diff options
Diffstat (limited to 'mm/hugetlb.c')
| -rw-r--r-- | mm/hugetlb.c | 233 | 
1 files changed, 163 insertions, 70 deletions
| diff --git a/mm/hugetlb.c b/mm/hugetlb.c index c03273807182..96991ded82fe 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
| @@ -423,14 +423,14 @@ static void clear_huge_page(struct page *page, | |||
| 423 | } | 423 | } | 
| 424 | } | 424 | } | 
| 425 | 425 | ||
| 426 | static void copy_gigantic_page(struct page *dst, struct page *src, | 426 | static void copy_user_gigantic_page(struct page *dst, struct page *src, | 
| 427 | unsigned long addr, struct vm_area_struct *vma) | 427 | unsigned long addr, struct vm_area_struct *vma) | 
| 428 | { | 428 | { | 
| 429 | int i; | 429 | int i; | 
| 430 | struct hstate *h = hstate_vma(vma); | 430 | struct hstate *h = hstate_vma(vma); | 
| 431 | struct page *dst_base = dst; | 431 | struct page *dst_base = dst; | 
| 432 | struct page *src_base = src; | 432 | struct page *src_base = src; | 
| 433 | might_sleep(); | 433 | |
| 434 | for (i = 0; i < pages_per_huge_page(h); ) { | 434 | for (i = 0; i < pages_per_huge_page(h); ) { | 
| 435 | cond_resched(); | 435 | cond_resched(); | 
| 436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 
| @@ -440,14 +440,15 @@ static void copy_gigantic_page(struct page *dst, struct page *src, | |||
| 440 | src = mem_map_next(src, src_base, i); | 440 | src = mem_map_next(src, src_base, i); | 
| 441 | } | 441 | } | 
| 442 | } | 442 | } | 
| 443 | static void copy_huge_page(struct page *dst, struct page *src, | 443 | |
| 444 | static void copy_user_huge_page(struct page *dst, struct page *src, | ||
| 444 | unsigned long addr, struct vm_area_struct *vma) | 445 | unsigned long addr, struct vm_area_struct *vma) | 
| 445 | { | 446 | { | 
| 446 | int i; | 447 | int i; | 
| 447 | struct hstate *h = hstate_vma(vma); | 448 | struct hstate *h = hstate_vma(vma); | 
| 448 | 449 | ||
| 449 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | 450 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | 
| 450 | copy_gigantic_page(dst, src, addr, vma); | 451 | copy_user_gigantic_page(dst, src, addr, vma); | 
| 451 | return; | 452 | return; | 
| 452 | } | 453 | } | 
| 453 | 454 | ||
| @@ -458,6 +459,40 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
| 458 | } | 459 | } | 
| 459 | } | 460 | } | 
| 460 | 461 | ||
| 462 | static void copy_gigantic_page(struct page *dst, struct page *src) | ||
| 463 | { | ||
| 464 | int i; | ||
| 465 | struct hstate *h = page_hstate(src); | ||
| 466 | struct page *dst_base = dst; | ||
| 467 | struct page *src_base = src; | ||
| 468 | |||
| 469 | for (i = 0; i < pages_per_huge_page(h); ) { | ||
| 470 | cond_resched(); | ||
| 471 | copy_highpage(dst, src); | ||
| 472 | |||
| 473 | i++; | ||
| 474 | dst = mem_map_next(dst, dst_base, i); | ||
| 475 | src = mem_map_next(src, src_base, i); | ||
| 476 | } | ||
| 477 | } | ||
| 478 | |||
| 479 | void copy_huge_page(struct page *dst, struct page *src) | ||
| 480 | { | ||
| 481 | int i; | ||
| 482 | struct hstate *h = page_hstate(src); | ||
| 483 | |||
| 484 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | ||
| 485 | copy_gigantic_page(dst, src); | ||
| 486 | return; | ||
| 487 | } | ||
| 488 | |||
| 489 | might_sleep(); | ||
| 490 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
