diff options
Diffstat (limited to 'mm/memcontrol.c')
| -rw-r--r-- | mm/memcontrol.c | 1846 |
1 files changed, 1477 insertions, 369 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 51ee96545579..e2996b80601f 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
| @@ -21,11 +21,13 @@ | |||
| 21 | #include <linux/memcontrol.h> | 21 | #include <linux/memcontrol.h> |
| 22 | #include <linux/cgroup.h> | 22 | #include <linux/cgroup.h> |
| 23 | #include <linux/mm.h> | 23 | #include <linux/mm.h> |
| 24 | #include <linux/pagemap.h> | ||
| 24 | #include <linux/smp.h> | 25 | #include <linux/smp.h> |
| 25 | #include <linux/page-flags.h> | 26 | #include <linux/page-flags.h> |
| 26 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
| 27 | #include <linux/bit_spinlock.h> | 28 | #include <linux/bit_spinlock.h> |
| 28 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
| 30 | #include <linux/mutex.h> | ||
| 29 | #include <linux/slab.h> | 31 | #include <linux/slab.h> |
| 30 | #include <linux/swap.h> | 32 | #include <linux/swap.h> |
| 31 | #include <linux/spinlock.h> | 33 | #include <linux/spinlock.h> |
| @@ -34,12 +36,23 @@ | |||
| 34 | #include <linux/vmalloc.h> | 36 | #include <linux/vmalloc.h> |
| 35 | #include <linux/mm_inline.h> | 37 | #include <linux/mm_inline.h> |
| 36 | #include <linux/page_cgroup.h> | 38 | #include <linux/page_cgroup.h> |
| 39 | #include "internal.h" | ||
| 37 | 40 | ||
| 38 | #include <asm/uaccess.h> | 41 | #include <asm/uaccess.h> |
| 39 | 42 | ||
| 40 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 43 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
| 41 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 44 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
| 42 | 45 | ||
| 46 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
| 47 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ | ||
| 48 | int do_swap_account __read_mostly; | ||
| 49 | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | ||
| 50 | #else | ||
| 51 | #define do_swap_account (0) | ||
| 52 | #endif | ||
| 53 | |||
| 54 | static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ | ||
| 55 | |||
| 43 | /* | 56 | /* |
| 44 | * Statistics for memory cgroup. | 57 | * Statistics for memory cgroup. |
| 45 | */ | 58 | */ |
| @@ -60,7 +73,7 @@ struct mem_cgroup_stat_cpu { | |||
| 60 | } ____cacheline_aligned_in_smp; | 73 | } ____cacheline_aligned_in_smp; |
| 61 | 74 | ||
| 62 | struct mem_cgroup_stat { | 75 | struct mem_cgroup_stat { |
| 63 | struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | 76 | struct mem_cgroup_stat_cpu cpustat[0]; |
| 64 | }; | 77 | }; |
| 65 | 78 | ||
| 66 | /* | 79 | /* |
| @@ -89,9 +102,10 @@ struct mem_cgroup_per_zone { | |||
| 89 | /* | 102 | /* |
| 90 | * spin_lock to protect the per cgroup LRU | 103 | * spin_lock to protect the per cgroup LRU |
| 91 | */ | 104 | */ |
| 92 | spinlock_t lru_lock; | ||
| 93 | struct list_head lists[NR_LRU_LISTS]; | 105 | struct list_head lists[NR_LRU_LISTS]; |
| 94 | unsigned long count[NR_LRU_LISTS]; | 106 | unsigned long count[NR_LRU_LISTS]; |
| 107 | |||
| 108 | struct zone_reclaim_stat reclaim_stat; | ||
| 95 | }; | 109 | }; |
| 96 | /* Macro for accessing counter */ | 110 | /* Macro for accessing counter */ |
| 97 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | 111 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) |
| @@ -122,44 +136,73 @@ struct mem_cgroup { | |||
| 122 | */ | 136 | */ |
| 123 | struct res_counter res; | 137 | struct res_counter res; |
| 124 | /* | 138 | /* |
| 139 | * the counter to account for mem+swap usage. | ||
| 140 | */ | ||
| 141 | struct res_counter memsw; | ||
| 142 | /* | ||
| 125 | * Per cgroup active and inactive list, similar to the | 143 | * Per cgroup active and inactive list, similar to the |
| 126 | * per zone LRU lists. | 144 | * per zone LRU lists. |
| 127 | */ | 145 | */ |
| 128 | struct mem_cgroup_lru_info info; | 146 | struct mem_cgroup_lru_info info; |
| 129 | 147 | ||
| 148 | /* | ||
| 149 | protect against reclaim related member. | ||
| 150 | */ | ||
| 151 | spinlock_t reclaim_param_lock; | ||
| 152 | |||
| 130 | int prev_priority; /* for recording reclaim priority */ | 153 | int prev_priority; /* for recording reclaim priority */ |
| 154 | |||
| 155 | /* | ||
| 156 | * While reclaiming in a hiearchy, we cache the last child we | ||
| 157 | * reclaimed from. Protected by hierarchy_mutex | ||
| 158 | */ | ||
| 159 | struct mem_cgroup *last_scanned_child; | ||
| 131 | /* | 160 | /* |
| 132 | * statistics. | 161 | * Should the accounting and control be hierarchical, per subtree? |
| 162 | */ | ||
| 163 | bool use_hierarchy; | ||
| 164 | unsigned long last_oom_jiffies; | ||
| 165 | atomic_t refcnt; | ||
| 166 | |||
| 167 | unsigned int swappiness; | ||
| 168 | |||
| 169 | /* | ||
| 170 | * statistics. This must be placed at the end of memcg. | ||
| 133 | */ | 171 | */ |
| 134 | struct mem_cgroup_stat stat; | 172 | struct mem_cgroup_stat stat; |
| 135 | }; | 173 | }; |
| 136 | static struct mem_cgroup init_mem_cgroup; | ||
| 137 | 174 | ||
| 138 | enum charge_type { | 175 | enum charge_type { |
| 139 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 176 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
| 140 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 177 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
| 141 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ | 178 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
| 142 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | 179 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
| 180 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | ||
| 143 | NR_CHARGE_TYPE, | 181 | NR_CHARGE_TYPE, |
| 144 | }; | 182 | }; |
| 145 | 183 | ||
| 146 | /* only for here (for easy reading.) */ | 184 | /* only for here (for easy reading.) */ |
| 147 | #define PCGF_CACHE (1UL << PCG_CACHE) | 185 | #define PCGF_CACHE (1UL << PCG_CACHE) |
| 148 | #define PCGF_USED (1UL << PCG_USED) | 186 | #define PCGF_USED (1UL << PCG_USED) |
| 149 | #define PCGF_ACTIVE (1UL << PCG_ACTIVE) | ||
| 150 | #define PCGF_LOCK (1UL << PCG_LOCK) | 187 | #define PCGF_LOCK (1UL << PCG_LOCK) |
| 151 | #define PCGF_FILE (1UL << PCG_FILE) | ||
| 152 | static const unsigned long | 188 | static const unsigned long |
| 153 | pcg_default_flags[NR_CHARGE_TYPE] = { | 189 | pcg_default_flags[NR_CHARGE_TYPE] = { |
| 154 | PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */ | 190 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ |
| 155 | PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */ | 191 | PCGF_USED | PCGF_LOCK, /* Anon */ |
| 156 | PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ | 192 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ |
| 157 | 0, /* FORCE */ | 193 | 0, /* FORCE */ |
| 158 | }; | 194 | }; |
| 159 | 195 | ||
| 160 | /* | 196 | /* for encoding cft->private value on file */ |
| 161 | * Always modified under lru lock. Then, not necessary to preempt_disable() | 197 | #define _MEM (0) |
| 162 | */ | 198 | #define _MEMSWAP (1) |
| 199 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) | ||
| 200 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | ||
| 201 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | ||
| 202 | |||
| 203 | static void mem_cgroup_get(struct mem_cgroup *mem); | ||
| 204 | static void mem_cgroup_put(struct mem_cgroup *mem); | ||
| 205 | |||
| 163 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | 206 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
| 164 | struct page_cgroup *pc, | 207 | struct page_cgroup *pc, |
| 165 | bool charge) | 208 | bool charge) |
| @@ -167,10 +210,9 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
| 167 | int val = (charge)? 1 : -1; | 210 | int val = (charge)? 1 : -1; |
| 168 | struct mem_cgroup_stat *stat = &mem->stat; | 211 | struct mem_cgroup_stat *stat = &mem->stat; |
| 169 | struct mem_cgroup_stat_cpu *cpustat; | 212 | struct mem_cgroup_stat_cpu *cpustat; |
| 213 | int cpu = get_cpu(); | ||
| 170 | 214 | ||
| 171 | VM_BUG_ON(!irqs_disabled()); | 215 | cpustat = &stat->cpustat[cpu]; |
| 172 | |||
| 173 | cpustat = &stat->cpustat[smp_processor_id()]; | ||
| 174 | if (PageCgroupCache(pc)) | 216 | if (PageCgroupCache(pc)) |
| 175 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); | 217 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); |
| 176 | else | 218 | else |
| @@ -182,6 +224,7 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
| 182 | else | 224 | else |
| 183 | __mem_cgroup_stat_add_safe(cpustat, | 225 | __mem_cgroup_stat_add_safe(cpustat, |
| 184 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 226 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
| 227 | put_cpu(); | ||
| 185 | } | 228 | } |
| 186 | 229 | ||
| 187 | static struct mem_cgroup_per_zone * | 230 | static struct mem_cgroup_per_zone * |
| @@ -197,6 +240,9 @@ page_cgroup_zoneinfo(struct page_cgroup *pc) | |||
| 197 | int nid = page_cgroup_nid(pc); | 240 | int nid = page_cgroup_nid(pc); |
| 198 | int zid = page_cgroup_zid(pc); | 241 | int zid = page_cgroup_zid(pc); |
| 199 | 242 | ||
| 243 | if (!mem) | ||
| 244 | return NULL; | ||
| 245 | |||
| 200 | return mem_cgroup_zoneinfo(mem, nid, zid); | 246 | return mem_cgroup_zoneinfo(mem, nid, zid); |
| 201 | } | 247 | } |
| 202 | 248 | ||
| @@ -236,77 +282,152 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |||
| 236 | struct mem_cgroup, css); | 282 | struct mem_cgroup, css); |
| 237 | } | 283 | } |
| 238 | 284 | ||
| 239 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | 285 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
| 240 | struct page_cgroup *pc) | ||
| 241 | { | 286 | { |
| 242 | int lru = LRU_BASE; | 287 | struct mem_cgroup *mem = NULL; |
| 288 | /* | ||
| 289 | * Because we have no locks, mm->owner's may be being moved to other | ||
| 290 | * cgroup. We use css_tryget() here even if this looks | ||
| 291 | * pessimistic (rather than adding locks here). | ||
| 292 | */ | ||
| 293 | rcu_read_lock(); | ||
| 294 | do { | ||
| 295 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
| 296 | if (unlikely(!mem)) | ||
| 297 | break; | ||
| 298 | } while (!css_tryget(&mem->css)); | ||
| 299 | rcu_read_unlock(); | ||
| 300 | return mem; | ||
| 301 | } | ||
| 243 | 302 | ||
| 244 | if (PageCgroupUnevictable(pc)) | 303 | static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem) |
| 245 | lru = LRU_UNEVICTABLE; | 304 | { |
| 246 | else { | 305 | if (!mem) |
| 247 | if (PageCgroupActive(pc)) | 306 | return true; |
| 248 | lru += LRU_ACTIVE; | 307 | return css_is_removed(&mem->css); |
| 249 | if (PageCgroupFile(pc)) | 308 | } |
| 250 | lru += LRU_FILE; | ||
| 251 | } | ||
| 252 | 309 | ||
| 253 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | 310 | /* |
| 311 | * Following LRU functions are allowed to be used without PCG_LOCK. | ||
| 312 | * Operations are called by routine of global LRU independently from memcg. | ||
| 313 | * What we have to take care of here is validness of pc->mem_cgroup. | ||
| 314 | * | ||
| 315 | * Changes to pc->mem_cgroup happens when | ||
| 316 | * 1. charge | ||
| 317 | * 2. moving account | ||
| 318 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | ||
| 319 | * It is added to LRU before charge. | ||
| 320 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | ||
| 321 | * When moving account, the page is not on LRU. It's isolated. | ||
| 322 | */ | ||
| 254 | 323 | ||
| 255 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false); | 324 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
| 256 | list_del(&pc->lru); | 325 | { |
| 326 | struct page_cgroup *pc; | ||
| 327 | struct mem_cgroup *mem; | ||
| 328 | struct mem_cgroup_per_zone *mz; | ||
| 329 | |||
| 330 | if (mem_cgroup_disabled()) | ||
| 331 | return; | ||
| 332 | pc = lookup_page_cgroup(page); | ||
| 333 | /* can happen while we handle swapcache. */ | ||
| 334 | if (list_empty(&pc->lru) || !pc->mem_cgroup) | ||
| 335 | return; | ||
| 336 | /* | ||
| 337 | * We don't check PCG_USED bit. It's cleared when the "page" is finally | ||
| 338 | * removed from global LRU. | ||
| 339 | */ | ||
| 340 | mz = page_cgroup_zoneinfo(pc); | ||
| 341 | mem = pc->mem_cgroup; | ||
