diff options
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r-- | mm/hugetlb.c | 1612 |
1 files changed, 1231 insertions, 381 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ab171274ef21..a8bf4ab01f86 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -14,6 +14,8 @@ | |||
14 | #include <linux/mempolicy.h> | 14 | #include <linux/mempolicy.h> |
15 | #include <linux/cpuset.h> | 15 | #include <linux/cpuset.h> |
16 | #include <linux/mutex.h> | 16 | #include <linux/mutex.h> |
17 | #include <linux/bootmem.h> | ||
18 | #include <linux/sysfs.h> | ||
17 | 19 | ||
18 | #include <asm/page.h> | 20 | #include <asm/page.h> |
19 | #include <asm/pgtable.h> | 21 | #include <asm/pgtable.h> |
@@ -22,30 +24,340 @@ | |||
22 | #include "internal.h" | 24 | #include "internal.h" |
23 | 25 | ||
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 26 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; |
25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | ||
26 | static unsigned long surplus_huge_pages; | ||
27 | static unsigned long nr_overcommit_huge_pages; | ||
28 | unsigned long max_huge_pages; | ||
29 | unsigned long sysctl_overcommit_huge_pages; | ||
30 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | ||
31 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | ||
32 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | ||
33 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; | ||
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 27 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | 28 | unsigned long hugepages_treat_as_movable; |
36 | static int hugetlb_next_nid; | 29 | |
30 | static int max_hstate; | ||
31 | unsigned int default_hstate_idx; | ||
32 | struct hstate hstates[HUGE_MAX_HSTATE]; | ||
33 | |||
34 | __initdata LIST_HEAD(huge_boot_pages); | ||
35 | |||
36 | /* for command line parsing */ | ||
37 | static struct hstate * __initdata parsed_hstate; | ||
38 | static unsigned long __initdata default_hstate_max_huge_pages; | ||
39 | static unsigned long __initdata default_hstate_size; | ||
40 | |||
41 | #define for_each_hstate(h) \ | ||
42 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | ||
37 | 43 | ||
38 | /* | 44 | /* |
39 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 45 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages |
40 | */ | 46 | */ |
41 | static DEFINE_SPINLOCK(hugetlb_lock); | 47 | static DEFINE_SPINLOCK(hugetlb_lock); |
42 | 48 | ||
43 | static void clear_huge_page(struct page *page, unsigned long addr) | 49 | /* |
50 | * Region tracking -- allows tracking of reservations and instantiated pages | ||
51 | * across the pages in a mapping. | ||
52 | * | ||
53 | * The region data structures are protected by a combination of the mmap_sem | ||
54 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | ||
55 | * must either hold the mmap_sem for write, or the mmap_sem for read and | ||
56 | * the hugetlb_instantiation mutex: | ||
57 | * | ||
58 | * down_write(&mm->mmap_sem); | ||
59 | * or | ||
60 | * down_read(&mm->mmap_sem); | ||
61 | * mutex_lock(&hugetlb_instantiation_mutex); | ||
62 | */ | ||
63 | struct file_region { | ||
64 | struct list_head link; | ||
65 | long from; | ||
66 | long to; | ||
67 | }; | ||
68 | |||
69 | static long region_add(struct list_head *head, long f, long t) | ||
70 | { | ||
71 | struct file_region *rg, *nrg, *trg; | ||
72 | |||
73 | /* Locate the region we are either in or before. */ | ||
74 | list_for_each_entry(rg, head, link) | ||
75 | if (f <= rg->to) | ||
76 | break; | ||
77 | |||
78 | /* Round our left edge to the current segment if it encloses us. */ | ||
79 | if (f > rg->from) | ||
80 | f = rg->from; | ||
81 | |||
82 | /* Check for and consume any regions we now overlap with. */ | ||
83 | nrg = rg; | ||
84 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
85 | if (&rg->link == head) | ||
86 | break; | ||
87 | if (rg->from > t) | ||
88 | break; | ||
89 | |||
90 | /* If this area reaches higher then extend our area to | ||
91 | * include it completely. If this is not the first area | ||
92 | * which we intend to reuse, free it. */ | ||
93 | if (rg->to > t) | ||
94 | t = rg->to; | ||
95 | if (rg != nrg) { | ||
96 | list_del(&rg->link); | ||
97 | kfree(rg); | ||
98 | } | ||
99 | } | ||
100 | nrg->from = f; | ||
101 | nrg->to = t; | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | static long region_chg(struct list_head *head, long f, long t) | ||
106 | { | ||
107 | struct file_region *rg, *nrg; | ||
108 | long chg = 0; | ||
109 | |||
110 | /* Locate the region we are before or in. */ | ||
111 | list_for_each_entry(rg, head, link) | ||
112 | if (f <= rg->to) | ||
113 | break; | ||
114 | |||
115 | /* If we are below the current region then a new region is required. | ||
116 | * Subtle, allocate a new region at the position but make it zero | ||
117 | * size such that we can guarantee to record the reservation. */ | ||
118 | if (&rg->link == head || t < rg->from) { | ||
119 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
120 | if (!nrg) | ||
121 | return -ENOMEM; | ||
122 | nrg->from = f; | ||
123 | nrg->to = f; | ||
124 | INIT_LIST_HEAD(&nrg->link); | ||
125 | list_add(&nrg->link, rg->link.prev); | ||
126 | |||
127 | return t - f; | ||
128 | } | ||
129 | |||
130 | /* Round our left edge to the current segment if it encloses us. */ | ||
131 | if (f > rg->from) | ||
132 | f = rg->from; | ||
133 | chg = t - f; | ||
134 | |||
135 | /* Check for and consume any regions we now overlap with. */ | ||
136 | list_for_each_entry(rg, rg->link.prev, link) { | ||
137 | if (&rg->link == head) | ||
138 | break; | ||
139 | if (rg->from > t) | ||
140 | return chg; | ||
141 | |||
142 | /* We overlap with this area, if it extends futher than | ||
143 | * us then we must extend ourselves. Account for its | ||
144 | * existing reservation. */ | ||
145 | if (rg->to > t) { | ||
146 | chg += rg->to - t; | ||
147 | t = rg->to; | ||
148 | } | ||
149 | chg -= rg->to - rg->from; | ||
150 | } | ||
151 | return chg; | ||
152 | } | ||
153 | |||
154 | static long region_truncate(struct list_head *head, long end) | ||
155 | { | ||
156 | struct file_region *rg, *trg; | ||
157 | long chg = 0; | ||
158 | |||
159 | /* Locate the region we are either in or before. */ | ||
160 | list_for_each_entry(rg, head, link) | ||
161 | if (end <= rg->to) | ||
162 | break; | ||
163 | if (&rg->link == head) | ||
164 | return 0; | ||
165 | |||
166 | /* If we are in the middle of a region then adjust it. */ | ||
167 | if (end > rg->from) { | ||
168 | chg = rg->to - end; | ||
169 | rg->to = end; | ||
170 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
171 | } | ||
172 | |||
173 | /* Drop any remaining regions. */ | ||
174 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
175 | if (&rg->link == head) | ||
176 | break; | ||
177 | chg += rg->to - rg->from; | ||
178 | list_del(&rg->link); | ||
179 | kfree(rg); | ||
180 | } | ||
181 | return chg; | ||
182 | } | ||
183 | |||
184 | static long region_count(struct list_head *head, long f, long t) | ||
185 | { | ||
186 | struct file_region *rg; | ||
187 | long chg = 0; | ||
188 | |||
189 | /* Locate each segment we overlap with, and count that overlap. */ | ||
190 | list_for_each_entry(rg, head, link) { | ||
191 | int seg_from; | ||
192 | int seg_to; | ||
193 | |||
194 | if (rg->to <= f) | ||
195 | continue; | ||
196 | if (rg->from >= t) | ||
197 | break; | ||
198 | |||
199 | seg_from = max(rg->from, f); | ||
200 | seg_to = min(rg->to, t); | ||
201 | |||
202 | chg += seg_to - seg_from; | ||
203 | } | ||
204 | |||
205 | return chg; | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * Convert the address within this vma to the page offset within | ||
210 | * the mapping, in pagecache page units; huge pages here. | ||
211 | */ | ||
212 | static pgoff_t vma_hugecache_offset(struct hstate *h, | ||
213 | struct vm_area_struct *vma, unsigned long address) | ||
214 | { | ||
215 | return ((address - vma->vm_start) >> huge_page_shift(h)) + | ||
216 | (vma->vm_pgoff >> huge_page_order(h)); | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | ||
221 | * bits of the reservation map pointer, which are always clear due to | ||
222 | * alignment. | ||
223 | */ | ||
224 | #define HPAGE_RESV_OWNER (1UL << 0) | ||
225 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | ||
226 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | ||
227 | |||
228 | /* | ||
229 | * These helpers are used to track how many pages are reserved for | ||
230 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | ||
231 | * is guaranteed to have their future faults succeed. | ||
232 | * | ||
233 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | ||
234 | * the reserve counters are updated with the hugetlb_lock held. It is safe | ||
235 | * to reset the VMA at fork() time as it is not in use yet and there is no | ||
236 | * chance of the global counters getting corrupted as a result of the values. | ||
237 | * | ||
238 | * The private mapping reservation is represented in a subtly different | ||
239 | * manner to a shared mapping. A shared mapping has a region map associated | ||
240 | * with the underlying file, this region map represents the backing file | ||
241 | * pages which have ever had a reservation assigned which this persists even | ||
242 | * after the page is instantiated. A private mapping has a region map | ||
243 | * associated with the original mmap which is attached to all VMAs which | ||
244 | * reference it, this region map represents those offsets which have consumed | ||
245 | * reservation ie. where pages have been instantiated. | ||
246 | */ | ||
247 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | ||
248 | { | ||
249 | return (unsigned long)vma->vm_private_data; | ||
250 | } | ||
251 | |||
252 | static void set_vma_private_data(struct vm_area_struct *vma, | ||
253 | unsigned long value) | ||
254 | { | ||
255 | vma->vm_private_data = (void *)value; | ||
256 | } | ||
257 | |||
258 | struct resv_map { | ||
259 | struct kref refs; | ||
260 | struct list_head regions; | ||
261 | }; | ||
262 | |||
263 | struct resv_map *resv_map_alloc(void) | ||
264 | { | ||
265 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | ||
266 | if (!resv_map) | ||
267 | return NULL; | ||
268 | |||
269 | kref_init(&resv_map->refs); | ||
270 | INIT_LIST_HEAD(&resv_map->regions); | ||
271 | |||
272 | return resv_map; | ||
273 | } | ||
274 | |||
275 | void resv_map_release(struct kref *ref) | ||
276 | { | ||
277 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | ||
278 | |||
279 | /* Clear out any active regions before we release the map. */ | ||
280 | region_truncate(&resv_map->regions, 0); | ||
281 | kfree(resv_map); | ||
282 | } | ||
283 | |||
284 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | ||
285 | { | ||
286 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
287 | if (!(vma->vm_flags & VM_SHARED)) | ||
288 | return (struct resv_map *)(get_vma_private_data(vma) & | ||
289 | ~HPAGE_RESV_MASK); | ||
290 | return 0; | ||
291 | } | ||
292 | |||
293 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | ||
294 | { | ||
295 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
296 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
297 | |||
298 | set_vma_private_data(vma, (get_vma_private_data(vma) & | ||
299 | HPAGE_RESV_MASK) | (unsigned long)map); | ||
300 | } | ||
301 | |||
302 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | ||
303 | { | ||
304 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
305 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
306 | |||
307 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | ||
308 | } | ||
309 | |||
310 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | ||
311 | { | ||
312 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
313 | |||
314 | return (get_vma_private_data(vma) & flag) != 0; | ||
315 | } | ||
316 | |||
317 | /* Decrement the reserved pages in the hugepage pool by one */ | ||
