diff options
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r-- | mm/memcontrol.c | 1847 |
1 files changed, 1478 insertions, 369 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 866dcc7eeb0c..e2996b80601f 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -21,11 +21,13 @@ | |||
21 | #include <linux/memcontrol.h> | 21 | #include <linux/memcontrol.h> |
22 | #include <linux/cgroup.h> | 22 | #include <linux/cgroup.h> |
23 | #include <linux/mm.h> | 23 | #include <linux/mm.h> |
24 | #include <linux/pagemap.h> | ||
24 | #include <linux/smp.h> | 25 | #include <linux/smp.h> |
25 | #include <linux/page-flags.h> | 26 | #include <linux/page-flags.h> |
26 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
27 | #include <linux/bit_spinlock.h> | 28 | #include <linux/bit_spinlock.h> |
28 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
30 | #include <linux/mutex.h> | ||
29 | #include <linux/slab.h> | 31 | #include <linux/slab.h> |
30 | #include <linux/swap.h> | 32 | #include <linux/swap.h> |
31 | #include <linux/spinlock.h> | 33 | #include <linux/spinlock.h> |
@@ -34,12 +36,23 @@ | |||
34 | #include <linux/vmalloc.h> | 36 | #include <linux/vmalloc.h> |
35 | #include <linux/mm_inline.h> | 37 | #include <linux/mm_inline.h> |
36 | #include <linux/page_cgroup.h> | 38 | #include <linux/page_cgroup.h> |
39 | #include "internal.h" | ||
37 | 40 | ||
38 | #include <asm/uaccess.h> | 41 | #include <asm/uaccess.h> |
39 | 42 | ||
40 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 43 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
41 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 44 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
42 | 45 | ||
46 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
47 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ | ||
48 | int do_swap_account __read_mostly; | ||
49 | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | ||
50 | #else | ||
51 | #define do_swap_account (0) | ||
52 | #endif | ||
53 | |||
54 | static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ | ||
55 | |||
43 | /* | 56 | /* |
44 | * Statistics for memory cgroup. | 57 | * Statistics for memory cgroup. |
45 | */ | 58 | */ |
@@ -60,7 +73,7 @@ struct mem_cgroup_stat_cpu { | |||
60 | } ____cacheline_aligned_in_smp; | 73 | } ____cacheline_aligned_in_smp; |
61 | 74 | ||
62 | struct mem_cgroup_stat { | 75 | struct mem_cgroup_stat { |
63 | struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | 76 | struct mem_cgroup_stat_cpu cpustat[0]; |
64 | }; | 77 | }; |
65 | 78 | ||
66 | /* | 79 | /* |
@@ -89,9 +102,10 @@ struct mem_cgroup_per_zone { | |||
89 | /* | 102 | /* |
90 | * spin_lock to protect the per cgroup LRU | 103 | * spin_lock to protect the per cgroup LRU |
91 | */ | 104 | */ |
92 | spinlock_t lru_lock; | ||
93 | struct list_head lists[NR_LRU_LISTS]; | 105 | struct list_head lists[NR_LRU_LISTS]; |
94 | unsigned long count[NR_LRU_LISTS]; | 106 | unsigned long count[NR_LRU_LISTS]; |
107 | |||
108 | struct zone_reclaim_stat reclaim_stat; | ||
95 | }; | 109 | }; |
96 | /* Macro for accessing counter */ | 110 | /* Macro for accessing counter */ |
97 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | 111 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) |
@@ -122,44 +136,73 @@ struct mem_cgroup { | |||
122 | */ | 136 | */ |
123 | struct res_counter res; | 137 | struct res_counter res; |
124 | /* | 138 | /* |
139 | * the counter to account for mem+swap usage. | ||
140 | */ | ||
141 | struct res_counter memsw; | ||
142 | /* | ||
125 | * Per cgroup active and inactive list, similar to the | 143 | * Per cgroup active and inactive list, similar to the |
126 | * per zone LRU lists. | 144 | * per zone LRU lists. |
127 | */ | 145 | */ |
128 | struct mem_cgroup_lru_info info; | 146 | struct mem_cgroup_lru_info info; |
129 | 147 | ||
148 | /* | ||
149 | protect against reclaim related member. | ||
150 | */ | ||
151 | spinlock_t reclaim_param_lock; | ||
152 | |||
130 | int prev_priority; /* for recording reclaim priority */ | 153 | int prev_priority; /* for recording reclaim priority */ |
154 | |||
155 | /* | ||
156 | * While reclaiming in a hiearchy, we cache the last child we | ||
157 | * reclaimed from. Protected by hierarchy_mutex | ||
158 | */ | ||
159 | struct mem_cgroup *last_scanned_child; | ||
131 | /* | 160 | /* |
132 | * statistics. | 161 | * Should the accounting and control be hierarchical, per subtree? |
162 | */ | ||
163 | bool use_hierarchy; | ||
164 | unsigned long last_oom_jiffies; | ||
165 | atomic_t refcnt; | ||
166 | |||
167 | unsigned int swappiness; | ||
168 | |||
169 | /* | ||
170 | * statistics. This must be placed at the end of memcg. | ||
133 | */ | 171 | */ |
134 | struct mem_cgroup_stat stat; | 172 | struct mem_cgroup_stat stat; |
135 | }; | 173 | }; |
136 | static struct mem_cgroup init_mem_cgroup; | ||
137 | 174 | ||
138 | enum charge_type { | 175 | enum charge_type { |
139 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 176 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
140 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 177 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
141 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ | 178 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
142 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | 179 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
180 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | ||
143 | NR_CHARGE_TYPE, | 181 | NR_CHARGE_TYPE, |
144 | }; | 182 | }; |
145 | 183 | ||
146 | /* only for here (for easy reading.) */ | 184 | /* only for here (for easy reading.) */ |
147 | #define PCGF_CACHE (1UL << PCG_CACHE) | 185 | #define PCGF_CACHE (1UL << PCG_CACHE) |
148 | #define PCGF_USED (1UL << PCG_USED) | 186 | #define PCGF_USED (1UL << PCG_USED) |
149 | #define PCGF_ACTIVE (1UL << PCG_ACTIVE) | ||
150 | #define PCGF_LOCK (1UL << PCG_LOCK) | 187 | #define PCGF_LOCK (1UL << PCG_LOCK) |
151 | #define PCGF_FILE (1UL << PCG_FILE) | ||
152 | static const unsigned long | 188 | static const unsigned long |
153 | pcg_default_flags[NR_CHARGE_TYPE] = { | 189 | pcg_default_flags[NR_CHARGE_TYPE] = { |
154 | PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */ | 190 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ |
155 | PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */ | 191 | PCGF_USED | PCGF_LOCK, /* Anon */ |
156 | PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ | 192 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ |
157 | 0, /* FORCE */ | 193 | 0, /* FORCE */ |
158 | }; | 194 | }; |
159 | 195 | ||
160 | /* | 196 | /* for encoding cft->private value on file */ |
161 | * Always modified under lru lock. Then, not necessary to preempt_disable() | 197 | #define _MEM (0) |
162 | */ | 198 | #define _MEMSWAP (1) |
199 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) | ||
200 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | ||
201 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | ||
202 | |||
203 | static void mem_cgroup_get(struct mem_cgroup *mem); | ||
204 | static void mem_cgroup_put(struct mem_cgroup *mem); | ||
205 | |||
163 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | 206 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
164 | struct page_cgroup *pc, | 207 | struct page_cgroup *pc, |
165 | bool charge) | 208 | bool charge) |
@@ -167,10 +210,9 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
167 | int val = (charge)? 1 : -1; | 210 | int val = (charge)? 1 : -1; |
168 | struct mem_cgroup_stat *stat = &mem->stat; | 211 | struct mem_cgroup_stat *stat = &mem->stat; |
169 | struct mem_cgroup_stat_cpu *cpustat; | 212 | struct mem_cgroup_stat_cpu *cpustat; |
213 | int cpu = get_cpu(); | ||
170 | 214 | ||
171 | VM_BUG_ON(!irqs_disabled()); | 215 | cpustat = &stat->cpustat[cpu]; |
172 | |||
173 | cpustat = &stat->cpustat[smp_processor_id()]; | ||
174 | if (PageCgroupCache(pc)) | 216 | if (PageCgroupCache(pc)) |
175 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); | 217 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); |
176 | else | 218 | else |
@@ -182,6 +224,7 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | |||
182 | else | 224 | else |
183 | __mem_cgroup_stat_add_safe(cpustat, | 225 | __mem_cgroup_stat_add_safe(cpustat, |
184 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 226 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
227 | put_cpu(); | ||
185 | } | 228 | } |
186 | 229 | ||
187 | static struct mem_cgroup_per_zone * | 230 | static struct mem_cgroup_per_zone * |
@@ -197,6 +240,9 @@ page_cgroup_zoneinfo(struct page_cgroup *pc) | |||
197 | int nid = page_cgroup_nid(pc); | 240 | int nid = page_cgroup_nid(pc); |
198 | int zid = page_cgroup_zid(pc); | 241 | int zid = page_cgroup_zid(pc); |
199 | 242 | ||
243 | if (!mem) | ||
244 | return NULL; | ||
245 | |||
200 | return mem_cgroup_zoneinfo(mem, nid, zid); | 246 | return mem_cgroup_zoneinfo(mem, nid, zid); |
201 | } | 247 | } |
202 | 248 | ||
@@ -236,77 +282,152 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |||
236 | struct mem_cgroup, css); | 282 | struct mem_cgroup, css); |
237 | } | 283 | } |
238 | 284 | ||
239 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | 285 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
240 | struct page_cgroup *pc) | ||
241 | { | 286 | { |
242 | int lru = LRU_BASE; | 287 | struct mem_cgroup *mem = NULL; |
288 | /* | ||
289 | * Because we have no locks, mm->owner's may be being moved to other | ||
290 | * cgroup. We use css_tryget() here even if this looks | ||
291 | * pessimistic (rather than adding locks here). | ||
292 | */ | ||
293 | rcu_read_lock(); | ||
294 | do { | ||
295 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
296 | if (unlikely(!mem)) | ||
297 | break; | ||
298 | } while (!css_tryget(&mem->css)); | ||
299 | rcu_read_unlock(); | ||
300 | return mem; | ||
301 | } | ||
243 | 302 | ||
244 | if (PageCgroupUnevictable(pc)) | 303 | static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem) |
245 | lru = LRU_UNEVICTABLE; | 304 | { |
246 | else { | 305 | if (!mem) |
247 | if (PageCgroupActive(pc)) | 306 | return true; |
248 | lru += LRU_ACTIVE; | 307 | return css_is_removed(&mem->css); |
249 | if (PageCgroupFile(pc)) | 308 | } |
250 | lru += LRU_FILE; | ||
251 | } | ||
252 | 309 | ||
253 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | 310 | /* |
311 | * Following LRU functions are allowed to be used without PCG_LOCK. | ||
312 | * Operations are called by routine of global LRU independently from memcg. | ||
313 | * What we have to take care of here is validness of pc->mem_cgroup. | ||
314 | * | ||
315 | * Changes to pc->mem_cgroup happens when | ||
316 | * 1. charge | ||
317 | * 2. moving account | ||
318 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | ||
319 | * It is added to LRU before charge. | ||
320 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | ||
321 | * When moving account, the page is not on LRU. It's isolated. | ||
322 | */ | ||
254 | 323 | ||
255 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false); | 324 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
256 | list_del(&pc->lru); | 325 | { |
326 | struct page_cgroup *pc; | ||
327 | struct mem_cgroup *mem; | ||
328 | struct mem_cgroup_per_zone *mz; | ||
329 | |||
330 | if (mem_cgroup_disabled()) | ||
331 | return; | ||
332 | pc = lookup_page_cgroup(page); | ||
333 | /* can happen while we handle swapcache. */ | ||
334 | if (list_empty(&pc->lru) || !pc->mem_cgroup) | ||
335 | return; | ||
336 | /* | ||
337 | * We don't check PCG_USED bit. It's cleared when the "page" is finally | ||
338 | * removed from global LRU. | ||
339 | */ | ||
