diff options
Diffstat (limited to 'kernel')
120 files changed, 14067 insertions, 6115 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index a987aa1676b5..057472fbc272 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -68,14 +68,14 @@ obj-$(CONFIG_USER_NS) += user_namespace.o | |||
68 | obj-$(CONFIG_PID_NS) += pid_namespace.o | 68 | obj-$(CONFIG_PID_NS) += pid_namespace.o |
69 | obj-$(CONFIG_IKCONFIG) += configs.o | 69 | obj-$(CONFIG_IKCONFIG) += configs.o |
70 | obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o | 70 | obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o |
71 | obj-$(CONFIG_STOP_MACHINE) += stop_machine.o | 71 | obj-$(CONFIG_SMP) += stop_machine.o |
72 | obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o | 72 | obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o |
73 | obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o | 73 | obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o |
74 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | 74 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o |
75 | obj-$(CONFIG_GCOV_KERNEL) += gcov/ | 75 | obj-$(CONFIG_GCOV_KERNEL) += gcov/ |
76 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o | 76 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o |
77 | obj-$(CONFIG_KPROBES) += kprobes.o | 77 | obj-$(CONFIG_KPROBES) += kprobes.o |
78 | obj-$(CONFIG_KGDB) += kgdb.o | 78 | obj-$(CONFIG_KGDB) += debug/ |
79 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o | 79 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o |
80 | obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o | 80 | obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o |
81 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 81 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
diff --git a/kernel/acct.c b/kernel/acct.c index e4c0e1fee9b0..385b88461c29 100644 --- a/kernel/acct.c +++ b/kernel/acct.c | |||
@@ -216,7 +216,6 @@ static int acct_on(char *name) | |||
216 | { | 216 | { |
217 | struct file *file; | 217 | struct file *file; |
218 | struct vfsmount *mnt; | 218 | struct vfsmount *mnt; |
219 | int error; | ||
220 | struct pid_namespace *ns; | 219 | struct pid_namespace *ns; |
221 | struct bsd_acct_struct *acct = NULL; | 220 | struct bsd_acct_struct *acct = NULL; |
222 | 221 | ||
@@ -244,13 +243,6 @@ static int acct_on(char *name) | |||
244 | } | 243 | } |
245 | } | 244 | } |
246 | 245 | ||
247 | error = security_acct(file); | ||
248 | if (error) { | ||
249 | kfree(acct); | ||
250 | filp_close(file, NULL); | ||
251 | return error; | ||
252 | } | ||
253 | |||
254 | spin_lock(&acct_lock); | 246 | spin_lock(&acct_lock); |
255 | if (ns->bacct == NULL) { | 247 | if (ns->bacct == NULL) { |
256 | ns->bacct = acct; | 248 | ns->bacct = acct; |
@@ -281,7 +273,7 @@ static int acct_on(char *name) | |||
281 | */ | 273 | */ |
282 | SYSCALL_DEFINE1(acct, const char __user *, name) | 274 | SYSCALL_DEFINE1(acct, const char __user *, name) |
283 | { | 275 | { |
284 | int error; | 276 | int error = 0; |
285 | 277 | ||
286 | if (!capable(CAP_SYS_PACCT)) | 278 | if (!capable(CAP_SYS_PACCT)) |
287 | return -EPERM; | 279 | return -EPERM; |
@@ -299,13 +291,11 @@ SYSCALL_DEFINE1(acct, const char __user *, name) | |||
299 | if (acct == NULL) | 291 | if (acct == NULL) |
300 | return 0; | 292 | return 0; |
301 | 293 | ||
302 | error = security_acct(NULL); | 294 | spin_lock(&acct_lock); |
303 | if (!error) { | 295 | acct_file_reopen(acct, NULL, NULL); |
304 | spin_lock(&acct_lock); | 296 | spin_unlock(&acct_lock); |
305 | acct_file_reopen(acct, NULL, NULL); | ||
306 | spin_unlock(&acct_lock); | ||
307 | } | ||
308 | } | 297 | } |
298 | |||
309 | return error; | 299 | return error; |
310 | } | 300 | } |
311 | 301 | ||
diff --git a/kernel/capability.c b/kernel/capability.c index 9e4697e9b276..2f05303715a5 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
@@ -15,7 +15,6 @@ | |||
15 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
16 | #include <linux/pid_namespace.h> | 16 | #include <linux/pid_namespace.h> |
17 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
18 | #include "cred-internals.h" | ||
19 | 18 | ||
20 | /* | 19 | /* |
21 | * Leveraged for setting/resetting capabilities | 20 | * Leveraged for setting/resetting capabilities |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 6d870f2d1228..422cb19f156e 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -2994,7 +2994,6 @@ static void cgroup_event_remove(struct work_struct *work) | |||
2994 | remove); | 2994 | remove); |
2995 | struct cgroup *cgrp = event->cgrp; | 2995 | struct cgroup *cgrp = event->cgrp; |
2996 | 2996 | ||
2997 | /* TODO: check return code */ | ||
2998 | event->cft->unregister_event(cgrp, event->cft, event->eventfd); | 2997 | event->cft->unregister_event(cgrp, event->cft, event->eventfd); |
2999 | 2998 | ||
3000 | eventfd_ctx_put(event->eventfd); | 2999 | eventfd_ctx_put(event->eventfd); |
@@ -3016,7 +3015,7 @@ static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, | |||
3016 | unsigned long flags = (unsigned long)key; | 3015 | unsigned long flags = (unsigned long)key; |
3017 | 3016 | ||
3018 | if (flags & POLLHUP) { | 3017 | if (flags & POLLHUP) { |
3019 | remove_wait_queue_locked(event->wqh, &event->wait); | 3018 | __remove_wait_queue(event->wqh, &event->wait); |
3020 | spin_lock(&cgrp->event_list_lock); | 3019 | spin_lock(&cgrp->event_list_lock); |
3021 | list_del(&event->list); | 3020 | list_del(&event->list); |
3022 | spin_unlock(&cgrp->event_list_lock); | 3021 | spin_unlock(&cgrp->event_list_lock); |
@@ -3615,7 +3614,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss) | |||
3615 | * @ss: the subsystem to load | 3614 | * @ss: the subsystem to load |
3616 | * | 3615 | * |
3617 | * This function should be called in a modular subsystem's initcall. If the | 3616 | * This function should be called in a modular subsystem's initcall. If the |
3618 | * subsytem is built as a module, it will be assigned a new subsys_id and set | 3617 | * subsystem is built as a module, it will be assigned a new subsys_id and set |
3619 | * up for use. If the subsystem is built-in anyway, work is delegated to the | 3618 | * up for use. If the subsystem is built-in anyway, work is delegated to the |
3620 | * simpler cgroup_init_subsys. | 3619 | * simpler cgroup_init_subsys. |
3621 | */ | 3620 | */ |
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index e5c0244962b0..ce71ed53e88f 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
@@ -89,10 +89,10 @@ struct cgroup_subsys freezer_subsys; | |||
89 | 89 | ||
90 | /* Locks taken and their ordering | 90 | /* Locks taken and their ordering |
91 | * ------------------------------ | 91 | * ------------------------------ |
92 | * css_set_lock | ||
93 | * cgroup_mutex (AKA cgroup_lock) | 92 | * cgroup_mutex (AKA cgroup_lock) |
94 | * task->alloc_lock (AKA task_lock) | ||
95 | * freezer->lock | 93 | * freezer->lock |
94 | * css_set_lock | ||
95 | * task->alloc_lock (AKA task_lock) | ||
96 | * task->sighand->siglock | 96 | * task->sighand->siglock |
97 | * | 97 | * |
98 | * cgroup code forces css_set_lock to be taken before task->alloc_lock | 98 | * cgroup code forces css_set_lock to be taken before task->alloc_lock |
@@ -100,33 +100,38 @@ struct cgroup_subsys freezer_subsys; | |||
100 | * freezer_create(), freezer_destroy(): | 100 | * freezer_create(), freezer_destroy(): |
101 | * cgroup_mutex [ by cgroup core ] | 101 | * cgroup_mutex [ by cgroup core ] |
102 | * | 102 | * |
103 | * can_attach(): | 103 | * freezer_can_attach(): |
104 | * cgroup_mutex | 104 | * cgroup_mutex (held by caller of can_attach) |
105 | * | 105 | * |
106 | * cgroup_frozen(): | 106 | * cgroup_freezing_or_frozen(): |
107 | * task->alloc_lock (to get task's cgroup) | 107 | * task->alloc_lock (to get task's cgroup) |
108 | * | 108 | * |
109 | * freezer_fork() (preserving fork() performance means can't take cgroup_mutex): | 109 | * freezer_fork() (preserving fork() performance means can't take cgroup_mutex): |
110 | * task->alloc_lock (to get task's cgroup) | ||
111 | * freezer->lock | 110 | * freezer->lock |
112 | * sighand->siglock (if the cgroup is freezing) | 111 | * sighand->siglock (if the cgroup is freezing) |
113 | * | 112 | * |
114 | * freezer_read(): | 113 | * freezer_read(): |
115 | * cgroup_mutex | 114 | * cgroup_mutex |
116 | * freezer->lock | 115 | * freezer->lock |
116 | * write_lock css_set_lock (cgroup iterator start) | ||
117 | * task->alloc_lock | ||
117 | * read_lock css_set_lock (cgroup iterator start) | 118 | * read_lock css_set_lock (cgroup iterator start) |
118 | * | 119 | * |
119 | * freezer_write() (freeze): | 120 | * freezer_write() (freeze): |
120 | * cgroup_mutex | 121 | * cgroup_mutex |
121 | * freezer->lock | 122 | * freezer->lock |
123 | * write_lock css_set_lock (cgroup iterator start) | ||
124 | * task->alloc_lock | ||
122 | * read_lock css_set_lock (cgroup iterator start) | 125 | * read_lock css_set_lock (cgroup iterator start) |
123 | * sighand->siglock | 126 | * sighand->siglock (fake signal delivery inside freeze_task()) |
124 | * | 127 | * |
125 | * freezer_write() (unfreeze): | 128 | * freezer_write() (unfreeze): |
126 | * cgroup_mutex | 129 | * cgroup_mutex |
127 | * freezer->lock | 130 | * freezer->lock |
131 | * write_lock css_set_lock (cgroup iterator start) | ||
132 | * task->alloc_lock | ||
128 | * read_lock css_set_lock (cgroup iterator start) | 133 | * read_lock css_set_lock (cgroup iterator start) |
129 | * task->alloc_lock (to prevent races with freeze_task()) | 134 | * task->alloc_lock (inside thaw_process(), prevents race with refrigerator()) |
130 | * sighand->siglock | 135 | * sighand->siglock |
131 | */ | 136 | */ |
132 | static struct cgroup_subsys_state *freezer_create(struct cgroup_subsys *ss, | 137 | static struct cgroup_subsys_state *freezer_create(struct cgroup_subsys *ss, |
diff --git a/kernel/compat.c b/kernel/compat.c index 7f40e9275fd9..5adab05a3172 100644 --- a/kernel/compat.c +++ b/kernel/compat.c | |||
@@ -495,29 +495,26 @@ asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, | |||
495 | { | 495 | { |
496 | int ret; | 496 | int ret; |
497 | cpumask_var_t mask; | 497 | cpumask_var_t mask; |
498 | unsigned long *k; | ||
499 | unsigned int min_length = cpumask_size(); | ||
500 | |||
501 | if (nr_cpu_ids <= BITS_PER_COMPAT_LONG) | ||
502 | min_length = sizeof(compat_ulong_t); | ||
503 | 498 | ||
504 | if (len < min_length) | 499 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
500 | return -EINVAL; | ||
501 | if (len & (sizeof(compat_ulong_t)-1)) | ||
505 | return -EINVAL; | 502 | return -EINVAL; |
506 | 503 | ||
507 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 504 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
508 | return -ENOMEM; | 505 | return -ENOMEM; |
509 | 506 | ||
510 | ret = sched_getaffinity(pid, mask); | 507 | ret = sched_getaffinity(pid, mask); |
511 | if (ret < 0) | 508 | if (ret == 0) { |
512 | goto out; | 509 | size_t retlen = min_t(size_t, len, cpumask_size()); |
513 | 510 | ||
514 | k = cpumask_bits(mask); | 511 | if (compat_put_bitmap(user_mask_ptr, cpumask_bits(mask), retlen * 8)) |
515 | ret = compat_put_bitmap(user_mask_ptr, k, min_length * 8); | 512 | ret = -EFAULT; |
516 | if (ret == 0) | 513 | else |
517 | ret = min_length; | 514 | ret = retlen; |
518 | 515 | } | |
519 | out: | ||
520 | free_cpumask_var(mask); | 516 | free_cpumask_var(mask); |
517 | |||
521 | return ret; | 518 | return ret; |
522 | } | 519 | } |
523 | 520 | ||
diff --git a/kernel/cpu.c b/kernel/cpu.c index 25bba73b1be3..3097382eb44a 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -20,6 +20,20 @@ | |||
20 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ | 20 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ |
21 | static DEFINE_MUTEX(cpu_add_remove_lock); | 21 | static DEFINE_MUTEX(cpu_add_remove_lock); |
22 | 22 | ||
23 | /* | ||
24 | * The following two API's must be used when attempting | ||
25 | * to serialize the updates to cpu_online_mask, cpu_present_mask. | ||
26 | */ | ||
27 | void cpu_maps_update_begin(void) | ||
28 | { | ||
29 | mutex_lock(&cpu_add_remove_lock); | ||
30 | } | ||
31 | |||
32 | void cpu_maps_update_done(void) | ||
33 | { | ||
34 | mutex_unlock(&cpu_add_remove_lock); | ||
35 | } | ||
36 | |||
23 | static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); | 37 | static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); |
24 | 38 | ||
25 | /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. | 39 | /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. |
@@ -27,6 +41,8 @@ static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); | |||
27 | */ | 41 | */ |
28 | static int cpu_hotplug_disabled; | 42 | static int cpu_hotplug_disabled; |
29 | 43 | ||
44 | #ifdef CONFIG_HOTPLUG_CPU | ||
45 | |||
30 | static struct { | 46 | static struct { |
31 | struct task_struct *active_writer; | 47 | struct task_struct *active_writer; |
32 | struct mutex lock; /* Synchronizes accesses to refcount, */ | 48 | struct mutex lock; /* Synchronizes accesses to refcount, */ |
@@ -41,8 +57,6 @@ static struct { | |||
41 | .refcount = 0, | 57 | .refcount = 0, |
42 | }; | 58 | }; |
43 | 59 | ||
44 | #ifdef CONFIG_HOTPLUG_CPU | ||
45 | |||
46 | void get_online_cpus(void) | 60 | void get_online_cpus(void) |
47 | { | 61 | { |
48 | might_sleep(); | 62 | might_sleep(); |
@@ -67,22 +81,6 @@ void put_online_cpus(void) | |||
67 | } | 81 | } |
68 | EXPORT_SYMBOL_GPL(put_online_cpus); | 82 | EXPORT_SYMBOL_GPL(put_online_cpus); |
69 | 83 | ||
70 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
71 | |||
72 | /* | ||
73 | * The following two API's must be used when attempting | ||
74 | * to serialize the updates to cpu_online_mask, cpu_present_mask. | ||
75 | */ | ||
76 | void cpu_maps_update_begin(void) | ||
77 | { | ||
78 | mutex_lock(&cpu_add_remove_lock); | ||
79 | } | ||
80 | |||
81 | void cpu_maps_update_done(void) | ||
82 | { | ||
83 | mutex_unlock(&cpu_add_remove_lock); | ||
84 | } | ||
85 | |||
86 | /* | 84 | /* |
87 | * This ensures that the hotplug operation can begin only when the | 85 | * This ensures that the hotplug operation can begin only when the |
88 | * refcount goes to zero. | 86 | * refcount goes to zero. |
@@ -124,6 +122,12 @@ static void cpu_hotplug_done(void) | |||
124 | cpu_hotplug.active_writer = NULL; | 122 | cpu_hotplug.active_writer = NULL; |
125 | mutex_unlock(&cpu_hotplug.lock); | 123 | mutex_unlock(&cpu_hotplug.lock); |
126 | } | 124 | } |
125 | |||
126 | #else /* #if CONFIG_HOTPLUG_CPU */ | ||
127 | static void cpu_hotplug_begin(void) {} | ||
128 | static void cpu_hotplug_done(void) {} | ||
129 | #endif /* #esle #if CONFIG_HOTPLUG_CPU */ | ||
130 | |||
127 | /* Need to know about CPUs going up/down? */ | 131 | /* Need to know about CPUs going up/down? */ |
128 | int __ref register_cpu_notifier(struct notifier_block *nb) | 132 | int __ref register_cpu_notifier(struct notifier_block *nb) |
129 | { | 133 | { |
@@ -134,8 +138,29 @@ int __ref register_cpu_notifier(struct notifier_block *nb) | |||
134 | return ret; | 138 | return ret; |
135 | } | 139 | } |
136 | 140 | ||
141 | static int __cpu_notify(unsigned long val, void *v, int nr_to_call, | ||
142 | int *nr_calls) | ||
143 | { | ||
144 | int ret; | ||
145 | |||
146 | ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, | ||
147 | nr_calls); | ||
148 | |||
149 | return notifier_to_errno(ret); | ||
150 | } | ||
151 | |||
152 | static int cpu_notify(unsigned long val, void *v) | ||
153 | { | ||
154 | return __cpu_notify(val, v, -1, NULL); | ||
155 | } | ||
156 | |||
137 | #ifdef CONFIG_HOTPLUG_CPU | 157 | #ifdef CONFIG_HOTPLUG_CPU |
138 | 158 | ||
159 | static void cpu_notify_nofail(unsigned long val, void *v) | ||
160 | { | ||
161 | BUG_ON(cpu_notify(val, v)); | ||
162 | } | ||
163 | |||
139 | EXPORT_SYMBOL(register_cpu_notifier); | 164 | EXPORT_SYMBOL(register_cpu_notifier); |
140 | 165 | ||
141 | void __ref unregister_cpu_notifier(struct notifier_block *nb) | 166 | void __ref unregister_cpu_notifier(struct notifier_block *nb) |
@@ -164,6 +189,7 @@ static inline void check_for_tasks(int cpu) | |||
164 | } | 189 | } |
165 | 190 | ||
166 | struct take_cpu_down_param { | 191 | struct take_cpu_down_param { |
192 | struct task_struct *caller; | ||
167 | unsigned long mod; | 193 | unsigned long mod; |
168 | void *hcpu; | 194 | void *hcpu; |
169 | }; | 195 | }; |
@@ -172,6 +198,7 @@ struct take_cpu_down_param { | |||
172 | static int __ref take_cpu_down(void *_param) | 198 | static int __ref take_cpu_down(void *_param) |
173 | { | 199 | { |
174 | struct take_cpu_down_param *param = _param; | 200 | struct take_cpu_down_param *param = _param; |
201 | unsigned int cpu = (unsigned long)param->hcpu; | ||
175 | int err; | 202 | int err; |
176 | 203 | ||
177 | /* Ensure this CPU doesn't handle any more interrupts. */ | 204 | /* Ensure this CPU doesn't handle any more interrupts. */ |
@@ -179,9 +206,10 @@ static int __ref take_cpu_down(void *_param) | |||
179 | if (err < 0) | 206 | if (err < 0) |
180 | return err; | 207 | return err; |
181 | 208 | ||
182 | raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, | 209 | cpu_notify(CPU_DYING | param->mod, param->hcpu); |
183 | param->hcpu); | ||
184 | 210 | ||
211 | if (task_cpu(param->caller) == cpu) | ||
212 | move_task_off_dead_cpu(cpu, param->caller); | ||
185 | /* Force idle task to run as soon as we yield: it should | 213 | /* Force idle task to run as soon as we yield: it should |
186 | immediately notice cpu is offline and die quickly. */ | 214 | immediately notice cpu is offline and die quickly. */ |
187 | sched_idle_next(); | 215 | sched_idle_next(); |
@@ -192,10 +220,10 @@ static int __ref take_cpu_down(void *_param) | |||
192 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | 220 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) |
193 | { | 221 | { |
194 | int err, nr_calls = 0; | 222 | int err, nr_calls = 0; |
195 | cpumask_var_t old_allowed; | ||
196 | void *hcpu = (void *)(long)cpu; | 223 | void *hcpu = (void *)(long)cpu; |
197 | unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; | 224 | unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; |
198 | struct take_cpu_down_param tcd_param = { | 225 | struct take_cpu_down_param tcd_param = { |
226 | .caller = current, | ||
199 | .mod = mod, | 227 | .mod = mod, |
200 | .hcpu = hcpu, | 228 | .hcpu = hcpu, |
201 | }; | 229 | }; |
@@ -206,38 +234,26 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
206 | if (!cpu_online(cpu)) | 234 | if (!cpu_online(cpu)) |
207 | return -EINVAL; | 235 | return -EINVAL; |
208 | 236 | ||
209 | if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) | ||
210 | return -ENOMEM; | ||
211 | |||
212 | cpu_hotplug_begin(); | 237 | cpu_hotplug_begin(); |
213 | set_cpu_active(cpu, false); | 238 | set_cpu_active(cpu, false); |
214 | err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, | 239 | err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); |
215 | hcpu, -1, &nr_calls); | 240 | if (err) { |
216 | if (err == NOTIFY_BAD) { | ||
217 | set_cpu_active(cpu, true); | 241 | set_cpu_active(cpu, true); |
218 | 242 | ||
219 | nr_calls--; | 243 | nr_calls--; |
220 | __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, | 244 | __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); |
221 | hcpu, nr_calls, NULL); | ||
222 | printk("%s: attempt to take down CPU %u failed\n", | 245 | printk("%s: attempt to take down CPU %u failed\n", |
223 | __func__, cpu); | 246 | __func__, cpu); |
224 | err = -EINVAL; | ||
225 | goto out_release; | 247 | goto out_release; |
226 | } | 248 | } |
227 | 249 | ||
228 | /* Ensure that we are not runnable on dying cpu */ | ||
229 | cpumask_copy(old_allowed, ¤t->cpus_allowed); | ||
230 | set_cpus_allowed_ptr(current, cpu_active_mask); | ||
231 | |||
232 | err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); | 250 | err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); |
233 | if (err) { | 251 | if (err) { |
234 | set_cpu_active(cpu, true); | 252 | set_cpu_active(cpu, true); |
235 | /* CPU didn't die: tell everyone. Can't complain. */ | 253 | /* CPU didn't die: tell everyone. Can't complain. */ |
236 | if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, | 254 | cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); |
237 | hcpu) == NOTIFY_BAD) | ||
238 | BUG(); | ||
239 | 255 | ||
240 | goto out_allowed; | 256 | goto out_release; |
241 | } | 257 | } |
242 | BUG_ON(cpu_online(cpu)); | 258 | BUG_ON(cpu_online(cpu)); |
243 | 259 | ||
@@ -249,22 +265,14 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
249 | __cpu_die(cpu); | 265 | __cpu_die(cpu); |
250 | 266 | ||
251 | /* CPU is completely dead: tell everyone. Too late to complain. */ | 267 | /* CPU is completely dead: tell everyone. Too late to complain. */ |
252 | if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod, | 268 | cpu_notify_nofail(CPU_DEAD | mod, hcpu); |
253 | hcpu) == NOTIFY_BAD) | ||
254 | BUG(); | ||
255 | 269 | ||
256 | check_for_tasks(cpu); | 270 | check_for_tasks(cpu); |
257 | 271 | ||
258 | out_allowed: | ||
259 | set_cpus_allowed_ptr(current, old_allowed); | ||
260 | out_release: | 272 | out_release: |
261 | cpu_hotplug_done(); | 273 | cpu_hotplug_done(); |
262 | if (!err) { | 274 | if (!err) |
263 | if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod, | 275 | cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); |
264 | hcpu) == NOTIFY_BAD) | ||
265 | BUG(); | ||
266 | } | ||
267 | free_cpumask_var(old_allowed); | ||
268 | return err; | 276 | return err; |
269 | } | 277 | } |
270 | 278 | ||
@@ -272,9 +280,6 @@ int __ref cpu_down(unsigned int cpu) | |||
272 | { | 280 | { |
273 | int err; | 281 | int err; |
274 | 282 | ||
275 | err = stop_machine_create(); | ||
276 | if (err) | ||
277 | return err; | ||
278 | cpu_maps_update_begin(); | 283 | cpu_maps_update_begin(); |
279 | 284 | ||
280 | if (cpu_hotplug_disabled) { | 285 | if (cpu_hotplug_disabled) { |
@@ -286,7 +291,6 @@ int __ref cpu_down(unsigned int cpu) | |||
286 | 291 | ||
287 | out: | 292 | out: |
288 | cpu_maps_update_done(); | 293 | cpu_maps_update_done(); |
289 | stop_machine_destroy(); | ||
290 | return err; | 294 | return err; |
291 | } | 295 | } |
292 | EXPORT_SYMBOL(cpu_down); | 296 | EXPORT_SYMBOL(cpu_down); |
@@ -303,13 +307,11 @@ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) | |||
303 | return -EINVAL; | 307 | return -EINVAL; |
304 | 308 | ||
305 | cpu_hotplug_begin(); | 309 | cpu_hotplug_begin(); |
306 | ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu, | 310 | ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); |
307 | -1, &nr_calls); | 311 | if (ret) { |
308 | if (ret == NOTIFY_BAD) { | ||
309 | nr_calls--; | 312 | nr_calls--; |
310 | printk("%s: attempt to bring up CPU %u failed\n", | 313 | printk("%s: attempt to bring up CPU %u failed\n", |
311 | __func__, cpu); | 314 | __func__, cpu); |
312 | ret = -EINVAL; | ||
313 | goto out_notify; | 315 | goto out_notify; |
314 | } | 316 | } |
315 | 317 | ||
@@ -322,12 +324,11 @@ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) | |||
322 | set_cpu_active(cpu, true); | 324 | set_cpu_active(cpu, true); |
323 | 325 | ||
324 | /* Now call notifier in preparation. */ | 326 | /* Now call notifier in preparation. */ |
325 | raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); | 327 | cpu_notify(CPU_ONLINE | mod, hcpu); |
326 | 328 | ||
327 | out_notify: | 329 | out_notify: |
328 | if (ret != 0) | 330 | if (ret != 0) |
329 | __raw_notifier_call_chain(&cpu_chain, | 331 | __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); |
330 | CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); | ||
331 | cpu_hotplug_done(); | 332 | cpu_hotplug_done(); |
332 | 333 | ||
333 | return ret; | 334 | return ret; |
@@ -336,6 +337,12 @@ out_notify: | |||
336 | int __cpuinit cpu_up(unsigned int cpu) | 337 | int __cpuinit cpu_up(unsigned int cpu) |
337 | { | 338 | { |
338 | int err = 0; | 339 | int err = 0; |
340 | |||
341 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
342 | int nid; | ||
343 | pg_data_t *pgdat; | ||
344 | #endif | ||
345 | |||
339 | if (!cpu_possible(cpu)) { | 346 | if (!cpu_possible(cpu)) { |
340 | printk(KERN_ERR "can't online cpu %d because it is not " | 347 | printk(KERN_ERR "can't online cpu %d because it is not " |
341 | "configured as may-hotadd at boot time\n", cpu); | 348 | "configured as may-hotadd at boot time\n", cpu); |
@@ -346,6 +353,28 @@ int __cpuinit cpu_up(unsigned int cpu) | |||
346 | return -EINVAL; | 353 | return -EINVAL; |
347 | } | 354 | } |
348 | 355 | ||
356 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
357 | nid = cpu_to_node(cpu); | ||
358 | if (!node_online(nid)) { | ||
359 | err = mem_online_node(nid); | ||
360 | if (err) | ||
361 | return err; | ||
362 | } | ||
363 | |||
364 | pgdat = NODE_DATA(nid); | ||
365 | if (!pgdat) { | ||
366 | printk(KERN_ERR | ||
367 | "Can't online cpu %d due to NULL pgdat\n", cpu); | ||
368 | return -ENOMEM; | ||
369 | } | ||
370 | |||
371 | if (pgdat->node_zonelists->_zonerefs->zone == NULL) { | ||
372 | mutex_lock(&zonelists_mutex); | ||
373 | build_all_zonelists(NULL); | ||
374 | mutex_unlock(&zonelists_mutex); | ||
375 | } | ||
376 | #endif | ||
377 | |||
349 | cpu_maps_update_begin(); | 378 | cpu_maps_update_begin(); |
350 | 379 | ||
351 | if (cpu_hotplug_disabled) { | 380 | if (cpu_hotplug_disabled) { |
@@ -367,9 +396,6 @@ int disable_nonboot_cpus(void) | |||
367 | { | 396 | { |
368 | int cpu, first_cpu, error; | 397 | int cpu, first_cpu, error; |
369 | 398 | ||
370 | error = stop_machine_create(); | ||
371 | if (error) | ||
372 | return error; | ||
373 | cpu_maps_update_begin(); | 399 | cpu_maps_update_begin(); |
374 | first_cpu = cpumask_first(cpu_online_mask); | 400 | first_cpu = cpumask_first(cpu_online_mask); |
375 | /* | 401 | /* |
@@ -400,7 +426,6 @@ int disable_nonboot_cpus(void) | |||
400 | printk(KERN_ERR "Non-boot CPUs are not disabled\n"); | 426 | printk(KERN_ERR "Non-boot CPUs are not disabled\n"); |
401 | } | 427 | } |
402 | cpu_maps_update_done(); | 428 | cpu_maps_update_done(); |
403 | stop_machine_destroy(); | ||
404 | return error; | 429 | return error; |
405 | } | 430 | } |
406 | 431 | ||
@@ -467,7 +492,7 @@ void __cpuinit notify_cpu_starting(unsigned int cpu) | |||
467 | if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) | 492 | if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) |
468 | val = CPU_STARTING_FROZEN; | 493 | val = CPU_STARTING_FROZEN; |
469 | #endif /* CONFIG_PM_SLEEP_SMP */ | 494 | #endif /* CONFIG_PM_SLEEP_SMP */ |
470 | raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu); | 495 | cpu_notify(val, (void *)(long)cpu); |
471 | } | 496 | } |
472 | 497 | ||
473 | #endif /* CONFIG_SMP */ | 498 | #endif /* CONFIG_SMP */ |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index d10946748ec2..02b9611eadde 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -946,16 +946,62 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |||
946 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | 946 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, |
947 | * we structure updates as setting all new allowed nodes, then clearing newly | 947 | * we structure updates as setting all new allowed nodes, then clearing newly |
948 | * disallowed ones. | 948 | * disallowed ones. |
949 | * | ||
950 | * Called with task's alloc_lock held | ||
951 | */ | 949 | */ |
952 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | 950 | static void cpuset_change_task_nodemask(struct task_struct *tsk, |
953 | nodemask_t *newmems) | 951 | nodemask_t *newmems) |
954 | { | 952 | { |
953 | repeat: | ||
954 | /* | ||
955 | * Allow tasks that have access to memory reserves because they have | ||
956 | * been OOM killed to get memory anywhere. | ||
957 | */ | ||
958 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | ||
959 | return; | ||
960 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | ||
961 | return; | ||
962 | |||
963 | task_lock(tsk); | ||
955 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); | 964 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
956 | mpol_rebind_task(tsk, &tsk->mems_allowed); | 965 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); |
957 | mpol_rebind_task(tsk, newmems); | 966 | |
967 | |||
968 | /* | ||
969 | * ensure checking ->mems_allowed_change_disable after setting all new | ||
970 | * allowed nodes. | ||
971 | * | ||
972 | * the read-side task can see an nodemask with new allowed nodes and | ||
973 | * old allowed nodes. and if it allocates page when cpuset clears newly | ||
974 | * disallowed ones continuous, it can see the new allowed bits. | ||
975 | * | ||
976 | * And if setting all new allowed nodes is after the checking, setting | ||
977 | * all new allowed nodes and clearing newly disallowed ones will be done | ||
978 | * continuous, and the read-side task may find no node to alloc page. | ||
979 | */ | ||
980 | smp_mb(); | ||
981 | |||
982 | /* | ||
983 | * Allocation of memory is very fast, we needn't sleep when waiting | ||
984 | * for the read-side. | ||
985 | */ | ||
986 | while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) { | ||
987 | task_unlock(tsk); | ||
988 | if (!task_curr(tsk)) | ||
989 | yield(); | ||
990 | goto repeat; | ||
991 | } | ||
992 | |||
993 | /* | ||
994 | * ensure checking ->mems_allowed_change_disable before clearing all new | ||
995 | * disallowed nodes. | ||
996 | * | ||
997 | * if clearing newly disallowed bits before the checking, the read-side | ||
998 | * task may find no node to alloc page. | ||
999 | */ | ||
1000 | smp_mb(); | ||
1001 | |||
1002 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | ||
958 | tsk->mems_allowed = *newmems; | 1003 | tsk->mems_allowed = *newmems; |
1004 | task_unlock(tsk); | ||
959 | } | 1005 | } |
960 | 1006 | ||
961 | /* | 1007 | /* |
@@ -978,9 +1024,7 @@ static void cpuset_change_nodemask(struct task_struct *p, | |||
978 | cs = cgroup_cs(scan->cg); | 1024 | cs = cgroup_cs(scan->cg); |
979 | guarantee_online_mems(cs, newmems); | 1025 | guarantee_online_mems(cs, newmems); |
980 | 1026 | ||
981 | task_lock(p); | ||
982 | cpuset_change_task_nodemask(p, newmems); | 1027 | cpuset_change_task_nodemask(p, newmems); |
983 | task_unlock(p); | ||
984 | 1028 | ||
985 | NODEMASK_FREE(newmems); | 1029 | NODEMASK_FREE(newmems); |
986 | 1030 | ||
@@ -1383,9 +1427,7 @@ static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | |||
1383 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | 1427 | err = set_cpus_allowed_ptr(tsk, cpus_attach); |
1384 | WARN_ON_ONCE(err); | 1428 | WARN_ON_ONCE(err); |
1385 | 1429 | ||
1386 | task_lock(tsk); | ||
1387 | cpuset_change_task_nodemask(tsk, to); | 1430 | cpuset_change_task_nodemask(tsk, to); |
1388 | task_unlock(tsk); | ||
1389 | cpuset_update_task_spread_flag(cs, tsk); | 1431 | cpuset_update_task_spread_flag(cs, tsk); |
1390 | 1432 | ||
1391 | } | 1433 | } |
@@ -2182,19 +2224,52 @@ void __init cpuset_init_smp(void) | |||
2182 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 2224 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
2183 | { | 2225 | { |
2184 | mutex_lock(&callback_mutex); | 2226 | mutex_lock(&callback_mutex); |
2185 | cpuset_cpus_allowed_locked(tsk, pmask); | 2227 | task_lock(tsk); |
2228 | guarantee_online_cpus(task_cs(tsk), pmask); | ||
2229 | task_unlock(tsk); | ||
2186 | mutex_unlock(&callback_mutex); | 2230 | mutex_unlock(&callback_mutex); |
2187 | } | 2231 | } |
2188 | 2232 | ||
2189 | /** | 2233 | int cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
2190 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | ||
2191 | * Must be called with callback_mutex held. | ||
2192 | **/ | ||
2193 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) | ||
2194 | { | 2234 | { |
2195 | task_lock(tsk); | 2235 | const struct cpuset *cs; |
2196 | guarantee_online_cpus(task_cs(tsk), pmask); | 2236 | int cpu; |
2197 | task_unlock(tsk); | 2237 | |
2238 | rcu_read_lock(); | ||
2239 | cs = task_cs(tsk); | ||
2240 | if (cs) | ||
2241 | cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); | ||
2242 | rcu_read_unlock(); | ||
2243 | |||
2244 | /* | ||
2245 | * We own tsk->cpus_allowed, nobody can change it under us. | ||
2246 | * | ||
2247 | * But we used cs && cs->cpus_allowed lockless and thus can | ||
2248 | * race with cgroup_attach_task() or update_cpumask() and get | ||
2249 | * the wrong tsk->cpus_allowed. However, both cases imply the | ||
2250 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | ||
2251 | * which takes task_rq_lock(). | ||
2252 | * | ||
2253 | * If we are called after it dropped the lock we must see all | ||
2254 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | ||
2255 | * set any mask even if it is not right from task_cs() pov, | ||
2256 | * the pending set_cpus_allowed_ptr() will fix things. | ||
2257 | */ | ||
2258 | |||
2259 | cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); | ||
2260 | if (cpu >= nr_cpu_ids) { | ||
2261 | /* | ||
2262 | * Either tsk->cpus_allowed is wrong (see above) or it | ||
2263 | * is actually empty. The latter case is only possible | ||
2264 | * if we are racing with remove_tasks_in_empty_cpuset(). | ||
2265 | * Like above we can temporary set any mask and rely on | ||
2266 | * set_cpus_allowed_ptr() as synchronization point. | ||
2267 | */ | ||
2268 | cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); | ||
2269 | cpu = cpumask_any(cpu_active_mask); | ||
2270 | } | ||
2271 | |||
2272 | return cpu; | ||
2198 | } | 2273 | } |
2199 | 2274 | ||
2200 | void cpuset_init_current_mems_allowed(void) | 2275 | void cpuset_init_current_mems_allowed(void) |
@@ -2383,22 +2458,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | |||
2383 | } | 2458 | } |
2384 | 2459 | ||
2385 | /** | 2460 | /** |
2386 | * cpuset_lock - lock out any changes to cpuset structures | ||
2387 | * | ||
2388 | * The out of memory (oom) code needs to mutex_lock cpusets | ||
2389 | * from being changed while it scans the tasklist looking for a | ||
2390 | * task in an overlapping cpuset. Expose callback_mutex via this | ||
2391 | * cpuset_lock() routine, so the oom code can lock it, before | ||
2392 | * locking the task list. The tasklist_lock is a spinlock, so | ||
2393 | * must be taken inside callback_mutex. | ||
2394 | */ | ||
2395 | |||
2396 | void cpuset_lock(void) | ||
2397 | { | ||
2398 | mutex_lock(&callback_mutex); | ||
2399 | } | ||
2400 | |||
2401 | /** | ||
2402 | * cpuset_unlock - release lock on cpuset changes | 2461 | * cpuset_unlock - release lock on cpuset changes |
2403 | * | 2462 | * |
2404 | * Undo the lock taken in a previous cpuset_lock() call. | 2463 | * Undo the lock taken in a previous cpuset_lock() call. |
@@ -2410,7 +2469,8 @@ void cpuset_unlock(void) | |||
2410 | } | 2469 | } |
2411 | 2470 | ||
2412 | /** | 2471 | /** |
2413 | * cpuset_mem_spread_node() - On which node to begin search for a page | 2472 | * cpuset_mem_spread_node() - On which node to begin search for a file page |
2473 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | ||
2414 | * | 2474 | * |
2415 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 2475 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for |
2416 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | 2476 | * tasks in a cpuset with is_spread_page or is_spread_slab set), |
@@ -2435,16 +2495,27 @@ void cpuset_unlock(void) | |||
2435 | * See kmem_cache_alloc_node(). | 2495 | * See kmem_cache_alloc_node(). |
2436 | */ | 2496 | */ |
2437 | 2497 | ||
2438 | int cpuset_mem_spread_node(void) | 2498 | static int cpuset_spread_node(int *rotor) |
2439 | { | 2499 | { |
2440 | int node; | 2500 | int node; |
2441 | 2501 | ||
2442 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | 2502 | node = next_node(*rotor, current->mems_allowed); |
2443 | if (node == MAX_NUMNODES) | 2503 | if (node == MAX_NUMNODES) |
2444 | node = first_node(current->mems_allowed); | 2504 | node = first_node(current->mems_allowed); |
2445 | current->cpuset_mem_spread_rotor = node; | 2505 | *rotor = node; |
2446 | return node; | 2506 | return node; |
2447 | } | 2507 | } |
2508 | |||
2509 | int cpuset_mem_spread_node(void) | ||
2510 | { | ||
2511 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | ||
2512 | } | ||
2513 | |||
2514 | int cpuset_slab_spread_node(void) | ||
2515 | { | ||
2516 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | ||
2517 | } | ||
2518 | |||
2448 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 2519 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
2449 | 2520 | ||
2450 | /** | 2521 | /** |
diff --git a/kernel/cred-internals.h b/kernel/cred-internals.h deleted file mode 100644 index 2dc4fc2d0bf1..000000000000 --- a/kernel/cred-internals.h +++ /dev/null | |||
@@ -1,21 +0,0 @@ | |||
1 | /* Internal credentials stuff | ||
2 | * | ||
3 | * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. | ||
4 | * Written by David Howells (dhowells@redhat.com) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public Licence | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the Licence, or (at your option) any later version. | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | * user.c | ||
14 | */ | ||
15 | static inline void sched_switch_user(struct task_struct *p) | ||
16 | { | ||
17 | #ifdef CONFIG_USER_SCHED | ||
18 | sched_move_task(p); | ||
19 | #endif /* CONFIG_USER_SCHED */ | ||
20 | } | ||
21 | |||
diff --git a/kernel/cred.c b/kernel/cred.c index 62af1816c235..a2d5504fbcc2 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -17,7 +17,6 @@ | |||
17 | #include <linux/init_task.h> | 17 | #include <linux/init_task.h> |
18 | #include <linux/security.h> | 18 | #include <linux/security.h> |
19 | #include <linux/cn_proc.h> | 19 | #include <linux/cn_proc.h> |
20 | #include "cred-internals.h" | ||
21 | 20 | ||
22 | #if 0 | 21 | #if 0 |
23 | #define kdebug(FMT, ...) \ | 22 | #define kdebug(FMT, ...) \ |
@@ -348,66 +347,6 @@ struct cred *prepare_exec_creds(void) | |||
348 | } | 347 | } |
349 | 348 | ||
350 | /* | 349 | /* |
351 | * prepare new credentials for the usermode helper dispatcher | ||
352 | */ | ||
353 | struct cred *prepare_usermodehelper_creds(void) | ||
354 | { | ||
355 | #ifdef CONFIG_KEYS | ||
356 | struct thread_group_cred *tgcred = NULL; | ||
357 | #endif | ||
358 | struct cred *new; | ||
359 | |||
360 | #ifdef CONFIG_KEYS | ||
361 | tgcred = kzalloc(sizeof(*new->tgcred), GFP_ATOMIC); | ||
362 | if (!tgcred) | ||
363 | return NULL; | ||
364 | #endif | ||
365 | |||
366 | new = kmem_cache_alloc(cred_jar, GFP_ATOMIC); | ||
367 | if (!new) | ||
368 | goto free_tgcred; | ||
369 | |||
370 | kdebug("prepare_usermodehelper_creds() alloc %p", new); | ||
371 | |||
372 | memcpy(new, &init_cred, sizeof(struct cred)); | ||
373 | |||
374 | atomic_set(&new->usage, 1); | ||
375 | set_cred_subscribers(new, 0); | ||
376 | get_group_info(new->group_info); | ||
377 | get_uid(new->user); | ||
378 | |||
379 | #ifdef CONFIG_KEYS | ||
380 | new->thread_keyring = NULL; | ||
381 | new->request_key_auth = NULL; | ||
382 | new->jit_keyring = KEY_REQKEY_DEFL_DEFAULT; | ||
383 | |||
384 | atomic_set(&tgcred->usage, 1); | ||
385 | spin_lock_init(&tgcred->lock); | ||
386 | new->tgcred = tgcred; | ||
387 | #endif | ||
388 | |||
389 | #ifdef CONFIG_SECURITY | ||
390 | new->security = NULL; | ||
391 | #endif | ||
392 | if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) | ||
393 | goto error; | ||
394 | validate_creds(new); | ||
395 | |||
396 | BUG_ON(atomic_read(&new->usage) != 1); | ||
397 | return new; | ||
398 | |||
399 | error: | ||
400 | put_cred(new); | ||
401 | return NULL; | ||
402 | |||
403 | free_tgcred: | ||
404 | #ifdef CONFIG_KEYS | ||
405 | kfree(tgcred); | ||
406 | #endif | ||
407 | return NULL; | ||
408 | } | ||
409 | |||
410 | /* | ||
411 | * Copy credentials for the new process created by fork() | 350 | * Copy credentials for the new process created by fork() |
412 | * | 351 | * |
413 | * We share if we can, but under some circumstances we have to generate a new | 352 | * We share if we can, but under some circumstances we have to generate a new |
@@ -523,8 +462,6 @@ int commit_creds(struct cred *new) | |||
523 | #endif | 462 | #endif |
524 | BUG_ON(atomic_read(&new->usage) < 1); | 463 | BUG_ON(atomic_read(&new->usage) < 1); |
525 | 464 | ||
526 | security_commit_creds(new, old); | ||
527 | |||
528 | get_cred(new); /* we will require a ref for the subj creds too */ | 465 | get_cred(new); /* we will require a ref for the subj creds too */ |
529 | 466 | ||
530 | /* dumpability changes */ | 467 | /* dumpability changes */ |
@@ -560,8 +497,6 @@ int commit_creds(struct cred *new) | |||
560 | atomic_dec(&old->user->processes); | 497 | atomic_dec(&old->user->processes); |
561 | alter_cred_subscribers(old, -2); | 498 | alter_cred_subscribers(old, -2); |
562 | 499 | ||
563 | sched_switch_user(task); | ||
