diff options
Diffstat (limited to 'litmus')
-rw-r--r-- | litmus/Makefile | 3 | ||||
-rw-r--r-- | litmus/sched_psn_edf.c | 667 |
2 files changed, 669 insertions, 1 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index fcb4d7533327..5b38295b992d 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -17,7 +17,8 @@ obj-y = sched_plugin.o litmus.o \ | |||
17 | srp.o \ | 17 | srp.o \ |
18 | bheap.o \ | 18 | bheap.o \ |
19 | binheap.o \ | 19 | binheap.o \ |
20 | ctrldev.o | 20 | ctrldev.o \ |
21 | sched_psn_edf.o | ||
21 | 22 | ||
22 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o | 23 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o |
23 | 24 | ||
diff --git a/litmus/sched_psn_edf.c b/litmus/sched_psn_edf.c new file mode 100644 index 000000000000..0873dc172651 --- /dev/null +++ b/litmus/sched_psn_edf.c | |||
@@ -0,0 +1,667 @@ | |||
1 | /* | ||
2 | * kernel/sched_psn_edf.c | ||
3 | * | ||
4 | * Implementation of the PSN-EDF scheduler plugin. | ||
5 | * Based on kern/sched_part_edf.c and kern/sched_gsn_edf.c. | ||
6 | * | ||
7 | * Suspensions and non-preemptable sections are supported. | ||
8 | * Priority inheritance is not supported. | ||
9 | */ | ||
10 | |||
11 | #include <linux/percpu.h> | ||
12 | #include <linux/sched.h> | ||
13 | #include <linux/list.h> | ||
14 | #include <linux/spinlock.h> | ||
15 | #include <linux/module.h> | ||
16 | |||
17 | #include <litmus/litmus.h> | ||
18 | #include <litmus/jobs.h> | ||
19 | #include <litmus/preempt.h> | ||
20 | #include <litmus/budget.h> | ||
21 | #include <litmus/sched_plugin.h> | ||
22 | #include <litmus/edf_common.h> | ||
23 | #include <litmus/sched_trace.h> | ||
24 | #include <litmus/trace.h> | ||
25 | |||
26 | typedef struct { | ||
27 | rt_domain_t domain; | ||
28 | int cpu; | ||
29 | struct task_struct* scheduled; /* only RT tasks */ | ||
30 | /* | ||
31 | * scheduling lock slock | ||
32 | * protects the domain and serializes scheduling decisions | ||
33 | */ | ||
34 | #define slock domain.ready_lock | ||
35 | |||
36 | } psnedf_domain_t; | ||
37 | |||
38 | DEFINE_PER_CPU(psnedf_domain_t, psnedf_domains); | ||
39 | |||
40 | #define local_edf (&__get_cpu_var(psnedf_domains).domain) | ||
41 | #define local_pedf (&__get_cpu_var(psnedf_domains)) | ||
42 | #define remote_edf(cpu) (&per_cpu(psnedf_domains, cpu).domain) | ||
43 | #define remote_pedf(cpu) (&per_cpu(psnedf_domains, cpu)) | ||
44 | #define task_edf(task) remote_edf(get_partition(task)) | ||
45 | #define task_pedf(task) remote_pedf(get_partition(task)) | ||
46 | |||
47 | |||
48 | static void psnedf_domain_init(psnedf_domain_t* pedf, | ||
49 | check_resched_needed_t check, | ||
50 | release_jobs_t release, | ||
51 | int cpu) | ||
52 | { | ||
53 | edf_domain_init(&pedf->domain, check, release); | ||
54 | pedf->cpu = cpu; | ||
55 | pedf->scheduled = NULL; | ||
56 | } | ||
57 | |||
58 | static void requeue(struct task_struct* t, rt_domain_t *edf) | ||
59 | { | ||
60 | if (t->state != TASK_RUNNING) | ||
61 | TRACE_TASK(t, "requeue: !TASK_RUNNING\n"); | ||
62 | |||
63 | tsk_rt(t)->completed = 0; | ||
64 | if (is_early_releasing(t) || is_released(t, litmus_clock())) | ||
65 | __add_ready(edf, t); | ||
66 | else | ||
67 | add_release(edf, t); /* it has got to wait */ | ||
68 | } | ||
69 | |||
70 | /* we assume the lock is being held */ | ||
