diff options
Diffstat (limited to 'mm/ksm.c')
-rw-r--r-- | mm/ksm.c | 1703 |
1 files changed, 1703 insertions, 0 deletions
diff --git a/mm/ksm.c b/mm/ksm.c new file mode 100644 index 000000000000..37cc37325094 --- /dev/null +++ b/mm/ksm.c | |||
@@ -0,0 +1,1703 @@ | |||
1 | /* | ||
2 | * Memory merging support. | ||
3 | * | ||
4 | * This code enables dynamic sharing of identical pages found in different | ||
5 | * memory areas, even if they are not shared by fork() | ||
6 | * | ||
7 | * Copyright (C) 2008-2009 Red Hat, Inc. | ||
8 | * Authors: | ||
9 | * Izik Eidus | ||
10 | * Andrea Arcangeli | ||
11 | * Chris Wright | ||
12 | * Hugh Dickins | ||
13 | * | ||
14 | * This work is licensed under the terms of the GNU GPL, version 2. | ||
15 | */ | ||
16 | |||
17 | #include <linux/errno.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/fs.h> | ||
20 | #include <linux/mman.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/rwsem.h> | ||
23 | #include <linux/pagemap.h> | ||
24 | #include <linux/rmap.h> | ||
25 | #include <linux/spinlock.h> | ||
26 | #include <linux/jhash.h> | ||
27 | #include <linux/delay.h> | ||
28 | #include <linux/kthread.h> | ||
29 | #include <linux/wait.h> | ||
30 | #include <linux/slab.h> | ||
31 | #include <linux/rbtree.h> | ||
32 | #include <linux/mmu_notifier.h> | ||
33 | #include <linux/ksm.h> | ||
34 | |||
35 | #include <asm/tlbflush.h> | ||
36 | |||
37 | /* | ||
38 | * A few notes about the KSM scanning process, | ||
39 | * to make it easier to understand the data structures below: | ||
40 | * | ||
41 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | ||
42 | * contents into a data structure that holds pointers to the pages' locations. | ||
43 | * | ||
44 | * Since the contents of the pages may change at any moment, KSM cannot just | ||
45 | * insert the pages into a normal sorted tree and expect it to find anything. | ||
46 | * Therefore KSM uses two data structures - the stable and the unstable tree. | ||
47 | * | ||
48 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | ||
49 | * by their contents. Because each such page is write-protected, searching on | ||
50 | * this tree is fully assured to be working (except when pages are unmapped), | ||
51 | * and therefore this tree is called the stable tree. | ||
52 | * | ||
53 | * In addition to the stable tree, KSM uses a second data structure called the | ||
54 | * unstable tree: this tree holds pointers to pages which have been found to | ||
55 | * be "unchanged for a period of time". The unstable tree sorts these pages | ||
56 | * by their contents, but since they are not write-protected, KSM cannot rely | ||
57 | * upon the unstable tree to work correctly - the unstable tree is liable to | ||
58 | * be corrupted as its contents are modified, and so it is called unstable. | ||
59 | * | ||
60 | * KSM solves this problem by several techniques: | ||
61 | * | ||
62 | * 1) The unstable tree is flushed every time KSM completes scanning all | ||
63 | * memory areas, and then the tree is rebuilt again from the beginning. | ||
64 | * 2) KSM will only insert into the unstable tree, pages whose hash value | ||
65 | * has not changed since the previous scan of all memory areas. | ||
66 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | ||
67 | * colors of the nodes and not on their contents, assuring that even when | ||
68 | * the tree gets "corrupted" it won't get out of balance, so scanning time | ||
69 | * remains the same (also, searching and inserting nodes in an rbtree uses | ||
70 | * the same algorithm, so we have no overhead when we flush and rebuild). | ||
71 | * 4) KSM never flushes the stable tree, which means that even if it were to | ||
72 | * take 10 attempts to find a page in the unstable tree, once it is found, | ||
73 | * it is secured in the stable tree. (When we scan a new page, we first | ||
74 | * compare it against the stable tree, and then against the unstable tree.) | ||
75 | */ | ||
76 | |||
77 | /** | ||
78 | * struct mm_slot - ksm information per mm that is being scanned | ||
79 | * @link: link to the mm_slots hash list | ||
80 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | ||
81 | * @rmap_list: head for this mm_slot's list of rmap_items | ||
82 | * @mm: the mm that this information is valid for | ||
83 | */ | ||
84 | struct mm_slot { | ||
85 | struct hlist_node link; | ||
86 | struct list_head mm_list; | ||
87 | struct list_head rmap_list; | ||
88 | struct mm_struct *mm; | ||
89 | }; | ||
90 | |||
91 | /** | ||
92 | * struct ksm_scan - cursor for scanning | ||
93 | * @mm_slot: the current mm_slot we are scanning | ||
94 | * @address: the next address inside that to be scanned | ||
95 | * @rmap_item: the current rmap that we are scanning inside the rmap_list | ||
96 | * @seqnr: count of completed full scans (needed when removing unstable node) | ||
97 | * | ||
98 | * There is only the one ksm_scan instance of this cursor structure. | ||
99 | */ | ||
100 | struct ksm_scan { | ||
101 | struct mm_slot *mm_slot; | ||
102 | unsigned long address; | ||
103 | struct rmap_item *rmap_item; | ||
104 | unsigned long seqnr; | ||
105 | }; | ||
106 | |||
107 | /** | ||
108 | * struct rmap_item - reverse mapping item for virtual addresses | ||
109 | * @link: link into mm_slot's rmap_list (rmap_list is per mm) | ||
110 | * @mm: the memory structure this rmap_item is pointing into | ||
111 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | ||
112 | * @oldchecksum: previous checksum of the page at that virtual address | ||
113 | * @node: rb_node of this rmap_item in either unstable or stable tree | ||
114 | * @next: next rmap_item hanging off the same node of the stable tree | ||
115 | * @prev: previous rmap_item hanging off the same node of the stable tree | ||
116 | */ | ||
117 | struct rmap_item { | ||
118 | struct list_head link; | ||
119 | struct mm_struct *mm; | ||
120 | unsigned long address; /* + low bits used for flags below */ | ||
121 | union { | ||
122 | unsigned int oldchecksum; /* when unstable */ | ||
123 | struct rmap_item *next; /* when stable */ | ||
124 | }; | ||
125 | union { | ||
126 | struct rb_node node; /* when tree node */ | ||
127 | struct rmap_item *prev; /* in stable list */ | ||
128 | }; | ||
129 | }; | ||
130 | |||
131 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ | ||
132 | #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */ | ||
133 | #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */ | ||
134 | |||
135 | /* The stable and unstable tree heads */ | ||
136 | static struct rb_root root_stable_tree = RB_ROOT; | ||
137 | static struct rb_root root_unstable_tree = RB_ROOT; | ||
138 | |||
139 | #define MM_SLOTS_HASH_HEADS 1024 | ||
140 | static struct hlist_head *mm_slots_hash; | ||
141 | |||
142 | static struct mm_slot ksm_mm_head = { | ||
143 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | ||
144 | }; | ||
145 | static struct ksm_scan ksm_scan = { | ||
146 | .mm_slot = &ksm_mm_head, | ||
147 | }; | ||
148 | |||
149 | static struct kmem_cache *rmap_item_cache; | ||
150 | static struct kmem_cache *mm_slot_cache; | ||
151 | |||
152 | /* The number of nodes in the stable tree */ | ||
153 | static unsigned long ksm_pages_shared; | ||
154 | |||
155 | /* The number of page slots additionally sharing those nodes */ | ||
156 | static unsigned long ksm_pages_sharing; | ||
157 | |||
158 | /* The number of nodes in the unstable tree */ | ||
159 | static unsigned long ksm_pages_unshared; | ||
160 | |||
161 | /* The number of rmap_items in use: to calculate pages_volatile */ | ||
162 | static unsigned long ksm_rmap_items; | ||
163 | |||
164 | /* Limit on the number of unswappable pages used */ | ||
165 | static unsigned long ksm_max_kernel_pages = 2000; | ||
166 | |||
