aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/cpuset.c312
-rw-r--r--kernel/sched.c19
-rw-r--r--kernel/time/clockevents.c3
-rw-r--r--kernel/time/ntp.c2
-rw-r--r--kernel/time/tick-broadcast.c78
-rw-r--r--kernel/time/tick-common.c1
-rw-r--r--kernel/time/tick-internal.h2
-rw-r--r--kernel/time/tick-oneshot.c44
8 files changed, 296 insertions, 165 deletions
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index d5ab79cf516d..f227bc172690 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -14,6 +14,8 @@
14 * 2003-10-22 Updates by Stephen Hemminger. 14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson. 15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups 16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
17 * 19 *
18 * This file is subject to the terms and conditions of the GNU General Public 20 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux 21 * License. See the file COPYING in the main directory of the Linux
@@ -236,9 +238,11 @@ static struct cpuset top_cpuset = {
236 238
237static DEFINE_MUTEX(callback_mutex); 239static DEFINE_MUTEX(callback_mutex);
238 240
239/* This is ugly, but preserves the userspace API for existing cpuset 241/*
242 * This is ugly, but preserves the userspace API for existing cpuset
240 * users. If someone tries to mount the "cpuset" filesystem, we 243 * users. If someone tries to mount the "cpuset" filesystem, we
241 * silently switch it to mount "cgroup" instead */ 244 * silently switch it to mount "cgroup" instead
245 */
242static int cpuset_get_sb(struct file_system_type *fs_type, 246static int cpuset_get_sb(struct file_system_type *fs_type,
243 int flags, const char *unused_dev_name, 247 int flags, const char *unused_dev_name,
244 void *data, struct vfsmount *mnt) 248 void *data, struct vfsmount *mnt)
@@ -473,10 +477,9 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
473} 477}
474 478
475/* 479/*
476 * Helper routine for rebuild_sched_domains(). 480 * Helper routine for generate_sched_domains().
477 * Do cpusets a, b have overlapping cpus_allowed masks? 481 * Do cpusets a, b have overlapping cpus_allowed masks?
478 */ 482 */
479
480static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 483static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
481{ 484{
482 return cpus_intersects(a->cpus_allowed, b->cpus_allowed); 485 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
@@ -518,26 +521,15 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
518} 521}
519 522
520/* 523/*
521 * rebuild_sched_domains() 524 * generate_sched_domains()
522 * 525 *
523 * This routine will be called to rebuild the scheduler's dynamic 526 * This function builds a partial partition of the systems CPUs
524 * sched domains: 527 * A 'partial partition' is a set of non-overlapping subsets whose
525 * - if the flag 'sched_load_balance' of any cpuset with non-empty 528 * union is a subset of that set.
526 * 'cpus' changes, 529 * The output of this function needs to be passed to kernel/sched.c
527 * - or if the 'cpus' allowed changes in any cpuset which has that 530 * partition_sched_domains() routine, which will rebuild the scheduler's
528 * flag enabled, 531 * load balancing domains (sched domains) as specified by that partial
529 * - or if the 'sched_relax_domain_level' of any cpuset which has 532 * partition.
530 * that flag enabled and with non-empty 'cpus' changes,
531 * - or if any cpuset with non-empty 'cpus' is removed,
532 * - or if a cpu gets offlined.
533 *
534 * This routine builds a partial partition of the systems CPUs
535 * (the set of non-overlappping cpumask_t's in the array 'part'
536 * below), and passes that partial partition to the kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the
538 * schedulers load balancing domains (sched domains) as specified
539 * by that partial partition. A 'partial partition' is a set of
540 * non-overlapping subsets whose union is a subset of that set.
541 * 533 *
542 * See "What is sched_load_balance" in Documentation/cpusets.txt 534 * See "What is sched_load_balance" in Documentation/cpusets.txt
543 * for a background explanation of this. 535 * for a background explanation of this.
@@ -547,13 +539,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
547 * domains when operating in the severe memory shortage situations 539 * domains when operating in the severe memory shortage situations
548 * that could cause allocation failures below. 540 * that could cause allocation failures below.
549 * 541 *
550 * Call with cgroup_mutex held. May take callback_mutex during 542 * Must be called with cgroup_lock held.
551 * call due to the kfifo_alloc() and kmalloc() calls. May nest
552 * a call to the get_online_cpus()/put_online_cpus() pair.
553 * Must not be called holding callback_mutex, because we must not
554 * call get_online_cpus() while holding callback_mutex. Elsewhere
555 * the kernel nests callback_mutex inside get_online_cpus() calls.