340 | mz = page_cgroup_zoneinfo(pc); | ||
341 | mem = pc->mem_cgroup; | ||
342 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | ||
343 | list_del_init(&pc->lru); | ||
344 | return; | ||
257 | } | 345 | } |
258 | 346 | ||
259 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 347 | void mem_cgroup_del_lru(struct page *page) |
260 | struct page_cgroup *pc) | ||
261 | { | 348 | { |
262 | int lru = LRU_BASE; | 349 | mem_cgroup_del_lru_list(page, page_lru(page)); |
350 | } | ||
263 | 351 | ||
264 | if (PageCgroupUnevictable(pc)) | 352 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
265 | lru = LRU_UNEVICTABLE; | 353 | { |
266 | else { | 354 | struct mem_cgroup_per_zone *mz; |
267 | if (PageCgroupActive(pc)) | 355 | struct page_cgroup *pc; |
268 | lru += LRU_ACTIVE; | ||
269 | if (PageCgroupFile(pc)) | ||
270 | lru += LRU_FILE; | ||
271 | } | ||
272 | 356 | ||
273 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 357 | if (mem_cgroup_disabled()) |
274 | list_add(&pc->lru, &mz->lists[lru]); | 358 | return; |
275 | 359 | ||
276 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true); | 360 | pc = lookup_page_cgroup(page); |
361 | smp_rmb(); | ||
362 | /* unused page is not rotated. */ | ||
363 | if (!PageCgroupUsed(pc)) | ||
364 | return; | ||
365 | mz = page_cgroup_zoneinfo(pc); | ||
366 | list_move(&pc->lru, &mz->lists[lru]); | ||
277 | } | 367 | } |
278 | 368 | ||
279 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru) | 369 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
280 | { | 370 | { |
281 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 371 | struct page_cgroup *pc; |
282 | int active = PageCgroupActive(pc); | 372 | struct mem_cgroup_per_zone *mz; |
283 | int file = PageCgroupFile(pc); | ||
284 | int unevictable = PageCgroupUnevictable(pc); | ||
285 | enum lru_list from = unevictable ? LRU_UNEVICTABLE : | ||
286 | (LRU_FILE * !!file + !!active); | ||
287 | 373 | ||
288 | if (lru == from) | 374 | if (mem_cgroup_disabled()) |
375 | return; | ||
376 | pc = lookup_page_cgroup(page); | ||
377 | /* barrier to sync with "charge" */ | ||
378 | smp_rmb(); | ||
379 | if (!PageCgroupUsed(pc)) | ||
289 | return; | 380 | return; |
290 | 381 | ||
291 | MEM_CGROUP_ZSTAT(mz, from) -= 1; | 382 | mz = page_cgroup_zoneinfo(pc); |
383 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
384 | list_add(&pc->lru, &mz->lists[lru]); | ||
385 | } | ||
386 | |||
387 | /* | ||
388 | * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to | ||
389 | * lru because the page may.be reused after it's fully uncharged (because of | ||
390 | * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | ||
391 | * it again. This function is only used to charge SwapCache. It's done under | ||
392 | * lock_page and expected that zone->lru_lock is never held. | ||
393 | */ | ||
394 | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) | ||
395 | { | ||
396 | unsigned long flags; | ||
397 | struct zone *zone = page_zone(page); | ||
398 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
399 | |||
400 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
292 | /* | 401 | /* |
293 | * However this is done under mz->lru_lock, another flags, which | 402 | * Forget old LRU when this page_cgroup is *not* used. This Used bit |
294 | * are not related to LRU, will be modified from out-of-lock. | 403 | * is guarded by lock_page() because the page is SwapCache. |
295 | * We have to use atomic set/clear flags. | ||
296 | */ | 404 | */ |
297 | if (is_unevictable_lru(lru)) { | 405 | if (!PageCgroupUsed(pc)) |
298 | ClearPageCgroupActive(pc); | 406 | mem_cgroup_del_lru_list(page, page_lru(page)); |
299 | SetPageCgroupUnevictable(pc); | 407 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
300 | } else { | 408 | } |
301 | if (is_active_lru(lru)) | ||
302 | SetPageCgroupActive(pc); | ||
303 | else | ||
304 | ClearPageCgroupActive(pc); | ||
305 | ClearPageCgroupUnevictable(pc); | ||
306 | } | ||
307 | 409 | ||
308 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 410 | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) |
309 | list_move(&pc->lru, &mz->lists[lru]); | 411 | { |
412 | unsigned long flags; | ||
413 | struct zone *zone = page_zone(page); | ||
414 | struct page_cgroup *pc = lookup_page_cgroup(page); | ||
415 | |||
416 | spin_lock_irqsave(&zone->lru_lock, flags); | ||
417 | /* link when the page is linked to LRU but page_cgroup isn't */ | ||
418 | if (PageLRU(page) && list_empty(&pc->lru)) | ||
419 | mem_cgroup_add_lru_list(page, page_lru(page)); | ||
420 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
421 | } | ||
422 | |||
423 | |||
424 | void mem_cgroup_move_lists(struct page *page, | ||
425 | enum lru_list from, enum lru_list to) | ||
426 | { | ||
427 | if (mem_cgroup_disabled()) | ||
428 | return; | ||
429 | mem_cgroup_del_lru_list(page, from); | ||
430 | mem_cgroup_add_lru_list(page, to); | ||
310 | } | 431 | } |
311 | 432 | ||
312 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 433 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
@@ -320,37 +441,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
320 | } | 441 | } |
321 | 442 | ||
322 | /* | 443 | /* |
323 | * This routine assumes that the appropriate zone's lru lock is already held | ||
324 | */ | ||
325 | void mem_cgroup_move_lists(struct page *page, enum lru_list lru) | ||
326 | { | ||
327 | struct page_cgroup *pc; | ||
328 | struct mem_cgroup_per_zone *mz; | ||
329 | unsigned long flags; | ||
330 | |||
331 | if (mem_cgroup_subsys.disabled) | ||
332 | return; | ||
333 | |||
334 | /* | ||
335 | * We cannot lock_page_cgroup while holding zone's lru_lock, | ||
336 | * because other holders of lock_page_cgroup can be interrupted | ||
337 | * with an attempt to rotate_reclaimable_page. But we cannot | ||
338 | * safely get to page_cgroup without it, so just try_lock it: | ||
339 | * mem_cgroup_isolate_pages allows for page left on wrong list. | ||
340 | */ | ||
341 | pc = lookup_page_cgroup(page); | ||
342 | if (!trylock_page_cgroup(pc)) | ||
343 | return; | ||
344 | if (pc && PageCgroupUsed(pc)) { | ||
345 | mz = page_cgroup_zoneinfo(pc); | ||
346 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
347 | __mem_cgroup_move_lists(pc, lru); | ||
348 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
349 | } | ||
350 | unlock_page_cgroup(pc); | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * Calculate mapped_ratio under memory controller. This will be used in | 444 | * Calculate mapped_ratio under memory controller. This will be used in |
355 | * vmscan.c for deteremining we have to reclaim mapped pages. | 445 | * vmscan.c for deteremining we have to reclaim mapped pages. |
356 | */ | 446 | */ |
@@ -372,39 +462,108 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |||
372 | */ | 462 | */ |
373 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 463 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
374 | { | 464 | { |
375 | return mem->prev_priority; | 465 | int prev_priority; |
466 | |||
467 | spin_lock(&mem->reclaim_param_lock); | ||
468 | prev_priority = mem->prev_priority; | ||
469 | spin_unlock(&mem->reclaim_param_lock); | ||
470 | |||
471 | return prev_priority; | ||
376 | } | 472 | } |
377 | 473 | ||
378 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 474 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) |
379 | { | 475 | { |
476 | spin_lock(&mem->reclaim_param_lock); | ||
380 | if (priority < mem->prev_priority) | 477 | if (priority < mem->prev_priority) |
381 | mem->prev_priority = priority; | 478 | mem->prev_priority = priority; |
479 | spin_unlock(&mem->reclaim_param_lock); | ||
382 | } | 480 | } |
383 | 481 | ||
384 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 482 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) |
385 | { | 483 | { |
484 | spin_lock(&mem->reclaim_param_lock); | ||
386 | mem->prev_priority = priority; | 485 | mem->prev_priority = priority; |
486 | spin_unlock(&mem->reclaim_param_lock); | ||
387 | } | 487 | } |
388 | 488 | ||
389 | /* | 489 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
390 | * Calculate # of pages to be scanned in this priority/zone. | 490 | { |
391 | * See also vmscan.c | 491 | unsigned long active; |
392 | * | 492 | unsigned long inactive; |
393 | * priority starts from "DEF_PRIORITY" and decremented in each loop. | 493 | unsigned long gb; |
394 | * (see include/linux/mmzone.h) | 494 | unsigned long inactive_ratio; |
395 | */ | 495 | |
496 | inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); | ||
497 | active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); | ||
498 | |||
499 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | ||
500 | if (gb) | ||
501 | inactive_ratio = int_sqrt(10 * gb); | ||
502 | else | ||
503 | inactive_ratio = 1; | ||
504 | |||
505 | if (present_pages) { | ||
506 | present_pages[0] = inactive; | ||
507 | present_pages[1] = active; | ||
508 | } | ||
509 | |||
510 | return inactive_ratio; | ||
511 | } | ||
512 | |||
513 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | ||
514 | { | ||
515 | unsigned long active; | ||
516 | unsigned long inactive; | ||
517 | unsigned long present_pages[2]; | ||
518 | unsigned long inactive_ratio; | ||
396 | 519 | ||
397 | long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, | 520 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); |
398 | int priority, enum lru_list lru) | 521 | |
522 | inactive = present_pages[0]; | ||
523 | active = present_pages[1]; | ||
524 | |||
525 | if (inactive * inactive_ratio < active) | ||
526 | return 1; | ||
527 | |||
528 | return 0; | ||
529 | } | ||
530 | |||
531 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | ||
532 | struct zone *zone, | ||
533 | enum lru_list lru) | ||
399 | { | 534 | { |
400 | long nr_pages; | ||
401 | int nid = zone->zone_pgdat->node_id; | 535 | int nid = zone->zone_pgdat->node_id; |
402 | int zid = zone_idx(zone); | 536 | int zid = zone_idx(zone); |
403 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 537 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
404 | 538 | ||
405 | nr_pages = MEM_CGROUP_ZSTAT(mz, lru); | 539 | return MEM_CGROUP_ZSTAT(mz, lru); |
540 | } | ||
406 | 541 | ||
407 | return (nr_pages >> priority); | 542 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
543 | struct zone *zone) | ||
544 | { | ||
545 | int nid = zone->zone_pgdat->node_id; | ||
546 | int zid = zone_idx(zone); | ||
547 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | ||
548 | |||
549 | return &mz->reclaim_stat; | ||
550 | } | ||
551 | |||
552 | struct zone_reclaim_stat * | ||
553 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | ||
554 | { | ||
555 | struct page_cgroup *pc; | ||
556 | struct mem_cgroup_per_zone *mz; | ||
557 | |||
558 | if (mem_cgroup_disabled()) | ||
559 | return NULL; | ||
560 | |||
561 | pc = lookup_page_cgroup(page); | ||
562 | mz = page_cgroup_zoneinfo(pc); | ||
563 | if (!mz) | ||
564 | return NULL; | ||
565 | |||
566 | return &mz->reclaim_stat; | ||
408 | } | 567 | } |
409 | 568 | ||
410 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 569 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
@@ -429,95 +588,281 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
429 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 588 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
430 | src = &mz->lists[lru]; | 589 | src = &mz->lists[lru]; |
431 | 590 | ||
432 | spin_lock(&mz->lru_lock); | ||
433 | scan = 0; | 591 | scan = 0; |
434 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 592 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
435 | if (scan >= nr_to_scan) | 593 | if (scan >= nr_to_scan) |
436 | break; | 594 | break; |
595 | |||