71 | static void preempt(psnedf_domain_t *pedf) | ||
72 | { | ||
73 | preempt_if_preemptable(pedf->scheduled, pedf->cpu); | ||
74 | } | ||
75 | |||
76 | #ifdef CONFIG_LITMUS_LOCKING | ||
77 | |||
78 | static void boost_priority(struct task_struct* t) | ||
79 | { | ||
80 | unsigned long flags; | ||
81 | psnedf_domain_t* pedf = task_pedf(t); | ||
82 | lt_t now; | ||
83 | |||
84 | raw_spin_lock_irqsave(&pedf->slock, flags); | ||
85 | now = litmus_clock(); | ||
86 | |||
87 | TRACE_TASK(t, "priority boosted at %llu\n", now); | ||
88 | |||
89 | tsk_rt(t)->priority_boosted = 1; | ||
90 | tsk_rt(t)->boost_start_time = now; | ||
91 | |||
92 | if (pedf->scheduled != t) { | ||
93 | /* holder may be queued: first stop queue changes */ | ||
94 | raw_spin_lock(&pedf->domain.release_lock); | ||
95 | if (is_queued(t) && | ||
96 | /* If it is queued, then we need to re-order. */ | ||
97 | bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node) && | ||
98 | /* If we bubbled to the top, then we need to check for preemptions. */ | ||
99 | edf_preemption_needed(&pedf->domain, pedf->scheduled)) | ||
100 | preempt(pedf); | ||
101 | raw_spin_unlock(&pedf->domain.release_lock); | ||
102 | } /* else: nothing to do since the job is not queued while scheduled */ | ||
103 | |||
104 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | ||
105 | } | ||
106 | |||
107 | static void unboost_priority(struct task_struct* t) | ||
108 | { | ||
109 | unsigned long flags; | ||
110 | psnedf_domain_t* pedf = task_pedf(t); | ||
111 | lt_t now; | ||
112 | |||
113 | raw_spin_lock_irqsave(&pedf->slock, flags); | ||
114 | now = litmus_clock(); | ||
115 | |||
116 | /* assumption: this only happens when the job is scheduled */ | ||
117 | BUG_ON(pedf->scheduled != t); | ||
118 | |||
119 | TRACE_TASK(t, "priority restored at %llu\n", now); | ||
120 | |||
121 | /* priority boosted jobs must be scheduled */ | ||
122 | BUG_ON(pedf->scheduled != t); | ||
123 | |||
124 | tsk_rt(t)->priority_boosted = 0; | ||
125 | tsk_rt(t)->boost_start_time = 0; | ||
126 | |||
127 | /* check if this changes anything */ | ||
128 | if (edf_preemption_needed(&pedf->domain, pedf->scheduled)) | ||
129 | preempt(pedf); | ||
130 | |||
131 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | ||
132 | } | ||
133 | |||
134 | #endif | ||
135 | |||
136 | static int psnedf_preempt_check(psnedf_domain_t *pedf) | ||
137 | { | ||
138 | if (edf_preemption_needed(&pedf->domain, pedf->scheduled)) { | ||
139 | preempt(pedf); | ||
140 | return 1; | ||
141 | } else | ||
142 | return 0; | ||
143 | } | ||
144 | |||
145 | /* This check is trivial in partioned systems as we only have to consider | ||
146 | * the CPU of the partition. | ||
147 | */ | ||
148 | static int psnedf_check_resched(rt_domain_t *edf) | ||
149 | { | ||
150 | psnedf_domain_t *pedf = container_of(edf, psnedf_domain_t, domain); | ||
151 | |||
152 | /* because this is a callback from rt_domain_t we already hold | ||
153 | * the necessary lock for the ready queue | ||
154 | */ | ||
155 | return psnedf_preempt_check(pedf); | ||
156 | } | ||
157 | |||
158 | static void job_completion(struct task_struct* t, int forced) | ||
159 | { | ||
160 | sched_trace_task_completion(t,forced); | ||
161 | TRACE_TASK(t, "job_completion().\n"); | ||
162 | |||
163 | tsk_rt(t)->completed = 0; | ||
164 | prepare_for_next_period(t); | ||