564 | |||
565 | /* send notifications */ | 500 | /* send notifications */ |
566 | if (new->uid != old->uid || | 501 | if (new->uid != old->uid || |
567 | new->euid != old->euid || | 502 | new->euid != old->euid || |
diff --git a/kernel/debug/Makefile b/kernel/debug/Makefile new file mode 100644 index 000000000000..a85edc339985 --- /dev/null +++ b/kernel/debug/Makefile | |||
@@ -0,0 +1,6 @@ | |||
1 | # | ||
2 | # Makefile for the linux kernel debugger | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_KGDB) += debug_core.o gdbstub.o | ||
6 | obj-$(CONFIG_KGDB_KDB) += kdb/ | ||
diff --git a/kernel/debug/debug_core.c b/kernel/debug/debug_core.c new file mode 100644 index 000000000000..5cb7cd1de10c --- /dev/null +++ b/kernel/debug/debug_core.c | |||
@@ -0,0 +1,983 @@ | |||
1 | /* | ||
2 | * Kernel Debug Core | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2009 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | #include <linux/pid_namespace.h> | ||
31 | #include <linux/clocksource.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/console.h> | ||
35 | #include <linux/threads.h> | ||
36 | #include <linux/uaccess.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/module.h> | ||
39 | #include <linux/ptrace.h> | ||
40 | #include <linux/string.h> | ||
41 | #include <linux/delay.h> | ||
42 | #include <linux/sched.h> | ||
43 | #include <linux/sysrq.h> | ||
44 | #include <linux/init.h> | ||
45 | #include <linux/kgdb.h> | ||
46 | #include <linux/kdb.h> | ||
47 | #include <linux/pid.h> | ||
48 | #include <linux/smp.h> | ||
49 | #include <linux/mm.h> | ||
50 | |||
51 | #include <asm/cacheflush.h> | ||
52 | #include <asm/byteorder.h> | ||
53 | #include <asm/atomic.h> | ||
54 | #include <asm/system.h> | ||
55 | |||
56 | #include "debug_core.h" | ||
57 | |||
58 | static int kgdb_break_asap; | ||
59 | |||
60 | struct debuggerinfo_struct kgdb_info[NR_CPUS]; | ||
61 | |||
62 | /** | ||
63 | * kgdb_connected - Is a host GDB connected to us? | ||
64 | */ | ||
65 | int kgdb_connected; | ||
66 | EXPORT_SYMBOL_GPL(kgdb_connected); | ||
67 | |||
68 | /* All the KGDB handlers are installed */ | ||
69 | int kgdb_io_module_registered; | ||
70 | |||
71 | /* Guard for recursive entry */ | ||
72 | static int exception_level; | ||
73 | |||
74 | struct kgdb_io *dbg_io_ops; | ||
75 | static DEFINE_SPINLOCK(kgdb_registration_lock); | ||
76 | |||
77 | /* kgdb console driver is loaded */ | ||
78 | static int kgdb_con_registered; | ||
79 | /* determine if kgdb console output should be used */ | ||
80 | static int kgdb_use_con; | ||
81 | /* Flag for alternate operations for early debugging */ | ||
82 | bool dbg_is_early = true; | ||
83 | /* Next cpu to become the master debug core */ | ||
84 | int dbg_switch_cpu; | ||
85 | |||
86 | /* Use kdb or gdbserver mode */ | ||
87 | int dbg_kdb_mode = 1; | ||
88 | |||
89 | static int __init opt_kgdb_con(char *str) | ||
90 | { | ||
91 | kgdb_use_con = 1; | ||
92 | return 0; | ||
93 | } | ||
94 | |||
95 | early_param("kgdbcon", opt_kgdb_con); | ||
96 | |||
97 | module_param(kgdb_use_con, int, 0644); | ||
98 | |||
99 | /* | ||
100 | * Holds information about breakpoints in a kernel. These breakpoints are | ||
101 | * added and removed by gdb. | ||
102 | */ | ||
103 | static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { | ||
104 | [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } | ||
105 | }; | ||
106 | |||
107 | /* | ||
108 | * The CPU# of the active CPU, or -1 if none: | ||
109 | */ | ||
110 | atomic_t kgdb_active = ATOMIC_INIT(-1); | ||
111 | EXPORT_SYMBOL_GPL(kgdb_active); | ||
112 | |||
113 | /* | ||
114 | * We use NR_CPUs not PERCPU, in case kgdb is used to debug early | ||
115 | * bootup code (which might not have percpu set up yet): | ||
116 | */ | ||
117 | static atomic_t passive_cpu_wait[NR_CPUS]; | ||
118 | static atomic_t cpu_in_kgdb[NR_CPUS]; | ||
119 | static atomic_t kgdb_break_tasklet_var; | ||
120 | atomic_t kgdb_setting_breakpoint; | ||
121 | |||
122 | struct task_struct *kgdb_usethread; | ||
123 | struct task_struct *kgdb_contthread; | ||
124 | |||
125 | int kgdb_single_step; | ||
126 | static pid_t kgdb_sstep_pid; | ||
127 | |||
128 | /* to keep track of the CPU which is doing the single stepping*/ | ||
129 | atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); | ||
130 | |||
131 | /* | ||
132 | * If you are debugging a problem where roundup (the collection of | ||
133 | * all other CPUs) is a problem [this should be extremely rare], | ||
134 | * then use the nokgdbroundup option to avoid roundup. In that case | ||
135 | * the other CPUs might interfere with your debugging context, so | ||
136 | * use this with care: | ||
137 | */ | ||
138 | static int kgdb_do_roundup = 1; | ||
139 | |||
140 | static int __init opt_nokgdbroundup(char *str) | ||
141 | { | ||
142 | kgdb_do_roundup = 0; | ||
143 | |||
144 | return 0; | ||
145 | } | ||
146 | |||
147 | early_param("nokgdbroundup", opt_nokgdbroundup); | ||
148 | |||
149 | /* | ||
150 | * Finally, some KGDB code :-) | ||
151 | */ | ||
152 | |||
153 | /* | ||
154 | * Weak aliases for breakpoint management, | ||
155 | * can be overriden by architectures when needed: | ||
156 | */ | ||
157 | int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | ||
158 | { | ||
159 | int err; | ||
160 | |||
161 | err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); | ||
162 | if (err) | ||
163 | return err; | ||
164 | |||
165 | return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, | ||
166 | BREAK_INSTR_SIZE); | ||
167 | } | ||
168 | |||
169 | int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | ||
170 | { | ||
171 | return probe_kernel_write((char *)addr, | ||
172 | (char *)bundle, BREAK_INSTR_SIZE); | ||
173 | } | ||
174 | |||
175 | int __weak kgdb_validate_break_address(unsigned long addr) | ||
176 | { | ||
177 | char tmp_variable[BREAK_INSTR_SIZE]; | ||
178 | int err; | ||
179 | /* Validate setting the breakpoint and then removing it. In the | ||
180 | * remove fails, the kernel needs to emit a bad message because we | ||
181 | * are deep trouble not being able to put things back the way we | ||
182 | * found them. | ||
183 | */ | ||
184 | err = kgdb_arch_set_breakpoint(addr, tmp_variable); | ||
185 | if (err) | ||
186 | return err; | ||
187 | err = kgdb_arch_remove_breakpoint(addr, tmp_variable); | ||
188 | if (err) | ||
189 | printk(KERN_ERR "KGDB: Critical breakpoint error, kernel " | ||
190 | "memory destroyed at: %lx", addr); | ||
191 | return err; | ||
192 | } | ||
193 | |||
194 | unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) | ||
195 | { | ||
196 | return instruction_pointer(regs); | ||
197 | } | ||
198 | |||
199 | int __weak kgdb_arch_init(void) | ||
200 | { | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | int __weak kgdb_skipexception(int exception, struct pt_regs *regs) | ||
205 | { | ||
206 | return 0; | ||
207 | } | ||
208 | |||
209 | /** | ||
210 | * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. | ||
211 | * @regs: Current &struct pt_regs. | ||
212 | * | ||
213 | * This function will be called if the particular architecture must | ||
214 | * disable hardware debugging while it is processing gdb packets or | ||
215 | * handling exception. | ||
216 | */ | ||
217 | void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | ||
218 | { | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Some architectures need cache flushes when we set/clear a | ||
223 | * breakpoint: | ||
224 | */ | ||
225 | static void kgdb_flush_swbreak_addr(unsigned long addr) | ||
226 | { | ||
227 | if (!CACHE_FLUSH_IS_SAFE) | ||
228 | return; | ||
229 | |||
230 | if (current->mm && current->mm->mmap_cache) { | ||
231 | flush_cache_range(current->mm->mmap_cache, | ||
232 | addr, addr + BREAK_INSTR_SIZE); | ||
233 | } | ||
234 | /* Force flush instruction cache if it was outside the mm */ | ||
235 | flush_icache_range(addr, addr + BREAK_INSTR_SIZE); | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * SW breakpoint management: | ||
240 | */ | ||
241 | int dbg_activate_sw_breakpoints(void) | ||
242 | { | ||
243 | unsigned long addr; | ||
244 | int error; | ||
245 | int ret = 0; | ||
246 | int i; | ||
247 | |||
248 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
249 | if (kgdb_break[i].state != BP_SET) | ||
250 | continue; | ||
251 | |||
252 | addr = kgdb_break[i].bpt_addr; | ||
253 | error = kgdb_arch_set_breakpoint(addr, | ||
254 | kgdb_break[i].saved_instr); | ||
255 | if (error) { | ||
256 | ret = error; | ||
257 | printk(KERN_INFO "KGDB: BP install failed: %lx", addr); | ||
258 | continue; | ||
259 | } | ||
260 | |||
261 | kgdb_flush_swbreak_addr(addr); | ||
262 | kgdb_break[i].state = BP_ACTIVE; | ||
263 | } | ||
264 | return ret; | ||
265 | } | ||
266 | |||
267 | int dbg_set_sw_break(unsigned long addr) | ||
268 | { | ||
269 | int err = kgdb_validate_break_address(addr); | ||
270 | int breakno = -1; | ||
271 | int i; | ||
272 | |||
273 | if (err) | ||
274 | return err; | ||
275 | |||
276 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
277 | if ((kgdb_break[i].state == BP_SET) && | ||
278 | (kgdb_break[i].bpt_addr == addr)) | ||
279 | return -EEXIST; | ||
280 | } | ||
281 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
282 | if (kgdb_break[i].state == BP_REMOVED && | ||
283 | kgdb_break[i].bpt_addr == addr) { | ||
284 | breakno = i; | ||
285 | break; | ||
286 | } | ||
287 | } | ||
288 | |||
289 | if (breakno == -1) { | ||
290 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
291 | if (kgdb_break[i].state == BP_UNDEFINED) { | ||
292 | breakno = i; | ||
293 | break; | ||
294 | } | ||
295 | } | ||
296 | } | ||
297 | |||
298 | if (breakno == -1) | ||
299 | return -E2BIG; | ||
300 | |||
301 | kgdb_break[breakno].state = BP_SET; | ||
302 | kgdb_break[breakno].type = BP_BREAKPOINT; | ||
303 | kgdb_break[breakno].bpt_addr = addr; | ||
304 | |||
305 | return 0; | ||
306 | } | ||
307 | |||
308 | int dbg_deactivate_sw_breakpoints(void) | ||
309 | { | ||
310 | unsigned long addr; | ||
311 | int error; | ||
312 | int ret = 0; | ||
313 | int i; | ||
314 | |||
315 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
316 | if (kgdb_break[i].state != BP_ACTIVE) | ||
317 | continue; | ||
318 | addr = kgdb_break[i].bpt_addr; | ||
319 | error = kgdb_arch_remove_breakpoint(addr, | ||
320 | kgdb_break[i].saved_instr); | ||
321 | if (error) { | ||
322 | printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr); | ||
323 | ret = error; | ||
324 | } | ||
325 | |||
326 | kgdb_flush_swbreak_addr(addr); | ||
327 | kgdb_break[i].state = BP_SET; | ||
328 | } | ||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | int dbg_remove_sw_break(unsigned long addr) | ||
333 | { | ||
334 | int i; | ||
335 | |||
336 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
337 | if ((kgdb_break[i].state == BP_SET) && | ||
338 | (kgdb_break[i].bpt_addr == addr)) { | ||
339 | kgdb_break[i].state = BP_REMOVED; | ||
340 | return 0; | ||
341 | } | ||
342 | } | ||
343 | return -ENOENT; | ||
344 | } | ||
345 | |||
346 | int kgdb_isremovedbreak(unsigned long addr) | ||
347 | { | ||
348 | int i; | ||
349 | |||
350 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
351 | if ((kgdb_break[i].state == BP_REMOVED) && | ||
352 | (kgdb_break[i].bpt_addr == addr)) | ||
353 | return 1; | ||
354 | } | ||
355 | return 0; | ||
356 | } | ||
357 | |||
358 | int dbg_remove_all_break(void) | ||
359 | { | ||
360 | unsigned long addr; | ||
361 | int error; | ||
362 | int i; | ||
363 | |||
364 | /* Clear memory breakpoints. */ | ||
365 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
366 | if (kgdb_break[i].state != BP_ACTIVE) | ||
367 | goto setundefined; | ||
368 | addr = kgdb_break[i].bpt_addr; | ||
369 | error = kgdb_arch_remove_breakpoint(addr, | ||
370 | kgdb_break[i].saved_instr); | ||
371 | if (error) | ||
372 | printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n", | ||
373 | addr); | ||
374 | setundefined: | ||
375 | kgdb_break[i].state = BP_UNDEFINED; | ||
376 | } | ||
377 | |||
378 | /* Clear hardware breakpoints. */ | ||
379 | if (arch_kgdb_ops.remove_all_hw_break) | ||
380 | arch_kgdb_ops.remove_all_hw_break(); | ||
381 | |||
382 | return 0; | ||
383 | } | ||
384 | |||
385 | /* | ||
386 | * Return true if there is a valid kgdb I/O module. Also if no | ||
387 | * debugger is attached a message can be printed to the console about | ||
388 | * waiting for the debugger to attach. | ||
389 | * | ||
390 | * The print_wait argument is only to be true when called from inside | ||
391 | * the core kgdb_handle_exception, because it will wait for the | ||
392 | * debugger to attach. | ||
393 | */ | ||
394 | static int kgdb_io_ready(int print_wait) | ||
395 | { | ||
396 | if (!dbg_io_ops) | ||
397 | return 0; | ||
398 | if (kgdb_connected) | ||
399 | return 1; | ||
400 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
401 | return 1; | ||
402 | if (print_wait) { | ||
403 | #ifdef CONFIG_KGDB_KDB | ||
404 | if (!dbg_kdb_mode) | ||
405 | printk(KERN_CRIT "KGDB: waiting... or $3#33 for KDB\n"); | ||
406 | #else | ||
407 | printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); | ||
408 | #endif | ||
409 | } | ||
410 | return 1; | ||
411 | } | ||
412 | |||
413 | static int kgdb_reenter_check(struct kgdb_state *ks) | ||
414 | { | ||
415 | unsigned long addr; | ||
416 | |||
417 | if (atomic_read(&kgdb_active) != raw_smp_processor_id()) | ||
418 | return 0; | ||
419 | |||
420 | /* Panic on recursive debugger calls: */ | ||
421 | exception_level++; | ||
422 | addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
423 | dbg_deactivate_sw_breakpoints(); | ||
424 | |||
425 | /* | ||
426 | * If the break point removed ok at the place exception | ||
427 | * occurred, try to recover and print a warning to the end | ||
428 | * user because the user planted a breakpoint in a place that | ||
429 | * KGDB needs in order to function. | ||
430 | */ | ||
431 | if (dbg_remove_sw_break(addr) == 0) { | ||
432 | exception_level = 0; | ||
433 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
434 | dbg_activate_sw_breakpoints(); | ||
435 | printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n", | ||
436 | addr); | ||
437 | WARN_ON_ONCE(1); | ||
438 | |||
439 | return 1; | ||
440 | } | ||
441 | dbg_remove_all_break(); | ||
442 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
443 | |||
444 | if (exception_level > 1) { | ||
445 | dump_stack(); | ||
446 | panic("Recursive entry to debugger"); | ||
447 | } | ||
448 | |||
449 | printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); | ||
450 | #ifdef CONFIG_KGDB_KDB | ||
451 | /* Allow kdb to debug itself one level */ | ||
452 | return 0; | ||
453 | #endif | ||
454 | dump_stack(); | ||
455 | panic("Recursive entry to debugger"); | ||
456 | |||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | static void dbg_cpu_switch(int cpu, int next_cpu) | ||
461 | { | ||
462 | /* Mark the cpu we are switching away from as a slave when it | ||
463 | * holds the kgdb_active token. This must be done so that the | ||
464 | * that all the cpus wait in for the debug core will not enter | ||
465 | * again as the master. */ | ||
466 | if (cpu == atomic_read(&kgdb_active)) { | ||
467 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
468 | kgdb_info[cpu].exception_state &= ~DCPU_WANT_MASTER; | ||
469 | } | ||
470 | kgdb_info[next_cpu].exception_state |= DCPU_NEXT_MASTER; | ||
471 | } | ||
472 | |||
473 | static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs) | ||
474 | { | ||
475 | unsigned long flags; | ||
476 | int sstep_tries = 100; | ||
477 | int error; | ||
478 | int i, cpu; | ||
479 | int trace_on = 0; | ||
480 | acquirelock: | ||
481 | /* | ||
482 | * Interrupts will be restored by the 'trap return' code, except when | ||
483 | * single stepping. | ||
484 | */ | ||
485 | local_irq_save(flags); | ||
486 | |||
487 | cpu = ks->cpu; | ||
488 | kgdb_info[cpu].debuggerinfo = regs; | ||
489 | kgdb_info[cpu].task = current; | ||
490 | kgdb_info[cpu].ret_state = 0; | ||
491 | kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; | ||
492 | /* | ||
493 | * Make sure the above info reaches the primary CPU before | ||
494 | * our cpu_in_kgdb[] flag setting does: | ||
495 | */ | ||
496 | atomic_inc(&cpu_in_kgdb[cpu]); | ||
497 | |||
498 | if (exception_level == 1) | ||
499 | goto cpu_master_loop; | ||
500 | |||
501 | /* | ||
502 | * CPU will loop if it is a slave or request to become a kgdb | ||
503 | * master cpu and acquire the kgdb_active lock: | ||
504 | */ | ||
505 | while (1) { | ||
506 | cpu_loop: | ||
507 | if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { | ||
508 | kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; | ||
509 | goto cpu_master_loop; | ||
510 | } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { | ||
511 | if (atomic_cmpxchg(&kgdb_active, -1, cpu) == cpu) | ||
512 | break; | ||
513 | } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { | ||
514 | if (!atomic_read(&passive_cpu_wait[cpu])) | ||
515 | goto return_normal; | ||
516 | } else { | ||
517 | return_normal: | ||
518 | /* Return to normal operation by executing any | ||
519 | * hw breakpoint fixup. | ||
520 | */ | ||
521 | if (arch_kgdb_ops.correct_hw_break) | ||
522 | arch_kgdb_ops.correct_hw_break(); | ||
523 | if (trace_on) | ||
524 | tracing_on(); | ||
525 | atomic_dec(&cpu_in_kgdb[cpu]); | ||
526 | touch_softlockup_watchdog_sync(); | ||
527 | clocksource_touch_watchdog(); | ||
528 | local_irq_restore(flags); | ||
529 | return 0; | ||
530 | } | ||
531 | cpu_relax(); | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * For single stepping, try to only enter on the processor | ||
536 | * that was single stepping. To gaurd against a deadlock, the | ||
537 | * kernel will only try for the value of sstep_tries before | ||
538 | * giving up and continuing on. | ||
539 | */ | ||
540 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && | ||
541 | (kgdb_info[cpu].task && | ||
542 | kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { | ||
543 | atomic_set(&kgdb_active, -1); | ||
544 | touch_softlockup_watchdog_sync(); | ||
545 | clocksource_touch_watchdog(); | ||
546 | local_irq_restore(flags); | ||
547 | |||
548 | goto acquirelock; | ||
549 | } | ||
550 | |||
551 | if (!kgdb_io_ready(1)) { | ||
552 | kgdb_info[cpu].ret_state = 1; | ||
553 | goto kgdb_restore; /* No I/O connection, resume the system */ | ||
554 | } | ||
555 | |||
556 | /* | ||
557 | * Don't enter if we have hit a removed breakpoint. | ||
558 | */ | ||
559 | if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) | ||
560 | goto kgdb_restore; | ||
561 | |||
562 | /* Call the I/O driver's pre_exception routine */ | ||
563 | if (dbg_io_ops->pre_exception) | ||
564 | dbg_io_ops->pre_exception(); | ||
565 | |||
566 | kgdb_disable_hw_debug(ks->linux_regs); | ||
567 | |||
568 | /* | ||
569 | * Get the passive CPU lock which will hold all the non-primary | ||
570 | * CPU in a spin state while the debugger is active | ||
571 | */ | ||
572 | if (!kgdb_single_step) { | ||
573 | for (i = 0; i < NR_CPUS; i++) | ||
574 | atomic_inc(&passive_cpu_wait[i]); | ||
575 | } | ||
576 | |||
577 | #ifdef CONFIG_SMP | ||
578 | /* Signal the other CPUs to enter kgdb_wait() */ | ||
579 | if ((!kgdb_single_step) && kgdb_do_roundup) | ||
580 | kgdb_roundup_cpus(flags); | ||
581 | #endif | ||
582 | |||
583 | /* | ||
584 | * Wait for the other CPUs to be notified and be waiting for us: | ||
585 | */ | ||
586 | for_each_online_cpu(i) { | ||
587 | while (kgdb_do_roundup && !atomic_read(&cpu_in_kgdb[i])) | ||
588 | cpu_relax(); | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * At this point the primary processor is completely | ||
593 | * in the debugger and all secondary CPUs are quiescent | ||
594 | */ | ||
595 | dbg_deactivate_sw_breakpoints(); | ||
596 | kgdb_single_step = 0; | ||
597 | kgdb_contthread = current; | ||
598 | exception_level = 0; | ||
599 | trace_on = tracing_is_on(); | ||
600 | if (trace_on) | ||
601 | tracing_off(); | ||
602 | |||
603 | while (1) { | ||
604 | cpu_master_loop: | ||
605 | if (dbg_kdb_mode) { | ||
606 | kgdb_connected = 1; | ||
607 | error = kdb_stub(ks); | ||
608 | } else { | ||
609 | error = gdb_serial_stub(ks); | ||
610 | } | ||
611 | |||
612 | if (error == DBG_PASS_EVENT) { | ||
613 | dbg_kdb_mode = !dbg_kdb_mode; | ||
614 | kgdb_connected = 0; | ||
615 | } else if (error == DBG_SWITCH_CPU_EVENT) { | ||
616 | dbg_cpu_switch(cpu, dbg_switch_cpu); | ||
617 | goto cpu_loop; | ||
618 | } else { | ||
619 | kgdb_info[cpu].ret_state = error; | ||
620 | break; | ||
621 | } | ||
622 | } | ||
623 | |||
624 | /* Call the I/O driver's post_exception routine */ | ||
625 | if (dbg_io_ops->post_exception) | ||
626 | dbg_io_ops->post_exception(); | ||
627 | |||
628 | atomic_dec(&cpu_in_kgdb[ks->cpu]); | ||
629 | |||
630 | if (!kgdb_single_step) { | ||
631 | for (i = NR_CPUS-1; i >= 0; i--) | ||
632 | atomic_dec(&passive_cpu_wait[i]); | ||
633 | /* | ||
634 | * Wait till all the CPUs have quit from the debugger, | ||
635 | * but allow a CPU that hit an exception and is | ||
636 | * waiting to become the master to remain in the debug | ||
637 | * core. | ||
638 | */ | ||
639 | for_each_online_cpu(i) { | ||
640 | while (kgdb_do_roundup && | ||
641 | atomic_read(&cpu_in_kgdb[i]) && | ||
642 | !(kgdb_info[i].exception_state & | ||
643 | DCPU_WANT_MASTER)) | ||
644 | cpu_relax(); | ||
645 | } | ||
646 | } | ||
647 | |||
648 | kgdb_restore: | ||
649 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { | ||
650 | int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); | ||
651 | if (kgdb_info[sstep_cpu].task) | ||
652 | kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; | ||
653 | else | ||
654 | kgdb_sstep_pid = 0; | ||
655 | } | ||
656 | if (trace_on) | ||
657 | tracing_on(); | ||
658 | /* Free kgdb_active */ | ||
659 | atomic_set(&kgdb_active, -1); | ||
660 | touch_softlockup_watchdog_sync(); | ||
661 | clocksource_touch_watchdog(); | ||
662 | local_irq_restore(flags); | ||
663 | |||
664 | return kgdb_info[cpu].ret_state; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * kgdb_handle_exception() - main entry point from a kernel exception | ||
669 | * | ||
670 | * Locking hierarchy: | ||
671 | * interface locks, if any (begin_session) | ||
672 | * kgdb lock (kgdb_active) | ||
673 | */ | ||
674 | int | ||
675 | kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) | ||
676 | { | ||
677 | struct kgdb_state kgdb_var; | ||
678 | struct kgdb_state *ks = &kgdb_var; | ||
679 | int ret; | ||
680 | |||
681 | ks->cpu = raw_smp_processor_id(); | ||
682 | ks->ex_vector = evector; | ||
683 | ks->signo = signo; | ||
684 | ks->err_code = ecode; | ||
685 | ks->kgdb_usethreadid = 0; | ||
686 | ks->linux_regs = regs; | ||
687 | |||
688 | if (kgdb_reenter_check(ks)) | ||
689 | return 0; /* Ouch, double exception ! */ | ||
690 | kgdb_info[ks->cpu].exception_state |= DCPU_WANT_MASTER; | ||
691 | ret = kgdb_cpu_enter(ks, regs); | ||
692 | kgdb_info[ks->cpu].exception_state &= ~(DCPU_WANT_MASTER | | ||
693 | DCPU_IS_SLAVE); | ||
694 | return ret; | ||
695 | } | ||
696 | |||
697 | int kgdb_nmicallback(int cpu, void *regs) | ||
698 | { | ||
699 | #ifdef CONFIG_SMP | ||
700 | struct kgdb_state kgdb_var; | ||
701 | struct kgdb_state *ks = &kgdb_var; | ||
702 | |||
703 | memset(ks, 0, sizeof(struct kgdb_state)); | ||
704 | ks->cpu = cpu; | ||
705 | ks->linux_regs = regs; | ||
706 | |||
707 | if (!atomic_read(&cpu_in_kgdb[cpu]) && | ||
708 | atomic_read(&kgdb_active) != -1 && | ||
709 | atomic_read(&kgdb_active) != cpu) { | ||
710 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
711 | kgdb_cpu_enter(ks, regs); | ||
712 | kgdb_info[cpu].exception_state &= ~DCPU_IS_SLAVE; | ||
713 | return 0; | ||
714 | } | ||
715 | #endif | ||
716 | return 1; | ||
717 | } | ||
718 | |||
719 | static void kgdb_console_write(struct console *co, const char *s, | ||
720 | unsigned count) | ||
721 | { | ||
722 | unsigned long flags; | ||
723 | |||
724 | /* If we're debugging, or KGDB has not connected, don't try | ||
725 | * and print. */ | ||
726 | if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) | ||
727 | return; | ||
728 | |||
729 | local_irq_save(flags); | ||
730 | gdbstub_msg_write(s, count); | ||
731 | local_irq_restore(flags); | ||
732 | } | ||
733 | |||
734 | static struct console kgdbcons = { | ||
735 | .name = "kgdb", | ||
736 | .write = kgdb_console_write, | ||
737 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
738 | .index = -1, | ||
739 | }; | ||
740 | |||
741 | #ifdef CONFIG_MAGIC_SYSRQ | ||
742 | static void sysrq_handle_dbg(int key, struct tty_struct *tty) | ||
743 | { | ||
744 | if (!dbg_io_ops) { | ||
745 | printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); | ||
746 | return; | ||
747 | } | ||
748 | if (!kgdb_connected) { | ||
749 | #ifdef CONFIG_KGDB_KDB | ||
750 | if (!dbg_kdb_mode) | ||
751 | printk(KERN_CRIT "KGDB or $3#33 for KDB\n"); | ||
752 | #else | ||
753 | printk(KERN_CRIT "Entering KGDB\n"); | ||
754 | #endif | ||
755 | } | ||
756 | |||
757 | kgdb_breakpoint(); | ||
758 | } | ||
759 | |||
760 | static struct sysrq_key_op sysrq_dbg_op = { | ||
761 | .handler = sysrq_handle_dbg, | ||
762 | .help_msg = "debug(G)", | ||
763 | .action_msg = "DEBUG", | ||
764 | }; | ||
765 | #endif | ||
766 | |||
767 | static int kgdb_panic_event(struct notifier_block *self, | ||
768 | unsigned long val, | ||
769 | void *data) | ||
770 | { | ||
771 | if (dbg_kdb_mode) | ||
772 | kdb_printf("PANIC: %s\n", (char *)data); | ||
773 | kgdb_breakpoint(); | ||
774 | return NOTIFY_DONE; | ||
775 | } | ||
776 | |||
777 | static struct notifier_block kgdb_panic_event_nb = { | ||
778 | .notifier_call = kgdb_panic_event, | ||
779 | .priority = INT_MAX, | ||
780 | }; | ||
781 | |||
782 | void __weak kgdb_arch_late(void) | ||
783 | { | ||
784 | } | ||
785 | |||
786 | void __init dbg_late_init(void) | ||
787 | { | ||
788 | dbg_is_early = false; | ||
789 | if (kgdb_io_module_registered) | ||
790 | kgdb_arch_late(); | ||
791 | kdb_init(KDB_INIT_FULL); | ||
792 | } | ||
793 | |||
794 | static void kgdb_register_callbacks(void) | ||
795 | { | ||
796 | if (!kgdb_io_module_registered) { | ||
797 | kgdb_io_module_registered = 1; | ||
798 | kgdb_arch_init(); | ||
799 | if (!dbg_is_early) | ||
800 | kgdb_arch_late(); | ||
801 | atomic_notifier_chain_register(&panic_notifier_list, | ||
802 | &kgdb_panic_event_nb); | ||
803 | #ifdef CONFIG_MAGIC_SYSRQ | ||
804 | register_sysrq_key('g', &sysrq_dbg_op); | ||
805 | #endif | ||
806 | if (kgdb_use_con && !kgdb_con_registered) { | ||
807 | register_console(&kgdbcons); | ||
808 | kgdb_con_registered = 1; | ||
809 | } | ||
810 | } | ||
811 | } | ||
812 | |||
813 | static void kgdb_unregister_callbacks(void) | ||
814 | { | ||
815 | /* | ||
816 | * When this routine is called KGDB should unregister from the | ||
817 | * panic handler and clean up, making sure it is not handling any | ||
818 | * break exceptions at the time. | ||
819 | */ | ||
820 | if (kgdb_io_module_registered) { | ||
821 | kgdb_io_module_registered = 0; | ||
822 | atomic_notifier_chain_unregister(&panic_notifier_list, | ||
823 | &kgdb_panic_event_nb); | ||
824 | kgdb_arch_exit(); | ||
825 | #ifdef CONFIG_MAGIC_SYSRQ | ||
826 | unregister_sysrq_key('g', &sysrq_dbg_op); | ||
827 | #endif | ||
828 | if (kgdb_con_registered) { | ||
829 | unregister_console(&kgdbcons); | ||
830 | kgdb_con_registered = 0; | ||
831 | } | ||
832 | } | ||
833 | } | ||
834 | |||
835 | /* | ||
836 | * There are times a tasklet needs to be used vs a compiled in | ||
837 | * break point so as to cause an exception outside a kgdb I/O module, | ||
838 | * such as is the case with kgdboe, where calling a breakpoint in the | ||
839 | * I/O driver itself would be fatal. | ||
840 | */ | ||
841 | static void kgdb_tasklet_bpt(unsigned long ing) | ||
842 | { | ||
843 | kgdb_breakpoint(); | ||
844 | atomic_set(&kgdb_break_tasklet_var, 0); | ||
845 | } | ||
846 | |||
847 | static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0); | ||
848 | |||
849 | void kgdb_schedule_breakpoint(void) | ||
850 | { | ||
851 | if (atomic_read(&kgdb_break_tasklet_var) || | ||
852 | atomic_read(&kgdb_active) != -1 || | ||
853 | atomic_read(&kgdb_setting_breakpoint)) | ||
854 | return; | ||
855 | atomic_inc(&kgdb_break_tasklet_var); | ||
856 | tasklet_schedule(&kgdb_tasklet_breakpoint); | ||
857 | } | ||
858 | EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); | ||
859 | |||
860 | static void kgdb_initial_breakpoint(void) | ||
861 | { | ||
862 | kgdb_break_asap = 0; | ||
863 | |||
864 | printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); | ||
865 | kgdb_breakpoint(); | ||
866 | } | ||
867 | |||
868 | /** | ||
869 | * kgdb_register_io_module - register KGDB IO module | ||
870 | * @new_dbg_io_ops: the io ops vector | ||
871 | * | ||
872 | * Register it with the KGDB core. | ||
873 | */ | ||
874 | int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) | ||
875 | { | ||
876 | int err; | ||
877 | |||
878 | spin_lock(&kgdb_registration_lock); | ||
879 | |||
880 | if (dbg_io_ops) { | ||
881 | spin_unlock(&kgdb_registration_lock); | ||
882 | |||
883 | printk(KERN_ERR "kgdb: Another I/O driver is already " | ||
884 | "registered with KGDB.\n"); | ||
885 | return -EBUSY; | ||
886 | } | ||
887 | |||
888 | if (new_dbg_io_ops->init) { | ||
889 | err = new_dbg_io_ops->init(); | ||
890 | if (err) { | ||
891 | spin_unlock(&kgdb_registration_lock); | ||
892 | return err; | ||
893 | } | ||
894 | } | ||
895 | |||
896 | dbg_io_ops = new_dbg_io_ops; | ||
897 | |||
898 | spin_unlock(&kgdb_registration_lock); | ||
899 | |||
900 | printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", | ||
901 | new_dbg_io_ops->name); | ||
902 | |||
903 | /* Arm KGDB now. */ | ||
904 | kgdb_register_callbacks(); | ||
905 | |||
906 | if (kgdb_break_asap) | ||
907 | kgdb_initial_breakpoint(); | ||
908 | |||
909 | return 0; | ||
910 | } | ||
911 | EXPORT_SYMBOL_GPL(kgdb_register_io_module); | ||
912 | |||
913 | /** | ||
914 | * kkgdb_unregister_io_module - unregister KGDB IO module | ||
915 | * @old_dbg_io_ops: the io ops vector | ||
916 | * | ||
917 | * Unregister it with the KGDB core. | ||
918 | */ | ||
919 | void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) | ||
920 | { | ||
921 | BUG_ON(kgdb_connected); | ||
922 | |||
923 | /* | ||
924 | * KGDB is no longer able to communicate out, so | ||
925 | * unregister our callbacks and reset state. | ||
926 | */ | ||
927 | kgdb_unregister_callbacks(); | ||
928 | |||
929 | spin_lock(&kgdb_registration_lock); | ||
930 | |||
931 | WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); | ||
932 | dbg_io_ops = NULL; | ||
933 | |||
934 | spin_unlock(&kgdb_registration_lock); | ||
935 | |||
936 | printk(KERN_INFO | ||
937 | "kgdb: Unregistered I/O driver %s, debugger disabled.\n", | ||
938 | old_dbg_io_ops->name); | ||
939 | } | ||
940 | EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); | ||
941 | |||
942 | int dbg_io_get_char(void) | ||
943 | { | ||
944 | int ret = dbg_io_ops->read_char(); | ||
945 | if (ret == NO_POLL_CHAR) | ||
946 | return -1; | ||
947 | if (!dbg_kdb_mode) | ||
948 | return ret; | ||
949 | if (ret == 127) | ||
950 | return 8; | ||
951 | return ret; | ||
952 | } | ||
953 | |||
954 | /** | ||
955 | * kgdb_breakpoint - generate breakpoint exception | ||
956 | * | ||
957 | * This function will generate a breakpoint exception. It is used at the | ||
958 | * beginning of a program to sync up with a debugger and can be used | ||
959 | * otherwise as a quick means to stop program execution and "break" into | ||
960 | * the debugger. | ||
961 | */ | ||
962 | void kgdb_breakpoint(void) | ||
963 | { | ||
964 | atomic_inc(&kgdb_setting_breakpoint); | ||
965 | wmb(); /* Sync point before breakpoint */ | ||
966 | arch_kgdb_breakpoint(); | ||
967 | wmb(); /* Sync point after breakpoint */ | ||
968 | atomic_dec(&kgdb_setting_breakpoint); | ||
969 | } | ||
970 | EXPORT_SYMBOL_GPL(kgdb_breakpoint); | ||
971 | |||
972 | static int __init opt_kgdb_wait(char *str) | ||
973 | { | ||
974 | kgdb_break_asap = 1; | ||
975 | |||
976 | kdb_init(KDB_INIT_EARLY); | ||
977 | if (kgdb_io_module_registered) | ||
978 | kgdb_initial_breakpoint(); | ||
979 | |||
980 | return 0; | ||
981 | } | ||
982 | |||
983 | early_param("kgdbwait", opt_kgdb_wait); | ||
diff --git a/kernel/debug/debug_core.h b/kernel/debug/debug_core.h new file mode 100644 index 000000000000..c5d753d80f67 --- /dev/null +++ b/kernel/debug/debug_core.h | |||
@@ -0,0 +1,81 @@ | |||
1 | /* | ||
2 | * Created by: Jason Wessel <jason.wessel@windriver.com> | ||
3 | * | ||
4 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
5 | * | ||
6 | * This file is licensed under the terms of the GNU General Public | ||
7 | * License version 2. This program is licensed "as is" without any | ||
8 | * warranty of any kind, whether express or implied. | ||
9 | */ | ||
10 | |||
11 | #ifndef _DEBUG_CORE_H_ | ||
12 | #define _DEBUG_CORE_H_ | ||
13 | /* | ||
14 | * These are the private implementation headers between the kernel | ||
15 | * debugger core and the debugger front end code. | ||
16 | */ | ||
17 | |||
18 | /* kernel debug core data structures */ | ||
19 | struct kgdb_state { | ||
20 | int ex_vector; | ||
21 | int signo; | ||
22 | int err_code; | ||
23 | int cpu; | ||
24 | int pass_exception; | ||
25 | unsigned long thr_query; | ||
26 | unsigned long threadid; | ||
27 | long kgdb_usethreadid; | ||
28 | struct pt_regs *linux_regs; | ||
29 | }; | ||
30 | |||
31 | /* Exception state values */ | ||
32 | #define DCPU_WANT_MASTER 0x1 /* Waiting to become a master kgdb cpu */ | ||
33 | #define DCPU_NEXT_MASTER 0x2 /* Transition from one master cpu to another */ | ||
34 | #define DCPU_IS_SLAVE 0x4 /* Slave cpu enter exception */ | ||
35 | #define DCPU_SSTEP 0x8 /* CPU is single stepping */ | ||
36 | |||
37 | struct debuggerinfo_struct { | ||
38 | void *debuggerinfo; | ||
39 | struct task_struct *task; | ||
40 | int exception_state; | ||
41 | int ret_state; | ||
42 | int irq_depth; | ||
43 | }; | ||
44 | |||
45 | extern struct debuggerinfo_struct kgdb_info[]; | ||
46 | |||
47 | /* kernel debug core break point routines */ | ||
48 | extern int dbg_remove_all_break(void); | ||
49 | extern int dbg_set_sw_break(unsigned long addr); | ||
50 | extern int dbg_remove_sw_break(unsigned long addr); | ||
51 | extern int dbg_activate_sw_breakpoints(void); | ||
52 | extern int dbg_deactivate_sw_breakpoints(void); | ||
53 | |||
54 | /* polled character access to i/o module */ | ||
55 | extern int dbg_io_get_char(void); | ||
56 | |||
57 | /* stub return value for switching between the gdbstub and kdb */ | ||
58 | #define DBG_PASS_EVENT -12345 | ||
59 | /* Switch from one cpu to another */ | ||
60 | #define DBG_SWITCH_CPU_EVENT -123456 | ||
61 | extern int dbg_switch_cpu; | ||
62 | |||
63 | /* gdbstub interface functions */ | ||
64 | extern int gdb_serial_stub(struct kgdb_state *ks); | ||
65 | extern void gdbstub_msg_write(const char *s, int len); | ||
66 | |||
67 | /* gdbstub functions used for kdb <-> gdbstub transition */ | ||
68 | extern int gdbstub_state(struct kgdb_state *ks, char *cmd); | ||
69 | extern int dbg_kdb_mode; | ||
70 | |||
71 | #ifdef CONFIG_KGDB_KDB | ||
72 | extern int kdb_stub(struct kgdb_state *ks); | ||
73 | extern int kdb_parse(const char *cmdstr); | ||
74 | #else /* ! CONFIG_KGDB_KDB */ | ||
75 | static inline int kdb_stub(struct kgdb_state *ks) | ||
76 | { | ||
77 | return DBG_PASS_EVENT; | ||
78 | } | ||
79 | #endif /* CONFIG_KGDB_KDB */ | ||
80 | |||
81 | #endif /* _DEBUG_CORE_H_ */ | ||
diff --git a/kernel/debug/gdbstub.c b/kernel/debug/gdbstub.c new file mode 100644 index 000000000000..4b17b3269525 --- /dev/null +++ b/kernel/debug/gdbstub.c | |||
@@ -0,0 +1,1017 @@ | |||
1 | /* | ||
2 | * Kernel Debug Core | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2009 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | |||
31 | #include <linux/kernel.h> | ||
32 | #include <linux/kgdb.h> | ||
33 | #include <linux/kdb.h> | ||
34 | #include <linux/reboot.h> | ||
35 | #include <linux/uaccess.h> | ||
36 | #include <asm/cacheflush.h> | ||
37 | #include <asm/unaligned.h> | ||
38 | #include "debug_core.h" | ||
39 | |||
40 | #define KGDB_MAX_THREAD_QUERY 17 | ||
41 | |||
42 | /* Our I/O buffers. */ | ||
43 | static char remcom_in_buffer[BUFMAX]; | ||
44 | static char remcom_out_buffer[BUFMAX]; | ||
45 | |||
46 | /* Storage for the registers, in GDB format. */ | ||
47 | static unsigned long gdb_regs[(NUMREGBYTES + | ||
48 | sizeof(unsigned long) - 1) / | ||
49 | sizeof(unsigned long)]; | ||
50 | |||
51 | /* | ||
52 | * GDB remote protocol parser: | ||
53 | */ | ||
54 | |||
55 | static int hex(char ch) | ||
56 | { | ||
57 | if ((ch >= 'a') && (ch <= 'f')) | ||
58 | return ch - 'a' + 10; | ||
59 | if ((ch >= '0') && (ch <= '9')) | ||
60 | return ch - '0'; | ||
61 | if ((ch >= 'A') && (ch <= 'F')) | ||
62 | return ch - 'A' + 10; | ||
63 | return -1; | ||
64 | } | ||
65 | |||
66 | #ifdef CONFIG_KGDB_KDB | ||
67 | static int gdbstub_read_wait(void) | ||
68 | { | ||
69 | int ret = -1; | ||
70 | int i; | ||
71 | |||
72 | /* poll any additional I/O interfaces that are defined */ | ||
73 | while (ret < 0) | ||
74 | for (i = 0; kdb_poll_funcs[i] != NULL; i++) { | ||
75 | ret = kdb_poll_funcs[i](); | ||
76 | if (ret > 0) | ||
77 | break; | ||
78 | } | ||
79 | return ret; | ||
80 | } | ||
81 | #else | ||
82 | static int gdbstub_read_wait(void) | ||
83 | { | ||
84 | int ret = dbg_io_ops->read_char(); | ||
85 | while (ret == NO_POLL_CHAR) | ||
86 | ret = dbg_io_ops->read_char(); | ||
87 | return ret; | ||
88 | } | ||
89 | #endif | ||
90 | /* scan for the sequence $<data>#<checksum> */ | ||
91 | static void get_packet(char *buffer) | ||
92 | { | ||
93 | unsigned char checksum; | ||
94 | unsigned char xmitcsum; | ||
95 | int count; | ||
96 | char ch; | ||
97 | |||
98 | do { | ||
99 | /* | ||
100 | * Spin and wait around for the start character, ignore all | ||
101 | * other characters: | ||
102 | */ | ||
103 | while ((ch = (gdbstub_read_wait())) != '$') | ||
104 | /* nothing */; | ||
105 | |||
106 | kgdb_connected = 1; | ||
107 | checksum = 0; | ||
108 | xmitcsum = -1; | ||
109 | |||
110 | count = 0; | ||
111 | |||
112 | /* | ||
113 | * now, read until a # or end of buffer is found: | ||
114 | */ | ||
115 | while (count < (BUFMAX - 1)) { | ||
116 | ch = gdbstub_read_wait(); | ||
117 | if (ch == '#') | ||
118 | break; | ||
119 | checksum = checksum + ch; | ||
120 | buffer[count] = ch; | ||
121 | count = count + 1; | ||
122 | } | ||
123 | buffer[count] = 0; | ||
124 | |||
125 | if (ch == '#') { | ||
126 | xmitcsum = hex(gdbstub_read_wait()) << 4; | ||
127 | xmitcsum += hex(gdbstub_read_wait()); | ||
128 | |||
129 | if (checksum != xmitcsum) | ||
130 | /* failed checksum */ | ||
131 | dbg_io_ops->write_char('-'); | ||
132 | else | ||
133 | /* successful transfer */ | ||
134 | dbg_io_ops->write_char('+'); | ||
135 | if (dbg_io_ops->flush) | ||
136 | dbg_io_ops->flush(); | ||
137 | } | ||
138 | } while (checksum != xmitcsum); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * Send the packet in buffer. | ||
143 | * Check for gdb connection if asked for. | ||
144 | */ | ||
145 | static void put_packet(char *buffer) | ||
146 | { | ||
147 | unsigned char checksum; | ||
148 | int count; | ||
149 | char ch; | ||
150 | |||
151 | /* | ||
152 | * $<packet info>#<checksum>. | ||
153 | */ | ||
154 | while (1) { | ||
155 | dbg_io_ops->write_char('$'); | ||
156 | checksum = 0; | ||
157 | count = 0; | ||
158 | |||
159 | while ((ch = buffer[count])) { | ||
160 | dbg_io_ops->write_char(ch); | ||
161 | checksum += ch; | ||
162 | count++; | ||
163 | } | ||
164 | |||
165 | dbg_io_ops->write_char('#'); | ||
166 | dbg_io_ops->write_char(hex_asc_hi(checksum)); | ||
167 | dbg_io_ops->write_char(hex_asc_lo(checksum)); | ||
168 | if (dbg_io_ops->flush) | ||
169 | dbg_io_ops->flush(); | ||
170 | |||
171 | /* Now see what we get in reply. */ | ||
172 | ch = gdbstub_read_wait(); | ||
173 | |||
174 | if (ch == 3) | ||
175 | ch = gdbstub_read_wait(); | ||
176 | |||
177 | /* If we get an ACK, we are done. */ | ||
178 | if (ch == '+') | ||
179 | return; | ||
180 | |||
181 | /* | ||
182 | * If we get the start of another packet, this means | ||
183 | * that GDB is attempting to reconnect. We will NAK | ||
184 | * the packet being sent, and stop trying to send this | ||
185 | * packet. | ||
186 | */ | ||
187 | if (ch == '$') { | ||
188 | dbg_io_ops->write_char('-'); | ||
189 | if (dbg_io_ops->flush) | ||
190 | dbg_io_ops->flush(); | ||
191 | return; | ||
192 | } | ||
193 | } | ||
194 | } | ||
195 | |||
196 | static char gdbmsgbuf[BUFMAX + 1]; | ||
197 | |||
198 | void gdbstub_msg_write(const char *s, int len) | ||
199 | { | ||
200 | char *bufptr; | ||
201 | int wcount; | ||
202 | int i; | ||
203 | |||
204 | if (len == 0) | ||
205 | len = strlen(s); | ||
206 | |||