556 * So the reverse nesting would risk an ABBA deadlock.
557 * 543 *
558 * The three key local variables below are: 544 * The three key local variables below are:
559 * q - a linked-list queue of cpuset pointers, used to implement a 545 * q - a linked-list queue of cpuset pointers, used to implement a
@@ -588,10 +574,10 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
588 * element of the partition (one sched domain) to be passed to 574 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains(). 575 * partition_sched_domains().
590 */ 576 */
591 577static int generate_sched_domains(cpumask_t **domains,
592void rebuild_sched_domains(void) 578 struct sched_domain_attr **attributes)
593{ 579{
594 LIST_HEAD(q); /* queue of cpusets to be scanned*/ 580 LIST_HEAD(q); /* queue of cpusets to be scanned */
595 struct cpuset *cp; /* scans q */ 581 struct cpuset *cp; /* scans q */
596 struct cpuset **csa; /* array of all cpuset ptrs */ 582 struct cpuset **csa; /* array of all cpuset ptrs */
597 int csn; /* how many cpuset ptrs in csa so far */ 583 int csn; /* how many cpuset ptrs in csa so far */
@@ -601,23 +587,26 @@ void rebuild_sched_domains(void)
601 int ndoms; /* number of sched domains in result */ 587 int ndoms; /* number of sched domains in result */
602 int nslot; /* next empty doms[] cpumask_t slot */ 588 int nslot; /* next empty doms[] cpumask_t slot */
603 589
604 csa = NULL; 590 ndoms = 0;
605 doms = NULL; 591 doms = NULL;
606 dattr = NULL; 592 dattr = NULL;
593 csa = NULL;
607 594
608 /* Special case for the 99% of systems with one, full, sched domain */ 595 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) { 596 if (is_sched_load_balance(&top_cpuset)) {
610 ndoms = 1;
611 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 597 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
612 if (!doms) 598 if (!doms)
613 goto rebuild; 599 goto done;
600
614 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 601 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
615 if (dattr) { 602 if (dattr) {
616 *dattr = SD_ATTR_INIT; 603 *dattr = SD_ATTR_INIT;
617 update_domain_attr_tree(dattr, &top_cpuset); 604 update_domain_attr_tree(dattr, &top_cpuset);
618 } 605 }
619 *doms = top_cpuset.cpus_allowed; 606 *doms = top_cpuset.cpus_allowed;
620 goto rebuild; 607
608 ndoms = 1;
609 goto done;
621 } 610 }
622 611
623 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); 612 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
@@ -680,61 +669,141 @@ restart:
680 } 669 }
681 } 670 }
682 671
683 /* Convert <csn, csa> to <ndoms, doms> */ 672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
684 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL); 676 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
685 if (!doms) 677 if (!doms) {
686 goto rebuild; 678 ndoms = 0;
679 goto done;
680 }
681
682 /*
683 * The rest of the code, including the scheduler, can deal with
684 * dattr==NULL case. No need to abort if alloc fails.
685 */
687 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 686 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
688 687
689 for (nslot = 0, i = 0; i < csn; i++) { 688 for (nslot = 0, i = 0; i < csn; i++) {
690 struct cpuset *a = csa[i]; 689 struct cpuset *a = csa[i];
690 cpumask_t *dp;
691 int apn = a->pn; 691 int apn = a->pn;
692 692
693 if (apn >= 0) { 693 if (apn < 0) {
694 cpumask_t *dp = doms + nslot; 694 /* Skip completed partitions */
695 695 continue;
696 if (nslot == ndoms) { 696 }
697 static int warnings = 10; 697
698 if (warnings) { 698 dp = doms + nslot;
699 printk(KERN_WARNING 699
700 "rebuild_sched_domains confused:" 700 if (nslot == ndoms) {
701 " nslot %d, ndoms %d, csn %d, i %d," 701 static int warnings = 10;
702 " apn %d\n", 702 if (warnings) {
703 nslot, ndoms, csn, i, apn); 703 printk(KERN_WARNING
704 warnings--; 704 "rebuild_sched_domains confused:"
705 } 705 " nslot %d, ndoms %d, csn %d, i %d,"
706 continue; 706 " apn %d\n",
707 nslot, ndoms, csn, i, apn);
708 warnings--;
707 } 709 }
710 continue;
711 }
708 712
709 cpus_clear(*dp); 713 cpus_clear(*dp);
710 if (dattr) 714 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT; 715 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) { 716 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j]; 717 struct cpuset *b = csa[j];
714 718
715 if (apn == b->pn) { 719 if (apn == b->pn) {
716 cpus_or(*dp, *dp, b->cpus_allowed); 720 cpus_or(*dp, *dp, b->cpus_allowed);
717 b->pn = -1; 721 if (dattr)
718 if (dattr) 722 update_domain_attr_tree(dattr + nslot, b);
719 update_domain_attr_tree(dattr 723
720 + nslot, b); 724 /* Done with this partition */
721 } 725 b->pn = -1;
722 } 726 }
723 nslot++;
724 } 727 }
728 nslot++;
725 } 729 }
726 BUG_ON(nslot != ndoms); 730 BUG_ON(nslot != ndoms);
727 731
728rebuild: 732done:
729 /* Have scheduler rebuild sched domains */ 733 kfree(csa);
734
735 *domains = doms;
736 *attributes = dattr;
737 return ndoms;
738}
739
740/*
741 * Rebuild scheduler domains.