596 | page = pc->page; | ||
437 | if (unlikely(!PageCgroupUsed(pc))) | 597 | if (unlikely(!PageCgroupUsed(pc))) |
438 | continue; | 598 | continue; |
439 | page = pc->page; | ||
440 | |||
441 | if (unlikely(!PageLRU(page))) | 599 | if (unlikely(!PageLRU(page))) |
442 | continue; | 600 | continue; |
443 | 601 | ||
444 | /* | ||
445 | * TODO: play better with lumpy reclaim, grabbing anything. | ||
446 | */ | ||
447 | if (PageUnevictable(page) || | ||
448 | (PageActive(page) && !active) || | ||
449 | (!PageActive(page) && active)) { | ||
450 | __mem_cgroup_move_lists(pc, page_lru(page)); | ||
451 | continue; | ||
452 | } | ||
453 | |||
454 | scan++; | 602 | scan++; |
455 | list_move(&pc->lru, &pc_list); | ||
456 | |||
457 | if (__isolate_lru_page(page, mode, file) == 0) { | 603 | if (__isolate_lru_page(page, mode, file) == 0) { |
458 | list_move(&page->lru, dst); | 604 | list_move(&page->lru, dst); |
459 | nr_taken++; | 605 | nr_taken++; |
460 | } | 606 | } |
461 | } | 607 | } |
462 | 608 | ||
463 | list_splice(&pc_list, src); | ||
464 | spin_unlock(&mz->lru_lock); | ||
465 | |||
466 | *scanned = scan; | 609 | *scanned = scan; |
467 | return nr_taken; | 610 | return nr_taken; |
468 | } | 611 | } |
469 | 612 | ||
613 | #define mem_cgroup_from_res_counter(counter, member) \ | ||
614 | container_of(counter, struct mem_cgroup, member) | ||
615 | |||
470 | /* | 616 | /* |
471 | * Charge the memory controller for page usage. | 617 | * This routine finds the DFS walk successor. This routine should be |
472 | * Return | 618 | * called with hierarchy_mutex held |
473 | * 0 if the charge was successful | ||
474 | * < 0 if the cgroup is over its limit | ||
475 | */ | 619 | */ |
476 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 620 | static struct mem_cgroup * |
477 | gfp_t gfp_mask, enum charge_type ctype, | 621 | mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem) |
478 | struct mem_cgroup *memcg) | ||
479 | { | 622 | { |
623 | struct cgroup *cgroup, *curr_cgroup, *root_cgroup; | ||
624 | |||
625 | curr_cgroup = curr->css.cgroup; | ||
626 | root_cgroup = root_mem->css.cgroup; | ||
627 | |||
628 | if (!list_empty(&curr_cgroup->children)) { | ||
629 | /* | ||
630 | * Walk down to children | ||
631 | */ | ||
632 | mem_cgroup_put(curr); | ||
633 | cgroup = list_entry(curr_cgroup->children.next, | ||
634 | struct cgroup, sibling); | ||
635 | curr = mem_cgroup_from_cont(cgroup); | ||
636 | mem_cgroup_get(curr); | ||
637 | goto done; | ||
638 | } | ||
639 | |||
640 | visit_parent: | ||
641 | if (curr_cgroup == root_cgroup) { | ||
642 | mem_cgroup_put(curr); | ||
643 | curr = root_mem; | ||
644 | mem_cgroup_get(curr); | ||
645 | goto done; | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * Goto next sibling | ||
650 | */ | ||
651 | if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) { | ||
652 | mem_cgroup_put(curr); | ||
653 | cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup, | ||
654 | sibling); | ||
655 | curr = mem_cgroup_from_cont(cgroup); | ||
656 | mem_cgroup_get(curr); | ||
657 | goto done; | ||
658 | } | ||
659 | |||
660 | /* | ||
661 | * Go up to next parent and next parent's sibling if need be | ||
662 | */ | ||
663 | curr_cgroup = curr_cgroup->parent; | ||
664 | goto visit_parent; | ||
665 | |||
666 | done: | ||
667 | root_mem->last_scanned_child = curr; | ||
668 | return curr; | ||
669 | } | ||
670 | |||
671 | /* | ||
672 | * Visit the first child (need not be the first child as per the ordering | ||
673 | * of the cgroup list, since we track last_scanned_child) of @mem and use | ||
674 | * that to reclaim free pages from. | ||
675 | */ | ||
676 | static struct mem_cgroup * | ||
677 | mem_cgroup_get_first_node(struct mem_cgroup *root_mem) | ||
678 | { | ||
679 | struct cgroup *cgroup; | ||
680 | struct mem_cgroup *ret; | ||
681 | bool obsolete; | ||
682 | |||
683 | obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child); | ||
684 | |||
685 | /* | ||
686 | * Scan all children under the mem_cgroup mem | ||
687 | */ | ||
688 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | ||
689 | if (list_empty(&root_mem->css.cgroup->children)) { | ||
690 | ret = root_mem; | ||
691 | goto done; | ||
692 | } | ||
693 | |||
694 | if (!root_mem->last_scanned_child || obsolete) { | ||
695 | |||
696 | if (obsolete && root_mem->last_scanned_child) | ||
697 | mem_cgroup_put(root_mem->last_scanned_child); | ||
698 | |||
699 | cgroup = list_first_entry(&root_mem->css.cgroup->children, | ||
700 | struct cgroup, sibling); | ||
701 | ret = mem_cgroup_from_cont(cgroup); | ||
702 | mem_cgroup_get(ret); | ||
703 | } else | ||
704 | ret = mem_cgroup_get_next_node(root_mem->last_scanned_child, | ||
705 | root_mem); | ||
706 | |||
707 | done: | ||
708 | root_mem->last_scanned_child = ret; | ||
709 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | ||
710 | return ret; | ||
711 | } | ||
712 | |||
713 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | ||
714 | { | ||
715 | if (do_swap_account) { | ||
716 | if (res_counter_check_under_limit(&mem->res) && | ||
717 | res_counter_check_under_limit(&mem->memsw)) | ||
718 | return true; | ||
719 | } else | ||
720 | if (res_counter_check_under_limit(&mem->res)) | ||
721 | return true; | ||
722 | return false; | ||
723 | } | ||
724 | |||
725 | static unsigned int get_swappiness(struct mem_cgroup *memcg) | ||
726 | { | ||
727 | struct cgroup *cgrp = memcg->css.cgroup; | ||
728 | unsigned int swappiness; | ||
729 | |||
730 | /* root ? */ | ||
731 | if (cgrp->parent == NULL) | ||
732 | return vm_swappiness; | ||
733 | |||
734 | spin_lock(&memcg->reclaim_param_lock); | ||
735 | swappiness = memcg->swappiness; | ||
736 | spin_unlock(&memcg->reclaim_param_lock); | ||
737 | |||
738 | return swappiness; | ||
739 | } | ||
740 | |||
741 | /* | ||
742 | * Dance down the hierarchy if needed to reclaim memory. We remember the | ||
743 | * last child we reclaimed from, so that we don't end up penalizing | ||
744 | * one child extensively based on its position in the children list. | ||
745 | * | ||
746 | * root_mem is the original ancestor that we've been reclaim from. | ||
747 | */ | ||
748 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | ||
749 | gfp_t gfp_mask, bool noswap) | ||
750 | { | ||
751 | struct mem_cgroup *next_mem; | ||
752 | int ret = 0; | ||
753 | |||
754 | /* | ||
755 | * Reclaim unconditionally and don't check for return value. | ||
756 | * We need to reclaim in the current group and down the tree. | ||
757 | * One might think about checking for children before reclaiming, | ||
758 | * but there might be left over accounting, even after children | ||
759 | * have left. | ||
760 | */ | ||
761 | ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, | ||
762 | get_swappiness(root_mem)); | ||
763 | if (mem_cgroup_check_under_limit(root_mem)) | ||
764 | return 0; | ||
765 | if (!root_mem->use_hierarchy) | ||
766 | return ret; | ||
767 | |||
768 | next_mem = mem_cgroup_get_first_node(root_mem); | ||
769 | |||
770 | while (next_mem != root_mem) { | ||
771 | if (mem_cgroup_is_obsolete(next_mem)) { | ||
772 | mem_cgroup_put(next_mem); | ||
773 | next_mem = mem_cgroup_get_first_node(root_mem); | ||
774 | continue; | ||
775 | } | ||
776 | ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, | ||
777 | get_swappiness(next_mem)); | ||
778 | if (mem_cgroup_check_under_limit(root_mem)) | ||
779 | return 0; | ||
780 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | ||
781 | next_mem = mem_cgroup_get_next_node(next_mem, root_mem); | ||
782 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | ||
783 | } | ||
784 | return ret; | ||
785 | } | ||
786 | |||
787 | bool mem_cgroup_oom_called(struct task_struct *task) | ||
788 | { | ||
789 | bool ret = false; | ||
480 | struct mem_cgroup *mem; | 790 | struct mem_cgroup *mem; |
481 | struct page_cgroup *pc; | 791 | struct mm_struct *mm; |
482 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
483 | struct mem_cgroup_per_zone *mz; | ||
484 | unsigned long flags; | ||
485 | 792 | ||
486 | pc = lookup_page_cgroup(page); | 793 | rcu_read_lock(); |
487 | /* can happen at boot */ | 794 | mm = task->mm; |
488 | if (unlikely(!pc)) | 795 | if (!mm) |
796 | mm = &init_mm; | ||
797 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
798 | if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) | ||
799 | ret = true; | ||
800 | rcu_read_unlock(); | ||
801 | return ret; | ||
802 | } | ||
803 | /* | ||
804 | * Unlike exported interface, "oom" parameter is added. if oom==true, | ||
805 | * oom-killer can be invoked. | ||
806 | */ | ||
807 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | ||
808 | gfp_t gfp_mask, struct mem_cgroup **memcg, | ||
809 | bool oom) | ||
810 | { | ||
811 | struct mem_cgroup *mem, *mem_over_limit; | ||
812 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
813 | struct res_counter *fail_res; | ||
814 | |||
815 | if (unlikely(test_thread_flag(TIF_MEMDIE))) { | ||
816 | /* Don't account this! */ | ||
817 | *memcg = NULL; | ||
489 | return 0; | 818 | return 0; |
490 | prefetchw(pc); | 819 | } |
820 | |||
491 | /* | 821 | /* |
492 | * We always charge the cgroup the mm_struct belongs to. | 822 | * We always charge the cgroup the mm_struct belongs to. |
493 | * The mm_struct's mem_cgroup changes on task migration if the | 823 | * The mm_struct's mem_cgroup changes on task migration if the |
494 | * thread group leader migrates. It's possible that mm is not | 824 | * thread group leader migrates. It's possible that mm is not |
495 | * set, if so charge the init_mm (happens for pagecache usage). | 825 | * set, if so charge the init_mm (happens for pagecache usage). |
496 | */ | 826 | */ |
497 | 827 | mem = *memcg; | |
498 | if (likely(!memcg)) { | 828 | if (likely(!mem)) { |
499 | rcu_read_lock(); | 829 | mem = try_get_mem_cgroup_from_mm(mm); |
500 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 830 | *memcg = mem; |
501 | if (unlikely(!mem)) { | ||
502 | rcu_read_unlock(); | ||
503 | return 0; | ||
504 | } | ||
505 | /* | ||
506 | * For every charge from the cgroup, increment reference count | ||
507 | */ | ||
508 | css_get(&mem->css); | ||
509 | rcu_read_unlock(); | ||
510 | } else { | 831 | } else { |
511 | mem = memcg; | 832 | css_get(&mem->css); |
512 | css_get(&memcg->css); | ||
513 | } | 833 | } |
834 | if (unlikely(!mem)) | ||
835 | return 0; | ||
836 | |||
837 | VM_BUG_ON(mem_cgroup_is_obsolete(mem)); | ||
838 | |||
839 | while (1) { | ||
840 | int ret; | ||
841 | bool noswap = false; | ||
842 | |||
843 | ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); | ||
844 | if (likely(!ret)) { | ||
845 | if (!do_swap_account) | ||
846 | break; | ||
847 | ret = res_counter_charge(&mem->memsw, PAGE_SIZE, | ||
848 | &fail_res); | ||
849 | if (likely(!ret)) | ||
850 | break; | ||
851 | /* mem+swap counter fails */ | ||
852 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
853 | noswap = true; | ||
854 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
855 | memsw); | ||
856 | } else | ||
857 | /* mem counter fails */ | ||
858 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
859 | res); | ||
514 | 860 | ||
515 | while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) { | ||
516 | if (!(gfp_mask & __GFP_WAIT)) | 861 | if (!(gfp_mask & __GFP_WAIT)) |
517 | goto out; | 862 | goto nomem; |
518 | 863 | ||
519 | if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | 864 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, |
520 | continue; | 865 | noswap); |
521 | 866 | ||
522 | /* | 867 | /* |
523 | * try_to_free_mem_cgroup_pages() might not give us a full | 868 | * try_to_free_mem_cgroup_pages() might not give us a full |
