diff options
Diffstat (limited to 'lib/crc32.c')
-rw-r--r-- | lib/crc32.c | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/lib/crc32.c b/lib/crc32.c new file mode 100644 index 000000000000..58b222783f9c --- /dev/null +++ b/lib/crc32.c | |||
@@ -0,0 +1,529 @@ | |||
1 | /* | ||
2 | * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | ||
3 | * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! | ||
4 | * Code was from the public domain, copyright abandoned. Code was | ||
5 | * subsequently included in the kernel, thus was re-licensed under the | ||
6 | * GNU GPL v2. | ||
7 | * | ||
8 | * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | ||
9 | * Same crc32 function was used in 5 other places in the kernel. | ||
10 | * I made one version, and deleted the others. | ||
11 | * There are various incantations of crc32(). Some use a seed of 0 or ~0. | ||
12 | * Some xor at the end with ~0. The generic crc32() function takes | ||
13 | * seed as an argument, and doesn't xor at the end. Then individual | ||
14 | * users can do whatever they need. | ||
15 | * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | ||
16 | * fs/jffs2 uses seed 0, doesn't xor with ~0. | ||
17 | * fs/partitions/efi.c uses seed ~0, xor's with ~0. | ||
18 | * | ||
19 | * This source code is licensed under the GNU General Public License, | ||
20 | * Version 2. See the file COPYING for more details. | ||
21 | */ | ||
22 | |||
23 | #include <linux/crc32.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/compiler.h> | ||
27 | #include <linux/types.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <asm/atomic.h> | ||
31 | #include "crc32defs.h" | ||
32 | #if CRC_LE_BITS == 8 | ||
33 | #define tole(x) __constant_cpu_to_le32(x) | ||
34 | #define tobe(x) __constant_cpu_to_be32(x) | ||
35 | #else | ||
36 | #define tole(x) (x) | ||
37 | #define tobe(x) (x) | ||
38 | #endif | ||
39 | #include "crc32table.h" | ||
40 | |||
41 | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | ||
42 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | ||
43 | MODULE_LICENSE("GPL"); | ||
44 | |||
45 | #if CRC_LE_BITS == 1 | ||
46 | /* | ||
47 | * In fact, the table-based code will work in this case, but it can be | ||
48 | * simplified by inlining the table in ?: form. | ||
49 | */ | ||
50 | |||
51 | /** | ||
52 | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | ||
53 | * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for | ||
54 | * other uses, or the previous crc32 value if computing incrementally. | ||
55 | * @p - pointer to buffer over which CRC is run | ||
56 | * @len - length of buffer @p | ||
57 | * | ||
58 | */ | ||
59 | u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) | ||
60 | { | ||
61 | int i; | ||
62 | while (len--) { | ||
63 | crc ^= *p++; | ||
64 | for (i = 0; i < 8; i++) | ||
65 | crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | ||
66 | } | ||
67 | return crc; | ||
68 | } | ||
69 | #else /* Table-based approach */ | ||
70 | |||
71 | /** | ||
72 | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | ||
73 | * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for | ||
74 | * other uses, or the previous crc32 value if computing incrementally. | ||
75 | * @p - pointer to buffer over which CRC is run | ||
76 | * @len - length of buffer @p | ||
77 | * | ||
78 | */ | ||
79 | u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) | ||
80 | { | ||
81 | # if CRC_LE_BITS == 8 | ||
82 | const u32 *b =(u32 *)p; | ||
83 | const u32 *tab = crc32table_le; | ||
84 | |||