742 *
743 * Call with neither cgroup_mutex held nor within get_online_cpus().
744 * Takes both cgroup_mutex and get_online_cpus().
745 *
746 * Cannot be directly called from cpuset code handling changes
747 * to the cpuset pseudo-filesystem, because it cannot be called
748 * from code that already holds cgroup_mutex.
749 */
750static void do_rebuild_sched_domains(struct work_struct *unused)
751{
752 struct sched_domain_attr *attr;
753 cpumask_t *doms;
754 int ndoms;
755
730 get_online_cpus(); 756 get_online_cpus();
731 partition_sched_domains(ndoms, doms, dattr); 757
758 /* Generate domain masks and attrs */
759 cgroup_lock();
760 ndoms = generate_sched_domains(&doms, &attr);
761 cgroup_unlock();
762
763 /* Have scheduler rebuild the domains */
764 partition_sched_domains(ndoms, doms, attr);
765
732 put_online_cpus(); 766 put_online_cpus();
767}
733 768
734done: 769static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
735 kfree(csa); 770
736 /* Don't kfree(doms) -- partition_sched_domains() does that. */ 771/*
737 /* Don't kfree(dattr) -- partition_sched_domains() does that. */ 772 * Rebuild scheduler domains, asynchronously via workqueue.
773 *
774 * If the flag 'sched_load_balance' of any cpuset with non-empty
775 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
776 * which has that flag enabled, or if any cpuset with a non-empty
777 * 'cpus' is removed, then call this routine to rebuild the
778 * scheduler's dynamic sched domains.
779 *
780 * The rebuild_sched_domains() and partition_sched_domains()
781 * routines must nest cgroup_lock() inside get_online_cpus(),
782 * but such cpuset changes as these must nest that locking the
783 * other way, holding cgroup_lock() for much of the code.
784 *
785 * So in order to avoid an ABBA deadlock, the cpuset code handling
786 * these user changes delegates the actual sched domain rebuilding
787 * to a separate workqueue thread, which ends up processing the
788 * above do_rebuild_sched_domains() function.
789 */
790static void async_rebuild_sched_domains(void)
791{
792 schedule_work(&rebuild_sched_domains_work);
793}
794
795/*
796 * Accomplishes the same scheduler domain rebuild as the above
797 * async_rebuild_sched_domains(), however it directly calls the
798 * rebuild routine synchronously rather than calling it via an
799 * asynchronous work thread.
800 *
801 * This can only be called from code that is not holding
802 * cgroup_mutex (not nested in a cgroup_lock() call.)
