diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/mpi/mpi-bit.c | 162 | ||||
-rw-r--r-- | lib/mpi/mpicoder.c | 75 | ||||
-rw-r--r-- | lib/mpi/mpih-div.c | 309 | ||||
-rw-r--r-- | lib/mpi/mpih-mul.c | 30 | ||||
-rw-r--r-- | lib/mpi/mpiutil.c | 88 |
5 files changed, 0 insertions, 664 deletions
diff --git a/lib/mpi/mpi-bit.c b/lib/mpi/mpi-bit.c index 0c505361da19..568724804f29 100644 --- a/lib/mpi/mpi-bit.c +++ b/lib/mpi/mpi-bit.c | |||
@@ -54,165 +54,3 @@ unsigned mpi_get_nbits(MPI a) | |||
54 | return n; | 54 | return n; |
55 | } | 55 | } |
56 | EXPORT_SYMBOL_GPL(mpi_get_nbits); | 56 | EXPORT_SYMBOL_GPL(mpi_get_nbits); |
57 | |||
58 | /**************** | ||
59 | * Test whether bit N is set. | ||
60 | */ | ||
61 | int mpi_test_bit(MPI a, unsigned n) | ||
62 | { | ||
63 | unsigned limbno, bitno; | ||
64 | mpi_limb_t limb; | ||
65 | |||
66 | limbno = n / BITS_PER_MPI_LIMB; | ||
67 | bitno = n % BITS_PER_MPI_LIMB; | ||
68 | |||
69 | if (limbno >= a->nlimbs) | ||
70 | return 0; /* too far left: this is a 0 */ | ||
71 | limb = a->d[limbno]; | ||
72 | return (limb & (A_LIMB_1 << bitno)) ? 1 : 0; | ||
73 | } | ||
74 | |||
75 | /**************** | ||
76 | * Set bit N of A. | ||
77 | */ | ||
78 | int mpi_set_bit(MPI a, unsigned n) | ||
79 | { | ||
80 | unsigned limbno, bitno; | ||
81 | |||
82 | limbno = n / BITS_PER_MPI_LIMB; | ||
83 | bitno = n % BITS_PER_MPI_LIMB; | ||
84 | |||
85 | if (limbno >= a->nlimbs) { /* resize */ | ||
86 | if (a->alloced >= limbno) | ||
87 | if (mpi_resize(a, limbno + 1) < 0) | ||
88 | return -ENOMEM; | ||
89 | a->nlimbs = limbno + 1; | ||
90 | } | ||
91 | a->d[limbno] |= (A_LIMB_1 << bitno); | ||
92 | return 0; | ||
93 | } | ||
94 | |||
95 | /**************** | ||
96 | * Set bit N of A. and clear all bits above | ||
97 | */ | ||
98 | int mpi_set_highbit(MPI a, unsigned n) | ||
99 | { | ||
100 | unsigned limbno, bitno; | ||
101 | |||
102 | limbno = n / BITS_PER_MPI_LIMB; | ||
103 | bitno = n % BITS_PER_MPI_LIMB; | ||
104 | |||
105 | if (limbno >= a->nlimbs) { /* resize */ | ||
106 | if (a->alloced >= limbno) | ||
107 | if (mpi_resize(a, limbno + 1) < 0) | ||
108 | return -ENOMEM; | ||
109 | a->nlimbs = limbno + 1; | ||
110 | } | ||
111 | a->d[limbno] |= (A_LIMB_1 << bitno); | ||
112 | for (bitno++; bitno < BITS_PER_MPI_LIMB; bitno++) | ||
113 | a->d[limbno] &= ~(A_LIMB_1 << bitno); | ||
114 | a->nlimbs = limbno + 1; | ||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | /**************** | ||
119 | * clear bit N of A and all bits above | ||
120 | */ | ||
121 | void mpi_clear_highbit(MPI a, unsigned n) | ||
122 | { | ||
123 | unsigned limbno, bitno; | ||
124 | |||
125 | limbno = n / BITS_PER_MPI_LIMB; | ||
126 | bitno = n % BITS_PER_MPI_LIMB; | ||
127 | |||
128 | if (limbno >= a->nlimbs) | ||
129 | return; /* not allocated, so need to clear bits :-) */ | ||
130 | |||
131 | for (; bitno < BITS_PER_MPI_LIMB; bitno++) | ||
132 | a->d[limbno] &= ~(A_LIMB_1 << bitno); | ||
133 | a->nlimbs = limbno + 1; | ||
