diff options
Diffstat (limited to 'lib/decompress_bunzip2.c')
-rw-r--r-- | lib/decompress_bunzip2.c | 736 |
1 files changed, 736 insertions, 0 deletions
diff --git a/lib/decompress_bunzip2.c b/lib/decompress_bunzip2.c new file mode 100644 index 000000000000..708e2a86d87b --- /dev/null +++ b/lib/decompress_bunzip2.c | |||
@@ -0,0 +1,736 @@ | |||
1 | /* vi: set sw = 4 ts = 4: */ | ||
2 | /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). | ||
3 | |||
4 | Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), | ||
5 | which also acknowledges contributions by Mike Burrows, David Wheeler, | ||
6 | Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, | ||
7 | Robert Sedgewick, and Jon L. Bentley. | ||
8 | |||
9 | This code is licensed under the LGPLv2: | ||
10 | LGPL (http://www.gnu.org/copyleft/lgpl.html | ||
11 | */ | ||
12 | |||
13 | /* | ||
14 | Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). | ||
15 | |||
16 | More efficient reading of Huffman codes, a streamlined read_bunzip() | ||
17 | function, and various other tweaks. In (limited) tests, approximately | ||
18 | 20% faster than bzcat on x86 and about 10% faster on arm. | ||
19 | |||
20 | Note that about 2/3 of the time is spent in read_unzip() reversing | ||
21 | the Burrows-Wheeler transformation. Much of that time is delay | ||
22 | resulting from cache misses. | ||
23 | |||
24 | I would ask that anyone benefiting from this work, especially those | ||
25 | using it in commercial products, consider making a donation to my local | ||
26 | non-profit hospice organization in the name of the woman I loved, who | ||
27 | passed away Feb. 12, 2003. | ||
28 | |||
29 | In memory of Toni W. Hagan | ||
30 | |||
31 | Hospice of Acadiana, Inc. | ||
32 | 2600 Johnston St., Suite 200 | ||
33 | Lafayette, LA 70503-3240 | ||
34 | |||
35 | Phone (337) 232-1234 or 1-800-738-2226 | ||
36 | Fax (337) 232-1297 | ||
37 | |||
38 | http://www.hospiceacadiana.com/ | ||
39 | |||
40 | Manuel | ||
41 | */ | ||
42 | |||
43 | /* | ||
44 | Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) | ||
45 | */ | ||
46 | |||
47 | |||
48 | #ifndef STATIC | ||
49 | #include <linux/decompress/bunzip2.h> | ||
50 | #endif /* !STATIC */ | ||
51 | |||
52 | #include <linux/decompress/mm.h> | ||
53 | #include <linux/slab.h> | ||
54 | |||
55 | #ifndef INT_MAX | ||
56 | #define INT_MAX 0x7fffffff | ||
57 | #endif | ||
58 | |||
59 | /* Constants for Huffman coding */ | ||
60 | #define MAX_GROUPS 6 | ||
61 | #define GROUP_SIZE 50 /* 64 would have been more efficient */ | ||
62 | #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ | ||
63 | #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ | ||
64 | #define SYMBOL_RUNA 0 | ||
65 | #define SYMBOL_RUNB 1 | ||
66 | |||
67 | /* Status return values */ | ||
68 | #define RETVAL_OK 0 | ||
69 | #define RETVAL_LAST_BLOCK (-1) | ||
70 | #define RETVAL_NOT_BZIP_DATA (-2) | ||
71 | #define RETVAL_UNEXPECTED_INPUT_EOF (-3) | ||
72 | #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) | ||
73 | #define RETVAL_DATA_ERROR (-5) | ||
74 | #define RETVAL_OUT_OF_MEMORY (-6) | ||
75 | #define RETVAL_OBSOLETE_INPUT (-7) | ||
76 | |||
77 | /* Other housekeeping constants */ | ||
78 | #define BZIP2_IOBUF_SIZE 4096 | ||
79 | |||
80 | /* This is what we know about each Huffman coding group */ | ||
81 | struct group_data { | ||
82 | /* We have an extra slot at the end of limit[] for a sentinal value. */ | ||
83 | int limit[MAX_HUFCODE_BITS+1]; | ||
84 | int base[MAX_HUFCODE_BITS]; | ||
85 | int permute[MAX_SYMBOLS]; | ||
86 | int minLen, maxLen; | ||
87 | }; | ||
88 | |||
89 | /* Structure holding all the housekeeping data, including IO buffers and | ||
90 | memory that persists between calls to bunzip */ | ||