318 | static void decrement_hugepage_resv_vma(struct hstate *h, | ||
319 | struct vm_area_struct *vma) | ||
320 | { | ||
321 | if (vma->vm_flags & VM_NORESERVE) | ||
322 | return; | ||
323 | |||
324 | if (vma->vm_flags & VM_SHARED) { | ||
325 | /* Shared mappings always use reserves */ | ||
326 | h->resv_huge_pages--; | ||
327 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
328 | /* | ||
329 | * Only the process that called mmap() has reserves for | ||
330 | * private mappings. | ||
331 | */ | ||
332 | h->resv_huge_pages--; | ||
333 | } | ||
334 | } | ||
335 | |||
336 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | ||
337 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | ||
338 | { | ||
339 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
340 | if (!(vma->vm_flags & VM_SHARED)) | ||
341 | vma->vm_private_data = (void *)0; | ||
342 | } | ||
343 | |||
344 | /* Returns true if the VMA has associated reserve pages */ | ||
345 | static int vma_has_reserves(struct vm_area_struct *vma) | ||
346 | { | ||
347 | if (vma->vm_flags & VM_SHARED) | ||
348 | return 1; | ||
349 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | ||
350 | return 1; | ||
351 | return 0; | ||
352 | } | ||
353 | |||
354 | static void clear_huge_page(struct page *page, | ||
355 | unsigned long addr, unsigned long sz) | ||
44 | { | 356 | { |
45 | int i; | 357 | int i; |
46 | 358 | ||
47 | might_sleep(); | 359 | might_sleep(); |
48 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | 360 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
49 | cond_resched(); | 361 | cond_resched(); |
50 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 362 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
51 | } | 363 | } |
@@ -55,42 +367,44 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
55 | unsigned long addr, struct vm_area_struct *vma) | 367 | unsigned long addr, struct vm_area_struct *vma) |
56 | { | 368 | { |
57 | int i; | 369 | int i; |
370 | struct hstate *h = hstate_vma(vma); | ||
58 | 371 | ||
59 | might_sleep(); | 372 | might_sleep(); |
60 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | 373 | for (i = 0; i < pages_per_huge_page(h); i++) { |
61 | cond_resched(); | 374 | cond_resched(); |
62 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 375 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
63 | } | 376 | } |
64 | } | 377 | } |
65 | 378 | ||
66 | static void enqueue_huge_page(struct page *page) | 379 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
67 | { | 380 | { |
68 | int nid = page_to_nid(page); | 381 | int nid = page_to_nid(page); |
69 | list_add(&page->lru, &hugepage_freelists[nid]); | 382 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
70 | free_huge_pages++; | 383 | h->free_huge_pages++; |
71 | free_huge_pages_node[nid]++; | 384 | h->free_huge_pages_node[nid]++; |
72 | } | 385 | } |
73 | 386 | ||
74 | static struct page *dequeue_huge_page(void) | 387 | static struct page *dequeue_huge_page(struct hstate *h) |
75 | { | 388 | { |
76 | int nid; | 389 | int nid; |
77 | struct page *page = NULL; | 390 | struct page *page = NULL; |
78 | 391 | ||
79 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { | 392 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { |
80 | if (!list_empty(&hugepage_freelists[nid])) { | 393 | if (!list_empty(&h->hugepage_freelists[nid])) { |
81 | page = list_entry(hugepage_freelists[nid].next, | 394 | page = list_entry(h->hugepage_freelists[nid].next, |
82 | struct page, lru); | 395 | struct page, lru); |
83 | list_del(&page->lru); | 396 | list_del(&page->lru); |
84 | free_huge_pages--; | 397 | h->free_huge_pages--; |
85 | free_huge_pages_node[nid]--; | 398 | h->free_huge_pages_node[nid]--; |
86 | break; | 399 | break; |
87 | } | 400 | } |
88 | } | 401 | } |
89 | return page; | 402 | return page; |
90 | } | 403 | } |
91 | 404 | ||
92 | static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | 405 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
93 | unsigned long address) | 406 | struct vm_area_struct *vma, |
407 | unsigned long address, int avoid_reserve) | ||
94 | { | 408 | { |
95 | int nid; | 409 | int nid; |
96 | struct page *page = NULL; | 410 | struct page *page = NULL; |
@@ -101,18 +415,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
101 | struct zone *zone; | 415 | struct zone *zone; |
102 | struct zoneref *z; | 416 | struct zoneref *z; |
103 | 417 | ||
418 | /* | ||
419 | * A child process with MAP_PRIVATE mappings created by their parent | ||
420 | * have no page reserves. This check ensures that reservations are | ||
421 | * not "stolen". The child may still get SIGKILLed | ||
422 | */ | ||
423 | if (!vma_has_reserves(vma) && | ||
424 | h->free_huge_pages - h->resv_huge_pages == 0) | ||
425 | return NULL; | ||
426 | |||
427 | /* If reserves cannot be used, ensure enough pages are in the pool */ | ||
428 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | ||
429 | return NULL; | ||
430 | |||
104 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 431 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
105 | MAX_NR_ZONES - 1, nodemask) { | 432 | MAX_NR_ZONES - 1, nodemask) { |
106 | nid = zone_to_nid(zone); | 433 | nid = zone_to_nid(zone); |
107 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 434 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && |
108 | !list_empty(&hugepage_freelists[nid])) { | 435 | !list_empty(&h->hugepage_freelists[nid])) { |
109 | page = list_entry(hugepage_freelists[nid].next, | 436 | page = list_entry(h->hugepage_freelists[nid].next, |
110 | struct page, lru); | 437 | struct page, lru); |
111 | list_del(&page->lru); | 438 | list_del(&page->lru); |
112 | free_huge_pages--; | 439 | h->free_huge_pages--; |
113 | free_huge_pages_node[nid]--; | 440 | h->free_huge_pages_node[nid]--; |
114 | if (vma && vma->vm_flags & VM_MAYSHARE) | 441 | |
115 | resv_huge_pages--; | 442 | if (!avoid_reserve) |
443 | decrement_hugepage_resv_vma(h, vma); | ||
444 | |||
116 | break; | 445 | break; |
117 | } | 446 | } |
118 | } | 447 | } |
@@ -120,12 +449,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
120 | return page; | 449 | return page; |
121 | } | 450 | } |
122 | 451 | ||
123 | static void update_and_free_page(struct page *page) | 452 | static void update_and_free_page(struct hstate *h, struct page *page) |
124 | { | 453 | { |
125 | int i; | 454 | int i; |
126 | nr_huge_pages--; | 455 | |
127 | nr_huge_pages_node[page_to_nid(page)]--; | 456 | h->nr_huge_pages--; |
128 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 457 | h->nr_huge_pages_node[page_to_nid(page)]--; |
458 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
129 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 459 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
130 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 460 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | |
131 | 1 << PG_private | 1<< PG_writeback); | 461 | 1 << PG_private | 1<< PG_writeback); |
@@ -133,11 +463,27 @@ static void update_and_free_page(struct page *page) | |||
133 | set_compound_page_dtor(page, NULL); | 463 | set_compound_page_dtor(page, NULL); |
134 | set_page_refcounted(page); | 464 | set_page_refcounted(page); |
135 | arch_release_hugepage(page); | 465 | arch_release_hugepage(page); |
136 | __free_pages(page, HUGETLB_PAGE_ORDER); | 466 | __free_pages(page, huge_page_order(h)); |
467 | } | ||
468 | |||
469 | struct hstate *size_to_hstate(unsigned long size) | ||
470 | { | ||
471 | struct hstate *h; | ||
472 | |||
473 | for_each_hstate(h) { | ||
474 | if (huge_page_size(h) == size) | ||
475 | return h; | ||
476 | } | ||
477 | return NULL; | ||
137 | } | 478 | } |
138 | 479 | ||
139 | static void free_huge_page(struct page *page) | 480 | static void free_huge_page(struct page *page) |
140 | { | 481 | { |
482 | /* | ||
483 | * Can't pass hstate in here because it is called from the | ||
484 | * compound page destructor. | ||
485 | */ | ||
486 | struct hstate *h = page_hstate(page); | ||
141 | int nid = page_to_nid(page); | 487 | int nid = page_to_nid(page); |
142 | struct address_space *mapping; | 488 | struct address_space *mapping; |
143 | 489 | ||
@@ -147,12 +493,12 @@ static void free_huge_page(struct page *page) | |||
147 | INIT_LIST_HEAD(&page->lru); | 493 | INIT_LIST_HEAD(&page->lru); |
148 | 494 | ||
149 | spin_lock(&hugetlb_lock); | 495 | spin_lock(&hugetlb_lock); |
150 | if (surplus_huge_pages_node[nid]) { | 496 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
151 | update_and_free_page(page); | 497 | update_and_free_page(h, page); |
152 | surplus_huge_pages--; | 498 | h->surplus_huge_pages--; |
153 | surplus_huge_pages_node[nid]--; | 499 | h->surplus_huge_pages_node[nid]--; |
154 | } else { | 500 | } else { |
155 | enqueue_huge_page(page); | 501 | enqueue_huge_page(h, page); |
156 | } | 502 | } |
157 | spin_unlock(&hugetlb_lock); | 503 | spin_unlock(&hugetlb_lock); |
158 | if (mapping) | 504 | if (mapping) |
@@ -164,7 +510,7 @@ static void free_huge_page(struct page *page) | |||
164 | * balanced by operating on them in a round-robin fashion. | 510 | * balanced by operating on them in a round-robin fashion. |
165 | * Returns 1 if an adjustment was made. | 511 | * Returns 1 if an adjustment was made. |
166 | */ | 512 | */ |
167 | static int adjust_pool_surplus(int delta) | 513 | static int adjust_pool_surplus(struct hstate *h, int delta) |
168 | { | 514 | { |
169 | static int prev_nid; | 515 | static int prev_nid; |
170 | int nid = prev_nid; | 516 | int nid = prev_nid; |
@@ -177,15 +523,15 @@ static int adjust_pool_surplus(int delta) | |||
177 | nid = first_node(node_online_map); | 523 | nid = first_node(node_online_map); |
178 | 524 | ||
179 | /* To shrink on this node, there must be a surplus page */ | 525 | /* To shrink on this node, there must be a surplus page */ |
180 | if (delta < 0 && !surplus_huge_pages_node[nid]) | 526 | if (delta < 0 && !h->surplus_huge_pages_node[nid]) |
181 | continue; | 527 | continue; |
182 | /* Surplus cannot exceed the total number of pages */ | 528 | /* Surplus cannot exceed the total number of pages */ |
183 | if (delta > 0 && surplus_huge_pages_node[nid] >= | 529 | if (delta > 0 && h->surplus_huge_pages_node[nid] >= |
184 | nr_huge_pages_node[nid]) | 530 | h->nr_huge_pages_node[nid]) |
185 | continue; | 531 | continue; |
186 | 532 | ||
187 | surplus_huge_pages += delta; | 533 | h->surplus_huge_pages += delta; |
188 | surplus_huge_pages_node[nid] += delta; | 534 | h->surplus_huge_pages_node[nid] += delta; |
189 | ret = 1; | 535 | ret = 1; |
190 | break; | 536 | break; |
191 | } while (nid != prev_nid); | 537 | } while (nid != prev_nid); |
@@ -194,59 +540,74 @@ static int adjust_pool_surplus(int delta) | |||
194 | return ret; | 540 | return ret; |
195 | } | 541 | } |
196 | 542 | ||
197 | static struct page *alloc_fresh_huge_page_node(int nid) | 543 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
544 | { | ||
545 | set_compound_page_dtor(page, free_huge_page); | ||
546 | spin_lock(&hugetlb_lock); | ||
547 | h->nr_huge_pages++; | ||
548 | h->nr_huge_pages_node[nid]++; | ||
549 | spin_unlock(&hugetlb_lock); | ||
550 | put_page(page); /* free it into the hugepage allocator */ | ||
551 | } | ||
552 | |||
553 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | ||
198 | { | 554 | { |
199 | struct page *page; | 555 | struct page *page; |
200 | 556 | ||
557 | if (h->order >= MAX_ORDER) | ||
558 | return NULL; | ||
559 | |||
201 | page = alloc_pages_node(nid, | 560 | page = alloc_pages_node(nid, |
202 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 561 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
203 | __GFP_REPEAT|__GFP_NOWARN, | 562 | __GFP_REPEAT|__GFP_NOWARN, |
204 | HUGETLB_PAGE_ORDER); | 563 | huge_page_order(h)); |
205 | if (page) { | 564 | if (page) { |
206 | if (arch_prepare_hugepage(page)) { | 565 | if (arch_prepare_hugepage(page)) { |
