diff options
Diffstat (limited to 'litmus/sched_gfl_split_namechange.c')
-rw-r--r-- | litmus/sched_gfl_split_namechange.c | 1149 |
1 files changed, 1149 insertions, 0 deletions
diff --git a/litmus/sched_gfl_split_namechange.c b/litmus/sched_gfl_split_namechange.c new file mode 100644 index 000000000000..c154b115a00e --- /dev/null +++ b/litmus/sched_gfl_split_namechange.c | |||
@@ -0,0 +1,1149 @@ | |||
1 | /* | ||
2 | * litmus/sched_gfl_split.c | ||
3 | * | ||
4 | * Implementation of the G-FL with job splitting. See the Erickson/Anderson | ||
5 | * paper at ECRTS 2012 for a description of G-FL. | ||
6 | * | ||
7 | * This plugin is a modified version of the prior GSN-EDF-split plugin in | ||
8 | * litmus/sched_gsn_edf_split.c. Job splitting works the same way as in that | ||
9 | * plugin. The subjob "deadlines" (really priorities) are computed according | ||
10 | * to G-FL with respect to the post-split (smaller) jobs. | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/spinlock.h> | ||
15 | #include <linux/percpu.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/slab.h> | ||
18 | |||
19 | #include <litmus/litmus.h> | ||
20 | #include <litmus/jobs.h> | ||
21 | #include <litmus/sched_plugin.h> | ||
22 | #include <litmus/edf_split_common.h> | ||
23 | #include <litmus/sched_trace.h> | ||
24 | #include <litmus/trace.h> | ||
25 | |||
26 | #include <litmus/preempt.h> | ||
27 | |||
28 | #include <litmus/bheap.h> | ||
29 | |||
30 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
31 | #include <litmus/affinity.h> | ||
32 | #endif | ||
33 | |||
34 | #include <linux/module.h> | ||
35 | |||
36 | /* cpu_entry_t - maintain the linked and scheduled state | ||
37 | */ | ||
38 | typedef struct { | ||
39 | int cpu; | ||
40 | struct task_struct* linked; /* only RT tasks */ | ||
41 | struct task_struct* scheduled; /* only RT tasks */ | ||
42 | struct bheap_node* hn; | ||
43 | struct hrtimer split_timer; | ||
44 | int timer_armed; | ||
45 | } cpu_entry_t; | ||
46 | DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries); | ||
47 | |||
48 | cpu_entry_t* gsnedf_cpus[NR_CPUS]; | ||
49 | |||
50 | /* the cpus queue themselves according to priority in here */ | ||
51 | static struct bheap_node gsnedf_heap_node[NR_CPUS]; | ||
52 | static struct bheap gsnedf_cpu_heap; | ||
53 | |||
54 | static rt_domain_t gsnedf; | ||
55 | #define gsnedf_lock (gsnedf.ready_lock) | ||
56 | |||
57 | inline static int get_slice_num(struct task_struct* t) | ||
58 | { | ||
59 | int basic = ((t->rt_param.job_params.exec_time * | ||
60 | t->rt_param.task_params.split) / | ||
61 | t->rt_param.task_params.exec_cost) + 1; | ||
62 | if (basic <= t->rt_param.task_params.split){ | ||
63 | return basic; | ||
64 | } | ||
65 | else{ | ||
66 | /*Since we don't police budget, just leave where it's at.*/ | ||
67 | return t->rt_param.task_params.split; | ||
68 | } | ||
69 | } | ||
70 | |||
71 | /* Returns the appropriate subjob deadline.*/ | ||
72 | inline static lt_t get_proper_deadline(struct task_struct* t) | ||
73 | { | ||
74 | unsigned int num_cpus = num_online_cpus(); | ||
75 | return t->rt_param.job_params.release + | ||
76 | ((t->rt_param.task_params.period * get_slice_num(t)) | ||
77 | / t->rt_param.task_params.split) | ||
78 | /* G-FL correction */ | ||
79 | - (((num_cpus - 1) * t->rt_param.task_params.exec_cost) | ||
80 | / (num_cpus * t->rt_param.task_params.split)); | ||
81 | } | ||
82 | |||
83 | /* Tells us if the current deadline is too small.*/ | ||
84 | inline static int needs_deadline_move(struct task_struct* t) | ||
85 | { | ||
86 | BUG_ON(get_proper_deadline(t) < t->rt_param.job_params.subjob_deadline); | ||
87 | #ifdef CONFIG_LITMUS_LOCKING | ||
88 | return !is_in_crit_section(t) && | ||
89 | (get_proper_deadline(t) != | ||
90 | tsk_rt(t)->job_params.subjob_deadline); | ||
91 | #else | ||
92 | return get_proper_deadline(t) != tsk_rt(t)->job_params.subjob_deadline; | ||
93 | #endif | ||
94 | } | ||
95 | |||
96 | /*Returns execution time until the next deadline move. | ||
97 | * 0 means the task has no more deadline moves | ||
98 | */ | ||
99 | inline static lt_t time_to_next_move(struct task_struct* t) | ||
100 | { | ||
101 | if (get_slice_num(t) == t->rt_param.task_params.split){ | ||
102 | return 0; | ||
103 | } | ||
104 | /* +1 upper bounds ceiling, since integer division is floor*/ | ||
105 | return ((get_slice_num(t) * t->rt_param.task_params.exec_cost) | ||
106 | / t->rt_param.task_params.split) + 1 | ||
107 | - t->rt_param.job_params.exec_time; | ||
108 | } | ||
109 | |||
110 | /* Timer stuff - similar to budget.c. */ | ||
111 | static enum hrtimer_restart on_split_timeout(struct hrtimer *timer) | ||
112 | { | ||
113 | cpu_entry_t* st = container_of(timer, | ||
114 | cpu_entry_t, | ||
115 | split_timer); | ||
116 | |||
117 | unsigned long flags; | ||
118 | |||
119 | local_irq_save(flags); | ||
120 | TRACE("split timer fired.\n"); | ||
121 | st->timer_armed = 0; | ||
122 | /* Activate scheduler */ | ||
123 | litmus_reschedule_local(); | ||
124 | local_irq_restore(flags); | ||
125 | |||
126 | return HRTIMER_NORESTART; | ||
127 | } | ||
128 | |||
129 | static void cancel_split_timer(cpu_entry_t* ce) | ||