167 | /* Number of pages ksmd should scan in one batch */ | ||
168 | static unsigned int ksm_thread_pages_to_scan = 200; | ||
169 | |||
170 | /* Milliseconds ksmd should sleep between batches */ | ||
171 | static unsigned int ksm_thread_sleep_millisecs = 20; | ||
172 | |||
173 | #define KSM_RUN_STOP 0 | ||
174 | #define KSM_RUN_MERGE 1 | ||
175 | #define KSM_RUN_UNMERGE 2 | ||
176 | static unsigned int ksm_run = KSM_RUN_MERGE; | ||
177 | |||
178 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | ||
179 | static DEFINE_MUTEX(ksm_thread_mutex); | ||
180 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | ||
181 | |||
182 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | ||
183 | sizeof(struct __struct), __alignof__(struct __struct),\ | ||
184 | (__flags), NULL) | ||
185 | |||
186 | static int __init ksm_slab_init(void) | ||
187 | { | ||
188 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | ||
189 | if (!rmap_item_cache) | ||
190 | goto out; | ||
191 | |||
192 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); | ||
193 | if (!mm_slot_cache) | ||
194 | goto out_free; | ||
195 | |||
196 | return 0; | ||
197 | |||
198 | out_free: | ||
199 | kmem_cache_destroy(rmap_item_cache); | ||
200 | out: | ||
201 | return -ENOMEM; | ||
202 | } | ||
203 | |||
204 | static void __init ksm_slab_free(void) | ||
205 | { | ||
206 | kmem_cache_destroy(mm_slot_cache); | ||
207 | kmem_cache_destroy(rmap_item_cache); | ||
208 | mm_slot_cache = NULL; | ||
209 | } | ||
210 | |||
211 | static inline struct rmap_item *alloc_rmap_item(void) | ||
212 | { | ||
213 | struct rmap_item *rmap_item; | ||
214 | |||
215 | rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); | ||
216 | if (rmap_item) | ||
217 | ksm_rmap_items++; | ||
218 | return rmap_item; | ||
219 | } | ||
220 | |||
221 | static inline void free_rmap_item(struct rmap_item *rmap_item) | ||
222 | { | ||
223 | ksm_rmap_items--; | ||
224 | rmap_item->mm = NULL; /* debug safety */ | ||
225 | kmem_cache_free(rmap_item_cache, rmap_item); | ||
226 | } | ||
227 | |||
228 | static inline struct mm_slot *alloc_mm_slot(void) | ||
229 | { | ||
230 | if (!mm_slot_cache) /* initialization failed */ | ||
231 | return NULL; | ||
232 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | ||
233 | } | ||
234 | |||
235 | static inline void free_mm_slot(struct mm_slot *mm_slot) | ||
236 | { | ||
237 | kmem_cache_free(mm_slot_cache, mm_slot); | ||
238 | } | ||
239 | |||
240 | static int __init mm_slots_hash_init(void) | ||
241 | { | ||
242 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | ||
243 | GFP_KERNEL); | ||
244 | if (!mm_slots_hash) | ||
245 | return -ENOMEM; | ||
246 | return 0; | ||
247 | } | ||
248 | |||
249 | static void __init mm_slots_hash_free(void) | ||
250 | { | ||
251 | kfree(mm_slots_hash); | ||
252 | } | ||
253 | |||
254 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | ||
255 | { | ||
256 | struct mm_slot *mm_slot; | ||
257 | struct hlist_head *bucket; | ||
258 | struct hlist_node *node; | ||
259 | |||
260 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | ||
261 | % MM_SLOTS_HASH_HEADS]; | ||
262 | hlist_for_each_entry(mm_slot, node, bucket, link) { | ||
263 | if (mm == mm_slot->mm) | ||
264 | return mm_slot; | ||
265 | } | ||
266 | return NULL; | ||
267 | } | ||
268 | |||
269 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | ||
270 | struct mm_slot *mm_slot) | ||
271 | { | ||
272 | struct hlist_head *bucket; | ||
273 | |||
274 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | ||
275 | % MM_SLOTS_HASH_HEADS]; | ||
276 | mm_slot->mm = mm; | ||
277 | INIT_LIST_HEAD(&mm_slot->rmap_list); | ||
278 | hlist_add_head(&mm_slot->link, bucket); | ||
279 | } | ||
280 | |||
281 | static inline int in_stable_tree(struct rmap_item *rmap_item) | ||
282 | { | ||
283 | return rmap_item->address & STABLE_FLAG; | ||
284 | } | ||
285 | |||
286 | /* | ||
287 | * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | ||
288 | * page tables after it has passed through ksm_exit() - which, if necessary, | ||
289 | * takes mmap_sem briefly to serialize against them. ksm_exit() does not set | ||
290 | * a special flag: they can just back out as soon as mm_users goes to zero. | ||
291 | * ksm_test_exit() is used throughout to make this test for exit: in some | ||
292 | * places for correctness, in some places just to avoid unnecessary work. | ||
293 | */ | ||
294 | static inline bool ksm_test_exit(struct mm_struct *mm) | ||
295 | { | ||
296 | return atomic_read(&mm->mm_users) == 0; | ||
297 | } | ||
298 | |||
299 | /* | ||
300 | * We use break_ksm to break COW on a ksm page: it's a stripped down | ||
301 | * | ||
302 | * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) | ||
303 | * put_page(page); | ||
304 | * | ||
305 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | ||
306 | * in case the application has unmapped and remapped mm,addr meanwhile. | ||
307 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP | ||
308 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | ||
309 | */ | ||
310 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr) | ||
311 | { | ||
312 | struct page *page; | ||
313 | int ret = 0; | ||
314 | |||
315 | do { | ||
316 | cond_resched(); | ||
317 | page = follow_page(vma, addr, FOLL_GET); | ||
318 | if (!page) | ||
319 | break; | ||
320 | if (PageKsm(page)) | ||
321 | ret = handle_mm_fault(vma->vm_mm, vma, addr, | ||
322 | FAULT_FLAG_WRITE); | ||
323 | else | ||
324 | ret = VM_FAULT_WRITE; | ||
325 | put_page(page); | ||
326 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); | ||
327 | /* | ||
328 | * We must loop because handle_mm_fault() may back out if there's | ||
329 | * any difficulty e.g. if pte accessed bit gets updated concurrently. | ||
330 | * | ||
331 | * VM_FAULT_WRITE is what we have been hoping for: it indicates that | ||
332 | * COW has been broken, even if the vma does not permit VM_WRITE; | ||
333 | * but note that a concurrent fault might break PageKsm for us. | ||
334 | * | ||
335 | * VM_FAULT_SIGBUS could occur if we race with truncation of the | ||
336 | * backing file, which also invalidates anonymous pages: that's | ||
337 | * okay, that truncation will have unmapped the PageKsm for us. | ||
338 | * | ||
339 | * VM_FAULT_OOM: at the time of writing (late July 2009), setting | ||
340 | * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | ||
341 | * current task has TIF_MEMDIE set, and will be OOM killed on return | ||
342 | * to user; and ksmd, having no mm, would never be chosen for that. | ||
343 | * | ||
344 | * But if the mm is in a limited mem_cgroup, then the fault may fail | ||
345 | * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | ||
346 | * even ksmd can fail in this way - though it's usually breaking ksm | ||
347 | * just to undo a merge it made a moment before, so unlikely to oom. | ||
348 | * | ||
349 | * That's a pity: we might therefore have more kernel pages allocated | ||
350 | * than we're counting as nodes in the stable tree; but ksm_do_scan | ||
351 | * will retry to break_cow on each pass, so should recover the page | ||
352 | * in due course. The important thing is to not let VM_MERGEABLE | ||
353 | * be cleared while any such pages might remain in the area. | ||
354 | */ | ||
355 | return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | ||
356 | } | ||
357 | |||
358 | static void break_cow(struct mm_struct *mm, unsigned long addr) | ||
359 | { | ||
360 | struct vm_area_struct *vma; | ||
361 | |||
362 | down_read(&mm->mmap_sem); | ||
363 | if (ksm_test_exit(mm)) | ||
364 | goto out; | ||
365 | vma = find_vma(mm, addr); | ||
366 | if (!vma || vma->vm_start > addr) | ||
367 | goto out; | ||
368 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
369 | goto out; | ||