| 342 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | ||
| 343 | list_del_init(&pc->lru); | ||
| 344 | return; | ||
| 257 | } | 345 | } |
| 258 | 346 | ||
| 259 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 347 | void mem_cgroup_del_lru(struct page *page) |
| 260 | struct page_cgroup *pc) | ||
| 261 | { | 348 | { |
| 262 | int lru = LRU_BASE; | 349 | mem_cgroup_del_lru_list(page, page_lru(page)); |
| 350 | } | ||
| 263 | 351 | ||
| 264 | if (PageCgroupUnevictable(pc)) | 352 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
| 265 | lru = LRU_UNEVICTABLE; | 353 | { |
| 266 | else { | 354 | struct mem_cgroup_per_zone *mz; |
| 267 | if (PageCgroupActive(pc)) | 355 | struct page_cgroup *pc; |
| 268 | lru += LRU_ACTIVE; | ||
| 269 | if (PageCgroupFile(pc)) | ||
| 270 | lru += LRU_FILE; | ||
| 271 | } | ||
| 272 | 356 | ||
| 273 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 357 | if (mem_cgroup_disabled()) |
| 274 | list_add(&pc->lru, &mz->lists[lru]); | 358 | return; |
| 275 | 359 | ||
| 276 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true); | 360 | pc = lookup_page_cgroup(page); |
| 361 | smp_rmb(); | ||
| 362 | /* unused page is not rotated. */ | ||
| 363 | if (!PageCgroupUsed(pc)) | ||
| 364 | return; | ||
| 365 | mz = page_cgroup_zoneinfo(pc); | ||
| 366 | list_move(&pc->lru, &mz->lists[lru]); | ||
| 277 | } | 367 | } |
| 278 | 368 | ||
| 279 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru) | 369 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
| 280 | { | 370 | { |
| 281 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 371 | struct page_cgroup *pc; |
| 282 | int active = PageCgroupActive(pc); | 372 | struct mem_cgroup_per_zone *mz; |
| 283 | int file = PageCgroupFile(pc); | ||
| 284 | int unevictable = PageCgroupUnevictable(pc); | ||
| 285 | enum lru_list from = unevictable ? LRU_UNEVICTABLE : | ||
| 286 | (LRU_FILE * !!file + !!active); | ||
| 287 | 373 | ||
| 288 | if (lru == from) | 374 | if (mem_cgroup_disabled()) |
| 375 | return; | ||
| 376 | pc = lookup_page_cgroup(page); | ||
| 377 | /* barrier to sync with "charge" */ | ||
| 378 | smp_rmb(); | ||
| 379 | if (!PageCgroupUsed(pc)) | ||
| 289 | return; | 380 | return; |
| 290 | 381 | ||
| 291 | MEM_CGROUP_ZSTAT(mz, from) -= 1; | 382 | mz = page_cgroup_zoneinfo(pc); |
| 383 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
| 384 | list_add(&pc->lru, &mz->lists[lru]); | ||
| 385 | } | ||
| 386 | |||
| 387 | /* | ||
| 388 | * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to | ||
| 389 | * lru because the page may.be reused after it's fully uncharged (because of | ||
| 390 | * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | ||
| 391 | * it again. This function is only used to charge SwapCache. It's done under | ||
| 392 | * lock_page and expected that zone->lru_lock is never held. | ||
| 393 | */ | ||
| 394 | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) | ||
| 395 | { | ||
| 396 | unsigned long flags; | ||
| 397 | struct zone *zone = page_zone(page); | ||
| 398 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
| 399 | |||
| 400 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
| 292 | /* | 401 | /* |
| 293 | * However this is done under mz->lru_lock, another flags, which | 402 | * Forget old LRU when this page_cgroup is *not* used. This Used bit |
| 294 | * are not related to LRU, will be modified from out-of-lock. | 403 | * is guarded by lock_page() because the page is SwapCache. |
| 295 | * We have to use atomic set/clear flags. | ||
| 296 | */ | 404 | */ |
| 297 | if (is_unevictable_lru(lru)) { | 405 | if (!PageCgroupUsed(pc)) |
| 298 | ClearPageCgroupActive(pc); | 406 | mem_cgroup_del_lru_list(page, page_lru(page)); |
| 299 | SetPageCgroupUnevictable(pc); | 407 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
| 300 | } else { | 408 | } |
| 301 | if (is_active_lru(lru)) | ||
| 302 | SetPageCgroupActive(pc); | ||
| 303 | else | ||
| 304 | ClearPageCgroupActive(pc); | ||
| 305 | ClearPageCgroupUnevictable(pc); | ||
| 306 | } | ||
| 307 | 409 | ||
| 308 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 410 | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) |
| 309 | list_move(&pc->lru, &mz->lists[lru]); | 411 | { |
| 412 | unsigned long flags; | ||
| 413 | struct zone *zone = page_zone(page); | ||
| 414 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
| 415 | |||
| 416 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
| 417 | /* link when the page is linked to LRU but page_cgroup isn't */ | ||
| 418 | if (PageLRU(page) && list_empty(&pc->lru)) | ||
| 419 | mem_cgroup_add_lru_list(page, page_lru(page)); | ||
| 420 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
| 421 | } | ||
| 422 | |||
| 423 | |||
| 424 | void mem_cgroup_move_lists(struct page *page, | ||
| 425 | enum lru_list from, enum lru_list to) | ||
| 426 | { | ||
| 427 | if (mem_cgroup_disabled()) | ||
| 428 | return; | ||
| 429 | mem_cgroup_del_lru_list(page, from); | ||
| 430 | mem_cgroup_add_lru_list(page, to); | ||
| 310 | } | 431 | } |
| 311 | 432 | ||
| 312 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 433 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
| @@ -320,37 +441,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
| 320 | } | 441 | } |
| 321 | 442 | ||
| 322 | /* | 443 | /* |
| 323 | * This routine assumes that the appropriate zone's lru lock is already held | ||
| 324 | */ | ||
| 325 | void mem_cgroup_move_lists(struct page *page, enum lru_list lru) | ||
| 326 | { | ||
| 327 | struct page_cgroup *pc; | ||
| 328 | struct mem_cgroup_per_zone *mz; | ||
| 329 | unsigned long flags; | ||
| 330 | |||
| 331 | if (mem_cgroup_subsys.disabled) | ||
| 332 | return; | ||
| 333 | |||
| 334 | /* | ||
| 335 | * We cannot lock_page_cgroup while holding zone's lru_lock, | ||
| 336 | * because other holders of lock_page_cgroup can be interrupted | ||
| 337 | * with an attempt to rotate_reclaimable_page. But we cannot | ||
| 338 | * safely get to page_cgroup without it, so just try_lock it: | ||
| 339 | * mem_cgroup_isolate_pages allows for page left on wrong list. | ||
| 340 | */ | ||
| 341 | pc = lookup_page_cgroup(page); | ||
| 342 | if (!trylock_page_cgroup(pc)) | ||
| 343 | return; | ||
| 344 | if (pc && PageCgroupUsed(pc)) { | ||
| 345 | mz = page_cgroup_zoneinfo(pc); | ||
| 346 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
| 347 | __mem_cgroup_move_lists(pc, lru); | ||
| 348 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
| 349 | } | ||
| 350 | unlock_page_cgroup(pc); | ||
| 351 | } | ||
| 352 | |||
| 353 | /* | ||
| 354 | * Calculate mapped_ratio under memory controller. This will be used in | 444 | * Calculate mapped_ratio under memory controller. This will be used in |
| 355 | * vmscan.c for deteremining we have to reclaim mapped pages. | 445 | * vmscan.c for deteremining we have to reclaim mapped pages. |
| 356 | */ | 446 | */ |
| @@ -372,39 +462,108 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |||
| 372 | */ | 462 | */ |
| 373 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 463 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
| 374 | { | 464 | { |
| 375 | return mem->prev_priority; | 465 | int prev_priority; |
| 466 | |||
| 467 | spin_lock(&mem->reclaim_param_lock); | ||
| 468 | prev_priority = mem->prev_priority; | ||
| 469 | spin_unlock(&mem->reclaim_param_lock); | ||
| 470 | |||
| 471 | return prev_priority; | ||
| 376 | } | 472 | } |
| 377 | 473 | ||
| 378 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 474 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) |
| 379 | { | 475 | { |
| 476 | spin_lock(&mem->reclaim_param_lock); | ||
| 380 | if (priority < mem->prev_priority) | 477 | if (priority < mem->prev_priority) |
| 381 | mem->prev_priority = priority; | 478 | mem->prev_priority = priority; |
| 479 | spin_unlock(&mem->reclaim_param_lock); | ||
| 382 | } | 480 | } |
| 383 | 481 | ||
| 384 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 482 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) |
| 385 | { | 483 | { |
| 484 | spin_lock(&mem->reclaim_param_lock); | ||
| 386 | mem->prev_priority = priority; | 485 | mem->prev_priority = priority; |
| 486 | spin_unlock(&mem->reclaim_param_lock); | ||
| 387 | } | 487 | } |
| 388 | 488 | ||
| 389 | /* | 489 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
| 390 | * Calculate # of pages to be scanned in this priority/zone. | 490 | { |
| 391 | * See also vmscan.c | 491 | unsigned long active; |
| 392 | * | 492 | unsigned long inactive; |
| 393 | * priority starts from "DEF_PRIORITY" and decremented in each loop. | 493 | unsigned long gb; |
| 394 | * (see include/linux/mmzone.h) | 494 | unsigned long inactive_ratio; |
| 395 | */ | 495 | |
| 496 | inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); | ||
| 497 | active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); | ||
| 498 | |||
| 499 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | ||
| 500 | if (gb) | ||
| 501 | inactive_ratio = int_sqrt(10 * gb); | ||
| 502 | else | ||
| 503 | inactive_ratio = 1; | ||
| 504 | |||
| 505 | if (present_pages) { | ||
| 506 | present_pages[0] = inactive; | ||
| 507 | present_pages[1] = active; | ||
| 508 | } | ||
| 509 | |||
| 510 | return inactive_ratio; | ||
| 511 | } | ||
| 512 | |||
| 513 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | ||
| 514 | { | ||
| 515 | unsigned long active; | ||
| 516 | unsigned long inactive; | ||
| 517 | unsigned long present_pages[2]; | ||
| 518 | unsigned long inactive_ratio; | ||
| 396 | 519 | ||
| 397 | long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, | 520 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); |
| 398 | int priority, enum lru_list lru) | 521 | |
| 522 | inactive = present_pages[0]; | ||
| 523 | active = present_pages[1]; | ||
| 524 | |||
| 525 | if (inactive * inactive_ratio < active) | ||
| 526 | return 1; | ||
| 527 | |||
| 528 | return 0; | ||
| 529 | } | ||
| 530 | |||
| 531 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | ||
| 532 | struct zone *zone, | ||
| 533 | enum lru_list lru) | ||
| 399 | { | 534 | { |
| 400 | long nr_pages; | ||
| 401 | int nid = zone->zone_pgdat->node_id; | 535 | int nid = zone->zone_pgdat->node_id; |
| 402 | int zid = zone_idx(zone); | 536 | int zid = zone_idx(zone); |
| 403 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 537 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
| 404 | 538 | ||
| 405 | nr_pages = MEM_CGROUP_ZSTAT(mz, lru); | 539 | return MEM_CGROUP_ZSTAT(mz, lru); |
| 540 | } | ||
| 406 | 541 | ||
| 407 | return (nr_pages >> priority); | 542 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
| 543 | struct zone *zone) | ||
| 544 | { | ||
| 545 | int nid = zone->zone_pgdat->node_id; | ||
| 546 | int zid = zone_idx(zone); | ||
| 547 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | ||
| 548 | |||
| 549 | return &mz->reclaim_stat; | ||
| 550 | } | ||
| 551 | |||
| 552 | struct zone_reclaim_stat * | ||
| 553 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | ||
| 554 | { | ||
| 555 | struct page_cgroup *pc; | ||
| 556 | struct mem_cgroup_per_zone *mz; | ||
| 557 | |||
| 558 | if (mem_cgroup_disabled()) | ||
| 559 | return NULL; | ||
| 560 | |||
| 561 | pc = lookup_page_cgroup(page); | ||
| 562 | mz = page_cgroup_zoneinfo(pc); | ||
| 563 | if (!mz) | ||
| 564 | return NULL; | ||
| 565 | |||
| 566 | return &mz->reclaim_stat; | ||
| 408 | } | 567 | } |
| 409 | 568 | ||
| 410 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 569 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
| @@ -429,95 +588,281 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
| 429 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 588 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
| 430 | src = &mz->lists[lru]; | 589 | src = &mz->lists[lru]; |
| 431 | 590 | ||
| 432 | spin_lock(&mz->lru_lock); | ||
| 433 | scan = 0; | 591 | scan = 0; |
| 434 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 592 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
| 435 | if (scan >= nr_to_scan) | 593 | if (scan >= nr_to_scan) |
| 436 | break; | 594 | break; |
| 595 | |||
| 596 | page = pc->page; | ||
| 437 | if (unlikely(!PageCgroupUsed(pc))) | 597 | if (unlikely(!PageCgroupUsed(pc))) |
