diff options
Diffstat (limited to 'lib/decompress_bunzip2.c')
| -rw-r--r-- | lib/decompress_bunzip2.c | 735 |
1 files changed, 735 insertions, 0 deletions
diff --git a/lib/decompress_bunzip2.c b/lib/decompress_bunzip2.c new file mode 100644 index 000000000000..5d3ddb5fcfd9 --- /dev/null +++ b/lib/decompress_bunzip2.c | |||
| @@ -0,0 +1,735 @@ | |||
| 1 | /* vi: set sw = 4 ts = 4: */ | ||
| 2 | /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). | ||
| 3 | |||
| 4 | Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), | ||
| 5 | which also acknowledges contributions by Mike Burrows, David Wheeler, | ||
| 6 | Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, | ||
| 7 | Robert Sedgewick, and Jon L. Bentley. | ||
| 8 | |||
| 9 | This code is licensed under the LGPLv2: | ||
| 10 | LGPL (http://www.gnu.org/copyleft/lgpl.html | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* | ||
| 14 | Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). | ||
| 15 | |||
| 16 | More efficient reading of Huffman codes, a streamlined read_bunzip() | ||
| 17 | function, and various other tweaks. In (limited) tests, approximately | ||
| 18 | 20% faster than bzcat on x86 and about 10% faster on arm. | ||
| 19 | |||
| 20 | Note that about 2/3 of the time is spent in read_unzip() reversing | ||
| 21 | the Burrows-Wheeler transformation. Much of that time is delay | ||
| 22 | resulting from cache misses. | ||
| 23 | |||
| 24 | I would ask that anyone benefiting from this work, especially those | ||
| 25 | using it in commercial products, consider making a donation to my local | ||
| 26 | non-profit hospice organization in the name of the woman I loved, who | ||
| 27 | passed away Feb. 12, 2003. | ||
| 28 | |||
| 29 | In memory of Toni W. Hagan | ||
| 30 | |||
| 31 | Hospice of Acadiana, Inc. | ||
| 32 | 2600 Johnston St., Suite 200 | ||
| 33 | Lafayette, LA 70503-3240 | ||
| 34 | |||
| 35 | Phone (337) 232-1234 or 1-800-738-2226 | ||
| 36 | Fax (337) 232-1297 | ||
| 37 | |||
| 38 | http://www.hospiceacadiana.com/ | ||
| 39 | |||
| 40 | Manuel | ||
| 41 | */ | ||
| 42 | |||
| 43 | /* | ||
| 44 | Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) | ||
| 45 | */ | ||
| 46 | |||
| 47 | |||
| 48 | #ifndef STATIC | ||
| 49 | #include <linux/decompress/bunzip2.h> | ||
| 50 | #endif /* !STATIC */ | ||
| 51 | |||
| 52 | #include <linux/decompress/mm.h> | ||
| 53 | |||
| 54 | #ifndef INT_MAX | ||
| 55 | #define INT_MAX 0x7fffffff | ||
| 56 | #endif | ||
| 57 | |||
| 58 | /* Constants for Huffman coding */ | ||
| 59 | #define MAX_GROUPS 6 | ||
| 60 | #define GROUP_SIZE 50 /* 64 would have been more efficient */ | ||
| 61 | #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ | ||
| 62 | #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ | ||
| 63 | #define SYMBOL_RUNA 0 | ||
| 64 | #define SYMBOL_RUNB 1 | ||
| 65 | |||
| 66 | /* Status return values */ | ||
| 67 | #define RETVAL_OK 0 | ||
| 68 | #define RETVAL_LAST_BLOCK (-1) | ||
| 69 | #define RETVAL_NOT_BZIP_DATA (-2) | ||
| 70 | #define RETVAL_UNEXPECTED_INPUT_EOF (-3) | ||
| 71 | #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) | ||
| 72 | #define RETVAL_DATA_ERROR (-5) | ||
| 73 | #define RETVAL_OUT_OF_MEMORY (-6) | ||
| 74 | #define RETVAL_OBSOLETE_INPUT (-7) | ||
| 75 | |||
| 76 | /* Other housekeeping constants */ | ||
| 77 | #define BZIP2_IOBUF_SIZE 4096 | ||
| 78 | |||
| 79 | /* This is what we know about each Huffman coding group */ | ||
| 80 | struct group_data { | ||
| 81 | /* We have an extra slot at the end of limit[] for a sentinal value. */ | ||
| 82 | int limit[MAX_HUFCODE_BITS+1]; | ||
| 83 | int base[MAX_HUFCODE_BITS]; | ||
| 84 | int permute[MAX_SYMBOLS]; | ||
| 85 | int minLen, maxLen; | ||
| 86 | }; | ||
| 87 | |||
| 88 | /* Structure holding all the housekeeping data, including IO buffers and | ||
| 89 | memory that persists between calls to bunzip */ | ||
| 90 | struct bunzip_data { | ||