165 | } | ||
166 | |||
167 | static void psnedf_tick(struct task_struct *t) | ||
168 | { | ||
169 | psnedf_domain_t *pedf = local_pedf; | ||
170 | |||
171 | /* Check for inconsistency. We don't need the lock for this since | ||
172 | * ->scheduled is only changed in schedule, which obviously is not | ||
173 | * executing in parallel on this CPU | ||
174 | */ | ||
175 | BUG_ON(is_realtime(t) && t != pedf->scheduled); | ||
176 | |||
177 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
178 | if (!is_np(t)) { | ||
179 | litmus_reschedule_local(); | ||
180 | TRACE("psnedf_scheduler_tick: " | ||
181 | "%d is preemptable " | ||
182 | " => FORCE_RESCHED\n", t->pid); | ||
183 | } else if (is_user_np(t)) { | ||
184 | TRACE("psnedf_scheduler_tick: " | ||
185 | "%d is non-preemptable, " | ||
186 | "preemption delayed.\n", t->pid); | ||
187 | request_exit_np(t); | ||
188 | } | ||
189 | } | ||
190 | } | ||
191 | |||
192 | static struct task_struct* psnedf_schedule(struct task_struct * prev) | ||
193 | { | ||
194 | psnedf_domain_t* pedf = local_pedf; | ||
195 | rt_domain_t* edf = &pedf->domain; | ||
196 | struct task_struct* next; | ||
197 | |||
198 | int out_of_time, sleep, preempt, | ||
199 | np, exists, blocks, resched; | ||
200 | |||
201 | raw_spin_lock(&pedf->slock); | ||
202 | |||
203 | /* sanity checking | ||
204 | * differently from gedf, when a task exits (dead) | ||
205 | * pedf->schedule may be null and prev _is_ realtime | ||
206 | */ | ||
207 | BUG_ON(pedf->scheduled && pedf->scheduled != prev); | ||
208 | BUG_ON(pedf->scheduled && !is_realtime(prev)); | ||
209 | |||
210 | /* (0) Determine state */ | ||
211 | exists = pedf->scheduled != NULL; | ||
212 | blocks = exists && !is_running(pedf->scheduled); | ||
213 | out_of_time = exists && | ||
214 | budget_enforced(pedf->scheduled) && | ||
215 | budget_exhausted(pedf->scheduled); | ||
216 | np = exists && is_np(pedf->scheduled); | ||
217 | sleep = exists && is_completed(pedf->scheduled); | ||
218 | preempt = edf_preemption_needed(edf, prev); | ||
219 | |||
220 | /* If we need to preempt do so. | ||
221 | * The following checks set resched to 1 in case of special | ||
222 | * circumstances. | ||
223 | */ | ||
224 | resched = preempt; | ||
225 | |||
226 | /* If a task blocks we have no choice but to reschedule. | ||
227 | */ | ||
228 | if (blocks) | ||
229 | resched = 1; | ||
230 | |||
231 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
232 | * Multiple calls to request_exit_np() don't hurt. | ||
233 | */ | ||
234 | if (np && (out_of_time || preempt || sleep)) | ||
235 | request_exit_np(pedf->scheduled); | ||
236 | |||
237 | /* Any task that is preemptable and either exhausts its execution | ||
238 | * budget or wants to sleep completes. We may have to reschedule after | ||
239 | * this. | ||
240 | */ | ||
241 | if (!np && (out_of_time || sleep) && !blocks) { | ||
242 | job_completion(pedf->scheduled, !sleep); | ||
243 | resched = 1; | ||
244 | } | ||
245 | |||
246 | /* The final scheduling decision. Do we need to switch for some reason? | ||
247 | * Switch if we are in RT mode and have no task or if we need to | ||
248 | * resched. | ||
249 | */ | ||
250 | next = NULL; | ||
251 | if ((!np || blocks) && (resched || !exists)) { | ||
252 | /* When preempting a task that does not block, then | ||
