aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c687
1 files changed, 441 insertions, 246 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 8e4be9cb2a6a..2fc6d6c48238 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -27,6 +27,7 @@
27#include <linux/backing-dev.h> 27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h> 28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h> 29#include <linux/rcupdate.h>
30#include <linux/limits.h>
30#include <linux/mutex.h> 31#include <linux/mutex.h>
31#include <linux/slab.h> 32#include <linux/slab.h>
32#include <linux/swap.h> 33#include <linux/swap.h>
@@ -95,6 +96,15 @@ static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
95 return ret; 96 return ret;
96} 97}
97 98
99static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100{
101 s64 ret;
102
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
106}
107
98/* 108/*
99 * per-zone information in memory controller. 109 * per-zone information in memory controller.
100 */ 110 */
@@ -154,9 +164,9 @@ struct mem_cgroup {
154 164
155 /* 165 /*
156 * While reclaiming in a hiearchy, we cache the last child we 166 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex 167 * reclaimed from.
158 */ 168 */
159 struct mem_cgroup *last_scanned_child; 169 int last_scanned_child;
160 /* 170 /*
161 * Should the accounting and control be hierarchical, per subtree? 171 * Should the accounting and control be hierarchical, per subtree?
162 */ 172 */
@@ -247,7 +257,7 @@ page_cgroup_zoneinfo(struct page_cgroup *pc)
247 return mem_cgroup_zoneinfo(mem, nid, zid); 257 return mem_cgroup_zoneinfo(mem, nid, zid);
248} 258}
249 259
250static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, 260static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
251 enum lru_list idx) 261 enum lru_list idx)
252{ 262{
253 int nid, zid; 263 int nid, zid;
@@ -286,6 +296,9 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
286static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 296static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
287{ 297{
288 struct mem_cgroup *mem = NULL; 298 struct mem_cgroup *mem = NULL;
299
300 if (!mm)
301 return NULL;
289 /* 302 /*
290 * Because we have no locks, mm->owner's may be being moved to other 303 * Because we have no locks, mm->owner's may be being moved to other
291 * cgroup. We use css_tryget() here even if this looks 304 * cgroup. We use css_tryget() here even if this looks
@@ -308,6 +321,42 @@ static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
308 return css_is_removed(&mem->css); 321 return css_is_removed(&mem->css);
309} 322}
310 323
324
325/*
326 * Call callback function against all cgroup under hierarchy tree.
327 */
328static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 int (*func)(struct mem_cgroup *, void *))
330{
331 int found, ret, nextid;
332 struct cgroup_subsys_state *css;
333 struct mem_cgroup *mem;
334
335 if (!root->use_hierarchy)
336 return (*func)(root, data);
337
338 nextid = 1;
339 do {
340 ret = 0;
341 mem = NULL;
342
343 rcu_read_lock();
344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345 &found);
346 if (css && css_tryget(css))
347 mem = container_of(css, struct mem_cgroup, css);
348 rcu_read_unlock();
349
350 if (mem) {
351 ret = (*func)(mem, data);
352 css_put(&mem->css);
353 }
354 nextid = found + 1;
355 } while (!ret && css);
356
357 return ret;
358}
359
311/* 360/*
312 * Following LRU functions are allowed to be used without PCG_LOCK. 361 * Following LRU functions are allowed to be used without PCG_LOCK.
313 * Operations are called by routine of global LRU independently from memcg. 362 * Operations are called by routine of global LRU independently from memcg.
@@ -441,31 +490,24 @@ void mem_cgroup_move_lists(struct page *page,
441int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 490int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
442{ 491{
443 int ret; 492 int ret;
493 struct mem_cgroup *curr = NULL;
444 494
445 task_lock(task); 495 task_lock(task);
446 ret = task->mm && mm_match_cgroup(task->mm, mem); 496 rcu_read_lock();
497 curr = try_get_mem_cgroup_from_mm(task->mm);
498 rcu_read_unlock();
447 task_unlock(task); 499 task_unlock(task);
500 if (!curr)
501 return 0;
502 if (curr->use_hierarchy)
503 ret = css_is_ancestor(&curr->css, &mem->css);
504 else
505 ret = (curr == mem);
506 css_put(&curr->css);
448 return ret; 507 return ret;
449} 508}
450 509
451/* 510/*
452 * Calculate mapped_ratio under memory controller. This will be used in
453 * vmscan.c for deteremining we have to reclaim mapped pages.
