diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Makefile | 2 | ||||
-rw-r--r-- | lib/swiotlb.c | 811 |
2 files changed, 813 insertions, 0 deletions
diff --git a/lib/Makefile b/lib/Makefile index 44a46750690a..8535f4d7d1c3 100644 --- a/lib/Makefile +++ b/lib/Makefile | |||
@@ -44,6 +44,8 @@ obj-$(CONFIG_TEXTSEARCH_KMP) += ts_kmp.o | |||
44 | obj-$(CONFIG_TEXTSEARCH_BM) += ts_bm.o | 44 | obj-$(CONFIG_TEXTSEARCH_BM) += ts_bm.o |
45 | obj-$(CONFIG_TEXTSEARCH_FSM) += ts_fsm.o | 45 | obj-$(CONFIG_TEXTSEARCH_FSM) += ts_fsm.o |
46 | 46 | ||
47 | obj-$(CONFIG_SWIOTLB) += swiotlb.o | ||
48 | |||
47 | hostprogs-y := gen_crc32table | 49 | hostprogs-y := gen_crc32table |
48 | clean-files := crc32table.h | 50 | clean-files := crc32table.h |
49 | 51 | ||
diff --git a/lib/swiotlb.c b/lib/swiotlb.c new file mode 100644 index 000000000000..5bdeaaea57fd --- /dev/null +++ b/lib/swiotlb.c | |||
@@ -0,0 +1,811 @@ | |||
1 | /* | ||
2 | * Dynamic DMA mapping support. | ||
3 | * | ||
4 | * This implementation is for IA-64 and EM64T platforms that do not support | ||
5 | * I/O TLBs (aka DMA address translation hardware). | ||
6 | * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | ||
7 | * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | ||
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | ||
9 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
10 | * | ||
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | ||
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | ||
13 | * unnecessary i-cache flushing. | ||
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. | ||
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | ||
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | ||
17 | */ | ||
18 | |||
19 | #include <linux/cache.h> | ||
20 | #include <linux/dma-mapping.h> | ||
21 | #include <linux/mm.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/spinlock.h> | ||
24 | #include <linux/string.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/ctype.h> | ||
27 | |||
28 | #include <asm/io.h> | ||
29 | #include <asm/dma.h> | ||
30 | #include <asm/scatterlist.h> | ||
31 | |||
32 | #include <linux/init.h> | ||
33 | #include <linux/bootmem.h> | ||
34 | |||
35 | #define OFFSET(val,align) ((unsigned long) \ | ||
36 | ( (val) & ( (align) - 1))) | ||
37 | |||
38 | #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) | ||
39 | #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) | ||
40 | |||
41 | /* | ||
42 | * Maximum allowable number of contiguous slabs to map, | ||
43 | * must be a power of 2. What is the appropriate value ? | ||
44 | * The complexity of {map,unmap}_single is linearly dependent on this value. | ||
45 | */ | ||
46 | #define IO_TLB_SEGSIZE 128 | ||
47 | |||
48 | /* | ||
49 | * log of the size of each IO TLB slab. The number of slabs is command line | ||
50 | * controllable. | ||
51 | */ | ||
52 | #define IO_TLB_SHIFT 11 | ||
53 | |||
54 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | ||
55 | |||
56 | /* | ||
57 | * Minimum IO TLB size to bother booting with. Systems with mainly | ||
58 | * 64bit capable cards will only lightly use the swiotlb. If we can't | ||
59 | * allocate a contiguous 1MB, we're probably in trouble anyway. | ||
60 | */ | ||
61 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | ||
62 | |||
63 | /* | ||
64 | * Enumeration for sync targets | ||
65 | */ | ||
66 | enum dma_sync_target { | ||
67 | SYNC_FOR_CPU = 0, | ||
68 | SYNC_FOR_DEVICE = 1, | ||
69 | }; | ||
70 | |||
71 | int swiotlb_force; | ||
72 | |||
73 | /* | ||
74 | * Used to do a quick range check in swiotlb_unmap_single and | ||
75 | * swiotlb_sync_single_*, to see if the memory was in fact allocated by this | ||
76 | * API. | ||
77 | */ | ||
78 | static char *io_tlb_start, *io_tlb_end; | ||
79 | |||
80 | /* | ||
81 | * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and | ||
82 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. | ||
83 | */ | ||
84 | static unsigned long io_tlb_nslabs; | ||
85 | |||
86 | /* | ||
87 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | ||
88 | */ | ||
89 | static unsigned long io_tlb_overflow = 32*1024; | ||
90 | |||
91 | void *io_tlb_overflow_buffer; | ||
92 | |||
93 | /* | ||
94 | * This is a free list describing the number of free entries available from | ||
95 | * each index | ||
