup_subsys.disabled) 1124 struct mem_cgroup *mem = NULL;
1125 int ret;
1126
1127 if (mem_cgroup_disabled())
593 return 0; 1128 return 0;
594 if (PageCompound(page)) 1129 if (PageCompound(page))
595 return 0; 1130 return 0;
@@ -601,6 +1136,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
601 * For GFP_NOWAIT case, the page may be pre-charged before calling 1136 * For GFP_NOWAIT case, the page may be pre-charged before calling
602 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1137 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
603 * charge twice. (It works but has to pay a bit larger cost.) 1138 * charge twice. (It works but has to pay a bit larger cost.)
1139 * And when the page is SwapCache, it should take swap information
1140 * into account. This is under lock_page() now.
604 */ 1141 */
605 if (!(gfp_mask & __GFP_WAIT)) { 1142 if (!(gfp_mask & __GFP_WAIT)) {
606 struct page_cgroup *pc; 1143 struct page_cgroup *pc;
@@ -617,58 +1154,198 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
617 unlock_page_cgroup(pc); 1154 unlock_page_cgroup(pc);
618 } 1155 }
619 1156
620 if (unlikely(!mm)) 1157 if (do_swap_account && PageSwapCache(page)) {
1158 mem = try_get_mem_cgroup_from_swapcache(page);
1159 if (mem)
1160 mm = NULL;
1161 else
1162 mem = NULL;
1163 /* SwapCache may be still linked to LRU now. */
1164 mem_cgroup_lru_del_before_commit_swapcache(page);
1165 }
1166
1167 if (unlikely(!mm && !mem))
621 mm = &init_mm; 1168 mm = &init_mm;
622 1169
623 if (page_is_file_cache(page)) 1170 if (page_is_file_cache(page))
624 return mem_cgroup_charge_common(page, mm, gfp_mask, 1171 return mem_cgroup_charge_common(page, mm, gfp_mask,
625 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1172 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
626 else 1173
627 return mem_cgroup_charge_common(page, mm, gfp_mask, 1174 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
628 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); 1175 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1176 if (mem)
1177 css_put(&mem->css);
1178 if (PageSwapCache(page))
1179 mem_cgroup_lru_add_after_commit_swapcache(page);
1180
1181 if (do_swap_account && !ret && PageSwapCache(page)) {
1182 swp_entry_t ent = {.val = page_private(page)};
1183 /* avoid double counting */
1184 mem = swap_cgroup_record(ent, NULL);
1185 if (mem) {
1186 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1187 mem_cgroup_put(mem);
1188 }
1189 }
1190 return ret;
1191}
1192
1193/*
1194 * While swap-in, try_charge -> commit or cancel, the page is locked.
1195 * And when try_charge() successfully returns, one refcnt to memcg without
1196 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1197 * "commit()" or removed by "cancel()"
1198 */
1199int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1200 struct page *page,
1201 gfp_t mask, struct mem_cgroup **ptr)
1202{
1203 struct mem_cgroup *mem;
1204 int ret;
1205
1206 if (mem_cgroup_disabled())
1207 return 0;
1208
1209 if (!do_swap_account)
1210 goto charge_cur_mm;
1211 /*
1212 * A racing thread's fault, or swapoff, may have already updated
1213 * the pte, and even removed page from swap cache: return success
1214 * to go on to do_swap_page()'s pte_same() test, which should fail.
1215 */
1216 if (!PageSwapCache(page))
1217 return 0;
1218 mem = try_get_mem_cgroup_from_swapcache(page);
1219 if (!mem)
1220 goto charge_cur_mm;
1221 *ptr = mem;
1222 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1223 /* drop extra refcnt from tryget */
1224 css_put(&mem->css);
1225 return ret;
1226charge_cur_mm:
1227 if (unlikely(!mm))
1228 mm = &init_mm;
1229 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1230}
1231
1232void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1233{
1234 struct page_cgroup *pc;
1235
1236 if (mem_cgroup_disabled())
1237 return;
1238 if (!ptr)
1239 return;
1240 pc = lookup_page_cgroup(page);
1241 mem_cgroup_lru_del_before_commit_swapcache(page);
1242 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1243 mem_cgroup_lru_add_after_commit_swapcache(page);
1244 /*
1245 * Now swap is on-memory. This means this page may be
1246 * counted both as mem and swap....double count.
1247 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1248 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1249 * may call delete_from_swap_cache() before reach here.