253 | * re-insert it into either the ready queue or the | ||
254 | * release queue (if it completed). requeue() picks | ||
255 | * the appropriate queue. | ||
256 | */ | ||
257 | if (pedf->scheduled && !blocks) | ||
258 | requeue(pedf->scheduled, edf); | ||
259 | next = __take_ready(edf); | ||
260 | } else | ||
261 | /* Only override Linux scheduler if we have a real-time task | ||
262 | * scheduled that needs to continue. | ||
263 | */ | ||
264 | if (exists) | ||
265 | next = prev; | ||
266 | |||
267 | if (next) { | ||
268 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
269 | } else { | ||
270 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
271 | } | ||
272 | |||
273 | pedf->scheduled = next; | ||
274 | sched_state_task_picked(); | ||
275 | raw_spin_unlock(&pedf->slock); | ||
276 | |||
277 | return next; | ||
278 | } | ||
279 | |||
280 | |||
281 | /* Prepare a task for running in RT mode | ||
282 | */ | ||
283 | static void psnedf_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
284 | { | ||
285 | rt_domain_t* edf = task_edf(t); | ||
286 | psnedf_domain_t* pedf = task_pedf(t); | ||
287 | unsigned long flags; | ||
288 | |||
289 | TRACE_TASK(t, "psn edf: task new, cpu = %d\n", | ||
290 | t->rt_param.task_params.cpu); | ||
291 | |||
292 | /* setup job parameters */ | ||
293 | release_at(t, litmus_clock()); | ||
294 | |||
295 | /* The task should be running in the queue, otherwise signal | ||
296 | * code will try to wake it up with fatal consequences. | ||
297 | */ | ||
298 | raw_spin_lock_irqsave(&pedf->slock, flags); | ||
299 | if (is_scheduled) { | ||
300 | /* there shouldn't be anything else scheduled at the time */ | ||
301 | BUG_ON(pedf->scheduled); | ||
302 | pedf->scheduled = t; | ||
303 | } else { | ||
304 | /* !is_scheduled means it is not scheduled right now, but it | ||
305 | * does not mean that it is suspended. If it is not suspended, | ||
306 | * it still needs to be requeued. If it is suspended, there is | ||
307 | * nothing that we need to do as it will be handled by the | ||
308 | * wake_up() handler. */ | ||
309 | if (is_running(t)) { | ||
310 | requeue(t, edf); | ||
311 | /* maybe we have to reschedule */ | ||
312 | psnedf_preempt_check(pedf); | ||
313 | } | ||
314 | } | ||
315 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | ||
316 | } | ||
317 | |||
318 | static void psnedf_task_wake_up(struct task_struct *task) | ||
319 | { | ||
320 | unsigned long flags; | ||
321 | psnedf_domain_t* pedf = task_pedf(task); | ||
322 | rt_domain_t* edf = task_edf(task); | ||
323 | lt_t now; | ||
324 | |||
325 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
326 | raw_spin_lock_irqsave(&pedf->slock, flags); | ||
327 | BUG_ON(is_queued(task)); | ||
328 | now = litmus_clock(); | ||
329 | if (is_sporadic(task) && is_tardy(task, now) | ||
330 | #ifdef CONFIG_LITMUS_LOCKING | ||
331 | /* We need to take suspensions because of semaphores into | ||
332 | * account! If a job resumes after being suspended due to acquiring | ||
333 | * a semaphore, it should never be treated as a new job release. | ||
334 | */ | ||
335 | && !is_priority_boosted(task) | ||
336 | #endif | ||
337 | ) { | ||
338 | /* new sporadic release */ | ||
339 | release_at(task, now); | ||
340 | sched_trace_task_release(task); | ||
341 | } | ||
342 | |||
343 | /* Only add to ready queue if it is not the currently-scheduled | ||