454 */
455int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
456{
457 long total, rss;
458
459 /*
460 * usage is recorded in bytes. But, here, we assume the number of
461 * physical pages can be represented by "long" on any arch.
462 */
463 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
464 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
465 return (int)((rss * 100L) / total);
466}
467
468/*
469 * prev_priority control...this will be used in memory reclaim path. 511 * prev_priority control...this will be used in memory reclaim path.
470 */ 512 */
471int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 513int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
@@ -501,8 +543,8 @@ static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_
501 unsigned long gb; 543 unsigned long gb;
502 unsigned long inactive_ratio; 544 unsigned long inactive_ratio;
503 545
504 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); 546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
505 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); 547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
506 548
507 gb = (inactive + active) >> (30 - PAGE_SHIFT); 549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
508 if (gb) 550 if (gb)
@@ -629,172 +671,202 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
629#define mem_cgroup_from_res_counter(counter, member) \ 671#define mem_cgroup_from_res_counter(counter, member) \
630 container_of(counter, struct mem_cgroup, member) 672 container_of(counter, struct mem_cgroup, member)
631 673
632/* 674static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
633 * This routine finds the DFS walk successor. This routine should be
634 * called with hierarchy_mutex held
635 */
636static struct mem_cgroup *
637__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
638{ 675{
639 struct cgroup *cgroup, *curr_cgroup, *root_cgroup; 676 if (do_swap_account) {
640 677 if (res_counter_check_under_limit(&mem->res) &&
641 curr_cgroup = curr->css.cgroup; 678 res_counter_check_under_limit(&mem->memsw))
642 root_cgroup = root_mem->css.cgroup; 679 return true;
680 } else
681 if (res_counter_check_under_limit(&mem->res))
682 return true;
683 return false;
684}
643 685
644 if (!list_empty(&curr_cgroup->children)) { 686static unsigned int get_swappiness(struct mem_cgroup *memcg)
645 /* 687{
646 * Walk down to children 688 struct cgroup *cgrp = memcg->css.cgroup;
647 */ 689 unsigned int swappiness;
648 cgroup = list_entry(curr_cgroup->children.next,
649 struct cgroup, sibling);
650 curr = mem_cgroup_from_cont(cgroup);
651 goto done;
652 }
653 690
654visit_parent: 691 /* root ? */
655 if (curr_cgroup == root_cgroup) { 692 if (cgrp->parent == NULL)
656 /* caller handles NULL case */ 693 return vm_swappiness;
657 curr = NULL;
658 goto done;
659 }
660 694
661 /* 695 spin_lock(&memcg->reclaim_param_lock);
662 * Goto next sibling 696 swappiness = memcg->swappiness;
663 */ 697 spin_unlock(&memcg->reclaim_param_lock);
664 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
665 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
666 sibling);
667 curr = mem_cgroup_from_cont(cgroup);
668 goto done;
669 }
670 698
671 /* 699 return swappiness;
672 * Go up to next parent and next parent's sibling if need be 700}
673 */
674 curr_cgroup = curr_cgroup->parent;
675 goto visit_parent;
676 701
677done: 702static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
678 return curr; 703{
704 int *val = data;
705 (*val)++;
706 return 0;
679} 707}
680 708
681/* 709/**
682 * Visit the first child (need not be the first child as per the ordering 710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
683 * of the cgroup list, since we track last_scanned_child) of @mem and use 711 * @memcg: The memory cgroup that went over limit
684 * that to reclaim free pages from. 712 * @p: Task that is going to be killed
713 *
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715 * enabled
685 */ 716 */
686static struct mem_cgroup * 717void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
687mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
688{ 718{
689 struct cgroup *cgroup; 719 struct cgroup *task_cgrp;
690 struct mem_cgroup *orig, *next; 720 struct cgroup *mem_cgrp;
691 bool obsolete;
692
693 /* 721 /*
694 * Scan all children under the mem_cgroup mem 722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
695 */ 725 */
696 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); 726 static char memcg_name[PATH_MAX];