@@ -525,49 +870,214 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
525 | * moved to swap cache or just unmapped from the cgroup. | 870 | * moved to swap cache or just unmapped from the cgroup. |
526 | * Check the limit again to see if the reclaim reduced the | 871 | * Check the limit again to see if the reclaim reduced the |
527 | * current usage of the cgroup before giving up | 872 | * current usage of the cgroup before giving up |
873 | * | ||
528 | */ | 874 | */ |
529 | if (res_counter_check_under_limit(&mem->res)) | 875 | if (mem_cgroup_check_under_limit(mem_over_limit)) |
530 | continue; | 876 | continue; |
531 | 877 | ||
532 | if (!nr_retries--) { | 878 | if (!nr_retries--) { |
533 | mem_cgroup_out_of_memory(mem, gfp_mask); | 879 | if (oom) { |
534 | goto out; | 880 | mutex_lock(&memcg_tasklist); |
881 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); | ||
882 | mutex_unlock(&memcg_tasklist); | ||
883 | mem_over_limit->last_oom_jiffies = jiffies; | ||
884 | } | ||
885 | goto nomem; | ||
535 | } | 886 | } |
536 | } | 887 | } |
888 | return 0; | ||
889 | nomem: | ||
890 | css_put(&mem->css); | ||
891 | return -ENOMEM; | ||
892 | } | ||
537 | 893 | ||
894 | static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) | ||
895 | { | ||
896 | struct mem_cgroup *mem; | ||
897 | swp_entry_t ent; | ||
898 | |||
899 | if (!PageSwapCache(page)) | ||
900 | return NULL; | ||
901 | |||
902 | ent.val = page_private(page); | ||
903 | mem = lookup_swap_cgroup(ent); | ||
904 | if (!mem) | ||
905 | return NULL; | ||
906 | if (!css_tryget(&mem->css)) | ||
907 | return NULL; | ||
908 | return mem; | ||
909 | } | ||
910 | |||
911 | /* | ||
912 | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be | ||
913 | * USED state. If already USED, uncharge and return. | ||
914 | */ | ||
915 | |||
916 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | ||
917 | struct page_cgroup *pc, | ||
918 | enum charge_type ctype) | ||
919 | { | ||
920 | /* try_charge() can return NULL to *memcg, taking care of it. */ | ||
921 | if (!mem) | ||
922 | return; | ||
538 | 923 | ||
539 | lock_page_cgroup(pc); | 924 | lock_page_cgroup(pc); |
540 | if (unlikely(PageCgroupUsed(pc))) { | 925 | if (unlikely(PageCgroupUsed(pc))) { |
541 | unlock_page_cgroup(pc); | 926 | unlock_page_cgroup(pc); |
542 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 927 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
928 | if (do_swap_account) | ||
929 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
543 | css_put(&mem->css); | 930 | css_put(&mem->css); |
544 | 931 | return; | |
545 | goto done; | ||
546 | } | 932 | } |
547 | pc->mem_cgroup = mem; | 933 | pc->mem_cgroup = mem; |
548 | /* | 934 | smp_wmb(); |
549 | * If a page is accounted as a page cache, insert to inactive list. | ||
550 | * If anon, insert to active list. | ||
551 | */ | ||
552 | pc->flags = pcg_default_flags[ctype]; | 935 | pc->flags = pcg_default_flags[ctype]; |
553 | 936 | ||
554 | mz = page_cgroup_zoneinfo(pc); | 937 | mem_cgroup_charge_statistics(mem, pc, true); |
555 | 938 | ||
556 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
557 | __mem_cgroup_add_list(mz, pc); | ||
558 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
559 | unlock_page_cgroup(pc); | 939 | unlock_page_cgroup(pc); |
940 | } | ||
560 | 941 | ||
561 | done: | 942 | /** |
562 | return 0; | 943 | * mem_cgroup_move_account - move account of the page |
944 | * @pc: page_cgroup of the page. | ||
945 | * @from: mem_cgroup which the page is moved from. | ||
946 | * @to: mem_cgroup which the page is moved to. @from != @to. | ||
947 | * | ||
948 | * The caller must confirm following. | ||
949 | * - page is not on LRU (isolate_page() is useful.) | ||
950 | * | ||
951 | * returns 0 at success, | ||
952 | * returns -EBUSY when lock is busy or "pc" is unstable. | ||
953 | * | ||
954 | * This function does "uncharge" from old cgroup but doesn't do "charge" to | ||
955 | * new cgroup. It should be done by a caller. | ||
956 | */ | ||
957 | |||
958 | static int mem_cgroup_move_account(struct page_cgroup *pc, | ||
959 | struct mem_cgroup *from, struct mem_cgroup *to) | ||
960 | { | ||
961 | struct mem_cgroup_per_zone *from_mz, *to_mz; | ||
962 | int nid, zid; | ||
963 | int ret = -EBUSY; | ||
964 | |||
965 | VM_BUG_ON(from == to); | ||
966 | VM_BUG_ON(PageLRU(pc->page)); | ||
967 | |||
968 | nid = page_cgroup_nid(pc); | ||
969 | zid = page_cgroup_zid(pc); | ||
970 | from_mz = mem_cgroup_zoneinfo(from, nid, zid); | ||
971 | to_mz = mem_cgroup_zoneinfo(to, nid, zid); | ||
972 | |||
973 | if (!trylock_page_cgroup(pc)) | ||
974 | return ret; | ||
975 | |||
976 | if (!PageCgroupUsed(pc)) | ||
977 | goto out; | ||
978 | |||
979 | if (pc->mem_cgroup != from) | ||
980 | goto out; | ||
981 | |||
982 | css_put(&from->css); | ||
983 | res_counter_uncharge(&from->res, PAGE_SIZE); | ||
984 | mem_cgroup_charge_statistics(from, pc, false); | ||
985 | if (do_swap_account) | ||
986 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | ||
987 | pc->mem_cgroup = to; | ||
988 | mem_cgroup_charge_statistics(to, pc, true); | ||
989 | css_get(&to->css); | ||
990 | ret = 0; | ||
563 | out: | 991 | out: |
564 | css_put(&mem->css); | 992 | unlock_page_cgroup(pc); |
565 | return -ENOMEM; | 993 | return ret; |
994 | } | ||
995 | |||
996 | /* | ||
997 | * move charges to its parent. | ||
998 | */ | ||
999 | |||
1000 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | ||
1001 | struct mem_cgroup *child, | ||
1002 | gfp_t gfp_mask) | ||
1003 | { | ||
1004 | struct page *page = pc->page; | ||
1005 | struct cgroup *cg = child->css.cgroup; | ||
1006 | struct cgroup *pcg = cg->parent; | ||
1007 | struct mem_cgroup *parent; | ||
1008 | int ret; | ||
1009 | |||
1010 | /* Is ROOT ? */ | ||
1011 | if (!pcg) | ||
1012 | return -EINVAL; | ||
1013 | |||
1014 | |||
1015 | parent = mem_cgroup_from_cont(pcg); | ||
1016 | |||
1017 | |||
1018 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); | ||
1019 | if (ret || !parent) | ||
1020 | return ret; | ||
1021 | |||
1022 | if (!get_page_unless_zero(page)) | ||
1023 | return -EBUSY; | ||
1024 | |||
1025 | ret = isolate_lru_page(page); | ||
1026 | |||
1027 | if (ret) | ||
1028 | goto cancel; | ||
1029 | |||
1030 | ret = mem_cgroup_move_account(pc, child, parent); | ||
1031 | |||
1032 | /* drop extra refcnt by try_charge() (move_account increment one) */ | ||
1033 | css_put(&parent->css); | ||
1034 | putback_lru_page(page); | ||
1035 | if (!ret) { | ||
1036 | put_page(page); | ||
1037 | return 0; | ||
1038 | } | ||
1039 | /* uncharge if move fails */ | ||
1040 | cancel: | ||
1041 | res_counter_uncharge(&parent->res, PAGE_SIZE); | ||
1042 | if (do_swap_account) | ||
1043 | res_counter_uncharge(&parent->memsw, PAGE_SIZE); | ||
1044 | put_page(page); | ||
1045 | return ret; | ||
1046 | } | ||
1047 | |||
1048 | /* | ||
1049 | * Charge the memory controller for page usage. | ||
1050 | * Return | ||
1051 | * 0 if the charge was successful | ||
1052 | * < 0 if the cgroup is over its limit | ||
1053 | */ | ||
1054 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | ||
1055 | gfp_t gfp_mask, enum charge_type ctype, | ||
1056 | struct mem_cgroup *memcg) | ||
1057 | { | ||
1058 | struct mem_cgroup *mem; | ||
1059 | struct page_cgroup *pc; | ||
1060 | int ret; | ||
1061 | |||
1062 | pc = lookup_page_cgroup(page); | ||
1063 | /* can happen at boot */ | ||
1064 | if (unlikely(!pc)) | ||
1065 | return 0; | ||
1066 | prefetchw(pc); | ||
1067 | |||
1068 | mem = memcg; | ||
1069 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | ||
1070 | if (ret || !mem) | ||
1071 | return ret; | ||
1072 | |||
1073 | __mem_cgroup_commit_charge(mem, pc, ctype); | ||
1074 | return 0; | ||
566 | } | 1075 | } |
567 | 1076 | ||
568 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 1077 | int mem_cgroup_newpage_charge(struct page *page, |
1078 | struct mm_struct *mm, gfp_t gfp_mask) | ||
569 | { | 1079 | { |
570 | if (mem_cgroup_subsys.disabled) | 1080 | if (mem_cgroup_disabled()) |
571 | return 0; | 1081 | return 0; |
572 | if (PageCompound(page)) | 1082 | if (PageCompound(page)) |
573 | return 0; | 1083 | return 0; |
@@ -589,7 +1099,10 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | |||
589 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 1099 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
590 | gfp_t gfp_mask) | 1100 | gfp_t gfp_mask) |
591 | { | 1101 | { |
592 | if (mem_cgroup_subsys.disabled) | 1102 | struct mem_cgroup *mem = NULL; |
1103 | int ret; | ||
1104 | |||
1105 | if (mem_cgroup_disabled()) | ||
593 | return 0; | 1106 | return 0; |
594 | if (PageCompound(page)) | 1107 | if (PageCompound(page)) |
595 | return 0; | 1108 | return 0; |
@@ -601,6 +1114,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
601 | * For GFP_NOWAIT case, the page may be pre-charged before calling | 1114 | * For GFP_NOWAIT case, the page may be pre-charged before calling |
602 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | 1115 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call |
603 | * charge twice. (It works but has to pay a bit larger cost.) | 1116 | * charge twice. (It works but has to pay a bit larger cost.) |
1117 | * And when the page is SwapCache, it should take swap information | ||
1118 | * into account. This is under lock_page() now. | ||
604 | */ | 1119 | */ |
605 | if (!(gfp_mask & __GFP_WAIT)) { | 1120 | if (!(gfp_mask & __GFP_WAIT)) { |
606 | struct page_cgroup *pc; | 1121 | struct page_cgroup *pc; |
@@ -617,58 +1132,198 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
617 | unlock_page_cgroup(pc); | 1132 | unlock_page_cgroup(pc); |
618 | } | 1133 | } |
619 | 1134 | ||
620 | if (unlikely(!mm)) | 1135 | if (do_swap_account && PageSwapCache(page)) { |
1136 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1137 | if (mem) | ||
1138 | mm = NULL; | ||
1139 | else | ||
1140 | mem = NULL; | ||
1141 | /* SwapCache may be still linked to LRU now. */ | ||
1142 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
1143 | } | ||
1144 | |||
1145 | if (unlikely(!mm && !mem)) | ||
621 | mm = &init_mm; | 1146 | mm = &init_mm; |
622 | 1147 | ||
623 | if (page_is_file_cache(page)) | 1148 | if (page_is_file_cache(page)) |
624 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1149 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
625 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 1150 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
626 | else | 1151 | |
627 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1152 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
628 | MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); | 1153 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); |
1154 | if (mem) | ||
1155 | css_put(&mem->css); | ||
1156 | if (PageSwapCache(page)) | ||
1157 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
1158 | |||
1159 | if (do_swap_account && !ret && PageSwapCache(page)) { | ||
1160 | swp_entry_t ent = {.val = page_private(page)}; | ||
1161 | /* avoid double counting */ | ||
1162 | mem = swap_cgroup_record(ent, NULL); | ||
1163 | if (mem) { | ||
1164 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1165 | mem_cgroup_put(mem); | ||
1166 | } | ||
1167 | } | ||
1168 | return ret; | ||
1169 | } | ||
1170 | |||
1171 | /* | ||
1172 | * While swap-in, try_charge -> commit or cancel, the page is locked. | ||
1173 | * And when try_charge() successfully returns, one refcnt to memcg without | ||
1174 | * struct page_cgroup is aquired. This refcnt will be cumsumed by | ||
1175 | * "commit()" or removed by "cancel()" | ||
1176 | */ | ||
1177 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | ||
1178 | struct page *page, | ||
1179 | gfp_t mask, struct mem_cgroup **ptr) | ||
1180 | { | ||
1181 | struct mem_cgroup *mem; | ||
1182 | int ret; | ||
1183 | |||
1184 | if (mem_cgroup_disabled()) | ||
1185 | return 0; | ||
1186 | |||
1187 | if (!do_swap_account) | ||
1188 | goto charge_cur_mm; | ||
1189 | /* | ||
1190 | * A racing thread's fault, or swapoff, may have already updated | ||
1191 | * the pte, and even removed page from swap cache: return success | ||
1192 | * to go on to do_swap_page()'s pte_same() test, which should fail. | ||
1193 | */ | ||
1194 | if (!PageSwapCache(page)) | ||
1195 | return 0; | ||
1196 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1197 | if (!mem) | ||
1198 | goto charge_cur_mm; | ||
1199 | *ptr = mem; | ||
1200 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | ||
1201 | /* drop extra refcnt from tryget */ | ||
1202 | css_put(&mem->css); | ||
1203 | return ret; | ||
1204 | charge_cur_mm: | ||
1205 | if (unlikely(!mm)) | ||
1206 | mm = &init_mm; | ||
1207 | return __mem_cgroup_try_charge(mm, mask, ptr, true); | ||
1208 | } | ||
1209 | |||
1210 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | ||
1211 | { | ||
1212 | struct page_cgroup *pc; | ||
1213 | |||
1214 | if (mem_cgroup_disabled()) | ||
1215 | return; | ||
1216 | if (!ptr) | ||
1217 | return; | ||
1218 | pc = lookup_page_cgroup(page); | ||
1219 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
1220 | __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
1221 | mem_cgroup_lru_add_after_commit_swapcache(page); | ||
1222 | /* | ||
1223 | * Now swap is on-memory. This means this page may be | ||
1224 | * counted both as mem and swap....double count. | ||
1225 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable | ||
1226 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | ||
1227 | * may call delete_from_swap_cache() before reach here. | ||
1228 | */ | ||
1229 | if (do_swap_account && PageSwapCache(page)) { | ||
1230 | swp_entry_t ent = {.val = page_private(page)}; | ||
1231 | struct mem_cgroup *memcg; | ||
1232 | memcg = swap_cgroup_record(ent, NULL); | ||
1233 | if (memcg) { | ||
1234 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
1235 | mem_cgroup_put(memcg); | ||
1236 | } | ||
1237 | |||
1238 | } | ||
1239 | /* add this page(page_cgroup) to the LRU we want. */ | ||
1240 | |||
629 | } | 1241 | } |
630 | 1242 | ||
1243 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | ||
1244 | { | ||
1245 | if (mem_cgroup_disabled()) | ||
1246 | return; | ||
1247 | if (!mem) | ||
1248 | return; | ||
1249 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
1250 | if (do_swap_account) | ||
1251 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1252 | css_put(&mem->css); | ||
1253 | } | ||
1254 | |||
1255 | |||
631 | /* | 1256 | /* |
632 | * uncharge if !page_mapped(page) | 1257 | * uncharge if !page_mapped(page) |
633 | */ | 1258 | */ |
634 | static void | 1259 | static struct mem_cgroup * |
635 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | 1260 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
636 | { | 1261 | { |
637 | struct page_cgroup *pc; | 1262 | struct page_cgroup *pc; |
638 | struct mem_cgroup *mem; | 1263 | struct mem_cgroup *mem = NULL; |
639 | struct mem_cgroup_per_zone *mz; | 1264 | struct mem_cgroup_per_zone *mz; |
640 | unsigned long flags; | ||
641 | 1265 | ||
642 | if (mem_cgroup_subsys.disabled) | 1266 | if (mem_cgroup_disabled()) |
643 | return; | 1267 | return NULL; |
1268 | |||
1269 | if (PageSwapCache(page)) | ||
1270 | return NULL; | ||
644 | 1271 | ||
645 | /* | 1272 | /* |
646 | * Check if our page_cgroup is valid | 1273 | * Check if our page_cgroup is valid |
647 | */ | 1274 | */ |
648 | pc = lookup_page_cgroup(page); | 1275 | pc = lookup_page_cgroup(page); |
649 | if (unlikely(!pc || !PageCgroupUsed(pc))) | 1276 | if (unlikely(!pc || !PageCgroupUsed(pc))) |
650 | return; | 1277 | return NULL; |
651 | 1278 | ||
652 | lock_page_cgroup(pc); | 1279 | lock_page_cgroup(pc); |
653 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page)) | 1280 | |
654 | || !PageCgroupUsed(pc)) { | 1281 | mem = pc->mem_cgroup; |
655 | /* This happens at race in zap_pte_range() and do_swap_page()*/ | 1282 | |
656 | unlock_page_cgroup(pc); | 1283 | if (!PageCgroupUsed(pc)) |
657 | return; | 1284 | goto unlock_out; |
1285 | |||
1286 | switch (ctype) { | ||
1287 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | ||
1288 | if (page_mapped(page)) | ||
1289 | goto unlock_out; | ||
1290 | break; | ||
1291 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | ||
1292 | if (!PageAnon(page)) { /* Shared memory */ | ||
1293 | if (page->mapping && !page_is_file_cache(page)) | ||
1294 | goto unlock_out; | ||
1295 | } else if (page_mapped(page)) /* Anon */ | ||
1296 | goto unlock_out; | ||
1297 | break; | ||
1298 | default: | ||
1299 | break; | ||
658 | } | 1300 | } |
1301 | |||
1302 | res_counter_uncharge(&mem->res, PAGE_SIZE); | ||
1303 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) | ||
1304 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1305 | |||
1306 | mem_cgroup_charge_statistics(mem, pc, false); | ||
659 | ClearPageCgroupUsed(pc); | 1307 | ClearPageCgroupUsed(pc); |
660 | mem = pc->mem_cgroup; | 1308 | /* |
1309 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | ||
1310 | * freed from LRU. This is safe because uncharged page is expected not | ||
1311 | * to be reused (freed soon). Exception is SwapCache, it's handled by | ||
1312 | * special functions. | ||
1313 | */ | ||
661 | 1314 | ||
662 | mz = page_cgroup_zoneinfo(pc); | 1315 | mz = page_cgroup_zoneinfo(pc); |
663 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
664 | __mem_cgroup_remove_list(mz, pc); | ||
665 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
666 | unlock_page_cgroup(pc); | 1316 | unlock_page_cgroup(pc); |
667 | 1317 | ||
668 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 1318 | /* at swapout, this memcg will be accessed to record to swap */ |
669 | css_put(&mem->css); | 1319 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
1320 | css_put(&mem->css); | ||
670 | 1321 | ||
671 | return; | 1322 | return mem; |
1323 | |||
1324 | unlock_out: | ||
1325 | unlock_page_cgroup(pc); | ||
1326 | return NULL; | ||
672 | } | 1327 | } |
673 | 1328 | ||
674 | void mem_cgroup_uncharge_page(struct page *page) | 1329 | void mem_cgroup_uncharge_page(struct page *page) |
@@ -689,16 +1344,55 @@ void mem_cgroup_uncharge_cache_page(struct page *page) | |||
689 | } | 1344 | } |
690 | 1345 | ||
691 | /* | 1346 | /* |
692 | * Before starting migration, account against new page. | 1347 | * called from __delete_from_swap_cache() and drop "page" account. |
1348 | * memcg information is recorded to swap_cgroup of "ent" | ||
1349 | */ | ||
1350 | void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) | ||
1351 | { | ||
1352 | struct mem_cgroup *memcg; | ||
1353 | |||
1354 | memcg = __mem_cgroup_uncharge_common(page, | ||
1355 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); | ||
1356 | /* record memcg information */ | ||
1357 | if (do_swap_account && memcg) { | ||
1358 | swap_cgroup_record(ent, memcg); | ||
1359 | mem_cgroup_get(memcg); | ||
1360 | } | ||
1361 | if (memcg) | ||
1362 | css_put(&memcg->css); | ||
1363 | } | ||
1364 | |||
1365 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
1366 | /* | ||
1367 | * called from swap_entry_free(). remove record in swap_cgroup and | ||
1368 | * uncharge "memsw" account. | ||
693 | */ | 1369 | */ |
694 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | 1370 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
1371 | { | ||
1372 | struct mem_cgroup *memcg; | ||
1373 | |||
1374 | if (!do_swap_account) | ||
1375 | return; | ||
1376 | |||
1377 | memcg = swap_cgroup_record(ent, NULL); | ||
1378 | if (memcg) { | ||
1379 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | ||
1380 | mem_cgroup_put(memcg); | ||
1381 | } | ||
1382 | } | ||
1383 | #endif | ||
1384 | |||
1385 | /* | ||
1386 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | ||
1387 | * page belongs to. | ||
1388 | */ | ||
1389 | int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) | ||
695 | { | 1390 | { |
696 | struct page_cgroup *pc; | 1391 | struct page_cgroup *pc; |
697 | struct mem_cgroup *mem = NULL; | 1392 | struct mem_cgroup *mem = NULL; |
698 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
699 | int ret = 0; | 1393 | int ret = 0; |
700 | 1394 | ||
701 | if (mem_cgroup_subsys.disabled) | 1395 | if (mem_cgroup_disabled()) |
702 | return 0; | 1396 | return 0; |
703 | 1397 | ||
704 | pc = lookup_page_cgroup(page); | 1398 | pc = lookup_page_cgroup(page); |
@@ -706,41 +1400,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | |||
706 | if (PageCgroupUsed(pc)) { | 1400 | if (PageCgroupUsed(pc)) { |
707 | mem = pc->mem_cgroup; | 1401 | mem = pc->mem_cgroup; |
708 | css_get(&mem->css); | 1402 | css_get(&mem->css); |
709 | if (PageCgroupCache(pc)) { | ||
710 | if (page_is_file_cache(page)) | ||
711 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
712 | else | ||
713 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
714 | } | ||
715 | } | 1403 | } |
716 | unlock_page_cgroup(pc); | 1404 | unlock_page_cgroup(pc); |
1405 | |||
717 | if (mem) { | 1406 | if (mem) { |
718 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | 1407 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); |
719 | ctype, mem); | ||
720 | css_put(&mem->css); | 1408 | css_put(&mem->css); |
721 | } | 1409 | } |
1410 | *ptr = mem; | ||
722 | return ret; | 1411 | return ret; |
723 | } | 1412 | } |
724 | 1413 | ||
725 | /* remove redundant charge if migration failed*/ | 1414 | /* remove redundant charge if migration failed*/ |
726 | void mem_cgroup_end_migration(struct page *newpage) | 1415 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
1416 | struct page *oldpage, struct page *newpage) | ||
727 | { | 1417 | { |
1418 | struct page *target, *unused; | ||
1419 | struct page_cgroup *pc; | ||
1420 | enum charge_type ctype; | ||
1421 | |||
1422 | if (!mem) | ||
1423 | return; | ||
1424 | |||
1425 | /* at migration success, oldpage->mapping is NULL. */ | ||
1426 | if (oldpage->mapping) { | ||
1427 | target = oldpage; | ||
1428 | unused = NULL; | ||
1429 | } else { | ||
1430 | target = newpage; | ||
1431 | unused = oldpage; | ||
1432 | } | ||
1433 | |||
1434 | if (PageAnon(target)) | ||
1435 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
1436 | else if (page_is_file_cache(target)) | ||
1437 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
1438 | else | ||
1439 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
1440 | |||
1441 | /* unused page is not on radix-tree now. */ | ||
1442 | if (unused) | ||
1443 | __mem_cgroup_uncharge_common(unused, ctype); | ||
1444 | |||
1445 | pc = lookup_page_cgroup(target); | ||
728 | /* | 1446 | /* |
729 | * At success, page->mapping is not NULL. | 1447 | * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. |
730 | * special rollback care is necessary when | 1448 | * So, double-counting is effectively avoided. |
731 | * 1. at migration failure. (newpage->mapping is cleared in this case) | ||
732 | * 2. the newpage was moved but not remapped again because the task | ||
733 | * exits and the newpage is obsolete. In this case, the new page | ||
734 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | ||
735 | * always for avoiding mess. The page_cgroup will be removed if | ||
736 | * unnecessary. File cache pages is still on radix-tree. Don't | ||
737 | * care it. | ||
738 | */ | 1449 | */ |
739 | if (!newpage->mapping) | 1450 | __mem_cgroup_commit_charge(mem, pc, ctype); |
740 | __mem_cgroup_uncharge_common(newpage, | 1451 | |
741 | MEM_CGROUP_CHARGE_TYPE_FORCE); | 1452 | /* |
742 | else if (PageAnon(newpage)) | 1453 | * Both of oldpage and newpage are still under lock_page(). |
743 | mem_cgroup_uncharge_page(newpage); | 1454 | * Then, we don't have to care about race in radix-tree. |
1455 | * But we have to be careful that this page is unmapped or not. | ||
1456 | * | ||
1457 | * There is a case for !page_mapped(). At the start of | ||
1458 | * migration, oldpage was mapped. But now, it's zapped. | ||
1459 | * But we know *target* page is not freed/reused under us. | ||
1460 | * mem_cgroup_uncharge_page() does all necessary checks. | ||
1461 | */ | ||
1462 | if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) | ||
1463 | mem_cgroup_uncharge_page(target); | ||
744 | } | 1464 | } |
745 | 1465 | ||
746 | /* | 1466 | /* |
@@ -748,29 +1468,26 @@ void mem_cgroup_end_migration(struct page *newpage) | |||
748 | * This is typically used for page reclaiming for shmem for reducing side | 1468 | * This is typically used for page reclaiming for shmem for reducing side |
749 | * effect of page allocation from shmem, which is used by some mem_cgroup. | 1469 | * effect of page allocation from shmem, which is used by some mem_cgroup. |
750 | */ | 1470 | */ |
751 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | 1471 | int mem_cgroup_shrink_usage(struct page *page, |
1472 | struct mm_struct *mm, | ||
1473 | gfp_t gfp_mask) | ||
752 | { | 1474 | { |
753 | struct mem_cgroup *mem; | 1475 | struct mem_cgroup *mem = NULL; |
754 | int progress = 0; | 1476 | int progress = 0; |
755 | int retry = MEM_CGROUP_RECLAIM_RETRIES; | 1477 | int retry = MEM_CGROUP_RECLAIM_RETRIES; |
756 | 1478 | ||
757 | if (mem_cgroup_subsys.disabled) | 1479 | if (mem_cgroup_disabled()) |
758 | return 0; | 1480 | return 0; |
759 | if (!mm) | 1481 | if (page) |
1482 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1483 | if (!mem && mm) | ||
1484 | mem = try_get_mem_cgroup_from_mm(mm); | ||
1485 | if (unlikely(!mem)) | ||
760 | return 0; | 1486 | return 0; |
761 | 1487 | ||
762 | rcu_read_lock(); | ||
763 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
764 | if (unlikely(!mem)) { | ||
765 | rcu_read_unlock(); | ||
766 | return 0; | ||
767 | } | ||
768 | css_get(&mem->css); | ||
769 | rcu_read_unlock(); | ||
770 | |||
771 | do { | 1488 | do { |
772 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); | 1489 | progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); |
773 | progress += res_counter_check_under_limit(&mem->res); | 1490 | progress += mem_cgroup_check_under_limit(mem); |
774 | } while (!progress && --retry); | 1491 | } while (!progress && --retry); |
775 | 1492 | ||
776 | css_put(&mem->css); | 1493 | css_put(&mem->css); |
@@ -779,116 +1496,295 @@ int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | |||
779 | return 0; | 1496 | return 0; |
780 | } | 1497 | } |
781 | 1498 | ||
782 | int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) | 1499 | static DEFINE_MUTEX(set_limit_mutex); |
1500 | |||
1501 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | ||
1502 | unsigned long long val) | ||
783 | { | 1503 | { |
784 | 1504 | ||
785 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | 1505 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; |
786 | int progress; | 1506 | int progress; |
1507 | u64 memswlimit; | ||
787 | int ret = 0; | 1508 | int ret = 0; |
788 | 1509 | ||
789 | while (res_counter_set_limit(&memcg->res, val)) { | 1510 | while (retry_count) { |
790 | if (signal_pending(current)) { | 1511 | if (signal_pending(current)) { |
791 | ret = -EINTR; | 1512 | ret = -EINTR; |
792 | break; | 1513 | break; |
793 | } | 1514 | } |
794 | if (!retry_count) { | 1515 | /* |
795 | ret = -EBUSY; | 1516 | * Rather than hide all in some function, I do this in |
1517 | * open coded manner. You see what this really does. | ||
1518 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
1519 | */ | ||
1520 | mutex_lock(&set_limit_mutex); | ||
1521 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1522 | if (memswlimit < val) { | ||
1523 | ret = -EINVAL; | ||
1524 | mutex_unlock(&set_limit_mutex); | ||
796 | break; | 1525 | break; |
797 | } | 1526 | } |
798 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | 1527 | ret = res_counter_set_limit(&memcg->res, val); |
799 | if (!progress) | 1528 | mutex_unlock(&set_limit_mutex); |
800 | retry_count--; | 1529 | |
1530 | if (!ret) | ||
1531 | break; | ||
1532 | |||
1533 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, | ||
1534 | false); | ||
1535 | if (!progress) retry_count--; | ||
801 | } | 1536 | } |
1537 | |||
802 | return ret; | 1538 | return ret; |
803 | } | 1539 | } |
804 | 1540 | ||
1541 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | ||
1542 | unsigned long long val) | ||
1543 | { | ||
1544 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | ||
1545 | u64 memlimit, oldusage, curusage; | ||
1546 | int ret; | ||
1547 | |||
1548 | if (!do_swap_account) | ||
1549 | return -EINVAL; | ||
1550 | |||
1551 | while (retry_count) { | ||
1552 | if (signal_pending(current)) { | ||
1553 | ret = -EINTR; | ||
1554 | break; | ||
1555 | } | ||
1556 | /* | ||
1557 | * Rather than hide all in some function, I do this in | ||
1558 | * open coded manner. You see what this really does. | ||
1559 | * We have to guarantee mem->res.limit < mem->memsw.limit. | ||
1560 | */ | ||
1561 | mutex_lock(&set_limit_mutex); | ||
1562 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1563 | if (memlimit > val) { | ||
1564 | ret = -EINVAL; | ||
1565 | mutex_unlock(&set_limit_mutex); | ||
1566 | break; | ||
1567 | } | ||
1568 | ret = res_counter_set_limit(&memcg->memsw, val); | ||
1569 | mutex_unlock(&set_limit_mutex); | ||
1570 | |||
1571 | if (!ret) | ||
1572 | break; | ||
1573 | |||
1574 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
1575 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true); | ||
1576 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
1577 | if (curusage >= oldusage) | ||
1578 | retry_count--; | ||
1579 | } | ||
1580 | return ret; | ||
1581 | } | ||
805 | 1582 | ||
806 | /* | 1583 | /* |
807 | * This routine traverse page_cgroup in given list and drop them all. | 1584 | * This routine traverse page_cgroup in given list and drop them all. |
808 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 1585 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
809 | */ | 1586 | */ |
810 | #define FORCE_UNCHARGE_BATCH (128) | 1587 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
811 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 1588 | int node, int zid, enum lru_list lru) |
812 | struct mem_cgroup_per_zone *mz, | ||
813 | enum lru_list lru) | ||
814 | { | 1589 | { |
815 | struct page_cgroup *pc; | 1590 | struct zone *zone; |
816 | struct page *page; | 1591 | struct mem_cgroup_per_zone *mz; |
817 | int count = FORCE_UNCHARGE_BATCH; | 1592 | struct page_cgroup *pc, *busy; |
818 | unsigned long flags; | 1593 | unsigned long flags, loop; |
819 | struct list_head *list; | 1594 | struct list_head *list; |
1595 | int ret = 0; | ||
820 | 1596 | ||
1597 | zone = &NODE_DATA(node)->node_zones[zid]; | ||
1598 | mz = mem_cgroup_zoneinfo(mem, node, zid); | ||
821 | list = &mz->lists[lru]; | 1599 | list = &mz->lists[lru]; |
822 | 1600 | ||
823 | spin_lock_irqsave(&mz->lru_lock, flags); | 1601 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
824 | while (!list_empty(list)) { | 1602 | /* give some margin against EBUSY etc...*/ |
825 | pc = list_entry(list->prev, struct page_cgroup, lru); | 1603 | loop += 256; |
826 | page = pc->page; | 1604 | busy = NULL; |
827 | if (!PageCgroupUsed(pc)) | 1605 | while (loop--) { |
828 | break; | 1606 | ret = 0; |
829 | get_page(page); | 1607 | spin_lock_irqsave(&zone->lru_lock, flags); |
830 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1608 | if (list_empty(list)) { |
831 | /* | 1609 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
832 | * Check if this page is on LRU. !LRU page can be found | ||
833 | * if it's under page migration. | ||
834 | */ | ||
835 | if (PageLRU(page)) { | ||
836 | __mem_cgroup_uncharge_common(page, | ||
837 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
838 | put_page(page); | ||
839 | if (--count <= 0) { | ||
840 | count = FORCE_UNCHARGE_BATCH; | ||
841 | cond_resched(); | ||
842 | } | ||
843 | } else { | ||
844 | spin_lock_irqsave(&mz->lru_lock, flags); | ||
845 | break; | 1610 | break; |
846 | } | 1611 | } |
847 | spin_lock_irqsave(&mz->lru_lock, flags); | 1612 | pc = list_entry(list->prev, struct page_cgroup, lru); |
1613 | if (busy == pc) { | ||
1614 | list_move(&pc->lru, list); | ||
1615 | busy = 0; | ||
1616 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
1617 | continue; | ||
1618 | } | ||
1619 | spin_unlock_irqrestore(&zone->lru_lock, flags); | ||
1620 | |||
1621 | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); | ||
1622 | if (ret == -ENOMEM) | ||
1623 | break; | ||
1624 | |||
1625 | if (ret == -EBUSY || ret == -EINVAL) { | ||
1626 | /* found lock contention or "pc" is obsolete. */ | ||
1627 | busy = pc; | ||
1628 | cond_resched(); | ||
1629 | } else | ||
1630 | busy = NULL; | ||
848 | } | 1631 | } |
849 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 1632 | |
1633 | if (!ret && !list_empty(list)) | ||
1634 | return -EBUSY; | ||
1635 | return ret; | ||
850 | } | 1636 | } |
851 | 1637 | ||
852 | /* | 1638 | /* |
853 | * make mem_cgroup's charge to be 0 if there is no task. | 1639 | * make mem_cgroup's charge to be 0 if there is no task. |
854 | * This enables deleting this mem_cgroup. | 1640 | * This enables deleting this mem_cgroup. |
855 | */ | 1641 | */ |
856 | static int mem_cgroup_force_empty(struct mem_cgroup *mem) | 1642 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
857 | { | 1643 | { |
858 | int ret = -EBUSY; | 1644 | int ret; |
859 | int node, zid; | 1645 | int node, zid, shrink; |
1646 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
1647 | struct cgroup *cgrp = mem->css.cgroup; | ||
860 | 1648 | ||
861 | css_get(&mem->css); | 1649 | css_get(&mem->css); |
862 | /* | 1650 | |
863 | * page reclaim code (kswapd etc..) will move pages between | 1651 | shrink = 0; |
864 | * active_list <-> inactive_list while we don't take a lock. | 1652 | /* should free all ? */ |
865 | * So, we have to do loop here until all lists are empty. | 1653 | if (free_all) |
866 | */ | 1654 | goto try_to_free; |
1655 | move_account: | ||
867 | while (mem->res.usage > 0) { | 1656 | while (mem->res.usage > 0) { |
868 | if (atomic_read(&mem->css.cgroup->count) > 0) | 1657 | ret = -EBUSY; |
1658 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | ||
1659 | goto out; | ||
1660 | ret = -EINTR; | ||
1661 | if (signal_pending(current)) | ||
869 | goto out; | 1662 | goto out; |
870 | /* This is for making all *used* pages to be on LRU. */ | 1663 | /* This is for making all *used* pages to be on LRU. */ |
871 | lru_add_drain_all(); | 1664 | lru_add_drain_all(); |
872 | for_each_node_state(node, N_POSSIBLE) | 1665 | ret = 0; |
873 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 1666 | for_each_node_state(node, N_POSSIBLE) { |
874 | struct mem_cgroup_per_zone *mz; | 1667 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
875 | enum lru_list l; | 1668 | enum lru_list l; |
876 | mz = mem_cgroup_zoneinfo(mem, node, zid); | 1669 | for_each_lru(l) { |
877 | for_each_lru(l) | 1670 | ret = mem_cgroup_force_empty_list(mem, |
878 | mem_cgroup_force_empty_list(mem, mz, l); | 1671 | node, zid, l); |
1672 | if (ret) | ||
1673 | break; | ||
1674 | } | ||
879 | } | 1675 | } |
1676 | if (ret) | ||
1677 | break; | ||
1678 | } | ||
1679 | /* it seems parent cgroup doesn't have enough mem */ | ||