| 491 | cond_resched(); | ||
| 492 | copy_highpage(dst + i, src + i); | ||
| 493 | } | ||
| 494 | } | ||
| 495 | |||
| 461 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 496 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
| 462 | { | 497 | { | 
| 463 | int nid = page_to_nid(page); | 498 | int nid = page_to_nid(page); | 
| @@ -466,11 +501,24 @@ static void enqueue_huge_page(struct hstate *h, struct page *page) | |||
| 466 | h->free_huge_pages_node[nid]++; | 501 | h->free_huge_pages_node[nid]++; | 
| 467 | } | 502 | } | 
| 468 | 503 | ||
| 504 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) | ||
| 505 | { | ||
| 506 | struct page *page; | ||
| 507 | |||
| 508 | if (list_empty(&h->hugepage_freelists[nid])) | ||
| 509 | return NULL; | ||
| 510 | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | ||
| 511 | list_del(&page->lru); | ||
| 512 | set_page_refcounted(page); | ||
| 513 | h->free_huge_pages--; | ||
| 514 | h->free_huge_pages_node[nid]--; | ||
| 515 | return page; | ||
| 516 | } | ||
| 517 | |||
| 469 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 518 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
| 470 | struct vm_area_struct *vma, | 519 | struct vm_area_struct *vma, | 
| 471 | unsigned long address, int avoid_reserve) | 520 | unsigned long address, int avoid_reserve) | 
| 472 | { | 521 | { | 
| 473 | int nid; | ||
| 474 | struct page *page = NULL; | 522 | struct page *page = NULL; | 
| 475 | struct mempolicy *mpol; | 523 | struct mempolicy *mpol; | 
| 476 | nodemask_t *nodemask; | 524 | nodemask_t *nodemask; | 
| @@ -496,19 +544,13 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, | |||
| 496 | 544 | ||
| 497 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 545 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
| 498 | MAX_NR_ZONES - 1, nodemask) { | 546 | MAX_NR_ZONES - 1, nodemask) { | 
| 499 | nid = zone_to_nid(zone); | 547 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { | 
| 500 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 548 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); | 
| 501 | !list_empty(&h->hugepage_freelists[nid])) { | 549 | if (page) { | 
| 502 | page = list_entry(h->hugepage_freelists[nid].next, | 550 | if (!avoid_reserve) | 
| 503 | struct page, lru); | 551 | decrement_hugepage_resv_vma(h, vma); | 
| 504 | list_del(&page->lru); | 552 | break; | 
| 505 | h->free_huge_pages--; | 553 | } | 
| 506 | h->free_huge_pages_node[nid]--; | ||
| 507 | |||
| 508 | if (!avoid_reserve) | ||
| 509 | decrement_hugepage_resv_vma(h, vma); | ||
| 510 | |||
| 511 | break; | ||
| 512 | } | 554 | } | 
| 513 | } | 555 | } | 
| 514 | err: | 556 | err: | 
| @@ -770,11 +812,10 @@ static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | |||
| 770 | return ret; | 812 | return ret; | 
| 771 | } | 813 | } | 
| 772 | 814 | ||
| 773 | static struct page *alloc_buddy_huge_page(struct hstate *h, | 815 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) | 
| 774 | struct vm_area_struct *vma, unsigned long address) | ||
| 775 | { | 816 | { | 
| 776 | struct page *page; | 817 | struct page *page; | 
| 777 | unsigned int nid; | 818 | unsigned int r_nid; | 
| 778 | 819 | ||
| 779 | if (h->order >= MAX_ORDER) | 820 | if (h->order >= MAX_ORDER) | 