727 int ret;
728
729 if (!memcg)
730 return;
697 731
698 orig = root_mem->last_scanned_child;
699 obsolete = mem_cgroup_is_obsolete(orig);
700 732
701 if (list_empty(&root_mem->css.cgroup->children)) { 733 rcu_read_lock();
734
735 mem_cgrp = memcg->css.cgroup;
736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737
738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739 if (ret < 0) {
702 /* 740 /*
703 * root_mem might have children before and last_scanned_child 741 * Unfortunately, we are unable to convert to a useful name
704 * may point to one of them. We put it later. 742 * But we'll still print out the usage information
705 */ 743 */
706 if (orig) 744 rcu_read_unlock();
707 VM_BUG_ON(!obsolete);
708 next = NULL;
709 goto done; 745 goto done;
710 } 746 }
747 rcu_read_unlock();
711 748
712 if (!orig || obsolete) { 749 printk(KERN_INFO "Task in %s killed", memcg_name);
713 cgroup = list_first_entry(&root_mem->css.cgroup->children,
714 struct cgroup, sibling);
715 next = mem_cgroup_from_cont(cgroup);
716 } else
717 next = __mem_cgroup_get_next_node(orig, root_mem);
718 750
751 rcu_read_lock();
752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753 if (ret < 0) {
754 rcu_read_unlock();
755 goto done;
756 }
757 rcu_read_unlock();
758
759 /*
760 * Continues from above, so we don't need an KERN_ level
761 */
762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
719done: 763done:
720 if (next) 764
721 mem_cgroup_get(next); 765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
722 root_mem->last_scanned_child = next; 766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
723 if (orig) 767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
724 mem_cgroup_put(orig); 768 res_counter_read_u64(&memcg->res, RES_FAILCNT));
725 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); 769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
726 return (next) ? next : root_mem; 770 "failcnt %llu\n",
771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
727} 774}
728 775
729static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 776/*
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
779 */
780static int mem_cgroup_count_children(struct mem_cgroup *mem)
730{ 781{
731 if (do_swap_account) { 782 int num = 0;
732 if (res_counter_check_under_limit(&mem->res) && 783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
733 res_counter_check_under_limit(&mem->memsw)) 784 return num;
734 return true;
735 } else
736 if (res_counter_check_under_limit(&mem->res))
737 return true;
738 return false;
739} 785}
740 786
741static unsigned int get_swappiness(struct mem_cgroup *memcg) 787/*
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
791 */
792static struct mem_cgroup *
793mem_cgroup_select_victim(struct mem_cgroup *root_mem)
742{ 794{
743 struct cgroup *cgrp = memcg->css.cgroup; 795 struct mem_cgroup *ret = NULL;
744 unsigned int swappiness; 796 struct cgroup_subsys_state *css;
797 int nextid, found;
745 798
746 /* root ? */ 799 if (!root_mem->use_hierarchy) {
747 if (cgrp->parent == NULL) 800 css_get(&root_mem->css);
748 return vm_swappiness; 801 ret = root_mem;
802 }
749 803
750 spin_lock(&memcg->reclaim_param_lock); 804 while (!ret) {
751 swappiness = memcg->swappiness; 805 rcu_read_lock();
752 spin_unlock(&memcg->reclaim_param_lock); 806 nextid = root_mem->last_scanned_child + 1;
807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808 &found);
809 if (css && css_tryget(css))
810 ret = container_of(css, struct mem_cgroup, css);
811
812 rcu_read_unlock();
813 /* Updates scanning parameter */
814 spin_lock(&root_mem->reclaim_param_lock);
815 if (!css) {
816 /* this means start scan from ID:1 */
817 root_mem->last_scanned_child = 0;
818 } else
819 root_mem->last_scanned_child = found;
820 spin_unlock(&root_mem->reclaim_param_lock);
821 }
753 822
754 return swappiness; 823 return ret;
755} 824}
756 825
757/* 826/*
758 * Dance down the hierarchy if needed to reclaim memory. We remember the 827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
759 * last child we reclaimed from, so that we don't end up penalizing 828 * we reclaimed from, so that we don't end up penalizing one child extensively
760 * one child extensively based on its position in the children list. 829 * based on its position in the children list.
761 * 830 *
762 * root_mem is the original ancestor that we've been reclaim from. 831 * root_mem is the original ancestor that we've been reclaim from.
