aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile4
-rw-r--r--kernel/acct.c8
-rw-r--r--kernel/cgroup.c1
-rw-r--r--kernel/cred.c293
-rw-r--r--kernel/exit.c5
-rw-r--r--kernel/fork.c31
-rw-r--r--kernel/futex.c47
-rw-r--r--kernel/hrtimer.c2
-rw-r--r--kernel/irq/chip.c74
-rw-r--r--kernel/irq/handle.c5
-rw-r--r--kernel/irq/internals.h13
-rw-r--r--kernel/irq/manage.c102
-rw-r--r--kernel/irq/pm.c8
-rw-r--r--kernel/irq/resend.c3
-rw-r--r--kernel/irq/spurious.c1
-rw-r--r--kernel/kmod.c9
-rw-r--r--kernel/kprobes.c30
-rw-r--r--kernel/kthread.c4
-rw-r--r--kernel/lockdep.c792
-rw-r--r--kernel/lockdep_internals.h2
-rw-r--r--kernel/lockdep_proc.c128
-rw-r--r--kernel/module.c21
-rw-r--r--kernel/perf_counter.c193
-rw-r--r--kernel/printk.c181
-rw-r--r--kernel/ptrace.c2
-rw-r--r--kernel/rcuclassic.c807
-rw-r--r--kernel/rcupdate.c44
-rw-r--r--kernel/rcupreempt.c1539
-rw-r--r--kernel/rcupreempt_trace.c334
-rw-r--r--kernel/rcutorture.c202
-rw-r--r--kernel/rcutree.c280
-rw-r--r--kernel/rcutree.h253
-rw-r--r--kernel/rcutree_plugin.h532
-rw-r--r--kernel/rcutree_trace.c88
-rw-r--r--kernel/sched.c1232
-rw-r--r--kernel/sched_cpupri.c30
-rw-r--r--kernel/sched_debug.c4
-rw-r--r--kernel/sched_fair.c84
-rw-r--r--kernel/sched_features.h2
-rw-r--r--kernel/sched_rt.c62
-rw-r--r--kernel/softirq.c4
-rw-r--r--kernel/spinlock.c230
-rw-r--r--kernel/sysctl.c35
-rw-r--r--kernel/taskstats.c10
-rw-r--r--kernel/time/clockevents.c16
-rw-r--r--kernel/time/tick-broadcast.c7
-rw-r--r--kernel/time/timer_list.c2
-rw-r--r--kernel/timer.c3
-rw-r--r--kernel/trace/Kconfig13
-rw-r--r--kernel/trace/blktrace.c12
-rw-r--r--kernel/trace/ftrace.c124
-rw-r--r--kernel/trace/kmemtrace.c149
-rw-r--r--kernel/trace/ring_buffer.c1112
-rw-r--r--kernel/trace/trace.c691
-rw-r--r--kernel/trace/trace.h76
-rw-r--r--kernel/trace/trace_boot.c16
-rw-r--r--kernel/trace/trace_events.c146
-rw-r--r--kernel/trace/trace_events_filter.c261
-rw-r--r--kernel/trace/trace_export.c28
-rw-r--r--kernel/trace/trace_functions.c4
-rw-r--r--kernel/trace/trace_functions_graph.c166
-rw-r--r--kernel/trace/trace_irqsoff.c3
-rw-r--r--kernel/trace/trace_mmiotrace.c10
-rw-r--r--kernel/trace/trace_power.c22
-rw-r--r--kernel/trace/trace_sched_switch.c59
-rw-r--r--kernel/trace/trace_sched_wakeup.c7
-rw-r--r--kernel/trace/trace_selftest.c1
-rw-r--r--kernel/trace/trace_stack.c43
-rw-r--r--kernel/trace/trace_stat.c17
-rw-r--r--kernel/trace/trace_stat.h2
-rw-r--r--kernel/trace/trace_syscalls.c471
-rw-r--r--kernel/trace/trace_workqueue.c32
-rw-r--r--kernel/tracepoint.c50
-rw-r--r--kernel/workqueue.c9
74 files changed, 6068 insertions, 5215 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index d0c84e6bf50a..961379caf666 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -80,11 +80,9 @@ obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o
80obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ 80obj-$(CONFIG_GENERIC_HARDIRQS) += irq/
81obj-$(CONFIG_SECCOMP) += seccomp.o 81obj-$(CONFIG_SECCOMP) += seccomp.o
82obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o 82obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o
83obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o
84obj-$(CONFIG_TREE_RCU) += rcutree.o 83obj-$(CONFIG_TREE_RCU) += rcutree.o
85obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o 84obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o
86obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o 85obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o
87obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o
88obj-$(CONFIG_RELAY) += relay.o 86obj-$(CONFIG_RELAY) += relay.o
89obj-$(CONFIG_SYSCTL) += utsname_sysctl.o 87obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
90obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o 88obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
diff --git a/kernel/acct.c b/kernel/acct.c
index 9f3391090b3e..9a4715a2f6bf 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -491,13 +491,17 @@ static void do_acct_process(struct bsd_acct_struct *acct,
491 u64 run_time; 491 u64 run_time;
492 struct timespec uptime; 492 struct timespec uptime;
493 struct tty_struct *tty; 493 struct tty_struct *tty;
494 const struct cred *orig_cred;
495
496 /* Perform file operations on behalf of whoever enabled accounting */
497 orig_cred = override_creds(file->f_cred);
494 498
495 /* 499 /*
496 * First check to see if there is enough free_space to continue 500 * First check to see if there is enough free_space to continue
497 * the process accounting system. 501 * the process accounting system.
498 */ 502 */
499 if (!check_free_space(acct, file)) 503 if (!check_free_space(acct, file))
500 return; 504 goto out;
501 505
502 /* 506 /*
503 * Fill the accounting struct with the needed info as recorded 507 * Fill the accounting struct with the needed info as recorded
@@ -578,6 +582,8 @@ static void do_acct_process(struct bsd_acct_struct *acct,
578 sizeof(acct_t), &file->f_pos); 582 sizeof(acct_t), &file->f_pos);
579 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 583 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim;
580 set_fs(fs); 584 set_fs(fs);
585out:
586 revert_creds(orig_cred);
581} 587}
582 588
583/** 589/**
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index b6eadfe30e7b..c7ece8f027f2 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -600,6 +600,7 @@ static struct inode_operations cgroup_dir_inode_operations;
600static struct file_operations proc_cgroupstats_operations; 600static struct file_operations proc_cgroupstats_operations;
601 601
602static struct backing_dev_info cgroup_backing_dev_info = { 602static struct backing_dev_info cgroup_backing_dev_info = {
603 .name = "cgroup",
603 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, 604 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
604}; 605};
605 606
diff --git a/kernel/cred.c b/kernel/cred.c
index 1bb4d7e5d616..006fcab009d5 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -18,6 +18,18 @@
18#include <linux/cn_proc.h> 18#include <linux/cn_proc.h>
19#include "cred-internals.h" 19#include "cred-internals.h"
20 20
21#if 0
22#define kdebug(FMT, ...) \
23 printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__)
24#else
25static inline __attribute__((format(printf, 1, 2)))
26void no_printk(const char *fmt, ...)
27{
28}
29#define kdebug(FMT, ...) \
30 no_printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__)
31#endif
32
21static struct kmem_cache *cred_jar; 33static struct kmem_cache *cred_jar;
22 34
23/* 35/*
@@ -36,6 +48,10 @@ static struct thread_group_cred init_tgcred = {
36 */ 48 */
37struct cred init_cred = { 49struct cred init_cred = {
38 .usage = ATOMIC_INIT(4), 50 .usage = ATOMIC_INIT(4),
51#ifdef CONFIG_DEBUG_CREDENTIALS
52 .subscribers = ATOMIC_INIT(2),
53 .magic = CRED_MAGIC,
54#endif
39 .securebits = SECUREBITS_DEFAULT, 55 .securebits = SECUREBITS_DEFAULT,
40 .cap_inheritable = CAP_INIT_INH_SET, 56 .cap_inheritable = CAP_INIT_INH_SET,
41 .cap_permitted = CAP_FULL_SET, 57 .cap_permitted = CAP_FULL_SET,
@@ -48,6 +64,31 @@ struct cred init_cred = {
48#endif 64#endif
49}; 65};
50 66
67static inline void set_cred_subscribers(struct cred *cred, int n)
68{
69#ifdef CONFIG_DEBUG_CREDENTIALS
70 atomic_set(&cred->subscribers, n);
71#endif
72}
73
74static inline int read_cred_subscribers(const struct cred *cred)
75{
76#ifdef CONFIG_DEBUG_CREDENTIALS
77 return atomic_read(&cred->subscribers);
78#else
79 return 0;
80#endif
81}
82
83static inline void alter_cred_subscribers(const struct cred *_cred, int n)
84{
85#ifdef CONFIG_DEBUG_CREDENTIALS
86 struct cred *cred = (struct cred *) _cred;
87
88 atomic_add(n, &cred->subscribers);
89#endif
90}
91
51/* 92/*
52 * Dispose of the shared task group credentials 93 * Dispose of the shared task group credentials
53 */ 94 */
@@ -85,9 +126,22 @@ static void put_cred_rcu(struct rcu_head *rcu)
85{ 126{
86 struct cred *cred = container_of(rcu, struct cred, rcu); 127 struct cred *cred = container_of(rcu, struct cred, rcu);
87 128
129 kdebug("put_cred_rcu(%p)", cred);
130
131#ifdef CONFIG_DEBUG_CREDENTIALS
132 if (cred->magic != CRED_MAGIC_DEAD ||
133 atomic_read(&cred->usage) != 0 ||
134 read_cred_subscribers(cred) != 0)
135 panic("CRED: put_cred_rcu() sees %p with"
136 " mag %x, put %p, usage %d, subscr %d\n",
137 cred, cred->magic, cred->put_addr,
138 atomic_read(&cred->usage),
139 read_cred_subscribers(cred));
140#else
88 if (atomic_read(&cred->usage) != 0) 141 if (atomic_read(&cred->usage) != 0)
89 panic("CRED: put_cred_rcu() sees %p with usage %d\n", 142 panic("CRED: put_cred_rcu() sees %p with usage %d\n",
90 cred, atomic_read(&cred->usage)); 143 cred, atomic_read(&cred->usage));
144#endif
91 145
92 security_cred_free(cred); 146 security_cred_free(cred);
93 key_put(cred->thread_keyring); 147 key_put(cred->thread_keyring);
@@ -106,12 +160,90 @@ static void put_cred_rcu(struct rcu_head *rcu)
106 */ 160 */
107void __put_cred(struct cred *cred) 161void __put_cred(struct cred *cred)
108{ 162{
163 kdebug("__put_cred(%p{%d,%d})", cred,
164 atomic_read(&cred->usage),
165 read_cred_subscribers(cred));
166
109 BUG_ON(atomic_read(&cred->usage) != 0); 167 BUG_ON(atomic_read(&cred->usage) != 0);
168#ifdef CONFIG_DEBUG_CREDENTIALS
169 BUG_ON(read_cred_subscribers(cred) != 0);
170 cred->magic = CRED_MAGIC_DEAD;
171 cred->put_addr = __builtin_return_address(0);
172#endif
173 BUG_ON(cred == current->cred);
174 BUG_ON(cred == current->real_cred);
110 175
111 call_rcu(&cred->rcu, put_cred_rcu); 176 call_rcu(&cred->rcu, put_cred_rcu);
112} 177}
113EXPORT_SYMBOL(__put_cred); 178EXPORT_SYMBOL(__put_cred);
114 179
180/*
181 * Clean up a task's credentials when it exits
182 */
183void exit_creds(struct task_struct *tsk)
184{
185 struct cred *cred;
186
187 kdebug("exit_creds(%u,%p,%p,{%d,%d})", tsk->pid, tsk->real_cred, tsk->cred,
188 atomic_read(&tsk->cred->usage),
189 read_cred_subscribers(tsk->cred));
190
191 cred = (struct cred *) tsk->real_cred;
192 tsk->real_cred = NULL;
193 validate_creds(cred);
194 alter_cred_subscribers(cred, -1);
195 put_cred(cred);
196
197 cred = (struct cred *) tsk->cred;
198 tsk->cred = NULL;
199 validate_creds(cred);
200 alter_cred_subscribers(cred, -1);
201 put_cred(cred);
202
203 cred = (struct cred *) tsk->replacement_session_keyring;
204 if (cred) {
205 tsk->replacement_session_keyring = NULL;
206 validate_creds(cred);
207 put_cred(cred);
208 }
209}
210
211/*
212 * Allocate blank credentials, such that the credentials can be filled in at a
213 * later date without risk of ENOMEM.
214 */
215struct cred *cred_alloc_blank(void)
216{
217 struct cred *new;
218
219 new = kmem_cache_zalloc(cred_jar, GFP_KERNEL);
220 if (!new)
221 return NULL;
222
223#ifdef CONFIG_KEYS
224 new->tgcred = kzalloc(sizeof(*new->tgcred), GFP_KERNEL);
225 if (!new->tgcred) {
226 kfree(new);
227 return NULL;
228 }
229 atomic_set(&new->tgcred->usage, 1);
230#endif
231
232 atomic_set(&new->usage, 1);
233
234 if (security_cred_alloc_blank(new, GFP_KERNEL) < 0)
235 goto error;
236
237#ifdef CONFIG_DEBUG_CREDENTIALS
238 new->magic = CRED_MAGIC;
239#endif
240 return new;
241
242error:
243 abort_creds(new);
244 return NULL;
245}
246
115/** 247/**
116 * prepare_creds - Prepare a new set of credentials for modification 248 * prepare_creds - Prepare a new set of credentials for modification
117 * 249 *
@@ -132,16 +264,19 @@ struct cred *prepare_creds(void)
132 const struct cred *old; 264 const struct cred *old;
133 struct cred *new; 265 struct cred *new;
134 266
135 BUG_ON(atomic_read(&task->real_cred->usage) < 1); 267 validate_process_creds();
136 268
137 new = kmem_cache_alloc(cred_jar, GFP_KERNEL); 269 new = kmem_cache_alloc(cred_jar, GFP_KERNEL);
138 if (!new) 270 if (!new)
139 return NULL; 271 return NULL;
140 272
273 kdebug("prepare_creds() alloc %p", new);
274
141 old = task->cred; 275 old = task->cred;
142 memcpy(new, old, sizeof(struct cred)); 276 memcpy(new, old, sizeof(struct cred));
143 277
144 atomic_set(&new->usage, 1); 278 atomic_set(&new->usage, 1);
279 set_cred_subscribers(new, 0);
145 get_group_info(new->group_info); 280 get_group_info(new->group_info);
146 get_uid(new->user); 281 get_uid(new->user);
147 282
@@ -157,6 +292,7 @@ struct cred *prepare_creds(void)
157 292
158 if (security_prepare_creds(new, old, GFP_KERNEL) < 0) 293 if (security_prepare_creds(new, old, GFP_KERNEL) < 0)
159 goto error; 294 goto error;
295 validate_creds(new);
160 return new; 296 return new;
161 297
162error: 298error:
@@ -229,9 +365,12 @@ struct cred *prepare_usermodehelper_creds(void)
229 if (!new) 365 if (!new)
230 return NULL; 366 return NULL;
231 367
368 kdebug("prepare_usermodehelper_creds() alloc %p", new);
369
232 memcpy(new, &init_cred, sizeof(struct cred)); 370 memcpy(new, &init_cred, sizeof(struct cred));
233 371
234 atomic_set(&new->usage, 1); 372 atomic_set(&new->usage, 1);
373 set_cred_subscribers(new, 0);
235 get_group_info(new->group_info); 374 get_group_info(new->group_info);
236 get_uid(new->user); 375 get_uid(new->user);
237 376
@@ -250,6 +389,7 @@ struct cred *prepare_usermodehelper_creds(void)
250#endif 389#endif
251 if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) 390 if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0)
252 goto error; 391 goto error;
392 validate_creds(new);
253 393
254 BUG_ON(atomic_read(&new->usage) != 1); 394 BUG_ON(atomic_read(&new->usage) != 1);
255 return new; 395 return new;
@@ -286,6 +426,10 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags)
286 ) { 426 ) {
287 p->real_cred = get_cred(p->cred); 427 p->real_cred = get_cred(p->cred);
288 get_cred(p->cred); 428 get_cred(p->cred);
429 alter_cred_subscribers(p->cred, 2);
430 kdebug("share_creds(%p{%d,%d})",
431 p->cred, atomic_read(&p->cred->usage),
432 read_cred_subscribers(p->cred));
289 atomic_inc(&p->cred->user->processes); 433 atomic_inc(&p->cred->user->processes);
290 return 0; 434 return 0;
291 } 435 }
@@ -331,6 +475,8 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags)
331 475
332 atomic_inc(&new->user->processes); 476 atomic_inc(&new->user->processes);
333 p->cred = p->real_cred = get_cred(new); 477 p->cred = p->real_cred = get_cred(new);
478 alter_cred_subscribers(new, 2);
479 validate_creds(new);
334 return 0; 480 return 0;
335 481
336error_put: 482error_put:
@@ -355,13 +501,20 @@ error_put:
355int commit_creds(struct cred *new) 501int commit_creds(struct cred *new)
356{ 502{
357 struct task_struct *task = current; 503 struct task_struct *task = current;
358 const struct cred *old; 504 const struct cred *old = task->real_cred;
359 505
360 BUG_ON(task->cred != task->real_cred); 506 kdebug("commit_creds(%p{%d,%d})", new,
361 BUG_ON(atomic_read(&task->real_cred->usage) < 2); 507 atomic_read(&new->usage),
508 read_cred_subscribers(new));
509
510 BUG_ON(task->cred != old);
511#ifdef CONFIG_DEBUG_CREDENTIALS
512 BUG_ON(read_cred_subscribers(old) < 2);
513 validate_creds(old);
514 validate_creds(new);
515#endif
362 BUG_ON(atomic_read(&new->usage) < 1); 516 BUG_ON(atomic_read(&new->usage) < 1);
363 517
364 old = task->real_cred;
365 security_commit_creds(new, old); 518 security_commit_creds(new, old);
366 519
367 get_cred(new); /* we will require a ref for the subj creds too */ 520 get_cred(new); /* we will require a ref for the subj creds too */
@@ -390,12 +543,14 @@ int commit_creds(struct cred *new)
390 * cheaply with the new uid cache, so if it matters 543 * cheaply with the new uid cache, so if it matters
391 * we should be checking for it. -DaveM 544 * we should be checking for it. -DaveM
392 */ 545 */
546 alter_cred_subscribers(new, 2);
393 if (new->user != old->user) 547 if (new->user != old->user)
394 atomic_inc(&new->user->processes); 548 atomic_inc(&new->user->processes);
395 rcu_assign_pointer(task->real_cred, new); 549 rcu_assign_pointer(task->real_cred, new);
396 rcu_assign_pointer(task->cred, new); 550 rcu_assign_pointer(task->cred, new);
397 if (new->user != old->user) 551 if (new->user != old->user)
398 atomic_dec(&old->user->processes); 552 atomic_dec(&old->user->processes);
553 alter_cred_subscribers(old, -2);
399 554
400 sched_switch_user(task); 555 sched_switch_user(task);
401 556
@@ -428,6 +583,13 @@ EXPORT_SYMBOL(commit_creds);
428 */ 583 */
429void abort_creds(struct cred *new) 584void abort_creds(struct cred *new)
430{ 585{
586 kdebug("abort_creds(%p{%d,%d})", new,
587 atomic_read(&new->usage),
588 read_cred_subscribers(new));
589
590#ifdef CONFIG_DEBUG_CREDENTIALS
591 BUG_ON(read_cred_subscribers(new) != 0);
592#endif
431 BUG_ON(atomic_read(&new->usage) < 1); 593 BUG_ON(atomic_read(&new->usage) < 1);
432 put_cred(new); 594 put_cred(new);
433} 595}
@@ -444,7 +606,20 @@ const struct cred *override_creds(const struct cred *new)
444{ 606{
445 const struct cred *old = current->cred; 607 const struct cred *old = current->cred;
446 608
447 rcu_assign_pointer(current->cred, get_cred(new)); 609 kdebug("override_creds(%p{%d,%d})", new,
610 atomic_read(&new->usage),
611 read_cred_subscribers(new));
612
613 validate_creds(old);
614 validate_creds(new);
615 get_cred(new);
616 alter_cred_subscribers(new, 1);
617 rcu_assign_pointer(current->cred, new);
618 alter_cred_subscribers(old, -1);
619
620 kdebug("override_creds() = %p{%d,%d}", old,
621 atomic_read(&old->usage),
622 read_cred_subscribers(old));
448 return old; 623 return old;
449} 624}
450EXPORT_SYMBOL(override_creds); 625EXPORT_SYMBOL(override_creds);
@@ -460,7 +635,15 @@ void revert_creds(const struct cred *old)
460{ 635{
461 const struct cred *override = current->cred; 636 const struct cred *override = current->cred;
462 637
638 kdebug("revert_creds(%p{%d,%d})", old,
639 atomic_read(&old->usage),
640 read_cred_subscribers(old));
641
642 validate_creds(old);
643 validate_creds(override);
644 alter_cred_subscribers(old, 1);
463 rcu_assign_pointer(current->cred, old); 645 rcu_assign_pointer(current->cred, old);
646 alter_cred_subscribers(override, -1);
464 put_cred(override); 647 put_cred(override);
465} 648}
466EXPORT_SYMBOL(revert_creds); 649EXPORT_SYMBOL(revert_creds);
@@ -502,11 +685,15 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
502 if (!new) 685 if (!new)
503 return NULL; 686 return NULL;
504 687
688 kdebug("prepare_kernel_cred() alloc %p", new);
689
505 if (daemon) 690 if (daemon)
506 old = get_task_cred(daemon); 691 old = get_task_cred(daemon);
507 else 692 else
508 old = get_cred(&init_cred); 693 old = get_cred(&init_cred);
509 694
695 validate_creds(old);
696
510 *new = *old; 697 *new = *old;
511 get_uid(new->user); 698 get_uid(new->user);
512 get_group_info(new->group_info); 699 get_group_info(new->group_info);
@@ -526,7 +713,9 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
526 goto error; 713 goto error;
527 714
528 atomic_set(&new->usage, 1); 715 atomic_set(&new->usage, 1);
716 set_cred_subscribers(new, 0);
529 put_cred(old); 717 put_cred(old);
718 validate_creds(new);
530 return new; 719 return new;
531 720
532error: 721error:
@@ -589,3 +778,95 @@ int set_create_files_as(struct cred *new, struct inode *inode)
589 return security_kernel_create_files_as(new, inode); 778 return security_kernel_create_files_as(new, inode);
590} 779}
591EXPORT_SYMBOL(set_create_files_as); 780EXPORT_SYMBOL(set_create_files_as);
781
782#ifdef CONFIG_DEBUG_CREDENTIALS
783
784/*
785 * dump invalid credentials
786 */
787static void dump_invalid_creds(const struct cred *cred, const char *label,
788 const struct task_struct *tsk)
789{
790 printk(KERN_ERR "CRED: %s credentials: %p %s%s%s\n",
791 label, cred,
792 cred == &init_cred ? "[init]" : "",
793 cred == tsk->real_cred ? "[real]" : "",
794 cred == tsk->cred ? "[eff]" : "");
795 printk(KERN_ERR "CRED: ->magic=%x, put_addr=%p\n",
796 cred->magic, cred->put_addr);
797 printk(KERN_ERR "CRED: ->usage=%d, subscr=%d\n",
798 atomic_read(&cred->usage),
799 read_cred_subscribers(cred));
800 printk(KERN_ERR "CRED: ->*uid = { %d,%d,%d,%d }\n",
801 cred->uid, cred->euid, cred->suid, cred->fsuid);
802 printk(KERN_ERR "CRED: ->*gid = { %d,%d,%d,%d }\n",
803 cred->gid, cred->egid, cred->sgid, cred->fsgid);
804#ifdef CONFIG_SECURITY
805 printk(KERN_ERR "CRED: ->security is %p\n", cred->security);
806 if ((unsigned long) cred->security >= PAGE_SIZE &&
807 (((unsigned long) cred->security & 0xffffff00) !=
808 (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)))
809 printk(KERN_ERR "CRED: ->security {%x, %x}\n",
810 ((u32*)cred->security)[0],
811 ((u32*)cred->security)[1]);
812#endif
813}
814
815/*
816 * report use of invalid credentials
817 */
818void __invalid_creds(const struct cred *cred, const char *file, unsigned line)
819{
820 printk(KERN_ERR "CRED: Invalid credentials\n");
821 printk(KERN_ERR "CRED: At %s:%u\n", file, line);
822 dump_invalid_creds(cred, "Specified", current);
823 BUG();
824}
825EXPORT_SYMBOL(__invalid_creds);
826
827/*
828 * check the credentials on a process
829 */
830void __validate_process_creds(struct task_struct *tsk,
831 const char *file, unsigned line)
832{
833 if (tsk->cred == tsk->real_cred) {
834 if (unlikely(read_cred_subscribers(tsk->cred) < 2 ||
835 creds_are_invalid(tsk->cred)))
836 goto invalid_creds;
837 } else {
838 if (unlikely(read_cred_subscribers(tsk->real_cred) < 1 ||
839 read_cred_subscribers(tsk->cred) < 1 ||
840 creds_are_invalid(tsk->real_cred) ||
841 creds_are_invalid(tsk->cred)))
842 goto invalid_creds;
843 }
844 return;
845
846invalid_creds:
847 printk(KERN_ERR "CRED: Invalid process credentials\n");
848 printk(KERN_ERR "CRED: At %s:%u\n", file, line);
849
850 dump_invalid_creds(tsk->real_cred, "Real", tsk);
851 if (tsk->cred != tsk->real_cred)
852 dump_invalid_creds(tsk->cred, "Effective", tsk);
853 else
854 printk(KERN_ERR "CRED: Effective creds == Real creds\n");
855 BUG();
856}
857EXPORT_SYMBOL(__validate_process_creds);
858
859/*
860 * check creds for do_exit()
861 */
862void validate_creds_for_do_exit(struct task_struct *tsk)
863{
864 kdebug("validate_creds_for_do_exit(%p,%p{%d,%d})",
865 tsk->real_cred, tsk->cred,
866 atomic_read(&tsk->cred->usage),
867 read_cred_subscribers(tsk->cred));
868
869 __validate_process_creds(tsk, __FILE__, __LINE__);
870}
871
872#endif /* CONFIG_DEBUG_CREDENTIALS */
diff --git a/kernel/exit.c b/kernel/exit.c
index 869dc221733e..ae5d8660ddff 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -901,6 +901,8 @@ NORET_TYPE void do_exit(long code)
901 901
902 tracehook_report_exit(&code); 902 tracehook_report_exit(&code);
903 903
904 validate_creds_for_do_exit(tsk);
905
904 /* 906 /*
905 * We're taking recursive faults here in do_exit. Safest is to just 907 * We're taking recursive faults here in do_exit. Safest is to just
906 * leave this task alone and wait for reboot. 908 * leave this task alone and wait for reboot.
@@ -1009,7 +1011,10 @@ NORET_TYPE void do_exit(long code)
1009 if (tsk->splice_pipe) 1011 if (tsk->splice_pipe)
1010 __free_pipe_info(tsk->splice_pipe); 1012 __free_pipe_info(tsk->splice_pipe);
1011 1013
1014 validate_creds_for_do_exit(tsk);
1015
1012 preempt_disable(); 1016 preempt_disable();
1017 exit_rcu();
1013 /* causes final put_task_struct in finish_task_switch(). */ 1018 /* causes final put_task_struct in finish_task_switch(). */
1014 tsk->state = TASK_DEAD; 1019 tsk->state = TASK_DEAD;
1015 schedule(); 1020 schedule();
diff --git a/kernel/fork.c b/kernel/fork.c
index 144326b7af50..bfee931ee3fb 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -152,8 +152,7 @@ void __put_task_struct(struct task_struct *tsk)
152 WARN_ON(atomic_read(&tsk->usage)); 152 WARN_ON(atomic_read(&tsk->usage));
153 WARN_ON(tsk == current); 153 WARN_ON(tsk == current);
154 154
155 put_cred(tsk->real_cred); 155 exit_creds(tsk);
156 put_cred(tsk->cred);
157 delayacct_tsk_free(tsk); 156 delayacct_tsk_free(tsk);
158 157
159 if (!profile_handoff_task(tsk)) 158 if (!profile_handoff_task(tsk))
@@ -815,11 +814,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
815{ 814{
816 struct signal_struct *sig; 815 struct signal_struct *sig;
817 816
818 if (clone_flags & CLONE_THREAD) { 817 if (clone_flags & CLONE_THREAD)
819 atomic_inc(&current->signal->count);
820 atomic_inc(&current->signal->live);
821 return 0; 818 return 0;
822 }
823 819
824 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 820 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
825 tsk->signal = sig; 821 tsk->signal = sig;
@@ -877,16 +873,6 @@ void __cleanup_signal(struct signal_struct *sig)
877 kmem_cache_free(signal_cachep, sig); 873 kmem_cache_free(signal_cachep, sig);
878} 874}
879 875
880static void cleanup_signal(struct task_struct *tsk)
881{
882 struct signal_struct *sig = tsk->signal;
883
884 atomic_dec(&sig->live);
885
886 if (atomic_dec_and_test(&sig->count))
887 __cleanup_signal(sig);
888}
889
890static void copy_flags(unsigned long clone_flags, struct task_struct *p) 876static void copy_flags(unsigned long clone_flags, struct task_struct *p)
891{ 877{
892 unsigned long new_flags = p->flags; 878 unsigned long new_flags = p->flags;
@@ -1021,10 +1007,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1021 copy_flags(clone_flags, p); 1007 copy_flags(clone_flags, p);
1022 INIT_LIST_HEAD(&p->children); 1008 INIT_LIST_HEAD(&p->children);
1023 INIT_LIST_HEAD(&p->sibling); 1009 INIT_LIST_HEAD(&p->sibling);
1024#ifdef CONFIG_PREEMPT_RCU 1010 rcu_copy_process(p);
1025 p->rcu_read_lock_nesting = 0;
1026 p->rcu_flipctr_idx = 0;
1027#endif /* #ifdef CONFIG_PREEMPT_RCU */
1028 p->vfork_done = NULL; 1011 p->vfork_done = NULL;
1029 spin_lock_init(&p->alloc_lock); 1012 spin_lock_init(&p->alloc_lock);
1030 1013
@@ -1239,6 +1222,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1239 } 1222 }
1240 1223
1241 if (clone_flags & CLONE_THREAD) { 1224 if (clone_flags & CLONE_THREAD) {
1225 atomic_inc(&current->signal->count);
1226 atomic_inc(&current->signal->live);
1242 p->group_leader = current->group_leader; 1227 p->group_leader = current->group_leader;
1243 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1228 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1244 } 1229 }
@@ -1282,7 +1267,8 @@ bad_fork_cleanup_mm:
1282 if (p->mm) 1267 if (p->mm)
1283 mmput(p->mm); 1268 mmput(p->mm);
1284bad_fork_cleanup_signal: 1269bad_fork_cleanup_signal:
1285 cleanup_signal(p); 1270 if (!(clone_flags & CLONE_THREAD))
1271 __cleanup_signal(p->signal);
1286bad_fork_cleanup_sighand: 1272bad_fork_cleanup_sighand:
1287 __cleanup_sighand(p->sighand); 1273 __cleanup_sighand(p->sighand);
1288bad_fork_cleanup_fs: 1274bad_fork_cleanup_fs:
@@ -1307,8 +1293,7 @@ bad_fork_cleanup_put_domain:
1307 module_put(task_thread_info(p)->exec_domain->module); 1293 module_put(task_thread_info(p)->exec_domain->module);
1308bad_fork_cleanup_count: 1294bad_fork_cleanup_count:
1309 atomic_dec(&p->cred->user->processes); 1295 atomic_dec(&p->cred->user->processes);
1310 put_cred(p->real_cred); 1296 exit_creds(p);
1311 put_cred(p->cred);
1312bad_fork_free: 1297bad_fork_free:
1313 free_task(p); 1298 free_task(p);
1314fork_out: 1299fork_out:
diff --git a/kernel/futex.c b/kernel/futex.c
index e18cfbdc7190..248dd119a86e 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -115,6 +115,9 @@ struct futex_q {
115 /* rt_waiter storage for requeue_pi: */ 115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter; 116 struct rt_mutex_waiter *rt_waiter;
117 117
118 /* The expected requeue pi target futex key: */
119 union futex_key *requeue_pi_key;
120
118 /* Bitset for the optional bitmasked wakeup */ 121 /* Bitset for the optional bitmasked wakeup */
119 u32 bitset; 122 u32 bitset;
120}; 123};
@@ -1089,6 +1092,10 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1089 if (!top_waiter) 1092 if (!top_waiter)
1090 return 0; 1093 return 0;
1091 1094
1095 /* Ensure we requeue to the expected futex. */
1096 if (!match_futex(top_waiter->requeue_pi_key, key2))
1097 return -EINVAL;
1098
1092 /* 1099 /*
1093 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in 1100 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1094 * the contended case or if set_waiters is 1. The pi_state is returned 1101 * the contended case or if set_waiters is 1. The pi_state is returned
@@ -1276,6 +1283,12 @@ retry_private:
1276 continue; 1283 continue;
1277 } 1284 }
1278 1285
1286 /* Ensure we requeue to the expected futex for requeue_pi. */
1287 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1288 ret = -EINVAL;
1289 break;
1290 }
1291
1279 /* 1292 /*
1280 * Requeue nr_requeue waiters and possibly one more in the case 1293 * Requeue nr_requeue waiters and possibly one more in the case
1281 * of requeue_pi if we couldn't acquire the lock atomically. 1294 * of requeue_pi if we couldn't acquire the lock atomically.
@@ -1751,6 +1764,7 @@ static int futex_wait(u32 __user *uaddr, int fshared,
1751 q.pi_state = NULL; 1764 q.pi_state = NULL;
1752 q.bitset = bitset; 1765 q.bitset = bitset;
1753 q.rt_waiter = NULL; 1766 q.rt_waiter = NULL;
1767 q.requeue_pi_key = NULL;
1754 1768
1755 if (abs_time) { 1769 if (abs_time) {
1756 to = &timeout; 1770 to = &timeout;
@@ -1858,6 +1872,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
1858 1872
1859 q.pi_state = NULL; 1873 q.pi_state = NULL;
1860 q.rt_waiter = NULL; 1874 q.rt_waiter = NULL;
1875 q.requeue_pi_key = NULL;
1861retry: 1876retry:
1862 q.key = FUTEX_KEY_INIT; 1877 q.key = FUTEX_KEY_INIT;
1863 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); 1878 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
@@ -2118,11 +2133,11 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2118 * We call schedule in futex_wait_queue_me() when we enqueue and return there 2133 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2119 * via the following: 2134 * via the following:
2120 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() 2135 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2121 * 2) wakeup on uaddr2 after a requeue and subsequent unlock 2136 * 2) wakeup on uaddr2 after a requeue
2122 * 3) signal (before or after requeue) 2137 * 3) signal
2123 * 4) timeout (before or after requeue) 2138 * 4) timeout
2124 * 2139 *
2125 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function. 2140 * If 3, cleanup and return -ERESTARTNOINTR.
2126 * 2141 *
2127 * If 2, we may then block on trying to take the rt_mutex and return via: 2142 * If 2, we may then block on trying to take the rt_mutex and return via:
2128 * 5) successful lock 2143 * 5) successful lock
@@ -2130,7 +2145,7 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2130 * 7) timeout 2145 * 7) timeout
2131 * 8) other lock acquisition failure 2146 * 8) other lock acquisition failure
2132 * 2147 *
2133 * If 6, we setup a restart_block with futex_lock_pi() as the function. 2148 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2134 * 2149 *
2135 * If 4 or 7, we cleanup and return with -ETIMEDOUT. 2150 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2136 * 2151 *
@@ -2169,15 +2184,16 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2169 debug_rt_mutex_init_waiter(&rt_waiter); 2184 debug_rt_mutex_init_waiter(&rt_waiter);
2170 rt_waiter.task = NULL; 2185 rt_waiter.task = NULL;
2171 2186
2172 q.pi_state = NULL;
2173 q.bitset = bitset;
2174 q.rt_waiter = &rt_waiter;
2175
2176 key2 = FUTEX_KEY_INIT; 2187 key2 = FUTEX_KEY_INIT;
2177 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); 2188 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2178 if (unlikely(ret != 0)) 2189 if (unlikely(ret != 0))
2179 goto out; 2190 goto out;
2180 2191
2192 q.pi_state = NULL;
2193 q.bitset = bitset;
2194 q.rt_waiter = &rt_waiter;
2195 q.requeue_pi_key = &key2;
2196
2181 /* Prepare to wait on uaddr. */ 2197 /* Prepare to wait on uaddr. */
2182 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); 2198 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2183 if (ret) 2199 if (ret)
@@ -2248,14 +2264,11 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2248 rt_mutex_unlock(pi_mutex); 2264 rt_mutex_unlock(pi_mutex);
2249 } else if (ret == -EINTR) { 2265 } else if (ret == -EINTR) {
2250 /* 2266 /*
2251 * We've already been requeued, but we have no way to 2267 * We've already been requeued, but cannot restart by calling
2252 * restart by calling futex_lock_pi() directly. We 2268 * futex_lock_pi() directly. We could restart this syscall, but
2253 * could restart the syscall, but that will look at 2269 * it would detect that the user space "val" changed and return
2254 * the user space value and return right away. So we 2270 * -EWOULDBLOCK. Save the overhead of the restart and return
2255 * drop back with EWOULDBLOCK to tell user space that 2271 * -EWOULDBLOCK directly.
2256 * "val" has been changed. That's the same what the
2257 * restart of the syscall would do in
2258 * futex_wait_setup().
2259 */ 2272 */
2260 ret = -EWOULDBLOCK; 2273 ret = -EWOULDBLOCK;
2261 } 2274 }
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 49da79ab8486..05071bf6a37b 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -485,6 +485,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
485 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 485 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
486 __hrtimer_init(timer, clock_id, mode); 486 __hrtimer_init(timer, clock_id, mode);
487} 487}
488EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
488 489
489void destroy_hrtimer_on_stack(struct hrtimer *timer) 490void destroy_hrtimer_on_stack(struct hrtimer *timer)
490{ 491{
@@ -1477,6 +1478,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1477 sl->timer.function = hrtimer_wakeup; 1478 sl->timer.function = hrtimer_wakeup;
1478 sl->task = task; 1479 sl->task = task;
1479} 1480}
1481EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480 1482
1481static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1483static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482{ 1484{
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c
index 13c68e71b726..c1660194d115 100644
--- a/kernel/irq/chip.c
+++ b/kernel/irq/chip.c
@@ -222,6 +222,34 @@ int set_irq_chip_data(unsigned int irq, void *data)
222} 222}
223EXPORT_SYMBOL(set_irq_chip_data); 223EXPORT_SYMBOL(set_irq_chip_data);
224 224
225/**
226 * set_irq_nested_thread - Set/Reset the IRQ_NESTED_THREAD flag of an irq
227 *
228 * @irq: Interrupt number
229 * @nest: 0 to clear / 1 to set the IRQ_NESTED_THREAD flag
230 *
231 * The IRQ_NESTED_THREAD flag indicates that on
232 * request_threaded_irq() no separate interrupt thread should be
233 * created for the irq as the handler are called nested in the
234 * context of a demultiplexing interrupt handler thread.
235 */
236void set_irq_nested_thread(unsigned int irq, int nest)
237{
238 struct irq_desc *desc = irq_to_desc(irq);
239 unsigned long flags;
240
241 if (!desc)
242 return;
243
244 spin_lock_irqsave(&desc->lock, flags);
245 if (nest)
246 desc->status |= IRQ_NESTED_THREAD;
247 else
248 desc->status &= ~IRQ_NESTED_THREAD;
249 spin_unlock_irqrestore(&desc->lock, flags);
250}
251EXPORT_SYMBOL_GPL(set_irq_nested_thread);
252
225/* 253/*
226 * default enable function 254 * default enable function
227 */ 255 */
@@ -299,6 +327,45 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq)
299 } 327 }
300} 328}
301 329
330/*
331 * handle_nested_irq - Handle a nested irq from a irq thread
332 * @irq: the interrupt number
333 *
334 * Handle interrupts which are nested into a threaded interrupt
335 * handler. The handler function is called inside the calling
336 * threads context.
337 */
338void handle_nested_irq(unsigned int irq)
339{
340 struct irq_desc *desc = irq_to_desc(irq);
341 struct irqaction *action;
342 irqreturn_t action_ret;
343
344 might_sleep();
345
346 spin_lock_irq(&desc->lock);
347
348 kstat_incr_irqs_this_cpu(irq, desc);
349
350 action = desc->action;
351 if (unlikely(!action || (desc->status & IRQ_DISABLED)))
352 goto out_unlock;
353
354 desc->status |= IRQ_INPROGRESS;
355 spin_unlock_irq(&desc->lock);
356
357 action_ret = action->thread_fn(action->irq, action->dev_id);
358 if (!noirqdebug)
359 note_interrupt(irq, desc, action_ret);
360
361 spin_lock_irq(&desc->lock);
362 desc->status &= ~IRQ_INPROGRESS;
363
364out_unlock:
365 spin_unlock_irq(&desc->lock);
366}
367EXPORT_SYMBOL_GPL(handle_nested_irq);
368
302/** 369/**
303 * handle_simple_irq - Simple and software-decoded IRQs. 370 * handle_simple_irq - Simple and software-decoded IRQs.
304 * @irq: the interrupt number 371 * @irq: the interrupt number
@@ -382,7 +449,10 @@ handle_level_irq(unsigned int irq, struct irq_desc *desc)
382 449
383 spin_lock(&desc->lock); 450 spin_lock(&desc->lock);
384 desc->status &= ~IRQ_INPROGRESS; 451 desc->status &= ~IRQ_INPROGRESS;
385 if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) 452
453 if (unlikely(desc->status & IRQ_ONESHOT))
454 desc->status |= IRQ_MASKED;
455 else if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask)
386 desc->chip->unmask(irq); 456 desc->chip->unmask(irq);
387out_unlock: 457out_unlock:
388 spin_unlock(&desc->lock); 458 spin_unlock(&desc->lock);
@@ -572,6 +642,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
572 desc->chip = &dummy_irq_chip; 642 desc->chip = &dummy_irq_chip;
573 } 643 }
574 644
645 chip_bus_lock(irq, desc);
575 spin_lock_irqsave(&desc->lock, flags); 646 spin_lock_irqsave(&desc->lock, flags);
576 647
577 /* Uninstall? */ 648 /* Uninstall? */
@@ -591,6 +662,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained,
591 desc->chip->startup(irq); 662 desc->chip->startup(irq);
592 } 663 }
593 spin_unlock_irqrestore(&desc->lock, flags); 664 spin_unlock_irqrestore(&desc->lock, flags);
665 chip_bus_sync_unlock(irq, desc);
594} 666}
595EXPORT_SYMBOL_GPL(__set_irq_handler); 667EXPORT_SYMBOL_GPL(__set_irq_handler);
596 668
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c
index 065205bdd920..a81cf80554db 100644
--- a/kernel/irq/handle.c
+++ b/kernel/irq/handle.c
@@ -161,7 +161,7 @@ int __init early_irq_init(void)
161 161
162 desc = irq_desc_legacy; 162 desc = irq_desc_legacy;
163 legacy_count = ARRAY_SIZE(irq_desc_legacy); 163 legacy_count = ARRAY_SIZE(irq_desc_legacy);
164 node = first_online_node; 164 node = first_online_node;
165 165
166 /* allocate irq_desc_ptrs array based on nr_irqs */ 166 /* allocate irq_desc_ptrs array based on nr_irqs */
167 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); 167 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT);
@@ -172,6 +172,9 @@ int __init early_irq_init(void)
172 172
173 for (i = 0; i < legacy_count; i++) { 173 for (i = 0; i < legacy_count; i++) {
174 desc[i].irq = i; 174 desc[i].irq = i;
175#ifdef CONFIG_SMP
176 desc[i].node = node;
177#endif
175 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; 178 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
176 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); 179 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
177 alloc_desc_masks(&desc[i], node, true); 180 alloc_desc_masks(&desc[i], node, true);
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h
index e70ed5592eb9..1b5d742c6a77 100644
--- a/kernel/irq/internals.h
+++ b/kernel/irq/internals.h
@@ -44,6 +44,19 @@ extern int irq_select_affinity_usr(unsigned int irq);
44 44
45extern void irq_set_thread_affinity(struct irq_desc *desc); 45extern void irq_set_thread_affinity(struct irq_desc *desc);
46 46
47/* Inline functions for support of irq chips on slow busses */
48static inline void chip_bus_lock(unsigned int irq, struct irq_desc *desc)
49{
50 if (unlikely(desc->chip->bus_lock))
51 desc->chip->bus_lock(irq);
52}
53
54static inline void chip_bus_sync_unlock(unsigned int irq, struct irq_desc *desc)
55{
56 if (unlikely(desc->chip->bus_sync_unlock))
57 desc->chip->bus_sync_unlock(irq);
58}
59
47/* 60/*
48 * Debugging printout: 61 * Debugging printout:
49 */ 62 */
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 0ec9ed831737..bde4c667d24d 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -230,9 +230,11 @@ void disable_irq_nosync(unsigned int irq)
230 if (!desc) 230 if (!desc)
231 return; 231 return;
232 232
233 chip_bus_lock(irq, desc);
233 spin_lock_irqsave(&desc->lock, flags); 234 spin_lock_irqsave(&desc->lock, flags);
234 __disable_irq(desc, irq, false); 235 __disable_irq(desc, irq, false);
235 spin_unlock_irqrestore(&desc->lock, flags); 236 spin_unlock_irqrestore(&desc->lock, flags);
237 chip_bus_sync_unlock(irq, desc);
236} 238}
237EXPORT_SYMBOL(disable_irq_nosync); 239EXPORT_SYMBOL(disable_irq_nosync);
238 240
@@ -294,7 +296,8 @@ void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume)
294 * matches the last disable, processing of interrupts on this 296 * matches the last disable, processing of interrupts on this
295 * IRQ line is re-enabled. 297 * IRQ line is re-enabled.
296 * 298 *
297 * This function may be called from IRQ context. 299 * This function may be called from IRQ context only when
300 * desc->chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
298 */ 301 */
299void enable_irq(unsigned int irq) 302void enable_irq(unsigned int irq)
300{ 303{
@@ -304,9 +307,11 @@ void enable_irq(unsigned int irq)
304 if (!desc) 307 if (!desc)
305 return; 308 return;
306 309
310 chip_bus_lock(irq, desc);
307 spin_lock_irqsave(&desc->lock, flags); 311 spin_lock_irqsave(&desc->lock, flags);
308 __enable_irq(desc, irq, false); 312 __enable_irq(desc, irq, false);
309 spin_unlock_irqrestore(&desc->lock, flags); 313 spin_unlock_irqrestore(&desc->lock, flags);
314 chip_bus_sync_unlock(irq, desc);
310} 315}
311EXPORT_SYMBOL(enable_irq); 316EXPORT_SYMBOL(enable_irq);
312 317
@@ -436,6 +441,26 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
436 return ret; 441 return ret;
437} 442}
438 443
444/*
445 * Default primary interrupt handler for threaded interrupts. Is
446 * assigned as primary handler when request_threaded_irq is called
447 * with handler == NULL. Useful for oneshot interrupts.
448 */
449static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
450{
451 return IRQ_WAKE_THREAD;
452}
453
454/*
455 * Primary handler for nested threaded interrupts. Should never be
456 * called.
457 */
458static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
459{
460 WARN(1, "Primary handler called for nested irq %d\n", irq);
461 return IRQ_NONE;
462}
463
439static int irq_wait_for_interrupt(struct irqaction *action) 464static int irq_wait_for_interrupt(struct irqaction *action)
440{ 465{
441 while (!kthread_should_stop()) { 466 while (!kthread_should_stop()) {
@@ -451,6 +476,23 @@ static int irq_wait_for_interrupt(struct irqaction *action)
451 return -1; 476 return -1;
452} 477}
453 478
479/*
480 * Oneshot interrupts keep the irq line masked until the threaded
481 * handler finished. unmask if the interrupt has not been disabled and
482 * is marked MASKED.
483 */
484static void irq_finalize_oneshot(unsigned int irq, struct irq_desc *desc)
485{
486 chip_bus_lock(irq, desc);
487 spin_lock_irq(&desc->lock);
488 if (!(desc->status & IRQ_DISABLED) && (desc->status & IRQ_MASKED)) {
489 desc->status &= ~IRQ_MASKED;
490 desc->chip->unmask(irq);
491 }
492 spin_unlock_irq(&desc->lock);
493 chip_bus_sync_unlock(irq, desc);
494}
495
454#ifdef CONFIG_SMP 496#ifdef CONFIG_SMP
455/* 497/*
456 * Check whether we need to change the affinity of the interrupt thread. 498 * Check whether we need to change the affinity of the interrupt thread.
@@ -492,7 +534,7 @@ static int irq_thread(void *data)
492 struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; 534 struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, };
493 struct irqaction *action = data; 535 struct irqaction *action = data;
494 struct irq_desc *desc = irq_to_desc(action->irq); 536 struct irq_desc *desc = irq_to_desc(action->irq);
495 int wake; 537 int wake, oneshot = desc->status & IRQ_ONESHOT;
496 538
497 sched_setscheduler(current, SCHED_FIFO, &param); 539 sched_setscheduler(current, SCHED_FIFO, &param);
498 current->irqaction = action; 540 current->irqaction = action;
@@ -518,6 +560,9 @@ static int irq_thread(void *data)
518 spin_unlock_irq(&desc->lock); 560 spin_unlock_irq(&desc->lock);
519 561
520 action->thread_fn(action->irq, action->dev_id); 562 action->thread_fn(action->irq, action->dev_id);
563
564 if (oneshot)
565 irq_finalize_oneshot(action->irq, desc);
521 } 566 }
522 567
523 wake = atomic_dec_and_test(&desc->threads_active); 568 wake = atomic_dec_and_test(&desc->threads_active);
@@ -565,7 +610,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
565 struct irqaction *old, **old_ptr; 610 struct irqaction *old, **old_ptr;
566 const char *old_name = NULL; 611 const char *old_name = NULL;
567 unsigned long flags; 612 unsigned long flags;
568 int shared = 0; 613 int nested, shared = 0;
569 int ret; 614 int ret;
570 615
571 if (!desc) 616 if (!desc)
@@ -590,10 +635,32 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
590 rand_initialize_irq(irq); 635 rand_initialize_irq(irq);
591 } 636 }
592 637
638 /* Oneshot interrupts are not allowed with shared */
639 if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED))
640 return -EINVAL;
641
642 /*
643 * Check whether the interrupt nests into another interrupt
644 * thread.
645 */
646 nested = desc->status & IRQ_NESTED_THREAD;
647 if (nested) {
648 if (!new->thread_fn)
649 return -EINVAL;
650 /*
651 * Replace the primary handler which was provided from
652 * the driver for non nested interrupt handling by the
653 * dummy function which warns when called.
654 */
655 new->handler = irq_nested_primary_handler;
656 }
657
593 /* 658 /*
594 * Threaded handler ? 659 * Create a handler thread when a thread function is supplied
660 * and the interrupt does not nest into another interrupt
661 * thread.
595 */ 662 */
596 if (new->thread_fn) { 663 if (new->thread_fn && !nested) {
597 struct task_struct *t; 664 struct task_struct *t;
598 665
599 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 666 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
@@ -662,9 +729,12 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
662 desc->status |= IRQ_PER_CPU; 729 desc->status |= IRQ_PER_CPU;
663#endif 730#endif
664 731
665 desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | 732 desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT |
666 IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); 733 IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED);
667 734
735 if (new->flags & IRQF_ONESHOT)
736 desc->status |= IRQ_ONESHOT;
737
668 if (!(desc->status & IRQ_NOAUTOEN)) { 738 if (!(desc->status & IRQ_NOAUTOEN)) {
669 desc->depth = 0; 739 desc->depth = 0;
670 desc->status &= ~IRQ_DISABLED; 740 desc->status &= ~IRQ_DISABLED;
@@ -875,7 +945,14 @@ EXPORT_SYMBOL_GPL(remove_irq);
875 */ 945 */
876void free_irq(unsigned int irq, void *dev_id) 946void free_irq(unsigned int irq, void *dev_id)
877{ 947{
948 struct irq_desc *desc = irq_to_desc(irq);
949
950 if (!desc)
951 return;
952
953 chip_bus_lock(irq, desc);
878 kfree(__free_irq(irq, dev_id)); 954 kfree(__free_irq(irq, dev_id));
955 chip_bus_sync_unlock(irq, desc);
879} 956}
880EXPORT_SYMBOL(free_irq); 957EXPORT_SYMBOL(free_irq);
881 958
@@ -884,6 +961,8 @@ EXPORT_SYMBOL(free_irq);
884 * @irq: Interrupt line to allocate 961 * @irq: Interrupt line to allocate
885 * @handler: Function to be called when the IRQ occurs. 962 * @handler: Function to be called when the IRQ occurs.
886 * Primary handler for threaded interrupts 963 * Primary handler for threaded interrupts
964 * If NULL and thread_fn != NULL the default
965 * primary handler is installed
887 * @thread_fn: Function called from the irq handler thread 966 * @thread_fn: Function called from the irq handler thread
888 * If NULL, no irq thread is created 967 * If NULL, no irq thread is created
889 * @irqflags: Interrupt type flags 968 * @irqflags: Interrupt type flags
@@ -963,8 +1042,12 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler,
963 1042
964 if (desc->status & IRQ_NOREQUEST) 1043 if (desc->status & IRQ_NOREQUEST)
965 return -EINVAL; 1044 return -EINVAL;
966 if (!handler) 1045
967 return -EINVAL; 1046 if (!handler) {
1047 if (!thread_fn)
1048 return -EINVAL;
1049 handler = irq_default_primary_handler;
1050 }
968 1051
969 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1052 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
970 if (!action) 1053 if (!action)
@@ -976,7 +1059,10 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler,
976 action->name = devname; 1059 action->name = devname;
977 action->dev_id = dev_id; 1060 action->dev_id = dev_id;
978 1061
1062 chip_bus_lock(irq, desc);
979 retval = __setup_irq(irq, desc, action); 1063 retval = __setup_irq(irq, desc, action);
1064 chip_bus_sync_unlock(irq, desc);
1065
980 if (retval) 1066 if (retval)
981 kfree(action); 1067 kfree(action);
982 1068
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c
index 638d8bedec14..a0bb09e79867 100644
--- a/kernel/irq/pm.c
+++ b/kernel/irq/pm.c
@@ -15,10 +15,10 @@
15/** 15/**
16 * suspend_device_irqs - disable all currently enabled interrupt lines 16 * suspend_device_irqs - disable all currently enabled interrupt lines
17 * 17 *
18 * During system-wide suspend or hibernation device interrupts need to be 18 * During system-wide suspend or hibernation device drivers need to be prevented
19 * disabled at the chip level and this function is provided for this purpose. 19 * from receiving interrupts and this function is provided for this purpose.
20 * It disables all interrupt lines that are enabled at the moment and sets the 20 * It marks all interrupt lines in use, except for the timer ones, as disabled
21 * IRQ_SUSPENDED flag for them. 21 * and sets the IRQ_SUSPENDED flag for each of them.
22 */ 22 */
23void suspend_device_irqs(void) 23void suspend_device_irqs(void)
24{ 24{
diff --git a/kernel/irq/resend.c b/kernel/irq/resend.c
index 89c7117acf2b..090c3763f3a2 100644
--- a/kernel/irq/resend.c
+++ b/kernel/irq/resend.c
@@ -70,8 +70,7 @@ void check_irq_resend(struct irq_desc *desc, unsigned int irq)
70 if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { 70 if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
71 desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; 71 desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY;
72 72
73 if (!desc->chip || !desc->chip->retrigger || 73 if (!desc->chip->retrigger || !desc->chip->retrigger(irq)) {
74 !desc->chip->retrigger(irq)) {
75#ifdef CONFIG_HARDIRQS_SW_RESEND 74#ifdef CONFIG_HARDIRQS_SW_RESEND
76 /* Set it pending and activate the softirq: */ 75 /* Set it pending and activate the softirq: */
77 set_bit(irq, irqs_resend); 76 set_bit(irq, irqs_resend);
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c
index 4d568294de3e..114e704760fe 100644
--- a/kernel/irq/spurious.c
+++ b/kernel/irq/spurious.c
@@ -297,7 +297,6 @@ static int __init irqfixup_setup(char *str)
297 297
298__setup("irqfixup", irqfixup_setup); 298__setup("irqfixup", irqfixup_setup);
299module_param(irqfixup, int, 0644); 299module_param(irqfixup, int, 0644);
300MODULE_PARM_DESC("irqfixup", "0: No fixup, 1: irqfixup mode, 2: irqpoll mode");
301 300
302static int __init irqpoll_setup(char *str) 301static int __init irqpoll_setup(char *str)
303{ 302{
diff --git a/kernel/kmod.c b/kernel/kmod.c
index 385c31a1bdbf..9fcb53a11f87 100644
--- a/kernel/kmod.c
+++ b/kernel/kmod.c
@@ -37,6 +37,8 @@
37#include <linux/suspend.h> 37#include <linux/suspend.h>
38#include <asm/uaccess.h> 38#include <asm/uaccess.h>
39 39
40#include <trace/events/module.h>
41
40extern int max_threads; 42extern int max_threads;
41 43
42static struct workqueue_struct *khelper_wq; 44static struct workqueue_struct *khelper_wq;
@@ -78,6 +80,10 @@ int __request_module(bool wait, const char *fmt, ...)
78#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ 80#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
79 static int kmod_loop_msg; 81 static int kmod_loop_msg;
80 82
83 ret = security_kernel_module_request();
84 if (ret)
85 return ret;
86
81 va_start(args, fmt); 87 va_start(args, fmt);
82 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); 88 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
83 va_end(args); 89 va_end(args);
@@ -108,6 +114,8 @@ int __request_module(bool wait, const char *fmt, ...)
108 return -ENOMEM; 114 return -ENOMEM;
109 } 115 }
110 116
117 trace_module_request(module_name, wait, _RET_IP_);
118
111 ret = call_usermodehelper(modprobe_path, argv, envp, 119 ret = call_usermodehelper(modprobe_path, argv, envp,
112 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); 120 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
113 atomic_dec(&kmod_concurrent); 121 atomic_dec(&kmod_concurrent);
@@ -462,6 +470,7 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info,
462 int retval = 0; 470 int retval = 0;
463 471
464 BUG_ON(atomic_read(&sub_info->cred->usage) != 1); 472 BUG_ON(atomic_read(&sub_info->cred->usage) != 1);
473 validate_creds(sub_info->cred);
465 474
466 helper_lock(); 475 helper_lock();
467 if (sub_info->path[0] == '\0') 476 if (sub_info->path[0] == '\0')
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index 0540948e29ab..ef177d653b2c 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -103,7 +103,7 @@ static struct kprobe_blackpoint kprobe_blacklist[] = {
103#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 103#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104 104
105struct kprobe_insn_page { 105struct kprobe_insn_page {
106 struct hlist_node hlist; 106 struct list_head list;
107 kprobe_opcode_t *insns; /* Page of instruction slots */ 107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE]; 108 char slot_used[INSNS_PER_PAGE];
109 int nused; 109 int nused;
@@ -117,7 +117,7 @@ enum kprobe_slot_state {
117}; 117};
118 118
119static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ 119static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120static struct hlist_head kprobe_insn_pages; 120static LIST_HEAD(kprobe_insn_pages);
121static int kprobe_garbage_slots; 121static int kprobe_garbage_slots;
122static int collect_garbage_slots(void); 122static int collect_garbage_slots(void);
123 123
@@ -152,10 +152,9 @@ loop_end:
152static kprobe_opcode_t __kprobes *__get_insn_slot(void) 152static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153{ 153{
154 struct kprobe_insn_page *kip; 154 struct kprobe_insn_page *kip;
155 struct hlist_node *pos;
156 155
157 retry: 156 retry:
158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 157 list_for_each_entry(kip, &kprobe_insn_pages, list) {
159 if (kip->nused < INSNS_PER_PAGE) { 158 if (kip->nused < INSNS_PER_PAGE) {
160 int i; 159 int i;
161 for (i = 0; i < INSNS_PER_PAGE; i++) { 160 for (i = 0; i < INSNS_PER_PAGE; i++) {
@@ -189,8 +188,8 @@ static kprobe_opcode_t __kprobes *__get_insn_slot(void)
189 kfree(kip); 188 kfree(kip);
190 return NULL; 189 return NULL;
191 } 190 }
192 INIT_HLIST_NODE(&kip->hlist); 191 INIT_LIST_HEAD(&kip->list);
193 hlist_add_head(&kip->hlist, &kprobe_insn_pages); 192 list_add(&kip->list, &kprobe_insn_pages);
194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); 193 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 kip->slot_used[0] = SLOT_USED; 194 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1; 195 kip->nused = 1;
@@ -219,12 +218,8 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
219 * so as not to have to set it up again the 218 * so as not to have to set it up again the
220 * next time somebody inserts a probe. 219 * next time somebody inserts a probe.
221 */ 220 */
222 hlist_del(&kip->hlist); 221 if (!list_is_singular(&kprobe_insn_pages)) {
223 if (hlist_empty(&kprobe_insn_pages)) { 222 list_del(&kip->list);
224 INIT_HLIST_NODE(&kip->hlist);
225 hlist_add_head(&kip->hlist,
226 &kprobe_insn_pages);
227 } else {
228 module_free(NULL, kip->insns); 223 module_free(NULL, kip->insns);
229 kfree(kip); 224 kfree(kip);
230 } 225 }
@@ -235,14 +230,13 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
235 230
236static int __kprobes collect_garbage_slots(void) 231static int __kprobes collect_garbage_slots(void)
237{ 232{
238 struct kprobe_insn_page *kip; 233 struct kprobe_insn_page *kip, *next;
239 struct hlist_node *pos, *next;
240 234
241 /* Ensure no-one is preepmted on the garbages */ 235 /* Ensure no-one is preepmted on the garbages */
242 if (check_safety()) 236 if (check_safety())
243 return -EAGAIN; 237 return -EAGAIN;
244 238
245 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) { 239 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
246 int i; 240 int i;
247 if (kip->ngarbage == 0) 241 if (kip->ngarbage == 0)
248 continue; 242 continue;
@@ -260,19 +254,17 @@ static int __kprobes collect_garbage_slots(void)
260void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 254void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
261{ 255{
262 struct kprobe_insn_page *kip; 256 struct kprobe_insn_page *kip;
263 struct hlist_node *pos;
264 257
265 mutex_lock(&kprobe_insn_mutex); 258 mutex_lock(&kprobe_insn_mutex);
266 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { 259 list_for_each_entry(kip, &kprobe_insn_pages, list) {
267 if (kip->insns <= slot && 260 if (kip->insns <= slot &&
268 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { 261 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
269 int i = (slot - kip->insns) / MAX_INSN_SIZE; 262 int i = (slot - kip->insns) / MAX_INSN_SIZE;
270 if (dirty) { 263 if (dirty) {
271 kip->slot_used[i] = SLOT_DIRTY; 264 kip->slot_used[i] = SLOT_DIRTY;
272 kip->ngarbage++; 265 kip->ngarbage++;
273 } else { 266 } else
274 collect_one_slot(kip, i); 267 collect_one_slot(kip, i);
275 }
276 break; 268 break;
277 } 269 }
278 } 270 }
diff --git a/kernel/kthread.c b/kernel/kthread.c
index eb8751aa0418..5fe709982caa 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -16,8 +16,6 @@
16#include <linux/mutex.h> 16#include <linux/mutex.h>
17#include <trace/events/sched.h> 17#include <trace/events/sched.h>
18 18
19#define KTHREAD_NICE_LEVEL (-5)
20
21static DEFINE_SPINLOCK(kthread_create_lock); 19static DEFINE_SPINLOCK(kthread_create_lock);
22static LIST_HEAD(kthread_create_list); 20static LIST_HEAD(kthread_create_list);
23struct task_struct *kthreadd_task; 21struct task_struct *kthreadd_task;
@@ -145,7 +143,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data),
145 * The kernel thread should not inherit these properties. 143 * The kernel thread should not inherit these properties.
146 */ 144 */
147 sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param); 145 sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param);
148 set_user_nice(create.result, KTHREAD_NICE_LEVEL);
149 set_cpus_allowed_ptr(create.result, cpu_all_mask); 146 set_cpus_allowed_ptr(create.result, cpu_all_mask);
150 } 147 }
151 return create.result; 148 return create.result;
@@ -221,7 +218,6 @@ int kthreadd(void *unused)
221 /* Setup a clean context for our children to inherit. */ 218 /* Setup a clean context for our children to inherit. */
222 set_task_comm(tsk, "kthreadd"); 219 set_task_comm(tsk, "kthreadd");
223 ignore_signals(tsk); 220 ignore_signals(tsk);
224 set_user_nice(tsk, KTHREAD_NICE_LEVEL);
225 set_cpus_allowed_ptr(tsk, cpu_all_mask); 221 set_cpus_allowed_ptr(tsk, cpu_all_mask);
226 set_mems_allowed(node_possible_map); 222 set_mems_allowed(node_possible_map);
227 223
diff --git a/kernel/lockdep.c b/kernel/lockdep.c
index 8bbeef996c76..f74d2d7aa605 100644
--- a/kernel/lockdep.c
+++ b/kernel/lockdep.c
@@ -42,6 +42,7 @@
42#include <linux/hash.h> 42#include <linux/hash.h>
43#include <linux/ftrace.h> 43#include <linux/ftrace.h>
44#include <linux/stringify.h> 44#include <linux/stringify.h>
45#include <linux/bitops.h>
45 46
46#include <asm/sections.h> 47#include <asm/sections.h>
47 48
@@ -366,11 +367,21 @@ static int save_trace(struct stack_trace *trace)
366 367
367 save_stack_trace(trace); 368 save_stack_trace(trace);
368 369
370 /*
371 * Some daft arches put -1 at the end to indicate its a full trace.
372 *
373 * <rant> this is buggy anyway, since it takes a whole extra entry so a
374 * complete trace that maxes out the entries provided will be reported
375 * as incomplete, friggin useless </rant>
376 */
377 if (trace->entries[trace->nr_entries-1] == ULONG_MAX)
378 trace->nr_entries--;
379
369 trace->max_entries = trace->nr_entries; 380 trace->max_entries = trace->nr_entries;
370 381
371 nr_stack_trace_entries += trace->nr_entries; 382 nr_stack_trace_entries += trace->nr_entries;
372 383
373 if (nr_stack_trace_entries == MAX_STACK_TRACE_ENTRIES) { 384 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
374 if (!debug_locks_off_graph_unlock()) 385 if (!debug_locks_off_graph_unlock())
375 return 0; 386 return 0;
376 387
@@ -388,20 +399,6 @@ unsigned int nr_hardirq_chains;
388unsigned int nr_softirq_chains; 399unsigned int nr_softirq_chains;
389unsigned int nr_process_chains; 400unsigned int nr_process_chains;
390unsigned int max_lockdep_depth; 401unsigned int max_lockdep_depth;
391unsigned int max_recursion_depth;
392
393static unsigned int lockdep_dependency_gen_id;
394
395static bool lockdep_dependency_visit(struct lock_class *source,
396 unsigned int depth)
397{
398 if (!depth)
399 lockdep_dependency_gen_id++;
400 if (source->dep_gen_id == lockdep_dependency_gen_id)
401 return true;
402 source->dep_gen_id = lockdep_dependency_gen_id;
403 return false;
404}
405 402
406#ifdef CONFIG_DEBUG_LOCKDEP 403#ifdef CONFIG_DEBUG_LOCKDEP
407/* 404/*
@@ -431,11 +428,8 @@ atomic_t redundant_softirqs_on;
431atomic_t redundant_softirqs_off; 428atomic_t redundant_softirqs_off;
432atomic_t nr_unused_locks; 429atomic_t nr_unused_locks;
433atomic_t nr_cyclic_checks; 430atomic_t nr_cyclic_checks;
434atomic_t nr_cyclic_check_recursions;
435atomic_t nr_find_usage_forwards_checks; 431atomic_t nr_find_usage_forwards_checks;
436atomic_t nr_find_usage_forwards_recursions;
437atomic_t nr_find_usage_backwards_checks; 432atomic_t nr_find_usage_backwards_checks;
438atomic_t nr_find_usage_backwards_recursions;
439#endif 433#endif
440 434
441/* 435/*
@@ -551,58 +545,6 @@ static void lockdep_print_held_locks(struct task_struct *curr)
551 } 545 }
552} 546}
553 547
554static void print_lock_class_header(struct lock_class *class, int depth)
555{
556 int bit;
557
558 printk("%*s->", depth, "");
559 print_lock_name(class);
560 printk(" ops: %lu", class->ops);
561 printk(" {\n");
562
563 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
564 if (class->usage_mask & (1 << bit)) {
565 int len = depth;
566
567 len += printk("%*s %s", depth, "", usage_str[bit]);
568 len += printk(" at:\n");
569 print_stack_trace(class->usage_traces + bit, len);
570 }
571 }
572 printk("%*s }\n", depth, "");
573
574 printk("%*s ... key at: ",depth,"");
575 print_ip_sym((unsigned long)class->key);
576}
577
578/*
579 * printk all lock dependencies starting at <entry>:
580 */
581static void __used
582print_lock_dependencies(struct lock_class *class, int depth)
583{
584 struct lock_list *entry;
585
586 if (lockdep_dependency_visit(class, depth))
587 return;
588
589 if (DEBUG_LOCKS_WARN_ON(depth >= 20))
590 return;
591
592 print_lock_class_header(class, depth);
593
594 list_for_each_entry(entry, &class->locks_after, entry) {
595 if (DEBUG_LOCKS_WARN_ON(!entry->class))
596 return;
597
598 print_lock_dependencies(entry->class, depth + 1);
599
600 printk("%*s ... acquired at:\n",depth,"");
601 print_stack_trace(&entry->trace, 2);
602 printk("\n");
603 }
604}
605
606static void print_kernel_version(void) 548static void print_kernel_version(void)
607{ 549{
608 printk("%s %.*s\n", init_utsname()->release, 550 printk("%s %.*s\n", init_utsname()->release,
@@ -898,22 +840,203 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
898} 840}
899 841
900/* 842/*
843 * For good efficiency of modular, we use power of 2
844 */
845#define MAX_CIRCULAR_QUEUE_SIZE 4096UL
846#define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
847
848/*
849 * The circular_queue and helpers is used to implement the
850 * breadth-first search(BFS)algorithem, by which we can build
851 * the shortest path from the next lock to be acquired to the
852 * previous held lock if there is a circular between them.
853 */
854struct circular_queue {
855 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
856 unsigned int front, rear;
857};
858
859static struct circular_queue lock_cq;
860
861unsigned int max_bfs_queue_depth;
862
863static unsigned int lockdep_dependency_gen_id;
864
865static inline void __cq_init(struct circular_queue *cq)
866{
867 cq->front = cq->rear = 0;
868 lockdep_dependency_gen_id++;
869}
870
871static inline int __cq_empty(struct circular_queue *cq)
872{
873 return (cq->front == cq->rear);
874}
875
876static inline int __cq_full(struct circular_queue *cq)
877{
878 return ((cq->rear + 1) & CQ_MASK) == cq->front;
879}
880
881static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
882{
883 if (__cq_full(cq))
884 return -1;
885
886 cq->element[cq->rear] = elem;
887 cq->rear = (cq->rear + 1) & CQ_MASK;
888 return 0;
889}
890
891static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
892{
893 if (__cq_empty(cq))
894 return -1;
895
896 *elem = cq->element[cq->front];
897 cq->front = (cq->front + 1) & CQ_MASK;
898 return 0;
899}
900
901static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
902{
903 return (cq->rear - cq->front) & CQ_MASK;
904}
905
906static inline void mark_lock_accessed(struct lock_list *lock,
907 struct lock_list *parent)
908{
909 unsigned long nr;
910
911 nr = lock - list_entries;
912 WARN_ON(nr >= nr_list_entries);
913 lock->parent = parent;
914 lock->class->dep_gen_id = lockdep_dependency_gen_id;
915}
916
917static inline unsigned long lock_accessed(struct lock_list *lock)
918{
919 unsigned long nr;
920
921 nr = lock - list_entries;
922 WARN_ON(nr >= nr_list_entries);
923 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
924}
925
926static inline struct lock_list *get_lock_parent(struct lock_list *child)
927{
928 return child->parent;
929}
930
931static inline int get_lock_depth(struct lock_list *child)
932{
933 int depth = 0;
934 struct lock_list *parent;
935
936 while ((parent = get_lock_parent(child))) {
937 child = parent;
938 depth++;
939 }
940 return depth;
941}
942
943static int __bfs(struct lock_list *source_entry,
944 void *data,
945 int (*match)(struct lock_list *entry, void *data),
946 struct lock_list **target_entry,
947 int forward)
948{
949 struct lock_list *entry;
950 struct list_head *head;
951 struct circular_queue *cq = &lock_cq;
952 int ret = 1;
953
954 if (match(source_entry, data)) {
955 *target_entry = source_entry;
956 ret = 0;
957 goto exit;
958 }
959
960 if (forward)
961 head = &source_entry->class->locks_after;
962 else
963 head = &source_entry->class->locks_before;
964
965 if (list_empty(head))
966 goto exit;
967
968 __cq_init(cq);
969 __cq_enqueue(cq, (unsigned long)source_entry);
970
971 while (!__cq_empty(cq)) {
972 struct lock_list *lock;
973
974 __cq_dequeue(cq, (unsigned long *)&lock);
975
976 if (!lock->class) {
977 ret = -2;
978 goto exit;
979 }
980
981 if (forward)
982 head = &lock->class->locks_after;
983 else
984 head = &lock->class->locks_before;
985
986 list_for_each_entry(entry, head, entry) {
987 if (!lock_accessed(entry)) {
988 unsigned int cq_depth;
989 mark_lock_accessed(entry, lock);
990 if (match(entry, data)) {
991 *target_entry = entry;
992 ret = 0;
993 goto exit;
994 }
995
996 if (__cq_enqueue(cq, (unsigned long)entry)) {
997 ret = -1;
998 goto exit;
999 }
1000 cq_depth = __cq_get_elem_count(cq);
1001 if (max_bfs_queue_depth < cq_depth)
1002 max_bfs_queue_depth = cq_depth;
1003 }
1004 }
1005 }
1006exit:
1007 return ret;
1008}
1009
1010static inline int __bfs_forwards(struct lock_list *src_entry,
1011 void *data,
1012 int (*match)(struct lock_list *entry, void *data),
1013 struct lock_list **target_entry)
1014{
1015 return __bfs(src_entry, data, match, target_entry, 1);
1016
1017}
1018
1019static inline int __bfs_backwards(struct lock_list *src_entry,
1020 void *data,
1021 int (*match)(struct lock_list *entry, void *data),
1022 struct lock_list **target_entry)
1023{
1024 return __bfs(src_entry, data, match, target_entry, 0);
1025
1026}
1027
1028/*
901 * Recursive, forwards-direction lock-dependency checking, used for 1029 * Recursive, forwards-direction lock-dependency checking, used for
902 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1030 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
903 * checking. 1031 * checking.
904 *
905 * (to keep the stackframe of the recursive functions small we
906 * use these global variables, and we also mark various helper
907 * functions as noinline.)
908 */ 1032 */
909static struct held_lock *check_source, *check_target;
910 1033
911/* 1034/*
912 * Print a dependency chain entry (this is only done when a deadlock 1035 * Print a dependency chain entry (this is only done when a deadlock
913 * has been detected): 1036 * has been detected):
914 */ 1037 */
915static noinline int 1038static noinline int
916print_circular_bug_entry(struct lock_list *target, unsigned int depth) 1039print_circular_bug_entry(struct lock_list *target, int depth)
917{ 1040{
918 if (debug_locks_silent) 1041 if (debug_locks_silent)
919 return 0; 1042 return 0;
@@ -930,11 +1053,13 @@ print_circular_bug_entry(struct lock_list *target, unsigned int depth)
930 * header first: 1053 * header first:
931 */ 1054 */
932static noinline int 1055static noinline int
933print_circular_bug_header(struct lock_list *entry, unsigned int depth) 1056print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1057 struct held_lock *check_src,
1058 struct held_lock *check_tgt)
934{ 1059{
935 struct task_struct *curr = current; 1060 struct task_struct *curr = current;
936 1061
937 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1062 if (debug_locks_silent)
938 return 0; 1063 return 0;
939 1064
940 printk("\n=======================================================\n"); 1065 printk("\n=======================================================\n");
@@ -943,9 +1068,9 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth)
943 printk( "-------------------------------------------------------\n"); 1068 printk( "-------------------------------------------------------\n");
944 printk("%s/%d is trying to acquire lock:\n", 1069 printk("%s/%d is trying to acquire lock:\n",
945 curr->comm, task_pid_nr(curr)); 1070 curr->comm, task_pid_nr(curr));
946 print_lock(check_source); 1071 print_lock(check_src);
947 printk("\nbut task is already holding lock:\n"); 1072 printk("\nbut task is already holding lock:\n");
948 print_lock(check_target); 1073 print_lock(check_tgt);
949 printk("\nwhich lock already depends on the new lock.\n\n"); 1074 printk("\nwhich lock already depends on the new lock.\n\n");
950 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1075 printk("\nthe existing dependency chain (in reverse order) is:\n");
951 1076
@@ -954,19 +1079,36 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth)
954 return 0; 1079 return 0;
955} 1080}
956 1081
957static noinline int print_circular_bug_tail(void) 1082static inline int class_equal(struct lock_list *entry, void *data)
1083{
1084 return entry->class == data;
1085}
1086
1087static noinline int print_circular_bug(struct lock_list *this,
1088 struct lock_list *target,
1089 struct held_lock *check_src,
1090 struct held_lock *check_tgt)
958{ 1091{
959 struct task_struct *curr = current; 1092 struct task_struct *curr = current;
960 struct lock_list this; 1093 struct lock_list *parent;
1094 int depth;
961 1095
962 if (debug_locks_silent) 1096 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
963 return 0; 1097 return 0;
964 1098
965 this.class = hlock_class(check_source); 1099 if (!save_trace(&this->trace))
966 if (!save_trace(&this.trace))
967 return 0; 1100 return 0;
968 1101
969 print_circular_bug_entry(&this, 0); 1102 depth = get_lock_depth(target);
1103
1104 print_circular_bug_header(target, depth, check_src, check_tgt);
1105
1106 parent = get_lock_parent(target);
1107
1108 while (parent) {
1109 print_circular_bug_entry(parent, --depth);
1110 parent = get_lock_parent(parent);
1111 }
970 1112
971 printk("\nother info that might help us debug this:\n\n"); 1113 printk("\nother info that might help us debug this:\n\n");
972 lockdep_print_held_locks(curr); 1114 lockdep_print_held_locks(curr);
@@ -977,73 +1119,69 @@ static noinline int print_circular_bug_tail(void)
977 return 0; 1119 return 0;
978} 1120}
979 1121
980#define RECURSION_LIMIT 40 1122static noinline int print_bfs_bug(int ret)
981
982static int noinline print_infinite_recursion_bug(void)
983{ 1123{
984 if (!debug_locks_off_graph_unlock()) 1124 if (!debug_locks_off_graph_unlock())
985 return 0; 1125 return 0;
986 1126
987 WARN_ON(1); 1127 WARN(1, "lockdep bfs error:%d\n", ret);
988 1128
989 return 0; 1129 return 0;
990} 1130}
991 1131
992unsigned long __lockdep_count_forward_deps(struct lock_class *class, 1132static int noop_count(struct lock_list *entry, void *data)
993 unsigned int depth)
994{ 1133{
995 struct lock_list *entry; 1134 (*(unsigned long *)data)++;
996 unsigned long ret = 1; 1135 return 0;
1136}
997 1137
998 if (lockdep_dependency_visit(class, depth)) 1138unsigned long __lockdep_count_forward_deps(struct lock_list *this)
999 return 0; 1139{
1140 unsigned long count = 0;
1141 struct lock_list *uninitialized_var(target_entry);
1000 1142
1001 /* 1143 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1002 * Recurse this class's dependency list:
1003 */
1004 list_for_each_entry(entry, &class->locks_after, entry)
1005 ret += __lockdep_count_forward_deps(entry->class, depth + 1);
1006 1144
1007 return ret; 1145 return count;
1008} 1146}
1009
1010unsigned long lockdep_count_forward_deps(struct lock_class *class) 1147unsigned long lockdep_count_forward_deps(struct lock_class *class)
1011{ 1148{
1012 unsigned long ret, flags; 1149 unsigned long ret, flags;
1150 struct lock_list this;
1151
1152 this.parent = NULL;
1153 this.class = class;
1013 1154
1014 local_irq_save(flags); 1155 local_irq_save(flags);
1015 __raw_spin_lock(&lockdep_lock); 1156 __raw_spin_lock(&lockdep_lock);
1016 ret = __lockdep_count_forward_deps(class, 0); 1157 ret = __lockdep_count_forward_deps(&this);
1017 __raw_spin_unlock(&lockdep_lock); 1158 __raw_spin_unlock(&lockdep_lock);
1018 local_irq_restore(flags); 1159 local_irq_restore(flags);
1019 1160
1020 return ret; 1161 return ret;
1021} 1162}
1022 1163
1023unsigned long __lockdep_count_backward_deps(struct lock_class *class, 1164unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1024 unsigned int depth)
1025{ 1165{
1026 struct lock_list *entry; 1166 unsigned long count = 0;
1027 unsigned long ret = 1; 1167 struct lock_list *uninitialized_var(target_entry);
1028 1168
1029 if (lockdep_dependency_visit(class, depth)) 1169 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1030 return 0;
1031 /*
1032 * Recurse this class's dependency list:
1033 */
1034 list_for_each_entry(entry, &class->locks_before, entry)
1035 ret += __lockdep_count_backward_deps(entry->class, depth + 1);
1036 1170
1037 return ret; 1171 return count;
1038} 1172}
1039 1173
1040unsigned long lockdep_count_backward_deps(struct lock_class *class) 1174unsigned long lockdep_count_backward_deps(struct lock_class *class)
1041{ 1175{
1042 unsigned long ret, flags; 1176 unsigned long ret, flags;
1177 struct lock_list this;
1178
1179 this.parent = NULL;
1180 this.class = class;
1043 1181
1044 local_irq_save(flags); 1182 local_irq_save(flags);
1045 __raw_spin_lock(&lockdep_lock); 1183 __raw_spin_lock(&lockdep_lock);
1046 ret = __lockdep_count_backward_deps(class, 0); 1184 ret = __lockdep_count_backward_deps(&this);
1047 __raw_spin_unlock(&lockdep_lock); 1185 __raw_spin_unlock(&lockdep_lock);
1048 local_irq_restore(flags); 1186 local_irq_restore(flags);
1049 1187
@@ -1055,29 +1193,16 @@ unsigned long lockdep_count_backward_deps(struct lock_class *class)
1055 * lead to <target>. Print an error and return 0 if it does. 1193 * lead to <target>. Print an error and return 0 if it does.
1056 */ 1194 */
1057static noinline int 1195static noinline int
1058check_noncircular(struct lock_class *source, unsigned int depth) 1196check_noncircular(struct lock_list *root, struct lock_class *target,
1197 struct lock_list **target_entry)
1059{ 1198{
1060 struct lock_list *entry; 1199 int result;
1061 1200
1062 if (lockdep_dependency_visit(source, depth)) 1201 debug_atomic_inc(&nr_cyclic_checks);
1063 return 1;
1064 1202
1065 debug_atomic_inc(&nr_cyclic_check_recursions); 1203 result = __bfs_forwards(root, target, class_equal, target_entry);
1066 if (depth > max_recursion_depth) 1204
1067 max_recursion_depth = depth; 1205 return result;
1068 if (depth >= RECURSION_LIMIT)
1069 return print_infinite_recursion_bug();
1070 /*
1071 * Check this lock's dependency list:
1072 */
1073 list_for_each_entry(entry, &source->locks_after, entry) {
1074 if (entry->class == hlock_class(check_target))
1075 return print_circular_bug_header(entry, depth+1);
1076 debug_atomic_inc(&nr_cyclic_checks);
1077 if (!check_noncircular(entry->class, depth+1))
1078 return print_circular_bug_entry(entry, depth+1);
1079 }
1080 return 1;
1081} 1206}
1082 1207
1083#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1208#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
@@ -1086,103 +1211,121 @@ check_noncircular(struct lock_class *source, unsigned int depth)
1086 * proving that two subgraphs can be connected by a new dependency 1211 * proving that two subgraphs can be connected by a new dependency
1087 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1212 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1088 */ 1213 */
1089static enum lock_usage_bit find_usage_bit; 1214
1090static struct lock_class *forwards_match, *backwards_match; 1215static inline int usage_match(struct lock_list *entry, void *bit)
1216{
1217 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1218}
1219
1220
1091 1221
1092/* 1222/*
1093 * Find a node in the forwards-direction dependency sub-graph starting 1223 * Find a node in the forwards-direction dependency sub-graph starting
1094 * at <source> that matches <find_usage_bit>. 1224 * at @root->class that matches @bit.
1095 * 1225 *
1096 * Return 2 if such a node exists in the subgraph, and put that node 1226 * Return 0 if such a node exists in the subgraph, and put that node
1097 * into <forwards_match>. 1227 * into *@target_entry.
1098 * 1228 *
1099 * Return 1 otherwise and keep <forwards_match> unchanged. 1229 * Return 1 otherwise and keep *@target_entry unchanged.
1100 * Return 0 on error. 1230 * Return <0 on error.
1101 */ 1231 */
1102static noinline int 1232static int
1103find_usage_forwards(struct lock_class *source, unsigned int depth) 1233find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1234 struct lock_list **target_entry)
1104{ 1235{
1105 struct lock_list *entry; 1236 int result;
1106 int ret;
1107
1108 if (lockdep_dependency_visit(source, depth))
1109 return 1;
1110
1111 if (depth > max_recursion_depth)
1112 max_recursion_depth = depth;
1113 if (depth >= RECURSION_LIMIT)
1114 return print_infinite_recursion_bug();
1115 1237
1116 debug_atomic_inc(&nr_find_usage_forwards_checks); 1238 debug_atomic_inc(&nr_find_usage_forwards_checks);
1117 if (source->usage_mask & (1 << find_usage_bit)) {
1118 forwards_match = source;
1119 return 2;
1120 }
1121 1239
1122 /* 1240 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1123 * Check this lock's dependency list: 1241
1124 */ 1242 return result;
1125 list_for_each_entry(entry, &source->locks_after, entry) {
1126 debug_atomic_inc(&nr_find_usage_forwards_recursions);
1127 ret = find_usage_forwards(entry->class, depth+1);
1128 if (ret == 2 || ret == 0)
1129 return ret;
1130 }
1131 return 1;
1132} 1243}
1133 1244
1134/* 1245/*
1135 * Find a node in the backwards-direction dependency sub-graph starting 1246 * Find a node in the backwards-direction dependency sub-graph starting
1136 * at <source> that matches <find_usage_bit>. 1247 * at @root->class that matches @bit.
1137 * 1248 *
1138 * Return 2 if such a node exists in the subgraph, and put that node 1249 * Return 0 if such a node exists in the subgraph, and put that node
1139 * into <backwards_match>. 1250 * into *@target_entry.
1140 * 1251 *
1141 * Return 1 otherwise and keep <backwards_match> unchanged. 1252 * Return 1 otherwise and keep *@target_entry unchanged.
