diff options
Diffstat (limited to 'lib/reed_solomon/decode_rs.c')
-rw-r--r-- | lib/reed_solomon/decode_rs.c | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/lib/reed_solomon/decode_rs.c b/lib/reed_solomon/decode_rs.c new file mode 100644 index 000000000000..d401decd6289 --- /dev/null +++ b/lib/reed_solomon/decode_rs.c | |||
@@ -0,0 +1,272 @@ | |||
1 | /* | ||
2 | * lib/reed_solomon/decode_rs.c | ||
3 | * | ||
4 | * Overview: | ||
5 | * Generic Reed Solomon encoder / decoder library | ||
6 | * | ||
7 | * Copyright 2002, Phil Karn, KA9Q | ||
8 | * May be used under the terms of the GNU General Public License (GPL) | ||
9 | * | ||
10 | * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) | ||
11 | * | ||
12 | * $Id: decode_rs.c,v 1.6 2004/10/22 15:41:47 gleixner Exp $ | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | /* Generic data width independent code which is included by the | ||
17 | * wrappers. | ||
18 | */ | ||
19 | { | ||
20 | int deg_lambda, el, deg_omega; | ||
21 | int i, j, r, k, pad; | ||
22 | int nn = rs->nn; | ||
23 | int nroots = rs->nroots; | ||
24 | int fcr = rs->fcr; | ||
25 | int prim = rs->prim; | ||
26 | int iprim = rs->iprim; | ||
27 | uint16_t *alpha_to = rs->alpha_to; | ||
28 | uint16_t *index_of = rs->index_of; | ||
29 | uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; | ||
30 | /* Err+Eras Locator poly and syndrome poly The maximum value | ||
31 | * of nroots is 8. So the necessary stack size will be about | ||
32 | * 220 bytes max. | ||
33 | */ | ||
34 | uint16_t lambda[nroots + 1], syn[nroots]; | ||
35 | uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1]; | ||
36 | uint16_t root[nroots], reg[nroots + 1], loc[nroots]; | ||
37 | int count = 0; | ||
38 | uint16_t msk = (uint16_t) rs->nn; | ||
39 | |||
40 | /* Check length parameter for validity */ | ||
41 | pad = nn - nroots - len; | ||
42 | if (pad < 0 || pad >= nn) | ||
43 | return -ERANGE; | ||
44 | |||
45 | /* Does the caller provide the syndrome ? */ | ||
46 | if (s != NULL) | ||
47 | goto decode; | ||
48 | |||
49 | /* form the syndromes; i.e., evaluate data(x) at roots of | ||
50 | * g(x) */ | ||
51 | for (i = 0; i < nroots; i++) | ||
52 | syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; | ||
53 | |||
54 | for (j = 1; j < len; j++) { | ||
55 | for (i = 0; i < nroots; i++) { | ||
56 | if (syn[i] == 0) { | ||
57 | syn[i] = (((uint16_t) data[j]) ^ | ||
58 | invmsk) & msk; | ||
59 | } else { | ||
60 | syn[i] = ((((uint16_t) data[j]) ^ | ||
61 | invmsk) & msk) ^ | ||
62 | alpha_to[rs_modnn(rs, index_of[syn[i]] + | ||
63 | (fcr + i) * prim)]; | ||
64 | } | ||
65 | } | ||
66 | } | ||
67 | |||
68 | for (j = 0; j < nroots; j++) { | ||
69 | for (i = 0; i < nroots; i++) { | ||
70 | if (syn[i] == 0) { | ||
71 | syn[i] = ((uint16_t) par[j]) & msk; | ||
72 | } else { | ||
73 | syn[i] = (((uint16_t) par[j]) & msk) ^ | ||
74 | alpha_to[rs_modnn(rs, index_of[syn[i]] + | ||
75 | (fcr+i)*prim)]; | ||
76 | } | ||
77 | } | ||
78 | } | ||
79 | s = syn; | ||
80 | |||
81 | /* Convert syndromes to index form, checking for nonzero condition */ | ||
82 | syn_error = 0; | ||
83 | for (i = 0; i < nroots; i++) { | ||