96 | */ | ||
97 | static unsigned int *io_tlb_list; | ||
98 | static unsigned int io_tlb_index; | ||
99 | |||
100 | /* | ||
101 | * We need to save away the original address corresponding to a mapped entry | ||
102 | * for the sync operations. | ||
103 | */ | ||
104 | static unsigned char **io_tlb_orig_addr; | ||
105 | |||
106 | /* | ||
107 | * Protect the above data structures in the map and unmap calls | ||
108 | */ | ||
109 | static DEFINE_SPINLOCK(io_tlb_lock); | ||
110 | |||
111 | static int __init | ||
112 | setup_io_tlb_npages(char *str) | ||
113 | { | ||
114 | if (isdigit(*str)) { | ||
115 | io_tlb_nslabs = simple_strtoul(str, &str, 0); | ||
116 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ | ||
117 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
118 | } | ||
119 | if (*str == ',') | ||
120 | ++str; | ||
121 | if (!strcmp(str, "force")) | ||
122 | swiotlb_force = 1; | ||
123 | return 1; | ||
124 | } | ||
125 | __setup("swiotlb=", setup_io_tlb_npages); | ||
126 | /* make io_tlb_overflow tunable too? */ | ||
127 | |||
128 | /* | ||
129 | * Statically reserve bounce buffer space and initialize bounce buffer data | ||
130 | * structures for the software IO TLB used to implement the DMA API. | ||
131 | */ | ||
132 | void | ||
133 | swiotlb_init_with_default_size (size_t default_size) | ||
134 | { | ||
135 | unsigned long i; | ||
136 | |||
137 | if (!io_tlb_nslabs) { | ||
138 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
139 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * Get IO TLB memory from the low pages | ||
144 | */ | ||
145 | io_tlb_start = alloc_bootmem_low_pages_limit(io_tlb_nslabs * | ||
146 | (1 << IO_TLB_SHIFT), 0x100000000); | ||
147 | if (!io_tlb_start) | ||
148 | panic("Cannot allocate SWIOTLB buffer"); | ||
149 | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | ||
150 | |||
151 | /* | ||
152 | * Allocate and initialize the free list array. This array is used | ||
153 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
154 | * between io_tlb_start and io_tlb_end. | ||
155 | */ | ||
156 | io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); | ||
157 | for (i = 0; i < io_tlb_nslabs; i++) | ||
158 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
159 | io_tlb_index = 0; | ||
160 | io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *)); | ||
161 | |||
162 | /* | ||
163 | * Get the overflow emergency buffer | ||
164 | */ | ||
165 | io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow); | ||
166 | printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n", | ||
167 | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | ||
168 | } | ||
169 | |||
170 | void | ||
171 | swiotlb_init (void) | ||
172 | { | ||
173 | swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */ | ||
174 | } | ||
175 | |||
176 | /* | ||
177 | * Systems with larger DMA zones (those that don't support ISA) can | ||
178 | * initialize the swiotlb later using the slab allocator if needed. | ||
179 | * This should be just like above, but with some error catching. | ||
180 | */ | ||
181 | int | ||
182 | swiotlb_late_init_with_default_size (size_t default_size) | ||
183 | { | ||
184 | unsigned long i, req_nslabs = io_tlb_nslabs; | ||
185 | unsigned int order; | ||
186 | |||
187 | if (!io_tlb_nslabs) { | ||
188 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
189 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
190 | } | ||
191 | |||
192 | /* | ||
193 | * Get IO TLB memory from the low pages | ||
194 | */ | ||
195 | order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | ||
196 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
197 | |||
198 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | ||
199 | io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | ||
200 | order); | ||
201 | if (io_tlb_start) | ||
202 | break; | ||
203 | order--; | ||
204 | } | ||
205 | |||
206 | if (!io_tlb_start) | ||
207 | goto cleanup1; | ||
208 | |||
209 | if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) { | ||
210 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " | ||
211 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | ||
212 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
213 | } | ||
214 | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | ||