85 | # ifdef __LITTLE_ENDIAN | ||
86 | # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | ||
87 | # else | ||
88 | # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | ||
89 | # endif | ||
90 | |||
91 | crc = __cpu_to_le32(crc); | ||
92 | /* Align it */ | ||
93 | if(unlikely(((long)b)&3 && len)){ | ||
94 | do { | ||
95 | u8 *p = (u8 *)b; | ||
96 | DO_CRC(*p++); | ||
97 | b = (void *)p; | ||
98 | } while ((--len) && ((long)b)&3 ); | ||
99 | } | ||
100 | if(likely(len >= 4)){ | ||
101 | /* load data 32 bits wide, xor data 32 bits wide. */ | ||
102 | size_t save_len = len & 3; | ||
103 | len = len >> 2; | ||
104 | --b; /* use pre increment below(*++b) for speed */ | ||
105 | do { | ||
106 | crc ^= *++b; | ||
107 | DO_CRC(0); | ||
108 | DO_CRC(0); | ||
109 | DO_CRC(0); | ||
110 | DO_CRC(0); | ||
111 | } while (--len); | ||
112 | b++; /* point to next byte(s) */ | ||
113 | len = save_len; | ||
114 | } | ||
115 | /* And the last few bytes */ | ||
116 | if(len){ | ||
117 | do { | ||
118 | u8 *p = (u8 *)b; | ||
119 | DO_CRC(*p++); | ||
120 | b = (void *)p; | ||
121 | } while (--len); | ||
122 | } | ||
123 | |||
124 | return __le32_to_cpu(crc); | ||
125 | #undef ENDIAN_SHIFT | ||
126 | #undef DO_CRC | ||
127 | |||
128 | # elif CRC_LE_BITS == 4 | ||
129 | while (len--) { | ||
130 | crc ^= *p++; | ||
131 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | ||
132 | crc = (crc >> 4) ^ crc32table_le[crc & 15]; | ||
133 | } | ||
134 | return crc; | ||
135 | # elif CRC_LE_BITS == 2 | ||
136 | while (len--) { | ||
137 | crc ^= *p++; | ||
138 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | ||
139 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | ||
140 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | ||
141 | crc = (crc >> 2) ^ crc32table_le[crc & 3]; | ||
142 | } | ||
143 | return crc; | ||
144 | # endif | ||
145 | } | ||
146 | #endif | ||
147 | |||
148 | #if CRC_BE_BITS == 1 | ||
149 | /* | ||
150 | * In fact, the table-based code will work in this case, but it can be | ||
151 | * simplified by inlining the table in ?: form. | ||
152 | */ | ||
153 | |||
154 | /** | ||
155 | * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | ||
156 | * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for | ||
157 | * other uses, or the previous crc32 value if computing incrementally. | ||
158 | * @p - pointer to buffer over which CRC is run | ||
159 | * @len - length of buffer @p | ||
160 | * | ||
161 | */ | ||
162 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | ||
163 | { | ||
164 | int i; | ||
165 | while (len--) { | ||
166 | crc ^= *p++ << 24; | ||
167 | for (i = 0; i < 8; i++) | ||
168 | crc = | ||
169 | (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | ||
170 | 0); | ||
171 | } | ||
172 | return crc; | ||
173 | } | ||
174 | |||
175 | #else /* Table-based approach */ | ||
176 | /** | ||
177 | * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | ||
178 | * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for | ||
179 | * other uses, or the previous crc32 value if computing incrementally. | ||
180 | * @p - pointer to buffer over which CRC is run | ||
181 | * @len - length of buffer @p | ||
182 | * | ||
183 | */ | ||
184 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | ||
185 | { | ||
186 | # if CRC_BE_BITS == 8 | ||
187 | const u32 *b =(u32 *)p; | ||
188 | const u32 *tab = crc32table_be; | ||
189 | |||
190 | # ifdef __LITTLE_ENDIAN | ||
191 | # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | ||
192 | # else | ||