832 *
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
835 *
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
763 */ 837 */
764static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 838static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
765 gfp_t gfp_mask, bool noswap) 839 gfp_t gfp_mask, bool noswap, bool shrink)
766{ 840{
767 struct mem_cgroup *next_mem; 841 struct mem_cgroup *victim;
768 int ret = 0; 842 int ret, total = 0;
769 843 int loop = 0;
770 /* 844
771 * Reclaim unconditionally and don't check for return value. 845 while (loop < 2) {
772 * We need to reclaim in the current group and down the tree. 846 victim = mem_cgroup_select_victim(root_mem);
773 * One might think about checking for children before reclaiming, 847 if (victim == root_mem)
774 * but there might be left over accounting, even after children 848 loop++;
775 * have left. 849 if (!mem_cgroup_local_usage(&victim->stat)) {
776 */ 850 /* this cgroup's local usage == 0 */
777 ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, 851 css_put(&victim->css);
778 get_swappiness(root_mem));
779 if (mem_cgroup_check_under_limit(root_mem))
780 return 1; /* indicate reclaim has succeeded */
781 if (!root_mem->use_hierarchy)
782 return ret;
783
784 next_mem = mem_cgroup_get_next_node(root_mem);
785
786 while (next_mem != root_mem) {
787 if (mem_cgroup_is_obsolete(next_mem)) {
788 next_mem = mem_cgroup_get_next_node(root_mem);
789 continue; 852 continue;
790 } 853 }
791 ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, 854 /* we use swappiness of local cgroup */
792 get_swappiness(next_mem)); 855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 get_swappiness(victim));
857 css_put(&victim->css);
858 /*
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
862 */
863 if (shrink)
864 return ret;
865 total += ret;
793 if (mem_cgroup_check_under_limit(root_mem)) 866 if (mem_cgroup_check_under_limit(root_mem))
794 return 1; /* indicate reclaim has succeeded */ 867 return 1 + total;
795 next_mem = mem_cgroup_get_next_node(root_mem);
796 } 868 }
797 return ret; 869 return total;
798} 870}
799 871
800bool mem_cgroup_oom_called(struct task_struct *task) 872bool mem_cgroup_oom_called(struct task_struct *task)
@@ -813,6 +885,19 @@ bool mem_cgroup_oom_called(struct task_struct *task)
813 rcu_read_unlock(); 885 rcu_read_unlock();
814 return ret; 886 return ret;
815} 887}
888
889static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890{
891 mem->last_oom_jiffies = jiffies;
892 return 0;
893}
894
895static void record_last_oom(struct mem_cgroup *mem)
896{
897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898}
899
900
816/* 901/*
817 * Unlike exported interface, "oom" parameter is added. if oom==true, 902 * Unlike exported interface, "oom" parameter is added. if oom==true,
818 * oom-killer can be invoked. 903 * oom-killer can be invoked.
@@ -875,7 +960,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
875 goto nomem; 960 goto nomem;
876 961
877 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, 962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
878 noswap); 963 noswap, false);
879 if (ret) 964 if (ret)
880 continue; 965 continue;
881 966
@@ -895,7 +980,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
895 mutex_lock(&memcg_tasklist); 980 mutex_lock(&memcg_tasklist);
896 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897 mutex_unlock(&memcg_tasklist); 982 mutex_unlock(&memcg_tasklist);
898 mem_over_limit->last_oom_jiffies = jiffies; 983 record_last_oom(mem_over_limit);
899 } 984 }
900 goto nomem; 985 goto nomem;
901 } 986 }
@@ -906,20 +991,55 @@ nomem:
906 return -ENOMEM; 991 return -ENOMEM;
907} 992}
908 993
994
995/*
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
999 * memcg.)
1000 */
1001static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1002{
1003 struct cgroup_subsys_state *css;
1004
1005 /* ID 0 is unused ID */
1006 if (!id)
1007 return NULL;
1008 css = css_lookup(&mem_cgroup_subsys, id);
1009 if (!css)
1010 return NULL;
1011 return container_of(css, struct mem_cgroup, css);
1012}
1013
909static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) 1014static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910{ 1015{
911 struct mem_cgroup *mem; 1016 struct mem_cgroup *mem;
1017 struct page_cgroup *pc;
1018 unsigned short id;
912 swp_entry_t ent; 1019 swp_entry_t ent;
913 1020
1021 VM_BUG_ON(!PageLocked(page));
1022
914 if (!PageSwapCache(page)) 1023 if (!PageSwapCache(page))
915 return NULL; 1024 return NULL;
916 1025
917 ent.val = page_private(page); 1026 pc = lookup_page_cgroup(page);
918 mem = lookup_swap_cgroup(ent); 1027 /*
919 if (!mem) 1028 * Used bit of swapcache is solid under page lock.