| 780 | return NULL; | 821 | return NULL; | 
| @@ -812,9 +853,14 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
| 812 | } | 853 | } | 
| 813 | spin_unlock(&hugetlb_lock); | 854 | spin_unlock(&hugetlb_lock); | 
| 814 | 855 | ||
| 815 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 856 | if (nid == NUMA_NO_NODE) | 
| 816 | __GFP_REPEAT|__GFP_NOWARN, | 857 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 
| 817 | huge_page_order(h)); | 858 | __GFP_REPEAT|__GFP_NOWARN, | 
| 859 | huge_page_order(h)); | ||
| 860 | else | ||
| 861 | page = alloc_pages_exact_node(nid, | ||
| 862 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | ||
| 863 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | ||
| 818 | 864 | ||
| 819 | if (page && arch_prepare_hugepage(page)) { | 865 | if (page && arch_prepare_hugepage(page)) { | 
| 820 | __free_pages(page, huge_page_order(h)); | 866 | __free_pages(page, huge_page_order(h)); | 
| @@ -823,19 +869,13 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
| 823 | 869 | ||
| 824 | spin_lock(&hugetlb_lock); | 870 | spin_lock(&hugetlb_lock); | 
| 825 | if (page) { | 871 | if (page) { | 
| 826 | /* | 872 | r_nid = page_to_nid(page); | 
| 827 | * This page is now managed by the hugetlb allocator and has | ||
| 828 | * no users -- drop the buddy allocator's reference. | ||
| 829 | */ | ||
| 830 | put_page_testzero(page); | ||
| 831 | VM_BUG_ON(page_count(page)); | ||
| 832 | nid = page_to_nid(page); | ||
| 833 | set_compound_page_dtor(page, free_huge_page); | 873 | set_compound_page_dtor(page, free_huge_page); | 
| 834 | /* | 874 | /* | 
| 835 | * We incremented the global counters already | 875 | * We incremented the global counters already | 
| 836 | */ | 876 | */ | 
| 837 | h->nr_huge_pages_node[nid]++; | 877 | h->nr_huge_pages_node[r_nid]++; | 
| 838 | h->surplus_huge_pages_node[nid]++; | 878 | h->surplus_huge_pages_node[r_nid]++; | 
| 839 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 879 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 
| 840 | } else { | 880 | } else { | 
| 841 | h->nr_huge_pages--; | 881 | h->nr_huge_pages--; | 
| @@ -848,6 +888,25 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
| 848 | } | 888 | } | 
| 849 | 889 | ||
| 850 | /* | 890 | /* | 
| 891 | * This allocation function is useful in the context where vma is irrelevant. | ||
| 892 | * E.g. soft-offlining uses this function because it only cares physical | ||
| 893 | * address of error page. | ||
| 894 | */ | ||
| 895 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | ||
| 896 | { | ||
| 897 | struct page *page; | ||
| 898 | |||
| 899 | spin_lock(&hugetlb_lock); | ||
| 900 | page = dequeue_huge_page_node(h, nid); | ||
| 901 | spin_unlock(&hugetlb_lock); | ||
| 902 | |||
| 903 | if (!page) | ||
| 904 | page = alloc_buddy_huge_page(h, nid); | ||
| 905 | |||
| 906 | return page; | ||
| 907 | } | ||
| 908 | |||
| 909 | /* | ||
| 851 | * Increase the hugetlb pool such that it can accomodate a reservation | 910 | * Increase the hugetlb pool such that it can accomodate a reservation | 
| 852 | * of size 'delta'. | 911 | * of size 'delta'. | 
| 853 | */ | 912 | */ | 
| @@ -871,17 +930,14 @@ static int gather_surplus_pages(struct hstate *h, int delta) | |||
| 871 | retry: | 930 | retry: | 