207 | /* 'O'utput */ | ||
208 | gdbmsgbuf[0] = 'O'; | ||
209 | |||
210 | /* Fill and send buffers... */ | ||
211 | while (len > 0) { | ||
212 | bufptr = gdbmsgbuf + 1; | ||
213 | |||
214 | /* Calculate how many this time */ | ||
215 | if ((len << 1) > (BUFMAX - 2)) | ||
216 | wcount = (BUFMAX - 2) >> 1; | ||
217 | else | ||
218 | wcount = len; | ||
219 | |||
220 | /* Pack in hex chars */ | ||
221 | for (i = 0; i < wcount; i++) | ||
222 | bufptr = pack_hex_byte(bufptr, s[i]); | ||
223 | *bufptr = '\0'; | ||
224 | |||
225 | /* Move up */ | ||
226 | s += wcount; | ||
227 | len -= wcount; | ||
228 | |||
229 | /* Write packet */ | ||
230 | put_packet(gdbmsgbuf); | ||
231 | } | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Convert the memory pointed to by mem into hex, placing result in | ||
236 | * buf. Return a pointer to the last char put in buf (null). May | ||
237 | * return an error. | ||
238 | */ | ||
239 | int kgdb_mem2hex(char *mem, char *buf, int count) | ||
240 | { | ||
241 | char *tmp; | ||
242 | int err; | ||
243 | |||
244 | /* | ||
245 | * We use the upper half of buf as an intermediate buffer for the | ||
246 | * raw memory copy. Hex conversion will work against this one. | ||
247 | */ | ||
248 | tmp = buf + count; | ||
249 | |||
250 | err = probe_kernel_read(tmp, mem, count); | ||
251 | if (!err) { | ||
252 | while (count > 0) { | ||
253 | buf = pack_hex_byte(buf, *tmp); | ||
254 | tmp++; | ||
255 | count--; | ||
256 | } | ||
257 | |||
258 | *buf = 0; | ||
259 | } | ||
260 | |||
261 | return err; | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * Convert the hex array pointed to by buf into binary to be placed in | ||
266 | * mem. Return a pointer to the character AFTER the last byte | ||
267 | * written. May return an error. | ||
268 | */ | ||
269 | int kgdb_hex2mem(char *buf, char *mem, int count) | ||
270 | { | ||
271 | char *tmp_raw; | ||
272 | char *tmp_hex; | ||
273 | |||
274 | /* | ||
275 | * We use the upper half of buf as an intermediate buffer for the | ||
276 | * raw memory that is converted from hex. | ||
277 | */ | ||
278 | tmp_raw = buf + count * 2; | ||
279 | |||
280 | tmp_hex = tmp_raw - 1; | ||
281 | while (tmp_hex >= buf) { | ||
282 | tmp_raw--; | ||
283 | *tmp_raw = hex(*tmp_hex--); | ||
284 | *tmp_raw |= hex(*tmp_hex--) << 4; | ||
285 | } | ||
286 | |||
287 | return probe_kernel_write(mem, tmp_raw, count); | ||
288 | } | ||
289 | |||
290 | /* | ||
291 | * While we find nice hex chars, build a long_val. | ||
292 | * Return number of chars processed. | ||
293 | */ | ||
294 | int kgdb_hex2long(char **ptr, unsigned long *long_val) | ||
295 | { | ||
296 | int hex_val; | ||
297 | int num = 0; | ||
298 | int negate = 0; | ||
299 | |||
300 | *long_val = 0; | ||
301 | |||
302 | if (**ptr == '-') { | ||
303 | negate = 1; | ||
304 | (*ptr)++; | ||
305 | } | ||
306 | while (**ptr) { | ||
307 | hex_val = hex(**ptr); | ||
308 | if (hex_val < 0) | ||
309 | break; | ||
310 | |||
311 | *long_val = (*long_val << 4) | hex_val; | ||
312 | num++; | ||
313 | (*ptr)++; | ||
314 | } | ||
315 | |||
316 | if (negate) | ||
317 | *long_val = -*long_val; | ||
318 | |||
319 | return num; | ||
320 | } | ||
321 | |||
322 | /* | ||
323 | * Copy the binary array pointed to by buf into mem. Fix $, #, and | ||
324 | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. | ||
325 | * The input buf is overwitten with the result to write to mem. | ||
326 | */ | ||
327 | static int kgdb_ebin2mem(char *buf, char *mem, int count) | ||
328 | { | ||
329 | int size = 0; | ||
330 | char *c = buf; | ||
331 | |||
332 | while (count-- > 0) { | ||
333 | c[size] = *buf++; | ||
334 | if (c[size] == 0x7d) | ||
335 | c[size] = *buf++ ^ 0x20; | ||
336 | size++; | ||
337 | } | ||
338 | |||
339 | return probe_kernel_write(mem, c, size); | ||
340 | } | ||
341 | |||
342 | /* Write memory due to an 'M' or 'X' packet. */ | ||
343 | static int write_mem_msg(int binary) | ||
344 | { | ||
345 | char *ptr = &remcom_in_buffer[1]; | ||
346 | unsigned long addr; | ||
347 | unsigned long length; | ||
348 | int err; | ||
349 | |||
350 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | ||
351 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | ||
352 | if (binary) | ||
353 | err = kgdb_ebin2mem(ptr, (char *)addr, length); | ||
354 | else | ||
355 | err = kgdb_hex2mem(ptr, (char *)addr, length); | ||
356 | if (err) | ||
357 | return err; | ||
358 | if (CACHE_FLUSH_IS_SAFE) | ||
359 | flush_icache_range(addr, addr + length); | ||
360 | return 0; | ||
361 | } | ||
362 | |||
363 | return -EINVAL; | ||
364 | } | ||
365 | |||
366 | static void error_packet(char *pkt, int error) | ||
367 | { | ||
368 | error = -error; | ||
369 | pkt[0] = 'E'; | ||
370 | pkt[1] = hex_asc[(error / 10)]; | ||
371 | pkt[2] = hex_asc[(error % 10)]; | ||
372 | pkt[3] = '\0'; | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * Thread ID accessors. We represent a flat TID space to GDB, where | ||
377 | * the per CPU idle threads (which under Linux all have PID 0) are | ||
378 | * remapped to negative TIDs. | ||
379 | */ | ||
380 | |||
381 | #define BUF_THREAD_ID_SIZE 16 | ||
382 | |||
383 | static char *pack_threadid(char *pkt, unsigned char *id) | ||
384 | { | ||
385 | char *limit; | ||
386 | |||
387 | limit = pkt + BUF_THREAD_ID_SIZE; | ||
388 | while (pkt < limit) | ||
389 | pkt = pack_hex_byte(pkt, *id++); | ||
390 | |||
391 | return pkt; | ||
392 | } | ||
393 | |||
394 | static void int_to_threadref(unsigned char *id, int value) | ||
395 | { | ||
396 | unsigned char *scan; | ||
397 | int i = 4; | ||
398 | |||
399 | scan = (unsigned char *)id; | ||
400 | while (i--) | ||
401 | *scan++ = 0; | ||
402 | put_unaligned_be32(value, scan); | ||
403 | } | ||
404 | |||
405 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | ||
406 | { | ||
407 | /* | ||
408 | * Non-positive TIDs are remapped to the cpu shadow information | ||
409 | */ | ||
410 | if (tid == 0 || tid == -1) | ||
411 | tid = -atomic_read(&kgdb_active) - 2; | ||
412 | if (tid < -1 && tid > -NR_CPUS - 2) { | ||
413 | if (kgdb_info[-tid - 2].task) | ||
414 | return kgdb_info[-tid - 2].task; | ||
415 | else | ||
416 | return idle_task(-tid - 2); | ||
417 | } | ||
418 | if (tid <= 0) { | ||
419 | printk(KERN_ERR "KGDB: Internal thread select error\n"); | ||
420 | dump_stack(); | ||
421 | return NULL; | ||
422 | } | ||
423 | |||
424 | /* | ||
425 | * find_task_by_pid_ns() does not take the tasklist lock anymore | ||
426 | * but is nicely RCU locked - hence is a pretty resilient | ||
427 | * thing to use: | ||
428 | */ | ||
429 | return find_task_by_pid_ns(tid, &init_pid_ns); | ||
430 | } | ||
431 | |||
432 | |||
433 | /* | ||
434 | * Remap normal tasks to their real PID, | ||
435 | * CPU shadow threads are mapped to -CPU - 2 | ||
436 | */ | ||
437 | static inline int shadow_pid(int realpid) | ||
438 | { | ||
439 | if (realpid) | ||
440 | return realpid; | ||
441 | |||
442 | return -raw_smp_processor_id() - 2; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * All the functions that start with gdb_cmd are the various | ||
447 | * operations to implement the handlers for the gdbserial protocol | ||
448 | * where KGDB is communicating with an external debugger | ||
449 | */ | ||
450 | |||
451 | /* Handle the '?' status packets */ | ||
452 | static void gdb_cmd_status(struct kgdb_state *ks) | ||
453 | { | ||
454 | /* | ||
455 | * We know that this packet is only sent | ||
456 | * during initial connect. So to be safe, | ||
457 | * we clear out our breakpoints now in case | ||
458 | * GDB is reconnecting. | ||
459 | */ | ||
460 | dbg_remove_all_break(); | ||
461 | |||
462 | remcom_out_buffer[0] = 'S'; | ||
463 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | ||
464 | } | ||
465 | |||
466 | /* Handle the 'g' get registers request */ | ||
467 | static void gdb_cmd_getregs(struct kgdb_state *ks) | ||
468 | { | ||
469 | struct task_struct *thread; | ||
470 | void *local_debuggerinfo; | ||
471 | int i; | ||
472 | |||
473 | thread = kgdb_usethread; | ||
474 | if (!thread) { | ||
475 | thread = kgdb_info[ks->cpu].task; | ||
476 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | ||
477 | } else { | ||
478 | local_debuggerinfo = NULL; | ||
479 | for_each_online_cpu(i) { | ||
480 | /* | ||
481 | * Try to find the task on some other | ||
482 | * or possibly this node if we do not | ||
483 | * find the matching task then we try | ||
484 | * to approximate the results. | ||
485 | */ | ||
486 | if (thread == kgdb_info[i].task) | ||
487 | local_debuggerinfo = kgdb_info[i].debuggerinfo; | ||
488 | } | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * All threads that don't have debuggerinfo should be | ||
493 | * in schedule() sleeping, since all other CPUs | ||
494 | * are in kgdb_wait, and thus have debuggerinfo. | ||
495 | */ | ||
496 | if (local_debuggerinfo) { | ||
497 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | ||
498 | } else { | ||
499 | /* | ||
500 | * Pull stuff saved during switch_to; nothing | ||
501 | * else is accessible (or even particularly | ||
502 | * relevant). | ||
503 | * | ||
504 | * This should be enough for a stack trace. | ||
505 | */ | ||
506 | sleeping_thread_to_gdb_regs(gdb_regs, thread); | ||
507 | } | ||
508 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | ||
509 | } | ||
510 | |||
511 | /* Handle the 'G' set registers request */ | ||
512 | static void gdb_cmd_setregs(struct kgdb_state *ks) | ||
513 | { | ||
514 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | ||
515 | |||
516 | if (kgdb_usethread && kgdb_usethread != current) { | ||
517 | error_packet(remcom_out_buffer, -EINVAL); | ||
518 | } else { | ||
519 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | ||
520 | strcpy(remcom_out_buffer, "OK"); | ||
521 | } | ||
522 | } | ||
523 | |||
524 | /* Handle the 'm' memory read bytes */ | ||
525 | static void gdb_cmd_memread(struct kgdb_state *ks) | ||
526 | { | ||
527 | char *ptr = &remcom_in_buffer[1]; | ||
528 | unsigned long length; | ||
529 | unsigned long addr; | ||
530 | int err; | ||
531 | |||
532 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | ||
533 | kgdb_hex2long(&ptr, &length) > 0) { | ||
534 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | ||
535 | if (err) | ||
536 | error_packet(remcom_out_buffer, err); | ||
537 | } else { | ||
538 | error_packet(remcom_out_buffer, -EINVAL); | ||
539 | } | ||
540 | } | ||
541 | |||
542 | /* Handle the 'M' memory write bytes */ | ||
543 | static void gdb_cmd_memwrite(struct kgdb_state *ks) | ||
544 | { | ||
545 | int err = write_mem_msg(0); | ||
546 | |||
547 | if (err) | ||
548 | error_packet(remcom_out_buffer, err); | ||
549 | else | ||
550 | strcpy(remcom_out_buffer, "OK"); | ||
551 | } | ||
552 | |||
553 | /* Handle the 'X' memory binary write bytes */ | ||
554 | static void gdb_cmd_binwrite(struct kgdb_state *ks) | ||
555 | { | ||
556 | int err = write_mem_msg(1); | ||
557 | |||
558 | if (err) | ||
559 | error_packet(remcom_out_buffer, err); | ||
560 | else | ||
561 | strcpy(remcom_out_buffer, "OK"); | ||
562 | } | ||
563 | |||
564 | /* Handle the 'D' or 'k', detach or kill packets */ | ||
565 | static void gdb_cmd_detachkill(struct kgdb_state *ks) | ||
566 | { | ||
567 | int error; | ||
568 | |||
569 | /* The detach case */ | ||
570 | if (remcom_in_buffer[0] == 'D') { | ||
571 | error = dbg_remove_all_break(); | ||
572 | if (error < 0) { | ||
573 | error_packet(remcom_out_buffer, error); | ||
574 | } else { | ||
575 | strcpy(remcom_out_buffer, "OK"); | ||
576 | kgdb_connected = 0; | ||
577 | } | ||
578 | put_packet(remcom_out_buffer); | ||
579 | } else { | ||
580 | /* | ||
581 | * Assume the kill case, with no exit code checking, | ||
582 | * trying to force detach the debugger: | ||
583 | */ | ||
584 | dbg_remove_all_break(); | ||
585 | kgdb_connected = 0; | ||
586 | } | ||
587 | } | ||
588 | |||
589 | /* Handle the 'R' reboot packets */ | ||
590 | static int gdb_cmd_reboot(struct kgdb_state *ks) | ||
591 | { | ||
592 | /* For now, only honor R0 */ | ||
593 | if (strcmp(remcom_in_buffer, "R0") == 0) { | ||
594 | printk(KERN_CRIT "Executing emergency reboot\n"); | ||
595 | strcpy(remcom_out_buffer, "OK"); | ||
596 | put_packet(remcom_out_buffer); | ||
597 | |||
598 | /* | ||
599 | * Execution should not return from | ||
600 | * machine_emergency_restart() | ||
601 | */ | ||
602 | machine_emergency_restart(); | ||
603 | kgdb_connected = 0; | ||
604 | |||
605 | return 1; | ||
606 | } | ||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | /* Handle the 'q' query packets */ | ||
611 | static void gdb_cmd_query(struct kgdb_state *ks) | ||
612 | { | ||
613 | struct task_struct *g; | ||
614 | struct task_struct *p; | ||
615 | unsigned char thref[8]; | ||
616 | char *ptr; | ||
617 | int i; | ||
618 | int cpu; | ||
619 | int finished = 0; | ||
620 | |||
621 | switch (remcom_in_buffer[1]) { | ||
622 | case 's': | ||
623 | case 'f': | ||
624 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { | ||
625 | error_packet(remcom_out_buffer, -EINVAL); | ||
626 | break; | ||
627 | } | ||
628 | |||
629 | i = 0; | ||
630 | remcom_out_buffer[0] = 'm'; | ||
631 | ptr = remcom_out_buffer + 1; | ||
632 | if (remcom_in_buffer[1] == 'f') { | ||
633 | /* Each cpu is a shadow thread */ | ||
634 | for_each_online_cpu(cpu) { | ||
635 | ks->thr_query = 0; | ||
636 | int_to_threadref(thref, -cpu - 2); | ||
637 | pack_threadid(ptr, thref); | ||
638 | ptr += BUF_THREAD_ID_SIZE; | ||
639 | *(ptr++) = ','; | ||
640 | i++; | ||
641 | } | ||
642 | } | ||
643 | |||
644 | do_each_thread(g, p) { | ||
645 | if (i >= ks->thr_query && !finished) { | ||
646 | int_to_threadref(thref, p->pid); | ||
647 | pack_threadid(ptr, thref); | ||
648 | ptr += BUF_THREAD_ID_SIZE; | ||
649 | *(ptr++) = ','; | ||
650 | ks->thr_query++; | ||
651 | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) | ||
652 | finished = 1; | ||
653 | } | ||
654 | i++; | ||
655 | } while_each_thread(g, p); | ||
656 | |||
657 | *(--ptr) = '\0'; | ||
658 | break; | ||
659 | |||
660 | case 'C': | ||
661 | /* Current thread id */ | ||
662 | strcpy(remcom_out_buffer, "QC"); | ||
663 | ks->threadid = shadow_pid(current->pid); | ||
664 | int_to_threadref(thref, ks->threadid); | ||
665 | pack_threadid(remcom_out_buffer + 2, thref); | ||
666 | break; | ||
667 | case 'T': | ||
668 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { | ||
669 | error_packet(remcom_out_buffer, -EINVAL); | ||
670 | break; | ||
671 | } | ||
672 | ks->threadid = 0; | ||
673 | ptr = remcom_in_buffer + 17; | ||
674 | kgdb_hex2long(&ptr, &ks->threadid); | ||
675 | if (!getthread(ks->linux_regs, ks->threadid)) { | ||
676 | error_packet(remcom_out_buffer, -EINVAL); | ||
677 | break; | ||
678 | } | ||
679 | if ((int)ks->threadid > 0) { | ||
680 | kgdb_mem2hex(getthread(ks->linux_regs, | ||
681 | ks->threadid)->comm, | ||
682 | remcom_out_buffer, 16); | ||
683 | } else { | ||
684 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | ||
685 | |||
686 | sprintf(tmpstr, "shadowCPU%d", | ||
687 | (int)(-ks->threadid - 2)); | ||
688 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | ||
689 | } | ||
690 | break; | ||
691 | #ifdef CONFIG_KGDB_KDB | ||
692 | case 'R': | ||
693 | if (strncmp(remcom_in_buffer, "qRcmd,", 6) == 0) { | ||
694 | int len = strlen(remcom_in_buffer + 6); | ||
695 | |||
696 | if ((len % 2) != 0) { | ||
697 | strcpy(remcom_out_buffer, "E01"); | ||
698 | break; | ||
699 | } | ||
700 | kgdb_hex2mem(remcom_in_buffer + 6, | ||
701 | remcom_out_buffer, len); | ||
702 | len = len / 2; | ||
703 | remcom_out_buffer[len++] = 0; | ||
704 | |||
705 | kdb_parse(remcom_out_buffer); | ||
706 | strcpy(remcom_out_buffer, "OK"); | ||
707 | } | ||
708 | break; | ||
709 | #endif | ||
710 | } | ||
711 | } | ||
712 | |||
713 | /* Handle the 'H' task query packets */ | ||
714 | static void gdb_cmd_task(struct kgdb_state *ks) | ||
715 | { | ||
716 | struct task_struct *thread; | ||
717 | char *ptr; | ||
718 | |||
719 | switch (remcom_in_buffer[1]) { | ||
720 | case 'g': | ||
721 | ptr = &remcom_in_buffer[2]; | ||
722 | kgdb_hex2long(&ptr, &ks->threadid); | ||
723 | thread = getthread(ks->linux_regs, ks->threadid); | ||
724 | if (!thread && ks->threadid > 0) { | ||
725 | error_packet(remcom_out_buffer, -EINVAL); | ||
726 | break; | ||
727 | } | ||
728 | kgdb_usethread = thread; | ||
729 | ks->kgdb_usethreadid = ks->threadid; | ||
730 | strcpy(remcom_out_buffer, "OK"); | ||
731 | break; | ||
732 | case 'c': | ||
733 | ptr = &remcom_in_buffer[2]; | ||
734 | kgdb_hex2long(&ptr, &ks->threadid); | ||
735 | if (!ks->threadid) { | ||
736 | kgdb_contthread = NULL; | ||
737 | } else { | ||
738 | thread = getthread(ks->linux_regs, ks->threadid); | ||
739 | if (!thread && ks->threadid > 0) { | ||
740 | error_packet(remcom_out_buffer, -EINVAL); | ||
741 | break; | ||
742 | } | ||
743 | kgdb_contthread = thread; | ||
744 | } | ||
745 | strcpy(remcom_out_buffer, "OK"); | ||
746 | break; | ||
747 | } | ||
748 | } | ||
749 | |||
750 | /* Handle the 'T' thread query packets */ | ||
751 | static void gdb_cmd_thread(struct kgdb_state *ks) | ||
752 | { | ||
753 | char *ptr = &remcom_in_buffer[1]; | ||
754 | struct task_struct *thread; | ||
755 | |||
756 | kgdb_hex2long(&ptr, &ks->threadid); | ||
757 | thread = getthread(ks->linux_regs, ks->threadid); | ||
758 | if (thread) | ||
759 | strcpy(remcom_out_buffer, "OK"); | ||
760 | else | ||
761 | error_packet(remcom_out_buffer, -EINVAL); | ||
762 | } | ||
763 | |||
764 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | ||
765 | static void gdb_cmd_break(struct kgdb_state *ks) | ||
766 | { | ||
767 | /* | ||
768 | * Since GDB-5.3, it's been drafted that '0' is a software | ||
769 | * breakpoint, '1' is a hardware breakpoint, so let's do that. | ||
770 | */ | ||
771 | char *bpt_type = &remcom_in_buffer[1]; | ||
772 | char *ptr = &remcom_in_buffer[2]; | ||
773 | unsigned long addr; | ||
774 | unsigned long length; | ||
775 | int error = 0; | ||
776 | |||
777 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | ||
778 | /* Unsupported */ | ||
779 | if (*bpt_type > '4') | ||
780 | return; | ||
781 | } else { | ||
782 | if (*bpt_type != '0' && *bpt_type != '1') | ||
783 | /* Unsupported. */ | ||
784 | return; | ||
785 | } | ||
786 | |||
787 | /* | ||
788 | * Test if this is a hardware breakpoint, and | ||
789 | * if we support it: | ||
790 | */ | ||
791 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | ||
792 | /* Unsupported. */ | ||
793 | return; | ||
794 | |||
795 | if (*(ptr++) != ',') { | ||
796 | error_packet(remcom_out_buffer, -EINVAL); | ||
797 | return; | ||
798 | } | ||
799 | if (!kgdb_hex2long(&ptr, &addr)) { | ||
800 | error_packet(remcom_out_buffer, -EINVAL); | ||
801 | return; | ||
802 | } | ||
803 | if (*(ptr++) != ',' || | ||
804 | !kgdb_hex2long(&ptr, &length)) { | ||
805 | error_packet(remcom_out_buffer, -EINVAL); | ||
806 | return; | ||
807 | } | ||
808 | |||
809 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | ||
810 | error = dbg_set_sw_break(addr); | ||
811 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | ||
812 | error = dbg_remove_sw_break(addr); | ||
813 | else if (remcom_in_buffer[0] == 'Z') | ||
814 | error = arch_kgdb_ops.set_hw_breakpoint(addr, | ||
815 | (int)length, *bpt_type - '0'); | ||
816 | else if (remcom_in_buffer[0] == 'z') | ||
817 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | ||
818 | (int) length, *bpt_type - '0'); | ||
819 | |||
820 | if (error == 0) | ||
821 | strcpy(remcom_out_buffer, "OK"); | ||
822 | else | ||
823 | error_packet(remcom_out_buffer, error); | ||
824 | } | ||
825 | |||
826 | /* Handle the 'C' signal / exception passing packets */ | ||
827 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | ||
828 | { | ||
829 | /* C09 == pass exception | ||
830 | * C15 == detach kgdb, pass exception | ||
831 | */ | ||
832 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | ||
833 | |||
834 | ks->pass_exception = 1; | ||
835 | remcom_in_buffer[0] = 'c'; | ||
836 | |||
837 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | ||
838 | |||
839 | ks->pass_exception = 1; | ||
840 | remcom_in_buffer[0] = 'D'; | ||
841 | dbg_remove_all_break(); | ||
842 | kgdb_connected = 0; | ||
843 | return 1; | ||
844 | |||
845 | } else { | ||
846 | gdbstub_msg_write("KGDB only knows signal 9 (pass)" | ||
847 | " and 15 (pass and disconnect)\n" | ||
848 | "Executing a continue without signal passing\n", 0); | ||
849 | remcom_in_buffer[0] = 'c'; | ||
850 | } | ||
851 | |||
852 | /* Indicate fall through */ | ||
853 | return -1; | ||
854 | } | ||
855 | |||
856 | /* | ||
857 | * This function performs all gdbserial command procesing | ||
858 | */ | ||
859 | int gdb_serial_stub(struct kgdb_state *ks) | ||
860 | { | ||
861 | int error = 0; | ||
862 | int tmp; | ||
863 | |||
864 | /* Clear the out buffer. */ | ||
865 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
866 | |||
867 | if (kgdb_connected) { | ||
868 | unsigned char thref[8]; | ||
869 | char *ptr; | ||
870 | |||
871 | /* Reply to host that an exception has occurred */ | ||
872 | ptr = remcom_out_buffer; | ||
873 | *ptr++ = 'T'; | ||
874 | ptr = pack_hex_byte(ptr, ks->signo); | ||
875 | ptr += strlen(strcpy(ptr, "thread:")); | ||
876 | int_to_threadref(thref, shadow_pid(current->pid)); | ||
877 | ptr = pack_threadid(ptr, thref); | ||
878 | *ptr++ = ';'; | ||
879 | put_packet(remcom_out_buffer); | ||
880 | } | ||
881 | |||
882 | kgdb_usethread = kgdb_info[ks->cpu].task; | ||
883 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | ||
884 | ks->pass_exception = 0; | ||
885 | |||
886 | while (1) { | ||
887 | error = 0; | ||
888 | |||
889 | /* Clear the out buffer. */ | ||
890 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
891 | |||
892 | get_packet(remcom_in_buffer); | ||
893 | |||
894 | switch (remcom_in_buffer[0]) { | ||
895 | case '?': /* gdbserial status */ | ||
896 | gdb_cmd_status(ks); | ||
897 | break; | ||
898 | case 'g': /* return the value of the CPU registers */ | ||
899 | gdb_cmd_getregs(ks); | ||
900 | break; | ||
901 | case 'G': /* set the value of the CPU registers - return OK */ | ||
902 | gdb_cmd_setregs(ks); | ||
903 | break; | ||
904 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | ||
905 | gdb_cmd_memread(ks); | ||
906 | break; | ||
907 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
908 | gdb_cmd_memwrite(ks); | ||
909 | break; | ||
910 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
911 | gdb_cmd_binwrite(ks); | ||
912 | break; | ||
913 | /* kill or detach. KGDB should treat this like a | ||
914 | * continue. | ||
915 | */ | ||
916 | case 'D': /* Debugger detach */ | ||
917 | case 'k': /* Debugger detach via kill */ | ||
918 | gdb_cmd_detachkill(ks); | ||
919 | goto default_handle; | ||
920 | case 'R': /* Reboot */ | ||
921 | if (gdb_cmd_reboot(ks)) | ||
922 | goto default_handle; | ||
923 | break; | ||
924 | case 'q': /* query command */ | ||
925 | gdb_cmd_query(ks); | ||
926 | break; | ||
927 | case 'H': /* task related */ | ||
928 | gdb_cmd_task(ks); | ||
929 | break; | ||
930 | case 'T': /* Query thread status */ | ||
931 | gdb_cmd_thread(ks); | ||
932 | break; | ||
933 | case 'z': /* Break point remove */ | ||
934 | case 'Z': /* Break point set */ | ||
935 | gdb_cmd_break(ks); | ||
936 | break; | ||
937 | #ifdef CONFIG_KGDB_KDB | ||
938 | case '3': /* Escape into back into kdb */ | ||
939 | if (remcom_in_buffer[1] == '\0') { | ||
940 | gdb_cmd_detachkill(ks); | ||
941 | return DBG_PASS_EVENT; | ||
942 | } | ||
943 | #endif | ||
944 | case 'C': /* Exception passing */ | ||
945 | tmp = gdb_cmd_exception_pass(ks); | ||
946 | if (tmp > 0) | ||
947 | goto default_handle; | ||
948 | if (tmp == 0) | ||
949 | break; | ||
950 | /* Fall through on tmp < 0 */ | ||
951 | case 'c': /* Continue packet */ | ||
952 | case 's': /* Single step packet */ | ||
953 | if (kgdb_contthread && kgdb_contthread != current) { | ||
954 | /* Can't switch threads in kgdb */ | ||
955 | error_packet(remcom_out_buffer, -EINVAL); | ||
956 | break; | ||
957 | } | ||
958 | dbg_activate_sw_breakpoints(); | ||
959 | /* Fall through to default processing */ | ||
960 | default: | ||
961 | default_handle: | ||
962 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
963 | ks->signo, | ||
964 | ks->err_code, | ||
965 | remcom_in_buffer, | ||
966 | remcom_out_buffer, | ||
967 | ks->linux_regs); | ||
968 | /* | ||
969 | * Leave cmd processing on error, detach, | ||
970 | * kill, continue, or single step. | ||
971 | */ | ||
972 | if (error >= 0 || remcom_in_buffer[0] == 'D' || | ||
973 | remcom_in_buffer[0] == 'k') { | ||
974 | error = 0; | ||
975 | goto kgdb_exit; | ||
976 | } | ||
977 | |||
978 | } | ||
979 | |||
980 | /* reply to the request */ | ||
981 | put_packet(remcom_out_buffer); | ||
982 | } | ||
983 | |||
984 | kgdb_exit: | ||
985 | if (ks->pass_exception) | ||
986 | error = 1; | ||
987 | return error; | ||
988 | } | ||
989 | |||
990 | int gdbstub_state(struct kgdb_state *ks, char *cmd) | ||
991 | { | ||
992 | int error; | ||
993 | |||
994 | switch (cmd[0]) { | ||
995 | case 'e': | ||
996 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
997 | ks->signo, | ||
998 | ks->err_code, | ||
999 | remcom_in_buffer, | ||
1000 | remcom_out_buffer, | ||
1001 | ks->linux_regs); | ||
1002 | return error; | ||
1003 | case 's': | ||
1004 | case 'c': | ||
1005 | strcpy(remcom_in_buffer, cmd); | ||
1006 | return 0; | ||
1007 | case '?': | ||
1008 | gdb_cmd_status(ks); | ||
1009 | break; | ||
1010 | case '\0': | ||
1011 | strcpy(remcom_out_buffer, ""); | ||
1012 | break; | ||
1013 | } | ||
1014 | dbg_io_ops->write_char('+'); | ||
1015 | put_packet(remcom_out_buffer); | ||
1016 | return 0; | ||
1017 | } | ||
diff --git a/kernel/debug/kdb/.gitignore b/kernel/debug/kdb/.gitignore new file mode 100644 index 000000000000..396d12eda9e8 --- /dev/null +++ b/kernel/debug/kdb/.gitignore | |||
@@ -0,0 +1 @@ | |||
gen-kdb_cmds.c | |||
diff --git a/kernel/debug/kdb/Makefile b/kernel/debug/kdb/Makefile new file mode 100644 index 000000000000..d4fc58f4b88d --- /dev/null +++ b/kernel/debug/kdb/Makefile | |||
@@ -0,0 +1,25 @@ | |||
1 | # This file is subject to the terms and conditions of the GNU General Public | ||
2 | # License. See the file "COPYING" in the main directory of this archive | ||
3 | # for more details. | ||
4 | # | ||
5 | # Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
6 | # Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
7 | # | ||
8 | |||
9 | CCVERSION := $(shell $(CC) -v 2>&1 | sed -ne '$$p') | ||
10 | obj-y := kdb_io.o kdb_main.o kdb_support.o kdb_bt.o gen-kdb_cmds.o kdb_bp.o kdb_debugger.o | ||
11 | obj-$(CONFIG_KDB_KEYBOARD) += kdb_keyboard.o | ||
12 | |||
13 | clean-files := gen-kdb_cmds.c | ||
14 | |||
15 | quiet_cmd_gen-kdb = GENKDB $@ | ||
16 | cmd_gen-kdb = $(AWK) 'BEGIN {print "\#include <linux/stddef.h>"; print "\#include <linux/init.h>"} \ | ||
17 | /^\#/{next} \ | ||
18 | /^[ \t]*$$/{next} \ | ||
19 | {gsub(/"/, "\\\"", $$0); \ | ||
20 | print "static __initdata char kdb_cmd" cmds++ "[] = \"" $$0 "\\n\";"} \ | ||
21 | END {print "extern char *kdb_cmds[]; char __initdata *kdb_cmds[] = {"; for (i = 0; i < cmds; ++i) {print " kdb_cmd" i ","}; print(" NULL\n};");}' \ | ||
22 | $(filter-out %/Makefile,$^) > $@# | ||
23 | |||
24 | $(obj)/gen-kdb_cmds.c: $(src)/kdb_cmds $(src)/Makefile | ||
25 | $(call cmd,gen-kdb) | ||
diff --git a/kernel/debug/kdb/kdb_bp.c b/kernel/debug/kdb/kdb_bp.c new file mode 100644 index 000000000000..75bd9b3ebbb7 --- /dev/null +++ b/kernel/debug/kdb/kdb_bp.c | |||
@@ -0,0 +1,564 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Breakpoint Handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/string.h> | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/kdb.h> | ||
16 | #include <linux/kgdb.h> | ||
17 | #include <linux/smp.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include "kdb_private.h" | ||
21 | |||
22 | /* | ||
23 | * Table of kdb_breakpoints | ||
24 | */ | ||
25 | kdb_bp_t kdb_breakpoints[KDB_MAXBPT]; | ||
26 | |||
27 | static void kdb_setsinglestep(struct pt_regs *regs) | ||
28 | { | ||
29 | KDB_STATE_SET(DOING_SS); | ||
30 | } | ||
31 | |||
32 | static char *kdb_rwtypes[] = { | ||
33 | "Instruction(i)", | ||
34 | "Instruction(Register)", | ||
35 | "Data Write", | ||
36 | "I/O", | ||
37 | "Data Access" | ||
38 | }; | ||
39 | |||
40 | static char *kdb_bptype(kdb_bp_t *bp) | ||
41 | { | ||
42 | if (bp->bp_type < 0 || bp->bp_type > 4) | ||
43 | return ""; | ||
44 | |||
45 | return kdb_rwtypes[bp->bp_type]; | ||
46 | } | ||
47 | |||
48 | static int kdb_parsebp(int argc, const char **argv, int *nextargp, kdb_bp_t *bp) | ||
49 | { | ||
50 | int nextarg = *nextargp; | ||
51 | int diag; | ||
52 | |||
53 | bp->bph_length = 1; | ||
54 | if ((argc + 1) != nextarg) { | ||
55 | if (strnicmp(argv[nextarg], "datar", sizeof("datar")) == 0) | ||
56 | bp->bp_type = BP_ACCESS_WATCHPOINT; | ||
57 | else if (strnicmp(argv[nextarg], "dataw", sizeof("dataw")) == 0) | ||
58 | bp->bp_type = BP_WRITE_WATCHPOINT; | ||
59 | else if (strnicmp(argv[nextarg], "inst", sizeof("inst")) == 0) | ||
60 | bp->bp_type = BP_HARDWARE_BREAKPOINT; | ||
61 | else | ||
62 | return KDB_ARGCOUNT; | ||
63 | |||
64 | bp->bph_length = 1; | ||
65 | |||
66 | nextarg++; | ||
67 | |||
68 | if ((argc + 1) != nextarg) { | ||
69 | unsigned long len; | ||
70 | |||
71 | diag = kdbgetularg((char *)argv[nextarg], | ||
72 | &len); | ||
73 | if (diag) | ||
74 | return diag; | ||
75 | |||
76 | |||
77 | if (len > 8) | ||
78 | return KDB_BADLENGTH; | ||
79 | |||
80 | bp->bph_length = len; | ||
81 | nextarg++; | ||
82 | } | ||
83 | |||
84 | if ((argc + 1) != nextarg) | ||
85 | return KDB_ARGCOUNT; | ||
86 | } | ||
87 | |||
88 | *nextargp = nextarg; | ||
89 | return 0; | ||
90 | } | ||
91 | |||
92 | static int _kdb_bp_remove(kdb_bp_t *bp) | ||
93 | { | ||
94 | int ret = 1; | ||
95 | if (!bp->bp_installed) | ||
96 | return ret; | ||
97 | if (!bp->bp_type) | ||
98 | ret = dbg_remove_sw_break(bp->bp_addr); | ||
99 | else | ||
100 | ret = arch_kgdb_ops.remove_hw_breakpoint(bp->bp_addr, | ||
101 | bp->bph_length, | ||
102 | bp->bp_type); | ||
103 | if (ret == 0) | ||
104 | bp->bp_installed = 0; | ||
105 | return ret; | ||
106 | } | ||
107 | |||
108 | static void kdb_handle_bp(struct pt_regs *regs, kdb_bp_t *bp) | ||
109 | { | ||
110 | if (KDB_DEBUG(BP)) | ||
111 | kdb_printf("regs->ip = 0x%lx\n", instruction_pointer(regs)); | ||
112 | |||
113 | /* | ||
114 | * Setup single step | ||
115 | */ | ||
116 | kdb_setsinglestep(regs); | ||
117 | |||
118 | /* | ||
119 | * Reset delay attribute | ||
120 | */ | ||
121 | bp->bp_delay = 0; | ||
122 | bp->bp_delayed = 1; | ||
123 | } | ||
124 | |||
125 | static int _kdb_bp_install(struct pt_regs *regs, kdb_bp_t *bp) | ||
126 | { | ||
127 | int ret; | ||
128 | /* | ||
129 | * Install the breakpoint, if it is not already installed. | ||
130 | */ | ||
131 | |||
132 | if (KDB_DEBUG(BP)) | ||
133 | kdb_printf("%s: bp_installed %d\n", | ||
134 | __func__, bp->bp_installed); | ||
135 | if (!KDB_STATE(SSBPT)) | ||
136 | bp->bp_delay = 0; | ||
137 | if (bp->bp_installed) | ||
138 | return 1; | ||
139 | if (bp->bp_delay || (bp->bp_delayed && KDB_STATE(DOING_SS))) { | ||
140 | if (KDB_DEBUG(BP)) | ||
141 | kdb_printf("%s: delayed bp\n", __func__); | ||
142 | kdb_handle_bp(regs, bp); | ||
143 | return 0; | ||
144 | } | ||
145 | if (!bp->bp_type) | ||
146 | ret = dbg_set_sw_break(bp->bp_addr); | ||
147 | else | ||
148 | ret = arch_kgdb_ops.set_hw_breakpoint(bp->bp_addr, | ||
149 | bp->bph_length, | ||
150 | bp->bp_type); | ||
151 | if (ret == 0) { | ||
152 | bp->bp_installed = 1; | ||
153 | } else { | ||
154 | kdb_printf("%s: failed to set breakpoint at 0x%lx\n", | ||
155 | __func__, bp->bp_addr); | ||
156 | return 1; | ||
157 | } | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * kdb_bp_install | ||
163 | * | ||
164 | * Install kdb_breakpoints prior to returning from the | ||
165 | * kernel debugger. This allows the kdb_breakpoints to be set | ||
166 | * upon functions that are used internally by kdb, such as | ||
167 | * printk(). This function is only called once per kdb session. | ||
168 | */ | ||
169 | void kdb_bp_install(struct pt_regs *regs) | ||
170 | { | ||
171 | int i; | ||
172 | |||
173 | for (i = 0; i < KDB_MAXBPT; i++) { | ||
174 | kdb_bp_t *bp = &kdb_breakpoints[i]; | ||
175 | |||
176 | if (KDB_DEBUG(BP)) { | ||
177 | kdb_printf("%s: bp %d bp_enabled %d\n", | ||
178 | __func__, i, bp->bp_enabled); | ||
179 | } | ||
180 | if (bp->bp_enabled) | ||
181 | _kdb_bp_install(regs, bp); | ||
182 | } | ||
183 | } | ||
184 | |||
185 | /* | ||
186 | * kdb_bp_remove | ||
187 | * | ||
188 | * Remove kdb_breakpoints upon entry to the kernel debugger. | ||
189 | * | ||
190 | * Parameters: | ||
191 | * None. | ||
192 | * Outputs: | ||
193 | * None. | ||
194 | * Returns: | ||
195 | * None. | ||
196 | * Locking: | ||
197 | * None. | ||
198 | * Remarks: | ||
199 | */ | ||
200 | void kdb_bp_remove(void) | ||
201 | { | ||
202 | int i; | ||
203 | |||
204 | for (i = KDB_MAXBPT - 1; i >= 0; i--) { | ||
205 | kdb_bp_t *bp = &kdb_breakpoints[i]; | ||
206 | |||
207 | if (KDB_DEBUG(BP)) { | ||
208 | kdb_printf("%s: bp %d bp_enabled %d\n", | ||
209 | __func__, i, bp->bp_enabled); | ||
210 | } | ||
211 | if (bp->bp_enabled) | ||
212 | _kdb_bp_remove(bp); | ||
213 | } | ||
214 | } | ||
215 | |||
216 | |||
217 | /* | ||
218 | * kdb_printbp | ||
219 | * | ||
220 | * Internal function to format and print a breakpoint entry. | ||
221 | * | ||
222 | * Parameters: | ||
223 | * None. | ||
224 | * Outputs: | ||
225 | * None. | ||
226 | * Returns: | ||
227 | * None. | ||
228 | * Locking: | ||
229 | * None. | ||
230 | * Remarks: | ||
231 | */ | ||
232 | |||
233 | static void kdb_printbp(kdb_bp_t *bp, int i) | ||
234 | { | ||
235 | kdb_printf("%s ", kdb_bptype(bp)); | ||
236 | kdb_printf("BP #%d at ", i); | ||
237 | kdb_symbol_print(bp->bp_addr, NULL, KDB_SP_DEFAULT); | ||
238 | |||
239 | if (bp->bp_enabled) | ||
240 | kdb_printf("\n is enabled"); | ||
241 | else | ||
242 | kdb_printf("\n is disabled"); | ||
243 | |||
244 | kdb_printf("\taddr at %016lx, hardtype=%d installed=%d\n", | ||
245 | bp->bp_addr, bp->bp_type, bp->bp_installed); | ||
246 | |||
247 | kdb_printf("\n"); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * kdb_bp | ||
252 | * | ||
253 | * Handle the bp commands. | ||
254 | * | ||
255 | * [bp|bph] <addr-expression> [DATAR|DATAW] | ||
256 | * | ||
257 | * Parameters: | ||
258 | * argc Count of arguments in argv | ||
259 | * argv Space delimited command line arguments | ||
260 | * Outputs: | ||
261 | * None. | ||
262 | * Returns: | ||
263 | * Zero for success, a kdb diagnostic if failure. | ||
264 | * Locking: | ||
265 | * None. | ||
266 | * Remarks: | ||
267 | * | ||
268 | * bp Set breakpoint on all cpus. Only use hardware assist if need. | ||
269 | * bph Set breakpoint on all cpus. Force hardware register | ||
270 | */ | ||
271 | |||
272 | static int kdb_bp(int argc, const char **argv) | ||
273 | { | ||
274 | int i, bpno; | ||
275 | kdb_bp_t *bp, *bp_check; | ||
276 | int diag; | ||
277 | int free; | ||
278 | char *symname = NULL; | ||
279 | long offset = 0ul; | ||
280 | int nextarg; | ||
281 | kdb_bp_t template = {0}; | ||
282 | |||
283 | if (argc == 0) { | ||
284 | /* | ||
285 | * Display breakpoint table | ||
286 | */ | ||
287 | for (bpno = 0, bp = kdb_breakpoints; bpno < KDB_MAXBPT; | ||
288 | bpno++, bp++) { | ||
289 | if (bp->bp_free) | ||
290 | continue; | ||
291 | kdb_printbp(bp, bpno); | ||
292 | } | ||
293 | |||
294 | return 0; | ||
295 | } | ||
296 | |||
297 | nextarg = 1; | ||
298 | diag = kdbgetaddrarg(argc, argv, &nextarg, &template.bp_addr, | ||
299 | &offset, &symname); | ||
300 | if (diag) | ||
301 | return diag; | ||
302 | if (!template.bp_addr) | ||
303 | return KDB_BADINT; | ||
304 | |||
305 | /* | ||
306 | * Find an empty bp structure to allocate | ||
307 | */ | ||
308 | free = KDB_MAXBPT; | ||
309 | for (bpno = 0, bp = kdb_breakpoints; bpno < KDB_MAXBPT; bpno++, bp++) { | ||
310 | if (bp->bp_free) | ||
311 | break; | ||
312 | } | ||
313 | |||
314 | if (bpno == KDB_MAXBPT) | ||
315 | return KDB_TOOMANYBPT; | ||
316 | |||
317 | if (strcmp(argv[0], "bph") == 0) { | ||
318 | template.bp_type = BP_HARDWARE_BREAKPOINT; | ||
319 | diag = kdb_parsebp(argc, argv, &nextarg, &template); | ||
320 | if (diag) | ||
321 | return diag; | ||
322 | } else { | ||
323 | template.bp_type = BP_BREAKPOINT; | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * Check for clashing breakpoints. | ||
328 | * | ||
329 | * Note, in this design we can't have hardware breakpoints | ||
330 | * enabled for both read and write on the same address. | ||
331 | */ | ||
332 | for (i = 0, bp_check = kdb_breakpoints; i < KDB_MAXBPT; | ||
333 | i++, bp_check++) { | ||
334 | if (!bp_check->bp_free && | ||
335 | bp_check->bp_addr == template.bp_addr) { | ||
336 | kdb_printf("You already have a breakpoint at " | ||
337 | kdb_bfd_vma_fmt0 "\n", template.bp_addr); | ||
338 | return KDB_DUPBPT; | ||
339 | } | ||
340 | } | ||
341 | |||
342 | template.bp_enabled = 1; | ||
343 | |||
344 | /* | ||
345 | * Actually allocate the breakpoint found earlier | ||
346 | */ | ||
347 | *bp = template; | ||
348 | bp->bp_free = 0; | ||
349 | |||
350 | kdb_printbp(bp, bpno); | ||
351 | |||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | /* | ||
356 | * kdb_bc | ||
357 | * | ||
358 | * Handles the 'bc', 'be', and 'bd' commands | ||
359 | * | ||
360 | * [bd|bc|be] <breakpoint-number> | ||
361 | * [bd|bc|be] * | ||
362 | * | ||
363 | * Parameters: | ||
364 | * argc Count of arguments in argv | ||
365 | * argv Space delimited command line arguments | ||
366 | * Outputs: | ||
367 | * None. | ||
368 | * Returns: | ||
369 | * Zero for success, a kdb diagnostic for failure | ||
370 | * Locking: | ||
371 | * None. | ||
372 | * Remarks: | ||
373 | */ | ||
374 | static int kdb_bc(int argc, const char **argv) | ||
375 | { | ||
376 | unsigned long addr; | ||
377 | kdb_bp_t *bp = NULL; | ||
378 | int lowbp = KDB_MAXBPT; | ||
379 | int highbp = 0; | ||
380 | int done = 0; | ||
381 | int i; | ||
382 | int diag = 0; | ||
383 | |||
384 | int cmd; /* KDBCMD_B? */ | ||
385 | #define KDBCMD_BC 0 | ||
386 | #define KDBCMD_BE 1 | ||
387 | #define KDBCMD_BD 2 | ||
388 | |||
389 | if (strcmp(argv[0], "be") == 0) | ||
390 | cmd = KDBCMD_BE; | ||
391 | else if (strcmp(argv[0], "bd") == 0) | ||
392 | cmd = KDBCMD_BD; | ||
393 | else | ||
394 | cmd = KDBCMD_BC; | ||
395 | |||
396 | if (argc != 1) | ||
397 | return KDB_ARGCOUNT; | ||
398 | |||
399 | if (strcmp(argv[1], "*") == 0) { | ||
400 | lowbp = 0; | ||
401 | highbp = KDB_MAXBPT; | ||
402 | } else { | ||
403 | diag = kdbgetularg(argv[1], &addr); | ||
404 | if (diag) | ||
405 | return diag; | ||
406 | |||
407 | /* | ||
408 | * For addresses less than the maximum breakpoint number, | ||
409 | * assume that the breakpoint number is desired. | ||
410 | */ | ||
411 | if (addr < KDB_MAXBPT) { | ||
412 | bp = &kdb_breakpoints[addr]; | ||
413 | lowbp = highbp = addr; | ||
414 | highbp++; | ||
415 | } else { | ||
416 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; | ||
417 | i++, bp++) { | ||
418 | if (bp->bp_addr == addr) { | ||
419 | lowbp = highbp = i; | ||
420 | highbp++; | ||
421 | break; | ||
422 | } | ||
423 | } | ||
424 | } | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Now operate on the set of breakpoints matching the input | ||
429 | * criteria (either '*' for all, or an individual breakpoint). | ||
430 | */ | ||
431 | for (bp = &kdb_breakpoints[lowbp], i = lowbp; | ||
432 | i < highbp; | ||
433 | i++, bp++) { | ||
434 | if (bp->bp_free) | ||
435 | continue; | ||
436 | |||
437 | done++; | ||
438 | |||
439 | switch (cmd) { | ||
440 | case KDBCMD_BC: | ||
441 | bp->bp_enabled = 0; | ||
442 | |||
443 | kdb_printf("Breakpoint %d at " | ||
444 | kdb_bfd_vma_fmt " cleared\n", | ||
445 | i, bp->bp_addr); | ||
446 | |||
447 | bp->bp_addr = 0; | ||
448 | bp->bp_free = 1; | ||
449 | |||
450 | break; | ||
451 | case KDBCMD_BE: | ||
452 | bp->bp_enabled = 1; | ||
453 | |||
454 | kdb_printf("Breakpoint %d at " | ||
455 | kdb_bfd_vma_fmt " enabled", | ||
456 | i, bp->bp_addr); | ||
457 | |||
458 | kdb_printf("\n"); | ||
459 | break; | ||
460 | case KDBCMD_BD: | ||
461 | if (!bp->bp_enabled) | ||
462 | break; | ||
463 | |||
464 | bp->bp_enabled = 0; | ||
465 | |||
466 | kdb_printf("Breakpoint %d at " | ||
467 | kdb_bfd_vma_fmt " disabled\n", | ||
468 | i, bp->bp_addr); | ||
469 | |||
470 | break; | ||
471 | } | ||
472 | if (bp->bp_delay && (cmd == KDBCMD_BC || cmd == KDBCMD_BD)) { | ||
473 | bp->bp_delay = 0; | ||
474 | KDB_STATE_CLEAR(SSBPT); | ||
475 | } | ||
476 | } | ||
477 | |||
478 | return (!done) ? KDB_BPTNOTFOUND : 0; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * kdb_ss | ||
483 | * | ||
484 | * Process the 'ss' (Single Step) and 'ssb' (Single Step to Branch) | ||
485 | * commands. | ||
486 | * | ||
487 | * ss | ||
488 | * ssb | ||