207 | __free_pages(page, HUGETLB_PAGE_ORDER); | 566 | __free_pages(page, HUGETLB_PAGE_ORDER); |
208 | return NULL; | 567 | return NULL; |
209 | } | 568 | } |
210 | set_compound_page_dtor(page, free_huge_page); | 569 | prep_new_huge_page(h, page, nid); |
211 | spin_lock(&hugetlb_lock); | ||
212 | nr_huge_pages++; | ||
213 | nr_huge_pages_node[nid]++; | ||
214 | spin_unlock(&hugetlb_lock); | ||
215 | put_page(page); /* free it into the hugepage allocator */ | ||
216 | } | 570 | } |
217 | 571 | ||
218 | return page; | 572 | return page; |
219 | } | 573 | } |
220 | 574 | ||
221 | static int alloc_fresh_huge_page(void) | 575 | /* |
576 | * Use a helper variable to find the next node and then | ||
577 | * copy it back to hugetlb_next_nid afterwards: | ||
578 | * otherwise there's a window in which a racer might | ||
579 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
580 | * But we don't need to use a spin_lock here: it really | ||
581 | * doesn't matter if occasionally a racer chooses the | ||
582 | * same nid as we do. Move nid forward in the mask even | ||
583 | * if we just successfully allocated a hugepage so that | ||
584 | * the next caller gets hugepages on the next node. | ||
585 | */ | ||
586 | static int hstate_next_node(struct hstate *h) | ||
587 | { | ||
588 | int next_nid; | ||
589 | next_nid = next_node(h->hugetlb_next_nid, node_online_map); | ||
590 | if (next_nid == MAX_NUMNODES) | ||
591 | next_nid = first_node(node_online_map); | ||
592 | h->hugetlb_next_nid = next_nid; | ||
593 | return next_nid; | ||
594 | } | ||
595 | |||
596 | static int alloc_fresh_huge_page(struct hstate *h) | ||
222 | { | 597 | { |
223 | struct page *page; | 598 | struct page *page; |
224 | int start_nid; | 599 | int start_nid; |
225 | int next_nid; | 600 | int next_nid; |
226 | int ret = 0; | 601 | int ret = 0; |
227 | 602 | ||
228 | start_nid = hugetlb_next_nid; | 603 | start_nid = h->hugetlb_next_nid; |
229 | 604 | ||
230 | do { | 605 | do { |
231 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | 606 | page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); |
232 | if (page) | 607 | if (page) |
233 | ret = 1; | 608 | ret = 1; |
234 | /* | 609 | next_nid = hstate_next_node(h); |
235 | * Use a helper variable to find the next node and then | 610 | } while (!page && h->hugetlb_next_nid != start_nid); |
236 | * copy it back to hugetlb_next_nid afterwards: | ||
237 | * otherwise there's a window in which a racer might | ||
238 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
239 | * But we don't need to use a spin_lock here: it really | ||
240 | * doesn't matter if occasionally a racer chooses the | ||
241 | * same nid as we do. Move nid forward in the mask even | ||
242 | * if we just successfully allocated a hugepage so that | ||
243 | * the next caller gets hugepages on the next node. | ||
244 | */ | ||
245 | next_nid = next_node(hugetlb_next_nid, node_online_map); | ||
246 | if (next_nid == MAX_NUMNODES) | ||
247 | next_nid = first_node(node_online_map); | ||
248 | hugetlb_next_nid = next_nid; | ||
249 | } while (!page && hugetlb_next_nid != start_nid); | ||
250 | 611 | ||
251 | if (ret) | 612 | if (ret) |
252 | count_vm_event(HTLB_BUDDY_PGALLOC); | 613 | count_vm_event(HTLB_BUDDY_PGALLOC); |
@@ -256,12 +617,15 @@ static int alloc_fresh_huge_page(void) | |||
256 | return ret; | 617 | return ret; |
257 | } | 618 | } |
258 | 619 | ||
259 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | 620 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
260 | unsigned long address) | 621 | struct vm_area_struct *vma, unsigned long address) |
261 | { | 622 | { |
262 | struct page *page; | 623 | struct page *page; |
263 | unsigned int nid; | 624 | unsigned int nid; |
264 | 625 | ||
626 | if (h->order >= MAX_ORDER) | ||
627 | return NULL; | ||
628 | |||
265 | /* | 629 | /* |
266 | * Assume we will successfully allocate the surplus page to | 630 | * Assume we will successfully allocate the surplus page to |
267 | * prevent racing processes from causing the surplus to exceed | 631 | * prevent racing processes from causing the surplus to exceed |
@@ -286,18 +650,18 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
286 | * per-node value is checked there. | 650 | * per-node value is checked there. |
287 | */ | 651 | */ |
288 | spin_lock(&hugetlb_lock); | 652 | spin_lock(&hugetlb_lock); |
289 | if (surplus_huge_pages >= nr_overcommit_huge_pages) { | 653 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
290 | spin_unlock(&hugetlb_lock); | 654 | spin_unlock(&hugetlb_lock); |
291 | return NULL; | 655 | return NULL; |
292 | } else { | 656 | } else { |
293 | nr_huge_pages++; | 657 | h->nr_huge_pages++; |
294 | surplus_huge_pages++; | 658 | h->surplus_huge_pages++; |
295 | } | 659 | } |
296 | spin_unlock(&hugetlb_lock); | 660 | spin_unlock(&hugetlb_lock); |
297 | 661 | ||
298 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 662 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
299 | __GFP_REPEAT|__GFP_NOWARN, | 663 | __GFP_REPEAT|__GFP_NOWARN, |
300 | HUGETLB_PAGE_ORDER); | 664 | huge_page_order(h)); |
301 | 665 | ||
302 | spin_lock(&hugetlb_lock); | 666 | spin_lock(&hugetlb_lock); |
303 | if (page) { | 667 | if (page) { |
@@ -312,12 +676,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
312 | /* | 676 | /* |
313 | * We incremented the global counters already | 677 | * We incremented the global counters already |
314 | */ | 678 | */ |
315 | nr_huge_pages_node[nid]++; | 679 | h->nr_huge_pages_node[nid]++; |
316 | surplus_huge_pages_node[nid]++; | 680 | h->surplus_huge_pages_node[nid]++; |
317 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 681 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
318 | } else { | 682 | } else { |
319 | nr_huge_pages--; | 683 | h->nr_huge_pages--; |
320 | surplus_huge_pages--; | 684 | h->surplus_huge_pages--; |
321 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 685 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
322 | } | 686 | } |
323 | spin_unlock(&hugetlb_lock); | 687 | spin_unlock(&hugetlb_lock); |
@@ -329,16 +693,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
329 | * Increase the hugetlb pool such that it can accomodate a reservation | 693 | * Increase the hugetlb pool such that it can accomodate a reservation |
330 | * of size 'delta'. | 694 | * of size 'delta'. |
331 | */ | 695 | */ |
332 | static int gather_surplus_pages(int delta) | 696 | static int gather_surplus_pages(struct hstate *h, int delta) |
333 | { | 697 | { |
334 | struct list_head surplus_list; | 698 | struct list_head surplus_list; |
335 | struct page *page, *tmp; | 699 | struct page *page, *tmp; |
336 | int ret, i; | 700 | int ret, i; |
337 | int needed, allocated; | 701 | int needed, allocated; |
338 | 702 | ||
339 | needed = (resv_huge_pages + delta) - free_huge_pages; | 703 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
340 | if (needed <= 0) { | 704 | if (needed <= 0) { |
341 | resv_huge_pages += delta; | 705 | h->resv_huge_pages += delta; |
342 | return 0; | 706 | return 0; |
343 | } | 707 | } |
344 | 708 | ||
@@ -349,7 +713,7 @@ static int gather_surplus_pages(int delta) | |||
349 | retry: | 713 | retry: |
350 | spin_unlock(&hugetlb_lock); | 714 | spin_unlock(&hugetlb_lock); |
351 | for (i = 0; i < needed; i++) { | 715 | for (i = 0; i < needed; i++) { |
352 | page = alloc_buddy_huge_page(NULL, 0); | 716 | page = alloc_buddy_huge_page(h, NULL, 0); |
353 | if (!page) { | 717 | if (!page) { |
354 | /* | 718 | /* |
355 | * We were not able to allocate enough pages to | 719 | * We were not able to allocate enough pages to |
@@ -370,7 +734,8 @@ retry: | |||
370 | * because either resv_huge_pages or free_huge_pages may have changed. | 734 | * because either resv_huge_pages or free_huge_pages may have changed. |
371 | */ | 735 | */ |
372 | spin_lock(&hugetlb_lock); | 736 | spin_lock(&hugetlb_lock); |
373 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | 737 | needed = (h->resv_huge_pages + delta) - |
738 | (h->free_huge_pages + allocated); | ||
374 | if (needed > 0) | 739 | if (needed > 0) |
375 | goto retry; | 740 | goto retry; |
376 | 741 | ||
@@ -383,7 +748,7 @@ retry: | |||
383 | * before they are reserved. | 748 | * before they are reserved. |
384 | */ | 749 | */ |
385 | needed += allocated; | 750 | needed += allocated; |
386 | resv_huge_pages += delta; | 751 | h->resv_huge_pages += delta; |
387 | ret = 0; | 752 | ret = 0; |
388 | free: | 753 | free: |
389 | /* Free the needed pages to the hugetlb pool */ | 754 | /* Free the needed pages to the hugetlb pool */ |
@@ -391,7 +756,7 @@ free: | |||
391 | if ((--needed) < 0) | 756 | if ((--needed) < 0) |
392 | break; | 757 | break; |
393 | list_del(&page->lru); | 758 | list_del(&page->lru); |
394 | enqueue_huge_page(page); | 759 | enqueue_huge_page(h, page); |
395 | } | 760 | } |
396 | 761 | ||
397 | /* Free unnecessary surplus pages to the buddy allocator */ | 762 | /* Free unnecessary surplus pages to the buddy allocator */ |
@@ -419,7 +784,8 @@ free: | |||
419 | * allocated to satisfy the reservation must be explicitly freed if they were | 784 | * allocated to satisfy the reservation must be explicitly freed if they were |
420 | * never used. | 785 | * never used. |
421 | */ | 786 | */ |
422 | static void return_unused_surplus_pages(unsigned long unused_resv_pages) | 787 | static void return_unused_surplus_pages(struct hstate *h, |
788 | unsigned long unused_resv_pages) | ||
423 | { | 789 | { |
424 | static int nid = -1; | 790 | static int nid = -1; |
425 | struct page *page; | 791 | struct page *page; |
@@ -434,114 +800,231 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) | |||
434 | unsigned long remaining_iterations = num_online_nodes(); | 800 | unsigned long remaining_iterations = num_online_nodes(); |
435 | 801 | ||
436 | /* Uncommit the reservation */ | 802 | /* Uncommit the reservation */ |
437 | resv_huge_pages -= unused_resv_pages; | 803 | h->resv_huge_pages -= unused_resv_pages; |
804 | |||
805 | /* Cannot return gigantic pages currently */ | ||
806 | if (h->order >= MAX_ORDER) | ||
807 | return; | ||
438 | 808 | ||
439 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | 809 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
440 | 810 | ||
441 | while (remaining_iterations-- && nr_pages) { | 811 | while (remaining_iterations-- && nr_pages) { |
442 | nid = next_node(nid, node_online_map); | 812 | nid = next_node(nid, node_online_map); |
443 | if (nid == MAX_NUMNODES) | 813 | if (nid == MAX_NUMNODES) |
444 | nid = first_node(node_online_map); | 814 | nid = first_node(node_online_map); |
445 | 815 | ||
446 | if (!surplus_huge_pages_node[nid]) | 816 | if (!h->surplus_huge_pages_node[nid]) |
447 | continue; | 817 | continue; |
448 | 818 | ||
449 | if (!list_empty(&hugepage_freelists[nid])) { | 819 | if (!list_empty(&h->hugepage_freelists[nid])) { |
450 | page = list_entry(hugepage_freelists[nid].next, | 820 | page = list_entry(h->hugepage_freelists[nid].next, |
451 | struct page, lru); | 821 | struct page, lru); |
452 | list_del(&page->lru); | 822 | list_del(&page->lru); |
453 | update_and_free_page(page); | 823 | update_and_free_page(h, page); |
454 | free_huge_pages--; | 824 | h->free_huge_pages--; |
455 | free_huge_pages_node[nid]--; | 825 | h->free_huge_pages_node[nid]--; |
456 | surplus_huge_pages--; | 826 | h->surplus_huge_pages--; |
457 | surplus_huge_pages_node[nid]--; | 827 | h->surplus_huge_pages_node[nid]--; |
458 | nr_pages--; | 828 | nr_pages--; |
459 | remaining_iterations = num_online_nodes(); | 829 | remaining_iterations = num_online_nodes(); |
460 | } | 830 | } |
461 | } | 831 | } |
462 | } | 832 | } |
463 | 833 | ||
834 | /* | ||
835 | * Determine if the huge page at addr within the vma has an associated | ||
836 | * reservation. Where it does not we will need to logically increase | ||
837 | * reservation and actually increase quota before an allocation can occur. | ||
838 | * Where any new reservation would be required the reservation change is | ||
