aboutsummaryrefslogtreecommitdiffstats
path: root/lib/genalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/genalloc.c')
-rw-r--r--lib/genalloc.c300
1 files changed, 243 insertions, 57 deletions
diff --git a/lib/genalloc.c b/lib/genalloc.c
index 577ddf805975..f352cc42f4f8 100644
--- a/lib/genalloc.c
+++ b/lib/genalloc.c
@@ -1,8 +1,26 @@
1/* 1/*
2 * Basic general purpose allocator for managing special purpose memory 2 * Basic general purpose allocator for managing special purpose
3 * not managed by the regular kmalloc/kfree interface. 3 * memory, for example, memory that is not managed by the regular
4 * Uses for this includes on-device special memory, uncached memory 4 * kmalloc/kfree interface. Uses for this includes on-device special
5 * etc. 5 * memory, uncached memory etc.
6 *
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks. This
9 * is implemented by using atomic operations and retries on any
10 * conflicts. The disadvantage is that there may be livelocks in
11 * extreme cases. For better scalability, one allocator can be used
12 * for each CPU.
13 *
14 * The lockless operation only works if there is enough memory
15 * available. If new memory is added to the pool a lock has to be
16 * still taken. So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
18 *
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler. So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
6 * 24 *
7 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
8 * 26 *
@@ -13,8 +31,109 @@
13#include <linux/slab.h> 31#include <linux/slab.h>
14#include <linux/module.h> 32#include <linux/module.h>
15#include <linux/bitmap.h> 33#include <linux/bitmap.h>
34#include <linux/rculist.h>
35#include <linux/interrupt.h>
16#include <linux/genalloc.h> 36#include <linux/genalloc.h>
17 37
38static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
39{
40 unsigned long val, nval;
41
42 nval = *addr;
43 do {
44 val = nval;
45 if (val & mask_to_set)
46 return -EBUSY;
47 cpu_relax();
48 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
49
50 return 0;
51}
52
53static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
54{
55 unsigned long val, nval;
56
57 nval = *addr;
58 do {
59 val = nval;
60 if ((val & mask_to_clear) != mask_to_clear)
61 return -EBUSY;
62 cpu_relax();
63 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
64
65 return 0;
66}
67
68/*
69 * bitmap_set_ll - set the specified number of bits at the specified position
70 * @map: pointer to a bitmap
71 * @start: a bit position in @map
72 * @nr: number of bits to set
73 *
74 * Set @nr bits start from @start in @map lock-lessly. Several users
75 * can set/clear the same bitmap simultaneously without lock. If two
76 * users set the same bit, one user will return remain bits, otherwise
77 * return 0.
78 */
79static int bitmap_set_ll(unsigned long *map, int start, int nr)
80{
81 unsigned long *p = map + BIT_WORD(start);
82 const int size = start + nr;
83 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
84 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
85
86 while (nr - bits_to_set >= 0) {
87 if (set_bits_ll(p, mask_to_set))
88 return nr;
89 nr -= bits_to_set;
90 bits_to_set = BITS_PER_LONG;
91 mask_to_set = ~0UL;
92 p++;
93 }
94 if (nr) {
95 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
96 if (set_bits_ll(p, mask_to_set))
97 return nr;
98 }
99
100 return 0;
101}
102
103/*
104 * bitmap_clear_ll - clear the specified number of bits at the specified position
105 * @map: pointer to a bitmap
106 * @start: a bit position in @map
107 * @nr: number of bits to set
108 *
109 * Clear @nr bits start from @start in @map lock-lessly. Several users
110 * can set/clear the same bitmap simultaneously without lock. If two
111 * users clear the same bit, one user will return remain bits,
112 * otherwise return 0.