489 | * | ||
490 | * Parameters: | ||
491 | * argc Argument count | ||
492 | * argv Argument vector | ||
493 | * Outputs: | ||
494 | * None. | ||
495 | * Returns: | ||
496 | * KDB_CMD_SS[B] for success, a kdb error if failure. | ||
497 | * Locking: | ||
498 | * None. | ||
499 | * Remarks: | ||
500 | * | ||
501 | * Set the arch specific option to trigger a debug trap after the next | ||
502 | * instruction. | ||
503 | * | ||
504 | * For 'ssb', set the trace flag in the debug trap handler | ||
505 | * after printing the current insn and return directly without | ||
506 | * invoking the kdb command processor, until a branch instruction | ||
507 | * is encountered. | ||
508 | */ | ||
509 | |||
510 | static int kdb_ss(int argc, const char **argv) | ||
511 | { | ||
512 | int ssb = 0; | ||
513 | |||
514 | ssb = (strcmp(argv[0], "ssb") == 0); | ||
515 | if (argc != 0) | ||
516 | return KDB_ARGCOUNT; | ||
517 | /* | ||
518 | * Set trace flag and go. | ||
519 | */ | ||
520 | KDB_STATE_SET(DOING_SS); | ||
521 | if (ssb) { | ||
522 | KDB_STATE_SET(DOING_SSB); | ||
523 | return KDB_CMD_SSB; | ||
524 | } | ||
525 | return KDB_CMD_SS; | ||
526 | } | ||
527 | |||
528 | /* Initialize the breakpoint table and register breakpoint commands. */ | ||
529 | |||
530 | void __init kdb_initbptab(void) | ||
531 | { | ||
532 | int i; | ||
533 | kdb_bp_t *bp; | ||
534 | |||
535 | /* | ||
536 | * First time initialization. | ||
537 | */ | ||
538 | memset(&kdb_breakpoints, '\0', sizeof(kdb_breakpoints)); | ||
539 | |||
540 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) | ||
541 | bp->bp_free = 1; | ||
542 | |||
543 | kdb_register_repeat("bp", kdb_bp, "[<vaddr>]", | ||
544 | "Set/Display breakpoints", 0, KDB_REPEAT_NO_ARGS); | ||
545 | kdb_register_repeat("bl", kdb_bp, "[<vaddr>]", | ||
546 | "Display breakpoints", 0, KDB_REPEAT_NO_ARGS); | ||
547 | if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) | ||
548 | kdb_register_repeat("bph", kdb_bp, "[<vaddr>]", | ||
549 | "[datar [length]|dataw [length]] Set hw brk", 0, KDB_REPEAT_NO_ARGS); | ||
550 | kdb_register_repeat("bc", kdb_bc, "<bpnum>", | ||
551 | "Clear Breakpoint", 0, KDB_REPEAT_NONE); | ||
552 | kdb_register_repeat("be", kdb_bc, "<bpnum>", | ||
553 | "Enable Breakpoint", 0, KDB_REPEAT_NONE); | ||
554 | kdb_register_repeat("bd", kdb_bc, "<bpnum>", | ||
555 | "Disable Breakpoint", 0, KDB_REPEAT_NONE); | ||
556 | |||
557 | kdb_register_repeat("ss", kdb_ss, "", | ||
558 | "Single Step", 1, KDB_REPEAT_NO_ARGS); | ||
559 | kdb_register_repeat("ssb", kdb_ss, "", | ||
560 | "Single step to branch/call", 0, KDB_REPEAT_NO_ARGS); | ||
561 | /* | ||
562 | * Architecture dependent initialization. | ||
563 | */ | ||
564 | } | ||
diff --git a/kernel/debug/kdb/kdb_bt.c b/kernel/debug/kdb/kdb_bt.c new file mode 100644 index 000000000000..2f62fe85f16a --- /dev/null +++ b/kernel/debug/kdb/kdb_bt.c | |||
@@ -0,0 +1,210 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Stack Traceback | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/ctype.h> | ||
13 | #include <linux/string.h> | ||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/kdb.h> | ||
17 | #include <linux/nmi.h> | ||
18 | #include <asm/system.h> | ||
19 | #include "kdb_private.h" | ||
20 | |||
21 | |||
22 | static void kdb_show_stack(struct task_struct *p, void *addr) | ||
23 | { | ||
24 | int old_lvl = console_loglevel; | ||
25 | console_loglevel = 15; | ||
26 | kdb_trap_printk++; | ||
27 | kdb_set_current_task(p); | ||
28 | if (addr) { | ||
29 | show_stack((struct task_struct *)p, addr); | ||
30 | } else if (kdb_current_regs) { | ||
31 | #ifdef CONFIG_X86 | ||
32 | show_stack(p, &kdb_current_regs->sp); | ||
33 | #else | ||
34 | show_stack(p, NULL); | ||
35 | #endif | ||
36 | } else { | ||
37 | show_stack(p, NULL); | ||
38 | } | ||
39 | console_loglevel = old_lvl; | ||
40 | kdb_trap_printk--; | ||
41 | } | ||
42 | |||
43 | /* | ||
44 | * kdb_bt | ||
45 | * | ||
46 | * This function implements the 'bt' command. Print a stack | ||
47 | * traceback. | ||
48 | * | ||
49 | * bt [<address-expression>] (addr-exp is for alternate stacks) | ||
50 | * btp <pid> Kernel stack for <pid> | ||
51 | * btt <address-expression> Kernel stack for task structure at | ||
52 | * <address-expression> | ||
53 | * bta [DRSTCZEUIMA] All useful processes, optionally | ||
54 | * filtered by state | ||
55 | * btc [<cpu>] The current process on one cpu, | ||
56 | * default is all cpus | ||
57 | * | ||
58 | * bt <address-expression> refers to a address on the stack, that location | ||
59 | * is assumed to contain a return address. | ||
60 | * | ||
61 | * btt <address-expression> refers to the address of a struct task. | ||
62 | * | ||
63 | * Inputs: | ||
64 | * argc argument count | ||
65 | * argv argument vector | ||
66 | * Outputs: | ||
67 | * None. | ||
68 | * Returns: | ||
69 | * zero for success, a kdb diagnostic if error | ||
70 | * Locking: | ||
71 | * none. | ||
72 | * Remarks: | ||
73 | * Backtrack works best when the code uses frame pointers. But even | ||
74 | * without frame pointers we should get a reasonable trace. | ||
75 | * | ||
76 | * mds comes in handy when examining the stack to do a manual traceback or | ||
77 | * to get a starting point for bt <address-expression>. | ||
78 | */ | ||
79 | |||
80 | static int | ||
81 | kdb_bt1(struct task_struct *p, unsigned long mask, | ||
82 | int argcount, int btaprompt) | ||
83 | { | ||
84 | char buffer[2]; | ||
85 | if (kdb_getarea(buffer[0], (unsigned long)p) || | ||
86 | kdb_getarea(buffer[0], (unsigned long)(p+1)-1)) | ||
87 | return KDB_BADADDR; | ||
88 | if (!kdb_task_state(p, mask)) | ||
89 | return 0; | ||
90 | kdb_printf("Stack traceback for pid %d\n", p->pid); | ||
91 | kdb_ps1(p); | ||
92 | kdb_show_stack(p, NULL); | ||
93 | if (btaprompt) { | ||
94 | kdb_getstr(buffer, sizeof(buffer), | ||
95 | "Enter <q> to end, <cr> to continue:"); | ||
96 | if (buffer[0] == 'q') { | ||
97 | kdb_printf("\n"); | ||
98 | return 1; | ||
99 | } | ||
100 | } | ||
101 | touch_nmi_watchdog(); | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | int | ||
106 | kdb_bt(int argc, const char **argv) | ||
107 | { | ||
108 | int diag; | ||
109 | int argcount = 5; | ||
110 | int btaprompt = 1; | ||
111 | int nextarg; | ||
112 | unsigned long addr; | ||
113 | long offset; | ||
114 | |||
115 | kdbgetintenv("BTARGS", &argcount); /* Arguments to print */ | ||
116 | kdbgetintenv("BTAPROMPT", &btaprompt); /* Prompt after each | ||
117 | * proc in bta */ | ||
118 | |||
119 | if (strcmp(argv[0], "bta") == 0) { | ||
120 | struct task_struct *g, *p; | ||
121 | unsigned long cpu; | ||
122 | unsigned long mask = kdb_task_state_string(argc ? argv[1] : | ||
123 | NULL); | ||
124 | if (argc == 0) | ||
125 | kdb_ps_suppressed(); | ||
126 | /* Run the active tasks first */ | ||
127 | for_each_online_cpu(cpu) { | ||
128 | p = kdb_curr_task(cpu); | ||
129 | if (kdb_bt1(p, mask, argcount, btaprompt)) | ||
130 | return 0; | ||
131 | } | ||
132 | /* Now the inactive tasks */ | ||
133 | kdb_do_each_thread(g, p) { | ||
134 | if (task_curr(p)) | ||
135 | continue; | ||
136 | if (kdb_bt1(p, mask, argcount, btaprompt)) | ||
137 | return 0; | ||
138 | } kdb_while_each_thread(g, p); | ||
139 | } else if (strcmp(argv[0], "btp") == 0) { | ||
140 | struct task_struct *p; | ||
141 | unsigned long pid; | ||
142 | if (argc != 1) | ||
143 | return KDB_ARGCOUNT; | ||
144 | diag = kdbgetularg((char *)argv[1], &pid); | ||
145 | if (diag) | ||
146 | return diag; | ||
147 | p = find_task_by_pid_ns(pid, &init_pid_ns); | ||
148 | if (p) { | ||
149 | kdb_set_current_task(p); | ||
150 | return kdb_bt1(p, ~0UL, argcount, 0); | ||
151 | } | ||
152 | kdb_printf("No process with pid == %ld found\n", pid); | ||
153 | return 0; | ||
154 | } else if (strcmp(argv[0], "btt") == 0) { | ||
155 | if (argc != 1) | ||
156 | return KDB_ARGCOUNT; | ||
157 | diag = kdbgetularg((char *)argv[1], &addr); | ||
158 | if (diag) | ||
159 | return diag; | ||
160 | kdb_set_current_task((struct task_struct *)addr); | ||
161 | return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0); | ||
162 | } else if (strcmp(argv[0], "btc") == 0) { | ||
163 | unsigned long cpu = ~0; | ||
164 | struct task_struct *save_current_task = kdb_current_task; | ||
165 | char buf[80]; | ||
166 | if (argc > 1) | ||
167 | return KDB_ARGCOUNT; | ||
168 | if (argc == 1) { | ||
169 | diag = kdbgetularg((char *)argv[1], &cpu); | ||
170 | if (diag) | ||
171 | return diag; | ||
172 | } | ||
173 | /* Recursive use of kdb_parse, do not use argv after | ||
174 | * this point */ | ||
175 | argv = NULL; | ||
176 | if (cpu != ~0) { | ||
177 | if (cpu >= num_possible_cpus() || !cpu_online(cpu)) { | ||
178 | kdb_printf("no process for cpu %ld\n", cpu); | ||
179 | return 0; | ||
180 | } | ||
181 | sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); | ||
182 | kdb_parse(buf); | ||
183 | return 0; | ||
184 | } | ||
185 | kdb_printf("btc: cpu status: "); | ||
186 | kdb_parse("cpu\n"); | ||
187 | for_each_online_cpu(cpu) { | ||
188 | sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); | ||
189 | kdb_parse(buf); | ||
190 | touch_nmi_watchdog(); | ||
191 | } | ||
192 | kdb_set_current_task(save_current_task); | ||
193 | return 0; | ||
194 | } else { | ||
195 | if (argc) { | ||
196 | nextarg = 1; | ||
197 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, | ||
198 | &offset, NULL); | ||
199 | if (diag) | ||
200 | return diag; | ||
201 | kdb_show_stack(kdb_current_task, (void *)addr); | ||
202 | return 0; | ||
203 | } else { | ||
204 | return kdb_bt1(kdb_current_task, ~0UL, argcount, 0); | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* NOTREACHED */ | ||
209 | return 0; | ||
210 | } | ||
diff --git a/kernel/debug/kdb/kdb_cmds b/kernel/debug/kdb/kdb_cmds new file mode 100644 index 000000000000..56c88e4db309 --- /dev/null +++ b/kernel/debug/kdb/kdb_cmds | |||
@@ -0,0 +1,35 @@ | |||
1 | # Initial commands for kdb, alter to suit your needs. | ||
2 | # These commands are executed in kdb_init() context, no SMP, no | ||
3 | # processes. Commands that require process data (including stack or | ||
4 | # registers) are not reliable this early. set and bp commands should | ||
5 | # be safe. Global breakpoint commands affect each cpu as it is booted. | ||
6 | |||
7 | # Standard debugging information for first level support, just type archkdb | ||
8 | # or archkdbcpu or archkdbshort at the kdb prompt. | ||
9 | |||
10 | defcmd dumpcommon "" "Common kdb debugging" | ||
11 | set BTAPROMPT 0 | ||
12 | set LINES 10000 | ||
13 | -summary | ||
14 | -cpu | ||
15 | -ps | ||
16 | -dmesg 600 | ||
17 | -bt | ||
18 | endefcmd | ||
19 | |||
20 | defcmd dumpall "" "First line debugging" | ||
21 | set BTSYMARG 1 | ||
22 | set BTARGS 9 | ||
23 | pid R | ||
24 | -dumpcommon | ||
25 | -bta | ||
26 | endefcmd | ||
27 | |||
28 | defcmd dumpcpu "" "Same as dumpall but only tasks on cpus" | ||
29 | set BTSYMARG 1 | ||
30 | set BTARGS 9 | ||
31 | pid R | ||
32 | -dumpcommon | ||
33 | -btc | ||
34 | endefcmd | ||
35 | |||
diff --git a/kernel/debug/kdb/kdb_debugger.c b/kernel/debug/kdb/kdb_debugger.c new file mode 100644 index 000000000000..bf6e8270e957 --- /dev/null +++ b/kernel/debug/kdb/kdb_debugger.c | |||
@@ -0,0 +1,169 @@ | |||
1 | /* | ||
2 | * Created by: Jason Wessel <jason.wessel@windriver.com> | ||
3 | * | ||
4 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
5 | * | ||
6 | * This file is licensed under the terms of the GNU General Public | ||
7 | * License version 2. This program is licensed "as is" without any | ||
8 | * warranty of any kind, whether express or implied. | ||
9 | */ | ||
10 | |||
11 | #include <linux/kgdb.h> | ||
12 | #include <linux/kdb.h> | ||
13 | #include <linux/kdebug.h> | ||
14 | #include "kdb_private.h" | ||
15 | #include "../debug_core.h" | ||
16 | |||
17 | /* | ||
18 | * KDB interface to KGDB internals | ||
19 | */ | ||
20 | get_char_func kdb_poll_funcs[] = { | ||
21 | dbg_io_get_char, | ||
22 | NULL, | ||
23 | NULL, | ||
24 | NULL, | ||
25 | NULL, | ||
26 | NULL, | ||
27 | }; | ||
28 | EXPORT_SYMBOL_GPL(kdb_poll_funcs); | ||
29 | |||
30 | int kdb_poll_idx = 1; | ||
31 | EXPORT_SYMBOL_GPL(kdb_poll_idx); | ||
32 | |||
33 | int kdb_stub(struct kgdb_state *ks) | ||
34 | { | ||
35 | int error = 0; | ||
36 | kdb_bp_t *bp; | ||
37 | unsigned long addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
38 | kdb_reason_t reason = KDB_REASON_OOPS; | ||
39 | kdb_dbtrap_t db_result = KDB_DB_NOBPT; | ||
40 | int i; | ||
41 | |||
42 | if (KDB_STATE(REENTRY)) { | ||
43 | reason = KDB_REASON_SWITCH; | ||
44 | KDB_STATE_CLEAR(REENTRY); | ||
45 | addr = instruction_pointer(ks->linux_regs); | ||
46 | } | ||
47 | ks->pass_exception = 0; | ||
48 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
49 | reason = KDB_REASON_KEYBOARD; | ||
50 | |||
51 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) { | ||
52 | if ((bp->bp_enabled) && (bp->bp_addr == addr)) { | ||
53 | reason = KDB_REASON_BREAK; | ||
54 | db_result = KDB_DB_BPT; | ||
55 | if (addr != instruction_pointer(ks->linux_regs)) | ||
56 | kgdb_arch_set_pc(ks->linux_regs, addr); | ||
57 | break; | ||
58 | } | ||
59 | } | ||
60 | if (reason == KDB_REASON_BREAK || reason == KDB_REASON_SWITCH) { | ||
61 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) { | ||
62 | if (bp->bp_free) | ||
63 | continue; | ||
64 | if (bp->bp_addr == addr) { | ||
65 | bp->bp_delay = 1; | ||
66 | bp->bp_delayed = 1; | ||
67 | /* | ||
68 | * SSBPT is set when the kernel debugger must single step a | ||
69 | * task in order to re-establish an instruction breakpoint | ||
70 | * which uses the instruction replacement mechanism. It is | ||
71 | * cleared by any action that removes the need to single-step | ||
72 | * the breakpoint. | ||
73 | */ | ||
74 | reason = KDB_REASON_BREAK; | ||
75 | db_result = KDB_DB_BPT; | ||
76 | KDB_STATE_SET(SSBPT); | ||
77 | break; | ||
78 | } | ||
79 | } | ||
80 | } | ||
81 | |||
82 | if (reason != KDB_REASON_BREAK && ks->ex_vector == 0 && | ||
83 | ks->signo == SIGTRAP) { | ||
84 | reason = KDB_REASON_SSTEP; | ||
85 | db_result = KDB_DB_BPT; | ||
86 | } | ||
87 | /* Set initial kdb state variables */ | ||
88 | KDB_STATE_CLEAR(KGDB_TRANS); | ||
89 | kdb_initial_cpu = ks->cpu; | ||
90 | kdb_current_task = kgdb_info[ks->cpu].task; | ||
91 | kdb_current_regs = kgdb_info[ks->cpu].debuggerinfo; | ||
92 | /* Remove any breakpoints as needed by kdb and clear single step */ | ||
93 | kdb_bp_remove(); | ||
94 | KDB_STATE_CLEAR(DOING_SS); | ||
95 | KDB_STATE_CLEAR(DOING_SSB); | ||
96 | KDB_STATE_SET(PAGER); | ||
97 | /* zero out any offline cpu data */ | ||
98 | for_each_present_cpu(i) { | ||
99 | if (!cpu_online(i)) { | ||
100 | kgdb_info[i].debuggerinfo = NULL; | ||
101 | kgdb_info[i].task = NULL; | ||
102 | } | ||
103 | } | ||
104 | if (ks->err_code == DIE_OOPS || reason == KDB_REASON_OOPS) { | ||
105 | ks->pass_exception = 1; | ||
106 | KDB_FLAG_SET(CATASTROPHIC); | ||
107 | } | ||
108 | kdb_initial_cpu = ks->cpu; | ||
109 | if (KDB_STATE(SSBPT) && reason == KDB_REASON_SSTEP) { | ||
110 | KDB_STATE_CLEAR(SSBPT); | ||
111 | KDB_STATE_CLEAR(DOING_SS); | ||
112 | } else { | ||
113 | /* Start kdb main loop */ | ||
114 | error = kdb_main_loop(KDB_REASON_ENTER, reason, | ||
115 | ks->err_code, db_result, ks->linux_regs); | ||
116 | } | ||
117 | /* | ||
118 | * Upon exit from the kdb main loop setup break points and restart | ||
119 | * the system based on the requested continue state | ||
120 | */ | ||
121 | kdb_initial_cpu = -1; | ||
122 | kdb_current_task = NULL; | ||
123 | kdb_current_regs = NULL; | ||
124 | KDB_STATE_CLEAR(PAGER); | ||
125 | kdbnearsym_cleanup(); | ||
126 | if (error == KDB_CMD_KGDB) { | ||
127 | if (KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)) { | ||
128 | /* | ||
129 | * This inteface glue which allows kdb to transition in into | ||
130 | * the gdb stub. In order to do this the '?' or '' gdb serial | ||
131 | * packet response is processed here. And then control is | ||
132 | * passed to the gdbstub. | ||
133 | */ | ||
134 | if (KDB_STATE(DOING_KGDB)) | ||
135 | gdbstub_state(ks, "?"); | ||
136 | else | ||
137 | gdbstub_state(ks, ""); | ||
138 | KDB_STATE_CLEAR(DOING_KGDB); | ||
139 | KDB_STATE_CLEAR(DOING_KGDB2); | ||
140 | } | ||
141 | return DBG_PASS_EVENT; | ||
142 | } | ||
143 | kdb_bp_install(ks->linux_regs); | ||
144 | dbg_activate_sw_breakpoints(); | ||
145 | /* Set the exit state to a single step or a continue */ | ||
146 | if (KDB_STATE(DOING_SS)) | ||
147 | gdbstub_state(ks, "s"); | ||
148 | else | ||
149 | gdbstub_state(ks, "c"); | ||
150 | |||
151 | KDB_FLAG_CLEAR(CATASTROPHIC); | ||
152 | |||
153 | /* Invoke arch specific exception handling prior to system resume */ | ||
154 | kgdb_info[ks->cpu].ret_state = gdbstub_state(ks, "e"); | ||
155 | if (ks->pass_exception) | ||
156 | kgdb_info[ks->cpu].ret_state = 1; | ||
157 | if (error == KDB_CMD_CPU) { | ||
158 | KDB_STATE_SET(REENTRY); | ||
159 | /* | ||
160 | * Force clear the single step bit because kdb emulates this | ||
161 | * differently vs the gdbstub | ||
162 | */ | ||
163 | kgdb_single_step = 0; | ||
164 | dbg_deactivate_sw_breakpoints(); | ||
165 | return DBG_SWITCH_CPU_EVENT; | ||
166 | } | ||
167 | return kgdb_info[ks->cpu].ret_state; | ||
168 | } | ||
169 | |||
diff --git a/kernel/debug/kdb/kdb_io.c b/kernel/debug/kdb/kdb_io.c new file mode 100644 index 000000000000..c9b7f4f90bba --- /dev/null +++ b/kernel/debug/kdb/kdb_io.c | |||
@@ -0,0 +1,826 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Console I/O handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2006 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/types.h> | ||
14 | #include <linux/ctype.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/kdev_t.h> | ||
18 | #include <linux/console.h> | ||
19 | #include <linux/string.h> | ||
20 | #include <linux/sched.h> | ||
21 | #include <linux/smp.h> | ||
22 | #include <linux/nmi.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/kgdb.h> | ||
25 | #include <linux/kdb.h> | ||
26 | #include <linux/kallsyms.h> | ||
27 | #include "kdb_private.h" | ||
28 | |||
29 | #define CMD_BUFLEN 256 | ||
30 | char kdb_prompt_str[CMD_BUFLEN]; | ||
31 | |||
32 | int kdb_trap_printk; | ||
33 | |||
34 | static void kgdb_transition_check(char *buffer) | ||
35 | { | ||
36 | int slen = strlen(buffer); | ||
37 | if (strncmp(buffer, "$?#3f", slen) != 0 && | ||
38 | strncmp(buffer, "$qSupported#37", slen) != 0 && | ||
39 | strncmp(buffer, "+$qSupported#37", slen) != 0) { | ||
40 | KDB_STATE_SET(KGDB_TRANS); | ||
41 | kdb_printf("%s", buffer); | ||
42 | } | ||
43 | } | ||
44 | |||
45 | static int kdb_read_get_key(char *buffer, size_t bufsize) | ||
46 | { | ||
47 | #define ESCAPE_UDELAY 1000 | ||
48 | #define ESCAPE_DELAY (2*1000000/ESCAPE_UDELAY) /* 2 seconds worth of udelays */ | ||
49 | char escape_data[5]; /* longest vt100 escape sequence is 4 bytes */ | ||
50 | char *ped = escape_data; | ||
51 | int escape_delay = 0; | ||
52 | get_char_func *f, *f_escape = NULL; | ||
53 | int key; | ||
54 | |||
55 | for (f = &kdb_poll_funcs[0]; ; ++f) { | ||
56 | if (*f == NULL) { | ||
57 | /* Reset NMI watchdog once per poll loop */ | ||
58 | touch_nmi_watchdog(); | ||
59 | f = &kdb_poll_funcs[0]; | ||
60 | } | ||
61 | if (escape_delay == 2) { | ||
62 | *ped = '\0'; | ||
63 | ped = escape_data; | ||
64 | --escape_delay; | ||
65 | } | ||
66 | if (escape_delay == 1) { | ||
67 | key = *ped++; | ||
68 | if (!*ped) | ||
69 | --escape_delay; | ||
70 | break; | ||
71 | } | ||
72 | key = (*f)(); | ||
73 | if (key == -1) { | ||
74 | if (escape_delay) { | ||
75 | udelay(ESCAPE_UDELAY); | ||
76 | --escape_delay; | ||
77 | } | ||
78 | continue; | ||
79 | } | ||
80 | if (bufsize <= 2) { | ||
81 | if (key == '\r') | ||
82 | key = '\n'; | ||
83 | *buffer++ = key; | ||
84 | *buffer = '\0'; | ||
85 | return -1; | ||
86 | } | ||
87 | if (escape_delay == 0 && key == '\e') { | ||
88 | escape_delay = ESCAPE_DELAY; | ||
89 | ped = escape_data; | ||
90 | f_escape = f; | ||
91 | } | ||
92 | if (escape_delay) { | ||
93 | *ped++ = key; | ||
94 | if (f_escape != f) { | ||
95 | escape_delay = 2; | ||
96 | continue; | ||
97 | } | ||
98 | if (ped - escape_data == 1) { | ||
99 | /* \e */ | ||
100 | continue; | ||
101 | } else if (ped - escape_data == 2) { | ||
102 | /* \e<something> */ | ||
103 | if (key != '[') | ||
104 | escape_delay = 2; | ||
105 | continue; | ||
106 | } else if (ped - escape_data == 3) { | ||
107 | /* \e[<something> */ | ||
108 | int mapkey = 0; | ||
109 | switch (key) { | ||
110 | case 'A': /* \e[A, up arrow */ | ||
111 | mapkey = 16; | ||
112 | break; | ||
113 | case 'B': /* \e[B, down arrow */ | ||
114 | mapkey = 14; | ||
115 | break; | ||
116 | case 'C': /* \e[C, right arrow */ | ||
117 | mapkey = 6; | ||
118 | break; | ||
119 | case 'D': /* \e[D, left arrow */ | ||
120 | mapkey = 2; | ||
121 | break; | ||
122 | case '1': /* dropthrough */ | ||
123 | case '3': /* dropthrough */ | ||
124 | /* \e[<1,3,4>], may be home, del, end */ | ||
125 | case '4': | ||
126 | mapkey = -1; | ||
127 | break; | ||
128 | } | ||
129 | if (mapkey != -1) { | ||
130 | if (mapkey > 0) { | ||
131 | escape_data[0] = mapkey; | ||
132 | escape_data[1] = '\0'; | ||
133 | } | ||
134 | escape_delay = 2; | ||
135 | } | ||
136 | continue; | ||
137 | } else if (ped - escape_data == 4) { | ||
138 | /* \e[<1,3,4><something> */ | ||
139 | int mapkey = 0; | ||
140 | if (key == '~') { | ||
141 | switch (escape_data[2]) { | ||
142 | case '1': /* \e[1~, home */ | ||
143 | mapkey = 1; | ||
144 | break; | ||
145 | case '3': /* \e[3~, del */ | ||
146 | mapkey = 4; | ||
147 | break; | ||
148 | case '4': /* \e[4~, end */ | ||
149 | mapkey = 5; | ||
150 | break; | ||
151 | } | ||
152 | } | ||
153 | if (mapkey > 0) { | ||
154 | escape_data[0] = mapkey; | ||
155 | escape_data[1] = '\0'; | ||
156 | } | ||
157 | escape_delay = 2; | ||
158 | continue; | ||
159 | } | ||
160 | } | ||
161 | break; /* A key to process */ | ||
162 | } | ||
163 | return key; | ||
164 | } | ||
165 | |||
166 | /* | ||
167 | * kdb_read | ||
168 | * | ||
169 | * This function reads a string of characters, terminated by | ||
170 | * a newline, or by reaching the end of the supplied buffer, | ||
171 | * from the current kernel debugger console device. | ||
172 | * Parameters: | ||
173 | * buffer - Address of character buffer to receive input characters. | ||
174 | * bufsize - size, in bytes, of the character buffer | ||
175 | * Returns: | ||
176 | * Returns a pointer to the buffer containing the received | ||
177 | * character string. This string will be terminated by a | ||
178 | * newline character. | ||
179 | * Locking: | ||
180 | * No locks are required to be held upon entry to this | ||
181 | * function. It is not reentrant - it relies on the fact | ||
182 | * that while kdb is running on only one "master debug" cpu. | ||
183 | * Remarks: | ||
184 | * | ||
185 | * The buffer size must be >= 2. A buffer size of 2 means that the caller only | ||
186 | * wants a single key. | ||
187 | * | ||
188 | * An escape key could be the start of a vt100 control sequence such as \e[D | ||
189 | * (left arrow) or it could be a character in its own right. The standard | ||
190 | * method for detecting the difference is to wait for 2 seconds to see if there | ||
191 | * are any other characters. kdb is complicated by the lack of a timer service | ||
192 | * (interrupts are off), by multiple input sources and by the need to sometimes | ||
193 | * return after just one key. Escape sequence processing has to be done as | ||
194 | * states in the polling loop. | ||
195 | */ | ||
196 | |||
197 | static char *kdb_read(char *buffer, size_t bufsize) | ||
198 | { | ||
199 | char *cp = buffer; | ||
200 | char *bufend = buffer+bufsize-2; /* Reserve space for newline | ||
201 | * and null byte */ | ||
202 | char *lastchar; | ||
203 | char *p_tmp; | ||
204 | char tmp; | ||
205 | static char tmpbuffer[CMD_BUFLEN]; | ||
206 | int len = strlen(buffer); | ||
207 | int len_tmp; | ||
208 | int tab = 0; | ||
209 | int count; | ||
210 | int i; | ||
211 | int diag, dtab_count; | ||
212 | int key; | ||
213 | |||
214 | |||
215 | diag = kdbgetintenv("DTABCOUNT", &dtab_count); | ||
216 | if (diag) | ||
217 | dtab_count = 30; | ||
218 | |||
219 | if (len > 0) { | ||
220 | cp += len; | ||
221 | if (*(buffer+len-1) == '\n') | ||
222 | cp--; | ||
223 | } | ||
224 | |||
225 | lastchar = cp; | ||
226 | *cp = '\0'; | ||
227 | kdb_printf("%s", buffer); | ||
228 | poll_again: | ||
229 | key = kdb_read_get_key(buffer, bufsize); | ||
230 | if (key == -1) | ||
231 | return buffer; | ||
232 | if (key != 9) | ||
233 | tab = 0; | ||
234 | switch (key) { | ||
235 | case 8: /* backspace */ | ||
236 | if (cp > buffer) { | ||
237 | if (cp < lastchar) { | ||
238 | memcpy(tmpbuffer, cp, lastchar - cp); | ||
239 | memcpy(cp-1, tmpbuffer, lastchar - cp); | ||
240 | } | ||
241 | *(--lastchar) = '\0'; | ||
242 | --cp; | ||
243 | kdb_printf("\b%s \r", cp); | ||
244 | tmp = *cp; | ||
245 | *cp = '\0'; | ||
246 | kdb_printf(kdb_prompt_str); | ||
247 | kdb_printf("%s", buffer); | ||
248 | *cp = tmp; | ||
249 | } | ||
250 | break; | ||
251 | case 13: /* enter */ | ||
252 | *lastchar++ = '\n'; | ||
253 | *lastchar++ = '\0'; | ||
254 | kdb_printf("\n"); | ||
255 | return buffer; | ||
256 | case 4: /* Del */ | ||
257 | if (cp < lastchar) { | ||
258 | memcpy(tmpbuffer, cp+1, lastchar - cp - 1); | ||
259 | memcpy(cp, tmpbuffer, lastchar - cp - 1); | ||
260 | *(--lastchar) = '\0'; | ||
261 | kdb_printf("%s \r", cp); | ||
262 | tmp = *cp; | ||
263 | *cp = '\0'; | ||
264 | kdb_printf(kdb_prompt_str); | ||
265 | kdb_printf("%s", buffer); | ||
266 | *cp = tmp; | ||
267 | } | ||
268 | break; | ||
269 | case 1: /* Home */ | ||
270 | if (cp > buffer) { | ||
271 | kdb_printf("\r"); | ||
272 | kdb_printf(kdb_prompt_str); | ||
273 | cp = buffer; | ||
274 | } | ||
275 | break; | ||
276 | case 5: /* End */ | ||
277 | if (cp < lastchar) { | ||
278 | kdb_printf("%s", cp); | ||
279 | cp = lastchar; | ||
280 | } | ||
281 | break; | ||
282 | case 2: /* Left */ | ||
283 | if (cp > buffer) { | ||
284 | kdb_printf("\b"); | ||
285 | --cp; | ||
286 | } | ||
287 | break; | ||
288 | case 14: /* Down */ | ||
289 | memset(tmpbuffer, ' ', | ||
290 | strlen(kdb_prompt_str) + (lastchar-buffer)); | ||
291 | *(tmpbuffer+strlen(kdb_prompt_str) + | ||
292 | (lastchar-buffer)) = '\0'; | ||
293 | kdb_printf("\r%s\r", tmpbuffer); | ||
294 | *lastchar = (char)key; | ||
295 | *(lastchar+1) = '\0'; | ||
296 | return lastchar; | ||
297 | case 6: /* Right */ | ||
298 | if (cp < lastchar) { | ||
299 | kdb_printf("%c", *cp); | ||
300 | ++cp; | ||
301 | } | ||
302 | break; | ||
303 | case 16: /* Up */ | ||
304 | memset(tmpbuffer, ' ', | ||
305 | strlen(kdb_prompt_str) + (lastchar-buffer)); | ||
306 | *(tmpbuffer+strlen(kdb_prompt_str) + | ||
307 | (lastchar-buffer)) = '\0'; | ||
308 | kdb_printf("\r%s\r", tmpbuffer); | ||
309 | *lastchar = (char)key; | ||
310 | *(lastchar+1) = '\0'; | ||
311 | return lastchar; | ||
312 | case 9: /* Tab */ | ||
313 | if (tab < 2) | ||
314 | ++tab; | ||
315 | p_tmp = buffer; | ||
316 | while (*p_tmp == ' ') | ||
317 | p_tmp++; | ||
318 | if (p_tmp > cp) | ||
319 | break; | ||
320 | memcpy(tmpbuffer, p_tmp, cp-p_tmp); | ||
321 | *(tmpbuffer + (cp-p_tmp)) = '\0'; | ||
322 | p_tmp = strrchr(tmpbuffer, ' '); | ||
323 | if (p_tmp) | ||
324 | ++p_tmp; | ||
325 | else | ||
326 | p_tmp = tmpbuffer; | ||
327 | len = strlen(p_tmp); | ||
328 | count = kallsyms_symbol_complete(p_tmp, | ||
329 | sizeof(tmpbuffer) - | ||
330 | (p_tmp - tmpbuffer)); | ||
331 | if (tab == 2 && count > 0) { | ||
332 | kdb_printf("\n%d symbols are found.", count); | ||
333 | if (count > dtab_count) { | ||
334 | count = dtab_count; | ||
335 | kdb_printf(" But only first %d symbols will" | ||
336 | " be printed.\nYou can change the" | ||
337 | " environment variable DTABCOUNT.", | ||
338 | count); | ||
339 | } | ||
340 | kdb_printf("\n"); | ||
341 | for (i = 0; i < count; i++) { | ||
342 | if (kallsyms_symbol_next(p_tmp, i) < 0) | ||
343 | break; | ||
344 | kdb_printf("%s ", p_tmp); | ||
345 | *(p_tmp + len) = '\0'; | ||
346 | } | ||
347 | if (i >= dtab_count) | ||
348 | kdb_printf("..."); | ||
349 | kdb_printf("\n"); | ||
350 | kdb_printf(kdb_prompt_str); | ||
351 | kdb_printf("%s", buffer); | ||
352 | } else if (tab != 2 && count > 0) { | ||
353 | len_tmp = strlen(p_tmp); | ||
354 | strncpy(p_tmp+len_tmp, cp, lastchar-cp+1); | ||
355 | len_tmp = strlen(p_tmp); | ||
356 | strncpy(cp, p_tmp+len, len_tmp-len + 1); | ||
357 | len = len_tmp - len; | ||
358 | kdb_printf("%s", cp); | ||
359 | cp += len; | ||
360 | lastchar += len; | ||
361 | } | ||
362 | kdb_nextline = 1; /* reset output line number */ | ||
363 | break; | ||
364 | default: | ||
365 | if (key >= 32 && lastchar < bufend) { | ||
366 | if (cp < lastchar) { | ||
367 | memcpy(tmpbuffer, cp, lastchar - cp); | ||
368 | memcpy(cp+1, tmpbuffer, lastchar - cp); | ||
369 | *++lastchar = '\0'; | ||
370 | *cp = key; | ||
371 | kdb_printf("%s\r", cp); | ||
372 | ++cp; | ||
373 | tmp = *cp; | ||
374 | *cp = '\0'; | ||
375 | kdb_printf(kdb_prompt_str); | ||
376 | kdb_printf("%s", buffer); | ||
377 | *cp = tmp; | ||
378 | } else { | ||
379 | *++lastchar = '\0'; | ||
380 | *cp++ = key; | ||
381 | /* The kgdb transition check will hide | ||
382 | * printed characters if we think that | ||
383 | * kgdb is connecting, until the check | ||
384 | * fails */ | ||
385 | if (!KDB_STATE(KGDB_TRANS)) | ||
386 | kgdb_transition_check(buffer); | ||
387 | else | ||
388 | kdb_printf("%c", key); | ||
389 | } | ||
390 | /* Special escape to kgdb */ | ||
391 | if (lastchar - buffer >= 5 && | ||
392 | strcmp(lastchar - 5, "$?#3f") == 0) { | ||
393 | strcpy(buffer, "kgdb"); | ||
394 | KDB_STATE_SET(DOING_KGDB); | ||
395 | return buffer; | ||
396 | } | ||
397 | if (lastchar - buffer >= 14 && | ||
398 | strcmp(lastchar - 14, "$qSupported#37") == 0) { | ||
399 | strcpy(buffer, "kgdb"); | ||
400 | KDB_STATE_SET(DOING_KGDB2); | ||
401 | return buffer; | ||
402 | } | ||
403 | } | ||
404 | break; | ||
405 | } | ||
406 | goto poll_again; | ||
407 | } | ||
408 | |||
409 | /* | ||
410 | * kdb_getstr | ||
411 | * | ||
412 | * Print the prompt string and read a command from the | ||
413 | * input device. | ||
414 | * | ||
415 | * Parameters: | ||
416 | * buffer Address of buffer to receive command | ||
417 | * bufsize Size of buffer in bytes | ||
418 | * prompt Pointer to string to use as prompt string | ||
419 | * Returns: | ||
420 | * Pointer to command buffer. | ||
421 | * Locking: | ||
422 | * None. | ||
423 | * Remarks: | ||
424 | * For SMP kernels, the processor number will be | ||
425 | * substituted for %d, %x or %o in the prompt. | ||
426 | */ | ||
427 | |||
428 | char *kdb_getstr(char *buffer, size_t bufsize, char *prompt) | ||
429 | { | ||
430 | if (prompt && kdb_prompt_str != prompt) | ||
431 | strncpy(kdb_prompt_str, prompt, CMD_BUFLEN); | ||
432 | kdb_printf(kdb_prompt_str); | ||
433 | kdb_nextline = 1; /* Prompt and input resets line number */ | ||
434 | return kdb_read(buffer, bufsize); | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * kdb_input_flush | ||
439 | * | ||
440 | * Get rid of any buffered console input. | ||
441 | * | ||
442 | * Parameters: | ||
443 | * none | ||
444 | * Returns: | ||
445 | * nothing | ||
446 | * Locking: | ||
447 | * none | ||
448 | * Remarks: | ||
449 | * Call this function whenever you want to flush input. If there is any | ||
450 | * outstanding input, it ignores all characters until there has been no | ||
451 | * data for approximately 1ms. | ||
452 | */ | ||
453 | |||
454 | static void kdb_input_flush(void) | ||
455 | { | ||
456 | get_char_func *f; | ||
457 | int res; | ||
458 | int flush_delay = 1; | ||
459 | while (flush_delay) { | ||
460 | flush_delay--; | ||
461 | empty: | ||
462 | touch_nmi_watchdog(); | ||
463 | for (f = &kdb_poll_funcs[0]; *f; ++f) { | ||
464 | res = (*f)(); | ||
465 | if (res != -1) { | ||
466 | flush_delay = 1; | ||
467 | goto empty; | ||
468 | } | ||
469 | } | ||
470 | if (flush_delay) | ||
471 | mdelay(1); | ||
472 | } | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * kdb_printf | ||
477 | * | ||
478 | * Print a string to the output device(s). | ||
479 | * | ||
480 | * Parameters: | ||
481 | * printf-like format and optional args. | ||
482 | * Returns: | ||
483 | * 0 | ||
484 | * Locking: | ||
485 | * None. | ||
486 | * Remarks: | ||
487 | * use 'kdbcons->write()' to avoid polluting 'log_buf' with | ||
488 | * kdb output. | ||
489 | * | ||
490 | * If the user is doing a cmd args | grep srch | ||
491 | * then kdb_grepping_flag is set. | ||
492 | * In that case we need to accumulate full lines (ending in \n) before | ||
493 | * searching for the pattern. | ||
494 | */ | ||
495 | |||
496 | static char kdb_buffer[256]; /* A bit too big to go on stack */ | ||
497 | static char *next_avail = kdb_buffer; | ||
498 | static int size_avail; | ||
499 | static int suspend_grep; | ||
500 | |||
501 | /* | ||
502 | * search arg1 to see if it contains arg2 | ||
503 | * (kdmain.c provides flags for ^pat and pat$) | ||
504 | * | ||
505 | * return 1 for found, 0 for not found | ||
506 | */ | ||
507 | static int kdb_search_string(char *searched, char *searchfor) | ||
508 | { | ||
509 | char firstchar, *cp; | ||
510 | int len1, len2; | ||
511 | |||
512 | /* not counting the newline at the end of "searched" */ | ||
513 | len1 = strlen(searched)-1; | ||
514 | len2 = strlen(searchfor); | ||
515 | if (len1 < len2) | ||
516 | return 0; | ||
517 | if (kdb_grep_leading && kdb_grep_trailing && len1 != len2) | ||
518 | return 0; | ||
519 | if (kdb_grep_leading) { | ||
520 | if (!strncmp(searched, searchfor, len2)) | ||
521 | return 1; | ||
522 | } else if (kdb_grep_trailing) { | ||
523 | if (!strncmp(searched+len1-len2, searchfor, len2)) | ||
524 | return 1; | ||
525 | } else { | ||
526 | firstchar = *searchfor; | ||
527 | cp = searched; | ||
528 | while ((cp = strchr(cp, firstchar))) { | ||
529 | if (!strncmp(cp, searchfor, len2)) | ||
530 | return 1; | ||
531 | cp++; | ||
532 | } | ||
533 | } | ||
534 | return 0; | ||
535 | } | ||
536 | |||
537 | int vkdb_printf(const char *fmt, va_list ap) | ||
538 | { | ||
539 | int diag; | ||
540 | int linecount; | ||
541 | int logging, saved_loglevel = 0; | ||
542 | int saved_trap_printk; | ||
543 | int got_printf_lock = 0; | ||
544 | int retlen = 0; | ||
545 | int fnd, len; | ||
546 | char *cp, *cp2, *cphold = NULL, replaced_byte = ' '; | ||
547 | char *moreprompt = "more> "; | ||
548 | struct console *c = console_drivers; | ||
549 | static DEFINE_SPINLOCK(kdb_printf_lock); | ||
550 | unsigned long uninitialized_var(flags); | ||
551 | |||
552 | preempt_disable(); | ||
553 | saved_trap_printk = kdb_trap_printk; | ||
554 | kdb_trap_printk = 0; | ||
555 | |||
556 | /* Serialize kdb_printf if multiple cpus try to write at once. | ||
557 | * But if any cpu goes recursive in kdb, just print the output, | ||
558 | * even if it is interleaved with any other text. | ||
559 | */ | ||
560 | if (!KDB_STATE(PRINTF_LOCK)) { | ||
561 | KDB_STATE_SET(PRINTF_LOCK); | ||
562 | spin_lock_irqsave(&kdb_printf_lock, flags); | ||
563 | got_printf_lock = 1; | ||
564 | atomic_inc(&kdb_event); | ||
565 | } else { | ||
566 | __acquire(kdb_printf_lock); | ||
567 | } | ||
568 | |||
569 | diag = kdbgetintenv("LINES", &linecount); | ||
570 | if (diag || linecount <= 1) | ||
571 | linecount = 24; | ||
572 | |||
573 | diag = kdbgetintenv("LOGGING", &logging); | ||
574 | if (diag) | ||
575 | logging = 0; | ||
576 | |||
577 | if (!kdb_grepping_flag || suspend_grep) { | ||
578 | /* normally, every vsnprintf starts a new buffer */ | ||
579 | next_avail = kdb_buffer; | ||
580 | size_avail = sizeof(kdb_buffer); | ||
581 | } | ||
582 | vsnprintf(next_avail, size_avail, fmt, ap); | ||
583 | |||
584 | /* | ||
585 | * If kdb_parse() found that the command was cmd xxx | grep yyy | ||
586 | * then kdb_grepping_flag is set, and kdb_grep_string contains yyy | ||
587 | * | ||
588 | * Accumulate the print data up to a newline before searching it. | ||
589 | * (vsnprintf does null-terminate the string that it generates) | ||
590 | */ | ||
591 | |||
592 | /* skip the search if prints are temporarily unconditional */ | ||
593 | if (!suspend_grep && kdb_grepping_flag) { | ||
594 | cp = strchr(kdb_buffer, '\n'); | ||
595 | if (!cp) { | ||
596 | /* | ||
597 | * Special cases that don't end with newlines | ||
598 | * but should be written without one: | ||
599 | * The "[nn]kdb> " prompt should | ||
600 | * appear at the front of the buffer. | ||
601 | * | ||
602 | * The "[nn]more " prompt should also be | ||
603 | * (MOREPROMPT -> moreprompt) | ||
604 | * written * but we print that ourselves, | ||
605 | * we set the suspend_grep flag to make | ||
606 | * it unconditional. | ||
607 | * | ||
608 | */ | ||
609 | if (next_avail == kdb_buffer) { | ||
610 | /* | ||
611 | * these should occur after a newline, | ||
612 | * so they will be at the front of the | ||
613 | * buffer | ||
614 | */ | ||
615 | cp2 = kdb_buffer; | ||
616 | len = strlen(kdb_prompt_str); | ||
617 | if (!strncmp(cp2, kdb_prompt_str, len)) { | ||
618 | /* | ||
619 | * We're about to start a new | ||
620 | * command, so we can go back | ||
621 | * to normal mode. | ||
622 | */ | ||
623 | kdb_grepping_flag = 0; | ||
624 | goto kdb_printit; | ||
625 | } | ||
626 | } | ||
627 | /* no newline; don't search/write the buffer | ||
628 | until one is there */ | ||
629 | len = strlen(kdb_buffer); | ||
630 | next_avail = kdb_buffer + len; | ||
631 | size_avail = sizeof(kdb_buffer) - len; | ||
632 | goto kdb_print_out; | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | * The newline is present; print through it or discard | ||
637 | * it, depending on the results of the search. | ||
638 | */ | ||
639 | cp++; /* to byte after the newline */ | ||
640 | replaced_byte = *cp; /* remember what/where it was */ | ||
641 | cphold = cp; | ||
642 | *cp = '\0'; /* end the string for our search */ | ||
643 | |||
644 | /* | ||
645 | * We now have a newline at the end of the string | ||
646 | * Only continue with this output if it contains the | ||
647 | * search string. | ||
648 | */ | ||
649 | fnd = kdb_search_string(kdb_buffer, kdb_grep_string); | ||
650 | if (!fnd) { | ||
651 | /* | ||
652 | * At this point the complete line at the start | ||
653 | * of kdb_buffer can be discarded, as it does | ||
654 | * not contain what the user is looking for. | ||
655 | * Shift the buffer left. | ||
656 | */ | ||
657 | *cphold = replaced_byte; | ||
658 | strcpy(kdb_buffer, cphold); | ||
659 | len = strlen(kdb_buffer); | ||
660 | next_avail = kdb_buffer + len; | ||
661 | size_avail = sizeof(kdb_buffer) - len; | ||
662 | goto kdb_print_out; | ||
663 | } | ||
664 | /* | ||
665 | * at this point the string is a full line and | ||
666 | * should be printed, up to the null. | ||
667 | */ | ||
668 | } | ||
669 | kdb_printit: | ||
670 | |||
671 | /* | ||
672 | * Write to all consoles. | ||
673 | */ | ||
674 | retlen = strlen(kdb_buffer); | ||
675 | if (!dbg_kdb_mode && kgdb_connected) { | ||
676 | gdbstub_msg_write(kdb_buffer, retlen); | ||
677 | } else { | ||
678 | if (!dbg_io_ops->is_console) { | ||
679 | len = strlen(kdb_buffer); | ||
680 | cp = kdb_buffer; | ||
681 | while (len--) { | ||
682 | dbg_io_ops->write_char(*cp); | ||
683 | cp++; | ||
684 | } | ||
685 | } | ||
686 | while (c) { | ||
687 | c->write(c, kdb_buffer, retlen); | ||
688 | touch_nmi_watchdog(); | ||
689 | c = c->next; | ||
690 | } | ||
691 | } | ||
692 | if (logging) { | ||
693 | saved_loglevel = console_loglevel; | ||
694 | console_loglevel = 0; | ||
695 | printk(KERN_INFO "%s", kdb_buffer); | ||
696 | } | ||
697 | |||
698 | if (KDB_STATE(PAGER) && strchr(kdb_buffer, '\n')) | ||
699 | kdb_nextline++; | ||
700 | |||
701 | /* check for having reached the LINES number of printed lines */ | ||
702 | if (kdb_nextline == linecount) { | ||
703 | char buf1[16] = ""; | ||
704 | #if defined(CONFIG_SMP) | ||
705 | char buf2[32]; | ||
706 | #endif | ||
707 | |||
708 | /* Watch out for recursion here. Any routine that calls | ||
709 | * kdb_printf will come back through here. And kdb_read | ||
710 | * uses kdb_printf to echo on serial consoles ... | ||
711 | */ | ||
712 | kdb_nextline = 1; /* In case of recursion */ | ||
713 | |||
714 | /* | ||
715 | * Pause until cr. | ||
716 | */ | ||
717 | moreprompt = kdbgetenv("MOREPROMPT"); | ||
718 | if (moreprompt == NULL) | ||
719 | moreprompt = "more> "; | ||
720 | |||
721 | #if defined(CONFIG_SMP) | ||
722 | if (strchr(moreprompt, '%')) { | ||
723 | sprintf(buf2, moreprompt, get_cpu()); | ||
724 | put_cpu(); | ||
725 | moreprompt = buf2; | ||
726 | } | ||
727 | #endif | ||
728 | |||
729 | kdb_input_flush(); | ||
730 | c = console_drivers; | ||
731 | |||
732 | if (!dbg_io_ops->is_console) { | ||
733 | len = strlen(moreprompt); | ||
734 | cp = moreprompt; | ||
735 | while (len--) { | ||