1142 * Return 0 on error. 1253 * Return <0 on error.
1143 */ 1254 */
1144static noinline int 1255static int
1145find_usage_backwards(struct lock_class *source, unsigned int depth) 1256find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1257 struct lock_list **target_entry)
1146{ 1258{
1147 struct lock_list *entry; 1259 int result;
1148 int ret;
1149 1260
1150 if (lockdep_dependency_visit(source, depth)) 1261 debug_atomic_inc(&nr_find_usage_backwards_checks);
1151 return 1;
1152 1262
1153 if (!__raw_spin_is_locked(&lockdep_lock)) 1263 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1154 return DEBUG_LOCKS_WARN_ON(1);
1155 1264
1156 if (depth > max_recursion_depth) 1265 return result;
1157 max_recursion_depth = depth; 1266}
1158 if (depth >= RECURSION_LIMIT)
1159 return print_infinite_recursion_bug();
1160 1267
1161 debug_atomic_inc(&nr_find_usage_backwards_checks); 1268static void print_lock_class_header(struct lock_class *class, int depth)
1162 if (source->usage_mask & (1 << find_usage_bit)) { 1269{
1163 backwards_match = source; 1270 int bit;
1164 return 2;
1165 }
1166 1271
1167 if (!source && debug_locks_off_graph_unlock()) { 1272 printk("%*s->", depth, "");
1168 WARN_ON(1); 1273 print_lock_name(class);
1169 return 0; 1274 printk(" ops: %lu", class->ops);
1170 } 1275 printk(" {\n");
1171 1276
1172 /* 1277 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1173 * Check this lock's dependency list: 1278 if (class->usage_mask & (1 << bit)) {
1174 */ 1279 int len = depth;
1175 list_for_each_entry(entry, &source->locks_before, entry) { 1280
1176 debug_atomic_inc(&nr_find_usage_backwards_recursions); 1281 len += printk("%*s %s", depth, "", usage_str[bit]);
1177 ret = find_usage_backwards(entry->class, depth+1); 1282 len += printk(" at:\n");
1178 if (ret == 2 || ret == 0) 1283 print_stack_trace(class->usage_traces + bit, len);
1179 return ret; 1284 }
1180 } 1285 }
1181 return 1; 1286 printk("%*s }\n", depth, "");
1287
1288 printk("%*s ... key at: ",depth,"");
1289 print_ip_sym((unsigned long)class->key);
1290}
1291
1292/*
1293 * printk the shortest lock dependencies from @start to @end in reverse order:
1294 */
1295static void __used
1296print_shortest_lock_dependencies(struct lock_list *leaf,
1297 struct lock_list *root)
1298{
1299 struct lock_list *entry = leaf;
1300 int depth;
1301
1302 /*compute depth from generated tree by BFS*/
1303 depth = get_lock_depth(leaf);
1304
1305 do {
1306 print_lock_class_header(entry->class, depth);
1307 printk("%*s ... acquired at:\n", depth, "");
1308 print_stack_trace(&entry->trace, 2);
1309 printk("\n");
1310
1311 if (depth == 0 && (entry != root)) {
1312 printk("lockdep:%s bad BFS generated tree\n", __func__);
1313 break;
1314 }
1315
1316 entry = get_lock_parent(entry);
1317 depth--;
1318 } while (entry && (depth >= 0));
1319
1320 return;
1182} 1321}
1183 1322
1184static int 1323static int
1185print_bad_irq_dependency(struct task_struct *curr, 1324print_bad_irq_dependency(struct task_struct *curr,
1325 struct lock_list *prev_root,
1326 struct lock_list *next_root,
1327 struct lock_list *backwards_entry,
1328 struct lock_list *forwards_entry,
1186 struct held_lock *prev, 1329 struct held_lock *prev,
1187 struct held_lock *next, 1330 struct held_lock *next,
1188 enum lock_usage_bit bit1, 1331 enum lock_usage_bit bit1,
@@ -1215,26 +1358,32 @@ print_bad_irq_dependency(struct task_struct *curr,
1215 1358
1216 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1359 printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1217 irqclass); 1360 irqclass);
1218 print_lock_name(backwards_match); 1361 print_lock_name(backwards_entry->class);
1219 printk("\n... which became %s-irq-safe at:\n", irqclass); 1362 printk("\n... which became %s-irq-safe at:\n", irqclass);
1220 1363
1221 print_stack_trace(backwards_match->usage_traces + bit1, 1); 1364 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1222 1365
1223 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1366 printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1224 print_lock_name(forwards_match); 1367 print_lock_name(forwards_entry->class);
1225 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1368 printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1226 printk("..."); 1369 printk("...");
1227 1370
1228 print_stack_trace(forwards_match->usage_traces + bit2, 1); 1371 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1229 1372
1230 printk("\nother info that might help us debug this:\n\n"); 1373 printk("\nother info that might help us debug this:\n\n");
1231 lockdep_print_held_locks(curr); 1374 lockdep_print_held_locks(curr);
1232 1375
1233 printk("\nthe %s-irq-safe lock's dependencies:\n", irqclass); 1376 printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1234 print_lock_dependencies(backwards_match, 0); 1377 printk(" and the holding lock:\n");
1378 if (!save_trace(&prev_root->trace))
1379 return 0;
1380 print_shortest_lock_dependencies(backwards_entry, prev_root);
1235 1381
1236 printk("\nthe %s-irq-unsafe lock's dependencies:\n", irqclass); 1382 printk("\nthe dependencies between the lock to be acquired");
1237 print_lock_dependencies(forwards_match, 0); 1383 printk(" and %s-irq-unsafe lock:\n", irqclass);
1384 if (!save_trace(&next_root->trace))
1385 return 0;
1386 print_shortest_lock_dependencies(forwards_entry, next_root);
1238 1387
1239 printk("\nstack backtrace:\n"); 1388 printk("\nstack backtrace:\n");
1240 dump_stack(); 1389 dump_stack();
@@ -1248,19 +1397,30 @@ check_usage(struct task_struct *curr, struct held_lock *prev,
1248 enum lock_usage_bit bit_forwards, const char *irqclass) 1397 enum lock_usage_bit bit_forwards, const char *irqclass)
1249{ 1398{
1250 int ret; 1399 int ret;
1400 struct lock_list this, that;
1401 struct lock_list *uninitialized_var(target_entry);
1402 struct lock_list *uninitialized_var(target_entry1);
1251 1403
1252 find_usage_bit = bit_backwards; 1404 this.parent = NULL;
1253 /* fills in <backwards_match> */ 1405
1254 ret = find_usage_backwards(hlock_class(prev), 0); 1406 this.class = hlock_class(prev);
1255 if (!ret || ret == 1) 1407 ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1408 if (ret < 0)
1409 return print_bfs_bug(ret);
1410 if (ret == 1)
1256 return ret; 1411 return ret;
1257 1412
1258 find_usage_bit = bit_forwards; 1413 that.parent = NULL;
1259 ret = find_usage_forwards(hlock_class(next), 0); 1414 that.class = hlock_class(next);
1260 if (!ret || ret == 1) 1415 ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1416 if (ret < 0)
1417 return print_bfs_bug(ret);
1418 if (ret == 1)
1261 return ret; 1419 return ret;
1262 /* ret == 2 */ 1420
1263 return print_bad_irq_dependency(curr, prev, next, 1421 return print_bad_irq_dependency(curr, &this, &that,
1422 target_entry, target_entry1,
1423 prev, next,
1264 bit_backwards, bit_forwards, irqclass); 1424 bit_backwards, bit_forwards, irqclass);
1265} 1425}
1266 1426
@@ -1472,6 +1632,8 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
1472{ 1632{
1473 struct lock_list *entry; 1633 struct lock_list *entry;
1474 int ret; 1634 int ret;
1635 struct lock_list this;
1636 struct lock_list *uninitialized_var(target_entry);
1475 1637
1476 /* 1638 /*
1477 * Prove that the new <prev> -> <next> dependency would not 1639 * Prove that the new <prev> -> <next> dependency would not
@@ -1482,10 +1644,13 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
1482 * We are using global variables to control the recursion, to 1644 * We are using global variables to control the recursion, to
1483 * keep the stackframe size of the recursive functions low: 1645 * keep the stackframe size of the recursive functions low:
1484 */ 1646 */
1485 check_source = next; 1647 this.class = hlock_class(next);
1486 check_target = prev; 1648 this.parent = NULL;
1487 if (!(check_noncircular(hlock_class(next), 0))) 1649 ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1488 return print_circular_bug_tail(); 1650 if (unlikely(!ret))
1651 return print_circular_bug(&this, target_entry, next, prev);
1652 else if (unlikely(ret < 0))
1653 return print_bfs_bug(ret);
1489 1654
1490 if (!check_prev_add_irq(curr, prev, next)) 1655 if (!check_prev_add_irq(curr, prev, next))
1491 return 0; 1656 return 0;
@@ -1884,7 +2049,8 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this,
1884 * print irq inversion bug: 2049 * print irq inversion bug:
1885 */ 2050 */
1886static int 2051static int
1887print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, 2052print_irq_inversion_bug(struct task_struct *curr,
2053 struct lock_list *root, struct lock_list *other,
1888 struct held_lock *this, int forwards, 2054 struct held_lock *this, int forwards,
1889 const char *irqclass) 2055 const char *irqclass)
1890{ 2056{
@@ -1902,17 +2068,16 @@ print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other,
1902 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2068 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
1903 else 2069 else
1904 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2070 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
1905 print_lock_name(other); 2071 print_lock_name(other->class);
1906 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2072 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
1907 2073
1908 printk("\nother info that might help us debug this:\n"); 2074 printk("\nother info that might help us debug this:\n");
1909 lockdep_print_held_locks(curr); 2075 lockdep_print_held_locks(curr);
1910 2076
1911 printk("\nthe first lock's dependencies:\n"); 2077 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
1912 print_lock_dependencies(hlock_class(this), 0); 2078 if (!save_trace(&root->trace))
1913 2079 return 0;
1914 printk("\nthe second lock's dependencies:\n"); 2080 print_shortest_lock_dependencies(other, root);
1915 print_lock_dependencies(other, 0);
1916 2081
1917 printk("\nstack backtrace:\n"); 2082 printk("\nstack backtrace:\n");
1918 dump_stack(); 2083 dump_stack();
@@ -1929,14 +2094,19 @@ check_usage_forwards(struct task_struct *curr, struct held_lock *this,
1929 enum lock_usage_bit bit, const char *irqclass) 2094 enum lock_usage_bit bit, const char *irqclass)
1930{ 2095{
1931 int ret; 2096 int ret;
1932 2097 struct lock_list root;
1933 find_usage_bit = bit; 2098 struct lock_list *uninitialized_var(target_entry);
1934 /* fills in <forwards_match> */ 2099
1935 ret = find_usage_forwards(hlock_class(this), 0); 2100 root.parent = NULL;
1936 if (!ret || ret == 1) 2101 root.class = hlock_class(this);
2102 ret = find_usage_forwards(&root, bit, &target_entry);
2103 if (ret < 0)
2104 return print_bfs_bug(ret);
2105 if (ret == 1)
1937 return ret; 2106 return ret;
1938 2107
1939 return print_irq_inversion_bug(curr, forwards_match, this, 1, irqclass); 2108 return print_irq_inversion_bug(curr, &root, target_entry,
2109 this, 1, irqclass);
1940} 2110}
1941 2111
1942/* 2112/*
@@ -1948,14 +2118,19 @@ check_usage_backwards(struct task_struct *curr, struct held_lock *this,
1948 enum lock_usage_bit bit, const char *irqclass) 2118 enum lock_usage_bit bit, const char *irqclass)
1949{ 2119{
1950 int ret; 2120 int ret;
1951 2121 struct lock_list root;
1952 find_usage_bit = bit; 2122 struct lock_list *uninitialized_var(target_entry);
1953 /* fills in <backwards_match> */ 2123
1954 ret = find_usage_backwards(hlock_class(this), 0); 2124 root.parent = NULL;
1955 if (!ret || ret == 1) 2125 root.class = hlock_class(this);
2126 ret = find_usage_backwards(&root, bit, &target_entry);
2127 if (ret < 0)
2128 return print_bfs_bug(ret);
2129 if (ret == 1)
1956 return ret; 2130 return ret;
1957 2131
1958 return print_irq_inversion_bug(curr, backwards_match, this, 0, irqclass); 2132 return print_irq_inversion_bug(curr, &root, target_entry,
2133 this, 1, irqclass);
1959} 2134}
1960 2135
1961void print_irqtrace_events(struct task_struct *curr) 2136void print_irqtrace_events(struct task_struct *curr)
@@ -2530,13 +2705,15 @@ EXPORT_SYMBOL_GPL(lockdep_init_map);
2530 */ 2705 */
2531static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 2706static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2532 int trylock, int read, int check, int hardirqs_off, 2707 int trylock, int read, int check, int hardirqs_off,
2533 struct lockdep_map *nest_lock, unsigned long ip) 2708 struct lockdep_map *nest_lock, unsigned long ip,
2709 int references)
2534{ 2710{
2535 struct task_struct *curr = current; 2711 struct task_struct *curr = current;
2536 struct lock_class *class = NULL; 2712 struct lock_class *class = NULL;
2537 struct held_lock *hlock; 2713 struct held_lock *hlock;
2538 unsigned int depth, id; 2714 unsigned int depth, id;
2539 int chain_head = 0; 2715 int chain_head = 0;
2716 int class_idx;
2540 u64 chain_key; 2717 u64 chain_key;
2541 2718
2542 if (!prove_locking) 2719 if (!prove_locking)
@@ -2584,10 +2761,24 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2584 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 2761 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
2585 return 0; 2762 return 0;
2586 2763
2764 class_idx = class - lock_classes + 1;
2765
2766 if (depth) {
2767 hlock = curr->held_locks + depth - 1;
2768 if (hlock->class_idx == class_idx && nest_lock) {
2769 if (hlock->references)
2770 hlock->references++;
2771 else
2772 hlock->references = 2;
2773
2774 return 1;
2775 }
2776 }
2777
2587 hlock = curr->held_locks + depth; 2778 hlock = curr->held_locks + depth;
2588 if (DEBUG_LOCKS_WARN_ON(!class)) 2779 if (DEBUG_LOCKS_WARN_ON(!class))
2589 return 0; 2780 return 0;
2590 hlock->class_idx = class - lock_classes + 1; 2781 hlock->class_idx = class_idx;
2591 hlock->acquire_ip = ip; 2782 hlock->acquire_ip = ip;
2592 hlock->instance = lock; 2783 hlock->instance = lock;
2593 hlock->nest_lock = nest_lock; 2784 hlock->nest_lock = nest_lock;
@@ -2595,6 +2786,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2595 hlock->read = read; 2786 hlock->read = read;
2596 hlock->check = check; 2787 hlock->check = check;
2597 hlock->hardirqs_off = !!hardirqs_off; 2788 hlock->hardirqs_off = !!hardirqs_off;
2789 hlock->references = references;
2598#ifdef CONFIG_LOCK_STAT 2790#ifdef CONFIG_LOCK_STAT
2599 hlock->waittime_stamp = 0; 2791 hlock->waittime_stamp = 0;
2600 hlock->holdtime_stamp = sched_clock(); 2792 hlock->holdtime_stamp = sched_clock();
@@ -2703,6 +2895,30 @@ static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
2703 return 1; 2895 return 1;
2704} 2896}
2705 2897
2898static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
2899{
2900 if (hlock->instance == lock)
2901 return 1;
2902
2903 if (hlock->references) {
2904 struct lock_class *class = lock->class_cache;
2905
2906 if (!class)
2907 class = look_up_lock_class(lock, 0);
2908
2909 if (DEBUG_LOCKS_WARN_ON(!class))
2910 return 0;
2911
2912 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
2913 return 0;
2914
2915 if (hlock->class_idx == class - lock_classes + 1)
2916 return 1;
2917 }
2918
2919 return 0;
2920}
2921
2706static int 2922static int
2707__lock_set_class(struct lockdep_map *lock, const char *name, 2923__lock_set_class(struct lockdep_map *lock, const char *name,
2708 struct lock_class_key *key, unsigned int subclass, 2924 struct lock_class_key *key, unsigned int subclass,
@@ -2726,7 +2942,7 @@ __lock_set_class(struct lockdep_map *lock, const char *name,
2726 */ 2942 */
2727 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 2943 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2728 break; 2944 break;
2729 if (hlock->instance == lock) 2945 if (match_held_lock(hlock, lock))
2730 goto found_it; 2946 goto found_it;
2731 prev_hlock = hlock; 2947 prev_hlock = hlock;
2732 } 2948 }
@@ -2745,7 +2961,8 @@ found_it:
2745 if (!__lock_acquire(hlock->instance, 2961 if (!__lock_acquire(hlock->instance,
2746 hlock_class(hlock)->subclass, hlock->trylock, 2962 hlock_class(hlock)->subclass, hlock->trylock,
2747 hlock->read, hlock->check, hlock->hardirqs_off, 2963 hlock->read, hlock->check, hlock->hardirqs_off,
2748 hlock->nest_lock, hlock->acquire_ip)) 2964 hlock->nest_lock, hlock->acquire_ip,
2965 hlock->references))
2749 return 0; 2966 return 0;
2750 } 2967 }
2751 2968
@@ -2784,20 +3001,34 @@ lock_release_non_nested(struct task_struct *curr,
2784 */ 3001 */
2785 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3002 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
2786 break; 3003 break;
2787 if (hlock->instance == lock) 3004 if (match_held_lock(hlock, lock))
2788 goto found_it; 3005 goto found_it;
2789 prev_hlock = hlock; 3006 prev_hlock = hlock;
2790 } 3007 }
2791 return print_unlock_inbalance_bug(curr, lock, ip); 3008 return print_unlock_inbalance_bug(curr, lock, ip);
2792 3009
2793found_it: 3010found_it:
2794 lock_release_holdtime(hlock); 3011 if (hlock->instance == lock)
3012 lock_release_holdtime(hlock);
3013
3014 if (hlock->references) {
3015 hlock->references--;
3016 if (hlock->references) {
3017 /*
3018 * We had, and after removing one, still have
3019 * references, the current lock stack is still
3020 * valid. We're done!
3021 */
3022 return 1;
3023 }
3024 }
2795 3025
2796 /* 3026 /*
2797 * We have the right lock to unlock, 'hlock' points to it. 3027 * We have the right lock to unlock, 'hlock' points to it.
2798 * Now we remove it from the stack, and add back the other 3028 * Now we remove it from the stack, and add back the other
2799 * entries (if any), recalculating the hash along the way: 3029 * entries (if any), recalculating the hash along the way:
2800 */ 3030 */
3031
2801 curr->lockdep_depth = i; 3032 curr->lockdep_depth = i;
2802 curr->curr_chain_key = hlock->prev_chain_key; 3033 curr->curr_chain_key = hlock->prev_chain_key;
2803 3034
@@ -2806,7 +3037,8 @@ found_it:
2806 if (!__lock_acquire(hlock->instance, 3037 if (!__lock_acquire(hlock->instance,
2807 hlock_class(hlock)->subclass, hlock->trylock, 3038 hlock_class(hlock)->subclass, hlock->trylock,
2808 hlock->read, hlock->check, hlock->hardirqs_off, 3039 hlock->read, hlock->check, hlock->hardirqs_off,
2809 hlock->nest_lock, hlock->acquire_ip)) 3040 hlock->nest_lock, hlock->acquire_ip,
3041 hlock->references))
2810 return 0; 3042 return 0;
2811 } 3043 }
2812 3044
@@ -2836,7 +3068,7 @@ static int lock_release_nested(struct task_struct *curr,
2836 /* 3068 /*
2837 * Is the unlock non-nested: 3069 * Is the unlock non-nested:
2838 */ 3070 */
2839 if (hlock->instance != lock) 3071 if (hlock->instance != lock || hlock->references)
2840 return lock_release_non_nested(curr, lock, ip); 3072 return lock_release_non_nested(curr, lock, ip);
2841 curr->lockdep_depth--; 3073 curr->lockdep_depth--;
2842 3074
@@ -2881,6 +3113,21 @@ __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
2881 check_chain_key(curr); 3113 check_chain_key(curr);
2882} 3114}
2883 3115
3116static int __lock_is_held(struct lockdep_map *lock)
3117{
3118 struct task_struct *curr = current;
3119 int i;
3120
3121 for (i = 0; i < curr->lockdep_depth; i++) {
3122 struct held_lock *hlock = curr->held_locks + i;
3123
3124 if (match_held_lock(hlock, lock))
3125 return 1;
3126 }
3127
3128 return 0;
3129}
3130
2884/* 3131/*
2885 * Check whether we follow the irq-flags state precisely: 3132 * Check whether we follow the irq-flags state precisely:
2886 */ 3133 */
@@ -2957,7 +3204,7 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
2957 3204
2958 current->lockdep_recursion = 1; 3205 current->lockdep_recursion = 1;
2959 __lock_acquire(lock, subclass, trylock, read, check, 3206 __lock_acquire(lock, subclass, trylock, read, check,
2960 irqs_disabled_flags(flags), nest_lock, ip); 3207 irqs_disabled_flags(flags), nest_lock, ip, 0);
2961 current->lockdep_recursion = 0; 3208 current->lockdep_recursion = 0;
2962 raw_local_irq_restore(flags); 3209 raw_local_irq_restore(flags);
2963} 3210}
@@ -2982,6 +3229,26 @@ void lock_release(struct lockdep_map *lock, int nested,
2982} 3229}
2983EXPORT_SYMBOL_GPL(lock_release); 3230EXPORT_SYMBOL_GPL(lock_release);
2984 3231
3232int lock_is_held(struct lockdep_map *lock)
3233{
3234 unsigned long flags;
3235 int ret = 0;
3236
3237 if (unlikely(current->lockdep_recursion))
3238 return ret;
3239
3240 raw_local_irq_save(flags);
3241 check_flags(flags);
3242
3243 current->lockdep_recursion = 1;
3244 ret = __lock_is_held(lock);
3245 current->lockdep_recursion = 0;
3246 raw_local_irq_restore(flags);
3247
3248 return ret;
3249}
3250EXPORT_SYMBOL_GPL(lock_is_held);
3251
2985void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3252void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
2986{ 3253{
2987 current->lockdep_reclaim_gfp = gfp_mask; 3254 current->lockdep_reclaim_gfp = gfp_mask;
@@ -3041,7 +3308,7 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip)
3041 */ 3308 */
3042 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3309 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3043 break; 3310 break;
3044 if (hlock->instance == lock) 3311 if (match_held_lock(hlock, lock))
3045 goto found_it; 3312 goto found_it;
3046 prev_hlock = hlock; 3313 prev_hlock = hlock;
3047 } 3314 }
@@ -3049,6 +3316,9 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip)
3049 return; 3316 return;
3050 3317
3051found_it: 3318found_it:
3319 if (hlock->instance != lock)
3320 return;
3321
3052 hlock->waittime_stamp = sched_clock(); 3322 hlock->waittime_stamp = sched_clock();
3053 3323
3054 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3324 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
@@ -3088,7 +3358,7 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3088 */ 3358 */
3089 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3359 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3090 break; 3360 break;
3091 if (hlock->instance == lock) 3361 if (match_held_lock(hlock, lock))
3092 goto found_it; 3362 goto found_it;
3093 prev_hlock = hlock; 3363 prev_hlock = hlock;
3094 } 3364 }
@@ -3096,6 +3366,9 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip)
3096 return; 3366 return;
3097 3367
3098found_it: 3368found_it:
3369 if (hlock->instance != lock)
3370 return;
3371
3099 cpu = smp_processor_id(); 3372 cpu = smp_processor_id();
3100 if (hlock->waittime_stamp) { 3373 if (hlock->waittime_stamp) {
3101 now = sched_clock(); 3374 now = sched_clock();
@@ -3326,7 +3599,12 @@ void __init lockdep_info(void)
3326 sizeof(struct list_head) * CLASSHASH_SIZE + 3599 sizeof(struct list_head) * CLASSHASH_SIZE +
3327 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 3600 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
3328 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 3601 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
3329 sizeof(struct list_head) * CHAINHASH_SIZE) / 1024); 3602 sizeof(struct list_head) * CHAINHASH_SIZE
3603#ifdef CONFIG_PROVE_LOCKING
3604 + sizeof(struct circular_queue)
3605#endif
3606 ) / 1024
3607 );
3330 3608
3331 printk(" per task-struct memory footprint: %lu bytes\n", 3609 printk(" per task-struct memory footprint: %lu bytes\n",
3332 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 3610 sizeof(struct held_lock) * MAX_LOCK_DEPTH);
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h
index 699a2ac3a0d7..a2ee95ad1313 100644
--- a/kernel/lockdep_internals.h
+++ b/kernel/lockdep_internals.h
@@ -91,6 +91,8 @@ extern unsigned int nr_process_chains;
91extern unsigned int max_lockdep_depth; 91extern unsigned int max_lockdep_depth;
92extern unsigned int max_recursion_depth; 92extern unsigned int max_recursion_depth;
93 93
94extern unsigned int max_bfs_queue_depth;
95
94#ifdef CONFIG_PROVE_LOCKING 96#ifdef CONFIG_PROVE_LOCKING
95extern unsigned long lockdep_count_forward_deps(struct lock_class *); 97extern unsigned long lockdep_count_forward_deps(struct lock_class *);
96extern unsigned long lockdep_count_backward_deps(struct lock_class *); 98extern unsigned long lockdep_count_backward_deps(struct lock_class *);
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c
index e94caa666dba..d4b3dbc79fdb 100644
--- a/kernel/lockdep_proc.c
+++ b/kernel/lockdep_proc.c
@@ -25,38 +25,12 @@
25 25
26static void *l_next(struct seq_file *m, void *v, loff_t *pos) 26static void *l_next(struct seq_file *m, void *v, loff_t *pos)
27{ 27{
28 struct lock_class *class; 28 return seq_list_next(v, &all_lock_classes, pos);
29
30 (*pos)++;
31
32 if (v == SEQ_START_TOKEN)
33 class = m->private;
34 else {
35 class = v;
36
37 if (class->lock_entry.next != &all_lock_classes)
38 class = list_entry(class->lock_entry.next,
39 struct lock_class, lock_entry);
40 else
41 class = NULL;
42 }
43
44 return class;
45} 29}
46 30
47static void *l_start(struct seq_file *m, loff_t *pos) 31static void *l_start(struct seq_file *m, loff_t *pos)
48{ 32{
49 struct lock_class *class; 33 return seq_list_start_head(&all_lock_classes, *pos);
50 loff_t i = 0;
51
52 if (*pos == 0)
53 return SEQ_START_TOKEN;
54
55 list_for_each_entry(class, &all_lock_classes, lock_entry) {
56 if (++i == *pos)
57 return class;
58 }
59 return NULL;
60} 34}
61 35
62static void l_stop(struct seq_file *m, void *v) 36static void l_stop(struct seq_file *m, void *v)
@@ -82,11 +56,11 @@ static void print_name(struct seq_file *m, struct lock_class *class)
82 56
83static int l_show(struct seq_file *m, void *v) 57static int l_show(struct seq_file *m, void *v)
84{ 58{
85 struct lock_class *class = v; 59 struct lock_class *class = list_entry(v, struct lock_class, lock_entry);
86 struct lock_list *entry; 60 struct lock_list *entry;
87 char usage[LOCK_USAGE_CHARS]; 61 char usage[LOCK_USAGE_CHARS];
88 62
89 if (v == SEQ_START_TOKEN) { 63 if (v == &all_lock_classes) {
90 seq_printf(m, "all lock classes:\n"); 64 seq_printf(m, "all lock classes:\n");
91 return 0; 65 return 0;
92 } 66 }
@@ -128,17 +102,7 @@ static const struct seq_operations lockdep_ops = {
128 102
129static int lockdep_open(struct inode *inode, struct file *file) 103static int lockdep_open(struct inode *inode, struct file *file)
130{ 104{
131 int res = seq_open(file, &lockdep_ops); 105 return seq_open(file, &lockdep_ops);
132 if (!res) {
133 struct seq_file *m = file->private_data;
134
135 if (!list_empty(&all_lock_classes))
136 m->private = list_entry(all_lock_classes.next,
137 struct lock_class, lock_entry);
138 else
139 m->private = NULL;
140 }
141 return res;
142} 106}
143 107
144static const struct file_operations proc_lockdep_operations = { 108static const struct file_operations proc_lockdep_operations = {
@@ -149,37 +113,23 @@ static const struct file_operations proc_lockdep_operations = {
149}; 113};
150 114
151#ifdef CONFIG_PROVE_LOCKING 115#ifdef CONFIG_PROVE_LOCKING
152static void *lc_next(struct seq_file *m, void *v, loff_t *pos)
153{
154 struct lock_chain *chain;
155
156 (*pos)++;
157
158 if (v == SEQ_START_TOKEN)
159 chain = m->private;
160 else {
161 chain = v;
162
163 if (*pos < nr_lock_chains)
164 chain = lock_chains + *pos;
165 else
166 chain = NULL;
167 }
168
169 return chain;
170}
171
172static void *lc_start(struct seq_file *m, loff_t *pos) 116static void *lc_start(struct seq_file *m, loff_t *pos)
173{ 117{
174 if (*pos == 0) 118 if (*pos == 0)
175 return SEQ_START_TOKEN; 119 return SEQ_START_TOKEN;
176 120
177 if (*pos < nr_lock_chains) 121 if (*pos - 1 < nr_lock_chains)
178 return lock_chains + *pos; 122 return lock_chains + (*pos - 1);
179 123
180 return NULL; 124 return NULL;
181} 125}
182 126
127static void *lc_next(struct seq_file *m, void *v, loff_t *pos)
128{
129 (*pos)++;
130 return lc_start(m, pos);
131}
132
183static void lc_stop(struct seq_file *m, void *v) 133static void lc_stop(struct seq_file *m, void *v)
184{ 134{
185} 135}
@@ -220,16 +170,7 @@ static const struct seq_operations lockdep_chains_ops = {
220 170
221static int lockdep_chains_open(struct inode *inode, struct file *file) 171static int lockdep_chains_open(struct inode *inode, struct file *file)
222{ 172{
223 int res = seq_open(file, &lockdep_chains_ops); 173 return seq_open(file, &lockdep_chains_ops);
224 if (!res) {
225 struct seq_file *m = file->private_data;
226
227 if (nr_lock_chains)
228 m->private = lock_chains;
229 else
230 m->private = NULL;
231 }
232 return res;
233} 174}
234 175
235static const struct file_operations proc_lockdep_chains_operations = { 176static const struct file_operations proc_lockdep_chains_operations = {
@@ -258,16 +199,10 @@ static void lockdep_stats_debug_show(struct seq_file *m)
258 debug_atomic_read(&chain_lookup_hits)); 199 debug_atomic_read(&chain_lookup_hits));
259 seq_printf(m, " cyclic checks: %11u\n", 200 seq_printf(m, " cyclic checks: %11u\n",
260 debug_atomic_read(&nr_cyclic_checks)); 201 debug_atomic_read(&nr_cyclic_checks));
261 seq_printf(m, " cyclic-check recursions: %11u\n",
262 debug_atomic_read(&nr_cyclic_check_recursions));
263 seq_printf(m, " find-mask forwards checks: %11u\n", 202 seq_printf(m, " find-mask forwards checks: %11u\n",
264 debug_atomic_read(&nr_find_usage_forwards_checks)); 203 debug_atomic_read(&nr_find_usage_forwards_checks));
265 seq_printf(m, " find-mask forwards recursions: %11u\n",
266 debug_atomic_read(&nr_find_usage_forwards_recursions));
267 seq_printf(m, " find-mask backwards checks: %11u\n", 204 seq_printf(m, " find-mask backwards checks: %11u\n",
268 debug_atomic_read(&nr_find_usage_backwards_checks)); 205 debug_atomic_read(&nr_find_usage_backwards_checks));
269 seq_printf(m, " find-mask backwards recursions:%11u\n",
270 debug_atomic_read(&nr_find_usage_backwards_recursions));
271 206
272 seq_printf(m, " hardirq on events: %11u\n", hi1); 207 seq_printf(m, " hardirq on events: %11u\n", hi1);
273 seq_printf(m, " hardirq off events: %11u\n", hi2); 208 seq_printf(m, " hardirq off events: %11u\n", hi2);
@@ -409,8 +344,10 @@ static int lockdep_stats_show(struct seq_file *m, void *v)
409 nr_unused); 344 nr_unused);
410 seq_printf(m, " max locking depth: %11u\n", 345 seq_printf(m, " max locking depth: %11u\n",
411 max_lockdep_depth); 346 max_lockdep_depth);
412 seq_printf(m, " max recursion depth: %11u\n", 347#ifdef CONFIG_PROVE_LOCKING
413 max_recursion_depth); 348 seq_printf(m, " max bfs queue depth: %11u\n",
349 max_bfs_queue_depth);
350#endif
414 lockdep_stats_debug_show(m); 351 lockdep_stats_debug_show(m);
415 seq_printf(m, " debug_locks: %11u\n", 352 seq_printf(m, " debug_locks: %11u\n",
416 debug_locks); 353 debug_locks);
@@ -438,7 +375,6 @@ struct lock_stat_data {
438}; 375};
439 376
440struct lock_stat_seq { 377struct lock_stat_seq {
441 struct lock_stat_data *iter;
442 struct lock_stat_data *iter_end; 378 struct lock_stat_data *iter_end;
443 struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; 379 struct lock_stat_data stats[MAX_LOCKDEP_KEYS];
444}; 380};
@@ -626,34 +562,22 @@ static void seq_header(struct seq_file *m)
626static void *ls_start(struct seq_file *m, loff_t *pos) 562static void *ls_start(struct seq_file *m, loff_t *pos)
627{ 563{
628 struct lock_stat_seq *data = m->private; 564 struct lock_stat_seq *data = m->private;
565 struct lock_stat_data *iter;
629 566
630 if (*pos == 0) 567 if (*pos == 0)
631 return SEQ_START_TOKEN; 568 return SEQ_START_TOKEN;
632 569
633 data->iter = data->stats + *pos; 570 iter = data->stats + (*pos - 1);
634 if (data->iter >= data->iter_end) 571 if (iter >= data->iter_end)
635 data->iter = NULL; 572 iter = NULL;
636 573
637 return data->iter; 574 return iter;
638} 575}
639 576
640static void *ls_next(struct seq_file *m, void *v, loff_t *pos) 577static void *ls_next(struct seq_file *m, void *v, loff_t *pos)
641{ 578{
642 struct lock_stat_seq *data = m->private;
643
644 (*pos)++; 579 (*pos)++;
645 580 return ls_start(m, pos);
646 if (v == SEQ_START_TOKEN)
647 data->iter = data->stats;
648 else {
649 data->iter = v;
650 data->iter++;
651 }
652
653 if (data->iter == data->iter_end)
654 data->iter = NULL;
655
656 return data->iter;
657} 581}
658 582
659static void ls_stop(struct seq_file *m, void *v) 583static void ls_stop(struct seq_file *m, void *v)
@@ -691,7 +615,6 @@ static int lock_stat_open(struct inode *inode, struct file *file)
691 struct lock_stat_data *iter = data->stats; 615 struct lock_stat_data *iter = data->stats;
692 struct seq_file *m = file->private_data; 616 struct seq_file *m = file->private_data;
693 617
694 data->iter = iter;
695 list_for_each_entry(class, &all_lock_classes, lock_entry) { 618 list_for_each_entry(class, &all_lock_classes, lock_entry) {
696 iter->class = class; 619 iter->class = class;
697 iter->stats = lock_stats(class); 620 iter->stats = lock_stats(class);
@@ -699,7 +622,7 @@ static int lock_stat_open(struct inode *inode, struct file *file)
699 } 622 }
700 data->iter_end = iter; 623 data->iter_end = iter;
701 624
702 sort(data->stats, data->iter_end - data->iter, 625 sort(data->stats, data->iter_end - data->stats,
703 sizeof(struct lock_stat_data), 626 sizeof(struct lock_stat_data),
704 lock_stat_cmp, NULL); 627 lock_stat_cmp, NULL);
705 628
@@ -734,7 +657,6 @@ static int lock_stat_release(struct inode *inode, struct file *file)
734 struct seq_file *seq = file->private_data; 657 struct seq_file *seq = file->private_data;
735 658
736 vfree(seq->private); 659 vfree(seq->private);
737 seq->private = NULL;
738 return seq_release(inode, file); 660 return seq_release(inode, file);
739} 661}
740 662
diff --git a/kernel/module.c b/kernel/module.c
index fd1411403558..46580edff0cb 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -55,6 +55,11 @@
55#include <linux/percpu.h> 55#include <linux/percpu.h>
56#include <linux/kmemleak.h> 56#include <linux/kmemleak.h>
57 57
58#define CREATE_TRACE_POINTS
59#include <trace/events/module.h>
60
61EXPORT_TRACEPOINT_SYMBOL(module_get);
62
58#if 0 63#if 0
59#define DEBUGP printk 64#define DEBUGP printk
60#else 65#else
@@ -909,16 +914,18 @@ void __symbol_put(const char *symbol)
909} 914}
910EXPORT_SYMBOL(__symbol_put); 915EXPORT_SYMBOL(__symbol_put);
911 916
917/* Note this assumes addr is a function, which it currently always is. */
912void symbol_put_addr(void *addr) 918void symbol_put_addr(void *addr)
913{ 919{
914 struct module *modaddr; 920 struct module *modaddr;
921 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
915 922
916 if (core_kernel_text((unsigned long)addr)) 923 if (core_kernel_text(a))
917 return; 924 return;
918 925
919 /* module_text_address is safe here: we're supposed to have reference 926 /* module_text_address is safe here: we're supposed to have reference
920 * to module from symbol_get, so it can't go away. */ 927 * to module from symbol_get, so it can't go away. */
921 modaddr = __module_text_address((unsigned long)addr); 928 modaddr = __module_text_address(a);
922 BUG_ON(!modaddr); 929 BUG_ON(!modaddr);
923 module_put(modaddr); 930 module_put(modaddr);
924} 931}
@@ -940,6 +947,8 @@ void module_put(struct module *module)
940 if (module) { 947 if (module) {
941 unsigned int cpu = get_cpu(); 948 unsigned int cpu = get_cpu();
942 local_dec(__module_ref_addr(module, cpu)); 949 local_dec(__module_ref_addr(module, cpu));
950 trace_module_put(module, _RET_IP_,
951 local_read(__module_ref_addr(module, cpu)));
943 /* Maybe they're waiting for us to drop reference? */ 952 /* Maybe they're waiting for us to drop reference? */
944 if (unlikely(!module_is_live(module))) 953 if (unlikely(!module_is_live(module)))
945 wake_up_process(module->waiter); 954 wake_up_process(module->waiter);
@@ -1272,6 +1281,10 @@ static void add_notes_attrs(struct module *mod, unsigned int nsect,
1272 struct module_notes_attrs *notes_attrs; 1281 struct module_notes_attrs *notes_attrs;
1273 struct bin_attribute *nattr; 1282 struct bin_attribute *nattr;
1274 1283
1284 /* failed to create section attributes, so can't create notes */
1285 if (!mod->sect_attrs)
1286 return;
1287
1275 /* Count notes sections and allocate structures. */ 1288 /* Count notes sections and allocate structures. */
1276 notes = 0; 1289 notes = 0;
1277 for (i = 0; i < nsect; i++) 1290 for (i = 0; i < nsect; i++)
@@ -1491,6 +1504,8 @@ static int __unlink_module(void *_mod)
1491/* Free a module, remove from lists, etc (must hold module_mutex). */ 1504/* Free a module, remove from lists, etc (must hold module_mutex). */
1492static void free_module(struct module *mod) 1505static void free_module(struct module *mod)
1493{ 1506{
1507 trace_module_free(mod);
1508
1494 /* Delete from various lists */ 1509 /* Delete from various lists */
1495 stop_machine(__unlink_module, mod, NULL); 1510 stop_machine(__unlink_module, mod, NULL);
1496 remove_notes_attrs(mod); 1511 remove_notes_attrs(mod);
@@ -2358,6 +2373,8 @@ static noinline struct module *load_module(void __user *umod,
2358 /* Get rid of temporary copy */ 2373 /* Get rid of temporary copy */
2359 vfree(hdr); 2374 vfree(hdr);
2360 2375
2376 trace_module_load(mod);
2377
2361 /* Done! */ 2378 /* Done! */
2362 return mod; 2379 return mod;
2363 2380
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
index 534e20d14d63..e0d91fdf0c3c 100644
--- a/kernel/perf_counter.c
+++ b/kernel/perf_counter.c
@@ -46,11 +46,17 @@ static atomic_t nr_task_counters __read_mostly;
46 46
47/* 47/*
48 * perf counter paranoia level: 48 * perf counter paranoia level:
49 * 0 - not paranoid 49 * -1 - not paranoid at all
50 * 1 - disallow cpu counters to unpriv 50 * 0 - disallow raw tracepoint access for unpriv
51 * 2 - disallow kernel profiling to unpriv 51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
52 */ 53 */
53int sysctl_perf_counter_paranoid __read_mostly; 54int sysctl_perf_counter_paranoid __read_mostly = 1;
55
56static inline bool perf_paranoid_tracepoint_raw(void)
57{
58 return sysctl_perf_counter_paranoid > -1;
59}
54 60
55static inline bool perf_paranoid_cpu(void) 61static inline bool perf_paranoid_cpu(void)
56{ 62{
@@ -469,7 +475,8 @@ static void update_counter_times(struct perf_counter *counter)
469 struct perf_counter_context *ctx = counter->ctx; 475 struct perf_counter_context *ctx = counter->ctx;
470 u64 run_end; 476 u64 run_end;
471 477
472 if (counter->state < PERF_COUNTER_STATE_INACTIVE) 478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
473 return; 480 return;
474 481
475 counter->total_time_enabled = ctx->time - counter->tstamp_enabled; 482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
@@ -518,7 +525,7 @@ static void __perf_counter_disable(void *info)
518 */ 525 */
519 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { 526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520 update_context_time(ctx); 527 update_context_time(ctx);
521 update_counter_times(counter); 528 update_group_times(counter);
522 if (counter == counter->group_leader) 529 if (counter == counter->group_leader)
523 group_sched_out(counter, cpuctx, ctx); 530 group_sched_out(counter, cpuctx, ctx);
524 else 531 else
@@ -573,7 +580,7 @@ static void perf_counter_disable(struct perf_counter *counter)
573 * in, so we can change the state safely. 580 * in, so we can change the state safely.
574 */ 581 */
575 if (counter->state == PERF_COUNTER_STATE_INACTIVE) { 582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
576 update_counter_times(counter); 583 update_group_times(counter);
577 counter->state = PERF_COUNTER_STATE_OFF; 584 counter->state = PERF_COUNTER_STATE_OFF;
578 } 585 }
579 586
@@ -851,6 +858,27 @@ retry:
851} 858}
852 859
853/* 860/*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870{
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879}
880
881/*
854 * Cross CPU call to enable a performance counter 882 * Cross CPU call to enable a performance counter
855 */ 883 */
856static void __perf_counter_enable(void *info) 884static void __perf_counter_enable(void *info)
@@ -877,8 +905,7 @@ static void __perf_counter_enable(void *info)
877 905
878 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) 906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
879 goto unlock; 907 goto unlock;
880 counter->state = PERF_COUNTER_STATE_INACTIVE; 908 __perf_counter_mark_enabled(counter, ctx);
881 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882 909
883 /* 910 /*
884 * If the counter is in a group and isn't the group leader, 911 * If the counter is in a group and isn't the group leader,
@@ -971,11 +998,9 @@ static void perf_counter_enable(struct perf_counter *counter)
971 * Since we have the lock this context can't be scheduled 998 * Since we have the lock this context can't be scheduled
972 * in, so we can change the state safely. 999 * in, so we can change the state safely.
973 */ 1000 */
974 if (counter->state == PERF_COUNTER_STATE_OFF) { 1001 if (counter->state == PERF_COUNTER_STATE_OFF)
975 counter->state = PERF_COUNTER_STATE_INACTIVE; 1002 __perf_counter_mark_enabled(counter, ctx);
976 counter->tstamp_enabled = 1003
977 ctx->time - counter->total_time_enabled;
978 }
979 out: 1004 out:
980 spin_unlock_irq(&ctx->lock); 1005 spin_unlock_irq(&ctx->lock);
981} 1006}
@@ -1479,9 +1504,7 @@ static void perf_counter_enable_on_exec(struct task_struct *task)
1479 counter->attr.enable_on_exec = 0; 1504 counter->attr.enable_on_exec = 0;
1480 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) 1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1481 continue; 1506 continue;
1482 counter->state = PERF_COUNTER_STATE_INACTIVE; 1507 __perf_counter_mark_enabled(counter, ctx);
1483 counter->tstamp_enabled =
1484 ctx->time - counter->total_time_enabled;
1485 enabled = 1; 1508 enabled = 1;
1486 } 1509 }
1487 1510
@@ -1503,10 +1526,21 @@ static void perf_counter_enable_on_exec(struct task_struct *task)
1503 */ 1526 */
1504static void __perf_counter_read(void *info) 1527static void __perf_counter_read(void *info)
1505{ 1528{
1529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1506 struct perf_counter *counter = info; 1530 struct perf_counter *counter = info;
1507 struct perf_counter_context *ctx = counter->ctx; 1531 struct perf_counter_context *ctx = counter->ctx;
1508 unsigned long flags; 1532 unsigned long flags;
1509 1533
1534 /*
1535 * If this is a task context, we need to check whether it is
1536 * the current task context of this cpu. If not it has been
1537 * scheduled out before the smp call arrived. In that case
1538 * counter->count would have been updated to a recent sample
1539 * when the counter was scheduled out.
1540 */
1541 if (ctx->task && cpuctx->task_ctx != ctx)
1542 return;
1543
1510 local_irq_save(flags); 1544 local_irq_save(flags);
1511 if (ctx->is_active) 1545 if (ctx->is_active)
1512 update_context_time(ctx); 1546 update_context_time(ctx);
@@ -1664,6 +1698,11 @@ static void free_counter(struct perf_counter *counter)
1664 atomic_dec(&nr_task_counters); 1698 atomic_dec(&nr_task_counters);
1665 } 1699 }
1666 1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1667 if (counter->destroy) 1706 if (counter->destroy)
1668 counter->destroy(counter); 1707 counter->destroy(counter);
1669 1708
@@ -1780,7 +1819,7 @@ static int perf_counter_read_group(struct perf_counter *counter,
1780 size += err; 1819 size += err;
1781 1820
1782 list_for_each_entry(sub, &leader->sibling_list, list_entry) { 1821 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1783 err = perf_counter_read_entry(counter, read_format, 1822 err = perf_counter_read_entry(sub, read_format,
1784 buf + size); 1823 buf + size);
1785 if (err < 0) 1824 if (err < 0)
1786 return err; 1825 return err;
@@ -1949,6 +1988,8 @@ unlock:
1949 return ret; 1988 return ret;
1950} 1989}
1951 1990
1991int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1952static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1993static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1953{ 1994{
1954 struct perf_counter *counter = file->private_data; 1995 struct perf_counter *counter = file->private_data;
@@ -1972,6 +2013,9 @@ static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1972 case PERF_COUNTER_IOC_PERIOD: 2013 case PERF_COUNTER_IOC_PERIOD:
1973 return perf_counter_period(counter, (u64 __user *)arg); 2014 return perf_counter_period(counter, (u64 __user *)arg);
1974 2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
1975 default: 2019 default:
1976 return -ENOTTY; 2020 return -ENOTTY;
1977 } 2021 }
@@ -2008,6 +2052,10 @@ int perf_counter_task_disable(void)
2008 return 0; 2052 return 0;
2009} 2053}
2010 2054
2055#ifndef PERF_COUNTER_INDEX_OFFSET
2056# define PERF_COUNTER_INDEX_OFFSET 0
2057#endif
2058
2011static int perf_counter_index(struct perf_counter *counter) 2059static int perf_counter_index(struct perf_counter *counter)
2012{ 2060{
2013 if (counter->state != PERF_COUNTER_STATE_ACTIVE) 2061 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
@@ -2238,6 +2286,11 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2238 2286
2239 WARN_ON_ONCE(counter->ctx->parent_ctx); 2287 WARN_ON_ONCE(counter->ctx->parent_ctx);
2240 mutex_lock(&counter->mmap_mutex); 2288 mutex_lock(&counter->mmap_mutex);
2289 if (counter->output) {
2290 ret = -EINVAL;
2291 goto unlock;
2292 }
2293
2241 if (atomic_inc_not_zero(&counter->mmap_count)) { 2294 if (atomic_inc_not_zero(&counter->mmap_count)) {
2242 if (nr_pages != counter->data->nr_pages) 2295 if (nr_pages != counter->data->nr_pages)
2243 ret = -EINVAL; 2296 ret = -EINVAL;
@@ -2623,6 +2676,7 @@ static int perf_output_begin(struct perf_output_handle *handle,
2623 struct perf_counter *counter, unsigned int size, 2676 struct perf_counter *counter, unsigned int size,
2624 int nmi, int sample) 2677 int nmi, int sample)
2625{ 2678{
2679 struct perf_counter *output_counter;
2626 struct perf_mmap_data *data; 2680 struct perf_mmap_data *data;
2627 unsigned int offset, head; 2681 unsigned int offset, head;
2628 int have_lost; 2682 int have_lost;
@@ -2632,13 +2686,17 @@ static int perf_output_begin(struct perf_output_handle *handle,
2632 u64 lost; 2686 u64 lost;
2633 } lost_event; 2687 } lost_event;
2634 2688
2689 rcu_read_lock();
2635 /* 2690 /*
2636 * For inherited counters we send all the output towards the parent. 2691 * For inherited counters we send all the output towards the parent.
2637 */ 2692 */
2638 if (counter->parent) 2693 if (counter->parent)
2639 counter = counter->parent; 2694 counter = counter->parent;
2640 2695
2641 rcu_read_lock(); 2696 output_counter = rcu_dereference(counter->output);
2697 if (output_counter)
2698 counter = output_counter;
2699
2642 data = rcu_dereference(counter->data); 2700 data = rcu_dereference(counter->data);
2643 if (!data) 2701 if (!data)
2644 goto out; 2702 goto out;
@@ -3919,6 +3977,7 @@ static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3919 * have these. 3977 * have these.
3920 */ 3978 */
3921 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && 3979 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3980 perf_paranoid_tracepoint_raw() &&
3922 !capable(CAP_SYS_ADMIN)) 3981 !capable(CAP_SYS_ADMIN))
3923 return ERR_PTR(-EPERM); 3982 return ERR_PTR(-EPERM);
3924 3983
@@ -4051,6 +4110,7 @@ perf_counter_alloc(struct perf_counter_attr *attr,
4051 hwc->sample_period = attr->sample_period; 4110 hwc->sample_period = attr->sample_period;
4052 if (attr->freq && attr->sample_freq) 4111 if (attr->freq && attr->sample_freq)
4053 hwc->sample_period = 1; 4112 hwc->sample_period = 1;
4113 hwc->last_period = hwc->sample_period;
4054 4114
4055 atomic64_set(&hwc->period_left, hwc->sample_period); 4115 atomic64_set(&hwc->period_left, hwc->sample_period);
4056 4116
@@ -4186,6 +4246,57 @@ err_size:
4186 goto out; 4246 goto out;
4187} 4247}
4188 4248
4249int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4250{
4251 struct perf_counter *output_counter = NULL;
4252 struct file *output_file = NULL;
4253 struct perf_counter *old_output;
4254 int fput_needed = 0;
4255 int ret = -EINVAL;
4256
4257 if (!output_fd)
4258 goto set;
4259
4260 output_file = fget_light(output_fd, &fput_needed);
4261 if (!output_file)
4262 return -EBADF;
4263
4264 if (output_file->f_op != &perf_fops)
4265 goto out;
4266
4267 output_counter = output_file->private_data;
4268
4269 /* Don't chain output fds */
4270 if (output_counter->output)
4271 goto out;
4272
4273 /* Don't set an output fd when we already have an output channel */
4274 if (counter->data)
4275 goto out;
4276
4277 atomic_long_inc(&output_file->f_count);
4278
4279set:
4280 mutex_lock(&counter->mmap_mutex);
4281 old_output = counter->output;
4282 rcu_assign_pointer(counter->output, output_counter);
4283 mutex_unlock(&counter->mmap_mutex);
4284
4285 if (old_output) {
4286 /*
4287 * we need to make sure no existing perf_output_*()
4288 * is still referencing this counter.
4289 */
4290 synchronize_rcu();
4291 fput(old_output->filp);
4292 }
4293
4294 ret = 0;
4295out:
4296 fput_light(output_file, fput_needed);
4297 return ret;
4298}
4299
4189/** 4300/**
4190 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu 4301 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4191 * 4302 *
@@ -4205,15 +4316,15 @@ SYSCALL_DEFINE5(perf_counter_open,
4205 struct file *group_file = NULL; 4316 struct file *group_file = NULL;
4206 int fput_needed = 0; 4317 int fput_needed = 0;
4207 int fput_needed2 = 0; 4318 int fput_needed2 = 0;
4208 int ret; 4319 int err;
4209 4320
4210 /* for future expandability... */ 4321 /* for future expandability... */
4211 if (flags) 4322 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4212 return -EINVAL; 4323 return -EINVAL;
4213 4324
4214 ret = perf_copy_attr(attr_uptr, &attr); 4325 err = perf_copy_attr(attr_uptr, &attr);
4215 if (ret) 4326 if (err)
4216 return ret; 4327 return err;
4217 4328
4218 if (!attr.exclude_kernel) { 4329 if (!attr.exclude_kernel) {
4219 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 4330 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
@@ -4236,8 +4347,8 @@ SYSCALL_DEFINE5(perf_counter_open,
4236 * Look up the group leader (we will attach this counter to it): 4347 * Look up the group leader (we will attach this counter to it):
4237 */ 4348 */
4238 group_leader = NULL; 4349 group_leader = NULL;
4239 if (group_fd != -1) { 4350 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4240 ret = -EINVAL; 4351 err = -EINVAL;
4241 group_file = fget_light(group_fd, &fput_needed); 4352 group_file = fget_light(group_fd, &fput_needed);
4242 if (!group_file) 4353 if (!group_file)
4243 goto err_put_context; 4354 goto err_put_context;
@@ -4266,18 +4377,24 @@ SYSCALL_DEFINE5(perf_counter_open,
4266 4377
4267 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, 4378 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4268 NULL, GFP_KERNEL); 4379 NULL, GFP_KERNEL);
4269 ret = PTR_ERR(counter); 4380 err = PTR_ERR(counter);
4270 if (IS_ERR(counter)) 4381 if (IS_ERR(counter))
4271 goto err_put_context; 4382 goto err_put_context;
4272 4383
4273 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); 4384 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4274 if (ret < 0) 4385 if (err < 0)
4275 goto err_free_put_context; 4386 goto err_free_put_context;
4276 4387
4277 counter_file = fget_light(ret, &fput_needed2); 4388 counter_file = fget_light(err, &fput_needed2);
4278 if (!counter_file) 4389 if (!counter_file)
4279 goto err_free_put_context; 4390 goto err_free_put_context;
4280 4391
4392 if (flags & PERF_FLAG_FD_OUTPUT) {
4393 err = perf_counter_set_output(counter, group_fd);
4394 if (err)
4395 goto err_fput_free_put_context;
4396 }
4397
4281 counter->filp = counter_file; 4398 counter->filp = counter_file;
4282 WARN_ON_ONCE(ctx->parent_ctx); 4399 WARN_ON_ONCE(ctx->parent_ctx);
4283 mutex_lock(&ctx->mutex); 4400 mutex_lock(&ctx->mutex);
@@ -4291,20 +4408,20 @@ SYSCALL_DEFINE5(perf_counter_open,
4291 list_add_tail(&counter->owner_entry, &current->perf_counter_list); 4408 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4292 mutex_unlock(&current->perf_counter_mutex); 4409 mutex_unlock(&current->perf_counter_mutex);
4293 4410
4411err_fput_free_put_context:
4294 fput_light(counter_file, fput_needed2); 4412 fput_light(counter_file, fput_needed2);
4295 4413
4296out_fput:
4297 fput_light(group_file, fput_needed);
4298
4299 return ret;
4300
4301err_free_put_context: 4414err_free_put_context:
4302 kfree(counter); 4415 if (err < 0)
4416 kfree(counter);
4303 4417
4304err_put_context: 4418err_put_context:
4305 put_ctx(ctx); 4419 if (err < 0)
4420 put_ctx(ctx);
4421
4422 fput_light(group_file, fput_needed);
4306 4423
4307 goto out_fput; 4424 return err;
4308} 4425}
4309 4426
4310/* 4427/*
diff --git a/kernel/printk.c b/kernel/printk.c
index b4d97b54c1ec..602033acd6c7 100644
--- a/kernel/printk.c
+++ b/kernel/printk.c
@@ -37,6 +37,12 @@
37#include <asm/uaccess.h> 37#include <asm/uaccess.h>
38 38
39/* 39/*
40 * for_each_console() allows you to iterate on each console
41 */
42#define for_each_console(con) \
43 for (con = console_drivers; con != NULL; con = con->next)
44
45/*
40 * Architectures can override it: 46 * Architectures can override it:
41 */ 47 */
42void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) 48void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
@@ -61,6 +67,8 @@ int console_printk[4] = {
61 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ 67 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
62}; 68};
63 69
70static int saved_console_loglevel = -1;
71
64/* 72/*
65 * Low level drivers may need that to know if they can schedule in 73 * Low level drivers may need that to know if they can schedule in
66 * their unblank() callback or not. So let's export it. 74 * their unblank() callback or not. So let's export it.
@@ -372,10 +380,15 @@ int do_syslog(int type, char __user *buf, int len)
372 logged_chars = 0; 380 logged_chars = 0;
373 break; 381 break;
374 case 6: /* Disable logging to console */ 382 case 6: /* Disable logging to console */
383 if (saved_console_loglevel == -1)
384 saved_console_loglevel = console_loglevel;
375 console_loglevel = minimum_console_loglevel; 385 console_loglevel = minimum_console_loglevel;
376 break; 386 break;
377 case 7: /* Enable logging to console */ 387 case 7: /* Enable logging to console */
378 console_loglevel = default_console_loglevel; 388 if (saved_console_loglevel != -1) {
389 console_loglevel = saved_console_loglevel;
390 saved_console_loglevel = -1;
391 }
379 break; 392 break;
380 case 8: /* Set level of messages printed to console */ 393 case 8: /* Set level of messages printed to console */
381 error = -EINVAL; 394 error = -EINVAL;
@@ -384,6 +397,8 @@ int do_syslog(int type, char __user *buf, int len)
384 if (len < minimum_console_loglevel) 397 if (len < minimum_console_loglevel)
385 len = minimum_console_loglevel; 398 len = minimum_console_loglevel;
386 console_loglevel = len; 399 console_loglevel = len;
400 /* Implicitly re-enable logging to console */
401 saved_console_loglevel = -1;
387 error = 0; 402 error = 0;
388 break; 403 break;
389 case 9: /* Number of chars in the log buffer */ 404 case 9: /* Number of chars in the log buffer */
@@ -412,7 +427,7 @@ static void __call_console_drivers(unsigned start, unsigned end)
412{ 427{
413 struct console *con; 428 struct console *con;
414 429
415 for (con = console_drivers; con; con = con->next) { 430 for_each_console(con) {
416 if ((con->flags & CON_ENABLED) && con->write && 431 if ((con->flags & CON_ENABLED) && con->write &&
417 (cpu_online(smp_processor_id()) || 432 (cpu_online(smp_processor_id()) ||
418 (con->flags & CON_ANYTIME))) 433 (con->flags & CON_ANYTIME)))
@@ -544,7 +559,7 @@ static int have_callable_console(void)
544{ 559{
545 struct console *con; 560 struct console *con;
546 561
547 for (con = console_drivers; con; con = con->next) 562 for_each_console(con)
548 if (con->flags & CON_ANYTIME) 563 if (con->flags & CON_ANYTIME)
549 return 1; 564 return 1;
550 565
@@ -1060,12 +1075,6 @@ void __sched console_conditional_schedule(void)
1060} 1075}
1061EXPORT_SYMBOL(console_conditional_schedule); 1076EXPORT_SYMBOL(console_conditional_schedule);
1062 1077
1063void console_print(const char *s)
1064{
1065 printk(KERN_EMERG "%s", s);
1066}
1067EXPORT_SYMBOL(console_print);
1068
1069void console_unblank(void) 1078void console_unblank(void)
1070{ 1079{
1071 struct console *c; 1080 struct console *c;
@@ -1082,7 +1091,7 @@ void console_unblank(void)
1082 1091
1083 console_locked = 1; 1092 console_locked = 1;
1084 console_may_schedule = 0; 1093 console_may_schedule = 0;
1085 for (c = console_drivers; c != NULL; c = c->next) 1094 for_each_console(c)
1086 if ((c->flags & CON_ENABLED) && c->unblank) 1095 if ((c->flags & CON_ENABLED) && c->unblank)
1087 c->unblank(); 1096 c->unblank();
1088 release_console_sem(); 1097 release_console_sem();
@@ -1097,7 +1106,7 @@ struct tty_driver *console_device(int *index)
1097 struct tty_driver *driver = NULL; 1106 struct tty_driver *driver = NULL;
1098 1107
1099 acquire_console_sem(); 1108 acquire_console_sem();
1100 for (c = console_drivers; c != NULL; c = c->next) { 1109 for_each_console(c) {
1101 if (!c->device) 1110 if (!c->device)
1102 continue; 1111 continue;
1103 driver = c->device(c, index); 1112 driver = c->device(c, index);
@@ -1134,25 +1143,49 @@ EXPORT_SYMBOL(console_start);
1134 * to register the console printing procedure with printk() and to 1143 * to register the console printing procedure with printk() and to
1135 * print any messages that were printed by the kernel before the 1144 * print any messages that were printed by the kernel before the
1136 * console driver was initialized. 1145 * console driver was initialized.
1146 *
1147 * This can happen pretty early during the boot process (because of
1148 * early_printk) - sometimes before setup_arch() completes - be careful
1149 * of what kernel features are used - they may not be initialised yet.
1150 *
1151 * There are two types of consoles - bootconsoles (early_printk) and
1152 * "real" consoles (everything which is not a bootconsole) which are
1153 * handled differently.
1154 * - Any number of bootconsoles can be registered at any time.
1155 * - As soon as a "real" console is registered, all bootconsoles
1156 * will be unregistered automatically.
1157 * - Once a "real" console is registered, any attempt to register a
1158 * bootconsoles will be rejected
1137 */ 1159 */
1138void register_console(struct console *console) 1160void register_console(struct console *newcon)
1139{ 1161{
1140 int i; 1162 int i;
1141 unsigned long flags; 1163 unsigned long flags;
1142 struct console *bootconsole = NULL; 1164 struct console *bcon = NULL;
1143 1165
1144 if (console_drivers) { 1166 /*
1145 if (console->flags & CON_BOOT) 1167 * before we register a new CON_BOOT console, make sure we don't
1146 return; 1168 * already have a valid console
1147 if (console_drivers->flags & CON_BOOT) 1169 */
1148 bootconsole = console_drivers; 1170 if (console_drivers && newcon->flags & CON_BOOT) {
1171 /* find the last or real console */
1172 for_each_console(bcon) {
1173 if (!(bcon->flags & CON_BOOT)) {
1174 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
1175 newcon->name, newcon->index);
1176 return;
1177 }
1178 }
1149 } 1179 }
1150 1180
1151 if (preferred_console < 0 || bootconsole || !console_drivers) 1181 if (console_drivers && console_drivers->flags & CON_BOOT)
1182 bcon = console_drivers;
1183
1184 if (preferred_console < 0 || bcon || !console_drivers)
1152 preferred_console = selected_console; 1185 preferred_console = selected_console;
1153 1186
1154 if (console->early_setup) 1187 if (newcon->early_setup)
1155 console->early_setup(); 1188 newcon->early_setup();
1156 1189
1157 /* 1190 /*
1158 * See if we want to use this console driver. If we 1191 * See if we want to use this console driver. If we
@@ -1160,13 +1193,13 @@ void register_console(struct console *console)
1160 * that registers here. 1193 * that registers here.
1161 */ 1194 */
1162 if (preferred_console < 0) { 1195 if (preferred_console < 0) {
1163 if (console->index < 0) 1196 if (newcon->index < 0)
1164 console->index = 0; 1197 newcon->index = 0;
1165 if (console->setup == NULL || 1198 if (newcon->setup == NULL ||
1166 console->setup(console, NULL) == 0) { 1199 newcon->setup(newcon, NULL) == 0) {
1167 console->flags |= CON_ENABLED; 1200 newcon->flags |= CON_ENABLED;
1168 if (console->device) { 1201 if (newcon->device) {
1169 console->flags |= CON_CONSDEV; 1202 newcon->flags |= CON_CONSDEV;
1170 preferred_console = 0; 1203 preferred_console = 0;
1171 } 1204 }
1172 } 1205 }
@@ -1178,64 +1211,62 @@ void register_console(struct console *console)
1178 */ 1211 */
1179 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; 1212 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
1180 i++) { 1213 i++) {
1181 if (strcmp(console_cmdline[i].name, console->name) != 0) 1214 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
1182 continue; 1215 continue;
1183 if (console->index >= 0 && 1216 if (newcon->index >= 0 &&
1184 console->index != console_cmdline[i].index) 1217 newcon->index != console_cmdline[i].index)
1185 continue; 1218 continue;
1186 if (console->index < 0) 1219 if (newcon->index < 0)
1187 console->index = console_cmdline[i].index; 1220 newcon->index = console_cmdline[i].index;
1188#ifdef CONFIG_A11Y_BRAILLE_CONSOLE 1221#ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1189 if (console_cmdline[i].brl_options) { 1222 if (console_cmdline[i].brl_options) {
1190 console->flags |= CON_BRL; 1223 newcon->flags |= CON_BRL;
1191 braille_register_console(console, 1224 braille_register_console(newcon,
1192 console_cmdline[i].index, 1225 console_cmdline[i].index,
1193 console_cmdline[i].options, 1226 console_cmdline[i].options,
1194 console_cmdline[i].brl_options); 1227 console_cmdline[i].brl_options);
1195 return; 1228 return;
1196 } 1229 }
1197#endif 1230#endif
1198 if (console->setup && 1231 if (newcon->setup &&
1199 console->setup(console, console_cmdline[i].options) != 0) 1232 newcon->setup(newcon, console_cmdline[i].options) != 0)
1200 break; 1233 break;
1201 console->flags |= CON_ENABLED; 1234 newcon->flags |= CON_ENABLED;
1202 console->index = console_cmdline[i].index; 1235 newcon->index = console_cmdline[i].index;
1203 if (i == selected_console) { 1236 if (i == selected_console) {
1204 console->flags |= CON_CONSDEV; 1237 newcon->flags |= CON_CONSDEV;
1205 preferred_console = selected_console; 1238 preferred_console = selected_console;
1206 } 1239 }
1207 break; 1240 break;
1208 } 1241 }
1209 1242
1210 if (!(console->flags & CON_ENABLED)) 1243 if (!(newcon->flags & CON_ENABLED))
1211 return; 1244 return;
1212 1245
1213 if (bootconsole && (console->flags & CON_CONSDEV)) { 1246 /*
1214 printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]\n", 1247 * If we have a bootconsole, and are switching to a real console,
1215 bootconsole->name, bootconsole->index, 1248 * don't print everything out again, since when the boot console, and
1216 console->name, console->index); 1249 * the real console are the same physical device, it's annoying to
1217 unregister_console(bootconsole); 1250 * see the beginning boot messages twice
1218 console->flags &= ~CON_PRINTBUFFER; 1251 */
1219 } else { 1252 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
1220 printk(KERN_INFO "console [%s%d] enabled\n", 1253 newcon->flags &= ~CON_PRINTBUFFER;
1221 console->name, console->index);
1222 }
1223 1254
1224 /* 1255 /*
1225 * Put this console in the list - keep the 1256 * Put this console in the list - keep the
1226 * preferred driver at the head of the list. 1257 * preferred driver at the head of the list.
1227 */ 1258 */
1228 acquire_console_sem(); 1259 acquire_console_sem();
1229 if ((console->flags & CON_CONSDEV) || console_drivers == NULL) { 1260 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
1230 console->next = console_drivers; 1261 newcon->next = console_drivers;
1231 console_drivers = console; 1262 console_drivers = newcon;
1232 if (console->next) 1263 if (newcon->next)
1233 console->next->flags &= ~CON_CONSDEV; 1264 newcon->next->flags &= ~CON_CONSDEV;
1234 } else { 1265 } else {
1235 console->next = console_drivers->next; 1266 newcon->next = console_drivers->next;
1236 console_drivers->next = console; 1267 console_drivers->next = newcon;
1237 } 1268 }
1238 if (console->flags & CON_PRINTBUFFER) { 1269 if (newcon->flags & CON_PRINTBUFFER) {
1239 /* 1270 /*
1240 * release_console_sem() will print out the buffered messages 1271 * release_console_sem() will print out the buffered messages
1241 * for us. 1272 * for us.
@@ -1245,6 +1276,28 @@ void register_console(struct console *console)
1245 spin_unlock_irqrestore(&logbuf_lock, flags); 1276 spin_unlock_irqrestore(&logbuf_lock, flags);
1246 } 1277 }
1247 release_console_sem(); 1278 release_console_sem();
1279
1280 /*
1281 * By unregistering the bootconsoles after we enable the real console
1282 * we get the "console xxx enabled" message on all the consoles -
1283 * boot consoles, real consoles, etc - this is to ensure that end
1284 * users know there might be something in the kernel's log buffer that
1285 * went to the bootconsole (that they do not see on the real console)
1286 */
1287 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
1288 /* we need to iterate through twice, to make sure we print
1289 * everything out, before we unregister the console(s)
1290 */
1291 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
1292 newcon->name, newcon->index);
1293 for_each_console(bcon)
1294 if (bcon->flags & CON_BOOT)
1295 unregister_console(bcon);
1296 } else {
1297 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
1298 (newcon->flags & CON_BOOT) ? "boot" : "" ,
1299 newcon->name, newcon->index);
1300 }
1248} 1301}
1249EXPORT_SYMBOL(register_console); 1302EXPORT_SYMBOL(register_console);
1250 1303
@@ -1287,11 +1340,13 @@ EXPORT_SYMBOL(unregister_console);
1287 1340
1288static int __init disable_boot_consoles(void) 1341static int __init disable_boot_consoles(void)
1289{ 1342{
1290 if (console_drivers != NULL) { 1343 struct console *con;
1291 if (console_drivers->flags & CON_BOOT) { 1344
1345 for_each_console(con) {
1346 if (con->flags & CON_BOOT) {
1292 printk(KERN_INFO "turn off boot console %s%d\n", 1347 printk(KERN_INFO "turn off boot console %s%d\n",
1293 console_drivers->name, console_drivers->index); 1348 con->name, con->index);
1294 return unregister_console(console_drivers); 1349 unregister_console(con);
1295 } 1350 }
1296 } 1351 }
1297 return 0; 1352 return 0;
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 082c320e4dbf..307c285af59e 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -152,7 +152,7 @@ int __ptrace_may_access(struct task_struct *task, unsigned int mode)
152 if (!dumpable && !capable(CAP_SYS_PTRACE)) 152 if (!dumpable && !capable(CAP_SYS_PTRACE))
153 return -EPERM; 153 return -EPERM;
154 154
155 return security_ptrace_may_access(task, mode); 155 return security_ptrace_access_check(task, mode);
156} 156}
157 157
158bool ptrace_may_access(struct task_struct *task, unsigned int mode) 158bool ptrace_may_access(struct task_struct *task, unsigned int mode)
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c
deleted file mode 100644
index 0f2b0b311304..000000000000
--- a/kernel/rcuclassic.c
+++ /dev/null
@@ -1,807 +0,0 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * Documentation/RCU
31 *
32 */
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
38#include <linux/rcupdate.h>
39#include <linux/interrupt.h>
40#include <linux/sched.h>
41#include <asm/atomic.h>
42#include <linux/bitops.h>
43#include <linux/module.h>
44#include <linux/completion.h>
45#include <linux/moduleparam.h>
46#include <linux/percpu.h>
47#include <linux/notifier.h>
48#include <linux/cpu.h>
49#include <linux/mutex.h>
50#include <linux/time.h>
51
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59
60/* Definition for rcupdate control block. */
61static struct rcu_ctrlblk rcu_ctrlblk = {
62 .cur = -300,
63 .completed = -300,
64 .pending = -300,
65 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock),
66 .cpumask = CPU_BITS_NONE,
67};
68
69static struct rcu_ctrlblk rcu_bh_ctrlblk = {
70 .cur = -300,
71 .completed = -300,
72 .pending = -300,
73 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock),
74 .cpumask = CPU_BITS_NONE,
75};
76
77static DEFINE_PER_CPU(struct rcu_data, rcu_data);
78static DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
79
80/*
81 * Increment the quiescent state counter.
82 * The counter is a bit degenerated: We do not need to know
83 * how many quiescent states passed, just if there was at least
84 * one since the start of the grace period. Thus just a flag.
85 */
86void rcu_qsctr_inc(int cpu)
87{
88 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
89 rdp->passed_quiesc = 1;
90}
91
92void rcu_bh_qsctr_inc(int cpu)
93{
94 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
95 rdp->passed_quiesc = 1;
96}
97
98static int blimit = 10;
99static int qhimark = 10000;
100static int qlowmark = 100;
101
102#ifdef CONFIG_SMP
103static void force_quiescent_state(struct rcu_data *rdp,
104 struct rcu_ctrlblk *rcp)
105{
106 int cpu;
107 unsigned long flags;
108
109 set_need_resched();
110 spin_lock_irqsave(&rcp->lock, flags);
111 if (unlikely(!rcp->signaled)) {
112 rcp->signaled = 1;
113 /*
114 * Don't send IPI to itself. With irqs disabled,
115 * rdp->cpu is the current cpu.
116 *
117 * cpu_online_mask is updated by the _cpu_down()
118 * using __stop_machine(). Since we're in irqs disabled
119 * section, __stop_machine() is not exectuting, hence
120 * the cpu_online_mask is stable.
121 *
122 * However, a cpu might have been offlined _just_ before
123 * we disabled irqs while entering here.
124 * And rcu subsystem might not yet have handled the CPU_DEAD
125 * notification, leading to the offlined cpu's bit
126 * being set in the rcp->cpumask.
127 *
128 * Hence cpumask = (rcp->cpumask & cpu_online_mask) to prevent
129 * sending smp_reschedule() to an offlined CPU.
130 */
131 for_each_cpu_and(cpu,
132 to_cpumask(rcp->cpumask), cpu_online_mask) {
133 if (cpu != rdp->cpu)
134 smp_send_reschedule(cpu);
135 }
136 }
137 spin_unlock_irqrestore(&rcp->lock, flags);
138}
139#else
140static inline void force_quiescent_state(struct rcu_data *rdp,
141 struct rcu_ctrlblk *rcp)
142{
143 set_need_resched();
144}
145#endif
146
147static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp,
148 struct rcu_data *rdp)
149{
150 long batch;
151
152 head->next = NULL;
153 smp_mb(); /* Read of rcu->cur must happen after any change by caller. */
154
155 /*
156 * Determine the batch number of this callback.
157 *
158 * Using ACCESS_ONCE to avoid the following error when gcc eliminates
159 * local variable "batch" and emits codes like this:
160 * 1) rdp->batch = rcp->cur + 1 # gets old value
161 * ......
162 * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value
163 * then [*nxttail[0], *nxttail[1]) may contain callbacks
164 * that batch# = rdp->batch, see the comment of struct rcu_data.
165 */
166 batch = ACCESS_ONCE(rcp->cur) + 1;
167
168 if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) {
169 /* process callbacks */
170 rdp->nxttail[0] = rdp->nxttail[1];
171 rdp->nxttail[1] = rdp->nxttail[2];
172 if (rcu_batch_after(batch - 1, rdp->batch))
173 rdp->nxttail[0] = rdp->nxttail[2];
174 }
175
176 rdp->batch = batch;
177 *rdp->nxttail[2] = head;
178 rdp->nxttail[2] = &head->next;
179
180 if (unlikely(++rdp->qlen > qhimark)) {
181 rdp->blimit = INT_MAX;
182 force_quiescent_state(rdp, &rcu_ctrlblk);
183 }
184}
185
186#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
187
188static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
189{
190 rcp->gp_start = jiffies;
191 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
192}
193
194static void print_other_cpu_stall(struct rcu_ctrlblk *rcp)
195{
196 int cpu;
197 long delta;
198 unsigned long flags;
199
200 /* Only let one CPU complain about others per time interval. */
201
202 spin_lock_irqsave(&rcp->lock, flags);
203 delta = jiffies - rcp->jiffies_stall;
204 if (delta < 2 || rcp->cur != rcp->completed) {
205 spin_unlock_irqrestore(&rcp->lock, flags);
206 return;
207 }
208 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
209 spin_unlock_irqrestore(&rcp->lock, flags);
210
211 /* OK, time to rat on our buddy... */
212
213 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
214 for_each_possible_cpu(cpu) {
215 if (cpumask_test_cpu(cpu, to_cpumask(rcp->cpumask)))
216 printk(" %d", cpu);
217 }
218 printk(" (detected by %d, t=%ld jiffies)\n",
219 smp_processor_id(), (long)(jiffies - rcp->gp_start));
220}
221
222static void print_cpu_stall(struct rcu_ctrlblk *rcp)
223{
224 unsigned long flags;
225
226 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n",
227 smp_processor_id(), jiffies,
228 jiffies - rcp->gp_start);
229 dump_stack();
230 spin_lock_irqsave(&rcp->lock, flags);
231 if ((long)(jiffies - rcp->jiffies_stall) >= 0)
232 rcp->jiffies_stall =
233 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
234 spin_unlock_irqrestore(&rcp->lock, flags);
235 set_need_resched(); /* kick ourselves to get things going. */
236}
237
238static void check_cpu_stall(struct rcu_ctrlblk *rcp)
239{
240 long delta;
241
242 delta = jiffies - rcp->jiffies_stall;
243 if (cpumask_test_cpu(smp_processor_id(), to_cpumask(rcp->cpumask)) &&
244 delta >= 0) {
245
246 /* We haven't checked in, so go dump stack. */
247 print_cpu_stall(rcp);
248
249 } else if (rcp->cur != rcp->completed && delta >= 2) {
250
251 /* They had two seconds to dump stack, so complain. */
252 print_other_cpu_stall(rcp);
253 }
254}
255
256#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
257
258static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
259{
260}
261
262static inline void check_cpu_stall(struct rcu_ctrlblk *rcp)
263{
264}
265
266#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
267
268/**
269 * call_rcu - Queue an RCU callback for invocation after a grace period.
270 * @head: structure to be used for queueing the RCU updates.
271 * @func: actual update function to be invoked after the grace period
272 *
273 * The update function will be invoked some time after a full grace
274 * period elapses, in other words after all currently executing RCU
275 * read-side critical sections have completed. RCU read-side critical
276 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
277 * and may be nested.
278 */
279void call_rcu(struct rcu_head *head,
280 void (*func)(struct rcu_head *rcu))
281{
282 unsigned long flags;
283
284 head->func = func;
285 local_irq_save(flags);
286 __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data));
287 local_irq_restore(flags);
288}
289EXPORT_SYMBOL_GPL(call_rcu);
290
291/**
292 * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
293 * @head: structure to be used for queueing the RCU updates.
294 * @func: actual update function to be invoked after the grace period
295 *
296 * The update function will be invoked some time after a full grace
297 * period elapses, in other words after all currently executing RCU
298 * read-side critical sections have completed. call_rcu_bh() assumes
299 * that the read-side critical sections end on completion of a softirq
300 * handler. This means that read-side critical sections in process
301 * context must not be interrupted by softirqs. This interface is to be
302 * used when most of the read-side critical sections are in softirq context.
303 * RCU read-side critical sections are delimited by rcu_read_lock() and
304 * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
305 * and rcu_read_unlock_bh(), if in process context. These may be nested.
306 */
307void call_rcu_bh(struct rcu_head *head,
308 void (*func)(struct rcu_head *rcu))
309{
310 unsigned long flags;
311
312 head->func = func;
313 local_irq_save(flags);
314 __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
315 local_irq_restore(flags);
316}
317EXPORT_SYMBOL_GPL(call_rcu_bh);
318
319/*
320 * Return the number of RCU batches processed thus far. Useful
321 * for debug and statistics.
322 */
323long rcu_batches_completed(void)
324{
325 return rcu_ctrlblk.completed;
326}
327EXPORT_SYMBOL_GPL(rcu_batches_completed);
328
329/*
330 * Return the number of RCU batches processed thus far. Useful
331 * for debug and statistics.
332 */
333long rcu_batches_completed_bh(void)
334{
335 return rcu_bh_ctrlblk.completed;
336}
337EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
338
339/* Raises the softirq for processing rcu_callbacks. */
340static inline void raise_rcu_softirq(void)
341{
342 raise_softirq(RCU_SOFTIRQ);
343}
344
345/*
346 * Invoke the completed RCU callbacks. They are expected to be in
347 * a per-cpu list.
348 */
349static void rcu_do_batch(struct rcu_data *rdp)
350{
351 unsigned long flags;
352 struct rcu_head *next, *list;
353 int count = 0;
354
355 list = rdp->donelist;
356 while (list) {
357 next = list->next;
358 prefetch(next);
359 list->func(list);
360 list = next;
361 if (++count >= rdp->blimit)
362 break;
363 }
364 rdp->donelist = list;
365
366 local_irq_save(flags);
367 rdp->qlen -= count;
368 local_irq_restore(flags);
369 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
370 rdp->blimit = blimit;
371
372 if (!rdp->donelist)
373 rdp->donetail = &rdp->donelist;
374 else
375 raise_rcu_softirq();
376}
377
378/*
379 * Grace period handling:
380 * The grace period handling consists out of two steps:
381 * - A new grace period is started.
382 * This is done by rcu_start_batch. The start is not broadcasted to
383 * all cpus, they must pick this up by comparing rcp->cur with
384 * rdp->quiescbatch. All cpus are recorded in the
385 * rcu_ctrlblk.cpumask bitmap.
386 * - All cpus must go through a quiescent state.
387 * Since the start of the grace period is not broadcasted, at least two
388 * calls to rcu_check_quiescent_state are required:
389 * The first call just notices that a new grace period is running. The
390 * following calls check if there was a quiescent state since the beginning
391 * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If
392 * the bitmap is empty, then the grace period is completed.
393 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
394 * period (if necessary).
395 */
396
397/*
398 * Register a new batch of callbacks, and start it up if there is currently no
399 * active batch and the batch to be registered has not already occurred.
400 * Caller must hold rcu_ctrlblk.lock.
401 */
402static void rcu_start_batch(struct rcu_ctrlblk *rcp)
403{
404 if (rcp->cur != rcp->pending &&
405 rcp->completed == rcp->cur) {
406 rcp->cur++;
407 record_gp_stall_check_time(rcp);
408
409 /*
410 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
411 * Barrier Otherwise it can cause tickless idle CPUs to be
412 * included in rcp->cpumask, which will extend graceperiods
413 * unnecessarily.
414 */
415 smp_mb();
416 cpumask_andnot(to_cpumask(rcp->cpumask),
417 cpu_online_mask, nohz_cpu_mask);
418
419 rcp->signaled = 0;
420 }
421}
422
423/*
424 * cpu went through a quiescent state since the beginning of the grace period.
425 * Clear it from the cpu mask and complete the grace period if it was the last
426 * cpu. Start another grace period if someone has further entries pending
427 */
428static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
429{
430 cpumask_clear_cpu(cpu, to_cpumask(rcp->cpumask));
431 if (cpumask_empty(to_cpumask(rcp->cpumask))) {
432 /* batch completed ! */
433 rcp->completed = rcp->cur;
434 rcu_start_batch(rcp);
435 }
436}
437
438/*
439 * Check if the cpu has gone through a quiescent state (say context
440 * switch). If so and if it already hasn't done so in this RCU
441 * quiescent cycle, then indicate that it has done so.
442 */
443static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
444 struct rcu_data *rdp)
445{
446 unsigned long flags;
447
448 if (rdp->quiescbatch != rcp->cur) {
449 /* start new grace period: */
450 rdp->qs_pending = 1;
451 rdp->passed_quiesc = 0;
452 rdp->quiescbatch = rcp->cur;
453 return;
454 }
455
456 /* Grace period already completed for this cpu?
457 * qs_pending is checked instead of the actual bitmap to avoid
458 * cacheline trashing.
459 */
460 if (!rdp->qs_pending)
461 return;
462
463 /*
464 * Was there a quiescent state since the beginning of the grace
465 * period? If no, then exit and wait for the next call.
466 */
467 if (!rdp->passed_quiesc)
468 return;
469 rdp->qs_pending = 0;
470
471 spin_lock_irqsave(&rcp->lock, flags);
472 /*
473 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
474 * during cpu startup. Ignore the quiescent state.
475 */
476 if (likely(rdp->quiescbatch == rcp->cur))
477 cpu_quiet(rdp->cpu, rcp);
478
479 spin_unlock_irqrestore(&rcp->lock, flags);
480}
481
482
483#ifdef CONFIG_HOTPLUG_CPU
484
485/* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
486 * locking requirements, the list it's pulling from has to belong to a cpu
487 * which is dead and hence not processing interrupts.
488 */
489static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
490 struct rcu_head **tail, long batch)
491{
492 unsigned long flags;
493
494 if (list) {
495 local_irq_save(flags);
496 this_rdp->batch = batch;
497 *this_rdp->nxttail[2] = list;
498 this_rdp->nxttail[2] = tail;
499 local_irq_restore(flags);
500 }
501}
502
503static void __rcu_offline_cpu(struct rcu_data *this_rdp,
504 struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
505{
506 unsigned long flags;
507
508 /*
509 * if the cpu going offline owns the grace period
510 * we can block indefinitely waiting for it, so flush
511 * it here
512 */
513 spin_lock_irqsave(&rcp->lock, flags);
514 if (rcp->cur != rcp->completed)
515 cpu_quiet(rdp->cpu, rcp);
516 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1);
517 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1);
518 spin_unlock(&rcp->lock);
519
520 this_rdp->qlen += rdp->qlen;
521 local_irq_restore(flags);
522}
523
524static void rcu_offline_cpu(int cpu)
525{
526 struct rcu_data *this_rdp = &get_cpu_var(rcu_data);
527 struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data);
528
529 __rcu_offline_cpu(this_rdp, &rcu_ctrlblk,
530 &per_cpu(rcu_data, cpu));
531 __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk,
532 &per_cpu(rcu_bh_data, cpu));
533 put_cpu_var(rcu_data);
534 put_cpu_var(rcu_bh_data);
535}
536
537#else
538
539static void rcu_offline_cpu(int cpu)
540{
541}
542
543#endif
544
545/*
546 * This does the RCU processing work from softirq context.