91 | struct bunzip_data { | ||
92 | /* State for interrupting output loop */ | ||
93 | int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; | ||
94 | /* I/O tracking data (file handles, buffers, positions, etc.) */ | ||
95 | int (*fill)(void*, unsigned int); | ||
96 | int inbufCount, inbufPos /*, outbufPos*/; | ||
97 | unsigned char *inbuf /*,*outbuf*/; | ||
98 | unsigned int inbufBitCount, inbufBits; | ||
99 | /* The CRC values stored in the block header and calculated from the | ||
100 | data */ | ||
101 | unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; | ||
102 | /* Intermediate buffer and its size (in bytes) */ | ||
103 | unsigned int *dbuf, dbufSize; | ||
104 | /* These things are a bit too big to go on the stack */ | ||
105 | unsigned char selectors[32768]; /* nSelectors = 15 bits */ | ||
106 | struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ | ||
107 | int io_error; /* non-zero if we have IO error */ | ||
108 | }; | ||
109 | |||
110 | |||
111 | /* Return the next nnn bits of input. All reads from the compressed input | ||
112 | are done through this function. All reads are big endian */ | ||
113 | static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) | ||
114 | { | ||
115 | unsigned int bits = 0; | ||
116 | |||
117 | /* If we need to get more data from the byte buffer, do so. | ||
118 | (Loop getting one byte at a time to enforce endianness and avoid | ||
119 | unaligned access.) */ | ||
120 | while (bd->inbufBitCount < bits_wanted) { | ||
121 | /* If we need to read more data from file into byte buffer, do | ||
122 | so */ | ||
123 | if (bd->inbufPos == bd->inbufCount) { | ||
124 | if (bd->io_error) | ||
125 | return 0; | ||
126 | bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); | ||
127 | if (bd->inbufCount <= 0) { | ||
128 | bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; | ||
129 | return 0; | ||
130 | } | ||
131 | bd->inbufPos = 0; | ||
132 | } | ||
133 | /* Avoid 32-bit overflow (dump bit buffer to top of output) */ | ||
134 | if (bd->inbufBitCount >= 24) { | ||
135 | bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); | ||
136 | bits_wanted -= bd->inbufBitCount; | ||
137 | bits <<= bits_wanted; | ||
138 | bd->inbufBitCount = 0; | ||
139 | } | ||
140 | /* Grab next 8 bits of input from buffer. */ | ||
141 | bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | ||
142 | bd->inbufBitCount += 8; | ||
143 | } | ||
144 | /* Calculate result */ | ||
145 | bd->inbufBitCount -= bits_wanted; | ||
146 | bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); | ||
147 | |||
148 | return bits; | ||
149 | } | ||
150 | |||
151 | /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ | ||
152 | |||
153 | static int INIT get_next_block(struct bunzip_data *bd) | ||
154 | { | ||
155 | struct group_data *hufGroup = NULL; | ||
156 | int *base = NULL; | ||
157 | int *limit = NULL; | ||
158 | int dbufCount, nextSym, dbufSize, groupCount, selector, | ||
159 | i, j, k, t, runPos, symCount, symTotal, nSelectors, | ||
160 | byteCount[256]; | ||
161 | unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; | ||
162 | unsigned int *dbuf, origPtr; | ||
163 | |||
164 | dbuf = bd->dbuf; | ||
165 | dbufSize = bd->dbufSize; | ||
166 | selectors = bd->selectors; | ||
167 | |||
168 | /* Read in header signature and CRC, then validate signature. | ||
169 | (last block signature means CRC is for whole file, return now) */ | ||
170 | i = get_bits(bd, 24); | ||
171 | j = get_bits(bd, 24); | ||
172 | bd->headerCRC = get_bits(bd, 32); | ||
173 | if ((i == 0x177245) && (j == 0x385090)) | ||
174 | return RETVAL_LAST_BLOCK; | ||
175 | if ((i != 0x314159) || (j != 0x265359)) | ||
176 | return RETVAL_NOT_BZIP_DATA; | ||
