diff options
Diffstat (limited to 'lib/flex_array.c')
-rw-r--r-- | lib/flex_array.c | 87 |
1 files changed, 60 insertions, 27 deletions
diff --git a/lib/flex_array.c b/lib/flex_array.c index c0ea40ba2082..9b8b89458c4c 100644 --- a/lib/flex_array.c +++ b/lib/flex_array.c | |||
@@ -24,6 +24,7 @@ | |||
24 | #include <linux/slab.h> | 24 | #include <linux/slab.h> |
25 | #include <linux/stddef.h> | 25 | #include <linux/stddef.h> |
26 | #include <linux/module.h> | 26 | #include <linux/module.h> |
27 | #include <linux/reciprocal_div.h> | ||
27 | 28 | ||
28 | struct flex_array_part { | 29 | struct flex_array_part { |
29 | char elements[FLEX_ARRAY_PART_SIZE]; | 30 | char elements[FLEX_ARRAY_PART_SIZE]; |
@@ -70,15 +71,15 @@ static inline int elements_fit_in_base(struct flex_array *fa) | |||
70 | * Element size | Objects | Objects | | 71 | * Element size | Objects | Objects | |
71 | * PAGE_SIZE=4k | 32-bit | 64-bit | | 72 | * PAGE_SIZE=4k | 32-bit | 64-bit | |
72 | * ---------------------------------| | 73 | * ---------------------------------| |
73 | * 1 bytes | 4186112 | 2093056 | | 74 | * 1 bytes | 4177920 | 2088960 | |
74 | * 2 bytes | 2093056 | 1046528 | | 75 | * 2 bytes | 2088960 | 1044480 | |
75 | * 3 bytes | 1395030 | 697515 | | 76 | * 3 bytes | 1392300 | 696150 | |
76 | * 4 bytes | 1046528 | 523264 | | 77 | * 4 bytes | 1044480 | 522240 | |
77 | * 32 bytes | 130816 | 65408 | | 78 | * 32 bytes | 130560 | 65408 | |
78 | * 33 bytes | 126728 | 63364 | | 79 | * 33 bytes | 126480 | 63240 | |
79 | * 2048 bytes | 2044 | 1022 | | 80 | * 2048 bytes | 2040 | 1020 | |
80 | * 2049 bytes | 1022 | 511 | | 81 | * 2049 bytes | 1020 | 510 | |
81 | * void * | 1046528 | 261632 | | 82 | * void * | 1044480 | 261120 | |
82 | * | 83 | * |
83 | * Since 64-bit pointers are twice the size, we lose half the | 84 | * Since 64-bit pointers are twice the size, we lose half the |
84 | * capacity in the base structure. Also note that no effort is made | 85 | * capacity in the base structure. Also note that no effort is made |
@@ -88,8 +89,15 @@ struct flex_array *flex_array_alloc(int element_size, unsigned int total, | |||
88 | gfp_t flags) | 89 | gfp_t flags) |
89 | { | 90 | { |
90 | struct flex_array *ret; | 91 | struct flex_array *ret; |
91 | int max_size = FLEX_ARRAY_NR_BASE_PTRS * | 92 | int elems_per_part = 0; |
92 | FLEX_ARRAY_ELEMENTS_PER_PART(element_size); | 93 | int reciprocal_elems = 0; |
94 | int max_size = 0; | ||
95 | |||
96 | if (element_size) { | ||
97 | elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size); | ||
98 | reciprocal_elems = reciprocal_value(elems_per_part); | ||
99 | max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part; | ||
100 | } | ||
93 | 101 | ||
94 | /* max_size will end up 0 if element_size > PAGE_SIZE */ | 102 | /* max_size will end up 0 if element_size > PAGE_SIZE */ |
95 | if (total > max_size) | 103 | if (total > max_size) |
@@ -99,6 +107,8 @@ struct flex_array *flex_array_alloc(int element_size, unsigned int total, | |||
99 | return NULL; | 107 | return NULL; |
100 | ret->element_size = element_size; | 108 | ret->element_size = element_size; |
101 | ret->total_nr_elements = total; | 109 | ret->total_nr_elements = total; |
110 | ret->elems_per_part = elems_per_part; | ||
111 | ret->reciprocal_elems = reciprocal_elems; | ||
102 | if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO)) | 112 | if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO)) |
103 | memset(&ret->parts[0], FLEX_ARRAY_FREE, | 113 | memset(&ret->parts[0], FLEX_ARRAY_FREE, |
104 | FLEX_ARRAY_BASE_BYTES_LEFT); | 114 | FLEX_ARRAY_BASE_BYTES_LEFT); |
@@ -109,7 +119,7 @@ EXPORT_SYMBOL(flex_array_alloc); | |||
109 | static int fa_element_to_part_nr(struct flex_array *fa, | 119 | static int fa_element_to_part_nr(struct flex_array *fa, |
110 | unsigned int element_nr) | 120 | unsigned int element_nr) |
111 | { | 121 | { |
112 | return element_nr / FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size); | 122 | return reciprocal_divide(element_nr, fa->reciprocal_elems); |