| 872 | spin_unlock(&hugetlb_lock); | 931 | spin_unlock(&hugetlb_lock); | 
| 873 | for (i = 0; i < needed; i++) { | 932 | for (i = 0; i < needed; i++) { | 
| 874 | page = alloc_buddy_huge_page(h, NULL, 0); | 933 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
| 875 | if (!page) { | 934 | if (!page) | 
| 876 | /* | 935 | /* | 
| 877 | * We were not able to allocate enough pages to | 936 | * We were not able to allocate enough pages to | 
| 878 | * satisfy the entire reservation so we free what | 937 | * satisfy the entire reservation so we free what | 
| 879 | * we've allocated so far. | 938 | * we've allocated so far. | 
| 880 | */ | 939 | */ | 
| 881 | spin_lock(&hugetlb_lock); | ||
| 882 | needed = 0; | ||
| 883 | goto free; | 940 | goto free; | 
| 884 | } | ||
| 885 | 941 | ||
| 886 | list_add(&page->lru, &surplus_list); | 942 | list_add(&page->lru, &surplus_list); | 
| 887 | } | 943 | } | 
| @@ -908,31 +964,31 @@ retry: | |||
| 908 | needed += allocated; | 964 | needed += allocated; | 
| 909 | h->resv_huge_pages += delta; | 965 | h->resv_huge_pages += delta; | 
| 910 | ret = 0; | 966 | ret = 0; | 
| 911 | free: | 967 | |
| 968 | spin_unlock(&hugetlb_lock); | ||
| 912 | /* Free the needed pages to the hugetlb pool */ | 969 | /* Free the needed pages to the hugetlb pool */ | 
| 913 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 970 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
| 914 | if ((--needed) < 0) | 971 | if ((--needed) < 0) | 
| 915 | break; | 972 | break; | 
| 916 | list_del(&page->lru); | 973 | list_del(&page->lru); | 
| 974 | /* | ||
| 975 | * This page is now managed by the hugetlb allocator and has | ||
| 976 | * no users -- drop the buddy allocator's reference. | ||
| 977 | */ | ||
| 978 | put_page_testzero(page); | ||
| 979 | VM_BUG_ON(page_count(page)); | ||
| 917 | enqueue_huge_page(h, page); | 980 | enqueue_huge_page(h, page); | 
| 918 | } | 981 | } | 
| 919 | 982 | ||
| 920 | /* Free unnecessary surplus pages to the buddy allocator */ | 983 | /* Free unnecessary surplus pages to the buddy allocator */ | 
| 984 | free: | ||
| 921 | if (!list_empty(&surplus_list)) { | 985 | if (!list_empty(&surplus_list)) { | 
| 922 | spin_unlock(&hugetlb_lock); | ||
| 923 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 986 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
| 924 | list_del(&page->lru); | 987 | list_del(&page->lru); | 
| 925 | /* | 988 | put_page(page); | 
| 926 | * The page has a reference count of zero already, so | ||
| 927 | * call free_huge_page directly instead of using | ||
| 928 | * put_page. This must be done with hugetlb_lock | ||
| 929 | * unlocked which is safe because free_huge_page takes | ||
| 930 | * hugetlb_lock before deciding how to free the page. | ||
| 931 | */ | ||
| 932 | free_huge_page(page); | ||
| 933 | } | 989 | } | 
| 934 | spin_lock(&hugetlb_lock); | ||
| 935 | } | 990 | } | 
| 991 | spin_lock(&hugetlb_lock); | ||
| 936 | 992 | ||
| 937 | return ret; | 993 | return ret; | 
| 938 | } | 994 | } | 
| @@ -1052,14 +1108,13 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, | |||
| 1052 | spin_unlock(&hugetlb_lock); | 1108 | spin_unlock(&hugetlb_lock); | 
| 1053 | 1109 | ||
| 1054 | if (!page) { | 1110 | if (!page) { | 
| 1055 | page = alloc_buddy_huge_page(h, vma, addr); | 1111 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