370 | break_ksm(vma, addr); | ||
371 | out: | ||
372 | up_read(&mm->mmap_sem); | ||
373 | } | ||
374 | |||
375 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | ||
376 | { | ||
377 | struct mm_struct *mm = rmap_item->mm; | ||
378 | unsigned long addr = rmap_item->address; | ||
379 | struct vm_area_struct *vma; | ||
380 | struct page *page; | ||
381 | |||
382 | down_read(&mm->mmap_sem); | ||
383 | if (ksm_test_exit(mm)) | ||
384 | goto out; | ||
385 | vma = find_vma(mm, addr); | ||
386 | if (!vma || vma->vm_start > addr) | ||
387 | goto out; | ||
388 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
389 | goto out; | ||
390 | |||
391 | page = follow_page(vma, addr, FOLL_GET); | ||
392 | if (!page) | ||
393 | goto out; | ||
394 | if (PageAnon(page)) { | ||
395 | flush_anon_page(vma, page, addr); | ||
396 | flush_dcache_page(page); | ||
397 | } else { | ||
398 | put_page(page); | ||
399 | out: page = NULL; | ||
400 | } | ||
401 | up_read(&mm->mmap_sem); | ||
402 | return page; | ||
403 | } | ||
404 | |||
405 | /* | ||
406 | * get_ksm_page: checks if the page at the virtual address in rmap_item | ||
407 | * is still PageKsm, in which case we can trust the content of the page, | ||
408 | * and it returns the gotten page; but NULL if the page has been zapped. | ||
409 | */ | ||
410 | static struct page *get_ksm_page(struct rmap_item *rmap_item) | ||
411 | { | ||
412 | struct page *page; | ||
413 | |||
414 | page = get_mergeable_page(rmap_item); | ||
415 | if (page && !PageKsm(page)) { | ||
416 | put_page(page); | ||
417 | page = NULL; | ||
418 | } | ||
419 | return page; | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * Removing rmap_item from stable or unstable tree. | ||
424 | * This function will clean the information from the stable/unstable tree. | ||
425 | */ | ||
426 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | ||
427 | { | ||
428 | if (in_stable_tree(rmap_item)) { | ||
429 | struct rmap_item *next_item = rmap_item->next; | ||
430 | |||
431 | if (rmap_item->address & NODE_FLAG) { | ||
432 | if (next_item) { | ||
433 | rb_replace_node(&rmap_item->node, | ||
434 | &next_item->node, | ||
435 | &root_stable_tree); | ||
436 | next_item->address |= NODE_FLAG; | ||
437 | ksm_pages_sharing--; | ||
438 | } else { | ||
439 | rb_erase(&rmap_item->node, &root_stable_tree); | ||
440 | ksm_pages_shared--; | ||
441 | } | ||
442 | } else { | ||
443 | struct rmap_item *prev_item = rmap_item->prev; | ||
444 | |||
445 | BUG_ON(prev_item->next != rmap_item); | ||
446 | prev_item->next = next_item; | ||
447 | if (next_item) { | ||
448 | BUG_ON(next_item->prev != rmap_item); | ||
449 | next_item->prev = rmap_item->prev; | ||
450 | } | ||
451 | ksm_pages_sharing--; | ||
452 | } | ||
453 | |||
454 | rmap_item->next = NULL; | ||
455 | |||
456 | } else if (rmap_item->address & NODE_FLAG) { | ||
457 | unsigned char age; | ||
458 | /* | ||
459 | * Usually ksmd can and must skip the rb_erase, because | ||
460 | * root_unstable_tree was already reset to RB_ROOT. | ||
461 | * But be careful when an mm is exiting: do the rb_erase | ||
462 | * if this rmap_item was inserted by this scan, rather | ||
463 | * than left over from before. | ||
464 | */ | ||
465 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | ||
466 | BUG_ON(age > 1); | ||
467 | if (!age) | ||
468 | rb_erase(&rmap_item->node, &root_unstable_tree); | ||
469 | ksm_pages_unshared--; | ||
470 | } | ||
471 | |||
472 | rmap_item->address &= PAGE_MASK; | ||
473 | |||
474 | cond_resched(); /* we're called from many long loops */ | ||
475 | } | ||
476 | |||
477 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, | ||
478 | struct list_head *cur) | ||
479 | { | ||
480 | struct rmap_item *rmap_item; | ||
481 | |||
482 | while (cur != &mm_slot->rmap_list) { | ||
483 | rmap_item = list_entry(cur, struct rmap_item, link); | ||
484 | cur = cur->next; | ||
485 | remove_rmap_item_from_tree(rmap_item); | ||
486 | list_del(&rmap_item->link); | ||
487 | free_rmap_item(rmap_item); | ||
488 | } | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather | ||
493 | * than check every pte of a given vma, the locking doesn't quite work for | ||
494 | * that - an rmap_item is assigned to the stable tree after inserting ksm | ||
495 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing | ||
496 | * rmap_items from parent to child at fork time (so as not to waste time | ||
497 | * if exit comes before the next scan reaches it). | ||
498 | * | ||
499 | * Similarly, although we'd like to remove rmap_items (so updating counts | ||
500 | * and freeing memory) when unmerging an area, it's easier to leave that | ||
501 | * to the next pass of ksmd - consider, for example, how ksmd might be | ||
502 | * in cmp_and_merge_page on one of the rmap_items we would be removing. | ||
503 | */ | ||
504 | static int unmerge_ksm_pages(struct vm_area_struct *vma, | ||
505 | unsigned long start, unsigned long end) | ||
506 | { | ||
507 | unsigned long addr; | ||
508 | int err = 0; | ||
509 | |||
510 | for (addr = start; addr < end && !err; addr += PAGE_SIZE) { | ||
511 | if (ksm_test_exit(vma->vm_mm)) | ||
512 | break; | ||
513 | if (signal_pending(current)) | ||
514 | err = -ERESTARTSYS; | ||
515 | else | ||
516 | err = break_ksm(vma, addr); | ||
517 | } | ||
518 | return err; | ||
519 | } | ||
520 | |||
521 | #ifdef CONFIG_SYSFS | ||
522 | /* | ||
523 | * Only called through the sysfs control interface: | ||
524 | */ | ||
525 | static int unmerge_and_remove_all_rmap_items(void) | ||
526 | { | ||
527 | struct mm_slot *mm_slot; | ||
528 | struct mm_struct *mm; | ||
529 | struct vm_area_struct *vma; | ||
530 | int err = 0; | ||
531 | |||
532 | spin_lock(&ksm_mmlist_lock); | ||
533 | ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, | ||
534 | struct mm_slot, mm_list); | ||
535 | spin_unlock(&ksm_mmlist_lock); | ||
536 | |||
537 | for (mm_slot = ksm_scan.mm_slot; | ||
538 | mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { | ||
539 | mm = mm_slot->mm; | ||
540 | down_read(&mm->mmap_sem); | ||
541 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
542 | if (ksm_test_exit(mm)) | ||
543 | break; | ||
544 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | ||
545 | continue; | ||
546 | err = unmerge_ksm_pages(vma, | ||
547 | vma->vm_start, vma->vm_end); | ||
548 | if (err) | ||
549 | goto error; | ||
550 | } | ||
551 | |||
552 | remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next); | ||
553 | |||
554 | spin_lock(&ksm_mmlist_lock); | ||
555 | ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, | ||
556 | struct mm_slot, mm_list); | ||
557 | if (ksm_test_exit(mm)) { | ||
558 | hlist_del(&mm_slot->link); | ||
559 | list_del(&mm_slot->mm_list); | ||
560 | spin_unlock(&ksm_mmlist_lock); | ||
561 | |||
562 | free_mm_slot(mm_slot); | ||
563 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | ||
564 | up_read(&mm->mmap_sem); | ||
565 | mmdrop(mm); | ||
566 | } else { | ||
567 | spin_unlock(&ksm_mmlist_lock); | ||
568 | up_read(&mm->mmap_sem); | ||
569 | } | ||
570 | } | ||
571 | |||
572 | ksm_scan.seqnr = 0; | ||
573 | return 0; | ||
574 | |||
575 | error: | ||
576 | up_read(&mm->mmap_sem); | ||
577 | spin_lock(&ksm_mmlist_lock); | ||
578 | ksm_scan.mm_slot = &ksm_mm_head; | ||
579 | spin_unlock(&ksm_mmlist_lock); | ||
580 | return err; | ||
581 | } | ||
582 | #endif /* CONFIG_SYSFS */ | ||
583 | |||
584 | static u32 calc_checksum(struct page *page) | ||
585 | { | ||
586 | u32 checksum; | ||
587 | void *addr = kmap_atomic(page, KM_USER0); | ||
588 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); | ||
589 | kunmap_atomic(addr, KM_USER0); | ||
590 | return checksum; | ||
591 | } | ||
592 | |||
593 | static int memcmp_pages(struct page *page1, struct page *page2) | ||
594 | { | ||