| 438 | continue; | 598 | continue; |
| 439 | page = pc->page; | ||
| 440 | |||
| 441 | if (unlikely(!PageLRU(page))) | 599 | if (unlikely(!PageLRU(page))) |
| 442 | continue; | 600 | continue; |
| 443 | 601 | ||
| 444 | /* | ||
| 445 | * TODO: play better with lumpy reclaim, grabbing anything. | ||
| 446 | */ | ||
| 447 | if (PageUnevictable(page) || | ||
| 448 | (PageActive(page) && !active) || | ||
| 449 | (!PageActive(page) && active)) { | ||
| 450 | __mem_cgroup_move_lists(pc, page_lru(page)); | ||
| 451 | continue; | ||
| 452 | } | ||
| 453 | |||
| 454 | scan++; | 602 | scan++; |
| 455 | list_move(&pc->lru, &pc_list); | ||
| 456 | |||
| 457 | if (__isolate_lru_page(page, mode, file) == 0) { | 603 | if (__isolate_lru_page(page, mode, file) == 0) { |
| 458 | list_move(&page->lru, dst); | 604 | list_move(&page->lru, dst); |
| 459 | nr_taken++; | 605 | nr_taken++; |
| 460 | } | 606 | } |
| 461 | } | 607 | } |
| 462 | 608 | ||
| 463 | list_splice(&pc_list, src); | ||
| 464 | spin_unlock(&mz->lru_lock); | ||
| 465 | |||
| 466 | *scanned = scan; | 609 | *scanned = scan; |
| 467 | return nr_taken; | 610 | return nr_taken; |
| 468 | } | 611 | } |
| 469 | 612 | ||
| 613 | #define mem_cgroup_from_res_counter(counter, member) \ | ||
| 614 | container_of(counter, struct mem_cgroup, member) | ||
| 615 | |||
| 470 | /* | 616 | /* |
| 471 | * Charge the memory controller for page usage. | 617 | * This routine finds the DFS walk successor. This routine should be |
| 472 | * Return | 618 | * called with hierarchy_mutex held |
| 473 | * 0 if the charge was successful | ||
| 474 | * < 0 if the cgroup is over its limit | ||
| 475 | */ | 619 | */ |
| 476 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 620 | static struct mem_cgroup * |
| 477 | gfp_t gfp_mask, enum charge_type ctype, | 621 | mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem) |
| 478 | struct mem_cgroup *memcg) | ||
| 479 | { | 622 | { |
| 623 | struct cgroup *cgroup, *curr_cgroup, *root_cgroup; | ||
| 624 | |||
| 625 | curr_cgroup = curr->css.cgroup; | ||
| 626 | root_cgroup = root_mem->css.cgroup; | ||
| 627 | |||
| 628 | if (!list_empty(&curr_cgroup->children)) { | ||
| 629 | /* | ||
| 630 | * Walk down to children | ||
| 631 | */ | ||
| 632 | mem_cgroup_put(curr); | ||
| 633 | cgroup = list_entry(curr_cgroup->children.next, | ||
| 634 | struct cgroup, sibling); | ||
| 635 | curr = mem_cgroup_from_cont(cgroup); | ||
| 636 | mem_cgroup_get(curr); | ||
| 637 | goto done; | ||
| 638 | } | ||
| 639 | |||
| 640 | visit_parent: | ||
| 641 | if (curr_cgroup == root_cgroup) { | ||
| 642 | mem_cgroup_put(curr); | ||
| 643 | curr = root_mem; | ||
| 644 | mem_cgroup_get(curr); | ||
| 645 | goto done; | ||
| 646 | } | ||
| 647 | |||
| 648 | /* | ||
| 649 | * Goto next sibling | ||
| 650 | */ | ||
| 651 | if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) { | ||
| 652 | mem_cgroup_put(curr); | ||
| 653 | cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup, | ||
| 654 | sibling); | ||
| 655 | curr = mem_cgroup_from_cont(cgroup); | ||
| 656 | mem_cgroup_get(curr); | ||
| 657 | goto done; | ||
| 658 | } | ||
| 659 | |||
| 660 | /* | ||
| 661 | * Go up to next parent and next parent's sibling if need be | ||
| 662 | */ | ||
| 663 | curr_cgroup = curr_cgroup->parent; | ||
| 664 | goto visit_parent; | ||
| 665 | |||
| 666 | done: | ||
| 667 | root_mem->last_scanned_child = curr; | ||
| 668 | return curr; | ||
| 669 | } | ||
| 670 | |||
| 671 | /* | ||
| 672 | * Visit the first child (need not be the first child as per the ordering | ||
| 673 | * of the cgroup list, since we track last_scanned_child) of @mem and use | ||
| 674 | * that to reclaim free pages from. | ||
| 675 | */ | ||
| 676 | static struct mem_cgroup * | ||
| 677 | mem_cgroup_get_first_node(struct mem_cgroup *root_mem) | ||
| 678 | { | ||
| 679 | struct cgroup *cgroup; | ||
| 680 | struct mem_cgroup *ret; | ||
| 681 | bool obsolete; | ||
| 682 | |||
| 683 | obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child); | ||
| 684 | |||
| 685 | /* | ||
| 686 | * Scan all children under the mem_cgroup mem | ||
| 687 | */ | ||
| 688 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | ||
| 689 | if (list_empty(&root_mem->css.cgroup->children)) { | ||
| 690 | ret = root_mem; | ||
| 691 | goto done; | ||
| 692 | } | ||
| 693 | |||
| 694 | if (!root_mem->last_scanned_child || obsolete) { | ||
| 695 | |||
| 696 | if (obsolete && root_mem->last_scanned_child) | ||
| 697 | mem_cgroup_put(root_mem->last_scanned_child); | ||
| 698 | |||
| 699 | cgroup = list_first_entry(&root_mem->css.cgroup->children, | ||
| 700 | struct cgroup, sibling); | ||
| 701 | ret = mem_cgroup_from_cont(cgroup); | ||
| 702 | mem_cgroup_get(ret); | ||
| 703 | } else | ||
| 704 | ret = mem_cgroup_get_next_node(root_mem->last_scanned_child, | ||
| 705 | root_mem); | ||
| 706 | |||
| 707 | done: | ||
| 708 | root_mem->last_scanned_child = ret; | ||
| 709 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | ||
| 710 | return ret; | ||
| 711 | } | ||
| 712 | |||
| 713 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | ||
| 714 | { | ||
| 715 | if (do_swap_account) { | ||
| 716 | if (res_counter_check_under_limit(&mem->res) && | ||
| 717 | res_counter_check_under_limit(&mem->memsw)) | ||
| 718 | return true; | ||
| 719 | } else | ||
| 720 | if (res_counter_check_under_limit(&mem->res)) | ||
| 721 | return true; | ||
| 722 | return false; | ||
| 723 | } | ||
| 724 | |||
| 725 | static unsigned int get_swappiness(struct mem_cgroup *memcg) | ||
| 726 | { | ||
| 727 | struct cgroup *cgrp = memcg->css.cgroup; | ||
| 728 | unsigned int swappiness; | ||
| 729 | |||
| 730 | /* root ? */ | ||
| 731 | if (cgrp->parent == NULL) | ||
| 732 | return vm_swappiness; | ||
| 733 | |||
| 734 | spin_lock(&memcg->reclaim_param_lock); | ||
| 735 | swappiness = memcg->swappiness; | ||
| 736 | spin_unlock(&memcg->reclaim_param_lock); | ||
| 737 | |||
| 738 | return swappiness; | ||
| 739 | } | ||
| 740 | |||
| 741 | /* | ||
| 742 | * Dance down the hierarchy if needed to reclaim memory. We remember the | ||
| 743 | * last child we reclaimed from, so that we don't end up penalizing | ||
| 744 | * one child extensively based on its position in the children list. | ||
| 745 | * | ||
| 746 | * root_mem is the original ancestor that we've been reclaim from. | ||
| 747 | */ | ||
| 748 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | ||
| 749 | gfp_t gfp_mask, bool noswap) | ||
| 750 | { | ||
| 751 | struct mem_cgroup *next_mem; | ||
| 752 | int ret = 0; | ||
| 753 | |||
| 754 | /* | ||
| 755 | * Reclaim unconditionally and don't check for return value. | ||
| 756 | * We need to reclaim in the current group and down the tree. | ||
| 757 | * One might think about checking for children before reclaiming, | ||
| 758 | * but there might be left over accounting, even after children | ||
| 759 | * have left. | ||
| 760 | */ | ||
| 761 | ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, | ||
| 762 | get_swappiness(root_mem)); | ||
| 763 | if (mem_cgroup_check_under_limit(root_mem)) | ||
| 764 | return 0; | ||
| 765 | if (!root_mem->use_hierarchy) | ||
| 766 | return ret; | ||
| 767 | |||
| 768 | next_mem = mem_cgroup_get_first_node(root_mem); | ||
| 769 | |||
| 770 | while (next_mem != root_mem) { | ||
| 771 | if (mem_cgroup_is_obsolete(next_mem)) { | ||
| 772 | mem_cgroup_put(next_mem); | ||
| 773 | next_mem = mem_cgroup_get_first_node(root_mem); | ||
| 774 | continue; | ||
| 775 | } | ||
| 776 | ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, | ||
| 777 | get_swappiness(next_mem)); | ||
| 778 | if (mem_cgroup_check_under_limit(root_mem)) | ||
| 779 | return 0; | ||
| 780 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | ||
| 781 | next_mem = mem_cgroup_get_next_node(next_mem, root_mem); | ||
| 782 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | ||
| 783 | } | ||
| 784 | return ret; | ||
| 785 | } | ||
| 786 | |||
| 787 | bool mem_cgroup_oom_called(struct task_struct *task) | ||
| 788 | { | ||
| 789 | bool ret = false; | ||
| 480 | struct mem_cgroup *mem; | 790 | struct mem_cgroup *mem; |
| 481 | struct page_cgroup *pc; | 791 | struct mm_struct *mm; |
| 482 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
| 483 | struct mem_cgroup_per_zone *mz; | ||
| 484 | unsigned long flags; | ||
| 485 | 792 | ||
| 486 | pc = lookup_page_cgroup(page); | 793 | rcu_read_lock(); |
| 487 | /* can happen at boot */ | 794 | mm = task->mm; |
| 488 | if (unlikely(!pc)) | 795 | if (!mm) |
| 796 | mm = &init_mm; | ||
| 797 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
| 798 | if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) | ||
| 799 | ret = true; | ||
| 800 | rcu_read_unlock(); | ||
| 801 | return ret; | ||
| 802 | } | ||
| 803 | /* | ||
| 804 | * Unlike exported interface, "oom" parameter is added. if oom==true, | ||
| 805 | * oom-killer can be invoked. | ||
| 806 | */ | ||
| 807 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | ||
| 808 | gfp_t gfp_mask, struct mem_cgroup **memcg, | ||
| 809 | bool oom) | ||
| 810 | { | ||
| 811 | struct mem_cgroup *mem, *mem_over_limit; | ||
| 812 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
| 813 | struct res_counter *fail_res; | ||
| 814 | |||
| 815 | if (unlikely(test_thread_flag(TIF_MEMDIE))) { | ||
| 816 | /* Don't account this! */ | ||
| 817 | *memcg = NULL; | ||
| 489 | return 0; | 818 | return 0; |
| 490 | prefetchw(pc); | 819 | } |
| 820 | |||
| 491 | /* | 821 | /* |
| 492 | * We always charge the cgroup the mm_struct belongs to. | 822 | * We always charge the cgroup the mm_struct belongs to. |
| 493 | * The mm_struct's mem_cgroup changes on task migration if the | 823 | * The mm_struct's mem_cgroup changes on task migration if the |
| 494 | * thread group leader migrates. It's possible that mm is not | 824 | * thread group leader migrates. It's possible that mm is not |
| 495 | * set, if so charge the init_mm (happens for pagecache usage). | 825 | * set, if so charge the init_mm (happens for pagecache usage). |
| 496 | */ | 826 | */ |
| 497 | 827 | mem = *memcg; | |
| 498 | if (likely(!memcg)) { | 828 | if (likely(!mem)) { |
| 499 | rcu_read_lock(); | 829 | mem = try_get_mem_cgroup_from_mm(mm); |
| 500 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 830 | *memcg = mem; |
| 501 | if (unlikely(!mem)) { | ||
| 502 | rcu_read_unlock(); | ||
| 503 | return 0; | ||
| 504 | } | ||
| 505 | /* | ||
| 506 | * For every charge from the cgroup, increment reference count | ||
| 507 | */ | ||
| 508 | css_get(&mem->css); | ||
| 509 | rcu_read_unlock(); | ||
| 510 | } else { | 831 | } else { |
| 511 | mem = memcg; | 832 | css_get(&mem->css); |
| 512 | css_get(&memcg->css); | ||
| 513 | } | 833 | } |
| 834 | if (unlikely(!mem)) | ||
| 835 | return 0; | ||
| 836 | |||
| 837 | VM_BUG_ON(mem_cgroup_is_obsolete(mem)); | ||
| 838 | |||
| 839 | while (1) { | ||
| 840 | int ret; | ||
| 841 | bool noswap = false; | ||
| 842 | |||
| 843 | ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); | ||
| 844 | if (likely(!ret)) { | ||
| 845 | if (!do_swap_account) | ||
| 846 | break; | ||
| 847 | ret = res_counter_charge(&mem->memsw, PAGE_SIZE, | ||
| 848 | &fail_res); | ||
| 849 | if (likely(!ret)) | ||
| 850 | break; | ||
| 851 | /* mem+swap counter fails */ | ||
| 852 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
| 853 | noswap = true; | ||
| 854 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
| 855 | memsw); | ||
| 856 | } else | ||
| 857 | /* mem counter fails */ | ||
| 858 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
| 859 | res); | ||
| 514 | 860 | ||
| 515 | while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) { | ||
| 516 | if (!(gfp_mask & __GFP_WAIT)) | 861 | if (!(gfp_mask & __GFP_WAIT)) |
| 517 | goto out; | 862 | goto nomem; |
| 518 | 863 | ||
| 519 | if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | 864 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, |
| 520 | continue; | 865 | noswap); |
| 521 | 866 | ||
| 522 | /* | 867 | /* |
| 523 | * try_to_free_mem_cgroup_pages() might not give us a full | 868 | * try_to_free_mem_cgroup_pages() might not give us a full |
| @@ -525,49 +870,214 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
