aboutsummaryrefslogtreecommitdiffstats
path: root/lib/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sha1.c')
-rw-r--r--lib/sha1.c211
1 files changed, 158 insertions, 53 deletions
diff --git a/lib/sha1.c b/lib/sha1.c
index 4c45fd50e913..1de509a159c8 100644
--- a/lib/sha1.c
+++ b/lib/sha1.c
@@ -1,31 +1,73 @@
1/* 1/*
2 * SHA transform algorithm, originally taken from code written by 2 * SHA1 routine optimized to do word accesses rather than byte accesses,
3 * Peter Gutmann, and placed in the public domain. 3 * and to avoid unnecessary copies into the context array.
4 *
5 * This was based on the git SHA1 implementation.
4 */ 6 */
5 7
6#include <linux/kernel.h> 8#include <linux/kernel.h>
7#include <linux/module.h> 9#include <linux/module.h>
10#include <linux/bitops.h>
8#include <linux/cryptohash.h> 11#include <linux/cryptohash.h>
12#include <asm/unaligned.h>
9 13
10/* The SHA f()-functions. */ 14/*
15 * If you have 32 registers or more, the compiler can (and should)
16 * try to change the array[] accesses into registers. However, on
17 * machines with less than ~25 registers, that won't really work,
18 * and at least gcc will make an unholy mess of it.
19 *
20 * So to avoid that mess which just slows things down, we force
21 * the stores to memory to actually happen (we might be better off
22 * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
23 * suggested by Artur Skawina - that will also make gcc unable to
24 * try to do the silly "optimize away loads" part because it won't
25 * see what the value will be).
26 *
27 * Ben Herrenschmidt reports that on PPC, the C version comes close
28 * to the optimized asm with this (ie on PPC you don't want that
29 * 'volatile', since there are lots of registers).
30 *
31 * On ARM we get the best code generation by forcing a full memory barrier
32 * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
33 * the stack frame size simply explode and performance goes down the drain.
34 */
11 35
12#define f1(x,y,z) (z ^ (x & (y ^ z))) /* x ? y : z */ 36#ifdef CONFIG_X86
13#define f2(x,y,z) (x ^ y ^ z) /* XOR */ 37 #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
14#define f3(x,y,z) ((x & y) + (z & (x ^ y))) /* majority */ 38#elif defined(CONFIG_ARM)
39 #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
40#else
41 #define setW(x, val) (W(x) = (val))
42#endif
15 43
16/* The SHA Mysterious Constants */ 44/* This "rolls" over the 512-bit array */
45#define W(x) (array[(x)&15])
17 46
18#define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */ 47/*
19#define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */ 48 * Where do we get the source from? The first 16 iterations get it from
20#define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */ 49 * the input data, the next mix it from the 512-bit array.
21#define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */ 50 */
51#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
52#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
53
54#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
55 __u32 TEMP = input(t); setW(t, TEMP); \
56 E += TEMP + rol32(A,5) + (fn) + (constant); \
57 B = ror32(B, 2); } while (0)
58
59#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
60#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
61#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
62#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
63#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
22 64
23/** 65/**
24 * sha_transform - single block SHA1 transform 66 * sha_transform - single block SHA1 transform
25 * 67 *
26 * @digest: 160 bit digest to update 68 * @digest: 160 bit digest to update
27 * @data: 512 bits of data to hash 69 * @data: 512 bits of data to hash
28 * @W: 80 words of workspace (see note) 70 * @array: 16 words of workspace (see note)
29 * 71 *
30 * This function generates a SHA1 digest for a single 512-bit block. 72 * This function generates a SHA1 digest for a single 512-bit block.
31 * Be warned, it does not handle padding and message digest, do not 73 * Be warned, it does not handle padding and message digest, do not
@@ -36,47 +78,111 @@
36 * to clear the workspace. This is left to the caller to avoid 78 * to clear the workspace. This is left to the caller to avoid
37 * unnecessary clears between chained hashing operations. 79 * unnecessary clears between chained hashing operations.