130 | { | ||
131 | int ret; | ||
132 | |||
133 | TRACE("cancelling split time.\n"); | ||
134 | |||
135 | /* Since interrupts are disabled and et->timer_armed is only | ||
136 | * modified locally, we do not need any locks. | ||
137 | */ | ||
138 | |||
139 | if (ce->timer_armed) { | ||
140 | ret = hrtimer_try_to_cancel(&ce->split_timer); | ||
141 | /* Should never be inactive. */ | ||
142 | BUG_ON(ret == 0); | ||
143 | /* Should never be running concurrently.*/ | ||
144 | BUG_ON(ret == -1); | ||
145 | |||
146 | ce->timer_armed = 0; | ||
147 | } | ||
148 | } | ||
149 | |||
150 | /* assumes called with IRQs off */ | ||
151 | static void arm_split_timer(cpu_entry_t *ce, | ||
152 | struct task_struct* t) | ||
153 | { | ||
154 | lt_t when_to_fire; | ||
155 | lt_t time_to_move; | ||
156 | TRACE_TASK(t, "arming split timer.\n"); | ||
157 | |||
158 | /* __hrtimer_start_range_ns() cancels the timer | ||
159 | * anyway, so we don't have to check whether it is still armed */ | ||
160 | |||
161 | /*We won't do any new deadline moves if the budget has been exhausted*/ | ||
162 | if (likely(!is_np(t) && (time_to_move = time_to_next_move(t)))) { | ||
163 | when_to_fire = litmus_clock() + time_to_move; | ||
164 | TRACE_TASK(t, "actually arming for %llu into the future\n", | ||
165 | time_to_move); | ||
166 | __hrtimer_start_range_ns(&ce->split_timer, | ||
167 | ns_to_ktime(when_to_fire), | ||
168 | 0 /* delta */, | ||
169 | HRTIMER_MODE_ABS_PINNED, | ||
170 | 0 /* no wakeup */); | ||
171 | ce->timer_armed = 1; | ||
172 | } | ||
173 | } | ||
174 | |||
175 | /* Uncomment this if you want to see all scheduling decisions in the | ||
176 | * TRACE() log. | ||
177 | #define WANT_ALL_SCHED_EVENTS | ||
178 | */ | ||
179 | |||
180 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
181 | { | ||
182 | cpu_entry_t *a, *b; | ||
183 | a = _a->value; | ||
184 | b = _b->value; | ||
185 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
186 | * the top of the heap. | ||
187 | */ | ||
188 | return edf_split_higher_prio(b->linked, a->linked); | ||
189 | } | ||
190 | |||
191 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
192 | * order in the cpu queue. Caller must hold gsnedf lock. | ||
193 | */ | ||
194 | static void update_cpu_position(cpu_entry_t *entry) | ||
195 | { | ||
196 | if (likely(bheap_node_in_heap(entry->hn))) | ||
197 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
198 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
199 | } | ||
200 | |||
201 | /* caller must hold gsnedf lock */ | ||
202 | static cpu_entry_t* lowest_prio_cpu(void) | ||
203 | { | ||
204 | struct bheap_node* hn; | ||
205 | hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap); | ||
206 | return hn->value; | ||
207 | } | ||
208 | |||
209 | |||
210 | /* link_task_to_cpu - Update the link of a CPU. | ||
211 | * Handles the case where the to-be-linked task is already | ||
212 | * scheduled on a different CPU. | ||
213 | */ | ||
214 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
215 | cpu_entry_t *entry) | ||
216 | { | ||
217 | cpu_entry_t *sched; | ||
218 | struct task_struct* tmp; | ||
219 | int on_cpu; | ||
220 | |||
221 | BUG_ON(linked && !is_realtime(linked)); | ||
222 | |||
223 | /* Currently linked task is set to be unlinked. */ | ||
224 | if (entry->linked) { | ||
225 | entry->linked->rt_param.linked_on = NO_CPU; | ||
226 | } | ||
227 | |||
228 | /* Link new task to CPU. */ | ||
229 | if (linked) { | ||
230 | set_rt_flags(linked, RT_F_RUNNING); | ||
231 | /* handle task is already scheduled somewhere! */ | ||
232 | on_cpu = linked->rt_param.scheduled_on; | ||
233 | if (on_cpu != NO_CPU) { | ||
234 | sched = &per_cpu(gsnedf_cpu_entries, on_cpu); | ||
235 | /* this should only happen if not linked already */ | ||
236 | BUG_ON(sched->linked == linked); | ||
237 | |||
238 | /* If we are already scheduled on the CPU to which we | ||
239 | * wanted to link, we don't need to do the swap -- | ||
240 | * we just link ourselves to the CPU and depend on | ||
241 | * the caller to get things right. | ||
242 | */ | ||
243 | if (entry != sched) { | ||
244 | TRACE_TASK(linked, | ||
245 | "already scheduled on %d, updating link.\n", | ||
246 | sched->cpu); | ||
247 | tmp = sched->linked; | ||
248 | linked->rt_param.linked_on = sched->cpu; | ||
249 | sched->linked = linked; | ||
250 | update_cpu_position(sched); | ||
251 | linked = tmp; | ||
252 | } | ||
253 | } | ||
254 | if (linked) /* might be NULL due to swap */ | ||
255 | linked->rt_param.linked_on = entry->cpu; | ||
256 | } | ||
257 | entry->linked = linked; | ||
258 | #ifdef WANT_ALL_SCHED_EVENTS | ||
259 | if (linked) | ||
260 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
261 | else | ||
262 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
263 | #endif | ||
264 | update_cpu_position(entry); | ||
265 | } | ||
266 | |||
267 | /* unlink - Make sure a task is not linked any longer to an entry | ||
268 | * where it was linked before. Must hold gsnedf_lock. | ||
269 | */ | ||
270 | static noinline void unlink(struct task_struct* t) | ||
271 | { | ||
272 | cpu_entry_t *entry; | ||
273 | |||
274 | if (t->rt_param.linked_on != NO_CPU) { | ||