| 91 | /* State for interrupting output loop */ | ||
| 92 | int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; | ||
| 93 | /* I/O tracking data (file handles, buffers, positions, etc.) */ | ||
| 94 | int (*fill)(void*, unsigned int); | ||
| 95 | int inbufCount, inbufPos /*, outbufPos*/; | ||
| 96 | unsigned char *inbuf /*,*outbuf*/; | ||
| 97 | unsigned int inbufBitCount, inbufBits; | ||
| 98 | /* The CRC values stored in the block header and calculated from the | ||
| 99 | data */ | ||
| 100 | unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; | ||
| 101 | /* Intermediate buffer and its size (in bytes) */ | ||
| 102 | unsigned int *dbuf, dbufSize; | ||
| 103 | /* These things are a bit too big to go on the stack */ | ||
| 104 | unsigned char selectors[32768]; /* nSelectors = 15 bits */ | ||
| 105 | struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ | ||
| 106 | int io_error; /* non-zero if we have IO error */ | ||
| 107 | }; | ||
| 108 | |||
| 109 | |||
| 110 | /* Return the next nnn bits of input. All reads from the compressed input | ||
| 111 | are done through this function. All reads are big endian */ | ||
| 112 | static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) | ||
| 113 | { | ||
| 114 | unsigned int bits = 0; | ||
| 115 | |||
| 116 | /* If we need to get more data from the byte buffer, do so. | ||
| 117 | (Loop getting one byte at a time to enforce endianness and avoid | ||
| 118 | unaligned access.) */ | ||
| 119 | while (bd->inbufBitCount < bits_wanted) { | ||
| 120 | /* If we need to read more data from file into byte buffer, do | ||
| 121 | so */ | ||
| 122 | if (bd->inbufPos == bd->inbufCount) { | ||
| 123 | if (bd->io_error) | ||
| 124 | return 0; | ||
| 125 | bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); | ||
| 126 | if (bd->inbufCount <= 0) { | ||
| 127 | bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; | ||
| 128 | return 0; | ||
| 129 | } | ||
| 130 | bd->inbufPos = 0; | ||
| 131 | } | ||
| 132 | /* Avoid 32-bit overflow (dump bit buffer to top of output) */ | ||
| 133 | if (bd->inbufBitCount >= 24) { | ||
| 134 | bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); | ||
| 135 | bits_wanted -= bd->inbufBitCount; | ||
| 136 | bits <<= bits_wanted; | ||
| 137 | bd->inbufBitCount = 0; | ||
| 138 | } | ||
| 139 | /* Grab next 8 bits of input from buffer. */ | ||
| 140 | bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | ||
| 141 | bd->inbufBitCount += 8; | ||
| 142 | } | ||
| 143 | /* Calculate result */ | ||
| 144 | bd->inbufBitCount -= bits_wanted; | ||
| 145 | bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); | ||
| 146 | |||
| 147 | return bits; | ||
| 148 | } | ||
| 149 | |||
| 150 | /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ | ||
| 151 | |||
| 152 | static int INIT get_next_block(struct bunzip_data *bd) | ||
| 153 | { | ||
| 154 | struct group_data *hufGroup = NULL; | ||
| 155 | int *base = NULL; | ||
| 156 | int *limit = NULL; | ||
| 157 | int dbufCount, nextSym, dbufSize, groupCount, selector, | ||
| 158 | i, j, k, t, runPos, symCount, symTotal, nSelectors, | ||
| 159 | byteCount[256]; | ||
| 160 | unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; | ||
| 161 | unsigned int *dbuf, origPtr; | ||
| 162 | |||
| 163 | dbuf = bd->dbuf; | ||
| 164 | dbufSize = bd->dbufSize; | ||
| 165 | selectors = bd->selectors; | ||
| 166 | |||
| 167 | /* Read in header signature and CRC, then validate signature. | ||
| 168 | (last block signature means CRC is for whole file, return now) */ | ||
| 169 | i = get_bits(bd, 24); | ||
| 170 | j = get_bits(bd, 24); | ||
| 171 | bd->headerCRC = get_bits(bd, 32); | ||
| 172 | if ((i == 0x177245) && (j == 0x385090)) | ||
| 173 | return RETVAL_LAST_BLOCK; | ||
| 174 | if ((i != 0x314159) || (j != 0x265359)) | ||
| 175 | return RETVAL_NOT_BZIP_DATA; | ||
| 176 | /* We can add support for blockRandomised if anybody complains. | ||