1250 */
1251 if (do_swap_account && PageSwapCache(page)) {
1252 swp_entry_t ent = {.val = page_private(page)};
1253 struct mem_cgroup *memcg;
1254 memcg = swap_cgroup_record(ent, NULL);
1255 if (memcg) {
1256 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1257 mem_cgroup_put(memcg);
1258 }
1259
1260 }
1261 /* add this page(page_cgroup) to the LRU we want. */
1262
1263}
1264
1265void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1266{
1267 if (mem_cgroup_disabled())
1268 return;
1269 if (!mem)
1270 return;
1271 res_counter_uncharge(&mem->res, PAGE_SIZE);
1272 if (do_swap_account)
1273 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1274 css_put(&mem->css);
629} 1275}
630 1276
1277
631/* 1278/*
632 * uncharge if !page_mapped(page) 1279 * uncharge if !page_mapped(page)
633 */ 1280 */
634static void 1281static struct mem_cgroup *
635__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 1282__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
636{ 1283{
637 struct page_cgroup *pc; 1284 struct page_cgroup *pc;
638 struct mem_cgroup *mem; 1285 struct mem_cgroup *mem = NULL;
639 struct mem_cgroup_per_zone *mz; 1286 struct mem_cgroup_per_zone *mz;
640 unsigned long flags;
641 1287
642 if (mem_cgroup_subsys.disabled) 1288 if (mem_cgroup_disabled())
643 return; 1289 return NULL;
1290
1291 if (PageSwapCache(page))
1292 return NULL;
644 1293
645 /* 1294 /*
646 * Check if our page_cgroup is valid 1295 * Check if our page_cgroup is valid
647 */ 1296 */
648 pc = lookup_page_cgroup(page); 1297 pc = lookup_page_cgroup(page);
649 if (unlikely(!pc || !PageCgroupUsed(pc))) 1298 if (unlikely(!pc || !PageCgroupUsed(pc)))
650 return; 1299 return NULL;
651 1300
652 lock_page_cgroup(pc); 1301 lock_page_cgroup(pc);
653 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page)) 1302
654 || !PageCgroupUsed(pc)) { 1303 mem = pc->mem_cgroup;
655 /* This happens at race in zap_pte_range() and do_swap_page()*/ 1304
656 unlock_page_cgroup(pc); 1305 if (!PageCgroupUsed(pc))
657 return; 1306 goto unlock_out;
1307
1308 switch (ctype) {
1309 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1310 if (page_mapped(page))
1311 goto unlock_out;
1312 break;
1313 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1314 if (!PageAnon(page)) { /* Shared memory */
1315 if (page->mapping && !page_is_file_cache(page))
1316 goto unlock_out;
1317 } else if (page_mapped(page)) /* Anon */
1318 goto unlock_out;
1319 break;
1320 default:
1321 break;
658 } 1322 }
1323
1324 res_counter_uncharge(&mem->res, PAGE_SIZE);
1325 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1326 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1327
1328 mem_cgroup_charge_statistics(mem, pc, false);
659 ClearPageCgroupUsed(pc); 1329 ClearPageCgroupUsed(pc);
660 mem = pc->mem_cgroup; 1330 /*
1331 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1332 * freed from LRU. This is safe because uncharged page is expected not
1333 * to be reused (freed soon). Exception is SwapCache, it's handled by
1334 * special functions.
1335 */
661 1336
662 mz = page_cgroup_zoneinfo(pc); 1337 mz = page_cgroup_zoneinfo(pc);
663 spin_lock_irqsave(&mz->lru_lock, flags);
664 __mem_cgroup_remove_list(mz, pc);
665 spin_unlock_irqrestore(&mz->lru_lock, flags);
666 unlock_page_cgroup(pc); 1338 unlock_page_cgroup(pc);
667 1339
668 res_counter_uncharge(&mem->res, PAGE_SIZE); 1340 /* at swapout, this memcg will be accessed to record to swap */
669 css_put(&mem->css); 1341 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1342 css_put(&mem->css);
670 1343
671 return; 1344 return mem;
1345
1346unlock_out:
1347 unlock_page_cgroup(pc);
1348 return NULL;
672} 1349}
673 1350
674void mem_cgroup_uncharge_page(struct page *page) 1351void mem_cgroup_uncharge_page(struct page *page)
@@ -689,16 +1366,55 @@ void mem_cgroup_uncharge_cache_page(struct page *page)
689} 1366}
690 1367
691/* 1368/*
692 * Before starting migration, account against new page. 1369 * called from __delete_from_swap_cache() and drop "page" account.
1370 * memcg information is recorded to swap_cgroup of "ent"
693 */ 1371 */
694int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) 1372void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1373{
1374 struct mem_cgroup *memcg;
1375
1376 memcg = __mem_cgroup_uncharge_common(page,
1377 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1378 /* record memcg information */
1379 if (do_swap_account && memcg) {
1380 swap_cgroup_record(ent, memcg);
1381 mem_cgroup_get(memcg);
1382 }
1383 if (memcg)
1384 css_put(&memcg->css);
1385}
1386
1387#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1388/*
1389 * called from swap_entry_free(). remove record in swap_cgroup and
1390 * uncharge "memsw" account.
1391 */
1392void mem_cgroup_uncharge_swap(swp_entry_t ent)
1393{
1394 struct mem_cgroup *memcg;
1395
1396 if (!do_swap_account)
1397 return;
1398
1399 memcg = swap_cgroup_record(ent, NULL);
1400 if (memcg) {
1401 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1402 mem_cgroup_put(memcg);
1403 }
1404}
1405#endif
1406
1407/*
1408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1409 * page belongs to.
1410 */
1411int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
695{ 1412{
696 struct page_cgroup *pc; 1413 struct page_cgroup *pc;
697 struct mem_cgroup *mem = NULL; 1414 struct mem_cgroup *mem = NULL;
698 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
699 int ret = 0; 1415 int ret = 0;
700 1416
701 if (mem_cgroup_subsys.disabled) 1417 if (mem_cgroup_disabled())
702 return 0; 1418 return 0;
703 1419
704 pc = lookup_page_cgroup(page); 1420 pc = lookup_page_cgroup(page);
@@ -706,41 +1422,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
706 if (PageCgroupUsed(pc)) { 1422 if (PageCgroupUsed(pc)) {
707 mem = pc->mem_cgroup; 1423 mem = pc->mem_cgroup;
708 css_get(&mem->css); 1424 css_get(&mem->css);
709 if (PageCgroupCache(pc)) {
710 if (page_is_file_cache(page))
711 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
712 else
713 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
714 }
715 } 1425 }
716 unlock_page_cgroup(pc); 1426 unlock_page_cgroup(pc);
1427
717 if (mem) { 1428 if (mem) {
718 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, 1429 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
719 ctype, mem);
720 css_put(&mem->css); 1430 css_put(&mem->css);
721 } 1431 }
1432 *ptr = mem;
722 return ret; 1433 return ret;
723} 1434}
724 1435
725/* remove redundant charge if migration failed*/ 1436/* remove redundant charge if migration failed*/
726void mem_cgroup_end_migration(struct page *newpage) 1437void mem_cgroup_end_migration(struct mem_cgroup *mem,
1438 struct page *oldpage, struct page *newpage)
727{ 1439{
1440 struct page *target, *unused;
1441 struct page_cgroup *pc;
1442 enum charge_type ctype;
1443
1444 if (!mem)
1445 return;
1446
1447 /* at migration success, oldpage->mapping is NULL. */
1448 if (oldpage->mapping) {
1449 target = oldpage;
1450 unused = NULL;
1451 } else {
1452 target = newpage;
1453 unused = oldpage;
1454 }
1455
1456 if (PageAnon(target))
1457 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1458 else if (page_is_file_cache(target))
1459 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1460 else
1461 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1462
1463 /* unused page is not on radix-tree now. */
1464 if (unused)
1465 __mem_cgroup_uncharge_common(unused, ctype);
1466
1467 pc = lookup_page_cgroup(target);
728 /* 1468 /*
729 * At success, page->mapping is not NULL. 1469 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
730 * special rollback care is necessary when 1470 * So, double-counting is effectively avoided.