84 | syn_error |= s[i]; | ||
85 | s[i] = index_of[s[i]]; | ||
86 | } | ||
87 | |||
88 | if (!syn_error) { | ||
89 | /* if syndrome is zero, data[] is a codeword and there are no | ||
90 | * errors to correct. So return data[] unmodified | ||
91 | */ | ||
92 | count = 0; | ||
93 | goto finish; | ||
94 | } | ||
95 | |||
96 | decode: | ||
97 | memset(&lambda[1], 0, nroots * sizeof(lambda[0])); | ||
98 | lambda[0] = 1; | ||
99 | |||
100 | if (no_eras > 0) { | ||
101 | /* Init lambda to be the erasure locator polynomial */ | ||
102 | lambda[1] = alpha_to[rs_modnn(rs, | ||
103 | prim * (nn - 1 - eras_pos[0]))]; | ||
104 | for (i = 1; i < no_eras; i++) { | ||
105 | u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i])); | ||
106 | for (j = i + 1; j > 0; j--) { | ||
107 | tmp = index_of[lambda[j - 1]]; | ||
108 | if (tmp != nn) { | ||
109 | lambda[j] ^= | ||
110 | alpha_to[rs_modnn(rs, u + tmp)]; | ||
111 | } | ||
112 | } | ||
113 | } | ||
114 | } | ||
115 | |||
116 | for (i = 0; i < nroots + 1; i++) | ||
117 | b[i] = index_of[lambda[i]]; | ||
118 | |||
119 | /* | ||
120 | * Begin Berlekamp-Massey algorithm to determine error+erasure | ||
121 | * locator polynomial | ||
122 | */ | ||
123 | r = no_eras; | ||
124 | el = no_eras; | ||
125 | while (++r <= nroots) { /* r is the step number */ | ||
126 | /* Compute discrepancy at the r-th step in poly-form */ | ||
127 | discr_r = 0; | ||
128 | for (i = 0; i < r; i++) { | ||
129 | if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { | ||
130 | discr_r ^= | ||
131 | alpha_to[rs_modnn(rs, | ||
132 | index_of[lambda[i]] + | ||
133 | s[r - i - 1])]; | ||
134 | } | ||
135 | } | ||
136 | discr_r = index_of[discr_r]; /* Index form */ | ||
137 | if (discr_r == nn) { | ||
138 | /* 2 lines below: B(x) <-- x*B(x) */ | ||
139 | memmove (&b[1], b, nroots * sizeof (b[0])); | ||
140 | b[0] = nn; | ||
141 | } else { | ||
142 | /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ | ||
143 | t[0] = lambda[0]; | ||
144 | for (i = 0; i < nroots; i++) { | ||
145 | if (b[i] != nn) { | ||
146 | t[i + 1] = lambda[i + 1] ^ | ||
147 | alpha_to[rs_modnn(rs, discr_r + | ||
148 | b[i])]; | ||
149 | } else | ||
150 | t[i + 1] = lambda[i + 1]; | ||
151 | } | ||
152 | if (2 * el <= r + no_eras - 1) { | ||
153 | el = r + no_eras - el; | ||
154 | /* | ||
155 | * 2 lines below: B(x) <-- inv(discr_r) * | ||
156 | * lambda(x) | ||
157 | */ | ||
158 | for (i = 0; i <= nroots; i++) { | ||
159 | b[i] = (lambda[i] == 0) ? nn : | ||
160 | rs_modnn(rs, index_of[lambda[i]] | ||
161 | - discr_r + nn); | ||
162 | } | ||
163 | } else { | ||
164 | /* 2 lines below: B(x) <-- x*B(x) */ | ||
165 | memmove(&b[1], b, nroots * sizeof(b[0])); | ||
166 | b[0] = nn; | ||
167 | } | ||
168 | memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); | ||
169 | } | ||
170 | } | ||
171 | |||
172 | /* Convert lambda to index form and compute deg(lambda(x)) */ | ||
173 | deg_lambda = 0; | ||
174 | for (i = 0; i < nroots + 1; i++) { | ||
175 | lambda[i] = index_of[lambda[i]]; | ||
176 | if (lambda[i] != nn) | ||
177 | deg_lambda = i; | ||
178 | } | ||
179 | /* Find roots of error+erasure locator polynomial by Chien search */ | ||