| 177 | There was some code for this in busybox 1.0.0-pre3, but nobody ever | ||
| 178 | noticed that it didn't actually work. */ | ||
| 179 | if (get_bits(bd, 1)) | ||
| 180 | return RETVAL_OBSOLETE_INPUT; | ||
| 181 | origPtr = get_bits(bd, 24); | ||
| 182 | if (origPtr > dbufSize) | ||
| 183 | return RETVAL_DATA_ERROR; | ||
| 184 | /* mapping table: if some byte values are never used (encoding things | ||
| 185 | like ascii text), the compression code removes the gaps to have fewer | ||
| 186 | symbols to deal with, and writes a sparse bitfield indicating which | ||
| 187 | values were present. We make a translation table to convert the | ||
| 188 | symbols back to the corresponding bytes. */ | ||
| 189 | t = get_bits(bd, 16); | ||
| 190 | symTotal = 0; | ||
| 191 | for (i = 0; i < 16; i++) { | ||
| 192 | if (t&(1 << (15-i))) { | ||
| 193 | k = get_bits(bd, 16); | ||
| 194 | for (j = 0; j < 16; j++) | ||
| 195 | if (k&(1 << (15-j))) | ||
| 196 | symToByte[symTotal++] = (16*i)+j; | ||
| 197 | } | ||
| 198 | } | ||
| 199 | /* How many different Huffman coding groups does this block use? */ | ||
| 200 | groupCount = get_bits(bd, 3); | ||
| 201 | if (groupCount < 2 || groupCount > MAX_GROUPS) | ||
| 202 | return RETVAL_DATA_ERROR; | ||
| 203 | /* nSelectors: Every GROUP_SIZE many symbols we select a new | ||
| 204 | Huffman coding group. Read in the group selector list, | ||
| 205 | which is stored as MTF encoded bit runs. (MTF = Move To | ||
| 206 | Front, as each value is used it's moved to the start of the | ||
| 207 | list.) */ | ||
| 208 | nSelectors = get_bits(bd, 15); | ||
| 209 | if (!nSelectors) | ||
| 210 | return RETVAL_DATA_ERROR; | ||
| 211 | for (i = 0; i < groupCount; i++) | ||
| 212 | mtfSymbol[i] = i; | ||
| 213 | for (i = 0; i < nSelectors; i++) { | ||
| 214 | /* Get next value */ | ||
| 215 | for (j = 0; get_bits(bd, 1); j++) | ||
| 216 | if (j >= groupCount) | ||
| 217 | return RETVAL_DATA_ERROR; | ||
| 218 | /* Decode MTF to get the next selector */ | ||
| 219 | uc = mtfSymbol[j]; | ||
| 220 | for (; j; j--) | ||
| 221 | mtfSymbol[j] = mtfSymbol[j-1]; | ||
| 222 | mtfSymbol[0] = selectors[i] = uc; | ||
| 223 | } | ||
| 224 | /* Read the Huffman coding tables for each group, which code | ||
| 225 | for symTotal literal symbols, plus two run symbols (RUNA, | ||
| 226 | RUNB) */ | ||
| 227 | symCount = symTotal+2; | ||
| 228 | for (j = 0; j < groupCount; j++) { | ||
| 229 | unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; | ||
| 230 | int minLen, maxLen, pp; | ||
| 231 | /* Read Huffman code lengths for each symbol. They're | ||
| 232 | stored in a way similar to mtf; record a starting | ||
| 233 | value for the first symbol, and an offset from the | ||
| 234 | previous value for everys symbol after that. | ||
| 235 | (Subtracting 1 before the loop and then adding it | ||
| 236 | back at the end is an optimization that makes the | ||
| 237 | test inside the loop simpler: symbol length 0 | ||
| 238 | becomes negative, so an unsigned inequality catches | ||
| 239 | it.) */ | ||
| 240 | t = get_bits(bd, 5)-1; | ||
| 241 | for (i = 0; i < symCount; i++) { | ||
| 242 | for (;;) { | ||
| 243 | if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) | ||
| 244 | return RETVAL_DATA_ERROR; | ||
| 245 | |||
| 246 | /* If first bit is 0, stop. Else | ||
| 247 | second bit indicates whether to | ||
| 248 | increment or decrement the value. | ||
| 249 | Optimization: grab 2 bits and unget | ||
| 250 | the second if the first was 0. */ | ||
| 251 | |||
| 252 | k = get_bits(bd, 2); | ||
| 253 | if (k < 2) { | ||
| 254 | bd->inbufBitCount++; | ||
| 255 | break; | ||
| 256 | } | ||
| 257 | /* Add one if second bit 1, else | ||
| 258 | * subtract 1. Avoids if/else */ | ||
| 259 | t += (((k+1)&2)-1); | ||
| 260 | } | ||
| 261 | /* Correct for the initial -1, to get the | ||
| 262 | * final symbol length */ | ||