736 | dbg_io_ops->write_char(*cp); | ||
737 | cp++; | ||
738 | } | ||
739 | } | ||
740 | while (c) { | ||
741 | c->write(c, moreprompt, strlen(moreprompt)); | ||
742 | touch_nmi_watchdog(); | ||
743 | c = c->next; | ||
744 | } | ||
745 | |||
746 | if (logging) | ||
747 | printk("%s", moreprompt); | ||
748 | |||
749 | kdb_read(buf1, 2); /* '2' indicates to return | ||
750 | * immediately after getting one key. */ | ||
751 | kdb_nextline = 1; /* Really set output line 1 */ | ||
752 | |||
753 | /* empty and reset the buffer: */ | ||
754 | kdb_buffer[0] = '\0'; | ||
755 | next_avail = kdb_buffer; | ||
756 | size_avail = sizeof(kdb_buffer); | ||
757 | if ((buf1[0] == 'q') || (buf1[0] == 'Q')) { | ||
758 | /* user hit q or Q */ | ||
759 | KDB_FLAG_SET(CMD_INTERRUPT); /* command interrupted */ | ||
760 | KDB_STATE_CLEAR(PAGER); | ||
761 | /* end of command output; back to normal mode */ | ||
762 | kdb_grepping_flag = 0; | ||
763 | kdb_printf("\n"); | ||
764 | } else if (buf1[0] == ' ') { | ||
765 | kdb_printf("\n"); | ||
766 | suspend_grep = 1; /* for this recursion */ | ||
767 | } else if (buf1[0] == '\n') { | ||
768 | kdb_nextline = linecount - 1; | ||
769 | kdb_printf("\r"); | ||
770 | suspend_grep = 1; /* for this recursion */ | ||
771 | } else if (buf1[0] && buf1[0] != '\n') { | ||
772 | /* user hit something other than enter */ | ||
773 | suspend_grep = 1; /* for this recursion */ | ||
774 | kdb_printf("\nOnly 'q' or 'Q' are processed at more " | ||
775 | "prompt, input ignored\n"); | ||
776 | } else if (kdb_grepping_flag) { | ||
777 | /* user hit enter */ | ||
778 | suspend_grep = 1; /* for this recursion */ | ||
779 | kdb_printf("\n"); | ||
780 | } | ||
781 | kdb_input_flush(); | ||
782 | } | ||
783 | |||
784 | /* | ||
785 | * For grep searches, shift the printed string left. | ||
786 | * replaced_byte contains the character that was overwritten with | ||
787 | * the terminating null, and cphold points to the null. | ||
788 | * Then adjust the notion of available space in the buffer. | ||
789 | */ | ||
790 | if (kdb_grepping_flag && !suspend_grep) { | ||
791 | *cphold = replaced_byte; | ||
792 | strcpy(kdb_buffer, cphold); | ||
793 | len = strlen(kdb_buffer); | ||
794 | next_avail = kdb_buffer + len; | ||
795 | size_avail = sizeof(kdb_buffer) - len; | ||
796 | } | ||
797 | |||
798 | kdb_print_out: | ||
799 | suspend_grep = 0; /* end of what may have been a recursive call */ | ||
800 | if (logging) | ||
801 | console_loglevel = saved_loglevel; | ||
802 | if (KDB_STATE(PRINTF_LOCK) && got_printf_lock) { | ||
803 | got_printf_lock = 0; | ||
804 | spin_unlock_irqrestore(&kdb_printf_lock, flags); | ||
805 | KDB_STATE_CLEAR(PRINTF_LOCK); | ||
806 | atomic_dec(&kdb_event); | ||
807 | } else { | ||
808 | __release(kdb_printf_lock); | ||
809 | } | ||
810 | kdb_trap_printk = saved_trap_printk; | ||
811 | preempt_enable(); | ||
812 | return retlen; | ||
813 | } | ||
814 | |||
815 | int kdb_printf(const char *fmt, ...) | ||
816 | { | ||
817 | va_list ap; | ||
818 | int r; | ||
819 | |||
820 | va_start(ap, fmt); | ||
821 | r = vkdb_printf(fmt, ap); | ||
822 | va_end(ap); | ||
823 | |||
824 | return r; | ||
825 | } | ||
826 | |||
diff --git a/kernel/debug/kdb/kdb_keyboard.c b/kernel/debug/kdb/kdb_keyboard.c new file mode 100644 index 000000000000..4bca634975c0 --- /dev/null +++ b/kernel/debug/kdb/kdb_keyboard.c | |||
@@ -0,0 +1,212 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Dependent Console I/O handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. | ||
6 | * | ||
7 | * Copyright (c) 1999-2006 Silicon Graphics, Inc. All Rights Reserved. | ||
8 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
9 | */ | ||
10 | |||
11 | #include <linux/kdb.h> | ||
12 | #include <linux/keyboard.h> | ||
13 | #include <linux/ctype.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/io.h> | ||
16 | |||
17 | /* Keyboard Controller Registers on normal PCs. */ | ||
18 | |||
19 | #define KBD_STATUS_REG 0x64 /* Status register (R) */ | ||
20 | #define KBD_DATA_REG 0x60 /* Keyboard data register (R/W) */ | ||
21 | |||
22 | /* Status Register Bits */ | ||
23 | |||
24 | #define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */ | ||
25 | #define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */ | ||
26 | |||
27 | static int kbd_exists; | ||
28 | |||
29 | /* | ||
30 | * Check if the keyboard controller has a keypress for us. | ||
31 | * Some parts (Enter Release, LED change) are still blocking polled here, | ||
32 | * but hopefully they are all short. | ||
33 | */ | ||
34 | int kdb_get_kbd_char(void) | ||
35 | { | ||
36 | int scancode, scanstatus; | ||
37 | static int shift_lock; /* CAPS LOCK state (0-off, 1-on) */ | ||
38 | static int shift_key; /* Shift next keypress */ | ||
39 | static int ctrl_key; | ||
40 | u_short keychar; | ||
41 | |||
42 | if (KDB_FLAG(NO_I8042) || KDB_FLAG(NO_VT_CONSOLE) || | ||
43 | (inb(KBD_STATUS_REG) == 0xff && inb(KBD_DATA_REG) == 0xff)) { | ||
44 | kbd_exists = 0; | ||
45 | return -1; | ||
46 | } | ||
47 | kbd_exists = 1; | ||
48 | |||
49 | if ((inb(KBD_STATUS_REG) & KBD_STAT_OBF) == 0) | ||
50 | return -1; | ||
51 | |||
52 | /* | ||
53 | * Fetch the scancode | ||
54 | */ | ||
55 | scancode = inb(KBD_DATA_REG); | ||
56 | scanstatus = inb(KBD_STATUS_REG); | ||
57 | |||
58 | /* | ||
59 | * Ignore mouse events. | ||
60 | */ | ||
61 | if (scanstatus & KBD_STAT_MOUSE_OBF) | ||
62 | return -1; | ||
63 | |||
64 | /* | ||
65 | * Ignore release, trigger on make | ||
66 | * (except for shift keys, where we want to | ||
67 | * keep the shift state so long as the key is | ||
68 | * held down). | ||
69 | */ | ||
70 | |||
71 | if (((scancode&0x7f) == 0x2a) || ((scancode&0x7f) == 0x36)) { | ||
72 | /* | ||
73 | * Next key may use shift table | ||
74 | */ | ||
75 | if ((scancode & 0x80) == 0) | ||
76 | shift_key = 1; | ||
77 | else | ||
78 | shift_key = 0; | ||
79 | return -1; | ||
80 | } | ||
81 | |||
82 | if ((scancode&0x7f) == 0x1d) { | ||
83 | /* | ||
84 | * Left ctrl key | ||
85 | */ | ||
86 | if ((scancode & 0x80) == 0) | ||
87 | ctrl_key = 1; | ||
88 | else | ||
89 | ctrl_key = 0; | ||
90 | return -1; | ||
91 | } | ||
92 | |||
93 | if ((scancode & 0x80) != 0) | ||
94 | return -1; | ||
95 | |||
96 | scancode &= 0x7f; | ||
97 | |||
98 | /* | ||
99 | * Translate scancode | ||
100 | */ | ||
101 | |||
102 | if (scancode == 0x3a) { | ||
103 | /* | ||
104 | * Toggle caps lock | ||
105 | */ | ||
106 | shift_lock ^= 1; | ||
107 | |||
108 | #ifdef KDB_BLINK_LED | ||
109 | kdb_toggleled(0x4); | ||
110 | #endif | ||
111 | return -1; | ||
112 | } | ||
113 | |||
114 | if (scancode == 0x0e) { | ||
115 | /* | ||
116 | * Backspace | ||
117 | */ | ||
118 | return 8; | ||
119 | } | ||
120 | |||
121 | /* Special Key */ | ||
122 | switch (scancode) { | ||
123 | case 0xF: /* Tab */ | ||
124 | return 9; | ||
125 | case 0x53: /* Del */ | ||
126 | return 4; | ||
127 | case 0x47: /* Home */ | ||
128 | return 1; | ||
129 | case 0x4F: /* End */ | ||
130 | return 5; | ||
131 | case 0x4B: /* Left */ | ||
132 | return 2; | ||
133 | case 0x48: /* Up */ | ||
134 | return 16; | ||
135 | case 0x50: /* Down */ | ||
136 | return 14; | ||
137 | case 0x4D: /* Right */ | ||
138 | return 6; | ||
139 | } | ||
140 | |||
141 | if (scancode == 0xe0) | ||
142 | return -1; | ||
143 | |||
144 | /* | ||
145 | * For Japanese 86/106 keyboards | ||
146 | * See comment in drivers/char/pc_keyb.c. | ||
147 | * - Masahiro Adegawa | ||
148 | */ | ||
149 | if (scancode == 0x73) | ||
150 | scancode = 0x59; | ||
151 | else if (scancode == 0x7d) | ||
152 | scancode = 0x7c; | ||
153 | |||
154 | if (!shift_lock && !shift_key && !ctrl_key) { | ||
155 | keychar = plain_map[scancode]; | ||
156 | } else if ((shift_lock || shift_key) && key_maps[1]) { | ||
157 | keychar = key_maps[1][scancode]; | ||
158 | } else if (ctrl_key && key_maps[4]) { | ||
159 | keychar = key_maps[4][scancode]; | ||
160 | } else { | ||
161 | keychar = 0x0020; | ||
162 | kdb_printf("Unknown state/scancode (%d)\n", scancode); | ||
163 | } | ||
164 | keychar &= 0x0fff; | ||
165 | if (keychar == '\t') | ||
166 | keychar = ' '; | ||
167 | switch (KTYP(keychar)) { | ||
168 | case KT_LETTER: | ||
169 | case KT_LATIN: | ||
170 | if (isprint(keychar)) | ||
171 | break; /* printable characters */ | ||
172 | /* drop through */ | ||
173 | case KT_SPEC: | ||
174 | if (keychar == K_ENTER) | ||
175 | break; | ||
176 | /* drop through */ | ||
177 | default: | ||
178 | return -1; /* ignore unprintables */ | ||
179 | } | ||
180 | |||
181 | if ((scancode & 0x7f) == 0x1c) { | ||
182 | /* | ||
183 | * enter key. All done. Absorb the release scancode. | ||
184 | */ | ||
185 | while ((inb(KBD_STATUS_REG) & KBD_STAT_OBF) == 0) | ||
186 | ; | ||
187 | |||
188 | /* | ||
189 | * Fetch the scancode | ||
190 | */ | ||
191 | scancode = inb(KBD_DATA_REG); | ||
192 | scanstatus = inb(KBD_STATUS_REG); | ||
193 | |||
194 | while (scanstatus & KBD_STAT_MOUSE_OBF) { | ||
195 | scancode = inb(KBD_DATA_REG); | ||
196 | scanstatus = inb(KBD_STATUS_REG); | ||
197 | } | ||
198 | |||
199 | if (scancode != 0x9c) { | ||
200 | /* | ||
201 | * Wasn't an enter-release, why not? | ||
202 | */ | ||
203 | kdb_printf("kdb: expected enter got 0x%x status 0x%x\n", | ||
204 | scancode, scanstatus); | ||
205 | } | ||
206 | |||
207 | return 13; | ||
208 | } | ||
209 | |||
210 | return keychar & 0xff; | ||
211 | } | ||
212 | EXPORT_SYMBOL_GPL(kdb_get_kbd_char); | ||
diff --git a/kernel/debug/kdb/kdb_main.c b/kernel/debug/kdb/kdb_main.c new file mode 100644 index 000000000000..b724c791b6d4 --- /dev/null +++ b/kernel/debug/kdb/kdb_main.c | |||
@@ -0,0 +1,2849 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Main Code | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> | ||
10 | * Xscale (R) modifications copyright (C) 2003 Intel Corporation. | ||
11 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
12 | */ | ||
13 | |||
14 | #include <linux/ctype.h> | ||
15 | #include <linux/string.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/reboot.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/sysrq.h> | ||
20 | #include <linux/smp.h> | ||
21 | #include <linux/utsname.h> | ||
22 | #include <linux/vmalloc.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/mm.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/kallsyms.h> | ||
27 | #include <linux/kgdb.h> | ||
28 | #include <linux/kdb.h> | ||
29 | #include <linux/notifier.h> | ||
30 | #include <linux/interrupt.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/nmi.h> | ||
33 | #include <linux/time.h> | ||
34 | #include <linux/ptrace.h> | ||
35 | #include <linux/sysctl.h> | ||
36 | #include <linux/cpu.h> | ||
37 | #include <linux/kdebug.h> | ||
38 | #include <linux/proc_fs.h> | ||
39 | #include <linux/uaccess.h> | ||
40 | #include <linux/slab.h> | ||
41 | #include "kdb_private.h" | ||
42 | |||
43 | #define GREP_LEN 256 | ||
44 | char kdb_grep_string[GREP_LEN]; | ||
45 | int kdb_grepping_flag; | ||
46 | EXPORT_SYMBOL(kdb_grepping_flag); | ||
47 | int kdb_grep_leading; | ||
48 | int kdb_grep_trailing; | ||
49 | |||
50 | /* | ||
51 | * Kernel debugger state flags | ||
52 | */ | ||
53 | int kdb_flags; | ||
54 | atomic_t kdb_event; | ||
55 | |||
56 | /* | ||
57 | * kdb_lock protects updates to kdb_initial_cpu. Used to | ||
58 | * single thread processors through the kernel debugger. | ||
59 | */ | ||
60 | int kdb_initial_cpu = -1; /* cpu number that owns kdb */ | ||
61 | int kdb_nextline = 1; | ||
62 | int kdb_state; /* General KDB state */ | ||
63 | |||
64 | struct task_struct *kdb_current_task; | ||
65 | EXPORT_SYMBOL(kdb_current_task); | ||
66 | struct pt_regs *kdb_current_regs; | ||
67 | |||
68 | const char *kdb_diemsg; | ||
69 | static int kdb_go_count; | ||
70 | #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC | ||
71 | static unsigned int kdb_continue_catastrophic = | ||
72 | CONFIG_KDB_CONTINUE_CATASTROPHIC; | ||
73 | #else | ||
74 | static unsigned int kdb_continue_catastrophic; | ||
75 | #endif | ||
76 | |||
77 | /* kdb_commands describes the available commands. */ | ||
78 | static kdbtab_t *kdb_commands; | ||
79 | #define KDB_BASE_CMD_MAX 50 | ||
80 | static int kdb_max_commands = KDB_BASE_CMD_MAX; | ||
81 | static kdbtab_t kdb_base_commands[50]; | ||
82 | #define for_each_kdbcmd(cmd, num) \ | ||
83 | for ((cmd) = kdb_base_commands, (num) = 0; \ | ||
84 | num < kdb_max_commands; \ | ||
85 | num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++) | ||
86 | |||
87 | typedef struct _kdbmsg { | ||
88 | int km_diag; /* kdb diagnostic */ | ||
89 | char *km_msg; /* Corresponding message text */ | ||
90 | } kdbmsg_t; | ||
91 | |||
92 | #define KDBMSG(msgnum, text) \ | ||
93 | { KDB_##msgnum, text } | ||
94 | |||
95 | static kdbmsg_t kdbmsgs[] = { | ||
96 | KDBMSG(NOTFOUND, "Command Not Found"), | ||
97 | KDBMSG(ARGCOUNT, "Improper argument count, see usage."), | ||
98 | KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " | ||
99 | "8 is only allowed on 64 bit systems"), | ||
100 | KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), | ||
101 | KDBMSG(NOTENV, "Cannot find environment variable"), | ||
102 | KDBMSG(NOENVVALUE, "Environment variable should have value"), | ||
103 | KDBMSG(NOTIMP, "Command not implemented"), | ||
104 | KDBMSG(ENVFULL, "Environment full"), | ||
105 | KDBMSG(ENVBUFFULL, "Environment buffer full"), | ||
106 | KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), | ||
107 | #ifdef CONFIG_CPU_XSCALE | ||
108 | KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), | ||
109 | #else | ||
110 | KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), | ||
111 | #endif | ||
112 | KDBMSG(DUPBPT, "Duplicate breakpoint address"), | ||
113 | KDBMSG(BPTNOTFOUND, "Breakpoint not found"), | ||
114 | KDBMSG(BADMODE, "Invalid IDMODE"), | ||
115 | KDBMSG(BADINT, "Illegal numeric value"), | ||
116 | KDBMSG(INVADDRFMT, "Invalid symbolic address format"), | ||
117 | KDBMSG(BADREG, "Invalid register name"), | ||
118 | KDBMSG(BADCPUNUM, "Invalid cpu number"), | ||
119 | KDBMSG(BADLENGTH, "Invalid length field"), | ||
120 | KDBMSG(NOBP, "No Breakpoint exists"), | ||
121 | KDBMSG(BADADDR, "Invalid address"), | ||
122 | }; | ||
123 | #undef KDBMSG | ||
124 | |||
125 | static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); | ||
126 | |||
127 | |||
128 | /* | ||
129 | * Initial environment. This is all kept static and local to | ||
130 | * this file. We don't want to rely on the memory allocation | ||
131 | * mechanisms in the kernel, so we use a very limited allocate-only | ||
132 | * heap for new and altered environment variables. The entire | ||
133 | * environment is limited to a fixed number of entries (add more | ||
134 | * to __env[] if required) and a fixed amount of heap (add more to | ||
135 | * KDB_ENVBUFSIZE if required). | ||
136 | */ | ||
137 | |||
138 | static char *__env[] = { | ||
139 | #if defined(CONFIG_SMP) | ||
140 | "PROMPT=[%d]kdb> ", | ||
141 | "MOREPROMPT=[%d]more> ", | ||
142 | #else | ||
143 | "PROMPT=kdb> ", | ||
144 | "MOREPROMPT=more> ", | ||
145 | #endif | ||
146 | "RADIX=16", | ||
147 | "MDCOUNT=8", /* lines of md output */ | ||
148 | "BTARGS=9", /* 9 possible args in bt */ | ||
149 | KDB_PLATFORM_ENV, | ||
150 | "DTABCOUNT=30", | ||
151 | "NOSECT=1", | ||
152 | (char *)0, | ||
153 | (char *)0, | ||
154 | (char *)0, | ||
155 | (char *)0, | ||
156 | (char *)0, | ||
157 | (char *)0, | ||
158 | (char *)0, | ||
159 | (char *)0, | ||
160 | (char *)0, | ||
161 | (char *)0, | ||
162 | (char *)0, | ||
163 | (char *)0, | ||
164 | (char *)0, | ||
165 | (char *)0, | ||
166 | (char *)0, | ||
167 | (char *)0, | ||
168 | (char *)0, | ||
169 | (char *)0, | ||
170 | (char *)0, | ||
171 | (char *)0, | ||
172 | (char *)0, | ||
173 | (char *)0, | ||
174 | (char *)0, | ||
175 | }; | ||
176 | |||
177 | static const int __nenv = (sizeof(__env) / sizeof(char *)); | ||
178 | |||
179 | struct task_struct *kdb_curr_task(int cpu) | ||
180 | { | ||
181 | struct task_struct *p = curr_task(cpu); | ||
182 | #ifdef _TIF_MCA_INIT | ||
183 | if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) | ||
184 | p = krp->p; | ||
185 | #endif | ||
186 | return p; | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * kdbgetenv - This function will return the character string value of | ||
191 | * an environment variable. | ||
192 | * Parameters: | ||
193 | * match A character string representing an environment variable. | ||
194 | * Returns: | ||
195 | * NULL No environment variable matches 'match' | ||
196 | * char* Pointer to string value of environment variable. | ||
197 | */ | ||
198 | char *kdbgetenv(const char *match) | ||
199 | { | ||
200 | char **ep = __env; | ||
201 | int matchlen = strlen(match); | ||
202 | int i; | ||
203 | |||
204 | for (i = 0; i < __nenv; i++) { | ||
205 | char *e = *ep++; | ||
206 | |||
207 | if (!e) | ||
208 | continue; | ||
209 | |||
210 | if ((strncmp(match, e, matchlen) == 0) | ||
211 | && ((e[matchlen] == '\0') | ||
212 | || (e[matchlen] == '='))) { | ||
213 | char *cp = strchr(e, '='); | ||
214 | return cp ? ++cp : ""; | ||
215 | } | ||
216 | } | ||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * kdballocenv - This function is used to allocate bytes for | ||
222 | * environment entries. | ||
223 | * Parameters: | ||
224 | * match A character string representing a numeric value | ||
225 | * Outputs: | ||
226 | * *value the unsigned long representation of the env variable 'match' | ||
227 | * Returns: | ||
228 | * Zero on success, a kdb diagnostic on failure. | ||
229 | * Remarks: | ||
230 | * We use a static environment buffer (envbuffer) to hold the values | ||
231 | * of dynamically generated environment variables (see kdb_set). Buffer | ||
232 | * space once allocated is never free'd, so over time, the amount of space | ||
233 | * (currently 512 bytes) will be exhausted if env variables are changed | ||
234 | * frequently. | ||
235 | */ | ||
236 | static char *kdballocenv(size_t bytes) | ||
237 | { | ||
238 | #define KDB_ENVBUFSIZE 512 | ||
239 | static char envbuffer[KDB_ENVBUFSIZE]; | ||
240 | static int envbufsize; | ||
241 | char *ep = NULL; | ||
242 | |||
243 | if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { | ||
244 | ep = &envbuffer[envbufsize]; | ||
245 | envbufsize += bytes; | ||
246 | } | ||
247 | return ep; | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * kdbgetulenv - This function will return the value of an unsigned | ||
252 | * long-valued environment variable. | ||
253 | * Parameters: | ||
254 | * match A character string representing a numeric value | ||
255 | * Outputs: | ||
256 | * *value the unsigned long represntation of the env variable 'match' | ||
257 | * Returns: | ||
258 | * Zero on success, a kdb diagnostic on failure. | ||
259 | */ | ||
260 | static int kdbgetulenv(const char *match, unsigned long *value) | ||
261 | { | ||
262 | char *ep; | ||
263 | |||
264 | ep = kdbgetenv(match); | ||
265 | if (!ep) | ||
266 | return KDB_NOTENV; | ||
267 | if (strlen(ep) == 0) | ||
268 | return KDB_NOENVVALUE; | ||
269 | |||
270 | *value = simple_strtoul(ep, NULL, 0); | ||
271 | |||
272 | return 0; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * kdbgetintenv - This function will return the value of an | ||
277 | * integer-valued environment variable. | ||
278 | * Parameters: | ||
279 | * match A character string representing an integer-valued env variable | ||
280 | * Outputs: | ||
281 | * *value the integer representation of the environment variable 'match' | ||
282 | * Returns: | ||
283 | * Zero on success, a kdb diagnostic on failure. | ||
284 | */ | ||
285 | int kdbgetintenv(const char *match, int *value) | ||
286 | { | ||
287 | unsigned long val; | ||
288 | int diag; | ||
289 | |||
290 | diag = kdbgetulenv(match, &val); | ||
291 | if (!diag) | ||
292 | *value = (int) val; | ||
293 | return diag; | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * kdbgetularg - This function will convert a numeric string into an | ||
298 | * unsigned long value. | ||
299 | * Parameters: | ||
300 | * arg A character string representing a numeric value | ||
301 | * Outputs: | ||
302 | * *value the unsigned long represntation of arg. | ||
303 | * Returns: | ||
304 | * Zero on success, a kdb diagnostic on failure. | ||
305 | */ | ||
306 | int kdbgetularg(const char *arg, unsigned long *value) | ||
307 | { | ||
308 | char *endp; | ||
309 | unsigned long val; | ||
310 | |||
311 | val = simple_strtoul(arg, &endp, 0); | ||
312 | |||
313 | if (endp == arg) { | ||
314 | /* | ||
315 | * Try base 16, for us folks too lazy to type the | ||
316 | * leading 0x... | ||
317 | */ | ||
318 | val = simple_strtoul(arg, &endp, 16); | ||
319 | if (endp == arg) | ||
320 | return KDB_BADINT; | ||
321 | } | ||
322 | |||
323 | *value = val; | ||
324 | |||
325 | return 0; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * kdb_set - This function implements the 'set' command. Alter an | ||
330 | * existing environment variable or create a new one. | ||
331 | */ | ||
332 | int kdb_set(int argc, const char **argv) | ||
333 | { | ||
334 | int i; | ||
335 | char *ep; | ||
336 | size_t varlen, vallen; | ||
337 | |||
338 | /* | ||
339 | * we can be invoked two ways: | ||
340 | * set var=value argv[1]="var", argv[2]="value" | ||
341 | * set var = value argv[1]="var", argv[2]="=", argv[3]="value" | ||
342 | * - if the latter, shift 'em down. | ||
343 | */ | ||
344 | if (argc == 3) { | ||
345 | argv[2] = argv[3]; | ||
346 | argc--; | ||
347 | } | ||
348 | |||
349 | if (argc != 2) | ||
350 | return KDB_ARGCOUNT; | ||
351 | |||
352 | /* | ||
353 | * Check for internal variables | ||
354 | */ | ||
355 | if (strcmp(argv[1], "KDBDEBUG") == 0) { | ||
356 | unsigned int debugflags; | ||
357 | char *cp; | ||
358 | |||
359 | debugflags = simple_strtoul(argv[2], &cp, 0); | ||
360 | if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { | ||
361 | kdb_printf("kdb: illegal debug flags '%s'\n", | ||
362 | argv[2]); | ||
363 | return 0; | ||
364 | } | ||
365 | kdb_flags = (kdb_flags & | ||
366 | ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) | ||
367 | | (debugflags << KDB_DEBUG_FLAG_SHIFT); | ||
368 | |||
369 | return 0; | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Tokenizer squashed the '=' sign. argv[1] is variable | ||
374 | * name, argv[2] = value. | ||
375 | */ | ||
376 | varlen = strlen(argv[1]); | ||
377 | vallen = strlen(argv[2]); | ||
378 | ep = kdballocenv(varlen + vallen + 2); | ||
379 | if (ep == (char *)0) | ||
380 | return KDB_ENVBUFFULL; | ||
381 | |||
382 | sprintf(ep, "%s=%s", argv[1], argv[2]); | ||
383 | |||
384 | ep[varlen+vallen+1] = '\0'; | ||
385 | |||
386 | for (i = 0; i < __nenv; i++) { | ||
387 | if (__env[i] | ||
388 | && ((strncmp(__env[i], argv[1], varlen) == 0) | ||
389 | && ((__env[i][varlen] == '\0') | ||
390 | || (__env[i][varlen] == '=')))) { | ||
391 | __env[i] = ep; | ||
392 | return 0; | ||
393 | } | ||
394 | } | ||
395 | |||
396 | /* | ||
397 | * Wasn't existing variable. Fit into slot. | ||
398 | */ | ||
399 | for (i = 0; i < __nenv-1; i++) { | ||
400 | if (__env[i] == (char *)0) { | ||
401 | __env[i] = ep; | ||
402 | return 0; | ||
403 | } | ||
404 | } | ||
405 | |||
406 | return KDB_ENVFULL; | ||
407 | } | ||
408 | |||
409 | static int kdb_check_regs(void) | ||
410 | { | ||
411 | if (!kdb_current_regs) { | ||
412 | kdb_printf("No current kdb registers." | ||
413 | " You may need to select another task\n"); | ||
414 | return KDB_BADREG; | ||
415 | } | ||
416 | return 0; | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * kdbgetaddrarg - This function is responsible for parsing an | ||
421 | * address-expression and returning the value of the expression, | ||
422 | * symbol name, and offset to the caller. | ||
423 | * | ||
424 | * The argument may consist of a numeric value (decimal or | ||
425 | * hexidecimal), a symbol name, a register name (preceeded by the | ||
426 | * percent sign), an environment variable with a numeric value | ||
427 | * (preceeded by a dollar sign) or a simple arithmetic expression | ||
428 | * consisting of a symbol name, +/-, and a numeric constant value | ||
429 | * (offset). | ||
430 | * Parameters: | ||
431 | * argc - count of arguments in argv | ||
432 | * argv - argument vector | ||
433 | * *nextarg - index to next unparsed argument in argv[] | ||
434 | * regs - Register state at time of KDB entry | ||
435 | * Outputs: | ||
436 | * *value - receives the value of the address-expression | ||
437 | * *offset - receives the offset specified, if any | ||
438 | * *name - receives the symbol name, if any | ||
439 | * *nextarg - index to next unparsed argument in argv[] | ||
440 | * Returns: | ||
441 | * zero is returned on success, a kdb diagnostic code is | ||
442 | * returned on error. | ||
443 | */ | ||
444 | int kdbgetaddrarg(int argc, const char **argv, int *nextarg, | ||
445 | unsigned long *value, long *offset, | ||
446 | char **name) | ||
447 | { | ||
448 | unsigned long addr; | ||
449 | unsigned long off = 0; | ||
450 | int positive; | ||
451 | int diag; | ||
452 | int found = 0; | ||
453 | char *symname; | ||
454 | char symbol = '\0'; | ||
455 | char *cp; | ||
456 | kdb_symtab_t symtab; | ||
457 | |||
458 | /* | ||
459 | * Process arguments which follow the following syntax: | ||
460 | * | ||
461 | * symbol | numeric-address [+/- numeric-offset] | ||
462 | * %register | ||
463 | * $environment-variable | ||
464 | */ | ||
465 | |||
466 | if (*nextarg > argc) | ||
467 | return KDB_ARGCOUNT; | ||
468 | |||
469 | symname = (char *)argv[*nextarg]; | ||
470 | |||
471 | /* | ||
472 | * If there is no whitespace between the symbol | ||
473 | * or address and the '+' or '-' symbols, we | ||
474 | * remember the character and replace it with a | ||
475 | * null so the symbol/value can be properly parsed | ||
476 | */ | ||
477 | cp = strpbrk(symname, "+-"); | ||
478 | if (cp != NULL) { | ||
479 | symbol = *cp; | ||
480 | *cp++ = '\0'; | ||
481 | } | ||
482 | |||
483 | if (symname[0] == '$') { | ||
484 | diag = kdbgetulenv(&symname[1], &addr); | ||
485 | if (diag) | ||
486 | return diag; | ||
487 | } else if (symname[0] == '%') { | ||
488 | diag = kdb_check_regs(); | ||
489 | if (diag) | ||
490 | return diag; | ||
491 | /* Implement register values with % at a later time as it is | ||
492 | * arch optional. | ||
493 | */ | ||
494 | return KDB_NOTIMP; | ||
495 | } else { | ||
496 | found = kdbgetsymval(symname, &symtab); | ||
497 | if (found) { | ||
498 | addr = symtab.sym_start; | ||
499 | } else { | ||
500 | diag = kdbgetularg(argv[*nextarg], &addr); | ||
501 | if (diag) | ||
502 | return diag; | ||
503 | } | ||
504 | } | ||
505 | |||
506 | if (!found) | ||
507 | found = kdbnearsym(addr, &symtab); | ||
508 | |||
509 | (*nextarg)++; | ||
510 | |||
511 | if (name) | ||
512 | *name = symname; | ||
513 | if (value) | ||
514 | *value = addr; | ||
515 | if (offset && name && *name) | ||
516 | *offset = addr - symtab.sym_start; | ||
517 | |||
518 | if ((*nextarg > argc) | ||
519 | && (symbol == '\0')) | ||
520 | return 0; | ||
521 | |||
522 | /* | ||
523 | * check for +/- and offset | ||
524 | */ | ||
525 | |||
526 | if (symbol == '\0') { | ||
527 | if ((argv[*nextarg][0] != '+') | ||
528 | && (argv[*nextarg][0] != '-')) { | ||
529 | /* | ||
530 | * Not our argument. Return. | ||
531 | */ | ||
532 | return 0; | ||
533 | } else { | ||
534 | positive = (argv[*nextarg][0] == '+'); | ||
535 | (*nextarg)++; | ||
536 | } | ||
537 | } else | ||
538 | positive = (symbol == '+'); | ||
539 | |||
540 | /* | ||
541 | * Now there must be an offset! | ||
542 | */ | ||
543 | if ((*nextarg > argc) | ||
544 | && (symbol == '\0')) { | ||
545 | return KDB_INVADDRFMT; | ||
546 | } | ||
547 | |||
548 | if (!symbol) { | ||
549 | cp = (char *)argv[*nextarg]; | ||
550 | (*nextarg)++; | ||
551 | } | ||
552 | |||
553 | diag = kdbgetularg(cp, &off); | ||
554 | if (diag) | ||
555 | return diag; | ||
556 | |||
557 | if (!positive) | ||
558 | off = -off; | ||
559 | |||
560 | if (offset) | ||
561 | *offset += off; | ||
562 | |||
563 | if (value) | ||
564 | *value += off; | ||
565 | |||
566 | return 0; | ||
567 | } | ||
568 | |||
569 | static void kdb_cmderror(int diag) | ||
570 | { | ||
571 | int i; | ||
572 | |||
573 | if (diag >= 0) { | ||
574 | kdb_printf("no error detected (diagnostic is %d)\n", diag); | ||
575 | return; | ||
576 | } | ||
577 | |||
578 | for (i = 0; i < __nkdb_err; i++) { | ||
579 | if (kdbmsgs[i].km_diag == diag) { | ||
580 | kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); | ||
581 | return; | ||
582 | } | ||
583 | } | ||
584 | |||
585 | kdb_printf("Unknown diag %d\n", -diag); | ||
586 | } | ||
587 | |||
588 | /* | ||
589 | * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' | ||
590 | * command which defines one command as a set of other commands, | ||
591 | * terminated by endefcmd. kdb_defcmd processes the initial | ||
592 | * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for | ||
593 | * the following commands until 'endefcmd'. | ||
594 | * Inputs: | ||
595 | * argc argument count | ||
596 | * argv argument vector | ||
597 | * Returns: | ||
598 | * zero for success, a kdb diagnostic if error | ||
599 | */ | ||
600 | struct defcmd_set { | ||
601 | int count; | ||
602 | int usable; | ||
603 | char *name; | ||
604 | char *usage; | ||
605 | char *help; | ||
606 | char **command; | ||
607 | }; | ||
608 | static struct defcmd_set *defcmd_set; | ||
609 | static int defcmd_set_count; | ||
610 | static int defcmd_in_progress; | ||
611 | |||
612 | /* Forward references */ | ||
613 | static int kdb_exec_defcmd(int argc, const char **argv); | ||
614 | |||
615 | static int kdb_defcmd2(const char *cmdstr, const char *argv0) | ||
616 | { | ||
617 | struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; | ||
618 | char **save_command = s->command; | ||
619 | if (strcmp(argv0, "endefcmd") == 0) { | ||
620 | defcmd_in_progress = 0; | ||
621 | if (!s->count) | ||
622 | s->usable = 0; | ||
623 | if (s->usable) | ||
624 | kdb_register(s->name, kdb_exec_defcmd, | ||
625 | s->usage, s->help, 0); | ||
626 | return 0; | ||
627 | } | ||
628 | if (!s->usable) | ||
629 | return KDB_NOTIMP; | ||
630 | s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); | ||
631 | if (!s->command) { | ||
632 | kdb_printf("Could not allocate new kdb_defcmd table for %s\n", | ||
633 | cmdstr); | ||
634 | s->usable = 0; | ||
635 | return KDB_NOTIMP; | ||
636 | } | ||
637 | memcpy(s->command, save_command, s->count * sizeof(*(s->command))); | ||
638 | s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); | ||
639 | kfree(save_command); | ||
640 | return 0; | ||
641 | } | ||
642 | |||
643 | static int kdb_defcmd(int argc, const char **argv) | ||
644 | { | ||
645 | struct defcmd_set *save_defcmd_set = defcmd_set, *s; | ||
646 | if (defcmd_in_progress) { | ||
647 | kdb_printf("kdb: nested defcmd detected, assuming missing " | ||
648 | "endefcmd\n"); | ||
649 | kdb_defcmd2("endefcmd", "endefcmd"); | ||
650 | } | ||
651 | if (argc == 0) { | ||
652 | int i; | ||
653 | for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { | ||
654 | kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, | ||
655 | s->usage, s->help); | ||
656 | for (i = 0; i < s->count; ++i) | ||
657 | kdb_printf("%s", s->command[i]); | ||
658 | kdb_printf("endefcmd\n"); | ||
659 | } | ||
660 | return 0; | ||
661 | } | ||
662 | if (argc != 3) | ||
663 | return KDB_ARGCOUNT; | ||
664 | defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), | ||
665 | GFP_KDB); | ||
666 | if (!defcmd_set) { | ||
667 | kdb_printf("Could not allocate new defcmd_set entry for %s\n", | ||
668 | argv[1]); | ||
669 | defcmd_set = save_defcmd_set; | ||
670 | return KDB_NOTIMP; | ||
671 | } | ||
672 | memcpy(defcmd_set, save_defcmd_set, | ||
673 | defcmd_set_count * sizeof(*defcmd_set)); | ||
674 | kfree(save_defcmd_set); | ||
675 | s = defcmd_set + defcmd_set_count; | ||
676 | memset(s, 0, sizeof(*s)); | ||
677 | s->usable = 1; | ||
678 | s->name = kdb_strdup(argv[1], GFP_KDB); | ||
679 | s->usage = kdb_strdup(argv[2], GFP_KDB); | ||
680 | s->help = kdb_strdup(argv[3], GFP_KDB); | ||
681 | if (s->usage[0] == '"') { | ||
682 | strcpy(s->usage, s->usage+1); | ||
683 | s->usage[strlen(s->usage)-1] = '\0'; | ||
684 | } | ||
685 | if (s->help[0] == '"') { | ||
686 | strcpy(s->help, s->help+1); | ||
687 | s->help[strlen(s->help)-1] = '\0'; | ||
688 | } | ||
689 | ++defcmd_set_count; | ||
690 | defcmd_in_progress = 1; | ||
691 | return 0; | ||
692 | } | ||
693 | |||
694 | /* | ||
695 | * kdb_exec_defcmd - Execute the set of commands associated with this | ||
696 | * defcmd name. | ||
697 | * Inputs: | ||
698 | * argc argument count | ||
699 | * argv argument vector | ||
700 | * Returns: | ||
701 | * zero for success, a kdb diagnostic if error | ||
702 | */ | ||
703 | static int kdb_exec_defcmd(int argc, const char **argv) | ||
704 | { | ||
705 | int i, ret; | ||
706 | struct defcmd_set *s; | ||
707 | if (argc != 0) | ||
708 | return KDB_ARGCOUNT; | ||
709 | for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { | ||
710 | if (strcmp(s->name, argv[0]) == 0) | ||
711 | break; | ||
712 | } | ||
713 | if (i == defcmd_set_count) { | ||
714 | kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", | ||
715 | argv[0]); | ||
716 | return KDB_NOTIMP; | ||
717 | } | ||
718 | for (i = 0; i < s->count; ++i) { | ||
719 | /* Recursive use of kdb_parse, do not use argv after | ||
720 | * this point */ | ||
721 | argv = NULL; | ||
722 | kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); | ||
723 | ret = kdb_parse(s->command[i]); | ||
724 | if (ret) | ||
725 | return ret; | ||
726 | } | ||
727 | return 0; | ||
728 | } | ||
729 | |||
730 | /* Command history */ | ||
731 | #define KDB_CMD_HISTORY_COUNT 32 | ||
732 | #define CMD_BUFLEN 200 /* kdb_printf: max printline | ||
733 | * size == 256 */ | ||
734 | static unsigned int cmd_head, cmd_tail; | ||
735 | static unsigned int cmdptr; | ||
736 | static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; | ||
737 | static char cmd_cur[CMD_BUFLEN]; | ||
738 | |||
739 | /* | ||
740 | * The "str" argument may point to something like | grep xyz | ||
741 | */ | ||
742 | static void parse_grep(const char *str) | ||
743 | { | ||
744 | int len; | ||
745 | char *cp = (char *)str, *cp2; | ||
746 | |||
747 | /* sanity check: we should have been called with the \ first */ | ||
748 | if (*cp != '|') | ||
749 | return; | ||
750 | cp++; | ||
751 | while (isspace(*cp)) | ||
752 | cp++; | ||
753 | if (strncmp(cp, "grep ", 5)) { | ||
754 | kdb_printf("invalid 'pipe', see grephelp\n"); | ||
755 | return; | ||
756 | } | ||
757 | cp += 5; | ||
758 | while (isspace(*cp)) | ||
759 | cp++; | ||
760 | cp2 = strchr(cp, '\n'); | ||
761 | if (cp2) | ||
762 | *cp2 = '\0'; /* remove the trailing newline */ | ||
763 | len = strlen(cp); | ||
764 | if (len == 0) { | ||
765 | kdb_printf("invalid 'pipe', see grephelp\n"); | ||
766 | return; | ||
767 | } | ||
768 | /* now cp points to a nonzero length search string */ | ||
769 | if (*cp == '"') { | ||
770 | /* allow it be "x y z" by removing the "'s - there must | ||
771 | be two of them */ | ||
772 | cp++; | ||
773 | cp2 = strchr(cp, '"'); | ||
774 | if (!cp2) { | ||
775 | kdb_printf("invalid quoted string, see grephelp\n"); | ||
776 | return; | ||
777 | } | ||
778 | *cp2 = '\0'; /* end the string where the 2nd " was */ | ||
779 | } | ||
780 | kdb_grep_leading = 0; | ||
781 | if (*cp == '^') { | ||
782 | kdb_grep_leading = 1; | ||
783 | cp++; | ||
784 | } | ||
785 | len = strlen(cp); | ||
786 | kdb_grep_trailing = 0; | ||
787 | if (*(cp+len-1) == '$') { | ||
788 | kdb_grep_trailing = 1; | ||
789 | *(cp+len-1) = '\0'; | ||
790 | } | ||
791 | len = strlen(cp); | ||
792 | if (!len) | ||
793 | return; | ||
794 | if (len >= GREP_LEN) { | ||
795 | kdb_printf("search string too long\n"); | ||
796 | return; | ||
797 | } | ||
798 | strcpy(kdb_grep_string, cp); | ||
799 | kdb_grepping_flag++; | ||
800 | return; | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * kdb_parse - Parse the command line, search the command table for a | ||
805 | * matching command and invoke the command function. This | ||
806 | * function may be called recursively, if it is, the second call | ||
807 | * will overwrite argv and cbuf. It is the caller's | ||
808 | * responsibility to save their argv if they recursively call | ||
809 | * kdb_parse(). | ||
810 | * Parameters: | ||
811 | * cmdstr The input command line to be parsed. | ||
812 | * regs The registers at the time kdb was entered. | ||
813 | * Returns: | ||
814 | * Zero for success, a kdb diagnostic if failure. | ||
815 | * Remarks: | ||
816 | * Limited to 20 tokens. | ||
817 | * | ||
818 | * Real rudimentary tokenization. Basically only whitespace | ||
819 | * is considered a token delimeter (but special consideration | ||
820 | * is taken of the '=' sign as used by the 'set' command). | ||
821 | * | ||
822 | * The algorithm used to tokenize the input string relies on | ||
823 | * there being at least one whitespace (or otherwise useless) | ||
824 | * character between tokens as the character immediately following | ||
825 | * the token is altered in-place to a null-byte to terminate the | ||
826 | * token string. | ||
827 | */ | ||
828 | |||
829 | #define MAXARGC 20 | ||
830 | |||
831 | int kdb_parse(const char *cmdstr) | ||
832 | { | ||
833 | static char *argv[MAXARGC]; | ||
834 | static int argc; | ||
835 | static char cbuf[CMD_BUFLEN+2]; | ||
836 | char *cp; | ||
837 | char *cpp, quoted; | ||
838 | kdbtab_t *tp; | ||
839 | int i, escaped, ignore_errors = 0, check_grep; | ||
840 | |||
841 | /* | ||
842 | * First tokenize the command string. | ||
843 | */ | ||
844 | cp = (char *)cmdstr; | ||
845 | kdb_grepping_flag = check_grep = 0; | ||
846 | |||
847 | if (KDB_FLAG(CMD_INTERRUPT)) { | ||
848 | /* Previous command was interrupted, newline must not | ||
849 | * repeat the command */ | ||
850 | KDB_FLAG_CLEAR(CMD_INTERRUPT); | ||
851 | KDB_STATE_SET(PAGER); | ||
852 | argc = 0; /* no repeat */ | ||
853 | } | ||
854 | |||
855 | if (*cp != '\n' && *cp != '\0') { | ||
856 | argc = 0; | ||
857 | cpp = cbuf; | ||
858 | while (*cp) { | ||
859 | /* skip whitespace */ | ||
860 | while (isspace(*cp)) | ||
861 | cp++; | ||
862 | if ((*cp == '\0') || (*cp == '\n') || | ||
863 | (*cp == '#' && !defcmd_in_progress)) | ||
864 | break; | ||
865 | /* special case: check for | grep pattern */ | ||
866 | if (*cp == '|') { | ||
867 | check_grep++; | ||
868 | break; | ||
869 | } | ||
870 | if (cpp >= cbuf + CMD_BUFLEN) { | ||
871 | kdb_printf("kdb_parse: command buffer " | ||
872 | "overflow, command ignored\n%s\n", | ||
873 | cmdstr); | ||
874 | return KDB_NOTFOUND; | ||
875 | } | ||
876 | if (argc >= MAXARGC - 1) { | ||
877 | kdb_printf("kdb_parse: too many arguments, " | ||
878 | "command ignored\n%s\n", cmdstr); | ||
879 | return KDB_NOTFOUND; | ||
880 | } | ||
881 | argv[argc++] = cpp; | ||
882 | escaped = 0; | ||
883 | quoted = '\0'; | ||
884 | /* Copy to next unquoted and unescaped | ||
885 | * whitespace or '=' */ | ||
886 | while (*cp && *cp != '\n' && | ||
887 | (escaped || quoted || !isspace(*cp))) { | ||
888 | if (cpp >= cbuf + CMD_BUFLEN) | ||
889 | break; | ||
890 | if (escaped) { | ||
891 | escaped = 0; | ||
892 | *cpp++ = *cp++; | ||
893 | continue; | ||
894 | } | ||
895 | if (*cp == '\\') { | ||
896 | escaped = 1; | ||
897 | ++cp; | ||
898 | continue; | ||
899 | } | ||
900 | if (*cp == quoted) | ||
901 | quoted = '\0'; | ||
902 | else if (*cp == '\'' || *cp == '"') | ||
903 | quoted = *cp; | ||
904 | *cpp = *cp++; | ||
905 | if (*cpp == '=' && !quoted) | ||
906 | break; | ||
907 | ++cpp; | ||
908 | } | ||
909 | *cpp++ = '\0'; /* Squash a ws or '=' character */ | ||
910 | } | ||
911 | } | ||
912 | if (!argc) | ||
913 | return 0; | ||
914 | if (check_grep) | ||
915 | parse_grep(cp); | ||
916 | if (defcmd_in_progress) { | ||
917 | int result = kdb_defcmd2(cmdstr, argv[0]); | ||
918 | if (!defcmd_in_progress) { | ||
919 | argc = 0; /* avoid repeat on endefcmd */ | ||
920 | *(argv[0]) = '\0'; | ||
921 | } | ||
922 | return result; | ||
923 | } | ||
924 | if (argv[0][0] == '-' && argv[0][1] && | ||
925 | (argv[0][1] < '0' || argv[0][1] > '9')) { | ||
926 | ignore_errors = 1; | ||
927 | ++argv[0]; | ||
928 | } | ||
929 | |||
930 | for_each_kdbcmd(tp, i) { | ||
931 | if (tp->cmd_name) { | ||
932 | /* | ||
933 | * If this command is allowed to be abbreviated, | ||
934 | * check to see if this is it. | ||
935 | */ | ||
936 | |||
937 | if (tp->cmd_minlen | ||
938 | && (strlen(argv[0]) <= tp->cmd_minlen)) { | ||
939 | if (strncmp(argv[0], | ||
940 | tp->cmd_name, | ||
941 | tp->cmd_minlen) == 0) { | ||
942 | break; | ||
943 | } | ||
944 | } | ||
945 | |||
946 | if (strcmp(argv[0], tp->cmd_name) == 0) | ||
947 | break; | ||
948 | } | ||
949 | } | ||
950 | |||
951 | /* | ||
952 | * If we don't find a command by this name, see if the first | ||