193 | # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | ||
194 | # endif | ||
195 | |||
196 | crc = __cpu_to_be32(crc); | ||
197 | /* Align it */ | ||
198 | if(unlikely(((long)b)&3 && len)){ | ||
199 | do { | ||
200 | u8 *p = (u8 *)b; | ||
201 | DO_CRC(*p++); | ||
202 | b = (u32 *)p; | ||
203 | } while ((--len) && ((long)b)&3 ); | ||
204 | } | ||
205 | if(likely(len >= 4)){ | ||
206 | /* load data 32 bits wide, xor data 32 bits wide. */ | ||
207 | size_t save_len = len & 3; | ||
208 | len = len >> 2; | ||
209 | --b; /* use pre increment below(*++b) for speed */ | ||
210 | do { | ||
211 | crc ^= *++b; | ||
212 | DO_CRC(0); | ||
213 | DO_CRC(0); | ||
214 | DO_CRC(0); | ||
215 | DO_CRC(0); | ||
216 | } while (--len); | ||
217 | b++; /* point to next byte(s) */ | ||
218 | len = save_len; | ||
219 | } | ||
220 | /* And the last few bytes */ | ||
221 | if(len){ | ||
222 | do { | ||
223 | u8 *p = (u8 *)b; | ||
224 | DO_CRC(*p++); | ||
225 | b = (void *)p; | ||
226 | } while (--len); | ||
227 | } | ||
228 | return __be32_to_cpu(crc); | ||
229 | #undef ENDIAN_SHIFT | ||
230 | #undef DO_CRC | ||
231 | |||
232 | # elif CRC_BE_BITS == 4 | ||
233 | while (len--) { | ||
234 | crc ^= *p++ << 24; | ||
235 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | ||
236 | crc = (crc << 4) ^ crc32table_be[crc >> 28]; | ||
237 | } | ||
238 | return crc; | ||
239 | # elif CRC_BE_BITS == 2 | ||
240 | while (len--) { | ||
241 | crc ^= *p++ << 24; | ||
242 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | ||
243 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | ||
244 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | ||
245 | crc = (crc << 2) ^ crc32table_be[crc >> 30]; | ||
246 | } | ||
247 | return crc; | ||
248 | # endif | ||
249 | } | ||
250 | #endif | ||
251 | |||
252 | u32 bitreverse(u32 x) | ||
253 | { | ||
254 | x = (x >> 16) | (x << 16); | ||
255 | x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00); | ||
256 | x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0); | ||
257 | x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc); | ||
258 | x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa); | ||
259 | return x; | ||
260 | } | ||
261 | |||
262 | EXPORT_SYMBOL(crc32_le); | ||
263 | EXPORT_SYMBOL(crc32_be); | ||
264 | EXPORT_SYMBOL(bitreverse); | ||
265 | |||
266 | /* | ||
267 | * A brief CRC tutorial. | ||
268 | * | ||
269 | * A CRC is a long-division remainder. You add the CRC to the message, | ||
270 | * and the whole thing (message+CRC) is a multiple of the given | ||
271 | * CRC polynomial. To check the CRC, you can either check that the | ||
272 | * CRC matches the recomputed value, *or* you can check that the | ||
273 | * remainder computed on the message+CRC is 0. This latter approach | ||
274 | * is used by a lot of hardware implementations, and is why so many | ||
275 | * protocols put the end-of-frame flag after the CRC. | ||
276 | * | ||
277 | * It's actually the same long division you learned in school, except that | ||
278 | * - We're working in binary, so the digits are only 0 and 1, and | ||
279 | * - When dividing polynomials, there are no carries. Rather than add and | ||
280 | * subtract, we just xor. Thus, we tend to get a bit sloppy about | ||
281 | * the difference between adding and subtracting. | ||
282 | * | ||
283 | * A 32-bit CRC polynomial is actually 33 bits long. But since it's | ||
284 | * 33 bits long, bit 32 is always going to be set, so usually the CRC | ||
285 | * is written in hex with the most significant bit omitted. (If you're | ||