731 * 1. at migration failure. (newpage->mapping is cleared in this case)
732 * 2. the newpage was moved but not remapped again because the task
733 * exits and the newpage is obsolete. In this case, the new page
734 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
735 * always for avoiding mess. The page_cgroup will be removed if
736 * unnecessary. File cache pages is still on radix-tree. Don't
737 * care it.
738 */ 1471 */
739 if (!newpage->mapping) 1472 __mem_cgroup_commit_charge(mem, pc, ctype);
740 __mem_cgroup_uncharge_common(newpage, 1473
741 MEM_CGROUP_CHARGE_TYPE_FORCE); 1474 /*
742 else if (PageAnon(newpage)) 1475 * Both of oldpage and newpage are still under lock_page().
743 mem_cgroup_uncharge_page(newpage); 1476 * Then, we don't have to care about race in radix-tree.
1477 * But we have to be careful that this page is unmapped or not.
1478 *
1479 * There is a case for !page_mapped(). At the start of
1480 * migration, oldpage was mapped. But now, it's zapped.
1481 * But we know *target* page is not freed/reused under us.
1482 * mem_cgroup_uncharge_page() does all necessary checks.
1483 */
1484 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1485 mem_cgroup_uncharge_page(target);
744} 1486}
745 1487
746/* 1488/*
@@ -748,29 +1490,26 @@ void mem_cgroup_end_migration(struct page *newpage)
748 * This is typically used for page reclaiming for shmem for reducing side 1490 * This is typically used for page reclaiming for shmem for reducing side
749 * effect of page allocation from shmem, which is used by some mem_cgroup. 1491 * effect of page allocation from shmem, which is used by some mem_cgroup.
750 */ 1492 */
751int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) 1493int mem_cgroup_shrink_usage(struct page *page,
1494 struct mm_struct *mm,
1495 gfp_t gfp_mask)
752{ 1496{
753 struct mem_cgroup *mem; 1497 struct mem_cgroup *mem = NULL;
754 int progress = 0; 1498 int progress = 0;
755 int retry = MEM_CGROUP_RECLAIM_RETRIES; 1499 int retry = MEM_CGROUP_RECLAIM_RETRIES;
756 1500
757 if (mem_cgroup_subsys.disabled) 1501 if (mem_cgroup_disabled())
758 return 0; 1502 return 0;
759 if (!mm) 1503 if (page)
1504 mem = try_get_mem_cgroup_from_swapcache(page);
1505 if (!mem && mm)
1506 mem = try_get_mem_cgroup_from_mm(mm);
1507 if (unlikely(!mem))
760 return 0; 1508 return 0;
761 1509
762 rcu_read_lock();
763 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
764 if (unlikely(!mem)) {
765 rcu_read_unlock();
766 return 0;
767 }
768 css_get(&mem->css);
769 rcu_read_unlock();
770
771 do { 1510 do {
772 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); 1511 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
773 progress += res_counter_check_under_limit(&mem->res); 1512 progress += mem_cgroup_check_under_limit(mem);
774 } while (!progress && --retry); 1513 } while (!progress && --retry);
775 1514
776 css_put(&mem->css); 1515 css_put(&mem->css);
@@ -779,116 +1518,295 @@ int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
779 return 0; 1518 return 0;
780} 1519}
781 1520
782int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) 1521static DEFINE_MUTEX(set_limit_mutex);
1522
1523static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1524 unsigned long long val)
783{ 1525{
784 1526
785 int retry_count = MEM_CGROUP_RECLAIM_RETRIES; 1527 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
786 int progress; 1528 int progress;
1529 u64 memswlimit;
787 int ret = 0; 1530 int ret = 0;
788 1531
789 while (res_counter_set_limit(&memcg->res, val)) { 1532 while (retry_count) {
790 if (signal_pending(current)) { 1533 if (signal_pending(current)) {
791 ret = -EINTR; 1534 ret = -EINTR;
792 break; 1535 break;
793 } 1536 }
794 if (!retry_count) { 1537 /*
795 ret = -EBUSY; 1538 * Rather than hide all in some function, I do this in
1539 * open coded manner. You see what this really does.
1540 * We have to guarantee mem->res.limit < mem->memsw.limit.