595 | char *addr1, *addr2; | ||
596 | int ret; | ||
597 | |||
598 | addr1 = kmap_atomic(page1, KM_USER0); | ||
599 | addr2 = kmap_atomic(page2, KM_USER1); | ||
600 | ret = memcmp(addr1, addr2, PAGE_SIZE); | ||
601 | kunmap_atomic(addr2, KM_USER1); | ||
602 | kunmap_atomic(addr1, KM_USER0); | ||
603 | return ret; | ||
604 | } | ||
605 | |||
606 | static inline int pages_identical(struct page *page1, struct page *page2) | ||
607 | { | ||
608 | return !memcmp_pages(page1, page2); | ||
609 | } | ||
610 | |||
611 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | ||
612 | pte_t *orig_pte) | ||
613 | { | ||
614 | struct mm_struct *mm = vma->vm_mm; | ||
615 | unsigned long addr; | ||
616 | pte_t *ptep; | ||
617 | spinlock_t *ptl; | ||
618 | int swapped; | ||
619 | int err = -EFAULT; | ||
620 | |||
621 | addr = page_address_in_vma(page, vma); | ||
622 | if (addr == -EFAULT) | ||
623 | goto out; | ||
624 | |||
625 | ptep = page_check_address(page, mm, addr, &ptl, 0); | ||
626 | if (!ptep) | ||
627 | goto out; | ||
628 | |||
629 | if (pte_write(*ptep)) { | ||
630 | pte_t entry; | ||
631 | |||
632 | swapped = PageSwapCache(page); | ||
633 | flush_cache_page(vma, addr, page_to_pfn(page)); | ||
634 | /* | ||
635 | * Ok this is tricky, when get_user_pages_fast() run it doesnt | ||
636 | * take any lock, therefore the check that we are going to make | ||
637 | * with the pagecount against the mapcount is racey and | ||
638 | * O_DIRECT can happen right after the check. | ||
639 | * So we clear the pte and flush the tlb before the check | ||
640 | * this assure us that no O_DIRECT can happen after the check | ||
641 | * or in the middle of the check. | ||
642 | */ | ||
643 | entry = ptep_clear_flush(vma, addr, ptep); | ||
644 | /* | ||
645 | * Check that no O_DIRECT or similar I/O is in progress on the | ||
646 | * page | ||
647 | */ | ||
648 | if ((page_mapcount(page) + 2 + swapped) != page_count(page)) { | ||
649 | set_pte_at_notify(mm, addr, ptep, entry); | ||
650 | goto out_unlock; | ||
651 | } | ||
652 | entry = pte_wrprotect(entry); | ||
653 | set_pte_at_notify(mm, addr, ptep, entry); | ||
654 | } | ||
655 | *orig_pte = *ptep; | ||
656 | err = 0; | ||
657 | |||
658 | out_unlock: | ||
659 | pte_unmap_unlock(ptep, ptl); | ||
660 | out: | ||
661 | return err; | ||
662 | } | ||
663 | |||
664 | /** | ||
665 | * replace_page - replace page in vma by new ksm page | ||
666 | * @vma: vma that holds the pte pointing to oldpage | ||
667 | * @oldpage: the page we are replacing by newpage | ||
668 | * @newpage: the ksm page we replace oldpage by | ||
669 | * @orig_pte: the original value of the pte | ||
670 | * | ||
671 | * Returns 0 on success, -EFAULT on failure. | ||
672 | */ | ||
673 | static int replace_page(struct vm_area_struct *vma, struct page *oldpage, | ||
674 | struct page *newpage, pte_t orig_pte) | ||
675 | { | ||
676 | struct mm_struct *mm = vma->vm_mm; | ||
677 | pgd_t *pgd; | ||
678 | pud_t *pud; | ||
679 | pmd_t *pmd; | ||
680 | pte_t *ptep; | ||
681 | spinlock_t *ptl; | ||
682 | unsigned long addr; | ||
683 | pgprot_t prot; | ||
684 | int err = -EFAULT; | ||
685 | |||
686 | prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE); | ||
687 | |||
688 | addr = page_address_in_vma(oldpage, vma); | ||
689 | if (addr == -EFAULT) | ||
690 | goto out; | ||
691 | |||
692 | pgd = pgd_offset(mm, addr); | ||
693 | if (!pgd_present(*pgd)) | ||
694 | goto out; | ||
695 | |||
696 | pud = pud_offset(pgd, addr); | ||
697 | if (!pud_present(*pud)) | ||
698 | goto out; | ||
699 | |||
700 | pmd = pmd_offset(pud, addr); | ||
701 | if (!pmd_present(*pmd)) | ||
702 | goto out; | ||
703 | |||
704 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | ||
705 | if (!pte_same(*ptep, orig_pte)) { | ||
706 | pte_unmap_unlock(ptep, ptl); | ||
707 | goto out; | ||
708 | } | ||
709 | |||
710 | get_page(newpage); | ||
711 | page_add_ksm_rmap(newpage); | ||
712 | |||
713 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | ||
714 | ptep_clear_flush(vma, addr, ptep); | ||
715 | set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot)); | ||
716 | |||
717 | page_remove_rmap(oldpage); | ||
718 | put_page(oldpage); | ||
719 | |||
720 | pte_unmap_unlock(ptep, ptl); | ||
721 | err = 0; | ||
722 | out: | ||
723 | return err; | ||
724 | } | ||
725 | |||
726 | /* | ||
727 | * try_to_merge_one_page - take two pages and merge them into one | ||
728 | * @vma: the vma that hold the pte pointing into oldpage | ||
729 | * @oldpage: the page that we want to replace with newpage | ||
730 | * @newpage: the page that we want to map instead of oldpage | ||
731 | * | ||
732 | * Note: | ||
733 | * oldpage should be a PageAnon page, while newpage should be a PageKsm page, | ||
734 | * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm. | ||
735 | * | ||
736 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | ||
737 | */ | ||
738 | static int try_to_merge_one_page(struct vm_area_struct *vma, | ||
739 | struct page *oldpage, | ||
740 | struct page *newpage) | ||
741 | { | ||
742 | pte_t orig_pte = __pte(0); | ||
743 | int err = -EFAULT; | ||
744 | |||
745 | if (!(vma->vm_flags & VM_MERGEABLE)) | ||
746 | goto out; | ||
747 | |||
748 | if (!PageAnon(oldpage)) | ||
749 | goto out; | ||
750 | |||
751 | get_page(newpage); | ||
752 | get_page(oldpage); | ||
753 | |||
754 | /* | ||
755 | * We need the page lock to read a stable PageSwapCache in | ||
756 | * write_protect_page(). We use trylock_page() instead of | ||
757 | * lock_page() because we don't want to wait here - we | ||
758 | * prefer to continue scanning and merging different pages, | ||
759 | * then come back to this page when it is unlocked. | ||
760 | */ | ||
761 | if (!trylock_page(oldpage)) | ||
762 | goto out_putpage; | ||
763 | /* | ||
764 | * If this anonymous page is mapped only here, its pte may need | ||
765 | * to be write-protected. If it's mapped elsewhere, all of its | ||
766 | * ptes are necessarily already write-protected. But in either | ||
767 | * case, we need to lock and check page_count is not raised. | ||
768 | */ | ||
769 | if (write_protect_page(vma, oldpage, &orig_pte)) { | ||
770 | unlock_page(oldpage); | ||
771 | goto out_putpage; | ||
772 | } | ||
773 | unlock_page(oldpage); | ||
774 | |||
775 | if (pages_identical(oldpage, newpage)) | ||
776 | err = replace_page(vma, oldpage, newpage, orig_pte); | ||
777 | |||
778 | out_putpage: | ||
779 | put_page(oldpage); | ||
780 | put_page(newpage); | ||
781 | out: | ||
782 | return err; | ||
783 | } | ||
784 | |||
785 | /* | ||
786 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | ||
787 | * but no new kernel page is allocated: kpage must already be a ksm page. | ||
788 | */ | ||
789 | static int try_to_merge_with_ksm_page(struct mm_struct *mm1, | ||
790 | unsigned long addr1, | ||
791 | struct page *page1, | ||
792 | struct page *kpage) | ||
793 | { | ||
794 | struct vm_area_struct *vma; | ||
795 | int err = -EFAULT; | ||
796 | |||
797 | down_read(&mm1->mmap_sem); | ||
798 | if (ksm_test_exit(mm1)) | ||
799 | goto out; | ||
800 | |||
801 | vma = find_vma(mm1, addr1); | ||
802 | if (!vma || vma->vm_start > addr1) | ||
803 | goto out; | ||
804 | |||
805 | err = try_to_merge_one_page(vma, page1, kpage); | ||
806 | out: | ||
807 | up_read(&mm1->mmap_sem); | ||
808 | return err; | ||
809 | } | ||
810 | |||
811 | /* | ||
812 | * try_to_merge_two_pages - take two identical pages and prepare them | ||
813 | * to be merged into one page. | ||
814 | * | ||
815 | * This function returns 0 if we successfully mapped two identical pages | ||
816 | * into one page, -EFAULT otherwise. | ||
817 | * | ||
818 | * Note that this function allocates a new kernel page: if one of the pages | ||
819 | * is already a ksm page, try_to_merge_with_ksm_page should be used. | ||