547 */
548static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
549 struct rcu_data *rdp)
550{
551 unsigned long flags;
552 long completed_snap;
553
554 if (rdp->nxtlist) {
555 local_irq_save(flags);
556 completed_snap = ACCESS_ONCE(rcp->completed);
557
558 /*
559 * move the other grace-period-completed entries to
560 * [rdp->nxtlist, *rdp->nxttail[0]) temporarily
561 */
562 if (!rcu_batch_before(completed_snap, rdp->batch))
563 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2];
564 else if (!rcu_batch_before(completed_snap, rdp->batch - 1))
565 rdp->nxttail[0] = rdp->nxttail[1];
566
567 /*
568 * the grace period for entries in
569 * [rdp->nxtlist, *rdp->nxttail[0]) has completed and
570 * move these entries to donelist
571 */
572 if (rdp->nxttail[0] != &rdp->nxtlist) {
573 *rdp->donetail = rdp->nxtlist;
574 rdp->donetail = rdp->nxttail[0];
575 rdp->nxtlist = *rdp->nxttail[0];
576 *rdp->donetail = NULL;
577
578 if (rdp->nxttail[1] == rdp->nxttail[0])
579 rdp->nxttail[1] = &rdp->nxtlist;
580 if (rdp->nxttail[2] == rdp->nxttail[0])
581 rdp->nxttail[2] = &rdp->nxtlist;
582 rdp->nxttail[0] = &rdp->nxtlist;
583 }
584
585 local_irq_restore(flags);
586
587 if (rcu_batch_after(rdp->batch, rcp->pending)) {
588 unsigned long flags2;
589
590 /* and start it/schedule start if it's a new batch */
591 spin_lock_irqsave(&rcp->lock, flags2);
592 if (rcu_batch_after(rdp->batch, rcp->pending)) {
593 rcp->pending = rdp->batch;
594 rcu_start_batch(rcp);
595 }
596 spin_unlock_irqrestore(&rcp->lock, flags2);
597 }
598 }
599
600 rcu_check_quiescent_state(rcp, rdp);
601 if (rdp->donelist)
602 rcu_do_batch(rdp);
603}
604
605static void rcu_process_callbacks(struct softirq_action *unused)
606{
607 /*
608 * Memory references from any prior RCU read-side critical sections
609 * executed by the interrupted code must be see before any RCU
610 * grace-period manupulations below.
611 */
612
613 smp_mb(); /* See above block comment. */
614
615 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data));
616 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
617
618 /*
619 * Memory references from any later RCU read-side critical sections
620 * executed by the interrupted code must be see after any RCU
621 * grace-period manupulations above.
622 */
623
624 smp_mb(); /* See above block comment. */
625}
626
627static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
628{
629 /* Check for CPU stalls, if enabled. */
630 check_cpu_stall(rcp);
631
632 if (rdp->nxtlist) {
633 long completed_snap = ACCESS_ONCE(rcp->completed);
634
635 /*
636 * This cpu has pending rcu entries and the grace period
637 * for them has completed.
638 */
639 if (!rcu_batch_before(completed_snap, rdp->batch))
640 return 1;
641 if (!rcu_batch_before(completed_snap, rdp->batch - 1) &&
642 rdp->nxttail[0] != rdp->nxttail[1])
643 return 1;
644 if (rdp->nxttail[0] != &rdp->nxtlist)
645 return 1;
646
647 /*
648 * This cpu has pending rcu entries and the new batch
649 * for then hasn't been started nor scheduled start
650 */
651 if (rcu_batch_after(rdp->batch, rcp->pending))
652 return 1;
653 }
654
655 /* This cpu has finished callbacks to invoke */
656 if (rdp->donelist)
657 return 1;
658
659 /* The rcu core waits for a quiescent state from the cpu */
660 if (rdp->quiescbatch != rcp->cur || rdp->qs_pending)
661 return 1;
662
663 /* nothing to do */
664 return 0;
665}
666
667/*
668 * Check to see if there is any immediate RCU-related work to be done
669 * by the current CPU, returning 1 if so. This function is part of the
670 * RCU implementation; it is -not- an exported member of the RCU API.
671 */
672int rcu_pending(int cpu)
673{
674 return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) ||
675 __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu));
676}
677
678/*
679 * Check to see if any future RCU-related work will need to be done
680 * by the current CPU, even if none need be done immediately, returning
681 * 1 if so. This function is part of the RCU implementation; it is -not-
682 * an exported member of the RCU API.
683 */
684int rcu_needs_cpu(int cpu)
685{
686 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
687 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu);
688
689 return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu);
690}
691
692/*
693 * Top-level function driving RCU grace-period detection, normally
694 * invoked from the scheduler-clock interrupt. This function simply
695 * increments counters that are read only from softirq by this same
696 * CPU, so there are no memory barriers required.
697 */
698void rcu_check_callbacks(int cpu, int user)
699{
700 if (user ||
701 (idle_cpu(cpu) && rcu_scheduler_active &&
702 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
703
704 /*
705 * Get here if this CPU took its interrupt from user
706 * mode or from the idle loop, and if this is not a
707 * nested interrupt. In this case, the CPU is in
708 * a quiescent state, so count it.
709 *
710 * Also do a memory barrier. This is needed to handle
711 * the case where writes from a preempt-disable section
712 * of code get reordered into schedule() by this CPU's
713 * write buffer. The memory barrier makes sure that
714 * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see
715 * by other CPUs to happen after any such write.
716 */
717
718 smp_mb(); /* See above block comment. */
719 rcu_qsctr_inc(cpu);
720 rcu_bh_qsctr_inc(cpu);
721
722 } else if (!in_softirq()) {
723
724 /*
725 * Get here if this CPU did not take its interrupt from
726 * softirq, in other words, if it is not interrupting
727 * a rcu_bh read-side critical section. This is an _bh
728 * critical section, so count it. The memory barrier
729 * is needed for the same reason as is the above one.
730 */
731
732 smp_mb(); /* See above block comment. */
733 rcu_bh_qsctr_inc(cpu);
734 }
735 raise_rcu_softirq();
736}
737
738static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
739 struct rcu_data *rdp)
740{
741 unsigned long flags;
742
743 spin_lock_irqsave(&rcp->lock, flags);
744 memset(rdp, 0, sizeof(*rdp));
745 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist;
746 rdp->donetail = &rdp->donelist;
747 rdp->quiescbatch = rcp->completed;
748 rdp->qs_pending = 0;
749 rdp->cpu = cpu;
750 rdp->blimit = blimit;
751 spin_unlock_irqrestore(&rcp->lock, flags);
752}
753
754static void __cpuinit rcu_online_cpu(int cpu)
755{
756 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
757 struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu);
758
759 rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
760 rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp);
761 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
762}
763
764static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
765 unsigned long action, void *hcpu)
766{
767 long cpu = (long)hcpu;
768
769 switch (action) {
770 case CPU_UP_PREPARE:
771 case CPU_UP_PREPARE_FROZEN:
772 rcu_online_cpu(cpu);
773 break;
774 case CPU_DEAD:
775 case CPU_DEAD_FROZEN:
776 rcu_offline_cpu(cpu);
777 break;
778 default:
779 break;
780 }
781 return NOTIFY_OK;
782}
783
784static struct notifier_block __cpuinitdata rcu_nb = {
785 .notifier_call = rcu_cpu_notify,
786};
787
788/*
789 * Initializes rcu mechanism. Assumed to be called early.
790 * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
791 * Note that rcu_qsctr and friends are implicitly
792 * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
793 */
794void __init __rcu_init(void)
795{
796#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
797 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
798#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
799 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
800 (void *)(long)smp_processor_id());
801 /* Register notifier for non-boot CPUs */
802 register_cpu_notifier(&rcu_nb);
803}
804
805module_param(blimit, int, 0);
806module_param(qhimark, int, 0);
807module_param(qlowmark, int, 0);
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index a967c9feb90a..bd5d5c8e5140 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -98,6 +98,30 @@ void synchronize_rcu(void)
98} 98}
99EXPORT_SYMBOL_GPL(synchronize_rcu); 99EXPORT_SYMBOL_GPL(synchronize_rcu);
100 100
101/**
102 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
103 *
104 * Control will return to the caller some time after a full rcu_bh grace
105 * period has elapsed, in other words after all currently executing rcu_bh
106 * read-side critical sections have completed. RCU read-side critical
107 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
108 * and may be nested.
109 */
110void synchronize_rcu_bh(void)
111{
112 struct rcu_synchronize rcu;
113
114 if (rcu_blocking_is_gp())
115 return;
116
117 init_completion(&rcu.completion);
118 /* Will wake me after RCU finished. */
119 call_rcu_bh(&rcu.head, wakeme_after_rcu);
120 /* Wait for it. */
121 wait_for_completion(&rcu.completion);
122}
123EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
124
101static void rcu_barrier_callback(struct rcu_head *notused) 125static void rcu_barrier_callback(struct rcu_head *notused)
102{ 126{
103 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) 127 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
@@ -129,6 +153,7 @@ static void rcu_barrier_func(void *type)
129static inline void wait_migrated_callbacks(void) 153static inline void wait_migrated_callbacks(void)
130{ 154{
131 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); 155 wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count));
156 smp_mb(); /* In case we didn't sleep. */
132} 157}
133 158
134/* 159/*
@@ -192,9 +217,13 @@ static void rcu_migrate_callback(struct rcu_head *notused)
192 wake_up(&rcu_migrate_wq); 217 wake_up(&rcu_migrate_wq);
193} 218}
194 219
220extern int rcu_cpu_notify(struct notifier_block *self,
221 unsigned long action, void *hcpu);
222
195static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, 223static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
196 unsigned long action, void *hcpu) 224 unsigned long action, void *hcpu)
197{ 225{
226 rcu_cpu_notify(self, action, hcpu);
198 if (action == CPU_DYING) { 227 if (action == CPU_DYING) {
199 /* 228 /*
200 * preempt_disable() in on_each_cpu() prevents stop_machine(), 229 * preempt_disable() in on_each_cpu() prevents stop_machine(),
@@ -209,7 +238,8 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
209 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); 238 call_rcu_bh(rcu_migrate_head, rcu_migrate_callback);
210 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); 239 call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback);
211 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); 240 call_rcu(rcu_migrate_head + 2, rcu_migrate_callback);
212 } else if (action == CPU_POST_DEAD) { 241 } else if (action == CPU_DOWN_PREPARE) {
242 /* Don't need to wait until next removal operation. */
213 /* rcu_migrate_head is protected by cpu_add_remove_lock */ 243 /* rcu_migrate_head is protected by cpu_add_remove_lock */
214 wait_migrated_callbacks(); 244 wait_migrated_callbacks();
215 } 245 }
@@ -219,8 +249,18 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
219 249
220void __init rcu_init(void) 250void __init rcu_init(void)
221{ 251{
252 int i;
253
222 __rcu_init(); 254 __rcu_init();
223 hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); 255 cpu_notifier(rcu_barrier_cpu_hotplug, 0);
256
257 /*
258 * We don't need protection against CPU-hotplug here because
259 * this is called early in boot, before either interrupts
260 * or the scheduler are operational.
261 */
262 for_each_online_cpu(i)
263 rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i);
224} 264}
225 265
226void rcu_scheduler_starting(void) 266void rcu_scheduler_starting(void)
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c
deleted file mode 100644
index beb0e659adcc..000000000000
--- a/kernel/rcupreempt.c
+++ /dev/null
@@ -1,1539 +0,0 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
25 *
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
29 *
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
31 *
32 * Design Document: http://lwn.net/Articles/253651/
33 *
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
36 *
37 */
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/init.h>
41#include <linux/spinlock.h>
42#include <linux/smp.h>
43#include <linux/rcupdate.h>
44#include <linux/interrupt.h>
45#include <linux/sched.h>
46#include <asm/atomic.h>
47#include <linux/bitops.h>
48#include <linux/module.h>
49#include <linux/kthread.h>
50#include <linux/completion.h>
51#include <linux/moduleparam.h>
52#include <linux/percpu.h>
53#include <linux/notifier.h>
54#include <linux/cpu.h>
55#include <linux/random.h>
56#include <linux/delay.h>
57#include <linux/cpumask.h>
58#include <linux/rcupreempt_trace.h>
59#include <asm/byteorder.h>
60
61/*
62 * PREEMPT_RCU data structures.
63 */
64
65/*
66 * GP_STAGES specifies the number of times the state machine has
67 * to go through the all the rcu_try_flip_states (see below)
68 * in a single Grace Period.
69 *
70 * GP in GP_STAGES stands for Grace Period ;)
71 */
72#define GP_STAGES 2
73struct rcu_data {
74 spinlock_t lock; /* Protect rcu_data fields. */
75 long completed; /* Number of last completed batch. */
76 int waitlistcount;
77 struct rcu_head *nextlist;
78 struct rcu_head **nexttail;
79 struct rcu_head *waitlist[GP_STAGES];
80 struct rcu_head **waittail[GP_STAGES];
81 struct rcu_head *donelist; /* from waitlist & waitschedlist */
82 struct rcu_head **donetail;
83 long rcu_flipctr[2];
84 struct rcu_head *nextschedlist;
85 struct rcu_head **nextschedtail;
86 struct rcu_head *waitschedlist;
87 struct rcu_head **waitschedtail;
88 int rcu_sched_sleeping;
89#ifdef CONFIG_RCU_TRACE
90 struct rcupreempt_trace trace;
91#endif /* #ifdef CONFIG_RCU_TRACE */
92};
93
94/*
95 * States for rcu_try_flip() and friends.
96 */
97
98enum rcu_try_flip_states {
99
100 /*
101 * Stay here if nothing is happening. Flip the counter if somthing
102 * starts happening. Denoted by "I"
103 */
104 rcu_try_flip_idle_state,
105
106 /*
107 * Wait here for all CPUs to notice that the counter has flipped. This
108 * prevents the old set of counters from ever being incremented once
109 * we leave this state, which in turn is necessary because we cannot
110 * test any individual counter for zero -- we can only check the sum.
111 * Denoted by "A".
112 */
113 rcu_try_flip_waitack_state,
114
115 /*
116 * Wait here for the sum of the old per-CPU counters to reach zero.
117 * Denoted by "Z".
118 */
119 rcu_try_flip_waitzero_state,
120
121 /*
122 * Wait here for each of the other CPUs to execute a memory barrier.
123 * This is necessary to ensure that these other CPUs really have
124 * completed executing their RCU read-side critical sections, despite
125 * their CPUs wildly reordering memory. Denoted by "M".
126 */
127 rcu_try_flip_waitmb_state,
128};
129
130/*
131 * States for rcu_ctrlblk.rcu_sched_sleep.
132 */
133
134enum rcu_sched_sleep_states {
135 rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
136 rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
137 rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
138};
139
140struct rcu_ctrlblk {
141 spinlock_t fliplock; /* Protect state-machine transitions. */
142 long completed; /* Number of last completed batch. */
143 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
144 the rcu state machine */
145 spinlock_t schedlock; /* Protect rcu_sched sleep state. */
146 enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
147 wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
148};
149
150struct rcu_dyntick_sched {
151 int dynticks;
152 int dynticks_snap;
153 int sched_qs;
154 int sched_qs_snap;
155 int sched_dynticks_snap;
156};
157
158static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
159 .dynticks = 1,
160};
161
162void rcu_qsctr_inc(int cpu)
163{
164 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
165
166 rdssp->sched_qs++;
167}
168
169#ifdef CONFIG_NO_HZ
170
171void rcu_enter_nohz(void)
172{
173 static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
174
175 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
176 __get_cpu_var(rcu_dyntick_sched).dynticks++;
177 WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs);
178}
179
180void rcu_exit_nohz(void)
181{
182 static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
183
184 __get_cpu_var(rcu_dyntick_sched).dynticks++;
185 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
186 WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1),
187 &rs);
188}
189
190#endif /* CONFIG_NO_HZ */
191
192
193static DEFINE_PER_CPU(struct rcu_data, rcu_data);
194
195static struct rcu_ctrlblk rcu_ctrlblk = {
196 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
197 .completed = 0,
198 .rcu_try_flip_state = rcu_try_flip_idle_state,
199 .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
200 .sched_sleep = rcu_sched_not_sleeping,
201 .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
202};
203
204static struct task_struct *rcu_sched_grace_period_task;
205
206#ifdef CONFIG_RCU_TRACE
207static char *rcu_try_flip_state_names[] =
208 { "idle", "waitack", "waitzero", "waitmb" };
209#endif /* #ifdef CONFIG_RCU_TRACE */
210
211static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly
212 = CPU_BITS_NONE;
213
214/*
215 * Enum and per-CPU flag to determine when each CPU has seen
216 * the most recent counter flip.
217 */
218
219enum rcu_flip_flag_values {
220 rcu_flip_seen, /* Steady/initial state, last flip seen. */
221 /* Only GP detector can update. */
222 rcu_flipped /* Flip just completed, need confirmation. */
223 /* Only corresponding CPU can update. */
224};
225static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
226 = rcu_flip_seen;
227
228/*
229 * Enum and per-CPU flag to determine when each CPU has executed the
230 * needed memory barrier to fence in memory references from its last RCU
231 * read-side critical section in the just-completed grace period.
232 */
233
234enum rcu_mb_flag_values {
235 rcu_mb_done, /* Steady/initial state, no mb()s required. */
236 /* Only GP detector can update. */
237 rcu_mb_needed /* Flip just completed, need an mb(). */
238 /* Only corresponding CPU can update. */
239};
240static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
241 = rcu_mb_done;
242
243/*
244 * RCU_DATA_ME: find the current CPU's rcu_data structure.
245 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
246 */
247#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
248#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
249
250/*
251 * Helper macro for tracing when the appropriate rcu_data is not
252 * cached in a local variable, but where the CPU number is so cached.
253 */
254#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
255
256/*
257 * Helper macro for tracing when the appropriate rcu_data is not
258 * cached in a local variable.
259 */
260#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
261
262/*
263 * Helper macro for tracing when the appropriate rcu_data is pointed
264 * to by a local variable.
265 */
266#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
267
268#define RCU_SCHED_BATCH_TIME (HZ / 50)
269
270/*
271 * Return the number of RCU batches processed thus far. Useful
272 * for debug and statistics.
273 */
274long rcu_batches_completed(void)
275{
276 return rcu_ctrlblk.completed;
277}
278EXPORT_SYMBOL_GPL(rcu_batches_completed);
279
280void __rcu_read_lock(void)
281{
282 int idx;
283 struct task_struct *t = current;
284 int nesting;
285
286 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
287 if (nesting != 0) {
288
289 /* An earlier rcu_read_lock() covers us, just count it. */
290
291 t->rcu_read_lock_nesting = nesting + 1;
292
293 } else {
294 unsigned long flags;
295
296 /*
297 * We disable interrupts for the following reasons:
298 * - If we get scheduling clock interrupt here, and we
299 * end up acking the counter flip, it's like a promise
300 * that we will never increment the old counter again.
301 * Thus we will break that promise if that
302 * scheduling clock interrupt happens between the time
303 * we pick the .completed field and the time that we
304 * increment our counter.
305 *
306 * - We don't want to be preempted out here.
307 *
308 * NMIs can still occur, of course, and might themselves
309 * contain rcu_read_lock().
310 */
311
312 local_irq_save(flags);
313
314 /*
315 * Outermost nesting of rcu_read_lock(), so increment
316 * the current counter for the current CPU. Use volatile
317 * casts to prevent the compiler from reordering.
318 */
319
320 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
321 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
322
323 /*
324 * Now that the per-CPU counter has been incremented, we
325 * are protected from races with rcu_read_lock() invoked
326 * from NMI handlers on this CPU. We can therefore safely
327 * increment the nesting counter, relieving further NMIs
328 * of the need to increment the per-CPU counter.
329 */
330
331 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
332
333 /*
334 * Now that we have preventing any NMIs from storing
335 * to the ->rcu_flipctr_idx, we can safely use it to
336 * remember which counter to decrement in the matching
337 * rcu_read_unlock().
338 */
339
340 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
341 local_irq_restore(flags);
342 }
343}
344EXPORT_SYMBOL_GPL(__rcu_read_lock);
345
346void __rcu_read_unlock(void)
347{
348 int idx;
349 struct task_struct *t = current;
350 int nesting;
351
352 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
353 if (nesting > 1) {
354
355 /*
356 * We are still protected by the enclosing rcu_read_lock(),
357 * so simply decrement the counter.
358 */
359
360 t->rcu_read_lock_nesting = nesting - 1;
361
362 } else {
363 unsigned long flags;
364
365 /*
366 * Disable local interrupts to prevent the grace-period
367 * detection state machine from seeing us half-done.
368 * NMIs can still occur, of course, and might themselves
369 * contain rcu_read_lock() and rcu_read_unlock().
370 */
371
372 local_irq_save(flags);
373
374 /*
375 * Outermost nesting of rcu_read_unlock(), so we must
376 * decrement the current counter for the current CPU.
377 * This must be done carefully, because NMIs can
378 * occur at any point in this code, and any rcu_read_lock()
379 * and rcu_read_unlock() pairs in the NMI handlers
380 * must interact non-destructively with this code.
381 * Lots of volatile casts, and -very- careful ordering.
382 *
383 * Changes to this code, including this one, must be
384 * inspected, validated, and tested extremely carefully!!!
385 */
386
387 /*
388 * First, pick up the index.
389 */
390
391 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
392
393 /*
394 * Now that we have fetched the counter index, it is
395 * safe to decrement the per-task RCU nesting counter.
396 * After this, any interrupts or NMIs will increment and
397 * decrement the per-CPU counters.
398 */
399 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
400
401 /*
402 * It is now safe to decrement this task's nesting count.
403 * NMIs that occur after this statement will route their
404 * rcu_read_lock() calls through this "else" clause, and
405 * will thus start incrementing the per-CPU counter on
406 * their own. They will also clobber ->rcu_flipctr_idx,
407 * but that is OK, since we have already fetched it.
408 */
409
410 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
411 local_irq_restore(flags);
412 }
413}
414EXPORT_SYMBOL_GPL(__rcu_read_unlock);
415
416/*
417 * If a global counter flip has occurred since the last time that we
418 * advanced callbacks, advance them. Hardware interrupts must be
419 * disabled when calling this function.
420 */
421static void __rcu_advance_callbacks(struct rcu_data *rdp)
422{
423 int cpu;
424 int i;
425 int wlc = 0;
426
427 if (rdp->completed != rcu_ctrlblk.completed) {
428 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
429 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
430 rdp->donetail = rdp->waittail[GP_STAGES - 1];
431 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
432 }
433 for (i = GP_STAGES - 2; i >= 0; i--) {
434 if (rdp->waitlist[i] != NULL) {
435 rdp->waitlist[i + 1] = rdp->waitlist[i];
436 rdp->waittail[i + 1] = rdp->waittail[i];
437 wlc++;
438 } else {
439 rdp->waitlist[i + 1] = NULL;
440 rdp->waittail[i + 1] =
441 &rdp->waitlist[i + 1];
442 }
443 }
444 if (rdp->nextlist != NULL) {
445 rdp->waitlist[0] = rdp->nextlist;
446 rdp->waittail[0] = rdp->nexttail;
447 wlc++;
448 rdp->nextlist = NULL;
449 rdp->nexttail = &rdp->nextlist;
450 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
451 } else {
452 rdp->waitlist[0] = NULL;
453 rdp->waittail[0] = &rdp->waitlist[0];
454 }
455 rdp->waitlistcount = wlc;
456 rdp->completed = rcu_ctrlblk.completed;
457 }
458
459 /*
460 * Check to see if this CPU needs to report that it has seen
461 * the most recent counter flip, thereby declaring that all
462 * subsequent rcu_read_lock() invocations will respect this flip.
463 */
464
465 cpu = raw_smp_processor_id();
466 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
467 smp_mb(); /* Subsequent counter accesses must see new value */
468 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
469 smp_mb(); /* Subsequent RCU read-side critical sections */
470 /* seen -after- acknowledgement. */
471 }
472}
473
474#ifdef CONFIG_NO_HZ
475static DEFINE_PER_CPU(int, rcu_update_flag);
476
477/**
478 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
479 *
480 * If the CPU was idle with dynamic ticks active, this updates the
481 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
482 * CPU is active.
483 */
484void rcu_irq_enter(void)
485{
486 int cpu = smp_processor_id();
487 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
488
489 if (per_cpu(rcu_update_flag, cpu))
490 per_cpu(rcu_update_flag, cpu)++;
491
492 /*
493 * Only update if we are coming from a stopped ticks mode
494 * (rcu_dyntick_sched.dynticks is even).
495 */
496 if (!in_interrupt() &&
497 (rdssp->dynticks & 0x1) == 0) {
498 /*
499 * The following might seem like we could have a race
500 * with NMI/SMIs. But this really isn't a problem.
501 * Here we do a read/modify/write, and the race happens
502 * when an NMI/SMI comes in after the read and before
503 * the write. But NMI/SMIs will increment this counter
504 * twice before returning, so the zero bit will not
505 * be corrupted by the NMI/SMI which is the most important
506 * part.
507 *
508 * The only thing is that we would bring back the counter
509 * to a postion that it was in during the NMI/SMI.
510 * But the zero bit would be set, so the rest of the
511 * counter would again be ignored.
512 *
513 * On return from the IRQ, the counter may have the zero
514 * bit be 0 and the counter the same as the return from
515 * the NMI/SMI. If the state machine was so unlucky to
516 * see that, it still doesn't matter, since all
517 * RCU read-side critical sections on this CPU would
518 * have already completed.
519 */
520 rdssp->dynticks++;
521 /*
522 * The following memory barrier ensures that any
523 * rcu_read_lock() primitives in the irq handler
524 * are seen by other CPUs to follow the above
525 * increment to rcu_dyntick_sched.dynticks. This is
526 * required in order for other CPUs to correctly
527 * determine when it is safe to advance the RCU
528 * grace-period state machine.
529 */
530 smp_mb(); /* see above block comment. */
531 /*
532 * Since we can't determine the dynamic tick mode from
533 * the rcu_dyntick_sched.dynticks after this routine,
534 * we use a second flag to acknowledge that we came
535 * from an idle state with ticks stopped.
536 */
537 per_cpu(rcu_update_flag, cpu)++;
538 /*
539 * If we take an NMI/SMI now, they will also increment
540 * the rcu_update_flag, and will not update the
541 * rcu_dyntick_sched.dynticks on exit. That is for
542 * this IRQ to do.
543 */
544 }
545}
546
547/**
548 * rcu_irq_exit - Called from exiting Hard irq context.
549 *
550 * If the CPU was idle with dynamic ticks active, update the
551 * rcu_dyntick_sched.dynticks to put let the RCU handling be
552 * aware that the CPU is going back to idle with no ticks.
553 */
554void rcu_irq_exit(void)
555{
556 int cpu = smp_processor_id();
557 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
558
559 /*
560 * rcu_update_flag is set if we interrupted the CPU
561 * when it was idle with ticks stopped.
562 * Once this occurs, we keep track of interrupt nesting
563 * because a NMI/SMI could also come in, and we still
564 * only want the IRQ that started the increment of the
565 * rcu_dyntick_sched.dynticks to be the one that modifies
566 * it on exit.
567 */
568 if (per_cpu(rcu_update_flag, cpu)) {
569 if (--per_cpu(rcu_update_flag, cpu))
570 return;
571
572 /* This must match the interrupt nesting */
573 WARN_ON(in_interrupt());
574
575 /*
576 * If an NMI/SMI happens now we are still
577 * protected by the rcu_dyntick_sched.dynticks being odd.
578 */
579
580 /*
581 * The following memory barrier ensures that any
582 * rcu_read_unlock() primitives in the irq handler
583 * are seen by other CPUs to preceed the following
584 * increment to rcu_dyntick_sched.dynticks. This
585 * is required in order for other CPUs to determine
586 * when it is safe to advance the RCU grace-period
587 * state machine.
588 */
589 smp_mb(); /* see above block comment. */
590 rdssp->dynticks++;
591 WARN_ON(rdssp->dynticks & 0x1);
592 }
593}
594
595void rcu_nmi_enter(void)
596{
597 rcu_irq_enter();
598}
599
600void rcu_nmi_exit(void)
601{
602 rcu_irq_exit();
603}
604
605static void dyntick_save_progress_counter(int cpu)
606{
607 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
608
609 rdssp->dynticks_snap = rdssp->dynticks;
610}
611
612static inline int
613rcu_try_flip_waitack_needed(int cpu)
614{
615 long curr;
616 long snap;
617 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
618
619 curr = rdssp->dynticks;
620 snap = rdssp->dynticks_snap;
621 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
622
623 /*
624 * If the CPU remained in dynticks mode for the entire time
625 * and didn't take any interrupts, NMIs, SMIs, or whatever,
626 * then it cannot be in the middle of an rcu_read_lock(), so
627 * the next rcu_read_lock() it executes must use the new value
628 * of the counter. So we can safely pretend that this CPU
629 * already acknowledged the counter.
630 */
631
632 if ((curr == snap) && ((curr & 0x1) == 0))
633 return 0;
634
635 /*
636 * If the CPU passed through or entered a dynticks idle phase with
637 * no active irq handlers, then, as above, we can safely pretend
638 * that this CPU already acknowledged the counter.
639 */
640
641 if ((curr - snap) > 2 || (curr & 0x1) == 0)
642 return 0;
643
644 /* We need this CPU to explicitly acknowledge the counter flip. */
645
646 return 1;
647}
648
649static inline int
650rcu_try_flip_waitmb_needed(int cpu)
651{
652 long curr;
653 long snap;
654 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
655
656 curr = rdssp->dynticks;
657 snap = rdssp->dynticks_snap;
658 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
659
660 /*
661 * If the CPU remained in dynticks mode for the entire time
662 * and didn't take any interrupts, NMIs, SMIs, or whatever,
663 * then it cannot have executed an RCU read-side critical section
664 * during that time, so there is no need for it to execute a
665 * memory barrier.
666 */
667
668 if ((curr == snap) && ((curr & 0x1) == 0))
669 return 0;
670
671 /*
672 * If the CPU either entered or exited an outermost interrupt,
673 * SMI, NMI, or whatever handler, then we know that it executed
674 * a memory barrier when doing so. So we don't need another one.
675 */
676 if (curr != snap)
677 return 0;
678
679 /* We need the CPU to execute a memory barrier. */
680
681 return 1;
682}
683
684static void dyntick_save_progress_counter_sched(int cpu)
685{
686 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
687
688 rdssp->sched_dynticks_snap = rdssp->dynticks;
689}
690
691static int rcu_qsctr_inc_needed_dyntick(int cpu)
692{
693 long curr;
694 long snap;
695 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
696
697 curr = rdssp->dynticks;
698 snap = rdssp->sched_dynticks_snap;
699 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
700
701 /*
702 * If the CPU remained in dynticks mode for the entire time
703 * and didn't take any interrupts, NMIs, SMIs, or whatever,
704 * then it cannot be in the middle of an rcu_read_lock(), so
705 * the next rcu_read_lock() it executes must use the new value
706 * of the counter. Therefore, this CPU has been in a quiescent
707 * state the entire time, and we don't need to wait for it.
708 */
709
710 if ((curr == snap) && ((curr & 0x1) == 0))
711 return 0;
712
713 /*
714 * If the CPU passed through or entered a dynticks idle phase with
715 * no active irq handlers, then, as above, this CPU has already
716 * passed through a quiescent state.
717 */
718
719 if ((curr - snap) > 2 || (snap & 0x1) == 0)
720 return 0;
721
722 /* We need this CPU to go through a quiescent state. */
723
724 return 1;
725}
726
727#else /* !CONFIG_NO_HZ */
728
729# define dyntick_save_progress_counter(cpu) do { } while (0)
730# define rcu_try_flip_waitack_needed(cpu) (1)
731# define rcu_try_flip_waitmb_needed(cpu) (1)
732
733# define dyntick_save_progress_counter_sched(cpu) do { } while (0)
734# define rcu_qsctr_inc_needed_dyntick(cpu) (1)
735
736#endif /* CONFIG_NO_HZ */
737
738static void save_qsctr_sched(int cpu)
739{
740 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
741
742 rdssp->sched_qs_snap = rdssp->sched_qs;
743}
744
745static inline int rcu_qsctr_inc_needed(int cpu)
746{
747 struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
748
749 /*
750 * If there has been a quiescent state, no more need to wait
751 * on this CPU.
752 */
753
754 if (rdssp->sched_qs != rdssp->sched_qs_snap) {
755 smp_mb(); /* force ordering with cpu entering schedule(). */
756 return 0;
757 }
758
759 /* We need this CPU to go through a quiescent state. */
760
761 return 1;
762}
763
764/*
765 * Get here when RCU is idle. Decide whether we need to
766 * move out of idle state, and return non-zero if so.
767 * "Straightforward" approach for the moment, might later
768 * use callback-list lengths, grace-period duration, or
769 * some such to determine when to exit idle state.
770 * Might also need a pre-idle test that does not acquire
771 * the lock, but let's get the simple case working first...
772 */
773
774static int
775rcu_try_flip_idle(void)
776{
777 int cpu;
778
779 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
780 if (!rcu_pending(smp_processor_id())) {
781 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
782 return 0;
783 }
784
785 /*
786 * Do the flip.
787 */
788
789 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
790 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
791
792 /*
793 * Need a memory barrier so that other CPUs see the new
794 * counter value before they see the subsequent change of all
795 * the rcu_flip_flag instances to rcu_flipped.
796 */
797
798 smp_mb(); /* see above block comment. */
799
800 /* Now ask each CPU for acknowledgement of the flip. */
801
802 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
803 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
804 dyntick_save_progress_counter(cpu);
805 }
806
807 return 1;
808}
809
810/*
811 * Wait for CPUs to acknowledge the flip.
812 */
813
814static int
815rcu_try_flip_waitack(void)
816{
817 int cpu;
818
819 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
820 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
821 if (rcu_try_flip_waitack_needed(cpu) &&
822 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
823 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
824 return 0;
825 }
826
827 /*
828 * Make sure our checks above don't bleed into subsequent
829 * waiting for the sum of the counters to reach zero.
830 */
831
832 smp_mb(); /* see above block comment. */
833 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
834 return 1;
835}
836
837/*
838 * Wait for collective ``last'' counter to reach zero,
839 * then tell all CPUs to do an end-of-grace-period memory barrier.
840 */
841
842static int
843rcu_try_flip_waitzero(void)
844{
845 int cpu;
846 int lastidx = !(rcu_ctrlblk.completed & 0x1);
847 int sum = 0;
848
849 /* Check to see if the sum of the "last" counters is zero. */
850
851 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
852 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
853 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
854 if (sum != 0) {
855 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
856 return 0;
857 }
858
859 /*
860 * This ensures that the other CPUs see the call for
861 * memory barriers -after- the sum to zero has been
862 * detected here
863 */
864 smp_mb(); /* ^^^^^^^^^^^^ */
865
866 /* Call for a memory barrier from each CPU. */
867 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
868 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
869 dyntick_save_progress_counter(cpu);
870 }
871
872 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
873 return 1;
874}
875
876/*
877 * Wait for all CPUs to do their end-of-grace-period memory barrier.
878 * Return 0 once all CPUs have done so.
879 */
880
881static int
882rcu_try_flip_waitmb(void)
883{
884 int cpu;
885
886 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
887 for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
888 if (rcu_try_flip_waitmb_needed(cpu) &&
889 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
890 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
891 return 0;
892 }
893
894 smp_mb(); /* Ensure that the above checks precede any following flip. */
895 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
896 return 1;
897}
898
899/*
900 * Attempt a single flip of the counters. Remember, a single flip does
901 * -not- constitute a grace period. Instead, the interval between
902 * at least GP_STAGES consecutive flips is a grace period.
903 *
904 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
905 * on a large SMP, they might want to use a hierarchical organization of
906 * the per-CPU-counter pairs.
907 */
908static void rcu_try_flip(void)
909{
910 unsigned long flags;
911
912 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
913 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
914 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
915 return;
916 }
917
918 /*
919 * Take the next transition(s) through the RCU grace-period
920 * flip-counter state machine.
921 */
922
923 switch (rcu_ctrlblk.rcu_try_flip_state) {
924 case rcu_try_flip_idle_state:
925 if (rcu_try_flip_idle())
926 rcu_ctrlblk.rcu_try_flip_state =
927 rcu_try_flip_waitack_state;
928 break;
929 case rcu_try_flip_waitack_state:
930 if (rcu_try_flip_waitack())
931 rcu_ctrlblk.rcu_try_flip_state =
932 rcu_try_flip_waitzero_state;
933 break;
934 case rcu_try_flip_waitzero_state:
935 if (rcu_try_flip_waitzero())
936 rcu_ctrlblk.rcu_try_flip_state =
937 rcu_try_flip_waitmb_state;
938 break;
939 case rcu_try_flip_waitmb_state:
940 if (rcu_try_flip_waitmb())
941 rcu_ctrlblk.rcu_try_flip_state =
942 rcu_try_flip_idle_state;
943 }
944 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
945}
946
947/*
948 * Check to see if this CPU needs to do a memory barrier in order to
949 * ensure that any prior RCU read-side critical sections have committed
950 * their counter manipulations and critical-section memory references
951 * before declaring the grace period to be completed.
952 */
953static void rcu_check_mb(int cpu)
954{
955 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
956 smp_mb(); /* Ensure RCU read-side accesses are visible. */
957 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
958 }
959}
960
961void rcu_check_callbacks(int cpu, int user)
962{
963 unsigned long flags;
964 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
965
966 /*
967 * If this CPU took its interrupt from user mode or from the
968 * idle loop, and this is not a nested interrupt, then
969 * this CPU has to have exited all prior preept-disable
970 * sections of code. So increment the counter to note this.
971 *
972 * The memory barrier is needed to handle the case where
973 * writes from a preempt-disable section of code get reordered
974 * into schedule() by this CPU's write buffer. So the memory
975 * barrier makes sure that the rcu_qsctr_inc() is seen by other
976 * CPUs to happen after any such write.
977 */
978
979 if (user ||
980 (idle_cpu(cpu) && !in_softirq() &&
981 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
982 smp_mb(); /* Guard against aggressive schedule(). */
983 rcu_qsctr_inc(cpu);
984 }
985
986 rcu_check_mb(cpu);
987 if (rcu_ctrlblk.completed == rdp->completed)
988 rcu_try_flip();
989 spin_lock_irqsave(&rdp->lock, flags);
990 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
991 __rcu_advance_callbacks(rdp);
992 if (rdp->donelist == NULL) {
993 spin_unlock_irqrestore(&rdp->lock, flags);
994 } else {
995 spin_unlock_irqrestore(&rdp->lock, flags);
996 raise_softirq(RCU_SOFTIRQ);
997 }
998}
999
1000/*
1001 * Needed by dynticks, to make sure all RCU processing has finished
1002 * when we go idle:
1003 */
1004void rcu_advance_callbacks(int cpu, int user)
1005{
1006 unsigned long flags;
1007 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1008
1009 if (rcu_ctrlblk.completed == rdp->completed) {
1010 rcu_try_flip();
1011 if (rcu_ctrlblk.completed == rdp->completed)
1012 return;
1013 }
1014 spin_lock_irqsave(&rdp->lock, flags);
1015 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
1016 __rcu_advance_callbacks(rdp);
1017 spin_unlock_irqrestore(&rdp->lock, flags);
1018}
1019
1020#ifdef CONFIG_HOTPLUG_CPU
1021#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
1022 *dsttail = srclist; \
1023 if (srclist != NULL) { \
1024 dsttail = srctail; \
1025 srclist = NULL; \
1026 srctail = &srclist;\
1027 } \
1028 } while (0)
1029
1030void rcu_offline_cpu(int cpu)
1031{
1032 int i;
1033 struct rcu_head *list = NULL;
1034 unsigned long flags;
1035 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1036 struct rcu_head *schedlist = NULL;
1037 struct rcu_head **schedtail = &schedlist;
1038 struct rcu_head **tail = &list;
1039
1040 /*
1041 * Remove all callbacks from the newly dead CPU, retaining order.
1042 * Otherwise rcu_barrier() will fail
1043 */
1044
1045 spin_lock_irqsave(&rdp->lock, flags);
1046 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
1047 for (i = GP_STAGES - 1; i >= 0; i--)
1048 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
1049 list, tail);
1050 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
1051 rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
1052 schedlist, schedtail);
1053 rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
1054 schedlist, schedtail);
1055 rdp->rcu_sched_sleeping = 0;
1056 spin_unlock_irqrestore(&rdp->lock, flags);
1057 rdp->waitlistcount = 0;
1058
1059 /* Disengage the newly dead CPU from the grace-period computation. */
1060
1061 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1062 rcu_check_mb(cpu);
1063 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
1064 smp_mb(); /* Subsequent counter accesses must see new value */
1065 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
1066 smp_mb(); /* Subsequent RCU read-side critical sections */
1067 /* seen -after- acknowledgement. */
1068 }
1069
1070 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1071 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
1072
1073 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
1074 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
1075
1076 cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map));
1077
1078 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1079
1080 /*
1081 * Place the removed callbacks on the current CPU's queue.
1082 * Make them all start a new grace period: simple approach,
1083 * in theory could starve a given set of callbacks, but
1084 * you would need to be doing some serious CPU hotplugging
1085 * to make this happen. If this becomes a problem, adding
1086 * a synchronize_rcu() to the hotplug path would be a simple
1087 * fix.
1088 */
1089
1090 local_irq_save(flags); /* disable preempt till we know what lock. */
1091 rdp = RCU_DATA_ME();
1092 spin_lock(&rdp->lock);
1093 *rdp->nexttail = list;
1094 if (list)
1095 rdp->nexttail = tail;
1096 *rdp->nextschedtail = schedlist;
1097 if (schedlist)
1098 rdp->nextschedtail = schedtail;
1099 spin_unlock_irqrestore(&rdp->lock, flags);
1100}
1101
1102#else /* #ifdef CONFIG_HOTPLUG_CPU */
1103
1104void rcu_offline_cpu(int cpu)
1105{
1106}
1107
1108#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1109
1110void __cpuinit rcu_online_cpu(int cpu)
1111{
1112 unsigned long flags;
1113 struct rcu_data *rdp;
1114
1115 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
1116 cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map));
1117 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
1118
1119 /*
1120 * The rcu_sched grace-period processing might have bypassed
1121 * this CPU, given that it was not in the rcu_cpu_online_map
1122 * when the grace-period scan started. This means that the
1123 * grace-period task might sleep. So make sure that if this
1124 * should happen, the first callback posted to this CPU will
1125 * wake up the grace-period task if need be.
1126 */
1127
1128 rdp = RCU_DATA_CPU(cpu);
1129 spin_lock_irqsave(&rdp->lock, flags);
1130 rdp->rcu_sched_sleeping = 1;
1131 spin_unlock_irqrestore(&rdp->lock, flags);
1132}
1133
1134static void rcu_process_callbacks(struct softirq_action *unused)
1135{
1136 unsigned long flags;
1137 struct rcu_head *next, *list;
1138 struct rcu_data *rdp;
1139
1140 local_irq_save(flags);
1141 rdp = RCU_DATA_ME();
1142 spin_lock(&rdp->lock);
1143 list = rdp->donelist;
1144 if (list == NULL) {
1145 spin_unlock_irqrestore(&rdp->lock, flags);
1146 return;
1147 }
1148 rdp->donelist = NULL;
1149 rdp->donetail = &rdp->donelist;
1150 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
1151 spin_unlock_irqrestore(&rdp->lock, flags);
1152 while (list) {
1153 next = list->next;
1154 list->func(list);
1155 list = next;
1156 RCU_TRACE_ME(rcupreempt_trace_invoke);
1157 }
1158}
1159
1160void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1161{
1162 unsigned long flags;
1163 struct rcu_data *rdp;
1164
1165 head->func = func;
1166 head->next = NULL;
1167 local_irq_save(flags);
1168 rdp = RCU_DATA_ME();
1169 spin_lock(&rdp->lock);
1170 __rcu_advance_callbacks(rdp);
1171 *rdp->nexttail = head;
1172 rdp->nexttail = &head->next;
1173 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
1174 spin_unlock_irqrestore(&rdp->lock, flags);
1175}
1176EXPORT_SYMBOL_GPL(call_rcu);
1177
1178void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1179{
1180 unsigned long flags;
1181 struct rcu_data *rdp;
1182 int wake_gp = 0;
1183
1184 head->func = func;
1185 head->next = NULL;
1186 local_irq_save(flags);
1187 rdp = RCU_DATA_ME();
1188 spin_lock(&rdp->lock);
1189 *rdp->nextschedtail = head;
1190 rdp->nextschedtail = &head->next;
1191 if (rdp->rcu_sched_sleeping) {
1192
1193 /* Grace-period processing might be sleeping... */
1194
1195 rdp->rcu_sched_sleeping = 0;
1196 wake_gp = 1;
1197 }
1198 spin_unlock_irqrestore(&rdp->lock, flags);
1199 if (wake_gp) {
1200
1201 /* Wake up grace-period processing, unless someone beat us. */
1202
1203 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1204 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
1205 wake_gp = 0;
1206 rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
1207 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1208 if (wake_gp)
1209 wake_up_interruptible(&rcu_ctrlblk.sched_wq);
1210 }
1211}
1212EXPORT_SYMBOL_GPL(call_rcu_sched);
1213
1214/*
1215 * Wait until all currently running preempt_disable() code segments
1216 * (including hardware-irq-disable segments) complete. Note that
1217 * in -rt this does -not- necessarily result in all currently executing
1218 * interrupt -handlers- having completed.
1219 */
1220void __synchronize_sched(void)
1221{
1222 struct rcu_synchronize rcu;
1223
1224 if (num_online_cpus() == 1)
1225 return; /* blocking is gp if only one CPU! */
1226
1227 init_completion(&rcu.completion);
1228 /* Will wake me after RCU finished. */
1229 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1230 /* Wait for it. */
1231 wait_for_completion(&rcu.completion);
1232}
1233EXPORT_SYMBOL_GPL(__synchronize_sched);
1234
1235/*
1236 * kthread function that manages call_rcu_sched grace periods.
1237 */
1238static int rcu_sched_grace_period(void *arg)
1239{
1240 int couldsleep; /* might sleep after current pass. */
1241 int couldsleepnext = 0; /* might sleep after next pass. */
1242 int cpu;
1243 unsigned long flags;
1244 struct rcu_data *rdp;
1245 int ret;
1246
1247 /*
1248 * Each pass through the following loop handles one
1249 * rcu_sched grace period cycle.
1250 */
1251 do {
1252 /* Save each CPU's current state. */
1253
1254 for_each_online_cpu(cpu) {
1255 dyntick_save_progress_counter_sched(cpu);
1256 save_qsctr_sched(cpu);
1257 }
1258
1259 /*
1260 * Sleep for about an RCU grace-period's worth to
1261 * allow better batching and to consume less CPU.
1262 */
1263 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
1264
1265 /*
1266 * If there was nothing to do last time, prepare to
1267 * sleep at the end of the current grace period cycle.
1268 */
1269 couldsleep = couldsleepnext;
1270 couldsleepnext = 1;
1271 if (couldsleep) {
1272 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1273 rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
1274 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1275 }
1276
1277 /*
1278 * Wait on each CPU in turn to have either visited
1279 * a quiescent state or been in dynticks-idle mode.
1280 */
1281 for_each_online_cpu(cpu) {
1282 while (rcu_qsctr_inc_needed(cpu) &&
1283 rcu_qsctr_inc_needed_dyntick(cpu)) {
1284 /* resched_cpu(cpu); @@@ */
1285 schedule_timeout_interruptible(1);
1286 }
1287 }
1288
1289 /* Advance callbacks for each CPU. */
1290
1291 for_each_online_cpu(cpu) {
1292
1293 rdp = RCU_DATA_CPU(cpu);
1294 spin_lock_irqsave(&rdp->lock, flags);
1295
1296 /*
1297 * We are running on this CPU irq-disabled, so no
1298 * CPU can go offline until we re-enable irqs.
1299 * The current CPU might have already gone
1300 * offline (between the for_each_offline_cpu and
1301 * the spin_lock_irqsave), but in that case all its
1302 * callback lists will be empty, so no harm done.
1303 *
1304 * Advance the callbacks! We share normal RCU's
1305 * donelist, since callbacks are invoked the
1306 * same way in either case.
1307 */
1308 if (rdp->waitschedlist != NULL) {
1309 *rdp->donetail = rdp->waitschedlist;
1310 rdp->donetail = rdp->waitschedtail;
1311
1312 /*
1313 * Next rcu_check_callbacks() will
1314 * do the required raise_softirq().
1315 */
1316 }
1317 if (rdp->nextschedlist != NULL) {
1318 rdp->waitschedlist = rdp->nextschedlist;
1319 rdp->waitschedtail = rdp->nextschedtail;
1320 couldsleep = 0;
1321 couldsleepnext = 0;
1322 } else {
1323 rdp->waitschedlist = NULL;
1324 rdp->waitschedtail = &rdp->waitschedlist;
1325 }
1326 rdp->nextschedlist = NULL;
1327 rdp->nextschedtail = &rdp->nextschedlist;
1328
1329 /* Mark sleep intention. */
1330
1331 rdp->rcu_sched_sleeping = couldsleep;
1332
1333 spin_unlock_irqrestore(&rdp->lock, flags);
1334 }
1335
1336 /* If we saw callbacks on the last scan, go deal with them. */
1337
1338 if (!couldsleep)
1339 continue;
1340
1341 /* Attempt to block... */
1342
1343 spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
1344 if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
1345
1346 /*
1347 * Someone posted a callback after we scanned.
1348 * Go take care of it.
1349 */
1350 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1351 couldsleepnext = 0;
1352 continue;
1353 }
1354
1355 /* Block until the next person posts a callback. */
1356
1357 rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
1358 spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
1359 ret = 0; /* unused */
1360 __wait_event_interruptible(rcu_ctrlblk.sched_wq,
1361 rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
1362 ret);
1363
1364 couldsleepnext = 0;
1365
1366 } while (!kthread_should_stop());
1367
1368 return (0);
1369}
1370
1371/*
1372 * Check to see if any future RCU-related work will need to be done
1373 * by the current CPU, even if none need be done immediately, returning
1374 * 1 if so. Assumes that notifiers would take care of handling any
1375 * outstanding requests from the RCU core.
1376 *
1377 * This function is part of the RCU implementation; it is -not-
1378 * an exported member of the RCU API.
1379 */
1380int rcu_needs_cpu(int cpu)
1381{
1382 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1383
1384 return (rdp->donelist != NULL ||
1385 !!rdp->waitlistcount ||
1386 rdp->nextlist != NULL ||
1387 rdp->nextschedlist != NULL ||
1388 rdp->waitschedlist != NULL);
1389}
1390
1391int rcu_pending(int cpu)
1392{
1393 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1394
1395 /* The CPU has at least one callback queued somewhere. */
1396
1397 if (rdp->donelist != NULL ||
1398 !!rdp->waitlistcount ||
1399 rdp->nextlist != NULL ||
1400 rdp->nextschedlist != NULL ||
1401 rdp->waitschedlist != NULL)
1402 return 1;
1403
1404 /* The RCU core needs an acknowledgement from this CPU. */
1405
1406 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1407 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1408 return 1;
1409
1410 /* This CPU has fallen behind the global grace-period number. */
1411
1412 if (rdp->completed != rcu_ctrlblk.completed)
1413 return 1;
1414
1415 /* Nothing needed from this CPU. */
1416
1417 return 0;
1418}
1419
1420static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1421 unsigned long action, void *hcpu)
1422{
1423 long cpu = (long)hcpu;
1424
1425 switch (action) {
1426 case CPU_UP_PREPARE:
1427 case CPU_UP_PREPARE_FROZEN:
1428 rcu_online_cpu(cpu);
1429 break;
1430 case CPU_UP_CANCELED:
1431 case CPU_UP_CANCELED_FROZEN:
1432 case CPU_DEAD:
1433 case CPU_DEAD_FROZEN:
1434 rcu_offline_cpu(cpu);
1435 break;
1436 default:
1437 break;
1438 }
1439 return NOTIFY_OK;
1440}
1441
1442static struct notifier_block __cpuinitdata rcu_nb = {
1443 .notifier_call = rcu_cpu_notify,
1444};
1445
1446void __init __rcu_init(void)
1447{
1448 int cpu;
1449 int i;
1450 struct rcu_data *rdp;
1451
1452 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1453 for_each_possible_cpu(cpu) {
1454 rdp = RCU_DATA_CPU(cpu);
1455 spin_lock_init(&rdp->lock);
1456 rdp->completed = 0;
1457 rdp->waitlistcount = 0;
1458 rdp->nextlist = NULL;
1459 rdp->nexttail = &rdp->nextlist;
1460 for (i = 0; i < GP_STAGES; i++) {
1461 rdp->waitlist[i] = NULL;
1462 rdp->waittail[i] = &rdp->waitlist[i];
1463 }
1464 rdp->donelist = NULL;
1465 rdp->donetail = &rdp->donelist;
1466 rdp->rcu_flipctr[0] = 0;
1467 rdp->rcu_flipctr[1] = 0;
1468 rdp->nextschedlist = NULL;
1469 rdp->nextschedtail = &rdp->nextschedlist;
1470 rdp->waitschedlist = NULL;
1471 rdp->waitschedtail = &rdp->waitschedlist;
1472 rdp->rcu_sched_sleeping = 0;
1473 }
1474 register_cpu_notifier(&rcu_nb);
1475
1476 /*
1477 * We don't need protection against CPU-Hotplug here
1478 * since
1479 * a) If a CPU comes online while we are iterating over the
1480 * cpu_online_mask below, we would only end up making a
1481 * duplicate call to rcu_online_cpu() which sets the corresponding
1482 * CPU's mask in the rcu_cpu_online_map.
1483 *
1484 * b) A CPU cannot go offline at this point in time since the user
1485 * does not have access to the sysfs interface, nor do we
1486 * suspend the system.
1487 */
1488 for_each_online_cpu(cpu)
1489 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1490
1491 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1492}
1493
1494/*
1495 * Late-boot-time RCU initialization that must wait until after scheduler
1496 * has been initialized.
1497 */
1498void __init rcu_init_sched(void)
1499{
1500 rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
1501 NULL,
1502 "rcu_sched_grace_period");
1503 WARN_ON(IS_ERR(rcu_sched_grace_period_task));
1504}
1505
1506#ifdef CONFIG_RCU_TRACE
1507long *rcupreempt_flipctr(int cpu)
1508{
1509 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1510}
1511EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1512
1513int rcupreempt_flip_flag(int cpu)
1514{
1515 return per_cpu(rcu_flip_flag, cpu);
1516}
1517EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1518
1519int rcupreempt_mb_flag(int cpu)
1520{
1521 return per_cpu(rcu_mb_flag, cpu);
1522}
1523EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1524
1525char *rcupreempt_try_flip_state_name(void)
1526{
1527 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1528}
1529EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1530
1531struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1532{
1533 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1534
1535 return &rdp->trace;
1536}
1537EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1538
1539#endif /* #ifdef RCU_TRACE */
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c
deleted file mode 100644
index 7c2665cac172..000000000000
--- a/kernel/rcupreempt_trace.c
+++ /dev/null
@@ -1,334 +0,0 @@
1/*
2 * Read-Copy Update tracing for realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Papers: http://www.rdrop.com/users/paulmck/RCU
21 *
22 * For detailed explanation of Read-Copy Update mechanism see -
23 * Documentation/RCU/ *.txt
24 *
25 */
26#include <linux/types.h>
27#include <linux/kernel.h>
28#include <linux/init.h>
29#include <linux/spinlock.h>
30#include <linux/smp.h>
31#include <linux/rcupdate.h>
32#include <linux/interrupt.h>
33#include <linux/sched.h>
34#include <asm/atomic.h>
35#include <linux/bitops.h>
36#include <linux/module.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <linux/percpu.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/mutex.h>
43#include <linux/rcupreempt_trace.h>
44#include <linux/debugfs.h>
45
46static struct mutex rcupreempt_trace_mutex;
47static char *rcupreempt_trace_buf;
48#define RCUPREEMPT_TRACE_BUF_SIZE 4096
49
50void rcupreempt_trace_move2done(struct rcupreempt_trace *trace)
51{
52 trace->done_length += trace->wait_length;
53 trace->done_add += trace->wait_length;
54 trace->wait_length = 0;
55}
56void rcupreempt_trace_move2wait(struct rcupreempt_trace *trace)
57{
58 trace->wait_length += trace->next_length;
59 trace->wait_add += trace->next_length;
60 trace->next_length = 0;
61}
62void rcupreempt_trace_try_flip_1(struct rcupreempt_trace *trace)
63{
64 atomic_inc(&trace->rcu_try_flip_1);
65}
66void rcupreempt_trace_try_flip_e1(struct rcupreempt_trace *trace)
67{
68 atomic_inc(&trace->rcu_try_flip_e1);
69}
70void rcupreempt_trace_try_flip_i1(struct rcupreempt_trace *trace)
71{
72 trace->rcu_try_flip_i1++;
73}
74void rcupreempt_trace_try_flip_ie1(struct rcupreempt_trace *trace)
75{
76 trace->rcu_try_flip_ie1++;
77}
78void rcupreempt_trace_try_flip_g1(struct rcupreempt_trace *trace)
79{
80 trace->rcu_try_flip_g1++;
81}
82void rcupreempt_trace_try_flip_a1(struct rcupreempt_trace *trace)
83{
84 trace->rcu_try_flip_a1++;
85}
86void rcupreempt_trace_try_flip_ae1(struct rcupreempt_trace *trace)
87{
88 trace->rcu_try_flip_ae1++;
89}
90void rcupreempt_trace_try_flip_a2(struct rcupreempt_trace *trace)
91{
92 trace->rcu_try_flip_a2++;
93}
94void rcupreempt_trace_try_flip_z1(struct rcupreempt_trace *trace)
95{
96 trace->rcu_try_flip_z1++;
97}
98void rcupreempt_trace_try_flip_ze1(struct rcupreempt_trace *trace)
99{
100 trace->rcu_try_flip_ze1++;
101}
102void rcupreempt_trace_try_flip_z2(struct rcupreempt_trace *trace)
103{
104 trace->rcu_try_flip_z2++;
105}
106void rcupreempt_trace_try_flip_m1(struct rcupreempt_trace *trace)
107{
108 trace->rcu_try_flip_m1++;
109}
110void rcupreempt_trace_try_flip_me1(struct rcupreempt_trace *trace)
111{
112 trace->rcu_try_flip_me1++;
113}
114void rcupreempt_trace_try_flip_m2(struct rcupreempt_trace *trace)
115{
116 trace->rcu_try_flip_m2++;
117}
118void rcupreempt_trace_check_callbacks(struct rcupreempt_trace *trace)
119{
120 trace->rcu_check_callbacks++;
121}
122void rcupreempt_trace_done_remove(struct rcupreempt_trace *trace)
123{
124 trace->done_remove += trace->done_length;
125 trace->done_length = 0;
126}
127void rcupreempt_trace_invoke(struct rcupreempt_trace *trace)
128{
129 atomic_inc(&trace->done_invoked);
130}
131void rcupreempt_trace_next_add(struct rcupreempt_trace *trace)
132{
133 trace->next_add++;
134 trace->next_length++;
135}
136
137static void rcupreempt_trace_sum(struct rcupreempt_trace *sp)
138{
139 struct rcupreempt_trace *cp;
140 int cpu;
141
142 memset(sp, 0, sizeof(*sp));
143 for_each_possible_cpu(cpu) {
144 cp = rcupreempt_trace_cpu(cpu);
145 sp->next_length += cp->next_length;
146 sp->next_add += cp->next_add;
147 sp->wait_length += cp->wait_length;
148 sp->wait_add += cp->wait_add;
149 sp->done_length += cp->done_length;
150 sp->done_add += cp->done_add;
151 sp->done_remove += cp->done_remove;
152 atomic_add(atomic_read(&cp->done_invoked), &sp->done_invoked);
153 sp->rcu_check_callbacks += cp->rcu_check_callbacks;
154 atomic_add(atomic_read(&cp->rcu_try_flip_1),
155 &sp->rcu_try_flip_1);
156 atomic_add(atomic_read(&cp->rcu_try_flip_e1),
157 &sp->rcu_try_flip_e1);
158 sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1;
159 sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1;
160 sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1;
161 sp->rcu_try_flip_a1 += cp->rcu_try_flip_a1;
162 sp->rcu_try_flip_ae1 += cp->rcu_try_flip_ae1;
163 sp->rcu_try_flip_a2 += cp->rcu_try_flip_a2;
164 sp->rcu_try_flip_z1 += cp->rcu_try_flip_z1;
165 sp->rcu_try_flip_ze1 += cp->rcu_try_flip_ze1;
166 sp->rcu_try_flip_z2 += cp->rcu_try_flip_z2;
167 sp->rcu_try_flip_m1 += cp->rcu_try_flip_m1;
168 sp->rcu_try_flip_me1 += cp->rcu_try_flip_me1;
169 sp->rcu_try_flip_m2 += cp->rcu_try_flip_m2;
170 }
171}
172
173static ssize_t rcustats_read(struct file *filp, char __user *buffer,
174 size_t count, loff_t *ppos)
175{
176 struct rcupreempt_trace trace;
177 ssize_t bcount;
178 int cnt = 0;
179
180 rcupreempt_trace_sum(&trace);
181 mutex_lock(&rcupreempt_trace_mutex);
182 snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt,
183 "ggp=%ld rcc=%ld\n",
184 rcu_batches_completed(),
185 trace.rcu_check_callbacks);
186 snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt,
187 "na=%ld nl=%ld wa=%ld wl=%ld da=%ld dl=%ld dr=%ld di=%d\n"
188 "1=%d e1=%d i1=%ld ie1=%ld g1=%ld a1=%ld ae1=%ld a2=%ld\n"
189 "z1=%ld ze1=%ld z2=%ld m1=%ld me1=%ld m2=%ld\n",
190
191 trace.next_add, trace.next_length,
192 trace.wait_add, trace.wait_length,
193 trace.done_add, trace.done_length,
194 trace.done_remove, atomic_read(&trace.done_invoked),
195 atomic_read(&trace.rcu_try_flip_1),
196 atomic_read(&trace.rcu_try_flip_e1),
197 trace.rcu_try_flip_i1, trace.rcu_try_flip_ie1,
198 trace.rcu_try_flip_g1,
199 trace.rcu_try_flip_a1, trace.rcu_try_flip_ae1,
200 trace.rcu_try_flip_a2,
201 trace.rcu_try_flip_z1, trace.rcu_try_flip_ze1,
202 trace.rcu_try_flip_z2,
203 trace.rcu_try_flip_m1, trace.rcu_try_flip_me1,
204 trace.rcu_try_flip_m2);
205 bcount = simple_read_from_buffer(buffer, count, ppos,
206 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
207 mutex_unlock(&rcupreempt_trace_mutex);
208 return bcount;
209}
210
211static ssize_t rcugp_read(struct file *filp, char __user *buffer,
212 size_t count, loff_t *ppos)
213{
214 long oldgp = rcu_batches_completed();
215 ssize_t bcount;
216
217 mutex_lock(&rcupreempt_trace_mutex);
218 synchronize_rcu();
219 snprintf(rcupreempt_trace_buf, RCUPREEMPT_TRACE_BUF_SIZE,
220 "oldggp=%ld newggp=%ld\n", oldgp, rcu_batches_completed());
221 bcount = simple_read_from_buffer(buffer, count, ppos,
222 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
223 mutex_unlock(&rcupreempt_trace_mutex);
224 return bcount;
225}
226
227static ssize_t rcuctrs_read(struct file *filp, char __user *buffer,
228 size_t count, loff_t *ppos)
229{
230 int cnt = 0;
231 int cpu;
232 int f = rcu_batches_completed() & 0x1;
233 ssize_t bcount;
234
235 mutex_lock(&rcupreempt_trace_mutex);
236
237 cnt += snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE,
238 "CPU last cur F M\n");
239 for_each_online_cpu(cpu) {
240 long *flipctr = rcupreempt_flipctr(cpu);
241 cnt += snprintf(&rcupreempt_trace_buf[cnt],
242 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
243 "%3d %4ld %3ld %d %d\n",
244 cpu,
245 flipctr[!f],
246 flipctr[f],
247 rcupreempt_flip_flag(cpu),
248 rcupreempt_mb_flag(cpu));
249 }
250 cnt += snprintf(&rcupreempt_trace_buf[cnt],
251 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
252 "ggp = %ld, state = %s\n",
253 rcu_batches_completed(),
254 rcupreempt_try_flip_state_name());
255 cnt += snprintf(&rcupreempt_trace_buf[cnt],
256 RCUPREEMPT_TRACE_BUF_SIZE - cnt,
257 "\n");
258 bcount = simple_read_from_buffer(buffer, count, ppos,
259 rcupreempt_trace_buf, strlen(rcupreempt_trace_buf));
260 mutex_unlock(&rcupreempt_trace_mutex);
261 return bcount;
262}
263
264static struct file_operations rcustats_fops = {
265 .owner = THIS_MODULE,
266 .read = rcustats_read,
267};
268
269static struct file_operations rcugp_fops = {
270 .owner = THIS_MODULE,
271 .read = rcugp_read,
272};
273
274static struct file_operations rcuctrs_fops = {
275 .owner = THIS_MODULE,
276 .read = rcuctrs_read,
277};
278
279static struct dentry *rcudir, *statdir, *ctrsdir, *gpdir;
280static int rcupreempt_debugfs_init(void)
281{
282 rcudir = debugfs_create_dir("rcu", NULL);
283 if (!rcudir)
284 goto out;
285 statdir = debugfs_create_file("rcustats", 0444, rcudir,
286 NULL, &rcustats_fops);
287 if (!statdir)
288 goto free_out;
289
290 gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops);
291 if (!gpdir)
292 goto free_out;
293
294 ctrsdir = debugfs_create_file("rcuctrs", 0444, rcudir,
295 NULL, &rcuctrs_fops);
296 if (!ctrsdir)
297 goto free_out;
298 return 0;
299free_out:
300 if (statdir)
301 debugfs_remove(statdir);
302 if (gpdir)
303 debugfs_remove(gpdir);
304 debugfs_remove(rcudir);
305out:
306 return 1;
307}
308
309static int __init rcupreempt_trace_init(void)
310{
311 int ret;
312
313 mutex_init(&rcupreempt_trace_mutex);
314 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL);
315 if (!rcupreempt_trace_buf)
316 return 1;
317 ret = rcupreempt_debugfs_init();
318 if (ret)
319 kfree(rcupreempt_trace_buf);
320 return ret;
321}
322
323static void __exit rcupreempt_trace_cleanup(void)
324{
325 debugfs_remove(statdir);
326 debugfs_remove(gpdir);
327 debugfs_remove(ctrsdir);
328 debugfs_remove(rcudir);
329 kfree(rcupreempt_trace_buf);
330}
331
332
333module_init(rcupreempt_trace_init);
334module_exit(rcupreempt_trace_cleanup);
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index 9b4a975a4b4a..b33db539a8ad 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -257,14 +257,14 @@ struct rcu_torture_ops {
257 void (*init)(void); 257 void (*init)(void);
258 void (*cleanup)(void); 258 void (*cleanup)(void);
259 int (*readlock)(void); 259 int (*readlock)(void);
260 void (*readdelay)(struct rcu_random_state *rrsp); 260 void (*read_delay)(struct rcu_random_state *rrsp);
261 void (*readunlock)(int idx); 261 void (*readunlock)(int idx);
262 int (*completed)(void); 262 int (*completed)(void);
263 void (*deferredfree)(struct rcu_torture *p); 263 void (*deferred_free)(struct rcu_torture *p);
264 void (*sync)(void); 264 void (*sync)(void);
265 void (*cb_barrier)(void); 265 void (*cb_barrier)(void);
266 int (*stats)(char *page); 266 int (*stats)(char *page);
267 int irqcapable; 267 int irq_capable;
268 char *name; 268 char *name;
269}; 269};
270static struct rcu_torture_ops *cur_ops = NULL; 270static struct rcu_torture_ops *cur_ops = NULL;
@@ -320,7 +320,7 @@ rcu_torture_cb(struct rcu_head *p)
320 rp->rtort_mbtest = 0; 320 rp->rtort_mbtest = 0;
321 rcu_torture_free(rp); 321 rcu_torture_free(rp);
322 } else 322 } else
323 cur_ops->deferredfree(rp); 323 cur_ops->deferred_free(rp);
324} 324}
325 325
326static void rcu_torture_deferred_free(struct rcu_torture *p) 326static void rcu_torture_deferred_free(struct rcu_torture *p)
@@ -329,18 +329,18 @@ static void rcu_torture_deferred_free(struct rcu_torture *p)
329} 329}
330 330
331static struct rcu_torture_ops rcu_ops = { 331static struct rcu_torture_ops rcu_ops = {
332 .init = NULL, 332 .init = NULL,
333 .cleanup = NULL, 333 .cleanup = NULL,
334 .readlock = rcu_torture_read_lock, 334 .readlock = rcu_torture_read_lock,
335 .readdelay = rcu_read_delay, 335 .read_delay = rcu_read_delay,
336 .readunlock = rcu_torture_read_unlock, 336 .readunlock = rcu_torture_read_unlock,
337 .completed = rcu_torture_completed, 337 .completed = rcu_torture_completed,
338 .deferredfree = rcu_torture_deferred_free, 338 .deferred_free = rcu_torture_deferred_free,
339 .sync = synchronize_rcu, 339 .sync = synchronize_rcu,
340 .cb_barrier = rcu_barrier, 340 .cb_barrier = rcu_barrier,
341 .stats = NULL, 341 .stats = NULL,
342 .irqcapable = 1, 342 .irq_capable = 1,
343 .name = "rcu" 343 .name = "rcu"
344}; 344};
345 345
346static void rcu_sync_torture_deferred_free(struct rcu_torture *p) 346static void rcu_sync_torture_deferred_free(struct rcu_torture *p)
@@ -370,18 +370,18 @@ static void rcu_sync_torture_init(void)
370} 370}
371 371
372static struct rcu_torture_ops rcu_sync_ops = { 372static struct rcu_torture_ops rcu_sync_ops = {
373 .init = rcu_sync_torture_init, 373 .init = rcu_sync_torture_init,
374 .cleanup = NULL, 374 .cleanup = NULL,
375 .readlock = rcu_torture_read_lock, 375 .readlock = rcu_torture_read_lock,
376 .readdelay = rcu_read_delay, 376 .read_delay = rcu_read_delay,
377 .readunlock = rcu_torture_read_unlock, 377 .readunlock = rcu_torture_read_unlock,
378 .completed = rcu_torture_completed, 378 .completed = rcu_torture_completed,
379 .deferredfree = rcu_sync_torture_deferred_free, 379 .deferred_free = rcu_sync_torture_deferred_free,
380 .sync = synchronize_rcu, 380 .sync = synchronize_rcu,
381 .cb_barrier = NULL, 381 .cb_barrier = NULL,
382 .stats = NULL, 382 .stats = NULL,
383 .irqcapable = 1, 383 .irq_capable = 1,
384 .name = "rcu_sync" 384 .name = "rcu_sync"
385}; 385};
386 386
387/* 387/*
@@ -432,33 +432,33 @@ static void rcu_bh_torture_synchronize(void)
432} 432}
433 433
434static struct rcu_torture_ops rcu_bh_ops = { 434static struct rcu_torture_ops rcu_bh_ops = {
435 .init = NULL, 435 .init = NULL,
436 .cleanup = NULL, 436 .cleanup = NULL,
437 .readlock = rcu_bh_torture_read_lock, 437 .readlock = rcu_bh_torture_read_lock,
438 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 438 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
439 .readunlock = rcu_bh_torture_read_unlock, 439 .readunlock = rcu_bh_torture_read_unlock,
440 .completed = rcu_bh_torture_completed, 440 .completed = rcu_bh_torture_completed,
441 .deferredfree = rcu_bh_torture_deferred_free, 441 .deferred_free = rcu_bh_torture_deferred_free,
442 .sync = rcu_bh_torture_synchronize, 442 .sync = rcu_bh_torture_synchronize,
443 .cb_barrier = rcu_barrier_bh, 443 .cb_barrier = rcu_barrier_bh,
444 .stats = NULL, 444 .stats = NULL,
445 .irqcapable = 1, 445 .irq_capable = 1,
446 .name = "rcu_bh" 446 .name = "rcu_bh"
447}; 447};
448 448
449static struct rcu_torture_ops rcu_bh_sync_ops = { 449static struct rcu_torture_ops rcu_bh_sync_ops = {
450 .init = rcu_sync_torture_init, 450 .init = rcu_sync_torture_init,
451 .cleanup = NULL, 451 .cleanup = NULL,
452 .readlock = rcu_bh_torture_read_lock, 452 .readlock = rcu_bh_torture_read_lock,
453 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 453 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
454 .readunlock = rcu_bh_torture_read_unlock, 454 .readunlock = rcu_bh_torture_read_unlock,
455 .completed = rcu_bh_torture_completed, 455 .completed = rcu_bh_torture_completed,
456 .deferredfree = rcu_sync_torture_deferred_free, 456 .deferred_free = rcu_sync_torture_deferred_free,
457 .sync = rcu_bh_torture_synchronize, 457 .sync = rcu_bh_torture_synchronize,
458 .cb_barrier = NULL, 458 .cb_barrier = NULL,
459 .stats = NULL, 459 .stats = NULL,
460 .irqcapable = 1, 460 .irq_capable = 1,
461 .name = "rcu_bh_sync" 461 .name = "rcu_bh_sync"
462}; 462};
463 463
464/* 464/*
@@ -530,17 +530,17 @@ static int srcu_torture_stats(char *page)
530} 530}
531 531
532static struct rcu_torture_ops srcu_ops = { 532static struct rcu_torture_ops srcu_ops = {
533 .init = srcu_torture_init, 533 .init = srcu_torture_init,
534 .cleanup = srcu_torture_cleanup, 534 .cleanup = srcu_torture_cleanup,
535 .readlock = srcu_torture_read_lock, 535 .readlock = srcu_torture_read_lock,
536 .readdelay = srcu_read_delay, 536 .read_delay = srcu_read_delay,
537 .readunlock = srcu_torture_read_unlock, 537 .readunlock = srcu_torture_read_unlock,
538 .completed = srcu_torture_completed, 538 .completed = srcu_torture_completed,
539 .deferredfree = rcu_sync_torture_deferred_free, 539 .deferred_free = rcu_sync_torture_deferred_free,
540 .sync = srcu_torture_synchronize, 540 .sync = srcu_torture_synchronize,
541 .cb_barrier = NULL, 541 .cb_barrier = NULL,
542 .stats = srcu_torture_stats, 542 .stats = srcu_torture_stats,
543 .name = "srcu" 543 .name = "srcu"
544}; 544};
545 545
546/* 546/*
@@ -574,32 +574,49 @@ static void sched_torture_synchronize(void)
574} 574}
575 575
576static struct rcu_torture_ops sched_ops = { 576static struct rcu_torture_ops sched_ops = {
577 .init = rcu_sync_torture_init, 577 .init = rcu_sync_torture_init,
578 .cleanup = NULL, 578 .cleanup = NULL,
579 .readlock = sched_torture_read_lock, 579 .readlock = sched_torture_read_lock,
580 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 580 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
581 .readunlock = sched_torture_read_unlock, 581 .readunlock = sched_torture_read_unlock,
582 .completed = sched_torture_completed, 582 .completed = sched_torture_completed,
583 .deferredfree = rcu_sched_torture_deferred_free, 583 .deferred_free = rcu_sched_torture_deferred_free,
584 .sync = sched_torture_synchronize, 584 .sync = sched_torture_synchronize,
585 .cb_barrier = rcu_barrier_sched, 585 .cb_barrier = rcu_barrier_sched,
586 .stats = NULL, 586 .stats = NULL,
587 .irqcapable = 1, 587 .irq_capable = 1,
588 .name = "sched" 588 .name = "sched"
589}; 589};
590 590
591static struct rcu_torture_ops sched_ops_sync = { 591static struct rcu_torture_ops sched_ops_sync = {
592 .init = rcu_sync_torture_init, 592 .init = rcu_sync_torture_init,
593 .cleanup = NULL, 593 .cleanup = NULL,
594 .readlock = sched_torture_read_lock, 594 .readlock = sched_torture_read_lock,
595 .readdelay = rcu_read_delay, /* just reuse rcu's version. */ 595 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
596 .readunlock = sched_torture_read_unlock, 596 .readunlock = sched_torture_read_unlock,
597 .completed = sched_torture_completed, 597 .completed = sched_torture_completed,
598 .deferredfree = rcu_sync_torture_deferred_free, 598 .deferred_free = rcu_sync_torture_deferred_free,
599 .sync = sched_torture_synchronize, 599 .sync = sched_torture_synchronize,
600 .cb_barrier = NULL, 600 .cb_barrier = NULL,
601 .stats = NULL, 601 .stats = NULL,
602 .name = "sched_sync" 602 .name = "sched_sync"
603};
604
605extern int rcu_expedited_torture_stats(char *page);
606
607static struct rcu_torture_ops sched_expedited_ops = {
608 .init = rcu_sync_torture_init,
609 .cleanup = NULL,
610 .readlock = sched_torture_read_lock,
611 .read_delay = rcu_read_delay, /* just reuse rcu's version. */
612 .readunlock = sched_torture_read_unlock,
613 .completed = sched_torture_completed,
614 .deferred_free = rcu_sync_torture_deferred_free,
615 .sync = synchronize_sched_expedited,
616 .cb_barrier = NULL,
617 .stats = rcu_expedited_torture_stats,
618 .irq_capable = 1,
619 .name = "sched_expedited"
603}; 620};
604 621
605/* 622/*
@@ -635,7 +652,7 @@ rcu_torture_writer(void *arg)
635 i = RCU_TORTURE_PIPE_LEN; 652 i = RCU_TORTURE_PIPE_LEN;
636 atomic_inc(&rcu_torture_wcount[i]); 653 atomic_inc(&rcu_torture_wcount[i]);
637 old_rp->rtort_pipe_count++; 654 old_rp->rtort_pipe_count++;
638 cur_ops->deferredfree(old_rp); 655 cur_ops->deferred_free(old_rp);
639 } 656 }
640 rcu_torture_current_version++; 657 rcu_torture_current_version++;
641 oldbatch = cur_ops->completed(); 658 oldbatch = cur_ops->completed();
@@ -700,7 +717,7 @@ static void rcu_torture_timer(unsigned long unused)
700 if (p->rtort_mbtest == 0) 717 if (p->rtort_mbtest == 0)
701 atomic_inc(&n_rcu_torture_mberror); 718 atomic_inc(&n_rcu_torture_mberror);
702 spin_lock(&rand_lock); 719 spin_lock(&rand_lock);
703 cur_ops->readdelay(&rand); 720 cur_ops->read_delay(&rand);
704 n_rcu_torture_timers++; 721 n_rcu_torture_timers++;
705 spin_unlock(&rand_lock); 722 spin_unlock(&rand_lock);
706 preempt_disable(); 723 preempt_disable();
@@ -738,11 +755,11 @@ rcu_torture_reader(void *arg)
738 755
739 VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); 756 VERBOSE_PRINTK_STRING("rcu_torture_reader task started");
740 set_user_nice(current, 19); 757 set_user_nice(current, 19);
741 if (irqreader && cur_ops->irqcapable) 758 if (irqreader && cur_ops->irq_capable)
742 setup_timer_on_stack(&t, rcu_torture_timer, 0); 759 setup_timer_on_stack(&t, rcu_torture_timer, 0);
743 760
744 do { 761 do {
745 if (irqreader && cur_ops->irqcapable) { 762 if (irqreader && cur_ops->irq_capable) {
746 if (!timer_pending(&t)) 763 if (!timer_pending(&t))
747 mod_timer(&t, 1); 764 mod_timer(&t, 1);
748 } 765 }
@@ -757,7 +774,7 @@ rcu_torture_reader(void *arg)
757 } 774 }
758 if (p->rtort_mbtest == 0) 775 if (p->rtort_mbtest == 0)
759 atomic_inc(&n_rcu_torture_mberror); 776 atomic_inc(&n_rcu_torture_mberror);
760 cur_ops->readdelay(&rand); 777 cur_ops->read_delay(&rand);
761 preempt_disable(); 778 preempt_disable();
762 pipe_count = p->rtort_pipe_count; 779 pipe_count = p->rtort_pipe_count;
763 if (pipe_count > RCU_TORTURE_PIPE_LEN) { 780 if (pipe_count > RCU_TORTURE_PIPE_LEN) {
@@ -778,7 +795,7 @@ rcu_torture_reader(void *arg)
778 } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); 795 } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP);
779 VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); 796 VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping");
780 rcutorture_shutdown_absorb("rcu_torture_reader"); 797 rcutorture_shutdown_absorb("rcu_torture_reader");
781 if (irqreader && cur_ops->irqcapable) 798 if (irqreader && cur_ops->irq_capable)
782 del_timer_sync(&t); 799 del_timer_sync(&t);
783 while (!kthread_should_stop()) 800 while (!kthread_should_stop())
784 schedule_timeout_uninterruptible(1); 801 schedule_timeout_uninterruptible(1);
@@ -1078,6 +1095,7 @@ rcu_torture_init(void)
1078 int firsterr = 0; 1095 int firsterr = 0;
1079 static struct rcu_torture_ops *torture_ops[] = 1096 static struct rcu_torture_ops *torture_ops[] =
1080 { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, 1097 { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops,
1098 &sched_expedited_ops,
1081 &srcu_ops, &sched_ops, &sched_ops_sync, }; 1099 &srcu_ops, &sched_ops, &sched_ops_sync, };
1082 1100
1083 mutex_lock(&fullstop_mutex); 1101 mutex_lock(&fullstop_mutex);
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 7717b95c2027..6b11b07cfe7f 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -35,6 +35,7 @@
35#include <linux/rcupdate.h> 35#include <linux/rcupdate.h>
36#include <linux/interrupt.h> 36#include <linux/interrupt.h>
37#include <linux/sched.h> 37#include <linux/sched.h>
38#include <linux/nmi.h>
38#include <asm/atomic.h> 39#include <asm/atomic.h>
39#include <linux/bitops.h> 40#include <linux/bitops.h>
40#include <linux/module.h> 41#include <linux/module.h>
@@ -46,6 +47,8 @@
46#include <linux/mutex.h> 47#include <linux/mutex.h>
47#include <linux/time.h> 48#include <linux/time.h>
48 49
50#include "rcutree.h"
51
49#ifdef CONFIG_DEBUG_LOCK_ALLOC 52#ifdef CONFIG_DEBUG_LOCK_ALLOC
50static struct lock_class_key rcu_lock_key; 53static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map = 54struct lockdep_map rcu_lock_map =
@@ -72,30 +75,59 @@ EXPORT_SYMBOL_GPL(rcu_lock_map);
72 .n_force_qs_ngp = 0, \ 75 .n_force_qs_ngp = 0, \
73} 76}
74 77
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); 78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data); 79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
77 80
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80 83
84extern long rcu_batches_completed_sched(void);
85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
89#ifdef CONFIG_HOTPLUG_CPU
90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
81/* 103/*
82 * Increment the quiescent state counter. 104 * Note a quiescent state. Because we do not need to know
83 * The counter is a bit degenerated: We do not need to know
84 * how many quiescent states passed, just if there was at least 105 * how many quiescent states passed, just if there was at least
85 * one since the start of the grace period. Thus just a flag. 106 * one since the start of the grace period, this just sets a flag.
86 */ 107 */
87void rcu_qsctr_inc(int cpu) 108void rcu_sched_qs(int cpu)
88{ 109{
89 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
90 rdp->passed_quiesc = 1; 115 rdp->passed_quiesc = 1;
91 rdp->passed_quiesc_completed = rdp->completed; 116 rdp->passed_quiesc_completed = rdp->completed;
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
92} 119}
93 120
94void rcu_bh_qsctr_inc(int cpu) 121void rcu_bh_qs(int cpu)
95{ 122{
96 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
97 rdp->passed_quiesc = 1; 128 rdp->passed_quiesc = 1;
98 rdp->passed_quiesc_completed = rdp->completed; 129 rdp->passed_quiesc_completed = rdp->completed;
130 local_irq_restore(flags);
99} 131}
100 132
101#ifdef CONFIG_NO_HZ 133#ifdef CONFIG_NO_HZ
@@ -110,15 +142,16 @@ static int qhimark = 10000; /* If this many pending, ignore blimit. */
110static int qlowmark = 100; /* Once only this many pending, use blimit. */ 142static int qlowmark = 100; /* Once only this many pending, use blimit. */
111 143
112static void force_quiescent_state(struct rcu_state *rsp, int relaxed); 144static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
145static int rcu_pending(int cpu);
113 146
114/* 147/*
115 * Return the number of RCU batches processed thus far for debug & stats. 148 * Return the number of RCU-sched batches processed thus far for debug & stats.
116 */ 149 */
117long rcu_batches_completed(void) 150long rcu_batches_completed_sched(void)
118{ 151{
119 return rcu_state.completed; 152 return rcu_sched_state.completed;
120} 153}
121EXPORT_SYMBOL_GPL(rcu_batches_completed); 154EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
122 155
123/* 156/*
124 * Return the number of RCU BH batches processed thus far for debug & stats. 157 * Return the number of RCU BH batches processed thus far for debug & stats.
@@ -181,6 +214,10 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
181 return 1; 214 return 1;
182 } 215 }
183 216
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
184 /* The CPU is online, so send it a reschedule IPI. */ 221 /* The CPU is online, so send it a reschedule IPI. */
185 if (rdp->cpu != smp_processor_id()) 222 if (rdp->cpu != smp_processor_id())
186 smp_send_reschedule(rdp->cpu); 223 smp_send_reschedule(rdp->cpu);
@@ -193,7 +230,6 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp)
193#endif /* #ifdef CONFIG_SMP */ 230#endif /* #ifdef CONFIG_SMP */
194 231
195#ifdef CONFIG_NO_HZ 232#ifdef CONFIG_NO_HZ
196static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
197 233
198/** 234/**
199 * rcu_enter_nohz - inform RCU that current CPU is entering nohz 235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
@@ -213,7 +249,7 @@ void rcu_enter_nohz(void)
213 rdtp = &__get_cpu_var(rcu_dynticks); 249 rdtp = &__get_cpu_var(rcu_dynticks);
214 rdtp->dynticks++; 250 rdtp->dynticks++;
215 rdtp->dynticks_nesting--; 251 rdtp->dynticks_nesting--;
216 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
217 local_irq_restore(flags); 253 local_irq_restore(flags);
218} 254}
219 255
@@ -232,7 +268,7 @@ void rcu_exit_nohz(void)
232 rdtp = &__get_cpu_var(rcu_dynticks); 268 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++; 269 rdtp->dynticks++;
234 rdtp->dynticks_nesting++; 270 rdtp->dynticks_nesting++;
235 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
236 local_irq_restore(flags); 272 local_irq_restore(flags);
237 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
238} 274}
@@ -251,7 +287,7 @@ void rcu_nmi_enter(void)
251 if (rdtp->dynticks & 0x1) 287 if (rdtp->dynticks & 0x1)
252 return; 288 return;
253 rdtp->dynticks_nmi++; 289 rdtp->dynticks_nmi++;
254 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); 290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
255 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
256} 292}
257 293
@@ -270,7 +306,7 @@ void rcu_nmi_exit(void)
270 return; 306 return;
271 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
272 rdtp->dynticks_nmi++; 308 rdtp->dynticks_nmi++;
273 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); 309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
274} 310}
275 311
276/** 312/**
@@ -286,7 +322,7 @@ void rcu_irq_enter(void)
286 if (rdtp->dynticks_nesting++) 322 if (rdtp->dynticks_nesting++)
287 return; 323 return;
288 rdtp->dynticks++; 324 rdtp->dynticks++;
289 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); 325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ 326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
291} 327}
292 328
@@ -305,10 +341,10 @@ void rcu_irq_exit(void)
305 return; 341 return;
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ 342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
307 rdtp->dynticks++; 343 rdtp->dynticks++;
308 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); 344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
309 345
310 /* If the interrupt queued a callback, get out of dyntick mode. */ 346 /* If the interrupt queued a callback, get out of dyntick mode. */
311 if (__get_cpu_var(rcu_data).nxtlist || 347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
312 __get_cpu_var(rcu_bh_data).nxtlist) 348 __get_cpu_var(rcu_bh_data).nxtlist)
313 set_need_resched(); 349 set_need_resched();
314} 350}
@@ -461,6 +497,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
461 497
462 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
463 for (; rnp_cur < rnp_end; rnp_cur++) { 499 for (; rnp_cur < rnp_end; rnp_cur++) {
500 rcu_print_task_stall(rnp);
464 if (rnp_cur->qsmask == 0) 501 if (rnp_cur->qsmask == 0)
465 continue; 502 continue;
466 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) 503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
@@ -469,6 +506,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
469 } 506 }
470 printk(" (detected by %d, t=%ld jiffies)\n", 507 printk(" (detected by %d, t=%ld jiffies)\n",
471 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 trigger_all_cpu_backtrace();
510
472 force_quiescent_state(rsp, 0); /* Kick them all. */ 511 force_quiescent_state(rsp, 0); /* Kick them all. */
473} 512}
474 513
@@ -479,12 +518,14 @@ static void print_cpu_stall(struct rcu_state *rsp)
479 518
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", 519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start); 520 smp_processor_id(), jiffies - rsp->gp_start);
482 dump_stack(); 521 trigger_all_cpu_backtrace();
522
483 spin_lock_irqsave(&rnp->lock, flags); 523 spin_lock_irqsave(&rnp->lock, flags);
484 if ((long)(jiffies - rsp->jiffies_stall) >= 0) 524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
485 rsp->jiffies_stall = 525 rsp->jiffies_stall =
486 jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
487 spin_unlock_irqrestore(&rnp->lock, flags); 527 spin_unlock_irqrestore(&rnp->lock, flags);
528
488 set_need_resched(); /* kick ourselves to get things going. */ 529 set_need_resched(); /* kick ourselves to get things going. */
489} 530}
490 531
@@ -674,6 +715,19 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
674} 715}
675 716
676/* 717/*
718 * Clean up after the prior grace period and let rcu_start_gp() start up
719 * the next grace period if one is needed. Note that the caller must
720 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
721 */
722static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
723 __releases(rnp->lock)
724{
725 rsp->completed = rsp->gpnum;
726 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
727 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
728}
729
730/*
677 * Similar to cpu_quiet(), for which it is a helper function. Allows 731 * Similar to cpu_quiet(), for which it is a helper function. Allows
678 * a group of CPUs to be quieted at one go, though all the CPUs in the 732 * a group of CPUs to be quieted at one go, though all the CPUs in the
679 * group must be represented by the same leaf rcu_node structure. 733 * group must be represented by the same leaf rcu_node structure.