177 | /* We can add support for blockRandomised if anybody complains. | ||
178 | There was some code for this in busybox 1.0.0-pre3, but nobody ever | ||
179 | noticed that it didn't actually work. */ | ||
180 | if (get_bits(bd, 1)) | ||
181 | return RETVAL_OBSOLETE_INPUT; | ||
182 | origPtr = get_bits(bd, 24); | ||
183 | if (origPtr > dbufSize) | ||
184 | return RETVAL_DATA_ERROR; | ||
185 | /* mapping table: if some byte values are never used (encoding things | ||
186 | like ascii text), the compression code removes the gaps to have fewer | ||
187 | symbols to deal with, and writes a sparse bitfield indicating which | ||
188 | values were present. We make a translation table to convert the | ||
189 | symbols back to the corresponding bytes. */ | ||
190 | t = get_bits(bd, 16); | ||
191 | symTotal = 0; | ||
192 | for (i = 0; i < 16; i++) { | ||
193 | if (t&(1 << (15-i))) { | ||
194 | k = get_bits(bd, 16); | ||
195 | for (j = 0; j < 16; j++) | ||
196 | if (k&(1 << (15-j))) | ||
197 | symToByte[symTotal++] = (16*i)+j; | ||
198 | } | ||
199 | } | ||
200 | /* How many different Huffman coding groups does this block use? */ | ||
201 | groupCount = get_bits(bd, 3); | ||
202 | if (groupCount < 2 || groupCount > MAX_GROUPS) | ||
203 | return RETVAL_DATA_ERROR; | ||
204 | /* nSelectors: Every GROUP_SIZE many symbols we select a new | ||
205 | Huffman coding group. Read in the group selector list, | ||
206 | which is stored as MTF encoded bit runs. (MTF = Move To | ||
207 | Front, as each value is used it's moved to the start of the | ||
208 | list.) */ | ||
209 | nSelectors = get_bits(bd, 15); | ||
210 | if (!nSelectors) | ||
211 | return RETVAL_DATA_ERROR; | ||
212 | for (i = 0; i < groupCount; i++) | ||
213 | mtfSymbol[i] = i; | ||
214 | for (i = 0; i < nSelectors; i++) { | ||
215 | /* Get next value */ | ||
216 | for (j = 0; get_bits(bd, 1); j++) | ||
217 | if (j >= groupCount) | ||
218 | return RETVAL_DATA_ERROR; | ||
219 | /* Decode MTF to get the next selector */ | ||
220 | uc = mtfSymbol[j]; | ||
221 | for (; j; j--) | ||
222 | mtfSymbol[j] = mtfSymbol[j-1]; | ||
223 | mtfSymbol[0] = selectors[i] = uc; | ||
224 | } | ||
225 | /* Read the Huffman coding tables for each group, which code | ||
226 | for symTotal literal symbols, plus two run symbols (RUNA, | ||
227 | RUNB) */ | ||
228 | symCount = symTotal+2; | ||
229 | for (j = 0; j < groupCount; j++) { | ||
230 | unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; | ||
231 | int minLen, maxLen, pp; | ||
232 | /* Read Huffman code lengths for each symbol. They're | ||
233 | stored in a way similar to mtf; record a starting | ||
234 | value for the first symbol, and an offset from the | ||
235 | previous value for everys symbol after that. | ||
236 | (Subtracting 1 before the loop and then adding it | ||
237 | back at the end is an optimization that makes the | ||
238 | test inside the loop simpler: symbol length 0 | ||
239 | becomes negative, so an unsigned inequality catches | ||
240 | it.) */ | ||
241 | t = get_bits(bd, 5)-1; | ||
242 | for (i = 0; i < symCount; i++) { | ||
243 | for (;;) { | ||
244 | if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) | ||
245 | return RETVAL_DATA_ERROR; | ||
246 | |||
247 | /* If first bit is 0, stop. Else | ||
248 | second bit indicates whether to | ||
249 | increment or decrement the value. | ||
250 | Optimization: grab 2 bits and unget | ||
251 | the second if the first was 0. */ | ||
252 | |||
253 | k = get_bits(bd, 2); | ||
254 | if (k < 2) { | ||
255 | bd->inbufBitCount++; | ||
256 | break; | ||
257 | } | ||
258 | /* Add one if second bit 1, else | ||
259 | * subtract 1. Avoids if/else */ | ||
260 | t += (((k+1)&2)-1); | ||
261 | } | ||
262 | /* Correct for the initial -1, to get the | ||