803 */
804void rebuild_sched_domains(void)
805{
806 do_rebuild_sched_domains(NULL);
738} 807}
739 808
740/** 809/**
@@ -863,7 +932,7 @@ static int update_cpumask(struct cpuset *cs, const char *buf)
863 return retval; 932 return retval;
864 933
865 if (is_load_balanced) 934 if (is_load_balanced)
866 rebuild_sched_domains(); 935 async_rebuild_sched_domains();
867 return 0; 936 return 0;
868} 937}
869 938
@@ -1090,7 +1159,7 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1090 if (val != cs->relax_domain_level) { 1159 if (val != cs->relax_domain_level) {
1091 cs->relax_domain_level = val; 1160 cs->relax_domain_level = val;
1092 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) 1161 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1093 rebuild_sched_domains(); 1162 async_rebuild_sched_domains();
1094 } 1163 }
1095 1164
1096 return 0; 1165 return 0;
@@ -1131,7 +1200,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1131 mutex_unlock(&callback_mutex); 1200 mutex_unlock(&callback_mutex);
1132 1201
1133 if (cpus_nonempty && balance_flag_changed) 1202 if (cpus_nonempty && balance_flag_changed)
1134 rebuild_sched_domains(); 1203 async_rebuild_sched_domains();
1135 1204
1136 return 0; 1205 return 0;
1137} 1206}
@@ -1492,6 +1561,9 @@ static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1492 default: 1561 default:
1493 BUG(); 1562 BUG();
1494 } 1563 }
1564
1565 /* Unreachable but makes gcc happy */
1566 return 0;
1495} 1567}
1496 1568
1497static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) 1569static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
@@ -1504,6 +1576,9 @@ static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1504 default: 1576 default:
1505 BUG(); 1577 BUG();
1506 } 1578 }
1579
1580 /* Unrechable but makes gcc happy */
1581 return 0;
1507} 1582}
1508 1583
1509 1584
@@ -1692,15 +1767,9 @@ static struct cgroup_subsys_state *cpuset_create(
1692} 1767}
1693 1768
1694/* 1769/*
1695 * Locking note on the strange update_flag() call below:
1696 *
1697 * If the cpuset being removed has its flag 'sched_load_balance' 1770 * If the cpuset being removed has its flag 'sched_load_balance'
1698 * enabled, then simulate turning sched_load_balance off, which 1771 * enabled, then simulate turning sched_load_balance off, which
1699 * will call rebuild_sched_domains(). The get_online_cpus() 1772 * will call async_rebuild_sched_domains().
1700 * call in rebuild_sched_domains() must not be made while holding
1701 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1702 * get_online_cpus() calls. So the reverse nesting would risk an
1703 * ABBA deadlock.
1704 */ 1773 */
1705 1774
1706static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) 1775static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
@@ -1719,7 +1788,7 @@ static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1719struct cgroup_subsys cpuset_subsys = { 1788struct cgroup_subsys cpuset_subsys = {
1720 .name = "cpuset", 1789 .name = "cpuset",
1721 .create = cpuset_create, 1790 .create = cpuset_create,
1722 .destroy = cpuset_destroy, 1791 .destroy = cpuset_destroy,
1723 .can_attach = cpuset_can_attach, 1792 .can_attach = cpuset_can_attach,
1724 .attach = cpuset_attach, 1793 .attach = cpuset_attach,
1725 .populate = cpuset_populate, 1794 .populate = cpuset_populate,
@@ -1811,7 +1880,7 @@ static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1811} 1880}
1812 1881
1813/* 1882/*
1814 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs 1883 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1815 * or memory nodes, we need to walk over the cpuset hierarchy, 1884 * or memory nodes, we need to walk over the cpuset hierarchy,
1816 * removing that CPU or node from all cpusets. If this removes the 1885 * removing that CPU or node from all cpusets. If this removes the
1817 * last CPU or node from a cpuset, then move the tasks in the empty 1886 * last CPU or node from a cpuset, then move the tasks in the empty
@@ -1903,35 +1972,6 @@ static void scan_for_empty_cpusets(const struct cpuset *root)
1903} 1972}
1904 1973
1905/* 1974/*
1906 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1907 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1908 * track what's online after any CPU or memory node hotplug or unplug event.
1909 *
1910 * Since there are two callers of this routine, one for CPU hotplug
1911 * events and one for memory node hotplug events, we could have coded
1912 * two separate routines here. We code it as a single common routine
1913 * in order to minimize text size.
1914 */
1915
1916static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1917{
1918 cgroup_lock();
1919
1920 top_cpuset.cpus_allowed = cpu_online_map;
1921 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1922 scan_for_empty_cpusets(&top_cpuset);
1923
1924 /*
1925 * Scheduler destroys domains on hotplug events.
1926 * Rebuild them based on the current settings.
1927 */
1928 if (rebuild_sd)
1929 rebuild_sched_domains();
1930
1931 cgroup_unlock();
1932}
1933
1934/*
1935 * The top_cpuset tracks what CPUs and Memory Nodes are online, 1975 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1936 * period. This is necessary in order to make cpusets transparent 1976 * period. This is necessary in order to make cpusets transparent
1937 * (of no affect) on systems that are actively using CPU hotplug 1977 * (of no affect) on systems that are actively using CPU hotplug
@@ -1939,40 +1979,52 @@ static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1939 * 1979 *
1940 * This routine ensures that top_cpuset.cpus_allowed tracks 1980 * This routine ensures that top_cpuset.cpus_allowed tracks
1941 * cpu_online_map on each CPU hotplug (cpuhp) event. 1981 * cpu_online_map on each CPU hotplug (cpuhp) event.