| 525 | * moved to swap cache or just unmapped from the cgroup. | 870 | * moved to swap cache or just unmapped from the cgroup. |
| 526 | * Check the limit again to see if the reclaim reduced the | 871 | * Check the limit again to see if the reclaim reduced the |
| 527 | * current usage of the cgroup before giving up | 872 | * current usage of the cgroup before giving up |
| 873 | * | ||
| 528 | */ | 874 | */ |
| 529 | if (res_counter_check_under_limit(&mem->res)) | 875 | if (mem_cgroup_check_under_limit(mem_over_limit)) |
| 530 | continue; | 876 | continue; |
| 531 | 877 | ||
| 532 | if (!nr_retries--) { | 878 | if (!nr_retries--) { |
| 533 | mem_cgroup_out_of_memory(mem, gfp_mask); | 879 | if (oom) { |
| 534 | goto out; | 880 | mutex_lock(&memcg_tasklist); |
| 881 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); | ||
| 882 | mutex_unlock(&memcg_tasklist); | ||
| 883 | mem_over_limit->last_oom_jiffies = jiffies; | ||
| 884 | } | ||
| 885 | goto nomem; | ||
| 535 | } | 886 | } |
| 536 | } | 887 | } |
| 888 | return 0; | ||
| 889 | nomem: | ||
| 890 | css_put(&mem->css); | ||
| 891 | return -ENOMEM; | ||
| 892 | } | ||
| 537 | 893 | ||
| 894 | static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) | ||
| 895 | { | ||
| 896 | struct mem_cgroup *mem; | ||
| 897 | swp_entry_t ent; | ||
| 898 | |||
| 899 | if (!PageSwapCache(page)) | ||
| 900 | return NULL; | ||
| 901 | |||
| 902 | ent.val = page_private(page); | ||
| 903 | mem = lookup_swap_cgroup(ent); | ||
| 904 | if (!mem) | ||
| 905 | return NULL; | ||
| 906 | if (!css_tryget(&mem->css)) | ||
| 907 | return NULL; | ||
| 908 | return mem; | ||
| 909 | } | ||
| 910 | |||
| 911 | /* | ||
| 912 | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be | ||
| 913 | * USED state. If already USED, uncharge and return. | ||
| 914 | */ | ||
| 915 | |||
| 916 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | ||
| 917 | struct page_cgroup *pc, | ||
| 918 | enum charge_type ctype) | ||
| 919 | { | ||
| 920 | /* try_charge() can return NULL to *memcg, taking care of it. */ | ||
| 921 | if (!mem) | ||
| 922 | return; | ||
| 538 | 923 | ||
| 539 | lock_page_cgroup(pc); | 924 | lock_page_cgroup(pc); |
| 540 | if (unlikely(PageCgroupUsed(pc))) { | 925 | if (unlikely(PageCgroupUsed(pc))) { |
| 541 | unlock_page_cgroup(pc); | 926 | unlock_page_cgroup(pc); |
| 542 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 927 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
| 928 | if (do_swap_account) | ||
| 929 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
| 543 | css_put(&mem->css); | 930 | css_put(&mem->css); |
| 544 | 931 | return; | |
| 545 | goto done; | ||
| 546 | } | 932 | } |
| 547 | pc->mem_cgroup = mem; | 933 | pc->mem_cgroup = mem; |
| 548 | /* | 934 | smp_wmb(); |
| 549 | * If a page is accounted as a page cache, insert to inactive list. | ||
| 550 | * If anon, insert to active list. | ||
| 551 | */ | ||
| 552 | pc->flags = pcg_default_flags[ctype]; | 935 | pc->flags = pcg_default_flags[ctype]; |
| 553 | 936 | ||
| 554 | mz = page_cgroup_zoneinfo(pc); | 937 | mem_cgroup_charge_statistics(mem, pc, true); |
| 555 | 938 | ||
| 556 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
| 557 | __mem_cgroup_add_list(mz, pc); | ||
| 558 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
| 559 | unlock_page_cgroup(pc); | 939 | unlock_page_cgroup(pc); |
| 940 | } | ||
| 560 | 941 | ||
| 561 | done: | 942 | /** |
| 562 | return 0; | 943 | * mem_cgroup_move_account - move account of the page |
| 944 | * @pc: page_cgroup of the page. | ||
| 945 | * @from: mem_cgroup which the page is moved from. | ||
| 946 | * @to: mem_cgroup which the page is moved to. @from != @to. | ||
| 947 | * | ||
| 948 | * The caller must confirm following. | ||
| 949 | * - page is not on LRU (isolate_page() is useful.) | ||
| 950 | * | ||
| 951 | * returns 0 at success, | ||
| 952 | * returns -EBUSY when lock is busy or "pc" is unstable. | ||
| 953 | * | ||
| 954 | * This function does "uncharge" from old cgroup but doesn't do "charge" to | ||
| 955 | * new cgroup. It should be done by a caller. | ||
| 956 | */ | ||
| 957 | |||
| 958 | static int mem_cgroup_move_account(struct page_cgroup *pc, | ||
| 959 | struct mem_cgroup *from, struct mem_cgroup *to) | ||
| 960 | { | ||
| 961 | struct mem_cgroup_per_zone *from_mz, *to_mz; | ||
| 962 | int nid, zid; | ||
| 963 | int ret = -EBUSY; | ||
| 964 | |||
| 965 | VM_BUG_ON(from == to); | ||
| 966 | VM_BUG_ON(PageLRU(pc->page)); | ||
| 967 | |||
| 968 | nid = page_cgroup_nid(pc); | ||
| 969 | zid = page_cgroup_zid(pc); | ||
| 970 | from_mz = mem_cgroup_zoneinfo(from, nid, zid); | ||
| 971 | to_mz = mem_cgroup_zoneinfo(to, nid, zid); | ||
| 972 | |||
| 973 | if (!trylock_page_cgroup(pc)) | ||
| 974 | return ret; | ||
| 975 | |||
| 976 | if (!PageCgroupUsed(pc)) | ||
| 977 | goto out; | ||
| 978 | |||
| 979 | if (pc->mem_cgroup != from) | ||
| 980 | goto out; | ||
| 981 | |||
| 982 | css_put(&from->css); | ||
| 983 | res_counter_uncharge(&from->res, PAGE_SIZE); | ||
| 984 | mem_cgroup_charge_statistics(from, pc, false); | ||
| 985 | if (do_swap_account) | ||
| 986 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | ||
| 987 | pc->mem_cgroup = to; | ||
| 988 | mem_cgroup_charge_statistics(to, pc, true); | ||
| 989 | css_get(&to->css); | ||
| 990 | ret = 0; | ||
| 563 | out: | 991 | out: |
| 564 | css_put(&mem->css); | 992 | unlock_page_cgroup(pc); |
| 565 | return -ENOMEM; | 993 | return ret; |
| 994 | } | ||
| 995 | |||
| 996 | /* | ||
| 997 | * move charges to its parent. | ||
| 998 | */ | ||
| 999 | |||
| 1000 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | ||
| 1001 | struct mem_cgroup *child, | ||
| 1002 | gfp_t gfp_mask) | ||
| 1003 | { | ||
| 1004 | struct page *page = pc->page; | ||
| 1005 | struct cgroup *cg = child->css.cgroup; | ||
| 1006 | struct cgroup *pcg = cg->parent; | ||
| 1007 | struct mem_cgroup *parent; | ||
| 1008 | int ret; | ||
| 1009 | |||
| 1010 | /* Is ROOT ? */ | ||
| 1011 | if (!pcg) | ||
| 1012 | return -EINVAL; | ||
| 1013 | |||
| 1014 | |||
| 1015 | parent = mem_cgroup_from_cont(pcg); | ||
| 1016 | |||
| 1017 | |||
| 1018 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); | ||
| 1019 | if (ret || !parent) | ||
| 1020 | return ret; | ||
| 1021 | |||
| 1022 | if (!get_page_unless_zero(page)) | ||
| 1023 | return -EBUSY; | ||
| 1024 | |||
| 1025 | ret = isolate_lru_page(page); | ||
| 1026 | |||
| 1027 | if (ret) | ||
| 1028 | goto cancel; | ||
| 1029 | |||
| 1030 | ret = mem_cgroup_move_account(pc, child, parent); | ||
| 1031 | |||
| 1032 | /* drop extra refcnt by try_charge() (move_account increment one) */ | ||
| 1033 | css_put(&parent->css); | ||
| 1034 | putback_lru_page(page); | ||
| 1035 | if (!ret) { | ||
| 1036 | put_page(page); | ||
| 1037 | return 0; | ||
| 1038 | } | ||
| 1039 | /* uncharge if move fails */ | ||
| 1040 | cancel: | ||
| 1041 | res_counter_uncharge(&parent->res, PAGE_SIZE); | ||
| 1042 | if (do_swap_account) | ||
| 1043 | res_counter_uncharge(&parent->memsw, PAGE_SIZE); | ||
| 1044 | put_page(page); | ||
| 1045 | return ret; | ||
| 1046 | } | ||
| 1047 | |||
| 1048 | /* | ||
| 1049 | * Charge the memory controller for page usage. | ||
| 1050 | * Return | ||
| 1051 | * 0 if the charge was successful | ||
| 1052 | * < 0 if the cgroup is over its limit | ||
| 1053 | */ | ||
| 1054 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | ||
| 1055 | gfp_t gfp_mask, enum charge_type ctype, | ||
| 1056 | struct mem_cgroup *memcg) | ||
| 1057 | { | ||
| 1058 | struct mem_cgroup *mem; | ||
| 1059 | struct page_cgroup *pc; | ||
| 1060 | int ret; | ||
| 1061 | |||
| 1062 | pc = lookup_page_cgroup(page); | ||
| 1063 | /* can happen at boot */ | ||
| 1064 | if (unlikely(!pc)) | ||
| 1065 | return 0; | ||
| 1066 | prefetchw(pc); | ||
| 1067 | |||
| 1068 | mem = memcg; | ||
| 1069 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | ||
| 1070 | if (ret || !mem) | ||
| 1071 | return ret; | ||
| 1072 | |||
| 1073 | __mem_cgroup_commit_charge(mem, pc, ctype); | ||
| 1074 | return 0; | ||
| 566 | } | 1075 | } |
| 567 | 1076 | ||
| 568 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 1077 | int mem_cgroup_newpage_charge(struct page *page, |
| 1078 | struct mm_struct *mm, gfp_t gfp_mask) | ||
| 569 | { | 1079 | { |
| 570 | if (mem_cgroup_subsys.disabled) | 1080 | if (mem_cgroup_disabled()) |
| 571 | return 0; | 1081 | return 0; |
| 572 | if (PageCompound(page)) | 1082 | if (PageCompound(page)) |
| 573 | return 0; | 1083 | return 0; |
| @@ -589,7 +1099,10 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | |||
| 589 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 1099 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
| 590 | gfp_t gfp_mask) | 1100 | gfp_t gfp_mask) |
| 591 | { | 1101 | { |
| 592 | if (mem_cgroup_subsys.disabled) | 1102 | struct mem_cgroup *mem = NULL; |
| 1103 | int ret; | ||
| 1104 | |||
| 1105 | if (mem_cgroup_disabled()) | ||
| 593 | return 0; | 1106 | return 0; |
| 594 | if (PageCompound(page)) | 1107 | if (PageCompound(page)) |
| 595 | return 0; | 1108 | return 0; |
| @@ -601,6 +1114,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
| 601 | * For GFP_NOWAIT case, the page may be pre-charged before calling | 1114 | * For GFP_NOWAIT case, the page may be pre-charged before calling |
| 602 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | 1115 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call |
| 603 | * charge twice. (It works but has to pay a bit larger cost.) | 1116 | * charge twice. (It works but has to pay a bit larger cost.) |
| 1117 | * And when the page is SwapCache, it should take swap information | ||
| 1118 | * into account. This is under lock_page() now. | ||
| 604 | */ | 1119 | */ |
| 605 | if (!(gfp_mask & __GFP_WAIT)) { | 1120 | if (!(gfp_mask & __GFP_WAIT)) { |
| 606 | struct page_cgroup *pc; | 1121 | struct page_cgroup *pc; |
| @@ -617,58 +1132,198 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
| 617 | unlock_page_cgroup(pc); | 1132 | unlock_page_cgroup(pc); |
| 618 | } | 1133 | } |
| 619 | 1134 | ||
| 620 | if (unlikely(!mm)) | 1135 | if (do_swap_account && PageSwapCache(page)) { |
| 1136 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
| 1137 | if (mem) | ||
| 1138 | mm = NULL; | ||
| 1139 | else | ||
| 1140 | mem = NULL; | ||
| 1141 | /* SwapCache may be still linked to LRU now. */ | ||
| 1142 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
| 1143 | } | ||
| 1144 | |||
| 1145 | if (unlikely(!mm && !mem)) | ||
| 621 | mm = &init_mm; | 1146 | mm = &init_mm; |
| 622 | 1147 | ||
| 623 | if (page_is_file_cache(page)) | 1148 | if (page_is_file_cache(page)) |
| 624 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1149 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
| 625 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 1150 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
| 626 | else | 1151 | |
| 627 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1152 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
| 628 | MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); | 1153 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); |
| 1154 | if (mem) | ||
| 1155 | css_put(&mem->css); | ||
| 1156 | if (PageSwapCache(page)) | ||
| 1157 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
| 1158 | |||
| 1159 | if (do_swap_account && !ret && PageSwapCache(page)) { | ||
| 1160 | swp_entry_t ent = {.val = page_private(page)}; | ||
| 1161 | /* avoid double counting */ | ||
| 1162 | mem = swap_cgroup_record(ent, NULL); | ||
| 1163 | if (mem) { | ||
| 1164 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
| 1165 | mem_cgroup_put(mem); | ||
| 1166 | } | ||
| 1167 | } | ||
| 1168 | return ret; | ||
| 1169 | } | ||
| 1170 | |||
| 1171 | /* | ||
| 1172 | * While swap-in, try_charge -> commit or cancel, the page is locked. | ||
| 1173 | * And when try_charge() successfully returns, one refcnt to memcg without | ||
| 1174 | * struct page_cgroup is aquired. This refcnt will be cumsumed by | ||
| 1175 | * "commit()" or removed by "cancel()" | ||
| 1176 | */ | ||
| 1177 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | ||
| 1178 | struct page *page, | ||