1541 */
1542 mutex_lock(&set_limit_mutex);
1543 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1544 if (memswlimit < val) {
1545 ret = -EINVAL;
1546 mutex_unlock(&set_limit_mutex);
796 break; 1547 break;
797 } 1548 }
798 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); 1549 ret = res_counter_set_limit(&memcg->res, val);
799 if (!progress) 1550 mutex_unlock(&set_limit_mutex);
800 retry_count--; 1551
1552 if (!ret)
1553 break;
1554
1555 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1556 false);
1557 if (!progress) retry_count--;
801 } 1558 }
1559
802 return ret; 1560 return ret;
803} 1561}
804 1562
1563int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1564 unsigned long long val)
1565{
1566 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1567 u64 memlimit, oldusage, curusage;
1568 int ret;
1569
1570 if (!do_swap_account)
1571 return -EINVAL;
1572
1573 while (retry_count) {
1574 if (signal_pending(current)) {
1575 ret = -EINTR;
1576 break;
1577 }
1578 /*
1579 * Rather than hide all in some function, I do this in
1580 * open coded manner. You see what this really does.
1581 * We have to guarantee mem->res.limit < mem->memsw.limit.
1582 */
1583 mutex_lock(&set_limit_mutex);
1584 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1585 if (memlimit > val) {
1586 ret = -EINVAL;
1587 mutex_unlock(&set_limit_mutex);
1588 break;
1589 }
1590 ret = res_counter_set_limit(&memcg->memsw, val);
1591 mutex_unlock(&set_limit_mutex);
1592
1593 if (!ret)
1594 break;
1595
1596 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1597 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1598 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1599 if (curusage >= oldusage)
1600 retry_count--;
1601 }
1602 return ret;
1603}
805 1604
806/* 1605/*
807 * This routine traverse page_cgroup in given list and drop them all. 1606 * This routine traverse page_cgroup in given list and drop them all.
808 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 1607 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
809 */ 1608 */
810#define FORCE_UNCHARGE_BATCH (128) 1609static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
811static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, 1610 int node, int zid, enum lru_list lru)
812 struct mem_cgroup_per_zone *mz,
813 enum lru_list lru)
814{ 1611{
815 struct page_cgroup *pc; 1612 struct zone *zone;
816 struct page *page; 1613 struct mem_cgroup_per_zone *mz;
817 int count = FORCE_UNCHARGE_BATCH; 1614 struct page_cgroup *pc, *busy;
818 unsigned long flags; 1615 unsigned long flags, loop;
819 struct list_head *list; 1616 struct list_head *list;
1617 int ret = 0;
820 1618
1619 zone = &NODE_DATA(node)->node_zones[zid];
1620 mz = mem_cgroup_zoneinfo(mem, node, zid);
821 list = &mz->lists[lru]; 1621 list = &mz->lists[lru];
822 1622
823 spin_lock_irqsave(&mz->lru_lock, flags); 1623 loop = MEM_CGROUP_ZSTAT(mz, lru);
824 while (!list_empty(list)) { 1624 /* give some margin against EBUSY etc...*/
825 pc = list_entry(list->prev, struct page_cgroup, lru); 1625 loop += 256;
826 page = pc->page; 1626 busy = NULL;
827 if (!PageCgroupUsed(pc)) 1627 while (loop--) {
828 break; 1628 ret = 0;
829 get_page(page); 1629 spin_lock_irqsave(&zone->lru_lock, flags);
830 spin_unlock_irqrestore(&mz->lru_lock, flags); 1630 if (list_empty(list)) {
831 /* 1631 spin_unlock_irqrestore(&zone->lru_lock, flags);
832 * Check if this page is on LRU. !LRU page can be found
833 * if it's under page migration.
834 */
835 if (PageLRU(page)) {
836 __mem_cgroup_uncharge_common(page,
837 MEM_CGROUP_CHARGE_TYPE_FORCE);
838 put_page(page);
839 if (--count <= 0) {
840 count = FORCE_UNCHARGE_BATCH;
841 cond_resched();
842 }
843 } else {
844 spin_lock_irqsave(&mz->lru_lock, flags);
845 break; 1632 break;
846 } 1633 }
847 spin_lock_irqsave(&mz->lru_lock, flags); 1634 pc = list_entry(list->prev, struct page_cgroup, lru);
1635 if (busy == pc) {
1636 list_move(&pc->lru, list);
1637 busy = 0;
1638 spin_unlock_irqrestore(&zone->lru_lock, flags);
1639 continue;
1640 }
1641 spin_unlock_irqrestore(&zone->lru_lock, flags);
1642
1643 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1644 if (ret == -ENOMEM)
1645 break;
1646
1647 if (ret == -EBUSY || ret == -EINVAL) {
1648 /* found lock contention or "pc" is obsolete. */
1649 busy = pc;
1650 cond_resched();
1651 } else
1652 busy = NULL;
848 } 1653 }
849 spin_unlock_irqrestore(&mz->lru_lock, flags); 1654
1655 if (!ret && !list_empty(list))
1656 return -EBUSY;
1657 return ret;
850} 1658}
851 1659
852/* 1660/*
853 * make mem_cgroup's charge to be 0 if there is no task. 1661 * make mem_cgroup's charge to be 0 if there is no task.
854 * This enables deleting this mem_cgroup. 1662 * This enables deleting this mem_cgroup.