344 | * task. This could be the case if a task was woken up concurrently | ||
345 | * on a remote CPU before the executing CPU got around to actually | ||
346 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
347 | * and won. | ||
348 | */ | ||
349 | if (pedf->scheduled != task) { | ||
350 | requeue(task, edf); | ||
351 | psnedf_preempt_check(pedf); | ||
352 | } | ||
353 | |||
354 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | ||
355 | TRACE_TASK(task, "wake up done\n"); | ||
356 | } | ||
357 | |||
358 | static void psnedf_task_block(struct task_struct *t) | ||
359 | { | ||
360 | /* only running tasks can block, thus t is in no queue */ | ||
361 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
362 | |||
363 | BUG_ON(!is_realtime(t)); | ||
364 | BUG_ON(is_queued(t)); | ||
365 | } | ||
366 | |||
367 | static void psnedf_task_exit(struct task_struct * t) | ||
368 | { | ||
369 | unsigned long flags; | ||
370 | psnedf_domain_t* pedf = task_pedf(t); | ||
371 | rt_domain_t* edf; | ||
372 | |||
373 | raw_spin_lock_irqsave(&pedf->slock, flags); | ||
374 | if (is_queued(t)) { | ||
375 | /* dequeue */ | ||
376 | edf = task_edf(t); | ||
377 | remove(edf, t); | ||
378 | } | ||
379 | if (pedf->scheduled == t) | ||
380 | pedf->scheduled = NULL; | ||
381 | |||
382 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
383 | |||
384 | preempt(pedf); | ||
385 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | ||
386 | } | ||
387 | |||
388 | #ifdef CONFIG_LITMUS_LOCKING | ||
389 | |||
390 | #include <litmus/fdso.h> | ||
391 | #include <litmus/srp.h> | ||
392 | |||
393 | /* ******************** SRP support ************************ */ | ||
394 | |||
395 | static unsigned int psnedf_get_srp_prio(struct task_struct* t) | ||
396 | { | ||
397 | /* assumes implicit deadlines */ | ||
398 | return get_rt_period(t); | ||
399 | } | ||
400 | |||
401 | /* ******************** FMLP support ********************** */ | ||
402 | |||
403 | /* struct for semaphore with priority inheritance */ | ||
404 | struct fmlp_semaphore { | ||
405 | struct litmus_lock litmus_lock; | ||
406 | |||
407 | /* current resource holder */ | ||
408 | struct task_struct *owner; | ||
409 | |||
410 | /* FIFO queue of waiting tasks */ | ||
411 | wait_queue_head_t wait; | ||
412 | }; | ||
413 | |||
414 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
415 | { | ||
416 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
417 | } | ||
418 | int psnedf_fmlp_lock(struct litmus_lock* l) | ||
419 | { | ||
420 | struct task_struct* t = current; | ||
421 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
422 | wait_queue_t wait; | ||
423 | unsigned long flags; | ||
424 | |||
425 | if (!is_realtime(t)) | ||
426 | return -EPERM; | ||
427 | |||
428 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
429 | if (tsk_rt(t)->num_locks_held || | ||
430 | tsk_rt(t)->num_local_locks_held) | ||
431 | return -EBUSY; | ||
432 | |||
433 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
434 | |||
435 | if (sem->owner) { | ||
436 | /* resource is not free => must suspend and wait */ | ||
437 | |||
438 | init_waitqueue_entry(&wait, t); | ||
439 | |||
440 | /* FIXME: interruptible would be nice some day */ | ||
441 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
442 | |||
443 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