| 1179 | gfp_t mask, struct mem_cgroup **ptr) | ||
| 1180 | { | ||
| 1181 | struct mem_cgroup *mem; | ||
| 1182 | int ret; | ||
| 1183 | |||
| 1184 | if (mem_cgroup_disabled()) | ||
| 1185 | return 0; | ||
| 1186 | |||
| 1187 | if (!do_swap_account) | ||
| 1188 | goto charge_cur_mm; | ||
| 1189 | /* | ||
| 1190 | * A racing thread's fault, or swapoff, may have already updated | ||
| 1191 | * the pte, and even removed page from swap cache: return success | ||
| 1192 | * to go on to do_swap_page()'s pte_same() test, which should fail. | ||
| 1193 | */ | ||
| 1194 | if (!PageSwapCache(page)) | ||
| 1195 | return 0; | ||
| 1196 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
| 1197 | if (!mem) | ||
| 1198 | goto charge_cur_mm; | ||
| 1199 | *ptr = mem; | ||
| 1200 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | ||
| 1201 | /* drop extra refcnt from tryget */ | ||
| 1202 | css_put(&mem->css); | ||
| 1203 | return ret; | ||
| 1204 | charge_cur_mm: | ||
| 1205 | if (unlikely(!mm)) | ||
| 1206 | mm = &init_mm; | ||
| 1207 | return __mem_cgroup_try_charge(mm, mask, ptr, true); | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | ||
| 1211 | { | ||
| 1212 | struct page_cgroup *pc; | ||
| 1213 | |||
| 1214 | if (mem_cgroup_disabled()) | ||
| 1215 | return; | ||
| 1216 | if (!ptr) | ||
| 1217 | return; | ||
| 1218 | pc = lookup_page_cgroup(page); | ||
| 1219 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
| 1220 | __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
| 1221 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
| 1222 | /* | ||
| 1223 | * Now swap is on-memory. This means this page may be | ||
| 1224 | * counted both as mem and swap....double count. | ||
| 1225 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable | ||
| 1226 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | ||
| 1227 | * may call delete_from_swap_cache() before reach here. | ||
| 1228 | */ | ||
| 1229 | if (do_swap_account && PageSwapCache(page)) { | ||
| 1230 | swp_entry_t ent = {.val = page_private(page)}; | ||
| 1231 | struct mem_cgroup *memcg; | ||
| 1232 | memcg = swap_cgroup_record(ent, NULL); | ||
| 1233 | if (memcg) { | ||
| 1234 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
| 1235 | mem_cgroup_put(memcg); | ||
| 1236 | } | ||
| 1237 | |||
| 1238 | } | ||
| 1239 | /* add this page(page_cgroup) to the LRU we want. */ | ||
| 1240 | |||
| 629 | } | 1241 | } |
| 630 | 1242 | ||
| 1243 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | ||
| 1244 | { | ||
| 1245 | if (mem_cgroup_disabled()) | ||
| 1246 | return; | ||
| 1247 | if (!mem) | ||
| 1248 | return; | ||
| 1249 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
| 1250 | if (do_swap_account) | ||
| 1251 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
| 1252 | css_put(&mem->css); | ||
| 1253 | } | ||
| 1254 | |||
| 1255 | |||
| 631 | /* | 1256 | /* |
| 632 | * uncharge if !page_mapped(page) | 1257 | * uncharge if !page_mapped(page) |
| 633 | */ | 1258 | */ |
| 634 | static void | 1259 | static struct mem_cgroup * |
| 635 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | 1260 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
| 636 | { | 1261 | { |
| 637 | struct page_cgroup *pc; | 1262 | struct page_cgroup *pc; |
| 638 | struct mem_cgroup *mem; | 1263 | struct mem_cgroup *mem = NULL; |
| 639 | struct mem_cgroup_per_zone *mz; | 1264 | struct mem_cgroup_per_zone *mz; |
| 640 | unsigned long flags; | ||
| 641 | 1265 | ||
| 642 | if (mem_cgroup_subsys.disabled) | 1266 | if (mem_cgroup_disabled()) |
| 643 | return; | 1267 | return NULL; |
| 1268 | |||
| 1269 | if (PageSwapCache(page)) | ||
| 1270 | return NULL; | ||
| 644 | 1271 | ||
| 645 | /* | 1272 | /* |
| 646 | * Check if our page_cgroup is valid | 1273 | * Check if our page_cgroup is valid |
| 647 | */ | 1274 | */ |
| 648 | pc = lookup_page_cgroup(page); | 1275 | pc = lookup_page_cgroup(page); |
| 649 | if (unlikely(!pc || !PageCgroupUsed(pc))) | 1276 | if (unlikely(!pc || !PageCgroupUsed(pc))) |
| 650 | return; | 1277 | return NULL; |
| 651 | 1278 | ||
| 652 | lock_page_cgroup(pc); | 1279 | lock_page_cgroup(pc); |
| 653 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page)) | 1280 | |
| 654 | || !PageCgroupUsed(pc)) { | 1281 | mem = pc->mem_cgroup; |
| 655 | /* This happens at race in zap_pte_range() and do_swap_page()*/ | 1282 | |
| 656 | unlock_page_cgroup(pc); | 1283 | if (!PageCgroupUsed(pc)) |
| 657 | return; | 1284 | goto unlock_out; |
| 1285 | |||
| 1286 | switch (ctype) { | ||
| 1287 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | ||
| 1288 | if (page_mapped(page)) | ||
| 1289 | goto unlock_out; | ||
| 1290 | break; | ||
| 1291 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | ||
| 1292 | if (!PageAnon(page)) { /* Shared memory */ | ||
| 1293 | if (page->mapping && !page_is_file_cache(page)) | ||
| 1294 | goto unlock_out; | ||
| 1295 | } else if (page_mapped(page)) /* Anon */ | ||
| 1296 | goto unlock_out; | ||
| 1297 | break; | ||
| 1298 | default: | ||
| 1299 | break; | ||
| 658 | } | 1300 | } |
| 1301 | |||
| 1302 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
| 1303 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) | ||
| 1304 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
| 1305 | |||
| 1306 | mem_cgroup_charge_statistics(mem, pc, false); | ||
| 659 | ClearPageCgroupUsed(pc); | 1307 | ClearPageCgroupUsed(pc); |
| 660 | mem = pc->mem_cgroup; | 1308 | /* |
| 1309 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | ||
| 1310 | * freed from LRU. This is safe because uncharged page is expected not | ||
| 1311 | * to be reused (freed soon). Exception is SwapCache, it's handled by | ||
| 1312 | * special functions. | ||
| 1313 | */ | ||
| 661 | 1314 | ||
| 662 | mz = page_cgroup_zoneinfo(pc); | 1315 | mz = page_cgroup_zoneinfo(pc); |
| 663 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
| 664 | __mem_cgroup_remove_list(mz, pc); | ||
| 665 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
| 666 | unlock_page_cgroup(pc); | 1316 | unlock_page_cgroup(pc); |
| 667 | 1317 | ||
| 668 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 1318 | /* at swapout, this memcg will be accessed to record to swap */ |
| 669 | css_put(&mem->css); | 1319 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
| 1320 | css_put(&mem->css); | ||
| 670 | 1321 | ||
| 671 | return; | 1322 | return mem; |
| 1323 | |||
| 1324 | unlock_out: | ||
| 1325 | unlock_page_cgroup(pc); | ||
| 1326 | return NULL; | ||
| 672 | } | 1327 | } |
| 673 | 1328 | ||
| 674 | void mem_cgroup_uncharge_page(struct page *page) | 1329 | void mem_cgroup_uncharge_page(struct page *page) |
| @@ -689,16 +1344,55 @@ void mem_cgroup_uncharge_cache_page(struct page *page) | |||
| 689 | } | 1344 | } |
| 690 | 1345 | ||
| 691 | /* | 1346 | /* |
| 692 | * Before starting migration, account against new page. | 1347 | * called from __delete_from_swap_cache() and drop "page" account. |
| 1348 | * memcg information is recorded to swap_cgroup of "ent" | ||
| 1349 | */ | ||
| 1350 | void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) | ||
| 1351 | { | ||
| 1352 | struct mem_cgroup *memcg; | ||
| 1353 | |||
| 1354 | memcg = __mem_cgroup_uncharge_common(page, | ||
| 1355 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); | ||
| 1356 | /* record memcg information */ | ||
| 1357 | if (do_swap_account && memcg) { | ||
| 1358 | swap_cgroup_record(ent, memcg); | ||
| 1359 | mem_cgroup_get(memcg); | ||
| 1360 | } | ||
| 1361 | if (memcg) | ||
| 1362 | css_put(&memcg->css); | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
| 1366 | /* | ||
| 1367 | * called from swap_entry_free(). remove record in swap_cgroup and | ||
| 1368 | * uncharge "memsw" account. | ||
| 693 | */ | 1369 | */ |
| 694 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | 1370 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
| 1371 | { | ||
| 1372 | struct mem_cgroup *memcg; | ||
| 1373 | |||
| 1374 | if (!do_swap_account) | ||
| 1375 | return; | ||
| 1376 | |||
| 1377 | memcg = swap_cgroup_record(ent, NULL); | ||
| 1378 | if (memcg) { | ||
| 1379 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
| 1380 | mem_cgroup_put(memcg); | ||
| 1381 | } | ||
| 1382 | } | ||
| 1383 | #endif | ||
| 1384 | |||
| 1385 | /* | ||
| 1386 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | ||
| 1387 | * page belongs to. | ||
| 1388 | */ | ||
| 1389 | int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) | ||
| 695 | { | 1390 | { |
| 696 | struct page_cgroup *pc; | 1391 | struct page_cgroup *pc; |
| 697 | struct mem_cgroup *mem = NULL; | 1392 | struct mem_cgroup *mem = NULL; |
| 698 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
| 699 | int ret = 0; | 1393 | int ret = 0; |
| 700 | 1394 | ||
| 701 | if (mem_cgroup_subsys.disabled) | 1395 | if (mem_cgroup_disabled()) |
| 702 | return 0; | 1396 | return 0; |
| 703 | 1397 | ||
| 704 | pc = lookup_page_cgroup(page); | 1398 | pc = lookup_page_cgroup(page); |
| @@ -706,41 +1400,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | |||
| 706 | if (PageCgroupUsed(pc)) { | 1400 | if (PageCgroupUsed(pc)) { |
| 707 | mem = pc->mem_cgroup; | 1401 | mem = pc->mem_cgroup; |
| 708 | css_get(&mem->css); | 1402 | css_get(&mem->css); |
| 709 | if (PageCgroupCache(pc)) { | ||
| 710 | if (page_is_file_cache(page)) | ||
| 711 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
| 712 | else | ||
| 713 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
| 714 | } | ||
| 715 | } | 1403 | } |
| 716 | unlock_page_cgroup(pc); | 1404 | unlock_page_cgroup(pc); |
| 1405 | |||
| 717 | if (mem) { | 1406 | if (mem) { |
| 718 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | 1407 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); |
| 719 | ctype, mem); | ||
| 720 | css_put(&mem->css); | 1408 | css_put(&mem->css); |
| 721 | } | 1409 | } |
| 1410 | *ptr = mem; | ||
| 722 | return ret; | 1411 | return ret; |
| 723 | } | 1412 | } |
| 724 | 1413 | ||
| 725 | /* remove redundant charge if migration failed*/ | 1414 | /* remove redundant charge if migration failed*/ |
| 726 | void mem_cgroup_end_migration(struct page *newpage) | 1415 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
| 1416 | struct page *oldpage, struct page *newpage) | ||
| 727 | { | 1417 | { |
| 1418 | struct page *target, *unused; | ||
| 1419 | struct page_cgroup *pc; | ||
| 1420 | enum charge_type ctype; | ||
| 1421 | |||
| 1422 | if (!mem) | ||
| 1423 | return; | ||
| 1424 | |||
| 1425 | /* at migration success, oldpage->mapping is NULL. */ | ||
| 1426 | if (oldpage->mapping) { | ||
| 1427 | target = oldpage; | ||
| 1428 | unused = NULL; | ||
| 1429 | } else { | ||
| 1430 | target = newpage; | ||
| 1431 | unused = oldpage; | ||
| 1432 | } | ||
| 1433 | |||
| 1434 | if (PageAnon(target)) | ||
| 1435 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
| 1436 | else if (page_is_file_cache(target)) | ||
| 1437 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
| 1438 | else | ||
| 1439 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
| 1440 | |||
| 1441 | /* unused page is not on radix-tree now. */ | ||
| 1442 | if (unused) | ||
| 1443 | __mem_cgroup_uncharge_common(unused, ctype); | ||
| 1444 | |||
| 1445 | pc = lookup_page_cgroup(target); | ||
| 728 | /* | 1446 | /* |
| 729 | * At success, page->mapping is not NULL. | 1447 | * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. |
| 730 | * special rollback care is necessary when | 1448 | * So, double-counting is effectively avoided. |
| 731 | * 1. at migration failure. (newpage->mapping is cleared in this case) | ||
| 732 | * 2. the newpage was moved but not remapped again because the task | ||
| 733 | * exits and the newpage is obsolete. In this case, the new page | ||
| 734 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | ||
| 735 | * always for avoiding mess. The page_cgroup will be removed if | ||
| 736 | * unnecessary. File cache pages is still on radix-tree. Don't | ||
| 737 | * care it. | ||
| 738 | */ | 1449 | */ |
| 739 | if (!newpage->mapping) | 1450 | __mem_cgroup_commit_charge(mem, pc, ctype); |
| 740 | __mem_cgroup_uncharge_common(newpage, | 1451 | |
| 741 | MEM_CGROUP_CHARGE_TYPE_FORCE); | 1452 | /* |