134 | } | ||
135 | |||
136 | /**************** | ||
137 | * Clear bit N of A. | ||
138 | */ | ||
139 | void mpi_clear_bit(MPI a, unsigned n) | ||
140 | { | ||
141 | unsigned limbno, bitno; | ||
142 | |||
143 | limbno = n / BITS_PER_MPI_LIMB; | ||
144 | bitno = n % BITS_PER_MPI_LIMB; | ||
145 | |||
146 | if (limbno >= a->nlimbs) | ||
147 | return; /* don't need to clear this bit, it's to far to left */ | ||
148 | a->d[limbno] &= ~(A_LIMB_1 << bitno); | ||
149 | } | ||
150 | |||
151 | /**************** | ||
152 | * Shift A by N bits to the right | ||
153 | * FIXME: should use alloc_limb if X and A are same. | ||
154 | */ | ||
155 | int mpi_rshift(MPI x, MPI a, unsigned n) | ||
156 | { | ||
157 | mpi_ptr_t xp; | ||
158 | mpi_size_t xsize; | ||
159 | |||
160 | xsize = a->nlimbs; | ||
161 | x->sign = a->sign; | ||
162 | if (RESIZE_IF_NEEDED(x, (size_t) xsize) < 0) | ||
163 | return -ENOMEM; | ||
164 | xp = x->d; | ||
165 | |||
166 | if (xsize) { | ||
167 | mpihelp_rshift(xp, a->d, xsize, n); | ||
168 | MPN_NORMALIZE(xp, xsize); | ||
169 | } | ||
170 | x->nlimbs = xsize; | ||
171 | return 0; | ||
172 | } | ||
173 | |||
174 | /**************** | ||
175 | * Shift A by COUNT limbs to the left | ||
176 | * This is used only within the MPI library | ||
177 | */ | ||
178 | int mpi_lshift_limbs(MPI a, unsigned int count) | ||
179 | { | ||
180 | const int n = a->nlimbs; | ||
181 | mpi_ptr_t ap; | ||
182 | int i; | ||
183 | |||
184 | if (!count || !n) | ||
185 | return 0; | ||
186 | |||
187 | if (RESIZE_IF_NEEDED(a, n + count) < 0) | ||
188 | return -ENOMEM; | ||
189 | |||
190 | ap = a->d; | ||
191 | for (i = n - 1; i >= 0; i--) | ||
192 | ap[i + count] = ap[i]; | ||
193 | for (i = 0; i < count; i++) | ||
194 | ap[i] = 0; | ||
195 | a->nlimbs += count; | ||
196 | return 0; | ||
197 | } | ||
198 | |||
199 | /**************** | ||
200 | * Shift A by COUNT limbs to the right | ||
201 | * This is used only within the MPI library | ||
202 | */ | ||
203 | void mpi_rshift_limbs(MPI a, unsigned int count) | ||
204 | { | ||
205 | mpi_ptr_t ap = a->d; | ||
206 | mpi_size_t n = a->nlimbs; | ||
207 | unsigned int i; | ||
208 | |||
209 | if (count >= n) { | ||
210 | a->nlimbs = 0; | ||
211 | return; | ||
212 | } | ||
213 | |||
214 | for (i = 0; i < n - count; i++) | ||
215 | ap[i] = ap[i + count]; | ||
216 | ap[i] = 0; | ||
217 | a->nlimbs -= count; | ||
218 | } | ||
diff --git a/lib/mpi/mpicoder.c b/lib/mpi/mpicoder.c index f26b41fcb48c..f0fa65995800 100644 --- a/lib/mpi/mpicoder.c +++ b/lib/mpi/mpicoder.c | |||
@@ -74,81 +74,6 @@ leave: | |||
74 | EXPORT_SYMBOL_GPL(mpi_read_from_buffer); | 74 | EXPORT_SYMBOL_GPL(mpi_read_from_buffer); |
75 | 75 | ||
76 | /**************** | 76 | /**************** |
77 | * Make an mpi from a character string. | ||
78 | */ | ||
79 | int mpi_fromstr(MPI val, const char *str) | ||
80 | { | ||
81 | int hexmode = 0, sign = 0, prepend_zero = 0, i, j, c, c1, c2; | ||
82 | unsigned nbits, nbytes, nlimbs; | ||