263 | * final symbol length */ | ||
264 | length[i] = t+1; | ||
265 | } | ||
266 | /* Find largest and smallest lengths in this group */ | ||
267 | minLen = maxLen = length[0]; | ||
268 | |||
269 | for (i = 1; i < symCount; i++) { | ||
270 | if (length[i] > maxLen) | ||
271 | maxLen = length[i]; | ||
272 | else if (length[i] < minLen) | ||
273 | minLen = length[i]; | ||
274 | } | ||
275 | |||
276 | /* Calculate permute[], base[], and limit[] tables from | ||
277 | * length[]. | ||
278 | * | ||
279 | * permute[] is the lookup table for converting | ||
280 | * Huffman coded symbols into decoded symbols. base[] | ||
281 | * is the amount to subtract from the value of a | ||
282 | * Huffman symbol of a given length when using | ||
283 | * permute[]. | ||
284 | * | ||
285 | * limit[] indicates the largest numerical value a | ||
286 | * symbol with a given number of bits can have. This | ||
287 | * is how the Huffman codes can vary in length: each | ||
288 | * code with a value > limit[length] needs another | ||
289 | * bit. | ||
290 | */ | ||
291 | hufGroup = bd->groups+j; | ||
292 | hufGroup->minLen = minLen; | ||
293 | hufGroup->maxLen = maxLen; | ||
294 | /* Note that minLen can't be smaller than 1, so we | ||
295 | adjust the base and limit array pointers so we're | ||
296 | not always wasting the first entry. We do this | ||
297 | again when using them (during symbol decoding).*/ | ||
298 | base = hufGroup->base-1; | ||
299 | limit = hufGroup->limit-1; | ||
300 | /* Calculate permute[]. Concurently, initialize | ||
301 | * temp[] and limit[]. */ | ||
302 | pp = 0; | ||
303 | for (i = minLen; i <= maxLen; i++) { | ||
304 | temp[i] = limit[i] = 0; | ||
305 | for (t = 0; t < symCount; t++) | ||
306 | if (length[t] == i) | ||
307 | hufGroup->permute[pp++] = t; | ||
308 | } | ||
309 | /* Count symbols coded for at each bit length */ | ||
310 | for (i = 0; i < symCount; i++) | ||
311 | temp[length[i]]++; | ||
312 | /* Calculate limit[] (the largest symbol-coding value | ||
313 | *at each bit length, which is (previous limit << | ||
314 | *1)+symbols at this level), and base[] (number of | ||
315 | *symbols to ignore at each bit length, which is limit | ||
316 | *minus the cumulative count of symbols coded for | ||
317 | *already). */ | ||
318 | pp = t = 0; | ||
319 | for (i = minLen; i < maxLen; i++) { | ||
320 | pp += temp[i]; | ||
321 | /* We read the largest possible symbol size | ||
322 | and then unget bits after determining how | ||
323 | many we need, and those extra bits could be | ||
324 | set to anything. (They're noise from | ||
325 | future symbols.) At each level we're | ||
326 | really only interested in the first few | ||
327 | bits, so here we set all the trailing | ||
328 | to-be-ignored bits to 1 so they don't | ||
329 | affect the value > limit[length] | ||
330 | comparison. */ | ||
331 | limit[i] = (pp << (maxLen - i)) - 1; | ||
332 | pp <<= 1; | ||
333 | base[i+1] = pp-(t += temp[i]); | ||
334 | } | ||
335 | limit[maxLen+1] = INT_MAX; /* Sentinal value for | ||
336 | * reading next sym. */ | ||
337 | limit[maxLen] = pp+temp[maxLen]-1; | ||
338 | base[minLen] = 0; | ||
339 | } | ||
340 | /* We've finished reading and digesting the block header. Now | ||
341 | read this block's Huffman coded symbols from the file and | ||
342 | undo the Huffman coding and run length encoding, saving the | ||
343 | result into dbuf[dbufCount++] = uc */ | ||
344 | |||
345 | /* Initialize symbol occurrence counters and symbol Move To | ||
346 | * Front table */ | ||
347 | for (i = 0; i < 256; i++) { | ||
348 | byteCount[i] = 0; | ||
349 | mtfSymbol[i] = (unsigned char)i; | ||
350 | } | ||
351 | /* Loop through compressed symbols. */ | ||
352 | runPos = dbufCount = symCount = selector = 0; | ||