| 1056 | if (!page) { | 1112 | if (!page) { | 
| 1057 | hugetlb_put_quota(inode->i_mapping, chg); | 1113 | hugetlb_put_quota(inode->i_mapping, chg); | 
| 1058 | return ERR_PTR(-VM_FAULT_SIGBUS); | 1114 | return ERR_PTR(-VM_FAULT_SIGBUS); | 
| 1059 | } | 1115 | } | 
| 1060 | } | 1116 | } | 
| 1061 | 1117 | ||
| 1062 | set_page_refcounted(page); | ||
| 1063 | set_page_private(page, (unsigned long) mapping); | 1118 | set_page_private(page, (unsigned long) mapping); | 
| 1064 | 1119 | ||
| 1065 | vma_commit_reservation(h, vma, addr); | 1120 | vma_commit_reservation(h, vma, addr); | 
| @@ -2153,6 +2208,19 @@ nomem: | |||
| 2153 | return -ENOMEM; | 2208 | return -ENOMEM; | 
| 2154 | } | 2209 | } | 
| 2155 | 2210 | ||
| 2211 | static int is_hugetlb_entry_migration(pte_t pte) | ||
| 2212 | { | ||
| 2213 | swp_entry_t swp; | ||
| 2214 | |||
| 2215 | if (huge_pte_none(pte) || pte_present(pte)) | ||
| 2216 | return 0; | ||
| 2217 | swp = pte_to_swp_entry(pte); | ||
| 2218 | if (non_swap_entry(swp) && is_migration_entry(swp)) { | ||
| 2219 | return 1; | ||
| 2220 | } else | ||
| 2221 | return 0; | ||
| 2222 | } | ||
| 2223 | |||
| 2156 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 2224 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 
| 2157 | { | 2225 | { | 
| 2158 | swp_entry_t swp; | 2226 | swp_entry_t swp; | 
| @@ -2383,7 +2451,7 @@ retry_avoidcopy: | |||
| 2383 | if (unlikely(anon_vma_prepare(vma))) | 2451 | if (unlikely(anon_vma_prepare(vma))) | 
| 2384 | return VM_FAULT_OOM; | 2452 | return VM_FAULT_OOM; | 
| 2385 | 2453 | ||
| 2386 | copy_huge_page(new_page, old_page, address, vma); | 2454 | copy_user_huge_page(new_page, old_page, address, vma); | 
| 2387 | __SetPageUptodate(new_page); | 2455 | __SetPageUptodate(new_page); | 
| 2388 | 2456 | ||
| 2389 | /* | 2457 | /* | 
| @@ -2515,22 +2583,20 @@ retry: | |||
| 2515 | hugepage_add_new_anon_rmap(page, vma, address); | 2583 | hugepage_add_new_anon_rmap(page, vma, address); | 
| 2516 | } | 2584 | } | 
| 2517 | } else { | 2585 | } else { | 
| 2586 | /* | ||
| 2587 | * If memory error occurs between mmap() and fault, some process | ||
| 2588 | * don't have hwpoisoned swap entry for errored virtual address. | ||
| 2589 | * So we need to block hugepage fault by PG_hwpoison bit check. | ||
| 2590 | */ | ||
| 2591 | if (unlikely(PageHWPoison(page))) { | ||
| 2592 | ret = VM_FAULT_HWPOISON | | ||
| 2593 | VM_FAULT_SET_HINDEX(h - hstates); | ||
| 2594 | goto backout_unlocked; | ||
| 2595 | } | ||
| 2518 | page_dup_rmap(page); | 2596 | page_dup_rmap(page); | 
| 2519 | } | 2597 | } | 
| 2520 | 2598 | ||
| 2521 | /* | 2599 | /* | 
| 2522 | * Since memory error handler replaces pte into hwpoison swap entry | ||
| 2523 | * at the time of error handling, a process which reserved but not have | ||
| 2524 | * the mapping to the error hugepage does not have hwpoison swap entry. | ||
| 2525 | * So we need to block accesses from such a process by checking | ||
| 2526 | * PG_hwpoison bit here. | ||
| 2527 | */ | ||
| 2528 | if (unlikely(PageHWPoison(page))) { | ||
| 2529 | ret = VM_FAULT_HWPOISON; | ||
| 2530 | goto backout_unlocked; | ||
| 2531 | } | ||
| 2532 | |||
| 2533 | /* | ||