920 return NULL; 1029 */
921 if (!css_tryget(&mem->css)) 1030 if (PageCgroupUsed(pc)) {
922 return NULL; 1031 mem = pc->mem_cgroup;
1032 if (mem && !css_tryget(&mem->css))
1033 mem = NULL;
1034 } else {
1035 ent.val = page_private(page);
1036 id = lookup_swap_cgroup(ent);
1037 rcu_read_lock();
1038 mem = mem_cgroup_lookup(id);
1039 if (mem && !css_tryget(&mem->css))
1040 mem = NULL;
1041 rcu_read_unlock();
1042 }
923 return mem; 1043 return mem;
924} 1044}
925 1045
@@ -1118,6 +1238,10 @@ int mem_cgroup_newpage_charge(struct page *page,
1118 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1238 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1119} 1239}
1120 1240
1241static void
1242__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1243 enum charge_type ctype);
1244
1121int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1245int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1122 gfp_t gfp_mask) 1246 gfp_t gfp_mask)
1123{ 1247{
@@ -1154,16 +1278,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1154 unlock_page_cgroup(pc); 1278 unlock_page_cgroup(pc);
1155 } 1279 }
1156 1280
1157 if (do_swap_account && PageSwapCache(page)) {
1158 mem = try_get_mem_cgroup_from_swapcache(page);
1159 if (mem)
1160 mm = NULL;
1161 else
1162 mem = NULL;
1163 /* SwapCache may be still linked to LRU now. */
1164 mem_cgroup_lru_del_before_commit_swapcache(page);
1165 }
1166
1167 if (unlikely(!mm && !mem)) 1281 if (unlikely(!mm && !mem))
1168 mm = &init_mm; 1282 mm = &init_mm;
1169 1283
@@ -1171,22 +1285,16 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1171 return mem_cgroup_charge_common(page, mm, gfp_mask, 1285 return mem_cgroup_charge_common(page, mm, gfp_mask,
1172 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1286 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1173 1287
1174 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1288 /* shmem */
1175 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1289 if (PageSwapCache(page)) {
1176 if (mem) 1290 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1177 css_put(&mem->css); 1291 if (!ret)
1178 if (PageSwapCache(page)) 1292 __mem_cgroup_commit_charge_swapin(page, mem,
1179 mem_cgroup_lru_add_after_commit_swapcache(page); 1293 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1294 } else
1295 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1296 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1180 1297
1181 if (do_swap_account && !ret && PageSwapCache(page)) {
1182 swp_entry_t ent = {.val = page_private(page)};
1183 /* avoid double counting */
1184 mem = swap_cgroup_record(ent, NULL);
1185 if (mem) {
1186 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1187 mem_cgroup_put(mem);
1188 }
1189 }
1190 return ret; 1298 return ret;
1191} 1299}
1192 1300
@@ -1229,7 +1337,9 @@ charge_cur_mm:
1229 return __mem_cgroup_try_charge(mm, mask, ptr, true); 1337 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1230} 1338}
1231 1339
1232void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1340static void
1341__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1342 enum charge_type ctype)
1233{ 1343{
1234 struct page_cgroup *pc; 1344 struct page_cgroup *pc;
1235 1345
@@ -1239,7 +1349,7 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1239 return; 1349 return;
1240 pc = lookup_page_cgroup(page); 1350 pc = lookup_page_cgroup(page);
1241 mem_cgroup_lru_del_before_commit_swapcache(page); 1351 mem_cgroup_lru_del_before_commit_swapcache(page);
1242 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); 1352 __mem_cgroup_commit_charge(ptr, pc, ctype);
1243 mem_cgroup_lru_add_after_commit_swapcache(page); 1353 mem_cgroup_lru_add_after_commit_swapcache(page);
1244 /* 1354 /*
1245 * Now swap is on-memory. This means this page may be 1355 * Now swap is on-memory. This means this page may be
@@ -1250,18 +1360,32 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1250 */ 1360 */
1251 if (do_swap_account && PageSwapCache(page)) { 1361 if (do_swap_account && PageSwapCache(page)) {
1252 swp_entry_t ent = {.val = page_private(page)}; 1362 swp_entry_t ent = {.val = page_private(page)};
1363 unsigned short id;
1253 struct mem_cgroup *memcg; 1364 struct mem_cgroup *memcg;
1254 memcg = swap_cgroup_record(ent, NULL); 1365
1366 id = swap_cgroup_record(ent, 0);
1367 rcu_read_lock();