215 | memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | ||
216 | |||
217 | /* | ||
218 | * Allocate and initialize the free list array. This array is used | ||
219 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
220 | * between io_tlb_start and io_tlb_end. | ||
221 | */ | ||
222 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | ||
223 | get_order(io_tlb_nslabs * sizeof(int))); | ||
224 | if (!io_tlb_list) | ||
225 | goto cleanup2; | ||
226 | |||
227 | for (i = 0; i < io_tlb_nslabs; i++) | ||
228 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
229 | io_tlb_index = 0; | ||
230 | |||
231 | io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL, | ||
232 | get_order(io_tlb_nslabs * sizeof(char *))); | ||
233 | if (!io_tlb_orig_addr) | ||
234 | goto cleanup3; | ||
235 | |||
236 | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *)); | ||
237 | |||
238 | /* | ||
239 | * Get the overflow emergency buffer | ||
240 | */ | ||
241 | io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | ||
242 | get_order(io_tlb_overflow)); | ||
243 | if (!io_tlb_overflow_buffer) | ||
244 | goto cleanup4; | ||
245 | |||
246 | printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - " | ||
247 | "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20, | ||
248 | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | ||
249 | |||
250 | return 0; | ||
251 | |||
252 | cleanup4: | ||
253 | free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * | ||
254 | sizeof(char *))); | ||
255 | io_tlb_orig_addr = NULL; | ||
256 | cleanup3: | ||
257 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | ||
258 | sizeof(int))); | ||
259 | io_tlb_list = NULL; | ||
260 | io_tlb_end = NULL; | ||
261 | cleanup2: | ||
262 | free_pages((unsigned long)io_tlb_start, order); | ||
263 | io_tlb_start = NULL; | ||
264 | cleanup1: | ||
265 | io_tlb_nslabs = req_nslabs; | ||
266 | return -ENOMEM; | ||
267 | } | ||
268 | |||
269 | static inline int | ||
270 | address_needs_mapping(struct device *hwdev, dma_addr_t addr) | ||
271 | { | ||
272 | dma_addr_t mask = 0xffffffff; | ||
273 | /* If the device has a mask, use it, otherwise default to 32 bits */ | ||
274 | if (hwdev && hwdev->dma_mask) | ||
275 | mask = *hwdev->dma_mask; | ||
276 | return (addr & ~mask) != 0; | ||
277 | } | ||
278 | |||
279 | /* | ||
280 | * Allocates bounce buffer and returns its kernel virtual address. | ||
281 | */ | ||
282 | static void * | ||
283 | map_single(struct device *hwdev, char *buffer, size_t size, int dir) | ||
284 | { | ||
285 | unsigned long flags; | ||
286 | char *dma_addr; | ||
287 | unsigned int nslots, stride, index, wrap; | ||
288 | int i; | ||
289 | |||
290 | /* | ||
291 | * For mappings greater than a page, we limit the stride (and | ||
292 | * hence alignment) to a page size. | ||
293 | */ | ||
294 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
295 | if (size > PAGE_SIZE) | ||
296 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | ||
297 | else | ||
298 | stride = 1; | ||
299 | |||
300 | if (!nslots) | ||
301 | BUG(); | ||
302 | |||
303 | /* | ||
304 | * Find suitable number of IO TLB entries size that will fit this | ||
305 | * request and allocate a buffer from that IO TLB pool. | ||
306 | */ | ||
307 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
308 | { | ||
309 | wrap = index = ALIGN(io_tlb_index, stride); | ||
310 | |||
311 | if (index >= io_tlb_nslabs) | ||
312 | wrap = index = 0; | ||
313 | |||
314 | do { | ||
315 | /* | ||
316 | * If we find a slot that indicates we have 'nslots' | ||
317 | * number of contiguous buffers, we allocate the | ||
318 | * buffers from that slot and mark the entries as '0' | ||
319 | * indicating unavailable. | ||
320 | */ | ||
321 | if (io_tlb_list[index] >= nslots) { | ||
322 | int count = 0; | ||
323 | |||
324 | for (i = index; i < (int) (index + nslots); i++) | ||
325 | io_tlb_list[i] = 0; | ||
326 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | ||
327 | io_tlb_list[i] = ++count; | ||
328 | dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | ||
329 | |||
330 | /* | ||
331 | * Update the indices to avoid searching in | ||
332 | * the next round. | ||
333 | */ | ||
334 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | ||
335 | ? (index + nslots) : 0); | ||
336 | |||
337 | goto found; | ||
338 | } | ||