839 | * prepared, but not committed. Once the page has been quota'd allocated | ||
840 | * an instantiated the change should be committed via vma_commit_reservation. | ||
841 | * No action is required on failure. | ||
842 | */ | ||
843 | static int vma_needs_reservation(struct hstate *h, | ||
844 | struct vm_area_struct *vma, unsigned long addr) | ||
845 | { | ||
846 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
847 | struct inode *inode = mapping->host; | ||
848 | |||
849 | if (vma->vm_flags & VM_SHARED) { | ||
850 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
851 | return region_chg(&inode->i_mapping->private_list, | ||
852 | idx, idx + 1); | ||
853 | |||
854 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
855 | return 1; | ||
464 | 856 | ||
465 | static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, | 857 | } else { |
466 | unsigned long addr) | 858 | int err; |
859 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
860 | struct resv_map *reservations = vma_resv_map(vma); | ||
861 | |||
862 | err = region_chg(&reservations->regions, idx, idx + 1); | ||
863 | if (err < 0) | ||
864 | return err; | ||
865 | return 0; | ||
866 | } | ||
867 | } | ||
868 | static void vma_commit_reservation(struct hstate *h, | ||
869 | struct vm_area_struct *vma, unsigned long addr) | ||
467 | { | 870 | { |
468 | struct page *page; | 871 | struct address_space *mapping = vma->vm_file->f_mapping; |
872 | struct inode *inode = mapping->host; | ||
469 | 873 | ||
470 | spin_lock(&hugetlb_lock); | 874 | if (vma->vm_flags & VM_SHARED) { |
471 | page = dequeue_huge_page_vma(vma, addr); | 875 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
472 | spin_unlock(&hugetlb_lock); | 876 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
473 | return page ? page : ERR_PTR(-VM_FAULT_OOM); | 877 | |
878 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
879 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
880 | struct resv_map *reservations = vma_resv_map(vma); | ||
881 | |||
882 | /* Mark this page used in the map. */ | ||
883 | region_add(&reservations->regions, idx, idx + 1); | ||
884 | } | ||
474 | } | 885 | } |
475 | 886 | ||
476 | static struct page *alloc_huge_page_private(struct vm_area_struct *vma, | 887 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
477 | unsigned long addr) | 888 | unsigned long addr, int avoid_reserve) |
478 | { | 889 | { |
479 | struct page *page = NULL; | 890 | struct hstate *h = hstate_vma(vma); |
891 | struct page *page; | ||
892 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
893 | struct inode *inode = mapping->host; | ||
894 | unsigned int chg; | ||
480 | 895 | ||
481 | if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) | 896 | /* |
482 | return ERR_PTR(-VM_FAULT_SIGBUS); | 897 | * Processes that did not create the mapping will have no reserves and |
898 | * will not have accounted against quota. Check that the quota can be | ||
899 | * made before satisfying the allocation | ||
900 | * MAP_NORESERVE mappings may also need pages and quota allocated | ||
901 | * if no reserve mapping overlaps. | ||
902 | */ | ||
903 | chg = vma_needs_reservation(h, vma, addr); | ||
904 | if (chg < 0) | ||
905 | return ERR_PTR(chg); | ||
906 | if (chg) | ||
907 | if (hugetlb_get_quota(inode->i_mapping, chg)) | ||
908 | return ERR_PTR(-ENOSPC); | ||
483 | 909 | ||
484 | spin_lock(&hugetlb_lock); | 910 | spin_lock(&hugetlb_lock); |
485 | if (free_huge_pages > resv_huge_pages) | 911 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
486 | page = dequeue_huge_page_vma(vma, addr); | ||
487 | spin_unlock(&hugetlb_lock); | 912 | spin_unlock(&hugetlb_lock); |
913 | |||
488 | if (!page) { | 914 | if (!page) { |
489 | page = alloc_buddy_huge_page(vma, addr); | 915 | page = alloc_buddy_huge_page(h, vma, addr); |
490 | if (!page) { | 916 | if (!page) { |
491 | hugetlb_put_quota(vma->vm_file->f_mapping, 1); | 917 | hugetlb_put_quota(inode->i_mapping, chg); |
492 | return ERR_PTR(-VM_FAULT_OOM); | 918 | return ERR_PTR(-VM_FAULT_OOM); |
493 | } | 919 | } |
494 | } | 920 | } |
921 | |||
922 | set_page_refcounted(page); | ||
923 | set_page_private(page, (unsigned long) mapping); | ||
924 | |||
925 | vma_commit_reservation(h, vma, addr); | ||
926 | |||
495 | return page; | 927 | return page; |
496 | } | 928 | } |
497 | 929 | ||
498 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 930 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) |
499 | unsigned long addr) | ||
500 | { | 931 | { |
501 | struct page *page; | 932 | struct huge_bootmem_page *m; |
502 | struct address_space *mapping = vma->vm_file->f_mapping; | 933 | int nr_nodes = nodes_weight(node_online_map); |
503 | 934 | ||
504 | if (vma->vm_flags & VM_MAYSHARE) | 935 | while (nr_nodes) { |
505 | page = alloc_huge_page_shared(vma, addr); | 936 | void *addr; |
506 | else | 937 | |
507 | page = alloc_huge_page_private(vma, addr); | 938 | addr = __alloc_bootmem_node_nopanic( |
939 | NODE_DATA(h->hugetlb_next_nid), | ||
940 | huge_page_size(h), huge_page_size(h), 0); | ||
941 | |||
942 | if (addr) { | ||
943 | /* | ||
944 | * Use the beginning of the huge page to store the | ||
945 | * huge_bootmem_page struct (until gather_bootmem | ||
946 | * puts them into the mem_map). | ||
947 | */ | ||
948 | m = addr; | ||
949 | if (m) | ||
950 | goto found; | ||
951 | } | ||
952 | hstate_next_node(h); | ||
953 | nr_nodes--; | ||
954 | } | ||
955 | return 0; | ||
956 | |||
957 | found: | ||
958 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | ||
959 | /* Put them into a private list first because mem_map is not up yet */ | ||
960 | list_add(&m->list, &huge_boot_pages); | ||
961 | m->hstate = h; | ||
962 | return 1; | ||
963 | } | ||
508 | 964 | ||
509 | if (!IS_ERR(page)) { | 965 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
510 | set_page_refcounted(page); | 966 | static void __init gather_bootmem_prealloc(void) |
511 | set_page_private(page, (unsigned long) mapping); | 967 | { |
968 | struct huge_bootmem_page *m; | ||
969 | |||
970 | list_for_each_entry(m, &huge_boot_pages, list) { | ||
971 | struct page *page = virt_to_page(m); | ||
972 | struct hstate *h = m->hstate; | ||
973 | __ClearPageReserved(page); | ||
974 | WARN_ON(page_count(page) != 1); | ||
975 | prep_compound_page(page, h->order); | ||
976 | prep_new_huge_page(h, page, page_to_nid(page)); | ||
512 | } | 977 | } |
513 | return page; | ||
514 | } | 978 | } |
515 | 979 | ||
516 | static int __init hugetlb_init(void) | 980 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
517 | { | 981 | { |
518 | unsigned long i; | 982 | unsigned long i; |
519 | 983 | ||
520 | if (HPAGE_SHIFT == 0) | 984 | for (i = 0; i < h->max_huge_pages; ++i) { |
521 | return 0; | 985 | if (h->order >= MAX_ORDER) { |
522 | 986 | if (!alloc_bootmem_huge_page(h)) | |
523 | for (i = 0; i < MAX_NUMNODES; ++i) | 987 | break; |
524 | INIT_LIST_HEAD(&hugepage_freelists[i]); | 988 | } else if (!alloc_fresh_huge_page(h)) |
989 | break; | ||
990 | } | ||
991 | h->max_huge_pages = i; | ||
992 | } | ||
525 | 993 | ||
526 | hugetlb_next_nid = first_node(node_online_map); | 994 | static void __init hugetlb_init_hstates(void) |
995 | { | ||
996 | struct hstate *h; | ||
527 | 997 | ||
528 | for (i = 0; i < max_huge_pages; ++i) { | 998 | for_each_hstate(h) { |
529 | if (!alloc_fresh_huge_page()) | 999 | /* oversize hugepages were init'ed in early boot */ |
530 | break; | 1000 | if (h->order < MAX_ORDER) |
1001 | hugetlb_hstate_alloc_pages(h); | ||
531 | } | 1002 | } |
532 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | ||
533 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | ||
534 | return 0; | ||
535 | } | 1003 | } |
536 | module_init(hugetlb_init); | ||
537 | 1004 | ||
538 | static int __init hugetlb_setup(char *s) | 1005 | static char * __init memfmt(char *buf, unsigned long n) |
539 | { | 1006 | { |
540 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 1007 | if (n >= (1UL << 30)) |
541 | max_huge_pages = 0; | 1008 | sprintf(buf, "%lu GB", n >> 30); |
542 | return 1; | 1009 | else if (n >= (1UL << 20)) |
1010 | sprintf(buf, "%lu MB", n >> 20); | ||
1011 | else | ||
1012 | sprintf(buf, "%lu KB", n >> 10); | ||
1013 | return buf; | ||
1014 | } | ||
1015 | |||
1016 | static void __init report_hugepages(void) | ||
1017 | { | ||
1018 | struct hstate *h; | ||
1019 | |||
1020 | for_each_hstate(h) { | ||
1021 | char buf[32]; | ||
1022 | printk(KERN_INFO "HugeTLB registered %s page size, " | ||
1023 | "pre-allocated %ld pages\n", | ||
1024 | memfmt(buf, huge_page_size(h)), | ||
1025 | h->free_huge_pages); | ||
1026 | } | ||
543 | } | 1027 | } |
544 | __setup("hugepages=", hugetlb_setup); | ||
545 | 1028 | ||
546 | static unsigned int cpuset_mems_nr(unsigned int *array) | 1029 | static unsigned int cpuset_mems_nr(unsigned int *array) |
547 | { | 1030 | { |
@@ -556,35 +1039,42 @@ static unsigned int cpuset_mems_nr(unsigned int *array) | |||
556 | 1039 | ||
557 | #ifdef CONFIG_SYSCTL | 1040 | #ifdef CONFIG_SYSCTL |
558 | #ifdef CONFIG_HIGHMEM | 1041 | #ifdef CONFIG_HIGHMEM |
559 | static void try_to_free_low(unsigned long count) | 1042 | static void try_to_free_low(struct hstate *h, unsigned long count) |
560 | { | 1043 | { |
561 | int i; | 1044 | int i; |
562 | 1045 | ||
1046 | if (h->order >= MAX_ORDER) | ||
1047 | return; | ||
1048 | |||
563 | for (i = 0; i < MAX_NUMNODES; ++i) { | 1049 | for (i = 0; i < MAX_NUMNODES; ++i) { |
564 | struct page *page, *next; | 1050 | struct page *page, *next; |
565 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 1051 | struct list_head *freel = &h->hugepage_freelists[i]; |
566 | if (count >= nr_huge_pages) | 1052 | list_for_each_entry_safe(page, next, freel, lru) { |
1053 | if (count >= h->nr_huge_pages) | ||
567 | return; | 1054 | return; |
568 | if (PageHighMem(page)) | 1055 | if (PageHighMem(page)) |
569 | continue; | 1056 | continue; |
570 | list_del(&page->lru); | 1057 | list_del(&page->lru); |
571 | update_and_free_page(page); | 1058 | update_and_free_page(h, page); |
572 | free_huge_pages--; | 1059 | h->free_huge_pages--; |
573 | free_huge_pages_node[page_to_nid(page)]--; | 1060 | h->free_huge_pages_node[page_to_nid(page)]--; |
574 | } | 1061 | } |
575 | } | 1062 | } |
576 | } | 1063 | } |
577 | #else | 1064 | #else |
578 | static inline void try_to_free_low(unsigned long count) | 1065 | static inline void try_to_free_low(struct hstate *h, unsigned long count) |
579 | { | 1066 | { |
580 | } | 1067 | } |
581 | #endif | 1068 | #endif |
582 | 1069 | ||
583 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) | 1070 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
584 | static unsigned long set_max_huge_pages(unsigned long count) | 1071 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) |
585 | { | 1072 | { |
586 | unsigned long min_count, ret; | 1073 | unsigned long min_count, ret; |
587 | 1074 | ||
1075 | if (h->order >= MAX_ORDER) | ||
1076 | return h->max_huge_pages; | ||
1077 | |||
588 | /* | 1078 | /* |
589 | * Increase the pool size | 1079 | * Increase the pool size |
590 | * First take pages out of surplus state. Then make up the | 1080 | * First take pages out of surplus state. Then make up the |
@@ -597,20 +1087,19 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
597 | * within all the constraints specified by the sysctls. | 1087 | * within all the constraints specified by the sysctls. |
598 | */ | 1088 | */ |
599 | spin_lock(&hugetlb_lock); | 1089 | spin_lock(&hugetlb_lock); |
600 | while (surplus_huge_pages && count > persistent_huge_pages) { | 1090 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
601 | if (!adjust_pool_surplus(-1)) | 1091 | if (!adjust_pool_surplus(h, -1)) |
602 | break; | 1092 | break; |
603 | } | 1093 | } |
604 | 1094 | ||
605 | while (count > persistent_huge_pages) { | 1095 | while (count > persistent_huge_pages(h)) { |
606 | int ret; | ||
607 | /* | 1096 | /* |