83 | mpi_limb_t a; | ||
84 | |||
85 | if (*str == '-') { | ||
86 | sign = 1; | ||
87 | str++; | ||
88 | } | ||
89 | if (*str == '0' && str[1] == 'x') | ||
90 | hexmode = 1; | ||
91 | else | ||
92 | return -EINVAL; /* other bases are not yet supported */ | ||
93 | str += 2; | ||
94 | |||
95 | nbits = strlen(str) * 4; | ||
96 | if (nbits % 8) | ||
97 | prepend_zero = 1; | ||
98 | nbytes = (nbits + 7) / 8; | ||
99 | nlimbs = (nbytes + BYTES_PER_MPI_LIMB - 1) / BYTES_PER_MPI_LIMB; | ||
100 | if (val->alloced < nlimbs) | ||
101 | if (!mpi_resize(val, nlimbs)) | ||
102 | return -ENOMEM; | ||
103 | i = BYTES_PER_MPI_LIMB - nbytes % BYTES_PER_MPI_LIMB; | ||
104 | i %= BYTES_PER_MPI_LIMB; | ||
105 | j = val->nlimbs = nlimbs; | ||
106 | val->sign = sign; | ||
107 | for (; j > 0; j--) { | ||
108 | a = 0; | ||
109 | for (; i < BYTES_PER_MPI_LIMB; i++) { | ||
110 | if (prepend_zero) { | ||
111 | c1 = '0'; | ||
112 | prepend_zero = 0; | ||
113 | } else | ||
114 | c1 = *str++; | ||
115 | assert(c1); | ||
116 | c2 = *str++; | ||
117 | assert(c2); | ||
118 | if (c1 >= '0' && c1 <= '9') | ||
119 | c = c1 - '0'; | ||
120 | else if (c1 >= 'a' && c1 <= 'f') | ||
121 | c = c1 - 'a' + 10; | ||
122 | else if (c1 >= 'A' && c1 <= 'F') | ||
123 | c = c1 - 'A' + 10; | ||
124 | else { | ||
125 | mpi_clear(val); | ||
126 | return 1; | ||
127 | } | ||
128 | c <<= 4; | ||
129 | if (c2 >= '0' && c2 <= '9') | ||
130 | c |= c2 - '0'; | ||
131 | else if (c2 >= 'a' && c2 <= 'f') | ||
132 | c |= c2 - 'a' + 10; | ||
133 | else if (c2 >= 'A' && c2 <= 'F') | ||
134 | c |= c2 - 'A' + 10; | ||
135 | else { | ||
136 | mpi_clear(val); | ||
137 | return 1; | ||
138 | } | ||
139 | a <<= 8; | ||
140 | a |= c; | ||
141 | } | ||
142 | i = 0; | ||
143 | |||
144 | val->d[j - 1] = a; | ||
145 | } | ||
146 | |||
147 | return 0; | ||
148 | } | ||
149 | EXPORT_SYMBOL_GPL(mpi_fromstr); | ||
150 | |||
151 | /**************** | ||
152 | * Return an allocated buffer with the MPI (msb first). | 77 | * Return an allocated buffer with the MPI (msb first). |
153 | * NBYTES receives the length of this buffer. Caller must free the | 78 | * NBYTES receives the length of this buffer. Caller must free the |
154 | * return string (This function does return a 0 byte buffer with NBYTES | 79 | * return string (This function does return a 0 byte buffer with NBYTES |
diff --git a/lib/mpi/mpih-div.c b/lib/mpi/mpih-div.c index cde1aaec18da..c57d1d46295e 100644 --- a/lib/mpi/mpih-div.c +++ b/lib/mpi/mpih-div.c | |||
@@ -37,159 +37,6 @@ | |||
37 | #define UDIV_TIME UMUL_TIME | 37 | #define UDIV_TIME UMUL_TIME |
38 | #endif | 38 | #endif |
39 | 39 | ||
40 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) | ||
41 | * here (not udiv_qrnnd). | ||
42 | */ | ||
43 | |||
44 | mpi_limb_t | ||
45 | mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | ||
46 | mpi_limb_t divisor_limb) | ||
47 | { | ||
48 | mpi_size_t i; | ||
49 | mpi_limb_t n1, n0, r; | ||
50 | int dummy; | ||
51 | |||