339 | index += stride; | ||
340 | if (index >= io_tlb_nslabs) | ||
341 | index = 0; | ||
342 | } while (index != wrap); | ||
343 | |||
344 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
345 | return NULL; | ||
346 | } | ||
347 | found: | ||
348 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
349 | |||
350 | /* | ||
351 | * Save away the mapping from the original address to the DMA address. | ||
352 | * This is needed when we sync the memory. Then we sync the buffer if | ||
353 | * needed. | ||
354 | */ | ||
355 | io_tlb_orig_addr[index] = buffer; | ||
356 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
357 | memcpy(dma_addr, buffer, size); | ||
358 | |||
359 | return dma_addr; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | ||
364 | */ | ||
365 | static void | ||
366 | unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir) | ||
367 | { | ||
368 | unsigned long flags; | ||
369 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
370 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
371 | char *buffer = io_tlb_orig_addr[index]; | ||
372 | |||
373 | /* | ||
374 | * First, sync the memory before unmapping the entry | ||
375 | */ | ||
376 | if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | ||
377 | /* | ||
378 | * bounce... copy the data back into the original buffer * and | ||
379 | * delete the bounce buffer. | ||
380 | */ | ||
381 | memcpy(buffer, dma_addr, size); | ||
382 | |||
383 | /* | ||
384 | * Return the buffer to the free list by setting the corresponding | ||
385 | * entries to indicate the number of contigous entries available. | ||
386 | * While returning the entries to the free list, we merge the entries | ||
387 | * with slots below and above the pool being returned. | ||
388 | */ | ||
389 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
390 | { | ||
391 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | ||
392 | io_tlb_list[index + nslots] : 0); | ||
393 | /* | ||
394 | * Step 1: return the slots to the free list, merging the | ||
395 | * slots with superceeding slots | ||
396 | */ | ||
397 | for (i = index + nslots - 1; i >= index; i--) | ||
398 | io_tlb_list[i] = ++count; | ||
399 | /* | ||
400 | * Step 2: merge the returned slots with the preceding slots, | ||
401 | * if available (non zero) | ||
402 | */ | ||
403 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | ||
404 | io_tlb_list[i] = ++count; | ||
405 | } | ||
406 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
407 | } | ||
408 | |||
409 | static void | ||
410 | sync_single(struct device *hwdev, char *dma_addr, size_t size, | ||
411 | int dir, int target) | ||
412 | { | ||
413 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
414 | char *buffer = io_tlb_orig_addr[index]; | ||
415 | |||
416 | switch (target) { | ||
417 | case SYNC_FOR_CPU: | ||
418 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
419 | memcpy(buffer, dma_addr, size); | ||
420 | else if (dir != DMA_TO_DEVICE) | ||
421 | BUG(); | ||
422 | break; | ||
423 | case SYNC_FOR_DEVICE: | ||
424 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
425 | memcpy(dma_addr, buffer, size); | ||
426 | else if (dir != DMA_FROM_DEVICE) | ||
427 | BUG(); | ||
428 | break; | ||
429 | default: | ||
430 | BUG(); | ||
431 | } | ||
432 | } | ||
433 | |||
434 | void * | ||
435 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | ||
436 | dma_addr_t *dma_handle, int flags) | ||
437 | { | ||
438 | unsigned long dev_addr; | ||
439 | void *ret; | ||
440 | int order = get_order(size); | ||
441 | |||
442 | /* | ||
443 | * XXX fix me: the DMA API should pass us an explicit DMA mask | ||
444 | * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32 | ||
445 | * bit range instead of a 16MB one). | ||
446 | */ | ||
447 | flags |= GFP_DMA; | ||
448 | |||
449 | ret = (void *)__get_free_pages(flags, order); | ||
450 | if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) { | ||
451 | /* | ||
452 | * The allocated memory isn't reachable by the device. | ||
453 | * Fall back on swiotlb_map_single(). | ||
454 | */ | ||
455 | free_pages((unsigned long) ret, order); | ||
456 | ret = NULL; | ||
457 | } | ||
458 | if (!ret) { | ||
459 | /* | ||
460 | * We are either out of memory or the device can't DMA | ||
461 | * to GFP_DMA memory; fall back on | ||