953 | * few characters of this match any of the known commands. | ||
954 | * e.g., md1c20 should match md. | ||
955 | */ | ||
956 | if (i == kdb_max_commands) { | ||
957 | for_each_kdbcmd(tp, i) { | ||
958 | if (tp->cmd_name) { | ||
959 | if (strncmp(argv[0], | ||
960 | tp->cmd_name, | ||
961 | strlen(tp->cmd_name)) == 0) { | ||
962 | break; | ||
963 | } | ||
964 | } | ||
965 | } | ||
966 | } | ||
967 | |||
968 | if (i < kdb_max_commands) { | ||
969 | int result; | ||
970 | KDB_STATE_SET(CMD); | ||
971 | result = (*tp->cmd_func)(argc-1, (const char **)argv); | ||
972 | if (result && ignore_errors && result > KDB_CMD_GO) | ||
973 | result = 0; | ||
974 | KDB_STATE_CLEAR(CMD); | ||
975 | switch (tp->cmd_repeat) { | ||
976 | case KDB_REPEAT_NONE: | ||
977 | argc = 0; | ||
978 | if (argv[0]) | ||
979 | *(argv[0]) = '\0'; | ||
980 | break; | ||
981 | case KDB_REPEAT_NO_ARGS: | ||
982 | argc = 1; | ||
983 | if (argv[1]) | ||
984 | *(argv[1]) = '\0'; | ||
985 | break; | ||
986 | case KDB_REPEAT_WITH_ARGS: | ||
987 | break; | ||
988 | } | ||
989 | return result; | ||
990 | } | ||
991 | |||
992 | /* | ||
993 | * If the input with which we were presented does not | ||
994 | * map to an existing command, attempt to parse it as an | ||
995 | * address argument and display the result. Useful for | ||
996 | * obtaining the address of a variable, or the nearest symbol | ||
997 | * to an address contained in a register. | ||
998 | */ | ||
999 | { | ||
1000 | unsigned long value; | ||
1001 | char *name = NULL; | ||
1002 | long offset; | ||
1003 | int nextarg = 0; | ||
1004 | |||
1005 | if (kdbgetaddrarg(0, (const char **)argv, &nextarg, | ||
1006 | &value, &offset, &name)) { | ||
1007 | return KDB_NOTFOUND; | ||
1008 | } | ||
1009 | |||
1010 | kdb_printf("%s = ", argv[0]); | ||
1011 | kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); | ||
1012 | kdb_printf("\n"); | ||
1013 | return 0; | ||
1014 | } | ||
1015 | } | ||
1016 | |||
1017 | |||
1018 | static int handle_ctrl_cmd(char *cmd) | ||
1019 | { | ||
1020 | #define CTRL_P 16 | ||
1021 | #define CTRL_N 14 | ||
1022 | |||
1023 | /* initial situation */ | ||
1024 | if (cmd_head == cmd_tail) | ||
1025 | return 0; | ||
1026 | switch (*cmd) { | ||
1027 | case CTRL_P: | ||
1028 | if (cmdptr != cmd_tail) | ||
1029 | cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; | ||
1030 | strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); | ||
1031 | return 1; | ||
1032 | case CTRL_N: | ||
1033 | if (cmdptr != cmd_head) | ||
1034 | cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; | ||
1035 | strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); | ||
1036 | return 1; | ||
1037 | } | ||
1038 | return 0; | ||
1039 | } | ||
1040 | |||
1041 | /* | ||
1042 | * kdb_reboot - This function implements the 'reboot' command. Reboot | ||
1043 | * the system immediately, or loop for ever on failure. | ||
1044 | */ | ||
1045 | static int kdb_reboot(int argc, const char **argv) | ||
1046 | { | ||
1047 | emergency_restart(); | ||
1048 | kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); | ||
1049 | while (1) | ||
1050 | cpu_relax(); | ||
1051 | /* NOTREACHED */ | ||
1052 | return 0; | ||
1053 | } | ||
1054 | |||
1055 | static void kdb_dumpregs(struct pt_regs *regs) | ||
1056 | { | ||
1057 | int old_lvl = console_loglevel; | ||
1058 | console_loglevel = 15; | ||
1059 | kdb_trap_printk++; | ||
1060 | show_regs(regs); | ||
1061 | kdb_trap_printk--; | ||
1062 | kdb_printf("\n"); | ||
1063 | console_loglevel = old_lvl; | ||
1064 | } | ||
1065 | |||
1066 | void kdb_set_current_task(struct task_struct *p) | ||
1067 | { | ||
1068 | kdb_current_task = p; | ||
1069 | |||
1070 | if (kdb_task_has_cpu(p)) { | ||
1071 | kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); | ||
1072 | return; | ||
1073 | } | ||
1074 | kdb_current_regs = NULL; | ||
1075 | } | ||
1076 | |||
1077 | /* | ||
1078 | * kdb_local - The main code for kdb. This routine is invoked on a | ||
1079 | * specific processor, it is not global. The main kdb() routine | ||
1080 | * ensures that only one processor at a time is in this routine. | ||
1081 | * This code is called with the real reason code on the first | ||
1082 | * entry to a kdb session, thereafter it is called with reason | ||
1083 | * SWITCH, even if the user goes back to the original cpu. | ||
1084 | * Inputs: | ||
1085 | * reason The reason KDB was invoked | ||
1086 | * error The hardware-defined error code | ||
1087 | * regs The exception frame at time of fault/breakpoint. | ||
1088 | * db_result Result code from the break or debug point. | ||
1089 | * Returns: | ||
1090 | * 0 KDB was invoked for an event which it wasn't responsible | ||
1091 | * 1 KDB handled the event for which it was invoked. | ||
1092 | * KDB_CMD_GO User typed 'go'. | ||
1093 | * KDB_CMD_CPU User switched to another cpu. | ||
1094 | * KDB_CMD_SS Single step. | ||
1095 | * KDB_CMD_SSB Single step until branch. | ||
1096 | */ | ||
1097 | static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, | ||
1098 | kdb_dbtrap_t db_result) | ||
1099 | { | ||
1100 | char *cmdbuf; | ||
1101 | int diag; | ||
1102 | struct task_struct *kdb_current = | ||
1103 | kdb_curr_task(raw_smp_processor_id()); | ||
1104 | |||
1105 | KDB_DEBUG_STATE("kdb_local 1", reason); | ||
1106 | kdb_go_count = 0; | ||
1107 | if (reason == KDB_REASON_DEBUG) { | ||
1108 | /* special case below */ | ||
1109 | } else { | ||
1110 | kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", | ||
1111 | kdb_current, kdb_current->pid); | ||
1112 | #if defined(CONFIG_SMP) | ||
1113 | kdb_printf("on processor %d ", raw_smp_processor_id()); | ||
1114 | #endif | ||
1115 | } | ||
1116 | |||
1117 | switch (reason) { | ||
1118 | case KDB_REASON_DEBUG: | ||
1119 | { | ||
1120 | /* | ||
1121 | * If re-entering kdb after a single step | ||
1122 | * command, don't print the message. | ||
1123 | */ | ||
1124 | switch (db_result) { | ||
1125 | case KDB_DB_BPT: | ||
1126 | kdb_printf("\nEntering kdb (0x%p, pid %d) ", | ||
1127 | kdb_current, kdb_current->pid); | ||
1128 | #if defined(CONFIG_SMP) | ||
1129 | kdb_printf("on processor %d ", raw_smp_processor_id()); | ||
1130 | #endif | ||
1131 | kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", | ||
1132 | instruction_pointer(regs)); | ||
1133 | break; | ||
1134 | case KDB_DB_SSB: | ||
1135 | /* | ||
1136 | * In the midst of ssb command. Just return. | ||
1137 | */ | ||
1138 | KDB_DEBUG_STATE("kdb_local 3", reason); | ||
1139 | return KDB_CMD_SSB; /* Continue with SSB command */ | ||
1140 | |||
1141 | break; | ||
1142 | case KDB_DB_SS: | ||
1143 | break; | ||
1144 | case KDB_DB_SSBPT: | ||
1145 | KDB_DEBUG_STATE("kdb_local 4", reason); | ||
1146 | return 1; /* kdba_db_trap did the work */ | ||
1147 | default: | ||
1148 | kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", | ||
1149 | db_result); | ||
1150 | break; | ||
1151 | } | ||
1152 | |||
1153 | } | ||
1154 | break; | ||
1155 | case KDB_REASON_ENTER: | ||
1156 | if (KDB_STATE(KEYBOARD)) | ||
1157 | kdb_printf("due to Keyboard Entry\n"); | ||
1158 | else | ||
1159 | kdb_printf("due to KDB_ENTER()\n"); | ||
1160 | break; | ||
1161 | case KDB_REASON_KEYBOARD: | ||
1162 | KDB_STATE_SET(KEYBOARD); | ||
1163 | kdb_printf("due to Keyboard Entry\n"); | ||
1164 | break; | ||
1165 | case KDB_REASON_ENTER_SLAVE: | ||
1166 | /* drop through, slaves only get released via cpu switch */ | ||
1167 | case KDB_REASON_SWITCH: | ||
1168 | kdb_printf("due to cpu switch\n"); | ||
1169 | break; | ||
1170 | case KDB_REASON_OOPS: | ||
1171 | kdb_printf("Oops: %s\n", kdb_diemsg); | ||
1172 | kdb_printf("due to oops @ " kdb_machreg_fmt "\n", | ||
1173 | instruction_pointer(regs)); | ||
1174 | kdb_dumpregs(regs); | ||
1175 | break; | ||
1176 | case KDB_REASON_NMI: | ||
1177 | kdb_printf("due to NonMaskable Interrupt @ " | ||
1178 | kdb_machreg_fmt "\n", | ||
1179 | instruction_pointer(regs)); | ||
1180 | kdb_dumpregs(regs); | ||
1181 | break; | ||
1182 | case KDB_REASON_SSTEP: | ||
1183 | case KDB_REASON_BREAK: | ||
1184 | kdb_printf("due to %s @ " kdb_machreg_fmt "\n", | ||
1185 | reason == KDB_REASON_BREAK ? | ||
1186 | "Breakpoint" : "SS trap", instruction_pointer(regs)); | ||
1187 | /* | ||
1188 | * Determine if this breakpoint is one that we | ||
1189 | * are interested in. | ||
1190 | */ | ||
1191 | if (db_result != KDB_DB_BPT) { | ||
1192 | kdb_printf("kdb: error return from kdba_bp_trap: %d\n", | ||
1193 | db_result); | ||
1194 | KDB_DEBUG_STATE("kdb_local 6", reason); | ||
1195 | return 0; /* Not for us, dismiss it */ | ||
1196 | } | ||
1197 | break; | ||
1198 | case KDB_REASON_RECURSE: | ||
1199 | kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", | ||
1200 | instruction_pointer(regs)); | ||
1201 | break; | ||
1202 | default: | ||
1203 | kdb_printf("kdb: unexpected reason code: %d\n", reason); | ||
1204 | KDB_DEBUG_STATE("kdb_local 8", reason); | ||
1205 | return 0; /* Not for us, dismiss it */ | ||
1206 | } | ||
1207 | |||
1208 | while (1) { | ||
1209 | /* | ||
1210 | * Initialize pager context. | ||
1211 | */ | ||
1212 | kdb_nextline = 1; | ||
1213 | KDB_STATE_CLEAR(SUPPRESS); | ||
1214 | |||
1215 | cmdbuf = cmd_cur; | ||
1216 | *cmdbuf = '\0'; | ||
1217 | *(cmd_hist[cmd_head]) = '\0'; | ||
1218 | |||
1219 | if (KDB_FLAG(ONLY_DO_DUMP)) { | ||
1220 | /* kdb is off but a catastrophic error requires a dump. | ||
1221 | * Take the dump and reboot. | ||
1222 | * Turn on logging so the kdb output appears in the log | ||
1223 | * buffer in the dump. | ||
1224 | */ | ||
1225 | const char *setargs[] = { "set", "LOGGING", "1" }; | ||
1226 | kdb_set(2, setargs); | ||
1227 | kdb_reboot(0, NULL); | ||
1228 | /*NOTREACHED*/ | ||
1229 | } | ||
1230 | |||
1231 | do_full_getstr: | ||
1232 | #if defined(CONFIG_SMP) | ||
1233 | snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), | ||
1234 | raw_smp_processor_id()); | ||
1235 | #else | ||
1236 | snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); | ||
1237 | #endif | ||
1238 | if (defcmd_in_progress) | ||
1239 | strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); | ||
1240 | |||
1241 | /* | ||
1242 | * Fetch command from keyboard | ||
1243 | */ | ||
1244 | cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); | ||
1245 | if (*cmdbuf != '\n') { | ||
1246 | if (*cmdbuf < 32) { | ||
1247 | if (cmdptr == cmd_head) { | ||
1248 | strncpy(cmd_hist[cmd_head], cmd_cur, | ||
1249 | CMD_BUFLEN); | ||
1250 | *(cmd_hist[cmd_head] + | ||
1251 | strlen(cmd_hist[cmd_head])-1) = '\0'; | ||
1252 | } | ||
1253 | if (!handle_ctrl_cmd(cmdbuf)) | ||
1254 | *(cmd_cur+strlen(cmd_cur)-1) = '\0'; | ||
1255 | cmdbuf = cmd_cur; | ||
1256 | goto do_full_getstr; | ||
1257 | } else { | ||
1258 | strncpy(cmd_hist[cmd_head], cmd_cur, | ||
1259 | CMD_BUFLEN); | ||
1260 | } | ||
1261 | |||
1262 | cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; | ||
1263 | if (cmd_head == cmd_tail) | ||
1264 | cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; | ||
1265 | } | ||
1266 | |||
1267 | cmdptr = cmd_head; | ||
1268 | diag = kdb_parse(cmdbuf); | ||
1269 | if (diag == KDB_NOTFOUND) { | ||
1270 | kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); | ||
1271 | diag = 0; | ||
1272 | } | ||
1273 | if (diag == KDB_CMD_GO | ||
1274 | || diag == KDB_CMD_CPU | ||
1275 | || diag == KDB_CMD_SS | ||
1276 | || diag == KDB_CMD_SSB | ||
1277 | || diag == KDB_CMD_KGDB) | ||
1278 | break; | ||
1279 | |||
1280 | if (diag) | ||
1281 | kdb_cmderror(diag); | ||
1282 | } | ||
1283 | KDB_DEBUG_STATE("kdb_local 9", diag); | ||
1284 | return diag; | ||
1285 | } | ||
1286 | |||
1287 | |||
1288 | /* | ||
1289 | * kdb_print_state - Print the state data for the current processor | ||
1290 | * for debugging. | ||
1291 | * Inputs: | ||
1292 | * text Identifies the debug point | ||
1293 | * value Any integer value to be printed, e.g. reason code. | ||
1294 | */ | ||
1295 | void kdb_print_state(const char *text, int value) | ||
1296 | { | ||
1297 | kdb_printf("state: %s cpu %d value %d initial %d state %x\n", | ||
1298 | text, raw_smp_processor_id(), value, kdb_initial_cpu, | ||
1299 | kdb_state); | ||
1300 | } | ||
1301 | |||
1302 | /* | ||
1303 | * kdb_main_loop - After initial setup and assignment of the | ||
1304 | * controlling cpu, all cpus are in this loop. One cpu is in | ||
1305 | * control and will issue the kdb prompt, the others will spin | ||
1306 | * until 'go' or cpu switch. | ||
1307 | * | ||
1308 | * To get a consistent view of the kernel stacks for all | ||
1309 | * processes, this routine is invoked from the main kdb code via | ||
1310 | * an architecture specific routine. kdba_main_loop is | ||
1311 | * responsible for making the kernel stacks consistent for all | ||
1312 | * processes, there should be no difference between a blocked | ||
1313 | * process and a running process as far as kdb is concerned. | ||
1314 | * Inputs: | ||
1315 | * reason The reason KDB was invoked | ||
1316 | * error The hardware-defined error code | ||
1317 | * reason2 kdb's current reason code. | ||
1318 | * Initially error but can change | ||
1319 | * acording to kdb state. | ||
1320 | * db_result Result code from break or debug point. | ||
1321 | * regs The exception frame at time of fault/breakpoint. | ||
1322 | * should always be valid. | ||
1323 | * Returns: | ||
1324 | * 0 KDB was invoked for an event which it wasn't responsible | ||
1325 | * 1 KDB handled the event for which it was invoked. | ||
1326 | */ | ||
1327 | int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, | ||
1328 | kdb_dbtrap_t db_result, struct pt_regs *regs) | ||
1329 | { | ||
1330 | int result = 1; | ||
1331 | /* Stay in kdb() until 'go', 'ss[b]' or an error */ | ||
1332 | while (1) { | ||
1333 | /* | ||
1334 | * All processors except the one that is in control | ||
1335 | * will spin here. | ||
1336 | */ | ||
1337 | KDB_DEBUG_STATE("kdb_main_loop 1", reason); | ||
1338 | while (KDB_STATE(HOLD_CPU)) { | ||
1339 | /* state KDB is turned off by kdb_cpu to see if the | ||
1340 | * other cpus are still live, each cpu in this loop | ||
1341 | * turns it back on. | ||
1342 | */ | ||
1343 | if (!KDB_STATE(KDB)) | ||
1344 | KDB_STATE_SET(KDB); | ||
1345 | } | ||
1346 | |||
1347 | KDB_STATE_CLEAR(SUPPRESS); | ||
1348 | KDB_DEBUG_STATE("kdb_main_loop 2", reason); | ||
1349 | if (KDB_STATE(LEAVING)) | ||
1350 | break; /* Another cpu said 'go' */ | ||
1351 | /* Still using kdb, this processor is in control */ | ||
1352 | result = kdb_local(reason2, error, regs, db_result); | ||
1353 | KDB_DEBUG_STATE("kdb_main_loop 3", result); | ||
1354 | |||
1355 | if (result == KDB_CMD_CPU) | ||
1356 | break; | ||
1357 | |||
1358 | if (result == KDB_CMD_SS) { | ||
1359 | KDB_STATE_SET(DOING_SS); | ||
1360 | break; | ||
1361 | } | ||
1362 | |||
1363 | if (result == KDB_CMD_SSB) { | ||
1364 | KDB_STATE_SET(DOING_SS); | ||
1365 | KDB_STATE_SET(DOING_SSB); | ||
1366 | break; | ||
1367 | } | ||
1368 | |||
1369 | if (result == KDB_CMD_KGDB) { | ||
1370 | if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2))) | ||
1371 | kdb_printf("Entering please attach debugger " | ||
1372 | "or use $D#44+ or $3#33\n"); | ||
1373 | break; | ||
1374 | } | ||
1375 | if (result && result != 1 && result != KDB_CMD_GO) | ||
1376 | kdb_printf("\nUnexpected kdb_local return code %d\n", | ||
1377 | result); | ||
1378 | KDB_DEBUG_STATE("kdb_main_loop 4", reason); | ||
1379 | break; | ||
1380 | } | ||
1381 | if (KDB_STATE(DOING_SS)) | ||
1382 | KDB_STATE_CLEAR(SSBPT); | ||
1383 | |||
1384 | return result; | ||
1385 | } | ||
1386 | |||
1387 | /* | ||
1388 | * kdb_mdr - This function implements the guts of the 'mdr', memory | ||
1389 | * read command. | ||
1390 | * mdr <addr arg>,<byte count> | ||
1391 | * Inputs: | ||
1392 | * addr Start address | ||
1393 | * count Number of bytes | ||
1394 | * Returns: | ||
1395 | * Always 0. Any errors are detected and printed by kdb_getarea. | ||
1396 | */ | ||
1397 | static int kdb_mdr(unsigned long addr, unsigned int count) | ||
1398 | { | ||
1399 | unsigned char c; | ||
1400 | while (count--) { | ||
1401 | if (kdb_getarea(c, addr)) | ||
1402 | return 0; | ||
1403 | kdb_printf("%02x", c); | ||
1404 | addr++; | ||
1405 | } | ||
1406 | kdb_printf("\n"); | ||
1407 | return 0; | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1411 | * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', | ||
1412 | * 'md8' 'mdr' and 'mds' commands. | ||
1413 | * | ||
1414 | * md|mds [<addr arg> [<line count> [<radix>]]] | ||
1415 | * mdWcN [<addr arg> [<line count> [<radix>]]] | ||
1416 | * where W = is the width (1, 2, 4 or 8) and N is the count. | ||
1417 | * for eg., md1c20 reads 20 bytes, 1 at a time. | ||
1418 | * mdr <addr arg>,<byte count> | ||
1419 | */ | ||
1420 | static void kdb_md_line(const char *fmtstr, unsigned long addr, | ||
1421 | int symbolic, int nosect, int bytesperword, | ||
1422 | int num, int repeat, int phys) | ||
1423 | { | ||
1424 | /* print just one line of data */ | ||
1425 | kdb_symtab_t symtab; | ||
1426 | char cbuf[32]; | ||
1427 | char *c = cbuf; | ||
1428 | int i; | ||
1429 | unsigned long word; | ||
1430 | |||
1431 | memset(cbuf, '\0', sizeof(cbuf)); | ||
1432 | if (phys) | ||
1433 | kdb_printf("phys " kdb_machreg_fmt0 " ", addr); | ||
1434 | else | ||
1435 | kdb_printf(kdb_machreg_fmt0 " ", addr); | ||
1436 | |||
1437 | for (i = 0; i < num && repeat--; i++) { | ||
1438 | if (phys) { | ||
1439 | if (kdb_getphysword(&word, addr, bytesperword)) | ||
1440 | break; | ||
1441 | } else if (kdb_getword(&word, addr, bytesperword)) | ||
1442 | break; | ||
1443 | kdb_printf(fmtstr, word); | ||
1444 | if (symbolic) | ||
1445 | kdbnearsym(word, &symtab); | ||
1446 | else | ||
1447 | memset(&symtab, 0, sizeof(symtab)); | ||
1448 | if (symtab.sym_name) { | ||
1449 | kdb_symbol_print(word, &symtab, 0); | ||
1450 | if (!nosect) { | ||
1451 | kdb_printf("\n"); | ||
1452 | kdb_printf(" %s %s " | ||
1453 | kdb_machreg_fmt " " | ||
1454 | kdb_machreg_fmt " " | ||
1455 | kdb_machreg_fmt, symtab.mod_name, | ||
1456 | symtab.sec_name, symtab.sec_start, | ||
1457 | symtab.sym_start, symtab.sym_end); | ||
1458 | } | ||
1459 | addr += bytesperword; | ||
1460 | } else { | ||
1461 | union { | ||
1462 | u64 word; | ||
1463 | unsigned char c[8]; | ||
1464 | } wc; | ||
1465 | unsigned char *cp; | ||
1466 | #ifdef __BIG_ENDIAN | ||
1467 | cp = wc.c + 8 - bytesperword; | ||
1468 | #else | ||
1469 | cp = wc.c; | ||
1470 | #endif | ||
1471 | wc.word = word; | ||
1472 | #define printable_char(c) \ | ||
1473 | ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) | ||
1474 | switch (bytesperword) { | ||
1475 | case 8: | ||
1476 | *c++ = printable_char(*cp++); | ||
1477 | *c++ = printable_char(*cp++); | ||
1478 | *c++ = printable_char(*cp++); | ||
1479 | *c++ = printable_char(*cp++); | ||
1480 | addr += 4; | ||
1481 | case 4: | ||
1482 | *c++ = printable_char(*cp++); | ||
1483 | *c++ = printable_char(*cp++); | ||
1484 | addr += 2; | ||
1485 | case 2: | ||
1486 | *c++ = printable_char(*cp++); | ||
1487 | addr++; | ||
1488 | case 1: | ||
1489 | *c++ = printable_char(*cp++); | ||
1490 | addr++; | ||
1491 | break; | ||
1492 | } | ||
1493 | #undef printable_char | ||
1494 | } | ||
1495 | } | ||
1496 | kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), | ||
1497 | " ", cbuf); | ||
1498 | } | ||
1499 | |||
1500 | static int kdb_md(int argc, const char **argv) | ||
1501 | { | ||
1502 | static unsigned long last_addr; | ||
1503 | static int last_radix, last_bytesperword, last_repeat; | ||
1504 | int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; | ||
1505 | int nosect = 0; | ||
1506 | char fmtchar, fmtstr[64]; | ||
1507 | unsigned long addr; | ||
1508 | unsigned long word; | ||
1509 | long offset = 0; | ||
1510 | int symbolic = 0; | ||
1511 | int valid = 0; | ||
1512 | int phys = 0; | ||
1513 | |||
1514 | kdbgetintenv("MDCOUNT", &mdcount); | ||
1515 | kdbgetintenv("RADIX", &radix); | ||
1516 | kdbgetintenv("BYTESPERWORD", &bytesperword); | ||
1517 | |||
1518 | /* Assume 'md <addr>' and start with environment values */ | ||
1519 | repeat = mdcount * 16 / bytesperword; | ||
1520 | |||
1521 | if (strcmp(argv[0], "mdr") == 0) { | ||
1522 | if (argc != 2) | ||
1523 | return KDB_ARGCOUNT; | ||
1524 | valid = 1; | ||
1525 | } else if (isdigit(argv[0][2])) { | ||
1526 | bytesperword = (int)(argv[0][2] - '0'); | ||
1527 | if (bytesperword == 0) { | ||
1528 | bytesperword = last_bytesperword; | ||
1529 | if (bytesperword == 0) | ||
1530 | bytesperword = 4; | ||
1531 | } | ||
1532 | last_bytesperword = bytesperword; | ||
1533 | repeat = mdcount * 16 / bytesperword; | ||
1534 | if (!argv[0][3]) | ||
1535 | valid = 1; | ||
1536 | else if (argv[0][3] == 'c' && argv[0][4]) { | ||
1537 | char *p; | ||
1538 | repeat = simple_strtoul(argv[0] + 4, &p, 10); | ||
1539 | mdcount = ((repeat * bytesperword) + 15) / 16; | ||
1540 | valid = !*p; | ||
1541 | } | ||
1542 | last_repeat = repeat; | ||
1543 | } else if (strcmp(argv[0], "md") == 0) | ||
1544 | valid = 1; | ||
1545 | else if (strcmp(argv[0], "mds") == 0) | ||
1546 | valid = 1; | ||
1547 | else if (strcmp(argv[0], "mdp") == 0) { | ||
1548 | phys = valid = 1; | ||
1549 | } | ||
1550 | if (!valid) | ||
1551 | return KDB_NOTFOUND; | ||
1552 | |||
1553 | if (argc == 0) { | ||
1554 | if (last_addr == 0) | ||
1555 | return KDB_ARGCOUNT; | ||
1556 | addr = last_addr; | ||
1557 | radix = last_radix; | ||
1558 | bytesperword = last_bytesperword; | ||
1559 | repeat = last_repeat; | ||
1560 | mdcount = ((repeat * bytesperword) + 15) / 16; | ||
1561 | } | ||
1562 | |||
1563 | if (argc) { | ||
1564 | unsigned long val; | ||
1565 | int diag, nextarg = 1; | ||
1566 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, | ||
1567 | &offset, NULL); | ||
1568 | if (diag) | ||
1569 | return diag; | ||
1570 | if (argc > nextarg+2) | ||
1571 | return KDB_ARGCOUNT; | ||
1572 | |||
1573 | if (argc >= nextarg) { | ||
1574 | diag = kdbgetularg(argv[nextarg], &val); | ||
1575 | if (!diag) { | ||
1576 | mdcount = (int) val; | ||
1577 | repeat = mdcount * 16 / bytesperword; | ||
1578 | } | ||
1579 | } | ||
1580 | if (argc >= nextarg+1) { | ||
1581 | diag = kdbgetularg(argv[nextarg+1], &val); | ||
1582 | if (!diag) | ||
1583 | radix = (int) val; | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | if (strcmp(argv[0], "mdr") == 0) | ||
1588 | return kdb_mdr(addr, mdcount); | ||
1589 | |||
1590 | switch (radix) { | ||
1591 | case 10: | ||
1592 | fmtchar = 'd'; | ||
1593 | break; | ||
1594 | case 16: | ||
1595 | fmtchar = 'x'; | ||
1596 | break; | ||
1597 | case 8: | ||
1598 | fmtchar = 'o'; | ||
1599 | break; | ||
1600 | default: | ||
1601 | return KDB_BADRADIX; | ||
1602 | } | ||
1603 | |||
1604 | last_radix = radix; | ||
1605 | |||
1606 | if (bytesperword > KDB_WORD_SIZE) | ||
1607 | return KDB_BADWIDTH; | ||
1608 | |||
1609 | switch (bytesperword) { | ||
1610 | case 8: | ||
1611 | sprintf(fmtstr, "%%16.16l%c ", fmtchar); | ||
1612 | break; | ||
1613 | case 4: | ||
1614 | sprintf(fmtstr, "%%8.8l%c ", fmtchar); | ||
1615 | break; | ||
1616 | case 2: | ||
1617 | sprintf(fmtstr, "%%4.4l%c ", fmtchar); | ||
1618 | break; | ||
1619 | case 1: | ||
1620 | sprintf(fmtstr, "%%2.2l%c ", fmtchar); | ||
1621 | break; | ||
1622 | default: | ||
1623 | return KDB_BADWIDTH; | ||
1624 | } | ||
1625 | |||
1626 | last_repeat = repeat; | ||
1627 | last_bytesperword = bytesperword; | ||
1628 | |||
1629 | if (strcmp(argv[0], "mds") == 0) { | ||
1630 | symbolic = 1; | ||
1631 | /* Do not save these changes as last_*, they are temporary mds | ||
1632 | * overrides. | ||
1633 | */ | ||
1634 | bytesperword = KDB_WORD_SIZE; | ||
1635 | repeat = mdcount; | ||
1636 | kdbgetintenv("NOSECT", &nosect); | ||
1637 | } | ||
1638 | |||
1639 | /* Round address down modulo BYTESPERWORD */ | ||
1640 | |||
1641 | addr &= ~(bytesperword-1); | ||
1642 | |||
1643 | while (repeat > 0) { | ||
1644 | unsigned long a; | ||
1645 | int n, z, num = (symbolic ? 1 : (16 / bytesperword)); | ||
1646 | |||
1647 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
1648 | return 0; | ||
1649 | for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { | ||
1650 | if (phys) { | ||
1651 | if (kdb_getphysword(&word, a, bytesperword) | ||
1652 | || word) | ||
1653 | break; | ||
1654 | } else if (kdb_getword(&word, a, bytesperword) || word) | ||
1655 | break; | ||
1656 | } | ||
1657 | n = min(num, repeat); | ||
1658 | kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, | ||
1659 | num, repeat, phys); | ||
1660 | addr += bytesperword * n; | ||
1661 | repeat -= n; | ||
1662 | z = (z + num - 1) / num; | ||
1663 | if (z > 2) { | ||
1664 | int s = num * (z-2); | ||
1665 | kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 | ||
1666 | " zero suppressed\n", | ||
1667 | addr, addr + bytesperword * s - 1); | ||
1668 | addr += bytesperword * s; | ||
1669 | repeat -= s; | ||
1670 | } | ||
1671 | } | ||
1672 | last_addr = addr; | ||
1673 | |||
1674 | return 0; | ||
1675 | } | ||
1676 | |||
1677 | /* | ||
1678 | * kdb_mm - This function implements the 'mm' command. | ||
1679 | * mm address-expression new-value | ||
1680 | * Remarks: | ||
1681 | * mm works on machine words, mmW works on bytes. | ||
1682 | */ | ||
1683 | static int kdb_mm(int argc, const char **argv) | ||
1684 | { | ||
1685 | int diag; | ||
1686 | unsigned long addr; | ||
1687 | long offset = 0; | ||
1688 | unsigned long contents; | ||
1689 | int nextarg; | ||
1690 | int width; | ||
1691 | |||
1692 | if (argv[0][2] && !isdigit(argv[0][2])) | ||
1693 | return KDB_NOTFOUND; | ||
1694 | |||
1695 | if (argc < 2) | ||
1696 | return KDB_ARGCOUNT; | ||
1697 | |||
1698 | nextarg = 1; | ||
1699 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
1700 | if (diag) | ||
1701 | return diag; | ||
1702 | |||
1703 | if (nextarg > argc) | ||
1704 | return KDB_ARGCOUNT; | ||
1705 | diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); | ||
1706 | if (diag) | ||
1707 | return diag; | ||
1708 | |||
1709 | if (nextarg != argc + 1) | ||
1710 | return KDB_ARGCOUNT; | ||
1711 | |||
1712 | width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); | ||
1713 | diag = kdb_putword(addr, contents, width); | ||
1714 | if (diag) | ||
1715 | return diag; | ||
1716 | |||
1717 | kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); | ||
1718 | |||
1719 | return 0; | ||
1720 | } | ||
1721 | |||
1722 | /* | ||
1723 | * kdb_go - This function implements the 'go' command. | ||
1724 | * go [address-expression] | ||
1725 | */ | ||
1726 | static int kdb_go(int argc, const char **argv) | ||
1727 | { | ||
1728 | unsigned long addr; | ||
1729 | int diag; | ||
1730 | int nextarg; | ||
1731 | long offset; | ||
1732 | |||
1733 | if (argc == 1) { | ||
1734 | if (raw_smp_processor_id() != kdb_initial_cpu) { | ||
1735 | kdb_printf("go <address> must be issued from the " | ||
1736 | "initial cpu, do cpu %d first\n", | ||
1737 | kdb_initial_cpu); | ||
1738 | return KDB_ARGCOUNT; | ||
1739 | } | ||
1740 | nextarg = 1; | ||
1741 | diag = kdbgetaddrarg(argc, argv, &nextarg, | ||
1742 | &addr, &offset, NULL); | ||
1743 | if (diag) | ||
1744 | return diag; | ||
1745 | } else if (argc) { | ||
1746 | return KDB_ARGCOUNT; | ||
1747 | } | ||
1748 | |||
1749 | diag = KDB_CMD_GO; | ||
1750 | if (KDB_FLAG(CATASTROPHIC)) { | ||
1751 | kdb_printf("Catastrophic error detected\n"); | ||
1752 | kdb_printf("kdb_continue_catastrophic=%d, ", | ||
1753 | kdb_continue_catastrophic); | ||
1754 | if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { | ||
1755 | kdb_printf("type go a second time if you really want " | ||
1756 | "to continue\n"); | ||
1757 | return 0; | ||
1758 | } | ||
1759 | if (kdb_continue_catastrophic == 2) { | ||
1760 | kdb_printf("forcing reboot\n"); | ||
1761 | kdb_reboot(0, NULL); | ||
1762 | } | ||
1763 | kdb_printf("attempting to continue\n"); | ||
1764 | } | ||
1765 | return diag; | ||
1766 | } | ||
1767 | |||
1768 | /* | ||
1769 | * kdb_rd - This function implements the 'rd' command. | ||
1770 | */ | ||
1771 | static int kdb_rd(int argc, const char **argv) | ||
1772 | { | ||
1773 | int diag = kdb_check_regs(); | ||
1774 | if (diag) | ||
1775 | return diag; | ||
1776 | |||
1777 | kdb_dumpregs(kdb_current_regs); | ||
1778 | return 0; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * kdb_rm - This function implements the 'rm' (register modify) command. | ||
1783 | * rm register-name new-contents | ||
1784 | * Remarks: | ||
1785 | * Currently doesn't allow modification of control or | ||
1786 | * debug registers. | ||
1787 | */ | ||
1788 | static int kdb_rm(int argc, const char **argv) | ||
1789 | { | ||
1790 | int diag; | ||
1791 | int ind = 0; | ||
1792 | unsigned long contents; | ||
1793 | |||
1794 | if (argc != 2) | ||
1795 | return KDB_ARGCOUNT; | ||
1796 | /* | ||
1797 | * Allow presence or absence of leading '%' symbol. | ||
1798 | */ | ||
1799 | if (argv[1][0] == '%') | ||
1800 | ind = 1; | ||
1801 | |||
1802 | diag = kdbgetularg(argv[2], &contents); | ||
1803 | if (diag) | ||
1804 | return diag; | ||
1805 | |||
1806 | diag = kdb_check_regs(); | ||
1807 | if (diag) | ||
1808 | return diag; | ||
1809 | kdb_printf("ERROR: Register set currently not implemented\n"); | ||
1810 | return 0; | ||
1811 | } | ||
1812 | |||
1813 | #if defined(CONFIG_MAGIC_SYSRQ) | ||
1814 | /* | ||
1815 | * kdb_sr - This function implements the 'sr' (SYSRQ key) command | ||
1816 | * which interfaces to the soi-disant MAGIC SYSRQ functionality. | ||
1817 | * sr <magic-sysrq-code> | ||
1818 | */ | ||
1819 | static int kdb_sr(int argc, const char **argv) | ||
1820 | { | ||
1821 | if (argc != 1) | ||
1822 | return KDB_ARGCOUNT; | ||
1823 | sysrq_toggle_support(1); | ||
1824 | kdb_trap_printk++; | ||
1825 | handle_sysrq(*argv[1], NULL); | ||
1826 | kdb_trap_printk--; | ||
1827 | |||
1828 | return 0; | ||
1829 | } | ||
1830 | #endif /* CONFIG_MAGIC_SYSRQ */ | ||
1831 | |||
1832 | /* | ||
1833 | * kdb_ef - This function implements the 'regs' (display exception | ||
1834 | * frame) command. This command takes an address and expects to | ||
1835 | * find an exception frame at that address, formats and prints | ||
1836 | * it. | ||
1837 | * regs address-expression | ||
1838 | * Remarks: | ||
1839 | * Not done yet. | ||
1840 | */ | ||
1841 | static int kdb_ef(int argc, const char **argv) | ||
1842 | { | ||
1843 | int diag; | ||
1844 | unsigned long addr; | ||
1845 | long offset; | ||
1846 | int nextarg; | ||
1847 | |||
1848 | if (argc != 1) | ||
1849 | return KDB_ARGCOUNT; | ||
1850 | |||
1851 | nextarg = 1; | ||
1852 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
1853 | if (diag) | ||
1854 | return diag; | ||
1855 | show_regs((struct pt_regs *)addr); | ||
1856 | return 0; | ||
1857 | } | ||
1858 | |||
1859 | #if defined(CONFIG_MODULES) | ||
1860 | /* modules using other modules */ | ||
1861 | struct module_use { | ||
1862 | struct list_head list; | ||
1863 | struct module *module_which_uses; | ||
1864 | }; | ||
1865 | |||
1866 | /* | ||
1867 | * kdb_lsmod - This function implements the 'lsmod' command. Lists | ||
1868 | * currently loaded kernel modules. | ||
1869 | * Mostly taken from userland lsmod. | ||
1870 | */ | ||
1871 | static int kdb_lsmod(int argc, const char **argv) | ||
1872 | { | ||
1873 | struct module *mod; | ||
1874 | |||
1875 | if (argc != 0) | ||
1876 | return KDB_ARGCOUNT; | ||
1877 | |||
1878 | kdb_printf("Module Size modstruct Used by\n"); | ||
1879 | list_for_each_entry(mod, kdb_modules, list) { | ||
1880 | |||
1881 | kdb_printf("%-20s%8u 0x%p ", mod->name, | ||
1882 | mod->core_size, (void *)mod); | ||
1883 | #ifdef CONFIG_MODULE_UNLOAD | ||
1884 | kdb_printf("%4d ", module_refcount(mod)); | ||
1885 | #endif | ||
1886 | if (mod->state == MODULE_STATE_GOING) | ||
1887 | kdb_printf(" (Unloading)"); | ||
1888 | else if (mod->state == MODULE_STATE_COMING) | ||
1889 | kdb_printf(" (Loading)"); | ||
1890 | else | ||
1891 | kdb_printf(" (Live)"); | ||
1892 | |||
1893 | #ifdef CONFIG_MODULE_UNLOAD | ||
1894 | { | ||
1895 | struct module_use *use; | ||
1896 | kdb_printf(" [ "); | ||
1897 | list_for_each_entry(use, &mod->modules_which_use_me, | ||
1898 | list) | ||
1899 | kdb_printf("%s ", use->module_which_uses->name); | ||
1900 | kdb_printf("]\n"); | ||
1901 | } | ||
1902 | #endif | ||
1903 | } | ||
1904 | |||
1905 | return 0; | ||
1906 | } | ||
1907 | |||
1908 | #endif /* CONFIG_MODULES */ | ||
1909 | |||
1910 | /* | ||
1911 | * kdb_env - This function implements the 'env' command. Display the | ||
1912 | * current environment variables. | ||
1913 | */ | ||
1914 | |||
1915 | static int kdb_env(int argc, const char **argv) | ||
1916 | { | ||
1917 | int i; | ||
1918 | |||
1919 | for (i = 0; i < __nenv; i++) { | ||
1920 | if (__env[i]) | ||
1921 | kdb_printf("%s\n", __env[i]); | ||
1922 | } | ||
1923 | |||
1924 | if (KDB_DEBUG(MASK)) | ||
1925 | kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); | ||
1926 | |||
1927 | return 0; | ||
1928 | } | ||
1929 | |||
1930 | #ifdef CONFIG_PRINTK | ||
1931 | /* | ||
1932 | * kdb_dmesg - This function implements the 'dmesg' command to display | ||
1933 | * the contents of the syslog buffer. | ||
1934 | * dmesg [lines] [adjust] | ||
1935 | */ | ||
1936 | static int kdb_dmesg(int argc, const char **argv) | ||
1937 | { | ||
1938 | char *syslog_data[4], *start, *end, c = '\0', *p; | ||
1939 | int diag, logging, logsize, lines = 0, adjust = 0, n; | ||
1940 | |||
1941 | if (argc > 2) | ||
1942 | return KDB_ARGCOUNT; | ||
1943 | if (argc) { | ||
1944 | char *cp; | ||
1945 | lines = simple_strtol(argv[1], &cp, 0); | ||
1946 | if (*cp) | ||
1947 | lines = 0; | ||
1948 | if (argc > 1) { | ||
1949 | adjust = simple_strtoul(argv[2], &cp, 0); | ||
1950 | if (*cp || adjust < 0) | ||
1951 | adjust = 0; | ||
1952 | } | ||
1953 | } | ||
1954 | |||
1955 | /* disable LOGGING if set */ | ||
1956 | diag = kdbgetintenv("LOGGING", &logging); | ||
1957 | if (!diag && logging) { | ||
1958 | const char *setargs[] = { "set", "LOGGING", "0" }; | ||
1959 | kdb_set(2, setargs); | ||
1960 | } | ||
1961 | |||
1962 | /* syslog_data[0,1] physical start, end+1. syslog_data[2,3] | ||
1963 | * logical start, end+1. */ | ||
1964 | kdb_syslog_data(syslog_data); | ||
1965 | if (syslog_data[2] == syslog_data[3]) | ||
1966 | return 0; | ||
1967 | logsize = syslog_data[1] - syslog_data[0]; | ||
1968 | start = syslog_data[2]; | ||
1969 | end = syslog_data[3]; | ||
1970 | #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0]) | ||
1971 | for (n = 0, p = start; p < end; ++p) { | ||
1972 | c = *KDB_WRAP(p); | ||
1973 | if (c == '\n') | ||
1974 | ++n; | ||
1975 | } | ||
1976 | if (c != '\n') | ||
1977 | ++n; | ||
1978 | if (lines < 0) { | ||
1979 | if (adjust >= n) | ||
1980 | kdb_printf("buffer only contains %d lines, nothing " | ||
1981 | "printed\n", n); | ||
1982 | else if (adjust - lines >= n) | ||
1983 | kdb_printf("buffer only contains %d lines, last %d " | ||
1984 | "lines printed\n", n, n - adjust); | ||
1985 | if (adjust) { | ||
1986 | for (; start < end && adjust; ++start) { | ||
1987 | if (*KDB_WRAP(start) == '\n') | ||
1988 | --adjust; | ||
1989 | } | ||
1990 | if (start < end) | ||
1991 | ++start; | ||
1992 | } | ||
1993 | for (p = start; p < end && lines; ++p) { | ||
1994 | if (*KDB_WRAP(p) == '\n') | ||
1995 | ++lines; | ||
1996 | } | ||
1997 | end = p; | ||
1998 | } else if (lines > 0) { | ||
1999 | int skip = n - (adjust + lines); | ||
2000 | if (adjust >= n) { | ||
2001 | kdb_printf("buffer only contains %d lines, " | ||
2002 | "nothing printed\n", n); | ||
2003 | skip = n; | ||
2004 | } else if (skip < 0) { | ||
2005 | lines += skip; | ||
2006 | skip = 0; | ||
2007 | kdb_printf("buffer only contains %d lines, first " | ||
2008 | "%d lines printed\n", n, lines); | ||
2009 | } | ||
2010 | for (; start < end && skip; ++start) { | ||
2011 | if (*KDB_WRAP(start) == '\n') | ||
2012 | --skip; | ||
2013 | } | ||
2014 | for (p = start; p < end && lines; ++p) { | ||
2015 | if (*KDB_WRAP(p) == '\n') | ||
2016 | --lines; | ||
2017 | } | ||
2018 | end = p; | ||
2019 | } | ||
2020 | /* Do a line at a time (max 200 chars) to reduce protocol overhead */ | ||
2021 | c = '\n'; | ||
2022 | while (start != end) { | ||
2023 | char buf[201]; | ||
2024 | p = buf; | ||
2025 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2026 | return 0; | ||
2027 | while (start < end && (c = *KDB_WRAP(start)) && | ||
2028 | (p - buf) < sizeof(buf)-1) { | ||
2029 | ++start; | ||
2030 | *p++ = c; | ||
2031 | if (c == '\n') | ||
2032 | break; | ||
2033 | } | ||
2034 | *p = '\0'; | ||
2035 | kdb_printf("%s", buf); | ||
2036 | } | ||
2037 | if (c != '\n') | ||
2038 | kdb_printf("\n"); | ||
2039 | |||
2040 | return 0; | ||
2041 | } | ||
2042 | #endif /* CONFIG_PRINTK */ | ||
2043 | /* | ||
2044 | * kdb_cpu - This function implements the 'cpu' command. | ||
2045 | * cpu [<cpunum>] | ||
2046 | * Returns: | ||
2047 | * KDB_CMD_CPU for success, a kdb diagnostic if error | ||
2048 | */ | ||
2049 | static void kdb_cpu_status(void) | ||
2050 | { | ||
2051 | int i, start_cpu, first_print = 1; | ||
2052 | char state, prev_state = '?'; | ||
2053 | |||
2054 | kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); | ||
2055 | kdb_printf("Available cpus: "); | ||
2056 | for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { | ||
2057 | if (!cpu_online(i)) { | ||
2058 | state = 'F'; /* cpu is offline */ | ||
2059 | } else { | ||
2060 | state = ' '; /* cpu is responding to kdb */ | ||
2061 | if (kdb_task_state_char(KDB_TSK(i)) == 'I') | ||
2062 | state = 'I'; /* idle task */ | ||
2063 | } | ||
2064 | if (state != prev_state) { | ||
2065 | if (prev_state != '?') { | ||
2066 | if (!first_print) | ||
2067 | kdb_printf(", "); | ||
2068 | first_print = 0; | ||
2069 | kdb_printf("%d", start_cpu); | ||
2070 | if (start_cpu < i-1) | ||
2071 | kdb_printf("-%d", i-1); | ||
2072 | if (prev_state != ' ') | ||
2073 | kdb_printf("(%c)", prev_state); | ||
2074 | } | ||
2075 | prev_state = state; | ||
2076 | start_cpu = i; | ||
2077 | } | ||
2078 | } | ||
2079 | /* print the trailing cpus, ignoring them if they are all offline */ | ||
2080 | if (prev_state != 'F') { | ||
2081 | if (!first_print) | ||
2082 | kdb_printf(", "); | ||
2083 | kdb_printf("%d", start_cpu); | ||
2084 | if (start_cpu < i-1) | ||
2085 | kdb_printf("-%d", i-1); | ||
2086 | if (prev_state != ' ') | ||
2087 | kdb_printf("(%c)", prev_state); | ||
2088 | } | ||
2089 | kdb_printf("\n"); | ||
2090 | } | ||
2091 | |||
2092 | static int kdb_cpu(int argc, const char **argv) | ||
2093 | { | ||
2094 | unsigned long cpunum; | ||
2095 | int diag; | ||
2096 | |||
2097 | if (argc == 0) { | ||
2098 | kdb_cpu_status(); | ||
2099 | return 0; | ||
2100 | } | ||
2101 | |||
2102 | if (argc != 1) | ||
2103 | return KDB_ARGCOUNT; | ||
2104 | |||
2105 | diag = kdbgetularg(argv[1], &cpunum); | ||
2106 | if (diag) | ||
2107 | return diag; | ||
2108 | |||
2109 | /* | ||
2110 | * Validate cpunum | ||
2111 | */ | ||
2112 | if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) | ||
2113 | return KDB_BADCPUNUM; | ||
2114 | |||
2115 | dbg_switch_cpu = cpunum; | ||
2116 | |||
2117 | /* | ||
2118 | * Switch to other cpu | ||
2119 | */ | ||
2120 | return KDB_CMD_CPU; | ||
2121 | } | ||
2122 | |||
2123 | /* The user may not realize that ps/bta with no parameters does not print idle | ||
2124 | * or sleeping system daemon processes, so tell them how many were suppressed. | ||
2125 | */ | ||
2126 | void kdb_ps_suppressed(void) | ||
2127 | { | ||
2128 | int idle = 0, daemon = 0; | ||
2129 | unsigned long mask_I = kdb_task_state_string("I"), | ||
2130 | mask_M = kdb_task_state_string("M"); | ||
2131 | unsigned long cpu; | ||
2132 | const struct task_struct *p, *g; | ||
2133 | for_each_online_cpu(cpu) { | ||
2134 | p = kdb_curr_task(cpu); | ||
2135 | if (kdb_task_state(p, mask_I)) | ||
2136 | ++idle; | ||
2137 | } | ||
2138 | kdb_do_each_thread(g, p) { | ||
2139 | if (kdb_task_state(p, mask_M)) | ||
2140 | ++daemon; | ||
2141 | } kdb_while_each_thread(g, p); | ||
2142 | if (idle || daemon) { | ||
2143 | if (idle) | ||
2144 | kdb_printf("%d idle process%s (state I)%s\n", | ||
2145 | idle, idle == 1 ? "" : "es", | ||
2146 | daemon ? " and " : ""); | ||
2147 | if (daemon) | ||
2148 | kdb_printf("%d sleeping system daemon (state M) " | ||
2149 | "process%s", daemon, | ||
2150 | daemon == 1 ? "" : "es"); | ||
2151 | kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); | ||
2152 | } | ||
2153 | } | ||
2154 | |||
2155 | /* | ||
2156 | * kdb_ps - This function implements the 'ps' command which shows a | ||
2157 | * list of the active processes. | ||
2158 | * ps [DRSTCZEUIMA] All processes, optionally filtered by state | ||
2159 | */ | ||
2160 | void kdb_ps1(const struct task_struct *p) | ||
2161 | { | ||
2162 | int cpu; | ||
2163 | unsigned long tmp; | ||
2164 | |||
2165 | if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) | ||
2166 | return; | ||
2167 | |||
2168 | cpu = kdb_process_cpu(p); | ||
2169 | kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", | ||