@@ -694,7 +748,7 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
694 return; 748 return;
695 } 749 }
696 rnp->qsmask &= ~mask; 750 rnp->qsmask &= ~mask;
697 if (rnp->qsmask != 0) { 751 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
698 752
699 /* Other bits still set at this level, so done. */ 753 /* Other bits still set at this level, so done. */
700 spin_unlock_irqrestore(&rnp->lock, flags); 754 spin_unlock_irqrestore(&rnp->lock, flags);
@@ -714,14 +768,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
714 768
715 /* 769 /*
716 * Get here if we are the last CPU to pass through a quiescent 770 * Get here if we are the last CPU to pass through a quiescent
717 * state for this grace period. Clean up and let rcu_start_gp() 771 * state for this grace period. Invoke cpu_quiet_msk_finish()
718 * start up the next grace period if one is needed. Note that 772 * to clean up and start the next grace period if one is needed.
719 * we still hold rnp->lock, as required by rcu_start_gp(), which
720 * will release it.
721 */ 773 */
722 rsp->completed = rsp->gpnum; 774 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
723 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
724 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
725} 775}
726 776
727/* 777/*
@@ -828,11 +878,12 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
828 spin_lock(&rnp->lock); /* irqs already disabled. */ 878 spin_lock(&rnp->lock); /* irqs already disabled. */
829 rnp->qsmaskinit &= ~mask; 879 rnp->qsmaskinit &= ~mask;
830 if (rnp->qsmaskinit != 0) { 880 if (rnp->qsmaskinit != 0) {
831 spin_unlock(&rnp->lock); /* irqs already disabled. */ 881 spin_unlock(&rnp->lock); /* irqs remain disabled. */
832 break; 882 break;
833 } 883 }
884 rcu_preempt_offline_tasks(rsp, rnp);
834 mask = rnp->grpmask; 885 mask = rnp->grpmask;
835 spin_unlock(&rnp->lock); /* irqs already disabled. */ 886 spin_unlock(&rnp->lock); /* irqs remain disabled. */
836 rnp = rnp->parent; 887 rnp = rnp->parent;
837 } while (rnp != NULL); 888 } while (rnp != NULL);
838 lastcomp = rsp->completed; 889 lastcomp = rsp->completed;
@@ -845,7 +896,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
845 /* 896 /*
846 * Move callbacks from the outgoing CPU to the running CPU. 897 * Move callbacks from the outgoing CPU to the running CPU.
847 * Note that the outgoing CPU is now quiscent, so it is now 898 * Note that the outgoing CPU is now quiscent, so it is now
848 * (uncharacteristically) safe to access it rcu_data structure. 899 * (uncharacteristically) safe to access its rcu_data structure.
849 * Note also that we must carefully retain the order of the 900 * Note also that we must carefully retain the order of the
850 * outgoing CPU's callbacks in order for rcu_barrier() to work 901 * outgoing CPU's callbacks in order for rcu_barrier() to work
851 * correctly. Finally, note that we start all the callbacks 902 * correctly. Finally, note that we start all the callbacks
@@ -876,8 +927,9 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
876 */ 927 */
877static void rcu_offline_cpu(int cpu) 928static void rcu_offline_cpu(int cpu)
878{ 929{
879 __rcu_offline_cpu(cpu, &rcu_state); 930 __rcu_offline_cpu(cpu, &rcu_sched_state);
880 __rcu_offline_cpu(cpu, &rcu_bh_state); 931 __rcu_offline_cpu(cpu, &rcu_bh_state);
932 rcu_preempt_offline_cpu(cpu);
881} 933}
882 934
883#else /* #ifdef CONFIG_HOTPLUG_CPU */ 935#else /* #ifdef CONFIG_HOTPLUG_CPU */
@@ -963,6 +1015,8 @@ static void rcu_do_batch(struct rcu_data *rdp)
963 */ 1015 */
964void rcu_check_callbacks(int cpu, int user) 1016void rcu_check_callbacks(int cpu, int user)
965{ 1017{
1018 if (!rcu_pending(cpu))
1019 return; /* if nothing for RCU to do. */
966 if (user || 1020 if (user ||
967 (idle_cpu(cpu) && rcu_scheduler_active && 1021 (idle_cpu(cpu) && rcu_scheduler_active &&
968 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { 1022 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
@@ -971,17 +1025,16 @@ void rcu_check_callbacks(int cpu, int user)
971 * Get here if this CPU took its interrupt from user 1025 * Get here if this CPU took its interrupt from user
972 * mode or from the idle loop, and if this is not a 1026 * mode or from the idle loop, and if this is not a
973 * nested interrupt. In this case, the CPU is in 1027 * nested interrupt. In this case, the CPU is in
974 * a quiescent state, so count it. 1028 * a quiescent state, so note it.
975 * 1029 *
976 * No memory barrier is required here because both 1030 * No memory barrier is required here because both
977 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference 1031 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
978 * only CPU-local variables that other CPUs neither 1032 * variables that other CPUs neither access nor modify,
979 * access nor modify, at least not while the corresponding 1033 * at least not while the corresponding CPU is online.
980 * CPU is online.
981 */ 1034 */
982 1035
983 rcu_qsctr_inc(cpu); 1036 rcu_sched_qs(cpu);
984 rcu_bh_qsctr_inc(cpu); 1037 rcu_bh_qs(cpu);
985 1038
986 } else if (!in_softirq()) { 1039 } else if (!in_softirq()) {
987 1040
@@ -989,11 +1042,12 @@ void rcu_check_callbacks(int cpu, int user)
989 * Get here if this CPU did not take its interrupt from 1042 * Get here if this CPU did not take its interrupt from
990 * softirq, in other words, if it is not interrupting 1043 * softirq, in other words, if it is not interrupting
991 * a rcu_bh read-side critical section. This is an _bh 1044 * a rcu_bh read-side critical section. This is an _bh
992 * critical section, so count it. 1045 * critical section, so note it.
993 */ 1046 */
994 1047
995 rcu_bh_qsctr_inc(cpu); 1048 rcu_bh_qs(cpu);
996 } 1049 }
1050 rcu_preempt_check_callbacks(cpu);
997 raise_softirq(RCU_SOFTIRQ); 1051 raise_softirq(RCU_SOFTIRQ);
998} 1052}
999 1053
@@ -1132,6 +1186,8 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1132{ 1186{
1133 unsigned long flags; 1187 unsigned long flags;
1134 1188
1189 WARN_ON_ONCE(rdp->beenonline == 0);
1190
1135 /* 1191 /*
1136 * If an RCU GP has gone long enough, go check for dyntick 1192 * If an RCU GP has gone long enough, go check for dyntick
1137 * idle CPUs and, if needed, send resched IPIs. 1193 * idle CPUs and, if needed, send resched IPIs.
@@ -1170,8 +1226,10 @@ static void rcu_process_callbacks(struct softirq_action *unused)
1170 */ 1226 */
1171 smp_mb(); /* See above block comment. */ 1227 smp_mb(); /* See above block comment. */
1172 1228
1173 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); 1229 __rcu_process_callbacks(&rcu_sched_state,
1230 &__get_cpu_var(rcu_sched_data));
1174 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); 1231 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1232 rcu_preempt_process_callbacks();
1175 1233
1176 /* 1234 /*
1177 * Memory references from any later RCU read-side critical sections 1235 * Memory references from any later RCU read-side critical sections
@@ -1227,13 +1285,13 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1227} 1285}
1228 1286
1229/* 1287/*
1230 * Queue an RCU callback for invocation after a grace period. 1288 * Queue an RCU-sched callback for invocation after a grace period.
1231 */ 1289 */
1232void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 1290void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1233{ 1291{
1234 __call_rcu(head, func, &rcu_state); 1292 __call_rcu(head, func, &rcu_sched_state);
1235} 1293}
1236EXPORT_SYMBOL_GPL(call_rcu); 1294EXPORT_SYMBOL_GPL(call_rcu_sched);
1237 1295
1238/* 1296/*
1239 * Queue an RCU for invocation after a quicker grace period. 1297 * Queue an RCU for invocation after a quicker grace period.
@@ -1305,10 +1363,11 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1305 * by the current CPU, returning 1 if so. This function is part of the 1363 * by the current CPU, returning 1 if so. This function is part of the
1306 * RCU implementation; it is -not- an exported member of the RCU API. 1364 * RCU implementation; it is -not- an exported member of the RCU API.
1307 */ 1365 */
1308int rcu_pending(int cpu) 1366static int rcu_pending(int cpu)
1309{ 1367{
1310 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || 1368 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1311 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); 1369 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1370 rcu_preempt_pending(cpu);
1312} 1371}
1313 1372
1314/* 1373/*
@@ -1320,27 +1379,46 @@ int rcu_pending(int cpu)
1320int rcu_needs_cpu(int cpu) 1379int rcu_needs_cpu(int cpu)
1321{ 1380{
1322 /* RCU callbacks either ready or pending? */ 1381 /* RCU callbacks either ready or pending? */
1323 return per_cpu(rcu_data, cpu).nxtlist || 1382 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1324 per_cpu(rcu_bh_data, cpu).nxtlist; 1383 per_cpu(rcu_bh_data, cpu).nxtlist ||
1384 rcu_preempt_needs_cpu(cpu);
1325} 1385}
1326 1386
1327/* 1387/*
1328 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" 1388 * Do boot-time initialization of a CPU's per-CPU RCU data.
1329 * approach so that we don't have to worry about how long the CPU has
1330 * been gone, or whether it ever was online previously. We do trust the
1331 * ->mynode field, as it is constant for a given struct rcu_data and
1332 * initialized during early boot.
1333 *
1334 * Note that only one online or offline event can be happening at a given
1335 * time. Note also that we can accept some slop in the rsp->completed
1336 * access due to the fact that this CPU cannot possibly have any RCU
1337 * callbacks in flight yet.
1338 */ 1389 */
1339static void __cpuinit 1390static void __init
1340rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 1391rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1341{ 1392{
1342 unsigned long flags; 1393 unsigned long flags;
1343 int i; 1394 int i;
1395 struct rcu_data *rdp = rsp->rda[cpu];
1396 struct rcu_node *rnp = rcu_get_root(rsp);
1397
1398 /* Set up local state, ensuring consistent view of global state. */
1399 spin_lock_irqsave(&rnp->lock, flags);
1400 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1401 rdp->nxtlist = NULL;
1402 for (i = 0; i < RCU_NEXT_SIZE; i++)
1403 rdp->nxttail[i] = &rdp->nxtlist;
1404 rdp->qlen = 0;
1405#ifdef CONFIG_NO_HZ
1406 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1407#endif /* #ifdef CONFIG_NO_HZ */
1408 rdp->cpu = cpu;
1409 spin_unlock_irqrestore(&rnp->lock, flags);
1410}
1411
1412/*
1413 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1414 * offline event can be happening at a given time. Note also that we
1415 * can accept some slop in the rsp->completed access due to the fact
1416 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1417 */
1418static void __cpuinit
1419rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1420{
1421 unsigned long flags;
1344 long lastcomp; 1422 long lastcomp;
1345 unsigned long mask; 1423 unsigned long mask;
1346 struct rcu_data *rdp = rsp->rda[cpu]; 1424 struct rcu_data *rdp = rsp->rda[cpu];
@@ -1354,17 +1432,9 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1354 rdp->passed_quiesc = 0; /* We could be racing with new GP, */ 1432 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1355 rdp->qs_pending = 1; /* so set up to respond to current GP. */ 1433 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1356 rdp->beenonline = 1; /* We have now been online. */ 1434 rdp->beenonline = 1; /* We have now been online. */
1435 rdp->preemptable = preemptable;
1357 rdp->passed_quiesc_completed = lastcomp - 1; 1436 rdp->passed_quiesc_completed = lastcomp - 1;
1358 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1359 rdp->nxtlist = NULL;
1360 for (i = 0; i < RCU_NEXT_SIZE; i++)
1361 rdp->nxttail[i] = &rdp->nxtlist;
1362 rdp->qlen = 0;
1363 rdp->blimit = blimit; 1437 rdp->blimit = blimit;
1364#ifdef CONFIG_NO_HZ
1365 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1366#endif /* #ifdef CONFIG_NO_HZ */
1367 rdp->cpu = cpu;
1368 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1438 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1369 1439
1370 /* 1440 /*
@@ -1405,16 +1475,16 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1405 1475
1406static void __cpuinit rcu_online_cpu(int cpu) 1476static void __cpuinit rcu_online_cpu(int cpu)
1407{ 1477{
1408 rcu_init_percpu_data(cpu, &rcu_state); 1478 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1409 rcu_init_percpu_data(cpu, &rcu_bh_state); 1479 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1410 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 1480 rcu_preempt_init_percpu_data(cpu);
1411} 1481}
1412 1482
1413/* 1483/*
1414 * Handle CPU online/offline notifcation events. 1484 * Handle CPU online/offline notification events.
1415 */ 1485 */
1416static int __cpuinit rcu_cpu_notify(struct notifier_block *self, 1486int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1417 unsigned long action, void *hcpu) 1487 unsigned long action, void *hcpu)
1418{ 1488{
1419 long cpu = (long)hcpu; 1489 long cpu = (long)hcpu;
1420 1490
@@ -1486,6 +1556,7 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1486 rnp = rsp->level[i]; 1556 rnp = rsp->level[i];
1487 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 1557 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1488 spin_lock_init(&rnp->lock); 1558 spin_lock_init(&rnp->lock);
1559 rnp->gpnum = 0;
1489 rnp->qsmask = 0; 1560 rnp->qsmask = 0;
1490 rnp->qsmaskinit = 0; 1561 rnp->qsmaskinit = 0;
1491 rnp->grplo = j * cpustride; 1562 rnp->grplo = j * cpustride;
@@ -1503,16 +1574,20 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1503 j / rsp->levelspread[i - 1]; 1574 j / rsp->levelspread[i - 1];
1504 } 1575 }
1505 rnp->level = i; 1576 rnp->level = i;
1577 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1578 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1506 } 1579 }
1507 } 1580 }
1508} 1581}
1509 1582
1510/* 1583/*
1511 * Helper macro for __rcu_init(). To be used nowhere else! 1584 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1512 * Assigns leaf node pointers into each CPU's rcu_data structure. 1585 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1586 * structure.
1513 */ 1587 */
1514#define RCU_DATA_PTR_INIT(rsp, rcu_data) \ 1588#define RCU_INIT_FLAVOR(rsp, rcu_data) \
1515do { \ 1589do { \
1590 rcu_init_one(rsp); \
1516 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ 1591 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1517 j = 0; \ 1592 j = 0; \
1518 for_each_possible_cpu(i) { \ 1593 for_each_possible_cpu(i) { \
@@ -1520,32 +1595,43 @@ do { \
1520 j++; \ 1595 j++; \
1521 per_cpu(rcu_data, i).mynode = &rnp[j]; \ 1596 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1522 (rsp)->rda[i] = &per_cpu(rcu_data, i); \ 1597 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1598 rcu_boot_init_percpu_data(i, rsp); \
1523 } \ 1599 } \
1524} while (0) 1600} while (0)
1525 1601
1526static struct notifier_block __cpuinitdata rcu_nb = { 1602#ifdef CONFIG_TREE_PREEMPT_RCU
1527 .notifier_call = rcu_cpu_notify, 1603
1528}; 1604void __init __rcu_init_preempt(void)
1605{
1606 int i; /* All used by RCU_INIT_FLAVOR(). */
1607 int j;
1608 struct rcu_node *rnp;
1609
1610 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1611}
1612
1613#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1614
1615void __init __rcu_init_preempt(void)
1616{
1617}
1618
1619#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1529 1620
1530void __init __rcu_init(void) 1621void __init __rcu_init(void)
1531{ 1622{
1532 int i; /* All used by RCU_DATA_PTR_INIT(). */ 1623 int i; /* All used by RCU_INIT_FLAVOR(). */
1533 int j; 1624 int j;
1534 struct rcu_node *rnp; 1625 struct rcu_node *rnp;
1535 1626
1536 printk(KERN_INFO "Hierarchical RCU implementation.\n"); 1627 rcu_bootup_announce();
1537#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 1628#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1538 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); 1629 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1539#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 1630#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1540 rcu_init_one(&rcu_state); 1631 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1541 RCU_DATA_PTR_INIT(&rcu_state, rcu_data); 1632 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1542 rcu_init_one(&rcu_bh_state); 1633 __rcu_init_preempt();
1543 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); 1634 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1544
1545 for_each_online_cpu(i)
1546 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1547 /* Register notifier for non-boot CPUs */
1548 register_cpu_notifier(&rcu_nb);
1549} 1635}
1550 1636
1551module_param(blimit, int, 0); 1637module_param(blimit, int, 0);
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index 5e872bbf07f5..bf8a6f9f134d 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -1,10 +1,259 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright IBM Corporation, 2008
20 *
21 * Author: Ingo Molnar <mingo@elte.hu>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25#include <linux/cache.h>
26#include <linux/spinlock.h>
27#include <linux/threads.h>
28#include <linux/cpumask.h>
29#include <linux/seqlock.h>
30
31/*
32 * Define shape of hierarchy based on NR_CPUS and CONFIG_RCU_FANOUT.
33 * In theory, it should be possible to add more levels straightforwardly.
34 * In practice, this has not been tested, so there is probably some
35 * bug somewhere.
36 */
37#define MAX_RCU_LVLS 3
38#define RCU_FANOUT (CONFIG_RCU_FANOUT)
39#define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT)
40#define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT)
41
42#if NR_CPUS <= RCU_FANOUT
43# define NUM_RCU_LVLS 1
44# define NUM_RCU_LVL_0 1
45# define NUM_RCU_LVL_1 (NR_CPUS)
46# define NUM_RCU_LVL_2 0
47# define NUM_RCU_LVL_3 0
48#elif NR_CPUS <= RCU_FANOUT_SQ
49# define NUM_RCU_LVLS 2
50# define NUM_RCU_LVL_0 1
51# define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT)
52# define NUM_RCU_LVL_2 (NR_CPUS)
53# define NUM_RCU_LVL_3 0
54#elif NR_CPUS <= RCU_FANOUT_CUBE
55# define NUM_RCU_LVLS 3
56# define NUM_RCU_LVL_0 1
57# define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ)
58# define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT))
59# define NUM_RCU_LVL_3 NR_CPUS
60#else
61# error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
62#endif /* #if (NR_CPUS) <= RCU_FANOUT */
63
64#define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
65#define NUM_RCU_NODES (RCU_SUM - NR_CPUS)
66
67/*
68 * Dynticks per-CPU state.
69 */
70struct rcu_dynticks {
71 int dynticks_nesting; /* Track nesting level, sort of. */
72 int dynticks; /* Even value for dynticks-idle, else odd. */
73 int dynticks_nmi; /* Even value for either dynticks-idle or */
74 /* not in nmi handler, else odd. So this */
75 /* remains even for nmi from irq handler. */
76};
77
78/*
79 * Definition for node within the RCU grace-period-detection hierarchy.
80 */
81struct rcu_node {
82 spinlock_t lock;
83 long gpnum; /* Current grace period for this node. */
84 /* This will either be equal to or one */
85 /* behind the root rcu_node's gpnum. */
86 unsigned long qsmask; /* CPUs or groups that need to switch in */
87 /* order for current grace period to proceed.*/
88 unsigned long qsmaskinit;
89 /* Per-GP initialization for qsmask. */
90 unsigned long grpmask; /* Mask to apply to parent qsmask. */
91 int grplo; /* lowest-numbered CPU or group here. */
92 int grphi; /* highest-numbered CPU or group here. */
93 u8 grpnum; /* CPU/group number for next level up. */
94 u8 level; /* root is at level 0. */
95 struct rcu_node *parent;
96 struct list_head blocked_tasks[2];
97 /* Tasks blocked in RCU read-side critsect. */
98} ____cacheline_internodealigned_in_smp;
99
100/* Index values for nxttail array in struct rcu_data. */
101#define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */
102#define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */
103#define RCU_NEXT_READY_TAIL 2 /* Also RCU_NEXT head. */
104#define RCU_NEXT_TAIL 3
105#define RCU_NEXT_SIZE 4
106
107/* Per-CPU data for read-copy update. */
108struct rcu_data {
109 /* 1) quiescent-state and grace-period handling : */
110 long completed; /* Track rsp->completed gp number */
111 /* in order to detect GP end. */
112 long gpnum; /* Highest gp number that this CPU */
113 /* is aware of having started. */
114 long passed_quiesc_completed;
115 /* Value of completed at time of qs. */
116 bool passed_quiesc; /* User-mode/idle loop etc. */
117 bool qs_pending; /* Core waits for quiesc state. */
118 bool beenonline; /* CPU online at least once. */
119 bool preemptable; /* Preemptable RCU? */
120 struct rcu_node *mynode; /* This CPU's leaf of hierarchy */
121 unsigned long grpmask; /* Mask to apply to leaf qsmask. */
122
123 /* 2) batch handling */
124 /*
125 * If nxtlist is not NULL, it is partitioned as follows.
126 * Any of the partitions might be empty, in which case the
127 * pointer to that partition will be equal to the pointer for
128 * the following partition. When the list is empty, all of
129 * the nxttail elements point to nxtlist, which is NULL.
130 *
131 * [*nxttail[RCU_NEXT_READY_TAIL], NULL = *nxttail[RCU_NEXT_TAIL]):
132 * Entries that might have arrived after current GP ended
133 * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]):
134 * Entries known to have arrived before current GP ended
135 * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]):
136 * Entries that batch # <= ->completed - 1: waiting for current GP
137 * [nxtlist, *nxttail[RCU_DONE_TAIL]):
138 * Entries that batch # <= ->completed
139 * The grace period for these entries has completed, and
140 * the other grace-period-completed entries may be moved
141 * here temporarily in rcu_process_callbacks().
142 */
143 struct rcu_head *nxtlist;
144 struct rcu_head **nxttail[RCU_NEXT_SIZE];
145 long qlen; /* # of queued callbacks */
146 long blimit; /* Upper limit on a processed batch */
147
148#ifdef CONFIG_NO_HZ
149 /* 3) dynticks interface. */
150 struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */
151 int dynticks_snap; /* Per-GP tracking for dynticks. */
152 int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */
153#endif /* #ifdef CONFIG_NO_HZ */
154
155 /* 4) reasons this CPU needed to be kicked by force_quiescent_state */
156#ifdef CONFIG_NO_HZ
157 unsigned long dynticks_fqs; /* Kicked due to dynticks idle. */
158#endif /* #ifdef CONFIG_NO_HZ */
159 unsigned long offline_fqs; /* Kicked due to being offline. */
160 unsigned long resched_ipi; /* Sent a resched IPI. */
161
162 /* 5) __rcu_pending() statistics. */
163 long n_rcu_pending; /* rcu_pending() calls since boot. */
164 long n_rp_qs_pending;
165 long n_rp_cb_ready;
166 long n_rp_cpu_needs_gp;
167 long n_rp_gp_completed;
168 long n_rp_gp_started;
169 long n_rp_need_fqs;
170 long n_rp_need_nothing;
171
172 int cpu;
173};
174
175/* Values for signaled field in struct rcu_state. */
176#define RCU_GP_INIT 0 /* Grace period being initialized. */
177#define RCU_SAVE_DYNTICK 1 /* Need to scan dyntick state. */
178#define RCU_FORCE_QS 2 /* Need to force quiescent state. */
179#ifdef CONFIG_NO_HZ
180#define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK
181#else /* #ifdef CONFIG_NO_HZ */
182#define RCU_SIGNAL_INIT RCU_FORCE_QS
183#endif /* #else #ifdef CONFIG_NO_HZ */
184
185#define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */
186#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
187#define RCU_SECONDS_TILL_STALL_CHECK (10 * HZ) /* for rsp->jiffies_stall */
188#define RCU_SECONDS_TILL_STALL_RECHECK (30 * HZ) /* for rsp->jiffies_stall */
189#define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */
190 /* to take at least one */
191 /* scheduling clock irq */
192 /* before ratting on them. */
193
194#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
195
196/*
197 * RCU global state, including node hierarchy. This hierarchy is
198 * represented in "heap" form in a dense array. The root (first level)
199 * of the hierarchy is in ->node[0] (referenced by ->level[0]), the second
200 * level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]),
201 * and the third level in ->node[m+1] and following (->node[m+1] referenced
202 * by ->level[2]). The number of levels is determined by the number of
203 * CPUs and by CONFIG_RCU_FANOUT. Small systems will have a "hierarchy"
204 * consisting of a single rcu_node.
205 */
206struct rcu_state {
207 struct rcu_node node[NUM_RCU_NODES]; /* Hierarchy. */
208 struct rcu_node *level[NUM_RCU_LVLS]; /* Hierarchy levels. */
209 u32 levelcnt[MAX_RCU_LVLS + 1]; /* # nodes in each level. */
210 u8 levelspread[NUM_RCU_LVLS]; /* kids/node in each level. */
211 struct rcu_data *rda[NR_CPUS]; /* array of rdp pointers. */
212
213 /* The following fields are guarded by the root rcu_node's lock. */
214
215 u8 signaled ____cacheline_internodealigned_in_smp;
216 /* Force QS state. */
217 long gpnum; /* Current gp number. */
218 long completed; /* # of last completed gp. */
219 spinlock_t onofflock; /* exclude on/offline and */
220 /* starting new GP. */
221 spinlock_t fqslock; /* Only one task forcing */
222 /* quiescent states. */
223 unsigned long jiffies_force_qs; /* Time at which to invoke */
224 /* force_quiescent_state(). */
225 unsigned long n_force_qs; /* Number of calls to */
226 /* force_quiescent_state(). */
227 unsigned long n_force_qs_lh; /* ~Number of calls leaving */
228 /* due to lock unavailable. */
229 unsigned long n_force_qs_ngp; /* Number of calls leaving */
230 /* due to no GP active. */
231#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
232 unsigned long gp_start; /* Time at which GP started, */
233 /* but in jiffies. */
234 unsigned long jiffies_stall; /* Time at which to check */
235 /* for CPU stalls. */
236#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
237#ifdef CONFIG_NO_HZ
238 long dynticks_completed; /* Value of completed @ snap. */
239#endif /* #ifdef CONFIG_NO_HZ */
240};
241
242#ifdef RCU_TREE_NONCORE
1 243
2/* 244/*
3 * RCU implementation internal declarations: 245 * RCU implementation internal declarations:
4 */ 246 */
5extern struct rcu_state rcu_state; 247extern struct rcu_state rcu_sched_state;
6DECLARE_PER_CPU(struct rcu_data, rcu_data); 248DECLARE_PER_CPU(struct rcu_data, rcu_sched_data);
7 249
8extern struct rcu_state rcu_bh_state; 250extern struct rcu_state rcu_bh_state;
9DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); 251DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);
10 252
253#ifdef CONFIG_TREE_PREEMPT_RCU
254extern struct rcu_state rcu_preempt_state;
255DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data);
256#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
257
258#endif /* #ifdef RCU_TREE_NONCORE */
259
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
new file mode 100644
index 000000000000..47789369ea59
--- /dev/null
+++ b/kernel/rcutree_plugin.h
@@ -0,0 +1,532 @@
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28#ifdef CONFIG_TREE_PREEMPT_RCU
29
30struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33/*
34 * Tell them what RCU they are running.
35 */
36static inline void rcu_bootup_announce(void)
37{
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40}
41
42/*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46long rcu_batches_completed_preempt(void)
47{
48 return rcu_preempt_state.completed;
49}
50EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52/*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55long rcu_batches_completed(void)
56{
57 return rcu_batches_completed_preempt();
58}
59EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61/*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67static void rcu_preempt_qs_record(int cpu)
68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed;
72}
73
74/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
79 */
80static void rcu_preempt_qs(int cpu)
81{
82 struct task_struct *t = current;
83 int phase;
84 struct rcu_data *rdp;
85 struct rcu_node *rnp;
86
87 if (t->rcu_read_lock_nesting &&
88 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
89
90 /* Possibly blocking in an RCU read-side critical section. */
91 rdp = rcu_preempt_state.rda[cpu];
92 rnp = rdp->mynode;
93 spin_lock(&rnp->lock);
94 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
95 t->rcu_blocked_node = rnp;
96
97 /*
98 * If this CPU has already checked in, then this task
99 * will hold up the next grace period rather than the
100 * current grace period. Queue the task accordingly.
101 * If the task is queued for the current grace period
102 * (i.e., this CPU has not yet passed through a quiescent
103 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period
105 * cannot end.
106 */
107 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
108 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */
110 spin_unlock(&rnp->lock);
111 }
112
113 /*
114 * Either we were not in an RCU read-side critical section to
115 * begin with, or we have now recorded that critical section
116 * globally. Either way, we can now note a quiescent state
117 * for this CPU. Again, if we were in an RCU read-side critical
118 * section, and if that critical section was blocking the current
119 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period.
121 */
122 rcu_preempt_qs_record(cpu);
123 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
124 RCU_READ_UNLOCK_GOT_QS);
125}
126
127/*
128 * Tree-preemptable RCU implementation for rcu_read_lock().
129 * Just increment ->rcu_read_lock_nesting, shared state will be updated
130 * if we block.
131 */
132void __rcu_read_lock(void)
133{
134 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
135 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
136}
137EXPORT_SYMBOL_GPL(__rcu_read_lock);
138
139static void rcu_read_unlock_special(struct task_struct *t)
140{
141 int empty;
142 unsigned long flags;
143 unsigned long mask;
144 struct rcu_node *rnp;
145 int special;
146
147 /* NMI handlers cannot block and cannot safely manipulate state. */
148 if (in_nmi())
149 return;
150
151 local_irq_save(flags);
152
153 /*
154 * If RCU core is waiting for this CPU to exit critical section,
155 * let it know that we have done so.
156 */
157 special = t->rcu_read_unlock_special;
158 if (special & RCU_READ_UNLOCK_NEED_QS) {
159 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
161 }
162
163 /* Hardware IRQ handlers cannot block. */
164 if (in_irq()) {
165 local_irq_restore(flags);
166 return;
167 }
168
169 /* Clean up if blocked during RCU read-side critical section. */
170 if (special & RCU_READ_UNLOCK_BLOCKED) {
171 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
172
173 /*
174 * Remove this task from the list it blocked on. The
175 * task can migrate while we acquire the lock, but at
176 * most one time. So at most two passes through loop.
177 */
178 for (;;) {
179 rnp = t->rcu_blocked_node;
180 spin_lock(&rnp->lock);
181 if (rnp == t->rcu_blocked_node)
182 break;
183 spin_unlock(&rnp->lock);
184 }
185 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
186 list_del_init(&t->rcu_node_entry);
187 t->rcu_blocked_node = NULL;
188
189 /*
190 * If this was the last task on the current list, and if
191 * we aren't waiting on any CPUs, report the quiescent state.
192 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
193 * drop rnp->lock and restore irq.
194 */
195 if (!empty && rnp->qsmask == 0 &&
196 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
197 t->rcu_read_unlock_special &=
198 ~(RCU_READ_UNLOCK_NEED_QS |
199 RCU_READ_UNLOCK_GOT_QS);
200 if (rnp->parent == NULL) {
201 /* Only one rcu_node in the tree. */
202 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
203 return;
204 }
205 /* Report up the rest of the hierarchy. */
206 mask = rnp->grpmask;
207 spin_unlock_irqrestore(&rnp->lock, flags);
208 rnp = rnp->parent;
209 spin_lock_irqsave(&rnp->lock, flags);
210 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
211 return;
212 }
213 spin_unlock(&rnp->lock);
214 }
215 local_irq_restore(flags);
216}
217
218/*
219 * Tree-preemptable RCU implementation for rcu_read_unlock().
220 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
221 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
222 * invoke rcu_read_unlock_special() to clean up after a context switch
223 * in an RCU read-side critical section and other special cases.
224 */
225void __rcu_read_unlock(void)
226{
227 struct task_struct *t = current;
228
229 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
230 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
231 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
232 rcu_read_unlock_special(t);
233}
234EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
237
238/*
239 * Scan the current list of tasks blocked within RCU read-side critical
240 * sections, printing out the tid of each.
241 */
242static void rcu_print_task_stall(struct rcu_node *rnp)
243{
244 unsigned long flags;
245 struct list_head *lp;
246 int phase = rnp->gpnum & 0x1;
247 struct task_struct *t;
248
249 if (!list_empty(&rnp->blocked_tasks[phase])) {
250 spin_lock_irqsave(&rnp->lock, flags);
251 phase = rnp->gpnum & 0x1; /* re-read under lock. */
252 lp = &rnp->blocked_tasks[phase];
253 list_for_each_entry(t, lp, rcu_node_entry)
254 printk(" P%d", t->pid);
255 spin_unlock_irqrestore(&rnp->lock, flags);
256 }
257}
258
259#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
260
261/*
262 * Check for preempted RCU readers for the specified rcu_node structure.
263 * If the caller needs a reliable answer, it must hold the rcu_node's
264 * >lock.
265 */
266static int rcu_preempted_readers(struct rcu_node *rnp)
267{
268 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
269}
270
271#ifdef CONFIG_HOTPLUG_CPU
272
273/*
274 * Handle tasklist migration for case in which all CPUs covered by the
275 * specified rcu_node have gone offline. Move them up to the root
276 * rcu_node. The reason for not just moving them to the immediate
277 * parent is to remove the need for rcu_read_unlock_special() to
278 * make more than two attempts to acquire the target rcu_node's lock.
279 *
280 * The caller must hold rnp->lock with irqs disabled.
281 */
282static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
283 struct rcu_node *rnp)
284{
285 int i;
286 struct list_head *lp;
287 struct list_head *lp_root;
288 struct rcu_node *rnp_root = rcu_get_root(rsp);
289 struct task_struct *tp;
290
291 if (rnp == rnp_root) {
292 WARN_ONCE(1, "Last CPU thought to be offlined?");
293 return; /* Shouldn't happen: at least one CPU online. */
294 }
295
296 /*
297 * Move tasks up to root rcu_node. Rely on the fact that the
298 * root rcu_node can be at most one ahead of the rest of the
299 * rcu_nodes in terms of gp_num value. This fact allows us to
300 * move the blocked_tasks[] array directly, element by element.
301 */
302 for (i = 0; i < 2; i++) {
303 lp = &rnp->blocked_tasks[i];
304 lp_root = &rnp_root->blocked_tasks[i];
305 while (!list_empty(lp)) {
306 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
307 spin_lock(&rnp_root->lock); /* irqs already disabled */
308 list_del(&tp->rcu_node_entry);
309 tp->rcu_blocked_node = rnp_root;
310 list_add(&tp->rcu_node_entry, lp_root);
311 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
312 }
313 }
314}
315
316/*
317 * Do CPU-offline processing for preemptable RCU.
318 */
319static void rcu_preempt_offline_cpu(int cpu)
320{
321 __rcu_offline_cpu(cpu, &rcu_preempt_state);
322}
323
324#endif /* #ifdef CONFIG_HOTPLUG_CPU */
325
326/*
327 * Check for a quiescent state from the current CPU. When a task blocks,
328 * the task is recorded in the corresponding CPU's rcu_node structure,
329 * which is checked elsewhere.
330 *
331 * Caller must disable hard irqs.
332 */
333static void rcu_preempt_check_callbacks(int cpu)
334{
335 struct task_struct *t = current;
336
337 if (t->rcu_read_lock_nesting == 0) {
338 t->rcu_read_unlock_special &=
339 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
340 rcu_preempt_qs_record(cpu);
341 return;
342 }
343 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
344 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
345 rcu_preempt_qs_record(cpu);
346 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
347 } else if (!(t->rcu_read_unlock_special &
348 RCU_READ_UNLOCK_NEED_QS)) {
349 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
350 }
351 }
352}
353
354/*
355 * Process callbacks for preemptable RCU.
356 */
357static void rcu_preempt_process_callbacks(void)
358{
359 __rcu_process_callbacks(&rcu_preempt_state,
360 &__get_cpu_var(rcu_preempt_data));
361}
362
363/*
364 * Queue a preemptable-RCU callback for invocation after a grace period.
365 */
366void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
367{
368 __call_rcu(head, func, &rcu_preempt_state);
369}
370EXPORT_SYMBOL_GPL(call_rcu);
371
372/*
373 * Check to see if there is any immediate preemptable-RCU-related work
374 * to be done.
375 */
376static int rcu_preempt_pending(int cpu)
377{
378 return __rcu_pending(&rcu_preempt_state,
379 &per_cpu(rcu_preempt_data, cpu));
380}
381
382/*
383 * Does preemptable RCU need the CPU to stay out of dynticks mode?
384 */
385static int rcu_preempt_needs_cpu(int cpu)
386{
387 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
388}
389
390/*
391 * Initialize preemptable RCU's per-CPU data.
392 */
393static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
394{
395 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
396}
397
398/*
399 * Check for a task exiting while in a preemptable-RCU read-side
400 * critical section, clean up if so. No need to issue warnings,
401 * as debug_check_no_locks_held() already does this if lockdep
402 * is enabled.
403 */
404void exit_rcu(void)
405{
406 struct task_struct *t = current;
407
408 if (t->rcu_read_lock_nesting == 0)
409 return;
410 t->rcu_read_lock_nesting = 1;
411 rcu_read_unlock();
412}
413
414#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
415
416/*
417 * Tell them what RCU they are running.
418 */
419static inline void rcu_bootup_announce(void)
420{
421 printk(KERN_INFO "Hierarchical RCU implementation.\n");
422}
423
424/*
425 * Return the number of RCU batches processed thus far for debug & stats.
426 */
427long rcu_batches_completed(void)
428{
429 return rcu_batches_completed_sched();
430}
431EXPORT_SYMBOL_GPL(rcu_batches_completed);
432
433/*
434 * Because preemptable RCU does not exist, we never have to check for
435 * CPUs being in quiescent states.
436 */
437static void rcu_preempt_qs(int cpu)
438{
439}
440
441#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
442
443/*
444 * Because preemptable RCU does not exist, we never have to check for
445 * tasks blocked within RCU read-side critical sections.
446 */
447static void rcu_print_task_stall(struct rcu_node *rnp)
448{
449}
450
451#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
452
453/*
454 * Because preemptable RCU does not exist, there are never any preempted
455 * RCU readers.
456 */
457static int rcu_preempted_readers(struct rcu_node *rnp)
458{
459 return 0;
460}
461
462#ifdef CONFIG_HOTPLUG_CPU
463
464/*
465 * Because preemptable RCU does not exist, it never needs to migrate
466 * tasks that were blocked within RCU read-side critical sections.
467 */
468static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
469 struct rcu_node *rnp)
470{
471}
472
473/*
474 * Because preemptable RCU does not exist, it never needs CPU-offline
475 * processing.
476 */
477static void rcu_preempt_offline_cpu(int cpu)
478{
479}
480
481#endif /* #ifdef CONFIG_HOTPLUG_CPU */
482
483/*
484 * Because preemptable RCU does not exist, it never has any callbacks
485 * to check.
486 */
487void rcu_preempt_check_callbacks(int cpu)
488{
489}
490
491/*
492 * Because preemptable RCU does not exist, it never has any callbacks
493 * to process.
494 */
495void rcu_preempt_process_callbacks(void)
496{
497}
498
499/*
500 * In classic RCU, call_rcu() is just call_rcu_sched().
501 */
502void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
503{
504 call_rcu_sched(head, func);
505}
506EXPORT_SYMBOL_GPL(call_rcu);
507
508/*
509 * Because preemptable RCU does not exist, it never has any work to do.
510 */
511static int rcu_preempt_pending(int cpu)
512{
513 return 0;
514}
515
516/*
517 * Because preemptable RCU does not exist, it never needs any CPU.
518 */
519static int rcu_preempt_needs_cpu(int cpu)
520{
521 return 0;
522}
523
524/*
525 * Because preemptable RCU does not exist, there is no per-CPU
526 * data to initialize.
527 */
528static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
529{
530}
531
532#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index fe1dcdbf1ca3..0ea1bff69727 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -43,6 +43,7 @@
43#include <linux/debugfs.h> 43#include <linux/debugfs.h>
44#include <linux/seq_file.h> 44#include <linux/seq_file.h>
45 45
46#define RCU_TREE_NONCORE
46#include "rcutree.h" 47#include "rcutree.h"
47 48
48static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) 49static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
@@ -76,8 +77,12 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
76 77
77static int show_rcudata(struct seq_file *m, void *unused) 78static int show_rcudata(struct seq_file *m, void *unused)
78{ 79{
79 seq_puts(m, "rcu:\n"); 80#ifdef CONFIG_TREE_PREEMPT_RCU
80 PRINT_RCU_DATA(rcu_data, print_one_rcu_data, m); 81 seq_puts(m, "rcu_preempt:\n");
82 PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data, m);
83#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
84 seq_puts(m, "rcu_sched:\n");
85 PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data, m);
81 seq_puts(m, "rcu_bh:\n"); 86 seq_puts(m, "rcu_bh:\n");
82 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); 87 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m);
83 return 0; 88 return 0;
@@ -102,7 +107,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp)
102 return; 107 return;
103 seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", 108 seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d",
104 rdp->cpu, 109 rdp->cpu,
105 cpu_is_offline(rdp->cpu) ? "\"Y\"" : "\"N\"", 110 cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"",
106 rdp->completed, rdp->gpnum, 111 rdp->completed, rdp->gpnum,
107 rdp->passed_quiesc, rdp->passed_quiesc_completed, 112 rdp->passed_quiesc, rdp->passed_quiesc_completed,
108 rdp->qs_pending); 113 rdp->qs_pending);
@@ -124,8 +129,12 @@ static int show_rcudata_csv(struct seq_file *m, void *unused)
124 seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); 129 seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\",");
125#endif /* #ifdef CONFIG_NO_HZ */ 130#endif /* #ifdef CONFIG_NO_HZ */
126 seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); 131 seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n");
127 seq_puts(m, "\"rcu:\"\n"); 132#ifdef CONFIG_TREE_PREEMPT_RCU
128 PRINT_RCU_DATA(rcu_data, print_one_rcu_data_csv, m); 133 seq_puts(m, "\"rcu_preempt:\"\n");
134 PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data_csv, m);
135#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
136 seq_puts(m, "\"rcu_sched:\"\n");
137 PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data_csv, m);
129 seq_puts(m, "\"rcu_bh:\"\n"); 138 seq_puts(m, "\"rcu_bh:\"\n");
130 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); 139 PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m);
131 return 0; 140 return 0;
@@ -171,8 +180,12 @@ static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp)
171 180
172static int show_rcuhier(struct seq_file *m, void *unused) 181static int show_rcuhier(struct seq_file *m, void *unused)
173{ 182{
174 seq_puts(m, "rcu:\n"); 183#ifdef CONFIG_TREE_PREEMPT_RCU
175 print_one_rcu_state(m, &rcu_state); 184 seq_puts(m, "rcu_preempt:\n");
185 print_one_rcu_state(m, &rcu_preempt_state);
186#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
187 seq_puts(m, "rcu_sched:\n");
188 print_one_rcu_state(m, &rcu_sched_state);
176 seq_puts(m, "rcu_bh:\n"); 189 seq_puts(m, "rcu_bh:\n");
177 print_one_rcu_state(m, &rcu_bh_state); 190 print_one_rcu_state(m, &rcu_bh_state);
178 return 0; 191 return 0;
@@ -193,8 +206,12 @@ static struct file_operations rcuhier_fops = {
193 206
194static int show_rcugp(struct seq_file *m, void *unused) 207static int show_rcugp(struct seq_file *m, void *unused)
195{ 208{
196 seq_printf(m, "rcu: completed=%ld gpnum=%ld\n", 209#ifdef CONFIG_TREE_PREEMPT_RCU
197 rcu_state.completed, rcu_state.gpnum); 210 seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n",
211 rcu_preempt_state.completed, rcu_preempt_state.gpnum);
212#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
213 seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n",
214 rcu_sched_state.completed, rcu_sched_state.gpnum);
198 seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", 215 seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n",
199 rcu_bh_state.completed, rcu_bh_state.gpnum); 216 rcu_bh_state.completed, rcu_bh_state.gpnum);
200 return 0; 217 return 0;
@@ -243,8 +260,12 @@ static void print_rcu_pendings(struct seq_file *m, struct rcu_state *rsp)
243 260
244static int show_rcu_pending(struct seq_file *m, void *unused) 261static int show_rcu_pending(struct seq_file *m, void *unused)
245{ 262{
246 seq_puts(m, "rcu:\n"); 263#ifdef CONFIG_TREE_PREEMPT_RCU
247 print_rcu_pendings(m, &rcu_state); 264 seq_puts(m, "rcu_preempt:\n");
265 print_rcu_pendings(m, &rcu_preempt_state);
266#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
267 seq_puts(m, "rcu_sched:\n");
268 print_rcu_pendings(m, &rcu_sched_state);
248 seq_puts(m, "rcu_bh:\n"); 269 seq_puts(m, "rcu_bh:\n");
249 print_rcu_pendings(m, &rcu_bh_state); 270 print_rcu_pendings(m, &rcu_bh_state);
250 return 0; 271 return 0;
@@ -264,62 +285,47 @@ static struct file_operations rcu_pending_fops = {
264}; 285};
265 286
266static struct dentry *rcudir; 287static struct dentry *rcudir;
267static struct dentry *datadir;
268static struct dentry *datadir_csv;
269static struct dentry *gpdir;
270static struct dentry *hierdir;
271static struct dentry *rcu_pendingdir;
272 288
273static int __init rcuclassic_trace_init(void) 289static int __init rcuclassic_trace_init(void)
274{ 290{
291 struct dentry *retval;
292
275 rcudir = debugfs_create_dir("rcu", NULL); 293 rcudir = debugfs_create_dir("rcu", NULL);
276 if (!rcudir) 294 if (!rcudir)
277 goto out; 295 goto free_out;
278 296
279 datadir = debugfs_create_file("rcudata", 0444, rcudir, 297 retval = debugfs_create_file("rcudata", 0444, rcudir,
280 NULL, &rcudata_fops); 298 NULL, &rcudata_fops);
281 if (!datadir) 299 if (!retval)
282 goto free_out; 300 goto free_out;
283 301
284 datadir_csv = debugfs_create_file("rcudata.csv", 0444, rcudir, 302 retval = debugfs_create_file("rcudata.csv", 0444, rcudir,
285 NULL, &rcudata_csv_fops); 303 NULL, &rcudata_csv_fops);
286 if (!datadir_csv) 304 if (!retval)
287 goto free_out; 305 goto free_out;
288 306
289 gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); 307 retval = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops);
290 if (!gpdir) 308 if (!retval)
291 goto free_out; 309 goto free_out;
292 310
293 hierdir = debugfs_create_file("rcuhier", 0444, rcudir, 311 retval = debugfs_create_file("rcuhier", 0444, rcudir,
294 NULL, &rcuhier_fops); 312 NULL, &rcuhier_fops);
295 if (!hierdir) 313 if (!retval)
296 goto free_out; 314 goto free_out;
297 315
298 rcu_pendingdir = debugfs_create_file("rcu_pending", 0444, rcudir, 316 retval = debugfs_create_file("rcu_pending", 0444, rcudir,
299 NULL, &rcu_pending_fops); 317 NULL, &rcu_pending_fops);
300 if (!rcu_pendingdir) 318 if (!retval)
301 goto free_out; 319 goto free_out;
302 return 0; 320 return 0;
303free_out: 321free_out:
304 if (datadir) 322 debugfs_remove_recursive(rcudir);
305 debugfs_remove(datadir);
306 if (datadir_csv)
307 debugfs_remove(datadir_csv);
308 if (gpdir)
309 debugfs_remove(gpdir);
310 debugfs_remove(rcudir);
311out:
312 return 1; 323 return 1;
313} 324}
314 325
315static void __exit rcuclassic_trace_cleanup(void) 326static void __exit rcuclassic_trace_cleanup(void)
316{ 327{
317 debugfs_remove(datadir); 328 debugfs_remove_recursive(rcudir);
318 debugfs_remove(datadir_csv);
319 debugfs_remove(gpdir);
320 debugfs_remove(hierdir);
321 debugfs_remove(rcu_pendingdir);
322 debugfs_remove(rcudir);
323} 329}
324 330
325 331
diff --git a/kernel/sched.c b/kernel/sched.c
index 1b59e265273b..e27a53685ed9 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -64,7 +64,6 @@
64#include <linux/tsacct_kern.h> 64#include <linux/tsacct_kern.h>
65#include <linux/kprobes.h> 65#include <linux/kprobes.h>
66#include <linux/delayacct.h> 66#include <linux/delayacct.h>
67#include <linux/reciprocal_div.h>
68#include <linux/unistd.h> 67#include <linux/unistd.h>
69#include <linux/pagemap.h> 68#include <linux/pagemap.h>
70#include <linux/hrtimer.h> 69#include <linux/hrtimer.h>
@@ -120,30 +119,8 @@
120 */ 119 */
121#define RUNTIME_INF ((u64)~0ULL) 120#define RUNTIME_INF ((u64)~0ULL)
122 121
123#ifdef CONFIG_SMP
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2); 122static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126 123
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
147static inline int rt_policy(int policy) 124static inline int rt_policy(int policy)
148{ 125{
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
@@ -309,8 +286,8 @@ void set_tg_uid(struct user_struct *user)
309 286
310/* 287/*
311 * Root task group. 288 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will 289 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group. 290 * be a child to this group.
314 */ 291 */
315struct task_group root_task_group; 292struct task_group root_task_group;
316 293
@@ -318,7 +295,7 @@ struct task_group root_task_group;
318/* Default task group's sched entity on each cpu */ 295/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); 296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */ 297/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; 298static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322#endif /* CONFIG_FAIR_GROUP_SCHED */ 299#endif /* CONFIG_FAIR_GROUP_SCHED */
323 300
324#ifdef CONFIG_RT_GROUP_SCHED 301#ifdef CONFIG_RT_GROUP_SCHED
@@ -616,6 +593,7 @@ struct rq {
616 593
617 unsigned char idle_at_tick; 594 unsigned char idle_at_tick;
618 /* For active balancing */ 595 /* For active balancing */
596 int post_schedule;
619 int active_balance; 597 int active_balance;
620 int push_cpu; 598 int push_cpu;
621 /* cpu of this runqueue: */ 599 /* cpu of this runqueue: */
@@ -626,6 +604,9 @@ struct rq {
626 604
627 struct task_struct *migration_thread; 605 struct task_struct *migration_thread;
628 struct list_head migration_queue; 606 struct list_head migration_queue;
607
608 u64 rt_avg;
609 u64 age_stamp;
629#endif 610#endif
630 611
631 /* calc_load related fields */ 612 /* calc_load related fields */
@@ -693,6 +674,7 @@ static inline int cpu_of(struct rq *rq)
693#define this_rq() (&__get_cpu_var(runqueues)) 674#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p)) 675#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr) 676#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
677#define raw_rq() (&__raw_get_cpu_var(runqueues))
696 678
697inline void update_rq_clock(struct rq *rq) 679inline void update_rq_clock(struct rq *rq)
698{ 680{
@@ -861,6 +843,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000;
861unsigned int sysctl_sched_shares_thresh = 4; 843unsigned int sysctl_sched_shares_thresh = 4;
862 844
863/* 845/*
846 * period over which we average the RT time consumption, measured
847 * in ms.
848 *
849 * default: 1s
850 */
851const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
852
853/*
864 * period over which we measure -rt task cpu usage in us. 854 * period over which we measure -rt task cpu usage in us.
865 * default: 1s 855 * default: 1s
866 */ 856 */
@@ -1278,12 +1268,37 @@ void wake_up_idle_cpu(int cpu)
1278} 1268}
1279#endif /* CONFIG_NO_HZ */ 1269#endif /* CONFIG_NO_HZ */
1280 1270
1271static u64 sched_avg_period(void)
1272{
1273 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1274}
1275
1276static void sched_avg_update(struct rq *rq)
1277{
1278 s64 period = sched_avg_period();
1279
1280 while ((s64)(rq->clock - rq->age_stamp) > period) {
1281 rq->age_stamp += period;
1282 rq->rt_avg /= 2;
1283 }
1284}
1285
1286static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287{
1288 rq->rt_avg += rt_delta;
1289 sched_avg_update(rq);
1290}
1291
1281#else /* !CONFIG_SMP */ 1292#else /* !CONFIG_SMP */
1282static void resched_task(struct task_struct *p) 1293static void resched_task(struct task_struct *p)
1283{ 1294{
1284 assert_spin_locked(&task_rq(p)->lock); 1295 assert_spin_locked(&task_rq(p)->lock);
1285 set_tsk_need_resched(p); 1296 set_tsk_need_resched(p);
1286} 1297}
1298
1299static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301}
1287#endif /* CONFIG_SMP */ 1302#endif /* CONFIG_SMP */
1288 1303
1289#if BITS_PER_LONG == 32 1304#if BITS_PER_LONG == 32
@@ -1513,28 +1528,35 @@ static unsigned long cpu_avg_load_per_task(int cpu)
1513 1528
1514#ifdef CONFIG_FAIR_GROUP_SCHED 1529#ifdef CONFIG_FAIR_GROUP_SCHED
1515 1530
1531struct update_shares_data {
1532 unsigned long rq_weight[NR_CPUS];
1533};
1534
1535static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1536
1516static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1537static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517 1538
1518/* 1539/*
1519 * Calculate and set the cpu's group shares. 1540 * Calculate and set the cpu's group shares.
1520 */ 1541 */
1521static void 1542static void update_group_shares_cpu(struct task_group *tg, int cpu,
1522update_group_shares_cpu(struct task_group *tg, int cpu, 1543 unsigned long sd_shares,
1523 unsigned long sd_shares, unsigned long sd_rq_weight) 1544 unsigned long sd_rq_weight,
1545 struct update_shares_data *usd)
1524{ 1546{
1525 unsigned long shares; 1547 unsigned long shares, rq_weight;
1526 unsigned long rq_weight; 1548 int boost = 0;
1527
1528 if (!tg->se[cpu])
1529 return;
1530 1549
1531 rq_weight = tg->cfs_rq[cpu]->rq_weight; 1550 rq_weight = usd->rq_weight[cpu];
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
1532 1555
1533 /* 1556 /*
1534 * \Sum shares * rq_weight 1557 * \Sum_j shares_j * rq_weight_i
1535 * shares = ----------------------- 1558 * shares_i = -----------------------------
1536 * \Sum rq_weight 1559 * \Sum_j rq_weight_j
1537 *
1538 */ 1560 */
1539 shares = (sd_shares * rq_weight) / sd_rq_weight; 1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
@@ -1545,8 +1567,8 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1545 unsigned long flags; 1567 unsigned long flags;
1546 1568
1547 spin_lock_irqsave(&rq->lock, flags); 1569 spin_lock_irqsave(&rq->lock, flags);
1548 tg->cfs_rq[cpu]->shares = shares; 1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1549 1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1550 __set_se_shares(tg->se[cpu], shares); 1572 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags); 1573 spin_unlock_irqrestore(&rq->lock, flags);
1552 } 1574 }
@@ -1559,22 +1581,30 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1559 */ 1581 */
1560static int tg_shares_up(struct task_group *tg, void *data) 1582static int tg_shares_up(struct task_group *tg, void *data)
1561{ 1583{
1562 unsigned long weight, rq_weight = 0; 1584 unsigned long weight, rq_weight = 0, shares = 0;
1563 unsigned long shares = 0; 1585 struct update_shares_data *usd;
1564 struct sched_domain *sd = data; 1586 struct sched_domain *sd = data;
1587 unsigned long flags;
1565 int i; 1588 int i;
1566 1589
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
1594 usd = &__get_cpu_var(update_shares_data);
1595
1567 for_each_cpu(i, sched_domain_span(sd)) { 1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd->rq_weight[i] = weight;
1599
1568 /* 1600 /*
1569 * If there are currently no tasks on the cpu pretend there 1601 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to 1602 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation. 1603 * run here it will not get delayed by group starvation.
1572 */ 1604 */
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight) 1605 if (!weight)
1575 weight = NICE_0_LOAD; 1606 weight = NICE_0_LOAD;
1576 1607
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight; 1608 rq_weight += weight;
1579 shares += tg->cfs_rq[i]->shares; 1609 shares += tg->cfs_rq[i]->shares;
1580 } 1610 }
@@ -1586,7 +1616,9 @@ static int tg_shares_up(struct task_group *tg, void *data)
1586 shares = tg->shares; 1616 shares = tg->shares;
1587 1617
1588 for_each_cpu(i, sched_domain_span(sd)) 1618 for_each_cpu(i, sched_domain_span(sd))
1589 update_group_shares_cpu(tg, i, shares, rq_weight); 1619 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1620
1621 local_irq_restore(flags);
1590 1622
1591 return 0; 1623 return 0;
1592} 1624}
@@ -1616,8 +1648,14 @@ static int tg_load_down(struct task_group *tg, void *data)
1616 1648
1617static void update_shares(struct sched_domain *sd) 1649static void update_shares(struct sched_domain *sd)
1618{ 1650{
1619 u64 now = cpu_clock(raw_smp_processor_id()); 1651 s64 elapsed;
1620 s64 elapsed = now - sd->last_update; 1652 u64 now;
1653
1654 if (root_task_group_empty())
1655 return;
1656
1657 now = cpu_clock(raw_smp_processor_id());
1658 elapsed = now - sd->last_update;
1621 1659
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1660 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now; 1661 sd->last_update = now;
@@ -1627,6 +1665,9 @@ static void update_shares(struct sched_domain *sd)
1627 1665
1628static void update_shares_locked(struct rq *rq, struct sched_domain *sd) 1666static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629{ 1667{
1668 if (root_task_group_empty())
1669 return;
1670
1630 spin_unlock(&rq->lock); 1671 spin_unlock(&rq->lock);
1631 update_shares(sd); 1672 update_shares(sd);
1632 spin_lock(&rq->lock); 1673 spin_lock(&rq->lock);
@@ -1634,6 +1675,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1634 1675
1635static void update_h_load(long cpu) 1676static void update_h_load(long cpu)
1636{ 1677{
1678 if (root_task_group_empty())
1679 return;
1680
1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 1681 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1638} 1682}
1639 1683
@@ -2268,8 +2312,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2268 } 2312 }
2269 2313
2270 /* Adjust by relative CPU power of the group */ 2314 /* Adjust by relative CPU power of the group */
2271 avg_load = sg_div_cpu_power(group, 2315 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2272 avg_load * SCHED_LOAD_SCALE);
2273 2316
2274 if (local_group) { 2317 if (local_group) {
2275 this_load = avg_load; 2318 this_load = avg_load;
@@ -2637,9 +2680,32 @@ void sched_fork(struct task_struct *p, int clone_flags)
2637 set_task_cpu(p, cpu); 2680 set_task_cpu(p, cpu);
2638 2681
2639 /* 2682 /*
2640 * Make sure we do not leak PI boosting priority to the child: 2683 * Make sure we do not leak PI boosting priority to the child.
2641 */ 2684 */
2642 p->prio = current->normal_prio; 2685 p->prio = current->normal_prio;
2686
2687 /*
2688 * Revert to default priority/policy on fork if requested.
2689 */
2690 if (unlikely(p->sched_reset_on_fork)) {
2691 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2692 p->policy = SCHED_NORMAL;
2693
2694 if (p->normal_prio < DEFAULT_PRIO)
2695 p->prio = DEFAULT_PRIO;
2696
2697 if (PRIO_TO_NICE(p->static_prio) < 0) {
2698 p->static_prio = NICE_TO_PRIO(0);
2699 set_load_weight(p);
2700 }
2701
2702 /*
2703 * We don't need the reset flag anymore after the fork. It has
2704 * fulfilled its duty:
2705 */
2706 p->sched_reset_on_fork = 0;
2707 }
2708
2643 if (!rt_prio(p->prio)) 2709 if (!rt_prio(p->prio))
2644 p->sched_class = &fair_sched_class; 2710 p->sched_class = &fair_sched_class;
2645 2711
@@ -2796,12 +2862,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2796{ 2862{
2797 struct mm_struct *mm = rq->prev_mm; 2863 struct mm_struct *mm = rq->prev_mm;
2798 long prev_state; 2864 long prev_state;
2799#ifdef CONFIG_SMP
2800 int post_schedule = 0;
2801
2802 if (current->sched_class->needs_post_schedule)
2803 post_schedule = current->sched_class->needs_post_schedule(rq);
2804#endif
2805 2865
2806 rq->prev_mm = NULL; 2866 rq->prev_mm = NULL;
2807 2867
@@ -2820,10 +2880,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2820 finish_arch_switch(prev); 2880 finish_arch_switch(prev);
2821 perf_counter_task_sched_in(current, cpu_of(rq)); 2881 perf_counter_task_sched_in(current, cpu_of(rq));
2822 finish_lock_switch(rq, prev); 2882 finish_lock_switch(rq, prev);
2823#ifdef CONFIG_SMP
2824 if (post_schedule)
2825 current->sched_class->post_schedule(rq);
2826#endif
2827 2883
2828 fire_sched_in_preempt_notifiers(current); 2884 fire_sched_in_preempt_notifiers(current);
2829 if (mm) 2885 if (mm)
@@ -2838,6 +2894,42 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2838 } 2894 }
2839} 2895}
2840 2896
2897#ifdef CONFIG_SMP
2898
2899/* assumes rq->lock is held */
2900static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2901{
2902 if (prev->sched_class->pre_schedule)
2903 prev->sched_class->pre_schedule(rq, prev);
2904}
2905
2906/* rq->lock is NOT held, but preemption is disabled */
2907static inline void post_schedule(struct rq *rq)
2908{
2909 if (rq->post_schedule) {
2910 unsigned long flags;
2911
2912 spin_lock_irqsave(&rq->lock, flags);
2913 if (rq->curr->sched_class->post_schedule)
2914 rq->curr->sched_class->post_schedule(rq);
2915 spin_unlock_irqrestore(&rq->lock, flags);
2916
2917 rq->post_schedule = 0;
2918 }
2919}
2920
2921#else
2922
2923static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2924{
2925}
2926
2927static inline void post_schedule(struct rq *rq)
2928{
2929}
2930
2931#endif
2932
2841/** 2933/**
2842 * schedule_tail - first thing a freshly forked thread must call. 2934 * schedule_tail - first thing a freshly forked thread must call.
2843 * @prev: the thread we just switched away from. 2935 * @prev: the thread we just switched away from.
@@ -2848,6 +2940,13 @@ asmlinkage void schedule_tail(struct task_struct *prev)
2848 struct rq *rq = this_rq(); 2940 struct rq *rq = this_rq();
2849 2941
2850 finish_task_switch(rq, prev); 2942 finish_task_switch(rq, prev);
2943
2944 /*
2945 * FIXME: do we need to worry about rq being invalidated by the
2946 * task_switch?
2947 */
2948 post_schedule(rq);
2949
2851#ifdef __ARCH_WANT_UNLOCKED_CTXSW 2950#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852 /* In this case, finish_task_switch does not reenable preemption */ 2951 /* In this case, finish_task_switch does not reenable preemption */
2853 preempt_enable(); 2952 preempt_enable();
@@ -3379,9 +3478,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3379{ 3478{
3380 const struct sched_class *class; 3479 const struct sched_class *class;
3381 3480
3382 for (class = sched_class_highest; class; class = class->next) 3481 for_each_class(class) {
3383 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) 3482 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3384 return 1; 3483 return 1;
3484 }
3385 3485
3386 return 0; 3486 return 0;
3387} 3487}
@@ -3544,7 +3644,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group,
3544 * capacity but still has some space to pick up some load 3644 * capacity but still has some space to pick up some load
3545 * from other group and save more power 3645 * from other group and save more power
3546 */ 3646 */
3547 if (sgs->sum_nr_running > sgs->group_capacity - 1) 3647 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3548 return; 3648 return;
3549 3649
3550 if (sgs->sum_nr_running > sds->leader_nr_running || 3650 if (sgs->sum_nr_running > sds->leader_nr_running ||
@@ -3611,6 +3711,77 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3611} 3711}
3612#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3712#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613 3713
3714unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3715{
3716 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3717 unsigned long smt_gain = sd->smt_gain;
3718
3719 smt_gain /= weight;
3720
3721 return smt_gain;
3722}
3723
3724unsigned long scale_rt_power(int cpu)
3725{
3726 struct rq *rq = cpu_rq(cpu);
3727 u64 total, available;
3728
3729 sched_avg_update(rq);
3730
3731 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3732 available = total - rq->rt_avg;
3733
3734 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3735 total = SCHED_LOAD_SCALE;
3736
3737 total >>= SCHED_LOAD_SHIFT;
3738
3739 return div_u64(available, total);
3740}
3741
3742static void update_cpu_power(struct sched_domain *sd, int cpu)
3743{
3744 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3745 unsigned long power = SCHED_LOAD_SCALE;
3746 struct sched_group *sdg = sd->groups;
3747
3748 /* here we could scale based on cpufreq */
3749
3750 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3751 power *= arch_scale_smt_power(sd, cpu);
3752 power >>= SCHED_LOAD_SHIFT;
3753 }
3754
3755 power *= scale_rt_power(cpu);
3756 power >>= SCHED_LOAD_SHIFT;
3757
3758 if (!power)
3759 power = 1;
3760
3761 sdg->cpu_power = power;
3762}
3763
3764static void update_group_power(struct sched_domain *sd, int cpu)
3765{
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group, *sdg = sd->groups;
3768 unsigned long power;
3769
3770 if (!child) {
3771 update_cpu_power(sd, cpu);
3772 return;
3773 }
3774
3775 power = 0;
3776
3777 group = child->groups;
3778 do {
3779 power += group->cpu_power;
3780 group = group->next;
3781 } while (group != child->groups);
3782
3783 sdg->cpu_power = power;
3784}
3614 3785
3615/** 3786/**
3616 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3787 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
@@ -3624,7 +3795,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3624 * @balance: Should we balance. 3795 * @balance: Should we balance.
3625 * @sgs: variable to hold the statistics for this group. 3796 * @sgs: variable to hold the statistics for this group.
3626 */ 3797 */
3627static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, 3798static inline void update_sg_lb_stats(struct sched_domain *sd,
3799 struct sched_group *group, int this_cpu,
3628 enum cpu_idle_type idle, int load_idx, int *sd_idle, 3800 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3629 int local_group, const struct cpumask *cpus, 3801 int local_group, const struct cpumask *cpus,
3630 int *balance, struct sg_lb_stats *sgs) 3802 int *balance, struct sg_lb_stats *sgs)
@@ -3635,8 +3807,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3635 unsigned long sum_avg_load_per_task; 3807 unsigned long sum_avg_load_per_task;
3636 unsigned long avg_load_per_task; 3808 unsigned long avg_load_per_task;
3637 3809
3638 if (local_group) 3810 if (local_group) {
3639 balance_cpu = group_first_cpu(group); 3811 balance_cpu = group_first_cpu(group);
3812 if (balance_cpu == this_cpu)
3813 update_group_power(sd, this_cpu);
3814 }
3640 3815
3641 /* Tally up the load of all CPUs in the group */ 3816 /* Tally up the load of all CPUs in the group */
3642 sum_avg_load_per_task = avg_load_per_task = 0; 3817 sum_avg_load_per_task = avg_load_per_task = 0;
@@ -3685,8 +3860,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3685 } 3860 }
3686 3861
3687 /* Adjust by relative CPU power of the group */ 3862 /* Adjust by relative CPU power of the group */
3688 sgs->avg_load = sg_div_cpu_power(group, 3863 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3689 sgs->group_load * SCHED_LOAD_SCALE);
3690 3864
3691 3865
3692 /* 3866 /*
@@ -3698,14 +3872,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3698 * normalized nr_running number somewhere that negates 3872 * normalized nr_running number somewhere that negates
3699 * the hierarchy? 3873 * the hierarchy?
3700 */ 3874 */
3701 avg_load_per_task = sg_div_cpu_power(group, 3875 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3702 sum_avg_load_per_task * SCHED_LOAD_SCALE); 3876 group->cpu_power;
3703 3877
3704 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) 3878 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3705 sgs->group_imb = 1; 3879 sgs->group_imb = 1;
3706 3880
3707 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; 3881 sgs->group_capacity =
3708 3882 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3709} 3883}
3710 3884
3711/** 3885/**
@@ -3723,9 +3897,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3723 const struct cpumask *cpus, int *balance, 3897 const struct cpumask *cpus, int *balance,
3724 struct sd_lb_stats *sds) 3898 struct sd_lb_stats *sds)
3725{ 3899{
3900 struct sched_domain *child = sd->child;
3726 struct sched_group *group = sd->groups; 3901 struct sched_group *group = sd->groups;
3727 struct sg_lb_stats sgs; 3902 struct sg_lb_stats sgs;
3728 int load_idx; 3903 int load_idx, prefer_sibling = 0;
3904
3905 if (child && child->flags & SD_PREFER_SIBLING)
3906 prefer_sibling = 1;
3729 3907
3730 init_sd_power_savings_stats(sd, sds, idle); 3908 init_sd_power_savings_stats(sd, sds, idle);
3731 load_idx = get_sd_load_idx(sd, idle); 3909 load_idx = get_sd_load_idx(sd, idle);
@@ -3736,14 +3914,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3736 local_group = cpumask_test_cpu(this_cpu, 3914 local_group = cpumask_test_cpu(this_cpu,
3737 sched_group_cpus(group)); 3915 sched_group_cpus(group));
3738 memset(&sgs, 0, sizeof(sgs)); 3916 memset(&sgs, 0, sizeof(sgs));
3739 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, 3917 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3740 local_group, cpus, balance, &sgs); 3918 local_group, cpus, balance, &sgs);
3741 3919
3742 if (local_group && balance && !(*balance)) 3920 if (local_group && balance && !(*balance))
3743 return; 3921 return;
3744 3922
3745 sds->total_load += sgs.group_load; 3923 sds->total_load += sgs.group_load;
3746 sds->total_pwr += group->__cpu_power; 3924 sds->total_pwr += group->cpu_power;
3925
3926 /*
3927 * In case the child domain prefers tasks go to siblings
3928 * first, lower the group capacity to one so that we'll try
3929 * and move all the excess tasks away.
3930 */
3931 if (prefer_sibling)
3932 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3747 3933
3748 if (local_group) { 3934 if (local_group) {
3749 sds->this_load = sgs.avg_load; 3935 sds->this_load = sgs.avg_load;
@@ -3763,7 +3949,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3763 update_sd_power_savings_stats(group, sds, local_group, &sgs); 3949 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3764 group = group->next; 3950 group = group->next;
3765 } while (group != sd->groups); 3951 } while (group != sd->groups);
3766
3767} 3952}
3768 3953
3769/** 3954/**
@@ -3801,28 +3986,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3801 * moving them. 3986 * moving them.
3802 */ 3987 */
3803 3988
3804 pwr_now += sds->busiest->__cpu_power * 3989 pwr_now += sds->busiest->cpu_power *
3805 min(sds->busiest_load_per_task, sds->max_load); 3990 min(sds->busiest_load_per_task, sds->max_load);
3806 pwr_now += sds->this->__cpu_power * 3991 pwr_now += sds->this->cpu_power *
3807 min(sds->this_load_per_task, sds->this_load); 3992 min(sds->this_load_per_task, sds->this_load);
3808 pwr_now /= SCHED_LOAD_SCALE; 3993 pwr_now /= SCHED_LOAD_SCALE;
3809 3994
3810 /* Amount of load we'd subtract */ 3995 /* Amount of load we'd subtract */
3811 tmp = sg_div_cpu_power(sds->busiest, 3996 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3812 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 3997 sds->busiest->cpu_power;
3813 if (sds->max_load > tmp) 3998 if (sds->max_load > tmp)
3814 pwr_move += sds->busiest->__cpu_power * 3999 pwr_move += sds->busiest->cpu_power *
3815 min(sds->busiest_load_per_task, sds->max_load - tmp); 4000 min(sds->busiest_load_per_task, sds->max_load - tmp);
3816 4001
3817 /* Amount of load we'd add */ 4002 /* Amount of load we'd add */
3818 if (sds->max_load * sds->busiest->__cpu_power < 4003 if (sds->max_load * sds->busiest->cpu_power <
3819 sds->busiest_load_per_task * SCHED_LOAD_SCALE) 4004 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3820 tmp = sg_div_cpu_power(sds->this, 4005 tmp = (sds->max_load * sds->busiest->cpu_power) /
3821 sds->max_load * sds->busiest->__cpu_power); 4006 sds->this->cpu_power;
3822 else 4007 else
3823 tmp = sg_div_cpu_power(sds->this, 4008 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3824 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 4009 sds->this->cpu_power;
3825 pwr_move += sds->this->__cpu_power * 4010 pwr_move += sds->this->cpu_power *
3826 min(sds->this_load_per_task, sds->this_load + tmp); 4011 min(sds->this_load_per_task, sds->this_load + tmp);
3827 pwr_move /= SCHED_LOAD_SCALE; 4012 pwr_move /= SCHED_LOAD_SCALE;
3828 4013
@@ -3857,8 +4042,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3857 sds->max_load - sds->busiest_load_per_task); 4042 sds->max_load - sds->busiest_load_per_task);
3858 4043
3859 /* How much load to actually move to equalise the imbalance */ 4044 /* How much load to actually move to equalise the imbalance */
3860 *imbalance = min(max_pull * sds->busiest->__cpu_power, 4045 *imbalance = min(max_pull * sds->busiest->cpu_power,
3861 (sds->avg_load - sds->this_load) * sds->this->__cpu_power) 4046 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3862 / SCHED_LOAD_SCALE; 4047 / SCHED_LOAD_SCALE;
3863 4048
3864 /* 4049 /*
@@ -3976,6 +4161,26 @@ ret:
3976 return NULL; 4161 return NULL;
3977} 4162}
3978 4163
4164static struct sched_group *group_of(int cpu)
4165{
4166 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4167
4168 if (!sd)
4169 return NULL;
4170
4171 return sd->groups;
4172}
4173
4174static unsigned long power_of(int cpu)
4175{
4176 struct sched_group *group = group_of(cpu);
4177
4178 if (!group)
4179 return SCHED_LOAD_SCALE;
4180
4181 return group->cpu_power;
4182}
4183
3979/* 4184/*
3980 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4185 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3981 */ 4186 */
@@ -3988,15 +4193,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3988 int i; 4193 int i;
3989 4194
3990 for_each_cpu(i, sched_group_cpus(group)) { 4195 for_each_cpu(i, sched_group_cpus(group)) {
4196 unsigned long power = power_of(i);
4197 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3991 unsigned long wl; 4198 unsigned long wl;
3992 4199
3993 if (!cpumask_test_cpu(i, cpus)) 4200 if (!cpumask_test_cpu(i, cpus))
3994 continue; 4201 continue;
3995 4202
3996 rq = cpu_rq(i); 4203 rq = cpu_rq(i);
3997 wl = weighted_cpuload(i); 4204 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4205 wl /= power;
3998 4206
3999 if (rq->nr_running == 1 && wl > imbalance) 4207 if (capacity && rq->nr_running == 1 && wl > imbalance)
4000 continue; 4208 continue;
4001 4209
4002 if (wl > max_load) { 4210 if (wl > max_load) {
@@ -5325,7 +5533,7 @@ need_resched:
5325 preempt_disable(); 5533 preempt_disable();
5326 cpu = smp_processor_id(); 5534 cpu = smp_processor_id();
5327 rq = cpu_rq(cpu); 5535 rq = cpu_rq(cpu);
5328 rcu_qsctr_inc(cpu); 5536 rcu_sched_qs(cpu);
5329 prev = rq->curr; 5537 prev = rq->curr;
5330 switch_count = &prev->nivcsw; 5538 switch_count = &prev->nivcsw;
5331 5539
@@ -5349,10 +5557,7 @@ need_resched_nonpreemptible:
5349 switch_count = &prev->nvcsw; 5557 switch_count = &prev->nvcsw;
5350 } 5558 }
5351 5559
5352#ifdef CONFIG_SMP 5560 pre_schedule(rq, prev);
5353 if (prev->sched_class->pre_schedule)
5354 prev->sched_class->pre_schedule(rq, prev);
5355#endif
5356 5561
5357 if (unlikely(!rq->nr_running)) 5562 if (unlikely(!rq->nr_running))
5358 idle_balance(cpu, rq); 5563 idle_balance(cpu, rq);
@@ -5378,6 +5583,8 @@ need_resched_nonpreemptible:
5378 } else 5583 } else
5379 spin_unlock_irq(&rq->lock); 5584 spin_unlock_irq(&rq->lock);
5380 5585
5586 post_schedule(rq);
5587
5381 if (unlikely(reacquire_kernel_lock(current) < 0)) 5588 if (unlikely(reacquire_kernel_lock(current) < 0))
5382 goto need_resched_nonpreemptible; 5589 goto need_resched_nonpreemptible;
5383 5590
@@ -6123,17 +6330,25 @@ static int __sched_setscheduler(struct task_struct *p, int policy,
6123 unsigned long flags; 6330 unsigned long flags;
6124 const struct sched_class *prev_class = p->sched_class; 6331 const struct sched_class *prev_class = p->sched_class;
6125 struct rq *rq; 6332 struct rq *rq;
6333 int reset_on_fork;
6126 6334
6127 /* may grab non-irq protected spin_locks */ 6335 /* may grab non-irq protected spin_locks */
6128 BUG_ON(in_interrupt()); 6336 BUG_ON(in_interrupt());
6129recheck: 6337recheck:
6130 /* double check policy once rq lock held */ 6338 /* double check policy once rq lock held */
6131 if (policy < 0) 6339 if (policy < 0) {
6340 reset_on_fork = p->sched_reset_on_fork;
6132 policy = oldpolicy = p->policy; 6341 policy = oldpolicy = p->policy;
6133 else if (policy != SCHED_FIFO && policy != SCHED_RR && 6342 } else {
6134 policy != SCHED_NORMAL && policy != SCHED_BATCH && 6343 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6135 policy != SCHED_IDLE) 6344 policy &= ~SCHED_RESET_ON_FORK;
6136 return -EINVAL; 6345
6346 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6347 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6348 policy != SCHED_IDLE)
6349 return -EINVAL;
6350 }
6351
6137 /* 6352 /*
6138 * Valid priorities for SCHED_FIFO and SCHED_RR are 6353 * Valid priorities for SCHED_FIFO and SCHED_RR are
6139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 6354 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
@@ -6177,6 +6392,10 @@ recheck:
6177 /* can't change other user's priorities */ 6392 /* can't change other user's priorities */
6178 if (!check_same_owner(p)) 6393 if (!check_same_owner(p))
6179 return -EPERM; 6394 return -EPERM;
6395
6396 /* Normal users shall not reset the sched_reset_on_fork flag */
6397 if (p->sched_reset_on_fork && !reset_on_fork)
6398 return -EPERM;
6180 } 6399 }
6181 6400
6182 if (user) { 6401 if (user) {
@@ -6220,6 +6439,8 @@ recheck:
6220 if (running) 6439 if (running)
6221 p->sched_class->put_prev_task(rq, p); 6440 p->sched_class->put_prev_task(rq, p);
6222 6441
6442 p->sched_reset_on_fork = reset_on_fork;
6443
6223 oldprio = p->prio; 6444 oldprio = p->prio;
6224 __setscheduler(rq, p, policy, param->sched_priority); 6445 __setscheduler(rq, p, policy, param->sched_priority);
6225 6446
@@ -6336,14 +6557,15 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6336 if (p) { 6557 if (p) {
6337 retval = security_task_getscheduler(p); 6558 retval = security_task_getscheduler(p);
6338 if (!retval) 6559 if (!retval)
6339 retval = p->policy; 6560 retval = p->policy
6561 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6340 } 6562 }
6341 read_unlock(&tasklist_lock); 6563 read_unlock(&tasklist_lock);
6342 return retval; 6564 return retval;
6343} 6565}
6344 6566
6345/** 6567/**
6346 * sys_sched_getscheduler - get the RT priority of a thread 6568 * sys_sched_getparam - get the RT priority of a thread
6347 * @pid: the pid in question. 6569 * @pid: the pid in question.
6348 * @param: structure containing the RT priority. 6570 * @param: structure containing the RT priority.
6349 */ 6571 */
@@ -6571,19 +6793,9 @@ static inline int should_resched(void)
6571 6793
6572static void __cond_resched(void) 6794static void __cond_resched(void)
6573{ 6795{
6574#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 6796 add_preempt_count(PREEMPT_ACTIVE);
6575 __might_sleep(__FILE__, __LINE__); 6797 schedule();
6576#endif 6798 sub_preempt_count(PREEMPT_ACTIVE);
6577 /*
6578 * The BKS might be reacquired before we have dropped
6579 * PREEMPT_ACTIVE, which could trigger a second
6580 * cond_resched() call.
6581 */
6582 do {
6583 add_preempt_count(PREEMPT_ACTIVE);
6584 schedule();
6585 sub_preempt_count(PREEMPT_ACTIVE);
6586 } while (need_resched());
6587} 6799}
6588 6800
6589int __sched _cond_resched(void) 6801int __sched _cond_resched(void)
@@ -6597,18 +6809,20 @@ int __sched _cond_resched(void)
6597EXPORT_SYMBOL(_cond_resched); 6809EXPORT_SYMBOL(_cond_resched);
6598 6810
6599/* 6811/*
6600 * cond_resched_lock() - if a reschedule is pending, drop the given lock, 6812 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6601 * call schedule, and on return reacquire the lock. 6813 * call schedule, and on return reacquire the lock.
6602 * 6814 *
6603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 6815 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6604 * operations here to prevent schedule() from being called twice (once via 6816 * operations here to prevent schedule() from being called twice (once via
6605 * spin_unlock(), once by hand). 6817 * spin_unlock(), once by hand).
6606 */ 6818 */
6607int cond_resched_lock(spinlock_t *lock) 6819int __cond_resched_lock(spinlock_t *lock)
6608{ 6820{
6609 int resched = should_resched(); 6821 int resched = should_resched();
6610 int ret = 0; 6822 int ret = 0;
6611 6823
6824 lockdep_assert_held(lock);
6825
6612 if (spin_needbreak(lock) || resched) { 6826 if (spin_needbreak(lock) || resched) {
6613 spin_unlock(lock); 6827 spin_unlock(lock);
6614 if (resched) 6828 if (resched)
@@ -6620,9 +6834,9 @@ int cond_resched_lock(spinlock_t *lock)
6620 } 6834 }
6621 return ret; 6835 return ret;
6622} 6836}
6623EXPORT_SYMBOL(cond_resched_lock); 6837EXPORT_SYMBOL(__cond_resched_lock);
6624 6838
6625int __sched cond_resched_softirq(void) 6839int __sched __cond_resched_softirq(void)
6626{ 6840{
6627 BUG_ON(!in_softirq()); 6841 BUG_ON(!in_softirq());
6628 6842
@@ -6634,7 +6848,7 @@ int __sched cond_resched_softirq(void)
6634 } 6848 }
6635 return 0; 6849 return 0;
6636} 6850}
6637EXPORT_SYMBOL(cond_resched_softirq); 6851EXPORT_SYMBOL(__cond_resched_softirq);
6638 6852
6639/** 6853/**
6640 * yield - yield the current processor to other threads. 6854 * yield - yield the current processor to other threads.