353 | for (;;) { | ||
354 | /* Determine which Huffman coding group to use. */ | ||
355 | if (!(symCount--)) { | ||
356 | symCount = GROUP_SIZE-1; | ||
357 | if (selector >= nSelectors) | ||
358 | return RETVAL_DATA_ERROR; | ||
359 | hufGroup = bd->groups+selectors[selector++]; | ||
360 | base = hufGroup->base-1; | ||
361 | limit = hufGroup->limit-1; | ||
362 | } | ||
363 | /* Read next Huffman-coded symbol. */ | ||
364 | /* Note: It is far cheaper to read maxLen bits and | ||
365 | back up than it is to read minLen bits and then an | ||
366 | additional bit at a time, testing as we go. | ||
367 | Because there is a trailing last block (with file | ||
368 | CRC), there is no danger of the overread causing an | ||
369 | unexpected EOF for a valid compressed file. As a | ||
370 | further optimization, we do the read inline | ||
371 | (falling back to a call to get_bits if the buffer | ||
372 | runs dry). The following (up to got_huff_bits:) is | ||
373 | equivalent to j = get_bits(bd, hufGroup->maxLen); | ||
374 | */ | ||
375 | while (bd->inbufBitCount < hufGroup->maxLen) { | ||
376 | if (bd->inbufPos == bd->inbufCount) { | ||
377 | j = get_bits(bd, hufGroup->maxLen); | ||
378 | goto got_huff_bits; | ||
379 | } | ||
380 | bd->inbufBits = | ||
381 | (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | ||
382 | bd->inbufBitCount += 8; | ||
383 | }; | ||
384 | bd->inbufBitCount -= hufGroup->maxLen; | ||
385 | j = (bd->inbufBits >> bd->inbufBitCount)& | ||
386 | ((1 << hufGroup->maxLen)-1); | ||
387 | got_huff_bits: | ||
388 | /* Figure how how many bits are in next symbol and | ||
389 | * unget extras */ | ||
390 | i = hufGroup->minLen; | ||
391 | while (j > limit[i]) | ||
392 | ++i; | ||
393 | bd->inbufBitCount += (hufGroup->maxLen - i); | ||
394 | /* Huffman decode value to get nextSym (with bounds checking) */ | ||
395 | if ((i > hufGroup->maxLen) | ||
396 | || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) | ||
397 | >= MAX_SYMBOLS)) | ||
398 | return RETVAL_DATA_ERROR; | ||
399 | nextSym = hufGroup->permute[j]; | ||
400 | /* We have now decoded the symbol, which indicates | ||
401 | either a new literal byte, or a repeated run of the | ||
402 | most recent literal byte. First, check if nextSym | ||
403 | indicates a repeated run, and if so loop collecting | ||
404 | how many times to repeat the last literal. */ | ||
405 | if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ | ||
406 | /* If this is the start of a new run, zero out | ||
407 | * counter */ | ||
408 | if (!runPos) { | ||
409 | runPos = 1; | ||
410 | t = 0; | ||
411 | } | ||
412 | /* Neat trick that saves 1 symbol: instead of | ||
413 | or-ing 0 or 1 at each bit position, add 1 | ||
414 | or 2 instead. For example, 1011 is 1 << 0 | ||
415 | + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 | ||
416 | + 1 << 2. You can make any bit pattern | ||
417 | that way using 1 less symbol than the basic | ||
418 | or 0/1 method (except all bits 0, which | ||
419 | would use no symbols, but a run of length 0 | ||
420 | doesn't mean anything in this context). | ||
421 | Thus space is saved. */ | ||
422 | t += (runPos << nextSym); | ||
423 | /* +runPos if RUNA; +2*runPos if RUNB */ | ||
424 | |||
425 | runPos <<= 1; | ||
426 | continue; | ||
427 | } | ||
428 | /* When we hit the first non-run symbol after a run, | ||
429 | we now know how many times to repeat the last | ||
430 | literal, so append that many copies to our buffer | ||
431 | of decoded symbols (dbuf) now. (The last literal | ||
432 | used is the one at the head of the mtfSymbol | ||
433 | array.) */ | ||
434 | if (runPos) { | ||
435 | runPos = 0; | ||
436 | if (dbufCount+t >= dbufSize) | ||
437 | return RETVAL_DATA_ERROR; | ||