52 | /* Botch: Should this be handled at all? Rely on callers? */ | ||
53 | if (!dividend_size) | ||
54 | return 0; | ||
55 | |||
56 | /* If multiplication is much faster than division, and the | ||
57 | * dividend is large, pre-invert the divisor, and use | ||
58 | * only multiplications in the inner loop. | ||
59 | * | ||
60 | * This test should be read: | ||
61 | * Does it ever help to use udiv_qrnnd_preinv? | ||
62 | * && Does what we save compensate for the inversion overhead? | ||
63 | */ | ||
64 | if (UDIV_TIME > (2 * UMUL_TIME + 6) | ||
65 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | ||
66 | int normalization_steps; | ||
67 | |||
68 | count_leading_zeros(normalization_steps, divisor_limb); | ||
69 | if (normalization_steps) { | ||
70 | mpi_limb_t divisor_limb_inverted; | ||
71 | |||
72 | divisor_limb <<= normalization_steps; | ||
73 | |||
74 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The | ||
75 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | ||
76 | * most significant bit (with weight 2**N) implicit. | ||
77 | * | ||
78 | * Special case for DIVISOR_LIMB == 100...000. | ||
79 | */ | ||
80 | if (!(divisor_limb << 1)) | ||
81 | divisor_limb_inverted = ~(mpi_limb_t) 0; | ||
82 | else | ||
83 | udiv_qrnnd(divisor_limb_inverted, dummy, | ||
84 | -divisor_limb, 0, divisor_limb); | ||
85 | |||
86 | n1 = dividend_ptr[dividend_size - 1]; | ||
87 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | ||
88 | |||
89 | /* Possible optimization: | ||
90 | * if (r == 0 | ||
91 | * && divisor_limb > ((n1 << normalization_steps) | ||
92 | * | (dividend_ptr[dividend_size - 2] >> ...))) | ||
93 | * ...one division less... | ||
94 | */ | ||
95 | for (i = dividend_size - 2; i >= 0; i--) { | ||
96 | n0 = dividend_ptr[i]; | ||
97 | UDIV_QRNND_PREINV(dummy, r, r, | ||
98 | ((n1 << normalization_steps) | ||
99 | | (n0 >> | ||
100 | (BITS_PER_MPI_LIMB - | ||
101 | normalization_steps))), | ||
102 | divisor_limb, | ||
103 | divisor_limb_inverted); | ||
104 | n1 = n0; | ||
105 | } | ||
106 | UDIV_QRNND_PREINV(dummy, r, r, | ||
107 | n1 << normalization_steps, | ||
108 | divisor_limb, divisor_limb_inverted); | ||
109 | return r >> normalization_steps; | ||
110 | } else { | ||
111 | mpi_limb_t divisor_limb_inverted; | ||
112 | |||
113 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The | ||
114 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | ||
115 | * most significant bit (with weight 2**N) implicit. | ||
116 | * | ||
117 | * Special case for DIVISOR_LIMB == 100...000. | ||
118 | */ | ||
119 | if (!(divisor_limb << 1)) | ||
120 | divisor_limb_inverted = ~(mpi_limb_t) 0; | ||
121 | else | ||
122 | udiv_qrnnd(divisor_limb_inverted, dummy, | ||
123 | -divisor_limb, 0, divisor_limb); | ||
124 | |||
125 | i = dividend_size - 1; | ||
126 | r = dividend_ptr[i]; | ||
127 | |||
128 | if (r >= divisor_limb) | ||
129 | r = 0; | ||
130 | else | ||
131 | i--; | ||
132 | |||
133 | for (; i >= 0; i--) { | ||
134 | n0 = dividend_ptr[i]; | ||