113 */
114static int bitmap_clear_ll(unsigned long *map, int start, int nr)
115{
116 unsigned long *p = map + BIT_WORD(start);
117 const int size = start + nr;
118 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
119 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
120
121 while (nr - bits_to_clear >= 0) {
122 if (clear_bits_ll(p, mask_to_clear))
123 return nr;
124 nr -= bits_to_clear;
125 bits_to_clear = BITS_PER_LONG;
126 mask_to_clear = ~0UL;
127 p++;
128 }
129 if (nr) {
130 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
131 if (clear_bits_ll(p, mask_to_clear))
132 return nr;
133 }
134
135 return 0;
136}
18 137
19/** 138/**
20 * gen_pool_create - create a new special memory pool 139 * gen_pool_create - create a new special memory pool
@@ -30,7 +149,7 @@ struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
30 149
31 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 150 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
32 if (pool != NULL) { 151 if (pool != NULL) {
33 rwlock_init(&pool->lock); 152 spin_lock_init(&pool->lock);
34 INIT_LIST_HEAD(&pool->chunks); 153 INIT_LIST_HEAD(&pool->chunks);
35 pool->min_alloc_order = min_alloc_order; 154 pool->min_alloc_order = min_alloc_order;
36 } 155 }
@@ -63,14 +182,14 @@ int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phy
63 if (unlikely(chunk == NULL)) 182 if (unlikely(chunk == NULL))
64 return -ENOMEM; 183 return -ENOMEM;
65 184
66 spin_lock_init(&chunk->lock);
67 chunk->phys_addr = phys; 185 chunk->phys_addr = phys;
68 chunk->start_addr = virt; 186 chunk->start_addr = virt;
69 chunk->end_addr = virt + size; 187 chunk->end_addr = virt + size;
188 atomic_set(&chunk->avail, size);
70 189
71 write_lock(&pool->lock); 190 spin_lock(&pool->lock);
72 list_add(&chunk->next_chunk, &pool->chunks); 191 list_add_rcu(&chunk->next_chunk, &pool->chunks);
73 write_unlock(&pool->lock); 192 spin_unlock(&pool->lock);
74 193
75 return 0; 194 return 0;
76} 195}
@@ -85,19 +204,19 @@ EXPORT_SYMBOL(gen_pool_add_virt);
85 */ 204 */
86phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 205phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
87{ 206{
88 struct list_head *_chunk;
89 struct gen_pool_chunk *chunk; 207 struct gen_pool_chunk *chunk;
208 phys_addr_t paddr = -1;
90 209
91 read_lock(&pool->lock); 210 rcu_read_lock();
92 list_for_each(_chunk, &pool->chunks) { 211 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
93 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 212 if (addr >= chunk->start_addr && addr < chunk->end_addr) {
94 213 paddr = chunk->phys_addr + (addr - chunk->start_addr);
95 if (addr >= chunk->start_addr && addr < chunk->end_addr) 214 break;
96 return chunk->phys_addr + addr - chunk->start_addr; 215 }
97 } 216 }
98 read_unlock(&pool->lock); 217 rcu_read_unlock();
99 218
100 return -1; 219 return paddr;
101} 220}
102EXPORT_SYMBOL(gen_pool_virt_to_phys); 221EXPORT_SYMBOL(gen_pool_virt_to_phys);
103 222
@@ -115,7 +234,6 @@ void gen_pool_destroy(struct gen_pool *pool)
115 int order = pool->min_alloc_order; 234 int order = pool->min_alloc_order;
116 int bit, end_bit; 235 int bit, end_bit;
117 236
118
119 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 237 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
120 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 238 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
121 list_del(&chunk->next_chunk); 239 list_del(&chunk->next_chunk);
@@ -137,44 +255,50 @@ EXPORT_SYMBOL(gen_pool_destroy);
137 * @size: number of bytes to allocate from the pool 255 * @size: number of bytes to allocate from the pool
138 * 256 *
139 * Allocate the requested number of bytes from the specified pool. 257 * Allocate the requested number of bytes from the specified pool.
140 * Uses a first-fit algorithm. 258 * Uses a first-fit algorithm. Can not be used in NMI handler on
259 * architectures without NMI-safe cmpxchg implementation.
141 */ 260 */
142unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 261unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
143{ 262{
144 struct list_head *_chunk;
145 struct gen_pool_chunk *chunk; 263 struct gen_pool_chunk *chunk;
146 unsigned long addr, flags; 264 unsigned long addr = 0;
147 int order = pool->min_alloc_order; 265 int order = pool->min_alloc_order;
148 int nbits, start_bit, end_bit; 266 int nbits, start_bit = 0, end_bit, remain;
267
268#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
269 BUG_ON(in_nmi());
270#endif
149 271
150 if (size == 0) 272 if (size == 0)
151 return 0; 273 return 0;
152 274
153 nbits = (size + (1UL << order) - 1) >> order; 275 nbits = (size + (1UL << order) - 1) >> order;
154 276 rcu_read_lock();
155 read_lock(&pool->lock); 277 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
156 list_for_each(_chunk, &pool->chunks) { 278 if (size > atomic_read(&chunk->avail))
157 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 279 continue;
158 280
159 end_bit = (chunk->end_addr - chunk->start_addr) >> order; 281 end_bit = (chunk->end_addr - chunk->start_addr) >> order;
160 282retry:
161 spin_lock_irqsave(&chunk->lock, flags); 283 start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit,
162 start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, 0, 284 start_bit, nbits, 0);
163 nbits, 0); 285 if (start_bit >= end_bit)
164 if (start_bit >= end_bit) {
165 spin_unlock_irqrestore(&chunk->lock, flags);
166 continue; 286 continue;
287 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
288 if (remain) {
289 remain = bitmap_clear_ll(chunk->bits, start_bit,
290 nbits - remain);
291 BUG_ON(remain);
292 goto retry;
167 } 293 }
168 294
169 addr = chunk->start_addr + ((unsigned long)start_bit << order); 295 addr = chunk->start_addr + ((unsigned long)start_bit << order);
170 296 size = nbits << order;
171 bitmap_set(chunk->bits, start_bit, nbits); 297 atomic_sub(size, &chunk->avail);
172 spin_unlock_irqrestore(&chunk->lock, flags); 298 break;
173 read_unlock(&pool->lock);
174 return addr;
175 } 299 }
176 read_unlock(&pool->lock); 300 rcu_read_unlock();
177 return 0; 301 return addr;
178} 302}
179EXPORT_SYMBOL(gen_pool_alloc); 303EXPORT_SYMBOL(gen_pool_alloc);
180 304
@@ -184,33 +308,95 @@ EXPORT_SYMBOL(gen_pool_alloc);
184 * @addr: starting address of memory to free back to pool 308 * @addr: starting address of memory to free back to pool
185 * @size: size in bytes of memory to free 309 * @size: size in bytes of memory to free
186 * 310 *
187 * Free previously allocated special memory back to the specified pool. 311 * Free previously allocated special memory back to the specified
312 * pool. Can not be used in NMI handler on architectures without
313 * NMI-safe cmpxchg implementation.