608 | * If this allocation races such that we no longer need the | 1097 | * If this allocation races such that we no longer need the |
609 | * page, free_huge_page will handle it by freeing the page | 1098 | * page, free_huge_page will handle it by freeing the page |
610 | * and reducing the surplus. | 1099 | * and reducing the surplus. |
611 | */ | 1100 | */ |
612 | spin_unlock(&hugetlb_lock); | 1101 | spin_unlock(&hugetlb_lock); |
613 | ret = alloc_fresh_huge_page(); | 1102 | ret = alloc_fresh_huge_page(h); |
614 | spin_lock(&hugetlb_lock); | 1103 | spin_lock(&hugetlb_lock); |
615 | if (!ret) | 1104 | if (!ret) |
616 | goto out; | 1105 | goto out; |
@@ -632,31 +1121,288 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
632 | * and won't grow the pool anywhere else. Not until one of the | 1121 | * and won't grow the pool anywhere else. Not until one of the |
633 | * sysctls are changed, or the surplus pages go out of use. | 1122 | * sysctls are changed, or the surplus pages go out of use. |
634 | */ | 1123 | */ |
635 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; | 1124 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
636 | min_count = max(count, min_count); | 1125 | min_count = max(count, min_count); |
637 | try_to_free_low(min_count); | 1126 | try_to_free_low(h, min_count); |
638 | while (min_count < persistent_huge_pages) { | 1127 | while (min_count < persistent_huge_pages(h)) { |
639 | struct page *page = dequeue_huge_page(); | 1128 | struct page *page = dequeue_huge_page(h); |
640 | if (!page) | 1129 | if (!page) |
641 | break; | 1130 | break; |
642 | update_and_free_page(page); | 1131 | update_and_free_page(h, page); |
643 | } | 1132 | } |
644 | while (count < persistent_huge_pages) { | 1133 | while (count < persistent_huge_pages(h)) { |
645 | if (!adjust_pool_surplus(1)) | 1134 | if (!adjust_pool_surplus(h, 1)) |
646 | break; | 1135 | break; |
647 | } | 1136 | } |
648 | out: | 1137 | out: |
649 | ret = persistent_huge_pages; | 1138 | ret = persistent_huge_pages(h); |
650 | spin_unlock(&hugetlb_lock); | 1139 | spin_unlock(&hugetlb_lock); |
651 | return ret; | 1140 | return ret; |
652 | } | 1141 | } |
653 | 1142 | ||
1143 | #define HSTATE_ATTR_RO(_name) \ | ||
1144 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1145 | |||
1146 | #define HSTATE_ATTR(_name) \ | ||
1147 | static struct kobj_attribute _name##_attr = \ | ||
1148 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1149 | |||
1150 | static struct kobject *hugepages_kobj; | ||
1151 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | ||
1152 | |||
1153 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | ||
1154 | { | ||
1155 | int i; | ||
1156 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | ||
1157 | if (hstate_kobjs[i] == kobj) | ||
1158 | return &hstates[i]; | ||
1159 | BUG(); | ||
1160 | return NULL; | ||
1161 | } | ||
1162 | |||
1163 | static ssize_t nr_hugepages_show(struct kobject *kobj, | ||
1164 | struct kobj_attribute *attr, char *buf) | ||
1165 | { | ||
1166 | struct hstate *h = kobj_to_hstate(kobj); | ||
1167 | return sprintf(buf, "%lu\n", h->nr_huge_pages); | ||
1168 | } | ||
1169 | static ssize_t nr_hugepages_store(struct kobject *kobj, | ||
1170 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1171 | { | ||
1172 | int err; | ||
1173 | unsigned long input; | ||
1174 | struct hstate *h = kobj_to_hstate(kobj); | ||
1175 | |||
1176 | err = strict_strtoul(buf, 10, &input); | ||
1177 | if (err) | ||
1178 | return 0; | ||
1179 | |||
1180 | h->max_huge_pages = set_max_huge_pages(h, input); | ||
1181 | |||
1182 | return count; | ||
1183 | } | ||
1184 | HSTATE_ATTR(nr_hugepages); | ||
1185 | |||
1186 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | ||
1187 | struct kobj_attribute *attr, char *buf) | ||
1188 | { | ||
1189 | struct hstate *h = kobj_to_hstate(kobj); | ||
1190 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | ||
1191 | } | ||
1192 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | ||
1193 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1194 | { | ||
1195 | int err; | ||
1196 | unsigned long input; | ||
1197 | struct hstate *h = kobj_to_hstate(kobj); | ||
1198 | |||
1199 | err = strict_strtoul(buf, 10, &input); | ||
1200 | if (err) | ||
1201 | return 0; | ||
1202 | |||
1203 | spin_lock(&hugetlb_lock); | ||
1204 | h->nr_overcommit_huge_pages = input; | ||
1205 | spin_unlock(&hugetlb_lock); | ||
1206 | |||
1207 | return count; | ||
1208 | } | ||
1209 | HSTATE_ATTR(nr_overcommit_hugepages); | ||
1210 | |||
1211 | static ssize_t free_hugepages_show(struct kobject *kobj, | ||
1212 | struct kobj_attribute *attr, char *buf) | ||
1213 | { | ||
1214 | struct hstate *h = kobj_to_hstate(kobj); | ||
1215 | return sprintf(buf, "%lu\n", h->free_huge_pages); | ||
1216 | } | ||
1217 | HSTATE_ATTR_RO(free_hugepages); | ||
1218 | |||
1219 | static ssize_t resv_hugepages_show(struct kobject *kobj, | ||
1220 | struct kobj_attribute *attr, char *buf) | ||
1221 | { | ||
1222 | struct hstate *h = kobj_to_hstate(kobj); | ||
1223 | return sprintf(buf, "%lu\n", h->resv_huge_pages); | ||
1224 | } | ||
1225 | HSTATE_ATTR_RO(resv_hugepages); | ||
1226 | |||
1227 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | ||
1228 | struct kobj_attribute *attr, char *buf) | ||
1229 | { | ||
1230 | struct hstate *h = kobj_to_hstate(kobj); | ||
1231 | return sprintf(buf, "%lu\n", h->surplus_huge_pages); | ||
1232 | } | ||
1233 | HSTATE_ATTR_RO(surplus_hugepages); | ||
1234 | |||
1235 | static struct attribute *hstate_attrs[] = { | ||
1236 | &nr_hugepages_attr.attr, | ||
1237 | &nr_overcommit_hugepages_attr.attr, | ||
1238 | &free_hugepages_attr.attr, | ||
1239 | &resv_hugepages_attr.attr, | ||
1240 | &surplus_hugepages_attr.attr, | ||
1241 | NULL, | ||
1242 | }; | ||
1243 | |||
1244 | static struct attribute_group hstate_attr_group = { | ||
1245 | .attrs = hstate_attrs, | ||
1246 | }; | ||
1247 | |||
1248 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | ||
1249 | { | ||
1250 | int retval; | ||
1251 | |||
1252 | hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | ||
1253 | hugepages_kobj); | ||
1254 | if (!hstate_kobjs[h - hstates]) | ||
1255 | return -ENOMEM; | ||
1256 | |||
1257 | retval = sysfs_create_group(hstate_kobjs[h - hstates], | ||
1258 | &hstate_attr_group); | ||
1259 | if (retval) | ||
1260 | kobject_put(hstate_kobjs[h - hstates]); | ||
1261 | |||
1262 | return retval; | ||
1263 | } | ||
1264 | |||
1265 | static void __init hugetlb_sysfs_init(void) | ||
1266 | { | ||
1267 | struct hstate *h; | ||
1268 | int err; | ||
1269 | |||
1270 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | ||
1271 | if (!hugepages_kobj) | ||
1272 | return; | ||
1273 | |||
1274 | for_each_hstate(h) { | ||
1275 | err = hugetlb_sysfs_add_hstate(h); | ||
1276 | if (err) | ||
1277 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | ||
1278 | h->name); | ||
1279 | } | ||
1280 | } | ||
1281 | |||
1282 | static void __exit hugetlb_exit(void) | ||
1283 | { | ||
1284 | struct hstate *h; | ||
1285 | |||
1286 | for_each_hstate(h) { | ||
1287 | kobject_put(hstate_kobjs[h - hstates]); | ||
1288 | } | ||
1289 | |||
1290 | kobject_put(hugepages_kobj); | ||
1291 | } | ||
1292 | module_exit(hugetlb_exit); | ||
1293 | |||
1294 | static int __init hugetlb_init(void) | ||
1295 | { | ||
1296 | BUILD_BUG_ON(HPAGE_SHIFT == 0); | ||
1297 | |||
1298 | if (!size_to_hstate(default_hstate_size)) { | ||
1299 | default_hstate_size = HPAGE_SIZE; | ||
1300 | if (!size_to_hstate(default_hstate_size)) | ||
1301 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | ||
1302 | } | ||
1303 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | ||
1304 | if (default_hstate_max_huge_pages) | ||
1305 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | ||
1306 | |||
1307 | hugetlb_init_hstates(); | ||
1308 | |||
1309 | gather_bootmem_prealloc(); | ||
1310 | |||
1311 | report_hugepages(); | ||
1312 | |||
1313 | hugetlb_sysfs_init(); | ||
1314 | |||
1315 | return 0; | ||
1316 | } | ||
1317 | module_init(hugetlb_init); | ||
1318 | |||
1319 | /* Should be called on processing a hugepagesz=... option */ | ||
1320 | void __init hugetlb_add_hstate(unsigned order) | ||
1321 | { | ||
1322 | struct hstate *h; | ||
1323 | unsigned long i; | ||
1324 | |||
1325 | if (size_to_hstate(PAGE_SIZE << order)) { | ||
1326 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | ||
1327 | return; | ||
1328 | } | ||
1329 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | ||
1330 | BUG_ON(order == 0); | ||
1331 | h = &hstates[max_hstate++]; | ||
1332 | h->order = order; | ||
1333 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | ||
1334 | h->nr_huge_pages = 0; | ||
1335 | h->free_huge_pages = 0; | ||
1336 | for (i = 0; i < MAX_NUMNODES; ++i) | ||
1337 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | ||
1338 | h->hugetlb_next_nid = first_node(node_online_map); | ||
1339 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | ||
1340 | huge_page_size(h)/1024); | ||
1341 | |||
1342 | parsed_hstate = h; | ||
1343 | } | ||
1344 | |||
1345 | static int __init hugetlb_nrpages_setup(char *s) | ||
1346 | { | ||
1347 | unsigned long *mhp; | ||
1348 | static unsigned long *last_mhp; | ||
1349 | |||
1350 | /* | ||
1351 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | ||
1352 | * so this hugepages= parameter goes to the "default hstate". | ||
1353 | */ | ||
1354 | if (!max_hstate) | ||
1355 | mhp = &default_hstate_max_huge_pages; | ||
1356 | else | ||
1357 | mhp = &parsed_hstate->max_huge_pages; | ||
1358 | |||
1359 | if (mhp == last_mhp) { | ||
1360 | printk(KERN_WARNING "hugepages= specified twice without " | ||
1361 | "interleaving hugepagesz=, ignoring\n"); | ||
1362 | return 1; | ||
1363 | } | ||
1364 | |||
1365 | if (sscanf(s, "%lu", mhp) <= 0) | ||
1366 | *mhp = 0; | ||
1367 | |||
1368 | /* | ||
1369 | * Global state is always initialized later in hugetlb_init. | ||
1370 | * But we need to allocate >= MAX_ORDER hstates here early to still | ||
1371 | * use the bootmem allocator. | ||
1372 | */ | ||
1373 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | ||
1374 | hugetlb_hstate_alloc_pages(parsed_hstate); | ||
1375 | |||
1376 | last_mhp = mhp; | ||
1377 | |||
1378 | return 1; | ||
1379 | } | ||
1380 | __setup("hugepages=", hugetlb_nrpages_setup); | ||
1381 | |||
1382 | static int __init hugetlb_default_setup(char *s) | ||
1383 | { | ||
1384 | default_hstate_size = memparse(s, &s); | ||
1385 | return 1; | ||
1386 | } | ||
1387 | __setup("default_hugepagesz=", hugetlb_default_setup); | ||
1388 | |||
654 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 1389 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
655 | struct file *file, void __user *buffer, | 1390 | struct file *file, void __user *buffer, |
656 | size_t *length, loff_t *ppos) | 1391 | size_t *length, loff_t *ppos) |
657 | { | 1392 | { |
1393 | struct hstate *h = &default_hstate; | ||
1394 | unsigned long tmp; | ||
1395 | |||
1396 | if (!write) | ||
1397 | tmp = h->max_huge_pages; | ||
1398 | |||
1399 | table->data = &tmp; | ||
1400 | table->maxlen = sizeof(unsigned long); | ||
658 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1401 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
659 | max_huge_pages = set_max_huge_pages(max_huge_pages); | 1402 | |
1403 | if (write) | ||
1404 | h->max_huge_pages = set_max_huge_pages(h, tmp); | ||
1405 | |||
660 | return 0; | 1406 | return 0; |
661 | } | 1407 | } |
662 | 1408 | ||
@@ -676,10 +1422,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
676 | struct file *file, void __user *buffer, | 1422 | struct file *file, void __user *buffer, |
677 | size_t *length, loff_t *ppos) | 1423 | size_t *length, loff_t *ppos) |
678 | { | 1424 | { |
1425 | struct hstate *h = &default_hstate; | ||
1426 | unsigned long tmp; | ||
1427 | |||
1428 | if (!write) | ||
1429 | tmp = h->nr_overcommit_huge_pages; | ||
1430 | |||
1431 | table->data = &tmp; | ||
1432 | table->maxlen = sizeof(unsigned long); | ||