275 | /* unlink */ | ||
276 | entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on); | ||
277 | t->rt_param.linked_on = NO_CPU; | ||
278 | link_task_to_cpu(NULL, entry); | ||
279 | } else if (is_queued(t)) { | ||
280 | /* This is an interesting situation: t is scheduled, | ||
281 | * but was just recently unlinked. It cannot be | ||
282 | * linked anywhere else (because then it would have | ||
283 | * been relinked to this CPU), thus it must be in some | ||
284 | * queue. We must remove it from the list in this | ||
285 | * case. | ||
286 | */ | ||
287 | remove(&gsnedf, t); | ||
288 | } | ||
289 | } | ||
290 | |||
291 | |||
292 | /* preempt - force a CPU to reschedule | ||
293 | */ | ||
294 | static void preempt(cpu_entry_t *entry) | ||
295 | { | ||
296 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
297 | } | ||
298 | |||
299 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
300 | * Caller must hold gsnedf_lock. | ||
301 | */ | ||
302 | static noinline void requeue(struct task_struct* task) | ||
303 | { | ||
304 | BUG_ON(!task); | ||
305 | /* sanity check before insertion */ | ||
306 | BUG_ON(is_queued(task)); | ||
307 | |||
308 | if (is_released(task, litmus_clock())) | ||
309 | __add_ready(&gsnedf, task); | ||
310 | else { | ||
311 | /* it has got to wait */ | ||
312 | add_release(&gsnedf, task); | ||
313 | } | ||
314 | } | ||
315 | |||
316 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
317 | static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start) | ||
318 | { | ||
319 | cpu_entry_t *affinity; | ||
320 | |||
321 | get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries, | ||
322 | #ifdef CONFIG_RELEASE_MASTER | ||
323 | gsnedf.release_master | ||
324 | #else | ||
325 | NO_CPU | ||
326 | #endif | ||
327 | ); | ||
328 | |||
329 | return(affinity); | ||
330 | } | ||
331 | #endif | ||
332 | |||
333 | /* check for any necessary preemptions */ | ||
334 | static void check_for_preemptions(void) | ||
335 | { | ||
336 | struct task_struct *task; | ||
337 | cpu_entry_t *last; | ||
338 | |||
339 | for (last = lowest_prio_cpu(); | ||
340 | edf_split_preemption_needed(&gsnedf, last->linked); | ||
341 | last = lowest_prio_cpu()) { | ||
342 | /* preemption necessary */ | ||
343 | task = __take_ready(&gsnedf); | ||
344 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
345 | task->pid, last->cpu); | ||
346 | |||
347 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
348 | { | ||
349 | cpu_entry_t *affinity = | ||
350 | gsnedf_get_nearest_available_cpu( | ||
351 | &per_cpu(gsnedf_cpu_entries, | ||
352 | task_cpu(task))); | ||
353 | if (affinity) | ||
354 | last = affinity; | ||
355 | else if (last->linked) | ||
356 | requeue(last->linked); | ||
357 | } | ||
358 | #else | ||
359 | if (last->linked) | ||
360 | requeue(last->linked); | ||
361 | #endif | ||
362 | |||
363 | link_task_to_cpu(task, last); | ||
364 | preempt(last); | ||
365 | } | ||
366 | } | ||
367 | |||
368 | /* gsnedf_job_arrival: task is either resumed or released */ | ||
369 | static noinline void gsnedf_job_arrival(struct task_struct* task) | ||
370 | { | ||
371 | BUG_ON(!task); | ||
372 | |||
373 | requeue(task); | ||
374 | check_for_preemptions(); | ||
375 | } | ||
376 | |||
377 | static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
378 | { | ||
379 | unsigned long flags; | ||
380 | |||
381 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
382 | |||
383 | __merge_ready(rt, tasks); | ||
384 | check_for_preemptions(); | ||
385 | |||
386 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
387 | } | ||
388 | |||
389 | /* caller holds gsnedf_lock */ | ||
390 | static noinline void job_completion(struct task_struct *t, int forced) | ||
391 | { | ||
392 | BUG_ON(!t); | ||
393 | |||
394 | sched_trace_task_completion(t, forced); | ||
395 | |||
396 | TRACE_TASK(t, "job_completion().\n"); | ||
397 | |||
398 | /* set flags */ | ||
399 | set_rt_flags(t, RT_F_SLEEP); | ||
400 | /* prepare for next period */ | ||
401 | /* prepare_for_next_period assumes implicit deadlines and no splitting, | ||
402 | * so we call it with the job deadline it expects. | ||
403 | */ | ||
404 | t->rt_param.job_params.deadline = t->rt_param.job_params.release + | ||
405 | t->rt_param.task_params.period; | ||
406 | prepare_for_next_period(t); | ||
407 | /* We now set the subjob deadline to what it should be for scheduling | ||
408 | * priority. | ||
409 | */ | ||
410 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
411 | if (is_released(t, litmus_clock())) | ||
412 | sched_trace_task_release(t); | ||
413 | /* unlink */ | ||
414 | unlink(t); | ||
415 | /* requeue | ||
416 | * But don't requeue a blocking task. */ | ||
417 | if (is_running(t)) | ||
418 | gsnedf_job_arrival(t); | ||
419 | } | ||
420 | |||
421 | static void move_deadline(struct task_struct *t) | ||
422 | { | ||
423 | tsk_rt(t)->job_params.subjob_deadline = get_proper_deadline(t); | ||
424 | /* Check if rescheduling needed with lower priority. */ | ||
425 | unlink(t); | ||
426 | gsnedf_job_arrival(t); | ||
427 | } | ||
428 | |||
429 | /* gsnedf_tick - this function is called for every local timer | ||
430 | * interrupt. | ||
431 | * | ||
432 | * checks whether the current task has expired and checks | ||
433 | * whether we need to preempt it if it has not expired | ||
434 | */ | ||
435 | static void gsnedf_tick(struct task_struct* t) | ||
436 | { | ||
437 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
438 | if (!is_np(t)) { | ||
439 | /* np tasks will be preempted when they become | ||
440 | * preemptable again | ||
441 | */ | ||
442 | litmus_reschedule_local(); | ||
443 | TRACE("gsnedf_scheduler_tick: " | ||
444 | "%d is preemptable " | ||
445 | " => FORCE_RESCHED\n", t->pid); | ||
446 | } else if (is_user_np(t)) { | ||
447 | TRACE("gsnedf_scheduler_tick: " | ||
448 | "%d is non-preemptable, " | ||
449 | "preemption delayed.\n", t->pid); | ||
450 | request_exit_np(t); | ||
451 | } | ||
452 | } | ||
453 | } | ||
454 | |||
455 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
456 | * assumptions on the state of the current task since it may be called for a | ||
457 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
458 | * was necessary, because sys_exit_np() was called, because some Linux | ||
459 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
460 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
461 | * current state is. | ||
462 | * | ||
463 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
464 | * | ||
465 | * The following assertions for the scheduled task could hold: | ||
466 | * | ||
467 | * - !is_running(scheduled) // the job blocks | ||
468 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
469 | * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) | ||
470 | * - linked != scheduled // we need to reschedule (for any reason) | ||
471 | * - is_np(scheduled) // rescheduling must be delayed, | ||
472 | * sys_exit_np must be requested | ||
473 | * | ||
474 | * Any of these can occur together. | ||
475 | */ | ||
476 | static struct task_struct* gsnedf_schedule(struct task_struct * prev) | ||
477 | { | ||
478 | cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries); | ||
479 | int out_of_time, sleep, preempt, np, exists, blocks, needs_move; | ||
480 | struct task_struct* next = NULL; | ||
481 | |||
482 | #ifdef CONFIG_RELEASE_MASTER | ||
483 | /* Bail out early if we are the release master. | ||
484 | * The release master never schedules any real-time tasks. | ||
485 | */ | ||
486 | if (unlikely(gsnedf.release_master == entry->cpu)) { | ||
487 | sched_state_task_picked(); | ||
488 | return NULL; | ||
489 | } | ||
490 | #endif | ||
491 | |||
492 | raw_spin_lock(&gsnedf_lock); | ||
493 | |||
494 | /* sanity checking */ | ||
495 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
496 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
497 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
498 | |||
499 | /* (0) Determine state */ | ||
500 | exists = entry->scheduled != NULL; | ||
501 | blocks = exists && !is_running(entry->scheduled); | ||
502 | out_of_time = exists && | ||
503 | budget_enforced(entry->scheduled) && | ||
504 | budget_exhausted(entry->scheduled); | ||
505 | needs_move = exists && needs_deadline_move(entry->scheduled); | ||
506 | np = exists && is_np(entry->scheduled); | ||
507 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | ||
508 | preempt = entry->scheduled != entry->linked; | ||
509 | |||
510 | #ifdef WANT_ALL_SCHED_EVENTS | ||
511 | TRACE_TASK(prev, "invoked gsnedf_schedule.\n"); | ||
512 | #endif | ||
513 | |||
514 | if (exists) | ||
515 | TRACE_TASK(prev, | ||
516 | "blocks:%d out_of_time:%d needs_move:%d np:%d" | ||
517 | " sleep:%d preempt:%d state:%d sig:%d\n", | ||
518 | blocks, out_of_time, needs_move, np, sleep, preempt, | ||
519 | prev->state, signal_pending(prev)); | ||
520 | if (entry->linked && preempt) | ||
521 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
522 | entry->linked->comm, entry->linked->pid); | ||
523 | |||
524 | |||
525 | /* If a task blocks we have no choice but to reschedule. | ||
526 | */ | ||
527 | if (blocks) | ||
528 | unlink(entry->scheduled); | ||
529 | |||
530 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
531 | * We need to make sure to update the link structure anyway in case | ||
532 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
533 | * hurt. | ||
534 | * | ||
535 | * Job deadline moves handled similarly | ||
536 | */ | ||
537 | if (np && (out_of_time || preempt || sleep)) { | ||
538 | unlink(entry->scheduled); | ||
539 | request_exit_np(entry->scheduled); | ||
540 | } | ||
541 | else if (np && needs_move) { | ||
542 | move_deadline(entry->scheduled); | ||
543 | } | ||
544 | |||
545 | /* Any task that is preemptable and either exhausts its execution | ||
546 | * budget or wants to sleep completes. We may have to reschedule after | ||
547 | * this. Don't do a job completion if we block (can't have timers running | ||
548 | * for blocked jobs). Preemption go first for the same reason. | ||
549 | */ | ||
550 | if (!np && (out_of_time || sleep) && !blocks && !preempt) | ||
551 | job_completion(entry->scheduled, !sleep); | ||
552 | else if (!np && needs_move && !blocks && !preempt) { | ||
553 | move_deadline(entry->scheduled); | ||
554 | } | ||
555 | |||
556 | /* Link pending task if we became unlinked. | ||
557 | */ | ||
558 | if (!entry->linked) | ||
559 | link_task_to_cpu(__take_ready(&gsnedf), entry); | ||
560 | |||
561 | /* The final scheduling decision. Do we need to switch for some reason? | ||
562 | * If linked is different from scheduled, then select linked as next. | ||
563 | */ | ||
564 | if ((!np || blocks) && | ||
565 | entry->linked != entry->scheduled) { | ||
566 | /* Schedule a linked job? */ | ||
567 | if (entry->linked) { | ||
568 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
569 | next = entry->linked; | ||
570 | TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id()); | ||
571 | } | ||
572 | if (entry->scheduled) { | ||
573 | /* not gonna be scheduled soon */ | ||
574 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
575 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
576 | } | ||
577 | } else | ||
578 | /* Only override Linux scheduler if we have a real-time task | ||
579 | * scheduled that needs to continue. | ||
580 | */ | ||
581 | if (exists) | ||
582 | next = prev; | ||
583 | |||
584 | sched_state_task_picked(); | ||
585 | |||
586 | raw_spin_unlock(&gsnedf_lock); | ||
587 | |||
588 | if (next) { | ||
589 | arm_split_timer(entry, next); | ||
590 | } | ||
591 | else if (entry->timer_armed) { | ||
592 | cancel_split_timer(entry); | ||
593 | } | ||
594 | |||
595 | #ifdef WANT_ALL_SCHED_EVENTS | ||
596 | TRACE("gsnedf_lock released, next=0x%p\n", next); | ||
597 | |||
598 | if (next) | ||
599 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
600 | else if (exists && !next) | ||
601 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
602 | #endif | ||
603 | |||
604 | |||
605 | return next; | ||
606 | } | ||
607 | |||
608 | |||
609 | /* _finish_switch - we just finished the switch away from prev | ||
610 | */ | ||
611 | static void gsnedf_finish_switch(struct task_struct *prev) | ||
612 | { | ||
613 | cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries); | ||
614 | |||
615 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
616 | #ifdef WANT_ALL_SCHED_EVENTS | ||
617 | TRACE_TASK(prev, "switched away from\n"); | ||
618 | #endif | ||
619 | } | ||
620 | |||
621 | static void gsnedf_release_at(struct task_struct *t, lt_t start) | ||
622 | { | ||
623 | t->rt_param.job_params.deadline = start; | ||
624 | prepare_for_next_period(t); | ||
625 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
626 | set_rt_flags(t, RT_F_RUNNING); | ||
627 | } | ||
628 | |||
629 | /* Prepare a task for running in RT mode | ||
630 | */ | ||
631 | static void gsnedf_task_new(struct task_struct * t, int on_rq, int running) | ||
632 | { | ||
633 | unsigned long flags; | ||
634 | cpu_entry_t* entry; | ||
635 | |||
636 | TRACE("gsn edf: task new %d\n", t->pid); | ||
637 | |||
638 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
639 | |||
640 | /* setup job params */ | ||
641 | gsnedf_release_at(t, litmus_clock()); | ||
642 | |||
643 | if (running) { | ||
644 | entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t)); | ||
645 | BUG_ON(entry->scheduled); | ||
646 | |||
647 | #ifdef CONFIG_RELEASE_MASTER | ||
648 | if (entry->cpu != gsnedf.release_master) { | ||
649 | #endif | ||
650 | entry->scheduled = t; | ||
651 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
652 | #ifdef CONFIG_RELEASE_MASTER | ||
653 | } else { | ||
654 | /* do not schedule on release master */ | ||
655 | preempt(entry); /* force resched */ | ||
656 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
657 | } | ||
658 | #endif | ||
659 | } else { | ||
660 | t->rt_param.scheduled_on = NO_CPU; | ||
661 | } | ||
662 | t->rt_param.linked_on = NO_CPU; | ||
663 | |||
664 | gsnedf_job_arrival(t); | ||
665 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
666 | } | ||
667 | |||
668 | static void gsnedf_task_wake_up(struct task_struct *task) | ||
669 | { | ||
670 | unsigned long flags; | ||
671 | lt_t now; | ||
672 | |||
673 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
674 | |||
675 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
676 | /* We need to take suspensions because of semaphores into | ||
677 | * account! If a job resumes after being suspended due to acquiring | ||
678 | * a semaphore, it should never be treated as a new job release. | ||
679 | */ | ||
680 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | ||
681 | set_rt_flags(task, RT_F_RUNNING); | ||
682 | } else { | ||
683 | now = litmus_clock(); | ||
684 | if (is_tardy(task, now)) { | ||
685 | /* new sporadic release */ | ||
686 | gsnedf_release_at(task, now); | ||
687 | sched_trace_task_release(task); | ||
688 | } | ||
689 | else { | ||
690 | if (task->rt.time_slice) { | ||
691 | /* came back in time before deadline | ||
692 | */ | ||
693 | set_rt_flags(task, RT_F_RUNNING); | ||
694 | } | ||
695 | } | ||
696 | } | ||
697 | gsnedf_job_arrival(task); | ||
698 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
699 | } | ||
700 | |||
701 | static void gsnedf_task_block(struct task_struct *t) | ||
702 | { | ||
703 | unsigned long flags; | ||
704 | |||
705 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
706 | |||
707 | /* unlink if necessary */ | ||
708 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
709 | unlink(t); | ||
710 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
711 | |||
712 | BUG_ON(!is_realtime(t)); | ||
713 | } | ||
714 | |||
715 | |||
716 | static void gsnedf_task_exit(struct task_struct * t) | ||
717 | { | ||
718 | unsigned long flags; | ||
719 | |||
720 | /* unlink if necessary */ | ||
721 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
722 | unlink(t); | ||
723 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
724 | gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; | ||
725 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
726 | } | ||
727 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
728 | |||
729 | BUG_ON(!is_realtime(t)); | ||
730 | TRACE_TASK(t, "RIP\n"); | ||
731 | } | ||
732 | |||
733 | |||
734 | static long gsnedf_admit_task(struct task_struct* tsk) | ||
735 | { | ||
736 | return 0; | ||
737 | } | ||
738 | |||
739 | #ifdef CONFIG_LITMUS_LOCKING | ||
740 | |||
741 | #include <litmus/fdso.h> | ||
742 | |||
743 | /* called with IRQs off */ | ||
744 | static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) | ||
745 | { | ||
746 | int linked_on; | ||
747 | int check_preempt = 0; | ||
748 | |||
749 | raw_spin_lock(&gsnedf_lock); | ||
750 | |||
751 | TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid); | ||
752 | tsk_rt(t)->inh_task = prio_inh; | ||
753 | |||
754 | linked_on = tsk_rt(t)->linked_on; | ||
755 | |||
756 | /* If it is scheduled, then we need to reorder the CPU heap. */ | ||
757 | if (linked_on != NO_CPU) { | ||
758 | TRACE_TASK(t, "%s: linked on %d\n", | ||
759 | __FUNCTION__, linked_on); | ||
760 | /* Holder is scheduled; need to re-order CPUs. | ||
761 | * We can't use heap_decrease() here since | ||
762 | * the cpu_heap is ordered in reverse direction, so | ||
763 | * it is actually an increase. */ | ||
764 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, | ||
765 | gsnedf_cpus[linked_on]->hn); | ||
766 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, | ||
767 | gsnedf_cpus[linked_on]->hn); | ||
768 | } else { | ||
769 | /* holder may be queued: first stop queue changes */ | ||
770 | raw_spin_lock(&gsnedf.release_lock); | ||
771 | if (is_queued(t)) { | ||
772 | TRACE_TASK(t, "%s: is queued\n", | ||
773 | __FUNCTION__); | ||
774 | /* We need to update the position of holder in some | ||
775 | * heap. Note that this could be a release heap if we | ||
776 | * budget enforcement is used and this job overran. */ | ||
777 | check_preempt = | ||
778 | !bheap_decrease(edf_split_ready_order, | ||
779 | tsk_rt(t)->heap_node); | ||
780 | } else { | ||
781 | /* Nothing to do: if it is not queued and not linked | ||
782 | * then it is either sleeping or currently being moved | ||
783 | * by other code (e.g., a timer interrupt handler) that | ||
784 | * will use the correct priority when enqueuing the | ||
785 | * task. */ | ||
786 | TRACE_TASK(t, "%s: is NOT queued => Done.\n", | ||
787 | __FUNCTION__); | ||
788 | } | ||
789 | raw_spin_unlock(&gsnedf.release_lock); | ||
790 | |||
791 | /* If holder was enqueued in a release heap, then the following | ||
792 | * preemption check is pointless, but we can't easily detect | ||
793 | * that case. If you want to fix this, then consider that | ||
794 | * simply adding a state flag requires O(n) time to update when | ||
795 | * releasing n tasks, which conflicts with the goal to have | ||
796 | * O(log n) merges. */ | ||
797 | if (check_preempt) { | ||
798 | /* heap_decrease() hit the top level of the heap: make | ||
799 | * sure preemption checks get the right task, not the | ||
800 | * potentially stale cache. */ | ||
801 | bheap_uncache_min(edf_split_ready_order, | ||
802 | &gsnedf.ready_queue); | ||
803 | check_for_preemptions(); | ||
804 | } | ||
805 | } | ||
806 | |||
807 | raw_spin_unlock(&gsnedf_lock); | ||
808 | } | ||
809 | |||
810 | /* called with IRQs off */ | ||
811 | static void update_unlocked_priority(struct task_struct* t) | ||
812 | { | ||
813 | raw_spin_lock(&gsnedf_lock); | ||
814 | |||
815 | /* A job only stops inheriting a priority when it releases a | ||
816 | * resource. Thus we can make the following assumption.*/ | ||
817 | BUG_ON(tsk_rt(t)->scheduled_on == NO_CPU); | ||
818 | |||
819 | /* Clear priority inheritance */ | ||
820 | TRACE_TASK(t, "priority restored\n"); | ||
821 | tsk_rt(t)->inh_task = NULL; | ||
822 | |||
823 | /* Update splitting deadline */ | ||
824 | tsk_rt(t)->job_params.subjob_deadline = get_proper_deadline(t); | ||
825 | |||
826 | /* Check if rescheduling is necessary. We can't use heap_decrease() | ||
827 | * since the priority was effectively lowered. */ | ||
828 | unlink(t); | ||
829 | gsnedf_job_arrival(t); | ||
830 | |||
831 | raw_spin_unlock(&gsnedf_lock); | ||
832 | } | ||
833 | |||
834 | |||
835 | /* ******************** FMLP support ********************** */ | ||
836 | |||
837 | /* struct for semaphore with priority inheritance */ | ||
838 | struct fmlp_semaphore { | ||
839 | struct litmus_lock litmus_lock; | ||
840 | |||
841 | /* current resource holder */ | ||
842 | struct task_struct *owner; | ||
843 | |||
844 | /* highest-priority waiter */ | ||
845 | struct task_struct *hp_waiter; | ||
846 | |||
847 | /* FIFO queue of waiting tasks */ | ||
848 | wait_queue_head_t wait; | ||
849 | }; | ||
850 | |||
851 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
852 | { | ||
853 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
854 | } | ||
855 | |||
856 | /* caller is responsible for locking */ | ||
857 | static struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem, | ||
858 | struct task_struct* skip) | ||
859 | { | ||
860 | struct list_head *pos; | ||
861 | struct task_struct *queued, *found = NULL; | ||
862 | |||
863 | list_for_each(pos, &sem->wait.task_list) { | ||
864 | queued = (struct task_struct*) list_entry(pos, wait_queue_t, | ||
865 | task_list)->private; | ||
866 | |||
867 | /* Compare task prios, find high prio task. */ | ||
868 | if (queued != skip && edf_split_higher_prio(queued, found)) | ||
869 | found = queued; | ||
870 | } | ||
871 | return found; | ||
872 | } | ||
873 | |||
874 | int gsnedf_fmlp_lock(struct litmus_lock* l) | ||
875 | { | ||
876 | struct task_struct* t = current; | ||
877 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
878 | cpu_entry_t* entry; | ||
879 | wait_queue_t wait; | ||
880 | unsigned long flags; | ||
881 | |||
882 | if (!is_realtime(t)) | ||
883 | return -EPERM; | ||
884 | |||
885 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
886 | entry = &__get_cpu_var(gsnedf_cpu_entries); | ||
887 | |||
888 | tsk_rt(t)->in_crit_section = 1; | ||
889 | if (entry->timer_armed) { | ||
890 | cancel_split_timer(entry); | ||
891 | } | ||
892 | |||
893 | if (sem->owner) { | ||
894 | /* resource is not free => must suspend and wait */ | ||
895 | |||
896 | init_waitqueue_entry(&wait, t); | ||
897 | |||
898 | /* FIXME: interruptible would be nice some day */ | ||
899 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
900 | |||
901 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
902 | |||
903 | /* check if we need to activate priority inheritance */ | ||
904 | if (edf_split_higher_prio(t, sem->hp_waiter)) { | ||
905 | sem->hp_waiter = t; | ||
906 | if (edf_split_higher_prio(t, sem->owner)) | ||
907 | set_priority_inheritance(sem->owner, sem->hp_waiter); | ||
908 | } | ||
909 | |||
910 | TS_LOCK_SUSPEND; | ||
911 | |||
912 | /* release lock before sleeping */ | ||
913 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
914 | |||
915 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
916 | * when we wake up; we are guaranteed to have the lock since | ||
917 | * there is only one wake up per release. | ||
918 | */ | ||
919 | |||
920 | schedule(); | ||
921 | |||
922 | TS_LOCK_RESUME; | ||
923 | |||
924 | /* Since we hold the lock, no other task will change | ||
925 | * ->owner. We can thus check it without acquiring the spin | ||
926 | * lock. */ | ||
927 | BUG_ON(sem->owner != t); | ||
928 | } else { | ||
929 | /* it's ours now */ | ||
930 | sem->owner = t; | ||
931 | |||
932 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
933 | } | ||
934 | |||
935 | return 0; | ||
936 | } | ||
937 | |||
938 | int gsnedf_fmlp_unlock(struct litmus_lock* l) | ||
939 | { | ||
940 | struct task_struct *t = current, *next; | ||
941 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
942 | unsigned long flags; | ||
943 | int err = 0; | ||
944 | |||
945 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
946 | |||
947 | if (sem->owner != t) { | ||
948 | err = -EINVAL; | ||
949 | goto out; | ||
950 | } | ||
951 | |||
952 | /* check if there are jobs waiting for this resource */ | ||
953 | next = __waitqueue_remove_first(&sem->wait); | ||
954 | if (next) { | ||
955 | /* next becomes the resouce holder */ | ||
956 | sem->owner = next; | ||
957 | TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid); | ||
958 | |||
959 | /* determine new hp_waiter if necessary */ | ||
960 | if (next == sem->hp_waiter) { | ||
961 | TRACE_TASK(next, "was highest-prio waiter\n"); | ||
962 | /* next has the highest priority --- it doesn't need to | ||
963 | * inherit. However, we need to make sure that the | ||
964 | * next-highest priority in the queue is reflected in | ||
965 | * hp_waiter. */ | ||
966 | sem->hp_waiter = find_hp_waiter(sem, next); | ||
967 | if (sem->hp_waiter) | ||
968 | TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n"); | ||
969 | else | ||
970 | TRACE("no further waiters\n"); | ||
971 | } else { | ||
972 | /* Well, if next is not the highest-priority waiter, | ||
973 | * then it ought to inherit the highest-priority | ||
974 | * waiter's priority. */ | ||
975 | set_priority_inheritance(next, sem->hp_waiter); | ||
976 | } | ||
977 | |||
978 | /* wake up next */ | ||
979 | wake_up_process(next); | ||
980 | } else | ||
981 | /* becomes available */ | ||
982 | sem->owner = NULL; | ||
983 | |||
984 | /* We are no longer in the critical section */ | ||
985 | tsk_rt(t)->in_crit_section = 0; | ||
986 | |||
987 | /* we lose the benefit of priority inheritance (if any) and may need | ||
988 | * to move the deadline. In either case, may need to reschedule | ||
989 | * due to reduced priority. */ | ||
990 | if (tsk_rt(t)->inh_task || needs_deadline_move(t)) | ||