| 742 | else if (PageAnon(newpage)) | 1453 | * Both of oldpage and newpage are still under lock_page(). |
| 743 | mem_cgroup_uncharge_page(newpage); | 1454 | * Then, we don't have to care about race in radix-tree. |
| 1455 | * But we have to be careful that this page is unmapped or not. | ||
| 1456 | * | ||
| 1457 | * There is a case for !page_mapped(). At the start of | ||
| 1458 | * migration, oldpage was mapped. But now, it's zapped. | ||
| 1459 | * But we know *target* page is not freed/reused under us. | ||
| 1460 | * mem_cgroup_uncharge_page() does all necessary checks. | ||
| 1461 | */ | ||
| 1462 | if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) | ||
| 1463 | mem_cgroup_uncharge_page(target); | ||
| 744 | } | 1464 | } |
| 745 | 1465 | ||
| 746 | /* | 1466 | /* |
| @@ -748,29 +1468,26 @@ void mem_cgroup_end_migration(struct page *newpage) | |||
| 748 | * This is typically used for page reclaiming for shmem for reducing side | 1468 | * This is typically used for page reclaiming for shmem for reducing side |
| 749 | * effect of page allocation from shmem, which is used by some mem_cgroup. | 1469 | * effect of page allocation from shmem, which is used by some mem_cgroup. |
| 750 | */ | 1470 | */ |
| 751 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | 1471 | int mem_cgroup_shrink_usage(struct page *page, |
| 1472 | struct mm_struct *mm, | ||
| 1473 | gfp_t gfp_mask) | ||
| 752 | { | 1474 | { |
| 753 | struct mem_cgroup *mem; | 1475 | struct mem_cgroup *mem = NULL; |
| 754 | int progress = 0; | 1476 | int progress = 0; |
| 755 | int retry = MEM_CGROUP_RECLAIM_RETRIES; | 1477 | int retry = MEM_CGROUP_RECLAIM_RETRIES; |
| 756 | 1478 | ||
| 757 | if (mem_cgroup_subsys.disabled) | 1479 | if (mem_cgroup_disabled()) |
| 758 | return 0; | 1480 | return 0; |
| 759 | if (!mm) | 1481 | if (page) |
| 1482 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
| 1483 | if (!mem && mm) | ||
| 1484 | mem = try_get_mem_cgroup_from_mm(mm); | ||
| 1485 | if (unlikely(!mem)) | ||
| 760 | return 0; | 1486 | return 0; |
| 761 | 1487 | ||
| 762 | rcu_read_lock(); | ||
| 763 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
| 764 | if (unlikely(!mem)) { | ||
| 765 | rcu_read_unlock(); | ||
| 766 | return 0; | ||
| 767 | } | ||
| 768 | css_get(&mem->css); | ||
| 769 | rcu_read_unlock(); | ||
| 770 | |||
| 771 | do { | 1488 | do { |
| 772 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); | 1489 | progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); |
| 773 | progress += res_counter_check_under_limit(&mem->res); | 1490 | progress += mem_cgroup_check_under_limit(mem); |
| 774 | } while (!progress && --retry); | 1491 | } while (!progress && --retry); |
| 775 | 1492 | ||
| 776 | css_put(&mem->css); | 1493 | css_put(&mem->css); |
| @@ -779,117 +1496,295 @@ int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | |||
| 779 | return 0; | 1496 | return 0; |
| 780 | } | 1497 | } |
| 781 | 1498 | ||
| 1499 | static DEFINE_MUTEX(set_limit_mutex); | ||
| 1500 | |||
| 782 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 1501 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
| 783 | unsigned long long val) | 1502 | unsigned long long val) |
| 784 | { | 1503 | { |
| 785 | 1504 | ||
| 786 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | 1505 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; |
| 787 | int progress; | 1506 | int progress; |
| 1507 | u64 memswlimit; | ||
| 788 | int ret = 0; | 1508 | int ret = 0; |
| 789 | 1509 | ||
| 790 | while (res_counter_set_limit(&memcg->res, val)) { | 1510 | while (retry_count) { |
| 791 | if (signal_pending(current)) { | 1511 | if (signal_pending(current)) { |
| 792 | ret = -EINTR; | 1512 | ret = -EINTR; |
| 793 | break; | 1513 | break; |
| 794 | } | 1514 | } |
| 795 | if (!retry_count) { | 1515 | /* |
| 796 | ret = -EBUSY; | 1516 | * Rather than hide all in some function, I do this in |
| 1517 | * open coded manner. You see what this really does. | ||
| 1518 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
| 1519 | */ | ||
| 1520 | mutex_lock(&set_limit_mutex); | ||
| 1521 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
| 1522 | if (memswlimit < val) { | ||
| 1523 | ret = -EINVAL; | ||
| 1524 | mutex_unlock(&set_limit_mutex); | ||
| 797 | break; | 1525 | break; |
| 798 | } | 1526 | } |
| 799 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | 1527 | ret = res_counter_set_limit(&memcg->res, val); |
| 800 | if (!progress) | 1528 | mutex_unlock(&set_limit_mutex); |
| 801 | retry_count--; | 1529 | |
| 1530 | if (!ret) | ||
| 1531 | break; | ||
| 1532 | |||
| 1533 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, | ||
| 1534 | false); | ||
| 1535 | if (!progress) retry_count--; | ||
| 802 | } | 1536 | } |
| 1537 | |||
| 803 | return ret; | 1538 | return ret; |
| 804 | } | 1539 | } |
| 805 | 1540 | ||
| 1541 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | ||
| 1542 | unsigned long long val) | ||
| 1543 | { | ||
| 1544 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | ||
| 1545 | u64 memlimit, oldusage, curusage; | ||
| 1546 | int ret; | ||
| 1547 | |||
| 1548 | if (!do_swap_account) | ||
| 1549 | return -EINVAL; | ||
| 1550 | |||
| 1551 | while (retry_count) { | ||
| 1552 | if (signal_pending(current)) { | ||
| 1553 | ret = -EINTR; | ||
| 1554 | break; | ||
| 1555 | } | ||
| 1556 | /* | ||
| 1557 | * Rather than hide all in some function, I do this in | ||
| 1558 | * open coded manner. You see what this really does. | ||
| 1559 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
| 1560 | */ | ||
| 1561 | mutex_lock(&set_limit_mutex); | ||
| 1562 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
| 1563 | if (memlimit > val) { | ||
| 1564 | ret = -EINVAL; | ||
| 1565 | mutex_unlock(&set_limit_mutex); | ||
| 1566 | break; | ||
| 1567 | } | ||
| 1568 | ret = res_counter_set_limit(&memcg->memsw, val); | ||
| 1569 | mutex_unlock(&set_limit_mutex); | ||
| 1570 | |||
| 1571 | if (!ret) | ||
| 1572 | break; | ||
| 1573 | |||
| 1574 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
| 1575 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true); | ||
| 1576 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
| 1577 | if (curusage >= oldusage) | ||
| 1578 | retry_count--; | ||
| 1579 | } | ||
| 1580 | return ret; | ||
| 1581 | } | ||
| 806 | 1582 | ||
| 807 | /* | 1583 | /* |
| 808 | * This routine traverse page_cgroup in given list and drop them all. | 1584 | * This routine traverse page_cgroup in given list and drop them all. |
| 809 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 1585 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
| 810 | */ | 1586 | */ |
| 811 | #define FORCE_UNCHARGE_BATCH (128) | 1587 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
| 812 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 1588 | int node, int zid, enum lru_list lru) |
| 813 | struct mem_cgroup_per_zone *mz, | ||
| 814 | enum lru_list lru) | ||
| 815 | { | 1589 | { |
| 816 | struct page_cgroup *pc; | 1590 | struct zone *zone; |
| 817 | struct page *page; | 1591 | struct mem_cgroup_per_zone *mz; |
| 818 | int count = FORCE_UNCHARGE_BATCH; | 1592 | struct page_cgroup *pc, *busy; |
| 819 | unsigned long flags; | 1593 | unsigned long flags, loop; |
| 820 | struct list_head *list; | 1594 | struct list_head *list; |
| 1595 | int ret = 0; | ||
| 821 | 1596 | ||
| 1597 | zone = &NODE_DATA(node)->node_zones[zid]; | ||
| 1598 | mz = mem_cgroup_zoneinfo(mem, node, zid); | ||
| 822 | list = &mz->lists[lru]; | 1599 | list = &mz->lists[lru]; |
| 823 | 1600 | ||
| 824 | spin_lock_irqsave(&mz->lru_lock, flags); | 1601 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
| 825 | while (!list_empty(list)) { | 1602 | /* give some margin against EBUSY etc...*/ |
| 826 | pc = list_entry(list->prev, struct page_cgroup, lru); | 1603 | loop += 256; |
| 827 | page = pc->page; | 1604 | busy = NULL; |
| 828 | if (!PageCgroupUsed(pc)) | 1605 | while (loop--) { |
| 829 | break; | 1606 | ret = 0; |
| 830 | get_page(page); | 1607 | spin_lock_irqsave(&zone->lru_lock, flags); |
| 831 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1608 | if (list_empty(list)) { |
| 832 | /* | 1609 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
| 833 | * Check if this page is on LRU. !LRU page can be found | ||
| 834 | * if it's under page migration. | ||
| 835 | */ | ||
| 836 | if (PageLRU(page)) { | ||
| 837 | __mem_cgroup_uncharge_common(page, | ||
| 838 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
| 839 | put_page(page); | ||
| 840 | if (--count <= 0) { | ||
| 841 | count = FORCE_UNCHARGE_BATCH; | ||
| 842 | cond_resched(); | ||
| 843 | } | ||
| 844 | } else { | ||
| 845 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
| 846 | break; | 1610 | break; |
| 847 | } | 1611 | } |
| 848 | spin_lock_irqsave(&mz->lru_lock, flags); | 1612 | pc = list_entry(list->prev, struct page_cgroup, lru); |
| 1613 | if (busy == pc) { | ||
| 1614 | list_move(&pc->lru, list); | ||
| 1615 | busy = 0; | ||
| 1616 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
| 1617 | continue; | ||
| 1618 | } | ||
| 1619 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
| 1620 | |||
| 1621 | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); | ||
| 1622 | if (ret == -ENOMEM) | ||
| 1623 | break; | ||
| 1624 | |||
| 1625 | if (ret == -EBUSY || ret == -EINVAL) { | ||
| 1626 | /* found lock contention or "pc" is obsolete. */ | ||
| 1627 | busy = pc; | ||
| 1628 | cond_resched(); | ||
| 1629 | } else | ||
| 1630 | busy = NULL; | ||
| 849 | } | 1631 | } |
| 850 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1632 | |
| 1633 | if (!ret && !list_empty(list)) | ||
| 1634 | return -EBUSY; | ||
| 1635 | return ret; | ||
| 851 | } | 1636 | } |
| 852 | 1637 | ||
| 853 | /* | 1638 | /* |
| 854 | * make mem_cgroup's charge to be 0 if there is no task. | 1639 | * make mem_cgroup's charge to be 0 if there is no task. |
| 855 | * This enables deleting this mem_cgroup. | 1640 | * This enables deleting this mem_cgroup. |
| 856 | */ | 1641 | */ |
| 857 | static int mem_cgroup_force_empty(struct mem_cgroup *mem) | 1642 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
| 858 | { | 1643 | { |
| 859 | int ret = -EBUSY; | 1644 | int ret; |
| 860 | int node, zid; | 1645 | int node, zid, shrink; |
| 1646 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
| 1647 | struct cgroup *cgrp = mem->css.cgroup; | ||
| 861 | 1648 | ||
| 862 | css_get(&mem->css); | 1649 | css_get(&mem->css); |
| 863 | /* | 1650 | |
| 864 | * page reclaim code (kswapd etc..) will move pages between | 1651 | shrink = 0; |
| 865 | * active_list <-> inactive_list while we don't take a lock. | 1652 | /* should free all ? */ |
| 866 | * So, we have to do loop here until all lists are empty. | 1653 | if (free_all) |
| 867 | */ | 1654 | goto try_to_free; |
| 1655 | move_account: | ||
| 868 | while (mem->res.usage > 0) { | 1656 | while (mem->res.usage > 0) { |
| 869 | if (atomic_read(&mem->css.cgroup->count) > 0) | 1657 | ret = -EBUSY; |
| 1658 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | ||
| 1659 | goto out; | ||
| 1660 | ret = -EINTR; | ||
| 1661 | if (signal_pending(current)) | ||
| 870 | goto out; | 1662 | goto out; |
| 871 | /* This is for making all *used* pages to be on LRU. */ | 1663 | /* This is for making all *used* pages to be on LRU. */ |
| 872 | lru_add_drain_all(); | 1664 | lru_add_drain_all(); |
| 873 | for_each_node_state(node, N_POSSIBLE) | 1665 | ret = 0; |
| 874 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 1666 | for_each_node_state(node, N_POSSIBLE) { |
| 875 | struct mem_cgroup_per_zone *mz; | 1667 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
| 876 | enum lru_list l; | 1668 | enum lru_list l; |
| 877 | mz = mem_cgroup_zoneinfo(mem, node, zid); | 1669 | for_each_lru(l) { |
| 878 | for_each_lru(l) | 1670 | ret = mem_cgroup_force_empty_list(mem, |
| 879 | mem_cgroup_force_empty_list(mem, mz, l); | 1671 | node, zid, l); |
| 1672 | if (ret) | ||
| 1673 | break; | ||
| 1674 | } | ||
| 880 | } | 1675 | } |
| 1676 | if (ret) | ||
| 1677 | break; | ||
| 1678 | } | ||
| 1679 | /* it seems parent cgroup doesn't have enough mem */ | ||
| 1680 | if (ret == -ENOMEM) | ||