679 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1433 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
680 | spin_lock(&hugetlb_lock); | 1434 | |
681 | nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; | 1435 | if (write) { |
682 | spin_unlock(&hugetlb_lock); | 1436 | spin_lock(&hugetlb_lock); |
1437 | h->nr_overcommit_huge_pages = tmp; | ||
1438 | spin_unlock(&hugetlb_lock); | ||
1439 | } | ||
1440 | |||
683 | return 0; | 1441 | return 0; |
684 | } | 1442 | } |
685 | 1443 | ||
@@ -687,34 +1445,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
687 | 1445 | ||
688 | int hugetlb_report_meminfo(char *buf) | 1446 | int hugetlb_report_meminfo(char *buf) |
689 | { | 1447 | { |
1448 | struct hstate *h = &default_hstate; | ||
690 | return sprintf(buf, | 1449 | return sprintf(buf, |
691 | "HugePages_Total: %5lu\n" | 1450 | "HugePages_Total: %5lu\n" |
692 | "HugePages_Free: %5lu\n" | 1451 | "HugePages_Free: %5lu\n" |
693 | "HugePages_Rsvd: %5lu\n" | 1452 | "HugePages_Rsvd: %5lu\n" |
694 | "HugePages_Surp: %5lu\n" | 1453 | "HugePages_Surp: %5lu\n" |
695 | "Hugepagesize: %5lu kB\n", | 1454 | "Hugepagesize: %5lu kB\n", |
696 | nr_huge_pages, | 1455 | h->nr_huge_pages, |
697 | free_huge_pages, | 1456 | h->free_huge_pages, |
698 | resv_huge_pages, | 1457 | h->resv_huge_pages, |
699 | surplus_huge_pages, | 1458 | h->surplus_huge_pages, |
700 | HPAGE_SIZE/1024); | 1459 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
701 | } | 1460 | } |
702 | 1461 | ||
703 | int hugetlb_report_node_meminfo(int nid, char *buf) | 1462 | int hugetlb_report_node_meminfo(int nid, char *buf) |
704 | { | 1463 | { |
1464 | struct hstate *h = &default_hstate; | ||
705 | return sprintf(buf, | 1465 | return sprintf(buf, |
706 | "Node %d HugePages_Total: %5u\n" | 1466 | "Node %d HugePages_Total: %5u\n" |
707 | "Node %d HugePages_Free: %5u\n" | 1467 | "Node %d HugePages_Free: %5u\n" |
708 | "Node %d HugePages_Surp: %5u\n", | 1468 | "Node %d HugePages_Surp: %5u\n", |
709 | nid, nr_huge_pages_node[nid], | 1469 | nid, h->nr_huge_pages_node[nid], |
710 | nid, free_huge_pages_node[nid], | 1470 | nid, h->free_huge_pages_node[nid], |
711 | nid, surplus_huge_pages_node[nid]); | 1471 | nid, h->surplus_huge_pages_node[nid]); |
712 | } | 1472 | } |
713 | 1473 | ||
714 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 1474 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
715 | unsigned long hugetlb_total_pages(void) | 1475 | unsigned long hugetlb_total_pages(void) |
716 | { | 1476 | { |
717 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 1477 | struct hstate *h = &default_hstate; |
1478 | return h->nr_huge_pages * pages_per_huge_page(h); | ||
1479 | } | ||
1480 | |||
1481 | static int hugetlb_acct_memory(struct hstate *h, long delta) | ||
1482 | { | ||
1483 | int ret = -ENOMEM; | ||
1484 | |||
1485 | spin_lock(&hugetlb_lock); | ||
1486 | /* | ||
1487 | * When cpuset is configured, it breaks the strict hugetlb page | ||
1488 | * reservation as the accounting is done on a global variable. Such | ||
1489 | * reservation is completely rubbish in the presence of cpuset because | ||
1490 | * the reservation is not checked against page availability for the | ||
1491 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1492 | * with lack of free htlb page in cpuset that the task is in. | ||
1493 | * Attempt to enforce strict accounting with cpuset is almost | ||
1494 | * impossible (or too ugly) because cpuset is too fluid that | ||
1495 | * task or memory node can be dynamically moved between cpusets. | ||
1496 | * | ||
1497 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1498 | * undesirable. However, in order to preserve some of the semantics, | ||
1499 | * we fall back to check against current free page availability as | ||
1500 | * a best attempt and hopefully to minimize the impact of changing | ||
1501 | * semantics that cpuset has. | ||
1502 | */ | ||
1503 | if (delta > 0) { | ||
1504 | if (gather_surplus_pages(h, delta) < 0) | ||
1505 | goto out; | ||
1506 | |||
1507 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | ||
1508 | return_unused_surplus_pages(h, delta); | ||
1509 | goto out; | ||
1510 | } | ||
1511 | } | ||
1512 | |||
1513 | ret = 0; | ||
1514 | if (delta < 0) | ||
1515 | return_unused_surplus_pages(h, (unsigned long) -delta); | ||
1516 | |||
1517 | out: | ||
1518 | spin_unlock(&hugetlb_lock); | ||
1519 | return ret; | ||
1520 | } | ||
1521 | |||
1522 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | ||
1523 | { | ||
1524 | struct resv_map *reservations = vma_resv_map(vma); | ||
1525 | |||
1526 | /* | ||
1527 | * This new VMA should share its siblings reservation map if present. | ||
1528 | * The VMA will only ever have a valid reservation map pointer where | ||
1529 | * it is being copied for another still existing VMA. As that VMA | ||
1530 | * has a reference to the reservation map it cannot dissappear until | ||
1531 | * after this open call completes. It is therefore safe to take a | ||
1532 | * new reference here without additional locking. | ||
1533 | */ | ||
1534 | if (reservations) | ||
1535 | kref_get(&reservations->refs); | ||
1536 | } | ||
1537 | |||
1538 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | ||
1539 | { | ||
1540 | struct hstate *h = hstate_vma(vma); | ||
1541 | struct resv_map *reservations = vma_resv_map(vma); | ||
1542 | unsigned long reserve; | ||
1543 | unsigned long start; | ||
1544 | unsigned long end; | ||
1545 | |||
1546 | if (reservations) { | ||
1547 | start = vma_hugecache_offset(h, vma, vma->vm_start); | ||
1548 | end = vma_hugecache_offset(h, vma, vma->vm_end); | ||
1549 | |||
1550 | reserve = (end - start) - | ||
1551 | region_count(&reservations->regions, start, end); | ||
1552 | |||
1553 | kref_put(&reservations->refs, resv_map_release); | ||
1554 | |||
1555 | if (reserve) { | ||
1556 | hugetlb_acct_memory(h, -reserve); | ||
1557 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | ||
1558 | } | ||
1559 | } | ||
718 | } | 1560 | } |
719 | 1561 | ||
720 | /* | 1562 | /* |
@@ -731,6 +1573,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
731 | 1573 | ||
732 | struct vm_operations_struct hugetlb_vm_ops = { | 1574 | struct vm_operations_struct hugetlb_vm_ops = { |
733 | .fault = hugetlb_vm_op_fault, | 1575 | .fault = hugetlb_vm_op_fault, |
1576 | .open = hugetlb_vm_op_open, | ||
1577 | .close = hugetlb_vm_op_close, | ||
734 | }; | 1578 | }; |
735 | 1579 | ||
736 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 1580 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
@@ -769,14 +1613,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
769 | struct page *ptepage; | 1613 | struct page *ptepage; |
770 | unsigned long addr; | 1614 | unsigned long addr; |
771 | int cow; | 1615 | int cow; |
1616 | struct hstate *h = hstate_vma(vma); | ||
1617 | unsigned long sz = huge_page_size(h); | ||
772 | 1618 | ||
773 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 1619 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
774 | 1620 | ||
775 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 1621 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
776 | src_pte = huge_pte_offset(src, addr); | 1622 | src_pte = huge_pte_offset(src, addr); |
777 | if (!src_pte) | 1623 | if (!src_pte) |
778 | continue; | 1624 | continue; |
779 | dst_pte = huge_pte_alloc(dst, addr); | 1625 | dst_pte = huge_pte_alloc(dst, addr, sz); |
780 | if (!dst_pte) | 1626 | if (!dst_pte) |
781 | goto nomem; | 1627 | goto nomem; |
782 | 1628 | ||
@@ -804,7 +1650,7 @@ nomem: | |||
804 | } | 1650 | } |
805 | 1651 | ||
806 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1652 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
807 | unsigned long end) | 1653 | unsigned long end, struct page *ref_page) |
808 | { | 1654 | { |
809 | struct mm_struct *mm = vma->vm_mm; | 1655 | struct mm_struct *mm = vma->vm_mm; |
810 | unsigned long address; | 1656 | unsigned long address; |
@@ -812,6 +1658,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
812 | pte_t pte; | 1658 | pte_t pte; |
813 | struct page *page; | 1659 | struct page *page; |
814 | struct page *tmp; | 1660 | struct page *tmp; |
1661 | struct hstate *h = hstate_vma(vma); | ||
1662 | unsigned long sz = huge_page_size(h); | ||
1663 | |||
815 | /* | 1664 | /* |
816 | * A page gathering list, protected by per file i_mmap_lock. The | 1665 | * A page gathering list, protected by per file i_mmap_lock. The |
817 | * lock is used to avoid list corruption from multiple unmapping | 1666 | * lock is used to avoid list corruption from multiple unmapping |
@@ -820,11 +1669,11 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
820 | LIST_HEAD(page_list); | 1669 | LIST_HEAD(page_list); |
821 | 1670 | ||
822 | WARN_ON(!is_vm_hugetlb_page(vma)); | 1671 | WARN_ON(!is_vm_hugetlb_page(vma)); |
823 | BUG_ON(start & ~HPAGE_MASK); | 1672 | BUG_ON(start & ~huge_page_mask(h)); |
824 | BUG_ON(end & ~HPAGE_MASK); | 1673 | BUG_ON(end & ~huge_page_mask(h)); |
825 | 1674 | ||
826 | spin_lock(&mm->page_table_lock); | 1675 | spin_lock(&mm->page_table_lock); |
827 | for (address = start; address < end; address += HPAGE_SIZE) { | 1676 | for (address = start; address < end; address += sz) { |
828 | ptep = huge_pte_offset(mm, address); | 1677 | ptep = huge_pte_offset(mm, address); |
829 | if (!ptep) | 1678 | if (!ptep) |
830 | continue; | 1679 | continue; |
@@ -832,6 +1681,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
832 | if (huge_pmd_unshare(mm, &address, ptep)) | 1681 | if (huge_pmd_unshare(mm, &address, ptep)) |
833 | continue; | 1682 | continue; |
834 | 1683 | ||
1684 | /* | ||
1685 | * If a reference page is supplied, it is because a specific | ||
1686 | * page is being unmapped, not a range. Ensure the page we | ||
1687 | * are about to unmap is the actual page of interest. | ||
1688 | */ | ||
1689 | if (ref_page) { | ||
1690 | pte = huge_ptep_get(ptep); | ||
1691 | if (huge_pte_none(pte)) | ||
1692 | continue; | ||
1693 | page = pte_page(pte); | ||
1694 | if (page != ref_page) | ||
1695 | continue; | ||
1696 | |||
1697 | /* | ||
1698 | * Mark the VMA as having unmapped its page so that | ||
1699 | * future faults in this VMA will fail rather than | ||
1700 | * looking like data was lost | ||
1701 | */ | ||
1702 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | ||
1703 | } | ||
1704 | |||
835 | pte = huge_ptep_get_and_clear(mm, address, ptep); | 1705 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
836 | if (huge_pte_none(pte)) | 1706 | if (huge_pte_none(pte)) |
837 | continue; | 1707 | continue; |
@@ -850,31 +1720,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
850 | } | 1720 | } |
851 | 1721 | ||
852 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1722 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
853 | unsigned long end) | 1723 | unsigned long end, struct page *ref_page) |
854 | { | 1724 | { |
1725 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1726 | __unmap_hugepage_range(vma, start, end, ref_page); | ||
1727 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1728 | } | ||
1729 | |||
1730 | /* | ||
1731 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | ||
1732 | * mappping it owns the reserve page for. The intention is to unmap the page | ||
1733 | * from other VMAs and let the children be SIGKILLed if they are faulting the | ||
1734 | * same region. | ||
1735 | */ | ||
1736 | int unmap_ref_private(struct mm_struct *mm, | ||
1737 | struct vm_area_struct *vma, | ||
1738 | struct page *page, | ||
1739 | unsigned long address) | ||
1740 | { | ||
1741 | struct vm_area_struct *iter_vma; | ||
1742 | struct address_space *mapping; | ||
1743 | struct prio_tree_iter iter; | ||
1744 | pgoff_t pgoff; | ||
1745 | |||
855 | /* | 1746 | /* |
856 | * It is undesirable to test vma->vm_file as it should be non-null | 1747 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