| 263 | length[i] = t+1; | ||
| 264 | } | ||
| 265 | /* Find largest and smallest lengths in this group */ | ||
| 266 | minLen = maxLen = length[0]; | ||
| 267 | |||
| 268 | for (i = 1; i < symCount; i++) { | ||
| 269 | if (length[i] > maxLen) | ||
| 270 | maxLen = length[i]; | ||
| 271 | else if (length[i] < minLen) | ||
| 272 | minLen = length[i]; | ||
| 273 | } | ||
| 274 | |||
| 275 | /* Calculate permute[], base[], and limit[] tables from | ||
| 276 | * length[]. | ||
| 277 | * | ||
| 278 | * permute[] is the lookup table for converting | ||
| 279 | * Huffman coded symbols into decoded symbols. base[] | ||
| 280 | * is the amount to subtract from the value of a | ||
| 281 | * Huffman symbol of a given length when using | ||
| 282 | * permute[]. | ||
| 283 | * | ||
| 284 | * limit[] indicates the largest numerical value a | ||
| 285 | * symbol with a given number of bits can have. This | ||
| 286 | * is how the Huffman codes can vary in length: each | ||
| 287 | * code with a value > limit[length] needs another | ||
| 288 | * bit. | ||
| 289 | */ | ||
| 290 | hufGroup = bd->groups+j; | ||
| 291 | hufGroup->minLen = minLen; | ||
| 292 | hufGroup->maxLen = maxLen; | ||
| 293 | /* Note that minLen can't be smaller than 1, so we | ||
| 294 | adjust the base and limit array pointers so we're | ||
| 295 | not always wasting the first entry. We do this | ||
| 296 | again when using them (during symbol decoding).*/ | ||
| 297 | base = hufGroup->base-1; | ||
| 298 | limit = hufGroup->limit-1; | ||
| 299 | /* Calculate permute[]. Concurently, initialize | ||
| 300 | * temp[] and limit[]. */ | ||
| 301 | pp = 0; | ||
| 302 | for (i = minLen; i <= maxLen; i++) { | ||
| 303 | temp[i] = limit[i] = 0; | ||
| 304 | for (t = 0; t < symCount; t++) | ||
| 305 | if (length[t] == i) | ||
| 306 | hufGroup->permute[pp++] = t; | ||
| 307 | } | ||
| 308 | /* Count symbols coded for at each bit length */ | ||
| 309 | for (i = 0; i < symCount; i++) | ||
| 310 | temp[length[i]]++; | ||
| 311 | /* Calculate limit[] (the largest symbol-coding value | ||
| 312 | *at each bit length, which is (previous limit << | ||
| 313 | *1)+symbols at this level), and base[] (number of | ||
| 314 | *symbols to ignore at each bit length, which is limit | ||
| 315 | *minus the cumulative count of symbols coded for | ||
| 316 | *already). */ | ||
| 317 | pp = t = 0; | ||
| 318 | for (i = minLen; i < maxLen; i++) { | ||
| 319 | pp += temp[i]; | ||
| 320 | /* We read the largest possible symbol size | ||
| 321 | and then unget bits after determining how | ||
| 322 | many we need, and those extra bits could be | ||
| 323 | set to anything. (They're noise from | ||
| 324 | future symbols.) At each level we're | ||
| 325 | really only interested in the first few | ||
| 326 | bits, so here we set all the trailing | ||
| 327 | to-be-ignored bits to 1 so they don't | ||
| 328 | affect the value > limit[length] | ||
| 329 | comparison. */ | ||
| 330 | limit[i] = (pp << (maxLen - i)) - 1; | ||
| 331 | pp <<= 1; | ||
| 332 | base[i+1] = pp-(t += temp[i]); | ||
| 333 | } | ||
| 334 | limit[maxLen+1] = INT_MAX; /* Sentinal value for | ||
| 335 | * reading next sym. */ | ||
| 336 | limit[maxLen] = pp+temp[maxLen]-1; | ||
| 337 | base[minLen] = 0; | ||
| 338 | } | ||
| 339 | /* We've finished reading and digesting the block header. Now | ||
| 340 | read this block's Huffman coded symbols from the file and | ||
| 341 | undo the Huffman coding and run length encoding, saving the | ||
| 342 | result into dbuf[dbufCount++] = uc */ | ||
| 343 | |||
| 344 | /* Initialize symbol occurrence counters and symbol Move To | ||
| 345 | * Front table */ | ||
| 346 | for (i = 0; i < 256; i++) { | ||
| 347 | byteCount[i] = 0; | ||
| 348 | mtfSymbol[i] = (unsigned char)i; | ||
| 349 | } | ||
| 350 | /* Loop through compressed symbols. */ | ||
| 351 | runPos = dbufCount = symCount = selector = 0; | ||
| 352 | for (;;) { | ||