855 */ 1663 */
856static int mem_cgroup_force_empty(struct mem_cgroup *mem) 1664static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
857{ 1665{
858 int ret = -EBUSY; 1666 int ret;
859 int node, zid; 1667 int node, zid, shrink;
1668 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1669 struct cgroup *cgrp = mem->css.cgroup;
860 1670
861 css_get(&mem->css); 1671 css_get(&mem->css);
862 /* 1672
863 * page reclaim code (kswapd etc..) will move pages between 1673 shrink = 0;
864 * active_list <-> inactive_list while we don't take a lock. 1674 /* should free all ? */
865 * So, we have to do loop here until all lists are empty. 1675 if (free_all)
866 */ 1676 goto try_to_free;
1677move_account:
867 while (mem->res.usage > 0) { 1678 while (mem->res.usage > 0) {
868 if (atomic_read(&mem->css.cgroup->count) > 0) 1679 ret = -EBUSY;
1680 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1681 goto out;
1682 ret = -EINTR;
1683 if (signal_pending(current))
869 goto out; 1684 goto out;
870 /* This is for making all *used* pages to be on LRU. */ 1685 /* This is for making all *used* pages to be on LRU. */
871 lru_add_drain_all(); 1686 lru_add_drain_all();
872 for_each_node_state(node, N_POSSIBLE) 1687 ret = 0;
873 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1688 for_each_node_state(node, N_HIGH_MEMORY) {
874 struct mem_cgroup_per_zone *mz; 1689 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
875 enum lru_list l; 1690 enum lru_list l;
876 mz = mem_cgroup_zoneinfo(mem, node, zid); 1691 for_each_lru(l) {
877 for_each_lru(l) 1692 ret = mem_cgroup_force_empty_list(mem,
878 mem_cgroup_force_empty_list(mem, mz, l); 1693 node, zid, l);
1694 if (ret)
1695 break;
1696 }
879 } 1697 }
1698 if (ret)
1699 break;
1700 }
1701 /* it seems parent cgroup doesn't have enough mem */
1702 if (ret == -ENOMEM)
1703 goto try_to_free;
880 cond_resched(); 1704 cond_resched();
881 } 1705 }
882 ret = 0; 1706 ret = 0;
883out: 1707out:
884 css_put(&mem->css); 1708 css_put(&mem->css);
885 return ret; 1709 return ret;
1710
1711try_to_free:
1712 /* returns EBUSY if there is a task or if we come here twice. */
1713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1714 ret = -EBUSY;
1715 goto out;
1716 }
1717 /* we call try-to-free pages for make this cgroup empty */
1718 lru_add_drain_all();
1719 /* try to free all pages in this cgroup */
1720 shrink = 1;
1721 while (nr_retries && mem->res.usage > 0) {
1722 int progress;
1723
1724 if (signal_pending(current)) {
1725 ret = -EINTR;
1726 goto out;
1727 }
1728 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1729 false, get_swappiness(mem));
1730 if (!progress) {
1731 nr_retries--;
1732 /* maybe some writeback is necessary */
1733 congestion_wait(WRITE, HZ/10);
1734 }
1735
1736 }
1737 lru_add_drain();
1738 /* try move_account...there may be some *locked* pages. */
1739 if (mem->res.usage)
1740 goto move_account;
1741 ret = 0;
1742 goto out;
1743}
1744
1745int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1746{
1747 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1748}
1749
1750
1751static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1752{
1753 return mem_cgroup_from_cont(cont)->use_hierarchy;
1754}
1755
1756static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1757 u64 val)
1758{
1759 int retval = 0;
1760 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1761 struct cgroup *parent = cont->parent;
1762 struct mem_cgroup *parent_mem = NULL;
1763
1764 if (parent)
1765 parent_mem = mem_cgroup_from_cont(parent);
1766
1767 cgroup_lock();
1768 /*
1769 * If parent's use_hiearchy is set, we can't make any modifications
1770 * in the child subtrees. If it is unset, then the change can
1771 * occur, provided the current cgroup has no children.
1772 *
1773 * For the root cgroup, parent_mem is NULL, we allow value to be
1774 * set if there are no children.
1775 */
1776 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1777 (val == 1 || val == 0)) {
1778 if (list_empty(&cont->children))
1779 mem->use_hierarchy = val;
1780 else
1781 retval = -EBUSY;
1782 } else
1783 retval = -EINVAL;
1784 cgroup_unlock();
1785
1786 return retval;
886} 1787}
887 1788
888static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 1789static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
889{ 1790{
890 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, 1791 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
891 cft->private); 1792 u64 val = 0;
1793 int type, name;
1794
1795 type = MEMFILE_TYPE(cft->private);
1796 name = MEMFILE_ATTR(cft->private);
1797 switch (type) {
1798 case _MEM:
1799 val = res_counter_read_u64(&mem->res, name);
1800 break;
1801 case _MEMSWAP:
1802 if (do_swap_account)
1803 val = res_counter_read_u64(&mem->memsw, name);
1804 break;
1805 default:
1806 BUG();
1807 break;
1808 }
1809 return val;
892} 1810}
893/* 1811/*
894 * The user of this function is... 1812 * The user of this function is...