188 */ 314 */
189void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 315void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
190{ 316{
191 struct list_head *_chunk;
192 struct gen_pool_chunk *chunk; 317 struct gen_pool_chunk *chunk;
193 unsigned long flags;
194 int order = pool->min_alloc_order; 318 int order = pool->min_alloc_order;
195 int bit, nbits; 319 int start_bit, nbits, remain;
196 320
197 nbits = (size + (1UL << order) - 1) >> order; 321#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
198 322 BUG_ON(in_nmi());
199 read_lock(&pool->lock); 323#endif
200 list_for_each(_chunk, &pool->chunks) {
201 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
202 324
325 nbits = (size + (1UL << order) - 1) >> order;
326 rcu_read_lock();
327 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
203 if (addr >= chunk->start_addr && addr < chunk->end_addr) { 328 if (addr >= chunk->start_addr && addr < chunk->end_addr) {
204 BUG_ON(addr + size > chunk->end_addr); 329 BUG_ON(addr + size > chunk->end_addr);
205 spin_lock_irqsave(&chunk->lock, flags); 330 start_bit = (addr - chunk->start_addr) >> order;
206 bit = (addr - chunk->start_addr) >> order; 331 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
207 while (nbits--) 332 BUG_ON(remain);
208 __clear_bit(bit++, chunk->bits); 333 size = nbits << order;
209 spin_unlock_irqrestore(&chunk->lock, flags); 334 atomic_add(size, &chunk->avail);
210 break; 335 rcu_read_unlock();
336 return;
211 } 337 }
212 } 338 }
213 BUG_ON(nbits > 0); 339 rcu_read_unlock();
214 read_unlock(&pool->lock); 340 BUG();
215} 341}
216EXPORT_SYMBOL(gen_pool_free); 342EXPORT_SYMBOL(gen_pool_free);
343
344/**
345 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
346 * @pool: the generic memory pool
347 * @func: func to call
348 * @data: additional data used by @func
349 *
350 * Call @func for every chunk of generic memory pool. The @func is
351 * called with rcu_read_lock held.
352 */
353void gen_pool_for_each_chunk(struct gen_pool *pool,
354 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
355 void *data)
356{
357 struct gen_pool_chunk *chunk;
358
359 rcu_read_lock();
360 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
361 func(pool, chunk, data);
362 rcu_read_unlock();
363}
364EXPORT_SYMBOL(gen_pool_for_each_chunk);
365
366/**
367 * gen_pool_avail - get available free space of the pool
368 * @pool: pool to get available free space
369 *
370 * Return available free space of the specified pool.
371 */
372size_t gen_pool_avail(struct gen_pool *pool)
373{
374 struct gen_pool_chunk *chunk;
375 size_t avail = 0;
376
377 rcu_read_lock();
378 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
379 avail += atomic_read(&chunk->avail);
380 rcu_read_unlock();
381 return avail;
382}
383EXPORT_SYMBOL_GPL(gen_pool_avail);
384
385/**
386 * gen_pool_size - get size in bytes of memory managed by the pool
387 * @pool: pool to get size
388 *
389 * Return size in bytes of memory managed by the pool.
390 */
391size_t gen_pool_size(struct gen_pool *pool)
392{
393 struct gen_pool_chunk *chunk;
394 size_t size = 0;
395
396 rcu_read_lock();
397 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
398 size += chunk->end_addr - chunk->start_addr;
399 rcu_read_unlock();
400 return size;
401}
402EXPORT_SYMBOL_GPL(gen_pool_size);