135 | UDIV_QRNND_PREINV(dummy, r, r, | ||
136 | n0, divisor_limb, | ||
137 | divisor_limb_inverted); | ||
138 | } | ||
139 | return r; | ||
140 | } | ||
141 | } else { | ||
142 | if (UDIV_NEEDS_NORMALIZATION) { | ||
143 | int normalization_steps; | ||
144 | |||
145 | count_leading_zeros(normalization_steps, divisor_limb); | ||
146 | if (normalization_steps) { | ||
147 | divisor_limb <<= normalization_steps; | ||
148 | |||
149 | n1 = dividend_ptr[dividend_size - 1]; | ||
150 | r = n1 >> (BITS_PER_MPI_LIMB - | ||
151 | normalization_steps); | ||
152 | |||
153 | /* Possible optimization: | ||
154 | * if (r == 0 | ||
155 | * && divisor_limb > ((n1 << normalization_steps) | ||
156 | * | (dividend_ptr[dividend_size - 2] >> ...))) | ||
157 | * ...one division less... | ||
158 | */ | ||
159 | for (i = dividend_size - 2; i >= 0; i--) { | ||
160 | n0 = dividend_ptr[i]; | ||
161 | udiv_qrnnd(dummy, r, r, | ||
162 | ((n1 << normalization_steps) | ||
163 | | (n0 >> | ||
164 | (BITS_PER_MPI_LIMB - | ||
165 | normalization_steps))), | ||
166 | divisor_limb); | ||
167 | n1 = n0; | ||
168 | } | ||
169 | udiv_qrnnd(dummy, r, r, | ||
170 | n1 << normalization_steps, | ||
171 | divisor_limb); | ||
172 | return r >> normalization_steps; | ||
173 | } | ||
174 | } | ||
175 | /* No normalization needed, either because udiv_qrnnd doesn't require | ||
176 | * it, or because DIVISOR_LIMB is already normalized. */ | ||
177 | i = dividend_size - 1; | ||
178 | r = dividend_ptr[i]; | ||
179 | |||
180 | if (r >= divisor_limb) | ||
181 | r = 0; | ||
182 | else | ||
183 | i--; | ||
184 | |||
185 | for (; i >= 0; i--) { | ||
186 | n0 = dividend_ptr[i]; | ||
187 | udiv_qrnnd(dummy, r, r, n0, divisor_limb); | ||
188 | } | ||
189 | return r; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write | 40 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write |
194 | * the NSIZE-DSIZE least significant quotient limbs at QP | 41 | * the NSIZE-DSIZE least significant quotient limbs at QP |
195 | * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is | 42 | * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is |
@@ -387,159 +234,3 @@ q_test: | |||
387 | 234 | ||
388 | return most_significant_q_limb; | 235 | return most_significant_q_limb; |
389 | } | 236 | } |
390 | |||
391 | /**************** | ||
392 | * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | ||
393 | * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. | ||
394 | * Return the single-limb remainder. | ||
395 | * There are no constraints on the value of the divisor. | ||
396 | * | ||
397 | * QUOT_PTR and DIVIDEND_PTR might point to the same limb. | ||
398 | */ | ||
399 | |||
400 | mpi_limb_t | ||
401 | mpihelp_divmod_1(mpi_ptr_t quot_ptr, | ||
402 | mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | ||
403 | mpi_limb_t divisor_limb) | ||
404 | { | ||
405 | mpi_size_t i; | ||
406 | mpi_limb_t n1, n0, r; | ||
407 | int dummy; | ||
408 | |||
409 | if (!dividend_size) | ||
410 | return 0; | ||