857 | * for valid hugetlb area. However, vm_file will be NULL in the error | 1748 | * from page cache lookup which is in HPAGE_SIZE units. |
858 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | ||
859 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | ||
860 | * to clean up. Since no pte has actually been setup, it is safe to | ||
861 | * do nothing in this case. | ||
862 | */ | 1749 | */ |
863 | if (vma->vm_file) { | 1750 | address = address & huge_page_mask(hstate_vma(vma)); |
864 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 1751 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
865 | __unmap_hugepage_range(vma, start, end); | 1752 | + (vma->vm_pgoff >> PAGE_SHIFT); |
866 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 1753 | mapping = (struct address_space *)page_private(page); |
1754 | |||
1755 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
1756 | /* Do not unmap the current VMA */ | ||
1757 | if (iter_vma == vma) | ||
1758 | continue; | ||
1759 | |||
1760 | /* | ||
1761 | * Unmap the page from other VMAs without their own reserves. | ||
1762 | * They get marked to be SIGKILLed if they fault in these | ||
1763 | * areas. This is because a future no-page fault on this VMA | ||
1764 | * could insert a zeroed page instead of the data existing | ||
1765 | * from the time of fork. This would look like data corruption | ||
1766 | */ | ||
1767 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | ||
1768 | unmap_hugepage_range(iter_vma, | ||
1769 | address, address + HPAGE_SIZE, | ||
1770 | page); | ||
867 | } | 1771 | } |
1772 | |||
1773 | return 1; | ||
868 | } | 1774 | } |
869 | 1775 | ||
870 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 1776 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
871 | unsigned long address, pte_t *ptep, pte_t pte) | 1777 | unsigned long address, pte_t *ptep, pte_t pte, |
1778 | struct page *pagecache_page) | ||
872 | { | 1779 | { |
1780 | struct hstate *h = hstate_vma(vma); | ||
873 | struct page *old_page, *new_page; | 1781 | struct page *old_page, *new_page; |
874 | int avoidcopy; | 1782 | int avoidcopy; |
1783 | int outside_reserve = 0; | ||
875 | 1784 | ||
876 | old_page = pte_page(pte); | 1785 | old_page = pte_page(pte); |
877 | 1786 | ||
1787 | retry_avoidcopy: | ||
878 | /* If no-one else is actually using this page, avoid the copy | 1788 | /* If no-one else is actually using this page, avoid the copy |
879 | * and just make the page writable */ | 1789 | * and just make the page writable */ |
880 | avoidcopy = (page_count(old_page) == 1); | 1790 | avoidcopy = (page_count(old_page) == 1); |
@@ -883,11 +1793,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
883 | return 0; | 1793 | return 0; |
884 | } | 1794 | } |
885 | 1795 | ||
1796 | /* | ||
1797 | * If the process that created a MAP_PRIVATE mapping is about to | ||
1798 | * perform a COW due to a shared page count, attempt to satisfy | ||
1799 | * the allocation without using the existing reserves. The pagecache | ||
1800 | * page is used to determine if the reserve at this address was | ||
1801 | * consumed or not. If reserves were used, a partial faulted mapping | ||
1802 | * at the time of fork() could consume its reserves on COW instead | ||
1803 | * of the full address range. | ||
1804 | */ | ||
1805 | if (!(vma->vm_flags & VM_SHARED) && | ||
1806 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | ||
1807 | old_page != pagecache_page) | ||
1808 | outside_reserve = 1; | ||
1809 | |||
886 | page_cache_get(old_page); | 1810 | page_cache_get(old_page); |
887 | new_page = alloc_huge_page(vma, address); | 1811 | new_page = alloc_huge_page(vma, address, outside_reserve); |
888 | 1812 | ||
889 | if (IS_ERR(new_page)) { | 1813 | if (IS_ERR(new_page)) { |
890 | page_cache_release(old_page); | 1814 | page_cache_release(old_page); |
1815 | |||
1816 | /* | ||
1817 | * If a process owning a MAP_PRIVATE mapping fails to COW, | ||
1818 | * it is due to references held by a child and an insufficient | ||
1819 | * huge page pool. To guarantee the original mappers | ||
1820 | * reliability, unmap the page from child processes. The child | ||
1821 | * may get SIGKILLed if it later faults. | ||
1822 | */ | ||
1823 | if (outside_reserve) { | ||
1824 | BUG_ON(huge_pte_none(pte)); | ||
1825 | if (unmap_ref_private(mm, vma, old_page, address)) { | ||
1826 | BUG_ON(page_count(old_page) != 1); | ||
1827 | BUG_ON(huge_pte_none(pte)); | ||
1828 | goto retry_avoidcopy; | ||
1829 | } | ||
1830 | WARN_ON_ONCE(1); | ||
1831 | } | ||
1832 | |||
891 | return -PTR_ERR(new_page); | 1833 | return -PTR_ERR(new_page); |
892 | } | 1834 | } |
893 | 1835 | ||
@@ -896,7 +1838,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
896 | __SetPageUptodate(new_page); | 1838 | __SetPageUptodate(new_page); |
897 | spin_lock(&mm->page_table_lock); | 1839 | spin_lock(&mm->page_table_lock); |
898 | 1840 | ||
899 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | 1841 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
900 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 1842 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
901 | /* Break COW */ | 1843 | /* Break COW */ |
902 | huge_ptep_clear_flush(vma, address, ptep); | 1844 | huge_ptep_clear_flush(vma, address, ptep); |
@@ -910,19 +1852,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
910 | return 0; | 1852 | return 0; |
911 | } | 1853 | } |
912 | 1854 | ||
1855 | /* Return the pagecache page at a given address within a VMA */ | ||
1856 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | ||
1857 | struct vm_area_struct *vma, unsigned long address) | ||
1858 | { | ||
1859 | struct address_space *mapping; | ||
1860 | pgoff_t idx; | ||
1861 | |||
1862 | mapping = vma->vm_file->f_mapping; | ||
1863 | idx = vma_hugecache_offset(h, vma, address); | ||
1864 | |||
1865 | return find_lock_page(mapping, idx); | ||
1866 | } | ||
1867 | |||
913 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1868 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
914 | unsigned long address, pte_t *ptep, int write_access) | 1869 | unsigned long address, pte_t *ptep, int write_access) |
915 | { | 1870 | { |
1871 | struct hstate *h = hstate_vma(vma); | ||
916 | int ret = VM_FAULT_SIGBUS; | 1872 | int ret = VM_FAULT_SIGBUS; |
917 | unsigned long idx; | 1873 | pgoff_t idx; |
918 | unsigned long size; | 1874 | unsigned long size; |
919 | struct page *page; | 1875 | struct page *page; |
920 | struct address_space *mapping; | 1876 | struct address_space *mapping; |
921 | pte_t new_pte; | 1877 | pte_t new_pte; |
922 | 1878 | ||
1879 | /* | ||
1880 | * Currently, we are forced to kill the process in the event the | ||
1881 | * original mapper has unmapped pages from the child due to a failed | ||
1882 | * COW. Warn that such a situation has occured as it may not be obvious | ||
1883 | */ | ||
1884 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | ||
1885 | printk(KERN_WARNING | ||
1886 | "PID %d killed due to inadequate hugepage pool\n", | ||
1887 | current->pid); | ||
1888 | return ret; | ||
1889 | } | ||
1890 | |||
923 | mapping = vma->vm_file->f_mapping; | 1891 | mapping = vma->vm_file->f_mapping; |
924 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | 1892 | idx = vma_hugecache_offset(h, vma, address); |
925 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | ||
926 | 1893 | ||
927 | /* | 1894 | /* |
928 | * Use page lock to guard against racing truncation | 1895 | * Use page lock to guard against racing truncation |
@@ -931,15 +1898,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
931 | retry: | 1898 | retry: |
932 | page = find_lock_page(mapping, idx); | 1899 | page = find_lock_page(mapping, idx); |
933 | if (!page) { | 1900 | if (!page) { |
934 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1901 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
935 | if (idx >= size) | 1902 | if (idx >= size) |
936 | goto out; | 1903 | goto out; |
937 | page = alloc_huge_page(vma, address); | 1904 | page = alloc_huge_page(vma, address, 0); |
938 | if (IS_ERR(page)) { | 1905 | if (IS_ERR(page)) { |
939 | ret = -PTR_ERR(page); | 1906 | ret = -PTR_ERR(page); |
940 | goto out; | 1907 | goto out; |
941 | } | 1908 | } |
942 | clear_huge_page(page, address); | 1909 | clear_huge_page(page, address, huge_page_size(h)); |
943 | __SetPageUptodate(page); | 1910 | __SetPageUptodate(page); |
944 | 1911 | ||
945 | if (vma->vm_flags & VM_SHARED) { | 1912 | if (vma->vm_flags & VM_SHARED) { |
@@ -955,14 +1922,14 @@ retry: | |||
955 | } | 1922 | } |
956 | 1923 | ||
957 | spin_lock(&inode->i_lock); | 1924 | spin_lock(&inode->i_lock); |
958 | inode->i_blocks += BLOCKS_PER_HUGEPAGE; | 1925 | inode->i_blocks += blocks_per_huge_page(h); |
959 | spin_unlock(&inode->i_lock); | 1926 | spin_unlock(&inode->i_lock); |
960 | } else | 1927 | } else |
961 | lock_page(page); | 1928 | lock_page(page); |
962 | } | 1929 | } |
963 | 1930 | ||
964 | spin_lock(&mm->page_table_lock); | 1931 | spin_lock(&mm->page_table_lock); |
965 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1932 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
966 | if (idx >= size) | 1933 | if (idx >= size) |
967 | goto backout; | 1934 | goto backout; |
968 | 1935 | ||
@@ -976,7 +1943,7 @@ retry: | |||
976 | 1943 | ||
977 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | 1944 | if (write_access && !(vma->vm_flags & VM_SHARED)) { |
978 | /* Optimization, do the COW without a second fault */ | 1945 | /* Optimization, do the COW without a second fault */ |
979 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | 1946 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
980 | } | 1947 | } |
981 | 1948 | ||
982 | spin_unlock(&mm->page_table_lock); | 1949 | spin_unlock(&mm->page_table_lock); |
@@ -998,8 +1965,9 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
998 | pte_t entry; | 1965 | pte_t entry; |
999 | int ret; | 1966 | int ret; |
1000 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 1967 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
1968 | struct hstate *h = hstate_vma(vma); | ||
1001 | 1969 | ||
1002 | ptep = huge_pte_alloc(mm, address); | 1970 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
1003 | if (!ptep) | 1971 | if (!ptep) |
1004 | return VM_FAULT_OOM; | 1972 | return VM_FAULT_OOM; |
1005 | 1973 | ||
@@ -1021,14 +1989,30 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1021 | spin_lock(&mm->page_table_lock); | 1989 | spin_lock(&mm->page_table_lock); |
1022 | /* Check for a racing update before calling hugetlb_cow */ | 1990 | /* Check for a racing update before calling hugetlb_cow */ |
1023 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) | 1991 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) |
1024 | if (write_access && !pte_write(entry)) | 1992 | if (write_access && !pte_write(entry)) { |
1025 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | 1993 | struct page *page; |
1994 | page = hugetlbfs_pagecache_page(h, vma, address); | ||
1995 | ret = hugetlb_cow(mm, vma, address, ptep, entry, page); | ||
1996 | if (page) { | ||
1997 | unlock_page(page); | ||
1998 | put_page(page); | ||
1999 | } | ||
2000 | } | ||
1026 | spin_unlock(&mm->page_table_lock); | 2001 | spin_unlock(&mm->page_table_lock); |
1027 | mutex_unlock(&hugetlb_instantiation_mutex); | 2002 | mutex_unlock(&hugetlb_instantiation_mutex); |
1028 | 2003 | ||
1029 | return ret; | 2004 | return ret; |
1030 | } | 2005 | } |
1031 | 2006 | ||
2007 | /* Can be overriden by architectures */ | ||
2008 | __attribute__((weak)) struct page * | ||
2009 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | ||
2010 | pud_t *pud, int write) | ||
2011 | { | ||
2012 | BUG(); | ||
2013 | return NULL; | ||
2014 | } | ||
2015 | |||
1032 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2016 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1033 | struct page **pages, struct vm_area_struct **vmas, | 2017 | struct page **pages, struct vm_area_struct **vmas, |