| 353 | /* Determine which Huffman coding group to use. */ | ||
| 354 | if (!(symCount--)) { | ||
| 355 | symCount = GROUP_SIZE-1; | ||
| 356 | if (selector >= nSelectors) | ||
| 357 | return RETVAL_DATA_ERROR; | ||
| 358 | hufGroup = bd->groups+selectors[selector++]; | ||
| 359 | base = hufGroup->base-1; | ||
| 360 | limit = hufGroup->limit-1; | ||
| 361 | } | ||
| 362 | /* Read next Huffman-coded symbol. */ | ||
| 363 | /* Note: It is far cheaper to read maxLen bits and | ||
| 364 | back up than it is to read minLen bits and then an | ||
| 365 | additional bit at a time, testing as we go. | ||
| 366 | Because there is a trailing last block (with file | ||
| 367 | CRC), there is no danger of the overread causing an | ||
| 368 | unexpected EOF for a valid compressed file. As a | ||
| 369 | further optimization, we do the read inline | ||
| 370 | (falling back to a call to get_bits if the buffer | ||
| 371 | runs dry). The following (up to got_huff_bits:) is | ||
| 372 | equivalent to j = get_bits(bd, hufGroup->maxLen); | ||
| 373 | */ | ||
| 374 | while (bd->inbufBitCount < hufGroup->maxLen) { | ||
| 375 | if (bd->inbufPos == bd->inbufCount) { | ||
| 376 | j = get_bits(bd, hufGroup->maxLen); | ||
| 377 | goto got_huff_bits; | ||
| 378 | } | ||
| 379 | bd->inbufBits = | ||
| 380 | (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | ||
| 381 | bd->inbufBitCount += 8; | ||
| 382 | }; | ||
| 383 | bd->inbufBitCount -= hufGroup->maxLen; | ||
| 384 | j = (bd->inbufBits >> bd->inbufBitCount)& | ||
| 385 | ((1 << hufGroup->maxLen)-1); | ||
| 386 | got_huff_bits: | ||
| 387 | /* Figure how how many bits are in next symbol and | ||
| 388 | * unget extras */ | ||
| 389 | i = hufGroup->minLen; | ||
| 390 | while (j > limit[i]) | ||
| 391 | ++i; | ||
| 392 | bd->inbufBitCount += (hufGroup->maxLen - i); | ||
| 393 | /* Huffman decode value to get nextSym (with bounds checking) */ | ||
| 394 | if ((i > hufGroup->maxLen) | ||
| 395 | || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) | ||
| 396 | >= MAX_SYMBOLS)) | ||
| 397 | return RETVAL_DATA_ERROR; | ||
| 398 | nextSym = hufGroup->permute[j]; | ||
| 399 | /* We have now decoded the symbol, which indicates | ||
| 400 | either a new literal byte, or a repeated run of the | ||
| 401 | most recent literal byte. First, check if nextSym | ||
| 402 | indicates a repeated run, and if so loop collecting | ||
| 403 | how many times to repeat the last literal. */ | ||
| 404 | if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ | ||
| 405 | /* If this is the start of a new run, zero out | ||
| 406 | * counter */ | ||
| 407 | if (!runPos) { | ||
| 408 | runPos = 1; | ||
| 409 | t = 0; | ||
| 410 | } | ||
| 411 | /* Neat trick that saves 1 symbol: instead of | ||
| 412 | or-ing 0 or 1 at each bit position, add 1 | ||
| 413 | or 2 instead. For example, 1011 is 1 << 0 | ||
| 414 | + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 | ||
| 415 | + 1 << 2. You can make any bit pattern | ||
| 416 | that way using 1 less symbol than the basic | ||
| 417 | or 0/1 method (except all bits 0, which | ||
| 418 | would use no symbols, but a run of length 0 | ||
| 419 | doesn't mean anything in this context). | ||
| 420 | Thus space is saved. */ | ||
| 421 | t += (runPos << nextSym); | ||
| 422 | /* +runPos if RUNA; +2*runPos if RUNB */ | ||
| 423 | |||
| 424 | runPos <<= 1; | ||
| 425 | continue; | ||
| 426 | } | ||
| 427 | /* When we hit the first non-run symbol after a run, | ||
| 428 | we now know how many times to repeat the last | ||
| 429 | literal, so append that many copies to our buffer | ||
| 430 | of decoded symbols (dbuf) now. (The last literal | ||
| 431 | used is the one at the head of the mtfSymbol | ||
| 432 | array.) */ | ||
| 433 | if (runPos) { | ||
| 434 | runPos = 0; | ||
| 435 | if (dbufCount+t >= dbufSize) | ||
| 436 | return RETVAL_DATA_ERROR; | ||
| 437 | |||
| 438 | uc = symToByte[mtfSymbol[0]]; | ||