@@ -6658,11 +6872,13 @@ EXPORT_SYMBOL(yield);
6658 */ 6872 */
6659void __sched io_schedule(void) 6873void __sched io_schedule(void)
6660{ 6874{
6661 struct rq *rq = &__raw_get_cpu_var(runqueues); 6875 struct rq *rq = raw_rq();
6662 6876
6663 delayacct_blkio_start(); 6877 delayacct_blkio_start();
6664 atomic_inc(&rq->nr_iowait); 6878 atomic_inc(&rq->nr_iowait);
6879 current->in_iowait = 1;
6665 schedule(); 6880 schedule();
6881 current->in_iowait = 0;
6666 atomic_dec(&rq->nr_iowait); 6882 atomic_dec(&rq->nr_iowait);
6667 delayacct_blkio_end(); 6883 delayacct_blkio_end();
6668} 6884}
@@ -6670,12 +6886,14 @@ EXPORT_SYMBOL(io_schedule);
6670 6886
6671long __sched io_schedule_timeout(long timeout) 6887long __sched io_schedule_timeout(long timeout)
6672{ 6888{
6673 struct rq *rq = &__raw_get_cpu_var(runqueues); 6889 struct rq *rq = raw_rq();
6674 long ret; 6890 long ret;
6675 6891
6676 delayacct_blkio_start(); 6892 delayacct_blkio_start();
6677 atomic_inc(&rq->nr_iowait); 6893 atomic_inc(&rq->nr_iowait);
6894 current->in_iowait = 1;
6678 ret = schedule_timeout(timeout); 6895 ret = schedule_timeout(timeout);
6896 current->in_iowait = 0;
6679 atomic_dec(&rq->nr_iowait); 6897 atomic_dec(&rq->nr_iowait);
6680 delayacct_blkio_end(); 6898 delayacct_blkio_end();
6681 return ret; 6899 return ret;
@@ -6992,8 +7210,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6992 7210
6993 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 7211 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6994 /* Need help from migration thread: drop lock and wait. */ 7212 /* Need help from migration thread: drop lock and wait. */
7213 struct task_struct *mt = rq->migration_thread;
7214
7215 get_task_struct(mt);
6995 task_rq_unlock(rq, &flags); 7216 task_rq_unlock(rq, &flags);
6996 wake_up_process(rq->migration_thread); 7217 wake_up_process(rq->migration_thread);
7218 put_task_struct(mt);
6997 wait_for_completion(&req.done); 7219 wait_for_completion(&req.done);
6998 tlb_migrate_finish(p->mm); 7220 tlb_migrate_finish(p->mm);
6999 return 0; 7221 return 0;
@@ -7051,6 +7273,11 @@ fail:
7051 return ret; 7273 return ret;
7052} 7274}
7053 7275
7276#define RCU_MIGRATION_IDLE 0
7277#define RCU_MIGRATION_NEED_QS 1
7278#define RCU_MIGRATION_GOT_QS 2
7279#define RCU_MIGRATION_MUST_SYNC 3
7280
7054/* 7281/*
7055 * migration_thread - this is a highprio system thread that performs 7282 * migration_thread - this is a highprio system thread that performs
7056 * thread migration by bumping thread off CPU then 'pushing' onto 7283 * thread migration by bumping thread off CPU then 'pushing' onto
@@ -7058,6 +7285,7 @@ fail:
7058 */ 7285 */
7059static int migration_thread(void *data) 7286static int migration_thread(void *data)
7060{ 7287{
7288 int badcpu;
7061 int cpu = (long)data; 7289 int cpu = (long)data;
7062 struct rq *rq; 7290 struct rq *rq;
7063 7291
@@ -7092,8 +7320,17 @@ static int migration_thread(void *data)
7092 req = list_entry(head->next, struct migration_req, list); 7320 req = list_entry(head->next, struct migration_req, list);
7093 list_del_init(head->next); 7321 list_del_init(head->next);
7094 7322
7095 spin_unlock(&rq->lock); 7323 if (req->task != NULL) {
7096 __migrate_task(req->task, cpu, req->dest_cpu); 7324 spin_unlock(&rq->lock);
7325 __migrate_task(req->task, cpu, req->dest_cpu);
7326 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7327 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7328 spin_unlock(&rq->lock);
7329 } else {
7330 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7331 spin_unlock(&rq->lock);
7332 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7333 }
7097 local_irq_enable(); 7334 local_irq_enable();
7098 7335
7099 complete(&req->done); 7336 complete(&req->done);
@@ -7625,7 +7862,7 @@ static int __init migration_init(void)
7625 migration_call(&migration_notifier, CPU_ONLINE, cpu); 7862 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7626 register_cpu_notifier(&migration_notifier); 7863 register_cpu_notifier(&migration_notifier);
7627 7864
7628 return err; 7865 return 0;
7629} 7866}
7630early_initcall(migration_init); 7867early_initcall(migration_init);
7631#endif 7868#endif
@@ -7672,7 +7909,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7672 break; 7909 break;
7673 } 7910 }
7674 7911
7675 if (!group->__cpu_power) { 7912 if (!group->cpu_power) {
7676 printk(KERN_CONT "\n"); 7913 printk(KERN_CONT "\n");
7677 printk(KERN_ERR "ERROR: domain->cpu_power not " 7914 printk(KERN_ERR "ERROR: domain->cpu_power not "
7678 "set\n"); 7915 "set\n");
@@ -7696,9 +7933,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7696 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 7933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7697 7934
7698 printk(KERN_CONT " %s", str); 7935 printk(KERN_CONT " %s", str);
7699 if (group->__cpu_power != SCHED_LOAD_SCALE) { 7936 if (group->cpu_power != SCHED_LOAD_SCALE) {
7700 printk(KERN_CONT " (__cpu_power = %d)", 7937 printk(KERN_CONT " (cpu_power = %d)",
7701 group->__cpu_power); 7938 group->cpu_power);
7702 } 7939 }
7703 7940
7704 group = group->next; 7941 group = group->next;
@@ -7841,7 +8078,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7841 rq->rd = rd; 8078 rq->rd = rd;
7842 8079
7843 cpumask_set_cpu(rq->cpu, rd->span); 8080 cpumask_set_cpu(rq->cpu, rd->span);
7844 if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) 8081 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7845 set_rq_online(rq); 8082 set_rq_online(rq);
7846 8083
7847 spin_unlock_irqrestore(&rq->lock, flags); 8084 spin_unlock_irqrestore(&rq->lock, flags);
@@ -7983,7 +8220,7 @@ init_sched_build_groups(const struct cpumask *span,
7983 continue; 8220 continue;
7984 8221
7985 cpumask_clear(sched_group_cpus(sg)); 8222 cpumask_clear(sched_group_cpus(sg));
7986 sg->__cpu_power = 0; 8223 sg->cpu_power = 0;
7987 8224
7988 for_each_cpu(j, span) { 8225 for_each_cpu(j, span) {
7989 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 8226 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
@@ -8091,6 +8328,39 @@ struct static_sched_domain {
8091 DECLARE_BITMAP(span, CONFIG_NR_CPUS); 8328 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8092}; 8329};
8093 8330
8331struct s_data {
8332#ifdef CONFIG_NUMA
8333 int sd_allnodes;
8334 cpumask_var_t domainspan;
8335 cpumask_var_t covered;
8336 cpumask_var_t notcovered;
8337#endif
8338 cpumask_var_t nodemask;
8339 cpumask_var_t this_sibling_map;
8340 cpumask_var_t this_core_map;
8341 cpumask_var_t send_covered;
8342 cpumask_var_t tmpmask;
8343 struct sched_group **sched_group_nodes;
8344 struct root_domain *rd;
8345};
8346
8347enum s_alloc {
8348 sa_sched_groups = 0,
8349 sa_rootdomain,
8350 sa_tmpmask,
8351 sa_send_covered,
8352 sa_this_core_map,
8353 sa_this_sibling_map,
8354 sa_nodemask,
8355 sa_sched_group_nodes,
8356#ifdef CONFIG_NUMA
8357 sa_notcovered,
8358 sa_covered,
8359 sa_domainspan,
8360#endif
8361 sa_none,
8362};
8363
8094/* 8364/*
8095 * SMT sched-domains: 8365 * SMT sched-domains:
8096 */ 8366 */
@@ -8208,11 +8478,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
8208 continue; 8478 continue;
8209 } 8479 }
8210 8480
8211 sg_inc_cpu_power(sg, sd->groups->__cpu_power); 8481 sg->cpu_power += sd->groups->cpu_power;
8212 } 8482 }
8213 sg = sg->next; 8483 sg = sg->next;
8214 } while (sg != group_head); 8484 } while (sg != group_head);
8215} 8485}
8486
8487static int build_numa_sched_groups(struct s_data *d,
8488 const struct cpumask *cpu_map, int num)
8489{
8490 struct sched_domain *sd;
8491 struct sched_group *sg, *prev;
8492 int n, j;
8493
8494 cpumask_clear(d->covered);
8495 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8496 if (cpumask_empty(d->nodemask)) {
8497 d->sched_group_nodes[num] = NULL;
8498 goto out;
8499 }
8500
8501 sched_domain_node_span(num, d->domainspan);
8502 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8503
8504 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8505 GFP_KERNEL, num);
8506 if (!sg) {
8507 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8508 num);
8509 return -ENOMEM;
8510 }
8511 d->sched_group_nodes[num] = sg;
8512
8513 for_each_cpu(j, d->nodemask) {
8514 sd = &per_cpu(node_domains, j).sd;
8515 sd->groups = sg;
8516 }
8517
8518 sg->cpu_power = 0;
8519 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8520 sg->next = sg;
8521 cpumask_or(d->covered, d->covered, d->nodemask);
8522
8523 prev = sg;
8524 for (j = 0; j < nr_node_ids; j++) {
8525 n = (num + j) % nr_node_ids;
8526 cpumask_complement(d->notcovered, d->covered);
8527 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8528 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8529 if (cpumask_empty(d->tmpmask))
8530 break;
8531 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8532 if (cpumask_empty(d->tmpmask))
8533 continue;
8534 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8535 GFP_KERNEL, num);
8536 if (!sg) {
8537 printk(KERN_WARNING
8538 "Can not alloc domain group for node %d\n", j);
8539 return -ENOMEM;
8540 }
8541 sg->cpu_power = 0;
8542 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8543 sg->next = prev->next;
8544 cpumask_or(d->covered, d->covered, d->tmpmask);
8545 prev->next = sg;
8546 prev = sg;
8547 }
8548out:
8549 return 0;
8550}
8216#endif /* CONFIG_NUMA */ 8551#endif /* CONFIG_NUMA */
8217 8552
8218#ifdef CONFIG_NUMA 8553#ifdef CONFIG_NUMA
@@ -8266,15 +8601,13 @@ static void free_sched_groups(const struct cpumask *cpu_map,
8266 * there are asymmetries in the topology. If there are asymmetries, group 8601 * there are asymmetries in the topology. If there are asymmetries, group
8267 * having more cpu_power will pickup more load compared to the group having 8602 * having more cpu_power will pickup more load compared to the group having
8268 * less cpu_power. 8603 * less cpu_power.
8269 *
8270 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8271 * the maximum number of tasks a group can handle in the presence of other idle
8272 * or lightly loaded groups in the same sched domain.
8273 */ 8604 */
8274static void init_sched_groups_power(int cpu, struct sched_domain *sd) 8605static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8275{ 8606{
8276 struct sched_domain *child; 8607 struct sched_domain *child;
8277 struct sched_group *group; 8608 struct sched_group *group;
8609 long power;
8610 int weight;
8278 8611
8279 WARN_ON(!sd || !sd->groups); 8612 WARN_ON(!sd || !sd->groups);
8280 8613
@@ -8283,28 +8616,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8283 8616
8284 child = sd->child; 8617 child = sd->child;
8285 8618
8286 sd->groups->__cpu_power = 0; 8619 sd->groups->cpu_power = 0;
8287 8620
8288 /* 8621 if (!child) {
8289 * For perf policy, if the groups in child domain share resources 8622 power = SCHED_LOAD_SCALE;
8290 * (for example cores sharing some portions of the cache hierarchy 8623 weight = cpumask_weight(sched_domain_span(sd));
8291 * or SMT), then set this domain groups cpu_power such that each group 8624 /*
8292 * can handle only one task, when there are other idle groups in the 8625 * SMT siblings share the power of a single core.
8293 * same sched domain. 8626 * Usually multiple threads get a better yield out of
8294 */ 8627 * that one core than a single thread would have,
8295 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && 8628 * reflect that in sd->smt_gain.
8296 (child->flags & 8629 */
8297 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { 8630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8298 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); 8631 power *= sd->smt_gain;
8632 power /= weight;
8633 power >>= SCHED_LOAD_SHIFT;
8634 }
8635 sd->groups->cpu_power += power;
8299 return; 8636 return;
8300 } 8637 }
8301 8638
8302 /* 8639 /*
8303 * add cpu_power of each child group to this groups cpu_power 8640 * Add cpu_power of each child group to this groups cpu_power.
8304 */ 8641 */
8305 group = child->groups; 8642 group = child->groups;
8306 do { 8643 do {
8307 sg_inc_cpu_power(sd->groups, group->__cpu_power); 8644 sd->groups->cpu_power += group->cpu_power;
8308 group = group->next; 8645 group = group->next;
8309 } while (group != child->groups); 8646 } while (group != child->groups);
8310} 8647}
@@ -8378,280 +8715,285 @@ static void set_domain_attribute(struct sched_domain *sd,
8378 } 8715 }
8379} 8716}
8380 8717
8381/* 8718static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8382 * Build sched domains for a given set of cpus and attach the sched domains 8719 const struct cpumask *cpu_map)
8383 * to the individual cpus 8720{
8384 */ 8721 switch (what) {
8385static int __build_sched_domains(const struct cpumask *cpu_map, 8722 case sa_sched_groups:
8386 struct sched_domain_attr *attr) 8723 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8387{ 8724 d->sched_group_nodes = NULL;
8388 int i, err = -ENOMEM; 8725 case sa_rootdomain:
8389 struct root_domain *rd; 8726 free_rootdomain(d->rd); /* fall through */
8390 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, 8727 case sa_tmpmask:
8391 tmpmask; 8728 free_cpumask_var(d->tmpmask); /* fall through */
8729 case sa_send_covered:
8730 free_cpumask_var(d->send_covered); /* fall through */
8731 case sa_this_core_map:
8732 free_cpumask_var(d->this_core_map); /* fall through */
8733 case sa_this_sibling_map:
8734 free_cpumask_var(d->this_sibling_map); /* fall through */
8735 case sa_nodemask:
8736 free_cpumask_var(d->nodemask); /* fall through */
8737 case sa_sched_group_nodes:
8392#ifdef CONFIG_NUMA 8738#ifdef CONFIG_NUMA
8393 cpumask_var_t domainspan, covered, notcovered; 8739 kfree(d->sched_group_nodes); /* fall through */
8394 struct sched_group **sched_group_nodes = NULL; 8740 case sa_notcovered:
8395 int sd_allnodes = 0; 8741 free_cpumask_var(d->notcovered); /* fall through */
8396 8742 case sa_covered:
8397 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) 8743 free_cpumask_var(d->covered); /* fall through */
8398 goto out; 8744 case sa_domainspan:
8399 if (!alloc_cpumask_var(&covered, GFP_KERNEL)) 8745 free_cpumask_var(d->domainspan); /* fall through */
8400 goto free_domainspan; 8746#endif
8401 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL)) 8747 case sa_none:
8402 goto free_covered; 8748 break;
8403#endif 8749 }
8404 8750}
8405 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8406 goto free_notcovered;
8407 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8408 goto free_nodemask;
8409 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8410 goto free_this_sibling_map;
8411 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8412 goto free_this_core_map;
8413 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8414 goto free_send_covered;
8415 8751
8752static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8753 const struct cpumask *cpu_map)
8754{
8416#ifdef CONFIG_NUMA 8755#ifdef CONFIG_NUMA
8417 /* 8756 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8418 * Allocate the per-node list of sched groups 8757 return sa_none;
8419 */ 8758 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8420 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), 8759 return sa_domainspan;
8421 GFP_KERNEL); 8760 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8422 if (!sched_group_nodes) { 8761 return sa_covered;
8762 /* Allocate the per-node list of sched groups */
8763 d->sched_group_nodes = kcalloc(nr_node_ids,
8764 sizeof(struct sched_group *), GFP_KERNEL);
8765 if (!d->sched_group_nodes) {
8423 printk(KERN_WARNING "Can not alloc sched group node list\n"); 8766 printk(KERN_WARNING "Can not alloc sched group node list\n");
8424 goto free_tmpmask; 8767 return sa_notcovered;
8425 } 8768 }
8426#endif 8769 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8427 8770#endif
8428 rd = alloc_rootdomain(); 8771 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8429 if (!rd) { 8772 return sa_sched_group_nodes;
8773 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8774 return sa_nodemask;
8775 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8776 return sa_this_sibling_map;
8777 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8778 return sa_this_core_map;
8779 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8780 return sa_send_covered;
8781 d->rd = alloc_rootdomain();
8782 if (!d->rd) {
8430 printk(KERN_WARNING "Cannot alloc root domain\n"); 8783 printk(KERN_WARNING "Cannot alloc root domain\n");
8431 goto free_sched_groups; 8784 return sa_tmpmask;
8432 } 8785 }
8786 return sa_rootdomain;
8787}
8433 8788
8789static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8790 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8791{
8792 struct sched_domain *sd = NULL;
8434#ifdef CONFIG_NUMA 8793#ifdef CONFIG_NUMA
8435 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; 8794 struct sched_domain *parent;
8436#endif
8437
8438 /*
8439 * Set up domains for cpus specified by the cpu_map.
8440 */
8441 for_each_cpu(i, cpu_map) {
8442 struct sched_domain *sd = NULL, *p;
8443
8444 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8445
8446#ifdef CONFIG_NUMA
8447 if (cpumask_weight(cpu_map) >
8448 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8449 sd = &per_cpu(allnodes_domains, i).sd;
8450 SD_INIT(sd, ALLNODES);
8451 set_domain_attribute(sd, attr);
8452 cpumask_copy(sched_domain_span(sd), cpu_map);
8453 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8454 p = sd;
8455 sd_allnodes = 1;
8456 } else
8457 p = NULL;
8458 8795
8459 sd = &per_cpu(node_domains, i).sd; 8796 d->sd_allnodes = 0;
8460 SD_INIT(sd, NODE); 8797 if (cpumask_weight(cpu_map) >
8798 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8799 sd = &per_cpu(allnodes_domains, i).sd;
8800 SD_INIT(sd, ALLNODES);
8461 set_domain_attribute(sd, attr); 8801 set_domain_attribute(sd, attr);
8462 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); 8802 cpumask_copy(sched_domain_span(sd), cpu_map);
8463 sd->parent = p; 8803 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8464 if (p) 8804 d->sd_allnodes = 1;
8465 p->child = sd; 8805 }
8466 cpumask_and(sched_domain_span(sd), 8806 parent = sd;
8467 sched_domain_span(sd), cpu_map); 8807
8808 sd = &per_cpu(node_domains, i).sd;
8809 SD_INIT(sd, NODE);
8810 set_domain_attribute(sd, attr);
8811 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8812 sd->parent = parent;
8813 if (parent)
8814 parent->child = sd;
8815 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8468#endif 8816#endif
8817 return sd;
8818}
8469 8819
8470 p = sd; 8820static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8471 sd = &per_cpu(phys_domains, i).sd; 8821 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8472 SD_INIT(sd, CPU); 8822 struct sched_domain *parent, int i)
8473 set_domain_attribute(sd, attr); 8823{
8474 cpumask_copy(sched_domain_span(sd), nodemask); 8824 struct sched_domain *sd;
8475 sd->parent = p; 8825 sd = &per_cpu(phys_domains, i).sd;
8476 if (p) 8826 SD_INIT(sd, CPU);
8477 p->child = sd; 8827 set_domain_attribute(sd, attr);
8478 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); 8828 cpumask_copy(sched_domain_span(sd), d->nodemask);
8829 sd->parent = parent;
8830 if (parent)
8831 parent->child = sd;
8832 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8833 return sd;
8834}
8479 8835
8836static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8837 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8838 struct sched_domain *parent, int i)
8839{
8840 struct sched_domain *sd = parent;
8480#ifdef CONFIG_SCHED_MC 8841#ifdef CONFIG_SCHED_MC
8481 p = sd; 8842 sd = &per_cpu(core_domains, i).sd;
8482 sd = &per_cpu(core_domains, i).sd; 8843 SD_INIT(sd, MC);
8483 SD_INIT(sd, MC); 8844 set_domain_attribute(sd, attr);
8484 set_domain_attribute(sd, attr); 8845 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8485 cpumask_and(sched_domain_span(sd), cpu_map, 8846 sd->parent = parent;
8486 cpu_coregroup_mask(i)); 8847 parent->child = sd;
8487 sd->parent = p; 8848 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8488 p->child = sd;
8489 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8490#endif 8849#endif
8850 return sd;
8851}
8491 8852
8853static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8854 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8855 struct sched_domain *parent, int i)
8856{
8857 struct sched_domain *sd = parent;
8492#ifdef CONFIG_SCHED_SMT 8858#ifdef CONFIG_SCHED_SMT
8493 p = sd; 8859 sd = &per_cpu(cpu_domains, i).sd;
8494 sd = &per_cpu(cpu_domains, i).sd; 8860 SD_INIT(sd, SIBLING);
8495 SD_INIT(sd, SIBLING); 8861 set_domain_attribute(sd, attr);
8496 set_domain_attribute(sd, attr); 8862 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8497 cpumask_and(sched_domain_span(sd), 8863 sd->parent = parent;
8498 topology_thread_cpumask(i), cpu_map); 8864 parent->child = sd;
8499 sd->parent = p; 8865 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8500 p->child = sd;
8501 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8502#endif 8866#endif
8503 } 8867 return sd;
8868}
8504 8869
8870static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8871 const struct cpumask *cpu_map, int cpu)
8872{
8873 switch (l) {
8505#ifdef CONFIG_SCHED_SMT 8874#ifdef CONFIG_SCHED_SMT
8506 /* Set up CPU (sibling) groups */ 8875 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8507 for_each_cpu(i, cpu_map) { 8876 cpumask_and(d->this_sibling_map, cpu_map,
8508 cpumask_and(this_sibling_map, 8877 topology_thread_cpumask(cpu));
8509 topology_thread_cpumask(i), cpu_map); 8878 if (cpu == cpumask_first(d->this_sibling_map))
8510 if (i != cpumask_first(this_sibling_map)) 8879 init_sched_build_groups(d->this_sibling_map, cpu_map,
8511 continue; 8880 &cpu_to_cpu_group,
8512 8881 d->send_covered, d->tmpmask);
8513 init_sched_build_groups(this_sibling_map, cpu_map, 8882 break;
8514 &cpu_to_cpu_group,
8515 send_covered, tmpmask);
8516 }
8517#endif 8883#endif
8518
8519#ifdef CONFIG_SCHED_MC 8884#ifdef CONFIG_SCHED_MC
8520 /* Set up multi-core groups */ 8885 case SD_LV_MC: /* set up multi-core groups */
8521 for_each_cpu(i, cpu_map) { 8886 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8522 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); 8887 if (cpu == cpumask_first(d->this_core_map))
8523 if (i != cpumask_first(this_core_map)) 8888 init_sched_build_groups(d->this_core_map, cpu_map,
8524 continue; 8889 &cpu_to_core_group,
8525 8890 d->send_covered, d->tmpmask);
8526 init_sched_build_groups(this_core_map, cpu_map, 8891 break;
8527 &cpu_to_core_group,
8528 send_covered, tmpmask);
8529 }
8530#endif 8892#endif
8531 8893 case SD_LV_CPU: /* set up physical groups */
8532 /* Set up physical groups */ 8894 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8533 for (i = 0; i < nr_node_ids; i++) { 8895 if (!cpumask_empty(d->nodemask))
8534 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8896 init_sched_build_groups(d->nodemask, cpu_map,
8535 if (cpumask_empty(nodemask)) 8897 &cpu_to_phys_group,
8536 continue; 8898 d->send_covered, d->tmpmask);
8537 8899 break;
8538 init_sched_build_groups(nodemask, cpu_map,
8539 &cpu_to_phys_group,
8540 send_covered, tmpmask);
8541 }
8542
8543#ifdef CONFIG_NUMA 8900#ifdef CONFIG_NUMA
8544 /* Set up node groups */ 8901 case SD_LV_ALLNODES:
8545 if (sd_allnodes) { 8902 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8546 init_sched_build_groups(cpu_map, cpu_map, 8903 d->send_covered, d->tmpmask);
8547 &cpu_to_allnodes_group, 8904 break;
8548 send_covered, tmpmask); 8905#endif
8906 default:
8907 break;
8549 } 8908 }
8909}
8550 8910
8551 for (i = 0; i < nr_node_ids; i++) { 8911/*
8552 /* Set up node groups */ 8912 * Build sched domains for a given set of cpus and attach the sched domains
8553 struct sched_group *sg, *prev; 8913 * to the individual cpus
8554 int j; 8914 */
8555 8915static int __build_sched_domains(const struct cpumask *cpu_map,
8556 cpumask_clear(covered); 8916 struct sched_domain_attr *attr)
8557 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8917{
8558 if (cpumask_empty(nodemask)) { 8918 enum s_alloc alloc_state = sa_none;
8559 sched_group_nodes[i] = NULL; 8919 struct s_data d;
8560 continue; 8920 struct sched_domain *sd;
8561 } 8921 int i;
8922#ifdef CONFIG_NUMA
8923 d.sd_allnodes = 0;
8924#endif
8562 8925
8563 sched_domain_node_span(i, domainspan); 8926 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8564 cpumask_and(domainspan, domainspan, cpu_map); 8927 if (alloc_state != sa_rootdomain)
8928 goto error;
8929 alloc_state = sa_sched_groups;
8565 8930
8566 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), 8931 /*
8567 GFP_KERNEL, i); 8932 * Set up domains for cpus specified by the cpu_map.
8568 if (!sg) { 8933 */
8569 printk(KERN_WARNING "Can not alloc domain group for " 8934 for_each_cpu(i, cpu_map) {
8570 "node %d\n", i); 8935 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8571 goto error; 8936 cpu_map);
8572 }
8573 sched_group_nodes[i] = sg;
8574 for_each_cpu(j, nodemask) {
8575 struct sched_domain *sd;
8576 8937
8577 sd = &per_cpu(node_domains, j).sd; 8938 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8578 sd->groups = sg; 8939 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8579 } 8940 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8580 sg->__cpu_power = 0; 8941 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8581 cpumask_copy(sched_group_cpus(sg), nodemask); 8942 }
8582 sg->next = sg;
8583 cpumask_or(covered, covered, nodemask);
8584 prev = sg;
8585 8943
8586 for (j = 0; j < nr_node_ids; j++) { 8944 for_each_cpu(i, cpu_map) {
8587 int n = (i + j) % nr_node_ids; 8945 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8946 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8947 }
8588 8948
8589 cpumask_complement(notcovered, covered); 8949 /* Set up physical groups */
8590 cpumask_and(tmpmask, notcovered, cpu_map); 8950 for (i = 0; i < nr_node_ids; i++)
8591 cpumask_and(tmpmask, tmpmask, domainspan); 8951 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8592 if (cpumask_empty(tmpmask))
8593 break;
8594 8952
8595 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); 8953#ifdef CONFIG_NUMA
8596 if (cpumask_empty(tmpmask)) 8954 /* Set up node groups */
8597 continue; 8955 if (d.sd_allnodes)
8956 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8598 8957
8599 sg = kmalloc_node(sizeof(struct sched_group) + 8958 for (i = 0; i < nr_node_ids; i++)
8600 cpumask_size(), 8959 if (build_numa_sched_groups(&d, cpu_map, i))
8601 GFP_KERNEL, i); 8960 goto error;
8602 if (!sg) {
8603 printk(KERN_WARNING
8604 "Can not alloc domain group for node %d\n", j);
8605 goto error;
8606 }
8607 sg->__cpu_power = 0;
8608 cpumask_copy(sched_group_cpus(sg), tmpmask);
8609 sg->next = prev->next;
8610 cpumask_or(covered, covered, tmpmask);
8611 prev->next = sg;
8612 prev = sg;
8613 }
8614 }
8615#endif 8961#endif
8616 8962
8617 /* Calculate CPU power for physical packages and nodes */ 8963 /* Calculate CPU power for physical packages and nodes */
8618#ifdef CONFIG_SCHED_SMT 8964#ifdef CONFIG_SCHED_SMT
8619 for_each_cpu(i, cpu_map) { 8965 for_each_cpu(i, cpu_map) {
8620 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; 8966 sd = &per_cpu(cpu_domains, i).sd;
8621
8622 init_sched_groups_power(i, sd); 8967 init_sched_groups_power(i, sd);
8623 } 8968 }
8624#endif 8969#endif
8625#ifdef CONFIG_SCHED_MC 8970#ifdef CONFIG_SCHED_MC
8626 for_each_cpu(i, cpu_map) { 8971 for_each_cpu(i, cpu_map) {
8627 struct sched_domain *sd = &per_cpu(core_domains, i).sd; 8972 sd = &per_cpu(core_domains, i).sd;
8628
8629 init_sched_groups_power(i, sd); 8973 init_sched_groups_power(i, sd);
8630 } 8974 }
8631#endif 8975#endif
8632 8976
8633 for_each_cpu(i, cpu_map) { 8977 for_each_cpu(i, cpu_map) {
8634 struct sched_domain *sd = &per_cpu(phys_domains, i).sd; 8978 sd = &per_cpu(phys_domains, i).sd;
8635
8636 init_sched_groups_power(i, sd); 8979 init_sched_groups_power(i, sd);
8637 } 8980 }
8638 8981
8639#ifdef CONFIG_NUMA 8982#ifdef CONFIG_NUMA
8640 for (i = 0; i < nr_node_ids; i++) 8983 for (i = 0; i < nr_node_ids; i++)
8641 init_numa_sched_groups_power(sched_group_nodes[i]); 8984 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8642 8985
8643 if (sd_allnodes) { 8986 if (d.sd_allnodes) {
8644 struct sched_group *sg; 8987 struct sched_group *sg;
8645 8988
8646 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, 8989 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8647 tmpmask); 8990 d.tmpmask);
8648 init_numa_sched_groups_power(sg); 8991 init_numa_sched_groups_power(sg);
8649 } 8992 }
8650#endif 8993#endif
8651 8994
8652 /* Attach the domains */ 8995 /* Attach the domains */
8653 for_each_cpu(i, cpu_map) { 8996 for_each_cpu(i, cpu_map) {
8654 struct sched_domain *sd;
8655#ifdef CONFIG_SCHED_SMT 8997#ifdef CONFIG_SCHED_SMT
8656 sd = &per_cpu(cpu_domains, i).sd; 8998 sd = &per_cpu(cpu_domains, i).sd;
8657#elif defined(CONFIG_SCHED_MC) 8999#elif defined(CONFIG_SCHED_MC)
@@ -8659,44 +9001,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map,
8659#else 9001#else
8660 sd = &per_cpu(phys_domains, i).sd; 9002 sd = &per_cpu(phys_domains, i).sd;
8661#endif 9003#endif
8662 cpu_attach_domain(sd, rd, i); 9004 cpu_attach_domain(sd, d.rd, i);
8663 } 9005 }
8664 9006
8665 err = 0; 9007 d.sched_group_nodes = NULL; /* don't free this we still need it */
8666 9008 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8667free_tmpmask: 9009 return 0;
8668 free_cpumask_var(tmpmask);
8669free_send_covered:
8670 free_cpumask_var(send_covered);
8671free_this_core_map:
8672 free_cpumask_var(this_core_map);
8673free_this_sibling_map:
8674 free_cpumask_var(this_sibling_map);
8675free_nodemask:
8676 free_cpumask_var(nodemask);
8677free_notcovered:
8678#ifdef CONFIG_NUMA
8679 free_cpumask_var(notcovered);
8680free_covered:
8681 free_cpumask_var(covered);
8682free_domainspan:
8683 free_cpumask_var(domainspan);
8684out:
8685#endif
8686 return err;
8687
8688free_sched_groups:
8689#ifdef CONFIG_NUMA
8690 kfree(sched_group_nodes);
8691#endif
8692 goto free_tmpmask;
8693 9010
8694#ifdef CONFIG_NUMA
8695error: 9011error:
8696 free_sched_groups(cpu_map, tmpmask); 9012 __free_domain_allocs(&d, alloc_state, cpu_map);
8697 free_rootdomain(rd); 9013 return -ENOMEM;
8698 goto free_tmpmask;
8699#endif
8700} 9014}
8701 9015
8702static int build_sched_domains(const struct cpumask *cpu_map) 9016static int build_sched_domains(const struct cpumask *cpu_map)
@@ -9304,11 +9618,11 @@ void __init sched_init(void)
9304 * system cpu resource, based on the weight assigned to root 9618 * system cpu resource, based on the weight assigned to root
9305 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished 9619 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9306 * by letting tasks of init_task_group sit in a separate cfs_rq 9620 * by letting tasks of init_task_group sit in a separate cfs_rq
9307 * (init_cfs_rq) and having one entity represent this group of 9621 * (init_tg_cfs_rq) and having one entity represent this group of
9308 * tasks in rq->cfs (i.e init_task_group->se[] != NULL). 9622 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9309 */ 9623 */
9310 init_tg_cfs_entry(&init_task_group, 9624 init_tg_cfs_entry(&init_task_group,
9311 &per_cpu(init_cfs_rq, i), 9625 &per_cpu(init_tg_cfs_rq, i),
9312 &per_cpu(init_sched_entity, i), i, 1, 9626 &per_cpu(init_sched_entity, i), i, 1,
9313 root_task_group.se[i]); 9627 root_task_group.se[i]);
9314 9628
@@ -9334,6 +9648,7 @@ void __init sched_init(void)
9334#ifdef CONFIG_SMP 9648#ifdef CONFIG_SMP
9335 rq->sd = NULL; 9649 rq->sd = NULL;
9336 rq->rd = NULL; 9650 rq->rd = NULL;
9651 rq->post_schedule = 0;
9337 rq->active_balance = 0; 9652 rq->active_balance = 0;
9338 rq->next_balance = jiffies; 9653 rq->next_balance = jiffies;
9339 rq->push_cpu = 0; 9654 rq->push_cpu = 0;
@@ -9398,13 +9713,20 @@ void __init sched_init(void)
9398} 9713}
9399 9714
9400#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 9715#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9401void __might_sleep(char *file, int line) 9716static inline int preempt_count_equals(int preempt_offset)
9717{
9718 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9719
9720 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9721}
9722
9723void __might_sleep(char *file, int line, int preempt_offset)
9402{ 9724{
9403#ifdef in_atomic 9725#ifdef in_atomic
9404 static unsigned long prev_jiffy; /* ratelimiting */ 9726 static unsigned long prev_jiffy; /* ratelimiting */
9405 9727
9406 if ((!in_atomic() && !irqs_disabled()) || 9728 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9407 system_state != SYSTEM_RUNNING || oops_in_progress) 9729 system_state != SYSTEM_RUNNING || oops_in_progress)
9408 return; 9730 return;
9409 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9731 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9410 return; 9732 return;
@@ -10581,3 +10903,113 @@ struct cgroup_subsys cpuacct_subsys = {
10581 .subsys_id = cpuacct_subsys_id, 10903 .subsys_id = cpuacct_subsys_id,
10582}; 10904};
10583#endif /* CONFIG_CGROUP_CPUACCT */ 10905#endif /* CONFIG_CGROUP_CPUACCT */
10906
10907#ifndef CONFIG_SMP
10908
10909int rcu_expedited_torture_stats(char *page)
10910{
10911 return 0;
10912}
10913EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10914
10915void synchronize_sched_expedited(void)
10916{
10917}
10918EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10919
10920#else /* #ifndef CONFIG_SMP */
10921
10922static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10923static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10924
10925#define RCU_EXPEDITED_STATE_POST -2
10926#define RCU_EXPEDITED_STATE_IDLE -1
10927
10928static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10929
10930int rcu_expedited_torture_stats(char *page)
10931{
10932 int cnt = 0;
10933 int cpu;
10934
10935 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10936 for_each_online_cpu(cpu) {
10937 cnt += sprintf(&page[cnt], " %d:%d",
10938 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10939 }
10940 cnt += sprintf(&page[cnt], "\n");
10941 return cnt;
10942}
10943EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10944
10945static long synchronize_sched_expedited_count;
10946
10947/*
10948 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10949 * approach to force grace period to end quickly. This consumes
10950 * significant time on all CPUs, and is thus not recommended for
10951 * any sort of common-case code.
10952 *
10953 * Note that it is illegal to call this function while holding any
10954 * lock that is acquired by a CPU-hotplug notifier. Failing to
10955 * observe this restriction will result in deadlock.
10956 */
10957void synchronize_sched_expedited(void)
10958{
10959 int cpu;
10960 unsigned long flags;
10961 bool need_full_sync = 0;
10962 struct rq *rq;
10963 struct migration_req *req;
10964 long snap;
10965 int trycount = 0;
10966
10967 smp_mb(); /* ensure prior mod happens before capturing snap. */
10968 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10969 get_online_cpus();
10970 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10971 put_online_cpus();
10972 if (trycount++ < 10)
10973 udelay(trycount * num_online_cpus());
10974 else {
10975 synchronize_sched();
10976 return;
10977 }
10978 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10979 smp_mb(); /* ensure test happens before caller kfree */
10980 return;
10981 }
10982 get_online_cpus();
10983 }
10984 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10985 for_each_online_cpu(cpu) {
10986 rq = cpu_rq(cpu);
10987 req = &per_cpu(rcu_migration_req, cpu);
10988 init_completion(&req->done);
10989 req->task = NULL;
10990 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10991 spin_lock_irqsave(&rq->lock, flags);
10992 list_add(&req->list, &rq->migration_queue);
10993 spin_unlock_irqrestore(&rq->lock, flags);
10994 wake_up_process(rq->migration_thread);
10995 }
10996 for_each_online_cpu(cpu) {
10997 rcu_expedited_state = cpu;
10998 req = &per_cpu(rcu_migration_req, cpu);
10999 rq = cpu_rq(cpu);
11000 wait_for_completion(&req->done);
11001 spin_lock_irqsave(&rq->lock, flags);
11002 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11003 need_full_sync = 1;
11004 req->dest_cpu = RCU_MIGRATION_IDLE;
11005 spin_unlock_irqrestore(&rq->lock, flags);
11006 }
11007 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11012}
11013EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11014
11015#endif /* #else #ifndef CONFIG_SMP */
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c
index d014efbf947a..0f052fc674d5 100644
--- a/kernel/sched_cpupri.c
+++ b/kernel/sched_cpupri.c
@@ -127,21 +127,11 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri)
127 127
128 /* 128 /*
129 * If the cpu was currently mapped to a different value, we 129 * If the cpu was currently mapped to a different value, we
130 * first need to unmap the old value 130 * need to map it to the new value then remove the old value.
131 * Note, we must add the new value first, otherwise we risk the
132 * cpu being cleared from pri_active, and this cpu could be
133 * missed for a push or pull.
131 */ 134 */
132 if (likely(oldpri != CPUPRI_INVALID)) {
133 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
134
135 spin_lock_irqsave(&vec->lock, flags);
136
137 vec->count--;
138 if (!vec->count)
139 clear_bit(oldpri, cp->pri_active);
140 cpumask_clear_cpu(cpu, vec->mask);
141
142 spin_unlock_irqrestore(&vec->lock, flags);
143 }
144
145 if (likely(newpri != CPUPRI_INVALID)) { 135 if (likely(newpri != CPUPRI_INVALID)) {
146 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; 136 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
147 137
@@ -154,6 +144,18 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri)
154 144
155 spin_unlock_irqrestore(&vec->lock, flags); 145 spin_unlock_irqrestore(&vec->lock, flags);
156 } 146 }
147 if (likely(oldpri != CPUPRI_INVALID)) {
148 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
149
150 spin_lock_irqsave(&vec->lock, flags);
151
152 vec->count--;
153 if (!vec->count)
154 clear_bit(oldpri, cp->pri_active);
155 cpumask_clear_cpu(cpu, vec->mask);
156
157 spin_unlock_irqrestore(&vec->lock, flags);
158 }
157 159
158 *currpri = newpri; 160 *currpri = newpri;
159} 161}
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index 70c7e0b79946..5ddbd0891267 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -409,6 +409,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
409 PN(se.wait_max); 409 PN(se.wait_max);
410 PN(se.wait_sum); 410 PN(se.wait_sum);
411 P(se.wait_count); 411 P(se.wait_count);
412 PN(se.iowait_sum);
413 P(se.iowait_count);
412 P(sched_info.bkl_count); 414 P(sched_info.bkl_count);
413 P(se.nr_migrations); 415 P(se.nr_migrations);
414 P(se.nr_migrations_cold); 416 P(se.nr_migrations_cold);
@@ -479,6 +481,8 @@ void proc_sched_set_task(struct task_struct *p)
479 p->se.wait_max = 0; 481 p->se.wait_max = 0;
480 p->se.wait_sum = 0; 482 p->se.wait_sum = 0;
481 p->se.wait_count = 0; 483 p->se.wait_count = 0;
484 p->se.iowait_sum = 0;
485 p->se.iowait_count = 0;
482 p->se.sleep_max = 0; 486 p->se.sleep_max = 0;
483 p->se.sum_sleep_runtime = 0; 487 p->se.sum_sleep_runtime = 0;
484 p->se.block_max = 0; 488 p->se.block_max = 0;
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 652e8bdef9aa..aa7f84121016 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -24,7 +24,7 @@
24 24
25/* 25/*
26 * Targeted preemption latency for CPU-bound tasks: 26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 * 28 *
29 * NOTE: this latency value is not the same as the concept of 29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length 30 * 'timeslice length' - timeslices in CFS are of variable length
@@ -34,13 +34,13 @@
34 * (to see the precise effective timeslice length of your workload, 34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field) 35 * run vmstat and monitor the context-switches (cs) field)
36 */ 36 */
37unsigned int sysctl_sched_latency = 20000000ULL; 37unsigned int sysctl_sched_latency = 5000000ULL;
38 38
39/* 39/*
40 * Minimal preemption granularity for CPU-bound tasks: 40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */ 42 */
43unsigned int sysctl_sched_min_granularity = 4000000ULL; 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
44 44
45/* 45/*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
@@ -48,10 +48,10 @@ unsigned int sysctl_sched_min_granularity = 4000000ULL;
48static unsigned int sched_nr_latency = 5; 48static unsigned int sched_nr_latency = 5;
49 49
50/* 50/*
51 * After fork, child runs first. (default) If set to 0 then 51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first. 52 * parent will (try to) run first.
53 */ 53 */
54const_debug unsigned int sysctl_sched_child_runs_first = 1; 54unsigned int sysctl_sched_child_runs_first __read_mostly;
55 55
56/* 56/*
57 * sys_sched_yield() compat mode 57 * sys_sched_yield() compat mode
@@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
63 63
64/* 64/*
65 * SCHED_OTHER wake-up granularity. 65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 * 67 *
68 * This option delays the preemption effects of decoupled workloads 68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still 69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies. 70 * have immediate wakeup/sleep latencies.
71 */ 71 */
72unsigned int sysctl_sched_wakeup_granularity = 5000000UL; 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73 73
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75 75
@@ -79,11 +79,6 @@ static const struct sched_class fair_sched_class;
79 * CFS operations on generic schedulable entities: 79 * CFS operations on generic schedulable entities:
80 */ 80 */
81 81
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
87#ifdef CONFIG_FAIR_GROUP_SCHED 82#ifdef CONFIG_FAIR_GROUP_SCHED
88 83
89/* cpu runqueue to which this cfs_rq is attached */ 84/* cpu runqueue to which this cfs_rq is attached */
@@ -95,6 +90,14 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95/* An entity is a task if it doesn't "own" a runqueue */ 90/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q) 91#define entity_is_task(se) (!se->my_q)
97 92
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
98/* Walk up scheduling entities hierarchy */ 101/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \ 102#define for_each_sched_entity(se) \
100 for (; se; se = se->parent) 103 for (; se; se = se->parent)
@@ -186,7 +189,12 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse)
186 } 189 }
187} 190}
188 191
189#else /* CONFIG_FAIR_GROUP_SCHED */ 192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
190 198
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{ 200{
@@ -537,6 +545,12 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
537 schedstat_set(se->wait_count, se->wait_count + 1); 545 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum + 546 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start); 547 rq_of(cfs_rq)->clock - se->wait_start);
548#ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553#endif
540 schedstat_set(se->wait_start, 0); 554 schedstat_set(se->wait_start, 0);
541} 555}
542 556
@@ -628,8 +642,10 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 se->sleep_start = 0; 642 se->sleep_start = 0;
629 se->sum_sleep_runtime += delta; 643 se->sum_sleep_runtime += delta;
630 644
631 if (tsk) 645 if (tsk) {
632 account_scheduler_latency(tsk, delta >> 10, 1); 646 account_scheduler_latency(tsk, delta >> 10, 1);
647 trace_sched_stat_sleep(tsk, delta);
648 }
633 } 649 }
634 if (se->block_start) { 650 if (se->block_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->block_start; 651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
@@ -644,6 +660,12 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 se->sum_sleep_runtime += delta; 660 se->sum_sleep_runtime += delta;
645 661
646 if (tsk) { 662 if (tsk) {
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
666 trace_sched_stat_iowait(tsk, delta);
667 }
668
647 /* 669 /*
648 * Blocking time is in units of nanosecs, so shift by 670 * Blocking time is in units of nanosecs, so shift by
649 * 20 to get a milliseconds-range estimation of the 671 * 20 to get a milliseconds-range estimation of the
@@ -705,11 +727,11 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
705 727
706 vruntime -= thresh; 728 vruntime -= thresh;
707 } 729 }
708
709 /* ensure we never gain time by being placed backwards. */
710 vruntime = max_vruntime(se->vruntime, vruntime);
711 } 730 }
712 731
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
734
713 se->vruntime = vruntime; 735 se->vruntime = vruntime;
714} 736}
715 737
@@ -1046,17 +1068,21 @@ static void yield_task_fair(struct rq *rq)
1046 * search starts with cpus closest then further out as needed, 1068 * search starts with cpus closest then further out as needed,
1047 * so we always favor a closer, idle cpu. 1069 * so we always favor a closer, idle cpu.
1048 * Domains may include CPUs that are not usable for migration, 1070 * Domains may include CPUs that are not usable for migration,
1049 * hence we need to mask them out (cpu_active_mask) 1071 * hence we need to mask them out (rq->rd->online)
1050 * 1072 *
1051 * Returns the CPU we should wake onto. 1073 * Returns the CPU we should wake onto.
1052 */ 1074 */
1053#if defined(ARCH_HAS_SCHED_WAKE_IDLE) 1075#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1076
1077#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1078
1054static int wake_idle(int cpu, struct task_struct *p) 1079static int wake_idle(int cpu, struct task_struct *p)
1055{ 1080{
1056 struct sched_domain *sd; 1081 struct sched_domain *sd;
1057 int i; 1082 int i;
1058 unsigned int chosen_wakeup_cpu; 1083 unsigned int chosen_wakeup_cpu;
1059 int this_cpu; 1084 int this_cpu;
1085 struct rq *task_rq = task_rq(p);
1060 1086
1061 /* 1087 /*
1062 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu 1088 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
@@ -1089,10 +1115,10 @@ static int wake_idle(int cpu, struct task_struct *p)
1089 for_each_domain(cpu, sd) { 1115 for_each_domain(cpu, sd) {
1090 if ((sd->flags & SD_WAKE_IDLE) 1116 if ((sd->flags & SD_WAKE_IDLE)
1091 || ((sd->flags & SD_WAKE_IDLE_FAR) 1117 || ((sd->flags & SD_WAKE_IDLE_FAR)
1092 && !task_hot(p, task_rq(p)->clock, sd))) { 1118 && !task_hot(p, task_rq->clock, sd))) {
1093 for_each_cpu_and(i, sched_domain_span(sd), 1119 for_each_cpu_and(i, sched_domain_span(sd),
1094 &p->cpus_allowed) { 1120 &p->cpus_allowed) {
1095 if (cpu_active(i) && idle_cpu(i)) { 1121 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1096 if (i != task_cpu(p)) { 1122 if (i != task_cpu(p)) {
1097 schedstat_inc(p, 1123 schedstat_inc(p,
1098 se.nr_wakeups_idle); 1124 se.nr_wakeups_idle);
@@ -1235,7 +1261,17 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1235 tg = task_group(p); 1261 tg = task_group(p);
1236 weight = p->se.load.weight; 1262 weight = p->se.load.weight;
1237 1263
1238 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= 1264 /*
1265 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1266 * due to the sync cause above having dropped tl to 0, we'll always have
1267 * an imbalance, but there's really nothing you can do about that, so
1268 * that's good too.
1269 *
1270 * Otherwise check if either cpus are near enough in load to allow this
1271 * task to be woken on this_cpu.
1272 */
1273 balanced = !tl ||
1274 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1239 imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); 1275 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1240 1276
1241 /* 1277 /*
@@ -1278,8 +1314,6 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1278 this_rq = cpu_rq(this_cpu); 1314 this_rq = cpu_rq(this_cpu);
1279 new_cpu = prev_cpu; 1315 new_cpu = prev_cpu;
1280 1316
1281 if (prev_cpu == this_cpu)
1282 goto out;
1283 /* 1317 /*
1284 * 'this_sd' is the first domain that both 1318 * 'this_sd' is the first domain that both
1285 * this_cpu and prev_cpu are present in: 1319 * this_cpu and prev_cpu are present in:
@@ -1721,6 +1755,8 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
1721 sched_info_queued(p); 1755 sched_info_queued(p);
1722 1756
1723 update_curr(cfs_rq); 1757 update_curr(cfs_rq);
1758 if (curr)
1759 se->vruntime = curr->vruntime;
1724 place_entity(cfs_rq, se, 1); 1760 place_entity(cfs_rq, se, 1);
1725 1761
1726 /* 'curr' will be NULL if the child belongs to a different group */ 1762 /* 'curr' will be NULL if the child belongs to a different group */
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index 4569bfa7df9b..e2dc63a5815d 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -1,4 +1,4 @@
1SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) 1SCHED_FEAT(NEW_FAIR_SLEEPERS, 0)
2SCHED_FEAT(NORMALIZED_SLEEPER, 0) 2SCHED_FEAT(NORMALIZED_SLEEPER, 0)
3SCHED_FEAT(ADAPTIVE_GRAN, 1) 3SCHED_FEAT(ADAPTIVE_GRAN, 1)
4SCHED_FEAT(WAKEUP_PREEMPT, 1) 4SCHED_FEAT(WAKEUP_PREEMPT, 1)
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 3918e01994e0..2eb4bd6a526c 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -3,15 +3,18 @@
3 * policies) 3 * policies)
4 */ 4 */
5 5
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
6static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
7{ 11{
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
8 return container_of(rt_se, struct task_struct, rt); 15 return container_of(rt_se, struct task_struct, rt);
9} 16}
10 17
11#ifdef CONFIG_RT_GROUP_SCHED
12
13#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
14
15static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
16{ 19{
17 return rt_rq->rq; 20 return rt_rq->rq;
@@ -26,6 +29,11 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
26 29
27#define rt_entity_is_task(rt_se) (1) 30#define rt_entity_is_task(rt_se) (1)
28 31
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
29static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
30{ 38{
31 return container_of(rt_rq, struct rq, rt); 39 return container_of(rt_rq, struct rq, rt);
@@ -128,6 +136,11 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
128 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
129} 137}
130 138
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
131#else 144#else
132 145
133static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
@@ -602,6 +615,8 @@ static void update_curr_rt(struct rq *rq)
602 curr->se.exec_start = rq->clock; 615 curr->se.exec_start = rq->clock;
603 cpuacct_charge(curr, delta_exec); 616 cpuacct_charge(curr, delta_exec);
604 617
618 sched_rt_avg_update(rq, delta_exec);
619
605 if (!rt_bandwidth_enabled()) 620 if (!rt_bandwidth_enabled())
606 return; 621 return;
607 622
@@ -874,8 +889,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
874 889
875 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) 890 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
876 enqueue_pushable_task(rq, p); 891 enqueue_pushable_task(rq, p);
877
878 inc_cpu_load(rq, p->se.load.weight);
879} 892}
880 893
881static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) 894static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
@@ -886,8 +899,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
886 dequeue_rt_entity(rt_se); 899 dequeue_rt_entity(rt_se);
887 900
888 dequeue_pushable_task(rq, p); 901 dequeue_pushable_task(rq, p);
889
890 dec_cpu_load(rq, p->se.load.weight);
891} 902}
892 903
893/* 904/*
@@ -1064,6 +1075,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq)
1064 if (p) 1075 if (p)
1065 dequeue_pushable_task(rq, p); 1076 dequeue_pushable_task(rq, p);
1066 1077
1078#ifdef CONFIG_SMP
1079 /*
1080 * We detect this state here so that we can avoid taking the RQ
1081 * lock again later if there is no need to push
1082 */
1083 rq->post_schedule = has_pushable_tasks(rq);
1084#endif
1085
1067 return p; 1086 return p;
1068} 1087}
1069 1088
@@ -1162,13 +1181,6 @@ static int find_lowest_rq(struct task_struct *task)
1162 return -1; /* No targets found */ 1181 return -1; /* No targets found */
1163 1182
1164 /* 1183 /*
1165 * Only consider CPUs that are usable for migration.
1166 * I guess we might want to change cpupri_find() to ignore those
1167 * in the first place.
1168 */
1169 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1170
1171 /*
1172 * At this point we have built a mask of cpus representing the 1184 * At this point we have built a mask of cpus representing the
1173 * lowest priority tasks in the system. Now we want to elect 1185 * lowest priority tasks in the system. Now we want to elect
1174 * the best one based on our affinity and topology. 1186 * the best one based on our affinity and topology.
@@ -1262,11 +1274,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1262 return lowest_rq; 1274 return lowest_rq;
1263} 1275}
1264 1276
1265static inline int has_pushable_tasks(struct rq *rq)
1266{
1267 return !plist_head_empty(&rq->rt.pushable_tasks);
1268}
1269
1270static struct task_struct *pick_next_pushable_task(struct rq *rq) 1277static struct task_struct *pick_next_pushable_task(struct rq *rq)
1271{ 1278{
1272 struct task_struct *p; 1279 struct task_struct *p;
@@ -1466,23 +1473,9 @@ static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1466 pull_rt_task(rq); 1473 pull_rt_task(rq);
1467} 1474}
1468 1475
1469/*
1470 * assumes rq->lock is held
1471 */
1472static int needs_post_schedule_rt(struct rq *rq)
1473{
1474 return has_pushable_tasks(rq);
1475}
1476
1477static void post_schedule_rt(struct rq *rq) 1476static void post_schedule_rt(struct rq *rq)
1478{ 1477{
1479 /*
1480 * This is only called if needs_post_schedule_rt() indicates that
1481 * we need to push tasks away
1482 */
1483 spin_lock_irq(&rq->lock);
1484 push_rt_tasks(rq); 1478 push_rt_tasks(rq);
1485 spin_unlock_irq(&rq->lock);
1486} 1479}
1487 1480
1488/* 1481/*
@@ -1758,7 +1751,6 @@ static const struct sched_class rt_sched_class = {
1758 .rq_online = rq_online_rt, 1751 .rq_online = rq_online_rt,
1759 .rq_offline = rq_offline_rt, 1752 .rq_offline = rq_offline_rt,
1760 .pre_schedule = pre_schedule_rt, 1753 .pre_schedule = pre_schedule_rt,
1761 .needs_post_schedule = needs_post_schedule_rt,
1762 .post_schedule = post_schedule_rt, 1754 .post_schedule = post_schedule_rt,
1763 .task_wake_up = task_wake_up_rt, 1755 .task_wake_up = task_wake_up_rt,
1764 .switched_from = switched_from_rt, 1756 .switched_from = switched_from_rt,
diff --git a/kernel/softirq.c b/kernel/softirq.c
index eb5e131a0485..7db25067cd2d 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -227,7 +227,7 @@ restart:
227 preempt_count() = prev_count; 227 preempt_count() = prev_count;
228 } 228 }
229 229
230 rcu_bh_qsctr_inc(cpu); 230 rcu_bh_qs(cpu);
231 } 231 }
232 h++; 232 h++;
233 pending >>= 1; 233 pending >>= 1;
@@ -721,7 +721,7 @@ static int ksoftirqd(void * __bind_cpu)
721 preempt_enable_no_resched(); 721 preempt_enable_no_resched();
722 cond_resched(); 722 cond_resched();
723 preempt_disable(); 723 preempt_disable();
724 rcu_qsctr_inc((long)__bind_cpu); 724 rcu_sched_qs((long)__bind_cpu);
725 } 725 }
726 preempt_enable(); 726 preempt_enable();
727 set_current_state(TASK_INTERRUPTIBLE); 727 set_current_state(TASK_INTERRUPTIBLE);
diff --git a/kernel/spinlock.c b/kernel/spinlock.c
index 7932653c4ebd..5ddab730cb2f 100644
--- a/kernel/spinlock.c
+++ b/kernel/spinlock.c
@@ -21,44 +21,29 @@
21#include <linux/debug_locks.h> 21#include <linux/debug_locks.h>
22#include <linux/module.h> 22#include <linux/module.h>
23 23
24#ifndef _spin_trylock
24int __lockfunc _spin_trylock(spinlock_t *lock) 25int __lockfunc _spin_trylock(spinlock_t *lock)
25{ 26{
26 preempt_disable(); 27 return __spin_trylock(lock);
27 if (_raw_spin_trylock(lock)) {
28 spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
29 return 1;
30 }
31
32 preempt_enable();
33 return 0;
34} 28}
35EXPORT_SYMBOL(_spin_trylock); 29EXPORT_SYMBOL(_spin_trylock);
30#endif
36 31
32#ifndef _read_trylock
37int __lockfunc _read_trylock(rwlock_t *lock) 33int __lockfunc _read_trylock(rwlock_t *lock)
38{ 34{
39 preempt_disable(); 35 return __read_trylock(lock);
40 if (_raw_read_trylock(lock)) {
41 rwlock_acquire_read(&lock->dep_map, 0, 1, _RET_IP_);
42 return 1;
43 }
44
45 preempt_enable();
46 return 0;
47} 36}
48EXPORT_SYMBOL(_read_trylock); 37EXPORT_SYMBOL(_read_trylock);
38#endif
49 39
40#ifndef _write_trylock
50int __lockfunc _write_trylock(rwlock_t *lock) 41int __lockfunc _write_trylock(rwlock_t *lock)
51{ 42{
52 preempt_disable(); 43 return __write_trylock(lock);
53 if (_raw_write_trylock(lock)) {
54 rwlock_acquire(&lock->dep_map, 0, 1, _RET_IP_);
55 return 1;
56 }
57
58 preempt_enable();
59 return 0;
60} 44}
61EXPORT_SYMBOL(_write_trylock); 45EXPORT_SYMBOL(_write_trylock);
46#endif
62 47
63/* 48/*
64 * If lockdep is enabled then we use the non-preemption spin-ops 49 * If lockdep is enabled then we use the non-preemption spin-ops
@@ -67,132 +52,101 @@ EXPORT_SYMBOL(_write_trylock);
67 */ 52 */
68#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) 53#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC)
69 54
55#ifndef _read_lock
70void __lockfunc _read_lock(rwlock_t *lock) 56void __lockfunc _read_lock(rwlock_t *lock)
71{ 57{
72 preempt_disable(); 58 __read_lock(lock);
73 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
74 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
75} 59}
76EXPORT_SYMBOL(_read_lock); 60EXPORT_SYMBOL(_read_lock);
61#endif
77 62
63#ifndef _spin_lock_irqsave
78unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) 64unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock)
79{ 65{
80 unsigned long flags; 66 return __spin_lock_irqsave(lock);
81
82 local_irq_save(flags);
83 preempt_disable();
84 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
85 /*
86 * On lockdep we dont want the hand-coded irq-enable of
87 * _raw_spin_lock_flags() code, because lockdep assumes
88 * that interrupts are not re-enabled during lock-acquire:
89 */
90#ifdef CONFIG_LOCKDEP
91 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
92#else
93 _raw_spin_lock_flags(lock, &flags);
94#endif
95 return flags;
96} 67}
97EXPORT_SYMBOL(_spin_lock_irqsave); 68EXPORT_SYMBOL(_spin_lock_irqsave);
69#endif
98 70
71#ifndef _spin_lock_irq
99void __lockfunc _spin_lock_irq(spinlock_t *lock) 72void __lockfunc _spin_lock_irq(spinlock_t *lock)
100{ 73{
101 local_irq_disable(); 74 __spin_lock_irq(lock);
102 preempt_disable();
103 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
104 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
105} 75}
106EXPORT_SYMBOL(_spin_lock_irq); 76EXPORT_SYMBOL(_spin_lock_irq);
77#endif
107 78
79#ifndef _spin_lock_bh
108void __lockfunc _spin_lock_bh(spinlock_t *lock) 80void __lockfunc _spin_lock_bh(spinlock_t *lock)
109{ 81{
110 local_bh_disable(); 82 __spin_lock_bh(lock);
111 preempt_disable();
112 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
113 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
114} 83}
115EXPORT_SYMBOL(_spin_lock_bh); 84EXPORT_SYMBOL(_spin_lock_bh);
85#endif
116 86
87#ifndef _read_lock_irqsave
117unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) 88unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock)
118{ 89{
119 unsigned long flags; 90 return __read_lock_irqsave(lock);
120
121 local_irq_save(flags);
122 preempt_disable();
123 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
124 LOCK_CONTENDED_FLAGS(lock, _raw_read_trylock, _raw_read_lock,
125 _raw_read_lock_flags, &flags);
126 return flags;
127} 91}
128EXPORT_SYMBOL(_read_lock_irqsave); 92EXPORT_SYMBOL(_read_lock_irqsave);
93#endif
129 94
95#ifndef _read_lock_irq
130void __lockfunc _read_lock_irq(rwlock_t *lock) 96void __lockfunc _read_lock_irq(rwlock_t *lock)
131{ 97{
132 local_irq_disable(); 98 __read_lock_irq(lock);
133 preempt_disable();
134 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
135 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
136} 99}
137EXPORT_SYMBOL(_read_lock_irq); 100EXPORT_SYMBOL(_read_lock_irq);
101#endif
138 102
103#ifndef _read_lock_bh
139void __lockfunc _read_lock_bh(rwlock_t *lock) 104void __lockfunc _read_lock_bh(rwlock_t *lock)
140{ 105{
141 local_bh_disable(); 106 __read_lock_bh(lock);
142 preempt_disable();
143 rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_);
144 LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock);
145} 107}
146EXPORT_SYMBOL(_read_lock_bh); 108EXPORT_SYMBOL(_read_lock_bh);
109#endif
147 110
111#ifndef _write_lock_irqsave
148unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) 112unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock)
149{ 113{
150 unsigned long flags; 114 return __write_lock_irqsave(lock);
151
152 local_irq_save(flags);
153 preempt_disable();
154 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
155 LOCK_CONTENDED_FLAGS(lock, _raw_write_trylock, _raw_write_lock,
156 _raw_write_lock_flags, &flags);
157 return flags;
158} 115}
159EXPORT_SYMBOL(_write_lock_irqsave); 116EXPORT_SYMBOL(_write_lock_irqsave);
117#endif
160 118
119#ifndef _write_lock_irq
161void __lockfunc _write_lock_irq(rwlock_t *lock) 120void __lockfunc _write_lock_irq(rwlock_t *lock)
162{ 121{
163 local_irq_disable(); 122 __write_lock_irq(lock);
164 preempt_disable();
165 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
166 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
167} 123}
168EXPORT_SYMBOL(_write_lock_irq); 124EXPORT_SYMBOL(_write_lock_irq);
125#endif
169 126
127#ifndef _write_lock_bh
170void __lockfunc _write_lock_bh(rwlock_t *lock) 128void __lockfunc _write_lock_bh(rwlock_t *lock)
171{ 129{
172 local_bh_disable(); 130 __write_lock_bh(lock);
173 preempt_disable();
174 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
175 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
176} 131}
177EXPORT_SYMBOL(_write_lock_bh); 132EXPORT_SYMBOL(_write_lock_bh);
133#endif
178 134
135#ifndef _spin_lock
179void __lockfunc _spin_lock(spinlock_t *lock) 136void __lockfunc _spin_lock(spinlock_t *lock)
180{ 137{
181 preempt_disable(); 138 __spin_lock(lock);
182 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
183 LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock);
184} 139}
185
186EXPORT_SYMBOL(_spin_lock); 140EXPORT_SYMBOL(_spin_lock);
141#endif
187 142
143#ifndef _write_lock
188void __lockfunc _write_lock(rwlock_t *lock) 144void __lockfunc _write_lock(rwlock_t *lock)
189{ 145{
190 preempt_disable(); 146 __write_lock(lock);
191 rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_);
192 LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock);
193} 147}
194
195EXPORT_SYMBOL(_write_lock); 148EXPORT_SYMBOL(_write_lock);
149#endif
196 150
197#else /* CONFIG_PREEMPT: */ 151#else /* CONFIG_PREEMPT: */
198 152
@@ -318,125 +272,109 @@ EXPORT_SYMBOL(_spin_lock_nest_lock);
318 272
319#endif 273#endif
320 274
275#ifndef _spin_unlock
321void __lockfunc _spin_unlock(spinlock_t *lock) 276void __lockfunc _spin_unlock(spinlock_t *lock)
322{ 277{
323 spin_release(&lock->dep_map, 1, _RET_IP_); 278 __spin_unlock(lock);
324 _raw_spin_unlock(lock);
325 preempt_enable();
326} 279}
327EXPORT_SYMBOL(_spin_unlock); 280EXPORT_SYMBOL(_spin_unlock);
281#endif
328 282
283#ifndef _write_unlock
329void __lockfunc _write_unlock(rwlock_t *lock) 284void __lockfunc _write_unlock(rwlock_t *lock)
330{ 285{
331 rwlock_release(&lock->dep_map, 1, _RET_IP_); 286 __write_unlock(lock);
332 _raw_write_unlock(lock);
333 preempt_enable();
334} 287}
335EXPORT_SYMBOL(_write_unlock); 288EXPORT_SYMBOL(_write_unlock);
289#endif
336 290
291#ifndef _read_unlock
337void __lockfunc _read_unlock(rwlock_t *lock) 292void __lockfunc _read_unlock(rwlock_t *lock)
338{ 293{
339 rwlock_release(&lock->dep_map, 1, _RET_IP_); 294 __read_unlock(lock);
340 _raw_read_unlock(lock);
341 preempt_enable();
342} 295}
343EXPORT_SYMBOL(_read_unlock); 296EXPORT_SYMBOL(_read_unlock);
297#endif
344 298
299#ifndef _spin_unlock_irqrestore
345void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) 300void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
346{ 301{
347 spin_release(&lock->dep_map, 1, _RET_IP_); 302 __spin_unlock_irqrestore(lock, flags);
348 _raw_spin_unlock(lock);
349 local_irq_restore(flags);
350 preempt_enable();
351} 303}
352EXPORT_SYMBOL(_spin_unlock_irqrestore); 304EXPORT_SYMBOL(_spin_unlock_irqrestore);
305#endif
353 306
307#ifndef _spin_unlock_irq
354void __lockfunc _spin_unlock_irq(spinlock_t *lock) 308void __lockfunc _spin_unlock_irq(spinlock_t *lock)
355{ 309{
356 spin_release(&lock->dep_map, 1, _RET_IP_); 310 __spin_unlock_irq(lock);
357 _raw_spin_unlock(lock);
358 local_irq_enable();
359 preempt_enable();
360} 311}
361EXPORT_SYMBOL(_spin_unlock_irq); 312EXPORT_SYMBOL(_spin_unlock_irq);
313#endif
362 314
315#ifndef _spin_unlock_bh
363void __lockfunc _spin_unlock_bh(spinlock_t *lock) 316void __lockfunc _spin_unlock_bh(spinlock_t *lock)
364{ 317{
365 spin_release(&lock->dep_map, 1, _RET_IP_); 318 __spin_unlock_bh(lock);
366 _raw_spin_unlock(lock);
367 preempt_enable_no_resched();
368 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
369} 319}
370EXPORT_SYMBOL(_spin_unlock_bh); 320EXPORT_SYMBOL(_spin_unlock_bh);
321#endif
371 322
323#ifndef _read_unlock_irqrestore
372void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) 324void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
373{ 325{
374 rwlock_release(&lock->dep_map, 1, _RET_IP_); 326 __read_unlock_irqrestore(lock, flags);
375 _raw_read_unlock(lock);
376 local_irq_restore(flags);
377 preempt_enable();
378} 327}
379EXPORT_SYMBOL(_read_unlock_irqrestore); 328EXPORT_SYMBOL(_read_unlock_irqrestore);
329#endif
380 330
331#ifndef _read_unlock_irq
381void __lockfunc _read_unlock_irq(rwlock_t *lock) 332void __lockfunc _read_unlock_irq(rwlock_t *lock)
382{ 333{
383 rwlock_release(&lock->dep_map, 1, _RET_IP_); 334 __read_unlock_irq(lock);
384 _raw_read_unlock(lock);
385 local_irq_enable();
386 preempt_enable();
387} 335}
388EXPORT_SYMBOL(_read_unlock_irq); 336EXPORT_SYMBOL(_read_unlock_irq);
337#endif
389 338
339#ifndef _read_unlock_bh
390void __lockfunc _read_unlock_bh(rwlock_t *lock) 340void __lockfunc _read_unlock_bh(rwlock_t *lock)
391{ 341{
392 rwlock_release(&lock->dep_map, 1, _RET_IP_); 342 __read_unlock_bh(lock);
393 _raw_read_unlock(lock);
394 preempt_enable_no_resched();
395 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
396} 343}
397EXPORT_SYMBOL(_read_unlock_bh); 344EXPORT_SYMBOL(_read_unlock_bh);
345#endif
398 346
347#ifndef _write_unlock_irqrestore
399void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) 348void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
400{ 349{
401 rwlock_release(&lock->dep_map, 1, _RET_IP_); 350 __write_unlock_irqrestore(lock, flags);
402 _raw_write_unlock(lock);
403 local_irq_restore(flags);
404 preempt_enable();
405} 351}
406EXPORT_SYMBOL(_write_unlock_irqrestore); 352EXPORT_SYMBOL(_write_unlock_irqrestore);
353#endif
407 354
355#ifndef _write_unlock_irq
408void __lockfunc _write_unlock_irq(rwlock_t *lock) 356void __lockfunc _write_unlock_irq(rwlock_t *lock)
409{ 357{
410 rwlock_release(&lock->dep_map, 1, _RET_IP_); 358 __write_unlock_irq(lock);
411 _raw_write_unlock(lock);
412 local_irq_enable();
413 preempt_enable();
414} 359}
415EXPORT_SYMBOL(_write_unlock_irq); 360EXPORT_SYMBOL(_write_unlock_irq);
361#endif
416 362
363#ifndef _write_unlock_bh
417void __lockfunc _write_unlock_bh(rwlock_t *lock) 364void __lockfunc _write_unlock_bh(rwlock_t *lock)
418{ 365{
419 rwlock_release(&lock->dep_map, 1, _RET_IP_); 366 __write_unlock_bh(lock);
420 _raw_write_unlock(lock);
421 preempt_enable_no_resched();
422 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
423} 367}
424EXPORT_SYMBOL(_write_unlock_bh); 368EXPORT_SYMBOL(_write_unlock_bh);
369#endif
425 370
371#ifndef _spin_trylock_bh
426int __lockfunc _spin_trylock_bh(spinlock_t *lock) 372int __lockfunc _spin_trylock_bh(spinlock_t *lock)
427{ 373{
428 local_bh_disable(); 374 return __spin_trylock_bh(lock);
429 preempt_disable();
430 if (_raw_spin_trylock(lock)) {
431 spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
432 return 1;
433 }
434
435 preempt_enable_no_resched();
436 local_bh_enable_ip((unsigned long)__builtin_return_address(0));
437 return 0;
438} 375}
439EXPORT_SYMBOL(_spin_trylock_bh); 376EXPORT_SYMBOL(_spin_trylock_bh);
377#endif
440 378
441notrace int in_lock_functions(unsigned long addr) 379notrace int in_lock_functions(unsigned long addr)
442{ 380{
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 58be76017fd0..6bb59f707402 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -49,7 +49,6 @@
49#include <linux/acpi.h> 49#include <linux/acpi.h>
50#include <linux/reboot.h> 50#include <linux/reboot.h>
51#include <linux/ftrace.h> 51#include <linux/ftrace.h>
52#include <linux/security.h>
53#include <linux/slow-work.h> 52#include <linux/slow-work.h>
54#include <linux/perf_counter.h> 53#include <linux/perf_counter.h>
55 54
@@ -92,6 +91,7 @@ extern int sysctl_nr_trim_pages;
92#ifdef CONFIG_RCU_TORTURE_TEST 91#ifdef CONFIG_RCU_TORTURE_TEST
93extern int rcutorture_runnable; 92extern int rcutorture_runnable;
94#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 93#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
94extern int blk_iopoll_enabled;
95 95
96/* Constants used for minimum and maximum */ 96/* Constants used for minimum and maximum */
97#ifdef CONFIG_DETECT_SOFTLOCKUP 97#ifdef CONFIG_DETECT_SOFTLOCKUP
@@ -246,6 +246,14 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */
246#endif 246#endif
247 247
248static struct ctl_table kern_table[] = { 248static struct ctl_table kern_table[] = {
249 {
250 .ctl_name = CTL_UNNUMBERED,
251 .procname = "sched_child_runs_first",
252 .data = &sysctl_sched_child_runs_first,
253 .maxlen = sizeof(unsigned int),
254 .mode = 0644,
255 .proc_handler = &proc_dointvec,
256 },
249#ifdef CONFIG_SCHED_DEBUG 257#ifdef CONFIG_SCHED_DEBUG
250 { 258 {
251 .ctl_name = CTL_UNNUMBERED, 259 .ctl_name = CTL_UNNUMBERED,
@@ -300,14 +308,6 @@ static struct ctl_table kern_table[] = {
300 }, 308 },
301 { 309 {
302 .ctl_name = CTL_UNNUMBERED, 310 .ctl_name = CTL_UNNUMBERED,
303 .procname = "sched_child_runs_first",
304 .data = &sysctl_sched_child_runs_first,
305 .maxlen = sizeof(unsigned int),
306 .mode = 0644,
307 .proc_handler = &proc_dointvec,
308 },
309 {
310 .ctl_name = CTL_UNNUMBERED,
311 .procname = "sched_features", 311 .procname = "sched_features",
312 .data = &sysctl_sched_features, 312 .data = &sysctl_sched_features,
313 .maxlen = sizeof(unsigned int), 313 .maxlen = sizeof(unsigned int),
@@ -332,6 +332,14 @@ static struct ctl_table kern_table[] = {
332 }, 332 },
333 { 333 {
334 .ctl_name = CTL_UNNUMBERED, 334 .ctl_name = CTL_UNNUMBERED,
335 .procname = "sched_time_avg",
336 .data = &sysctl_sched_time_avg,
337 .maxlen = sizeof(unsigned int),
338 .mode = 0644,
339 .proc_handler = &proc_dointvec,
340 },
341 {
342 .ctl_name = CTL_UNNUMBERED,
335 .procname = "timer_migration", 343 .procname = "timer_migration",
336 .data = &sysctl_timer_migration, 344 .data = &sysctl_timer_migration,
337 .maxlen = sizeof(unsigned int), 345 .maxlen = sizeof(unsigned int),
@@ -990,7 +998,14 @@ static struct ctl_table kern_table[] = {
990 .proc_handler = &proc_dointvec, 998 .proc_handler = &proc_dointvec,
991 }, 999 },
992#endif 1000#endif
993 1001 {
1002 .ctl_name = CTL_UNNUMBERED,
1003 .procname = "blk_iopoll",
1004 .data = &blk_iopoll_enabled,
1005 .maxlen = sizeof(int),
1006 .mode = 0644,
1007 .proc_handler = &proc_dointvec,
1008 },
994/* 1009/*
995 * NOTE: do not add new entries to this table unless you have read 1010 * NOTE: do not add new entries to this table unless you have read
996 * Documentation/sysctl/ctl_unnumbered.txt 1011 * Documentation/sysctl/ctl_unnumbered.txt
diff --git a/kernel/taskstats.c b/kernel/taskstats.c
index 888adbcca30c..ea8384d3caa7 100644
--- a/kernel/taskstats.c
+++ b/kernel/taskstats.c
@@ -108,7 +108,7 @@ static int prepare_reply(struct genl_info *info, u8 cmd, struct sk_buff **skbp,
108/* 108/*
109 * Send taskstats data in @skb to listener with nl_pid @pid 109 * Send taskstats data in @skb to listener with nl_pid @pid
110 */ 110 */
111static int send_reply(struct sk_buff *skb, pid_t pid) 111static int send_reply(struct sk_buff *skb, struct genl_info *info)
112{ 112{
113 struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); 113 struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb));
114 void *reply = genlmsg_data(genlhdr); 114 void *reply = genlmsg_data(genlhdr);
@@ -120,7 +120,7 @@ static int send_reply(struct sk_buff *skb, pid_t pid)
120 return rc; 120 return rc;
121 } 121 }
122 122
123 return genlmsg_unicast(skb, pid); 123 return genlmsg_reply(skb, info);
124} 124}
125 125
126/* 126/*
@@ -150,7 +150,7 @@ static void send_cpu_listeners(struct sk_buff *skb,
150 if (!skb_next) 150 if (!skb_next)
151 break; 151 break;
152 } 152 }
153 rc = genlmsg_unicast(skb_cur, s->pid); 153 rc = genlmsg_unicast(&init_net, skb_cur, s->pid);
154 if (rc == -ECONNREFUSED) { 154 if (rc == -ECONNREFUSED) {
155 s->valid = 0; 155 s->valid = 0;
156 delcount++; 156 delcount++;
@@ -418,7 +418,7 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
418 goto err; 418 goto err;
419 } 419 }
420 420
421 rc = send_reply(rep_skb, info->snd_pid); 421 rc = send_reply(rep_skb, info);
422 422
423err: 423err:
424 fput_light(file, fput_needed); 424 fput_light(file, fput_needed);
@@ -487,7 +487,7 @@ free_return_rc:
487 } else 487 } else
488 goto err; 488 goto err;
489 489
490 return send_reply(rep_skb, info->snd_pid); 490 return send_reply(rep_skb, info);
491err: 491err:
492 nlmsg_free(rep_skb); 492 nlmsg_free(rep_skb);
493 return rc; 493 return rc;
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index a6dcd67b041d..620b58abdc32 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -137,11 +137,12 @@ int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
137 */ 137 */
138int clockevents_register_notifier(struct notifier_block *nb) 138int clockevents_register_notifier(struct notifier_block *nb)
139{ 139{
140 unsigned long flags;
140 int ret; 141 int ret;
141 142
142 spin_lock(&clockevents_lock); 143 spin_lock_irqsave(&clockevents_lock, flags);
143 ret = raw_notifier_chain_register(&clockevents_chain, nb); 144 ret = raw_notifier_chain_register(&clockevents_chain, nb);
144 spin_unlock(&clockevents_lock); 145 spin_unlock_irqrestore(&clockevents_lock, flags);
145 146
146 return ret; 147 return ret;
147} 148}
@@ -178,16 +179,18 @@ static void clockevents_notify_released(void)
178 */ 179 */
179void clockevents_register_device(struct clock_event_device *dev) 180void clockevents_register_device(struct clock_event_device *dev)
180{ 181{
182 unsigned long flags;
183
181 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); 184 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
182 BUG_ON(!dev->cpumask); 185 BUG_ON(!dev->cpumask);
183 186
184 spin_lock(&clockevents_lock); 187 spin_lock_irqsave(&clockevents_lock, flags);
185 188
186 list_add(&dev->list, &clockevent_devices); 189 list_add(&dev->list, &clockevent_devices);
187 clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev); 190 clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev);
188 clockevents_notify_released(); 191 clockevents_notify_released();
189 192
190 spin_unlock(&clockevents_lock); 193 spin_unlock_irqrestore(&clockevents_lock, flags);
191} 194}
192EXPORT_SYMBOL_GPL(clockevents_register_device); 195EXPORT_SYMBOL_GPL(clockevents_register_device);
193 196
@@ -235,8 +238,9 @@ void clockevents_exchange_device(struct clock_event_device *old,
235void clockevents_notify(unsigned long reason, void *arg) 238void clockevents_notify(unsigned long reason, void *arg)
236{ 239{
237 struct list_head *node, *tmp; 240 struct list_head *node, *tmp;
241 unsigned long flags;
238 242
239 spin_lock(&clockevents_lock); 243 spin_lock_irqsave(&clockevents_lock, flags);
240 clockevents_do_notify(reason, arg); 244 clockevents_do_notify(reason, arg);
241 245
242 switch (reason) { 246 switch (reason) {
@@ -251,7 +255,7 @@ void clockevents_notify(unsigned long reason, void *arg)
251 default: 255 default:
252 break; 256 break;
253 } 257 }
254 spin_unlock(&clockevents_lock); 258 spin_unlock_irqrestore(&clockevents_lock, flags);
255} 259}
256EXPORT_SYMBOL_GPL(clockevents_notify); 260EXPORT_SYMBOL_GPL(clockevents_notify);
257#endif 261#endif
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index 877dbedc3118..c2ec25087a35 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -205,11 +205,11 @@ static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
205 * Powerstate information: The system enters/leaves a state, where 205 * Powerstate information: The system enters/leaves a state, where
206 * affected devices might stop 206 * affected devices might stop
207 */ 207 */
208static void tick_do_broadcast_on_off(void *why) 208static void tick_do_broadcast_on_off(unsigned long *reason)
209{ 209{
210 struct clock_event_device *bc, *dev; 210 struct clock_event_device *bc, *dev;
211 struct tick_device *td; 211 struct tick_device *td;
212 unsigned long flags, *reason = why; 212 unsigned long flags;
213 int cpu, bc_stopped; 213 int cpu, bc_stopped;
214 214
215 spin_lock_irqsave(&tick_broadcast_lock, flags); 215 spin_lock_irqsave(&tick_broadcast_lock, flags);
@@ -276,8 +276,7 @@ void tick_broadcast_on_off(unsigned long reason, int *oncpu)
276 printk(KERN_ERR "tick-broadcast: ignoring broadcast for " 276 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 "offline CPU #%d\n", *oncpu); 277 "offline CPU #%d\n", *oncpu);
278 else 278 else
279 smp_call_function_single(*oncpu, tick_do_broadcast_on_off, 279 tick_do_broadcast_on_off(&reason);
280 &reason, 1);
281} 280}
282 281
283/* 282/*
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c
index a999b92a1277..fddd69d16e03 100644
--- a/kernel/time/timer_list.c
+++ b/kernel/time/timer_list.c
@@ -286,7 +286,7 @@ static int __init init_timer_list_procfs(void)
286{ 286{
287 struct proc_dir_entry *pe; 287 struct proc_dir_entry *pe;
288 288
289 pe = proc_create("timer_list", 0644, NULL, &timer_list_fops); 289 pe = proc_create("timer_list", 0444, NULL, &timer_list_fops);
290 if (!pe) 290 if (!pe)
291 return -ENOMEM; 291 return -ENOMEM;
292 return 0; 292 return 0;
diff --git a/kernel/timer.c b/kernel/timer.c
index a7f07d5a6241..a3d25f415019 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -1156,8 +1156,7 @@ void update_process_times(int user_tick)
1156 /* Note: this timer irq context must be accounted for as well. */ 1156 /* Note: this timer irq context must be accounted for as well. */
1157 account_process_tick(p, user_tick); 1157 account_process_tick(p, user_tick);
1158 run_local_timers(); 1158 run_local_timers();
1159 if (rcu_pending(cpu)) 1159 rcu_check_callbacks(cpu, user_tick);
1160 rcu_check_callbacks(cpu, user_tick);
1161 printk_tick(); 1160 printk_tick();
1162 scheduler_tick(); 1161 scheduler_tick();
1163 run_posix_cpu_timers(p); 1162 run_posix_cpu_timers(p);
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 019f380fd764..1ea0d1234f4a 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -41,7 +41,7 @@ config HAVE_FTRACE_MCOUNT_RECORD
41config HAVE_HW_BRANCH_TRACER 41config HAVE_HW_BRANCH_TRACER
42 bool 42 bool
43 43
44config HAVE_FTRACE_SYSCALLS 44config HAVE_SYSCALL_TRACEPOINTS
45 bool 45 bool
46 46
47config TRACER_MAX_TRACE 47config TRACER_MAX_TRACE
@@ -60,9 +60,14 @@ config EVENT_TRACING
60 bool 60 bool
61 61
62config CONTEXT_SWITCH_TRACER 62config CONTEXT_SWITCH_TRACER
63 select MARKERS
64 bool 63 bool
65 64
65config RING_BUFFER_ALLOW_SWAP
66 bool
67 help
68 Allow the use of ring_buffer_swap_cpu.
69 Adds a very slight overhead to tracing when enabled.
70
66# All tracer options should select GENERIC_TRACER. For those options that are 71# All tracer options should select GENERIC_TRACER. For those options that are
67# enabled by all tracers (context switch and event tracer) they select TRACING. 72# enabled by all tracers (context switch and event tracer) they select TRACING.
68# This allows those options to appear when no other tracer is selected. But the 73# This allows those options to appear when no other tracer is selected. But the
@@ -147,6 +152,7 @@ config IRQSOFF_TRACER
147 select TRACE_IRQFLAGS 152 select TRACE_IRQFLAGS
148 select GENERIC_TRACER 153 select GENERIC_TRACER
149 select TRACER_MAX_TRACE 154 select TRACER_MAX_TRACE
155 select RING_BUFFER_ALLOW_SWAP
150 help 156 help
151 This option measures the time spent in irqs-off critical 157 This option measures the time spent in irqs-off critical
152 sections, with microsecond accuracy. 158 sections, with microsecond accuracy.
@@ -168,6 +174,7 @@ config PREEMPT_TRACER
168 depends on PREEMPT 174 depends on PREEMPT
169 select GENERIC_TRACER 175 select GENERIC_TRACER
170 select TRACER_MAX_TRACE 176 select TRACER_MAX_TRACE
177 select RING_BUFFER_ALLOW_SWAP
171 help 178 help
172 This option measures the time spent in preemption off critical 179 This option measures the time spent in preemption off critical
173 sections, with microsecond accuracy. 180 sections, with microsecond accuracy.
@@ -211,7 +218,7 @@ config ENABLE_DEFAULT_TRACERS
211 218
212config FTRACE_SYSCALLS 219config FTRACE_SYSCALLS
213 bool "Trace syscalls" 220 bool "Trace syscalls"
214 depends on HAVE_FTRACE_SYSCALLS 221 depends on HAVE_SYSCALL_TRACEPOINTS
215 select GENERIC_TRACER 222 select GENERIC_TRACER
216 select KALLSYMS 223 select KALLSYMS
217 help 224 help
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c
index 7a34cb563fec..3eb159c277c8 100644
--- a/kernel/trace/blktrace.c
+++ b/kernel/trace/blktrace.c
@@ -65,13 +65,15 @@ static void trace_note(struct blk_trace *bt, pid_t pid, int action,
65{ 65{
66 struct blk_io_trace *t; 66 struct blk_io_trace *t;
67 struct ring_buffer_event *event = NULL; 67 struct ring_buffer_event *event = NULL;
68 struct ring_buffer *buffer = NULL;
68 int pc = 0; 69 int pc = 0;
69 int cpu = smp_processor_id(); 70 int cpu = smp_processor_id();
70 bool blk_tracer = blk_tracer_enabled; 71 bool blk_tracer = blk_tracer_enabled;
71 72
72 if (blk_tracer) { 73 if (blk_tracer) {
74 buffer = blk_tr->buffer;
73 pc = preempt_count(); 75 pc = preempt_count();
74 event = trace_buffer_lock_reserve(blk_tr, TRACE_BLK, 76 event = trace_buffer_lock_reserve(buffer, TRACE_BLK,
75 sizeof(*t) + len, 77 sizeof(*t) + len,
76 0, pc); 78 0, pc);
77 if (!event) 79 if (!event)
@@ -96,7 +98,7 @@ record_it:
96 memcpy((void *) t + sizeof(*t), data, len); 98 memcpy((void *) t + sizeof(*t), data, len);
97 99
98 if (blk_tracer) 100 if (blk_tracer)
99 trace_buffer_unlock_commit(blk_tr, event, 0, pc); 101 trace_buffer_unlock_commit(buffer, event, 0, pc);
100 } 102 }
101} 103}
102 104
@@ -179,6 +181,7 @@ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes,
179{ 181{
180 struct task_struct *tsk = current; 182 struct task_struct *tsk = current;
181 struct ring_buffer_event *event = NULL; 183 struct ring_buffer_event *event = NULL;
184 struct ring_buffer *buffer = NULL;
182 struct blk_io_trace *t; 185 struct blk_io_trace *t;
183 unsigned long flags = 0; 186 unsigned long flags = 0;
184 unsigned long *sequence; 187 unsigned long *sequence;
@@ -204,8 +207,9 @@ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes,
204 if (blk_tracer) { 207 if (blk_tracer) {
205 tracing_record_cmdline(current); 208 tracing_record_cmdline(current);
206 209
210 buffer = blk_tr->buffer;
207 pc = preempt_count(); 211 pc = preempt_count();
208 event = trace_buffer_lock_reserve(blk_tr, TRACE_BLK, 212 event = trace_buffer_lock_reserve(buffer, TRACE_BLK,
209 sizeof(*t) + pdu_len, 213 sizeof(*t) + pdu_len,
210 0, pc); 214 0, pc);
211 if (!event) 215 if (!event)
@@ -252,7 +256,7 @@ record_it:
252 memcpy((void *) t + sizeof(*t), pdu_data, pdu_len); 256 memcpy((void *) t + sizeof(*t), pdu_data, pdu_len);
253 257
254 if (blk_tracer) { 258 if (blk_tracer) {
255 trace_buffer_unlock_commit(blk_tr, event, 0, pc); 259 trace_buffer_unlock_commit(buffer, event, 0, pc);
256 return; 260 return;
257 } 261 }
258 } 262 }
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 1e1d23c26308..8c804e24f96f 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -1016,71 +1016,35 @@ static int
1016__ftrace_replace_code(struct dyn_ftrace *rec, int enable) 1016__ftrace_replace_code(struct dyn_ftrace *rec, int enable)
1017{ 1017{
1018 unsigned long ftrace_addr; 1018 unsigned long ftrace_addr;
1019 unsigned long ip, fl; 1019 unsigned long flag = 0UL;
1020 1020
1021 ftrace_addr = (unsigned long)FTRACE_ADDR; 1021 ftrace_addr = (unsigned long)FTRACE_ADDR;
1022 1022
1023 ip = rec->ip;
1024
1025 /* 1023 /*
1026 * If this record is not to be traced and 1024 * If this record is not to be traced or we want to disable it,
1027 * it is not enabled then do nothing. 1025 * then disable it.