113 | } | 123 | } |
114 | 124 | ||
115 | /** | 125 | /** |
@@ -138,12 +148,12 @@ void flex_array_free(struct flex_array *fa) | |||
138 | EXPORT_SYMBOL(flex_array_free); | 148 | EXPORT_SYMBOL(flex_array_free); |
139 | 149 | ||
140 | static unsigned int index_inside_part(struct flex_array *fa, | 150 | static unsigned int index_inside_part(struct flex_array *fa, |
141 | unsigned int element_nr) | 151 | unsigned int element_nr, |
152 | unsigned int part_nr) | ||
142 | { | 153 | { |
143 | unsigned int part_offset; | 154 | unsigned int part_offset; |
144 | 155 | ||
145 | part_offset = element_nr % | 156 | part_offset = element_nr - part_nr * fa->elems_per_part; |
146 | FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size); | ||
147 | return part_offset * fa->element_size; | 157 | return part_offset * fa->element_size; |
148 | } | 158 | } |
149 | 159 | ||
@@ -183,20 +193,23 @@ __fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags) | |||
183 | int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src, | 193 | int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src, |
184 | gfp_t flags) | 194 | gfp_t flags) |
185 | { | 195 | { |
186 | int part_nr = fa_element_to_part_nr(fa, element_nr); | 196 | int part_nr = 0; |
187 | struct flex_array_part *part; | 197 | struct flex_array_part *part; |
188 | void *dst; | 198 | void *dst; |
189 | 199 | ||
190 | if (element_nr >= fa->total_nr_elements) | 200 | if (element_nr >= fa->total_nr_elements) |
191 | return -ENOSPC; | 201 | return -ENOSPC; |
202 | if (!fa->element_size) | ||
203 | return 0; | ||
192 | if (elements_fit_in_base(fa)) | 204 | if (elements_fit_in_base(fa)) |
193 | part = (struct flex_array_part *)&fa->parts[0]; | 205 | part = (struct flex_array_part *)&fa->parts[0]; |
194 | else { | 206 | else { |
207 | part_nr = fa_element_to_part_nr(fa, element_nr); | ||
195 | part = __fa_get_part(fa, part_nr, flags); | 208 | part = __fa_get_part(fa, part_nr, flags); |
196 | if (!part) | 209 | if (!part) |
197 | return -ENOMEM; | 210 | return -ENOMEM; |
198 | } | 211 | } |
199 | dst = &part->elements[index_inside_part(fa, element_nr)]; | 212 | dst = &part->elements[index_inside_part(fa, element_nr, part_nr)]; |
200 | memcpy(dst, src, fa->element_size); | 213 | memcpy(dst, src, fa->element_size); |
201 | return 0; | 214 | return 0; |
202 | } | 215 | } |
@@ -211,20 +224,23 @@ EXPORT_SYMBOL(flex_array_put); | |||
211 | */ | 224 | */ |
212 | int flex_array_clear(struct flex_array *fa, unsigned int element_nr) | 225 | int flex_array_clear(struct flex_array *fa, unsigned int element_nr) |
213 | { | 226 | { |
214 | int part_nr = fa_element_to_part_nr(fa, element_nr); | 227 | int part_nr = 0; |
215 | struct flex_array_part *part; | 228 | struct flex_array_part *part; |
216 | void *dst; | 229 | void *dst; |
217 | 230 | ||
218 | if (element_nr >= fa->total_nr_elements) | 231 | if (element_nr >= fa->total_nr_elements) |
219 | return -ENOSPC; | 232 | return -ENOSPC; |
233 | if (!fa->element_size) | ||
234 | return 0; | ||
220 | if (elements_fit_in_base(fa)) | 235 | if (elements_fit_in_base(fa)) |
221 | part = (struct flex_array_part *)&fa->parts[0]; | 236 | part = (struct flex_array_part *)&fa->parts[0]; |
222 | else { | 237 | else { |
238 | part_nr = fa_element_to_part_nr(fa, element_nr); | ||
223 | part = fa->parts[part_nr]; | 239 | part = fa->parts[part_nr]; |
224 | if (!part) | 240 | if (!part) |
225 | return -EINVAL; | 241 | return -EINVAL; |
226 | } | 242 | } |
227 | dst = &part->elements[index_inside_part(fa, element_nr)]; | 243 | dst = &part->elements[index_inside_part(fa, element_nr, part_nr)]; |
228 | memset(dst, FLEX_ARRAY_FREE, fa->element_size); | 244 | memset(dst, FLEX_ARRAY_FREE, fa->element_size); |
229 | return 0; | 245 | return 0; |
230 | } | 246 | } |
@@ -232,10 +248,10 @@ EXPORT_SYMBOL(flex_array_clear); | |||
232 | 248 | ||
233 | /** | 249 | /** |
234 | * flex_array_prealloc - guarantee that array space exists | 250 | * flex_array_prealloc - guarantee that array space exists |