820 | */ | ||
821 | static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1, | ||
822 | struct page *page1, struct mm_struct *mm2, | ||
823 | unsigned long addr2, struct page *page2) | ||
824 | { | ||
825 | struct vm_area_struct *vma; | ||
826 | struct page *kpage; | ||
827 | int err = -EFAULT; | ||
828 | |||
829 | /* | ||
830 | * The number of nodes in the stable tree | ||
831 | * is the number of kernel pages that we hold. | ||
832 | */ | ||
833 | if (ksm_max_kernel_pages && | ||
834 | ksm_max_kernel_pages <= ksm_pages_shared) | ||
835 | return err; | ||
836 | |||
837 | kpage = alloc_page(GFP_HIGHUSER); | ||
838 | if (!kpage) | ||
839 | return err; | ||
840 | |||
841 | down_read(&mm1->mmap_sem); | ||
842 | if (ksm_test_exit(mm1)) { | ||
843 | up_read(&mm1->mmap_sem); | ||
844 | goto out; | ||
845 | } | ||
846 | vma = find_vma(mm1, addr1); | ||
847 | if (!vma || vma->vm_start > addr1) { | ||
848 | up_read(&mm1->mmap_sem); | ||
849 | goto out; | ||
850 | } | ||
851 | |||
852 | copy_user_highpage(kpage, page1, addr1, vma); | ||
853 | err = try_to_merge_one_page(vma, page1, kpage); | ||
854 | up_read(&mm1->mmap_sem); | ||
855 | |||
856 | if (!err) { | ||
857 | err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage); | ||
858 | /* | ||
859 | * If that fails, we have a ksm page with only one pte | ||
860 | * pointing to it: so break it. | ||
861 | */ | ||
862 | if (err) | ||
863 | break_cow(mm1, addr1); | ||
864 | } | ||
865 | out: | ||
866 | put_page(kpage); | ||
867 | return err; | ||
868 | } | ||
869 | |||
870 | /* | ||
871 | * stable_tree_search - search page inside the stable tree | ||
872 | * @page: the page that we are searching identical pages to. | ||
873 | * @page2: pointer into identical page that we are holding inside the stable | ||
874 | * tree that we have found. | ||
875 | * @rmap_item: the reverse mapping item | ||
876 | * | ||
877 | * This function checks if there is a page inside the stable tree | ||
878 | * with identical content to the page that we are scanning right now. | ||
879 | * | ||
880 | * This function return rmap_item pointer to the identical item if found, | ||
881 | * NULL otherwise. | ||
882 | */ | ||
883 | static struct rmap_item *stable_tree_search(struct page *page, | ||
884 | struct page **page2, | ||
885 | struct rmap_item *rmap_item) | ||
886 | { | ||
887 | struct rb_node *node = root_stable_tree.rb_node; | ||
888 | |||
889 | while (node) { | ||
890 | struct rmap_item *tree_rmap_item, *next_rmap_item; | ||
891 | int ret; | ||
892 | |||
893 | tree_rmap_item = rb_entry(node, struct rmap_item, node); | ||
894 | while (tree_rmap_item) { | ||
895 | BUG_ON(!in_stable_tree(tree_rmap_item)); | ||
896 | cond_resched(); | ||
897 | page2[0] = get_ksm_page(tree_rmap_item); | ||
898 | if (page2[0]) | ||
899 | break; | ||
900 | next_rmap_item = tree_rmap_item->next; | ||
901 | remove_rmap_item_from_tree(tree_rmap_item); | ||
902 | tree_rmap_item = next_rmap_item; | ||
903 | } | ||
904 | if (!tree_rmap_item) | ||
905 | return NULL; | ||
906 | |||
907 | ret = memcmp_pages(page, page2[0]); | ||
908 | |||
909 | if (ret < 0) { | ||
910 | put_page(page2[0]); | ||
911 | node = node->rb_left; | ||
912 | } else if (ret > 0) { | ||
913 | put_page(page2[0]); | ||
914 | node = node->rb_right; | ||
915 | } else { | ||
916 | return tree_rmap_item; | ||
917 | } | ||
918 | } | ||
919 | |||
920 | return NULL; | ||
921 | } | ||
922 | |||
923 | /* | ||
924 | * stable_tree_insert - insert rmap_item pointing to new ksm page | ||
925 | * into the stable tree. | ||
926 | * | ||
927 | * @page: the page that we are searching identical page to inside the stable | ||
928 | * tree. | ||
929 | * @rmap_item: pointer to the reverse mapping item. | ||
930 | * | ||
931 | * This function returns rmap_item if success, NULL otherwise. | ||
932 | */ | ||
933 | static struct rmap_item *stable_tree_insert(struct page *page, | ||
934 | struct rmap_item *rmap_item) | ||
935 | { | ||
936 | struct rb_node **new = &root_stable_tree.rb_node; | ||
937 | struct rb_node *parent = NULL; | ||
938 | |||
939 | while (*new) { | ||
940 | struct rmap_item *tree_rmap_item, *next_rmap_item; | ||
941 | struct page *tree_page; | ||
942 | int ret; | ||
943 | |||
944 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | ||
945 | while (tree_rmap_item) { | ||
946 | BUG_ON(!in_stable_tree(tree_rmap_item)); | ||
947 | cond_resched(); | ||
948 | tree_page = get_ksm_page(tree_rmap_item); | ||
949 | if (tree_page) | ||
950 | break; | ||
951 | next_rmap_item = tree_rmap_item->next; | ||
952 | remove_rmap_item_from_tree(tree_rmap_item); | ||
953 | tree_rmap_item = next_rmap_item; | ||
954 | } | ||
955 | if (!tree_rmap_item) | ||
956 | return NULL; | ||
957 | |||
958 | ret = memcmp_pages(page, tree_page); | ||
959 | put_page(tree_page); | ||
960 | |||
961 | parent = *new; | ||
962 | if (ret < 0) | ||
963 | new = &parent->rb_left; | ||
964 | else if (ret > 0) | ||
965 | new = &parent->rb_right; | ||
966 | else { | ||
967 | /* | ||
968 | * It is not a bug that stable_tree_search() didn't | ||
969 | * find this node: because at that time our page was | ||
970 | * not yet write-protected, so may have changed since. | ||
971 | */ | ||
972 | return NULL; | ||
973 | } | ||
974 | } | ||
975 | |||
976 | rmap_item->address |= NODE_FLAG | STABLE_FLAG; | ||
977 | rmap_item->next = NULL; | ||
978 | rb_link_node(&rmap_item->node, parent, new); | ||
979 | rb_insert_color(&rmap_item->node, &root_stable_tree); | ||
980 | |||
981 | ksm_pages_shared++; | ||
982 | return rmap_item; | ||
983 | } | ||
984 | |||
985 | /* | ||
986 | * unstable_tree_search_insert - search and insert items into the unstable tree. | ||
987 | * | ||
988 | * @page: the page that we are going to search for identical page or to insert | ||
989 | * into the unstable tree | ||
990 | * @page2: pointer into identical page that was found inside the unstable tree | ||
991 | * @rmap_item: the reverse mapping item of page | ||
992 | * | ||
993 | * This function searches for a page in the unstable tree identical to the | ||
994 | * page currently being scanned; and if no identical page is found in the | ||
995 | * tree, we insert rmap_item as a new object into the unstable tree. | ||
996 | * | ||
997 | * This function returns pointer to rmap_item found to be identical | ||
998 | * to the currently scanned page, NULL otherwise. | ||
999 | * | ||
1000 | * This function does both searching and inserting, because they share | ||
1001 | * the same walking algorithm in an rbtree. | ||
1002 | */ | ||
1003 | static struct rmap_item *unstable_tree_search_insert(struct page *page, | ||
1004 | struct page **page2, | ||
1005 | struct rmap_item *rmap_item) | ||
1006 | { | ||
1007 | struct rb_node **new = &root_unstable_tree.rb_node; | ||
1008 | struct rb_node *parent = NULL; | ||
1009 | |||
1010 | while (*new) { | ||
1011 | struct rmap_item *tree_rmap_item; | ||
1012 | int ret; | ||
1013 | |||
1014 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | ||
1015 | page2[0] = get_mergeable_page(tree_rmap_item); | ||
1016 | if (!page2[0]) | ||
1017 | return NULL; | ||
1018 | |||
1019 | /* | ||
1020 | * Don't substitute an unswappable ksm page | ||
1021 | * just for one good swappable forked page. | ||
1022 | */ | ||
1023 | if (page == page2[0]) { | ||
1024 | put_page(page2[0]); | ||
1025 | return NULL; | ||
1026 | } | ||
1027 | |||
1028 | ret = memcmp_pages(page, page2[0]); | ||
1029 | |||
1030 | parent = *new; | ||
1031 | if (ret < 0) { | ||
1032 | put_page(page2[0]); | ||
1033 | new = &parent->rb_left; | ||
1034 | } else if (ret > 0) { | ||
1035 | put_page(page2[0]); | ||
1036 | new = &parent->rb_right; | ||
1037 | } else { | ||
1038 | return tree_rmap_item; | ||
1039 | } | ||
1040 | } | ||
1041 | |||