1028 * 1026 *
1029 * If this record is not to be traced and 1027 * If we want to enable it and filtering is off, then enable it.
1030 * it is enabled then disable it.
1031 * 1028 *
1029 * If we want to enable it and filtering is on, enable it only if
1030 * it's filtered
1032 */ 1031 */
1033 if (rec->flags & FTRACE_FL_NOTRACE) { 1032 if (enable && !(rec->flags & FTRACE_FL_NOTRACE)) {
1034 if (rec->flags & FTRACE_FL_ENABLED) 1033 if (!ftrace_filtered || (rec->flags & FTRACE_FL_FILTER))
1035 rec->flags &= ~FTRACE_FL_ENABLED; 1034 flag = FTRACE_FL_ENABLED;
1036 else 1035 }
1037 return 0;
1038
1039 } else if (ftrace_filtered && enable) {
1040 /*
1041 * Filtering is on:
1042 */
1043
1044 fl = rec->flags & (FTRACE_FL_FILTER | FTRACE_FL_ENABLED);
1045
1046 /* Record is filtered and enabled, do nothing */
1047 if (fl == (FTRACE_FL_FILTER | FTRACE_FL_ENABLED))
1048 return 0;
1049
1050 /* Record is not filtered or enabled, do nothing */
1051 if (!fl)
1052 return 0;
1053
1054 /* Record is not filtered but enabled, disable it */
1055 if (fl == FTRACE_FL_ENABLED)
1056 rec->flags &= ~FTRACE_FL_ENABLED;
1057 else
1058 /* Otherwise record is filtered but not enabled, enable it */
1059 rec->flags |= FTRACE_FL_ENABLED;
1060 } else {
1061 /* Disable or not filtered */
1062
1063 if (enable) {
1064 /* if record is enabled, do nothing */
1065 if (rec->flags & FTRACE_FL_ENABLED)
1066 return 0;
1067
1068 rec->flags |= FTRACE_FL_ENABLED;
1069
1070 } else {
1071 1036
1072 /* if record is not enabled, do nothing */ 1037 /* If the state of this record hasn't changed, then do nothing */
1073 if (!(rec->flags & FTRACE_FL_ENABLED)) 1038 if ((rec->flags & FTRACE_FL_ENABLED) == flag)
1074 return 0; 1039 return 0;
1075 1040
1076 rec->flags &= ~FTRACE_FL_ENABLED; 1041 if (flag) {
1077 } 1042 rec->flags |= FTRACE_FL_ENABLED;
1043 return ftrace_make_call(rec, ftrace_addr);
1078 } 1044 }
1079 1045
1080 if (rec->flags & FTRACE_FL_ENABLED) 1046 rec->flags &= ~FTRACE_FL_ENABLED;
1081 return ftrace_make_call(rec, ftrace_addr); 1047 return ftrace_make_nop(NULL, rec, ftrace_addr);
1082 else
1083 return ftrace_make_nop(NULL, rec, ftrace_addr);
1084} 1048}
1085 1049
1086static void ftrace_replace_code(int enable) 1050static void ftrace_replace_code(int enable)
@@ -1375,7 +1339,6 @@ struct ftrace_iterator {
1375 unsigned flags; 1339 unsigned flags;
1376 unsigned char buffer[FTRACE_BUFF_MAX+1]; 1340 unsigned char buffer[FTRACE_BUFF_MAX+1];
1377 unsigned buffer_idx; 1341 unsigned buffer_idx;
1378 unsigned filtered;
1379}; 1342};
1380 1343
1381static void * 1344static void *
@@ -1438,18 +1401,13 @@ static int t_hash_show(struct seq_file *m, void *v)
1438{ 1401{
1439 struct ftrace_func_probe *rec; 1402 struct ftrace_func_probe *rec;
1440 struct hlist_node *hnd = v; 1403 struct hlist_node *hnd = v;
1441 char str[KSYM_SYMBOL_LEN];
1442 1404
1443 rec = hlist_entry(hnd, struct ftrace_func_probe, node); 1405 rec = hlist_entry(hnd, struct ftrace_func_probe, node);
1444 1406
1445 if (rec->ops->print) 1407 if (rec->ops->print)
1446 return rec->ops->print(m, rec->ip, rec->ops, rec->data); 1408 return rec->ops->print(m, rec->ip, rec->ops, rec->data);
1447 1409
1448 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 1410 seq_printf(m, "%pf:%pf", (void *)rec->ip, (void *)rec->ops->func);
1449 seq_printf(m, "%s:", str);
1450
1451 kallsyms_lookup((unsigned long)rec->ops->func, NULL, NULL, NULL, str);
1452 seq_printf(m, "%s", str);
1453 1411
1454 if (rec->data) 1412 if (rec->data)
1455 seq_printf(m, ":%p", rec->data); 1413 seq_printf(m, ":%p", rec->data);
@@ -1547,7 +1505,6 @@ static int t_show(struct seq_file *m, void *v)
1547{ 1505{
1548 struct ftrace_iterator *iter = m->private; 1506 struct ftrace_iterator *iter = m->private;
1549 struct dyn_ftrace *rec = v; 1507 struct dyn_ftrace *rec = v;
1550 char str[KSYM_SYMBOL_LEN];
1551 1508
1552 if (iter->flags & FTRACE_ITER_HASH) 1509 if (iter->flags & FTRACE_ITER_HASH)
1553 return t_hash_show(m, v); 1510 return t_hash_show(m, v);
@@ -1560,9 +1517,7 @@ static int t_show(struct seq_file *m, void *v)
1560 if (!rec) 1517 if (!rec)
1561 return 0; 1518 return 0;
1562 1519
1563 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 1520 seq_printf(m, "%pf\n", (void *)rec->ip);
1564
1565 seq_printf(m, "%s\n", str);
1566 1521
1567 return 0; 1522 return 0;
1568} 1523}
@@ -1601,17 +1556,6 @@ ftrace_avail_open(struct inode *inode, struct file *file)
1601 return ret; 1556 return ret;
1602} 1557}
1603 1558
1604int ftrace_avail_release(struct inode *inode, struct file *file)
1605{
1606 struct seq_file *m = (struct seq_file *)file->private_data;
1607 struct ftrace_iterator *iter = m->private;
1608
1609 seq_release(inode, file);
1610 kfree(iter);
1611
1612 return 0;
1613}
1614
1615static int 1559static int
1616ftrace_failures_open(struct inode *inode, struct file *file) 1560ftrace_failures_open(struct inode *inode, struct file *file)
1617{ 1561{
@@ -2278,7 +2222,11 @@ ftrace_regex_write(struct file *file, const char __user *ubuf,
2278 read++; 2222 read++;
2279 cnt--; 2223 cnt--;
2280 2224
2281 if (!(iter->flags & ~FTRACE_ITER_CONT)) { 2225 /*
2226 * If the parser haven't finished with the last write,
2227 * continue reading the user input without skipping spaces.
2228 */
2229 if (!(iter->flags & FTRACE_ITER_CONT)) {
2282 /* skip white space */ 2230 /* skip white space */
2283 while (cnt && isspace(ch)) { 2231 while (cnt && isspace(ch)) {
2284 ret = get_user(ch, ubuf++); 2232 ret = get_user(ch, ubuf++);
@@ -2288,8 +2236,9 @@ ftrace_regex_write(struct file *file, const char __user *ubuf,
2288 cnt--; 2236 cnt--;
2289 } 2237 }
2290 2238
2239 /* only spaces were written */
2291 if (isspace(ch)) { 2240 if (isspace(ch)) {
2292 file->f_pos += read; 2241 *ppos += read;
2293 ret = read; 2242 ret = read;
2294 goto out; 2243 goto out;
2295 } 2244 }
@@ -2312,19 +2261,18 @@ ftrace_regex_write(struct file *file, const char __user *ubuf,
2312 } 2261 }
2313 2262
2314 if (isspace(ch)) { 2263 if (isspace(ch)) {
2315 iter->filtered++;
2316 iter->buffer[iter->buffer_idx] = 0; 2264 iter->buffer[iter->buffer_idx] = 0;
2317 ret = ftrace_process_regex(iter->buffer, 2265 ret = ftrace_process_regex(iter->buffer,
2318 iter->buffer_idx, enable); 2266 iter->buffer_idx, enable);
2319 if (ret) 2267 if (ret)
2320 goto out; 2268 goto out;
2321 iter->buffer_idx = 0; 2269 iter->buffer_idx = 0;
2322 } else 2270 } else {
2323 iter->flags |= FTRACE_ITER_CONT; 2271 iter->flags |= FTRACE_ITER_CONT;
2272 iter->buffer[iter->buffer_idx++] = ch;
2273 }
2324 2274
2325 2275 *ppos += read;
2326 file->f_pos += read;
2327
2328 ret = read; 2276 ret = read;
2329 out: 2277 out:
2330 mutex_unlock(&ftrace_regex_lock); 2278 mutex_unlock(&ftrace_regex_lock);
@@ -2443,7 +2391,6 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable)
2443 iter = file->private_data; 2391 iter = file->private_data;
2444 2392
2445 if (iter->buffer_idx) { 2393 if (iter->buffer_idx) {
2446 iter->filtered++;
2447 iter->buffer[iter->buffer_idx] = 0; 2394 iter->buffer[iter->buffer_idx] = 0;
2448 ftrace_match_records(iter->buffer, iter->buffer_idx, enable); 2395 ftrace_match_records(iter->buffer, iter->buffer_idx, enable);
2449 } 2396 }
@@ -2474,14 +2421,14 @@ static const struct file_operations ftrace_avail_fops = {
2474 .open = ftrace_avail_open, 2421 .open = ftrace_avail_open,
2475 .read = seq_read, 2422 .read = seq_read,
2476 .llseek = seq_lseek, 2423 .llseek = seq_lseek,
2477 .release = ftrace_avail_release, 2424 .release = seq_release_private,
2478}; 2425};
2479 2426
2480static const struct file_operations ftrace_failures_fops = { 2427static const struct file_operations ftrace_failures_fops = {
2481 .open = ftrace_failures_open, 2428 .open = ftrace_failures_open,
2482 .read = seq_read, 2429 .read = seq_read,
2483 .llseek = seq_lseek, 2430 .llseek = seq_lseek,
2484 .release = ftrace_avail_release, 2431 .release = seq_release_private,
2485}; 2432};
2486 2433
2487static const struct file_operations ftrace_filter_fops = { 2434static const struct file_operations ftrace_filter_fops = {
@@ -2543,7 +2490,6 @@ static void g_stop(struct seq_file *m, void *p)
2543static int g_show(struct seq_file *m, void *v) 2490static int g_show(struct seq_file *m, void *v)
2544{ 2491{
2545 unsigned long *ptr = v; 2492 unsigned long *ptr = v;
2546 char str[KSYM_SYMBOL_LEN];
2547 2493
2548 if (!ptr) 2494 if (!ptr)
2549 return 0; 2495 return 0;
@@ -2553,9 +2499,7 @@ static int g_show(struct seq_file *m, void *v)
2553 return 0; 2499 return 0;
2554 } 2500 }
2555 2501
2556 kallsyms_lookup(*ptr, NULL, NULL, NULL, str); 2502 seq_printf(m, "%pf\n", v);
2557
2558 seq_printf(m, "%s\n", str);
2559 2503
2560 return 0; 2504 return 0;
2561} 2505}
diff --git a/kernel/trace/kmemtrace.c b/kernel/trace/kmemtrace.c
index 1edaa9516e81..81b1645c8549 100644
--- a/kernel/trace/kmemtrace.c
+++ b/kernel/trace/kmemtrace.c
@@ -183,11 +183,9 @@ static void kmemtrace_stop_probes(void)
183 183
184static int kmem_trace_init(struct trace_array *tr) 184static int kmem_trace_init(struct trace_array *tr)
185{ 185{
186 int cpu;
187 kmemtrace_array = tr; 186 kmemtrace_array = tr;
188 187
189 for_each_cpu(cpu, cpu_possible_mask) 188 tracing_reset_online_cpus(tr);
190 tracing_reset(tr, cpu);
191 189
192 kmemtrace_start_probes(); 190 kmemtrace_start_probes();
193 191
@@ -239,12 +237,52 @@ struct kmemtrace_user_event_alloc {
239}; 237};
240 238
241static enum print_line_t 239static enum print_line_t
242kmemtrace_print_alloc_user(struct trace_iterator *iter, 240kmemtrace_print_alloc(struct trace_iterator *iter, int flags)
243 struct kmemtrace_alloc_entry *entry)
244{ 241{
245 struct kmemtrace_user_event_alloc *ev_alloc;
246 struct trace_seq *s = &iter->seq; 242 struct trace_seq *s = &iter->seq;
243 struct kmemtrace_alloc_entry *entry;
244 int ret;
245
246 trace_assign_type(entry, iter->ent);
247
248 ret = trace_seq_printf(s, "type_id %d call_site %pF ptr %lu "
249 "bytes_req %lu bytes_alloc %lu gfp_flags %lu node %d\n",
250 entry->type_id, (void *)entry->call_site, (unsigned long)entry->ptr,
251 (unsigned long)entry->bytes_req, (unsigned long)entry->bytes_alloc,
252 (unsigned long)entry->gfp_flags, entry->node);
253
254 if (!ret)
255 return TRACE_TYPE_PARTIAL_LINE;
256 return TRACE_TYPE_HANDLED;
257}
258
259static enum print_line_t
260kmemtrace_print_free(struct trace_iterator *iter, int flags)
261{
262 struct trace_seq *s = &iter->seq;
263 struct kmemtrace_free_entry *entry;
264 int ret;
265
266 trace_assign_type(entry, iter->ent);
267
268 ret = trace_seq_printf(s, "type_id %d call_site %pF ptr %lu\n",
269 entry->type_id, (void *)entry->call_site,
270 (unsigned long)entry->ptr);
271
272 if (!ret)
273 return TRACE_TYPE_PARTIAL_LINE;
274 return TRACE_TYPE_HANDLED;
275}
276
277static enum print_line_t
278kmemtrace_print_alloc_user(struct trace_iterator *iter, int flags)
279{
280 struct trace_seq *s = &iter->seq;
281 struct kmemtrace_alloc_entry *entry;
247 struct kmemtrace_user_event *ev; 282 struct kmemtrace_user_event *ev;
283 struct kmemtrace_user_event_alloc *ev_alloc;
284
285 trace_assign_type(entry, iter->ent);
248 286
249 ev = trace_seq_reserve(s, sizeof(*ev)); 287 ev = trace_seq_reserve(s, sizeof(*ev));
250 if (!ev) 288 if (!ev)
@@ -271,12 +309,14 @@ kmemtrace_print_alloc_user(struct trace_iterator *iter,
271} 309}
272 310
273static enum print_line_t 311static enum print_line_t
274kmemtrace_print_free_user(struct trace_iterator *iter, 312kmemtrace_print_free_user(struct trace_iterator *iter, int flags)
275 struct kmemtrace_free_entry *entry)
276{ 313{
277 struct trace_seq *s = &iter->seq; 314 struct trace_seq *s = &iter->seq;
315 struct kmemtrace_free_entry *entry;
278 struct kmemtrace_user_event *ev; 316 struct kmemtrace_user_event *ev;
279 317
318 trace_assign_type(entry, iter->ent);
319
280 ev = trace_seq_reserve(s, sizeof(*ev)); 320 ev = trace_seq_reserve(s, sizeof(*ev));
281 if (!ev) 321 if (!ev)
282 return TRACE_TYPE_PARTIAL_LINE; 322 return TRACE_TYPE_PARTIAL_LINE;
@@ -294,12 +334,14 @@ kmemtrace_print_free_user(struct trace_iterator *iter,
294 334
295/* The two other following provide a more minimalistic output */ 335/* The two other following provide a more minimalistic output */
296static enum print_line_t 336static enum print_line_t
297kmemtrace_print_alloc_compress(struct trace_iterator *iter, 337kmemtrace_print_alloc_compress(struct trace_iterator *iter)
298 struct kmemtrace_alloc_entry *entry)
299{ 338{
339 struct kmemtrace_alloc_entry *entry;
300 struct trace_seq *s = &iter->seq; 340 struct trace_seq *s = &iter->seq;
301 int ret; 341 int ret;
302 342
343 trace_assign_type(entry, iter->ent);
344
303 /* Alloc entry */ 345 /* Alloc entry */
304 ret = trace_seq_printf(s, " + "); 346 ret = trace_seq_printf(s, " + ");
305 if (!ret) 347 if (!ret)
@@ -345,29 +387,24 @@ kmemtrace_print_alloc_compress(struct trace_iterator *iter,
345 if (!ret) 387 if (!ret)
346 return TRACE_TYPE_PARTIAL_LINE; 388 return TRACE_TYPE_PARTIAL_LINE;
347 389
348 /* Node */ 390 /* Node and call site*/
349 ret = trace_seq_printf(s, "%4d ", entry->node); 391 ret = trace_seq_printf(s, "%4d %pf\n", entry->node,
350 if (!ret) 392 (void *)entry->call_site);
351 return TRACE_TYPE_PARTIAL_LINE;
352
353 /* Call site */
354 ret = seq_print_ip_sym(s, entry->call_site, 0);
355 if (!ret) 393 if (!ret)
356 return TRACE_TYPE_PARTIAL_LINE; 394 return TRACE_TYPE_PARTIAL_LINE;
357 395
358 if (!trace_seq_printf(s, "\n"))
359 return TRACE_TYPE_PARTIAL_LINE;
360
361 return TRACE_TYPE_HANDLED; 396 return TRACE_TYPE_HANDLED;
362} 397}
363 398
364static enum print_line_t 399static enum print_line_t
365kmemtrace_print_free_compress(struct trace_iterator *iter, 400kmemtrace_print_free_compress(struct trace_iterator *iter)
366 struct kmemtrace_free_entry *entry)
367{ 401{
402 struct kmemtrace_free_entry *entry;
368 struct trace_seq *s = &iter->seq; 403 struct trace_seq *s = &iter->seq;
369 int ret; 404 int ret;
370 405
406 trace_assign_type(entry, iter->ent);
407
371 /* Free entry */ 408 /* Free entry */
372 ret = trace_seq_printf(s, " - "); 409 ret = trace_seq_printf(s, " - ");
373 if (!ret) 410 if (!ret)
@@ -401,19 +438,11 @@ kmemtrace_print_free_compress(struct trace_iterator *iter,
401 if (!ret) 438 if (!ret)
402 return TRACE_TYPE_PARTIAL_LINE; 439 return TRACE_TYPE_PARTIAL_LINE;
403 440
404 /* Skip node */ 441 /* Skip node and print call site*/
405 ret = trace_seq_printf(s, " "); 442 ret = trace_seq_printf(s, " %pf\n", (void *)entry->call_site);
406 if (!ret) 443 if (!ret)
407 return TRACE_TYPE_PARTIAL_LINE; 444 return TRACE_TYPE_PARTIAL_LINE;
408 445
409 /* Call site */
410 ret = seq_print_ip_sym(s, entry->call_site, 0);
411 if (!ret)
412 return TRACE_TYPE_PARTIAL_LINE;
413
414 if (!trace_seq_printf(s, "\n"))
415 return TRACE_TYPE_PARTIAL_LINE;
416
417 return TRACE_TYPE_HANDLED; 446 return TRACE_TYPE_HANDLED;
418} 447}
419 448
@@ -421,32 +450,31 @@ static enum print_line_t kmemtrace_print_line(struct trace_iterator *iter)
421{ 450{
422 struct trace_entry *entry = iter->ent; 451 struct trace_entry *entry = iter->ent;
423 452
424 switch (entry->type) { 453 if (!(kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL))
425 case TRACE_KMEM_ALLOC: { 454 return TRACE_TYPE_UNHANDLED;
426 struct kmemtrace_alloc_entry *field;
427
428 trace_assign_type(field, entry);
429 if (kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL)
430 return kmemtrace_print_alloc_compress(iter, field);
431 else
432 return kmemtrace_print_alloc_user(iter, field);
433 }
434
435 case TRACE_KMEM_FREE: {
436 struct kmemtrace_free_entry *field;
437
438 trace_assign_type(field, entry);
439 if (kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL)
440 return kmemtrace_print_free_compress(iter, field);
441 else
442 return kmemtrace_print_free_user(iter, field);
443 }
444 455
456 switch (entry->type) {
457 case TRACE_KMEM_ALLOC:
458 return kmemtrace_print_alloc_compress(iter);
459 case TRACE_KMEM_FREE:
460 return kmemtrace_print_free_compress(iter);
445 default: 461 default:
446 return TRACE_TYPE_UNHANDLED; 462 return TRACE_TYPE_UNHANDLED;
447 } 463 }
448} 464}
449 465
466static struct trace_event kmem_trace_alloc = {
467 .type = TRACE_KMEM_ALLOC,
468 .trace = kmemtrace_print_alloc,
469 .binary = kmemtrace_print_alloc_user,
470};
471
472static struct trace_event kmem_trace_free = {
473 .type = TRACE_KMEM_FREE,
474 .trace = kmemtrace_print_free,
475 .binary = kmemtrace_print_free_user,
476};
477
450static struct tracer kmem_tracer __read_mostly = { 478static struct tracer kmem_tracer __read_mostly = {
451 .name = "kmemtrace", 479 .name = "kmemtrace",
452 .init = kmem_trace_init, 480 .init = kmem_trace_init,
@@ -463,6 +491,21 @@ void kmemtrace_init(void)
463 491
464static int __init init_kmem_tracer(void) 492static int __init init_kmem_tracer(void)
465{ 493{
466 return register_tracer(&kmem_tracer); 494 if (!register_ftrace_event(&kmem_trace_alloc)) {
495 pr_warning("Warning: could not register kmem events\n");
496 return 1;
497 }
498
499 if (!register_ftrace_event(&kmem_trace_free)) {
500 pr_warning("Warning: could not register kmem events\n");
501 return 1;
502 }
503
504 if (!register_tracer(&kmem_tracer)) {
505 pr_warning("Warning: could not register the kmem tracer\n");
506 return 1;
507 }
508
509 return 0;
467} 510}
468device_initcall(init_kmem_tracer); 511device_initcall(init_kmem_tracer);
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index a330513d96ce..454e74e718cf 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -218,17 +218,12 @@ enum {
218 218
219static inline int rb_null_event(struct ring_buffer_event *event) 219static inline int rb_null_event(struct ring_buffer_event *event)
220{ 220{
221 return event->type_len == RINGBUF_TYPE_PADDING 221 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
222 && event->time_delta == 0;
223}
224
225static inline int rb_discarded_event(struct ring_buffer_event *event)
226{
227 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228} 222}
229 223
230static void rb_event_set_padding(struct ring_buffer_event *event) 224static void rb_event_set_padding(struct ring_buffer_event *event)
231{ 225{
226 /* padding has a NULL time_delta */
232 event->type_len = RINGBUF_TYPE_PADDING; 227 event->type_len = RINGBUF_TYPE_PADDING;
233 event->time_delta = 0; 228 event->time_delta = 0;
234} 229}
@@ -322,6 +317,14 @@ struct buffer_data_page {
322 unsigned char data[]; /* data of buffer page */ 317 unsigned char data[]; /* data of buffer page */
323}; 318};
324 319
320/*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
325struct buffer_page { 328struct buffer_page {
326 struct list_head list; /* list of buffer pages */ 329 struct list_head list; /* list of buffer pages */
327 local_t write; /* index for next write */ 330 local_t write; /* index for next write */
@@ -330,6 +333,21 @@ struct buffer_page {
330 struct buffer_data_page *page; /* Actual data page */ 333 struct buffer_data_page *page; /* Actual data page */
331}; 334};
332 335
336/*
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
341 *
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
345 *
346 * The counter is 20 bits, and the state data is 12.
347 */
348#define RB_WRITE_MASK 0xfffff
349#define RB_WRITE_INTCNT (1 << 20)
350
333static void rb_init_page(struct buffer_data_page *bpage) 351static void rb_init_page(struct buffer_data_page *bpage)
334{ 352{
335 local_set(&bpage->commit, 0); 353 local_set(&bpage->commit, 0);
@@ -403,21 +421,20 @@ int ring_buffer_print_page_header(struct trace_seq *s)
403struct ring_buffer_per_cpu { 421struct ring_buffer_per_cpu {
404 int cpu; 422 int cpu;
405 struct ring_buffer *buffer; 423 struct ring_buffer *buffer;
406 spinlock_t reader_lock; /* serialize readers */ 424 spinlock_t reader_lock; /* serialize readers */
407 raw_spinlock_t lock; 425 raw_spinlock_t lock;
408 struct lock_class_key lock_key; 426 struct lock_class_key lock_key;
409 struct list_head pages; 427 struct list_head *pages;
410 struct buffer_page *head_page; /* read from head */ 428 struct buffer_page *head_page; /* read from head */
411 struct buffer_page *tail_page; /* write to tail */ 429 struct buffer_page *tail_page; /* write to tail */
412 struct buffer_page *commit_page; /* committed pages */ 430 struct buffer_page *commit_page; /* committed pages */
413 struct buffer_page *reader_page; 431 struct buffer_page *reader_page;
414 unsigned long nmi_dropped; 432 local_t commit_overrun;
415 unsigned long commit_overrun; 433 local_t overrun;
416 unsigned long overrun;
417 unsigned long read;
418 local_t entries; 434 local_t entries;
419 local_t committing; 435 local_t committing;
420 local_t commits; 436 local_t commits;
437 unsigned long read;
421 u64 write_stamp; 438 u64 write_stamp;
422 u64 read_stamp; 439 u64 read_stamp;
423 atomic_t record_disabled; 440 atomic_t record_disabled;
@@ -450,14 +467,19 @@ struct ring_buffer_iter {
450}; 467};
451 468
452/* buffer may be either ring_buffer or ring_buffer_per_cpu */ 469/* buffer may be either ring_buffer or ring_buffer_per_cpu */
453#define RB_WARN_ON(buffer, cond) \ 470#define RB_WARN_ON(b, cond) \
454 ({ \ 471 ({ \
455 int _____ret = unlikely(cond); \ 472 int _____ret = unlikely(cond); \
456 if (_____ret) { \ 473 if (_____ret) { \
457 atomic_inc(&buffer->record_disabled); \ 474 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
458 WARN_ON(1); \ 475 struct ring_buffer_per_cpu *__b = \
459 } \ 476 (void *)b; \
460 _____ret; \ 477 atomic_inc(&__b->buffer->record_disabled); \
478 } else \
479 atomic_inc(&b->record_disabled); \
480 WARN_ON(1); \
481 } \
482 _____ret; \
461 }) 483 })
462 484
463/* Up this if you want to test the TIME_EXTENTS and normalization */ 485/* Up this if you want to test the TIME_EXTENTS and normalization */
@@ -489,6 +511,390 @@ void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
489} 511}
490EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 512EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491 513
514/*
515 * Making the ring buffer lockless makes things tricky.
516 * Although writes only happen on the CPU that they are on,
517 * and they only need to worry about interrupts. Reads can
518 * happen on any CPU.
519 *
520 * The reader page is always off the ring buffer, but when the
521 * reader finishes with a page, it needs to swap its page with
522 * a new one from the buffer. The reader needs to take from
523 * the head (writes go to the tail). But if a writer is in overwrite
524 * mode and wraps, it must push the head page forward.
525 *
526 * Here lies the problem.
527 *
528 * The reader must be careful to replace only the head page, and
529 * not another one. As described at the top of the file in the
530 * ASCII art, the reader sets its old page to point to the next
531 * page after head. It then sets the page after head to point to
532 * the old reader page. But if the writer moves the head page
533 * during this operation, the reader could end up with the tail.
534 *
535 * We use cmpxchg to help prevent this race. We also do something
536 * special with the page before head. We set the LSB to 1.
537 *
538 * When the writer must push the page forward, it will clear the
539 * bit that points to the head page, move the head, and then set
540 * the bit that points to the new head page.
541 *
542 * We also don't want an interrupt coming in and moving the head
543 * page on another writer. Thus we use the second LSB to catch
544 * that too. Thus:
545 *
546 * head->list->prev->next bit 1 bit 0
547 * ------- -------
548 * Normal page 0 0
549 * Points to head page 0 1
550 * New head page 1 0
551 *
552 * Note we can not trust the prev pointer of the head page, because:
553 *
554 * +----+ +-----+ +-----+
555 * | |------>| T |---X--->| N |
556 * | |<------| | | |
557 * +----+ +-----+ +-----+
558 * ^ ^ |
559 * | +-----+ | |
560 * +----------| R |----------+ |
561 * | |<-----------+
562 * +-----+
563 *
564 * Key: ---X--> HEAD flag set in pointer
565 * T Tail page
566 * R Reader page
567 * N Next page
568 *
569 * (see __rb_reserve_next() to see where this happens)
570 *
571 * What the above shows is that the reader just swapped out
572 * the reader page with a page in the buffer, but before it
573 * could make the new header point back to the new page added
574 * it was preempted by a writer. The writer moved forward onto
575 * the new page added by the reader and is about to move forward
576 * again.
577 *
578 * You can see, it is legitimate for the previous pointer of
579 * the head (or any page) not to point back to itself. But only
580 * temporarially.
581 */
582
583#define RB_PAGE_NORMAL 0UL
584#define RB_PAGE_HEAD 1UL
585#define RB_PAGE_UPDATE 2UL
586
587
588#define RB_FLAG_MASK 3UL
589
590/* PAGE_MOVED is not part of the mask */
591#define RB_PAGE_MOVED 4UL
592
593/*
594 * rb_list_head - remove any bit
595 */
596static struct list_head *rb_list_head(struct list_head *list)
597{
598 unsigned long val = (unsigned long)list;
599
600 return (struct list_head *)(val & ~RB_FLAG_MASK);
601}
602
603/*
604 * rb_is_head_page - test if the give page is the head page
605 *
606 * Because the reader may move the head_page pointer, we can
607 * not trust what the head page is (it may be pointing to
608 * the reader page). But if the next page is a header page,
609 * its flags will be non zero.
610 */
611static int inline
612rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
613 struct buffer_page *page, struct list_head *list)
614{
615 unsigned long val;
616
617 val = (unsigned long)list->next;
618
619 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
620 return RB_PAGE_MOVED;
621
622 return val & RB_FLAG_MASK;
623}
624
625/*
626 * rb_is_reader_page
627 *
628 * The unique thing about the reader page, is that, if the
629 * writer is ever on it, the previous pointer never points
630 * back to the reader page.
631 */
632static int rb_is_reader_page(struct buffer_page *page)
633{
634 struct list_head *list = page->list.prev;
635
636 return rb_list_head(list->next) != &page->list;
637}
638
639/*
640 * rb_set_list_to_head - set a list_head to be pointing to head.
641 */
642static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
643 struct list_head *list)
644{
645 unsigned long *ptr;
646
647 ptr = (unsigned long *)&list->next;
648 *ptr |= RB_PAGE_HEAD;
649 *ptr &= ~RB_PAGE_UPDATE;
650}
651
652/*
653 * rb_head_page_activate - sets up head page
654 */
655static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
656{
657 struct buffer_page *head;
658
659 head = cpu_buffer->head_page;
660 if (!head)
661 return;
662
663 /*
664 * Set the previous list pointer to have the HEAD flag.
665 */
666 rb_set_list_to_head(cpu_buffer, head->list.prev);
667}
668
669static void rb_list_head_clear(struct list_head *list)
670{
671 unsigned long *ptr = (unsigned long *)&list->next;
672
673 *ptr &= ~RB_FLAG_MASK;
674}
675
676/*
677 * rb_head_page_dactivate - clears head page ptr (for free list)
678 */
679static void
680rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
681{
682 struct list_head *hd;
683
684 /* Go through the whole list and clear any pointers found. */
685 rb_list_head_clear(cpu_buffer->pages);
686
687 list_for_each(hd, cpu_buffer->pages)
688 rb_list_head_clear(hd);
689}
690
691static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
692 struct buffer_page *head,
693 struct buffer_page *prev,
694 int old_flag, int new_flag)
695{
696 struct list_head *list;
697 unsigned long val = (unsigned long)&head->list;
698 unsigned long ret;
699
700 list = &prev->list;
701
702 val &= ~RB_FLAG_MASK;
703
704 ret = (unsigned long)cmpxchg(&list->next,
705 val | old_flag, val | new_flag);
706
707 /* check if the reader took the page */
708 if ((ret & ~RB_FLAG_MASK) != val)
709 return RB_PAGE_MOVED;
710
711 return ret & RB_FLAG_MASK;
712}
713
714static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
715 struct buffer_page *head,
716 struct buffer_page *prev,
717 int old_flag)
718{
719 return rb_head_page_set(cpu_buffer, head, prev,
720 old_flag, RB_PAGE_UPDATE);
721}
722
723static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
724 struct buffer_page *head,
725 struct buffer_page *prev,
726 int old_flag)
727{
728 return rb_head_page_set(cpu_buffer, head, prev,
729 old_flag, RB_PAGE_HEAD);
730}
731
732static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
733 struct buffer_page *head,
734 struct buffer_page *prev,
735 int old_flag)
736{
737 return rb_head_page_set(cpu_buffer, head, prev,
738 old_flag, RB_PAGE_NORMAL);
739}
740
741static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page **bpage)
743{
744 struct list_head *p = rb_list_head((*bpage)->list.next);
745
746 *bpage = list_entry(p, struct buffer_page, list);
747}
748
749static struct buffer_page *
750rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
751{
752 struct buffer_page *head;
753 struct buffer_page *page;
754 struct list_head *list;
755 int i;
756
757 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
758 return NULL;
759
760 /* sanity check */
761 list = cpu_buffer->pages;
762 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
763 return NULL;
764
765 page = head = cpu_buffer->head_page;
766 /*
767 * It is possible that the writer moves the header behind
768 * where we started, and we miss in one loop.
769 * A second loop should grab the header, but we'll do
770 * three loops just because I'm paranoid.
771 */
772 for (i = 0; i < 3; i++) {
773 do {
774 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
775 cpu_buffer->head_page = page;
776 return page;
777 }
778 rb_inc_page(cpu_buffer, &page);
779 } while (page != head);
780 }
781
782 RB_WARN_ON(cpu_buffer, 1);
783
784 return NULL;
785}
786
787static int rb_head_page_replace(struct buffer_page *old,
788 struct buffer_page *new)
789{
790 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
791 unsigned long val;
792 unsigned long ret;
793
794 val = *ptr & ~RB_FLAG_MASK;
795 val |= RB_PAGE_HEAD;
796
797 ret = cmpxchg(ptr, val, &new->list);
798
799 return ret == val;
800}
801
802/*
803 * rb_tail_page_update - move the tail page forward
804 *
805 * Returns 1 if moved tail page, 0 if someone else did.
806 */
807static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
808 struct buffer_page *tail_page,
809 struct buffer_page *next_page)
810{
811 struct buffer_page *old_tail;
812 unsigned long old_entries;
813 unsigned long old_write;
814 int ret = 0;
815
816 /*
817 * The tail page now needs to be moved forward.
818 *
819 * We need to reset the tail page, but without messing
820 * with possible erasing of data brought in by interrupts
821 * that have moved the tail page and are currently on it.
822 *
823 * We add a counter to the write field to denote this.
824 */
825 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
826 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827
828 /*
829 * Just make sure we have seen our old_write and synchronize
830 * with any interrupts that come in.
831 */
832 barrier();
833
834 /*
835 * If the tail page is still the same as what we think
836 * it is, then it is up to us to update the tail
837 * pointer.
838 */
839 if (tail_page == cpu_buffer->tail_page) {
840 /* Zero the write counter */
841 unsigned long val = old_write & ~RB_WRITE_MASK;
842 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843
844 /*
845 * This will only succeed if an interrupt did
846 * not come in and change it. In which case, we
847 * do not want to modify it.
848 *
849 * We add (void) to let the compiler know that we do not care
850 * about the return value of these functions. We use the
851 * cmpxchg to only update if an interrupt did not already
852 * do it for us. If the cmpxchg fails, we don't care.
853 */
854 (void)local_cmpxchg(&next_page->write, old_write, val);
855 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
856
857 /*
858 * No need to worry about races with clearing out the commit.
859 * it only can increment when a commit takes place. But that
860 * only happens in the outer most nested commit.
861 */
862 local_set(&next_page->page->commit, 0);
863
864 old_tail = cmpxchg(&cpu_buffer->tail_page,
865 tail_page, next_page);
866
867 if (old_tail == tail_page)
868 ret = 1;
869 }
870
871 return ret;
872}
873
874static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
875 struct buffer_page *bpage)
876{
877 unsigned long val = (unsigned long)bpage;
878
879 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
880 return 1;
881
882 return 0;
883}
884
885/**
886 * rb_check_list - make sure a pointer to a list has the last bits zero
887 */
888static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
889 struct list_head *list)
890{
891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
892 return 1;
893 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
894 return 1;
895 return 0;
896}
897
492/** 898/**
493 * check_pages - integrity check of buffer pages 899 * check_pages - integrity check of buffer pages
494 * @cpu_buffer: CPU buffer with pages to test 900 * @cpu_buffer: CPU buffer with pages to test
@@ -498,14 +904,19 @@ EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
498 */ 904 */
499static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 905static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500{ 906{
501 struct list_head *head = &cpu_buffer->pages; 907 struct list_head *head = cpu_buffer->pages;
502 struct buffer_page *bpage, *tmp; 908 struct buffer_page *bpage, *tmp;
503 909
910 rb_head_page_deactivate(cpu_buffer);
911
504 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 912 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505 return -1; 913 return -1;
506 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 914 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507 return -1; 915 return -1;
508 916
917 if (rb_check_list(cpu_buffer, head))
918 return -1;
919
509 list_for_each_entry_safe(bpage, tmp, head, list) { 920 list_for_each_entry_safe(bpage, tmp, head, list) {
510 if (RB_WARN_ON(cpu_buffer, 921 if (RB_WARN_ON(cpu_buffer,
511 bpage->list.next->prev != &bpage->list)) 922 bpage->list.next->prev != &bpage->list))
@@ -513,25 +924,33 @@ static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
513 if (RB_WARN_ON(cpu_buffer, 924 if (RB_WARN_ON(cpu_buffer,
514 bpage->list.prev->next != &bpage->list)) 925 bpage->list.prev->next != &bpage->list))
515 return -1; 926 return -1;
927 if (rb_check_list(cpu_buffer, &bpage->list))
928 return -1;
516 } 929 }
517 930
931 rb_head_page_activate(cpu_buffer);
932
518 return 0; 933 return 0;
519} 934}
520 935
521static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 936static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522 unsigned nr_pages) 937 unsigned nr_pages)
523{ 938{
524 struct list_head *head = &cpu_buffer->pages;
525 struct buffer_page *bpage, *tmp; 939 struct buffer_page *bpage, *tmp;
526 unsigned long addr; 940 unsigned long addr;
527 LIST_HEAD(pages); 941 LIST_HEAD(pages);
528 unsigned i; 942 unsigned i;
529 943
944 WARN_ON(!nr_pages);
945
530 for (i = 0; i < nr_pages; i++) { 946 for (i = 0; i < nr_pages; i++) {
531 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 947 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
532 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 948 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
533 if (!bpage) 949 if (!bpage)
534 goto free_pages; 950 goto free_pages;
951
952 rb_check_bpage(cpu_buffer, bpage);
953
535 list_add(&bpage->list, &pages); 954 list_add(&bpage->list, &pages);
536 955
537 addr = __get_free_page(GFP_KERNEL); 956 addr = __get_free_page(GFP_KERNEL);
@@ -541,7 +960,13 @@ static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
541 rb_init_page(bpage->page); 960 rb_init_page(bpage->page);
542 } 961 }
543 962
544 list_splice(&pages, head); 963 /*
964 * The ring buffer page list is a circular list that does not
965 * start and end with a list head. All page list items point to
966 * other pages.
967 */
968 cpu_buffer->pages = pages.next;
969 list_del(&pages);
545 970
546 rb_check_pages(cpu_buffer); 971 rb_check_pages(cpu_buffer);
547 972
@@ -573,13 +998,14 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
573 spin_lock_init(&cpu_buffer->reader_lock); 998 spin_lock_init(&cpu_buffer->reader_lock);
574 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 999 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
575 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 1000 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
576 INIT_LIST_HEAD(&cpu_buffer->pages);
577 1001
578 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1002 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
579 GFP_KERNEL, cpu_to_node(cpu)); 1003 GFP_KERNEL, cpu_to_node(cpu));
580 if (!bpage) 1004 if (!bpage)
581 goto fail_free_buffer; 1005 goto fail_free_buffer;
582 1006
1007 rb_check_bpage(cpu_buffer, bpage);
1008
583 cpu_buffer->reader_page = bpage; 1009 cpu_buffer->reader_page = bpage;
584 addr = __get_free_page(GFP_KERNEL); 1010 addr = __get_free_page(GFP_KERNEL);
585 if (!addr) 1011 if (!addr)
@@ -594,9 +1020,11 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
594 goto fail_free_reader; 1020 goto fail_free_reader;
595 1021
596 cpu_buffer->head_page 1022 cpu_buffer->head_page
597 = list_entry(cpu_buffer->pages.next, struct buffer_page, list); 1023 = list_entry(cpu_buffer->pages, struct buffer_page, list);
598 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1024 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
599 1025
1026 rb_head_page_activate(cpu_buffer);
1027
600 return cpu_buffer; 1028 return cpu_buffer;
601 1029
602 fail_free_reader: 1030 fail_free_reader:
@@ -609,15 +1037,22 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
609 1037
610static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1038static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611{ 1039{
612 struct list_head *head = &cpu_buffer->pages; 1040 struct list_head *head = cpu_buffer->pages;
613 struct buffer_page *bpage, *tmp; 1041 struct buffer_page *bpage, *tmp;
614 1042
615 free_buffer_page(cpu_buffer->reader_page); 1043 free_buffer_page(cpu_buffer->reader_page);
616 1044
617 list_for_each_entry_safe(bpage, tmp, head, list) { 1045 rb_head_page_deactivate(cpu_buffer);
618 list_del_init(&bpage->list); 1046
1047 if (head) {
1048 list_for_each_entry_safe(bpage, tmp, head, list) {
1049 list_del_init(&bpage->list);
1050 free_buffer_page(bpage);
1051 }
1052 bpage = list_entry(head, struct buffer_page, list);
619 free_buffer_page(bpage); 1053 free_buffer_page(bpage);
620 } 1054 }
1055
621 kfree(cpu_buffer); 1056 kfree(cpu_buffer);
622} 1057}
623 1058
@@ -760,15 +1195,17 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
760 atomic_inc(&cpu_buffer->record_disabled); 1195 atomic_inc(&cpu_buffer->record_disabled);
761 synchronize_sched(); 1196 synchronize_sched();
762 1197
1198 rb_head_page_deactivate(cpu_buffer);
1199
763 for (i = 0; i < nr_pages; i++) { 1200 for (i = 0; i < nr_pages; i++) {
764 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) 1201 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
765 return; 1202 return;
766 p = cpu_buffer->pages.next; 1203 p = cpu_buffer->pages->next;
767 bpage = list_entry(p, struct buffer_page, list); 1204 bpage = list_entry(p, struct buffer_page, list);
768 list_del_init(&bpage->list); 1205 list_del_init(&bpage->list);
769 free_buffer_page(bpage); 1206 free_buffer_page(bpage);
770 } 1207 }
771 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) 1208 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
772 return; 1209 return;
773 1210
774 rb_reset_cpu(cpu_buffer); 1211 rb_reset_cpu(cpu_buffer);
@@ -790,15 +1227,19 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
790 atomic_inc(&cpu_buffer->record_disabled); 1227 atomic_inc(&cpu_buffer->record_disabled);
791 synchronize_sched(); 1228 synchronize_sched();
792 1229
1230 spin_lock_irq(&cpu_buffer->reader_lock);
1231 rb_head_page_deactivate(cpu_buffer);
1232
793 for (i = 0; i < nr_pages; i++) { 1233 for (i = 0; i < nr_pages; i++) {
794 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1234 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
795 return; 1235 return;
796 p = pages->next; 1236 p = pages->next;
797 bpage = list_entry(p, struct buffer_page, list); 1237 bpage = list_entry(p, struct buffer_page, list);
798 list_del_init(&bpage->list); 1238 list_del_init(&bpage->list);
799 list_add_tail(&bpage->list, &cpu_buffer->pages); 1239 list_add_tail(&bpage->list, cpu_buffer->pages);
800 } 1240 }
801 rb_reset_cpu(cpu_buffer); 1241 rb_reset_cpu(cpu_buffer);
1242 spin_unlock_irq(&cpu_buffer->reader_lock);
802 1243
803 rb_check_pages(cpu_buffer); 1244 rb_check_pages(cpu_buffer);
804 1245
@@ -949,21 +1390,14 @@ rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
949} 1390}
950 1391
951static inline struct ring_buffer_event * 1392static inline struct ring_buffer_event *
952rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
953{
954 return __rb_page_index(cpu_buffer->head_page,
955 cpu_buffer->head_page->read);
956}
957
958static inline struct ring_buffer_event *
959rb_iter_head_event(struct ring_buffer_iter *iter) 1393rb_iter_head_event(struct ring_buffer_iter *iter)
960{ 1394{
961 return __rb_page_index(iter->head_page, iter->head); 1395 return __rb_page_index(iter->head_page, iter->head);
962} 1396}
963 1397
964static inline unsigned rb_page_write(struct buffer_page *bpage) 1398static inline unsigned long rb_page_write(struct buffer_page *bpage)
965{ 1399{
966 return local_read(&bpage->write); 1400 return local_read(&bpage->write) & RB_WRITE_MASK;
967} 1401}
968 1402
969static inline unsigned rb_page_commit(struct buffer_page *bpage) 1403static inline unsigned rb_page_commit(struct buffer_page *bpage)
@@ -971,6 +1405,11 @@ static inline unsigned rb_page_commit(struct buffer_page *bpage)
971 return local_read(&bpage->page->commit); 1405 return local_read(&bpage->page->commit);
972} 1406}
973 1407
1408static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409{
1410 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411}
1412
974/* Size is determined by what has been commited */ 1413/* Size is determined by what has been commited */
975static inline unsigned rb_page_size(struct buffer_page *bpage) 1414static inline unsigned rb_page_size(struct buffer_page *bpage)
976{ 1415{
@@ -983,22 +1422,6 @@ rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
983 return rb_page_commit(cpu_buffer->commit_page); 1422 return rb_page_commit(cpu_buffer->commit_page);
984} 1423}
985 1424
986static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
987{
988 return rb_page_commit(cpu_buffer->head_page);
989}
990
991static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
992 struct buffer_page **bpage)
993{
994 struct list_head *p = (*bpage)->list.next;
995
996 if (p == &cpu_buffer->pages)
997 p = p->next;
998
999 *bpage = list_entry(p, struct buffer_page, list);
1000}
1001
1002static inline unsigned 1425static inline unsigned
1003rb_event_index(struct ring_buffer_event *event) 1426rb_event_index(struct ring_buffer_event *event)
1004{ 1427{
@@ -1024,6 +1447,8 @@ rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1024static void 1447static void
1025rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1448rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1026{ 1449{
1450 unsigned long max_count;
1451
1027 /* 1452 /*
1028 * We only race with interrupts and NMIs on this CPU. 1453 * We only race with interrupts and NMIs on this CPU.
1029 * If we own the commit event, then we can commit 1454 * If we own the commit event, then we can commit
@@ -1033,9 +1458,16 @@ rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1033 * assign the commit to the tail. 1458 * assign the commit to the tail.
1034 */ 1459 */
1035 again: 1460 again:
1461 max_count = cpu_buffer->buffer->pages * 100;
1462
1036 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1463 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1037 cpu_buffer->commit_page->page->commit = 1464 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1038 cpu_buffer->commit_page->write; 1465 return;
1466 if (RB_WARN_ON(cpu_buffer,
1467 rb_is_reader_page(cpu_buffer->tail_page)))
1468 return;
1469 local_set(&cpu_buffer->commit_page->page->commit,
1470 rb_page_write(cpu_buffer->commit_page));
1039 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1471 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1040 cpu_buffer->write_stamp = 1472 cpu_buffer->write_stamp =
1041 cpu_buffer->commit_page->page->time_stamp; 1473 cpu_buffer->commit_page->page->time_stamp;
@@ -1044,8 +1476,12 @@ rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1044 } 1476 }
1045 while (rb_commit_index(cpu_buffer) != 1477 while (rb_commit_index(cpu_buffer) !=
1046 rb_page_write(cpu_buffer->commit_page)) { 1478 rb_page_write(cpu_buffer->commit_page)) {
1047 cpu_buffer->commit_page->page->commit = 1479
1048 cpu_buffer->commit_page->write; 1480 local_set(&cpu_buffer->commit_page->page->commit,
1481 rb_page_write(cpu_buffer->commit_page));
1482 RB_WARN_ON(cpu_buffer,
1483 local_read(&cpu_buffer->commit_page->page->commit) &
1484 ~RB_WRITE_MASK);
1049 barrier(); 1485 barrier();
1050 } 1486 }
1051 1487
@@ -1078,7 +1514,7 @@ static void rb_inc_iter(struct ring_buffer_iter *iter)
1078 * to the head page instead of next. 1514 * to the head page instead of next.
1079 */ 1515 */
1080 if (iter->head_page == cpu_buffer->reader_page) 1516 if (iter->head_page == cpu_buffer->reader_page)
1081 iter->head_page = cpu_buffer->head_page; 1517 iter->head_page = rb_set_head_page(cpu_buffer);
1082 else 1518 else
1083 rb_inc_page(cpu_buffer, &iter->head_page); 1519 rb_inc_page(cpu_buffer, &iter->head_page);
1084 1520
@@ -1122,6 +1558,163 @@ rb_update_event(struct ring_buffer_event *event,
1122 } 1558 }
1123} 1559}
1124 1560
1561/*
1562 * rb_handle_head_page - writer hit the head page
1563 *
1564 * Returns: +1 to retry page
1565 * 0 to continue
1566 * -1 on error
1567 */
1568static int
1569rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570 struct buffer_page *tail_page,
1571 struct buffer_page *next_page)
1572{
1573 struct buffer_page *new_head;
1574 int entries;
1575 int type;
1576 int ret;
1577
1578 entries = rb_page_entries(next_page);
1579
1580 /*
1581 * The hard part is here. We need to move the head
1582 * forward, and protect against both readers on
1583 * other CPUs and writers coming in via interrupts.
1584 */
1585 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586 RB_PAGE_HEAD);
1587
1588 /*
1589 * type can be one of four:
1590 * NORMAL - an interrupt already moved it for us
1591 * HEAD - we are the first to get here.
1592 * UPDATE - we are the interrupt interrupting
1593 * a current move.
1594 * MOVED - a reader on another CPU moved the next
1595 * pointer to its reader page. Give up
1596 * and try again.
1597 */
1598
1599 switch (type) {
1600 case RB_PAGE_HEAD:
1601 /*
1602 * We changed the head to UPDATE, thus
1603 * it is our responsibility to update
1604 * the counters.
1605 */
1606 local_add(entries, &cpu_buffer->overrun);
1607
1608 /*
1609 * The entries will be zeroed out when we move the
1610 * tail page.
1611 */
1612
1613 /* still more to do */
1614 break;
1615
1616 case RB_PAGE_UPDATE:
1617 /*
1618 * This is an interrupt that interrupt the
1619 * previous update. Still more to do.
1620 */
1621 break;
1622 case RB_PAGE_NORMAL:
1623 /*
1624 * An interrupt came in before the update
1625 * and processed this for us.
1626 * Nothing left to do.
1627 */
1628 return 1;
1629 case RB_PAGE_MOVED:
1630 /*
1631 * The reader is on another CPU and just did
1632 * a swap with our next_page.
1633 * Try again.
1634 */
1635 return 1;
1636 default:
1637 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638 return -1;
1639 }
1640
1641 /*
1642 * Now that we are here, the old head pointer is
1643 * set to UPDATE. This will keep the reader from
1644 * swapping the head page with the reader page.
1645 * The reader (on another CPU) will spin till
1646 * we are finished.
1647 *
1648 * We just need to protect against interrupts
1649 * doing the job. We will set the next pointer
1650 * to HEAD. After that, we set the old pointer
1651 * to NORMAL, but only if it was HEAD before.
1652 * otherwise we are an interrupt, and only
1653 * want the outer most commit to reset it.
1654 */
1655 new_head = next_page;
1656 rb_inc_page(cpu_buffer, &new_head);
1657
1658 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659 RB_PAGE_NORMAL);
1660
1661 /*
1662 * Valid returns are:
1663 * HEAD - an interrupt came in and already set it.
1664 * NORMAL - One of two things:
1665 * 1) We really set it.
1666 * 2) A bunch of interrupts came in and moved
1667 * the page forward again.
1668 */
1669 switch (ret) {
1670 case RB_PAGE_HEAD:
1671 case RB_PAGE_NORMAL:
1672 /* OK */
1673 break;
1674 default:
1675 RB_WARN_ON(cpu_buffer, 1);
1676 return -1;
1677 }
1678
1679 /*
1680 * It is possible that an interrupt came in,
1681 * set the head up, then more interrupts came in
1682 * and moved it again. When we get back here,
1683 * the page would have been set to NORMAL but we
1684 * just set it back to HEAD.
1685 *
1686 * How do you detect this? Well, if that happened
1687 * the tail page would have moved.
1688 */
1689 if (ret == RB_PAGE_NORMAL) {
1690 /*
1691 * If the tail had moved passed next, then we need
1692 * to reset the pointer.
1693 */
1694 if (cpu_buffer->tail_page != tail_page &&
1695 cpu_buffer->tail_page != next_page)
1696 rb_head_page_set_normal(cpu_buffer, new_head,
1697 next_page,
1698 RB_PAGE_HEAD);
1699 }
1700
1701 /*
1702 * If this was the outer most commit (the one that
1703 * changed the original pointer from HEAD to UPDATE),
1704 * then it is up to us to reset it to NORMAL.
1705 */
1706 if (type == RB_PAGE_HEAD) {
1707 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 tail_page,
1709 RB_PAGE_UPDATE);
1710 if (RB_WARN_ON(cpu_buffer,
1711 ret != RB_PAGE_UPDATE))
1712 return -1;
1713 }
1714
1715 return 0;
1716}
1717
1125static unsigned rb_calculate_event_length(unsigned length) 1718static unsigned rb_calculate_event_length(unsigned length)
1126{ 1719{
1127 struct ring_buffer_event event; /* Used only for sizeof array */ 1720 struct ring_buffer_event event; /* Used only for sizeof array */
@@ -1185,9 +1778,6 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1185 event->type_len = RINGBUF_TYPE_PADDING; 1778 event->type_len = RINGBUF_TYPE_PADDING;
1186 /* time delta must be non zero */ 1779 /* time delta must be non zero */
1187 event->time_delta = 1; 1780 event->time_delta = 1;
1188 /* Account for this as an entry */
1189 local_inc(&tail_page->entries);
1190 local_inc(&cpu_buffer->entries);
1191 1781
1192 /* Set write to end of buffer */ 1782 /* Set write to end of buffer */
1193 length = (tail + length) - BUF_PAGE_SIZE; 1783 length = (tail + length) - BUF_PAGE_SIZE;
@@ -1200,96 +1790,93 @@ rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1200 struct buffer_page *commit_page, 1790 struct buffer_page *commit_page,
1201 struct buffer_page *tail_page, u64 *ts) 1791 struct buffer_page *tail_page, u64 *ts)
1202{ 1792{
1203 struct buffer_page *next_page, *head_page, *reader_page;
1204 struct ring_buffer *buffer = cpu_buffer->buffer; 1793 struct ring_buffer *buffer = cpu_buffer->buffer;
1205 bool lock_taken = false; 1794 struct buffer_page *next_page;
1206 unsigned long flags; 1795 int ret;
1207 1796
1208 next_page = tail_page; 1797 next_page = tail_page;
1209 1798
1210 local_irq_save(flags);
1211 /*
1212 * Since the write to the buffer is still not
1213 * fully lockless, we must be careful with NMIs.
1214 * The locks in the writers are taken when a write
1215 * crosses to a new page. The locks protect against
1216 * races with the readers (this will soon be fixed
1217 * with a lockless solution).
1218 *
1219 * Because we can not protect against NMIs, and we
1220 * want to keep traces reentrant, we need to manage
1221 * what happens when we are in an NMI.
1222 *
1223 * NMIs can happen after we take the lock.
1224 * If we are in an NMI, only take the lock
1225 * if it is not already taken. Otherwise
1226 * simply fail.
1227 */
1228 if (unlikely(in_nmi())) {
1229 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1230 cpu_buffer->nmi_dropped++;
1231 goto out_reset;
1232 }
1233 } else
1234 __raw_spin_lock(&cpu_buffer->lock);
1235
1236 lock_taken = true;
1237
1238 rb_inc_page(cpu_buffer, &next_page); 1799 rb_inc_page(cpu_buffer, &next_page);
1239 1800
1240 head_page = cpu_buffer->head_page;
1241 reader_page = cpu_buffer->reader_page;
1242
1243 /* we grabbed the lock before incrementing */
1244 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1245 goto out_reset;
1246
1247 /* 1801 /*
1248 * If for some reason, we had an interrupt storm that made 1802 * If for some reason, we had an interrupt storm that made
1249 * it all the way around the buffer, bail, and warn 1803 * it all the way around the buffer, bail, and warn
1250 * about it. 1804 * about it.
1251 */ 1805 */
1252 if (unlikely(next_page == commit_page)) { 1806 if (unlikely(next_page == commit_page)) {
1253 cpu_buffer->commit_overrun++; 1807 local_inc(&cpu_buffer->commit_overrun);
1254 goto out_reset; 1808 goto out_reset;
1255 } 1809 }
1256 1810
1257 if (next_page == head_page) { 1811 /*
1258 if (!(buffer->flags & RB_FL_OVERWRITE)) 1812 * This is where the fun begins!
1259 goto out_reset; 1813 *
1260 1814 * We are fighting against races between a reader that
1261 /* tail_page has not moved yet? */ 1815 * could be on another CPU trying to swap its reader
1262 if (tail_page == cpu_buffer->tail_page) { 1816 * page with the buffer head.
1263 /* count overflows */ 1817 *
1264 cpu_buffer->overrun += 1818 * We are also fighting against interrupts coming in and
1265 local_read(&head_page->entries); 1819 * moving the head or tail on us as well.
1820 *
1821 * If the next page is the head page then we have filled
1822 * the buffer, unless the commit page is still on the
1823 * reader page.
1824 */
1825 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1266 1826
1267 rb_inc_page(cpu_buffer, &head_page); 1827 /*
1268 cpu_buffer->head_page = head_page; 1828 * If the commit is not on the reader page, then
1269 cpu_buffer->head_page->read = 0; 1829 * move the header page.
1830 */
1831 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832 /*
1833 * If we are not in overwrite mode,
1834 * this is easy, just stop here.
1835 */
1836 if (!(buffer->flags & RB_FL_OVERWRITE))
1837 goto out_reset;
1838
1839 ret = rb_handle_head_page(cpu_buffer,
1840 tail_page,
1841 next_page);
1842 if (ret < 0)
1843 goto out_reset;
1844 if (ret)
1845 goto out_again;
1846 } else {
1847 /*
1848 * We need to be careful here too. The
1849 * commit page could still be on the reader
1850 * page. We could have a small buffer, and
1851 * have filled up the buffer with events
1852 * from interrupts and such, and wrapped.
1853 *
1854 * Note, if the tail page is also the on the
1855 * reader_page, we let it move out.
1856 */
1857 if (unlikely((cpu_buffer->commit_page !=
1858 cpu_buffer->tail_page) &&
1859 (cpu_buffer->commit_page ==
1860 cpu_buffer->reader_page))) {
1861 local_inc(&cpu_buffer->commit_overrun);
1862 goto out_reset;
1863 }
1270 } 1864 }
1271 } 1865 }
1272 1866
1273 /* 1867 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1274 * If the tail page is still the same as what we think 1868 if (ret) {
1275 * it is, then it is up to us to update the tail 1869 /*
1276 * pointer. 1870 * Nested commits always have zero deltas, so
1277 */ 1871 * just reread the time stamp
1278 if (tail_page == cpu_buffer->tail_page) { 1872 */
1279 local_set(&next_page->write, 0);
1280 local_set(&next_page->entries, 0);
1281 local_set(&next_page->page->commit, 0);
1282 cpu_buffer->tail_page = next_page;
1283
1284 /* reread the time stamp */
1285 *ts = rb_time_stamp(buffer, cpu_buffer->cpu); 1873 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1286 cpu_buffer->tail_page->page->time_stamp = *ts; 1874 next_page->page->time_stamp = *ts;
1287 } 1875 }
1288 1876
1289 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1877 out_again:
1290 1878
1291 __raw_spin_unlock(&cpu_buffer->lock); 1879 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1292 local_irq_restore(flags);
1293 1880
1294 /* fail and let the caller try again */ 1881 /* fail and let the caller try again */
1295 return ERR_PTR(-EAGAIN); 1882 return ERR_PTR(-EAGAIN);
@@ -1298,9 +1885,6 @@ rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1298 /* reset write */ 1885 /* reset write */
1299 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1886 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1300 1887
1301 if (likely(lock_taken))
1302 __raw_spin_unlock(&cpu_buffer->lock);
1303 local_irq_restore(flags);
1304 return NULL; 1888 return NULL;
1305} 1889}
1306 1890
@@ -1317,6 +1901,9 @@ __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1317 barrier(); 1901 barrier();
1318 tail_page = cpu_buffer->tail_page; 1902 tail_page = cpu_buffer->tail_page;
1319 write = local_add_return(length, &tail_page->write); 1903 write = local_add_return(length, &tail_page->write);
1904
1905 /* set write to only the index of the write */
1906 write &= RB_WRITE_MASK;
1320 tail = write - length; 1907 tail = write - length;
1321 1908
1322 /* See if we shot pass the end of this buffer page */ 1909 /* See if we shot pass the end of this buffer page */
@@ -1361,12 +1948,16 @@ rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1361 bpage = cpu_buffer->tail_page; 1948 bpage = cpu_buffer->tail_page;
1362 1949
1363 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1950 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1951 unsigned long write_mask =
1952 local_read(&bpage->write) & ~RB_WRITE_MASK;
1364 /* 1953 /*
1365 * This is on the tail page. It is possible that 1954 * This is on the tail page. It is possible that
1366 * a write could come in and move the tail page 1955 * a write could come in and move the tail page
1367 * and write to the next page. That is fine 1956 * and write to the next page. That is fine
1368 * because we just shorten what is on this page. 1957 * because we just shorten what is on this page.
1369 */ 1958 */
1959 old_index += write_mask;
1960 new_index += write_mask;
1370 index = local_cmpxchg(&bpage->write, old_index, new_index); 1961 index = local_cmpxchg(&bpage->write, old_index, new_index);
1371 if (index == old_index) 1962 if (index == old_index)
1372 return 1; 1963 return 1;
@@ -1482,7 +2073,8 @@ static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1482} 2073}
1483 2074
1484static struct ring_buffer_event * 2075static struct ring_buffer_event *
1485rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, 2076rb_reserve_next_event(struct ring_buffer *buffer,
2077 struct ring_buffer_per_cpu *cpu_buffer,
1486 unsigned long length) 2078 unsigned long length)
1487{ 2079{
1488 struct ring_buffer_event *event; 2080 struct ring_buffer_event *event;
@@ -1492,6 +2084,21 @@ rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1492 2084
1493 rb_start_commit(cpu_buffer); 2085 rb_start_commit(cpu_buffer);
1494 2086
2087#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2088 /*
2089 * Due to the ability to swap a cpu buffer from a buffer
2090 * it is possible it was swapped before we committed.
2091 * (committing stops a swap). We check for it here and
2092 * if it happened, we have to fail the write.
2093 */
2094 barrier();
2095 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2096 local_dec(&cpu_buffer->committing);
2097 local_dec(&cpu_buffer->commits);
2098 return NULL;
2099 }
2100#endif
2101
1495 length = rb_calculate_event_length(length); 2102 length = rb_calculate_event_length(length);
1496 again: 2103 again:
1497 /* 2104 /*
@@ -1652,7 +2259,7 @@ ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1652 if (length > BUF_MAX_DATA_SIZE) 2259 if (length > BUF_MAX_DATA_SIZE)
1653 goto out; 2260 goto out;
1654 2261
1655 event = rb_reserve_next_event(cpu_buffer, length); 2262 event = rb_reserve_next_event(buffer, cpu_buffer, length);
1656 if (!event) 2263 if (!event)
1657 goto out; 2264 goto out;
1658 2265
@@ -1675,18 +2282,23 @@ ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1675} 2282}
1676EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2283EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1677 2284
1678static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2285static void
2286rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1679 struct ring_buffer_event *event) 2287 struct ring_buffer_event *event)
1680{ 2288{
1681 local_inc(&cpu_buffer->entries);
1682
1683 /* 2289 /*
1684 * The event first in the commit queue updates the 2290 * The event first in the commit queue updates the
1685 * time stamp. 2291 * time stamp.
1686 */ 2292 */
1687 if (rb_event_is_commit(cpu_buffer, event)) 2293 if (rb_event_is_commit(cpu_buffer, event))
1688 cpu_buffer->write_stamp += event->time_delta; 2294 cpu_buffer->write_stamp += event->time_delta;
2295}
1689 2296
2297static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2298 struct ring_buffer_event *event)
2299{
2300 local_inc(&cpu_buffer->entries);
2301 rb_update_write_stamp(cpu_buffer, event);
1690 rb_end_commit(cpu_buffer); 2302 rb_end_commit(cpu_buffer);
1691} 2303}
1692 2304
@@ -1733,32 +2345,57 @@ static inline void rb_event_discard(struct ring_buffer_event *event)
1733 event->time_delta = 1; 2345 event->time_delta = 1;
1734} 2346}
1735 2347
1736/** 2348/*
1737 * ring_buffer_event_discard - discard any event in the ring buffer 2349 * Decrement the entries to the page that an event is on.
1738 * @event: the event to discard 2350 * The event does not even need to exist, only the pointer
1739 * 2351 * to the page it is on. This may only be called before the commit
1740 * Sometimes a event that is in the ring buffer needs to be ignored. 2352 * takes place.
1741 * This function lets the user discard an event in the ring buffer
1742 * and then that event will not be read later.
1743 *
1744 * Note, it is up to the user to be careful with this, and protect
1745 * against races. If the user discards an event that has been consumed
1746 * it is possible that it could corrupt the ring buffer.
1747 */ 2353 */
1748void ring_buffer_event_discard(struct ring_buffer_event *event) 2354static inline void
2355rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2356 struct ring_buffer_event *event)
1749{ 2357{
1750 rb_event_discard(event); 2358 unsigned long addr = (unsigned long)event;
2359 struct buffer_page *bpage = cpu_buffer->commit_page;
2360 struct buffer_page *start;
2361
2362 addr &= PAGE_MASK;
2363
2364 /* Do the likely case first */
2365 if (likely(bpage->page == (void *)addr)) {
2366 local_dec(&bpage->entries);
2367 return;
2368 }
2369
2370 /*
2371 * Because the commit page may be on the reader page we
2372 * start with the next page and check the end loop there.
2373 */
2374 rb_inc_page(cpu_buffer, &bpage);
2375 start = bpage;
2376 do {
2377 if (bpage->page == (void *)addr) {
2378 local_dec(&bpage->entries);
2379 return;
2380 }
2381 rb_inc_page(cpu_buffer, &bpage);
2382 } while (bpage != start);
2383
2384 /* commit not part of this buffer?? */
2385 RB_WARN_ON(cpu_buffer, 1);
1751} 2386}
1752EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1753 2387
1754/** 2388/**
1755 * ring_buffer_commit_discard - discard an event that has not been committed 2389 * ring_buffer_commit_discard - discard an event that has not been committed
1756 * @buffer: the ring buffer 2390 * @buffer: the ring buffer
1757 * @event: non committed event to discard 2391 * @event: non committed event to discard
1758 * 2392 *
1759 * This is similar to ring_buffer_event_discard but must only be 2393 * Sometimes an event that is in the ring buffer needs to be ignored.
1760 * performed on an event that has not been committed yet. The difference 2394 * This function lets the user discard an event in the ring buffer
1761 * is that this will also try to free the event from the ring buffer 2395 * and then that event will not be read later.
2396 *
2397 * This function only works if it is called before the the item has been
2398 * committed. It will try to free the event from the ring buffer
1762 * if another event has not been added behind it. 2399 * if another event has not been added behind it.
1763 * 2400 *
1764 * If another event has been added behind it, it will set the event 2401 * If another event has been added behind it, it will set the event
@@ -1786,14 +2423,15 @@ void ring_buffer_discard_commit(struct ring_buffer *buffer,
1786 */ 2423 */
1787 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2424 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1788 2425
2426 rb_decrement_entry(cpu_buffer, event);
1789 if (rb_try_to_discard(cpu_buffer, event)) 2427 if (rb_try_to_discard(cpu_buffer, event))
1790 goto out; 2428 goto out;
1791 2429
1792 /* 2430 /*
1793 * The commit is still visible by the reader, so we 2431 * The commit is still visible by the reader, so we
1794 * must increment entries. 2432 * must still update the timestamp.
1795 */ 2433 */
1796 local_inc(&cpu_buffer->entries); 2434 rb_update_write_stamp(cpu_buffer, event);
1797 out: 2435 out:
1798 rb_end_commit(cpu_buffer); 2436 rb_end_commit(cpu_buffer);
1799 2437
@@ -1854,7 +2492,7 @@ int ring_buffer_write(struct ring_buffer *buffer,
1854 if (length > BUF_MAX_DATA_SIZE) 2492 if (length > BUF_MAX_DATA_SIZE)
1855 goto out; 2493 goto out;
1856 2494
1857 event = rb_reserve_next_event(cpu_buffer, length); 2495 event = rb_reserve_next_event(buffer, cpu_buffer, length);
1858 if (!event) 2496 if (!event)
1859 goto out; 2497 goto out;
1860 2498
@@ -1875,9 +2513,13 @@ EXPORT_SYMBOL_GPL(ring_buffer_write);
1875static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2513static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1876{ 2514{
1877 struct buffer_page *reader = cpu_buffer->reader_page; 2515 struct buffer_page *reader = cpu_buffer->reader_page;
1878 struct buffer_page *head = cpu_buffer->head_page; 2516 struct buffer_page *head = rb_set_head_page(cpu_buffer);
1879 struct buffer_page *commit = cpu_buffer->commit_page; 2517 struct buffer_page *commit = cpu_buffer->commit_page;
1880 2518
2519 /* In case of error, head will be NULL */
2520 if (unlikely(!head))
2521 return 1;
2522
1881 return reader->read == rb_page_commit(reader) && 2523 return reader->read == rb_page_commit(reader) &&
1882 (commit == reader || 2524 (commit == reader ||
1883 (commit == head && 2525 (commit == head &&
@@ -1968,7 +2610,7 @@ unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1968 return 0; 2610 return 0;
1969 2611
1970 cpu_buffer = buffer->buffers[cpu]; 2612 cpu_buffer = buffer->buffers[cpu];
1971 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun) 2613 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
1972 - cpu_buffer->read; 2614 - cpu_buffer->read;
1973 2615
1974 return ret; 2616 return ret;
@@ -1989,33 +2631,13 @@ unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1989 return 0; 2631 return 0;
1990 2632
1991 cpu_buffer = buffer->buffers[cpu]; 2633 cpu_buffer = buffer->buffers[cpu];
1992 ret = cpu_buffer->overrun; 2634 ret = local_read(&cpu_buffer->overrun);
1993 2635
1994 return ret; 2636 return ret;
1995} 2637}
1996EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2638EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1997 2639
1998/** 2640/**
1999 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
2000 * @buffer: The ring buffer
2001 * @cpu: The per CPU buffer to get the number of overruns from
2002 */
2003unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2004{
2005 struct ring_buffer_per_cpu *cpu_buffer;
2006 unsigned long ret;
2007
2008 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2009 return 0;
2010
2011 cpu_buffer = buffer->buffers[cpu];
2012 ret = cpu_buffer->nmi_dropped;
2013
2014 return ret;
2015}
2016EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2017
2018/**
2019 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2641 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2020 * @buffer: The ring buffer 2642 * @buffer: The ring buffer
2021 * @cpu: The per CPU buffer to get the number of overruns from 2643 * @cpu: The per CPU buffer to get the number of overruns from
@@ -2030,7 +2652,7 @@ ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2030 return 0; 2652 return 0;
2031 2653
2032 cpu_buffer = buffer->buffers[cpu]; 2654 cpu_buffer = buffer->buffers[cpu];
2033 ret = cpu_buffer->commit_overrun; 2655 ret = local_read(&cpu_buffer->commit_overrun);
2034 2656
2035 return ret; 2657 return ret;
2036} 2658}
@@ -2053,7 +2675,7 @@ unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2053 for_each_buffer_cpu(buffer, cpu) { 2675 for_each_buffer_cpu(buffer, cpu) {
2054 cpu_buffer = buffer->buffers[cpu]; 2676 cpu_buffer = buffer->buffers[cpu];
2055 entries += (local_read(&cpu_buffer->entries) - 2677 entries += (local_read(&cpu_buffer->entries) -
2056 cpu_buffer->overrun) - cpu_buffer->read; 2678 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2057 } 2679 }
2058 2680
2059 return entries; 2681 return entries;
@@ -2076,7 +2698,7 @@ unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2076 /* if you care about this being correct, lock the buffer */ 2698 /* if you care about this being correct, lock the buffer */
2077 for_each_buffer_cpu(buffer, cpu) { 2699 for_each_buffer_cpu(buffer, cpu) {
2078 cpu_buffer = buffer->buffers[cpu]; 2700 cpu_buffer = buffer->buffers[cpu];
2079 overruns += cpu_buffer->overrun; 2701 overruns += local_read(&cpu_buffer->overrun);
2080 } 2702 }
2081 2703
2082 return overruns; 2704 return overruns;
@@ -2089,8 +2711,10 @@ static void rb_iter_reset(struct ring_buffer_iter *iter)
2089 2711
2090 /* Iterator usage is expected to have record disabled */ 2712 /* Iterator usage is expected to have record disabled */
2091 if (list_empty(&cpu_buffer->reader_page->list)) { 2713 if (list_empty(&cpu_buffer->reader_page->list)) {
2092 iter->head_page = cpu_buffer->head_page; 2714 iter->head_page = rb_set_head_page(cpu_buffer);
2093 iter->head = cpu_buffer->head_page->read; 2715 if (unlikely(!iter->head_page))
2716 return;
2717 iter->head = iter->head_page->read;
2094 } else { 2718 } else {
2095 iter->head_page = cpu_buffer->reader_page; 2719 iter->head_page = cpu_buffer->reader_page;
2096 iter->head = cpu_buffer->reader_page->read; 2720 iter->head = cpu_buffer->reader_page->read;
@@ -2207,6 +2831,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2207 struct buffer_page *reader = NULL; 2831 struct buffer_page *reader = NULL;
2208 unsigned long flags; 2832 unsigned long flags;
2209 int nr_loops = 0; 2833 int nr_loops = 0;
2834 int ret;
2210 2835
2211 local_irq_save(flags); 2836 local_irq_save(flags);
2212 __raw_spin_lock(&cpu_buffer->lock); 2837 __raw_spin_lock(&cpu_buffer->lock);
@@ -2240,30 +2865,56 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2240 goto out; 2865 goto out;
2241 2866
2242 /* 2867 /*
2243 * Splice the empty reader page into the list around the head.
2244 * Reset the reader page to size zero. 2868 * Reset the reader page to size zero.
2245 */ 2869 */
2870 local_set(&cpu_buffer->reader_page->write, 0);
2871 local_set(&cpu_buffer->reader_page->entries, 0);
2872 local_set(&cpu_buffer->reader_page->page->commit, 0);
2246 2873
2247 reader = cpu_buffer->head_page; 2874 spin:
2875 /*
2876 * Splice the empty reader page into the list around the head.
2877 */
2878 reader = rb_set_head_page(cpu_buffer);
2248 cpu_buffer->reader_page->list.next = reader->list.next; 2879 cpu_buffer->reader_page->list.next = reader->list.next;
2249 cpu_buffer->reader_page->list.prev = reader->list.prev; 2880 cpu_buffer->reader_page->list.prev = reader->list.prev;
2250 2881
2251 local_set(&cpu_buffer->reader_page->write, 0); 2882 /*
2252 local_set(&cpu_buffer->reader_page->entries, 0); 2883 * cpu_buffer->pages just needs to point to the buffer, it
2253 local_set(&cpu_buffer->reader_page->page->commit, 0); 2884 * has no specific buffer page to point to. Lets move it out
2885 * of our way so we don't accidently swap it.
2886 */
2887 cpu_buffer->pages = reader->list.prev;
2254 2888
2255 /* Make the reader page now replace the head */ 2889 /* The reader page will be pointing to the new head */
2256 reader->list.prev->next = &cpu_buffer->reader_page->list; 2890 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2257 reader->list.next->prev = &cpu_buffer->reader_page->list;
2258 2891
2259 /* 2892 /*
2260 * If the tail is on the reader, then we must set the head 2893 * Here's the tricky part.
2261 * to the inserted page, otherwise we set it one before. 2894 *
2895 * We need to move the pointer past the header page.
2896 * But we can only do that if a writer is not currently
2897 * moving it. The page before the header page has the
2898 * flag bit '1' set if it is pointing to the page we want.
2899 * but if the writer is in the process of moving it
2900 * than it will be '2' or already moved '0'.
2262 */ 2901 */
2263 cpu_buffer->head_page = cpu_buffer->reader_page;
2264 2902
2265 if (cpu_buffer->commit_page != reader) 2903 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2266 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2904
2905 /*
2906 * If we did not convert it, then we must try again.
2907 */
2908 if (!ret)
2909 goto spin;
2910
2911 /*
2912 * Yeah! We succeeded in replacing the page.
2913 *
2914 * Now make the new head point back to the reader page.
2915 */
2916 reader->list.next->prev = &cpu_buffer->reader_page->list;
2917 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2267 2918
2268 /* Finally update the reader page to the new head */ 2919 /* Finally update the reader page to the new head */
2269 cpu_buffer->reader_page = reader; 2920 cpu_buffer->reader_page = reader;
@@ -2292,8 +2943,7 @@ static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2292 2943
2293 event = rb_reader_event(cpu_buffer); 2944 event = rb_reader_event(cpu_buffer);
2294 2945
2295 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX 2946 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2296 || rb_discarded_event(event))
2297 cpu_buffer->read++; 2947 cpu_buffer->read++;
2298 2948
2299 rb_update_read_stamp(cpu_buffer, event); 2949 rb_update_read_stamp(cpu_buffer, event);
@@ -2525,10 +3175,8 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2525 spin_unlock(&cpu_buffer->reader_lock); 3175 spin_unlock(&cpu_buffer->reader_lock);
2526 local_irq_restore(flags); 3176 local_irq_restore(flags);
2527 3177
2528 if (event && event->type_len == RINGBUF_TYPE_PADDING) { 3178 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2529 cpu_relax();
2530 goto again; 3179 goto again;
2531 }
2532 3180
2533 return event; 3181 return event;
2534} 3182}
@@ -2553,10 +3201,8 @@ ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2553 event = rb_iter_peek(iter, ts); 3201 event = rb_iter_peek(iter, ts);
2554 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3202 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2555 3203
2556 if (event && event->type_len == RINGBUF_TYPE_PADDING) { 3204 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2557 cpu_relax();
2558 goto again; 3205 goto again;
2559 }
2560 3206
2561 return event; 3207 return event;
2562} 3208}
@@ -2602,10 +3248,8 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2602 out: 3248 out:
2603 preempt_enable(); 3249 preempt_enable();
2604 3250
2605 if (event && event->type_len == RINGBUF_TYPE_PADDING) { 3251 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2606 cpu_relax();
2607 goto again; 3252 goto again;
2608 }
2609 3253
2610 return event; 3254 return event;
2611} 3255}
@@ -2685,21 +3329,19 @@ ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2685 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2686 unsigned long flags; 3330 unsigned long flags;
2687 3331
2688 again:
2689 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3332 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3333 again:
2690 event = rb_iter_peek(iter, ts); 3334 event = rb_iter_peek(iter, ts);
2691 if (!event) 3335 if (!event)
2692 goto out; 3336 goto out;
2693 3337
3338 if (event->type_len == RINGBUF_TYPE_PADDING)
3339 goto again;
3340
2694 rb_advance_iter(iter); 3341 rb_advance_iter(iter);
2695 out: 3342 out:
2696 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3343 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2697 3344
2698 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2699 cpu_relax();
2700 goto again;
2701 }
2702
2703 return event; 3345 return event;
2704} 3346}
2705EXPORT_SYMBOL_GPL(ring_buffer_read); 3347EXPORT_SYMBOL_GPL(ring_buffer_read);
@@ -2717,8 +3359,10 @@ EXPORT_SYMBOL_GPL(ring_buffer_size);
2717static void 3359static void
2718rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3360rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2719{ 3361{
3362 rb_head_page_deactivate(cpu_buffer);
3363
2720 cpu_buffer->head_page 3364 cpu_buffer->head_page
2721 = list_entry(cpu_buffer->pages.next, struct buffer_page, list); 3365 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2722 local_set(&cpu_buffer->head_page->write, 0); 3366 local_set(&cpu_buffer->head_page->write, 0);
2723 local_set(&cpu_buffer->head_page->entries, 0); 3367 local_set(&cpu_buffer->head_page->entries, 0);
2724 local_set(&cpu_buffer->head_page->page->commit, 0); 3368 local_set(&cpu_buffer->head_page->page->commit, 0);
@@ -2734,16 +3378,17 @@ rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2734 local_set(&cpu_buffer->reader_page->page->commit, 0); 3378 local_set(&cpu_buffer->reader_page->page->commit, 0);
2735 cpu_buffer->reader_page->read = 0; 3379 cpu_buffer->reader_page->read = 0;
2736 3380
2737 cpu_buffer->nmi_dropped = 0; 3381 local_set(&cpu_buffer->commit_overrun, 0);
2738 cpu_buffer->commit_overrun = 0; 3382 local_set(&cpu_buffer->overrun, 0);
2739 cpu_buffer->overrun = 0;
2740 cpu_buffer->read = 0;
2741 local_set(&cpu_buffer->entries, 0); 3383 local_set(&cpu_buffer->entries, 0);
2742 local_set(&cpu_buffer->committing, 0); 3384 local_set(&cpu_buffer->committing, 0);
2743 local_set(&cpu_buffer->commits, 0); 3385 local_set(&cpu_buffer->commits, 0);
3386 cpu_buffer->read = 0;
2744 3387
2745 cpu_buffer->write_stamp = 0; 3388 cpu_buffer->write_stamp = 0;
2746 cpu_buffer->read_stamp = 0; 3389 cpu_buffer->read_stamp = 0;
3390
3391 rb_head_page_activate(cpu_buffer);
2747} 3392}
2748 3393
2749/** 3394/**
@@ -2763,12 +3408,16 @@ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2763 3408
2764 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2765 3410
3411 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3412 goto out;
3413
2766 __raw_spin_lock(&cpu_buffer->lock); 3414 __raw_spin_lock(&cpu_buffer->lock);
2767 3415
2768 rb_reset_cpu(cpu_buffer); 3416 rb_reset_cpu(cpu_buffer);
2769 3417
2770 __raw_spin_unlock(&cpu_buffer->lock); 3418 __raw_spin_unlock(&cpu_buffer->lock);
2771 3419
3420 out:
2772 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3421 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2773 3422
2774 atomic_dec(&cpu_buffer->record_disabled); 3423 atomic_dec(&cpu_buffer->record_disabled);
@@ -2851,6 +3500,7 @@ int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2851} 3500}
2852EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3501EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2853 3502
3503#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2854/** 3504/**
2855 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3505 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2856 * @buffer_a: One buffer to swap with 3506 * @buffer_a: One buffer to swap with
@@ -2905,20 +3555,28 @@ int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2905 atomic_inc(&cpu_buffer_a->record_disabled); 3555 atomic_inc(&cpu_buffer_a->record_disabled);
2906 atomic_inc(&cpu_buffer_b->record_disabled); 3556 atomic_inc(&cpu_buffer_b->record_disabled);
2907 3557
3558 ret = -EBUSY;
3559 if (local_read(&cpu_buffer_a->committing))
3560 goto out_dec;
3561 if (local_read(&cpu_buffer_b->committing))
3562 goto out_dec;
3563
2908 buffer_a->buffers[cpu] = cpu_buffer_b; 3564 buffer_a->buffers[cpu] = cpu_buffer_b;
2909 buffer_b->buffers[cpu] = cpu_buffer_a; 3565 buffer_b->buffers[cpu] = cpu_buffer_a;
2910 3566
2911 cpu_buffer_b->buffer = buffer_a; 3567 cpu_buffer_b->buffer = buffer_a;
2912 cpu_buffer_a->buffer = buffer_b; 3568 cpu_buffer_a->buffer = buffer_b;
2913 3569
3570 ret = 0;
3571
3572out_dec:
2914 atomic_dec(&cpu_buffer_a->record_disabled); 3573 atomic_dec(&cpu_buffer_a->record_disabled);
2915 atomic_dec(&cpu_buffer_b->record_disabled); 3574 atomic_dec(&cpu_buffer_b->record_disabled);
2916
2917 ret = 0;
2918out: 3575out:
2919 return ret; 3576 return ret;
2920} 3577}
2921EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3578EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3579#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
2922 3580
2923/** 3581/**
2924 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3582 * ring_buffer_alloc_read_page - allocate a page to read from buffer
@@ -3091,7 +3749,7 @@ int ring_buffer_read_page(struct ring_buffer *buffer,
3091 read = 0; 3749 read = 0;
3092 } else { 3750 } else {
3093 /* update the entry counter */ 3751 /* update the entry counter */
3094 cpu_buffer->read += local_read(&reader->entries); 3752 cpu_buffer->read += rb_page_entries(reader);
3095 3753
3096 /* swap the pages */ 3754 /* swap the pages */
3097 rb_init_page(bpage); 3755 rb_init_page(bpage);
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index c22b40f8f576..5c75deeefe30 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -43,14 +43,11 @@
43 43
44#define TRACE_BUFFER_FLAGS (RB_FL_OVERWRITE) 44#define TRACE_BUFFER_FLAGS (RB_FL_OVERWRITE)
45 45
46unsigned long __read_mostly tracing_max_latency;
47unsigned long __read_mostly tracing_thresh;
48
49/* 46/*
50 * On boot up, the ring buffer is set to the minimum size, so that 47 * On boot up, the ring buffer is set to the minimum size, so that
51 * we do not waste memory on systems that are not using tracing. 48 * we do not waste memory on systems that are not using tracing.