462 | * swiotlb_map_single(), which will grab memory from | ||
463 | * the lowest available address range. | ||
464 | */ | ||
465 | dma_addr_t handle; | ||
466 | handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE); | ||
467 | if (dma_mapping_error(handle)) | ||
468 | return NULL; | ||
469 | |||
470 | ret = phys_to_virt(handle); | ||
471 | } | ||
472 | |||
473 | memset(ret, 0, size); | ||
474 | dev_addr = virt_to_phys(ret); | ||
475 | |||
476 | /* Confirm address can be DMA'd by device */ | ||
477 | if (address_needs_mapping(hwdev, dev_addr)) { | ||
478 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n", | ||
479 | (unsigned long long)*hwdev->dma_mask, dev_addr); | ||
480 | panic("swiotlb_alloc_coherent: allocated memory is out of " | ||
481 | "range for device"); | ||
482 | } | ||
483 | *dma_handle = dev_addr; | ||
484 | return ret; | ||
485 | } | ||
486 | |||
487 | void | ||
488 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | ||
489 | dma_addr_t dma_handle) | ||
490 | { | ||
491 | if (!(vaddr >= (void *)io_tlb_start | ||
492 | && vaddr < (void *)io_tlb_end)) | ||
493 | free_pages((unsigned long) vaddr, get_order(size)); | ||
494 | else | ||
495 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | ||
496 | swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE); | ||
497 | } | ||
498 | |||
499 | static void | ||
500 | swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) | ||
501 | { | ||
502 | /* | ||
503 | * Ran out of IOMMU space for this operation. This is very bad. | ||
504 | * Unfortunately the drivers cannot handle this operation properly. | ||
505 | * unless they check for dma_mapping_error (most don't) | ||
506 | * When the mapping is small enough return a static buffer to limit | ||
507 | * the damage, or panic when the transfer is too big. | ||
508 | */ | ||
509 | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at " | ||
510 | "device %s\n", size, dev ? dev->bus_id : "?"); | ||
511 | |||
512 | if (size > io_tlb_overflow && do_panic) { | ||
513 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
514 | panic("DMA: Memory would be corrupted\n"); | ||
515 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
516 | panic("DMA: Random memory would be DMAed\n"); | ||
517 | } | ||
518 | } | ||
519 | |||
520 | /* | ||
521 | * Map a single buffer of the indicated size for DMA in streaming mode. The | ||
522 | * physical address to use is returned. | ||
523 | * | ||
524 | * Once the device is given the dma address, the device owns this memory until | ||
525 | * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed. | ||
526 | */ | ||
527 | dma_addr_t | ||
528 | swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir) | ||
529 | { | ||
530 | unsigned long dev_addr = virt_to_phys(ptr); | ||
531 | void *map; | ||
532 | |||
533 | if (dir == DMA_NONE) | ||
534 | BUG(); | ||
535 | /* | ||
536 | * If the pointer passed in happens to be in the device's DMA window, | ||
537 | * we can safely return the device addr and not worry about bounce | ||
538 | * buffering it. | ||
539 | */ | ||
540 | if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force) | ||
541 | return dev_addr; | ||
542 | |||
543 | /* | ||
544 | * Oh well, have to allocate and map a bounce buffer. | ||
545 | */ | ||
546 | map = map_single(hwdev, ptr, size, dir); | ||
547 | if (!map) { | ||
548 | swiotlb_full(hwdev, size, dir, 1); | ||
549 | map = io_tlb_overflow_buffer; | ||
550 | } | ||
551 | |||
552 | dev_addr = virt_to_phys(map); | ||
553 | |||
554 | /* | ||
555 | * Ensure that the address returned is DMA'ble | ||
556 | */ | ||
557 | if (address_needs_mapping(hwdev, dev_addr)) | ||
558 | panic("map_single: bounce buffer is not DMA'ble"); | ||
559 | |||
560 | return dev_addr; | ||
561 | } | ||
562 | |||
563 | /* | ||
564 | * Since DMA is i-cache coherent, any (complete) pages that were written via | ||
565 | * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to | ||
566 | * flush them when they get mapped into an executable vm-area. | ||
567 | */ | ||
568 | static void | ||
569 | mark_clean(void *addr, size_t size) | ||
570 | { | ||
571 | unsigned long pg_addr, end; | ||
572 | |||
573 | pg_addr = PAGE_ALIGN((unsigned long) addr); | ||
574 | end = (unsigned long) addr + size; | ||
575 | while (pg_addr + PAGE_SIZE <= end) { | ||