1034 | unsigned long *position, int *length, int i, | 2018 | unsigned long *position, int *length, int i, |
@@ -1037,6 +2021,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1037 | unsigned long pfn_offset; | 2021 | unsigned long pfn_offset; |
1038 | unsigned long vaddr = *position; | 2022 | unsigned long vaddr = *position; |
1039 | int remainder = *length; | 2023 | int remainder = *length; |
2024 | struct hstate *h = hstate_vma(vma); | ||
1040 | 2025 | ||
1041 | spin_lock(&mm->page_table_lock); | 2026 | spin_lock(&mm->page_table_lock); |
1042 | while (vaddr < vma->vm_end && remainder) { | 2027 | while (vaddr < vma->vm_end && remainder) { |
@@ -1048,7 +2033,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1048 | * each hugepage. We have to make * sure we get the | 2033 | * each hugepage. We have to make * sure we get the |
1049 | * first, for the page indexing below to work. | 2034 | * first, for the page indexing below to work. |
1050 | */ | 2035 | */ |
1051 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 2036 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
1052 | 2037 | ||
1053 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || | 2038 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || |
1054 | (write && !pte_write(huge_ptep_get(pte)))) { | 2039 | (write && !pte_write(huge_ptep_get(pte)))) { |
@@ -1066,7 +2051,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1066 | break; | 2051 | break; |
1067 | } | 2052 | } |
1068 | 2053 | ||
1069 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | 2054 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
1070 | page = pte_page(huge_ptep_get(pte)); | 2055 | page = pte_page(huge_ptep_get(pte)); |
1071 | same_page: | 2056 | same_page: |
1072 | if (pages) { | 2057 | if (pages) { |
@@ -1082,7 +2067,7 @@ same_page: | |||
1082 | --remainder; | 2067 | --remainder; |
1083 | ++i; | 2068 | ++i; |
1084 | if (vaddr < vma->vm_end && remainder && | 2069 | if (vaddr < vma->vm_end && remainder && |
1085 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | 2070 | pfn_offset < pages_per_huge_page(h)) { |
1086 | /* | 2071 | /* |
1087 | * We use pfn_offset to avoid touching the pageframes | 2072 | * We use pfn_offset to avoid touching the pageframes |
1088 | * of this compound page. | 2073 | * of this compound page. |
@@ -1104,13 +2089,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1104 | unsigned long start = address; | 2089 | unsigned long start = address; |
1105 | pte_t *ptep; | 2090 | pte_t *ptep; |
1106 | pte_t pte; | 2091 | pte_t pte; |
2092 | struct hstate *h = hstate_vma(vma); | ||
1107 | 2093 | ||
1108 | BUG_ON(address >= end); | 2094 | BUG_ON(address >= end); |
1109 | flush_cache_range(vma, address, end); | 2095 | flush_cache_range(vma, address, end); |
1110 | 2096 | ||
1111 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 2097 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
1112 | spin_lock(&mm->page_table_lock); | 2098 | spin_lock(&mm->page_table_lock); |
1113 | for (; address < end; address += HPAGE_SIZE) { | 2099 | for (; address < end; address += huge_page_size(h)) { |
1114 | ptep = huge_pte_offset(mm, address); | 2100 | ptep = huge_pte_offset(mm, address); |
1115 | if (!ptep) | 2101 | if (!ptep) |
1116 | continue; | 2102 | continue; |
@@ -1128,195 +2114,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1128 | flush_tlb_range(vma, start, end); | 2114 | flush_tlb_range(vma, start, end); |
1129 | } | 2115 | } |
1130 | 2116 | ||
1131 | struct file_region { | 2117 | int hugetlb_reserve_pages(struct inode *inode, |
1132 | struct list_head link; | 2118 | long from, long to, |
1133 | long from; | 2119 | struct vm_area_struct *vma) |
1134 | long to; | ||
1135 | }; | ||
1136 | |||
1137 | static long region_add(struct list_head *head, long f, long t) | ||
1138 | { | ||
1139 | struct file_region *rg, *nrg, *trg; | ||
1140 | |||
1141 | /* Locate the region we are either in or before. */ | ||
1142 | list_for_each_entry(rg, head, link) | ||
1143 | if (f <= rg->to) | ||
1144 | break; | ||
1145 | |||
1146 | /* Round our left edge to the current segment if it encloses us. */ | ||
1147 | if (f > rg->from) | ||
1148 | f = rg->from; | ||
1149 | |||
1150 | /* Check for and consume any regions we now overlap with. */ | ||
1151 | nrg = rg; | ||
1152 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1153 | if (&rg->link == head) | ||
1154 | break; | ||
1155 | if (rg->from > t) | ||
1156 | break; | ||
1157 | |||
1158 | /* If this area reaches higher then extend our area to | ||
1159 | * include it completely. If this is not the first area | ||
1160 | * which we intend to reuse, free it. */ | ||
1161 | if (rg->to > t) | ||
1162 | t = rg->to; | ||
1163 | if (rg != nrg) { | ||
1164 | list_del(&rg->link); | ||
1165 | kfree(rg); | ||
1166 | } | ||
1167 | } | ||
1168 | nrg->from = f; | ||
1169 | nrg->to = t; | ||
1170 | return 0; | ||
1171 | } | ||
1172 | |||
1173 | static long region_chg(struct list_head *head, long f, long t) | ||
1174 | { | ||
1175 | struct file_region *rg, *nrg; | ||
1176 | long chg = 0; | ||
1177 | |||
1178 | /* Locate the region we are before or in. */ | ||
1179 | list_for_each_entry(rg, head, link) | ||
1180 | if (f <= rg->to) | ||
1181 | break; | ||
1182 | |||
1183 | /* If we are below the current region then a new region is required. | ||
1184 | * Subtle, allocate a new region at the position but make it zero | ||
1185 | * size such that we can guarantee to record the reservation. */ | ||
1186 | if (&rg->link == head || t < rg->from) { | ||
1187 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
1188 | if (!nrg) | ||
1189 | return -ENOMEM; | ||
1190 | nrg->from = f; | ||
1191 | nrg->to = f; | ||
1192 | INIT_LIST_HEAD(&nrg->link); | ||
1193 | list_add(&nrg->link, rg->link.prev); | ||
1194 | |||
1195 | return t - f; | ||
1196 | } | ||
1197 | |||
1198 | /* Round our left edge to the current segment if it encloses us. */ | ||
1199 | if (f > rg->from) | ||
1200 | f = rg->from; | ||
1201 | chg = t - f; | ||
1202 | |||
1203 | /* Check for and consume any regions we now overlap with. */ | ||
1204 | list_for_each_entry(rg, rg->link.prev, link) { | ||
1205 | if (&rg->link == head) | ||
1206 | break; | ||
1207 | if (rg->from > t) | ||
1208 | return chg; | ||
1209 | |||
1210 | /* We overlap with this area, if it extends futher than | ||
1211 | * us then we must extend ourselves. Account for its | ||
1212 | * existing reservation. */ | ||
1213 | if (rg->to > t) { | ||
1214 | chg += rg->to - t; | ||
1215 | t = rg->to; | ||
1216 | } | ||
1217 | chg -= rg->to - rg->from; | ||
1218 | } | ||
1219 | return chg; | ||
1220 | } | ||
1221 | |||
1222 | static long region_truncate(struct list_head *head, long end) | ||
1223 | { | 2120 | { |
1224 | struct file_region *rg, *trg; | 2121 | long ret, chg; |
1225 | long chg = 0; | 2122 | struct hstate *h = hstate_inode(inode); |
1226 | 2123 | ||
1227 | /* Locate the region we are either in or before. */ | 2124 | if (vma && vma->vm_flags & VM_NORESERVE) |
1228 | list_for_each_entry(rg, head, link) | ||
1229 | if (end <= rg->to) | ||
1230 | break; | ||
1231 | if (&rg->link == head) | ||
1232 | return 0; | 2125 | return 0; |
1233 | 2126 | ||
1234 | /* If we are in the middle of a region then adjust it. */ | ||
1235 | if (end > rg->from) { | ||
1236 | chg = rg->to - end; | ||
1237 | rg->to = end; | ||
1238 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
1239 | } | ||
1240 | |||
1241 | /* Drop any remaining regions. */ | ||
1242 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1243 | if (&rg->link == head) | ||
1244 | break; | ||
1245 | chg += rg->to - rg->from; | ||
1246 | list_del(&rg->link); | ||
1247 | kfree(rg); | ||
1248 | } | ||
1249 | return chg; | ||
1250 | } | ||
1251 | |||
1252 | static int hugetlb_acct_memory(long delta) | ||
1253 | { | ||
1254 | int ret = -ENOMEM; | ||
1255 | |||
1256 | spin_lock(&hugetlb_lock); | ||
1257 | /* | 2127 | /* |
1258 | * When cpuset is configured, it breaks the strict hugetlb page | 2128 | * Shared mappings base their reservation on the number of pages that |
1259 | * reservation as the accounting is done on a global variable. Such | 2129 | * are already allocated on behalf of the file. Private mappings need |
1260 | * reservation is completely rubbish in the presence of cpuset because | 2130 | * to reserve the full area even if read-only as mprotect() may be |
1261 | * the reservation is not checked against page availability for the | 2131 | * called to make the mapping read-write. Assume !vma is a shm mapping |
1262 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1263 | * with lack of free htlb page in cpuset that the task is in. | ||
1264 | * Attempt to enforce strict accounting with cpuset is almost | ||
1265 | * impossible (or too ugly) because cpuset is too fluid that | ||
1266 | * task or memory node can be dynamically moved between cpusets. | ||
1267 | * | ||
1268 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1269 | * undesirable. However, in order to preserve some of the semantics, | ||
1270 | * we fall back to check against current free page availability as | ||
1271 | * a best attempt and hopefully to minimize the impact of changing | ||
1272 | * semantics that cpuset has. | ||
1273 | */ | 2132 | */ |
1274 | if (delta > 0) { | 2133 | if (!vma || vma->vm_flags & VM_SHARED) |
1275 | if (gather_surplus_pages(delta) < 0) | 2134 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
1276 | goto out; | 2135 | else { |
1277 | 2136 | struct resv_map *resv_map = resv_map_alloc(); | |
1278 | if (delta > cpuset_mems_nr(free_huge_pages_node)) { | 2137 | if (!resv_map) |
1279 | return_unused_surplus_pages(delta); | 2138 | return -ENOMEM; |
1280 | goto out; | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | ret = 0; | ||
1285 | if (delta < 0) | ||
1286 | return_unused_surplus_pages((unsigned long) -delta); | ||
1287 | 2139 | ||
1288 | out: | 2140 | chg = to - from; |
1289 | spin_unlock(&hugetlb_lock); | ||
1290 | return ret; | ||
1291 | } | ||
1292 | 2141 | ||
1293 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | 2142 | set_vma_resv_map(vma, resv_map); |
1294 | { | 2143 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
1295 | long ret, chg; | 2144 | } |
1296 | 2145 | ||
1297 | chg = region_chg(&inode->i_mapping->private_list, from, to); | ||
1298 | if (chg < 0) | 2146 | if (chg < 0) |
1299 | return chg; | 2147 | return chg; |
1300 | 2148 | ||
1301 | if (hugetlb_get_quota(inode->i_mapping, chg)) | 2149 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1302 | return -ENOSPC; | 2150 | return -ENOSPC; |
1303 | ret = hugetlb_acct_memory(chg); | 2151 | ret = hugetlb_acct_memory(h, chg); |
1304 | if (ret < 0) { | 2152 | if (ret < 0) { |
1305 | hugetlb_put_quota(inode->i_mapping, chg); | 2153 | hugetlb_put_quota(inode->i_mapping, chg); |
1306 | return ret; | 2154 | return ret; |
1307 | } | 2155 | } |
1308 | region_add(&inode->i_mapping->private_list, from, to); | 2156 | if (!vma || vma->vm_flags & VM_SHARED) |
2157 | region_add(&inode->i_mapping->private_list, from, to); | ||
1309 | return 0; | 2158 | return 0; |
1310 | } | 2159 | } |
1311 | 2160 | ||
1312 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 2161 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) |
1313 | { | 2162 | { |
2163 | struct hstate *h = hstate_inode(inode); | ||
1314 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 2164 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
1315 | 2165 | ||
1316 | spin_lock(&inode->i_lock); | 2166 | spin_lock(&inode->i_lock); |
1317 | inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; | 2167 | inode->i_blocks -= blocks_per_huge_page(h); |
1318 | spin_unlock(&inode->i_lock); | 2168 | spin_unlock(&inode->i_lock); |
1319 | 2169 | ||
1320 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2170 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
1321 | hugetlb_acct_memory(-(chg - freed)); | 2171 | hugetlb_acct_memory(h, -(chg - freed)); |
1322 | } | 2172 | } |