1982 *
1983 * Called within get_online_cpus(). Needs to call cgroup_lock()
1984 * before calling generate_sched_domains().
1942 */ 1985 */
1943 1986static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
1944static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1945 unsigned long phase, void *unused_cpu) 1987 unsigned long phase, void *unused_cpu)
1946{ 1988{
1989 struct sched_domain_attr *attr;
1990 cpumask_t *doms;
1991 int ndoms;
1992
1947 switch (phase) { 1993 switch (phase) {
1948 case CPU_UP_CANCELED:
1949 case CPU_UP_CANCELED_FROZEN:
1950 case CPU_DOWN_FAILED:
1951 case CPU_DOWN_FAILED_FROZEN:
1952 case CPU_ONLINE: 1994 case CPU_ONLINE:
1953 case CPU_ONLINE_FROZEN: 1995 case CPU_ONLINE_FROZEN:
1954 case CPU_DEAD: 1996 case CPU_DEAD:
1955 case CPU_DEAD_FROZEN: 1997 case CPU_DEAD_FROZEN:
1956 common_cpu_mem_hotplug_unplug(1);
1957 break; 1998 break;
1999
1958 default: 2000 default:
1959 return NOTIFY_DONE; 2001 return NOTIFY_DONE;
1960 } 2002 }
1961 2003
2004 cgroup_lock();
2005 top_cpuset.cpus_allowed = cpu_online_map;
2006 scan_for_empty_cpusets(&top_cpuset);
2007 ndoms = generate_sched_domains(&doms, &attr);
2008 cgroup_unlock();
2009
2010 /* Have scheduler rebuild the domains */
2011 partition_sched_domains(ndoms, doms, attr);
2012
1962 return NOTIFY_OK; 2013 return NOTIFY_OK;
1963} 2014}
1964 2015
1965#ifdef CONFIG_MEMORY_HOTPLUG 2016#ifdef CONFIG_MEMORY_HOTPLUG
1966/* 2017/*
1967 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. 2018 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1968 * Call this routine anytime after you change 2019 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
1969 * node_states[N_HIGH_MEMORY]. 2020 * See also the previous routine cpuset_track_online_cpus().
1970 * See also the previous routine cpuset_handle_cpuhp().
1971 */ 2021 */
1972
1973void cpuset_track_online_nodes(void) 2022void cpuset_track_online_nodes(void)
1974{ 2023{
1975 common_cpu_mem_hotplug_unplug(0); 2024 cgroup_lock();
2025 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2026 scan_for_empty_cpusets(&top_cpuset);
2027 cgroup_unlock();
1976} 2028}
1977#endif 2029#endif
1978 2030
@@ -1987,7 +2039,7 @@ void __init cpuset_init_smp(void)
1987 top_cpuset.cpus_allowed = cpu_online_map; 2039 top_cpuset.cpus_allowed = cpu_online_map;
1988 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; 2040 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1989 2041
1990 hotcpu_notifier(cpuset_handle_cpuhp, 0); 2042 hotcpu_notifier(cpuset_track_online_cpus, 0);
1991} 2043}
1992 2044
1993/** 2045/**
diff --git a/kernel/sched.c b/kernel/sched.c
index 8626ae50ce08..0d8905a1b8ca 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -7746,24 +7746,27 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7746 * and partition_sched_domains() will fallback to the single partition 7746 * and partition_sched_domains() will fallback to the single partition
7747 * 'fallback_doms', it also forces the domains to be rebuilt. 7747 * 'fallback_doms', it also forces the domains to be rebuilt.
7748 * 7748 *
7749 * If doms_new==NULL it will be replaced with cpu_online_map.
7750 * ndoms_new==0 is a special case for destroying existing domains.
7751 * It will not create the default domain.