| 439 | byteCount[uc] += t; | ||
| 440 | while (t--) | ||
| 441 | dbuf[dbufCount++] = uc; | ||
| 442 | } | ||
| 443 | /* Is this the terminating symbol? */ | ||
| 444 | if (nextSym > symTotal) | ||
| 445 | break; | ||
| 446 | /* At this point, nextSym indicates a new literal | ||
| 447 | character. Subtract one to get the position in the | ||
| 448 | MTF array at which this literal is currently to be | ||
| 449 | found. (Note that the result can't be -1 or 0, | ||
| 450 | because 0 and 1 are RUNA and RUNB. But another | ||
| 451 | instance of the first symbol in the mtf array, | ||
| 452 | position 0, would have been handled as part of a | ||
| 453 | run above. Therefore 1 unused mtf position minus 2 | ||
| 454 | non-literal nextSym values equals -1.) */ | ||
| 455 | if (dbufCount >= dbufSize) | ||
| 456 | return RETVAL_DATA_ERROR; | ||
| 457 | i = nextSym - 1; | ||
| 458 | uc = mtfSymbol[i]; | ||
| 459 | /* Adjust the MTF array. Since we typically expect to | ||
| 460 | *move only a small number of symbols, and are bound | ||
| 461 | *by 256 in any case, using memmove here would | ||
| 462 | *typically be bigger and slower due to function call | ||
| 463 | *overhead and other assorted setup costs. */ | ||
| 464 | do { | ||
| 465 | mtfSymbol[i] = mtfSymbol[i-1]; | ||
| 466 | } while (--i); | ||
| 467 | mtfSymbol[0] = uc; | ||
| 468 | uc = symToByte[uc]; | ||
| 469 | /* We have our literal byte. Save it into dbuf. */ | ||
| 470 | byteCount[uc]++; | ||
| 471 | dbuf[dbufCount++] = (unsigned int)uc; | ||
| 472 | } | ||
| 473 | /* At this point, we've read all the Huffman-coded symbols | ||
| 474 | (and repeated runs) for this block from the input stream, | ||
| 475 | and decoded them into the intermediate buffer. There are | ||
| 476 | dbufCount many decoded bytes in dbuf[]. Now undo the | ||
| 477 | Burrows-Wheeler transform on dbuf. See | ||
| 478 | http://dogma.net/markn/articles/bwt/bwt.htm | ||
| 479 | */ | ||
| 480 | /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ | ||
| 481 | j = 0; | ||
| 482 | for (i = 0; i < 256; i++) { | ||
| 483 | k = j+byteCount[i]; | ||
| 484 | byteCount[i] = j; | ||
| 485 | j = k; | ||
| 486 | } | ||
| 487 | /* Figure out what order dbuf would be in if we sorted it. */ | ||
| 488 | for (i = 0; i < dbufCount; i++) { | ||
| 489 | uc = (unsigned char)(dbuf[i] & 0xff); | ||
| 490 | dbuf[byteCount[uc]] |= (i << 8); | ||
| 491 | byteCount[uc]++; | ||
| 492 | } | ||
| 493 | /* Decode first byte by hand to initialize "previous" byte. | ||
| 494 | Note that it doesn't get output, and if the first three | ||
| 495 | characters are identical it doesn't qualify as a run (hence | ||
| 496 | writeRunCountdown = 5). */ | ||
| 497 | if (dbufCount) { | ||
| 498 | if (origPtr >= dbufCount) | ||
| 499 | return RETVAL_DATA_ERROR; | ||
| 500 | bd->writePos = dbuf[origPtr]; | ||
| 501 | bd->writeCurrent = (unsigned char)(bd->writePos&0xff); | ||
| 502 | bd->writePos >>= 8; | ||
| 503 | bd->writeRunCountdown = 5; | ||
| 504 | } | ||
| 505 | bd->writeCount = dbufCount; | ||
| 506 | |||
| 507 | return RETVAL_OK; | ||
| 508 | } | ||
| 509 | |||
| 510 | /* Undo burrows-wheeler transform on intermediate buffer to produce output. | ||
| 511 | If start_bunzip was initialized with out_fd =-1, then up to len bytes of | ||
| 512 | data are written to outbuf. Return value is number of bytes written or | ||
| 513 | error (all errors are negative numbers). If out_fd!=-1, outbuf and len | ||
| 514 | are ignored, data is written to out_fd and return is RETVAL_OK or error. | ||
| 515 | */ | ||
| 516 | |||
| 517 | static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) | ||
| 518 | { | ||
| 519 | const unsigned int *dbuf; | ||
| 520 | int pos, xcurrent, previous, gotcount; | ||
| 521 | |||
| 522 | /* If last read was short due to end of file, return last block now */ | ||
| 523 | if (bd->writeCount < 0) | ||
| 524 | return bd->writeCount; | ||