| 1681 | goto try_to_free; | ||
| 881 | cond_resched(); | 1682 | cond_resched(); |
| 882 | } | 1683 | } |
| 883 | ret = 0; | 1684 | ret = 0; |
| 884 | out: | 1685 | out: |
| 885 | css_put(&mem->css); | 1686 | css_put(&mem->css); |
| 886 | return ret; | 1687 | return ret; |
| 1688 | |||
| 1689 | try_to_free: | ||
| 1690 | /* returns EBUSY if there is a task or if we come here twice. */ | ||
| 1691 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | ||
| 1692 | ret = -EBUSY; | ||
| 1693 | goto out; | ||
| 1694 | } | ||
| 1695 | /* we call try-to-free pages for make this cgroup empty */ | ||
| 1696 | lru_add_drain_all(); | ||
| 1697 | /* try to free all pages in this cgroup */ | ||
| 1698 | shrink = 1; | ||
| 1699 | while (nr_retries && mem->res.usage > 0) { | ||
| 1700 | int progress; | ||
| 1701 | |||
| 1702 | if (signal_pending(current)) { | ||
| 1703 | ret = -EINTR; | ||
| 1704 | goto out; | ||
| 1705 | } | ||
| 1706 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, | ||
| 1707 | false, get_swappiness(mem)); | ||
| 1708 | if (!progress) { | ||
| 1709 | nr_retries--; | ||
| 1710 | /* maybe some writeback is necessary */ | ||
| 1711 | congestion_wait(WRITE, HZ/10); | ||
| 1712 | } | ||
| 1713 | |||
| 1714 | } | ||
| 1715 | lru_add_drain(); | ||
| 1716 | /* try move_account...there may be some *locked* pages. */ | ||
| 1717 | if (mem->res.usage) | ||
| 1718 | goto move_account; | ||
| 1719 | ret = 0; | ||
| 1720 | goto out; | ||
| 1721 | } | ||
| 1722 | |||
| 1723 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | ||
| 1724 | { | ||
| 1725 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | ||
| 1726 | } | ||
| 1727 | |||
| 1728 | |||
| 1729 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | ||
| 1730 | { | ||
| 1731 | return mem_cgroup_from_cont(cont)->use_hierarchy; | ||
| 1732 | } | ||
| 1733 | |||
| 1734 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | ||
| 1735 | u64 val) | ||
| 1736 | { | ||
| 1737 | int retval = 0; | ||
| 1738 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | ||
| 1739 | struct cgroup *parent = cont->parent; | ||
| 1740 | struct mem_cgroup *parent_mem = NULL; | ||
| 1741 | |||
| 1742 | if (parent) | ||
| 1743 | parent_mem = mem_cgroup_from_cont(parent); | ||
| 1744 | |||
| 1745 | cgroup_lock(); | ||
| 1746 | /* | ||
| 1747 | * If parent's use_hiearchy is set, we can't make any modifications | ||
| 1748 | * in the child subtrees. If it is unset, then the change can | ||
| 1749 | * occur, provided the current cgroup has no children. | ||
| 1750 | * | ||
| 1751 | * For the root cgroup, parent_mem is NULL, we allow value to be | ||
| 1752 | * set if there are no children. | ||
| 1753 | */ | ||
| 1754 | if ((!parent_mem || !parent_mem->use_hierarchy) && | ||
| 1755 | (val == 1 || val == 0)) { | ||
| 1756 | if (list_empty(&cont->children)) | ||
| 1757 | mem->use_hierarchy = val; | ||
| 1758 | else | ||
| 1759 | retval = -EBUSY; | ||
| 1760 | } else | ||
| 1761 | retval = -EINVAL; | ||
| 1762 | cgroup_unlock(); | ||
| 1763 | |||
| 1764 | return retval; | ||
| 887 | } | 1765 | } |
| 888 | 1766 | ||
| 889 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 1767 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
| 890 | { | 1768 | { |
| 891 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 1769 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
| 892 | cft->private); | 1770 | u64 val = 0; |
| 1771 | int type, name; | ||
| 1772 | |||
| 1773 | type = MEMFILE_TYPE(cft->private); | ||
| 1774 | name = MEMFILE_ATTR(cft->private); | ||
| 1775 | switch (type) { | ||
| 1776 | case _MEM: | ||
| 1777 | val = res_counter_read_u64(&mem->res, name); | ||
| 1778 | break; | ||
| 1779 | case _MEMSWAP: | ||
| 1780 | if (do_swap_account) | ||
| 1781 | val = res_counter_read_u64(&mem->memsw, name); | ||
| 1782 | break; | ||
| 1783 | default: | ||
| 1784 | BUG(); | ||
| 1785 | break; | ||
| 1786 | } | ||
| 1787 | return val; | ||
| 893 | } | 1788 | } |
| 894 | /* | 1789 | /* |
| 895 | * The user of this function is... | 1790 | * The user of this function is... |
| @@ -899,15 +1794,22 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
| 899 | const char *buffer) | 1794 | const char *buffer) |
| 900 | { | 1795 | { |
| 901 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 1796 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
| 1797 | int type, name; | ||
| 902 | unsigned long long val; | 1798 | unsigned long long val; |
| 903 | int ret; | 1799 | int ret; |
| 904 | 1800 | ||
| 905 | switch (cft->private) { | 1801 | type = MEMFILE_TYPE(cft->private); |
| 1802 | name = MEMFILE_ATTR(cft->private); | ||
| 1803 | switch (name) { | ||
| 906 | case RES_LIMIT: | 1804 | case RES_LIMIT: |
| 907 | /* This function does all necessary parse...reuse it */ | 1805 | /* This function does all necessary parse...reuse it */ |
| 908 | ret = res_counter_memparse_write_strategy(buffer, &val); | 1806 | ret = res_counter_memparse_write_strategy(buffer, &val); |
| 909 | if (!ret) | 1807 | if (ret) |
| 1808 | break; | ||
| 1809 | if (type == _MEM) | ||
| 910 | ret = mem_cgroup_resize_limit(memcg, val); | 1810 | ret = mem_cgroup_resize_limit(memcg, val); |
| 1811 | else | ||
| 1812 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | ||
| 911 | break; | 1813 | break; |
| 912 | default: | 1814 | default: |
| 913 | ret = -EINVAL; /* should be BUG() ? */ | 1815 | ret = -EINVAL; /* should be BUG() ? */ |
| @@ -916,27 +1818,59 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
| 916 | return ret; | 1818 | return ret; |
| 917 | } | 1819 | } |
| 918 | 1820 | ||
| 1821 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | ||
| 1822 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | ||
| 1823 | { | ||
| 1824 | struct cgroup *cgroup; | ||
| 1825 | unsigned long long min_limit, min_memsw_limit, tmp; | ||
| 1826 | |||
| 1827 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
| 1828 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
| 1829 | cgroup = memcg->css.cgroup; | ||
| 1830 | if (!memcg->use_hierarchy) | ||
| 1831 | goto out; | ||
| 1832 | |||
| 1833 | while (cgroup->parent) { | ||
| 1834 | cgroup = cgroup->parent; | ||
| 1835 | memcg = mem_cgroup_from_cont(cgroup); | ||
| 1836 | if (!memcg->use_hierarchy) | ||
| 1837 | break; | ||
| 1838 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
| 1839 | min_limit = min(min_limit, tmp); | ||
| 1840 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
| 1841 | min_memsw_limit = min(min_memsw_limit, tmp); | ||
| 1842 | } | ||
| 1843 | out: | ||
| 1844 | *mem_limit = min_limit; | ||
| 1845 | *memsw_limit = min_memsw_limit; | ||
| 1846 | return; | ||
| 1847 | } | ||
| 1848 | |||
| 919 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 1849 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
| 920 | { | 1850 | { |
| 921 | struct mem_cgroup *mem; | 1851 | struct mem_cgroup *mem; |
| 1852 | int type, name; | ||
| 922 | 1853 | ||
| 923 | mem = mem_cgroup_from_cont(cont); | 1854 | mem = mem_cgroup_from_cont(cont); |
| 924 | switch (event) { | 1855 | type = MEMFILE_TYPE(event); |
| 1856 | name = MEMFILE_ATTR(event); | ||
| 1857 | switch (name) { | ||
| 925 | case RES_MAX_USAGE: | 1858 | case RES_MAX_USAGE: |
| 926 | res_counter_reset_max(&mem->res); | 1859 | if (type == _MEM) |
| 1860 | res_counter_reset_max(&mem->res); | ||
| 1861 | else | ||
| 1862 | res_counter_reset_max(&mem->memsw); | ||
| 927 | break; | 1863 | break; |
| 928 | case RES_FAILCNT: | 1864 | case RES_FAILCNT: |
| 929 | res_counter_reset_failcnt(&mem->res); | 1865 | if (type == _MEM) |
| 1866 | res_counter_reset_failcnt(&mem->res); | ||
| 1867 | else | ||
| 1868 | res_counter_reset_failcnt(&mem->memsw); | ||
| 930 | break; | 1869 | break; |
| 931 | } | 1870 | } |
| 932 | return 0; | 1871 | return 0; |
| 933 | } | 1872 | } |
| 934 | 1873 | ||
| 935 | static int mem_force_empty_write(struct cgroup *cont, unsigned int event) | ||
| 936 | { | ||
| 937 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); | ||
| 938 | } | ||
| 939 | |||
| 940 | static const struct mem_cgroup_stat_desc { | 1874 | static const struct mem_cgroup_stat_desc { |
| 941 | const char *msg; | 1875 | const char *msg; |
| 942 | u64 unit; | 1876 | u64 unit; |
| @@ -985,43 +1919,163 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | |||
| 985 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); | 1919 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); |
| 986 | 1920 | ||
| 987 | } | 1921 | } |
| 1922 | { | ||
| 1923 | unsigned long long limit, memsw_limit; | ||
| 1924 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | ||
| 1925 | cb->fill(cb, "hierarchical_memory_limit", limit); | ||
| 1926 | if (do_swap_account) | ||
| 1927 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | ||
| 1928 | } | ||
| 1929 | |||
| 1930 | #ifdef CONFIG_DEBUG_VM | ||
| 1931 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | ||
| 1932 | |||
| 1933 | { | ||
| 1934 | int nid, zid; | ||
| 1935 | struct mem_cgroup_per_zone *mz; | ||
| 1936 | unsigned long recent_rotated[2] = {0, 0}; | ||
| 1937 | unsigned long recent_scanned[2] = {0, 0}; | ||
| 1938 | |||
| 1939 | for_each_online_node(nid) | ||
| 1940 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | ||
| 1941 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | ||
| 1942 | |||
| 1943 | recent_rotated[0] += | ||
| 1944 | mz->reclaim_stat.recent_rotated[0]; | ||
| 1945 | recent_rotated[1] += | ||
| 1946 | mz->reclaim_stat.recent_rotated[1]; | ||
| 1947 | recent_scanned[0] += | ||
| 1948 | mz->reclaim_stat.recent_scanned[0]; | ||
| 1949 | recent_scanned[1] += | ||
| 1950 | mz->reclaim_stat.recent_scanned[1]; | ||
| 1951 | } | ||
| 1952 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | ||
| 1953 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | ||
| 1954 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | ||
| 1955 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | ||
| 1956 | } | ||
| 1957 | #endif | ||
| 1958 | |||
| 1959 | return 0; | ||
| 1960 | } | ||
| 1961 | |||
| 1962 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | ||
| 1963 | { | ||
| 1964 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
| 1965 | |||
| 1966 | return get_swappiness(memcg); | ||
| 1967 | } | ||
| 1968 | |||
| 1969 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | ||
| 1970 | u64 val) | ||
| 1971 | { | ||
| 1972 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
| 1973 | struct mem_cgroup *parent; | ||
| 1974 | if (val > 100) | ||
| 1975 | return -EINVAL; | ||
| 1976 | |||
| 1977 | if (cgrp->parent == NULL) | ||
| 1978 | return -EINVAL; | ||
| 1979 | |||
| 1980 | parent = mem_cgroup_from_cont(cgrp->parent); | ||
| 1981 | /* If under hierarchy, only empty-root can set this value */ | ||
| 1982 | if ((parent->use_hierarchy) || | ||
| 1983 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) | ||
| 1984 | return -EINVAL; | ||
| 1985 | |||
| 1986 | spin_lock(&memcg->reclaim_param_lock); | ||
| 1987 | memcg->swappiness = val; | ||
| 1988 | spin_unlock(&memcg->reclaim_param_lock); | ||
| 1989 | |||
| 988 | return 0; | 1990 | return 0; |
| 989 | } | 1991 | } |
| 990 | 1992 | ||
| 1993 | |||
| 991 | static struct cftype mem_cgroup_files[] = { | 1994 | static struct cftype mem_cgroup_files[] = { |
| 992 | { | 1995 | { |
| 993 | .name = "usage_in_bytes", | 1996 | .name = "usage_in_bytes", |
| 994 | .private = RES_USAGE, | 1997 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
| 995 | .read_u64 = mem_cgroup_read, | 1998 | .read_u64 = mem_cgroup_read, |
| 996 | }, | 1999 | }, |
| 997 | { | 2000 | { |
| 998 | .name = "max_usage_in_bytes", | 2001 | .name = "max_usage_in_bytes", |
| 999 | .private = RES_MAX_USAGE, | 2002 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
| 1000 | .trigger = mem_cgroup_reset, | 2003 | .trigger = mem_cgroup_reset, |
| 1001 | .read_u64 = mem_cgroup_read, | 2004 | .read_u64 = mem_cgroup_read, |
| 1002 | }, | 2005 | }, |
| 1003 | { | 2006 | { |
| 1004 | .name = "limit_in_bytes", | 2007 | .name = "limit_in_bytes", |
| 1005 | .private = RES_LIMIT, | 2008 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
| 1006 | .write_string = mem_cgroup_write, | 2009 | .write_string = mem_cgroup_write, |
| 1007 | .read_u64 = mem_cgroup_read, | 2010 | .read_u64 = mem_cgroup_read, |