7752 *
7749 * Call with hotplug lock held 7753 * Call with hotplug lock held
7750 */ 7754 */
7751void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 7755void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7752 struct sched_domain_attr *dattr_new) 7756 struct sched_domain_attr *dattr_new)
7753{ 7757{
7754 int i, j; 7758 int i, j, n;
7755 7759
7756 mutex_lock(&sched_domains_mutex); 7760 mutex_lock(&sched_domains_mutex);
7757 7761
7758 /* always unregister in case we don't destroy any domains */ 7762 /* always unregister in case we don't destroy any domains */
7759 unregister_sched_domain_sysctl(); 7763 unregister_sched_domain_sysctl();
7760 7764
7761 if (doms_new == NULL) 7765 n = doms_new ? ndoms_new : 0;
7762 ndoms_new = 0;
7763 7766
7764 /* Destroy deleted domains */ 7767 /* Destroy deleted domains */
7765 for (i = 0; i < ndoms_cur; i++) { 7768 for (i = 0; i < ndoms_cur; i++) {
7766 for (j = 0; j < ndoms_new; j++) { 7769 for (j = 0; j < n; j++) {
7767 if (cpus_equal(doms_cur[i], doms_new[j]) 7770 if (cpus_equal(doms_cur[i], doms_new[j])
7768 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7771 && dattrs_equal(dattr_cur, i, dattr_new, j))
7769 goto match1; 7772 goto match1;
@@ -7776,7 +7779,6 @@ match1:
7776 7779
7777 if (doms_new == NULL) { 7780 if (doms_new == NULL) {
7778 ndoms_cur = 0; 7781 ndoms_cur = 0;
7779 ndoms_new = 1;
7780 doms_new = &fallback_doms; 7782 doms_new = &fallback_doms;
7781 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7783 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7782 dattr_new = NULL; 7784 dattr_new = NULL;
@@ -7813,8 +7815,13 @@ match2:
7813int arch_reinit_sched_domains(void) 7815int arch_reinit_sched_domains(void)
7814{ 7816{
7815 get_online_cpus(); 7817 get_online_cpus();
7818
7819 /* Destroy domains first to force the rebuild */
7820 partition_sched_domains(0, NULL, NULL);
7821
7816 rebuild_sched_domains(); 7822 rebuild_sched_domains();
7817 put_online_cpus(); 7823 put_online_cpus();
7824
7818 return 0; 7825 return 0;
7819} 7826}
7820 7827
@@ -7898,7 +7905,7 @@ static int update_sched_domains(struct notifier_block *nfb,
7898 case CPU_ONLINE_FROZEN: 7905 case CPU_ONLINE_FROZEN:
7899 case CPU_DEAD: 7906 case CPU_DEAD:
7900 case CPU_DEAD_FROZEN: 7907 case CPU_DEAD_FROZEN:
7901 partition_sched_domains(0, NULL, NULL); 7908 partition_sched_domains(1, NULL, NULL);
7902 return NOTIFY_OK; 7909 return NOTIFY_OK;
7903 7910
7904 default: 7911 default:
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 3d1e3e1a1971..1876b526c778 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -177,7 +177,7 @@ void clockevents_register_device(struct clock_event_device *dev)
177/* 177/*
178 * Noop handler when we shut down an event device 178 * Noop handler when we shut down an event device
179 */ 179 */
180static void clockevents_handle_noop(struct clock_event_device *dev) 180void clockevents_handle_noop(struct clock_event_device *dev)
181{ 181{
182} 182}
183 183
@@ -199,7 +199,6 @@ void clockevents_exchange_device(struct clock_event_device *old,
199 * released list and do a notify add later. 199 * released list and do a notify add later.
200 */ 200 */
201 if (old) { 201 if (old) {
202 old->event_handler = clockevents_handle_noop;
203 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED); 202 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
204 list_del(&old->list); 203 list_del(&old->list);
205 list_add(&old->list, &clockevents_released); 204 list_add(&old->list, &clockevents_released);
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 5125ddd8196b..1ad46f3df6e7 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -245,7 +245,7 @@ static void sync_cmos_clock(unsigned long dummy)
245 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) 245 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
246 fail = update_persistent_clock(now); 246 fail = update_persistent_clock(now);
247 247
248 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec; 248 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
249 if (next.tv_nsec <= 0) 249 if (next.tv_nsec <= 0)
250 next.tv_nsec += NSEC_PER_SEC; 250 next.tv_nsec += NSEC_PER_SEC;
251 251
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index 31463d370b94..2f5a38294bf9 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -175,6 +175,8 @@ static void tick_do_periodic_broadcast(void)
175 */ 175 */
176static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 176static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177{ 177{
178 ktime_t next;
179
178 tick_do_periodic_broadcast(); 180 tick_do_periodic_broadcast();
179 181
180 /* 182 /*
@@ -185,10 +187,13 @@ static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
185 187
186 /* 188 /*
187 * Setup the next period for devices, which do not have 189 * Setup the next period for devices, which do not have
188 * periodic mode: 190 * periodic mode. We read dev->next_event first and add to it
191 * when the event alrady expired. clockevents_program_event()
192 * sets dev->next_event only when the event is really
193 * programmed to the device.