@@ -898,15 +1816,22 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
898 const char *buffer) 1816 const char *buffer)
899{ 1817{
900 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 1818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1819 int type, name;
901 unsigned long long val; 1820 unsigned long long val;
902 int ret; 1821 int ret;
903 1822
904 switch (cft->private) { 1823 type = MEMFILE_TYPE(cft->private);
1824 name = MEMFILE_ATTR(cft->private);
1825 switch (name) {
905 case RES_LIMIT: 1826 case RES_LIMIT:
906 /* This function does all necessary parse...reuse it */ 1827 /* This function does all necessary parse...reuse it */
907 ret = res_counter_memparse_write_strategy(buffer, &val); 1828 ret = res_counter_memparse_write_strategy(buffer, &val);
908 if (!ret) 1829 if (ret)
1830 break;
1831 if (type == _MEM)
909 ret = mem_cgroup_resize_limit(memcg, val); 1832 ret = mem_cgroup_resize_limit(memcg, val);
1833 else
1834 ret = mem_cgroup_resize_memsw_limit(memcg, val);
910 break; 1835 break;
911 default: 1836 default:
912 ret = -EINVAL; /* should be BUG() ? */ 1837 ret = -EINVAL; /* should be BUG() ? */
@@ -915,27 +1840,59 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
915 return ret; 1840 return ret;
916} 1841}
917 1842
1843static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1844 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1845{
1846 struct cgroup *cgroup;
1847 unsigned long long min_limit, min_memsw_limit, tmp;
1848
1849 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1850 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1851 cgroup = memcg->css.cgroup;
1852 if (!memcg->use_hierarchy)
1853 goto out;
1854
1855 while (cgroup->parent) {
1856 cgroup = cgroup->parent;
1857 memcg = mem_cgroup_from_cont(cgroup);
1858 if (!memcg->use_hierarchy)
1859 break;
1860 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1861 min_limit = min(min_limit, tmp);
1862 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1863 min_memsw_limit = min(min_memsw_limit, tmp);
1864 }
1865out:
1866 *mem_limit = min_limit;
1867 *memsw_limit = min_memsw_limit;
1868 return;
1869}
1870
918static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 1871static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
919{ 1872{
920 struct mem_cgroup *mem; 1873 struct mem_cgroup *mem;
1874 int type, name;
921 1875
922 mem = mem_cgroup_from_cont(cont); 1876 mem = mem_cgroup_from_cont(cont);
923 switch (event) { 1877 type = MEMFILE_TYPE(event);
1878 name = MEMFILE_ATTR(event);
1879 switch (name) {
924 case RES_MAX_USAGE: 1880 case RES_MAX_USAGE:
925 res_counter_reset_max(&mem->res); 1881 if (type == _MEM)
1882 res_counter_reset_max(&mem->res);
1883 else
1884 res_counter_reset_max(&mem->memsw);
926 break; 1885 break;
927 case RES_FAILCNT: 1886 case RES_FAILCNT:
928 res_counter_reset_failcnt(&mem->res); 1887 if (type == _MEM)
1888 res_counter_reset_failcnt(&mem->res);
1889 else
1890 res_counter_reset_failcnt(&mem->memsw);
929 break; 1891 break;
930 } 1892 }
931 return 0; 1893 return 0;
932} 1894}
933 1895
934static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
935{
936 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
937}
938
939static const struct mem_cgroup_stat_desc { 1896static const struct mem_cgroup_stat_desc {
940 const char *msg; 1897 const char *msg;
941 u64 unit; 1898 u64 unit;
@@ -984,42 +1941,170 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
984 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); 1941 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
985 1942
986 } 1943 }
1944 {
1945 unsigned long long limit, memsw_limit;
1946 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1947 cb->fill(cb, "hierarchical_memory_limit", limit);
1948 if (do_swap_account)
1949 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1950 }
1951
1952#ifdef CONFIG_DEBUG_VM
1953 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1954
1955 {
1956 int nid, zid;
1957 struct mem_cgroup_per_zone *mz;
1958 unsigned long recent_rotated[2] = {0, 0};
1959 unsigned long recent_scanned[2] = {0, 0};
1960
1961 for_each_online_node(nid)
1962 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1963 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1964
1965 recent_rotated[0] +=
1966 mz->reclaim_stat.recent_rotated[0];
1967 recent_rotated[1] +=
1968 mz->reclaim_stat.recent_rotated[1];
1969 recent_scanned[0] +=
1970 mz->reclaim_stat.recent_scanned[0];
1971 recent_scanned[1] +=
1972 mz->reclaim_stat.recent_scanned[1];
1973 }
1974 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1975 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1976 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1977 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1978 }
1979#endif
1980
987 return 0; 1981 return 0;
988} 1982}
989 1983
1984static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1985{
1986 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1987
1988 return get_swappiness(memcg);
1989}
1990
1991static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1992 u64 val)
1993{
1994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1995 struct mem_cgroup *parent;
1996
1997 if (val > 100)
1998 return -EINVAL;
1999
2000 if (cgrp->parent == NULL)
2001 return -EINVAL;
2002
2003 parent = mem_cgroup_from_cont(cgrp->parent);
2004
2005 cgroup_lock();
2006
2007 /* If under hierarchy, only empty-root can set this value */
2008 if ((parent->use_hierarchy) ||
2009 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2010 cgroup_unlock();
2011 return -EINVAL;
2012 }
2013
2014 spin_lock(&memcg->reclaim_param_lock);
2015 memcg->swappiness = val;
2016 spin_unlock(&memcg->reclaim_param_lock);
2017
2018 cgroup_unlock();
2019
2020 return 0;
2021}
2022
2023
990static struct cftype mem_cgroup_files[] = { 2024static struct cftype mem_cgroup_files[] = {
991 { 2025 {
992 .name = "usage_in_bytes", 2026 .name = "usage_in_bytes",
993 .private = RES_USAGE, 2027 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
994 .read_u64 = mem_cgroup_read, 2028 .read_u64 = mem_cgroup_read,
995 }, 2029 },
996 { 2030 {
997 .name = "max_usage_in_bytes", 2031 .name = "max_usage_in_bytes",
998 .private = RES_MAX_USAGE, 2032 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
999 .trigger = mem_cgroup_reset, 2033 .trigger = mem_cgroup_reset,
1000 .read_u64 = mem_cgroup_read, 2034 .read_u64 = mem_cgroup_read,
1001 }, 2035 },
1002 { 2036 {
1003 .name = "limit_in_bytes", 2037 .name = "limit_in_bytes",
1004 .private = RES_LIMIT, 2038 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1005 .write_string = mem_cgroup_write, 2039 .write_string = mem_cgroup_write,
1006 .read_u64 = mem_cgroup_read, 2040 .read_u64 = mem_cgroup_read,