52 */ 49 */
53static int ring_buffer_expanded; 50int ring_buffer_expanded;
54 51
55/* 52/*
56 * We need to change this state when a selftest is running. 53 * We need to change this state when a selftest is running.
@@ -64,7 +61,7 @@ static bool __read_mostly tracing_selftest_running;
64/* 61/*
65 * If a tracer is running, we do not want to run SELFTEST. 62 * If a tracer is running, we do not want to run SELFTEST.
66 */ 63 */
67static bool __read_mostly tracing_selftest_disabled; 64bool __read_mostly tracing_selftest_disabled;
68 65
69/* For tracers that don't implement custom flags */ 66/* For tracers that don't implement custom flags */
70static struct tracer_opt dummy_tracer_opt[] = { 67static struct tracer_opt dummy_tracer_opt[] = {
@@ -89,7 +86,7 @@ static int dummy_set_flag(u32 old_flags, u32 bit, int set)
89 */ 86 */
90static int tracing_disabled = 1; 87static int tracing_disabled = 1;
91 88
92static DEFINE_PER_CPU(local_t, ftrace_cpu_disabled); 89DEFINE_PER_CPU(local_t, ftrace_cpu_disabled);
93 90
94static inline void ftrace_disable_cpu(void) 91static inline void ftrace_disable_cpu(void)
95{ 92{
@@ -172,10 +169,11 @@ static struct trace_array global_trace;
172 169
173static DEFINE_PER_CPU(struct trace_array_cpu, global_trace_cpu); 170static DEFINE_PER_CPU(struct trace_array_cpu, global_trace_cpu);
174 171
175int filter_current_check_discard(struct ftrace_event_call *call, void *rec, 172int filter_current_check_discard(struct ring_buffer *buffer,
173 struct ftrace_event_call *call, void *rec,
176 struct ring_buffer_event *event) 174 struct ring_buffer_event *event)
177{ 175{
178 return filter_check_discard(call, rec, global_trace.buffer, event); 176 return filter_check_discard(call, rec, buffer, event);
179} 177}
180EXPORT_SYMBOL_GPL(filter_current_check_discard); 178EXPORT_SYMBOL_GPL(filter_current_check_discard);
181 179
@@ -266,6 +264,9 @@ unsigned long trace_flags = TRACE_ITER_PRINT_PARENT | TRACE_ITER_PRINTK |
266 TRACE_ITER_ANNOTATE | TRACE_ITER_CONTEXT_INFO | TRACE_ITER_SLEEP_TIME | 264 TRACE_ITER_ANNOTATE | TRACE_ITER_CONTEXT_INFO | TRACE_ITER_SLEEP_TIME |
267 TRACE_ITER_GRAPH_TIME; 265 TRACE_ITER_GRAPH_TIME;
268 266
267static int trace_stop_count;
268static DEFINE_SPINLOCK(tracing_start_lock);
269
269/** 270/**
270 * trace_wake_up - wake up tasks waiting for trace input 271 * trace_wake_up - wake up tasks waiting for trace input
271 * 272 *
@@ -323,50 +324,20 @@ static const char *trace_options[] = {
323 "printk-msg-only", 324 "printk-msg-only",
324 "context-info", 325 "context-info",
325 "latency-format", 326 "latency-format",
326 "global-clock",
327 "sleep-time", 327 "sleep-time",
328 "graph-time", 328 "graph-time",
329 NULL 329 NULL
330}; 330};
331 331
332/* 332static struct {
333 * ftrace_max_lock is used to protect the swapping of buffers 333 u64 (*func)(void);
334 * when taking a max snapshot. The buffers themselves are 334 const char *name;
335 * protected by per_cpu spinlocks. But the action of the swap 335} trace_clocks[] = {
336 * needs its own lock. 336 { trace_clock_local, "local" },
337 * 337 { trace_clock_global, "global" },
338 * This is defined as a raw_spinlock_t in order to help 338};
339 * with performance when lockdep debugging is enabled.
340 */
341static raw_spinlock_t ftrace_max_lock =
342 (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
343
344/*
345 * Copy the new maximum trace into the separate maximum-trace
346 * structure. (this way the maximum trace is permanently saved,
347 * for later retrieval via /sys/kernel/debug/tracing/latency_trace)
348 */
349static void
350__update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu)
351{
352 struct trace_array_cpu *data = tr->data[cpu];
353
354 max_tr.cpu = cpu;
355 max_tr.time_start = data->preempt_timestamp;
356
357 data = max_tr.data[cpu];
358 data->saved_latency = tracing_max_latency;
359 339
360 memcpy(data->comm, tsk->comm, TASK_COMM_LEN); 340int trace_clock_id;
361 data->pid = tsk->pid;
362 data->uid = task_uid(tsk);
363 data->nice = tsk->static_prio - 20 - MAX_RT_PRIO;
364 data->policy = tsk->policy;
365 data->rt_priority = tsk->rt_priority;
366
367 /* record this tasks comm */
368 tracing_record_cmdline(tsk);
369}
370 341
371ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) 342ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt)
372{ 343{
@@ -411,6 +382,56 @@ static ssize_t trace_seq_to_buffer(struct trace_seq *s, void *buf, size_t cnt)
411 return cnt; 382 return cnt;
412} 383}
413 384
385/*
386 * ftrace_max_lock is used to protect the swapping of buffers
387 * when taking a max snapshot. The buffers themselves are
388 * protected by per_cpu spinlocks. But the action of the swap
389 * needs its own lock.
390 *
391 * This is defined as a raw_spinlock_t in order to help
392 * with performance when lockdep debugging is enabled.
393 *
394 * It is also used in other places outside the update_max_tr
395 * so it needs to be defined outside of the
396 * CONFIG_TRACER_MAX_TRACE.
397 */
398static raw_spinlock_t ftrace_max_lock =
399 (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
400
401#ifdef CONFIG_TRACER_MAX_TRACE
402unsigned long __read_mostly tracing_max_latency;
403unsigned long __read_mostly tracing_thresh;
404
405/*
406 * Copy the new maximum trace into the separate maximum-trace
407 * structure. (this way the maximum trace is permanently saved,
408 * for later retrieval via /sys/kernel/debug/tracing/latency_trace)
409 */
410static void
411__update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu)
412{
413 struct trace_array_cpu *data = tr->data[cpu];
414 struct trace_array_cpu *max_data = tr->data[cpu];
415
416 max_tr.cpu = cpu;
417 max_tr.time_start = data->preempt_timestamp;
418
419 max_data = max_tr.data[cpu];
420 max_data->saved_latency = tracing_max_latency;
421 max_data->critical_start = data->critical_start;
422 max_data->critical_end = data->critical_end;
423
424 memcpy(data->comm, tsk->comm, TASK_COMM_LEN);
425 max_data->pid = tsk->pid;
426 max_data->uid = task_uid(tsk);
427 max_data->nice = tsk->static_prio - 20 - MAX_RT_PRIO;
428 max_data->policy = tsk->policy;
429 max_data->rt_priority = tsk->rt_priority;
430
431 /* record this tasks comm */
432 tracing_record_cmdline(tsk);
433}
434
414/** 435/**
415 * update_max_tr - snapshot all trace buffers from global_trace to max_tr 436 * update_max_tr - snapshot all trace buffers from global_trace to max_tr
416 * @tr: tracer 437 * @tr: tracer
@@ -425,16 +446,15 @@ update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu)
425{ 446{
426 struct ring_buffer *buf = tr->buffer; 447 struct ring_buffer *buf = tr->buffer;
427 448
449 if (trace_stop_count)
450 return;
451
428 WARN_ON_ONCE(!irqs_disabled()); 452 WARN_ON_ONCE(!irqs_disabled());
429 __raw_spin_lock(&ftrace_max_lock); 453 __raw_spin_lock(&ftrace_max_lock);
430 454
431 tr->buffer = max_tr.buffer; 455 tr->buffer = max_tr.buffer;
432 max_tr.buffer = buf; 456 max_tr.buffer = buf;
433 457
434 ftrace_disable_cpu();
435 ring_buffer_reset(tr->buffer);
436 ftrace_enable_cpu();
437
438 __update_max_tr(tr, tsk, cpu); 458 __update_max_tr(tr, tsk, cpu);
439 __raw_spin_unlock(&ftrace_max_lock); 459 __raw_spin_unlock(&ftrace_max_lock);
440} 460}
@@ -452,21 +472,35 @@ update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu)
452{ 472{
453 int ret; 473 int ret;
454 474
475 if (trace_stop_count)
476 return;
477
455 WARN_ON_ONCE(!irqs_disabled()); 478 WARN_ON_ONCE(!irqs_disabled());
456 __raw_spin_lock(&ftrace_max_lock); 479 __raw_spin_lock(&ftrace_max_lock);
457 480
458 ftrace_disable_cpu(); 481 ftrace_disable_cpu();
459 482
460 ring_buffer_reset(max_tr.buffer);
461 ret = ring_buffer_swap_cpu(max_tr.buffer, tr->buffer, cpu); 483 ret = ring_buffer_swap_cpu(max_tr.buffer, tr->buffer, cpu);
462 484
485 if (ret == -EBUSY) {
486 /*
487 * We failed to swap the buffer due to a commit taking
488 * place on this CPU. We fail to record, but we reset
489 * the max trace buffer (no one writes directly to it)
490 * and flag that it failed.
491 */
492 trace_array_printk(&max_tr, _THIS_IP_,
493 "Failed to swap buffers due to commit in progress\n");
494 }
495
463 ftrace_enable_cpu(); 496 ftrace_enable_cpu();
464 497
465 WARN_ON_ONCE(ret && ret != -EAGAIN); 498 WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY);
466 499
467 __update_max_tr(tr, tsk, cpu); 500 __update_max_tr(tr, tsk, cpu);
468 __raw_spin_unlock(&ftrace_max_lock); 501 __raw_spin_unlock(&ftrace_max_lock);
469} 502}
503#endif /* CONFIG_TRACER_MAX_TRACE */
470 504
471/** 505/**
472 * register_tracer - register a tracer with the ftrace system. 506 * register_tracer - register a tracer with the ftrace system.
@@ -523,7 +557,6 @@ __acquires(kernel_lock)
523 if (type->selftest && !tracing_selftest_disabled) { 557 if (type->selftest && !tracing_selftest_disabled) {
524 struct tracer *saved_tracer = current_trace; 558 struct tracer *saved_tracer = current_trace;
525 struct trace_array *tr = &global_trace; 559 struct trace_array *tr = &global_trace;
526 int i;
527 560
528 /* 561 /*
529 * Run a selftest on this tracer. 562 * Run a selftest on this tracer.
@@ -532,8 +565,7 @@ __acquires(kernel_lock)
532 * internal tracing to verify that everything is in order. 565 * internal tracing to verify that everything is in order.
533 * If we fail, we do not register this tracer. 566 * If we fail, we do not register this tracer.
534 */ 567 */
535 for_each_tracing_cpu(i) 568 tracing_reset_online_cpus(tr);
536 tracing_reset(tr, i);
537 569
538 current_trace = type; 570 current_trace = type;
539 /* the test is responsible for initializing and enabling */ 571 /* the test is responsible for initializing and enabling */
@@ -546,8 +578,7 @@ __acquires(kernel_lock)
546 goto out; 578 goto out;
547 } 579 }
548 /* Only reset on passing, to avoid touching corrupted buffers */ 580 /* Only reset on passing, to avoid touching corrupted buffers */
549 for_each_tracing_cpu(i) 581 tracing_reset_online_cpus(tr);
550 tracing_reset(tr, i);
551 582
552 printk(KERN_CONT "PASSED\n"); 583 printk(KERN_CONT "PASSED\n");
553 } 584 }
@@ -622,21 +653,42 @@ void unregister_tracer(struct tracer *type)
622 mutex_unlock(&trace_types_lock); 653 mutex_unlock(&trace_types_lock);
623} 654}
624 655
625void tracing_reset(struct trace_array *tr, int cpu) 656static void __tracing_reset(struct trace_array *tr, int cpu)
626{ 657{
627 ftrace_disable_cpu(); 658 ftrace_disable_cpu();
628 ring_buffer_reset_cpu(tr->buffer, cpu); 659 ring_buffer_reset_cpu(tr->buffer, cpu);
629 ftrace_enable_cpu(); 660 ftrace_enable_cpu();
630} 661}
631 662
663void tracing_reset(struct trace_array *tr, int cpu)
664{
665 struct ring_buffer *buffer = tr->buffer;
666
667 ring_buffer_record_disable(buffer);
668
669 /* Make sure all commits have finished */
670 synchronize_sched();
671 __tracing_reset(tr, cpu);
672
673 ring_buffer_record_enable(buffer);
674}
675
632void tracing_reset_online_cpus(struct trace_array *tr) 676void tracing_reset_online_cpus(struct trace_array *tr)
633{ 677{
678 struct ring_buffer *buffer = tr->buffer;
634 int cpu; 679 int cpu;
635 680
681 ring_buffer_record_disable(buffer);
682
683 /* Make sure all commits have finished */
684 synchronize_sched();
685
636 tr->time_start = ftrace_now(tr->cpu); 686 tr->time_start = ftrace_now(tr->cpu);
637 687
638 for_each_online_cpu(cpu) 688 for_each_online_cpu(cpu)
639 tracing_reset(tr, cpu); 689 __tracing_reset(tr, cpu);
690
691 ring_buffer_record_enable(buffer);
640} 692}
641 693
642void tracing_reset_current(int cpu) 694void tracing_reset_current(int cpu)
@@ -667,9 +719,6 @@ static void trace_init_cmdlines(void)
667 cmdline_idx = 0; 719 cmdline_idx = 0;
668} 720}
669 721
670static int trace_stop_count;
671static DEFINE_SPINLOCK(tracing_start_lock);
672
673/** 722/**
674 * ftrace_off_permanent - disable all ftrace code permanently 723 * ftrace_off_permanent - disable all ftrace code permanently
675 * 724 *
@@ -850,14 +899,15 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags,
850} 899}
851EXPORT_SYMBOL_GPL(tracing_generic_entry_update); 900EXPORT_SYMBOL_GPL(tracing_generic_entry_update);
852 901
853struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, 902struct ring_buffer_event *
854 int type, 903trace_buffer_lock_reserve(struct ring_buffer *buffer,
855 unsigned long len, 904 int type,
856 unsigned long flags, int pc) 905 unsigned long len,
906 unsigned long flags, int pc)
857{ 907{
858 struct ring_buffer_event *event; 908 struct ring_buffer_event *event;
859 909
860 event = ring_buffer_lock_reserve(tr->buffer, len); 910 event = ring_buffer_lock_reserve(buffer, len);
861 if (event != NULL) { 911 if (event != NULL) {
862 struct trace_entry *ent = ring_buffer_event_data(event); 912 struct trace_entry *ent = ring_buffer_event_data(event);
863 913
@@ -867,58 +917,60 @@ struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr,
867 917
868 return event; 918 return event;
869} 919}
870static void ftrace_trace_stack(struct trace_array *tr,
871 unsigned long flags, int skip, int pc);
872static void ftrace_trace_userstack(struct trace_array *tr,
873 unsigned long flags, int pc);
874 920
875static inline void __trace_buffer_unlock_commit(struct trace_array *tr, 921static inline void
876 struct ring_buffer_event *event, 922__trace_buffer_unlock_commit(struct ring_buffer *buffer,
877 unsigned long flags, int pc, 923 struct ring_buffer_event *event,
878 int wake) 924 unsigned long flags, int pc,
925 int wake)
879{ 926{
880 ring_buffer_unlock_commit(tr->buffer, event); 927 ring_buffer_unlock_commit(buffer, event);
881 928
882 ftrace_trace_stack(tr, flags, 6, pc); 929 ftrace_trace_stack(buffer, flags, 6, pc);
883 ftrace_trace_userstack(tr, flags, pc); 930 ftrace_trace_userstack(buffer, flags, pc);
884 931
885 if (wake) 932 if (wake)
886 trace_wake_up(); 933 trace_wake_up();
887} 934}
888 935
889void trace_buffer_unlock_commit(struct trace_array *tr, 936void trace_buffer_unlock_commit(struct ring_buffer *buffer,
890 struct ring_buffer_event *event, 937 struct ring_buffer_event *event,
891 unsigned long flags, int pc) 938 unsigned long flags, int pc)
892{ 939{
893 __trace_buffer_unlock_commit(tr, event, flags, pc, 1); 940 __trace_buffer_unlock_commit(buffer, event, flags, pc, 1);
894} 941}
895 942
896struct ring_buffer_event * 943struct ring_buffer_event *
897trace_current_buffer_lock_reserve(int type, unsigned long len, 944trace_current_buffer_lock_reserve(struct ring_buffer **current_rb,
945 int type, unsigned long len,
898 unsigned long flags, int pc) 946 unsigned long flags, int pc)
899{ 947{
900 return trace_buffer_lock_reserve(&global_trace, 948 *current_rb = global_trace.buffer;
949 return trace_buffer_lock_reserve(*current_rb,
901 type, len, flags, pc); 950 type, len, flags, pc);
902} 951}
903EXPORT_SYMBOL_GPL(trace_current_buffer_lock_reserve); 952EXPORT_SYMBOL_GPL(trace_current_buffer_lock_reserve);
904 953
905void trace_current_buffer_unlock_commit(struct ring_buffer_event *event, 954void trace_current_buffer_unlock_commit(struct ring_buffer *buffer,
955 struct ring_buffer_event *event,
906 unsigned long flags, int pc) 956 unsigned long flags, int pc)
907{ 957{
908 __trace_buffer_unlock_commit(&global_trace, event, flags, pc, 1); 958 __trace_buffer_unlock_commit(buffer, event, flags, pc, 1);
909} 959}
910EXPORT_SYMBOL_GPL(trace_current_buffer_unlock_commit); 960EXPORT_SYMBOL_GPL(trace_current_buffer_unlock_commit);
911 961
912void trace_nowake_buffer_unlock_commit(struct ring_buffer_event *event, 962void trace_nowake_buffer_unlock_commit(struct ring_buffer *buffer,
913 unsigned long flags, int pc) 963 struct ring_buffer_event *event,
964 unsigned long flags, int pc)
914{ 965{
915 __trace_buffer_unlock_commit(&global_trace, event, flags, pc, 0); 966 __trace_buffer_unlock_commit(buffer, event, flags, pc, 0);
916} 967}
917EXPORT_SYMBOL_GPL(trace_nowake_buffer_unlock_commit); 968EXPORT_SYMBOL_GPL(trace_nowake_buffer_unlock_commit);
918 969
919void trace_current_buffer_discard_commit(struct ring_buffer_event *event) 970void trace_current_buffer_discard_commit(struct ring_buffer *buffer,
971 struct ring_buffer_event *event)
920{ 972{
921 ring_buffer_discard_commit(global_trace.buffer, event); 973 ring_buffer_discard_commit(buffer, event);
922} 974}
923EXPORT_SYMBOL_GPL(trace_current_buffer_discard_commit); 975EXPORT_SYMBOL_GPL(trace_current_buffer_discard_commit);
924 976
@@ -928,6 +980,7 @@ trace_function(struct trace_array *tr,
928 int pc) 980 int pc)
929{ 981{
930 struct ftrace_event_call *call = &event_function; 982 struct ftrace_event_call *call = &event_function;
983 struct ring_buffer *buffer = tr->buffer;
931 struct ring_buffer_event *event; 984 struct ring_buffer_event *event;
932 struct ftrace_entry *entry; 985 struct ftrace_entry *entry;
933 986
@@ -935,7 +988,7 @@ trace_function(struct trace_array *tr,
935 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) 988 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled))))
936 return; 989 return;
937 990
938 event = trace_buffer_lock_reserve(tr, TRACE_FN, sizeof(*entry), 991 event = trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry),
939 flags, pc); 992 flags, pc);
940 if (!event) 993 if (!event)
941 return; 994 return;
@@ -943,57 +996,9 @@ trace_function(struct trace_array *tr,
943 entry->ip = ip; 996 entry->ip = ip;
944 entry->parent_ip = parent_ip; 997 entry->parent_ip = parent_ip;
945 998
946 if (!filter_check_discard(call, entry, tr->buffer, event)) 999 if (!filter_check_discard(call, entry, buffer, event))
947 ring_buffer_unlock_commit(tr->buffer, event); 1000 ring_buffer_unlock_commit(buffer, event);
948}
949
950#ifdef CONFIG_FUNCTION_GRAPH_TRACER
951static int __trace_graph_entry(struct trace_array *tr,
952 struct ftrace_graph_ent *trace,
953 unsigned long flags,
954 int pc)
955{
956 struct ftrace_event_call *call = &event_funcgraph_entry;
957 struct ring_buffer_event *event;
958 struct ftrace_graph_ent_entry *entry;
959
960 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled))))
961 return 0;
962
963 event = trace_buffer_lock_reserve(&global_trace, TRACE_GRAPH_ENT,
964 sizeof(*entry), flags, pc);
965 if (!event)
966 return 0;
967 entry = ring_buffer_event_data(event);
968 entry->graph_ent = *trace;
969 if (!filter_current_check_discard(call, entry, event))
970 ring_buffer_unlock_commit(global_trace.buffer, event);
971
972 return 1;
973}
974
975static void __trace_graph_return(struct trace_array *tr,
976 struct ftrace_graph_ret *trace,
977 unsigned long flags,
978 int pc)
979{
980 struct ftrace_event_call *call = &event_funcgraph_exit;
981 struct ring_buffer_event *event;
982 struct ftrace_graph_ret_entry *entry;
983
984 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled))))
985 return;
986
987 event = trace_buffer_lock_reserve(&global_trace, TRACE_GRAPH_RET,
988 sizeof(*entry), flags, pc);
989 if (!event)
990 return;
991 entry = ring_buffer_event_data(event);
992 entry->ret = *trace;
993 if (!filter_current_check_discard(call, entry, event))
994 ring_buffer_unlock_commit(global_trace.buffer, event);
995} 1001}
996#endif
997 1002
998void 1003void
999ftrace(struct trace_array *tr, struct trace_array_cpu *data, 1004ftrace(struct trace_array *tr, struct trace_array_cpu *data,
@@ -1004,17 +1009,17 @@ ftrace(struct trace_array *tr, struct trace_array_cpu *data,
1004 trace_function(tr, ip, parent_ip, flags, pc); 1009 trace_function(tr, ip, parent_ip, flags, pc);
1005} 1010}
1006 1011
1007static void __ftrace_trace_stack(struct trace_array *tr, 1012#ifdef CONFIG_STACKTRACE
1013static void __ftrace_trace_stack(struct ring_buffer *buffer,
1008 unsigned long flags, 1014 unsigned long flags,
1009 int skip, int pc) 1015 int skip, int pc)
1010{ 1016{
1011#ifdef CONFIG_STACKTRACE
1012 struct ftrace_event_call *call = &event_kernel_stack; 1017 struct ftrace_event_call *call = &event_kernel_stack;
1013 struct ring_buffer_event *event; 1018 struct ring_buffer_event *event;
1014 struct stack_entry *entry; 1019 struct stack_entry *entry;
1015 struct stack_trace trace; 1020 struct stack_trace trace;
1016 1021
1017 event = trace_buffer_lock_reserve(tr, TRACE_STACK, 1022 event = trace_buffer_lock_reserve(buffer, TRACE_STACK,
1018 sizeof(*entry), flags, pc); 1023 sizeof(*entry), flags, pc);
1019 if (!event) 1024 if (!event)
1020 return; 1025 return;
@@ -1027,32 +1032,28 @@ static void __ftrace_trace_stack(struct trace_array *tr,
1027 trace.entries = entry->caller; 1032 trace.entries = entry->caller;
1028 1033
1029 save_stack_trace(&trace); 1034 save_stack_trace(&trace);
1030 if (!filter_check_discard(call, entry, tr->buffer, event)) 1035 if (!filter_check_discard(call, entry, buffer, event))
1031 ring_buffer_unlock_commit(tr->buffer, event); 1036 ring_buffer_unlock_commit(buffer, event);
1032#endif
1033} 1037}
1034 1038
1035static void ftrace_trace_stack(struct trace_array *tr, 1039void ftrace_trace_stack(struct ring_buffer *buffer, unsigned long flags,
1036 unsigned long flags, 1040 int skip, int pc)
1037 int skip, int pc)
1038{ 1041{
1039 if (!(trace_flags & TRACE_ITER_STACKTRACE)) 1042 if (!(trace_flags & TRACE_ITER_STACKTRACE))
1040 return; 1043 return;
1041 1044
1042 __ftrace_trace_stack(tr, flags, skip, pc); 1045 __ftrace_trace_stack(buffer, flags, skip, pc);
1043} 1046}
1044 1047
1045void __trace_stack(struct trace_array *tr, 1048void __trace_stack(struct trace_array *tr, unsigned long flags, int skip,
1046 unsigned long flags, 1049 int pc)
1047 int skip, int pc)
1048{ 1050{
1049 __ftrace_trace_stack(tr, flags, skip, pc); 1051 __ftrace_trace_stack(tr->buffer, flags, skip, pc);
1050} 1052}
1051 1053
1052static void ftrace_trace_userstack(struct trace_array *tr, 1054void
1053 unsigned long flags, int pc) 1055ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, int pc)
1054{ 1056{
1055#ifdef CONFIG_STACKTRACE
1056 struct ftrace_event_call *call = &event_user_stack; 1057 struct ftrace_event_call *call = &event_user_stack;
1057 struct ring_buffer_event *event; 1058 struct ring_buffer_event *event;
1058 struct userstack_entry *entry; 1059 struct userstack_entry *entry;
@@ -1061,7 +1062,7 @@ static void ftrace_trace_userstack(struct trace_array *tr,
1061 if (!(trace_flags & TRACE_ITER_USERSTACKTRACE)) 1062 if (!(trace_flags & TRACE_ITER_USERSTACKTRACE))
1062 return; 1063 return;
1063 1064
1064 event = trace_buffer_lock_reserve(tr, TRACE_USER_STACK, 1065 event = trace_buffer_lock_reserve(buffer, TRACE_USER_STACK,
1065 sizeof(*entry), flags, pc); 1066 sizeof(*entry), flags, pc);
1066 if (!event) 1067 if (!event)
1067 return; 1068 return;
@@ -1075,9 +1076,8 @@ static void ftrace_trace_userstack(struct trace_array *tr,
1075 trace.entries = entry->caller; 1076 trace.entries = entry->caller;
1076 1077
1077 save_stack_trace_user(&trace); 1078 save_stack_trace_user(&trace);
1078 if (!filter_check_discard(call, entry, tr->buffer, event)) 1079 if (!filter_check_discard(call, entry, buffer, event))
1079 ring_buffer_unlock_commit(tr->buffer, event); 1080 ring_buffer_unlock_commit(buffer, event);
1080#endif
1081} 1081}
1082 1082
1083#ifdef UNUSED 1083#ifdef UNUSED
@@ -1087,6 +1087,8 @@ static void __trace_userstack(struct trace_array *tr, unsigned long flags)
1087} 1087}
1088#endif /* UNUSED */ 1088#endif /* UNUSED */
1089 1089
1090#endif /* CONFIG_STACKTRACE */
1091
1090static void 1092static void
1091ftrace_trace_special(void *__tr, 1093ftrace_trace_special(void *__tr,
1092 unsigned long arg1, unsigned long arg2, unsigned long arg3, 1094 unsigned long arg1, unsigned long arg2, unsigned long arg3,
@@ -1094,9 +1096,10 @@ ftrace_trace_special(void *__tr,
1094{ 1096{
1095 struct ring_buffer_event *event; 1097 struct ring_buffer_event *event;
1096 struct trace_array *tr = __tr; 1098 struct trace_array *tr = __tr;
1099 struct ring_buffer *buffer = tr->buffer;
1097 struct special_entry *entry; 1100 struct special_entry *entry;
1098 1101
1099 event = trace_buffer_lock_reserve(tr, TRACE_SPECIAL, 1102 event = trace_buffer_lock_reserve(buffer, TRACE_SPECIAL,
1100 sizeof(*entry), 0, pc); 1103 sizeof(*entry), 0, pc);
1101 if (!event) 1104 if (!event)
1102 return; 1105 return;
@@ -1104,7 +1107,7 @@ ftrace_trace_special(void *__tr,
1104 entry->arg1 = arg1; 1107 entry->arg1 = arg1;
1105 entry->arg2 = arg2; 1108 entry->arg2 = arg2;
1106 entry->arg3 = arg3; 1109 entry->arg3 = arg3;
1107 trace_buffer_unlock_commit(tr, event, 0, pc); 1110 trace_buffer_unlock_commit(buffer, event, 0, pc);
1108} 1111}
1109 1112
1110void 1113void
@@ -1115,62 +1118,6 @@ __trace_special(void *__tr, void *__data,
1115} 1118}
1116 1119
1117void 1120void
1118tracing_sched_switch_trace(struct trace_array *tr,
1119 struct task_struct *prev,
1120 struct task_struct *next,
1121 unsigned long flags, int pc)
1122{
1123 struct ftrace_event_call *call = &event_context_switch;
1124 struct ring_buffer_event *event;
1125 struct ctx_switch_entry *entry;
1126
1127 event = trace_buffer_lock_reserve(tr, TRACE_CTX,
1128 sizeof(*entry), flags, pc);
1129 if (!event)
1130 return;
1131 entry = ring_buffer_event_data(event);
1132 entry->prev_pid = prev->pid;
1133 entry->prev_prio = prev->prio;
1134 entry->prev_state = prev->state;
1135 entry->next_pid = next->pid;
1136 entry->next_prio = next->prio;
1137 entry->next_state = next->state;
1138 entry->next_cpu = task_cpu(next);
1139
1140 if (!filter_check_discard(call, entry, tr->buffer, event))
1141 trace_buffer_unlock_commit(tr, event, flags, pc);
1142}
1143
1144void
1145tracing_sched_wakeup_trace(struct trace_array *tr,
1146 struct task_struct *wakee,
1147 struct task_struct *curr,
1148 unsigned long flags, int pc)
1149{
1150 struct ftrace_event_call *call = &event_wakeup;
1151 struct ring_buffer_event *event;
1152 struct ctx_switch_entry *entry;
1153
1154 event = trace_buffer_lock_reserve(tr, TRACE_WAKE,
1155 sizeof(*entry), flags, pc);
1156 if (!event)
1157 return;
1158 entry = ring_buffer_event_data(event);
1159 entry->prev_pid = curr->pid;
1160 entry->prev_prio = curr->prio;
1161 entry->prev_state = curr->state;
1162 entry->next_pid = wakee->pid;
1163 entry->next_prio = wakee->prio;
1164 entry->next_state = wakee->state;
1165 entry->next_cpu = task_cpu(wakee);
1166
1167 if (!filter_check_discard(call, entry, tr->buffer, event))
1168 ring_buffer_unlock_commit(tr->buffer, event);
1169 ftrace_trace_stack(tr, flags, 6, pc);
1170 ftrace_trace_userstack(tr, flags, pc);
1171}
1172
1173void
1174ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3) 1121ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3)
1175{ 1122{
1176 struct trace_array *tr = &global_trace; 1123 struct trace_array *tr = &global_trace;
@@ -1194,68 +1141,6 @@ ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3)
1194 local_irq_restore(flags); 1141 local_irq_restore(flags);
1195} 1142}
1196 1143
1197#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1198int trace_graph_entry(struct ftrace_graph_ent *trace)
1199{
1200 struct trace_array *tr = &global_trace;
1201 struct trace_array_cpu *data;
1202 unsigned long flags;
1203 long disabled;
1204 int ret;
1205 int cpu;
1206 int pc;
1207
1208 if (!ftrace_trace_task(current))
1209 return 0;
1210
1211 if (!ftrace_graph_addr(trace->func))
1212 return 0;
1213
1214 local_irq_save(flags);
1215 cpu = raw_smp_processor_id();
1216 data = tr->data[cpu];
1217 disabled = atomic_inc_return(&data->disabled);
1218 if (likely(disabled == 1)) {
1219 pc = preempt_count();
1220 ret = __trace_graph_entry(tr, trace, flags, pc);
1221 } else {
1222 ret = 0;
1223 }
1224 /* Only do the atomic if it is not already set */
1225 if (!test_tsk_trace_graph(current))
1226 set_tsk_trace_graph(current);
1227
1228 atomic_dec(&data->disabled);
1229 local_irq_restore(flags);
1230
1231 return ret;
1232}
1233
1234void trace_graph_return(struct ftrace_graph_ret *trace)
1235{
1236 struct trace_array *tr = &global_trace;
1237 struct trace_array_cpu *data;
1238 unsigned long flags;
1239 long disabled;
1240 int cpu;
1241 int pc;
1242
1243 local_irq_save(flags);
1244 cpu = raw_smp_processor_id();
1245 data = tr->data[cpu];
1246 disabled = atomic_inc_return(&data->disabled);
1247 if (likely(disabled == 1)) {
1248 pc = preempt_count();
1249 __trace_graph_return(tr, trace, flags, pc);
1250 }
1251 if (!trace->depth)
1252 clear_tsk_trace_graph(current);
1253 atomic_dec(&data->disabled);
1254 local_irq_restore(flags);
1255}
1256#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
1257
1258
1259/** 1144/**
1260 * trace_vbprintk - write binary msg to tracing buffer 1145 * trace_vbprintk - write binary msg to tracing buffer
1261 * 1146 *
@@ -1268,6 +1153,7 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
1268 1153
1269 struct ftrace_event_call *call = &event_bprint; 1154 struct ftrace_event_call *call = &event_bprint;
1270 struct ring_buffer_event *event; 1155 struct ring_buffer_event *event;
1156 struct ring_buffer *buffer;
1271 struct trace_array *tr = &global_trace; 1157 struct trace_array *tr = &global_trace;
1272 struct trace_array_cpu *data; 1158 struct trace_array_cpu *data;
1273 struct bprint_entry *entry; 1159 struct bprint_entry *entry;
@@ -1300,7 +1186,9 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
1300 goto out_unlock; 1186 goto out_unlock;
1301 1187
1302 size = sizeof(*entry) + sizeof(u32) * len; 1188 size = sizeof(*entry) + sizeof(u32) * len;
1303 event = trace_buffer_lock_reserve(tr, TRACE_BPRINT, size, flags, pc); 1189 buffer = tr->buffer;
1190 event = trace_buffer_lock_reserve(buffer, TRACE_BPRINT, size,
1191 flags, pc);
1304 if (!event) 1192 if (!event)
1305 goto out_unlock; 1193 goto out_unlock;
1306 entry = ring_buffer_event_data(event); 1194 entry = ring_buffer_event_data(event);
@@ -1308,8 +1196,8 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
1308 entry->fmt = fmt; 1196 entry->fmt = fmt;
1309 1197
1310 memcpy(entry->buf, trace_buf, sizeof(u32) * len); 1198 memcpy(entry->buf, trace_buf, sizeof(u32) * len);
1311 if (!filter_check_discard(call, entry, tr->buffer, event)) 1199 if (!filter_check_discard(call, entry, buffer, event))
1312 ring_buffer_unlock_commit(tr->buffer, event); 1200 ring_buffer_unlock_commit(buffer, event);
1313 1201
1314out_unlock: 1202out_unlock:
1315 __raw_spin_unlock(&trace_buf_lock); 1203 __raw_spin_unlock(&trace_buf_lock);
@@ -1324,14 +1212,30 @@ out:
1324} 1212}
1325EXPORT_SYMBOL_GPL(trace_vbprintk); 1213EXPORT_SYMBOL_GPL(trace_vbprintk);
1326 1214
1327int trace_vprintk(unsigned long ip, const char *fmt, va_list args) 1215int trace_array_printk(struct trace_array *tr,
1216 unsigned long ip, const char *fmt, ...)
1217{
1218 int ret;
1219 va_list ap;
1220
1221 if (!(trace_flags & TRACE_ITER_PRINTK))
1222 return 0;
1223
1224 va_start(ap, fmt);
1225 ret = trace_array_vprintk(tr, ip, fmt, ap);
1226 va_end(ap);
1227 return ret;
1228}
1229
1230int trace_array_vprintk(struct trace_array *tr,
1231 unsigned long ip, const char *fmt, va_list args)
1328{ 1232{
1329 static raw_spinlock_t trace_buf_lock = __RAW_SPIN_LOCK_UNLOCKED; 1233 static raw_spinlock_t trace_buf_lock = __RAW_SPIN_LOCK_UNLOCKED;
1330 static char trace_buf[TRACE_BUF_SIZE]; 1234 static char trace_buf[TRACE_BUF_SIZE];
1331 1235
1332 struct ftrace_event_call *call = &event_print; 1236 struct ftrace_event_call *call = &event_print;
1333 struct ring_buffer_event *event; 1237 struct ring_buffer_event *event;
1334 struct trace_array *tr = &global_trace; 1238 struct ring_buffer *buffer;
1335 struct trace_array_cpu *data; 1239 struct trace_array_cpu *data;
1336 int cpu, len = 0, size, pc; 1240 int cpu, len = 0, size, pc;
1337 struct print_entry *entry; 1241 struct print_entry *entry;
@@ -1359,7 +1263,9 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args)
1359 trace_buf[len] = 0; 1263 trace_buf[len] = 0;
1360 1264
1361 size = sizeof(*entry) + len + 1; 1265 size = sizeof(*entry) + len + 1;
1362 event = trace_buffer_lock_reserve(tr, TRACE_PRINT, size, irq_flags, pc); 1266 buffer = tr->buffer;
1267 event = trace_buffer_lock_reserve(buffer, TRACE_PRINT, size,
1268 irq_flags, pc);
1363 if (!event) 1269 if (!event)
1364 goto out_unlock; 1270 goto out_unlock;
1365 entry = ring_buffer_event_data(event); 1271 entry = ring_buffer_event_data(event);
@@ -1367,8 +1273,8 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args)
1367 1273
1368 memcpy(&entry->buf, trace_buf, len); 1274 memcpy(&entry->buf, trace_buf, len);
1369 entry->buf[len] = 0; 1275 entry->buf[len] = 0;
1370 if (!filter_check_discard(call, entry, tr->buffer, event)) 1276 if (!filter_check_discard(call, entry, buffer, event))
1371 ring_buffer_unlock_commit(tr->buffer, event); 1277 ring_buffer_unlock_commit(buffer, event);
1372 1278
1373 out_unlock: 1279 out_unlock:
1374 __raw_spin_unlock(&trace_buf_lock); 1280 __raw_spin_unlock(&trace_buf_lock);
@@ -1380,6 +1286,11 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args)
1380 1286
1381 return len; 1287 return len;
1382} 1288}
1289
1290int trace_vprintk(unsigned long ip, const char *fmt, va_list args)
1291{
1292 return trace_array_printk(&global_trace, ip, fmt, args);
1293}
1383EXPORT_SYMBOL_GPL(trace_vprintk); 1294EXPORT_SYMBOL_GPL(trace_vprintk);
1384 1295
1385enum trace_file_type { 1296enum trace_file_type {
@@ -1519,6 +1430,37 @@ static void *s_next(struct seq_file *m, void *v, loff_t *pos)
1519 return ent; 1430 return ent;
1520} 1431}
1521 1432
1433static void tracing_iter_reset(struct trace_iterator *iter, int cpu)
1434{
1435 struct trace_array *tr = iter->tr;
1436 struct ring_buffer_event *event;
1437 struct ring_buffer_iter *buf_iter;
1438 unsigned long entries = 0;
1439 u64 ts;
1440
1441 tr->data[cpu]->skipped_entries = 0;
1442
1443 if (!iter->buffer_iter[cpu])
1444 return;
1445
1446 buf_iter = iter->buffer_iter[cpu];
1447 ring_buffer_iter_reset(buf_iter);
1448
1449 /*
1450 * We could have the case with the max latency tracers
1451 * that a reset never took place on a cpu. This is evident
1452 * by the timestamp being before the start of the buffer.
1453 */
1454 while ((event = ring_buffer_iter_peek(buf_iter, &ts))) {
1455 if (ts >= iter->tr->time_start)
1456 break;
1457 entries++;
1458 ring_buffer_read(buf_iter, NULL);
1459 }
1460
1461 tr->data[cpu]->skipped_entries = entries;
1462}
1463
1522/* 1464/*
1523 * No necessary locking here. The worst thing which can 1465 * No necessary locking here. The worst thing which can
1524 * happen is loosing events consumed at the same time 1466 * happen is loosing events consumed at the same time
@@ -1557,10 +1499,9 @@ static void *s_start(struct seq_file *m, loff_t *pos)
1557 1499
1558 if (cpu_file == TRACE_PIPE_ALL_CPU) { 1500 if (cpu_file == TRACE_PIPE_ALL_CPU) {
1559 for_each_tracing_cpu(cpu) 1501 for_each_tracing_cpu(cpu)
1560 ring_buffer_iter_reset(iter->buffer_iter[cpu]); 1502 tracing_iter_reset(iter, cpu);
1561 } else 1503 } else
1562 ring_buffer_iter_reset(iter->buffer_iter[cpu_file]); 1504 tracing_iter_reset(iter, cpu_file);
1563
1564 1505
1565 ftrace_enable_cpu(); 1506 ftrace_enable_cpu();
1566 1507
@@ -1609,16 +1550,32 @@ print_trace_header(struct seq_file *m, struct trace_iterator *iter)
1609 struct trace_array *tr = iter->tr; 1550 struct trace_array *tr = iter->tr;
1610 struct trace_array_cpu *data = tr->data[tr->cpu]; 1551 struct trace_array_cpu *data = tr->data[tr->cpu];
1611 struct tracer *type = current_trace; 1552 struct tracer *type = current_trace;
1612 unsigned long total; 1553 unsigned long entries = 0;
1613 unsigned long entries; 1554 unsigned long total = 0;
1555 unsigned long count;
1614 const char *name = "preemption"; 1556 const char *name = "preemption";
1557 int cpu;
1615 1558
1616 if (type) 1559 if (type)
1617 name = type->name; 1560 name = type->name;
1618 1561
1619 entries = ring_buffer_entries(iter->tr->buffer); 1562
1620 total = entries + 1563 for_each_tracing_cpu(cpu) {
1621 ring_buffer_overruns(iter->tr->buffer); 1564 count = ring_buffer_entries_cpu(tr->buffer, cpu);
1565 /*
1566 * If this buffer has skipped entries, then we hold all
1567 * entries for the trace and we need to ignore the
1568 * ones before the time stamp.
1569 */
1570 if (tr->data[cpu]->skipped_entries) {
1571 count -= tr->data[cpu]->skipped_entries;
1572 /* total is the same as the entries */
1573 total += count;
1574 } else
1575 total += count +
1576 ring_buffer_overrun_cpu(tr->buffer, cpu);
1577 entries += count;
1578 }
1622 1579
1623 seq_printf(m, "# %s latency trace v1.1.5 on %s\n", 1580 seq_printf(m, "# %s latency trace v1.1.5 on %s\n",
1624 name, UTS_RELEASE); 1581 name, UTS_RELEASE);
@@ -1660,7 +1617,7 @@ print_trace_header(struct seq_file *m, struct trace_iterator *iter)
1660 seq_puts(m, "\n# => ended at: "); 1617 seq_puts(m, "\n# => ended at: ");
1661 seq_print_ip_sym(&iter->seq, data->critical_end, sym_flags); 1618 seq_print_ip_sym(&iter->seq, data->critical_end, sym_flags);
1662 trace_print_seq(m, &iter->seq); 1619 trace_print_seq(m, &iter->seq);
1663 seq_puts(m, "#\n"); 1620 seq_puts(m, "\n#\n");
1664 } 1621 }
1665 1622
1666 seq_puts(m, "#\n"); 1623 seq_puts(m, "#\n");
@@ -1679,6 +1636,9 @@ static void test_cpu_buff_start(struct trace_iterator *iter)
1679 if (cpumask_test_cpu(iter->cpu, iter->started)) 1636 if (cpumask_test_cpu(iter->cpu, iter->started))
1680 return; 1637 return;
1681 1638
1639 if (iter->tr->data[iter->cpu]->skipped_entries)
1640 return;
1641
1682 cpumask_set_cpu(iter->cpu, iter->started); 1642 cpumask_set_cpu(iter->cpu, iter->started);
1683 1643
1684 /* Don't print started cpu buffer for the first entry of the trace */ 1644 /* Don't print started cpu buffer for the first entry of the trace */
@@ -1941,19 +1901,23 @@ __tracing_open(struct inode *inode, struct file *file)
1941 if (ring_buffer_overruns(iter->tr->buffer)) 1901 if (ring_buffer_overruns(iter->tr->buffer))
1942 iter->iter_flags |= TRACE_FILE_ANNOTATE; 1902 iter->iter_flags |= TRACE_FILE_ANNOTATE;
1943 1903
1904 /* stop the trace while dumping */
1905 tracing_stop();
1906
1944 if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { 1907 if (iter->cpu_file == TRACE_PIPE_ALL_CPU) {
1945 for_each_tracing_cpu(cpu) { 1908 for_each_tracing_cpu(cpu) {
1946 1909
1947 iter->buffer_iter[cpu] = 1910 iter->buffer_iter[cpu] =
1948 ring_buffer_read_start(iter->tr->buffer, cpu); 1911 ring_buffer_read_start(iter->tr->buffer, cpu);
1912 tracing_iter_reset(iter, cpu);
1949 } 1913 }
1950 } else { 1914 } else {
1951 cpu = iter->cpu_file; 1915 cpu = iter->cpu_file;
1952 iter->buffer_iter[cpu] = 1916 iter->buffer_iter[cpu] =
1953 ring_buffer_read_start(iter->tr->buffer, cpu); 1917 ring_buffer_read_start(iter->tr->buffer, cpu);
1918 tracing_iter_reset(iter, cpu);
1954 } 1919 }
1955 1920
1956 /* TODO stop tracer */
1957 ret = seq_open(file, &tracer_seq_ops); 1921 ret = seq_open(file, &tracer_seq_ops);
1958 if (ret < 0) { 1922 if (ret < 0) {
1959 fail_ret = ERR_PTR(ret); 1923 fail_ret = ERR_PTR(ret);
@@ -1963,9 +1927,6 @@ __tracing_open(struct inode *inode, struct file *file)
1963 m = file->private_data; 1927 m = file->private_data;
1964 m->private = iter; 1928 m->private = iter;
1965 1929
1966 /* stop the trace while dumping */
1967 tracing_stop();
1968
1969 mutex_unlock(&trace_types_lock); 1930 mutex_unlock(&trace_types_lock);
1970 1931
1971 return iter; 1932 return iter;
@@ -1976,6 +1937,7 @@ __tracing_open(struct inode *inode, struct file *file)
1976 ring_buffer_read_finish(iter->buffer_iter[cpu]); 1937 ring_buffer_read_finish(iter->buffer_iter[cpu]);
1977 } 1938 }
1978 free_cpumask_var(iter->started); 1939 free_cpumask_var(iter->started);
1940 tracing_start();
1979 fail: 1941 fail:
1980 mutex_unlock(&trace_types_lock); 1942 mutex_unlock(&trace_types_lock);
1981 kfree(iter->trace); 1943 kfree(iter->trace);
@@ -2257,8 +2219,8 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf,
2257 len += 3; /* "no" and newline */ 2219 len += 3; /* "no" and newline */
2258 } 2220 }
2259 2221
2260 /* +2 for \n and \0 */ 2222 /* +1 for \0 */
2261 buf = kmalloc(len + 2, GFP_KERNEL); 2223 buf = kmalloc(len + 1, GFP_KERNEL);
2262 if (!buf) { 2224 if (!buf) {
2263 mutex_unlock(&trace_types_lock); 2225 mutex_unlock(&trace_types_lock);
2264 return -ENOMEM; 2226 return -ENOMEM;
@@ -2281,7 +2243,7 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf,
2281 } 2243 }
2282 mutex_unlock(&trace_types_lock); 2244 mutex_unlock(&trace_types_lock);
2283 2245
2284 WARN_ON(r >= len + 2); 2246 WARN_ON(r >= len + 1);
2285 2247
2286 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 2248 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2287 2249
@@ -2292,23 +2254,23 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf,
2292/* Try to assign a tracer specific option */ 2254/* Try to assign a tracer specific option */
2293static int set_tracer_option(struct tracer *trace, char *cmp, int neg) 2255static int set_tracer_option(struct tracer *trace, char *cmp, int neg)
2294{ 2256{
2295 struct tracer_flags *trace_flags = trace->flags; 2257 struct tracer_flags *tracer_flags = trace->flags;
2296 struct tracer_opt *opts = NULL; 2258 struct tracer_opt *opts = NULL;
2297 int ret = 0, i = 0; 2259 int ret = 0, i = 0;
2298 int len; 2260 int len;
2299 2261
2300 for (i = 0; trace_flags->opts[i].name; i++) { 2262 for (i = 0; tracer_flags->opts[i].name; i++) {
2301 opts = &trace_flags->opts[i]; 2263 opts = &tracer_flags->opts[i];
2302 len = strlen(opts->name); 2264 len = strlen(opts->name);
2303 2265
2304 if (strncmp(cmp, opts->name, len) == 0) { 2266 if (strncmp(cmp, opts->name, len) == 0) {
2305 ret = trace->set_flag(trace_flags->val, 2267 ret = trace->set_flag(tracer_flags->val,
2306 opts->bit, !neg); 2268 opts->bit, !neg);
2307 break; 2269 break;
2308 } 2270 }
2309 } 2271 }
2310 /* Not found */ 2272 /* Not found */
2311 if (!trace_flags->opts[i].name) 2273 if (!tracer_flags->opts[i].name)
2312 return -EINVAL; 2274 return -EINVAL;
2313 2275
2314 /* Refused to handle */ 2276 /* Refused to handle */
@@ -2316,9 +2278,9 @@ static int set_tracer_option(struct tracer *trace, char *cmp, int neg)
2316 return ret; 2278 return ret;
2317 2279
2318 if (neg) 2280 if (neg)
2319 trace_flags->val &= ~opts->bit; 2281 tracer_flags->val &= ~opts->bit;
2320 else 2282 else
2321 trace_flags->val |= opts->bit; 2283 tracer_flags->val |= opts->bit;
2322 2284
2323 return 0; 2285 return 0;
2324} 2286}
@@ -2333,22 +2295,6 @@ static void set_tracer_flags(unsigned int mask, int enabled)
2333 trace_flags |= mask; 2295 trace_flags |= mask;
2334 else 2296 else
2335 trace_flags &= ~mask; 2297 trace_flags &= ~mask;
2336
2337 if (mask == TRACE_ITER_GLOBAL_CLK) {
2338 u64 (*func)(void);
2339
2340 if (enabled)
2341 func = trace_clock_global;
2342 else
2343 func = trace_clock_local;
2344
2345 mutex_lock(&trace_types_lock);
2346 ring_buffer_set_clock(global_trace.buffer, func);
2347
2348 if (max_tr.buffer)
2349 ring_buffer_set_clock(max_tr.buffer, func);
2350 mutex_unlock(&trace_types_lock);
2351 }
2352} 2298}
2353 2299
2354static ssize_t 2300static ssize_t
@@ -3316,6 +3262,62 @@ tracing_mark_write(struct file *filp, const char __user *ubuf,
3316 return cnt; 3262 return cnt;
3317} 3263}
3318 3264
3265static ssize_t tracing_clock_read(struct file *filp, char __user *ubuf,
3266 size_t cnt, loff_t *ppos)
3267{
3268 char buf[64];
3269 int bufiter = 0;
3270 int i;
3271
3272 for (i = 0; i < ARRAY_SIZE(trace_clocks); i++)
3273 bufiter += snprintf(buf + bufiter, sizeof(buf) - bufiter,
3274 "%s%s%s%s", i ? " " : "",
3275 i == trace_clock_id ? "[" : "", trace_clocks[i].name,
3276 i == trace_clock_id ? "]" : "");
3277 bufiter += snprintf(buf + bufiter, sizeof(buf) - bufiter, "\n");
3278
3279 return simple_read_from_buffer(ubuf, cnt, ppos, buf, bufiter);
3280}
3281
3282static ssize_t tracing_clock_write(struct file *filp, const char __user *ubuf,
3283 size_t cnt, loff_t *fpos)
3284{
3285 char buf[64];
3286 const char *clockstr;
3287 int i;
3288
3289 if (cnt >= sizeof(buf))
3290 return -EINVAL;
3291
3292 if (copy_from_user(&buf, ubuf, cnt))
3293 return -EFAULT;
3294
3295 buf[cnt] = 0;
3296
3297 clockstr = strstrip(buf);
3298
3299 for (i = 0; i < ARRAY_SIZE(trace_clocks); i++) {
3300 if (strcmp(trace_clocks[i].name, clockstr) == 0)
3301 break;
3302 }
3303 if (i == ARRAY_SIZE(trace_clocks))
3304 return -EINVAL;
3305
3306 trace_clock_id = i;
3307
3308 mutex_lock(&trace_types_lock);
3309
3310 ring_buffer_set_clock(global_trace.buffer, trace_clocks[i].func);
3311 if (max_tr.buffer)
3312 ring_buffer_set_clock(max_tr.buffer, trace_clocks[i].func);
3313
3314 mutex_unlock(&trace_types_lock);
3315
3316 *fpos += cnt;
3317
3318 return cnt;
3319}
3320
3319static const struct file_operations tracing_max_lat_fops = { 3321static const struct file_operations tracing_max_lat_fops = {
3320 .open = tracing_open_generic, 3322 .open = tracing_open_generic,
3321 .read = tracing_max_lat_read, 3323 .read = tracing_max_lat_read,
@@ -3353,6 +3355,12 @@ static const struct file_operations tracing_mark_fops = {
3353 .write = tracing_mark_write, 3355 .write = tracing_mark_write,
3354}; 3356};
3355 3357
3358static const struct file_operations trace_clock_fops = {
3359 .open = tracing_open_generic,
3360 .read = tracing_clock_read,
3361 .write = tracing_clock_write,
3362};
3363
3356struct ftrace_buffer_info { 3364struct ftrace_buffer_info {
3357 struct trace_array *tr; 3365 struct trace_array *tr;
3358 void *spare; 3366 void *spare;
@@ -3633,9 +3641,6 @@ tracing_stats_read(struct file *filp, char __user *ubuf,
3633 cnt = ring_buffer_commit_overrun_cpu(tr->buffer, cpu); 3641 cnt = ring_buffer_commit_overrun_cpu(tr->buffer, cpu);
3634 trace_seq_printf(s, "commit overrun: %ld\n", cnt); 3642 trace_seq_printf(s, "commit overrun: %ld\n", cnt);
3635 3643
3636 cnt = ring_buffer_nmi_dropped_cpu(tr->buffer, cpu);
3637 trace_seq_printf(s, "nmi dropped: %ld\n", cnt);
3638
3639 count = simple_read_from_buffer(ubuf, count, ppos, s->buffer, s->len); 3644 count = simple_read_from_buffer(ubuf, count, ppos, s->buffer, s->len);
3640 3645
3641 kfree(s); 3646 kfree(s);
@@ -3896,17 +3901,9 @@ trace_options_core_write(struct file *filp, const char __user *ubuf, size_t cnt,
3896 if (ret < 0) 3901 if (ret < 0)
3897 return ret; 3902 return ret;
3898 3903
3899 switch (val) { 3904 if (val != 0 && val != 1)
3900 case 0:
3901 trace_flags &= ~(1 << index);
3902 break;
3903 case 1:
3904 trace_flags |= 1 << index;
3905 break;
3906
3907 default:
3908 return -EINVAL; 3905 return -EINVAL;
3909 } 3906 set_tracer_flags(1 << index, val);
3910 3907
3911 *ppos += cnt; 3908 *ppos += cnt;
3912 3909
@@ -4074,11 +4071,13 @@ static __init int tracer_init_debugfs(void)
4074 trace_create_file("current_tracer", 0644, d_tracer, 4071 trace_create_file("current_tracer", 0644, d_tracer,
4075 &global_trace, &set_tracer_fops); 4072 &global_trace, &set_tracer_fops);
4076 4073
4074#ifdef CONFIG_TRACER_MAX_TRACE
4077 trace_create_file("tracing_max_latency", 0644, d_tracer, 4075 trace_create_file("tracing_max_latency", 0644, d_tracer,
4078 &tracing_max_latency, &tracing_max_lat_fops); 4076 &tracing_max_latency, &tracing_max_lat_fops);
4079 4077
4080 trace_create_file("tracing_thresh", 0644, d_tracer, 4078 trace_create_file("tracing_thresh", 0644, d_tracer,
4081 &tracing_thresh, &tracing_max_lat_fops); 4079 &tracing_thresh, &tracing_max_lat_fops);
4080#endif
4082 4081
4083 trace_create_file("README", 0444, d_tracer, 4082 trace_create_file("README", 0444, d_tracer,
4084 NULL, &tracing_readme_fops); 4083 NULL, &tracing_readme_fops);
@@ -4095,6 +4094,9 @@ static __init int tracer_init_debugfs(void)
4095 trace_create_file("saved_cmdlines", 0444, d_tracer, 4094 trace_create_file("saved_cmdlines", 0444, d_tracer,
4096 NULL, &tracing_saved_cmdlines_fops); 4095 NULL, &tracing_saved_cmdlines_fops);
4097 4096
4097 trace_create_file("trace_clock", 0644, d_tracer, NULL,
4098 &trace_clock_fops);
4099
4098#ifdef CONFIG_DYNAMIC_FTRACE 4100#ifdef CONFIG_DYNAMIC_FTRACE
4099 trace_create_file("dyn_ftrace_total_info", 0444, d_tracer, 4101 trace_create_file("dyn_ftrace_total_info", 0444, d_tracer,
4100 &ftrace_update_tot_cnt, &tracing_dyn_info_fops); 4102 &ftrace_update_tot_cnt, &tracing_dyn_info_fops);
@@ -4273,7 +4275,6 @@ void ftrace_dump(void)
4273 4275
4274__init static int tracer_alloc_buffers(void) 4276__init static int tracer_alloc_buffers(void)
4275{ 4277{
4276 struct trace_array_cpu *data;
4277 int ring_buf_size; 4278 int ring_buf_size;
4278 int i; 4279 int i;
4279 int ret = -ENOMEM; 4280 int ret = -ENOMEM;
@@ -4323,7 +4324,7 @@ __init static int tracer_alloc_buffers(void)
4323 4324
4324 /* Allocate the first page for all buffers */ 4325 /* Allocate the first page for all buffers */
4325 for_each_tracing_cpu(i) { 4326 for_each_tracing_cpu(i) {
4326 data = global_trace.data[i] = &per_cpu(global_trace_cpu, i); 4327 global_trace.data[i] = &per_cpu(global_trace_cpu, i);
4327 max_tr.data[i] = &per_cpu(max_data, i); 4328 max_tr.data[i] = &per_cpu(max_data, i);
4328 } 4329 }
4329 4330
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 8b9f4f6e9559..fa1dccb579d5 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -34,8 +34,6 @@ enum trace_type {
34 TRACE_GRAPH_ENT, 34 TRACE_GRAPH_ENT,
35 TRACE_USER_STACK, 35 TRACE_USER_STACK,
36 TRACE_HW_BRANCHES, 36 TRACE_HW_BRANCHES,
37 TRACE_SYSCALL_ENTER,
38 TRACE_SYSCALL_EXIT,
39 TRACE_KMEM_ALLOC, 37 TRACE_KMEM_ALLOC,
40 TRACE_KMEM_FREE, 38 TRACE_KMEM_FREE,
41 TRACE_POWER, 39 TRACE_POWER,
@@ -236,9 +234,6 @@ struct trace_array_cpu {
236 atomic_t disabled; 234 atomic_t disabled;
237 void *buffer_page; /* ring buffer spare */ 235 void *buffer_page; /* ring buffer spare */
238 236
239 /* these fields get copied into max-trace: */
240 unsigned long trace_idx;
241 unsigned long overrun;
242 unsigned long saved_latency; 237 unsigned long saved_latency;
243 unsigned long critical_start; 238 unsigned long critical_start;
244 unsigned long critical_end; 239 unsigned long critical_end;
@@ -246,6 +241,7 @@ struct trace_array_cpu {
246 unsigned long nice; 241 unsigned long nice;
247 unsigned long policy; 242 unsigned long policy;
248 unsigned long rt_priority; 243 unsigned long rt_priority;
244 unsigned long skipped_entries;
249 cycle_t preempt_timestamp; 245 cycle_t preempt_timestamp;
250 pid_t pid; 246 pid_t pid;
251 uid_t uid; 247 uid_t uid;
@@ -319,10 +315,6 @@ extern void __ftrace_bad_type(void);
319 TRACE_KMEM_ALLOC); \ 315 TRACE_KMEM_ALLOC); \
320 IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ 316 IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \
321 TRACE_KMEM_FREE); \ 317 TRACE_KMEM_FREE); \
322 IF_ASSIGN(var, ent, struct syscall_trace_enter, \
323 TRACE_SYSCALL_ENTER); \
324 IF_ASSIGN(var, ent, struct syscall_trace_exit, \
325 TRACE_SYSCALL_EXIT); \
326 __ftrace_bad_type(); \ 318 __ftrace_bad_type(); \
327 } while (0) 319 } while (0)
328 320
@@ -423,12 +415,13 @@ void init_tracer_sysprof_debugfs(struct dentry *d_tracer);
423 415
424struct ring_buffer_event; 416struct ring_buffer_event;
425 417
426struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, 418struct ring_buffer_event *
427 int type, 419trace_buffer_lock_reserve(struct ring_buffer *buffer,
428 unsigned long len, 420 int type,
429 unsigned long flags, 421 unsigned long len,
430 int pc); 422 unsigned long flags,
431void trace_buffer_unlock_commit(struct trace_array *tr, 423 int pc);
424void trace_buffer_unlock_commit(struct ring_buffer *buffer,
432 struct ring_buffer_event *event, 425 struct ring_buffer_event *event,
433 unsigned long flags, int pc); 426 unsigned long flags, int pc);
434 427
@@ -467,6 +460,7 @@ void trace_function(struct trace_array *tr,
467 460
468void trace_graph_return(struct ftrace_graph_ret *trace); 461void trace_graph_return(struct ftrace_graph_ret *trace);
469int trace_graph_entry(struct ftrace_graph_ent *trace); 462int trace_graph_entry(struct ftrace_graph_ent *trace);
463void set_graph_array(struct trace_array *tr);
470 464
471void tracing_start_cmdline_record(void); 465void tracing_start_cmdline_record(void);
472void tracing_stop_cmdline_record(void); 466void tracing_stop_cmdline_record(void);
@@ -478,16 +472,40 @@ void unregister_tracer(struct tracer *type);
478 472
479extern unsigned long nsecs_to_usecs(unsigned long nsecs); 473extern unsigned long nsecs_to_usecs(unsigned long nsecs);
480 474
475#ifdef CONFIG_TRACER_MAX_TRACE
481extern unsigned long tracing_max_latency; 476extern unsigned long tracing_max_latency;
482extern unsigned long tracing_thresh; 477extern unsigned long tracing_thresh;
483 478
484void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu); 479void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu);
485void update_max_tr_single(struct trace_array *tr, 480void update_max_tr_single(struct trace_array *tr,
486 struct task_struct *tsk, int cpu); 481 struct task_struct *tsk, int cpu);
482#endif /* CONFIG_TRACER_MAX_TRACE */
487 483
488void __trace_stack(struct trace_array *tr, 484#ifdef CONFIG_STACKTRACE
489 unsigned long flags, 485void ftrace_trace_stack(struct ring_buffer *buffer, unsigned long flags,
490 int skip, int pc); 486 int skip, int pc);
487
488void ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags,
489 int pc);
490
491void __trace_stack(struct trace_array *tr, unsigned long flags, int skip,
492 int pc);
493#else
494static inline void ftrace_trace_stack(struct trace_array *tr,
495 unsigned long flags, int skip, int pc)
496{
497}
498
499static inline void ftrace_trace_userstack(struct trace_array *tr,
500 unsigned long flags, int pc)
501{
502}
503
504static inline void __trace_stack(struct trace_array *tr, unsigned long flags,
505 int skip, int pc)
506{
507}
508#endif /* CONFIG_STACKTRACE */
491 509
492extern cycle_t ftrace_now(int cpu); 510extern cycle_t ftrace_now(int cpu);
493 511
@@ -513,6 +531,10 @@ extern unsigned long ftrace_update_tot_cnt;
513extern int DYN_FTRACE_TEST_NAME(void); 531extern int DYN_FTRACE_TEST_NAME(void);
514#endif 532#endif
515 533
534extern int ring_buffer_expanded;
535extern bool tracing_selftest_disabled;
536DECLARE_PER_CPU(local_t, ftrace_cpu_disabled);
537
516#ifdef CONFIG_FTRACE_STARTUP_TEST 538#ifdef CONFIG_FTRACE_STARTUP_TEST
517extern int trace_selftest_startup_function(struct tracer *trace, 539extern int trace_selftest_startup_function(struct tracer *trace,
518 struct trace_array *tr); 540 struct trace_array *tr);
@@ -544,9 +566,16 @@ extern int
544trace_vbprintk(unsigned long ip, const char *fmt, va_list args); 566trace_vbprintk(unsigned long ip, const char *fmt, va_list args);
545extern int 567extern int
546trace_vprintk(unsigned long ip, const char *fmt, va_list args); 568trace_vprintk(unsigned long ip, const char *fmt, va_list args);
569extern int
570trace_array_vprintk(struct trace_array *tr,
571 unsigned long ip, const char *fmt, va_list args);
572int trace_array_printk(struct trace_array *tr,
573 unsigned long ip, const char *fmt, ...);
547 574
548extern unsigned long trace_flags; 575extern unsigned long trace_flags;
549 576
577extern int trace_clock_id;
578
550/* Standard output formatting function used for function return traces */ 579/* Standard output formatting function used for function return traces */
551#ifdef CONFIG_FUNCTION_GRAPH_TRACER 580#ifdef CONFIG_FUNCTION_GRAPH_TRACER
552extern enum print_line_t print_graph_function(struct trace_iterator *iter); 581extern enum print_line_t print_graph_function(struct trace_iterator *iter);
@@ -635,9 +664,8 @@ enum trace_iterator_flags {
635 TRACE_ITER_PRINTK_MSGONLY = 0x10000, 664 TRACE_ITER_PRINTK_MSGONLY = 0x10000,
636 TRACE_ITER_CONTEXT_INFO = 0x20000, /* Print pid/cpu/time */ 665 TRACE_ITER_CONTEXT_INFO = 0x20000, /* Print pid/cpu/time */
637 TRACE_ITER_LATENCY_FMT = 0x40000, 666 TRACE_ITER_LATENCY_FMT = 0x40000,
638 TRACE_ITER_GLOBAL_CLK = 0x80000, 667 TRACE_ITER_SLEEP_TIME = 0x80000,
639 TRACE_ITER_SLEEP_TIME = 0x100000, 668 TRACE_ITER_GRAPH_TIME = 0x100000,
640 TRACE_ITER_GRAPH_TIME = 0x200000,
641}; 669};
642 670
643/* 671/*
@@ -734,6 +762,7 @@ struct ftrace_event_field {
734 struct list_head link; 762 struct list_head link;
735 char *name; 763 char *name;
736 char *type; 764 char *type;
765 int filter_type;
737 int offset; 766 int offset;
738 int size; 767 int size;
739 int is_signed; 768 int is_signed;
@@ -743,13 +772,15 @@ struct event_filter {
743 int n_preds; 772 int n_preds;
744 struct filter_pred **preds; 773 struct filter_pred **preds;
745 char *filter_string; 774 char *filter_string;
775 bool no_reset;
746}; 776};
747 777
748struct event_subsystem { 778struct event_subsystem {
749 struct list_head list; 779 struct list_head list;
750 const char *name; 780 const char *name;
751 struct dentry *entry; 781 struct dentry *entry;
752 void *filter; 782 struct event_filter *filter;
783 int nr_events;
753}; 784};
754 785
755struct filter_pred; 786struct filter_pred;
@@ -777,6 +808,7 @@ extern int apply_subsystem_event_filter(struct event_subsystem *system,
777 char *filter_string); 808 char *filter_string);
778extern void print_subsystem_event_filter(struct event_subsystem *system, 809extern void print_subsystem_event_filter(struct event_subsystem *system,
779 struct trace_seq *s); 810 struct trace_seq *s);
811extern int filter_assign_type(const char *type);
780 812
781static inline int 813static inline int
782filter_check_discard(struct ftrace_event_call *call, void *rec, 814filter_check_discard(struct ftrace_event_call *call, void *rec,
diff --git a/kernel/trace/trace_boot.c b/kernel/trace/trace_boot.c
index a29ef23ffb47..19bfc75d467e 100644
--- a/kernel/trace/trace_boot.c
+++ b/kernel/trace/trace_boot.c
@@ -41,14 +41,12 @@ void disable_boot_trace(void)
41 41
42static int boot_trace_init(struct trace_array *tr) 42static int boot_trace_init(struct trace_array *tr)
43{ 43{
44 int cpu;
45 boot_trace = tr; 44 boot_trace = tr;
46 45
47 if (!tr) 46 if (!tr)
48 return 0; 47 return 0;
49 48
50 for_each_cpu(cpu, cpu_possible_mask) 49 tracing_reset_online_cpus(tr);
51 tracing_reset(tr, cpu);
52 50
53 tracing_sched_switch_assign_trace(tr); 51 tracing_sched_switch_assign_trace(tr);
54 return 0; 52 return 0;
@@ -132,6 +130,7 @@ struct tracer boot_tracer __read_mostly =
132void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) 130void trace_boot_call(struct boot_trace_call *bt, initcall_t fn)
133{ 131{
134 struct ring_buffer_event *event; 132 struct ring_buffer_event *event;
133 struct ring_buffer *buffer;
135 struct trace_boot_call *entry; 134 struct trace_boot_call *entry;
136 struct trace_array *tr = boot_trace; 135 struct trace_array *tr = boot_trace;
137 136
@@ -144,13 +143,14 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn)
144 sprint_symbol(bt->func, (unsigned long)fn); 143 sprint_symbol(bt->func, (unsigned long)fn);
145 preempt_disable(); 144 preempt_disable();
146 145
147 event = trace_buffer_lock_reserve(tr, TRACE_BOOT_CALL, 146 buffer = tr->buffer;
147 event = trace_buffer_lock_reserve(buffer, TRACE_BOOT_CALL,
148 sizeof(*entry), 0, 0); 148 sizeof(*entry), 0, 0);
149 if (!event) 149 if (!event)
150 goto out; 150 goto out;
151 entry = ring_buffer_event_data(event); 151 entry = ring_buffer_event_data(event);
152 entry->boot_call = *bt; 152 entry->boot_call = *bt;
153 trace_buffer_unlock_commit(tr, event, 0, 0); 153 trace_buffer_unlock_commit(buffer, event, 0, 0);
154 out: 154 out:
155 preempt_enable(); 155 preempt_enable();
156} 156}
@@ -158,6 +158,7 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn)
158void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) 158void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn)
159{ 159{
160 struct ring_buffer_event *event; 160 struct ring_buffer_event *event;
161 struct ring_buffer *buffer;
161 struct trace_boot_ret *entry; 162 struct trace_boot_ret *entry;
162 struct trace_array *tr = boot_trace; 163 struct trace_array *tr = boot_trace;
163 164
@@ -167,13 +168,14 @@ void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn)
167 sprint_symbol(bt->func, (unsigned long)fn); 168 sprint_symbol(bt->func, (unsigned long)fn);
168 preempt_disable(); 169 preempt_disable();
169 170
170 event = trace_buffer_lock_reserve(tr, TRACE_BOOT_RET, 171 buffer = tr->buffer;
172 event = trace_buffer_lock_reserve(buffer, TRACE_BOOT_RET,
171 sizeof(*entry), 0, 0); 173 sizeof(*entry), 0, 0);
172 if (!event) 174 if (!event)
173 goto out; 175 goto out;
174 entry = ring_buffer_event_data(event); 176 entry = ring_buffer_event_data(event);
175 entry->boot_ret = *bt; 177 entry->boot_ret = *bt;
176 trace_buffer_unlock_commit(tr, event, 0, 0); 178 trace_buffer_unlock_commit(buffer, event, 0, 0);
177 out: 179 out:
178 preempt_enable(); 180 preempt_enable();
179} 181}
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c
index e75276a49cf5..78b1ed230177 100644
--- a/kernel/trace/trace_events.c
+++ b/kernel/trace/trace_events.c
@@ -17,6 +17,8 @@
17#include <linux/ctype.h> 17#include <linux/ctype.h>
18#include <linux/delay.h> 18#include <linux/delay.h>
19 19
20#include <asm/setup.h>
21
20#include "trace_output.h" 22#include "trace_output.h"
21 23
22#define TRACE_SYSTEM "TRACE_SYSTEM" 24#define TRACE_SYSTEM "TRACE_SYSTEM"
@@ -25,8 +27,9 @@ DEFINE_MUTEX(event_mutex);
25 27
26LIST_HEAD(ftrace_events); 28LIST_HEAD(ftrace_events);
27 29
28int trace_define_field(struct ftrace_event_call *call, char *type, 30int trace_define_field(struct ftrace_event_call *call, const char *type,
29 char *name, int offset, int size, int is_signed) 31 const char *name, int offset, int size, int is_signed,
32 int filter_type)
30{ 33{
31 struct ftrace_event_field *field; 34 struct ftrace_event_field *field;
32 35
@@ -42,9 +45,15 @@ int trace_define_field(struct ftrace_event_call *call, char *type,
42 if (!field->type) 45 if (!field->type)
43 goto err; 46 goto err;
44 47
48 if (filter_type == FILTER_OTHER)
49 field->filter_type = filter_assign_type(type);
50 else
51 field->filter_type = filter_type;
52
45 field->offset = offset; 53 field->offset = offset;
46 field->size = size; 54 field->size = size;
47 field->is_signed = is_signed; 55 field->is_signed = is_signed;
56
48 list_add(&field->link, &call->fields); 57 list_add(&field->link, &call->fields);
49 58
50 return 0; 59 return 0;
@@ -60,6 +69,29 @@ err:
60} 69}
61EXPORT_SYMBOL_GPL(trace_define_field); 70EXPORT_SYMBOL_GPL(trace_define_field);
62 71
72#define __common_field(type, item) \
73 ret = trace_define_field(call, #type, "common_" #item, \
74 offsetof(typeof(ent), item), \
75 sizeof(ent.item), \
76 is_signed_type(type), FILTER_OTHER); \
77 if (ret) \
78 return ret;
79
80int trace_define_common_fields(struct ftrace_event_call *call)
81{
82 int ret;
83 struct trace_entry ent;
84
85 __common_field(unsigned short, type);
86 __common_field(unsigned char, flags);
87 __common_field(unsigned char, preempt_count);
88 __common_field(int, pid);
89 __common_field(int, tgid);
90
91 return ret;
92}
93EXPORT_SYMBOL_GPL(trace_define_common_fields);
94
63#ifdef CONFIG_MODULES 95#ifdef CONFIG_MODULES
64 96
65static void trace_destroy_fields(struct ftrace_event_call *call) 97static void trace_destroy_fields(struct ftrace_event_call *call)
@@ -84,14 +116,14 @@ static void ftrace_event_enable_disable(struct ftrace_event_call *call,
84 if (call->enabled) { 116 if (call->enabled) {
85 call->enabled = 0; 117 call->enabled = 0;
86 tracing_stop_cmdline_record(); 118 tracing_stop_cmdline_record();
87 call->unregfunc(); 119 call->unregfunc(call->data);
88 } 120 }
89 break; 121 break;
90 case 1: 122 case 1:
91 if (!call->enabled) { 123 if (!call->enabled) {
92 call->enabled = 1; 124 call->enabled = 1;
93 tracing_start_cmdline_record(); 125 tracing_start_cmdline_record();
94 call->regfunc(); 126 call->regfunc(call->data);
95 } 127 }
96 break; 128 break;
97 } 129 }
@@ -574,7 +606,7 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt,
574 trace_seq_printf(s, "format:\n"); 606 trace_seq_printf(s, "format:\n");
575 trace_write_header(s); 607 trace_write_header(s);
576 608
577 r = call->show_format(s); 609 r = call->show_format(call, s);
578 if (!r) { 610 if (!r) {
579 /* 611 /*
580 * ug! The format output is bigger than a PAGE!! 612 * ug! The format output is bigger than a PAGE!!
@@ -849,8 +881,10 @@ event_subsystem_dir(const char *name, struct dentry *d_events)
849 881
850 /* First see if we did not already create this dir */ 882 /* First see if we did not already create this dir */
851 list_for_each_entry(system, &event_subsystems, list) { 883 list_for_each_entry(system, &event_subsystems, list) {
852 if (strcmp(system->name, name) == 0) 884 if (strcmp(system->name, name) == 0) {
885 system->nr_events++;
853 return system->entry; 886 return system->entry;
887 }
854 } 888 }
855 889
856 /* need to create new entry */ 890 /* need to create new entry */
@@ -869,6 +903,7 @@ event_subsystem_dir(const char *name, struct dentry *d_events)
869 return d_events; 903 return d_events;
870 } 904 }
871 905
906 system->nr_events = 1;
872 system->name = kstrdup(name, GFP_KERNEL); 907 system->name = kstrdup(name, GFP_KERNEL);
873 if (!system->name) { 908 if (!system->name) {
874 debugfs_remove(system->entry); 909 debugfs_remove(system->entry);
@@ -920,15 +955,6 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events,
920 if (strcmp(call->system, TRACE_SYSTEM) != 0) 955 if (strcmp(call->system, TRACE_SYSTEM) != 0)
921 d_events = event_subsystem_dir(call->system, d_events); 956 d_events = event_subsystem_dir(call->system, d_events);
922 957
923 if (call->raw_init) {
924 ret = call->raw_init();
925 if (ret < 0) {
926 pr_warning("Could not initialize trace point"
927 " events/%s\n", call->name);
928 return ret;
929 }
930 }
931
932 call->dir = debugfs_create_dir(call->name, d_events); 958 call->dir = debugfs_create_dir(call->name, d_events);
933 if (!call->dir) { 959 if (!call->dir) {
934 pr_warning("Could not create debugfs " 960 pr_warning("Could not create debugfs "
@@ -945,7 +971,7 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events,
945 id); 971 id);
946 972
947 if (call->define_fields) { 973 if (call->define_fields) {
948 ret = call->define_fields(); 974 ret = call->define_fields(call);
949 if (ret < 0) { 975 if (ret < 0) {
950 pr_warning("Could not initialize trace point" 976 pr_warning("Could not initialize trace point"
951 " events/%s\n", call->name); 977 " events/%s\n", call->name);
@@ -987,6 +1013,32 @@ struct ftrace_module_file_ops {
987 struct file_operations filter; 1013 struct file_operations filter;
988}; 1014};
989 1015
1016static void remove_subsystem_dir(const char *name)
1017{
1018 struct event_subsystem *system;
1019
1020 if (strcmp(name, TRACE_SYSTEM) == 0)
1021 return;
1022
1023 list_for_each_entry(system, &event_subsystems, list) {
1024 if (strcmp(system->name, name) == 0) {
1025 if (!--system->nr_events) {
1026 struct event_filter *filter = system->filter;
1027
1028 debugfs_remove_recursive(system->entry);
1029 list_del(&system->list);
1030 if (filter) {
1031 kfree(filter->filter_string);
1032 kfree(filter);
1033 }
1034 kfree(system->name);
1035 kfree(system);
1036 }
1037 break;
1038 }
1039 }
1040}
1041
990static struct ftrace_module_file_ops * 1042static struct ftrace_module_file_ops *
991trace_create_file_ops(struct module *mod) 1043trace_create_file_ops(struct module *mod)
992{ 1044{
@@ -1027,6 +1079,7 @@ static void trace_module_add_events(struct module *mod)
1027 struct ftrace_module_file_ops *file_ops = NULL; 1079 struct ftrace_module_file_ops *file_ops = NULL;
1028 struct ftrace_event_call *call, *start, *end; 1080 struct ftrace_event_call *call, *start, *end;
1029 struct dentry *d_events; 1081 struct dentry *d_events;
1082 int ret;
1030 1083
1031 start = mod->trace_events; 1084 start = mod->trace_events;
1032 end = mod->trace_events + mod->num_trace_events; 1085 end = mod->trace_events + mod->num_trace_events;
@@ -1042,7 +1095,15 @@ static void trace_module_add_events(struct module *mod)
1042 /* The linker may leave blanks */ 1095 /* The linker may leave blanks */
1043 if (!call->name) 1096 if (!call->name)
1044 continue; 1097 continue;
1045 1098 if (call->raw_init) {
1099 ret = call->raw_init();
1100 if (ret < 0) {
1101 if (ret != -ENOSYS)
1102 pr_warning("Could not initialize trace "
1103 "point events/%s\n", call->name);
1104 continue;
1105 }
1106 }
1046 /* 1107 /*
1047 * This module has events, create file ops for this module 1108 * This module has events, create file ops for this module
1048 * if not already done. 1109 * if not already done.
@@ -1077,6 +1138,7 @@ static void trace_module_remove_events(struct module *mod)
1077 list_del(&call->list); 1138 list_del(&call->list);
1078 trace_destroy_fields(call); 1139 trace_destroy_fields(call);
1079 destroy_preds(call); 1140 destroy_preds(call);
1141 remove_subsystem_dir(call->system);
1080 } 1142 }
1081 } 1143 }
1082 1144
@@ -1133,6 +1195,18 @@ struct notifier_block trace_module_nb = {
1133extern struct ftrace_event_call __start_ftrace_events[]; 1195extern struct ftrace_event_call __start_ftrace_events[];
1134extern struct ftrace_event_call __stop_ftrace_events[]; 1196extern struct ftrace_event_call __stop_ftrace_events[];
1135 1197
1198static char bootup_event_buf[COMMAND_LINE_SIZE] __initdata;
1199
1200static __init int setup_trace_event(char *str)
1201{
1202 strlcpy(bootup_event_buf, str, COMMAND_LINE_SIZE);
1203 ring_buffer_expanded = 1;
1204 tracing_selftest_disabled = 1;
1205
1206 return 1;
1207}
1208__setup("trace_event=", setup_trace_event);
1209
1136static __init int event_trace_init(void) 1210static __init int event_trace_init(void)
1137{ 1211{
1138 struct ftrace_event_call *call; 1212 struct ftrace_event_call *call;
@@ -1140,6 +1214,8 @@ static __init int event_trace_init(void)
1140 struct dentry *entry; 1214 struct dentry *entry;
1141 struct dentry *d_events; 1215 struct dentry *d_events;
1142 int ret; 1216 int ret;
1217 char *buf = bootup_event_buf;
1218 char *token;
1143 1219
1144 d_tracer = tracing_init_dentry(); 1220 d_tracer = tracing_init_dentry();
1145 if (!d_tracer) 1221 if (!d_tracer)
@@ -1179,12 +1255,34 @@ static __init int event_trace_init(void)
1179 /* The linker may leave blanks */ 1255 /* The linker may leave blanks */
1180 if (!call->name) 1256 if (!call->name)
1181 continue; 1257 continue;
1258 if (call->raw_init) {
1259 ret = call->raw_init();
1260 if (ret < 0) {
1261 if (ret != -ENOSYS)
1262 pr_warning("Could not initialize trace "
1263 "point events/%s\n", call->name);
1264 continue;
1265 }
1266 }
1182 list_add(&call->list, &ftrace_events); 1267 list_add(&call->list, &ftrace_events);
1183 event_create_dir(call, d_events, &ftrace_event_id_fops, 1268 event_create_dir(call, d_events, &ftrace_event_id_fops,
1184 &ftrace_enable_fops, &ftrace_event_filter_fops, 1269 &ftrace_enable_fops, &ftrace_event_filter_fops,
1185 &ftrace_event_format_fops); 1270 &ftrace_event_format_fops);
1186 } 1271 }
1187 1272
1273 while (true) {
1274 token = strsep(&buf, ",");
1275
1276 if (!token)
1277 break;
1278 if (!*token)
1279 continue;
1280
1281 ret = ftrace_set_clr_event(token, 1);
1282 if (ret)
1283 pr_warning("Failed to enable trace event: %s\n", token);
1284 }
1285
1188 ret = register_module_notifier(&trace_module_nb); 1286 ret = register_module_notifier(&trace_module_nb);
1189 if (ret) 1287 if (ret)
1190 pr_warning("Failed to register trace events module notifier\n"); 1288 pr_warning("Failed to register trace events module notifier\n");
@@ -1340,6 +1438,7 @@ static void
1340function_test_events_call(unsigned long ip, unsigned long parent_ip) 1438function_test_events_call(unsigned long ip, unsigned long parent_ip)
1341{ 1439{
1342 struct ring_buffer_event *event; 1440 struct ring_buffer_event *event;
1441 struct ring_buffer *buffer;
1343 struct ftrace_entry *entry; 1442 struct ftrace_entry *entry;
1344 unsigned long flags; 1443 unsigned long flags;
1345 long disabled; 1444 long disabled;
@@ -1357,7 +1456,8 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1357 1456
1358 local_save_flags(flags); 1457 local_save_flags(flags);
1359 1458
1360 event = trace_current_buffer_lock_reserve(TRACE_FN, sizeof(*entry), 1459 event = trace_current_buffer_lock_reserve(&buffer,
1460 TRACE_FN, sizeof(*entry),
1361 flags, pc); 1461 flags, pc);
1362 if (!event) 1462 if (!event)
1363 goto out; 1463 goto out;
@@ -1365,7 +1465,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip)
1365 entry->ip = ip; 1465 entry->ip = ip;
1366 entry->parent_ip = parent_ip; 1466 entry->parent_ip = parent_ip;
1367 1467
1368 trace_nowake_buffer_unlock_commit(event, flags, pc); 1468 trace_nowake_buffer_unlock_commit(buffer, event, flags, pc);
1369 1469
1370 out: 1470 out:
1371 atomic_dec(&per_cpu(test_event_disable, cpu)); 1471 atomic_dec(&per_cpu(test_event_disable, cpu));
@@ -1392,10 +1492,10 @@ static __init void event_trace_self_test_with_function(void)
1392 1492
1393static __init int event_trace_self_tests_init(void) 1493static __init int event_trace_self_tests_init(void)
1394{ 1494{
1395 1495 if (!tracing_selftest_disabled) {
1396 event_trace_self_tests(); 1496 event_trace_self_tests();
1397 1497 event_trace_self_test_with_function();
1398 event_trace_self_test_with_function(); 1498 }
1399 1499
1400 return 0; 1500 return 0;
1401} 1501}
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index f32dc9d1ea7b..93660fbbf629 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -163,6 +163,20 @@ static int filter_pred_string(struct filter_pred *pred, void *event,
163 return match; 163 return match;
164} 164}
165 165
166/* Filter predicate for char * pointers */
167static int filter_pred_pchar(struct filter_pred *pred, void *event,
168 int val1, int val2)
169{
170 char **addr = (char **)(event + pred->offset);
171 int cmp, match;
172
173 cmp = strncmp(*addr, pred->str_val, pred->str_len);
174
175 match = (!cmp) ^ pred->not;
176
177 return match;
178}
179
166/* 180/*
167 * Filter predicate for dynamic sized arrays of characters. 181 * Filter predicate for dynamic sized arrays of characters.
168 * These are implemented through a list of strings at the end 182 * These are implemented through a list of strings at the end
@@ -176,11 +190,13 @@ static int filter_pred_string(struct filter_pred *pred, void *event,
176static int filter_pred_strloc(struct filter_pred *pred, void *event, 190static int filter_pred_strloc(struct filter_pred *pred, void *event,
177 int val1, int val2) 191 int val1, int val2)
178{ 192{
179 unsigned short str_loc = *(unsigned short *)(event + pred->offset); 193 u32 str_item = *(u32 *)(event + pred->offset);
194 int str_loc = str_item & 0xffff;
195 int str_len = str_item >> 16;
180 char *addr = (char *)(event + str_loc); 196 char *addr = (char *)(event + str_loc);
181 int cmp, match; 197 int cmp, match;
182 198
183 cmp = strncmp(addr, pred->str_val, pred->str_len); 199 cmp = strncmp(addr, pred->str_val, str_len);
184 200
185 match = (!cmp) ^ pred->not; 201 match = (!cmp) ^ pred->not;
186 202
@@ -293,7 +309,7 @@ void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s)
293 struct event_filter *filter = call->filter; 309 struct event_filter *filter = call->filter;
294 310
295 mutex_lock(&event_mutex); 311 mutex_lock(&event_mutex);
296 if (filter->filter_string) 312 if (filter && filter->filter_string)
297 trace_seq_printf(s, "%s\n", filter->filter_string); 313 trace_seq_printf(s, "%s\n", filter->filter_string);
298 else 314 else
299 trace_seq_printf(s, "none\n"); 315 trace_seq_printf(s, "none\n");
@@ -306,7 +322,7 @@ void print_subsystem_event_filter(struct event_subsystem *system,
306 struct event_filter *filter = system->filter; 322 struct event_filter *filter = system->filter;
307 323
308 mutex_lock(&event_mutex); 324 mutex_lock(&event_mutex);
309 if (filter->filter_string) 325 if (filter && filter->filter_string)
310 trace_seq_printf(s, "%s\n", filter->filter_string); 326 trace_seq_printf(s, "%s\n", filter->filter_string);
311 else 327 else
312 trace_seq_printf(s, "none\n"); 328 trace_seq_printf(s, "none\n");
@@ -374,6 +390,9 @@ void destroy_preds(struct ftrace_event_call *call)
374 struct event_filter *filter = call->filter; 390 struct event_filter *filter = call->filter;
375 int i; 391 int i;
376 392
393 if (!filter)
394 return;
395
377 for (i = 0; i < MAX_FILTER_PRED; i++) { 396 for (i = 0; i < MAX_FILTER_PRED; i++) {
378 if (filter->preds[i]) 397 if (filter->preds[i])
379 filter_free_pred(filter->preds[i]); 398 filter_free_pred(filter->preds[i]);
@@ -384,17 +403,19 @@ void destroy_preds(struct ftrace_event_call *call)
384 call->filter = NULL; 403 call->filter = NULL;
385} 404}
386 405
387int init_preds(struct ftrace_event_call *call) 406static int init_preds(struct ftrace_event_call *call)
388{ 407{
389 struct event_filter *filter; 408 struct event_filter *filter;
390 struct filter_pred *pred; 409 struct filter_pred *pred;
391 int i; 410 int i;
392 411
412 if (call->filter)
413 return 0;
414
393 filter = call->filter = kzalloc(sizeof(*filter), GFP_KERNEL); 415 filter = call->filter = kzalloc(sizeof(*filter), GFP_KERNEL);
394 if (!call->filter) 416 if (!call->filter)
395 return -ENOMEM; 417 return -ENOMEM;
396 418
397 call->filter_active = 0;
398 filter->n_preds = 0; 419 filter->n_preds = 0;
399 420
400 filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), GFP_KERNEL); 421 filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), GFP_KERNEL);
@@ -416,30 +437,55 @@ oom:
416 437
417 return -ENOMEM; 438 return -ENOMEM;
418} 439}
419EXPORT_SYMBOL_GPL(init_preds);
420 440
421static void filter_free_subsystem_preds(struct event_subsystem *system) 441static int init_subsystem_preds(struct event_subsystem *system)
422{ 442{
423 struct event_filter *filter = system->filter;
424 struct ftrace_event_call *call; 443 struct ftrace_event_call *call;
425 int i; 444 int err;
426 445
427 if (filter->n_preds) { 446 list_for_each_entry(call, &ftrace_events, list) {
428 for (i = 0; i < filter->n_preds; i++) 447 if (!call->define_fields)
429 filter_free_pred(filter->preds[i]); 448 continue;
430 kfree(filter->preds); 449
431 filter->preds = NULL; 450 if (strcmp(call->system, system->name) != 0)
432 filter->n_preds = 0; 451 continue;
452
453 err = init_preds(call);
454 if (err)
455 return err;
433 } 456 }
434 457
458 return 0;
459}
460
461enum {
462 FILTER_DISABLE_ALL,
463 FILTER_INIT_NO_RESET,
464 FILTER_SKIP_NO_RESET,
465};
466
467static void filter_free_subsystem_preds(struct event_subsystem *system,
468 int flag)
469{
470 struct ftrace_event_call *call;
471
435 list_for_each_entry(call, &ftrace_events, list) { 472 list_for_each_entry(call, &ftrace_events, list) {
436 if (!call->define_fields) 473 if (!call->define_fields)
437 continue; 474 continue;
438 475
439 if (!strcmp(call->system, system->name)) { 476 if (strcmp(call->system, system->name) != 0)
440 filter_disable_preds(call); 477 continue;
441 remove_filter_string(call->filter); 478
479 if (flag == FILTER_INIT_NO_RESET) {
480 call->filter->no_reset = false;
481 continue;
442 } 482 }
483
484 if (flag == FILTER_SKIP_NO_RESET && call->filter->no_reset)
485 continue;
486
487 filter_disable_preds(call);
488 remove_filter_string(call->filter);
443 } 489 }
444} 490}
445 491
@@ -468,12 +514,7 @@ static int filter_add_pred_fn(struct filter_parse_state *ps,
468 return 0; 514 return 0;
469} 515}
470 516
471enum { 517int filter_assign_type(const char *type)
472 FILTER_STATIC_STRING = 1,
473 FILTER_DYN_STRING
474};
475
476static int is_string_field(const char *type)
477{ 518{
478 if (strstr(type, "__data_loc") && strstr(type, "char")) 519 if (strstr(type, "__data_loc") && strstr(type, "char"))
479 return FILTER_DYN_STRING; 520 return FILTER_DYN_STRING;
@@ -481,12 +522,19 @@ static int is_string_field(const char *type)
481 if (strchr(type, '[') && strstr(type, "char")) 522 if (strchr(type, '[') && strstr(type, "char"))
482 return FILTER_STATIC_STRING; 523 return FILTER_STATIC_STRING;
483 524
484 return 0; 525 return FILTER_OTHER;
526}
527
528static bool is_string_field(struct ftrace_event_field *field)
529{
530 return field->filter_type == FILTER_DYN_STRING ||
531 field->filter_type == FILTER_STATIC_STRING ||
532 field->filter_type == FILTER_PTR_STRING;
485} 533}
486 534
487static int is_legal_op(struct ftrace_event_field *field, int op) 535static int is_legal_op(struct ftrace_event_field *field, int op)
488{ 536{
489 if (is_string_field(field->type) && (op != OP_EQ && op != OP_NE)) 537 if (is_string_field(field) && (op != OP_EQ && op != OP_NE))
490 return 0; 538 return 0;
491 539
492 return 1; 540 return 1;
@@ -537,22 +585,24 @@ static filter_pred_fn_t select_comparison_fn(int op, int field_size,
537 585
538static int filter_add_pred(struct filter_parse_state *ps, 586static int filter_add_pred(struct filter_parse_state *ps,
539 struct ftrace_event_call *call, 587 struct ftrace_event_call *call,
540 struct filter_pred *pred) 588 struct filter_pred *pred,
589 bool dry_run)
541{ 590{
542 struct ftrace_event_field *field; 591 struct ftrace_event_field *field;
543 filter_pred_fn_t fn; 592 filter_pred_fn_t fn;
544 unsigned long long val; 593 unsigned long long val;
545 int string_type;
546 int ret; 594 int ret;
547 595
548 pred->fn = filter_pred_none; 596 pred->fn = filter_pred_none;
549 597
550 if (pred->op == OP_AND) { 598 if (pred->op == OP_AND) {
551 pred->pop_n = 2; 599 pred->pop_n = 2;
552 return filter_add_pred_fn(ps, call, pred, filter_pred_and); 600 fn = filter_pred_and;
601 goto add_pred_fn;
553 } else if (pred->op == OP_OR) { 602 } else if (pred->op == OP_OR) {
554 pred->pop_n = 2; 603 pred->pop_n = 2;
555 return filter_add_pred_fn(ps, call, pred, filter_pred_or); 604 fn = filter_pred_or;
605 goto add_pred_fn;
556 } 606 }
557 607
558 field = find_event_field(call, pred->field_name); 608 field = find_event_field(call, pred->field_name);
@@ -568,16 +618,17 @@ static int filter_add_pred(struct filter_parse_state *ps,
568 return -EINVAL; 618 return -EINVAL;
569 } 619 }
570 620
571 string_type = is_string_field(field->type); 621 if (is_string_field(field)) {
572 if (string_type) { 622 pred->str_len = field->size;
573 if (string_type == FILTER_STATIC_STRING) 623
624 if (field->filter_type == FILTER_STATIC_STRING)
574 fn = filter_pred_string; 625 fn = filter_pred_string;
575 else 626 else if (field->filter_type == FILTER_DYN_STRING)
576 fn = filter_pred_strloc; 627 fn = filter_pred_strloc;
577 pred->str_len = field->size; 628 else {
578 if (pred->op == OP_NE) 629 fn = filter_pred_pchar;
579 pred->not = 1; 630 pred->str_len = strlen(pred->str_val);
580 return filter_add_pred_fn(ps, call, pred, fn); 631 }
581 } else { 632 } else {
582 if (field->is_signed) 633 if (field->is_signed)
583 ret = strict_strtoll(pred->str_val, 0, &val); 634 ret = strict_strtoll(pred->str_val, 0, &val);
@@ -588,41 +639,33 @@ static int filter_add_pred(struct filter_parse_state *ps,
588 return -EINVAL; 639 return -EINVAL;
589 } 640 }
590 pred->val = val; 641 pred->val = val;
591 }
592 642
593 fn = select_comparison_fn(pred->op, field->size, field->is_signed); 643 fn = select_comparison_fn(pred->op, field->size,
594 if (!fn) { 644 field->is_signed);
595 parse_error(ps, FILT_ERR_INVALID_OP, 0); 645 if (!fn) {
596 return -EINVAL; 646 parse_error(ps, FILT_ERR_INVALID_OP, 0);
647 return -EINVAL;
648 }
597 } 649 }
598 650
599 if (pred->op == OP_NE) 651 if (pred->op == OP_NE)
600 pred->not = 1; 652 pred->not = 1;
601 653
602 return filter_add_pred_fn(ps, call, pred, fn); 654add_pred_fn:
655 if (!dry_run)
656 return filter_add_pred_fn(ps, call, pred, fn);
657 return 0;
603} 658}
604 659
605static int filter_add_subsystem_pred(struct filter_parse_state *ps, 660static int filter_add_subsystem_pred(struct filter_parse_state *ps,
606 struct event_subsystem *system, 661 struct event_subsystem *system,
607 struct filter_pred *pred, 662 struct filter_pred *pred,
608 char *filter_string) 663 char *filter_string,
664 bool dry_run)
609{ 665{
610 struct event_filter *filter = system->filter;
611 struct ftrace_event_call *call; 666 struct ftrace_event_call *call;
612 int err = 0; 667 int err = 0;
613 668 bool fail = true;
614 if (!filter->preds) {
615 filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred),
616 GFP_KERNEL);
617
618 if (!filter->preds)
619 return -ENOMEM;
620 }
621
622 if (filter->n_preds == MAX_FILTER_PRED) {
623 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0);
624 return -ENOSPC;
625 }
626 669
627 list_for_each_entry(call, &ftrace_events, list) { 670 list_for_each_entry(call, &ftrace_events, list) {
628 671
@@ -632,19 +675,24 @@ static int filter_add_subsystem_pred(struct filter_parse_state *ps,
632 if (strcmp(call->system, system->name)) 675 if (strcmp(call->system, system->name))
633 continue; 676 continue;
634 677
635 err = filter_add_pred(ps, call, pred); 678 if (call->filter->no_reset)
636 if (err) { 679 continue;
637 filter_free_subsystem_preds(system); 680
638 parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); 681 err = filter_add_pred(ps, call, pred, dry_run);
639 goto out; 682 if (err)
640 } 683 call->filter->no_reset = true;
641 replace_filter_string(call->filter, filter_string); 684 else
685 fail = false;
686
687 if (!dry_run)
688 replace_filter_string(call->filter, filter_string);
642 } 689 }
643 690
644 filter->preds[filter->n_preds] = pred; 691 if (fail) {
645 filter->n_preds++; 692 parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0);
646out: 693 return err;
647 return err; 694 }
695 return 0;
648} 696}
649 697
650static void parse_init(struct filter_parse_state *ps, 698static void parse_init(struct filter_parse_state *ps,
@@ -1003,12 +1051,14 @@ static int check_preds(struct filter_parse_state *ps)
1003static int replace_preds(struct event_subsystem *system, 1051static int replace_preds(struct event_subsystem *system,
1004 struct ftrace_event_call *call, 1052 struct ftrace_event_call *call,
1005 struct filter_parse_state *ps, 1053 struct filter_parse_state *ps,
1006 char *filter_string) 1054 char *filter_string,
1055 bool dry_run)
1007{ 1056{
1008 char *operand1 = NULL, *operand2 = NULL; 1057 char *operand1 = NULL, *operand2 = NULL;
1009 struct filter_pred *pred; 1058 struct filter_pred *pred;
1010 struct postfix_elt *elt; 1059 struct postfix_elt *elt;
1011 int err; 1060 int err;
1061 int n_preds = 0;
1012 1062
1013 err = check_preds(ps); 1063 err = check_preds(ps);
1014 if (err) 1064 if (err)
@@ -1027,24 +1077,14 @@ static int replace_preds(struct event_subsystem *system,
1027 continue; 1077 continue;
1028 } 1078 }
1029 1079
1080 if (n_preds++ == MAX_FILTER_PRED) {
1081 parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0);
1082 return -ENOSPC;
1083 }
1084
1030 if (elt->op == OP_AND || elt->op == OP_OR) { 1085 if (elt->op == OP_AND || elt->op == OP_OR) {
1031 pred = create_logical_pred(elt->op); 1086 pred = create_logical_pred(elt->op);
1032 if (!pred) 1087 goto add_pred;
1033 return -ENOMEM;
1034 if (call) {
1035 err = filter_add_pred(ps, call, pred);
1036 filter_free_pred(pred);
1037 } else {
1038 err = filter_add_subsystem_pred(ps, system,
1039 pred, filter_string);
1040 if (err)
1041 filter_free_pred(pred);
1042 }
1043 if (err)
1044 return err;
1045
1046 operand1 = operand2 = NULL;
1047 continue;
1048 } 1088 }
1049 1089
1050 if (!operand1 || !operand2) { 1090 if (!operand1 || !operand2) {
@@ -1053,17 +1093,15 @@ static int replace_preds(struct event_subsystem *system,
1053 } 1093 }
1054 1094
1055 pred = create_pred(elt->op, operand1, operand2); 1095 pred = create_pred(elt->op, operand1, operand2);
1096add_pred:
1056 if (!pred) 1097 if (!pred)
1057 return -ENOMEM; 1098 return -ENOMEM;
1058 if (call) { 1099 if (call)
1059 err = filter_add_pred(ps, call, pred); 1100 err = filter_add_pred(ps, call, pred, false);
1060 filter_free_pred(pred); 1101 else
1061 } else {
1062 err = filter_add_subsystem_pred(ps, system, pred, 1102 err = filter_add_subsystem_pred(ps, system, pred,
1063 filter_string); 1103 filter_string, dry_run);
1064 if (err) 1104 filter_free_pred(pred);
1065 filter_free_pred(pred);
1066 }
1067 if (err) 1105 if (err)
1068 return err; 1106 return err;
1069 1107
@@ -1081,6 +1119,10 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string)
1081 1119
1082 mutex_lock(&event_mutex); 1120 mutex_lock(&event_mutex);
1083 1121
1122 err = init_preds(call);
1123 if (err)
1124 goto out_unlock;
1125
1084 if (!strcmp(strstrip(filter_string), "0")) { 1126 if (!strcmp(strstrip(filter_string), "0")) {
1085 filter_disable_preds(call); 1127 filter_disable_preds(call);
1086 remove_filter_string(call->filter); 1128 remove_filter_string(call->filter);
@@ -1103,7 +1145,7 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string)
1103 goto out; 1145 goto out;
1104 } 1146 }
1105 1147
1106 err = replace_preds(NULL, call, ps, filter_string); 1148 err = replace_preds(NULL, call, ps, filter_string, false);
1107 if (err) 1149 if (err)
1108 append_filter_err(ps, call->filter); 1150 append_filter_err(ps, call->filter);
1109 1151
@@ -1126,8 +1168,12 @@ int apply_subsystem_event_filter(struct event_subsystem *system,
1126 1168
1127 mutex_lock(&event_mutex); 1169 mutex_lock(&event_mutex);
1128 1170
1171 err = init_subsystem_preds(system);
1172 if (err)
1173 goto out_unlock;
1174
1129 if (!strcmp(strstrip(filter_string), "0")) { 1175 if (!strcmp(strstrip(filter_string), "0")) {
1130 filter_free_subsystem_preds(system); 1176 filter_free_subsystem_preds(system, FILTER_DISABLE_ALL);
1131 remove_filter_string(system->filter); 1177 remove_filter_string(system->filter);
1132 mutex_unlock(&event_mutex); 1178 mutex_unlock(&event_mutex);
1133 return 0; 1179 return 0;
@@ -1138,7 +1184,6 @@ int apply_subsystem_event_filter(struct event_subsystem *system,
1138 if (!ps) 1184 if (!ps)
1139 goto out_unlock; 1185 goto out_unlock;
1140 1186
1141 filter_free_subsystem_preds(system);
1142 replace_filter_string(system->filter, filter_string); 1187 replace_filter_string(system->filter, filter_string);
1143 1188
1144 parse_init(ps, filter_ops, filter_string); 1189 parse_init(ps, filter_ops, filter_string);
@@ -1148,9 +1193,23 @@ int apply_subsystem_event_filter(struct event_subsystem *system,
1148 goto out; 1193 goto out;
1149 } 1194 }
1150 1195
1151 err = replace_preds(system, NULL, ps, filter_string); 1196 filter_free_subsystem_preds(system, FILTER_INIT_NO_RESET);
1152 if (err) 1197
1198 /* try to see the filter can be applied to which events */
1199 err = replace_preds(system, NULL, ps, filter_string, true);
1200 if (err) {
1153 append_filter_err(ps, system->filter); 1201 append_filter_err(ps, system->filter);
1202 goto out;
1203 }
1204
1205 filter_free_subsystem_preds(system, FILTER_SKIP_NO_RESET);
1206
1207 /* really apply the filter to the events */
1208 err = replace_preds(system, NULL, ps, filter_string, false);
1209 if (err) {
1210 append_filter_err(ps, system->filter);
1211 filter_free_subsystem_preds(system, 2);
1212 }
1154 1213
1155out: 1214out:
1156 filter_opstack_clear(ps); 1215 filter_opstack_clear(ps);
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c
index d06cf898dc86..df1bf6e48bb9 100644
--- a/kernel/trace/trace_export.c
+++ b/kernel/trace/trace_export.c
@@ -60,7 +60,8 @@ extern void __bad_type_size(void);
60#undef TRACE_EVENT_FORMAT 60#undef TRACE_EVENT_FORMAT
61#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 61#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \
62static int \ 62static int \
63ftrace_format_##call(struct trace_seq *s) \ 63ftrace_format_##call(struct ftrace_event_call *unused, \
64 struct trace_seq *s) \
64{ \ 65{ \
65 struct args field; \ 66 struct args field; \
66 int ret; \ 67 int ret; \
@@ -76,7 +77,8 @@ ftrace_format_##call(struct trace_seq *s) \
76#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ 77#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \
77 tpfmt) \ 78 tpfmt) \
78static int \ 79static int \
79ftrace_format_##call(struct trace_seq *s) \ 80ftrace_format_##call(struct ftrace_event_call *unused, \
81 struct trace_seq *s) \
80{ \ 82{ \
81 struct args field; \ 83 struct args field; \
82 int ret; \ 84 int ret; \
@@ -117,7 +119,7 @@ ftrace_format_##call(struct trace_seq *s) \
117 119
118#undef TRACE_EVENT_FORMAT 120#undef TRACE_EVENT_FORMAT
119#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 121#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \
120int ftrace_define_fields_##call(void); \ 122int ftrace_define_fields_##call(struct ftrace_event_call *event_call); \
121static int ftrace_raw_init_event_##call(void); \ 123static int ftrace_raw_init_event_##call(void); \
122 \ 124 \
123struct ftrace_event_call __used \ 125struct ftrace_event_call __used \
@@ -133,7 +135,6 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
133static int ftrace_raw_init_event_##call(void) \ 135static int ftrace_raw_init_event_##call(void) \
134{ \ 136{ \
135 INIT_LIST_HEAD(&event_##call.fields); \ 137 INIT_LIST_HEAD(&event_##call.fields); \
136 init_preds(&event_##call); \
137 return 0; \ 138 return 0; \
138} \ 139} \
139 140
@@ -156,7 +157,8 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
156#define TRACE_FIELD(type, item, assign) \ 157#define TRACE_FIELD(type, item, assign) \
157 ret = trace_define_field(event_call, #type, #item, \ 158 ret = trace_define_field(event_call, #type, #item, \
158 offsetof(typeof(field), item), \ 159 offsetof(typeof(field), item), \
159 sizeof(field.item), is_signed_type(type)); \ 160 sizeof(field.item), \
161 is_signed_type(type), FILTER_OTHER); \
160 if (ret) \ 162 if (ret) \
161 return ret; 163 return ret;
162 164
@@ -164,7 +166,7 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
164#define TRACE_FIELD_SPECIAL(type, item, len, cmd) \ 166#define TRACE_FIELD_SPECIAL(type, item, len, cmd) \
165 ret = trace_define_field(event_call, #type "[" #len "]", #item, \ 167 ret = trace_define_field(event_call, #type "[" #len "]", #item, \
166 offsetof(typeof(field), item), \ 168 offsetof(typeof(field), item), \
167 sizeof(field.item), 0); \ 169 sizeof(field.item), 0, FILTER_OTHER); \
168 if (ret) \ 170 if (ret) \
169 return ret; 171 return ret;
170 172
@@ -172,7 +174,8 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
172#define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ 174#define TRACE_FIELD_SIGN(type, item, assign, is_signed) \
173 ret = trace_define_field(event_call, #type, #item, \ 175 ret = trace_define_field(event_call, #type, #item, \
174 offsetof(typeof(field), item), \ 176 offsetof(typeof(field), item), \
175 sizeof(field.item), is_signed); \ 177 sizeof(field.item), is_signed, \
178 FILTER_OTHER); \
176 if (ret) \ 179 if (ret) \
177 return ret; 180 return ret;
178 181
@@ -182,17 +185,14 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
182#undef TRACE_EVENT_FORMAT 185#undef TRACE_EVENT_FORMAT
183#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ 186#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \
184int \ 187int \
185ftrace_define_fields_##call(void) \ 188ftrace_define_fields_##call(struct ftrace_event_call *event_call) \
186{ \ 189{ \
187 struct ftrace_event_call *event_call = &event_##call; \
188 struct args field; \ 190 struct args field; \
189 int ret; \ 191 int ret; \
190 \ 192 \
191 __common_field(unsigned char, type, 0); \ 193 ret = trace_define_common_fields(event_call); \
192 __common_field(unsigned char, flags, 0); \ 194 if (ret) \
193 __common_field(unsigned char, preempt_count, 0); \ 195 return ret; \
194 __common_field(int, pid, 1); \
195 __common_field(int, tgid, 1); \
196 \ 196 \
197 tstruct; \ 197 tstruct; \
198 \ 198 \
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c
index 75ef000613c3..5b01b94518fc 100644
--- a/kernel/trace/trace_functions.c
+++ b/kernel/trace/trace_functions.c
@@ -288,11 +288,9 @@ static int
288ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip, 288ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip,
289 struct ftrace_probe_ops *ops, void *data) 289 struct ftrace_probe_ops *ops, void *data)
290{ 290{
291 char str[KSYM_SYMBOL_LEN];
292 long count = (long)data; 291 long count = (long)data;
293 292
294 kallsyms_lookup(ip, NULL, NULL, NULL, str); 293 seq_printf(m, "%pf:", (void *)ip);
295 seq_printf(m, "%s:", str);
296 294
297 if (ops == &traceon_probe_ops) 295 if (ops == &traceon_probe_ops)
298 seq_printf(m, "traceon"); 296 seq_printf(m, "traceon");
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c
index 420ec3487579..b3749a2c3132 100644
--- a/kernel/trace/trace_functions_graph.c
+++ b/kernel/trace/trace_functions_graph.c
@@ -52,7 +52,7 @@ static struct tracer_flags tracer_flags = {
52 .opts = trace_opts 52 .opts = trace_opts
53}; 53};
54 54
55/* pid on the last trace processed */ 55static struct trace_array *graph_array;
56 56
57 57
58/* Add a function return address to the trace stack on thread info.*/ 58/* Add a function return address to the trace stack on thread info.*/
@@ -166,10 +166,123 @@ unsigned long ftrace_return_to_handler(unsigned long frame_pointer)
166 return ret; 166 return ret;
167} 167}
168 168
169static int __trace_graph_entry(struct trace_array *tr,
170 struct ftrace_graph_ent *trace,
171 unsigned long flags,
172 int pc)
173{
174 struct ftrace_event_call *call = &event_funcgraph_entry;
175 struct ring_buffer_event *event;
176 struct ring_buffer *buffer = tr->buffer;
177 struct ftrace_graph_ent_entry *entry;
178
179 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled))))
180 return 0;
181
182 event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT,
183 sizeof(*entry), flags, pc);
184 if (!event)
185 return 0;
186 entry = ring_buffer_event_data(event);
187 entry->graph_ent = *trace;
188 if (!filter_current_check_discard(buffer, call, entry, event))
189 ring_buffer_unlock_commit(buffer, event);
190
191 return 1;
192}
193
194int trace_graph_entry(struct ftrace_graph_ent *trace)
195{
196 struct trace_array *tr = graph_array;
197 struct trace_array_cpu *data;
198 unsigned long flags;
199 long disabled;
200 int ret;
201 int cpu;
202 int pc;
203
204 if (unlikely(!tr))
205 return 0;
206
207 if (!ftrace_trace_task(current))
208 return 0;
209
210 if (!ftrace_graph_addr(trace->func))
211 return 0;
212
213 local_irq_save(flags);
214 cpu = raw_smp_processor_id();
215 data = tr->data[cpu];
216 disabled = atomic_inc_return(&data->disabled);
217 if (likely(disabled == 1)) {
218 pc = preempt_count();
219 ret = __trace_graph_entry(tr, trace, flags, pc);
220 } else {
221 ret = 0;
222 }
223 /* Only do the atomic if it is not already set */
224 if (!test_tsk_trace_graph(current))
225 set_tsk_trace_graph(current);
226
227 atomic_dec(&data->disabled);
228 local_irq_restore(flags);
229
230 return ret;
231}
232
233static void __trace_graph_return(struct trace_array *tr,
234 struct ftrace_graph_ret *trace,
235 unsigned long flags,
236 int pc)
237{
238 struct ftrace_event_call *call = &event_funcgraph_exit;
239 struct ring_buffer_event *event;
240 struct ring_buffer *buffer = tr->buffer;
241 struct ftrace_graph_ret_entry *entry;
242
243 if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled))))
244 return;
245
246 event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET,
247 sizeof(*entry), flags, pc);
248 if (!event)
249 return;
250 entry = ring_buffer_event_data(event);
251 entry->ret = *trace;
252 if (!filter_current_check_discard(buffer, call, entry, event))
253 ring_buffer_unlock_commit(buffer, event);
254}
255
256void trace_graph_return(struct ftrace_graph_ret *trace)
257{
258 struct trace_array *tr = graph_array;
259 struct trace_array_cpu *data;
260 unsigned long flags;
261 long disabled;
262 int cpu;
263 int pc;
264
265 local_irq_save(flags);
266 cpu = raw_smp_processor_id();
267 data = tr->data[cpu];
268 disabled = atomic_inc_return(&data->disabled);
269 if (likely(disabled == 1)) {
270 pc = preempt_count();
271 __trace_graph_return(tr, trace, flags, pc);
272 }
273 if (!trace->depth)
274 clear_tsk_trace_graph(current);
275 atomic_dec(&data->disabled);
276 local_irq_restore(flags);
277}
278
169static int graph_trace_init(struct trace_array *tr) 279static int graph_trace_init(struct trace_array *tr)
170{ 280{
171 int ret = register_ftrace_graph(&trace_graph_return, 281 int ret;
172 &trace_graph_entry); 282
283 graph_array = tr;
284 ret = register_ftrace_graph(&trace_graph_return,
285 &trace_graph_entry);
173 if (ret) 286 if (ret)
174 return ret; 287 return ret;
175 tracing_start_cmdline_record(); 288 tracing_start_cmdline_record();
@@ -177,49 +290,30 @@ static int graph_trace_init(struct trace_array *tr)
177 return 0; 290 return 0;
178} 291}
179 292
293void set_graph_array(struct trace_array *tr)
294{
295 graph_array = tr;
296}
297
180static void graph_trace_reset(struct trace_array *tr) 298static void graph_trace_reset(struct trace_array *tr)
181{ 299{
182 tracing_stop_cmdline_record(); 300 tracing_stop_cmdline_record();
183 unregister_ftrace_graph(); 301 unregister_ftrace_graph();
184} 302}
185 303
186static inline int log10_cpu(int nb) 304static int max_bytes_for_cpu;
187{
188 if (nb / 100)
189 return 3;
190 if (nb / 10)
191 return 2;
192 return 1;
193}
194 305
195static enum print_line_t 306static enum print_line_t
196print_graph_cpu(struct trace_seq *s, int cpu) 307print_graph_cpu(struct trace_seq *s, int cpu)
197{ 308{
198 int i;
199 int ret; 309 int ret;
200 int log10_this = log10_cpu(cpu);
201 int log10_all = log10_cpu(cpumask_weight(cpu_online_mask));
202
203 310
204 /* 311 /*
205 * Start with a space character - to make it stand out 312 * Start with a space character - to make it stand out
206 * to the right a bit when trace output is pasted into 313 * to the right a bit when trace output is pasted into
207 * email: 314 * email:
208 */ 315 */
209 ret = trace_seq_printf(s, " "); 316 ret = trace_seq_printf(s, " %*d) ", max_bytes_for_cpu, cpu);
210
211 /*
212 * Tricky - we space the CPU field according to the max
213 * number of online CPUs. On a 2-cpu system it would take
214 * a maximum of 1 digit - on a 128 cpu system it would
215 * take up to 3 digits:
216 */
217 for (i = 0; i < log10_all - log10_this; i++) {
218 ret = trace_seq_printf(s, " ");
219 if (!ret)
220 return TRACE_TYPE_PARTIAL_LINE;
221 }
222 ret = trace_seq_printf(s, "%d) ", cpu);
223 if (!ret) 317 if (!ret)
224 return TRACE_TYPE_PARTIAL_LINE; 318 return TRACE_TYPE_PARTIAL_LINE;
225 319
@@ -565,11 +659,7 @@ print_graph_entry_leaf(struct trace_iterator *iter,
565 return TRACE_TYPE_PARTIAL_LINE; 659 return TRACE_TYPE_PARTIAL_LINE;
566 } 660 }
567 661
568 ret = seq_print_ip_sym(s, call->func, 0); 662 ret = trace_seq_printf(s, "%pf();\n", (void *)call->func);
569 if (!ret)
570 return TRACE_TYPE_PARTIAL_LINE;
571
572 ret = trace_seq_printf(s, "();\n");
573 if (!ret) 663 if (!ret)
574 return TRACE_TYPE_PARTIAL_LINE; 664 return TRACE_TYPE_PARTIAL_LINE;
575 665
@@ -612,11 +702,7 @@ print_graph_entry_nested(struct trace_iterator *iter,
612 return TRACE_TYPE_PARTIAL_LINE; 702 return TRACE_TYPE_PARTIAL_LINE;
613 } 703 }
614 704
615 ret = seq_print_ip_sym(s, call->func, 0); 705 ret = trace_seq_printf(s, "%pf() {\n", (void *)call->func);
616 if (!ret)
617 return TRACE_TYPE_PARTIAL_LINE;
618
619 ret = trace_seq_printf(s, "() {\n");
620 if (!ret) 706 if (!ret)
621 return TRACE_TYPE_PARTIAL_LINE; 707 return TRACE_TYPE_PARTIAL_LINE;
622 708
@@ -934,6 +1020,8 @@ static struct tracer graph_trace __read_mostly = {
934 1020
935static __init int init_graph_trace(void) 1021static __init int init_graph_trace(void)
936{ 1022{
1023 max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1);
1024
937 return register_tracer(&graph_trace); 1025 return register_tracer(&graph_trace);
938} 1026}
939 1027
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c
index b923d13e2fad..5555b75a0d12 100644
--- a/kernel/trace/trace_irqsoff.c
+++ b/kernel/trace/trace_irqsoff.c
@@ -178,7 +178,6 @@ out_unlock:
178out: 178out:
179 data->critical_sequence = max_sequence; 179 data->critical_sequence = max_sequence;
180 data->preempt_timestamp = ftrace_now(cpu); 180 data->preempt_timestamp = ftrace_now(cpu);
181 tracing_reset(tr, cpu);
182 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); 181 trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc);
183} 182}
184 183
@@ -208,7 +207,6 @@ start_critical_timing(unsigned long ip, unsigned long parent_ip)
208 data->critical_sequence = max_sequence; 207 data->critical_sequence = max_sequence;
209 data->preempt_timestamp = ftrace_now(cpu); 208 data->preempt_timestamp = ftrace_now(cpu);
210 data->critical_start = parent_ip ? : ip; 209 data->critical_start = parent_ip ? : ip;
211 tracing_reset(tr, cpu);
212 210
213 local_save_flags(flags); 211 local_save_flags(flags);
214 212
@@ -379,6 +377,7 @@ static void __irqsoff_tracer_init(struct trace_array *tr)
379 irqsoff_trace = tr; 377 irqsoff_trace = tr;
380 /* make sure that the tracer is visible */ 378 /* make sure that the tracer is visible */
381 smp_wmb(); 379 smp_wmb();
380 tracing_reset_online_cpus(tr);
382 start_irqsoff_tracer(tr); 381 start_irqsoff_tracer(tr);
383} 382}
384 383
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c
index d53b45ed0806..c4c9bbda53d3 100644
--- a/kernel/trace/trace_mmiotrace.c
+++ b/kernel/trace/trace_mmiotrace.c
@@ -307,11 +307,12 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
307 struct trace_array_cpu *data, 307 struct trace_array_cpu *data,
308 struct mmiotrace_rw *rw) 308 struct mmiotrace_rw *rw)
309{ 309{
310 struct ring_buffer *buffer = tr->buffer;
310 struct ring_buffer_event *event; 311 struct ring_buffer_event *event;
311 struct trace_mmiotrace_rw *entry; 312 struct trace_mmiotrace_rw *entry;
312 int pc = preempt_count(); 313 int pc = preempt_count();
313 314
314 event = trace_buffer_lock_reserve(tr, TRACE_MMIO_RW, 315 event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_RW,
315 sizeof(*entry), 0, pc); 316 sizeof(*entry), 0, pc);
316 if (!event) { 317 if (!event) {
317 atomic_inc(&dropped_count); 318 atomic_inc(&dropped_count);
@@ -319,7 +320,7 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
319 } 320 }
320 entry = ring_buffer_event_data(event); 321 entry = ring_buffer_event_data(event);
321 entry->rw = *rw; 322 entry->rw = *rw;
322 trace_buffer_unlock_commit(tr, event, 0, pc); 323 trace_buffer_unlock_commit(buffer, event, 0, pc);
323} 324}
324 325
325void mmio_trace_rw(struct mmiotrace_rw *rw) 326void mmio_trace_rw(struct mmiotrace_rw *rw)
@@ -333,11 +334,12 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
333 struct trace_array_cpu *data, 334 struct trace_array_cpu *data,
334 struct mmiotrace_map *map) 335 struct mmiotrace_map *map)
335{ 336{
337 struct ring_buffer *buffer = tr->buffer;
336 struct ring_buffer_event *event; 338 struct ring_buffer_event *event;
337 struct trace_mmiotrace_map *entry; 339 struct trace_mmiotrace_map *entry;
338 int pc = preempt_count(); 340 int pc = preempt_count();
339 341
340 event = trace_buffer_lock_reserve(tr, TRACE_MMIO_MAP, 342 event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_MAP,
341 sizeof(*entry), 0, pc); 343 sizeof(*entry), 0, pc);
342 if (!event) { 344 if (!event) {
343 atomic_inc(&dropped_count); 345 atomic_inc(&dropped_count);
@@ -345,7 +347,7 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
345 } 347 }
346 entry = ring_buffer_event_data(event); 348 entry = ring_buffer_event_data(event);
347 entry->map = *map; 349 entry->map = *map;
348 trace_buffer_unlock_commit(tr, event, 0, pc); 350 trace_buffer_unlock_commit(buffer, event, 0, pc);
349} 351}
350 352
351void mmio_trace_mapping(struct mmiotrace_map *map) 353void mmio_trace_mapping(struct mmiotrace_map *map)
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c
index 8a30d9874cd4..fe1a00f1445a 100644
--- a/kernel/trace/trace_power.c
+++ b/kernel/trace/trace_power.c
@@ -38,6 +38,7 @@ static void probe_power_end(struct power_trace *it)
38{ 38{
39 struct ftrace_event_call *call = &event_power; 39 struct ftrace_event_call *call = &event_power;
40 struct ring_buffer_event *event; 40 struct ring_buffer_event *event;
41 struct ring_buffer *buffer;
41 struct trace_power *entry; 42 struct trace_power *entry;
42 struct trace_array_cpu *data; 43 struct trace_array_cpu *data;
43 struct trace_array *tr = power_trace; 44 struct trace_array *tr = power_trace;
@@ -45,18 +46,20 @@ static void probe_power_end(struct power_trace *it)
45 if (!trace_power_enabled) 46 if (!trace_power_enabled)
46 return; 47 return;
47 48
49 buffer = tr->buffer;
50
48 preempt_disable(); 51 preempt_disable();
49 it->end = ktime_get(); 52 it->end = ktime_get();
50 data = tr->data[smp_processor_id()]; 53 data = tr->data[smp_processor_id()];
51 54
52 event = trace_buffer_lock_reserve(tr, TRACE_POWER, 55 event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
53 sizeof(*entry), 0, 0); 56 sizeof(*entry), 0, 0);
54 if (!event) 57 if (!event)
55 goto out; 58 goto out;
56 entry = ring_buffer_event_data(event); 59 entry = ring_buffer_event_data(event);
57 entry->state_data = *it; 60 entry->state_data = *it;
58 if (!filter_check_discard(call, entry, tr->buffer, event)) 61 if (!filter_check_discard(call, entry, buffer, event))
59 trace_buffer_unlock_commit(tr, event, 0, 0); 62 trace_buffer_unlock_commit(buffer, event, 0, 0);
60 out: 63 out:
61 preempt_enable(); 64 preempt_enable();
62} 65}
@@ -66,6 +69,7 @@ static void probe_power_mark(struct power_trace *it, unsigned int type,
66{ 69{
67 struct ftrace_event_call *call = &event_power; 70 struct ftrace_event_call *call = &event_power;
68 struct ring_buffer_event *event; 71 struct ring_buffer_event *event;
72 struct ring_buffer *buffer;
69 struct trace_power *entry; 73 struct trace_power *entry;
70 struct trace_array_cpu *data; 74 struct trace_array_cpu *data;
71 struct trace_array *tr = power_trace; 75 struct trace_array *tr = power_trace;
@@ -73,6 +77,8 @@ static void probe_power_mark(struct power_trace *it, unsigned int type,
73 if (!trace_power_enabled) 77 if (!trace_power_enabled)
74 return; 78 return;
75 79
80 buffer = tr->buffer;
81
76 memset(it, 0, sizeof(struct power_trace)); 82 memset(it, 0, sizeof(struct power_trace));
77 it->state = level; 83 it->state = level;
78 it->type = type; 84 it->type = type;
@@ -81,14 +87,14 @@ static void probe_power_mark(struct power_trace *it, unsigned int type,
81 it->end = it->stamp; 87 it->end = it->stamp;
82 data = tr->data[smp_processor_id()]; 88 data = tr->data[smp_processor_id()];
83 89
84 event = trace_buffer_lock_reserve(tr, TRACE_POWER, 90 event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
85 sizeof(*entry), 0, 0); 91 sizeof(*entry), 0, 0);
86 if (!event) 92 if (!event)
87 goto out; 93 goto out;
88 entry = ring_buffer_event_data(event); 94 entry = ring_buffer_event_data(event);
89 entry->state_data = *it; 95 entry->state_data = *it;
90 if (!filter_check_discard(call, entry, tr->buffer, event)) 96 if (!filter_check_discard(call, entry, buffer, event))
91 trace_buffer_unlock_commit(tr, event, 0, 0); 97 trace_buffer_unlock_commit(buffer, event, 0, 0);
92 out: 98 out:
93 preempt_enable(); 99 preempt_enable();
94} 100}
@@ -144,14 +150,12 @@ static void power_trace_reset(struct trace_array *tr)
144 150
145static int power_trace_init(struct trace_array *tr) 151static int power_trace_init(struct trace_array *tr)
146{ 152{
147 int cpu;
148 power_trace = tr; 153 power_trace = tr;
149 154
150 trace_power_enabled = 1; 155 trace_power_enabled = 1;
151 tracing_power_register(); 156 tracing_power_register();
152 157
153 for_each_cpu(cpu, cpu_possible_mask) 158 tracing_reset_online_cpus(tr);
154 tracing_reset(tr, cpu);
155 return 0; 159 return 0;
156} 160}
157 161
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c
index a98106dd979c..5fca0f51fde4 100644
--- a/kernel/trace/trace_sched_switch.c
+++ b/kernel/trace/trace_sched_switch.c
@@ -20,6 +20,35 @@ static int sched_ref;
20static DEFINE_MUTEX(sched_register_mutex); 20static DEFINE_MUTEX(sched_register_mutex);
21static int sched_stopped; 21static int sched_stopped;
22 22
23
24void
25tracing_sched_switch_trace(struct trace_array *tr,
26 struct task_struct *prev,
27 struct task_struct *next,
28 unsigned long flags, int pc)
29{
30 struct ftrace_event_call *call = &event_context_switch;
31 struct ring_buffer *buffer = tr->buffer;
32 struct ring_buffer_event *event;
33 struct ctx_switch_entry *entry;
34
35 event = trace_buffer_lock_reserve(buffer, TRACE_CTX,
36 sizeof(*entry), flags, pc);
37 if (!event)
38 return;
39 entry = ring_buffer_event_data(event);
40 entry->prev_pid = prev->pid;
41 entry->prev_prio = prev->prio;
42 entry->prev_state = prev->state;
43 entry->next_pid = next->pid;
44 entry->next_prio = next->prio;
45 entry->next_state = next->state;
46 entry->next_cpu = task_cpu(next);
47
48 if (!filter_check_discard(call, entry, buffer, event))
49 trace_buffer_unlock_commit(buffer, event, flags, pc);
50}
51
23static void 52static void
24probe_sched_switch(struct rq *__rq, struct task_struct *prev, 53probe_sched_switch(struct rq *__rq, struct task_struct *prev,
25 struct task_struct *next) 54 struct task_struct *next)
@@ -49,6 +78,36 @@ probe_sched_switch(struct rq *__rq, struct task_struct *prev,
49 local_irq_restore(flags); 78 local_irq_restore(flags);
50} 79}
51 80
81void
82tracing_sched_wakeup_trace(struct trace_array *tr,
83 struct task_struct *wakee,
84 struct task_struct *curr,
85 unsigned long flags, int pc)
86{
87 struct ftrace_event_call *call = &event_wakeup;
88 struct ring_buffer_event *event;
89 struct ctx_switch_entry *entry;
90 struct ring_buffer *buffer = tr->buffer;
91
92 event = trace_buffer_lock_reserve(buffer, TRACE_WAKE,
93 sizeof(*entry), flags, pc);
94 if (!event)
95 return;
96 entry = ring_buffer_event_data(event);
97 entry->prev_pid = curr->pid;
98 entry->prev_prio = curr->prio;
99 entry->prev_state = curr->state;
100 entry->next_pid = wakee->pid;
101 entry->next_prio = wakee->prio;
102 entry->next_state = wakee->state;
103 entry->next_cpu = task_cpu(wakee);
104
105 if (!filter_check_discard(call, entry, buffer, event))
106 ring_buffer_unlock_commit(buffer, event);
107 ftrace_trace_stack(tr->buffer, flags, 6, pc);
108 ftrace_trace_userstack(tr->buffer, flags, pc);
109}
110
52static void 111static void
53probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) 112probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success)
54{ 113{
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index eacb27225173..ad69f105a7c6 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -186,11 +186,6 @@ out:
186 186
187static void __wakeup_reset(struct trace_array *tr) 187static void __wakeup_reset(struct trace_array *tr)
188{ 188{
189 int cpu;
190
191 for_each_possible_cpu(cpu)
192 tracing_reset(tr, cpu);
193
194 wakeup_cpu = -1; 189 wakeup_cpu = -1;
195 wakeup_prio = -1; 190 wakeup_prio = -1;
196 191
@@ -204,6 +199,8 @@ static void wakeup_reset(struct trace_array *tr)
204{ 199{
205 unsigned long flags; 200 unsigned long flags;
206 201
202 tracing_reset_online_cpus(tr);
203
207 local_irq_save(flags); 204 local_irq_save(flags);
208 __raw_spin_lock(&wakeup_lock); 205 __raw_spin_lock(&wakeup_lock);
209 __wakeup_reset(tr); 206 __wakeup_reset(tr);
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
index 00dd6485bdd7..d2cdbabb4ead 100644
--- a/kernel/trace/trace_selftest.c
+++ b/kernel/trace/trace_selftest.c
@@ -288,6 +288,7 @@ trace_selftest_startup_function_graph(struct tracer *trace,
288 * to detect and recover from possible hangs 288 * to detect and recover from possible hangs
289 */ 289 */
290 tracing_reset_online_cpus(tr); 290 tracing_reset_online_cpus(tr);
291 set_graph_array(tr);
291 ret = register_ftrace_graph(&trace_graph_return, 292 ret = register_ftrace_graph(&trace_graph_return,
292 &trace_graph_entry_watchdog); 293 &trace_graph_entry_watchdog);
293 if (ret) { 294 if (ret) {
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c
index 6a2a9d484cd6..0f6facb050a1 100644
--- a/kernel/trace/trace_stack.c
+++ b/kernel/trace/trace_stack.c
@@ -186,43 +186,33 @@ static const struct file_operations stack_max_size_fops = {
186}; 186};
187 187
188static void * 188static void *
189t_next(struct seq_file *m, void *v, loff_t *pos) 189__next(struct seq_file *m, loff_t *pos)
190{ 190{
191 long i; 191 long n = *pos - 1;
192 192
193 (*pos)++; 193 if (n >= max_stack_trace.nr_entries || stack_dump_trace[n] == ULONG_MAX)
194
195 if (v == SEQ_START_TOKEN)
196 i = 0;
197 else {
198 i = *(long *)v;
199 i++;
200 }
201
202 if (i >= max_stack_trace.nr_entries ||
203 stack_dump_trace[i] == ULONG_MAX)
204 return NULL; 194 return NULL;
205 195
206 m->private = (void *)i; 196 m->private = (void *)n;
207
208 return &m->private; 197 return &m->private;
209} 198}
210 199
211static void *t_start(struct seq_file *m, loff_t *pos) 200static void *
201t_next(struct seq_file *m, void *v, loff_t *pos)
212{ 202{
213 void *t = SEQ_START_TOKEN; 203 (*pos)++;
214 loff_t l = 0; 204 return __next(m, pos);
205}
215 206
207static void *t_start(struct seq_file *m, loff_t *pos)
208{
216 local_irq_disable(); 209 local_irq_disable();
217 __raw_spin_lock(&max_stack_lock); 210 __raw_spin_lock(&max_stack_lock);
218 211
219 if (*pos == 0) 212 if (*pos == 0)
220 return SEQ_START_TOKEN; 213 return SEQ_START_TOKEN;
221 214
222 for (; t && l < *pos; t = t_next(m, t, &l)) 215 return __next(m, pos);
223 ;
224
225 return t;
226} 216}
227 217
228static void t_stop(struct seq_file *m, void *p) 218static void t_stop(struct seq_file *m, void *p)
@@ -234,15 +224,8 @@ static void t_stop(struct seq_file *m, void *p)
234static int trace_lookup_stack(struct seq_file *m, long i) 224static int trace_lookup_stack(struct seq_file *m, long i)
235{ 225{
236 unsigned long addr = stack_dump_trace[i]; 226 unsigned long addr = stack_dump_trace[i];
237#ifdef CONFIG_KALLSYMS
238 char str[KSYM_SYMBOL_LEN];
239
240 sprint_symbol(str, addr);
241 227
242 return seq_printf(m, "%s\n", str); 228 return seq_printf(m, "%pF\n", (void *)addr);
243#else
244 return seq_printf(m, "%p\n", (void*)addr);
245#endif
246} 229}
247 230
248static void print_disabled(struct seq_file *m) 231static void print_disabled(struct seq_file *m)
diff --git a/kernel/trace/trace_stat.c b/kernel/trace/trace_stat.c
index aea321c82fa0..a4bb239eb987 100644
--- a/kernel/trace/trace_stat.c
+++ b/kernel/trace/trace_stat.c
@@ -49,7 +49,8 @@ static struct dentry *stat_dir;
49 * but it will at least advance closer to the next one 49 * but it will at least advance closer to the next one
50 * to be released. 50 * to be released.
51 */ 51 */
52static struct rb_node *release_next(struct rb_node *node) 52static struct rb_node *release_next(struct tracer_stat *ts,
53 struct rb_node *node)
53{ 54{
54 struct stat_node *snode; 55 struct stat_node *snode;
55 struct rb_node *parent = rb_parent(node); 56 struct rb_node *parent = rb_parent(node);
@@ -67,6 +68,8 @@ static struct rb_node *release_next(struct rb_node *node)
67 parent->rb_right = NULL; 68 parent->rb_right = NULL;
68 69
69 snode = container_of(node, struct stat_node, node); 70 snode = container_of(node, struct stat_node, node);
71 if (ts->stat_release)
72 ts->stat_release(snode->stat);
70 kfree(snode); 73 kfree(snode);
71 74
72 return parent; 75 return parent;
@@ -78,7 +81,7 @@ static void __reset_stat_session(struct stat_session *session)
78 struct rb_node *node = session->stat_root.rb_node; 81 struct rb_node *node = session->stat_root.rb_node;
79 82
80 while (node) 83 while (node)
81 node = release_next(node); 84 node = release_next(session->ts, node);
82 85
83 session->stat_root = RB_ROOT; 86 session->stat_root = RB_ROOT;
84} 87}
@@ -200,17 +203,21 @@ static void *stat_seq_start(struct seq_file *s, loff_t *pos)
200{ 203{
201 struct stat_session *session = s->private; 204 struct stat_session *session = s->private;
202 struct rb_node *node; 205 struct rb_node *node;
206 int n = *pos;
203 int i; 207 int i;
204 208
205 /* Prevent from tracer switch or rbtree modification */ 209 /* Prevent from tracer switch or rbtree modification */
206 mutex_lock(&session->stat_mutex); 210 mutex_lock(&session->stat_mutex);
207 211
208 /* If we are in the beginning of the file, print the headers */ 212 /* If we are in the beginning of the file, print the headers */
209 if (!*pos && session->ts->stat_headers) 213 if (session->ts->stat_headers) {
210 return SEQ_START_TOKEN; 214 if (n == 0)
215 return SEQ_START_TOKEN;
216 n--;
217 }
211 218
212 node = rb_first(&session->stat_root); 219 node = rb_first(&session->stat_root);
213 for (i = 0; node && i < *pos; i++) 220 for (i = 0; node && i < n; i++)
214 node = rb_next(node); 221 node = rb_next(node);
215 222
216 return node; 223 return node;
diff --git a/kernel/trace/trace_stat.h b/kernel/trace/trace_stat.h
index f3546a2cd826..8f03914b9a6a 100644
--- a/kernel/trace/trace_stat.h
+++ b/kernel/trace/trace_stat.h
@@ -18,6 +18,8 @@ struct tracer_stat {
18 int (*stat_cmp)(void *p1, void *p2); 18 int (*stat_cmp)(void *p1, void *p2);
19 /* Print a stat entry */ 19 /* Print a stat entry */
20 int (*stat_show)(struct seq_file *s, void *p); 20 int (*stat_show)(struct seq_file *s, void *p);
21 /* Release an entry */
22 void (*stat_release)(void *stat);
21 /* Print the headers of your stat entries */ 23 /* Print the headers of your stat entries */
22 int (*stat_headers)(struct seq_file *s); 24 int (*stat_headers)(struct seq_file *s);
23}; 25};
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c
index 5e579645ac86..8712ce3c6a0e 100644
--- a/kernel/trace/trace_syscalls.c
+++ b/kernel/trace/trace_syscalls.c
@@ -1,30 +1,18 @@
1#include <trace/syscall.h> 1#include <trace/syscall.h>
2#include <trace/events/syscalls.h>
2#include <linux/kernel.h> 3#include <linux/kernel.h>
4#include <linux/ftrace.h>
5#include <linux/perf_counter.h>
3#include <asm/syscall.h> 6#include <asm/syscall.h>
4 7
5#include "trace_output.h" 8#include "trace_output.h"
6#include "trace.h" 9#include "trace.h"
7 10
8/* Keep a counter of the syscall tracing users */
9static int refcount;
10
11/* Prevent from races on thread flags toggling */
12static DEFINE_MUTEX(syscall_trace_lock); 11static DEFINE_MUTEX(syscall_trace_lock);
13 12static int sys_refcount_enter;
14/* Option to display the parameters types */ 13static int sys_refcount_exit;
15enum { 14static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls);
16 TRACE_SYSCALLS_OPT_TYPES = 0x1, 15static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls);
17};
18
19static struct tracer_opt syscalls_opts[] = {
20 { TRACER_OPT(syscall_arg_type, TRACE_SYSCALLS_OPT_TYPES) },
21 { }
22};
23
24static struct tracer_flags syscalls_flags = {
25 .val = 0, /* By default: no parameters types */
26 .opts = syscalls_opts
27};
28 16
29enum print_line_t 17enum print_line_t
30print_syscall_enter(struct trace_iterator *iter, int flags) 18print_syscall_enter(struct trace_iterator *iter, int flags)
@@ -35,35 +23,46 @@ print_syscall_enter(struct trace_iterator *iter, int flags)
35 struct syscall_metadata *entry; 23 struct syscall_metadata *entry;
36 int i, ret, syscall; 24 int i, ret, syscall;
37 25
38 trace_assign_type(trace, ent); 26 trace = (typeof(trace))ent;
39
40 syscall = trace->nr; 27 syscall = trace->nr;
41
42 entry = syscall_nr_to_meta(syscall); 28 entry = syscall_nr_to_meta(syscall);
29
43 if (!entry) 30 if (!entry)
44 goto end; 31 goto end;
45 32
33 if (entry->enter_id != ent->type) {
34 WARN_ON_ONCE(1);
35 goto end;
36 }
37
46 ret = trace_seq_printf(s, "%s(", entry->name); 38 ret = trace_seq_printf(s, "%s(", entry->name);
47 if (!ret) 39 if (!ret)
48 return TRACE_TYPE_PARTIAL_LINE; 40 return TRACE_TYPE_PARTIAL_LINE;
49 41
50 for (i = 0; i < entry->nb_args; i++) { 42 for (i = 0; i < entry->nb_args; i++) {
51 /* parameter types */ 43 /* parameter types */
52 if (syscalls_flags.val & TRACE_SYSCALLS_OPT_TYPES) { 44 if (trace_flags & TRACE_ITER_VERBOSE) {
53 ret = trace_seq_printf(s, "%s ", entry->types[i]); 45 ret = trace_seq_printf(s, "%s ", entry->types[i]);
54 if (!ret) 46 if (!ret)
55 return TRACE_TYPE_PARTIAL_LINE; 47 return TRACE_TYPE_PARTIAL_LINE;
56 } 48 }
57 /* parameter values */ 49 /* parameter values */
58 ret = trace_seq_printf(s, "%s: %lx%s ", entry->args[i], 50 ret = trace_seq_printf(s, "%s: %lx%s", entry->args[i],
59 trace->args[i], 51 trace->args[i],
60 i == entry->nb_args - 1 ? ")" : ","); 52 i == entry->nb_args - 1 ? "" : ", ");
61 if (!ret) 53 if (!ret)
62 return TRACE_TYPE_PARTIAL_LINE; 54 return TRACE_TYPE_PARTIAL_LINE;
63 } 55 }
64 56
57 ret = trace_seq_putc(s, ')');
58 if (!ret)
59 return TRACE_TYPE_PARTIAL_LINE;
60
65end: 61end:
66 trace_seq_printf(s, "\n"); 62 ret = trace_seq_putc(s, '\n');
63 if (!ret)
64 return TRACE_TYPE_PARTIAL_LINE;
65
67 return TRACE_TYPE_HANDLED; 66 return TRACE_TYPE_HANDLED;
68} 67}
69 68
@@ -77,16 +76,20 @@ print_syscall_exit(struct trace_iterator *iter, int flags)
77 struct syscall_metadata *entry; 76 struct syscall_metadata *entry;
78 int ret; 77 int ret;
79 78
80 trace_assign_type(trace, ent); 79 trace = (typeof(trace))ent;
81
82 syscall = trace->nr; 80 syscall = trace->nr;
83
84 entry = syscall_nr_to_meta(syscall); 81 entry = syscall_nr_to_meta(syscall);
82
85 if (!entry) { 83 if (!entry) {
86 trace_seq_printf(s, "\n"); 84 trace_seq_printf(s, "\n");
87 return TRACE_TYPE_HANDLED; 85 return TRACE_TYPE_HANDLED;
88 } 86 }
89 87
88 if (entry->exit_id != ent->type) {
89 WARN_ON_ONCE(1);
90 return TRACE_TYPE_UNHANDLED;
91 }
92
90 ret = trace_seq_printf(s, "%s -> 0x%lx\n", entry->name, 93 ret = trace_seq_printf(s, "%s -> 0x%lx\n", entry->name,
91 trace->ret); 94 trace->ret);
92 if (!ret) 95 if (!ret)
@@ -95,62 +98,140 @@ print_syscall_exit(struct trace_iterator *iter, int flags)
95 return TRACE_TYPE_HANDLED; 98 return TRACE_TYPE_HANDLED;
96} 99}
97 100
98void start_ftrace_syscalls(void) 101extern char *__bad_type_size(void);
102
103#define SYSCALL_FIELD(type, name) \
104 sizeof(type) != sizeof(trace.name) ? \
105 __bad_type_size() : \
106 #type, #name, offsetof(typeof(trace), name), sizeof(trace.name)
107
108int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s)
99{ 109{
100 unsigned long flags; 110 int i;
101 struct task_struct *g, *t; 111 int nr;
112 int ret;
113 struct syscall_metadata *entry;
114 struct syscall_trace_enter trace;
115 int offset = offsetof(struct syscall_trace_enter, args);
102 116
103 mutex_lock(&syscall_trace_lock); 117 nr = syscall_name_to_nr(call->data);
118 entry = syscall_nr_to_meta(nr);
104 119
105 /* Don't enable the flag on the tasks twice */ 120 if (!entry)
106 if (++refcount != 1) 121 return 0;
107 goto unlock;
108 122
109 arch_init_ftrace_syscalls(); 123 ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n",
110 read_lock_irqsave(&tasklist_lock, flags); 124 SYSCALL_FIELD(int, nr));
125 if (!ret)
126 return 0;
111 127
112 do_each_thread(g, t) { 128 for (i = 0; i < entry->nb_args; i++) {
113 set_tsk_thread_flag(t, TIF_SYSCALL_FTRACE); 129 ret = trace_seq_printf(s, "\tfield:%s %s;", entry->types[i],
114 } while_each_thread(g, t); 130 entry->args[i]);
131 if (!ret)
132 return 0;
133 ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;\n", offset,
134 sizeof(unsigned long));
135 if (!ret)
136 return 0;
137 offset += sizeof(unsigned long);
138 }
115 139
116 read_unlock_irqrestore(&tasklist_lock, flags); 140 trace_seq_puts(s, "\nprint fmt: \"");
141 for (i = 0; i < entry->nb_args; i++) {
142 ret = trace_seq_printf(s, "%s: 0x%%0%zulx%s", entry->args[i],
143 sizeof(unsigned long),
144 i == entry->nb_args - 1 ? "" : ", ");
145 if (!ret)
146 return 0;
147 }
148 trace_seq_putc(s, '"');
117 149
118unlock: 150 for (i = 0; i < entry->nb_args; i++) {
119 mutex_unlock(&syscall_trace_lock); 151 ret = trace_seq_printf(s, ", ((unsigned long)(REC->%s))",
152 entry->args[i]);
153 if (!ret)
154 return 0;
155 }
156
157 return trace_seq_putc(s, '\n');
120} 158}
121 159
122void stop_ftrace_syscalls(void) 160int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s)
123{ 161{
124 unsigned long flags; 162 int ret;
125 struct task_struct *g, *t; 163 struct syscall_trace_exit trace;
126 164
127 mutex_lock(&syscall_trace_lock); 165 ret = trace_seq_printf(s,
166 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n"
167 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n",
168 SYSCALL_FIELD(int, nr),
169 SYSCALL_FIELD(unsigned long, ret));
170 if (!ret)
171 return 0;
128 172
129 /* There are perhaps still some users */ 173 return trace_seq_printf(s, "\nprint fmt: \"0x%%lx\", REC->ret\n");
130 if (--refcount) 174}
131 goto unlock;
132 175
133 read_lock_irqsave(&tasklist_lock, flags); 176int syscall_enter_define_fields(struct ftrace_event_call *call)
177{
178 struct syscall_trace_enter trace;
179 struct syscall_metadata *meta;
180 int ret;
181 int nr;
182 int i;
183 int offset = offsetof(typeof(trace), args);
184
185 nr = syscall_name_to_nr(call->data);
186 meta = syscall_nr_to_meta(nr);
187
188 if (!meta)
189 return 0;
190
191 ret = trace_define_common_fields(call);
192 if (ret)
193 return ret;
194
195 for (i = 0; i < meta->nb_args; i++) {
196 ret = trace_define_field(call, meta->types[i],
197 meta->args[i], offset,
198 sizeof(unsigned long), 0,
199 FILTER_OTHER);
200 offset += sizeof(unsigned long);
201 }
134 202
135 do_each_thread(g, t) { 203 return ret;
136 clear_tsk_thread_flag(t, TIF_SYSCALL_FTRACE); 204}
137 } while_each_thread(g, t);
138 205
139 read_unlock_irqrestore(&tasklist_lock, flags); 206int syscall_exit_define_fields(struct ftrace_event_call *call)
207{
208 struct syscall_trace_exit trace;
209 int ret;
140 210
141unlock: 211 ret = trace_define_common_fields(call);
142 mutex_unlock(&syscall_trace_lock); 212 if (ret)
213 return ret;
214
215 ret = trace_define_field(call, SYSCALL_FIELD(unsigned long, ret), 0,
216 FILTER_OTHER);
217
218 return ret;
143} 219}
144 220
145void ftrace_syscall_enter(struct pt_regs *regs) 221void ftrace_syscall_enter(struct pt_regs *regs, long id)
146{ 222{
147 struct syscall_trace_enter *entry; 223 struct syscall_trace_enter *entry;
148 struct syscall_metadata *sys_data; 224 struct syscall_metadata *sys_data;
149 struct ring_buffer_event *event; 225 struct ring_buffer_event *event;
226 struct ring_buffer *buffer;
150 int size; 227 int size;
151 int syscall_nr; 228 int syscall_nr;
152 229
153 syscall_nr = syscall_get_nr(current, regs); 230 syscall_nr = syscall_get_nr(current, regs);
231 if (syscall_nr < 0)
232 return;
233 if (!test_bit(syscall_nr, enabled_enter_syscalls))
234 return;
154 235
155 sys_data = syscall_nr_to_meta(syscall_nr); 236 sys_data = syscall_nr_to_meta(syscall_nr);
156 if (!sys_data) 237 if (!sys_data)
@@ -158,8 +239,8 @@ void ftrace_syscall_enter(struct pt_regs *regs)
158 239
159 size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; 240 size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args;
160 241
161 event = trace_current_buffer_lock_reserve(TRACE_SYSCALL_ENTER, size, 242 event = trace_current_buffer_lock_reserve(&buffer, sys_data->enter_id,
162 0, 0); 243 size, 0, 0);
163 if (!event) 244 if (!event)
164 return; 245 return;
165 246
@@ -167,24 +248,30 @@ void ftrace_syscall_enter(struct pt_regs *regs)
167 entry->nr = syscall_nr; 248 entry->nr = syscall_nr;
168 syscall_get_arguments(current, regs, 0, sys_data->nb_args, entry->args); 249 syscall_get_arguments(current, regs, 0, sys_data->nb_args, entry->args);
169 250
170 trace_current_buffer_unlock_commit(event, 0, 0); 251 if (!filter_current_check_discard(buffer, sys_data->enter_event,
171 trace_wake_up(); 252 entry, event))
253 trace_current_buffer_unlock_commit(buffer, event, 0, 0);
172} 254}
173 255
174void ftrace_syscall_exit(struct pt_regs *regs) 256void ftrace_syscall_exit(struct pt_regs *regs, long ret)
175{ 257{
176 struct syscall_trace_exit *entry; 258 struct syscall_trace_exit *entry;
177 struct syscall_metadata *sys_data; 259 struct syscall_metadata *sys_data;
178 struct ring_buffer_event *event; 260 struct ring_buffer_event *event;
261 struct ring_buffer *buffer;
179 int syscall_nr; 262 int syscall_nr;
180 263
181 syscall_nr = syscall_get_nr(current, regs); 264 syscall_nr = syscall_get_nr(current, regs);
265 if (syscall_nr < 0)
266 return;
267 if (!test_bit(syscall_nr, enabled_exit_syscalls))
268 return;
182 269
183 sys_data = syscall_nr_to_meta(syscall_nr); 270 sys_data = syscall_nr_to_meta(syscall_nr);
184 if (!sys_data) 271 if (!sys_data)
185 return; 272 return;
186 273
187 event = trace_current_buffer_lock_reserve(TRACE_SYSCALL_EXIT, 274 event = trace_current_buffer_lock_reserve(&buffer, sys_data->exit_id,
188 sizeof(*entry), 0, 0); 275 sizeof(*entry), 0, 0);
189 if (!event) 276 if (!event)
190 return; 277 return;
@@ -193,58 +280,244 @@ void ftrace_syscall_exit(struct pt_regs *regs)
193 entry->nr = syscall_nr; 280 entry->nr = syscall_nr;
194 entry->ret = syscall_get_return_value(current, regs); 281 entry->ret = syscall_get_return_value(current, regs);
195 282
196 trace_current_buffer_unlock_commit(event, 0, 0); 283 if (!filter_current_check_discard(buffer, sys_data->exit_event,
197 trace_wake_up(); 284 entry, event))
285 trace_current_buffer_unlock_commit(buffer, event, 0, 0);
198} 286}
199 287
200static int init_syscall_tracer(struct trace_array *tr) 288int reg_event_syscall_enter(void *ptr)
201{ 289{
202 start_ftrace_syscalls(); 290 int ret = 0;
291 int num;
292 char *name;
293
294 name = (char *)ptr;
295 num = syscall_name_to_nr(name);
296 if (num < 0 || num >= NR_syscalls)
297 return -ENOSYS;
298 mutex_lock(&syscall_trace_lock);
299 if (!sys_refcount_enter)
300 ret = register_trace_sys_enter(ftrace_syscall_enter);
301 if (ret) {
302 pr_info("event trace: Could not activate"
303 "syscall entry trace point");
304 } else {
305 set_bit(num, enabled_enter_syscalls);
306 sys_refcount_enter++;
307 }
308 mutex_unlock(&syscall_trace_lock);
309 return ret;
310}
311
312void unreg_event_syscall_enter(void *ptr)
313{
314 int num;
315 char *name;
203 316
204 return 0; 317 name = (char *)ptr;
318 num = syscall_name_to_nr(name);
319 if (num < 0 || num >= NR_syscalls)
320 return;
321 mutex_lock(&syscall_trace_lock);
322 sys_refcount_enter--;
323 clear_bit(num, enabled_enter_syscalls);
324 if (!sys_refcount_enter)
325 unregister_trace_sys_enter(ftrace_syscall_enter);
326 mutex_unlock(&syscall_trace_lock);
205} 327}
206 328
207static void reset_syscall_tracer(struct trace_array *tr) 329int reg_event_syscall_exit(void *ptr)
208{ 330{
209 stop_ftrace_syscalls(); 331 int ret = 0;
210 tracing_reset_online_cpus(tr); 332 int num;
333 char *name;
334
335 name = (char *)ptr;
336 num = syscall_name_to_nr(name);
337 if (num < 0 || num >= NR_syscalls)
338 return -ENOSYS;
339 mutex_lock(&syscall_trace_lock);
340 if (!sys_refcount_exit)
341 ret = register_trace_sys_exit(ftrace_syscall_exit);
342 if (ret) {
343 pr_info("event trace: Could not activate"
344 "syscall exit trace point");
345 } else {
346 set_bit(num, enabled_exit_syscalls);
347 sys_refcount_exit++;
348 }
349 mutex_unlock(&syscall_trace_lock);
350 return ret;
211} 351}
212 352
213static struct trace_event syscall_enter_event = { 353void unreg_event_syscall_exit(void *ptr)
214 .type = TRACE_SYSCALL_ENTER, 354{
215 .trace = print_syscall_enter, 355 int num;
216}; 356 char *name;
357
358 name = (char *)ptr;
359 num = syscall_name_to_nr(name);
360 if (num < 0 || num >= NR_syscalls)
361 return;
362 mutex_lock(&syscall_trace_lock);
363 sys_refcount_exit--;
364 clear_bit(num, enabled_exit_syscalls);
365 if (!sys_refcount_exit)
366 unregister_trace_sys_exit(ftrace_syscall_exit);
367 mutex_unlock(&syscall_trace_lock);
368}
217 369
218static struct trace_event syscall_exit_event = { 370struct trace_event event_syscall_enter = {
219 .type = TRACE_SYSCALL_EXIT, 371 .trace = print_syscall_enter,
220 .trace = print_syscall_exit,
221}; 372};
222 373
223static struct tracer syscall_tracer __read_mostly = { 374struct trace_event event_syscall_exit = {
224 .name = "syscall", 375 .trace = print_syscall_exit,
225 .init = init_syscall_tracer,
226 .reset = reset_syscall_tracer,
227 .flags = &syscalls_flags,
228}; 376};
229 377
230__init int register_ftrace_syscalls(void) 378#ifdef CONFIG_EVENT_PROFILE
379
380static DECLARE_BITMAP(enabled_prof_enter_syscalls, NR_syscalls);
381static DECLARE_BITMAP(enabled_prof_exit_syscalls, NR_syscalls);
382static int sys_prof_refcount_enter;
383static int sys_prof_refcount_exit;
384
385static void prof_syscall_enter(struct pt_regs *regs, long id)
231{ 386{
232 int ret; 387 struct syscall_trace_enter *rec;
388 struct syscall_metadata *sys_data;
389 int syscall_nr;
390 int size;
233 391
234 ret = register_ftrace_event(&syscall_enter_event); 392 syscall_nr = syscall_get_nr(current, regs);
235 if (!ret) { 393 if (!test_bit(syscall_nr, enabled_prof_enter_syscalls))
236 printk(KERN_WARNING "event %d failed to register\n", 394 return;
237 syscall_enter_event.type); 395
238 WARN_ON_ONCE(1); 396 sys_data = syscall_nr_to_meta(syscall_nr);
397 if (!sys_data)
398 return;
399
400 /* get the size after alignment with the u32 buffer size field */
401 size = sizeof(unsigned long) * sys_data->nb_args + sizeof(*rec);
402 size = ALIGN(size + sizeof(u32), sizeof(u64));
403 size -= sizeof(u32);
404
405 do {
406 char raw_data[size];
407
408 /* zero the dead bytes from align to not leak stack to user */
409 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
410
411 rec = (struct syscall_trace_enter *) raw_data;
412 tracing_generic_entry_update(&rec->ent, 0, 0);
413 rec->ent.type = sys_data->enter_id;
414 rec->nr = syscall_nr;
415 syscall_get_arguments(current, regs, 0, sys_data->nb_args,
416 (unsigned long *)&rec->args);
417 perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size);
418 } while(0);
419}
420
421int reg_prof_syscall_enter(char *name)
422{
423 int ret = 0;
424 int num;
425
426 num = syscall_name_to_nr(name);
427 if (num < 0 || num >= NR_syscalls)
428 return -ENOSYS;
429
430 mutex_lock(&syscall_trace_lock);
431 if (!sys_prof_refcount_enter)
432 ret = register_trace_sys_enter(prof_syscall_enter);
433 if (ret) {
434 pr_info("event trace: Could not activate"
435 "syscall entry trace point");
436 } else {
437 set_bit(num, enabled_prof_enter_syscalls);
438 sys_prof_refcount_enter++;
239 } 439 }
440 mutex_unlock(&syscall_trace_lock);
441 return ret;
442}
240 443
241 ret = register_ftrace_event(&syscall_exit_event); 444void unreg_prof_syscall_enter(char *name)
242 if (!ret) { 445{
243 printk(KERN_WARNING "event %d failed to register\n", 446 int num;
244 syscall_exit_event.type); 447
245 WARN_ON_ONCE(1); 448 num = syscall_name_to_nr(name);
449 if (num < 0 || num >= NR_syscalls)
450 return;
451
452 mutex_lock(&syscall_trace_lock);
453 sys_prof_refcount_enter--;
454 clear_bit(num, enabled_prof_enter_syscalls);
455 if (!sys_prof_refcount_enter)
456 unregister_trace_sys_enter(prof_syscall_enter);
457 mutex_unlock(&syscall_trace_lock);
458}
459
460static void prof_syscall_exit(struct pt_regs *regs, long ret)
461{
462 struct syscall_metadata *sys_data;
463 struct syscall_trace_exit rec;
464 int syscall_nr;
465
466 syscall_nr = syscall_get_nr(current, regs);
467 if (!test_bit(syscall_nr, enabled_prof_exit_syscalls))
468 return;
469
470 sys_data = syscall_nr_to_meta(syscall_nr);
471 if (!sys_data)
472 return;
473
474 tracing_generic_entry_update(&rec.ent, 0, 0);
475 rec.ent.type = sys_data->exit_id;
476 rec.nr = syscall_nr;
477 rec.ret = syscall_get_return_value(current, regs);
478
479 perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec));
480}
481
482int reg_prof_syscall_exit(char *name)
483{
484 int ret = 0;
485 int num;
486
487 num = syscall_name_to_nr(name);
488 if (num < 0 || num >= NR_syscalls)
489 return -ENOSYS;
490
491 mutex_lock(&syscall_trace_lock);
492 if (!sys_prof_refcount_exit)
493 ret = register_trace_sys_exit(prof_syscall_exit);
494 if (ret) {
495 pr_info("event trace: Could not activate"
496 "syscall entry trace point");
497 } else {
498 set_bit(num, enabled_prof_exit_syscalls);
499 sys_prof_refcount_exit++;
246 } 500 }
501 mutex_unlock(&syscall_trace_lock);
502 return ret;
503}
247 504
248 return register_tracer(&syscall_tracer); 505void unreg_prof_syscall_exit(char *name)
506{
507 int num;
508
509 num = syscall_name_to_nr(name);
510 if (num < 0 || num >= NR_syscalls)
511 return;
512
513 mutex_lock(&syscall_trace_lock);
514 sys_prof_refcount_exit--;
515 clear_bit(num, enabled_prof_exit_syscalls);
516 if (!sys_prof_refcount_exit)
517 unregister_trace_sys_exit(prof_syscall_exit);
518 mutex_unlock(&syscall_trace_lock);
249} 519}
250device_initcall(register_ftrace_syscalls); 520
521#endif
522
523
diff --git a/kernel/trace/trace_workqueue.c b/kernel/trace/trace_workqueue.c
index 97fcea4acce1..40cafb07dffd 100644
--- a/kernel/trace/trace_workqueue.c
+++ b/kernel/trace/trace_workqueue.c
@@ -9,6 +9,7 @@
9#include <trace/events/workqueue.h> 9#include <trace/events/workqueue.h>
10#include <linux/list.h> 10#include <linux/list.h>
11#include <linux/percpu.h> 11#include <linux/percpu.h>
12#include <linux/kref.h>
12#include "trace_stat.h" 13#include "trace_stat.h"
13#include "trace.h" 14#include "trace.h"
14 15
@@ -16,6 +17,7 @@
16/* A cpu workqueue thread */ 17/* A cpu workqueue thread */
17struct cpu_workqueue_stats { 18struct cpu_workqueue_stats {
18 struct list_head list; 19 struct list_head list;
20 struct kref kref;
19 int cpu; 21 int cpu;
20 pid_t pid; 22 pid_t pid;
21/* Can be inserted from interrupt or user context, need to be atomic */ 23/* Can be inserted from interrupt or user context, need to be atomic */
@@ -39,6 +41,11 @@ struct workqueue_global_stats {
39static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat); 41static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat);
40#define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu)) 42#define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu))
41 43
44static void cpu_workqueue_stat_free(struct kref *kref)
45{
46 kfree(container_of(kref, struct cpu_workqueue_stats, kref));
47}
48
42/* Insertion of a work */ 49/* Insertion of a work */
43static void 50static void
44probe_workqueue_insertion(struct task_struct *wq_thread, 51probe_workqueue_insertion(struct task_struct *wq_thread,
@@ -96,8 +103,8 @@ static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu)
96 return; 103 return;
97 } 104 }
98 INIT_LIST_HEAD(&cws->list); 105 INIT_LIST_HEAD(&cws->list);
106 kref_init(&cws->kref);
99 cws->cpu = cpu; 107 cws->cpu = cpu;
100
101 cws->pid = wq_thread->pid; 108 cws->pid = wq_thread->pid;
102 109
103 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); 110 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
@@ -118,7 +125,7 @@ static void probe_workqueue_destruction(struct task_struct *wq_thread)
118 list) { 125 list) {
119 if (node->pid == wq_thread->pid) { 126 if (node->pid == wq_thread->pid) {
120 list_del(&node->list); 127 list_del(&node->list);
121 kfree(node); 128 kref_put(&node->kref, cpu_workqueue_stat_free);
122 goto found; 129 goto found;
123 } 130 }
124 } 131 }
@@ -137,9 +144,11 @@ static struct cpu_workqueue_stats *workqueue_stat_start_cpu(int cpu)
137 144
138 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); 145 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
139 146
140 if (!list_empty(&workqueue_cpu_stat(cpu)->list)) 147 if (!list_empty(&workqueue_cpu_stat(cpu)->list)) {
141 ret = list_entry(workqueue_cpu_stat(cpu)->list.next, 148 ret = list_entry(workqueue_cpu_stat(cpu)->list.next,
142 struct cpu_workqueue_stats, list); 149 struct cpu_workqueue_stats, list);
150 kref_get(&ret->kref);
151 }
143 152
144 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); 153 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
145 154
@@ -162,9 +171,9 @@ static void *workqueue_stat_start(struct tracer_stat *trace)
162static void *workqueue_stat_next(void *prev, int idx) 171static void *workqueue_stat_next(void *prev, int idx)
163{ 172{
164 struct cpu_workqueue_stats *prev_cws = prev; 173 struct cpu_workqueue_stats *prev_cws = prev;
174 struct cpu_workqueue_stats *ret;
165 int cpu = prev_cws->cpu; 175 int cpu = prev_cws->cpu;
166 unsigned long flags; 176 unsigned long flags;
167 void *ret = NULL;
168 177
169 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); 178 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
170 if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) { 179 if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) {
@@ -175,11 +184,14 @@ static void *workqueue_stat_next(void *prev, int idx)
175 return NULL; 184 return NULL;
176 } while (!(ret = workqueue_stat_start_cpu(cpu))); 185 } while (!(ret = workqueue_stat_start_cpu(cpu)));
177 return ret; 186 return ret;
187 } else {
188 ret = list_entry(prev_cws->list.next,
189 struct cpu_workqueue_stats, list);
190 kref_get(&ret->kref);
178 } 191 }
179 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); 192 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
180 193
181 return list_entry(prev_cws->list.next, struct cpu_workqueue_stats, 194 return ret;
182 list);
183} 195}
184 196
185static int workqueue_stat_show(struct seq_file *s, void *p) 197static int workqueue_stat_show(struct seq_file *s, void *p)
@@ -203,6 +215,13 @@ static int workqueue_stat_show(struct seq_file *s, void *p)
203 return 0; 215 return 0;
204} 216}
205 217
218static void workqueue_stat_release(void *stat)
219{
220 struct cpu_workqueue_stats *node = stat;
221
222 kref_put(&node->kref, cpu_workqueue_stat_free);
223}
224
206static int workqueue_stat_headers(struct seq_file *s) 225static int workqueue_stat_headers(struct seq_file *s)
207{ 226{
208 seq_printf(s, "# CPU INSERTED EXECUTED NAME\n"); 227 seq_printf(s, "# CPU INSERTED EXECUTED NAME\n");
@@ -215,6 +234,7 @@ struct tracer_stat workqueue_stats __read_mostly = {
215 .stat_start = workqueue_stat_start, 234 .stat_start = workqueue_stat_start,
216 .stat_next = workqueue_stat_next, 235 .stat_next = workqueue_stat_next,
217 .stat_show = workqueue_stat_show, 236 .stat_show = workqueue_stat_show,
237 .stat_release = workqueue_stat_release,
218 .stat_headers = workqueue_stat_headers 238 .stat_headers = workqueue_stat_headers
219}; 239};
220 240
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c
index 1ef5d3a601c7..9489a0a9b1be 100644
--- a/kernel/tracepoint.c
+++ b/kernel/tracepoint.c
@@ -24,6 +24,7 @@
24#include <linux/tracepoint.h> 24#include <linux/tracepoint.h>
25#include <linux/err.h> 25#include <linux/err.h>
26#include <linux/slab.h> 26#include <linux/slab.h>
27#include <linux/sched.h>
27 28
28extern struct tracepoint __start___tracepoints[]; 29extern struct tracepoint __start___tracepoints[];
29extern struct tracepoint __stop___tracepoints[]; 30extern struct tracepoint __stop___tracepoints[];
@@ -242,6 +243,11 @@ static void set_tracepoint(struct tracepoint_entry **entry,
242{ 243{
243 WARN_ON(strcmp((*entry)->name, elem->name) != 0); 244 WARN_ON(strcmp((*entry)->name, elem->name) != 0);
244 245
246 if (elem->regfunc && !elem->state && active)
247 elem->regfunc();
248 else if (elem->unregfunc && elem->state && !active)
249 elem->unregfunc();
250
245 /* 251 /*
246 * rcu_assign_pointer has a smp_wmb() which makes sure that the new 252 * rcu_assign_pointer has a smp_wmb() which makes sure that the new
247 * probe callbacks array is consistent before setting a pointer to it. 253 * probe callbacks array is consistent before setting a pointer to it.
@@ -261,6 +267,9 @@ static void set_tracepoint(struct tracepoint_entry **entry,
261 */ 267 */
262static void disable_tracepoint(struct tracepoint *elem) 268static void disable_tracepoint(struct tracepoint *elem)
263{ 269{
270 if (elem->unregfunc && elem->state)
271 elem->unregfunc();
272
264 elem->state = 0; 273 elem->state = 0;
265 rcu_assign_pointer(elem->funcs, NULL); 274 rcu_assign_pointer(elem->funcs, NULL);
266} 275}
@@ -554,9 +563,6 @@ int tracepoint_module_notify(struct notifier_block *self,
554 563
555 switch (val) { 564 switch (val) {
556 case MODULE_STATE_COMING: 565 case MODULE_STATE_COMING:
557 tracepoint_update_probe_range(mod->tracepoints,
558 mod->tracepoints + mod->num_tracepoints);
559 break;
560 case MODULE_STATE_GOING: 566 case MODULE_STATE_GOING:
561 tracepoint_update_probe_range(mod->tracepoints, 567 tracepoint_update_probe_range(mod->tracepoints,
562 mod->tracepoints + mod->num_tracepoints); 568 mod->tracepoints + mod->num_tracepoints);
@@ -577,3 +583,41 @@ static int init_tracepoints(void)
577__initcall(init_tracepoints); 583__initcall(init_tracepoints);
578 584
579#endif /* CONFIG_MODULES */ 585#endif /* CONFIG_MODULES */
586
587#ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS
588
589/* NB: reg/unreg are called while guarded with the tracepoints_mutex */
590static int sys_tracepoint_refcount;
591
592void syscall_regfunc(void)
593{
594 unsigned long flags;
595 struct task_struct *g, *t;
596
597 if (!sys_tracepoint_refcount) {
598 read_lock_irqsave(&tasklist_lock, flags);
599 do_each_thread(g, t) {
600 /* Skip kernel threads. */
601 if (t->mm)
602 set_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT);
603 } while_each_thread(g, t);
604 read_unlock_irqrestore(&tasklist_lock, flags);
605 }
606 sys_tracepoint_refcount++;
607}
608
609void syscall_unregfunc(void)
610{
611 unsigned long flags;
612 struct task_struct *g, *t;
613
614 sys_tracepoint_refcount--;
615 if (!sys_tracepoint_refcount) {
616 read_lock_irqsave(&tasklist_lock, flags);
617 do_each_thread(g, t) {
618 clear_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT);
619 } while_each_thread(g, t);
620 read_unlock_irqrestore(&tasklist_lock, flags);
621 }
622}
623#endif
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 0668795d8818..addfe2df93b1 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -317,8 +317,6 @@ static int worker_thread(void *__cwq)
317 if (cwq->wq->freezeable) 317 if (cwq->wq->freezeable)
318 set_freezable(); 318 set_freezable();
319 319
320 set_user_nice(current, -5);
321
322 for (;;) { 320 for (;;) {
323 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 321 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
324 if (!freezing(current) && 322 if (!freezing(current) &&
@@ -600,7 +598,12 @@ static struct workqueue_struct *keventd_wq __read_mostly;
600 * schedule_work - put work task in global workqueue 598 * schedule_work - put work task in global workqueue
601 * @work: job to be done 599 * @work: job to be done
602 * 600 *
603 * This puts a job in the kernel-global workqueue. 601 * Returns zero if @work was already on the kernel-global workqueue and
602 * non-zero otherwise.
603 *
604 * This puts a job in the kernel-global workqueue if it was not already
605 * queued and leaves it in the same position on the kernel-global
606 * workqueue otherwise.
604 */ 607 */
605int schedule_work(struct work_struct *work) 608int schedule_work(struct work_struct *work)
606{ 609{