189 */ 194 */
190 for (;;) { 195 for (next = dev->next_event; ;) {
191 ktime_t next = ktime_add(dev->next_event, tick_period); 196 next = ktime_add(next, tick_period);
192 197
193 if (!clockevents_program_event(dev, next, ktime_get())) 198 if (!clockevents_program_event(dev, next, ktime_get()))
194 return; 199 return;
@@ -205,7 +210,7 @@ static void tick_do_broadcast_on_off(void *why)
205 struct clock_event_device *bc, *dev; 210 struct clock_event_device *bc, *dev;
206 struct tick_device *td; 211 struct tick_device *td;
207 unsigned long flags, *reason = why; 212 unsigned long flags, *reason = why;
208 int cpu; 213 int cpu, bc_stopped;
209 214
210 spin_lock_irqsave(&tick_broadcast_lock, flags); 215 spin_lock_irqsave(&tick_broadcast_lock, flags);
211 216
@@ -223,6 +228,8 @@ static void tick_do_broadcast_on_off(void *why)
223 if (!tick_device_is_functional(dev)) 228 if (!tick_device_is_functional(dev))
224 goto out; 229 goto out;
225 230
231 bc_stopped = cpus_empty(tick_broadcast_mask);
232
226 switch (*reason) { 233 switch (*reason) {
227 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 234 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
228 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
@@ -245,9 +252,10 @@ static void tick_do_broadcast_on_off(void *why)
245 break; 252 break;
246 } 253 }
247 254
248 if (cpus_empty(tick_broadcast_mask)) 255 if (cpus_empty(tick_broadcast_mask)) {
249 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 256 if (!bc_stopped)
250 else { 257 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
258 } else if (bc_stopped) {
251 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 259 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
252 tick_broadcast_start_periodic(bc); 260 tick_broadcast_start_periodic(bc);
253 else 261 else
@@ -364,16 +372,8 @@ cpumask_t *tick_get_broadcast_oneshot_mask(void)
364static int tick_broadcast_set_event(ktime_t expires, int force) 372static int tick_broadcast_set_event(ktime_t expires, int force)
365{ 373{
366 struct clock_event_device *bc = tick_broadcast_device.evtdev; 374 struct clock_event_device *bc = tick_broadcast_device.evtdev;
367 ktime_t now = ktime_get(); 375
368 int res; 376 return tick_dev_program_event(bc, expires, force);
369
370 for(;;) {
371 res = clockevents_program_event(bc, expires, now);
372 if (!res || !force)
373 return res;
374 now = ktime_get();
375 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
376 }
377} 377}
378 378
379int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 379int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
@@ -491,14 +491,52 @@ static void tick_broadcast_clear_oneshot(int cpu)
491 cpu_clear(cpu, tick_broadcast_oneshot_mask); 491 cpu_clear(cpu, tick_broadcast_oneshot_mask);
492} 492}
493 493
494static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
495{
496 struct tick_device *td;
497 int cpu;
498
499 for_each_cpu_mask_nr(cpu, *mask) {
500 td = &per_cpu(tick_cpu_device, cpu);
501 if (td->evtdev)
502 td->evtdev->next_event = expires;
503 }
504}
505
494/** 506/**
495 * tick_broadcast_setup_oneshot - setup the broadcast device 507 * tick_broadcast_setup_oneshot - setup the broadcast device
496 */ 508 */
497void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 509void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
498{ 510{
499 bc->event_handler = tick_handle_oneshot_broadcast; 511 /* Set it up only once ! */
500 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 512 if (bc->event_handler != tick_handle_oneshot_broadcast) {
501 bc->next_event.tv64 = KTIME_MAX; 513 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
514 int cpu = smp_processor_id();
515 cpumask_t mask;
516
517 bc->event_handler = tick_handle_oneshot_broadcast;
518 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
519
520 /* Take the do_timer update */
521 tick_do_timer_cpu = cpu;
522
523 /*
524 * We must be careful here. There might be other CPUs
525 * waiting for periodic broadcast. We need to set the
526 * oneshot_mask bits for those and program the
527 * broadcast device to fire.