1368 memcg = mem_cgroup_lookup(id);
1255 if (memcg) { 1369 if (memcg) {
1370 /*
1371 * This recorded memcg can be obsolete one. So, avoid
1372 * calling css_tryget
1373 */
1256 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1374 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1257 mem_cgroup_put(memcg); 1375 mem_cgroup_put(memcg);
1258 } 1376 }
1259 1377 rcu_read_unlock();
1260 } 1378 }
1261 /* add this page(page_cgroup) to the LRU we want. */ 1379 /* add this page(page_cgroup) to the LRU we want. */
1262 1380
1263} 1381}
1264 1382
1383void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1384{
1385 __mem_cgroup_commit_charge_swapin(page, ptr,
1386 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1387}
1388
1265void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1389void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1266{ 1390{
1267 if (mem_cgroup_disabled()) 1391 if (mem_cgroup_disabled())
@@ -1324,8 +1448,8 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1324 res_counter_uncharge(&mem->res, PAGE_SIZE); 1448 res_counter_uncharge(&mem->res, PAGE_SIZE);
1325 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) 1449 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1326 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1450 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1327
1328 mem_cgroup_charge_statistics(mem, pc, false); 1451 mem_cgroup_charge_statistics(mem, pc, false);
1452
1329 ClearPageCgroupUsed(pc); 1453 ClearPageCgroupUsed(pc);
1330 /* 1454 /*
1331 * pc->mem_cgroup is not cleared here. It will be accessed when it's 1455 * pc->mem_cgroup is not cleared here. It will be accessed when it's
@@ -1377,7 +1501,7 @@ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1377 MEM_CGROUP_CHARGE_TYPE_SWAPOUT); 1501 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1378 /* record memcg information */ 1502 /* record memcg information */
1379 if (do_swap_account && memcg) { 1503 if (do_swap_account && memcg) {
1380 swap_cgroup_record(ent, memcg); 1504 swap_cgroup_record(ent, css_id(&memcg->css));
1381 mem_cgroup_get(memcg); 1505 mem_cgroup_get(memcg);
1382 } 1506 }
1383 if (memcg) 1507 if (memcg)
@@ -1392,15 +1516,23 @@ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1392void mem_cgroup_uncharge_swap(swp_entry_t ent) 1516void mem_cgroup_uncharge_swap(swp_entry_t ent)
1393{ 1517{
1394 struct mem_cgroup *memcg; 1518 struct mem_cgroup *memcg;
1519 unsigned short id;
1395 1520
1396 if (!do_swap_account) 1521 if (!do_swap_account)
1397 return; 1522 return;
1398 1523
1399 memcg = swap_cgroup_record(ent, NULL); 1524 id = swap_cgroup_record(ent, 0);
1525 rcu_read_lock();
1526 memcg = mem_cgroup_lookup(id);
1400 if (memcg) { 1527 if (memcg) {
1528 /*
1529 * We uncharge this because swap is freed.
1530 * This memcg can be obsolete one. We avoid calling css_tryget
1531 */
1401 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1532 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1402 mem_cgroup_put(memcg); 1533 mem_cgroup_put(memcg);
1403 } 1534 }
1535 rcu_read_unlock();
1404} 1536}
1405#endif 1537#endif
1406 1538
@@ -1508,7 +1640,8 @@ int mem_cgroup_shrink_usage(struct page *page,
1508 return 0; 1640 return 0;
1509 1641
1510 do { 1642 do {
1511 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); 1643 progress = mem_cgroup_hierarchical_reclaim(mem,
1644 gfp_mask, true, false);
1512 progress += mem_cgroup_check_under_limit(mem); 1645 progress += mem_cgroup_check_under_limit(mem);
1513 } while (!progress && --retry); 1646 } while (!progress && --retry);
1514 1647
@@ -1523,11 +1656,21 @@ static DEFINE_MUTEX(set_limit_mutex);
1523static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 1656static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1524 unsigned long long val) 1657 unsigned long long val)
1525{ 1658{
1526 1659 int retry_count;
1527 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1528 int progress; 1660 int progress;
1529 u64 memswlimit; 1661 u64 memswlimit;
1530 int ret = 0; 1662 int ret = 0;
1663 int children = mem_cgroup_count_children(memcg);
1664 u64 curusage, oldusage;
1665
1666 /*
1667 * For keeping hierarchical_reclaim simple, how long we should retry
1668 * is depends on callers. We set our retry-count to be function
1669 * of # of children which we should visit in this loop.