1680 | if (ret == -ENOMEM) | ||
1681 | goto try_to_free; | ||
880 | cond_resched(); | 1682 | cond_resched(); |
881 | } | 1683 | } |
882 | ret = 0; | 1684 | ret = 0; |
883 | out: | 1685 | out: |
884 | css_put(&mem->css); | 1686 | css_put(&mem->css); |
885 | return ret; | 1687 | return ret; |
1688 | |||
1689 | try_to_free: | ||
1690 | /* returns EBUSY if there is a task or if we come here twice. */ | ||
1691 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | ||
1692 | ret = -EBUSY; | ||
1693 | goto out; | ||
1694 | } | ||
1695 | /* we call try-to-free pages for make this cgroup empty */ | ||
1696 | lru_add_drain_all(); | ||
1697 | /* try to free all pages in this cgroup */ | ||
1698 | shrink = 1; | ||
1699 | while (nr_retries && mem->res.usage > 0) { | ||
1700 | int progress; | ||
1701 | |||
1702 | if (signal_pending(current)) { | ||
1703 | ret = -EINTR; | ||
1704 | goto out; | ||
1705 | } | ||
1706 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, | ||
1707 | false, get_swappiness(mem)); | ||
1708 | if (!progress) { | ||
1709 | nr_retries--; | ||
1710 | /* maybe some writeback is necessary */ | ||
1711 | congestion_wait(WRITE, HZ/10); | ||
1712 | } | ||
1713 | |||
1714 | } | ||
1715 | lru_add_drain(); | ||
1716 | /* try move_account...there may be some *locked* pages. */ | ||
1717 | if (mem->res.usage) | ||
1718 | goto move_account; | ||
1719 | ret = 0; | ||
1720 | goto out; | ||
1721 | } | ||
1722 | |||
1723 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | ||
1724 | { | ||
1725 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | ||
1726 | } | ||
1727 | |||
1728 | |||
1729 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | ||
1730 | { | ||
1731 | return mem_cgroup_from_cont(cont)->use_hierarchy; | ||
1732 | } | ||
1733 | |||
1734 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | ||
1735 | u64 val) | ||
1736 | { | ||
1737 | int retval = 0; | ||
1738 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | ||
1739 | struct cgroup *parent = cont->parent; | ||
1740 | struct mem_cgroup *parent_mem = NULL; | ||
1741 | |||
1742 | if (parent) | ||
1743 | parent_mem = mem_cgroup_from_cont(parent); | ||
1744 | |||
1745 | cgroup_lock(); | ||
1746 | /* | ||
1747 | * If parent's use_hiearchy is set, we can't make any modifications | ||
1748 | * in the child subtrees. If it is unset, then the change can | ||
1749 | * occur, provided the current cgroup has no children. | ||
1750 | * | ||
1751 | * For the root cgroup, parent_mem is NULL, we allow value to be | ||
1752 | * set if there are no children. | ||
1753 | */ | ||
1754 | if ((!parent_mem || !parent_mem->use_hierarchy) && | ||
1755 | (val == 1 || val == 0)) { | ||
1756 | if (list_empty(&cont->children)) | ||
1757 | mem->use_hierarchy = val; | ||
1758 | else | ||
1759 | retval = -EBUSY; | ||
1760 | } else | ||
1761 | retval = -EINVAL; | ||
1762 | cgroup_unlock(); | ||
1763 | |||
1764 | return retval; | ||
886 | } | 1765 | } |
887 | 1766 | ||
888 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 1767 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
889 | { | 1768 | { |
890 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 1769 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
891 | cft->private); | 1770 | u64 val = 0; |
1771 | int type, name; | ||
1772 | |||
1773 | type = MEMFILE_TYPE(cft->private); | ||
1774 | name = MEMFILE_ATTR(cft->private); | ||
1775 | switch (type) { | ||
1776 | case _MEM: | ||
1777 | val = res_counter_read_u64(&mem->res, name); | ||
1778 | break; | ||
1779 | case _MEMSWAP: | ||
1780 | if (do_swap_account) | ||
1781 | val = res_counter_read_u64(&mem->memsw, name); | ||
1782 | break; | ||
1783 | default: | ||
1784 | BUG(); | ||
1785 | break; | ||
1786 | } | ||
1787 | return val; | ||
892 | } | 1788 | } |
893 | /* | 1789 | /* |
894 | * The user of this function is... | 1790 | * The user of this function is... |
@@ -898,15 +1794,22 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
898 | const char *buffer) | 1794 | const char *buffer) |
899 | { | 1795 | { |
900 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 1796 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
1797 | int type, name; | ||
901 | unsigned long long val; | 1798 | unsigned long long val; |
902 | int ret; | 1799 | int ret; |
903 | 1800 | ||
904 | switch (cft->private) { | 1801 | type = MEMFILE_TYPE(cft->private); |
1802 | name = MEMFILE_ATTR(cft->private); | ||
1803 | switch (name) { | ||
905 | case RES_LIMIT: | 1804 | case RES_LIMIT: |
906 | /* This function does all necessary parse...reuse it */ | 1805 | /* This function does all necessary parse...reuse it */ |
907 | ret = res_counter_memparse_write_strategy(buffer, &val); | 1806 | ret = res_counter_memparse_write_strategy(buffer, &val); |
908 | if (!ret) | 1807 | if (ret) |
1808 | break; | ||
1809 | if (type == _MEM) | ||
909 | ret = mem_cgroup_resize_limit(memcg, val); | 1810 | ret = mem_cgroup_resize_limit(memcg, val); |
1811 | else | ||
1812 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | ||
910 | break; | 1813 | break; |
911 | default: | 1814 | default: |
912 | ret = -EINVAL; /* should be BUG() ? */ | 1815 | ret = -EINVAL; /* should be BUG() ? */ |
@@ -915,27 +1818,59 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | |||
915 | return ret; | 1818 | return ret; |
916 | } | 1819 | } |
917 | 1820 | ||
1821 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | ||
1822 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | ||
1823 | { | ||
1824 | struct cgroup *cgroup; | ||
1825 | unsigned long long min_limit, min_memsw_limit, tmp; | ||
1826 | |||
1827 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1828 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1829 | cgroup = memcg->css.cgroup; | ||
1830 | if (!memcg->use_hierarchy) | ||
1831 | goto out; | ||
1832 | |||
1833 | while (cgroup->parent) { | ||
1834 | cgroup = cgroup->parent; | ||
1835 | memcg = mem_cgroup_from_cont(cgroup); | ||
1836 | if (!memcg->use_hierarchy) | ||
1837 | break; | ||
1838 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | ||
1839 | min_limit = min(min_limit, tmp); | ||
1840 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1841 | min_memsw_limit = min(min_memsw_limit, tmp); | ||
1842 | } | ||
1843 | out: | ||
1844 | *mem_limit = min_limit; | ||
1845 | *memsw_limit = min_memsw_limit; | ||
1846 | return; | ||
1847 | } | ||
1848 | |||
918 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 1849 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
919 | { | 1850 | { |
920 | struct mem_cgroup *mem; | 1851 | struct mem_cgroup *mem; |
1852 | int type, name; | ||
921 | 1853 | ||
922 | mem = mem_cgroup_from_cont(cont); | 1854 | mem = mem_cgroup_from_cont(cont); |
923 | switch (event) { | 1855 | type = MEMFILE_TYPE(event); |
1856 | name = MEMFILE_ATTR(event); | ||
1857 | switch (name) { | ||
924 | case RES_MAX_USAGE: | 1858 | case RES_MAX_USAGE: |
925 | res_counter_reset_max(&mem->res); | 1859 | if (type == _MEM) |
1860 | res_counter_reset_max(&mem->res); | ||
1861 | else | ||
1862 | res_counter_reset_max(&mem->memsw); | ||
926 | break; | 1863 | break; |
927 | case RES_FAILCNT: | 1864 | case RES_FAILCNT: |
928 | res_counter_reset_failcnt(&mem->res); | 1865 | if (type == _MEM) |
1866 | res_counter_reset_failcnt(&mem->res); | ||
1867 | else | ||
1868 | res_counter_reset_failcnt(&mem->memsw); | ||
929 | break; | 1869 | break; |
930 | } | 1870 | } |
931 | return 0; | 1871 | return 0; |
932 | } | 1872 | } |
933 | 1873 | ||
934 | static int mem_force_empty_write(struct cgroup *cont, unsigned int event) | ||
935 | { | ||
936 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); | ||
937 | } | ||
938 | |||
939 | static const struct mem_cgroup_stat_desc { | 1874 | static const struct mem_cgroup_stat_desc { |
940 | const char *msg; | 1875 | const char *msg; |
941 | u64 unit; | 1876 | u64 unit; |
@@ -984,43 +1919,163 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | |||
984 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); | 1919 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); |
985 | 1920 | ||
986 | } | 1921 | } |
1922 | { | ||
1923 | unsigned long long limit, memsw_limit; | ||
1924 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | ||
1925 | cb->fill(cb, "hierarchical_memory_limit", limit); | ||
1926 | if (do_swap_account) | ||
1927 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | ||
1928 | } | ||
1929 | |||
1930 | #ifdef CONFIG_DEBUG_VM | ||
1931 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | ||
1932 | |||
1933 | { | ||
1934 | int nid, zid; | ||
1935 | struct mem_cgroup_per_zone *mz; | ||
1936 | unsigned long recent_rotated[2] = {0, 0}; | ||
1937 | unsigned long recent_scanned[2] = {0, 0}; | ||
1938 | |||
1939 | for_each_online_node(nid) | ||
1940 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | ||
1941 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | ||
1942 | |||
1943 | recent_rotated[0] += | ||
1944 | mz->reclaim_stat.recent_rotated[0]; | ||
1945 | recent_rotated[1] += | ||
1946 | mz->reclaim_stat.recent_rotated[1]; | ||
1947 | recent_scanned[0] += | ||
1948 | mz->reclaim_stat.recent_scanned[0]; | ||
1949 | recent_scanned[1] += | ||
1950 | mz->reclaim_stat.recent_scanned[1]; | ||
1951 | } | ||
1952 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | ||
1953 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | ||
1954 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | ||
1955 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | ||
1956 | } | ||
1957 | #endif | ||
1958 | |||
1959 | return 0; | ||
1960 | } | ||
1961 | |||
1962 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | ||
1963 | { | ||
1964 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
1965 | |||
1966 | return get_swappiness(memcg); | ||
1967 | } | ||
1968 | |||
1969 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | ||
1970 | u64 val) | ||
1971 | { | ||
1972 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | ||
1973 | struct mem_cgroup *parent; | ||
1974 | if (val > 100) | ||
1975 | return -EINVAL; | ||
1976 | |||
1977 | if (cgrp->parent == NULL) | ||
1978 | return -EINVAL; | ||
1979 | |||
1980 | parent = mem_cgroup_from_cont(cgrp->parent); | ||
1981 | /* If under hierarchy, only empty-root can set this value */ | ||
1982 | if ((parent->use_hierarchy) || | ||
1983 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) | ||
1984 | return -EINVAL; | ||
1985 | |||
1986 | spin_lock(&memcg->reclaim_param_lock); | ||
1987 | memcg->swappiness = val; | ||
1988 | spin_unlock(&memcg->reclaim_param_lock); | ||
1989 | |||
987 | return 0; | 1990 | return 0; |
988 | } | 1991 | } |
989 | 1992 | ||
1993 | |||
990 | static struct cftype mem_cgroup_files[] = { | 1994 | static struct cftype mem_cgroup_files[] = { |
991 | { | 1995 | { |
992 | .name = "usage_in_bytes", | 1996 | .name = "usage_in_bytes", |
993 | .private = RES_USAGE, | 1997 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
994 | .read_u64 = mem_cgroup_read, | 1998 | .read_u64 = mem_cgroup_read, |
995 | }, | 1999 | }, |
996 | { | 2000 | { |
997 | .name = "max_usage_in_bytes", | 2001 | .name = "max_usage_in_bytes", |
998 | .private = RES_MAX_USAGE, | 2002 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
999 | .trigger = mem_cgroup_reset, | 2003 | .trigger = mem_cgroup_reset, |
1000 | .read_u64 = mem_cgroup_read, | 2004 | .read_u64 = mem_cgroup_read, |
1001 | }, | 2005 | }, |
1002 | { | 2006 | { |
1003 | .name = "limit_in_bytes", | 2007 | .name = "limit_in_bytes", |
1004 | .private = RES_LIMIT, | 2008 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
1005 | .write_string = mem_cgroup_write, | 2009 | .write_string = mem_cgroup_write, |