576 | struct page *page = virt_to_page(pg_addr); | ||
577 | set_bit(PG_arch_1, &page->flags); | ||
578 | pg_addr += PAGE_SIZE; | ||
579 | } | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | ||
584 | * match what was provided for in a previous swiotlb_map_single call. All | ||
585 | * other usages are undefined. | ||
586 | * | ||
587 | * After this call, reads by the cpu to the buffer are guaranteed to see | ||
588 | * whatever the device wrote there. | ||
589 | */ | ||
590 | void | ||
591 | swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, | ||
592 | int dir) | ||
593 | { | ||
594 | char *dma_addr = phys_to_virt(dev_addr); | ||
595 | |||
596 | if (dir == DMA_NONE) | ||
597 | BUG(); | ||
598 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | ||
599 | unmap_single(hwdev, dma_addr, size, dir); | ||
600 | else if (dir == DMA_FROM_DEVICE) | ||
601 | mark_clean(dma_addr, size); | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * Make physical memory consistent for a single streaming mode DMA translation | ||
606 | * after a transfer. | ||
607 | * | ||
608 | * If you perform a swiotlb_map_single() but wish to interrogate the buffer | ||
609 | * using the cpu, yet do not wish to teardown the dma mapping, you must | ||
610 | * call this function before doing so. At the next point you give the dma | ||
611 | * address back to the card, you must first perform a | ||
612 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | ||
613 | */ | ||
614 | static inline void | ||
615 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | ||
616 | size_t size, int dir, int target) | ||
617 | { | ||
618 | char *dma_addr = phys_to_virt(dev_addr); | ||
619 | |||
620 | if (dir == DMA_NONE) | ||
621 | BUG(); | ||
622 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | ||
623 | sync_single(hwdev, dma_addr, size, dir, target); | ||
624 | else if (dir == DMA_FROM_DEVICE) | ||
625 | mark_clean(dma_addr, size); | ||
626 | } | ||
627 | |||
628 | void | ||
629 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
630 | size_t size, int dir) | ||
631 | { | ||
632 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | ||
633 | } | ||
634 | |||
635 | void | ||
636 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
637 | size_t size, int dir) | ||
638 | { | ||
639 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | ||
640 | } | ||
641 | |||
642 | /* | ||
643 | * Same as above, but for a sub-range of the mapping. | ||
644 | */ | ||
645 | static inline void | ||
646 | swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr, | ||
647 | unsigned long offset, size_t size, | ||
648 | int dir, int target) | ||
649 | { | ||
650 | char *dma_addr = phys_to_virt(dev_addr) + offset; | ||
651 | |||
652 | if (dir == DMA_NONE) | ||
653 | BUG(); | ||
654 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | ||
655 | sync_single(hwdev, dma_addr, size, dir, target); | ||
656 | else if (dir == DMA_FROM_DEVICE) | ||
657 | mark_clean(dma_addr, size); | ||
658 | } | ||
659 | |||
660 | void | ||
661 | swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
662 | unsigned long offset, size_t size, int dir) | ||
663 | { | ||
664 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, | ||
665 | SYNC_FOR_CPU); | ||
666 | } | ||
667 | |||
668 | void | ||
669 | swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
670 | unsigned long offset, size_t size, int dir) | ||
671 | { | ||
672 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, | ||
673 | SYNC_FOR_DEVICE); | ||
674 | } | ||
675 | |||
676 | /* | ||
677 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
678 | * This is the scatter-gather version of the above swiotlb_map_single | ||
679 | * interface. Here the scatter gather list elements are each tagged with the | ||
680 | * appropriate dma address and length. They are obtained via | ||
681 | * sg_dma_{address,length}(SG). | ||
682 | * | ||
683 | * NOTE: An implementation may be able to use a smaller number of | ||
684 | * DMA address/length pairs than there are SG table elements. | ||
685 | * (for example via virtual mapping capabilities) | ||
686 | * The routine returns the number of addr/length pairs actually | ||
687 | * used, at most nents. | ||
688 | * | ||
689 | * Device ownership issues as mentioned above for swiotlb_map_single are the | ||
690 | * same here. | ||