1042 | rmap_item->address |= NODE_FLAG; | ||
1043 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); | ||
1044 | rb_link_node(&rmap_item->node, parent, new); | ||
1045 | rb_insert_color(&rmap_item->node, &root_unstable_tree); | ||
1046 | |||
1047 | ksm_pages_unshared++; | ||
1048 | return NULL; | ||
1049 | } | ||
1050 | |||
1051 | /* | ||
1052 | * stable_tree_append - add another rmap_item to the linked list of | ||
1053 | * rmap_items hanging off a given node of the stable tree, all sharing | ||
1054 | * the same ksm page. | ||
1055 | */ | ||
1056 | static void stable_tree_append(struct rmap_item *rmap_item, | ||
1057 | struct rmap_item *tree_rmap_item) | ||
1058 | { | ||
1059 | rmap_item->next = tree_rmap_item->next; | ||
1060 | rmap_item->prev = tree_rmap_item; | ||
1061 | |||
1062 | if (tree_rmap_item->next) | ||
1063 | tree_rmap_item->next->prev = rmap_item; | ||
1064 | |||
1065 | tree_rmap_item->next = rmap_item; | ||
1066 | rmap_item->address |= STABLE_FLAG; | ||
1067 | |||
1068 | ksm_pages_sharing++; | ||
1069 | } | ||
1070 | |||
1071 | /* | ||
1072 | * cmp_and_merge_page - first see if page can be merged into the stable tree; | ||
1073 | * if not, compare checksum to previous and if it's the same, see if page can | ||
1074 | * be inserted into the unstable tree, or merged with a page already there and | ||
1075 | * both transferred to the stable tree. | ||
1076 | * | ||
1077 | * @page: the page that we are searching identical page to. | ||
1078 | * @rmap_item: the reverse mapping into the virtual address of this page | ||
1079 | */ | ||
1080 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | ||
1081 | { | ||
1082 | struct page *page2[1]; | ||
1083 | struct rmap_item *tree_rmap_item; | ||
1084 | unsigned int checksum; | ||
1085 | int err; | ||
1086 | |||
1087 | if (in_stable_tree(rmap_item)) | ||
1088 | remove_rmap_item_from_tree(rmap_item); | ||
1089 | |||
1090 | /* We first start with searching the page inside the stable tree */ | ||
1091 | tree_rmap_item = stable_tree_search(page, page2, rmap_item); | ||
1092 | if (tree_rmap_item) { | ||
1093 | if (page == page2[0]) /* forked */ | ||
1094 | err = 0; | ||
1095 | else | ||
1096 | err = try_to_merge_with_ksm_page(rmap_item->mm, | ||
1097 | rmap_item->address, | ||
1098 | page, page2[0]); | ||
1099 | put_page(page2[0]); | ||
1100 | |||
1101 | if (!err) { | ||
1102 | /* | ||
1103 | * The page was successfully merged: | ||
1104 | * add its rmap_item to the stable tree. | ||
1105 | */ | ||
1106 | stable_tree_append(rmap_item, tree_rmap_item); | ||
1107 | } | ||
1108 | return; | ||
1109 | } | ||
1110 | |||
1111 | /* | ||
1112 | * A ksm page might have got here by fork, but its other | ||
1113 | * references have already been removed from the stable tree. | ||
1114 | * Or it might be left over from a break_ksm which failed | ||
1115 | * when the mem_cgroup had reached its limit: try again now. | ||
1116 | */ | ||
1117 | if (PageKsm(page)) | ||
1118 | break_cow(rmap_item->mm, rmap_item->address); | ||
1119 | |||
1120 | /* | ||
1121 | * In case the hash value of the page was changed from the last time we | ||
1122 | * have calculated it, this page to be changed frequely, therefore we | ||
1123 | * don't want to insert it to the unstable tree, and we don't want to | ||
1124 | * waste our time to search if there is something identical to it there. | ||
1125 | */ | ||
1126 | checksum = calc_checksum(page); | ||
1127 | if (rmap_item->oldchecksum != checksum) { | ||
1128 | rmap_item->oldchecksum = checksum; | ||
1129 | return; | ||
1130 | } | ||
1131 | |||
1132 | tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item); | ||
1133 | if (tree_rmap_item) { | ||
1134 | err = try_to_merge_two_pages(rmap_item->mm, | ||
1135 | rmap_item->address, page, | ||
1136 | tree_rmap_item->mm, | ||
1137 | tree_rmap_item->address, page2[0]); | ||
1138 | /* | ||
1139 | * As soon as we merge this page, we want to remove the | ||
1140 | * rmap_item of the page we have merged with from the unstable | ||
1141 | * tree, and insert it instead as new node in the stable tree. | ||
1142 | */ | ||
1143 | if (!err) { | ||
1144 | rb_erase(&tree_rmap_item->node, &root_unstable_tree); | ||
1145 | tree_rmap_item->address &= ~NODE_FLAG; | ||
1146 | ksm_pages_unshared--; | ||
1147 | |||
1148 | /* | ||
1149 | * If we fail to insert the page into the stable tree, | ||
1150 | * we will have 2 virtual addresses that are pointing | ||
1151 | * to a ksm page left outside the stable tree, | ||
1152 | * in which case we need to break_cow on both. | ||
1153 | */ | ||
1154 | if (stable_tree_insert(page2[0], tree_rmap_item)) | ||
1155 | stable_tree_append(rmap_item, tree_rmap_item); | ||
1156 | else { | ||
1157 | break_cow(tree_rmap_item->mm, | ||
1158 | tree_rmap_item->address); | ||
1159 | break_cow(rmap_item->mm, rmap_item->address); | ||
1160 | } | ||
1161 | } | ||
1162 | |||
1163 | put_page(page2[0]); | ||
1164 | } | ||
1165 | } | ||
1166 | |||
1167 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | ||
1168 | struct list_head *cur, | ||
1169 | unsigned long addr) | ||
1170 | { | ||
1171 | struct rmap_item *rmap_item; | ||
1172 | |||
1173 | while (cur != &mm_slot->rmap_list) { | ||
1174 | rmap_item = list_entry(cur, struct rmap_item, link); | ||
1175 | if ((rmap_item->address & PAGE_MASK) == addr) { | ||
1176 | if (!in_stable_tree(rmap_item)) | ||
1177 | remove_rmap_item_from_tree(rmap_item); | ||
1178 | return rmap_item; | ||
1179 | } | ||
1180 | if (rmap_item->address > addr) | ||
1181 | break; | ||
1182 | cur = cur->next; | ||
1183 | remove_rmap_item_from_tree(rmap_item); | ||
1184 | list_del(&rmap_item->link); | ||
1185 | free_rmap_item(rmap_item); | ||
1186 | } | ||
1187 | |||
1188 | rmap_item = alloc_rmap_item(); | ||
1189 | if (rmap_item) { | ||
1190 | /* It has already been zeroed */ | ||
1191 | rmap_item->mm = mm_slot->mm; | ||
1192 | rmap_item->address = addr; | ||
1193 | list_add_tail(&rmap_item->link, cur); | ||
1194 | } | ||
1195 | return rmap_item; | ||
1196 | } | ||
1197 | |||
1198 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | ||
1199 | { | ||
1200 | struct mm_struct *mm; | ||
1201 | struct mm_slot *slot; | ||
1202 | struct vm_area_struct *vma; | ||
1203 | struct rmap_item *rmap_item; | ||
1204 | |||
1205 | if (list_empty(&ksm_mm_head.mm_list)) | ||
1206 | return NULL; | ||
1207 | |||
1208 | slot = ksm_scan.mm_slot; | ||
1209 | if (slot == &ksm_mm_head) { | ||
1210 | root_unstable_tree = RB_ROOT; | ||
1211 | |||
1212 | spin_lock(&ksm_mmlist_lock); | ||
1213 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | ||
1214 | ksm_scan.mm_slot = slot; | ||
1215 | spin_unlock(&ksm_mmlist_lock); | ||
1216 | next_mm: | ||
1217 | ksm_scan.address = 0; | ||
1218 | ksm_scan.rmap_item = list_entry(&slot->rmap_list, | ||
1219 | struct rmap_item, link); | ||
1220 | } | ||
1221 | |||
1222 | mm = slot->mm; | ||
1223 | down_read(&mm->mmap_sem); | ||
1224 | if (ksm_test_exit(mm)) | ||
1225 | vma = NULL; | ||
1226 | else | ||
1227 | vma = find_vma(mm, ksm_scan.address); | ||
1228 | |||
1229 | for (; vma; vma = vma->vm_next) { | ||
1230 | if (!(vma->vm_flags & VM_MERGEABLE)) | ||
1231 | continue; | ||
1232 | if (ksm_scan.address < vma->vm_start) | ||
1233 | ksm_scan.address = vma->vm_start; | ||
1234 | if (!vma->anon_vma) | ||
1235 | ksm_scan.address = vma->vm_end; | ||
1236 | |||
1237 | while (ksm_scan.address < vma->vm_end) { | ||
1238 | if (ksm_test_exit(mm)) | ||
1239 | break; | ||
1240 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); | ||
1241 | if (*page && PageAnon(*page)) { | ||
1242 | flush_anon_page(vma, *page, ksm_scan.address); | ||
1243 | flush_dcache_page(*page); | ||
1244 | rmap_item = get_next_rmap_item(slot, | ||
1245 | ksm_scan.rmap_item->link.next, | ||
1246 | ksm_scan.address); | ||