411 | |||
412 | /* If multiplication is much faster than division, and the | ||
413 | * dividend is large, pre-invert the divisor, and use | ||
414 | * only multiplications in the inner loop. | ||
415 | * | ||
416 | * This test should be read: | ||
417 | * Does it ever help to use udiv_qrnnd_preinv? | ||
418 | * && Does what we save compensate for the inversion overhead? | ||
419 | */ | ||
420 | if (UDIV_TIME > (2 * UMUL_TIME + 6) | ||
421 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | ||
422 | int normalization_steps; | ||
423 | |||
424 | count_leading_zeros(normalization_steps, divisor_limb); | ||
425 | if (normalization_steps) { | ||
426 | mpi_limb_t divisor_limb_inverted; | ||
427 | |||
428 | divisor_limb <<= normalization_steps; | ||
429 | |||
430 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The | ||
431 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | ||
432 | * most significant bit (with weight 2**N) implicit. | ||
433 | */ | ||
434 | /* Special case for DIVISOR_LIMB == 100...000. */ | ||
435 | if (!(divisor_limb << 1)) | ||
436 | divisor_limb_inverted = ~(mpi_limb_t) 0; | ||
437 | else | ||
438 | udiv_qrnnd(divisor_limb_inverted, dummy, | ||
439 | -divisor_limb, 0, divisor_limb); | ||
440 | |||
441 | n1 = dividend_ptr[dividend_size - 1]; | ||
442 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | ||
443 | |||
444 | /* Possible optimization: | ||
445 | * if (r == 0 | ||
446 | * && divisor_limb > ((n1 << normalization_steps) | ||
447 | * | (dividend_ptr[dividend_size - 2] >> ...))) | ||
448 | * ...one division less... | ||
449 | */ | ||
450 | for (i = dividend_size - 2; i >= 0; i--) { | ||
451 | n0 = dividend_ptr[i]; | ||
452 | UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, | ||
453 | ((n1 << normalization_steps) | ||
454 | | (n0 >> | ||
455 | (BITS_PER_MPI_LIMB - | ||
456 | normalization_steps))), | ||
457 | divisor_limb, | ||
458 | divisor_limb_inverted); | ||
459 | n1 = n0; | ||
460 | } | ||
461 | UDIV_QRNND_PREINV(quot_ptr[0], r, r, | ||
462 | n1 << normalization_steps, | ||
463 | divisor_limb, divisor_limb_inverted); | ||
464 | return r >> normalization_steps; | ||
465 | } else { | ||
466 | mpi_limb_t divisor_limb_inverted; | ||
467 | |||
468 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The | ||
469 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | ||
470 | * most significant bit (with weight 2**N) implicit. | ||
471 | */ | ||
472 | /* Special case for DIVISOR_LIMB == 100...000. */ | ||
473 | if (!(divisor_limb << 1)) | ||
474 | divisor_limb_inverted = ~(mpi_limb_t) 0; | ||
475 | else | ||
476 | udiv_qrnnd(divisor_limb_inverted, dummy, | ||
477 | -divisor_limb, 0, divisor_limb); | ||
478 | |||
479 | i = dividend_size - 1; | ||
480 | r = dividend_ptr[i]; | ||
481 | |||
482 | if (r >= divisor_limb) | ||
483 | r = 0; | ||
484 | else | ||
485 | quot_ptr[i--] = 0; | ||
486 | |||
487 | for (; i >= 0; i--) { | ||
488 | n0 = dividend_ptr[i]; | ||
489 | UDIV_QRNND_PREINV(quot_ptr[i], r, r, | ||