2170 | (void *)p, p->pid, p->parent->pid, | ||
2171 | kdb_task_has_cpu(p), kdb_process_cpu(p), | ||
2172 | kdb_task_state_char(p), | ||
2173 | (void *)(&p->thread), | ||
2174 | p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', | ||
2175 | p->comm); | ||
2176 | if (kdb_task_has_cpu(p)) { | ||
2177 | if (!KDB_TSK(cpu)) { | ||
2178 | kdb_printf(" Error: no saved data for this cpu\n"); | ||
2179 | } else { | ||
2180 | if (KDB_TSK(cpu) != p) | ||
2181 | kdb_printf(" Error: does not match running " | ||
2182 | "process table (0x%p)\n", KDB_TSK(cpu)); | ||
2183 | } | ||
2184 | } | ||
2185 | } | ||
2186 | |||
2187 | static int kdb_ps(int argc, const char **argv) | ||
2188 | { | ||
2189 | struct task_struct *g, *p; | ||
2190 | unsigned long mask, cpu; | ||
2191 | |||
2192 | if (argc == 0) | ||
2193 | kdb_ps_suppressed(); | ||
2194 | kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", | ||
2195 | (int)(2*sizeof(void *))+2, "Task Addr", | ||
2196 | (int)(2*sizeof(void *))+2, "Thread"); | ||
2197 | mask = kdb_task_state_string(argc ? argv[1] : NULL); | ||
2198 | /* Run the active tasks first */ | ||
2199 | for_each_online_cpu(cpu) { | ||
2200 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2201 | return 0; | ||
2202 | p = kdb_curr_task(cpu); | ||
2203 | if (kdb_task_state(p, mask)) | ||
2204 | kdb_ps1(p); | ||
2205 | } | ||
2206 | kdb_printf("\n"); | ||
2207 | /* Now the real tasks */ | ||
2208 | kdb_do_each_thread(g, p) { | ||
2209 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2210 | return 0; | ||
2211 | if (kdb_task_state(p, mask)) | ||
2212 | kdb_ps1(p); | ||
2213 | } kdb_while_each_thread(g, p); | ||
2214 | |||
2215 | return 0; | ||
2216 | } | ||
2217 | |||
2218 | /* | ||
2219 | * kdb_pid - This function implements the 'pid' command which switches | ||
2220 | * the currently active process. | ||
2221 | * pid [<pid> | R] | ||
2222 | */ | ||
2223 | static int kdb_pid(int argc, const char **argv) | ||
2224 | { | ||
2225 | struct task_struct *p; | ||
2226 | unsigned long val; | ||
2227 | int diag; | ||
2228 | |||
2229 | if (argc > 1) | ||
2230 | return KDB_ARGCOUNT; | ||
2231 | |||
2232 | if (argc) { | ||
2233 | if (strcmp(argv[1], "R") == 0) { | ||
2234 | p = KDB_TSK(kdb_initial_cpu); | ||
2235 | } else { | ||
2236 | diag = kdbgetularg(argv[1], &val); | ||
2237 | if (diag) | ||
2238 | return KDB_BADINT; | ||
2239 | |||
2240 | p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); | ||
2241 | if (!p) { | ||
2242 | kdb_printf("No task with pid=%d\n", (pid_t)val); | ||
2243 | return 0; | ||
2244 | } | ||
2245 | } | ||
2246 | kdb_set_current_task(p); | ||
2247 | } | ||
2248 | kdb_printf("KDB current process is %s(pid=%d)\n", | ||
2249 | kdb_current_task->comm, | ||
2250 | kdb_current_task->pid); | ||
2251 | |||
2252 | return 0; | ||
2253 | } | ||
2254 | |||
2255 | /* | ||
2256 | * kdb_ll - This function implements the 'll' command which follows a | ||
2257 | * linked list and executes an arbitrary command for each | ||
2258 | * element. | ||
2259 | */ | ||
2260 | static int kdb_ll(int argc, const char **argv) | ||
2261 | { | ||
2262 | int diag; | ||
2263 | unsigned long addr; | ||
2264 | long offset = 0; | ||
2265 | unsigned long va; | ||
2266 | unsigned long linkoffset; | ||
2267 | int nextarg; | ||
2268 | const char *command; | ||
2269 | |||
2270 | if (argc != 3) | ||
2271 | return KDB_ARGCOUNT; | ||
2272 | |||
2273 | nextarg = 1; | ||
2274 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
2275 | if (diag) | ||
2276 | return diag; | ||
2277 | |||
2278 | diag = kdbgetularg(argv[2], &linkoffset); | ||
2279 | if (diag) | ||
2280 | return diag; | ||
2281 | |||
2282 | /* | ||
2283 | * Using the starting address as | ||
2284 | * the first element in the list, and assuming that | ||
2285 | * the list ends with a null pointer. | ||
2286 | */ | ||
2287 | |||
2288 | va = addr; | ||
2289 | command = kdb_strdup(argv[3], GFP_KDB); | ||
2290 | if (!command) { | ||
2291 | kdb_printf("%s: cannot duplicate command\n", __func__); | ||
2292 | return 0; | ||
2293 | } | ||
2294 | /* Recursive use of kdb_parse, do not use argv after this point */ | ||
2295 | argv = NULL; | ||
2296 | |||
2297 | while (va) { | ||
2298 | char buf[80]; | ||
2299 | |||
2300 | sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); | ||
2301 | diag = kdb_parse(buf); | ||
2302 | if (diag) | ||
2303 | return diag; | ||
2304 | |||
2305 | addr = va + linkoffset; | ||
2306 | if (kdb_getword(&va, addr, sizeof(va))) | ||
2307 | return 0; | ||
2308 | } | ||
2309 | kfree(command); | ||
2310 | |||
2311 | return 0; | ||
2312 | } | ||
2313 | |||
2314 | static int kdb_kgdb(int argc, const char **argv) | ||
2315 | { | ||
2316 | return KDB_CMD_KGDB; | ||
2317 | } | ||
2318 | |||
2319 | /* | ||
2320 | * kdb_help - This function implements the 'help' and '?' commands. | ||
2321 | */ | ||
2322 | static int kdb_help(int argc, const char **argv) | ||
2323 | { | ||
2324 | kdbtab_t *kt; | ||
2325 | int i; | ||
2326 | |||
2327 | kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); | ||
2328 | kdb_printf("-----------------------------" | ||
2329 | "-----------------------------\n"); | ||
2330 | for_each_kdbcmd(kt, i) { | ||
2331 | if (kt->cmd_name) | ||
2332 | kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, | ||
2333 | kt->cmd_usage, kt->cmd_help); | ||
2334 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2335 | return 0; | ||
2336 | } | ||
2337 | return 0; | ||
2338 | } | ||
2339 | |||
2340 | /* | ||
2341 | * kdb_kill - This function implements the 'kill' commands. | ||
2342 | */ | ||
2343 | static int kdb_kill(int argc, const char **argv) | ||
2344 | { | ||
2345 | long sig, pid; | ||
2346 | char *endp; | ||
2347 | struct task_struct *p; | ||
2348 | struct siginfo info; | ||
2349 | |||
2350 | if (argc != 2) | ||
2351 | return KDB_ARGCOUNT; | ||
2352 | |||
2353 | sig = simple_strtol(argv[1], &endp, 0); | ||
2354 | if (*endp) | ||
2355 | return KDB_BADINT; | ||
2356 | if (sig >= 0) { | ||
2357 | kdb_printf("Invalid signal parameter.<-signal>\n"); | ||
2358 | return 0; | ||
2359 | } | ||
2360 | sig = -sig; | ||
2361 | |||
2362 | pid = simple_strtol(argv[2], &endp, 0); | ||
2363 | if (*endp) | ||
2364 | return KDB_BADINT; | ||
2365 | if (pid <= 0) { | ||
2366 | kdb_printf("Process ID must be large than 0.\n"); | ||
2367 | return 0; | ||
2368 | } | ||
2369 | |||
2370 | /* Find the process. */ | ||
2371 | p = find_task_by_pid_ns(pid, &init_pid_ns); | ||
2372 | if (!p) { | ||
2373 | kdb_printf("The specified process isn't found.\n"); | ||
2374 | return 0; | ||
2375 | } | ||
2376 | p = p->group_leader; | ||
2377 | info.si_signo = sig; | ||
2378 | info.si_errno = 0; | ||
2379 | info.si_code = SI_USER; | ||
2380 | info.si_pid = pid; /* same capabilities as process being signalled */ | ||
2381 | info.si_uid = 0; /* kdb has root authority */ | ||
2382 | kdb_send_sig_info(p, &info); | ||
2383 | return 0; | ||
2384 | } | ||
2385 | |||
2386 | struct kdb_tm { | ||
2387 | int tm_sec; /* seconds */ | ||
2388 | int tm_min; /* minutes */ | ||
2389 | int tm_hour; /* hours */ | ||
2390 | int tm_mday; /* day of the month */ | ||
2391 | int tm_mon; /* month */ | ||
2392 | int tm_year; /* year */ | ||
2393 | }; | ||
2394 | |||
2395 | static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) | ||
2396 | { | ||
2397 | /* This will work from 1970-2099, 2100 is not a leap year */ | ||
2398 | static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, | ||
2399 | 31, 30, 31, 30, 31 }; | ||
2400 | memset(tm, 0, sizeof(*tm)); | ||
2401 | tm->tm_sec = tv->tv_sec % (24 * 60 * 60); | ||
2402 | tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + | ||
2403 | (2 * 365 + 1); /* shift base from 1970 to 1968 */ | ||
2404 | tm->tm_min = tm->tm_sec / 60 % 60; | ||
2405 | tm->tm_hour = tm->tm_sec / 60 / 60; | ||
2406 | tm->tm_sec = tm->tm_sec % 60; | ||
2407 | tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); | ||
2408 | tm->tm_mday %= (4*365+1); | ||
2409 | mon_day[1] = 29; | ||
2410 | while (tm->tm_mday >= mon_day[tm->tm_mon]) { | ||
2411 | tm->tm_mday -= mon_day[tm->tm_mon]; | ||
2412 | if (++tm->tm_mon == 12) { | ||
2413 | tm->tm_mon = 0; | ||
2414 | ++tm->tm_year; | ||
2415 | mon_day[1] = 28; | ||
2416 | } | ||
2417 | } | ||
2418 | ++tm->tm_mday; | ||
2419 | } | ||
2420 | |||
2421 | /* | ||
2422 | * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). | ||
2423 | * I cannot call that code directly from kdb, it has an unconditional | ||
2424 | * cli()/sti() and calls routines that take locks which can stop the debugger. | ||
2425 | */ | ||
2426 | static void kdb_sysinfo(struct sysinfo *val) | ||
2427 | { | ||
2428 | struct timespec uptime; | ||
2429 | do_posix_clock_monotonic_gettime(&uptime); | ||
2430 | memset(val, 0, sizeof(*val)); | ||
2431 | val->uptime = uptime.tv_sec; | ||
2432 | val->loads[0] = avenrun[0]; | ||
2433 | val->loads[1] = avenrun[1]; | ||
2434 | val->loads[2] = avenrun[2]; | ||
2435 | val->procs = nr_threads-1; | ||
2436 | si_meminfo(val); | ||
2437 | |||
2438 | return; | ||
2439 | } | ||
2440 | |||
2441 | /* | ||
2442 | * kdb_summary - This function implements the 'summary' command. | ||
2443 | */ | ||
2444 | static int kdb_summary(int argc, const char **argv) | ||
2445 | { | ||
2446 | struct kdb_tm tm; | ||
2447 | struct sysinfo val; | ||
2448 | |||
2449 | if (argc) | ||
2450 | return KDB_ARGCOUNT; | ||
2451 | |||
2452 | kdb_printf("sysname %s\n", init_uts_ns.name.sysname); | ||
2453 | kdb_printf("release %s\n", init_uts_ns.name.release); | ||
2454 | kdb_printf("version %s\n", init_uts_ns.name.version); | ||
2455 | kdb_printf("machine %s\n", init_uts_ns.name.machine); | ||
2456 | kdb_printf("nodename %s\n", init_uts_ns.name.nodename); | ||
2457 | kdb_printf("domainname %s\n", init_uts_ns.name.domainname); | ||
2458 | kdb_printf("ccversion %s\n", __stringify(CCVERSION)); | ||
2459 | |||
2460 | kdb_gmtime(&xtime, &tm); | ||
2461 | kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " | ||
2462 | "tz_minuteswest %d\n", | ||
2463 | 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, | ||
2464 | tm.tm_hour, tm.tm_min, tm.tm_sec, | ||
2465 | sys_tz.tz_minuteswest); | ||
2466 | |||
2467 | kdb_sysinfo(&val); | ||
2468 | kdb_printf("uptime "); | ||
2469 | if (val.uptime > (24*60*60)) { | ||
2470 | int days = val.uptime / (24*60*60); | ||
2471 | val.uptime %= (24*60*60); | ||
2472 | kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); | ||
2473 | } | ||
2474 | kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); | ||
2475 | |||
2476 | /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ | ||
2477 | |||
2478 | #define LOAD_INT(x) ((x) >> FSHIFT) | ||
2479 | #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) | ||
2480 | kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", | ||
2481 | LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), | ||
2482 | LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), | ||
2483 | LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); | ||
2484 | #undef LOAD_INT | ||
2485 | #undef LOAD_FRAC | ||
2486 | /* Display in kilobytes */ | ||
2487 | #define K(x) ((x) << (PAGE_SHIFT - 10)) | ||
2488 | kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" | ||
2489 | "Buffers: %8lu kB\n", | ||
2490 | val.totalram, val.freeram, val.bufferram); | ||
2491 | return 0; | ||
2492 | } | ||
2493 | |||
2494 | /* | ||
2495 | * kdb_per_cpu - This function implements the 'per_cpu' command. | ||
2496 | */ | ||
2497 | static int kdb_per_cpu(int argc, const char **argv) | ||
2498 | { | ||
2499 | char buf[256], fmtstr[64]; | ||
2500 | kdb_symtab_t symtab; | ||
2501 | cpumask_t suppress = CPU_MASK_NONE; | ||
2502 | int cpu, diag; | ||
2503 | unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL; | ||
2504 | |||
2505 | if (argc < 1 || argc > 3) | ||
2506 | return KDB_ARGCOUNT; | ||
2507 | |||
2508 | snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]); | ||
2509 | if (!kdbgetsymval(buf, &symtab)) { | ||
2510 | kdb_printf("%s is not a per_cpu variable\n", argv[1]); | ||
2511 | return KDB_BADADDR; | ||
2512 | } | ||
2513 | if (argc >= 2) { | ||
2514 | diag = kdbgetularg(argv[2], &bytesperword); | ||
2515 | if (diag) | ||
2516 | return diag; | ||
2517 | } | ||
2518 | if (!bytesperword) | ||
2519 | bytesperword = KDB_WORD_SIZE; | ||
2520 | else if (bytesperword > KDB_WORD_SIZE) | ||
2521 | return KDB_BADWIDTH; | ||
2522 | sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); | ||
2523 | if (argc >= 3) { | ||
2524 | diag = kdbgetularg(argv[3], &whichcpu); | ||
2525 | if (diag) | ||
2526 | return diag; | ||
2527 | if (!cpu_online(whichcpu)) { | ||
2528 | kdb_printf("cpu %ld is not online\n", whichcpu); | ||
2529 | return KDB_BADCPUNUM; | ||
2530 | } | ||
2531 | } | ||
2532 | |||
2533 | /* Most architectures use __per_cpu_offset[cpu], some use | ||
2534 | * __per_cpu_offset(cpu), smp has no __per_cpu_offset. | ||
2535 | */ | ||
2536 | #ifdef __per_cpu_offset | ||
2537 | #define KDB_PCU(cpu) __per_cpu_offset(cpu) | ||
2538 | #else | ||
2539 | #ifdef CONFIG_SMP | ||
2540 | #define KDB_PCU(cpu) __per_cpu_offset[cpu] | ||
2541 | #else | ||
2542 | #define KDB_PCU(cpu) 0 | ||
2543 | #endif | ||
2544 | #endif | ||
2545 | |||
2546 | for_each_online_cpu(cpu) { | ||
2547 | if (whichcpu != ~0UL && whichcpu != cpu) | ||
2548 | continue; | ||
2549 | addr = symtab.sym_start + KDB_PCU(cpu); | ||
2550 | diag = kdb_getword(&val, addr, bytesperword); | ||
2551 | if (diag) { | ||
2552 | kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " | ||
2553 | "read, diag=%d\n", cpu, addr, diag); | ||
2554 | continue; | ||
2555 | } | ||
2556 | #ifdef CONFIG_SMP | ||
2557 | if (!val) { | ||
2558 | cpu_set(cpu, suppress); | ||
2559 | continue; | ||
2560 | } | ||
2561 | #endif /* CONFIG_SMP */ | ||
2562 | kdb_printf("%5d ", cpu); | ||
2563 | kdb_md_line(fmtstr, addr, | ||
2564 | bytesperword == KDB_WORD_SIZE, | ||
2565 | 1, bytesperword, 1, 1, 0); | ||
2566 | } | ||
2567 | if (cpus_weight(suppress) == 0) | ||
2568 | return 0; | ||
2569 | kdb_printf("Zero suppressed cpu(s):"); | ||
2570 | for (cpu = first_cpu(suppress); cpu < num_possible_cpus(); | ||
2571 | cpu = next_cpu(cpu, suppress)) { | ||
2572 | kdb_printf(" %d", cpu); | ||
2573 | if (cpu == num_possible_cpus() - 1 || | ||
2574 | next_cpu(cpu, suppress) != cpu + 1) | ||
2575 | continue; | ||
2576 | while (cpu < num_possible_cpus() && | ||
2577 | next_cpu(cpu, suppress) == cpu + 1) | ||
2578 | ++cpu; | ||
2579 | kdb_printf("-%d", cpu); | ||
2580 | } | ||
2581 | kdb_printf("\n"); | ||
2582 | |||
2583 | #undef KDB_PCU | ||
2584 | |||
2585 | return 0; | ||
2586 | } | ||
2587 | |||
2588 | /* | ||
2589 | * display help for the use of cmd | grep pattern | ||
2590 | */ | ||
2591 | static int kdb_grep_help(int argc, const char **argv) | ||
2592 | { | ||
2593 | kdb_printf("Usage of cmd args | grep pattern:\n"); | ||
2594 | kdb_printf(" Any command's output may be filtered through an "); | ||
2595 | kdb_printf("emulated 'pipe'.\n"); | ||
2596 | kdb_printf(" 'grep' is just a key word.\n"); | ||
2597 | kdb_printf(" The pattern may include a very limited set of " | ||
2598 | "metacharacters:\n"); | ||
2599 | kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); | ||
2600 | kdb_printf(" And if there are spaces in the pattern, you may " | ||
2601 | "quote it:\n"); | ||
2602 | kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" | ||
2603 | " or \"^pat tern$\"\n"); | ||
2604 | return 0; | ||
2605 | } | ||
2606 | |||
2607 | /* | ||
2608 | * kdb_register_repeat - This function is used to register a kernel | ||
2609 | * debugger command. | ||
2610 | * Inputs: | ||
2611 | * cmd Command name | ||
2612 | * func Function to execute the command | ||
2613 | * usage A simple usage string showing arguments | ||
2614 | * help A simple help string describing command | ||
2615 | * repeat Does the command auto repeat on enter? | ||
2616 | * Returns: | ||
2617 | * zero for success, one if a duplicate command. | ||
2618 | */ | ||
2619 | #define kdb_command_extend 50 /* arbitrary */ | ||
2620 | int kdb_register_repeat(char *cmd, | ||
2621 | kdb_func_t func, | ||
2622 | char *usage, | ||
2623 | char *help, | ||
2624 | short minlen, | ||
2625 | kdb_repeat_t repeat) | ||
2626 | { | ||
2627 | int i; | ||
2628 | kdbtab_t *kp; | ||
2629 | |||
2630 | /* | ||
2631 | * Brute force method to determine duplicates | ||
2632 | */ | ||
2633 | for_each_kdbcmd(kp, i) { | ||
2634 | if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { | ||
2635 | kdb_printf("Duplicate kdb command registered: " | ||
2636 | "%s, func %p help %s\n", cmd, func, help); | ||
2637 | return 1; | ||
2638 | } | ||
2639 | } | ||
2640 | |||
2641 | /* | ||
2642 | * Insert command into first available location in table | ||
2643 | */ | ||
2644 | for_each_kdbcmd(kp, i) { | ||
2645 | if (kp->cmd_name == NULL) | ||
2646 | break; | ||
2647 | } | ||
2648 | |||
2649 | if (i >= kdb_max_commands) { | ||
2650 | kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + | ||
2651 | kdb_command_extend) * sizeof(*new), GFP_KDB); | ||
2652 | if (!new) { | ||
2653 | kdb_printf("Could not allocate new kdb_command " | ||
2654 | "table\n"); | ||
2655 | return 1; | ||
2656 | } | ||
2657 | if (kdb_commands) { | ||
2658 | memcpy(new, kdb_commands, | ||
2659 | kdb_max_commands * sizeof(*new)); | ||
2660 | kfree(kdb_commands); | ||
2661 | } | ||
2662 | memset(new + kdb_max_commands, 0, | ||
2663 | kdb_command_extend * sizeof(*new)); | ||
2664 | kdb_commands = new; | ||
2665 | kp = kdb_commands + kdb_max_commands; | ||
2666 | kdb_max_commands += kdb_command_extend; | ||
2667 | } | ||
2668 | |||
2669 | kp->cmd_name = cmd; | ||
2670 | kp->cmd_func = func; | ||
2671 | kp->cmd_usage = usage; | ||
2672 | kp->cmd_help = help; | ||
2673 | kp->cmd_flags = 0; | ||
2674 | kp->cmd_minlen = minlen; | ||
2675 | kp->cmd_repeat = repeat; | ||
2676 | |||
2677 | return 0; | ||
2678 | } | ||
2679 | |||
2680 | /* | ||
2681 | * kdb_register - Compatibility register function for commands that do | ||
2682 | * not need to specify a repeat state. Equivalent to | ||
2683 | * kdb_register_repeat with KDB_REPEAT_NONE. | ||
2684 | * Inputs: | ||
2685 | * cmd Command name | ||
2686 | * func Function to execute the command | ||
2687 | * usage A simple usage string showing arguments | ||
2688 | * help A simple help string describing command | ||
2689 | * Returns: | ||
2690 | * zero for success, one if a duplicate command. | ||
2691 | */ | ||
2692 | int kdb_register(char *cmd, | ||
2693 | kdb_func_t func, | ||
2694 | char *usage, | ||
2695 | char *help, | ||
2696 | short minlen) | ||
2697 | { | ||
2698 | return kdb_register_repeat(cmd, func, usage, help, minlen, | ||
2699 | KDB_REPEAT_NONE); | ||
2700 | } | ||
2701 | |||
2702 | /* | ||
2703 | * kdb_unregister - This function is used to unregister a kernel | ||
2704 | * debugger command. It is generally called when a module which | ||
2705 | * implements kdb commands is unloaded. | ||
2706 | * Inputs: | ||
2707 | * cmd Command name | ||
2708 | * Returns: | ||
2709 | * zero for success, one command not registered. | ||
2710 | */ | ||
2711 | int kdb_unregister(char *cmd) | ||
2712 | { | ||
2713 | int i; | ||
2714 | kdbtab_t *kp; | ||
2715 | |||
2716 | /* | ||
2717 | * find the command. | ||
2718 | */ | ||
2719 | for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) { | ||
2720 | if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { | ||
2721 | kp->cmd_name = NULL; | ||
2722 | return 0; | ||
2723 | } | ||
2724 | } | ||
2725 | |||
2726 | /* Couldn't find it. */ | ||
2727 | return 1; | ||
2728 | } | ||
2729 | |||
2730 | /* Initialize the kdb command table. */ | ||
2731 | static void __init kdb_inittab(void) | ||
2732 | { | ||
2733 | int i; | ||
2734 | kdbtab_t *kp; | ||
2735 | |||
2736 | for_each_kdbcmd(kp, i) | ||
2737 | kp->cmd_name = NULL; | ||
2738 | |||
2739 | kdb_register_repeat("md", kdb_md, "<vaddr>", | ||
2740 | "Display Memory Contents, also mdWcN, e.g. md8c1", 1, | ||
2741 | KDB_REPEAT_NO_ARGS); | ||
2742 | kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", | ||
2743 | "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); | ||
2744 | kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", | ||
2745 | "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); | ||
2746 | kdb_register_repeat("mds", kdb_md, "<vaddr>", | ||
2747 | "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); | ||
2748 | kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", | ||
2749 | "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); | ||
2750 | kdb_register_repeat("go", kdb_go, "[<vaddr>]", | ||
2751 | "Continue Execution", 1, KDB_REPEAT_NONE); | ||
2752 | kdb_register_repeat("rd", kdb_rd, "", | ||
2753 | "Display Registers", 0, KDB_REPEAT_NONE); | ||
2754 | kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", | ||
2755 | "Modify Registers", 0, KDB_REPEAT_NONE); | ||
2756 | kdb_register_repeat("ef", kdb_ef, "<vaddr>", | ||
2757 | "Display exception frame", 0, KDB_REPEAT_NONE); | ||
2758 | kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", | ||
2759 | "Stack traceback", 1, KDB_REPEAT_NONE); | ||
2760 | kdb_register_repeat("btp", kdb_bt, "<pid>", | ||
2761 | "Display stack for process <pid>", 0, KDB_REPEAT_NONE); | ||
2762 | kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", | ||
2763 | "Display stack all processes", 0, KDB_REPEAT_NONE); | ||
2764 | kdb_register_repeat("btc", kdb_bt, "", | ||
2765 | "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); | ||
2766 | kdb_register_repeat("btt", kdb_bt, "<vaddr>", | ||
2767 | "Backtrace process given its struct task address", 0, | ||
2768 | KDB_REPEAT_NONE); | ||
2769 | kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", | ||
2770 | "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); | ||
2771 | kdb_register_repeat("env", kdb_env, "", | ||
2772 | "Show environment variables", 0, KDB_REPEAT_NONE); | ||
2773 | kdb_register_repeat("set", kdb_set, "", | ||
2774 | "Set environment variables", 0, KDB_REPEAT_NONE); | ||
2775 | kdb_register_repeat("help", kdb_help, "", | ||
2776 | "Display Help Message", 1, KDB_REPEAT_NONE); | ||
2777 | kdb_register_repeat("?", kdb_help, "", | ||
2778 | "Display Help Message", 0, KDB_REPEAT_NONE); | ||
2779 | kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", | ||
2780 | "Switch to new cpu", 0, KDB_REPEAT_NONE); | ||
2781 | kdb_register_repeat("kgdb", kdb_kgdb, "", | ||
2782 | "Enter kgdb mode", 0, KDB_REPEAT_NONE); | ||
2783 | kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", | ||
2784 | "Display active task list", 0, KDB_REPEAT_NONE); | ||
2785 | kdb_register_repeat("pid", kdb_pid, "<pidnum>", | ||
2786 | "Switch to another task", 0, KDB_REPEAT_NONE); | ||
2787 | kdb_register_repeat("reboot", kdb_reboot, "", | ||
2788 | "Reboot the machine immediately", 0, KDB_REPEAT_NONE); | ||
2789 | #if defined(CONFIG_MODULES) | ||
2790 | kdb_register_repeat("lsmod", kdb_lsmod, "", | ||
2791 | "List loaded kernel modules", 0, KDB_REPEAT_NONE); | ||
2792 | #endif | ||
2793 | #if defined(CONFIG_MAGIC_SYSRQ) | ||
2794 | kdb_register_repeat("sr", kdb_sr, "<key>", | ||
2795 | "Magic SysRq key", 0, KDB_REPEAT_NONE); | ||
2796 | #endif | ||
2797 | #if defined(CONFIG_PRINTK) | ||
2798 | kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", | ||
2799 | "Display syslog buffer", 0, KDB_REPEAT_NONE); | ||
2800 | #endif | ||
2801 | kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", | ||
2802 | "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); | ||
2803 | kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", | ||
2804 | "Send a signal to a process", 0, KDB_REPEAT_NONE); | ||
2805 | kdb_register_repeat("summary", kdb_summary, "", | ||
2806 | "Summarize the system", 4, KDB_REPEAT_NONE); | ||
2807 | kdb_register_repeat("per_cpu", kdb_per_cpu, "", | ||
2808 | "Display per_cpu variables", 3, KDB_REPEAT_NONE); | ||
2809 | kdb_register_repeat("grephelp", kdb_grep_help, "", | ||
2810 | "Display help on | grep", 0, KDB_REPEAT_NONE); | ||
2811 | } | ||
2812 | |||
2813 | /* Execute any commands defined in kdb_cmds. */ | ||
2814 | static void __init kdb_cmd_init(void) | ||
2815 | { | ||
2816 | int i, diag; | ||
2817 | for (i = 0; kdb_cmds[i]; ++i) { | ||
2818 | diag = kdb_parse(kdb_cmds[i]); | ||
2819 | if (diag) | ||
2820 | kdb_printf("kdb command %s failed, kdb diag %d\n", | ||
2821 | kdb_cmds[i], diag); | ||
2822 | } | ||
2823 | if (defcmd_in_progress) { | ||
2824 | kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); | ||
2825 | kdb_parse("endefcmd"); | ||
2826 | } | ||
2827 | } | ||
2828 | |||
2829 | /* Intialize kdb_printf, breakpoint tables and kdb state */ | ||
2830 | void __init kdb_init(int lvl) | ||
2831 | { | ||
2832 | static int kdb_init_lvl = KDB_NOT_INITIALIZED; | ||
2833 | int i; | ||
2834 | |||
2835 | if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) | ||
2836 | return; | ||
2837 | for (i = kdb_init_lvl; i < lvl; i++) { | ||
2838 | switch (i) { | ||
2839 | case KDB_NOT_INITIALIZED: | ||
2840 | kdb_inittab(); /* Initialize Command Table */ | ||
2841 | kdb_initbptab(); /* Initialize Breakpoints */ | ||
2842 | break; | ||
2843 | case KDB_INIT_EARLY: | ||
2844 | kdb_cmd_init(); /* Build kdb_cmds tables */ | ||
2845 | break; | ||
2846 | } | ||
2847 | } | ||
2848 | kdb_init_lvl = lvl; | ||
2849 | } | ||
diff --git a/kernel/debug/kdb/kdb_private.h b/kernel/debug/kdb/kdb_private.h new file mode 100644 index 000000000000..97d3ba69775d --- /dev/null +++ b/kernel/debug/kdb/kdb_private.h | |||
@@ -0,0 +1,300 @@ | |||
1 | #ifndef _KDBPRIVATE_H | ||
2 | #define _KDBPRIVATE_H | ||
3 | |||
4 | /* | ||
5 | * Kernel Debugger Architecture Independent Private Headers | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General Public | ||
8 | * License. See the file "COPYING" in the main directory of this archive | ||
9 | * for more details. | ||
10 | * | ||
11 | * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
12 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
13 | */ | ||
14 | |||
15 | #include <linux/kgdb.h> | ||
16 | #include "../debug_core.h" | ||
17 | |||
18 | /* Kernel Debugger Error codes. Must not overlap with command codes. */ | ||
19 | #define KDB_NOTFOUND (-1) | ||
20 | #define KDB_ARGCOUNT (-2) | ||
21 | #define KDB_BADWIDTH (-3) | ||
22 | #define KDB_BADRADIX (-4) | ||
23 | #define KDB_NOTENV (-5) | ||
24 | #define KDB_NOENVVALUE (-6) | ||
25 | #define KDB_NOTIMP (-7) | ||
26 | #define KDB_ENVFULL (-8) | ||
27 | #define KDB_ENVBUFFULL (-9) | ||
28 | #define KDB_TOOMANYBPT (-10) | ||
29 | #define KDB_TOOMANYDBREGS (-11) | ||
30 | #define KDB_DUPBPT (-12) | ||
31 | #define KDB_BPTNOTFOUND (-13) | ||
32 | #define KDB_BADMODE (-14) | ||
33 | #define KDB_BADINT (-15) | ||
34 | #define KDB_INVADDRFMT (-16) | ||
35 | #define KDB_BADREG (-17) | ||
36 | #define KDB_BADCPUNUM (-18) | ||
37 | #define KDB_BADLENGTH (-19) | ||
38 | #define KDB_NOBP (-20) | ||
39 | #define KDB_BADADDR (-21) | ||
40 | |||
41 | /* Kernel Debugger Command codes. Must not overlap with error codes. */ | ||
42 | #define KDB_CMD_GO (-1001) | ||
43 | #define KDB_CMD_CPU (-1002) | ||
44 | #define KDB_CMD_SS (-1003) | ||
45 | #define KDB_CMD_SSB (-1004) | ||
46 | #define KDB_CMD_KGDB (-1005) | ||
47 | #define KDB_CMD_KGDB2 (-1006) | ||
48 | |||
49 | /* Internal debug flags */ | ||
50 | #define KDB_DEBUG_FLAG_BP 0x0002 /* Breakpoint subsystem debug */ | ||
51 | #define KDB_DEBUG_FLAG_BB_SUMM 0x0004 /* Basic block analysis, summary only */ | ||
52 | #define KDB_DEBUG_FLAG_AR 0x0008 /* Activation record, generic */ | ||
53 | #define KDB_DEBUG_FLAG_ARA 0x0010 /* Activation record, arch specific */ | ||
54 | #define KDB_DEBUG_FLAG_BB 0x0020 /* All basic block analysis */ | ||
55 | #define KDB_DEBUG_FLAG_STATE 0x0040 /* State flags */ | ||
56 | #define KDB_DEBUG_FLAG_MASK 0xffff /* All debug flags */ | ||
57 | #define KDB_DEBUG_FLAG_SHIFT 16 /* Shift factor for dbflags */ | ||
58 | |||
59 | #define KDB_DEBUG(flag) (kdb_flags & \ | ||
60 | (KDB_DEBUG_FLAG_##flag << KDB_DEBUG_FLAG_SHIFT)) | ||
61 | #define KDB_DEBUG_STATE(text, value) if (KDB_DEBUG(STATE)) \ | ||
62 | kdb_print_state(text, value) | ||
63 | |||
64 | #if BITS_PER_LONG == 32 | ||
65 | |||
66 | #define KDB_PLATFORM_ENV "BYTESPERWORD=4" | ||
67 | |||
68 | #define kdb_machreg_fmt "0x%lx" | ||
69 | #define kdb_machreg_fmt0 "0x%08lx" | ||
70 | #define kdb_bfd_vma_fmt "0x%lx" | ||
71 | #define kdb_bfd_vma_fmt0 "0x%08lx" | ||
72 | #define kdb_elfw_addr_fmt "0x%x" | ||
73 | #define kdb_elfw_addr_fmt0 "0x%08x" | ||
74 | #define kdb_f_count_fmt "%d" | ||
75 | |||
76 | #elif BITS_PER_LONG == 64 | ||
77 | |||
78 | #define KDB_PLATFORM_ENV "BYTESPERWORD=8" | ||
79 | |||
80 | #define kdb_machreg_fmt "0x%lx" | ||
81 | #define kdb_machreg_fmt0 "0x%016lx" | ||
82 | #define kdb_bfd_vma_fmt "0x%lx" | ||
83 | #define kdb_bfd_vma_fmt0 "0x%016lx" | ||
84 | #define kdb_elfw_addr_fmt "0x%x" | ||
85 | #define kdb_elfw_addr_fmt0 "0x%016x" | ||
86 | #define kdb_f_count_fmt "%ld" | ||
87 | |||
88 | #endif | ||
89 | |||
90 | /* | ||
91 | * KDB_MAXBPT describes the total number of breakpoints | ||
92 | * supported by this architecure. | ||
93 | */ | ||
94 | #define KDB_MAXBPT 16 | ||
95 | |||
96 | /* Maximum number of arguments to a function */ | ||
97 | #define KDB_MAXARGS 16 | ||
98 | |||
99 | typedef enum { | ||
100 | KDB_REPEAT_NONE = 0, /* Do not repeat this command */ | ||
101 | KDB_REPEAT_NO_ARGS, /* Repeat the command without arguments */ | ||
102 | KDB_REPEAT_WITH_ARGS, /* Repeat the command including its arguments */ | ||
103 | } kdb_repeat_t; | ||
104 | |||
105 | typedef int (*kdb_func_t)(int, const char **); | ||
106 | |||
107 | /* Symbol table format returned by kallsyms. */ | ||
108 | typedef struct __ksymtab { | ||
109 | unsigned long value; /* Address of symbol */ | ||
110 | const char *mod_name; /* Module containing symbol or | ||
111 | * "kernel" */ | ||
112 | unsigned long mod_start; | ||
113 | unsigned long mod_end; | ||
114 | const char *sec_name; /* Section containing symbol */ | ||
115 | unsigned long sec_start; | ||
116 | unsigned long sec_end; | ||
117 | const char *sym_name; /* Full symbol name, including | ||
118 | * any version */ | ||
119 | unsigned long sym_start; | ||
120 | unsigned long sym_end; | ||
121 | } kdb_symtab_t; | ||
122 | extern int kallsyms_symbol_next(char *prefix_name, int flag); | ||
123 | extern int kallsyms_symbol_complete(char *prefix_name, int max_len); | ||
124 | |||
125 | /* Exported Symbols for kernel loadable modules to use. */ | ||
126 | extern int kdb_register(char *, kdb_func_t, char *, char *, short); | ||
127 | extern int kdb_register_repeat(char *, kdb_func_t, char *, char *, | ||
128 | short, kdb_repeat_t); | ||
129 | extern int kdb_unregister(char *); | ||
130 | |||
131 | extern int kdb_getarea_size(void *, unsigned long, size_t); | ||
132 | extern int kdb_putarea_size(unsigned long, void *, size_t); | ||
133 | |||
134 | /* | ||
135 | * Like get_user and put_user, kdb_getarea and kdb_putarea take variable | ||
136 | * names, not pointers. The underlying *_size functions take pointers. | ||
137 | */ | ||
138 | #define kdb_getarea(x, addr) kdb_getarea_size(&(x), addr, sizeof((x))) | ||
139 | #define kdb_putarea(addr, x) kdb_putarea_size(addr, &(x), sizeof((x))) | ||
140 | |||
141 | extern int kdb_getphysword(unsigned long *word, | ||
142 | unsigned long addr, size_t size); | ||
143 | extern int kdb_getword(unsigned long *, unsigned long, size_t); | ||
144 | extern int kdb_putword(unsigned long, unsigned long, size_t); | ||
145 | |||
146 | extern int kdbgetularg(const char *, unsigned long *); | ||
147 | extern int kdb_set(int, const char **); | ||
148 | extern char *kdbgetenv(const char *); | ||
149 | extern int kdbgetintenv(const char *, int *); | ||
150 | extern int kdbgetaddrarg(int, const char **, int*, unsigned long *, | ||
151 | long *, char **); | ||
152 | extern int kdbgetsymval(const char *, kdb_symtab_t *); | ||
153 | extern int kdbnearsym(unsigned long, kdb_symtab_t *); | ||
154 | extern void kdbnearsym_cleanup(void); | ||
155 | extern char *kdb_strdup(const char *str, gfp_t type); | ||
156 | extern void kdb_symbol_print(unsigned long, const kdb_symtab_t *, unsigned int); | ||
157 | |||
158 | /* Routine for debugging the debugger state. */ | ||
159 | extern void kdb_print_state(const char *, int); | ||
160 | |||
161 | extern int kdb_state; | ||
162 | #define KDB_STATE_KDB 0x00000001 /* Cpu is inside kdb */ | ||
163 | #define KDB_STATE_LEAVING 0x00000002 /* Cpu is leaving kdb */ | ||
164 | #define KDB_STATE_CMD 0x00000004 /* Running a kdb command */ | ||
165 | #define KDB_STATE_KDB_CONTROL 0x00000008 /* This cpu is under | ||
166 | * kdb control */ | ||
167 | #define KDB_STATE_HOLD_CPU 0x00000010 /* Hold this cpu inside kdb */ | ||
168 | #define KDB_STATE_DOING_SS 0x00000020 /* Doing ss command */ | ||
169 | #define KDB_STATE_DOING_SSB 0x00000040 /* Doing ssb command, | ||
170 | * DOING_SS is also set */ | ||
171 | #define KDB_STATE_SSBPT 0x00000080 /* Install breakpoint | ||
172 | * after one ss, independent of | ||
173 | * DOING_SS */ | ||
174 | #define KDB_STATE_REENTRY 0x00000100 /* Valid re-entry into kdb */ | ||
175 | #define KDB_STATE_SUPPRESS 0x00000200 /* Suppress error messages */ | ||
176 | #define KDB_STATE_PAGER 0x00000400 /* pager is available */ | ||
177 | #define KDB_STATE_GO_SWITCH 0x00000800 /* go is switching | ||
178 | * back to initial cpu */ | ||
179 | #define KDB_STATE_PRINTF_LOCK 0x00001000 /* Holds kdb_printf lock */ | ||
180 | #define KDB_STATE_WAIT_IPI 0x00002000 /* Waiting for kdb_ipi() NMI */ | ||
181 | #define KDB_STATE_RECURSE 0x00004000 /* Recursive entry to kdb */ | ||
182 | #define KDB_STATE_IP_ADJUSTED 0x00008000 /* Restart IP has been | ||
183 | * adjusted */ | ||
184 | #define KDB_STATE_GO1 0x00010000 /* go only releases one cpu */ | ||
185 | #define KDB_STATE_KEYBOARD 0x00020000 /* kdb entered via | ||
186 | * keyboard on this cpu */ | ||
187 | #define KDB_STATE_KEXEC 0x00040000 /* kexec issued */ | ||
188 | #define KDB_STATE_DOING_KGDB 0x00080000 /* kgdb enter now issued */ | ||
189 | #define KDB_STATE_DOING_KGDB2 0x00100000 /* kgdb enter now issued */ | ||
190 | #define KDB_STATE_KGDB_TRANS 0x00200000 /* Transition to kgdb */ | ||
191 | #define KDB_STATE_ARCH 0xff000000 /* Reserved for arch | ||
192 | * specific use */ | ||
193 | |||
194 | #define KDB_STATE(flag) (kdb_state & KDB_STATE_##flag) | ||
195 | #define KDB_STATE_SET(flag) ((void)(kdb_state |= KDB_STATE_##flag)) | ||
196 | #define KDB_STATE_CLEAR(flag) ((void)(kdb_state &= ~KDB_STATE_##flag)) | ||
197 | |||
198 | extern int kdb_nextline; /* Current number of lines displayed */ | ||
199 | |||
200 | typedef struct _kdb_bp { | ||
201 | unsigned long bp_addr; /* Address breakpoint is present at */ | ||
202 | unsigned int bp_free:1; /* This entry is available */ | ||
203 | unsigned int bp_enabled:1; /* Breakpoint is active in register */ | ||
204 | unsigned int bp_type:4; /* Uses hardware register */ | ||
205 | unsigned int bp_installed:1; /* Breakpoint is installed */ | ||
206 | unsigned int bp_delay:1; /* Do delayed bp handling */ | ||
207 | unsigned int bp_delayed:1; /* Delayed breakpoint */ | ||
208 | unsigned int bph_length; /* HW break length */ | ||
209 | } kdb_bp_t; | ||
210 | |||
211 | #ifdef CONFIG_KGDB_KDB | ||
212 | extern kdb_bp_t kdb_breakpoints[/* KDB_MAXBPT */]; | ||
213 | |||
214 | /* The KDB shell command table */ | ||
215 | typedef struct _kdbtab { | ||
216 | char *cmd_name; /* Command name */ | ||
217 | kdb_func_t cmd_func; /* Function to execute command */ | ||
218 | char *cmd_usage; /* Usage String for this command */ | ||
219 | char *cmd_help; /* Help message for this command */ | ||
220 | short cmd_flags; /* Parsing flags */ | ||
221 | short cmd_minlen; /* Minimum legal # command | ||
222 | * chars required */ | ||
223 | kdb_repeat_t cmd_repeat; /* Does command auto repeat on enter? */ | ||
224 | } kdbtab_t; | ||
225 | |||
226 | extern int kdb_bt(int, const char **); /* KDB display back trace */ | ||
227 | |||
228 | /* KDB breakpoint management functions */ | ||
229 | extern void kdb_initbptab(void); | ||
230 | extern void kdb_bp_install(struct pt_regs *); | ||
231 | extern void kdb_bp_remove(void); | ||
232 | |||
233 | typedef enum { | ||
234 | KDB_DB_BPT, /* Breakpoint */ | ||
235 | KDB_DB_SS, /* Single-step trap */ | ||
236 | KDB_DB_SSB, /* Single step to branch */ | ||
237 | KDB_DB_SSBPT, /* Single step over breakpoint */ | ||
238 | KDB_DB_NOBPT /* Spurious breakpoint */ | ||
239 | } kdb_dbtrap_t; | ||
240 | |||
241 | extern int kdb_main_loop(kdb_reason_t, kdb_reason_t, | ||
242 | int, kdb_dbtrap_t, struct pt_regs *); | ||
243 | |||
244 | /* Miscellaneous functions and data areas */ | ||
245 | extern int kdb_grepping_flag; | ||
246 | extern char kdb_grep_string[]; | ||
247 | extern int kdb_grep_leading; | ||
248 | extern int kdb_grep_trailing; | ||
249 | extern char *kdb_cmds[]; | ||
250 | extern void kdb_syslog_data(char *syslog_data[]); | ||
251 | extern unsigned long kdb_task_state_string(const char *); | ||
252 | extern char kdb_task_state_char (const struct task_struct *); | ||
253 | extern unsigned long kdb_task_state(const struct task_struct *p, | ||
254 | unsigned long mask); | ||
255 | extern void kdb_ps_suppressed(void); | ||
256 | extern void kdb_ps1(const struct task_struct *p); | ||
257 | extern void kdb_print_nameval(const char *name, unsigned long val); | ||
258 | extern void kdb_send_sig_info(struct task_struct *p, struct siginfo *info); | ||
259 | extern void kdb_meminfo_proc_show(void); | ||
260 | extern const char *kdb_walk_kallsyms(loff_t *pos); | ||
261 | extern char *kdb_getstr(char *, size_t, char *); | ||
262 | |||
263 | /* Defines for kdb_symbol_print */ | ||
264 | #define KDB_SP_SPACEB 0x0001 /* Space before string */ | ||
265 | #define KDB_SP_SPACEA 0x0002 /* Space after string */ | ||
266 | #define KDB_SP_PAREN 0x0004 /* Parenthesis around string */ | ||
267 | #define KDB_SP_VALUE 0x0008 /* Print the value of the address */ | ||
268 | #define KDB_SP_SYMSIZE 0x0010 /* Print the size of the symbol */ | ||
269 | #define KDB_SP_NEWLINE 0x0020 /* Newline after string */ | ||
270 | #define KDB_SP_DEFAULT (KDB_SP_VALUE|KDB_SP_PAREN) | ||
271 | |||
272 | #define KDB_TSK(cpu) kgdb_info[cpu].task | ||
273 | #define KDB_TSKREGS(cpu) kgdb_info[cpu].debuggerinfo | ||
274 | |||
275 | extern struct task_struct *kdb_curr_task(int); | ||
276 | |||
277 | #define kdb_task_has_cpu(p) (task_curr(p)) | ||
278 | |||
279 | /* Simplify coexistence with NPTL */ | ||
280 | #define kdb_do_each_thread(g, p) do_each_thread(g, p) | ||
281 | #define kdb_while_each_thread(g, p) while_each_thread(g, p) | ||
282 | |||
283 | #define GFP_KDB (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) | ||
284 | |||
285 | extern void *debug_kmalloc(size_t size, gfp_t flags); | ||
286 | extern void debug_kfree(void *); | ||
287 | extern void debug_kusage(void); | ||
288 | |||
289 | extern void kdb_set_current_task(struct task_struct *); | ||
290 | extern struct task_struct *kdb_current_task; | ||
291 | #ifdef CONFIG_MODULES | ||
292 | extern struct list_head *kdb_modules; | ||
293 | #endif /* CONFIG_MODULES */ | ||
294 | |||
295 | extern char kdb_prompt_str[]; | ||
296 | |||
297 | #define KDB_WORD_SIZE ((int)sizeof(unsigned long)) | ||
298 | |||
299 | #endif /* CONFIG_KGDB_KDB */ | ||
300 | #endif /* !_KDBPRIVATE_H */ | ||
diff --git a/kernel/debug/kdb/kdb_support.c b/kernel/debug/kdb/kdb_support.c new file mode 100644 index 000000000000..45344d5c53dd --- /dev/null +++ b/kernel/debug/kdb/kdb_support.c | |||
@@ -0,0 +1,927 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Support Functions | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net> | ||
11 | */ | ||
12 | |||
13 | #include <stdarg.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/mm.h> | ||
17 | #include <linux/kallsyms.h> | ||
18 | #include <linux/stddef.h> | ||
19 | #include <linux/vmalloc.h> | ||
20 | #include <linux/ptrace.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/highmem.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/kdb.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include "kdb_private.h" | ||
29 | |||
30 | /* | ||
31 | * kdbgetsymval - Return the address of the given symbol. | ||
32 | * | ||
33 | * Parameters: | ||
34 | * symname Character string containing symbol name | ||
35 | * symtab Structure to receive results | ||
36 | * Returns: | ||
37 | * 0 Symbol not found, symtab zero filled | ||
38 | * 1 Symbol mapped to module/symbol/section, data in symtab | ||
39 | */ | ||
40 | int kdbgetsymval(const char *symname, kdb_symtab_t *symtab) | ||
41 | { | ||
42 | if (KDB_DEBUG(AR)) | ||
43 | kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname, | ||
44 | symtab); | ||
45 | memset(symtab, 0, sizeof(*symtab)); | ||
46 | symtab->sym_start = kallsyms_lookup_name(symname); | ||
47 | if (symtab->sym_start) { | ||
48 | if (KDB_DEBUG(AR)) | ||