| 1008 | }, | 2011 | }, |
| 1009 | { | 2012 | { |
| 1010 | .name = "failcnt", | 2013 | .name = "failcnt", |
| 1011 | .private = RES_FAILCNT, | 2014 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
| 1012 | .trigger = mem_cgroup_reset, | 2015 | .trigger = mem_cgroup_reset, |
| 1013 | .read_u64 = mem_cgroup_read, | 2016 | .read_u64 = mem_cgroup_read, |
| 1014 | }, | 2017 | }, |
| 1015 | { | 2018 | { |
| 2019 | .name = "stat", | ||
| 2020 | .read_map = mem_control_stat_show, | ||
| 2021 | }, | ||
| 2022 | { | ||
| 1016 | .name = "force_empty", | 2023 | .name = "force_empty", |
| 1017 | .trigger = mem_force_empty_write, | 2024 | .trigger = mem_cgroup_force_empty_write, |
| 1018 | }, | 2025 | }, |
| 1019 | { | 2026 | { |
| 1020 | .name = "stat", | 2027 | .name = "use_hierarchy", |
| 1021 | .read_map = mem_control_stat_show, | 2028 | .write_u64 = mem_cgroup_hierarchy_write, |
| 2029 | .read_u64 = mem_cgroup_hierarchy_read, | ||
| 2030 | }, | ||
| 2031 | { | ||
| 2032 | .name = "swappiness", | ||
| 2033 | .read_u64 = mem_cgroup_swappiness_read, | ||
| 2034 | .write_u64 = mem_cgroup_swappiness_write, | ||
| 1022 | }, | 2035 | }, |
| 1023 | }; | 2036 | }; |
| 1024 | 2037 | ||
| 2038 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
| 2039 | static struct cftype memsw_cgroup_files[] = { | ||
| 2040 | { | ||
| 2041 | .name = "memsw.usage_in_bytes", | ||
| 2042 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | ||
| 2043 | .read_u64 = mem_cgroup_read, | ||
| 2044 | }, | ||
| 2045 | { | ||
| 2046 | .name = "memsw.max_usage_in_bytes", | ||
| 2047 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | ||
| 2048 | .trigger = mem_cgroup_reset, | ||
| 2049 | .read_u64 = mem_cgroup_read, | ||
| 2050 | }, | ||
| 2051 | { | ||
| 2052 | .name = "memsw.limit_in_bytes", | ||
| 2053 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | ||
| 2054 | .write_string = mem_cgroup_write, | ||
| 2055 | .read_u64 = mem_cgroup_read, | ||
| 2056 | }, | ||
| 2057 | { | ||
| 2058 | .name = "memsw.failcnt", | ||
| 2059 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | ||
| 2060 | .trigger = mem_cgroup_reset, | ||
| 2061 | .read_u64 = mem_cgroup_read, | ||
| 2062 | }, | ||
| 2063 | }; | ||
| 2064 | |||
| 2065 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
| 2066 | { | ||
| 2067 | if (!do_swap_account) | ||
| 2068 | return 0; | ||
| 2069 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | ||
| 2070 | ARRAY_SIZE(memsw_cgroup_files)); | ||
| 2071 | }; | ||
| 2072 | #else | ||
| 2073 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
| 2074 | { | ||
| 2075 | return 0; | ||
| 2076 | } | ||
| 2077 | #endif | ||
| 2078 | |||
| 1025 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 2079 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
| 1026 | { | 2080 | { |
| 1027 | struct mem_cgroup_per_node *pn; | 2081 | struct mem_cgroup_per_node *pn; |
| @@ -1047,7 +2101,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
| 1047 | 2101 | ||
| 1048 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 2102 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
| 1049 | mz = &pn->zoneinfo[zone]; | 2103 | mz = &pn->zoneinfo[zone]; |
| 1050 | spin_lock_init(&mz->lru_lock); | ||
| 1051 | for_each_lru(l) | 2104 | for_each_lru(l) |
| 1052 | INIT_LIST_HEAD(&mz->lists[l]); | 2105 | INIT_LIST_HEAD(&mz->lists[l]); |
| 1053 | } | 2106 | } |
| @@ -1059,55 +2112,113 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
| 1059 | kfree(mem->info.nodeinfo[node]); | 2112 | kfree(mem->info.nodeinfo[node]); |
| 1060 | } | 2113 | } |
| 1061 | 2114 | ||
| 2115 | static int mem_cgroup_size(void) | ||
| 2116 | { | ||
| 2117 | int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); | ||
| 2118 | return sizeof(struct mem_cgroup) + cpustat_size; | ||
| 2119 | } | ||
| 2120 | |||
| 1062 | static struct mem_cgroup *mem_cgroup_alloc(void) | 2121 | static struct mem_cgroup *mem_cgroup_alloc(void) |
| 1063 | { | 2122 | { |
| 1064 | struct mem_cgroup *mem; | 2123 | struct mem_cgroup *mem; |
| 2124 | int size = mem_cgroup_size(); | ||
| 1065 | 2125 | ||
| 1066 | if (sizeof(*mem) < PAGE_SIZE) | 2126 | if (size < PAGE_SIZE) |
| 1067 | mem = kmalloc(sizeof(*mem), GFP_KERNEL); | 2127 | mem = kmalloc(size, GFP_KERNEL); |
| 1068 | else | 2128 | else |
| 1069 | mem = vmalloc(sizeof(*mem)); | 2129 | mem = vmalloc(size); |
| 1070 | 2130 | ||
| 1071 | if (mem) | 2131 | if (mem) |
| 1072 | memset(mem, 0, sizeof(*mem)); | 2132 | memset(mem, 0, size); |
| 1073 | return mem; | 2133 | return mem; |
| 1074 | } | 2134 | } |
| 1075 | 2135 | ||
| 1076 | static void mem_cgroup_free(struct mem_cgroup *mem) | 2136 | /* |
| 2137 | * At destroying mem_cgroup, references from swap_cgroup can remain. | ||
| 2138 | * (scanning all at force_empty is too costly...) | ||
| 2139 | * | ||
| 2140 | * Instead of clearing all references at force_empty, we remember | ||
| 2141 | * the number of reference from swap_cgroup and free mem_cgroup when | ||
| 2142 | * it goes down to 0. | ||
| 2143 | * | ||
| 2144 | * Removal of cgroup itself succeeds regardless of refs from swap. | ||
| 2145 | */ | ||
| 2146 | |||
| 2147 | static void __mem_cgroup_free(struct mem_cgroup *mem) | ||
| 1077 | { | 2148 | { |
| 1078 | if (sizeof(*mem) < PAGE_SIZE) | 2149 | int node; |
| 2150 | |||
| 2151 | for_each_node_state(node, N_POSSIBLE) | ||
| 2152 | free_mem_cgroup_per_zone_info(mem, node); | ||
| 2153 | |||
| 2154 | if (mem_cgroup_size() < PAGE_SIZE) | ||
| 1079 | kfree(mem); | 2155 | kfree(mem); |
| 1080 | else | 2156 | else |
| 1081 | vfree(mem); | 2157 | vfree(mem); |
| 1082 | } | 2158 | } |
| 1083 | 2159 | ||
| 2160 | static void mem_cgroup_get(struct mem_cgroup *mem) | ||
| 2161 | { | ||
| 2162 | atomic_inc(&mem->refcnt); | ||
| 2163 | } | ||
| 2164 | |||
| 2165 | static void mem_cgroup_put(struct mem_cgroup *mem) | ||
| 2166 | { | ||
| 2167 | if (atomic_dec_and_test(&mem->refcnt)) | ||
| 2168 | __mem_cgroup_free(mem); | ||
| 2169 | } | ||
| 2170 | |||
| 2171 | |||
| 2172 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
| 2173 | static void __init enable_swap_cgroup(void) | ||
| 2174 | { | ||
| 2175 | if (!mem_cgroup_disabled() && really_do_swap_account) | ||
| 2176 | do_swap_account = 1; | ||
| 2177 | } | ||
| 2178 | #else | ||
| 2179 | static void __init enable_swap_cgroup(void) | ||
| 2180 | { | ||
| 2181 | } | ||
| 2182 | #endif | ||
| 1084 | 2183 | ||
| 1085 | static struct cgroup_subsys_state * | 2184 | static struct cgroup_subsys_state * |
| 1086 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 2185 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
| 1087 | { | 2186 | { |
| 1088 | struct mem_cgroup *mem; | 2187 | struct mem_cgroup *mem, *parent; |
| 1089 | int node; | 2188 | int node; |
| 1090 | 2189 | ||
| 1091 | if (unlikely((cont->parent) == NULL)) { | 2190 | mem = mem_cgroup_alloc(); |
| 1092 | mem = &init_mem_cgroup; | 2191 | if (!mem) |
| 1093 | } else { | 2192 | return ERR_PTR(-ENOMEM); |
| 1094 | mem = mem_cgroup_alloc(); | ||
| 1095 | if (!mem) | ||
| 1096 | return ERR_PTR(-ENOMEM); | ||
| 1097 | } | ||
| 1098 | |||
| 1099 | res_counter_init(&mem->res); | ||
| 1100 | 2193 | ||
| 1101 | for_each_node_state(node, N_POSSIBLE) | 2194 | for_each_node_state(node, N_POSSIBLE) |
| 1102 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 2195 | if (alloc_mem_cgroup_per_zone_info(mem, node)) |
| 1103 | goto free_out; | 2196 | goto free_out; |
| 2197 | /* root ? */ | ||
| 2198 | if (cont->parent == NULL) { | ||
| 2199 | enable_swap_cgroup(); | ||
| 2200 | parent = NULL; | ||
| 2201 | } else { | ||
| 2202 | parent = mem_cgroup_from_cont(cont->parent); | ||
| 2203 | mem->use_hierarchy = parent->use_hierarchy; | ||
| 2204 | } | ||
| 1104 | 2205 | ||
| 2206 | if (parent && parent->use_hierarchy) { | ||
| 2207 | res_counter_init(&mem->res, &parent->res); | ||
| 2208 | res_counter_init(&mem->memsw, &parent->memsw); | ||
| 2209 | } else { | ||
| 2210 | res_counter_init(&mem->res, NULL); | ||
| 2211 | res_counter_init(&mem->memsw, NULL); | ||
| 2212 | } | ||
| 2213 | mem->last_scanned_child = NULL; | ||
| 2214 | spin_lock_init(&mem->reclaim_param_lock); | ||
| 2215 | |||
| 2216 | if (parent) | ||
| 2217 | mem->swappiness = get_swappiness(parent); | ||
| 2218 | atomic_set(&mem->refcnt, 1); | ||
| 1105 | return &mem->css; | 2219 | return &mem->css; |
| 1106 | free_out: | 2220 | free_out: |
| 1107 | for_each_node_state(node, N_POSSIBLE) | 2221 | __mem_cgroup_free(mem); |
| 1108 | free_mem_cgroup_per_zone_info(mem, node); | ||
| 1109 | if (cont->parent != NULL) | ||
| 1110 | mem_cgroup_free(mem); | ||
| 1111 | return ERR_PTR(-ENOMEM); | 2222 | return ERR_PTR(-ENOMEM); |
| 1112 | } | 2223 | } |
| 1113 | 2224 | ||
| @@ -1115,26 +2226,26 @@ static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | |||
| 1115 | struct cgroup *cont) | 2226 | struct cgroup *cont) |
| 1116 | { | 2227 | { |
| 1117 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2228 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
| 1118 | mem_cgroup_force_empty(mem); | 2229 | mem_cgroup_force_empty(mem, false); |
| 1119 | } | 2230 | } |
| 1120 | 2231 | ||
| 1121 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 2232 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
| 1122 | struct cgroup *cont) | 2233 | struct cgroup *cont) |
| 1123 | { | 2234 | { |
| 1124 | int node; | 2235 | mem_cgroup_put(mem_cgroup_from_cont(cont)); |
| 1125 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | ||
| 1126 | |||
| 1127 | for_each_node_state(node, N_POSSIBLE) | ||
| 1128 | free_mem_cgroup_per_zone_info(mem, node); | ||
| 1129 | |||
| 1130 | mem_cgroup_free(mem_cgroup_from_cont(cont)); | ||
| 1131 | } | 2236 | } |
| 1132 | 2237 | ||
| 1133 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 2238 | static int mem_cgroup_populate(struct cgroup_subsys *ss, |
| 1134 | struct cgroup *cont) | 2239 | struct cgroup *cont) |
| 1135 | { | 2240 | { |
| 1136 | return cgroup_add_files(cont, ss, mem_cgroup_files, | 2241 | int ret; |
| 1137 | ARRAY_SIZE(mem_cgroup_files)); | 2242 | |
| 2243 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | ||
| 2244 | ARRAY_SIZE(mem_cgroup_files)); | ||
| 2245 | |||
| 2246 | if (!ret) | ||
| 2247 | ret = register_memsw_files(cont, ss); | ||
| 2248 | return ret; | ||
| 1138 | } | 2249 | } |
| 1139 | 2250 | ||
| 1140 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 2251 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
| @@ -1142,25 +2253,12 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
| 1142 | struct cgroup *old_cont, | 2253 | struct cgroup *old_cont, |
| 1143 | struct task_struct *p) | 2254 | struct task_struct *p) |
| 1144 | { | 2255 | { |
| 1145 | struct mm_struct *mm; | 2256 | mutex_lock(&memcg_tasklist); |
| 1146 | struct mem_cgroup *mem, *old_mem; | ||
| 1147 | |||
| 1148 | mm = get_task_mm(p); | ||
| 1149 | if (mm == NULL) | ||
| 1150 | return; | ||
| 1151 | |||
| 1152 | mem = mem_cgroup_from_cont(cont); | ||
| 1153 | old_mem = mem_cgroup_from_cont(old_cont); | ||
| 1154 | |||
| 1155 | /* | 2257 | /* |
| 1156 | * Only thread group leaders are allowed to migrate, the mm_struct is | 2258 | * FIXME: It's better to move charges of this process from old |
| 1157 | * in effect owned by the leader | 2259 | * memcg to new memcg. But it's just on TODO-List now. |
| 1158 | */ | 2260 | */ |
| 1159 | if (!thread_group_leader(p)) | 2261 | mutex_unlock(&memcg_tasklist); |
| 1160 | goto out; | ||
| 1161 | |||
| 1162 | out: | ||
| 1163 | mmput(mm); | ||
| 1164 | } | 2262 | } |
| 1165 | 2263 | ||
| 1166 | struct cgroup_subsys mem_cgroup_subsys = { | 2264 | struct cgroup_subsys mem_cgroup_subsys = { |
| @@ -1173,3 +2271,13 @@ struct cgroup_subsys mem_cgroup_subsys = { | |||
| 1173 | .attach = mem_cgroup_move_task, | 2271 | .attach = mem_cgroup_move_task, |
| 1174 | .early_init = 0, | 2272 | .early_init = 0, |
| 1175 | }; | 2273 | }; |
| 2274 | |||
| 2275 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
| 2276 | |||
| 2277 | static int __init disable_swap_account(char *s) | ||
| 2278 | { | ||
| 2279 | really_do_swap_account = 0; | ||
| 2280 | return 1; | ||
| 2281 | } | ||
| 2282 | __setup("noswapaccount", disable_swap_account); | ||
| 2283 | #endif | ||