1006 | .read_u64 = mem_cgroup_read, | 2010 | .read_u64 = mem_cgroup_read, |
1007 | }, | 2011 | }, |
1008 | { | 2012 | { |
1009 | .name = "failcnt", | 2013 | .name = "failcnt", |
1010 | .private = RES_FAILCNT, | 2014 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
1011 | .trigger = mem_cgroup_reset, | 2015 | .trigger = mem_cgroup_reset, |
1012 | .read_u64 = mem_cgroup_read, | 2016 | .read_u64 = mem_cgroup_read, |
1013 | }, | 2017 | }, |
1014 | { | 2018 | { |
2019 | .name = "stat", | ||
2020 | .read_map = mem_control_stat_show, | ||
2021 | }, | ||
2022 | { | ||
1015 | .name = "force_empty", | 2023 | .name = "force_empty", |
1016 | .trigger = mem_force_empty_write, | 2024 | .trigger = mem_cgroup_force_empty_write, |
1017 | }, | 2025 | }, |
1018 | { | 2026 | { |
1019 | .name = "stat", | 2027 | .name = "use_hierarchy", |
1020 | .read_map = mem_control_stat_show, | 2028 | .write_u64 = mem_cgroup_hierarchy_write, |
2029 | .read_u64 = mem_cgroup_hierarchy_read, | ||
2030 | }, | ||
2031 | { | ||
2032 | .name = "swappiness", | ||
2033 | .read_u64 = mem_cgroup_swappiness_read, | ||
2034 | .write_u64 = mem_cgroup_swappiness_write, | ||
1021 | }, | 2035 | }, |
1022 | }; | 2036 | }; |
1023 | 2037 | ||
2038 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2039 | static struct cftype memsw_cgroup_files[] = { | ||
2040 | { | ||
2041 | .name = "memsw.usage_in_bytes", | ||
2042 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | ||
2043 | .read_u64 = mem_cgroup_read, | ||
2044 | }, | ||
2045 | { | ||
2046 | .name = "memsw.max_usage_in_bytes", | ||
2047 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | ||
2048 | .trigger = mem_cgroup_reset, | ||
2049 | .read_u64 = mem_cgroup_read, | ||
2050 | }, | ||
2051 | { | ||
2052 | .name = "memsw.limit_in_bytes", | ||
2053 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | ||
2054 | .write_string = mem_cgroup_write, | ||
2055 | .read_u64 = mem_cgroup_read, | ||
2056 | }, | ||
2057 | { | ||
2058 | .name = "memsw.failcnt", | ||
2059 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | ||
2060 | .trigger = mem_cgroup_reset, | ||
2061 | .read_u64 = mem_cgroup_read, | ||
2062 | }, | ||
2063 | }; | ||
2064 | |||
2065 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
2066 | { | ||
2067 | if (!do_swap_account) | ||
2068 | return 0; | ||
2069 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | ||
2070 | ARRAY_SIZE(memsw_cgroup_files)); | ||
2071 | }; | ||
2072 | #else | ||
2073 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | ||
2074 | { | ||
2075 | return 0; | ||
2076 | } | ||
2077 | #endif | ||
2078 | |||
1024 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 2079 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
1025 | { | 2080 | { |
1026 | struct mem_cgroup_per_node *pn; | 2081 | struct mem_cgroup_per_node *pn; |
@@ -1046,7 +2101,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1046 | 2101 | ||
1047 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 2102 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
1048 | mz = &pn->zoneinfo[zone]; | 2103 | mz = &pn->zoneinfo[zone]; |
1049 | spin_lock_init(&mz->lru_lock); | ||
1050 | for_each_lru(l) | 2104 | for_each_lru(l) |
1051 | INIT_LIST_HEAD(&mz->lists[l]); | 2105 | INIT_LIST_HEAD(&mz->lists[l]); |
1052 | } | 2106 | } |
@@ -1058,55 +2112,113 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1058 | kfree(mem->info.nodeinfo[node]); | 2112 | kfree(mem->info.nodeinfo[node]); |
1059 | } | 2113 | } |
1060 | 2114 | ||
2115 | static int mem_cgroup_size(void) | ||
2116 | { | ||
2117 | int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); | ||
2118 | return sizeof(struct mem_cgroup) + cpustat_size; | ||
2119 | } | ||
2120 | |||
1061 | static struct mem_cgroup *mem_cgroup_alloc(void) | 2121 | static struct mem_cgroup *mem_cgroup_alloc(void) |
1062 | { | 2122 | { |
1063 | struct mem_cgroup *mem; | 2123 | struct mem_cgroup *mem; |
2124 | int size = mem_cgroup_size(); | ||
1064 | 2125 | ||
1065 | if (sizeof(*mem) < PAGE_SIZE) | 2126 | if (size < PAGE_SIZE) |
1066 | mem = kmalloc(sizeof(*mem), GFP_KERNEL); | 2127 | mem = kmalloc(size, GFP_KERNEL); |
1067 | else | 2128 | else |
1068 | mem = vmalloc(sizeof(*mem)); | 2129 | mem = vmalloc(size); |
1069 | 2130 | ||
1070 | if (mem) | 2131 | if (mem) |
1071 | memset(mem, 0, sizeof(*mem)); | 2132 | memset(mem, 0, size); |
1072 | return mem; | 2133 | return mem; |
1073 | } | 2134 | } |
1074 | 2135 | ||
1075 | static void mem_cgroup_free(struct mem_cgroup *mem) | 2136 | /* |
2137 | * At destroying mem_cgroup, references from swap_cgroup can remain. | ||
2138 | * (scanning all at force_empty is too costly...) | ||
2139 | * | ||
2140 | * Instead of clearing all references at force_empty, we remember | ||
2141 | * the number of reference from swap_cgroup and free mem_cgroup when | ||
2142 | * it goes down to 0. | ||
2143 | * | ||
2144 | * Removal of cgroup itself succeeds regardless of refs from swap. | ||
2145 | */ | ||
2146 | |||
2147 | static void __mem_cgroup_free(struct mem_cgroup *mem) | ||
1076 | { | 2148 | { |
1077 | if (sizeof(*mem) < PAGE_SIZE) | 2149 | int node; |
2150 | |||
2151 | for_each_node_state(node, N_POSSIBLE) | ||
2152 | free_mem_cgroup_per_zone_info(mem, node); | ||
2153 | |||
2154 | if (mem_cgroup_size() < PAGE_SIZE) | ||
1078 | kfree(mem); | 2155 | kfree(mem); |
1079 | else | 2156 | else |
1080 | vfree(mem); | 2157 | vfree(mem); |
1081 | } | 2158 | } |
1082 | 2159 | ||
2160 | static void mem_cgroup_get(struct mem_cgroup *mem) | ||
2161 | { | ||
2162 | atomic_inc(&mem->refcnt); | ||
2163 | } | ||
2164 | |||
2165 | static void mem_cgroup_put(struct mem_cgroup *mem) | ||
2166 | { | ||
2167 | if (atomic_dec_and_test(&mem->refcnt)) | ||
2168 | __mem_cgroup_free(mem); | ||
2169 | } | ||
2170 | |||
2171 | |||
2172 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2173 | static void __init enable_swap_cgroup(void) | ||
2174 | { | ||
2175 | if (!mem_cgroup_disabled() && really_do_swap_account) | ||
2176 | do_swap_account = 1; | ||
2177 | } | ||
2178 | #else | ||
2179 | static void __init enable_swap_cgroup(void) | ||
2180 | { | ||
2181 | } | ||
2182 | #endif | ||
1083 | 2183 | ||
1084 | static struct cgroup_subsys_state * | 2184 | static struct cgroup_subsys_state * |
1085 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 2185 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
1086 | { | 2186 | { |
1087 | struct mem_cgroup *mem; | 2187 | struct mem_cgroup *mem, *parent; |
1088 | int node; | 2188 | int node; |
1089 | 2189 | ||
1090 | if (unlikely((cont->parent) == NULL)) { | 2190 | mem = mem_cgroup_alloc(); |
1091 | mem = &init_mem_cgroup; | 2191 | if (!mem) |
1092 | } else { | 2192 | return ERR_PTR(-ENOMEM); |
1093 | mem = mem_cgroup_alloc(); | ||
1094 | if (!mem) | ||
1095 | return ERR_PTR(-ENOMEM); | ||
1096 | } | ||
1097 | |||
1098 | res_counter_init(&mem->res); | ||
1099 | 2193 | ||
1100 | for_each_node_state(node, N_POSSIBLE) | 2194 | for_each_node_state(node, N_POSSIBLE) |
1101 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 2195 | if (alloc_mem_cgroup_per_zone_info(mem, node)) |
1102 | goto free_out; | 2196 | goto free_out; |
2197 | /* root ? */ | ||
2198 | if (cont->parent == NULL) { | ||
2199 | enable_swap_cgroup(); | ||
2200 | parent = NULL; | ||
2201 | } else { | ||
2202 | parent = mem_cgroup_from_cont(cont->parent); | ||
2203 | mem->use_hierarchy = parent->use_hierarchy; | ||
2204 | } | ||
1103 | 2205 | ||
2206 | if (parent && parent->use_hierarchy) { | ||
2207 | res_counter_init(&mem->res, &parent->res); | ||
2208 | res_counter_init(&mem->memsw, &parent->memsw); | ||
2209 | } else { | ||
2210 | res_counter_init(&mem->res, NULL); | ||
2211 | res_counter_init(&mem->memsw, NULL); | ||
2212 | } | ||
2213 | mem->last_scanned_child = NULL; | ||
2214 | spin_lock_init(&mem->reclaim_param_lock); | ||
2215 | |||
2216 | if (parent) | ||
2217 | mem->swappiness = get_swappiness(parent); | ||
2218 | atomic_set(&mem->refcnt, 1); | ||
1104 | return &mem->css; | 2219 | return &mem->css; |
1105 | free_out: | 2220 | free_out: |
1106 | for_each_node_state(node, N_POSSIBLE) | 2221 | __mem_cgroup_free(mem); |
1107 | free_mem_cgroup_per_zone_info(mem, node); | ||
1108 | if (cont->parent != NULL) | ||
1109 | mem_cgroup_free(mem); | ||
1110 | return ERR_PTR(-ENOMEM); | 2222 | return ERR_PTR(-ENOMEM); |
1111 | } | 2223 | } |
1112 | 2224 | ||
@@ -1114,26 +2226,26 @@ static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | |||
1114 | struct cgroup *cont) | 2226 | struct cgroup *cont) |
1115 | { | 2227 | { |
1116 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2228 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
1117 | mem_cgroup_force_empty(mem); | 2229 | mem_cgroup_force_empty(mem, false); |
1118 | } | 2230 | } |
1119 | 2231 | ||
1120 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 2232 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
1121 | struct cgroup *cont) | 2233 | struct cgroup *cont) |
1122 | { | 2234 | { |
1123 | int node; | 2235 | mem_cgroup_put(mem_cgroup_from_cont(cont)); |
1124 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | ||
1125 | |||
1126 | for_each_node_state(node, N_POSSIBLE) | ||
1127 | free_mem_cgroup_per_zone_info(mem, node); | ||
1128 | |||
1129 | mem_cgroup_free(mem_cgroup_from_cont(cont)); | ||
1130 | } | 2236 | } |
1131 | 2237 | ||
1132 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 2238 | static int mem_cgroup_populate(struct cgroup_subsys *ss, |
1133 | struct cgroup *cont) | 2239 | struct cgroup *cont) |
1134 | { | 2240 | { |
1135 | return cgroup_add_files(cont, ss, mem_cgroup_files, | 2241 | int ret; |
1136 | ARRAY_SIZE(mem_cgroup_files)); | 2242 | |
2243 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | ||
2244 | ARRAY_SIZE(mem_cgroup_files)); | ||
2245 | |||
2246 | if (!ret) | ||
2247 | ret = register_memsw_files(cont, ss); | ||
2248 | return ret; | ||
1137 | } | 2249 | } |
1138 | 2250 | ||
1139 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 2251 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
@@ -1141,25 +2253,12 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
1141 | struct cgroup *old_cont, | 2253 | struct cgroup *old_cont, |
1142 | struct task_struct *p) | 2254 | struct task_struct *p) |
1143 | { | 2255 | { |
1144 | struct mm_struct *mm; | 2256 | mutex_lock(&memcg_tasklist); |
1145 | struct mem_cgroup *mem, *old_mem; | ||
1146 | |||
1147 | mm = get_task_mm(p); | ||
1148 | if (mm == NULL) | ||
1149 | return; | ||
1150 | |||
1151 | mem = mem_cgroup_from_cont(cont); | ||
1152 | old_mem = mem_cgroup_from_cont(old_cont); | ||
1153 | |||
1154 | /* | 2257 | /* |
1155 | * Only thread group leaders are allowed to migrate, the mm_struct is | 2258 | * FIXME: It's better to move charges of this process from old |
1156 | * in effect owned by the leader | 2259 | * memcg to new memcg. But it's just on TODO-List now. |
1157 | */ | 2260 | */ |
1158 | if (!thread_group_leader(p)) | 2261 | mutex_unlock(&memcg_tasklist); |
1159 | goto out; | ||
1160 | |||
1161 | out: | ||
1162 | mmput(mm); | ||
1163 | } | 2262 | } |
1164 | 2263 | ||
1165 | struct cgroup_subsys mem_cgroup_subsys = { | 2264 | struct cgroup_subsys mem_cgroup_subsys = { |
@@ -1172,3 +2271,13 @@ struct cgroup_subsys mem_cgroup_subsys = { | |||
1172 | .attach = mem_cgroup_move_task, | 2271 | .attach = mem_cgroup_move_task, |
1173 | .early_init = 0, | 2272 | .early_init = 0, |
1174 | }; | 2273 | }; |
2274 | |||
2275 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | ||
2276 | |||
2277 | static int __init disable_swap_account(char *s) | ||
2278 | { | ||
2279 | really_do_swap_account = 0; | ||
2280 | return 1; | ||
2281 | } | ||
2282 | __setup("noswapaccount", disable_swap_account); | ||
2283 | #endif | ||