444 | |||
445 | TS_LOCK_SUSPEND; | ||
446 | |||
447 | /* release lock before sleeping */ | ||
448 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
449 | |||
450 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
451 | * when we wake up; we are guaranteed to have the lock since | ||
452 | * there is only one wake up per release. | ||
453 | */ | ||
454 | |||
455 | schedule(); | ||
456 | |||
457 | TS_LOCK_RESUME; | ||
458 | |||
459 | /* Since we hold the lock, no other task will change | ||
460 | * ->owner. We can thus check it without acquiring the spin | ||
461 | * lock. */ | ||
462 | BUG_ON(sem->owner != t); | ||
463 | } else { | ||
464 | /* it's ours now */ | ||
465 | sem->owner = t; | ||
466 | |||
467 | /* mark the task as priority-boosted. */ | ||
468 | boost_priority(t); | ||
469 | |||
470 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
471 | } | ||
472 | |||
473 | tsk_rt(t)->num_locks_held++; | ||
474 | |||
475 | return 0; | ||
476 | } | ||
477 | |||
478 | int psnedf_fmlp_unlock(struct litmus_lock* l) | ||
479 | { | ||
480 | struct task_struct *t = current, *next; | ||
481 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
482 | unsigned long flags; | ||
483 | int err = 0; | ||
484 | |||
485 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
486 | |||
487 | if (sem->owner != t) { | ||
488 | err = -EINVAL; | ||
489 | goto out; | ||
490 | } | ||
491 | |||
492 | tsk_rt(t)->num_locks_held--; | ||
493 | |||
494 | /* we lose the benefit of priority boosting */ | ||
495 | |||
496 | unboost_priority(t); | ||
497 | |||
498 | /* check if there are jobs waiting for this resource */ | ||
499 | next = __waitqueue_remove_first(&sem->wait); | ||
500 | if (next) { | ||
501 | /* boost next job */ | ||
502 | boost_priority(next); | ||
503 | |||
504 | /* next becomes the resouce holder */ | ||
505 | sem->owner = next; | ||
506 | |||
507 | /* wake up next */ | ||
508 | wake_up_process(next); | ||
509 | } else | ||
510 | /* resource becomes available */ | ||
511 | sem->owner = NULL; | ||
512 | |||
513 | out: | ||
514 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
515 | return err; | ||
516 | } | ||
517 | |||
518 | int psnedf_fmlp_close(struct litmus_lock* l) | ||
519 | { | ||
520 | struct task_struct *t = current; | ||
521 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
522 | unsigned long flags; | ||
523 | |||
524 | int owner; | ||
525 | |||
526 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
527 | |||
528 | owner = sem->owner == t; | ||
529 | |||
530 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
531 | |||
532 | if (owner) | ||
533 | psnedf_fmlp_unlock(l); | ||
534 | |||
535 | return 0; | ||
536 | } | ||
537 | |||
538 | void psnedf_fmlp_free(struct litmus_lock* lock) | ||
539 | { | ||
540 | kfree(fmlp_from_lock(lock)); | ||
541 | } | ||
542 | |||
543 | static struct litmus_lock_ops psnedf_fmlp_lock_ops = { | ||
544 | .close = psnedf_fmlp_close, | ||
545 | .lock = psnedf_fmlp_lock, | ||
546 | .unlock = psnedf_fmlp_unlock, | ||
547 | .deallocate = psnedf_fmlp_free, | ||
548 | }; | ||
549 | |||
550 | static struct litmus_lock* psnedf_new_fmlp(void) | ||
551 | { | ||
552 | struct fmlp_semaphore* sem; | ||
553 | |||
554 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
555 | if (!sem) | ||
556 | return NULL; | ||