1007 }, 2041 },
1008 { 2042 {
1009 .name = "failcnt", 2043 .name = "failcnt",
1010 .private = RES_FAILCNT, 2044 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1011 .trigger = mem_cgroup_reset, 2045 .trigger = mem_cgroup_reset,
1012 .read_u64 = mem_cgroup_read, 2046 .read_u64 = mem_cgroup_read,
1013 }, 2047 },
1014 { 2048 {
2049 .name = "stat",
2050 .read_map = mem_control_stat_show,
2051 },
2052 {
1015 .name = "force_empty", 2053 .name = "force_empty",
1016 .trigger = mem_force_empty_write, 2054 .trigger = mem_cgroup_force_empty_write,
1017 }, 2055 },
1018 { 2056 {
1019 .name = "stat", 2057 .name = "use_hierarchy",
1020 .read_map = mem_control_stat_show, 2058 .write_u64 = mem_cgroup_hierarchy_write,
2059 .read_u64 = mem_cgroup_hierarchy_read,
1021 }, 2060 },
2061 {
2062 .name = "swappiness",
2063 .read_u64 = mem_cgroup_swappiness_read,
2064 .write_u64 = mem_cgroup_swappiness_write,
2065 },
2066};
2067
2068#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2069static struct cftype memsw_cgroup_files[] = {
2070 {
2071 .name = "memsw.usage_in_bytes",
2072 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2073 .read_u64 = mem_cgroup_read,
2074 },
2075 {
2076 .name = "memsw.max_usage_in_bytes",
2077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2078 .trigger = mem_cgroup_reset,
2079 .read_u64 = mem_cgroup_read,
2080 },
2081 {
2082 .name = "memsw.limit_in_bytes",
2083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2084 .write_string = mem_cgroup_write,
2085 .read_u64 = mem_cgroup_read,
2086 },
2087 {
2088 .name = "memsw.failcnt",
2089 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2090 .trigger = mem_cgroup_reset,
2091 .read_u64 = mem_cgroup_read,
2092 },
2093};
2094
2095static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2096{
2097 if (!do_swap_account)
2098 return 0;
2099 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2100 ARRAY_SIZE(memsw_cgroup_files));
1022}; 2101};
2102#else
2103static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2104{
2105 return 0;
2106}
2107#endif
1023 2108
1024static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2109static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1025{ 2110{
@@ -1046,7 +2131,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1046 2131
1047 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 2132 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1048 mz = &pn->zoneinfo[zone]; 2133 mz = &pn->zoneinfo[zone];
1049 spin_lock_init(&mz->lru_lock);
1050 for_each_lru(l) 2134 for_each_lru(l)
1051 INIT_LIST_HEAD(&mz->lists[l]); 2135 INIT_LIST_HEAD(&mz->lists[l]);
1052 } 2136 }
@@ -1058,55 +2142,133 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1058 kfree(mem->info.nodeinfo[node]); 2142 kfree(mem->info.nodeinfo[node]);
1059} 2143}
1060 2144
2145static int mem_cgroup_size(void)
2146{
2147 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2148 return sizeof(struct mem_cgroup) + cpustat_size;
2149}
2150
1061static struct mem_cgroup *mem_cgroup_alloc(void) 2151static struct mem_cgroup *mem_cgroup_alloc(void)
1062{ 2152{
1063 struct mem_cgroup *mem; 2153 struct mem_cgroup *mem;
2154 int size = mem_cgroup_size();
1064 2155
1065 if (sizeof(*mem) < PAGE_SIZE) 2156 if (size < PAGE_SIZE)
1066 mem = kmalloc(sizeof(*mem), GFP_KERNEL); 2157 mem = kmalloc(size, GFP_KERNEL);
1067 else 2158 else
1068 mem = vmalloc(sizeof(*mem)); 2159 mem = vmalloc(size);
1069 2160
1070 if (mem) 2161 if (mem)
1071 memset(mem, 0, sizeof(*mem)); 2162 memset(mem, 0, size);
1072 return mem; 2163 return mem;
1073} 2164}
1074 2165
1075static void mem_cgroup_free(struct mem_cgroup *mem) 2166/*
2167 * At destroying mem_cgroup, references from swap_cgroup can remain.
2168 * (scanning all at force_empty is too costly...)
2169 *
2170 * Instead of clearing all references at force_empty, we remember
2171 * the number of reference from swap_cgroup and free mem_cgroup when
2172 * it goes down to 0.
2173 *
2174 * Removal of cgroup itself succeeds regardless of refs from swap.
2175 */
2176
2177static void __mem_cgroup_free(struct mem_cgroup *mem)
1076{ 2178{
1077 if (sizeof(*mem) < PAGE_SIZE) 2179 int node;
2180
2181 for_each_node_state(node, N_POSSIBLE)
2182 free_mem_cgroup_per_zone_info(mem, node);
2183
2184 if (mem_cgroup_size() < PAGE_SIZE)
1078 kfree(mem); 2185 kfree(mem);
1079 else 2186 else
1080 vfree(mem); 2187 vfree(mem);
1081} 2188}
1082 2189
2190static void mem_cgroup_get(struct mem_cgroup *mem)
2191{
2192 atomic_inc(&mem->refcnt);
2193}
1083 2194
1084static struct cgroup_subsys_state * 2195static void mem_cgroup_put(struct mem_cgroup *mem)
2196{
2197 if (atomic_dec_and_test(&mem->refcnt)) {
2198 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2199 __mem_cgroup_free(mem);
2200 if (parent)
2201 mem_cgroup_put(parent);
2202 }
2203}
2204
2205/*
2206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2207 */
2208static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2209{
2210 if (!mem->res.parent)
2211 return NULL;
2212 return mem_cgroup_from_res_counter(mem->res.parent, res);
2213}
2214
2215#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2216static void __init enable_swap_cgroup(void)
2217{
2218 if (!mem_cgroup_disabled() && really_do_swap_account)
2219 do_swap_account = 1;
2220}
2221#else
2222static void __init enable_swap_cgroup(void)
2223{
2224}
2225#endif
2226
2227static struct cgroup_subsys_state * __ref
1085mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2228mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1086{ 2229{
1087 struct mem_cgroup *mem; 2230 struct mem_cgroup *mem, *parent;
1088 int node; 2231 int node;
1089 2232
1090 if (unlikely((cont->parent) == NULL)) { 2233 mem = mem_cgroup_alloc();
1091 mem = &init_mem_cgroup; 2234 if (!mem)
1092 } else { 2235 return ERR_PTR(-ENOMEM);
1093 mem = mem_cgroup_alloc();
1094 if (!mem)
1095 return ERR_PTR(-ENOMEM);
1096 }
1097
1098 res_counter_init(&mem->res);
1099 2236
1100 for_each_node_state(node, N_POSSIBLE) 2237 for_each_node_state(node, N_POSSIBLE)
1101 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2238 if (alloc_mem_cgroup_per_zone_info(mem, node))
1102 goto free_out; 2239 goto free_out;
2240 /* root ? */
2241 if (cont->parent == NULL) {
2242 enable_swap_cgroup();
2243 parent = NULL;
2244 } else {
2245 parent = mem_cgroup_from_cont(cont->parent);
2246 mem->use_hierarchy = parent->use_hierarchy;
2247 }
1103 2248
2249 if (parent && parent->use_hierarchy) {
2250 res_counter_init(&mem->res, &parent->res);
2251 res_counter_init(&mem->memsw, &parent->memsw);
2252 /*
2253 * We increment refcnt of the parent to ensure that we can
2254 * safely access it on res_counter_charge/uncharge.