438 | |||
439 | uc = symToByte[mtfSymbol[0]]; | ||
440 | byteCount[uc] += t; | ||
441 | while (t--) | ||
442 | dbuf[dbufCount++] = uc; | ||
443 | } | ||
444 | /* Is this the terminating symbol? */ | ||
445 | if (nextSym > symTotal) | ||
446 | break; | ||
447 | /* At this point, nextSym indicates a new literal | ||
448 | character. Subtract one to get the position in the | ||
449 | MTF array at which this literal is currently to be | ||
450 | found. (Note that the result can't be -1 or 0, | ||
451 | because 0 and 1 are RUNA and RUNB. But another | ||
452 | instance of the first symbol in the mtf array, | ||
453 | position 0, would have been handled as part of a | ||
454 | run above. Therefore 1 unused mtf position minus 2 | ||
455 | non-literal nextSym values equals -1.) */ | ||
456 | if (dbufCount >= dbufSize) | ||
457 | return RETVAL_DATA_ERROR; | ||
458 | i = nextSym - 1; | ||
459 | uc = mtfSymbol[i]; | ||
460 | /* Adjust the MTF array. Since we typically expect to | ||
461 | *move only a small number of symbols, and are bound | ||
462 | *by 256 in any case, using memmove here would | ||
463 | *typically be bigger and slower due to function call | ||
464 | *overhead and other assorted setup costs. */ | ||
465 | do { | ||
466 | mtfSymbol[i] = mtfSymbol[i-1]; | ||
467 | } while (--i); | ||
468 | mtfSymbol[0] = uc; | ||
469 | uc = symToByte[uc]; | ||
470 | /* We have our literal byte. Save it into dbuf. */ | ||
471 | byteCount[uc]++; | ||
472 | dbuf[dbufCount++] = (unsigned int)uc; | ||
473 | } | ||
474 | /* At this point, we've read all the Huffman-coded symbols | ||
475 | (and repeated runs) for this block from the input stream, | ||
476 | and decoded them into the intermediate buffer. There are | ||
477 | dbufCount many decoded bytes in dbuf[]. Now undo the | ||
478 | Burrows-Wheeler transform on dbuf. See | ||
479 | http://dogma.net/markn/articles/bwt/bwt.htm | ||
480 | */ | ||
481 | /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ | ||
482 | j = 0; | ||
483 | for (i = 0; i < 256; i++) { | ||
484 | k = j+byteCount[i]; | ||
485 | byteCount[i] = j; | ||
486 | j = k; | ||
487 | } | ||
488 | /* Figure out what order dbuf would be in if we sorted it. */ | ||
489 | for (i = 0; i < dbufCount; i++) { | ||
490 | uc = (unsigned char)(dbuf[i] & 0xff); | ||
491 | dbuf[byteCount[uc]] |= (i << 8); | ||
492 | byteCount[uc]++; | ||
493 | } | ||
494 | /* Decode first byte by hand to initialize "previous" byte. | ||
495 | Note that it doesn't get output, and if the first three | ||
496 | characters are identical it doesn't qualify as a run (hence | ||
497 | writeRunCountdown = 5). */ | ||
498 | if (dbufCount) { | ||
499 | if (origPtr >= dbufCount) | ||
500 | return RETVAL_DATA_ERROR; | ||
501 | bd->writePos = dbuf[origPtr]; | ||
502 | bd->writeCurrent = (unsigned char)(bd->writePos&0xff); | ||
503 | bd->writePos >>= 8; | ||
504 | bd->writeRunCountdown = 5; | ||
505 | } | ||
506 | bd->writeCount = dbufCount; | ||
507 | |||
508 | return RETVAL_OK; | ||
509 | } | ||
510 | |||
511 | /* Undo burrows-wheeler transform on intermediate buffer to produce output. | ||
512 | If start_bunzip was initialized with out_fd =-1, then up to len bytes of | ||
513 | data are written to outbuf. Return value is number of bytes written or | ||
514 | error (all errors are negative numbers). If out_fd!=-1, outbuf and len | ||
515 | are ignored, data is written to out_fd and return is RETVAL_OK or error. | ||
516 | */ | ||
517 | |||
518 | static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) | ||
519 | { | ||
520 | const unsigned int *dbuf; | ||
521 | int pos, xcurrent, previous, gotcount; | ||
522 | |||
523 | /* If last read was short due to end of file, return last block now */ | ||