235 | * @fa: the flex array for which to preallocate parts | 251 | * @fa: the flex array for which to preallocate parts |
236 | * @start: index of first array element for which space is allocated | 252 | * @start: index of first array element for which space is allocated |
237 | * @end: index of last (inclusive) element for which space is allocated | 253 | * @nr_elements: number of elements for which space is allocated |
238 | * @flags: page allocation flags | 254 | * @flags: page allocation flags |
239 | * | 255 | * |
240 | * This will guarantee that no future calls to flex_array_put() | 256 | * This will guarantee that no future calls to flex_array_put() |
241 | * will allocate memory. It can be used if you are expecting to | 257 | * will allocate memory. It can be used if you are expecting to |
@@ -245,15 +261,27 @@ EXPORT_SYMBOL(flex_array_clear); | |||
245 | * Locking must be provided by the caller. | 261 | * Locking must be provided by the caller. |
246 | */ | 262 | */ |
247 | int flex_array_prealloc(struct flex_array *fa, unsigned int start, | 263 | int flex_array_prealloc(struct flex_array *fa, unsigned int start, |
248 | unsigned int end, gfp_t flags) | 264 | unsigned int nr_elements, gfp_t flags) |
249 | { | 265 | { |
250 | int start_part; | 266 | int start_part; |
251 | int end_part; | 267 | int end_part; |
252 | int part_nr; | 268 | int part_nr; |
269 | unsigned int end; | ||
253 | struct flex_array_part *part; | 270 | struct flex_array_part *part; |
254 | 271 | ||
255 | if (start >= fa->total_nr_elements || end >= fa->total_nr_elements) | 272 | if (!start && !nr_elements) |
273 | return 0; | ||
274 | if (start >= fa->total_nr_elements) | ||
256 | return -ENOSPC; | 275 | return -ENOSPC; |
276 | if (!nr_elements) | ||
277 | return 0; | ||
278 | |||
279 | end = start + nr_elements - 1; | ||
280 | |||
281 | if (end >= fa->total_nr_elements) | ||
282 | return -ENOSPC; | ||
283 | if (!fa->element_size) | ||
284 | return 0; | ||
257 | if (elements_fit_in_base(fa)) | 285 | if (elements_fit_in_base(fa)) |
258 | return 0; | 286 | return 0; |
259 | start_part = fa_element_to_part_nr(fa, start); | 287 | start_part = fa_element_to_part_nr(fa, start); |
@@ -281,19 +309,22 @@ EXPORT_SYMBOL(flex_array_prealloc); | |||
281 | */ | 309 | */ |
282 | void *flex_array_get(struct flex_array *fa, unsigned int element_nr) | 310 | void *flex_array_get(struct flex_array *fa, unsigned int element_nr) |
283 | { | 311 | { |
284 | int part_nr = fa_element_to_part_nr(fa, element_nr); | 312 | int part_nr = 0; |
285 | struct flex_array_part *part; | 313 | struct flex_array_part *part; |
286 | 314 | ||
315 | if (!fa->element_size) | ||
316 | return NULL; | ||
287 | if (element_nr >= fa->total_nr_elements) | 317 | if (element_nr >= fa->total_nr_elements) |
288 | return NULL; | 318 | return NULL; |
289 | if (elements_fit_in_base(fa)) | 319 | if (elements_fit_in_base(fa)) |
290 | part = (struct flex_array_part *)&fa->parts[0]; | 320 | part = (struct flex_array_part *)&fa->parts[0]; |
291 | else { | 321 | else { |
322 | part_nr = fa_element_to_part_nr(fa, element_nr); | ||
292 | part = fa->parts[part_nr]; | 323 | part = fa->parts[part_nr]; |
293 | if (!part) | 324 | if (!part) |
294 | return NULL; | 325 | return NULL; |
295 | } | 326 | } |
296 | return &part->elements[index_inside_part(fa, element_nr)]; | 327 | return &part->elements[index_inside_part(fa, element_nr, part_nr)]; |
297 | } | 328 | } |
298 | EXPORT_SYMBOL(flex_array_get); | 329 | EXPORT_SYMBOL(flex_array_get); |
299 | 330 | ||
@@ -343,6 +374,8 @@ int flex_array_shrink(struct flex_array *fa) | |||
343 | int part_nr; | 374 | int part_nr; |
344 | int ret = 0; | 375 | int ret = 0; |
345 | 376 | ||
377 | if (!fa->total_nr_elements || !fa->element_size) | ||
378 | return 0; | ||
346 | if (elements_fit_in_base(fa)) | 379 | if (elements_fit_in_base(fa)) |
347 | return ret; | 380 | return ret; |
348 | for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) { | 381 | for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) { |