2255 * This refcnt will be decremented when freeing this
2256 * mem_cgroup(see mem_cgroup_put).
2257 */
2258 mem_cgroup_get(parent);
2259 } else {
2260 res_counter_init(&mem->res, NULL);
2261 res_counter_init(&mem->memsw, NULL);
2262 }
2263 mem->last_scanned_child = NULL;
2264 spin_lock_init(&mem->reclaim_param_lock);
2265
2266 if (parent)
2267 mem->swappiness = get_swappiness(parent);
2268 atomic_set(&mem->refcnt, 1);
1104 return &mem->css; 2269 return &mem->css;
1105free_out: 2270free_out:
1106 for_each_node_state(node, N_POSSIBLE) 2271 __mem_cgroup_free(mem);
1107 free_mem_cgroup_per_zone_info(mem, node);
1108 if (cont->parent != NULL)
1109 mem_cgroup_free(mem);
1110 return ERR_PTR(-ENOMEM); 2272 return ERR_PTR(-ENOMEM);
1111} 2273}
1112 2274
@@ -1114,26 +2276,33 @@ static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1114 struct cgroup *cont) 2276 struct cgroup *cont)
1115{ 2277{
1116 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2278 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1117 mem_cgroup_force_empty(mem); 2279 mem_cgroup_force_empty(mem, false);
1118} 2280}
1119 2281
1120static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2282static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1121 struct cgroup *cont) 2283 struct cgroup *cont)
1122{ 2284{
1123 int node;
1124 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2285 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2286 struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
1125 2287
1126 for_each_node_state(node, N_POSSIBLE) 2288 if (last_scanned_child) {
1127 free_mem_cgroup_per_zone_info(mem, node); 2289 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
1128 2290 mem_cgroup_put(last_scanned_child);
1129 mem_cgroup_free(mem_cgroup_from_cont(cont)); 2291 }
2292 mem_cgroup_put(mem);
1130} 2293}
1131 2294
1132static int mem_cgroup_populate(struct cgroup_subsys *ss, 2295static int mem_cgroup_populate(struct cgroup_subsys *ss,
1133 struct cgroup *cont) 2296 struct cgroup *cont)
1134{ 2297{
1135 return cgroup_add_files(cont, ss, mem_cgroup_files, 2298 int ret;
1136 ARRAY_SIZE(mem_cgroup_files)); 2299
2300 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2301 ARRAY_SIZE(mem_cgroup_files));
2302
2303 if (!ret)
2304 ret = register_memsw_files(cont, ss);
2305 return ret;
1137} 2306}
1138 2307
1139static void mem_cgroup_move_task(struct cgroup_subsys *ss, 2308static void mem_cgroup_move_task(struct cgroup_subsys *ss,
@@ -1141,25 +2310,12 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1141 struct cgroup *old_cont, 2310 struct cgroup *old_cont,
1142 struct task_struct *p) 2311 struct task_struct *p)
1143{ 2312{
1144 struct mm_struct *mm; 2313 mutex_lock(&memcg_tasklist);
1145 struct mem_cgroup *mem, *old_mem;
1146
1147 mm = get_task_mm(p);
1148 if (mm == NULL)
1149 return;
1150
1151 mem = mem_cgroup_from_cont(cont);
1152 old_mem = mem_cgroup_from_cont(old_cont);
1153
1154 /* 2314 /*
1155 * Only thread group leaders are allowed to migrate, the mm_struct is 2315 * FIXME: It's better to move charges of this process from old
1156 * in effect owned by the leader 2316 * memcg to new memcg. But it's just on TODO-List now.
1157 */ 2317 */
1158 if (!thread_group_leader(p)) 2318 mutex_unlock(&memcg_tasklist);
1159 goto out;
1160
1161out:
1162 mmput(mm);
1163} 2319}
1164 2320
1165struct cgroup_subsys mem_cgroup_subsys = { 2321struct cgroup_subsys mem_cgroup_subsys = {
@@ -1172,3 +2328,13 @@ struct cgroup_subsys mem_cgroup_subsys = {
1172 .attach = mem_cgroup_move_task, 2328 .attach = mem_cgroup_move_task,
1173 .early_init = 0, 2329 .early_init = 0,
1174}; 2330};
2331
2332#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2333
2334static int __init disable_swap_account(char *s)
2335{
2336 really_do_swap_account = 0;
2337 return 1;
2338}
2339__setup("noswapaccount", disable_swap_account);
2340#endif