286 | * familiar with the IEEE 754 floating-point format, it's the same idea.) | ||
287 | * | ||
288 | * Note that a CRC is computed over a string of *bits*, so you have | ||
289 | * to decide on the endianness of the bits within each byte. To get | ||
290 | * the best error-detecting properties, this should correspond to the | ||
291 | * order they're actually sent. For example, standard RS-232 serial is | ||
292 | * little-endian; the most significant bit (sometimes used for parity) | ||
293 | * is sent last. And when appending a CRC word to a message, you should | ||
294 | * do it in the right order, matching the endianness. | ||
295 | * | ||
296 | * Just like with ordinary division, the remainder is always smaller than | ||
297 | * the divisor (the CRC polynomial) you're dividing by. Each step of the | ||
298 | * division, you take one more digit (bit) of the dividend and append it | ||
299 | * to the current remainder. Then you figure out the appropriate multiple | ||
300 | * of the divisor to subtract to being the remainder back into range. | ||
301 | * In binary, it's easy - it has to be either 0 or 1, and to make the | ||
302 | * XOR cancel, it's just a copy of bit 32 of the remainder. | ||
303 | * | ||
304 | * When computing a CRC, we don't care about the quotient, so we can | ||
305 | * throw the quotient bit away, but subtract the appropriate multiple of | ||
306 | * the polynomial from the remainder and we're back to where we started, | ||
307 | * ready to process the next bit. | ||
308 | * | ||
309 | * A big-endian CRC written this way would be coded like: | ||
310 | * for (i = 0; i < input_bits; i++) { | ||
311 | * multiple = remainder & 0x80000000 ? CRCPOLY : 0; | ||
312 | * remainder = (remainder << 1 | next_input_bit()) ^ multiple; | ||
313 | * } | ||
314 | * Notice how, to get at bit 32 of the shifted remainder, we look | ||
315 | * at bit 31 of the remainder *before* shifting it. | ||
316 | * | ||
317 | * But also notice how the next_input_bit() bits we're shifting into | ||
318 | * the remainder don't actually affect any decision-making until | ||
319 | * 32 bits later. Thus, the first 32 cycles of this are pretty boring. | ||
320 | * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | ||
321 | * the end, so we have to add 32 extra cycles shifting in zeros at the | ||
322 | * end of every message, | ||
323 | * | ||
324 | * So the standard trick is to rearrage merging in the next_input_bit() | ||
325 | * until the moment it's needed. Then the first 32 cycles can be precomputed, | ||
326 | * and merging in the final 32 zero bits to make room for the CRC can be | ||
327 | * skipped entirely. | ||
328 | * This changes the code to: | ||
329 | * for (i = 0; i < input_bits; i++) { | ||
330 | * remainder ^= next_input_bit() << 31; | ||
331 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | ||
332 | * remainder = (remainder << 1) ^ multiple; | ||
333 | * } | ||
334 | * With this optimization, the little-endian code is simpler: | ||
335 | * for (i = 0; i < input_bits; i++) { | ||
336 | * remainder ^= next_input_bit(); | ||
337 | * multiple = (remainder & 1) ? CRCPOLY : 0; | ||
338 | * remainder = (remainder >> 1) ^ multiple; | ||
339 | * } | ||
340 | * | ||
341 | * Note that the other details of endianness have been hidden in CRCPOLY | ||
342 | * (which must be bit-reversed) and next_input_bit(). | ||
343 | * | ||
344 | * However, as long as next_input_bit is returning the bits in a sensible | ||