1670 */
1671 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1672
1673 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1531 1674
1532 while (retry_count) { 1675 while (retry_count) {
1533 if (signal_pending(current)) { 1676 if (signal_pending(current)) {
@@ -1553,8 +1696,13 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1553 break; 1696 break;
1554 1697
1555 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, 1698 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1556 false); 1699 false, true);
1557 if (!progress) retry_count--; 1700 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1701 /* Usage is reduced ? */
1702 if (curusage >= oldusage)
1703 retry_count--;
1704 else
1705 oldusage = curusage;
1558 } 1706 }
1559 1707
1560 return ret; 1708 return ret;
@@ -1563,13 +1711,16 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1563int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 1711int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1564 unsigned long long val) 1712 unsigned long long val)
1565{ 1713{
1566 int retry_count = MEM_CGROUP_RECLAIM_RETRIES; 1714 int retry_count;
1567 u64 memlimit, oldusage, curusage; 1715 u64 memlimit, oldusage, curusage;
1568 int ret; 1716 int children = mem_cgroup_count_children(memcg);
1717 int ret = -EBUSY;
1569 1718
1570 if (!do_swap_account) 1719 if (!do_swap_account)
1571 return -EINVAL; 1720 return -EINVAL;
1572 1721 /* see mem_cgroup_resize_res_limit */
1722 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1723 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1573 while (retry_count) { 1724 while (retry_count) {
1574 if (signal_pending(current)) { 1725 if (signal_pending(current)) {
1575 ret = -EINTR; 1726 ret = -EINTR;
@@ -1593,11 +1744,13 @@ int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1593 if (!ret) 1744 if (!ret)
1594 break; 1745 break;
1595 1746
1596 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1747 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1597 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1598 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1748 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1749 /* Usage is reduced ? */
1599 if (curusage >= oldusage) 1750 if (curusage >= oldusage)
1600 retry_count--; 1751 retry_count--;
1752 else
1753 oldusage = curusage;
1601 } 1754 }
1602 return ret; 1755 return ret;
1603} 1756}
@@ -1893,54 +2046,90 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1893 return 0; 2046 return 0;
1894} 2047}
1895 2048
1896static const struct mem_cgroup_stat_desc { 2049
1897 const char *msg; 2050/* For read statistics */
1898 u64 unit; 2051enum {
1899} mem_cgroup_stat_desc[] = { 2052 MCS_CACHE,
1900 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, 2053 MCS_RSS,
1901 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, 2054 MCS_PGPGIN,
1902 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, 2055 MCS_PGPGOUT,
1903 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, 2056 MCS_INACTIVE_ANON,
2057 MCS_ACTIVE_ANON,
2058 MCS_INACTIVE_FILE,
2059 MCS_ACTIVE_FILE,
2060 MCS_UNEVICTABLE,
2061 NR_MCS_STAT,
2062};
2063
2064struct mcs_total_stat {
2065 s64 stat[NR_MCS_STAT];
2066};
2067
2068struct {
2069 char *local_name;
2070 char *total_name;
2071} memcg_stat_strings[NR_MCS_STAT] = {
2072 {"cache", "total_cache"},
2073 {"rss", "total_rss"},
2074 {"pgpgin", "total_pgpgin"},
2075 {"pgpgout", "total_pgpgout"},
2076 {"inactive_anon", "total_inactive_anon"},
2077 {"active_anon", "total_active_anon"},
2078 {"inactive_file", "total_inactive_file"},
2079 {"active_file", "total_active_file"},
2080 {"unevictable", "total_unevictable"}
1904}; 2081};
1905 2082
2083
2084static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2085{
2086 struct mcs_total_stat *s = data;
2087 s64 val;
2088
2089 /* per cpu stat */
2090 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2091 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2092 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2093 s->stat[MCS_RSS] += val * PAGE_SIZE;
2094 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2095 s->stat[MCS_PGPGIN] += val;
2096 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2097 s->stat[MCS_PGPGOUT] += val;
2098
2099 /* per zone stat */
2100 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2101 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2102 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2103 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2104 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2105 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2106 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2107 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2108 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2109 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2110 return 0;
2111}
2112
2113static void
2114mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2115{
2116 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2117}
2118
1906static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2119static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1907 struct cgroup_map_cb *cb) 2120 struct cgroup_map_cb *cb)
1908{ 2121{
1909 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2122 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1910 struct mem_cgroup_stat *stat = &mem_cont->stat; 2123 struct mcs_total_stat mystat;
1911 int i; 2124 int i;