991 | update_unlocked_priority(t); | ||
992 | /* TODO: Check that schedule() gets called - it needs to arm the | ||
993 | * enforcement timer. Otherwise we should do it here or in | ||
994 | * update_unlocked_priority. */ | ||
995 | |||
996 | out: | ||
997 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
998 | |||
999 | return err; | ||
1000 | } | ||
1001 | |||
1002 | int gsnedf_fmlp_close(struct litmus_lock* l) | ||
1003 | { | ||
1004 | struct task_struct *t = current; | ||
1005 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
1006 | unsigned long flags; | ||
1007 | |||
1008 | int owner; | ||
1009 | |||
1010 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
1011 | |||
1012 | owner = sem->owner == t; | ||
1013 | |||
1014 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
1015 | |||
1016 | if (owner) | ||
1017 | gsnedf_fmlp_unlock(l); | ||
1018 | |||
1019 | return 0; | ||
1020 | } | ||
1021 | |||
1022 | void gsnedf_fmlp_free(struct litmus_lock* lock) | ||
1023 | { | ||
1024 | kfree(fmlp_from_lock(lock)); | ||
1025 | } | ||
1026 | |||
1027 | static struct litmus_lock_ops gsnedf_fmlp_lock_ops = { | ||
1028 | .close = gsnedf_fmlp_close, | ||
1029 | .lock = gsnedf_fmlp_lock, | ||
1030 | .unlock = gsnedf_fmlp_unlock, | ||
1031 | .deallocate = gsnedf_fmlp_free, | ||
1032 | }; | ||
1033 | |||
1034 | static struct litmus_lock* gsnedf_new_fmlp(void) | ||
1035 | { | ||
1036 | struct fmlp_semaphore* sem; | ||
1037 | |||
1038 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1039 | if (!sem) | ||
1040 | return NULL; | ||
1041 | |||
1042 | sem->owner = NULL; | ||
1043 | sem->hp_waiter = NULL; | ||
1044 | init_waitqueue_head(&sem->wait); | ||
1045 | sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops; | ||
1046 | |||
1047 | return &sem->litmus_lock; | ||
1048 | } | ||
1049 | |||
1050 | /* **** lock constructor **** */ | ||
1051 | |||
1052 | |||
1053 | static long gsnedf_allocate_lock(struct litmus_lock **lock, int type, | ||
1054 | void* __user unused) | ||
1055 | { | ||
1056 | int err = -ENXIO; | ||
1057 | |||
1058 | /* GSN-EDF currently only supports the FMLP for global resources. */ | ||
1059 | switch (type) { | ||
1060 | |||
1061 | case FMLP_SEM: | ||
1062 | /* Flexible Multiprocessor Locking Protocol */ | ||
1063 | *lock = gsnedf_new_fmlp(); | ||
1064 | if (*lock) | ||
1065 | err = 0; | ||
1066 | else | ||
1067 | err = -ENOMEM; | ||
1068 | break; | ||
1069 | |||
1070 | }; | ||
1071 | |||
1072 | return err; | ||
1073 | } | ||
1074 | |||
1075 | #endif | ||
1076 | |||
1077 | |||
1078 | static long gsnedf_activate_plugin(void) | ||
1079 | { | ||
1080 | int cpu; | ||
1081 | cpu_entry_t *entry; | ||
1082 | |||
1083 | bheap_init(&gsnedf_cpu_heap); | ||
1084 | #ifdef CONFIG_RELEASE_MASTER | ||
1085 | gsnedf.release_master = atomic_read(&release_master_cpu); | ||
1086 | #endif | ||
1087 | |||
1088 | for_each_online_cpu(cpu) { | ||
1089 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
1090 | bheap_node_init(&entry->hn, entry); | ||
1091 | entry->linked = NULL; | ||
1092 | entry->scheduled = NULL; | ||
1093 | #ifdef CONFIG_RELEASE_MASTER | ||
1094 | if (cpu != gsnedf.release_master) { | ||
1095 | #endif | ||
1096 | TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu); | ||
1097 | update_cpu_position(entry); | ||
1098 | #ifdef CONFIG_RELEASE_MASTER | ||
1099 | } else { | ||
1100 | TRACE("GSN-EDF: CPU %d is release master.\n", cpu); | ||
1101 | } | ||
1102 | #endif | ||
1103 | } | ||
1104 | return 0; | ||
1105 | } | ||
1106 | |||
1107 | /* Plugin object */ | ||
1108 | static struct sched_plugin gfl_plugin __cacheline_aligned_in_smp = { | ||
1109 | .plugin_name = "GSN-EDF", | ||
1110 | .finish_switch = gsnedf_finish_switch, | ||
1111 | .tick = gsnedf_tick, | ||
1112 | .task_new = gsnedf_task_new, | ||
1113 | .complete_job = complete_job, | ||
1114 | .task_exit = gsnedf_task_exit, | ||
1115 | .schedule = gsnedf_schedule, | ||
1116 | .release_at = gsnedf_release_at, | ||
1117 | .task_wake_up = gsnedf_task_wake_up, | ||
1118 | .task_block = gsnedf_task_block, | ||
1119 | .admit_task = gsnedf_admit_task, | ||
1120 | .activate_plugin = gsnedf_activate_plugin, | ||
1121 | #ifdef CONFIG_LITMUS_LOCKING | ||
1122 | .allocate_lock = gsnedf_allocate_lock, | ||
1123 | #endif | ||
1124 | }; | ||
1125 | |||
1126 | |||
1127 | static int __init init_gfl(void) | ||
1128 | { | ||
1129 | int cpu; | ||
1130 | cpu_entry_t *entry; | ||
1131 | |||
1132 | bheap_init(&gsnedf_cpu_heap); | ||
1133 | /* initialize CPU state */ | ||
1134 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
1135 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
1136 | gsnedf_cpus[cpu] = entry; | ||
1137 | entry->cpu = cpu; | ||
1138 | entry->hn = &gsnedf_heap_node[cpu]; | ||
1139 | hrtimer_init(&entry->split_timer, | ||
1140 | CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | ||
1141 | entry->split_timer.function = on_split_timeout; | ||
1142 | bheap_node_init(&entry->hn, entry); | ||
1143 | } | ||
1144 | edf_split_domain_init(&gsnedf, NULL, gsnedf_release_jobs); | ||
1145 | return register_sched_plugin(&gfl_plugin); | ||
1146 | } | ||
1147 | |||
1148 | |||
1149 | module_init(init_gfl); | ||