345 | * order, we can actually do the merging 8 or more bits at a time rather | ||
346 | * than one bit at a time: | ||
347 | * for (i = 0; i < input_bytes; i++) { | ||
348 | * remainder ^= next_input_byte() << 24; | ||
349 | * for (j = 0; j < 8; j++) { | ||
350 | * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | ||
351 | * remainder = (remainder << 1) ^ multiple; | ||
352 | * } | ||
353 | * } | ||
354 | * Or in little-endian: | ||
355 | * for (i = 0; i < input_bytes; i++) { | ||
356 | * remainder ^= next_input_byte(); | ||
357 | * for (j = 0; j < 8; j++) { | ||
358 | * multiple = (remainder & 1) ? CRCPOLY : 0; | ||
359 | * remainder = (remainder << 1) ^ multiple; | ||
360 | * } | ||
361 | * } | ||
362 | * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | ||
363 | * word at a time and increase the inner loop count to 32. | ||
364 | * | ||
365 | * You can also mix and match the two loop styles, for example doing the | ||
366 | * bulk of a message byte-at-a-time and adding bit-at-a-time processing | ||
367 | * for any fractional bytes at the end. | ||
368 | * | ||
369 | * The only remaining optimization is to the byte-at-a-time table method. | ||
370 | * Here, rather than just shifting one bit of the remainder to decide | ||
371 | * in the correct multiple to subtract, we can shift a byte at a time. | ||
372 | * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | ||
373 | * but again the multiple of the polynomial to subtract depends only on | ||
374 | * the high bits, the high 8 bits in this case. | ||
375 | * | ||
376 | * The multile we need in that case is the low 32 bits of a 40-bit | ||
377 | * value whose high 8 bits are given, and which is a multiple of the | ||
378 | * generator polynomial. This is simply the CRC-32 of the given | ||
379 | * one-byte message. | ||
380 | * | ||
381 | * Two more details: normally, appending zero bits to a message which | ||
382 | * is already a multiple of a polynomial produces a larger multiple of that | ||
383 | * polynomial. To enable a CRC to detect this condition, it's common to | ||
384 | * invert the CRC before appending it. This makes the remainder of the | ||
385 | * message+crc come out not as zero, but some fixed non-zero value. | ||
386 | * | ||
387 | * The same problem applies to zero bits prepended to the message, and | ||
388 | * a similar solution is used. Instead of starting with a remainder of | ||
389 | * 0, an initial remainder of all ones is used. As long as you start | ||
390 | * the same way on decoding, it doesn't make a difference. | ||
391 | */ | ||
392 | |||
393 | #ifdef UNITTEST | ||
394 | |||
395 | #include <stdlib.h> | ||
396 | #include <stdio.h> | ||
397 | |||
398 | #if 0 /*Not used at present */ | ||
399 | static void | ||
400 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | ||
401 | { | ||
402 | fputs(prefix, stdout); | ||
403 | while (len--) | ||
404 | printf(" %02x", *buf++); | ||
405 | putchar('\n'); | ||
406 | |||
407 | } | ||
408 | #endif | ||
409 | |||
410 | static void bytereverse(unsigned char *buf, size_t len) | ||
411 | { | ||
412 | while (len--) { | ||
413 | unsigned char x = *buf; | ||
414 | x = (x >> 4) | (x << 4); | ||
415 | x = (x >> 2 & 0x33) | (x << 2 & 0xcc); | ||
416 | x = (x >> 1 & 0x55) | (x << 1 & 0xaa); | ||
417 | *buf++ = x; | ||
418 | } | ||
419 | } | ||
420 | |||
421 | static void random_garbage(unsigned char *buf, size_t len) | ||
422 | { | ||
423 | while (len--) | ||
424 | *buf++ = (unsigned char) random(); | ||
425 | } | ||
426 | |||