180 | memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); | ||
181 | count = 0; /* Number of roots of lambda(x) */ | ||
182 | for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { | ||
183 | q = 1; /* lambda[0] is always 0 */ | ||
184 | for (j = deg_lambda; j > 0; j--) { | ||
185 | if (reg[j] != nn) { | ||
186 | reg[j] = rs_modnn(rs, reg[j] + j); | ||
187 | q ^= alpha_to[reg[j]]; | ||
188 | } | ||
189 | } | ||
190 | if (q != 0) | ||
191 | continue; /* Not a root */ | ||
192 | /* store root (index-form) and error location number */ | ||
193 | root[count] = i; | ||
194 | loc[count] = k; | ||
195 | /* If we've already found max possible roots, | ||
196 | * abort the search to save time | ||
197 | */ | ||
198 | if (++count == deg_lambda) | ||
199 | break; | ||
200 | } | ||
201 | if (deg_lambda != count) { | ||
202 | /* | ||
203 | * deg(lambda) unequal to number of roots => uncorrectable | ||
204 | * error detected | ||
205 | */ | ||
206 | count = -1; | ||
207 | goto finish; | ||
208 | } | ||
209 | /* | ||
210 | * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | ||
211 | * x**nroots). in index form. Also find deg(omega). | ||
212 | */ | ||
213 | deg_omega = deg_lambda - 1; | ||
214 | for (i = 0; i <= deg_omega; i++) { | ||
215 | tmp = 0; | ||
216 | for (j = i; j >= 0; j--) { | ||
217 | if ((s[i - j] != nn) && (lambda[j] != nn)) | ||
218 | tmp ^= | ||
219 | alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; | ||
220 | } | ||
221 | omega[i] = index_of[tmp]; | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | ||
226 | * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form | ||
227 | */ | ||
228 | for (j = count - 1; j >= 0; j--) { | ||
229 | num1 = 0; | ||
230 | for (i = deg_omega; i >= 0; i--) { | ||
231 | if (omega[i] != nn) | ||
232 | num1 ^= alpha_to[rs_modnn(rs, omega[i] + | ||
233 | i * root[j])]; | ||
234 | } | ||
235 | num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; | ||
236 | den = 0; | ||
237 | |||
238 | /* lambda[i+1] for i even is the formal derivative | ||
239 | * lambda_pr of lambda[i] */ | ||
240 | for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { | ||
241 | if (lambda[i + 1] != nn) { | ||
242 | den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + | ||
243 | i * root[j])]; | ||
244 | } | ||
245 | } | ||
246 | /* Apply error to data */ | ||
247 | if (num1 != 0 && loc[j] >= pad) { | ||
248 | uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] + | ||
249 | index_of[num2] + | ||
250 | nn - index_of[den])]; | ||
251 | /* Store the error correction pattern, if a | ||
252 | * correction buffer is available */ | ||
253 | if (corr) { | ||
254 | corr[j] = cor; | ||
255 | } else { | ||
256 | /* If a data buffer is given and the | ||
257 | * error is inside the message, | ||
258 | * correct it */ | ||
259 | if (data && (loc[j] < (nn - nroots))) | ||
260 | data[loc[j] - pad] ^= cor; | ||
261 | } | ||
262 | } | ||
263 | } | ||
264 | |||
265 | finish: | ||
266 | if (eras_pos != NULL) { | ||
267 | for (i = 0; i < count; i++) | ||
268 | eras_pos[i] = loc[i] - pad; | ||
269 | } | ||
270 | return count; | ||
271 | |||
272 | } | ||