38 */ 80 */
39void sha_transform(__u32 *digest, const char *in, __u32 *W) 81void sha_transform(__u32 *digest, const char *data, __u32 *array)
40{ 82{
41 __u32 a, b, c, d, e, t, i; 83 __u32 A, B, C, D, E;
42 84
43 for (i = 0; i < 16; i++) 85 A = digest[0];
44 W[i] = be32_to_cpu(((const __be32 *)in)[i]); 86 B = digest[1];
45 87 C = digest[2];
46 for (i = 0; i < 64; i++) 88 D = digest[3];
47 W[i+16] = rol32(W[i+13] ^ W[i+8] ^ W[i+2] ^ W[i], 1); 89 E = digest[4];
48 90
49 a = digest[0]; 91 /* Round 1 - iterations 0-16 take their input from 'data' */
50 b = digest[1]; 92 T_0_15( 0, A, B, C, D, E);
51 c = digest[2]; 93 T_0_15( 1, E, A, B, C, D);
52 d = digest[3]; 94 T_0_15( 2, D, E, A, B, C);
53 e = digest[4]; 95 T_0_15( 3, C, D, E, A, B);
54 96 T_0_15( 4, B, C, D, E, A);
55 for (i = 0; i < 20; i++) { 97 T_0_15( 5, A, B, C, D, E);
56 t = f1(b, c, d) + K1 + rol32(a, 5) + e + W[i]; 98 T_0_15( 6, E, A, B, C, D);
57 e = d; d = c; c = rol32(b, 30); b = a; a = t; 99 T_0_15( 7, D, E, A, B, C);
58 } 100 T_0_15( 8, C, D, E, A, B);
59 101 T_0_15( 9, B, C, D, E, A);
60 for (; i < 40; i ++) { 102 T_0_15(10, A, B, C, D, E);
61 t = f2(b, c, d) + K2 + rol32(a, 5) + e + W[i]; 103 T_0_15(11, E, A, B, C, D);
62 e = d; d = c; c = rol32(b, 30); b = a; a = t; 104 T_0_15(12, D, E, A, B, C);
63 } 105 T_0_15(13, C, D, E, A, B);
64 106 T_0_15(14, B, C, D, E, A);
65 for (; i < 60; i ++) { 107 T_0_15(15, A, B, C, D, E);
66 t = f3(b, c, d) + K3 + rol32(a, 5) + e + W[i]; 108
67 e = d; d = c; c = rol32(b, 30); b = a; a = t; 109 /* Round 1 - tail. Input from 512-bit mixing array */
68 } 110 T_16_19(16, E, A, B, C, D);
69 111 T_16_19(17, D, E, A, B, C);
70 for (; i < 80; i ++) { 112 T_16_19(18, C, D, E, A, B);
71 t = f2(b, c, d) + K4 + rol32(a, 5) + e + W[i]; 113 T_16_19(19, B, C, D, E, A);
72 e = d; d = c; c = rol32(b, 30); b = a; a = t; 114
73 } 115 /* Round 2 */
74 116 T_20_39(20, A, B, C, D, E);
75 digest[0] += a; 117 T_20_39(21, E, A, B, C, D);
76 digest[1] += b; 118 T_20_39(22, D, E, A, B, C);
77 digest[2] += c; 119 T_20_39(23, C, D, E, A, B);
78 digest[3] += d; 120 T_20_39(24, B, C, D, E, A);
79 digest[4] += e; 121 T_20_39(25, A, B, C, D, E);
122 T_20_39(26, E, A, B, C, D);
123 T_20_39(27, D, E, A, B, C);
124 T_20_39(28, C, D, E, A, B);
125 T_20_39(29, B, C, D, E, A);
126 T_20_39(30, A, B, C, D, E);
127 T_20_39(31, E, A, B, C, D);
128 T_20_39(32, D, E, A, B, C);
129 T_20_39(33, C, D, E, A, B);
130 T_20_39(34, B, C, D, E, A);
131 T_20_39(35, A, B, C, D, E);
132 T_20_39(36, E, A, B, C, D);
133 T_20_39(37, D, E, A, B, C);
134 T_20_39(38, C, D, E, A, B);
135 T_20_39(39, B, C, D, E, A);
136
137 /* Round 3 */
138 T_40_59(40, A, B, C, D, E);
139 T_40_59(41, E, A, B, C, D);
140 T_40_59(42, D, E, A, B, C);
141 T_40_59(43, C, D, E, A, B);
142 T_40_59(44, B, C, D, E, A);
143 T_40_59(45, A, B, C, D, E);
144 T_40_59(46, E, A, B, C, D);
145 T_40_59(47, D, E, A, B, C);
146 T_40_59(48, C, D, E, A, B);
147 T_40_59(49, B, C, D, E, A);
148 T_40_59(50, A, B, C, D, E);
149 T_40_59(51, E, A, B, C, D);
150 T_40_59(52, D, E, A, B, C);
151 T_40_59(53, C, D, E, A, B);
152 T_40_59(54, B, C, D, E, A);
153 T_40_59(55, A, B, C, D, E);
154 T_40_59(56, E, A, B, C, D);
155 T_40_59(57, D, E, A, B, C);
156 T_40_59(58, C, D, E, A, B);
157 T_40_59(59, B, C, D, E, A);
158
159 /* Round 4 */
160 T_60_79(60, A, B, C, D, E);
161 T_60_79(61, E, A, B, C, D);
162 T_60_79(62, D, E, A, B, C);
163 T_60_79(63, C, D, E, A, B);
164 T_60_79(64, B, C, D, E, A);
165 T_60_79(65, A, B, C, D, E);
166 T_60_79(66, E, A, B, C, D);
167 T_60_79(67, D, E, A, B, C);
168 T_60_79(68, C, D, E, A, B);
169 T_60_79(69, B, C, D, E, A);
170 T_60_79(70, A, B, C, D, E);
171 T_60_79(71, E, A, B, C, D);
172 T_60_79(72, D, E, A, B, C);
173 T_60_79(73, C, D, E, A, B);
174 T_60_79(74, B, C, D, E, A);
175 T_60_79(75, A, B, C, D, E);
176 T_60_79(76, E, A, B, C, D);
177 T_60_79(77, D, E, A, B, C);
178 T_60_79(78, C, D, E, A, B);
179 T_60_79(79, B, C, D, E, A);
180
181 digest[0] += A;
182 digest[1] += B;
183 digest[2] += C;
184 digest[3] += D;
185 digest[4] += E;
80} 186}
81EXPORT_SYMBOL(sha_transform); 187EXPORT_SYMBOL(sha_transform);
82 188
@@ -92,4 +198,3 @@ void sha_init(__u32 *buf)
92 buf[3] = 0x10325476; 198 buf[3] = 0x10325476;
93 buf[4] = 0xc3d2e1f0; 199 buf[4] = 0xc3d2e1f0;
94} 200}
95