1247 | if (rmap_item) { | ||
1248 | ksm_scan.rmap_item = rmap_item; | ||
1249 | ksm_scan.address += PAGE_SIZE; | ||
1250 | } else | ||
1251 | put_page(*page); | ||
1252 | up_read(&mm->mmap_sem); | ||
1253 | return rmap_item; | ||
1254 | } | ||
1255 | if (*page) | ||
1256 | put_page(*page); | ||
1257 | ksm_scan.address += PAGE_SIZE; | ||
1258 | cond_resched(); | ||
1259 | } | ||
1260 | } | ||
1261 | |||
1262 | if (ksm_test_exit(mm)) { | ||
1263 | ksm_scan.address = 0; | ||
1264 | ksm_scan.rmap_item = list_entry(&slot->rmap_list, | ||
1265 | struct rmap_item, link); | ||
1266 | } | ||
1267 | /* | ||
1268 | * Nuke all the rmap_items that are above this current rmap: | ||
1269 | * because there were no VM_MERGEABLE vmas with such addresses. | ||
1270 | */ | ||
1271 | remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next); | ||
1272 | |||
1273 | spin_lock(&ksm_mmlist_lock); | ||
1274 | ksm_scan.mm_slot = list_entry(slot->mm_list.next, | ||
1275 | struct mm_slot, mm_list); | ||
1276 | if (ksm_scan.address == 0) { | ||
1277 | /* | ||
1278 | * We've completed a full scan of all vmas, holding mmap_sem | ||
1279 | * throughout, and found no VM_MERGEABLE: so do the same as | ||
1280 | * __ksm_exit does to remove this mm from all our lists now. | ||
1281 | * This applies either when cleaning up after __ksm_exit | ||
1282 | * (but beware: we can reach here even before __ksm_exit), | ||
1283 | * or when all VM_MERGEABLE areas have been unmapped (and | ||
1284 | * mmap_sem then protects against race with MADV_MERGEABLE). | ||
1285 | */ | ||
1286 | hlist_del(&slot->link); | ||
1287 | list_del(&slot->mm_list); | ||
1288 | spin_unlock(&ksm_mmlist_lock); | ||
1289 | |||
1290 | free_mm_slot(slot); | ||
1291 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | ||
1292 | up_read(&mm->mmap_sem); | ||
1293 | mmdrop(mm); | ||
1294 | } else { | ||
1295 | spin_unlock(&ksm_mmlist_lock); | ||
1296 | up_read(&mm->mmap_sem); | ||
1297 | } | ||
1298 | |||
1299 | /* Repeat until we've completed scanning the whole list */ | ||
1300 | slot = ksm_scan.mm_slot; | ||
1301 | if (slot != &ksm_mm_head) | ||
1302 | goto next_mm; | ||
1303 | |||
1304 | ksm_scan.seqnr++; | ||
1305 | return NULL; | ||
1306 | } | ||
1307 | |||
1308 | /** | ||
1309 | * ksm_do_scan - the ksm scanner main worker function. | ||
1310 | * @scan_npages - number of pages we want to scan before we return. | ||
1311 | */ | ||
1312 | static void ksm_do_scan(unsigned int scan_npages) | ||
1313 | { | ||
1314 | struct rmap_item *rmap_item; | ||
1315 | struct page *page; | ||
1316 | |||
1317 | while (scan_npages--) { | ||
1318 | cond_resched(); | ||
1319 | rmap_item = scan_get_next_rmap_item(&page); | ||
1320 | if (!rmap_item) | ||
1321 | return; | ||
1322 | if (!PageKsm(page) || !in_stable_tree(rmap_item)) | ||
1323 | cmp_and_merge_page(page, rmap_item); | ||
1324 | else if (page_mapcount(page) == 1) { | ||
1325 | /* | ||
1326 | * Replace now-unshared ksm page by ordinary page. | ||
1327 | */ | ||
1328 | break_cow(rmap_item->mm, rmap_item->address); | ||
1329 | remove_rmap_item_from_tree(rmap_item); | ||
1330 | rmap_item->oldchecksum = calc_checksum(page); | ||
1331 | } | ||
1332 | put_page(page); | ||
1333 | } | ||
1334 | } | ||
1335 | |||
1336 | static int ksmd_should_run(void) | ||
1337 | { | ||
1338 | return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); | ||
1339 | } | ||
1340 | |||
1341 | static int ksm_scan_thread(void *nothing) | ||
1342 | { | ||
1343 | set_user_nice(current, 5); | ||
1344 | |||
1345 | while (!kthread_should_stop()) { | ||
1346 | mutex_lock(&ksm_thread_mutex); | ||
1347 | if (ksmd_should_run()) | ||
1348 | ksm_do_scan(ksm_thread_pages_to_scan); | ||
1349 | mutex_unlock(&ksm_thread_mutex); | ||
1350 | |||
1351 | if (ksmd_should_run()) { | ||
1352 | schedule_timeout_interruptible( | ||
1353 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | ||
1354 | } else { | ||
1355 | wait_event_interruptible(ksm_thread_wait, | ||
1356 | ksmd_should_run() || kthread_should_stop()); | ||
1357 | } | ||
1358 | } | ||
1359 | return 0; | ||
1360 | } | ||
1361 | |||
1362 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | ||
1363 | unsigned long end, int advice, unsigned long *vm_flags) | ||
1364 | { | ||
1365 | struct mm_struct *mm = vma->vm_mm; | ||
1366 | int err; | ||
1367 | |||
1368 | switch (advice) { | ||
1369 | case MADV_MERGEABLE: | ||
1370 | /* | ||
1371 | * Be somewhat over-protective for now! | ||
1372 | */ | ||
1373 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | | ||
1374 | VM_PFNMAP | VM_IO | VM_DONTEXPAND | | ||
1375 | VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | | ||
1376 | VM_MIXEDMAP | VM_SAO)) | ||
1377 | return 0; /* just ignore the advice */ | ||
1378 | |||
1379 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { | ||
1380 | err = __ksm_enter(mm); | ||
1381 | if (err) | ||
1382 | return err; | ||
1383 | } | ||
1384 | |||
1385 | *vm_flags |= VM_MERGEABLE; | ||
1386 | break; | ||
1387 | |||
1388 | case MADV_UNMERGEABLE: | ||
1389 | if (!(*vm_flags & VM_MERGEABLE)) | ||
1390 | return 0; /* just ignore the advice */ | ||
1391 | |||
1392 | if (vma->anon_vma) { | ||
1393 | err = unmerge_ksm_pages(vma, start, end); | ||
1394 | if (err) | ||
1395 | return err; | ||
1396 | } | ||
1397 | |||
1398 | *vm_flags &= ~VM_MERGEABLE; | ||
1399 | break; | ||
1400 | } | ||
1401 | |||
1402 | return 0; | ||
1403 | } | ||
1404 | |||
1405 | int __ksm_enter(struct mm_struct *mm) | ||
1406 | { | ||
1407 | struct mm_slot *mm_slot; | ||
1408 | int needs_wakeup; | ||
1409 | |||
1410 | mm_slot = alloc_mm_slot(); | ||
1411 | if (!mm_slot) | ||
1412 | return -ENOMEM; | ||
1413 | |||
1414 | /* Check ksm_run too? Would need tighter locking */ | ||
1415 | needs_wakeup = list_empty(&ksm_mm_head.mm_list); | ||
1416 | |||
1417 | spin_lock(&ksm_mmlist_lock); | ||
1418 | insert_to_mm_slots_hash(mm, mm_slot); | ||
1419 | /* | ||
1420 | * Insert just behind the scanning cursor, to let the area settle | ||
1421 | * down a little; when fork is followed by immediate exec, we don't | ||
1422 | * want ksmd to waste time setting up and tearing down an rmap_list. | ||
1423 | */ | ||
1424 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | ||
1425 | spin_unlock(&ksm_mmlist_lock); | ||
1426 | |||
1427 | set_bit(MMF_VM_MERGEABLE, &mm->flags); | ||
1428 | atomic_inc(&mm->mm_count); | ||
1429 | |||
1430 | if (needs_wakeup) | ||
1431 | wake_up_interruptible(&ksm_thread_wait); | ||
1432 | |||
1433 | return 0; | ||
1434 | } | ||
1435 | |||
1436 | void __ksm_exit(struct mm_struct *mm) | ||
1437 | { | ||
1438 | struct mm_slot *mm_slot; | ||
1439 | int easy_to_free = 0; | ||
1440 | |||
1441 | /* | ||
1442 | * This process is exiting: if it's straightforward (as is the | ||
1443 | * case when ksmd was never running), free mm_slot immediately. | ||
1444 | * But if it's at the cursor or has rmap_items linked to it, use | ||
1445 | * mmap_sem to synchronize with any break_cows before pagetables | ||
1446 | * are freed, and leave the mm_slot on the list for ksmd to free. | ||
1447 | * Beware: ksm may already have noticed it exiting and freed the slot. | ||
1448 | */ | ||
1449 | |||
1450 | spin_lock(&ksm_mmlist_lock); | ||
1451 | mm_slot = get_mm_slot(mm); | ||
1452 | if (mm_slot && ksm_scan.mm_slot != mm_slot) { | ||
1453 | if (list_empty(&mm_slot->rmap_list)) { | ||
1454 | hlist_del(&mm_slot->link); | ||
1455 | list_del(&mm_slot->mm_list); | ||
1456 | easy_to_free = 1; | ||
1457 | } else { | ||
1458 | list_move(&mm_slot->mm_list, | ||
1459 | &ksm_scan.mm_slot->mm_list); | ||
1460 | } | ||
1461 | } | ||
1462 | spin_unlock(&ksm_mmlist_lock); | ||
1463 | |||
1464 | if (easy_to_free) { | ||
1465 | free_mm_slot(mm_slot); | ||
1466 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | ||