| 2534 | * If we are going to COW a private mapping later, we examine the | 2600 | * If we are going to COW a private mapping later, we examine the | 
| 2535 | * pending reservations for this page now. This will ensure that | 2601 | * pending reservations for this page now. This will ensure that | 
| 2536 | * any allocations necessary to record that reservation occur outside | 2602 | * any allocations necessary to record that reservation occur outside | 
| @@ -2587,8 +2653,12 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
| 2587 | ptep = huge_pte_offset(mm, address); | 2653 | ptep = huge_pte_offset(mm, address); | 
| 2588 | if (ptep) { | 2654 | if (ptep) { | 
| 2589 | entry = huge_ptep_get(ptep); | 2655 | entry = huge_ptep_get(ptep); | 
| 2590 | if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 2656 | if (unlikely(is_hugetlb_entry_migration(entry))) { | 
| 2591 | return VM_FAULT_HWPOISON; | 2657 | migration_entry_wait(mm, (pmd_t *)ptep, address); | 
| 2658 | return 0; | ||
| 2659 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | ||
| 2660 | return VM_FAULT_HWPOISON_LARGE | | ||
| 2661 | VM_FAULT_SET_HINDEX(h - hstates); | ||
| 2592 | } | 2662 | } | 
| 2593 | 2663 | ||
| 2594 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 2664 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 
| @@ -2878,18 +2948,41 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |||
| 2878 | hugetlb_acct_memory(h, -(chg - freed)); | 2948 | hugetlb_acct_memory(h, -(chg - freed)); | 
| 2879 | } | 2949 | } | 
| 2880 | 2950 | ||
| 2951 | #ifdef CONFIG_MEMORY_FAILURE | ||
| 2952 | |||
| 2953 | /* Should be called in hugetlb_lock */ | ||
| 2954 | static int is_hugepage_on_freelist(struct page *hpage) | ||
| 2955 | { | ||
| 2956 | struct page *page; | ||
| 2957 | struct page *tmp; | ||
| 2958 | struct hstate *h = page_hstate(hpage); | ||
| 2959 | int nid = page_to_nid(hpage); | ||
| 2960 | |||
| 2961 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | ||
| 2962 | if (page == hpage) | ||
| 2963 | return 1; | ||
| 2964 | return 0; | ||
| 2965 | } | ||
| 2966 | |||
| 2881 | /* | 2967 | /* | 
| 2882 | * This function is called from memory failure code. | 2968 | * This function is called from memory failure code. | 
| 2883 | * Assume the caller holds page lock of the head page. | 2969 | * Assume the caller holds page lock of the head page. | 
| 2884 | */ | 2970 | */ | 
| 2885 | void __isolate_hwpoisoned_huge_page(struct page *hpage) | 2971 | int dequeue_hwpoisoned_huge_page(struct page *hpage) | 
| 2886 | { | 2972 | { | 
| 2887 | struct hstate *h = page_hstate(hpage); | 2973 | struct hstate *h = page_hstate(hpage); | 
| 2888 | int nid = page_to_nid(hpage); | 2974 | int nid = page_to_nid(hpage); | 
| 2975 | int ret = -EBUSY; | ||
| 2889 | 2976 | ||
| 2890 | spin_lock(&hugetlb_lock); | 2977 | spin_lock(&hugetlb_lock); | 
| 2891 | list_del(&hpage->lru); | 2978 | if (is_hugepage_on_freelist(hpage)) { | 
| 2892 | h->free_huge_pages--; | 2979 | list_del(&hpage->lru); | 
| 2893 | h->free_huge_pages_node[nid]--; | 2980 | set_page_refcounted(hpage); | 
| 2981 | h->free_huge_pages--; | ||
| 2982 | h->free_huge_pages_node[nid]--; | ||
| 2983 | ret = 0; | ||
| 2984 | } | ||
| 2894 | spin_unlock(&hugetlb_lock); | 2985 | spin_unlock(&hugetlb_lock); | 
| 2986 | return ret; | ||
| 2895 | } | 2987 | } | 
| 2988 | #endif | ||