557 | |||
558 | sem->owner = NULL; | ||
559 | init_waitqueue_head(&sem->wait); | ||
560 | sem->litmus_lock.ops = &psnedf_fmlp_lock_ops; | ||
561 | |||
562 | return &sem->litmus_lock; | ||
563 | } | ||
564 | |||
565 | /* **** lock constructor **** */ | ||
566 | |||
567 | |||
568 | static long psnedf_allocate_lock(struct litmus_lock **lock, int type, | ||
569 | void* __user unused) | ||
570 | { | ||
571 | int err = -ENXIO; | ||
572 | struct srp_semaphore* srp; | ||
573 | |||
574 | /* PSN-EDF currently supports the SRP for local resources and the FMLP | ||
575 | * for global resources. */ | ||
576 | switch (type) { | ||
577 | case FMLP_SEM: | ||
578 | /* Flexible Multiprocessor Locking Protocol */ | ||
579 | *lock = psnedf_new_fmlp(); | ||
580 | if (*lock) | ||
581 | err = 0; | ||
582 | else | ||
583 | err = -ENOMEM; | ||
584 | break; | ||
585 | |||
586 | case SRP_SEM: | ||
587 | /* Baker's Stack Resource Policy */ | ||
588 | srp = allocate_srp_semaphore(); | ||
589 | if (srp) { | ||
590 | *lock = &srp->litmus_lock; | ||
591 | err = 0; | ||
592 | } else | ||
593 | err = -ENOMEM; | ||
594 | break; | ||
595 | }; | ||
596 | |||
597 | return err; | ||
598 | } | ||
599 | |||
600 | #endif | ||
601 | |||
602 | |||
603 | static long psnedf_activate_plugin(void) | ||
604 | { | ||
605 | #ifdef CONFIG_RELEASE_MASTER | ||
606 | int cpu; | ||
607 | |||
608 | for_each_online_cpu(cpu) { | ||
609 | remote_edf(cpu)->release_master = atomic_read(&release_master_cpu); | ||
610 | } | ||
611 | #endif | ||
612 | |||
613 | #ifdef CONFIG_LITMUS_LOCKING | ||
614 | get_srp_prio = psnedf_get_srp_prio; | ||
615 | #endif | ||
616 | |||
617 | return 0; | ||
618 | } | ||
619 | |||
620 | static long psnedf_admit_task(struct task_struct* tsk) | ||
621 | { | ||
622 | if (task_cpu(tsk) == tsk->rt_param.task_params.cpu | ||
623 | #ifdef CONFIG_RELEASE_MASTER | ||
624 | /* don't allow tasks on release master CPU */ | ||
625 | && task_cpu(tsk) != remote_edf(task_cpu(tsk))->release_master | ||
626 | #endif | ||
627 | ) | ||
628 | return 0; | ||
629 | else | ||
630 | return -EINVAL; | ||
631 | } | ||
632 | |||
633 | /* Plugin object */ | ||
634 | static struct sched_plugin psn_edf_plugin __cacheline_aligned_in_smp = { | ||
635 | .plugin_name = "PSN-EDF", | ||
636 | .tick = psnedf_tick, | ||
637 | .task_new = psnedf_task_new, | ||
638 | .complete_job = complete_job, | ||
639 | .task_exit = psnedf_task_exit, | ||
640 | .schedule = psnedf_schedule, | ||
641 | .task_wake_up = psnedf_task_wake_up, | ||
642 | .task_block = psnedf_task_block, | ||
643 | .admit_task = psnedf_admit_task, | ||
644 | .activate_plugin = psnedf_activate_plugin, | ||
645 | #ifdef CONFIG_LITMUS_LOCKING | ||
646 | .allocate_lock = psnedf_allocate_lock, | ||
647 | #endif | ||
648 | }; | ||
649 | |||
650 | |||
651 | static int __init init_psn_edf(void) | ||
652 | { | ||
653 | int i; | ||
654 | |||
655 | /* We do not really want to support cpu hotplug, do we? ;) | ||
656 | * However, if we are so crazy to do so, | ||
657 | * we cannot use num_online_cpu() | ||
658 | */ | ||
659 | for (i = 0; i < num_online_cpus(); i++) { | ||
660 | psnedf_domain_init(remote_pedf(i), | ||
661 | psnedf_check_resched, | ||
662 | NULL, i); | ||
663 | } | ||
664 | return register_sched_plugin(&psn_edf_plugin); | ||
665 | } | ||
666 | |||
667 | module_init(init_psn_edf); | ||