427 | #if 0 /* Not used at present */ | ||
428 | static void store_le(u32 x, unsigned char *buf) | ||
429 | { | ||
430 | buf[0] = (unsigned char) x; | ||
431 | buf[1] = (unsigned char) (x >> 8); | ||
432 | buf[2] = (unsigned char) (x >> 16); | ||
433 | buf[3] = (unsigned char) (x >> 24); | ||
434 | } | ||
435 | #endif | ||
436 | |||
437 | static void store_be(u32 x, unsigned char *buf) | ||
438 | { | ||
439 | buf[0] = (unsigned char) (x >> 24); | ||
440 | buf[1] = (unsigned char) (x >> 16); | ||
441 | buf[2] = (unsigned char) (x >> 8); | ||
442 | buf[3] = (unsigned char) x; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * This checks that CRC(buf + CRC(buf)) = 0, and that | ||
447 | * CRC commutes with bit-reversal. This has the side effect | ||
448 | * of bytewise bit-reversing the input buffer, and returns | ||
449 | * the CRC of the reversed buffer. | ||
450 | */ | ||
451 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | ||
452 | { | ||
453 | u32 crc1, crc2; | ||
454 | size_t i; | ||
455 | |||
456 | crc1 = crc32_be(init, buf, len); | ||
457 | store_be(crc1, buf + len); | ||
458 | crc2 = crc32_be(init, buf, len + 4); | ||
459 | if (crc2) | ||
460 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | ||
461 | crc2); | ||
462 | |||
463 | for (i = 0; i <= len + 4; i++) { | ||
464 | crc2 = crc32_be(init, buf, i); | ||
465 | crc2 = crc32_be(crc2, buf + i, len + 4 - i); | ||
466 | if (crc2) | ||
467 | printf("\nCRC split fail: 0x%08x\n", crc2); | ||
468 | } | ||
469 | |||
470 | /* Now swap it around for the other test */ | ||
471 | |||
472 | bytereverse(buf, len + 4); | ||
473 | init = bitreverse(init); | ||
474 | crc2 = bitreverse(crc1); | ||
475 | if (crc1 != bitreverse(crc2)) | ||
476 | printf("\nBit reversal fail: 0x%08x -> %0x08x -> 0x%08x\n", | ||
477 | crc1, crc2, bitreverse(crc2)); | ||
478 | crc1 = crc32_le(init, buf, len); | ||
479 | if (crc1 != crc2) | ||
480 | printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | ||
481 | crc2); | ||
482 | crc2 = crc32_le(init, buf, len + 4); | ||
483 | if (crc2) | ||
484 | printf("\nCRC cancellation fail: 0x%08x should be 0\n", | ||
485 | crc2); | ||
486 | |||
487 | for (i = 0; i <= len + 4; i++) { | ||
488 | crc2 = crc32_le(init, buf, i); | ||
489 | crc2 = crc32_le(crc2, buf + i, len + 4 - i); | ||
490 | if (crc2) | ||
491 | printf("\nCRC split fail: 0x%08x\n", crc2); | ||
492 | } | ||
493 | |||
494 | return crc1; | ||
495 | } | ||
496 | |||
497 | #define SIZE 64 | ||
498 | #define INIT1 0 | ||
499 | #define INIT2 0 | ||
500 | |||
501 | int main(void) | ||
502 | { | ||
503 | unsigned char buf1[SIZE + 4]; | ||
504 | unsigned char buf2[SIZE + 4]; | ||
505 | unsigned char buf3[SIZE + 4]; | ||
506 | int i, j; | ||
507 | u32 crc1, crc2, crc3; | ||
508 | |||
509 | for (i = 0; i <= SIZE; i++) { | ||
510 | printf("\rTesting length %d...", i); | ||
511 | fflush(stdout); | ||
512 | random_garbage(buf1, i); | ||
513 | random_garbage(buf2, i); | ||
514 | for (j = 0; j < i; j++) | ||
515 | buf3[j] = buf1[j] ^ buf2[j]; | ||
516 | |||
517 | crc1 = test_step(INIT1, buf1, i); | ||
518 | crc2 = test_step(INIT2, buf2, i); | ||
519 | /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | ||
520 | crc3 = test_step(INIT1 ^ INIT2, buf3, i); | ||
521 | if (crc3 != (crc1 ^ crc2)) | ||
522 | printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | ||
523 | crc3, crc1, crc2); | ||
524 | } | ||
525 | printf("\nAll test complete. No failures expected.\n"); | ||
526 | return 0; | ||
527 | } | ||
528 | |||
529 | #endif /* UNITTEST */ | ||