| 525 | |||
| 526 | gotcount = 0; | ||
| 527 | dbuf = bd->dbuf; | ||
| 528 | pos = bd->writePos; | ||
| 529 | xcurrent = bd->writeCurrent; | ||
| 530 | |||
| 531 | /* We will always have pending decoded data to write into the output | ||
| 532 | buffer unless this is the very first call (in which case we haven't | ||
| 533 | Huffman-decoded a block into the intermediate buffer yet). */ | ||
| 534 | |||
| 535 | if (bd->writeCopies) { | ||
| 536 | /* Inside the loop, writeCopies means extra copies (beyond 1) */ | ||
| 537 | --bd->writeCopies; | ||
| 538 | /* Loop outputting bytes */ | ||
| 539 | for (;;) { | ||
| 540 | /* If the output buffer is full, snapshot | ||
| 541 | * state and return */ | ||
| 542 | if (gotcount >= len) { | ||
| 543 | bd->writePos = pos; | ||
| 544 | bd->writeCurrent = xcurrent; | ||
| 545 | bd->writeCopies++; | ||
| 546 | return len; | ||
| 547 | } | ||
| 548 | /* Write next byte into output buffer, updating CRC */ | ||
| 549 | outbuf[gotcount++] = xcurrent; | ||
| 550 | bd->writeCRC = (((bd->writeCRC) << 8) | ||
| 551 | ^bd->crc32Table[((bd->writeCRC) >> 24) | ||
| 552 | ^xcurrent]); | ||
| 553 | /* Loop now if we're outputting multiple | ||
| 554 | * copies of this byte */ | ||
| 555 | if (bd->writeCopies) { | ||
| 556 | --bd->writeCopies; | ||
| 557 | continue; | ||
| 558 | } | ||
| 559 | decode_next_byte: | ||
| 560 | if (!bd->writeCount--) | ||
| 561 | break; | ||
| 562 | /* Follow sequence vector to undo | ||
| 563 | * Burrows-Wheeler transform */ | ||
| 564 | previous = xcurrent; | ||
| 565 | pos = dbuf[pos]; | ||
| 566 | xcurrent = pos&0xff; | ||
| 567 | pos >>= 8; | ||
| 568 | /* After 3 consecutive copies of the same | ||
| 569 | byte, the 4th is a repeat count. We count | ||
| 570 | down from 4 instead *of counting up because | ||
| 571 | testing for non-zero is faster */ | ||
| 572 | if (--bd->writeRunCountdown) { | ||
| 573 | if (xcurrent != previous) | ||
| 574 | bd->writeRunCountdown = 4; | ||
| 575 | } else { | ||
| 576 | /* We have a repeated run, this byte | ||
| 577 | * indicates the count */ | ||
| 578 | bd->writeCopies = xcurrent; | ||
| 579 | xcurrent = previous; | ||
| 580 | bd->writeRunCountdown = 5; | ||
| 581 | /* Sometimes there are just 3 bytes | ||
| 582 | * (run length 0) */ | ||
| 583 | if (!bd->writeCopies) | ||
| 584 | goto decode_next_byte; | ||
| 585 | /* Subtract the 1 copy we'd output | ||
| 586 | * anyway to get extras */ | ||
| 587 | --bd->writeCopies; | ||
| 588 | } | ||
| 589 | } | ||
| 590 | /* Decompression of this block completed successfully */ | ||
| 591 | bd->writeCRC = ~bd->writeCRC; | ||
| 592 | bd->totalCRC = ((bd->totalCRC << 1) | | ||
| 593 | (bd->totalCRC >> 31)) ^ bd->writeCRC; | ||
| 594 | /* If this block had a CRC error, force file level CRC error. */ | ||
| 595 | if (bd->writeCRC != bd->headerCRC) { | ||
| 596 | bd->totalCRC = bd->headerCRC+1; | ||
| 597 | return RETVAL_LAST_BLOCK; | ||
| 598 | } | ||
| 599 | } | ||
| 600 | |||
| 601 | /* Refill the intermediate buffer by Huffman-decoding next | ||
| 602 | * block of input */ | ||
| 603 | /* (previous is just a convenient unused temp variable here) */ | ||
| 604 | previous = get_next_block(bd); | ||
| 605 | if (previous) { | ||
| 606 | bd->writeCount = previous; | ||
| 607 | return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; | ||
| 608 | } | ||
| 609 | bd->writeCRC = 0xffffffffUL; | ||
| 610 | pos = bd->writePos; | ||
| 611 | xcurrent = bd->writeCurrent; | ||
| 612 | goto decode_next_byte; | ||
| 613 | } | ||
| 614 | |||
| 615 | static int INIT nofill(void *buf, unsigned int len) | ||
| 616 | { | ||
| 617 | return -1; | ||
| 618 | } | ||
| 619 | |||
| 620 | /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain | ||
| 621 | a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are | ||
| 622 | ignored, and data is read from file handle into temporary buffer. */ | ||
| 623 | static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, | ||