528 */
529 mask = tick_broadcast_mask;
530 cpu_clear(cpu, mask);
531 cpus_or(tick_broadcast_oneshot_mask,
532 tick_broadcast_oneshot_mask, mask);
533
534 if (was_periodic && !cpus_empty(mask)) {
535 tick_broadcast_init_next_event(&mask, tick_next_period);
536 tick_broadcast_set_event(tick_next_period, 1);
537 } else
538 bc->next_event.tv64 = KTIME_MAX;
539 }
502} 540}
503 541
504/* 542/*
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index 80c4336f4188..c4777193d567 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -161,6 +161,7 @@ static void tick_setup_device(struct tick_device *td,
161 } else { 161 } else {
162 handler = td->evtdev->event_handler; 162 handler = td->evtdev->event_handler;
163 next_event = td->evtdev->next_event; 163 next_event = td->evtdev->next_event;
164 td->evtdev->event_handler = clockevents_handle_noop;
164 } 165 }
165 166
166 td->evtdev = newdev; 167 td->evtdev = newdev;
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index f13f2b7f4fd4..0ffc2918ea6f 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -17,6 +17,8 @@ extern void tick_handle_periodic(struct clock_event_device *dev);
17extern void tick_setup_oneshot(struct clock_event_device *newdev, 17extern void tick_setup_oneshot(struct clock_event_device *newdev,
18 void (*handler)(struct clock_event_device *), 18 void (*handler)(struct clock_event_device *),
19 ktime_t nextevt); 19 ktime_t nextevt);
20extern int tick_dev_program_event(struct clock_event_device *dev,
21 ktime_t expires, int force);
20extern int tick_program_event(ktime_t expires, int force); 22extern int tick_program_event(ktime_t expires, int force);
21extern void tick_oneshot_notify(void); 23extern void tick_oneshot_notify(void);
22extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *)); 24extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *));
diff --git a/kernel/time/tick-oneshot.c b/kernel/time/tick-oneshot.c
index 450c04935b66..2e8de678e767 100644
--- a/kernel/time/tick-oneshot.c
+++ b/kernel/time/tick-oneshot.c
@@ -23,24 +23,56 @@
23#include "tick-internal.h" 23#include "tick-internal.h"
24 24
25/** 25/**
26 * tick_program_event 26 * tick_program_event internal worker function
27 */ 27 */
28int tick_program_event(ktime_t expires, int force) 28int tick_dev_program_event(struct clock_event_device *dev, ktime_t expires,
29 int force)
29{ 30{
30 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
31 ktime_t now = ktime_get(); 31 ktime_t now = ktime_get();
32 int i;
32 33
33 while (1) { 34 for (i = 0;;) {
34 int ret = clockevents_program_event(dev, expires, now); 35 int ret = clockevents_program_event(dev, expires, now);
35 36
36 if (!ret || !force) 37 if (!ret || !force)
37 return ret; 38 return ret;
39
40 /*
41 * We tried 2 times to program the device with the given
42 * min_delta_ns. If that's not working then we double it
43 * and emit a warning.
44 */
45 if (++i > 2) {
46 /* Increase the min. delta and try again */
47 if (!dev->min_delta_ns)
48 dev->min_delta_ns = 5000;
49 else
50 dev->min_delta_ns += dev->min_delta_ns >> 1;
51
52 printk(KERN_WARNING
53 "CE: %s increasing min_delta_ns to %lu nsec\n",
54 dev->name ? dev->name : "?",
55 dev->min_delta_ns << 1);
56
57 i = 0;
58 }
59
38 now = ktime_get(); 60 now = ktime_get();
39 expires = ktime_add(now, ktime_set(0, dev->min_delta_ns)); 61 expires = ktime_add_ns(now, dev->min_delta_ns);
40 } 62 }
41} 63}
42 64
43/** 65/**
66 * tick_program_event
67 */
68int tick_program_event(ktime_t expires, int force)
69{
70 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
71
72 return tick_dev_program_event(dev, expires, force);
73}
74
75/**
44 * tick_resume_onshot - resume oneshot mode 76 * tick_resume_onshot - resume oneshot mode
45 */ 77 */
46void tick_resume_oneshot(void) 78void tick_resume_oneshot(void)
@@ -61,7 +93,7 @@ void tick_setup_oneshot(struct clock_event_device *newdev,
61{ 93{
62 newdev->event_handler = handler; 94 newdev->event_handler = handler;
63 clockevents_set_mode(newdev, CLOCK_EVT_MODE_ONESHOT); 95 clockevents_set_mode(newdev, CLOCK_EVT_MODE_ONESHOT);
64 clockevents_program_event(newdev, next_event, ktime_get()); 96 tick_dev_program_event(newdev, next_event, 1);
65} 97}
66 98
67/** 99/**