524 | if (bd->writeCount < 0) | ||
525 | return bd->writeCount; | ||
526 | |||
527 | gotcount = 0; | ||
528 | dbuf = bd->dbuf; | ||
529 | pos = bd->writePos; | ||
530 | xcurrent = bd->writeCurrent; | ||
531 | |||
532 | /* We will always have pending decoded data to write into the output | ||
533 | buffer unless this is the very first call (in which case we haven't | ||
534 | Huffman-decoded a block into the intermediate buffer yet). */ | ||
535 | |||
536 | if (bd->writeCopies) { | ||
537 | /* Inside the loop, writeCopies means extra copies (beyond 1) */ | ||
538 | --bd->writeCopies; | ||
539 | /* Loop outputting bytes */ | ||
540 | for (;;) { | ||
541 | /* If the output buffer is full, snapshot | ||
542 | * state and return */ | ||
543 | if (gotcount >= len) { | ||
544 | bd->writePos = pos; | ||
545 | bd->writeCurrent = xcurrent; | ||
546 | bd->writeCopies++; | ||
547 | return len; | ||
548 | } | ||
549 | /* Write next byte into output buffer, updating CRC */ | ||
550 | outbuf[gotcount++] = xcurrent; | ||
551 | bd->writeCRC = (((bd->writeCRC) << 8) | ||
552 | ^bd->crc32Table[((bd->writeCRC) >> 24) | ||
553 | ^xcurrent]); | ||
554 | /* Loop now if we're outputting multiple | ||
555 | * copies of this byte */ | ||
556 | if (bd->writeCopies) { | ||
557 | --bd->writeCopies; | ||
558 | continue; | ||
559 | } | ||
560 | decode_next_byte: | ||
561 | if (!bd->writeCount--) | ||
562 | break; | ||
563 | /* Follow sequence vector to undo | ||
564 | * Burrows-Wheeler transform */ | ||
565 | previous = xcurrent; | ||
566 | pos = dbuf[pos]; | ||
567 | xcurrent = pos&0xff; | ||
568 | pos >>= 8; | ||
569 | /* After 3 consecutive copies of the same | ||
570 | byte, the 4th is a repeat count. We count | ||
571 | down from 4 instead *of counting up because | ||
572 | testing for non-zero is faster */ | ||
573 | if (--bd->writeRunCountdown) { | ||
574 | if (xcurrent != previous) | ||
575 | bd->writeRunCountdown = 4; | ||
576 | } else { | ||
577 | /* We have a repeated run, this byte | ||
578 | * indicates the count */ | ||
579 | bd->writeCopies = xcurrent; | ||
580 | xcurrent = previous; | ||
581 | bd->writeRunCountdown = 5; | ||
582 | /* Sometimes there are just 3 bytes | ||
583 | * (run length 0) */ | ||
584 | if (!bd->writeCopies) | ||
585 | goto decode_next_byte; | ||
586 | /* Subtract the 1 copy we'd output | ||
587 | * anyway to get extras */ | ||
588 | --bd->writeCopies; | ||
589 | } | ||
590 | } | ||
591 | /* Decompression of this block completed successfully */ | ||
592 | bd->writeCRC = ~bd->writeCRC; | ||
593 | bd->totalCRC = ((bd->totalCRC << 1) | | ||
594 | (bd->totalCRC >> 31)) ^ bd->writeCRC; | ||
595 | /* If this block had a CRC error, force file level CRC error. */ | ||
596 | if (bd->writeCRC != bd->headerCRC) { | ||
597 | bd->totalCRC = bd->headerCRC+1; | ||
598 | return RETVAL_LAST_BLOCK; | ||
599 | } | ||
600 | } | ||
601 | |||
602 | /* Refill the intermediate buffer by Huffman-decoding next | ||
603 | * block of input */ | ||
604 | /* (previous is just a convenient unused temp variable here) */ | ||
605 | previous = get_next_block(bd); | ||
606 | if (previous) { | ||
607 | bd->writeCount = previous; | ||
608 | return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; | ||
609 | } | ||
610 | bd->writeCRC = 0xffffffffUL; | ||
611 | pos = bd->writePos; | ||
612 | xcurrent = bd->writeCurrent; | ||
613 | goto decode_next_byte; | ||
614 | } | ||
615 | |||
616 | static int INIT nofill(void *buf, unsigned int len) | ||
617 | { | ||
618 | return -1; | ||
619 | } | ||
620 | |||
621 | /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain | ||
622 | a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are | ||
623 | ignored, and data is read from file handle into temporary buffer. */ | ||