1912 2125
1913 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { 2126 memset(&mystat, 0, sizeof(mystat));
1914 s64 val; 2127 mem_cgroup_get_local_stat(mem_cont, &mystat);
1915 2128
1916 val = mem_cgroup_read_stat(stat, i); 2129 for (i = 0; i < NR_MCS_STAT; i++)
1917 val *= mem_cgroup_stat_desc[i].unit; 2130 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1918 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1919 }
1920 /* showing # of active pages */
1921 {
1922 unsigned long active_anon, inactive_anon;
1923 unsigned long active_file, inactive_file;
1924 unsigned long unevictable;
1925
1926 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1927 LRU_INACTIVE_ANON);
1928 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1929 LRU_ACTIVE_ANON);
1930 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1931 LRU_INACTIVE_FILE);
1932 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1933 LRU_ACTIVE_FILE);
1934 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1935 LRU_UNEVICTABLE);
1936
1937 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1938 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1939 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1940 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1941 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1942 2131
1943 } 2132 /* Hierarchical information */
1944 { 2133 {
1945 unsigned long long limit, memsw_limit; 2134 unsigned long long limit, memsw_limit;
1946 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2135 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
@@ -1949,6 +2138,12 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1949 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2138 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1950 } 2139 }
1951 2140
2141 memset(&mystat, 0, sizeof(mystat));
2142 mem_cgroup_get_total_stat(mem_cont, &mystat);
2143 for (i = 0; i < NR_MCS_STAT; i++)
2144 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2145
2146
1952#ifdef CONFIG_DEBUG_VM 2147#ifdef CONFIG_DEBUG_VM
1953 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2148 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1954 2149
@@ -2178,6 +2373,8 @@ static void __mem_cgroup_free(struct mem_cgroup *mem)
2178{ 2373{
2179 int node; 2374 int node;
2180 2375
2376 free_css_id(&mem_cgroup_subsys, &mem->css);
2377
2181 for_each_node_state(node, N_POSSIBLE) 2378 for_each_node_state(node, N_POSSIBLE)
2182 free_mem_cgroup_per_zone_info(mem, node); 2379 free_mem_cgroup_per_zone_info(mem, node);
2183 2380
@@ -2228,11 +2425,12 @@ static struct cgroup_subsys_state * __ref
2228mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2425mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2229{ 2426{
2230 struct mem_cgroup *mem, *parent; 2427 struct mem_cgroup *mem, *parent;
2428 long error = -ENOMEM;
2231 int node; 2429 int node;
2232 2430
2233 mem = mem_cgroup_alloc(); 2431 mem = mem_cgroup_alloc();
2234 if (!mem) 2432 if (!mem)
2235 return ERR_PTR(-ENOMEM); 2433 return ERR_PTR(error);
2236 2434
2237 for_each_node_state(node, N_POSSIBLE) 2435 for_each_node_state(node, N_POSSIBLE)
2238 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2436 if (alloc_mem_cgroup_per_zone_info(mem, node))
@@ -2260,7 +2458,7 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2260 res_counter_init(&mem->res, NULL); 2458 res_counter_init(&mem->res, NULL);
2261 res_counter_init(&mem->memsw, NULL); 2459 res_counter_init(&mem->memsw, NULL);
2262 } 2460 }
2263 mem->last_scanned_child = NULL; 2461 mem->last_scanned_child = 0;
2264 spin_lock_init(&mem->reclaim_param_lock); 2462 spin_lock_init(&mem->reclaim_param_lock);
2265 2463
2266 if (parent) 2464 if (parent)
@@ -2269,26 +2467,22 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2269 return &mem->css; 2467 return &mem->css;
2270free_out: 2468free_out:
2271 __mem_cgroup_free(mem); 2469 __mem_cgroup_free(mem);
2272 return ERR_PTR(-ENOMEM); 2470 return ERR_PTR(error);
2273} 2471}
2274 2472
2275static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 2473static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2276 struct cgroup *cont) 2474 struct cgroup *cont)
2277{ 2475{
2278 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2476 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2279 mem_cgroup_force_empty(mem, false); 2477
2478 return mem_cgroup_force_empty(mem, false);
2280} 2479}
2281 2480
2282static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2481static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2283 struct cgroup *cont) 2482 struct cgroup *cont)
2284{ 2483{
2285 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2484 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2286 struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
2287 2485
2288 if (last_scanned_child) {
2289 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
2290 mem_cgroup_put(last_scanned_child);
2291 }
2292 mem_cgroup_put(mem); 2486 mem_cgroup_put(mem);
2293} 2487}
2294 2488
@@ -2327,6 +2521,7 @@ struct cgroup_subsys mem_cgroup_subsys = {
2327 .populate = mem_cgroup_populate, 2521 .populate = mem_cgroup_populate,
2328 .attach = mem_cgroup_move_task, 2522 .attach = mem_cgroup_move_task,
2329 .early_init = 0, 2523 .early_init = 0,
2524 .use_id = 1,
2330}; 2525};
2331 2526
2332#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2527#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP