aboutsummaryrefslogtreecommitdiffstats
path: root/lib/kernel_lock.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/kernel_lock.c')
-rw-r--r--lib/kernel_lock.c264
1 files changed, 264 insertions, 0 deletions
diff --git a/lib/kernel_lock.c b/lib/kernel_lock.c
new file mode 100644
index 000000000000..99b0ae3d51dd
--- /dev/null
+++ b/lib/kernel_lock.c
@@ -0,0 +1,264 @@
1/*
2 * lib/kernel_lock.c
3 *
4 * This is the traditional BKL - big kernel lock. Largely
5 * relegated to obsolescense, but used by various less
6 * important (or lazy) subsystems.
7 */
8#include <linux/smp_lock.h>
9#include <linux/module.h>
10#include <linux/kallsyms.h>
11
12#if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \
13 defined(CONFIG_DEBUG_PREEMPT)
14
15/*
16 * Debugging check.
17 */
18unsigned int smp_processor_id(void)
19{
20 unsigned long preempt_count = preempt_count();
21 int this_cpu = __smp_processor_id();
22 cpumask_t this_mask;
23
24 if (likely(preempt_count))
25 goto out;
26
27 if (irqs_disabled())
28 goto out;
29
30 /*
31 * Kernel threads bound to a single CPU can safely use
32 * smp_processor_id():
33 */
34 this_mask = cpumask_of_cpu(this_cpu);
35
36 if (cpus_equal(current->cpus_allowed, this_mask))
37 goto out;
38
39 /*
40 * It is valid to assume CPU-locality during early bootup:
41 */
42 if (system_state != SYSTEM_RUNNING)
43 goto out;
44
45 /*
46 * Avoid recursion:
47 */
48 preempt_disable();
49
50 if (!printk_ratelimit())
51 goto out_enable;
52
53 printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid);
54 print_symbol("caller is %s\n", (long)__builtin_return_address(0));
55 dump_stack();
56
57out_enable:
58 preempt_enable_no_resched();
59out:
60 return this_cpu;
61}
62
63EXPORT_SYMBOL(smp_processor_id);
64
65#endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */
66
67#ifdef CONFIG_PREEMPT_BKL
68/*
69 * The 'big kernel semaphore'
70 *
71 * This mutex is taken and released recursively by lock_kernel()
72 * and unlock_kernel(). It is transparently dropped and reaquired
73 * over schedule(). It is used to protect legacy code that hasn't
74 * been migrated to a proper locking design yet.
75 *
76 * Note: code locked by this semaphore will only be serialized against
77 * other code using the same locking facility. The code guarantees that
78 * the task remains on the same CPU.
79 *
80 * Don't use in new code.
81 */
82static DECLARE_MUTEX(kernel_sem);
83
84/*
85 * Re-acquire the kernel semaphore.
86 *
87 * This function is called with preemption off.
88 *
89 * We are executing in schedule() so the code must be extremely careful
90 * about recursion, both due to the down() and due to the enabling of
91 * preemption. schedule() will re-check the preemption flag after
92 * reacquiring the semaphore.
93 */
94int __lockfunc __reacquire_kernel_lock(void)
95{
96 struct task_struct *task = current;
97 int saved_lock_depth = task->lock_depth;
98
99 BUG_ON(saved_lock_depth < 0);
100
101 task->lock_depth = -1;
102 preempt_enable_no_resched();
103
104 down(&kernel_sem);
105
106 preempt_disable();
107 task->lock_depth = saved_lock_depth;
108
109 return 0;
110}
111
112void __lockfunc __release_kernel_lock(void)
113{
114 up(&kernel_sem);
115}
116
117/*
118 * Getting the big kernel semaphore.
119 */
120void __lockfunc lock_kernel(void)
121{
122 struct task_struct *task = current;
123 int depth = task->lock_depth + 1;
124
125 if (likely(!depth))
126 /*
127 * No recursion worries - we set up lock_depth _after_
128 */
129 down(&kernel_sem);
130
131 task->lock_depth = depth;
132}
133
134void __lockfunc unlock_kernel(void)
135{
136 struct task_struct *task = current;
137
138 BUG_ON(task->lock_depth < 0);
139
140 if (likely(--task->lock_depth < 0))
141 up(&kernel_sem);
142}
143
144#else
145
146/*
147 * The 'big kernel lock'
148 *
149 * This spinlock is taken and released recursively by lock_kernel()
150 * and unlock_kernel(). It is transparently dropped and reaquired
151 * over schedule(). It is used to protect legacy code that hasn't
152 * been migrated to a proper locking design yet.
153 *
154 * Don't use in new code.
155 */
156static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
157
158
159/*
160 * Acquire/release the underlying lock from the scheduler.
161 *
162 * This is called with preemption disabled, and should
163 * return an error value if it cannot get the lock and
164 * TIF_NEED_RESCHED gets set.
165 *
166 * If it successfully gets the lock, it should increment
167 * the preemption count like any spinlock does.
168 *
169 * (This works on UP too - _raw_spin_trylock will never
170 * return false in that case)
171 */
172int __lockfunc __reacquire_kernel_lock(void)
173{
174 while (!_raw_spin_trylock(&kernel_flag)) {
175 if (test_thread_flag(TIF_NEED_RESCHED))
176 return -EAGAIN;
177 cpu_relax();
178 }
179 preempt_disable();
180 return 0;
181}
182
183void __lockfunc __release_kernel_lock(void)
184{
185 _raw_spin_unlock(&kernel_flag);
186 preempt_enable_no_resched();
187}
188
189/*
190 * These are the BKL spinlocks - we try to be polite about preemption.
191 * If SMP is not on (ie UP preemption), this all goes away because the
192 * _raw_spin_trylock() will always succeed.
193 */
194#ifdef CONFIG_PREEMPT
195static inline void __lock_kernel(void)
196{
197 preempt_disable();
198 if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
199 /*
200 * If preemption was disabled even before this
201 * was called, there's nothing we can be polite
202 * about - just spin.
203 */
204 if (preempt_count() > 1) {
205 _raw_spin_lock(&kernel_flag);
206 return;
207 }
208
209 /*
210 * Otherwise, let's wait for the kernel lock
211 * with preemption enabled..
212 */
213 do {
214 preempt_enable();
215 while (spin_is_locked(&kernel_flag))
216 cpu_relax();
217 preempt_disable();
218 } while (!_raw_spin_trylock(&kernel_flag));
219 }
220}
221
222#else
223
224/*
225 * Non-preemption case - just get the spinlock
226 */
227static inline void __lock_kernel(void)
228{
229 _raw_spin_lock(&kernel_flag);
230}
231#endif
232
233static inline void __unlock_kernel(void)
234{
235 _raw_spin_unlock(&kernel_flag);
236 preempt_enable();
237}
238
239/*
240 * Getting the big kernel lock.
241 *
242 * This cannot happen asynchronously, so we only need to
243 * worry about other CPU's.
244 */
245void __lockfunc lock_kernel(void)
246{
247 int depth = current->lock_depth+1;
248 if (likely(!depth))
249 __lock_kernel();
250 current->lock_depth = depth;
251}
252
253void __lockfunc unlock_kernel(void)
254{
255 BUG_ON(current->lock_depth < 0);
256 if (likely(--current->lock_depth < 0))
257 __unlock_kernel();
258}
259
260#endif
261
262EXPORT_SYMBOL(lock_kernel);
263EXPORT_SYMBOL(unlock_kernel);
264