490 | n0, divisor_limb, | ||
491 | divisor_limb_inverted); | ||
492 | } | ||
493 | return r; | ||
494 | } | ||
495 | } else { | ||
496 | if (UDIV_NEEDS_NORMALIZATION) { | ||
497 | int normalization_steps; | ||
498 | |||
499 | count_leading_zeros(normalization_steps, divisor_limb); | ||
500 | if (normalization_steps) { | ||
501 | divisor_limb <<= normalization_steps; | ||
502 | |||
503 | n1 = dividend_ptr[dividend_size - 1]; | ||
504 | r = n1 >> (BITS_PER_MPI_LIMB - | ||
505 | normalization_steps); | ||
506 | |||
507 | /* Possible optimization: | ||
508 | * if (r == 0 | ||
509 | * && divisor_limb > ((n1 << normalization_steps) | ||
510 | * | (dividend_ptr[dividend_size - 2] >> ...))) | ||
511 | * ...one division less... | ||
512 | */ | ||
513 | for (i = dividend_size - 2; i >= 0; i--) { | ||
514 | n0 = dividend_ptr[i]; | ||
515 | udiv_qrnnd(quot_ptr[i + 1], r, r, | ||
516 | ((n1 << normalization_steps) | ||
517 | | (n0 >> | ||
518 | (BITS_PER_MPI_LIMB - | ||
519 | normalization_steps))), | ||
520 | divisor_limb); | ||
521 | n1 = n0; | ||
522 | } | ||
523 | udiv_qrnnd(quot_ptr[0], r, r, | ||
524 | n1 << normalization_steps, | ||
525 | divisor_limb); | ||
526 | return r >> normalization_steps; | ||
527 | } | ||
528 | } | ||
529 | /* No normalization needed, either because udiv_qrnnd doesn't require | ||
530 | * it, or because DIVISOR_LIMB is already normalized. */ | ||
531 | i = dividend_size - 1; | ||
532 | r = dividend_ptr[i]; | ||
533 | |||
534 | if (r >= divisor_limb) | ||
535 | r = 0; | ||
536 | else | ||
537 | quot_ptr[i--] = 0; | ||
538 | |||
539 | for (; i >= 0; i--) { | ||
540 | n0 = dividend_ptr[i]; | ||
541 | udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); | ||
542 | } | ||
543 | return r; | ||
544 | } | ||
545 | } | ||
diff --git a/lib/mpi/mpih-mul.c b/lib/mpi/mpih-mul.c index c69c5eef233b..7c841719fdfb 100644 --- a/lib/mpi/mpih-mul.c +++ b/lib/mpi/mpih-mul.c | |||
@@ -330,36 +330,6 @@ mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) | |||
330 | } | 330 | } |
331 | } | 331 | } |
332 | 332 | ||
333 | /* This should be made into an inline function in gmp.h. */ | ||
334 | int mpihelp_mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) | ||
335 | { | ||
336 | if (up == vp) { | ||
337 | if (size < KARATSUBA_THRESHOLD) | ||
338 | mpih_sqr_n_basecase(prodp, up, size); | ||
339 | else { | ||
340 | mpi_ptr_t tspace; | ||
341 | tspace = mpi_alloc_limb_space(2 * size); | ||
342 | if (!tspace) | ||
343 | return -ENOMEM; | ||
344 | mpih_sqr_n(prodp, up, size, tspace); | ||
345 | mpi_free_limb_space(tspace); | ||
346 | } | ||
347 | } else { | ||
348 | if (size < KARATSUBA_THRESHOLD) | ||
349 | mul_n_basecase(prodp, up, vp, size); | ||
350 | else { | ||
351 | mpi_ptr_t tspace; | ||
352 | tspace = mpi_alloc_limb_space(2 * size); | ||
353 | if (!tspace) | ||
354 | return -ENOMEM; | ||
355 | mul_n(prodp, up, vp, size, tspace); | ||
356 | mpi_free_limb_space(tspace); | ||
357 | } | ||
358 | } | ||