691 | */ | ||
692 | int | ||
693 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | ||
694 | int dir) | ||
695 | { | ||
696 | void *addr; | ||
697 | unsigned long dev_addr; | ||
698 | int i; | ||
699 | |||
700 | if (dir == DMA_NONE) | ||
701 | BUG(); | ||
702 | |||
703 | for (i = 0; i < nelems; i++, sg++) { | ||
704 | addr = SG_ENT_VIRT_ADDRESS(sg); | ||
705 | dev_addr = virt_to_phys(addr); | ||
706 | if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) { | ||
707 | sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir)); | ||
708 | if (!sg->dma_address) { | ||
709 | /* Don't panic here, we expect map_sg users | ||
710 | to do proper error handling. */ | ||
711 | swiotlb_full(hwdev, sg->length, dir, 0); | ||
712 | swiotlb_unmap_sg(hwdev, sg - i, i, dir); | ||
713 | sg[0].dma_length = 0; | ||
714 | return 0; | ||
715 | } | ||
716 | } else | ||
717 | sg->dma_address = dev_addr; | ||
718 | sg->dma_length = sg->length; | ||
719 | } | ||
720 | return nelems; | ||
721 | } | ||
722 | |||
723 | /* | ||
724 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | ||
725 | * concerning calls here are the same as for swiotlb_unmap_single() above. | ||
726 | */ | ||
727 | void | ||
728 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | ||
729 | int dir) | ||
730 | { | ||
731 | int i; | ||
732 | |||
733 | if (dir == DMA_NONE) | ||
734 | BUG(); | ||
735 | |||
736 | for (i = 0; i < nelems; i++, sg++) | ||
737 | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | ||
738 | unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir); | ||
739 | else if (dir == DMA_FROM_DEVICE) | ||
740 | mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length); | ||
741 | } | ||
742 | |||
743 | /* | ||
744 | * Make physical memory consistent for a set of streaming mode DMA translations | ||
745 | * after a transfer. | ||
746 | * | ||
747 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | ||
748 | * and usage. | ||
749 | */ | ||
750 | static inline void | ||
751 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg, | ||
752 | int nelems, int dir, int target) | ||
753 | { | ||
754 | int i; | ||
755 | |||
756 | if (dir == DMA_NONE) | ||
757 | BUG(); | ||
758 | |||
759 | for (i = 0; i < nelems; i++, sg++) | ||
760 | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | ||
761 | sync_single(hwdev, (void *) sg->dma_address, | ||
762 | sg->dma_length, dir, target); | ||
763 | } | ||
764 | |||
765 | void | ||
766 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | ||
767 | int nelems, int dir) | ||
768 | { | ||
769 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | ||
770 | } | ||
771 | |||
772 | void | ||
773 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | ||
774 | int nelems, int dir) | ||
775 | { | ||
776 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | ||
777 | } | ||
778 | |||
779 | int | ||
780 | swiotlb_dma_mapping_error(dma_addr_t dma_addr) | ||
781 | { | ||
782 | return (dma_addr == virt_to_phys(io_tlb_overflow_buffer)); | ||
783 | } | ||
784 | |||
785 | /* | ||
786 | * Return whether the given device DMA address mask can be supported | ||
787 | * properly. For example, if your device can only drive the low 24-bits | ||
788 | * during bus mastering, then you would pass 0x00ffffff as the mask to | ||
789 | * this function. | ||
790 | */ | ||
791 | int | ||
792 | swiotlb_dma_supported (struct device *hwdev, u64 mask) | ||
793 | { | ||
794 | return (virt_to_phys (io_tlb_end) - 1) <= mask; | ||
795 | } | ||
796 | |||
797 | EXPORT_SYMBOL(swiotlb_init); | ||
798 | EXPORT_SYMBOL(swiotlb_map_single); | ||
799 | EXPORT_SYMBOL(swiotlb_unmap_single); | ||
800 | EXPORT_SYMBOL(swiotlb_map_sg); | ||
801 | EXPORT_SYMBOL(swiotlb_unmap_sg); | ||
802 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); | ||
803 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); | ||
804 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu); | ||
805 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device); | ||
806 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); | ||
807 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); | ||
808 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); | ||
809 | EXPORT_SYMBOL(swiotlb_alloc_coherent); | ||
810 | EXPORT_SYMBOL(swiotlb_free_coherent); | ||
811 | EXPORT_SYMBOL(swiotlb_dma_supported); | ||