1467 | mmdrop(mm); | ||
1468 | } else if (mm_slot) { | ||
1469 | down_write(&mm->mmap_sem); | ||
1470 | up_write(&mm->mmap_sem); | ||
1471 | } | ||
1472 | } | ||
1473 | |||
1474 | #ifdef CONFIG_SYSFS | ||
1475 | /* | ||
1476 | * This all compiles without CONFIG_SYSFS, but is a waste of space. | ||
1477 | */ | ||
1478 | |||
1479 | #define KSM_ATTR_RO(_name) \ | ||
1480 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1481 | #define KSM_ATTR(_name) \ | ||
1482 | static struct kobj_attribute _name##_attr = \ | ||
1483 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1484 | |||
1485 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | ||
1486 | struct kobj_attribute *attr, char *buf) | ||
1487 | { | ||
1488 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | ||
1489 | } | ||
1490 | |||
1491 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | ||
1492 | struct kobj_attribute *attr, | ||
1493 | const char *buf, size_t count) | ||
1494 | { | ||
1495 | unsigned long msecs; | ||
1496 | int err; | ||
1497 | |||
1498 | err = strict_strtoul(buf, 10, &msecs); | ||
1499 | if (err || msecs > UINT_MAX) | ||
1500 | return -EINVAL; | ||
1501 | |||
1502 | ksm_thread_sleep_millisecs = msecs; | ||
1503 | |||
1504 | return count; | ||
1505 | } | ||
1506 | KSM_ATTR(sleep_millisecs); | ||
1507 | |||
1508 | static ssize_t pages_to_scan_show(struct kobject *kobj, | ||
1509 | struct kobj_attribute *attr, char *buf) | ||
1510 | { | ||
1511 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | ||
1512 | } | ||
1513 | |||
1514 | static ssize_t pages_to_scan_store(struct kobject *kobj, | ||
1515 | struct kobj_attribute *attr, | ||
1516 | const char *buf, size_t count) | ||
1517 | { | ||
1518 | int err; | ||
1519 | unsigned long nr_pages; | ||
1520 | |||
1521 | err = strict_strtoul(buf, 10, &nr_pages); | ||
1522 | if (err || nr_pages > UINT_MAX) | ||
1523 | return -EINVAL; | ||
1524 | |||
1525 | ksm_thread_pages_to_scan = nr_pages; | ||
1526 | |||
1527 | return count; | ||
1528 | } | ||
1529 | KSM_ATTR(pages_to_scan); | ||
1530 | |||
1531 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | ||
1532 | char *buf) | ||
1533 | { | ||
1534 | return sprintf(buf, "%u\n", ksm_run); | ||
1535 | } | ||
1536 | |||
1537 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | ||
1538 | const char *buf, size_t count) | ||
1539 | { | ||
1540 | int err; | ||
1541 | unsigned long flags; | ||
1542 | |||
1543 | err = strict_strtoul(buf, 10, &flags); | ||
1544 | if (err || flags > UINT_MAX) | ||
1545 | return -EINVAL; | ||
1546 | if (flags > KSM_RUN_UNMERGE) | ||
1547 | return -EINVAL; | ||
1548 | |||
1549 | /* | ||
1550 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | ||
1551 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | ||
1552 | * breaking COW to free the unswappable pages_shared (but leaves | ||
1553 | * mm_slots on the list for when ksmd may be set running again). | ||
1554 | */ | ||
1555 | |||
1556 | mutex_lock(&ksm_thread_mutex); | ||
1557 | if (ksm_run != flags) { | ||
1558 | ksm_run = flags; | ||
1559 | if (flags & KSM_RUN_UNMERGE) { | ||
1560 | current->flags |= PF_OOM_ORIGIN; | ||
1561 | err = unmerge_and_remove_all_rmap_items(); | ||
1562 | current->flags &= ~PF_OOM_ORIGIN; | ||
1563 | if (err) { | ||
1564 | ksm_run = KSM_RUN_STOP; | ||
1565 | count = err; | ||
1566 | } | ||
1567 | } | ||
1568 | } | ||
1569 | mutex_unlock(&ksm_thread_mutex); | ||
1570 | |||
1571 | if (flags & KSM_RUN_MERGE) | ||
1572 | wake_up_interruptible(&ksm_thread_wait); | ||
1573 | |||
1574 | return count; | ||
1575 | } | ||
1576 | KSM_ATTR(run); | ||
1577 | |||
1578 | static ssize_t max_kernel_pages_store(struct kobject *kobj, | ||
1579 | struct kobj_attribute *attr, | ||
1580 | const char *buf, size_t count) | ||
1581 | { | ||
1582 | int err; | ||
1583 | unsigned long nr_pages; | ||
1584 | |||
1585 | err = strict_strtoul(buf, 10, &nr_pages); | ||
1586 | if (err) | ||
1587 | return -EINVAL; | ||
1588 | |||
1589 | ksm_max_kernel_pages = nr_pages; | ||
1590 | |||
1591 | return count; | ||
1592 | } | ||
1593 | |||
1594 | static ssize_t max_kernel_pages_show(struct kobject *kobj, | ||
1595 | struct kobj_attribute *attr, char *buf) | ||
1596 | { | ||
1597 | return sprintf(buf, "%lu\n", ksm_max_kernel_pages); | ||
1598 | } | ||
1599 | KSM_ATTR(max_kernel_pages); | ||
1600 | |||
1601 | static ssize_t pages_shared_show(struct kobject *kobj, | ||
1602 | struct kobj_attribute *attr, char *buf) | ||
1603 | { | ||
1604 | return sprintf(buf, "%lu\n", ksm_pages_shared); | ||
1605 | } | ||
1606 | KSM_ATTR_RO(pages_shared); | ||
1607 | |||
1608 | static ssize_t pages_sharing_show(struct kobject *kobj, | ||
1609 | struct kobj_attribute *attr, char *buf) | ||
1610 | { | ||
1611 | return sprintf(buf, "%lu\n", ksm_pages_sharing); | ||
1612 | } | ||
1613 | KSM_ATTR_RO(pages_sharing); | ||
1614 | |||
1615 | static ssize_t pages_unshared_show(struct kobject *kobj, | ||
1616 | struct kobj_attribute *attr, char *buf) | ||
1617 | { | ||
1618 | return sprintf(buf, "%lu\n", ksm_pages_unshared); | ||
1619 | } | ||
1620 | KSM_ATTR_RO(pages_unshared); | ||
1621 | |||
1622 | static ssize_t pages_volatile_show(struct kobject *kobj, | ||
1623 | struct kobj_attribute *attr, char *buf) | ||
1624 | { | ||
1625 | long ksm_pages_volatile; | ||
1626 | |||
1627 | ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | ||
1628 | - ksm_pages_sharing - ksm_pages_unshared; | ||
1629 | /* | ||
1630 | * It was not worth any locking to calculate that statistic, | ||
1631 | * but it might therefore sometimes be negative: conceal that. | ||
1632 | */ | ||
1633 | if (ksm_pages_volatile < 0) | ||
1634 | ksm_pages_volatile = 0; | ||
1635 | return sprintf(buf, "%ld\n", ksm_pages_volatile); | ||
1636 | } | ||
1637 | KSM_ATTR_RO(pages_volatile); | ||
1638 | |||
1639 | static ssize_t full_scans_show(struct kobject *kobj, | ||
1640 | struct kobj_attribute *attr, char *buf) | ||
1641 | { | ||
1642 | return sprintf(buf, "%lu\n", ksm_scan.seqnr); | ||
1643 | } | ||
1644 | KSM_ATTR_RO(full_scans); | ||
1645 | |||
1646 | static struct attribute *ksm_attrs[] = { | ||
1647 | &sleep_millisecs_attr.attr, | ||
1648 | &pages_to_scan_attr.attr, | ||
1649 | &run_attr.attr, | ||
1650 | &max_kernel_pages_attr.attr, | ||
1651 | &pages_shared_attr.attr, | ||
1652 | &pages_sharing_attr.attr, | ||
1653 | &pages_unshared_attr.attr, | ||
1654 | &pages_volatile_attr.attr, | ||
1655 | &full_scans_attr.attr, | ||
1656 | NULL, | ||
1657 | }; | ||
1658 | |||
1659 | static struct attribute_group ksm_attr_group = { | ||
1660 | .attrs = ksm_attrs, | ||
1661 | .name = "ksm", | ||
1662 | }; | ||
1663 | #endif /* CONFIG_SYSFS */ | ||
1664 | |||
1665 | static int __init ksm_init(void) | ||
1666 | { | ||
1667 | struct task_struct *ksm_thread; | ||
1668 | int err; | ||
1669 | |||
1670 | err = ksm_slab_init(); | ||
1671 | if (err) | ||
1672 | goto out; | ||
1673 | |||
1674 | err = mm_slots_hash_init(); | ||
1675 | if (err) | ||
1676 | goto out_free1; | ||
1677 | |||
1678 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | ||
1679 | if (IS_ERR(ksm_thread)) { | ||
1680 | printk(KERN_ERR "ksm: creating kthread failed\n"); | ||
1681 | err = PTR_ERR(ksm_thread); | ||
1682 | goto out_free2; | ||
1683 | } | ||
1684 | |||
1685 | #ifdef CONFIG_SYSFS | ||
1686 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); | ||
1687 | if (err) { | ||
1688 | printk(KERN_ERR "ksm: register sysfs failed\n"); | ||
1689 | kthread_stop(ksm_thread); | ||
1690 | goto out_free2; | ||
1691 | } | ||
1692 | #endif /* CONFIG_SYSFS */ | ||
1693 | |||
1694 | return 0; | ||
1695 | |||
1696 | out_free2: | ||
1697 | mm_slots_hash_free(); | ||
1698 | out_free1: | ||
1699 | ksm_slab_free(); | ||
1700 | out: | ||
1701 | return err; | ||
1702 | } | ||
1703 | module_init(ksm_init) | ||