624 | static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, | ||
625 | int (*fill)(void*, unsigned int)) | ||
626 | { | ||
627 | struct bunzip_data *bd; | ||
628 | unsigned int i, j, c; | ||
629 | const unsigned int BZh0 = | ||
630 | (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) | ||
631 | +(((unsigned int)'h') << 8)+(unsigned int)'0'; | ||
632 | |||
633 | /* Figure out how much data to allocate */ | ||
634 | i = sizeof(struct bunzip_data); | ||
635 | |||
636 | /* Allocate bunzip_data. Most fields initialize to zero. */ | ||
637 | bd = *bdp = malloc(i); | ||
638 | memset(bd, 0, sizeof(struct bunzip_data)); | ||
639 | /* Setup input buffer */ | ||
640 | bd->inbuf = inbuf; | ||
641 | bd->inbufCount = len; | ||
642 | if (fill != NULL) | ||
643 | bd->fill = fill; | ||
644 | else | ||
645 | bd->fill = nofill; | ||
646 | |||
647 | /* Init the CRC32 table (big endian) */ | ||
648 | for (i = 0; i < 256; i++) { | ||
649 | c = i << 24; | ||
650 | for (j = 8; j; j--) | ||
651 | c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); | ||
652 | bd->crc32Table[i] = c; | ||
653 | } | ||
654 | |||
655 | /* Ensure that file starts with "BZh['1'-'9']." */ | ||
656 | i = get_bits(bd, 32); | ||
657 | if (((unsigned int)(i-BZh0-1)) >= 9) | ||
658 | return RETVAL_NOT_BZIP_DATA; | ||
659 | |||
660 | /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of | ||
661 | uncompressed data. Allocate intermediate buffer for block. */ | ||
662 | bd->dbufSize = 100000*(i-BZh0); | ||
663 | |||
664 | bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); | ||
665 | return RETVAL_OK; | ||
666 | } | ||
667 | |||
668 | /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, | ||
669 | not end of file.) */ | ||
670 | STATIC int INIT bunzip2(unsigned char *buf, int len, | ||
671 | int(*fill)(void*, unsigned int), | ||
672 | int(*flush)(void*, unsigned int), | ||
673 | unsigned char *outbuf, | ||
674 | int *pos, | ||
675 | void(*error_fn)(char *x)) | ||
676 | { | ||
677 | struct bunzip_data *bd; | ||
678 | int i = -1; | ||
679 | unsigned char *inbuf; | ||
680 | |||
681 | set_error_fn(error_fn); | ||
682 | if (flush) | ||
683 | outbuf = malloc(BZIP2_IOBUF_SIZE); | ||
684 | else | ||
685 | len -= 4; /* Uncompressed size hack active in pre-boot | ||
686 | environment */ | ||
687 | if (!outbuf) { | ||
688 | error("Could not allocate output bufer"); | ||
689 | return -1; | ||
690 | } | ||
691 | if (buf) | ||
692 | inbuf = buf; | ||
693 | else | ||
694 | inbuf = malloc(BZIP2_IOBUF_SIZE); | ||
695 | if (!inbuf) { | ||
696 | error("Could not allocate input bufer"); | ||
697 | goto exit_0; | ||
698 | } | ||
699 | i = start_bunzip(&bd, inbuf, len, fill); | ||
700 | if (!i) { | ||
701 | for (;;) { | ||
702 | i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); | ||
703 | if (i <= 0) | ||
704 | break; | ||
705 | if (!flush) | ||
706 | outbuf += i; | ||
707 | else | ||
708 | if (i != flush(outbuf, i)) { | ||
709 | i = RETVAL_UNEXPECTED_OUTPUT_EOF; | ||
710 | break; | ||
711 | } | ||
712 | } | ||
713 | } | ||
714 | /* Check CRC and release memory */ | ||
715 | if (i == RETVAL_LAST_BLOCK) { | ||
716 | if (bd->headerCRC != bd->totalCRC) | ||
717 | error("Data integrity error when decompressing."); | ||
718 | else | ||
719 | i = RETVAL_OK; | ||
720 | } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { | ||
721 | error("Compressed file ends unexpectedly"); | ||
722 | } | ||
723 | if (bd->dbuf) | ||
724 | large_free(bd->dbuf); | ||
725 | if (pos) | ||
726 | *pos = bd->inbufPos; | ||
727 | free(bd); | ||
728 | if (!buf) | ||
729 | free(inbuf); | ||
730 | exit_0: | ||
731 | if (flush) | ||
732 | free(outbuf); | ||
733 | return i; | ||
734 | } | ||
735 | |||
736 | #define decompress bunzip2 | ||