| 624 | int (*fill)(void*, unsigned int)) | ||
| 625 | { | ||
| 626 | struct bunzip_data *bd; | ||
| 627 | unsigned int i, j, c; | ||
| 628 | const unsigned int BZh0 = | ||
| 629 | (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) | ||
| 630 | +(((unsigned int)'h') << 8)+(unsigned int)'0'; | ||
| 631 | |||
| 632 | /* Figure out how much data to allocate */ | ||
| 633 | i = sizeof(struct bunzip_data); | ||
| 634 | |||
| 635 | /* Allocate bunzip_data. Most fields initialize to zero. */ | ||
| 636 | bd = *bdp = malloc(i); | ||
| 637 | memset(bd, 0, sizeof(struct bunzip_data)); | ||
| 638 | /* Setup input buffer */ | ||
| 639 | bd->inbuf = inbuf; | ||
| 640 | bd->inbufCount = len; | ||
| 641 | if (fill != NULL) | ||
| 642 | bd->fill = fill; | ||
| 643 | else | ||
| 644 | bd->fill = nofill; | ||
| 645 | |||
| 646 | /* Init the CRC32 table (big endian) */ | ||
| 647 | for (i = 0; i < 256; i++) { | ||
| 648 | c = i << 24; | ||
| 649 | for (j = 8; j; j--) | ||
| 650 | c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); | ||
| 651 | bd->crc32Table[i] = c; | ||
| 652 | } | ||
| 653 | |||
| 654 | /* Ensure that file starts with "BZh['1'-'9']." */ | ||
| 655 | i = get_bits(bd, 32); | ||
| 656 | if (((unsigned int)(i-BZh0-1)) >= 9) | ||
| 657 | return RETVAL_NOT_BZIP_DATA; | ||
| 658 | |||
| 659 | /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of | ||
| 660 | uncompressed data. Allocate intermediate buffer for block. */ | ||
| 661 | bd->dbufSize = 100000*(i-BZh0); | ||
| 662 | |||
| 663 | bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); | ||
| 664 | return RETVAL_OK; | ||
| 665 | } | ||
| 666 | |||
| 667 | /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, | ||
| 668 | not end of file.) */ | ||
| 669 | STATIC int INIT bunzip2(unsigned char *buf, int len, | ||
| 670 | int(*fill)(void*, unsigned int), | ||
| 671 | int(*flush)(void*, unsigned int), | ||
| 672 | unsigned char *outbuf, | ||
| 673 | int *pos, | ||
| 674 | void(*error_fn)(char *x)) | ||
| 675 | { | ||
| 676 | struct bunzip_data *bd; | ||
| 677 | int i = -1; | ||
| 678 | unsigned char *inbuf; | ||
| 679 | |||
| 680 | set_error_fn(error_fn); | ||
| 681 | if (flush) | ||
| 682 | outbuf = malloc(BZIP2_IOBUF_SIZE); | ||
| 683 | else | ||
| 684 | len -= 4; /* Uncompressed size hack active in pre-boot | ||
| 685 | environment */ | ||
| 686 | if (!outbuf) { | ||
| 687 | error("Could not allocate output bufer"); | ||
| 688 | return -1; | ||
| 689 | } | ||
| 690 | if (buf) | ||
| 691 | inbuf = buf; | ||
| 692 | else | ||
| 693 | inbuf = malloc(BZIP2_IOBUF_SIZE); | ||
| 694 | if (!inbuf) { | ||
| 695 | error("Could not allocate input bufer"); | ||
| 696 | goto exit_0; | ||
| 697 | } | ||
| 698 | i = start_bunzip(&bd, inbuf, len, fill); | ||
| 699 | if (!i) { | ||
| 700 | for (;;) { | ||
| 701 | i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); | ||
| 702 | if (i <= 0) | ||
| 703 | break; | ||
| 704 | if (!flush) | ||
| 705 | outbuf += i; | ||
| 706 | else | ||
| 707 | if (i != flush(outbuf, i)) { | ||
| 708 | i = RETVAL_UNEXPECTED_OUTPUT_EOF; | ||
| 709 | break; | ||
| 710 | } | ||
| 711 | } | ||
| 712 | } | ||
| 713 | /* Check CRC and release memory */ | ||
| 714 | if (i == RETVAL_LAST_BLOCK) { | ||
| 715 | if (bd->headerCRC != bd->totalCRC) | ||
| 716 | error("Data integrity error when decompressing."); | ||
| 717 | else | ||
| 718 | i = RETVAL_OK; | ||
| 719 | } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { | ||
| 720 | error("Compressed file ends unexpectedly"); | ||
| 721 | } | ||
| 722 | if (bd->dbuf) | ||
| 723 | large_free(bd->dbuf); | ||
| 724 | if (pos) | ||
| 725 | *pos = bd->inbufPos; | ||
| 726 | free(bd); | ||
| 727 | if (!buf) | ||
| 728 | free(inbuf); | ||
| 729 | exit_0: | ||
| 730 | if (flush) | ||
| 731 | free(outbuf); | ||
| 732 | return i; | ||
| 733 | } | ||
| 734 | |||
| 735 | #define decompress bunzip2 | ||