359 | |||
360 | return 0; | ||
361 | } | ||
362 | |||
363 | int | 333 | int |
364 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, | 334 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, |
365 | mpi_ptr_t up, mpi_size_t usize, | 335 | mpi_ptr_t up, mpi_size_t usize, |
diff --git a/lib/mpi/mpiutil.c b/lib/mpi/mpiutil.c index 26e4ed31e256..657979f71bef 100644 --- a/lib/mpi/mpiutil.c +++ b/lib/mpi/mpiutil.c | |||
@@ -106,13 +106,6 @@ int mpi_resize(MPI a, unsigned nlimbs) | |||
106 | return 0; | 106 | return 0; |
107 | } | 107 | } |
108 | 108 | ||
109 | void mpi_clear(MPI a) | ||
110 | { | ||
111 | a->nlimbs = 0; | ||
112 | a->nbits = 0; | ||
113 | a->flags = 0; | ||
114 | } | ||
115 | |||
116 | void mpi_free(MPI a) | 109 | void mpi_free(MPI a) |
117 | { | 110 | { |
118 | if (!a) | 111 | if (!a) |
@@ -128,84 +121,3 @@ void mpi_free(MPI a) | |||
128 | kfree(a); | 121 | kfree(a); |
129 | } | 122 | } |
130 | EXPORT_SYMBOL_GPL(mpi_free); | 123 | EXPORT_SYMBOL_GPL(mpi_free); |
131 | |||
132 | /**************** | ||
133 | * Note: This copy function should not interpret the MPI | ||
134 | * but copy it transparently. | ||
135 | */ | ||
136 | int mpi_copy(MPI *copied, const MPI a) | ||
137 | { | ||
138 | size_t i; | ||
139 | MPI b; | ||
140 | |||
141 | *copied = NULL; | ||
142 | |||
143 | if (a) { | ||
144 | b = mpi_alloc(a->nlimbs); | ||
145 | if (!b) | ||
146 | return -ENOMEM; | ||
147 | |||
148 | b->nlimbs = a->nlimbs; | ||
149 | b->sign = a->sign; | ||
150 | b->flags = a->flags; | ||
151 | b->nbits = a->nbits; | ||
152 | |||
153 | for (i = 0; i < b->nlimbs; i++) | ||
154 | b->d[i] = a->d[i]; | ||
155 | |||
156 | *copied = b; | ||
157 | } | ||
158 | |||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | int mpi_set(MPI w, const MPI u) | ||
163 | { | ||
164 | mpi_ptr_t wp, up; | ||
165 | mpi_size_t usize = u->nlimbs; | ||
166 | int usign = u->sign; | ||
167 | |||
168 | if (RESIZE_IF_NEEDED(w, (size_t) usize) < 0) | ||
169 | return -ENOMEM; | ||
170 | |||
171 | wp = w->d; | ||
172 | up = u->d; | ||
173 | MPN_COPY(wp, up, usize); | ||
174 | w->nlimbs = usize; | ||
175 | w->nbits = u->nbits; | ||
176 | w->flags = u->flags; | ||
177 | w->sign = usign; | ||
178 | return 0; | ||
179 | } | ||
180 | |||
181 | int mpi_set_ui(MPI w, unsigned long u) | ||
182 | { | ||
183 | if (RESIZE_IF_NEEDED(w, 1) < 0) | ||
184 | return -ENOMEM; | ||
185 | w->d[0] = u; | ||
186 | w->nlimbs = u ? 1 : 0; | ||
187 | w->sign = 0; | ||
188 | w->nbits = 0; | ||
189 | w->flags = 0; | ||
190 | return 0; | ||
191 | } | ||
192 | |||
193 | MPI mpi_alloc_set_ui(unsigned long u) | ||
194 | { | ||
195 | MPI w = mpi_alloc(1); | ||
196 | if (!w) | ||
197 | return w; | ||
198 | w->d[0] = u; | ||
199 | w->nlimbs = u ? 1 : 0; | ||
200 | w->sign = 0; | ||
201 | return w; | ||
202 | } | ||
203 | |||
204 | void mpi_swap(MPI a, MPI b) | ||
205 | { | ||
206 | struct gcry_mpi tmp; | ||
207 | |||
208 | tmp = *a; | ||
209 | *a = *b; | ||
210 | *b = tmp; | ||
211 | } | ||