49 | kdb_printf("kdbgetsymval: returns 1, " | ||
50 | "symtab->sym_start=0x%lx\n", | ||
51 | symtab->sym_start); | ||
52 | return 1; | ||
53 | } | ||
54 | if (KDB_DEBUG(AR)) | ||
55 | kdb_printf("kdbgetsymval: returns 0\n"); | ||
56 | return 0; | ||
57 | } | ||
58 | EXPORT_SYMBOL(kdbgetsymval); | ||
59 | |||
60 | static char *kdb_name_table[100]; /* arbitrary size */ | ||
61 | |||
62 | /* | ||
63 | * kdbnearsym - Return the name of the symbol with the nearest address | ||
64 | * less than 'addr'. | ||
65 | * | ||
66 | * Parameters: | ||
67 | * addr Address to check for symbol near | ||
68 | * symtab Structure to receive results | ||
69 | * Returns: | ||
70 | * 0 No sections contain this address, symtab zero filled | ||
71 | * 1 Address mapped to module/symbol/section, data in symtab | ||
72 | * Remarks: | ||
73 | * 2.6 kallsyms has a "feature" where it unpacks the name into a | ||
74 | * string. If that string is reused before the caller expects it | ||
75 | * then the caller sees its string change without warning. To | ||
76 | * avoid cluttering up the main kdb code with lots of kdb_strdup, | ||
77 | * tests and kfree calls, kdbnearsym maintains an LRU list of the | ||
78 | * last few unique strings. The list is sized large enough to | ||
79 | * hold active strings, no kdb caller of kdbnearsym makes more | ||
80 | * than ~20 later calls before using a saved value. | ||
81 | */ | ||
82 | int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab) | ||
83 | { | ||
84 | int ret = 0; | ||
85 | unsigned long symbolsize; | ||
86 | unsigned long offset; | ||
87 | #define knt1_size 128 /* must be >= kallsyms table size */ | ||
88 | char *knt1 = NULL; | ||
89 | |||
90 | if (KDB_DEBUG(AR)) | ||
91 | kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr, symtab); | ||
92 | memset(symtab, 0, sizeof(*symtab)); | ||
93 | |||
94 | if (addr < 4096) | ||
95 | goto out; | ||
96 | knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC); | ||
97 | if (!knt1) { | ||
98 | kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n", | ||
99 | addr); | ||
100 | goto out; | ||
101 | } | ||
102 | symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset, | ||
103 | (char **)(&symtab->mod_name), knt1); | ||
104 | if (offset > 8*1024*1024) { | ||
105 | symtab->sym_name = NULL; | ||
106 | addr = offset = symbolsize = 0; | ||
107 | } | ||
108 | symtab->sym_start = addr - offset; | ||
109 | symtab->sym_end = symtab->sym_start + symbolsize; | ||
110 | ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0'; | ||
111 | |||
112 | if (ret) { | ||
113 | int i; | ||
114 | /* Another 2.6 kallsyms "feature". Sometimes the sym_name is | ||
115 | * set but the buffer passed into kallsyms_lookup is not used, | ||
116 | * so it contains garbage. The caller has to work out which | ||
117 | * buffer needs to be saved. | ||
118 | * | ||
119 | * What was Rusty smoking when he wrote that code? | ||
120 | */ | ||
121 | if (symtab->sym_name != knt1) { | ||
122 | strncpy(knt1, symtab->sym_name, knt1_size); | ||
123 | knt1[knt1_size-1] = '\0'; | ||
124 | } | ||
125 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { | ||
126 | if (kdb_name_table[i] && | ||
127 | strcmp(kdb_name_table[i], knt1) == 0) | ||
128 | break; | ||
129 | } | ||
130 | if (i >= ARRAY_SIZE(kdb_name_table)) { | ||
131 | debug_kfree(kdb_name_table[0]); | ||
132 | memcpy(kdb_name_table, kdb_name_table+1, | ||
133 | sizeof(kdb_name_table[0]) * | ||
134 | (ARRAY_SIZE(kdb_name_table)-1)); | ||
135 | } else { | ||
136 | debug_kfree(knt1); | ||
137 | knt1 = kdb_name_table[i]; | ||
138 | memcpy(kdb_name_table+i, kdb_name_table+i+1, | ||
139 | sizeof(kdb_name_table[0]) * | ||
140 | (ARRAY_SIZE(kdb_name_table)-i-1)); | ||
141 | } | ||
142 | i = ARRAY_SIZE(kdb_name_table) - 1; | ||
143 | kdb_name_table[i] = knt1; | ||
144 | symtab->sym_name = kdb_name_table[i]; | ||
145 | knt1 = NULL; | ||
146 | } | ||
147 | |||
148 | if (symtab->mod_name == NULL) | ||
149 | symtab->mod_name = "kernel"; | ||
150 | if (KDB_DEBUG(AR)) | ||
151 | kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, " | ||
152 | "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret, | ||
153 | symtab->sym_start, symtab->mod_name, symtab->sym_name, | ||
154 | symtab->sym_name); | ||
155 | |||
156 | out: | ||
157 | debug_kfree(knt1); | ||
158 | return ret; | ||
159 | } | ||
160 | |||
161 | void kdbnearsym_cleanup(void) | ||
162 | { | ||
163 | int i; | ||
164 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { | ||
165 | if (kdb_name_table[i]) { | ||
166 | debug_kfree(kdb_name_table[i]); | ||
167 | kdb_name_table[i] = NULL; | ||
168 | } | ||
169 | } | ||
170 | } | ||
171 | |||
172 | static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1]; | ||
173 | |||
174 | /* | ||
175 | * kallsyms_symbol_complete | ||
176 | * | ||
177 | * Parameters: | ||
178 | * prefix_name prefix of a symbol name to lookup | ||
179 | * max_len maximum length that can be returned | ||
180 | * Returns: | ||
181 | * Number of symbols which match the given prefix. | ||
182 | * Notes: | ||
183 | * prefix_name is changed to contain the longest unique prefix that | ||
184 | * starts with this prefix (tab completion). | ||
185 | */ | ||
186 | int kallsyms_symbol_complete(char *prefix_name, int max_len) | ||
187 | { | ||
188 | loff_t pos = 0; | ||
189 | int prefix_len = strlen(prefix_name), prev_len = 0; | ||
190 | int i, number = 0; | ||
191 | const char *name; | ||
192 | |||
193 | while ((name = kdb_walk_kallsyms(&pos))) { | ||
194 | if (strncmp(name, prefix_name, prefix_len) == 0) { | ||
195 | strcpy(ks_namebuf, name); | ||
196 | /* Work out the longest name that matches the prefix */ | ||
197 | if (++number == 1) { | ||
198 | prev_len = min_t(int, max_len-1, | ||
199 | strlen(ks_namebuf)); | ||
200 | memcpy(ks_namebuf_prev, ks_namebuf, prev_len); | ||
201 | ks_namebuf_prev[prev_len] = '\0'; | ||
202 | continue; | ||
203 | } | ||
204 | for (i = 0; i < prev_len; i++) { | ||
205 | if (ks_namebuf[i] != ks_namebuf_prev[i]) { | ||
206 | prev_len = i; | ||
207 | ks_namebuf_prev[i] = '\0'; | ||
208 | break; | ||
209 | } | ||
210 | } | ||
211 | } | ||
212 | } | ||
213 | if (prev_len > prefix_len) | ||
214 | memcpy(prefix_name, ks_namebuf_prev, prev_len+1); | ||
215 | return number; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * kallsyms_symbol_next | ||
220 | * | ||
221 | * Parameters: | ||
222 | * prefix_name prefix of a symbol name to lookup | ||
223 | * flag 0 means search from the head, 1 means continue search. | ||
224 | * Returns: | ||
225 | * 1 if a symbol matches the given prefix. | ||
226 | * 0 if no string found | ||
227 | */ | ||
228 | int kallsyms_symbol_next(char *prefix_name, int flag) | ||
229 | { | ||
230 | int prefix_len = strlen(prefix_name); | ||
231 | static loff_t pos; | ||
232 | const char *name; | ||
233 | |||
234 | if (!flag) | ||
235 | pos = 0; | ||
236 | |||
237 | while ((name = kdb_walk_kallsyms(&pos))) { | ||
238 | if (strncmp(name, prefix_name, prefix_len) == 0) { | ||
239 | strncpy(prefix_name, name, strlen(name)+1); | ||
240 | return 1; | ||
241 | } | ||
242 | } | ||
243 | return 0; | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * kdb_symbol_print - Standard method for printing a symbol name and offset. | ||
248 | * Inputs: | ||
249 | * addr Address to be printed. | ||
250 | * symtab Address of symbol data, if NULL this routine does its | ||
251 | * own lookup. | ||
252 | * punc Punctuation for string, bit field. | ||
253 | * Remarks: | ||
254 | * The string and its punctuation is only printed if the address | ||
255 | * is inside the kernel, except that the value is always printed | ||
256 | * when requested. | ||
257 | */ | ||
258 | void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p, | ||
259 | unsigned int punc) | ||
260 | { | ||
261 | kdb_symtab_t symtab, *symtab_p2; | ||
262 | if (symtab_p) { | ||
263 | symtab_p2 = (kdb_symtab_t *)symtab_p; | ||
264 | } else { | ||
265 | symtab_p2 = &symtab; | ||
266 | kdbnearsym(addr, symtab_p2); | ||
267 | } | ||
268 | if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE))) | ||
269 | return; | ||
270 | if (punc & KDB_SP_SPACEB) | ||
271 | kdb_printf(" "); | ||
272 | if (punc & KDB_SP_VALUE) | ||
273 | kdb_printf(kdb_machreg_fmt0, addr); | ||
274 | if (symtab_p2->sym_name) { | ||
275 | if (punc & KDB_SP_VALUE) | ||
276 | kdb_printf(" "); | ||
277 | if (punc & KDB_SP_PAREN) | ||
278 | kdb_printf("("); | ||
279 | if (strcmp(symtab_p2->mod_name, "kernel")) | ||
280 | kdb_printf("[%s]", symtab_p2->mod_name); | ||
281 | kdb_printf("%s", symtab_p2->sym_name); | ||
282 | if (addr != symtab_p2->sym_start) | ||
283 | kdb_printf("+0x%lx", addr - symtab_p2->sym_start); | ||
284 | if (punc & KDB_SP_SYMSIZE) | ||
285 | kdb_printf("/0x%lx", | ||
286 | symtab_p2->sym_end - symtab_p2->sym_start); | ||
287 | if (punc & KDB_SP_PAREN) | ||
288 | kdb_printf(")"); | ||
289 | } | ||
290 | if (punc & KDB_SP_SPACEA) | ||
291 | kdb_printf(" "); | ||
292 | if (punc & KDB_SP_NEWLINE) | ||
293 | kdb_printf("\n"); | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * kdb_strdup - kdb equivalent of strdup, for disasm code. | ||
298 | * Inputs: | ||
299 | * str The string to duplicate. | ||
300 | * type Flags to kmalloc for the new string. | ||
301 | * Returns: | ||
302 | * Address of the new string, NULL if storage could not be allocated. | ||
303 | * Remarks: | ||
304 | * This is not in lib/string.c because it uses kmalloc which is not | ||
305 | * available when string.o is used in boot loaders. | ||
306 | */ | ||
307 | char *kdb_strdup(const char *str, gfp_t type) | ||
308 | { | ||
309 | int n = strlen(str)+1; | ||
310 | char *s = kmalloc(n, type); | ||
311 | if (!s) | ||
312 | return NULL; | ||
313 | return strcpy(s, str); | ||
314 | } | ||
315 | |||
316 | /* | ||
317 | * kdb_getarea_size - Read an area of data. The kdb equivalent of | ||
318 | * copy_from_user, with kdb messages for invalid addresses. | ||
319 | * Inputs: | ||
320 | * res Pointer to the area to receive the result. | ||
321 | * addr Address of the area to copy. | ||
322 | * size Size of the area. | ||
323 | * Returns: | ||
324 | * 0 for success, < 0 for error. | ||
325 | */ | ||
326 | int kdb_getarea_size(void *res, unsigned long addr, size_t size) | ||
327 | { | ||
328 | int ret = probe_kernel_read((char *)res, (char *)addr, size); | ||
329 | if (ret) { | ||
330 | if (!KDB_STATE(SUPPRESS)) { | ||
331 | kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr); | ||
332 | KDB_STATE_SET(SUPPRESS); | ||
333 | } | ||
334 | ret = KDB_BADADDR; | ||
335 | } else { | ||
336 | KDB_STATE_CLEAR(SUPPRESS); | ||
337 | } | ||
338 | return ret; | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * kdb_putarea_size - Write an area of data. The kdb equivalent of | ||
343 | * copy_to_user, with kdb messages for invalid addresses. | ||
344 | * Inputs: | ||
345 | * addr Address of the area to write to. | ||
346 | * res Pointer to the area holding the data. | ||
347 | * size Size of the area. | ||
348 | * Returns: | ||
349 | * 0 for success, < 0 for error. | ||
350 | */ | ||
351 | int kdb_putarea_size(unsigned long addr, void *res, size_t size) | ||
352 | { | ||
353 | int ret = probe_kernel_read((char *)addr, (char *)res, size); | ||
354 | if (ret) { | ||
355 | if (!KDB_STATE(SUPPRESS)) { | ||
356 | kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr); | ||
357 | KDB_STATE_SET(SUPPRESS); | ||
358 | } | ||
359 | ret = KDB_BADADDR; | ||
360 | } else { | ||
361 | KDB_STATE_CLEAR(SUPPRESS); | ||
362 | } | ||
363 | return ret; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * kdb_getphys - Read data from a physical address. Validate the | ||
368 | * address is in range, use kmap_atomic() to get data | ||
369 | * similar to kdb_getarea() - but for phys addresses | ||
370 | * Inputs: | ||
371 | * res Pointer to the word to receive the result | ||
372 | * addr Physical address of the area to copy | ||
373 | * size Size of the area | ||
374 | * Returns: | ||
375 | * 0 for success, < 0 for error. | ||
376 | */ | ||
377 | static int kdb_getphys(void *res, unsigned long addr, size_t size) | ||
378 | { | ||
379 | unsigned long pfn; | ||
380 | void *vaddr; | ||
381 | struct page *page; | ||
382 | |||
383 | pfn = (addr >> PAGE_SHIFT); | ||
384 | if (!pfn_valid(pfn)) | ||
385 | return 1; | ||
386 | page = pfn_to_page(pfn); | ||
387 | vaddr = kmap_atomic(page, KM_KDB); | ||
388 | memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size); | ||
389 | kunmap_atomic(vaddr, KM_KDB); | ||
390 | |||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * kdb_getphysword | ||
396 | * Inputs: | ||
397 | * word Pointer to the word to receive the result. | ||
398 | * addr Address of the area to copy. | ||
399 | * size Size of the area. | ||
400 | * Returns: | ||
401 | * 0 for success, < 0 for error. | ||
402 | */ | ||
403 | int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size) | ||
404 | { | ||
405 | int diag; | ||
406 | __u8 w1; | ||
407 | __u16 w2; | ||
408 | __u32 w4; | ||
409 | __u64 w8; | ||
410 | *word = 0; /* Default value if addr or size is invalid */ | ||
411 | |||
412 | switch (size) { | ||
413 | case 1: | ||
414 | diag = kdb_getphys(&w1, addr, sizeof(w1)); | ||
415 | if (!diag) | ||
416 | *word = w1; | ||
417 | break; | ||
418 | case 2: | ||
419 | diag = kdb_getphys(&w2, addr, sizeof(w2)); | ||
420 | if (!diag) | ||
421 | *word = w2; | ||
422 | break; | ||
423 | case 4: | ||
424 | diag = kdb_getphys(&w4, addr, sizeof(w4)); | ||
425 | if (!diag) | ||
426 | *word = w4; | ||
427 | break; | ||
428 | case 8: | ||
429 | if (size <= sizeof(*word)) { | ||
430 | diag = kdb_getphys(&w8, addr, sizeof(w8)); | ||
431 | if (!diag) | ||
432 | *word = w8; | ||
433 | break; | ||
434 | } | ||
435 | /* drop through */ | ||
436 | default: | ||
437 | diag = KDB_BADWIDTH; | ||
438 | kdb_printf("kdb_getphysword: bad width %ld\n", (long) size); | ||
439 | } | ||
440 | return diag; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats | ||
445 | * data as numbers. | ||
446 | * Inputs: | ||
447 | * word Pointer to the word to receive the result. | ||
448 | * addr Address of the area to copy. | ||
449 | * size Size of the area. | ||
450 | * Returns: | ||
451 | * 0 for success, < 0 for error. | ||
452 | */ | ||
453 | int kdb_getword(unsigned long *word, unsigned long addr, size_t size) | ||
454 | { | ||
455 | int diag; | ||
456 | __u8 w1; | ||
457 | __u16 w2; | ||
458 | __u32 w4; | ||
459 | __u64 w8; | ||
460 | *word = 0; /* Default value if addr or size is invalid */ | ||
461 | switch (size) { | ||
462 | case 1: | ||
463 | diag = kdb_getarea(w1, addr); | ||
464 | if (!diag) | ||
465 | *word = w1; | ||
466 | break; | ||
467 | case 2: | ||
468 | diag = kdb_getarea(w2, addr); | ||
469 | if (!diag) | ||
470 | *word = w2; | ||
471 | break; | ||
472 | case 4: | ||
473 | diag = kdb_getarea(w4, addr); | ||
474 | if (!diag) | ||
475 | *word = w4; | ||
476 | break; | ||
477 | case 8: | ||
478 | if (size <= sizeof(*word)) { | ||
479 | diag = kdb_getarea(w8, addr); | ||
480 | if (!diag) | ||
481 | *word = w8; | ||
482 | break; | ||
483 | } | ||
484 | /* drop through */ | ||
485 | default: | ||
486 | diag = KDB_BADWIDTH; | ||
487 | kdb_printf("kdb_getword: bad width %ld\n", (long) size); | ||
488 | } | ||
489 | return diag; | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * kdb_putword - Write a binary value. Unlike kdb_putarea, this | ||
494 | * treats data as numbers. | ||
495 | * Inputs: | ||
496 | * addr Address of the area to write to.. | ||
497 | * word The value to set. | ||
498 | * size Size of the area. | ||
499 | * Returns: | ||
500 | * 0 for success, < 0 for error. | ||
501 | */ | ||
502 | int kdb_putword(unsigned long addr, unsigned long word, size_t size) | ||
503 | { | ||
504 | int diag; | ||
505 | __u8 w1; | ||
506 | __u16 w2; | ||
507 | __u32 w4; | ||
508 | __u64 w8; | ||
509 | switch (size) { | ||
510 | case 1: | ||
511 | w1 = word; | ||
512 | diag = kdb_putarea(addr, w1); | ||
513 | break; | ||
514 | case 2: | ||
515 | w2 = word; | ||
516 | diag = kdb_putarea(addr, w2); | ||
517 | break; | ||
518 | case 4: | ||
519 | w4 = word; | ||
520 | diag = kdb_putarea(addr, w4); | ||
521 | break; | ||
522 | case 8: | ||
523 | if (size <= sizeof(word)) { | ||
524 | w8 = word; | ||
525 | diag = kdb_putarea(addr, w8); | ||
526 | break; | ||
527 | } | ||
528 | /* drop through */ | ||
529 | default: | ||
530 | diag = KDB_BADWIDTH; | ||
531 | kdb_printf("kdb_putword: bad width %ld\n", (long) size); | ||
532 | } | ||
533 | return diag; | ||
534 | } | ||
535 | |||
536 | /* | ||
537 | * kdb_task_state_string - Convert a string containing any of the | ||
538 | * letters DRSTCZEUIMA to a mask for the process state field and | ||
539 | * return the value. If no argument is supplied, return the mask | ||
540 | * that corresponds to environment variable PS, DRSTCZEU by | ||
541 | * default. | ||
542 | * Inputs: | ||
543 | * s String to convert | ||
544 | * Returns: | ||
545 | * Mask for process state. | ||
546 | * Notes: | ||
547 | * The mask folds data from several sources into a single long value, so | ||
548 | * be carefull not to overlap the bits. TASK_* bits are in the LSB, | ||
549 | * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there | ||
550 | * is no overlap between TASK_* and EXIT_* but that may not always be | ||
551 | * true, so EXIT_* bits are shifted left 16 bits before being stored in | ||
552 | * the mask. | ||
553 | */ | ||
554 | |||
555 | /* unrunnable is < 0 */ | ||
556 | #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1)) | ||
557 | #define RUNNING (1UL << (8*sizeof(unsigned long) - 2)) | ||
558 | #define IDLE (1UL << (8*sizeof(unsigned long) - 3)) | ||
559 | #define DAEMON (1UL << (8*sizeof(unsigned long) - 4)) | ||
560 | |||
561 | unsigned long kdb_task_state_string(const char *s) | ||
562 | { | ||
563 | long res = 0; | ||
564 | if (!s) { | ||
565 | s = kdbgetenv("PS"); | ||
566 | if (!s) | ||
567 | s = "DRSTCZEU"; /* default value for ps */ | ||
568 | } | ||
569 | while (*s) { | ||
570 | switch (*s) { | ||
571 | case 'D': | ||
572 | res |= TASK_UNINTERRUPTIBLE; | ||
573 | break; | ||
574 | case 'R': | ||
575 | res |= RUNNING; | ||
576 | break; | ||
577 | case 'S': | ||
578 | res |= TASK_INTERRUPTIBLE; | ||
579 | break; | ||
580 | case 'T': | ||
581 | res |= TASK_STOPPED; | ||
582 | break; | ||
583 | case 'C': | ||
584 | res |= TASK_TRACED; | ||
585 | break; | ||
586 | case 'Z': | ||
587 | res |= EXIT_ZOMBIE << 16; | ||
588 | break; | ||
589 | case 'E': | ||
590 | res |= EXIT_DEAD << 16; | ||
591 | break; | ||
592 | case 'U': | ||
593 | res |= UNRUNNABLE; | ||
594 | break; | ||
595 | case 'I': | ||
596 | res |= IDLE; | ||
597 | break; | ||
598 | case 'M': | ||
599 | res |= DAEMON; | ||
600 | break; | ||
601 | case 'A': | ||
602 | res = ~0UL; | ||
603 | break; | ||
604 | default: | ||
605 | kdb_printf("%s: unknown flag '%c' ignored\n", | ||
606 | __func__, *s); | ||
607 | break; | ||
608 | } | ||
609 | ++s; | ||
610 | } | ||
611 | return res; | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * kdb_task_state_char - Return the character that represents the task state. | ||
616 | * Inputs: | ||
617 | * p struct task for the process | ||
618 | * Returns: | ||
619 | * One character to represent the task state. | ||
620 | */ | ||
621 | char kdb_task_state_char (const struct task_struct *p) | ||
622 | { | ||
623 | int cpu; | ||
624 | char state; | ||
625 | unsigned long tmp; | ||
626 | |||
627 | if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) | ||
628 | return 'E'; | ||
629 | |||
630 | cpu = kdb_process_cpu(p); | ||
631 | state = (p->state == 0) ? 'R' : | ||
632 | (p->state < 0) ? 'U' : | ||
633 | (p->state & TASK_UNINTERRUPTIBLE) ? 'D' : | ||
634 | (p->state & TASK_STOPPED) ? 'T' : | ||
635 | (p->state & TASK_TRACED) ? 'C' : | ||
636 | (p->exit_state & EXIT_ZOMBIE) ? 'Z' : | ||
637 | (p->exit_state & EXIT_DEAD) ? 'E' : | ||
638 | (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?'; | ||
639 | if (p->pid == 0) { | ||
640 | /* Idle task. Is it really idle, apart from the kdb | ||
641 | * interrupt? */ | ||
642 | if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) { | ||
643 | if (cpu != kdb_initial_cpu) | ||
644 | state = 'I'; /* idle task */ | ||
645 | } | ||
646 | } else if (!p->mm && state == 'S') { | ||
647 | state = 'M'; /* sleeping system daemon */ | ||
648 | } | ||
649 | return state; | ||
650 | } | ||
651 | |||
652 | /* | ||
653 | * kdb_task_state - Return true if a process has the desired state | ||
654 | * given by the mask. | ||
655 | * Inputs: | ||
656 | * p struct task for the process | ||
657 | * mask mask from kdb_task_state_string to select processes | ||
658 | * Returns: | ||
659 | * True if the process matches at least one criteria defined by the mask. | ||
660 | */ | ||
661 | unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask) | ||
662 | { | ||
663 | char state[] = { kdb_task_state_char(p), '\0' }; | ||
664 | return (mask & kdb_task_state_string(state)) != 0; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * kdb_print_nameval - Print a name and its value, converting the | ||
669 | * value to a symbol lookup if possible. | ||
670 | * Inputs: | ||
671 | * name field name to print | ||
672 | * val value of field | ||
673 | */ | ||
674 | void kdb_print_nameval(const char *name, unsigned long val) | ||
675 | { | ||
676 | kdb_symtab_t symtab; | ||
677 | kdb_printf(" %-11.11s ", name); | ||
678 | if (kdbnearsym(val, &symtab)) | ||
679 | kdb_symbol_print(val, &symtab, | ||
680 | KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE); | ||
681 | else | ||
682 | kdb_printf("0x%lx\n", val); | ||
683 | } | ||
684 | |||
685 | /* Last ditch allocator for debugging, so we can still debug even when | ||
686 | * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned | ||
687 | * for space usage, not for speed. One smallish memory pool, the free | ||
688 | * chain is always in ascending address order to allow coalescing, | ||
689 | * allocations are done in brute force best fit. | ||
690 | */ | ||
691 | |||
692 | struct debug_alloc_header { | ||
693 | u32 next; /* offset of next header from start of pool */ | ||
694 | u32 size; | ||
695 | void *caller; | ||
696 | }; | ||
697 | |||
698 | /* The memory returned by this allocator must be aligned, which means | ||
699 | * so must the header size. Do not assume that sizeof(struct | ||
700 | * debug_alloc_header) is a multiple of the alignment, explicitly | ||
701 | * calculate the overhead of this header, including the alignment. | ||
702 | * The rest of this code must not use sizeof() on any header or | ||
703 | * pointer to a header. | ||
704 | */ | ||
705 | #define dah_align 8 | ||
706 | #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align) | ||
707 | |||
708 | static u64 debug_alloc_pool_aligned[256*1024/dah_align]; /* 256K pool */ | ||
709 | static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned; | ||
710 | static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max; | ||
711 | |||
712 | /* Locking is awkward. The debug code is called from all contexts, | ||
713 | * including non maskable interrupts. A normal spinlock is not safe | ||
714 | * in NMI context. Try to get the debug allocator lock, if it cannot | ||
715 | * be obtained after a second then give up. If the lock could not be | ||
716 | * previously obtained on this cpu then only try once. | ||
717 | * | ||
718 | * sparse has no annotation for "this function _sometimes_ acquires a | ||
719 | * lock", so fudge the acquire/release notation. | ||
720 | */ | ||
721 | static DEFINE_SPINLOCK(dap_lock); | ||
722 | static int get_dap_lock(void) | ||
723 | __acquires(dap_lock) | ||
724 | { | ||
725 | static int dap_locked = -1; | ||
726 | int count; | ||
727 | if (dap_locked == smp_processor_id()) | ||
728 | count = 1; | ||
729 | else | ||
730 | count = 1000; | ||
731 | while (1) { | ||
732 | if (spin_trylock(&dap_lock)) { | ||
733 | dap_locked = -1; | ||
734 | return 1; | ||
735 | } | ||
736 | if (!count--) | ||
737 | break; | ||
738 | udelay(1000); | ||
739 | } | ||
740 | dap_locked = smp_processor_id(); | ||
741 | __acquire(dap_lock); | ||
742 | return 0; | ||
743 | } | ||
744 | |||
745 | void *debug_kmalloc(size_t size, gfp_t flags) | ||
746 | { | ||
747 | unsigned int rem, h_offset; | ||
748 | struct debug_alloc_header *best, *bestprev, *prev, *h; | ||
749 | void *p = NULL; | ||
750 | if (!get_dap_lock()) { | ||
751 | __release(dap_lock); /* we never actually got it */ | ||
752 | return NULL; | ||
753 | } | ||
754 | h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); | ||
755 | if (dah_first_call) { | ||
756 | h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead; | ||
757 | dah_first_call = 0; | ||
758 | } | ||
759 | size = ALIGN(size, dah_align); | ||
760 | prev = best = bestprev = NULL; | ||
761 | while (1) { | ||
762 | if (h->size >= size && (!best || h->size < best->size)) { | ||
763 | best = h; | ||
764 | bestprev = prev; | ||
765 | if (h->size == size) | ||
766 | break; | ||
767 | } | ||
768 | if (!h->next) | ||
769 | break; | ||
770 | prev = h; | ||
771 | h = (struct debug_alloc_header *)(debug_alloc_pool + h->next); | ||
772 | } | ||
773 | if (!best) | ||
774 | goto out; | ||
775 | rem = best->size - size; | ||
776 | /* The pool must always contain at least one header */ | ||
777 | if (best->next == 0 && bestprev == NULL && rem < dah_overhead) | ||
778 | goto out; | ||
779 | if (rem >= dah_overhead) { | ||
780 | best->size = size; | ||
781 | h_offset = ((char *)best - debug_alloc_pool) + | ||
782 | dah_overhead + best->size; | ||
783 | h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset); | ||
784 | h->size = rem - dah_overhead; | ||
785 | h->next = best->next; | ||
786 | } else | ||
787 | h_offset = best->next; | ||
788 | best->caller = __builtin_return_address(0); | ||
789 | dah_used += best->size; | ||
790 | dah_used_max = max(dah_used, dah_used_max); | ||
791 | if (bestprev) | ||
792 | bestprev->next = h_offset; | ||
793 | else | ||
794 | dah_first = h_offset; | ||
795 | p = (char *)best + dah_overhead; | ||
796 | memset(p, POISON_INUSE, best->size - 1); | ||
797 | *((char *)p + best->size - 1) = POISON_END; | ||
798 | out: | ||
799 | spin_unlock(&dap_lock); | ||
800 | return p; | ||
801 | } | ||
802 | |||
803 | void debug_kfree(void *p) | ||
804 | { | ||
805 | struct debug_alloc_header *h; | ||
806 | unsigned int h_offset; | ||
807 | if (!p) | ||
808 | return; | ||
809 | if ((char *)p < debug_alloc_pool || | ||
810 | (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) { | ||
811 | kfree(p); | ||
812 | return; | ||
813 | } | ||
814 | if (!get_dap_lock()) { | ||
815 | __release(dap_lock); /* we never actually got it */ | ||
816 | return; /* memory leak, cannot be helped */ | ||
817 | } | ||
818 | h = (struct debug_alloc_header *)((char *)p - dah_overhead); | ||
819 | memset(p, POISON_FREE, h->size - 1); | ||
820 | *((char *)p + h->size - 1) = POISON_END; | ||
821 | h->caller = NULL; | ||
822 | dah_used -= h->size; | ||
823 | h_offset = (char *)h - debug_alloc_pool; | ||
824 | if (h_offset < dah_first) { | ||
825 | h->next = dah_first; | ||
826 | dah_first = h_offset; | ||
827 | } else { | ||
828 | struct debug_alloc_header *prev; | ||
829 | unsigned int prev_offset; | ||
830 | prev = (struct debug_alloc_header *)(debug_alloc_pool + | ||
831 | dah_first); | ||
832 | while (1) { | ||
833 | if (!prev->next || prev->next > h_offset) | ||
834 | break; | ||
835 | prev = (struct debug_alloc_header *) | ||
836 | (debug_alloc_pool + prev->next); | ||
837 | } | ||
838 | prev_offset = (char *)prev - debug_alloc_pool; | ||
839 | if (prev_offset + dah_overhead + prev->size == h_offset) { | ||
840 | prev->size += dah_overhead + h->size; | ||
841 | memset(h, POISON_FREE, dah_overhead - 1); | ||
842 | *((char *)h + dah_overhead - 1) = POISON_END; | ||
843 | h = prev; | ||
844 | h_offset = prev_offset; | ||
845 | } else { | ||
846 | h->next = prev->next; | ||
847 | prev->next = h_offset; | ||
848 | } | ||
849 | } | ||
850 | if (h_offset + dah_overhead + h->size == h->next) { | ||
851 | struct debug_alloc_header *next; | ||
852 | next = (struct debug_alloc_header *) | ||
853 | (debug_alloc_pool + h->next); | ||
854 | h->size += dah_overhead + next->size; | ||
855 | h->next = next->next; | ||
856 | memset(next, POISON_FREE, dah_overhead - 1); | ||
857 | *((char *)next + dah_overhead - 1) = POISON_END; | ||
858 | } | ||
859 | spin_unlock(&dap_lock); | ||
860 | } | ||
861 | |||
862 | void debug_kusage(void) | ||
863 | { | ||
864 | struct debug_alloc_header *h_free, *h_used; | ||
865 | #ifdef CONFIG_IA64 | ||
866 | /* FIXME: using dah for ia64 unwind always results in a memory leak. | ||
867 | * Fix that memory leak first, then set debug_kusage_one_time = 1 for | ||
868 | * all architectures. | ||
869 | */ | ||
870 | static int debug_kusage_one_time; | ||
871 | #else | ||
872 | static int debug_kusage_one_time = 1; | ||
873 | #endif | ||
874 | if (!get_dap_lock()) { | ||
875 | __release(dap_lock); /* we never actually got it */ | ||
876 | return; | ||
877 | } | ||
878 | h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); | ||
879 | if (dah_first == 0 && | ||
880 | (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead || | ||
881 | dah_first_call)) | ||
882 | goto out; | ||
883 | if (!debug_kusage_one_time) | ||
884 | goto out; | ||
885 | debug_kusage_one_time = 0; | ||
886 | kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n", | ||
887 | __func__, dah_first); | ||
888 | if (dah_first) { | ||
889 | h_used = (struct debug_alloc_header *)debug_alloc_pool; | ||
890 | kdb_printf("%s: h_used %p size %d\n", __func__, h_used, | ||
891 | h_used->size); | ||
892 | } | ||
893 | do { | ||
894 | h_used = (struct debug_alloc_header *) | ||
895 | ((char *)h_free + dah_overhead + h_free->size); | ||
896 | kdb_printf("%s: h_used %p size %d caller %p\n", | ||
897 | __func__, h_used, h_used->size, h_used->caller); | ||
898 | h_free = (struct debug_alloc_header *) | ||
899 | (debug_alloc_pool + h_free->next); | ||
900 | } while (h_free->next); | ||
901 | h_used = (struct debug_alloc_header *) | ||
902 | ((char *)h_free + dah_overhead + h_free->size); | ||
903 | if ((char *)h_used - debug_alloc_pool != | ||
904 | sizeof(debug_alloc_pool_aligned)) | ||
905 | kdb_printf("%s: h_used %p size %d caller %p\n", | ||
906 | __func__, h_used, h_used->size, h_used->caller); | ||
907 | out: | ||
908 | spin_unlock(&dap_lock); | ||
909 | } | ||
910 | |||
911 | /* Maintain a small stack of kdb_flags to allow recursion without disturbing | ||
912 | * the global kdb state. | ||
913 | */ | ||
914 | |||
915 | static int kdb_flags_stack[4], kdb_flags_index; | ||
916 | |||
917 | void kdb_save_flags(void) | ||
918 | { | ||
919 | BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack)); | ||
920 | kdb_flags_stack[kdb_flags_index++] = kdb_flags; | ||
921 | } | ||
922 | |||
923 | void kdb_restore_flags(void) | ||
924 | { | ||
925 | BUG_ON(kdb_flags_index <= 0); | ||
926 | kdb_flags = kdb_flags_stack[--kdb_flags_index]; | ||
927 | } | ||
diff --git a/kernel/exit.c b/kernel/exit.c index 7f2683a10ac4..ceffc67b564a 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -55,15 +55,14 @@ | |||
55 | #include <asm/unistd.h> | 55 | #include <asm/unistd.h> |
56 | #include <asm/pgtable.h> | 56 | #include <asm/pgtable.h> |
57 | #include <asm/mmu_context.h> | 57 | #include <asm/mmu_context.h> |
58 | #include "cred-internals.h" | ||
59 | 58 | ||
60 | static void exit_mm(struct task_struct * tsk); | 59 | static void exit_mm(struct task_struct * tsk); |
61 | 60 | ||
62 | static void __unhash_process(struct task_struct *p) | 61 | static void __unhash_process(struct task_struct *p, bool group_dead) |
63 | { | 62 | { |
64 | nr_threads--; | 63 | nr_threads--; |
65 | detach_pid(p, PIDTYPE_PID); | 64 | detach_pid(p, PIDTYPE_PID); |
66 | if (thread_group_leader(p)) { | 65 | if (group_dead) { |
67 | detach_pid(p, PIDTYPE_PGID); | 66 | detach_pid(p, PIDTYPE_PGID); |
68 | detach_pid(p, PIDTYPE_SID); | 67 | detach_pid(p, PIDTYPE_SID); |
69 | 68 | ||
@@ -80,10 +79,9 @@ static void __unhash_process(struct task_struct *p) | |||
80 | static void __exit_signal(struct task_struct *tsk) | 79 | static void __exit_signal(struct task_struct *tsk) |
81 | { | 80 | { |
82 | struct signal_struct *sig = tsk->signal; | 81 | struct signal_struct *sig = tsk->signal; |
82 | bool group_dead = thread_group_leader(tsk); | ||
83 | struct sighand_struct *sighand; | 83 | struct sighand_struct *sighand; |
84 | 84 | struct tty_struct *uninitialized_var(tty); | |
85 | BUG_ON(!sig); | ||
86 | BUG_ON(!atomic_read(&sig->count)); | ||
87 | 85 | ||
88 | sighand = rcu_dereference_check(tsk->sighand, | 86 | sighand = rcu_dereference_check(tsk->sighand, |
89 | rcu_read_lock_held() || | 87 | rcu_read_lock_held() || |
@@ -91,14 +89,16 @@ static void __exit_signal(struct task_struct *tsk) | |||
91 | spin_lock(&sighand->siglock); | 89 | spin_lock(&sighand->siglock); |
92 | 90 | ||
93 | posix_cpu_timers_exit(tsk); | 91 | posix_cpu_timers_exit(tsk); |
94 | if (atomic_dec_and_test(&sig->count)) | 92 | if (group_dead) { |
95 | posix_cpu_timers_exit_group(tsk); | 93 | posix_cpu_timers_exit_group(tsk); |
96 | else { | 94 | tty = sig->tty; |
95 | sig->tty = NULL; | ||
96 | } else { | ||
97 | /* | 97 | /* |
98 | * If there is any task waiting for the group exit | 98 | * If there is any task waiting for the group exit |
99 | * then notify it: | 99 | * then notify it: |
100 | */ | 100 | */ |
101 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) | 101 | if (sig->notify_count > 0 && !--sig->notify_count) |
102 | wake_up_process(sig->group_exit_task); | 102 | wake_up_process(sig->group_exit_task); |
103 | 103 | ||
104 | if (tsk == sig->curr_target) | 104 | if (tsk == sig->curr_target) |
@@ -124,32 +124,24 @@ static void __exit_signal(struct task_struct *tsk) | |||
124 | sig->oublock += task_io_get_oublock(tsk); | 124 | sig->oublock += task_io_get_oublock(tsk); |
125 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | 125 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
126 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | 126 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; |
127 | sig = NULL; /* Marker for below. */ | ||
128 | } | 127 | } |
129 | 128 | ||
130 | __unhash_process(tsk); | 129 | sig->nr_threads--; |
130 | __unhash_process(tsk, group_dead); | ||
131 | 131 | ||
132 | /* | 132 | /* |
133 | * Do this under ->siglock, we can race with another thread | 133 | * Do this under ->siglock, we can race with another thread |
134 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 134 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. |
135 | */ | 135 | */ |
136 | flush_sigqueue(&tsk->pending); | 136 | flush_sigqueue(&tsk->pending); |
137 | |||
138 | tsk->signal = NULL; | ||
139 | tsk->sighand = NULL; | 137 | tsk->sighand = NULL; |
140 | spin_unlock(&sighand->siglock); | 138 | spin_unlock(&sighand->siglock); |
141 | 139 | ||
142 | __cleanup_sighand(sighand); | 140 | __cleanup_sighand(sighand); |
143 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 141 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
144 | if (sig) { | 142 | if (group_dead) { |
145 | flush_sigqueue(&sig->shared_pending); | 143 | flush_sigqueue(&sig->shared_pending); |
146 | taskstats_tgid_free(sig); | 144 | tty_kref_put(tty); |
147 | /* | ||
148 | * Make sure ->signal can't go away under rq->lock, | ||
149 | * see account_group_exec_runtime(). | ||
150 | */ | ||
151 | task_rq_unlock_wait(tsk); | ||
152 | __cleanup_signal(sig); | ||
153 | } | 145 | } |
154 | } | 146 | } |
155 | 147 | ||
@@ -857,12 +849,9 @@ static void exit_notify(struct task_struct *tsk, int group_dead) | |||
857 | 849 | ||
858 | tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; | 850 | tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; |
859 | 851 | ||
860 | /* mt-exec, de_thread() is waiting for us */ | 852 | /* mt-exec, de_thread() is waiting for group leader */ |
861 | if (thread_group_leader(tsk) && | 853 | if (unlikely(tsk->signal->notify_count < 0)) |
862 | tsk->signal->group_exit_task && | ||
863 | tsk->signal->notify_count < 0) | ||
864 | wake_up_process(tsk->signal->group_exit_task); | 854 | wake_up_process(tsk->signal->group_exit_task); |
865 | |||
866 | write_unlock_irq(&tasklist_lock); | 855 | write_unlock_irq(&tasklist_lock); |
867 | 856 | ||
868 | tracehook_report_death(tsk, signal, cookie, group_dead); | 857 | tracehook_report_death(tsk, signal, cookie, group_dead); |
@@ -1003,8 +992,10 @@ NORET_TYPE void do_exit(long code) | |||
1003 | 992 | ||
1004 | exit_notify(tsk, group_dead); | 993 | exit_notify(tsk, group_dead); |
1005 | #ifdef CONFIG_NUMA | 994 | #ifdef CONFIG_NUMA |
995 | task_lock(tsk); | ||
1006 | mpol_put(tsk->mempolicy); | 996 | mpol_put(tsk->mempolicy); |
1007 | tsk->mempolicy = NULL; | 997 | tsk->mempolicy = NULL; |
998 | task_unlock(tsk); | ||
1008 | #endif | 999 | #endif |
1009 | #ifdef CONFIG_FUTEX | 1000 | #ifdef CONFIG_FUTEX |
1010 | if (unlikely(current->pi_state_cache)) | 1001 | if (unlikely(current->pi_state_cache)) |
diff --git a/kernel/fork.c b/kernel/fork.c index 4c14942a0ee3..bf9fef6d1bfe 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -165,6 +165,18 @@ void free_task(struct task_struct *tsk) | |||
165 | } | 165 | } |
166 | EXPORT_SYMBOL(free_task); | 166 | EXPORT_SYMBOL(free_task); |
167 | 167 | ||
168 | static inline void free_signal_struct(struct signal_struct *sig) | ||
169 | { | ||
170 | taskstats_tgid_free(sig); | ||
171 | kmem_cache_free(signal_cachep, sig); | ||
172 | } | ||
173 | |||
174 | static inline void put_signal_struct(struct signal_struct *sig) | ||
175 | { | ||
176 | if (atomic_dec_and_test(&sig->sigcnt)) | ||
177 | free_signal_struct(sig); | ||
178 | } | ||
179 | |||
168 | void __put_task_struct(struct task_struct *tsk) | 180 | void __put_task_struct(struct task_struct *tsk) |
169 | { | 181 | { |
170 | WARN_ON(!tsk->exit_state); | 182 | WARN_ON(!tsk->exit_state); |
@@ -173,6 +185,7 @@ void __put_task_struct(struct task_struct *tsk) | |||
173 | 185 | ||
174 | exit_creds(tsk); | 186 | exit_creds(tsk); |
175 | delayacct_tsk_free(tsk); | 187 | delayacct_tsk_free(tsk); |
188 | put_signal_struct(tsk->signal); | ||
176 | 189 | ||
177 | if (!profile_handoff_task(tsk)) | 190 | if (!profile_handoff_task(tsk)) |
178 | free_task(tsk); | 191 | free_task(tsk); |
@@ -864,8 +877,9 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
864 | if (!sig) | 877 | if (!sig) |
865 | return -ENOMEM; | 878 | return -ENOMEM; |
866 | 879 | ||
867 | atomic_set(&sig->count, 1); | 880 | sig->nr_threads = 1; |
868 | atomic_set(&sig->live, 1); | 881 | atomic_set(&sig->live, 1); |
882 | atomic_set(&sig->sigcnt, 1); | ||
869 | init_waitqueue_head(&sig->wait_chldexit); | 883 | init_waitqueue_head(&sig->wait_chldexit); |
870 | if (clone_flags & CLONE_NEWPID) | 884 | if (clone_flags & CLONE_NEWPID) |
871 | sig->flags |= SIGNAL_UNKILLABLE; | 885 | sig->flags |= SIGNAL_UNKILLABLE; |
@@ -889,13 +903,6 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
889 | return 0; | 903 | return 0; |
890 | } | 904 | } |
891 | 905 | ||
892 | void __cleanup_signal(struct signal_struct *sig) | ||
893 | { | ||
894 | thread_group_cputime_free(sig); | ||
895 | tty_kref_put(sig->tty); | ||
896 | kmem_cache_free(signal_cachep, sig); | ||
897 | } | ||
898 | |||
899 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) | 906 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) |
900 | { | 907 | { |
901 | unsigned long new_flags = p->flags; | 908 | unsigned long new_flags = p->flags; |
@@ -1079,6 +1086,10 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1079 | } | 1086 | } |
1080 | mpol_fix_fork_child_flag(p); | 1087 | mpol_fix_fork_child_flag(p); |
1081 | #endif | 1088 | #endif |
1089 | #ifdef CONFIG_CPUSETS | ||
1090 | p->cpuset_mem_spread_rotor = node_random(p->mems_allowed); | ||
1091 | p->cpuset_slab_spread_rotor = node_random(p->mems_allowed); | ||
1092 | #endif | ||
1082 | #ifdef CONFIG_TRACE_IRQFLAGS | 1093 | #ifdef CONFIG_TRACE_IRQFLAGS |
1083 | p->irq_events = 0; | 1094 | p->irq_events = 0; |
1084 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1095 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
@@ -1112,8 +1123,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1112 | p->memcg_batch.memcg = NULL; | 1123 | p->memcg_batch.memcg = NULL; |
1113 | #endif | 1124 | #endif |
1114 | 1125 | ||
1115 | p->bts = NULL; | ||
1116 | |||
1117 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1126 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1118 | sched_fork(p, clone_flags); | 1127 | sched_fork(p, clone_flags); |
1119 | 1128 | ||
@@ -1247,8 +1256,9 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1247 | } | 1256 | } |
1248 | 1257 | ||
1249 | if (clone_flags & CLONE_THREAD) { | 1258 | if (clone_flags & CLONE_THREAD) { |
1250 | atomic_inc(¤t->signal->count); | 1259 | current->signal->nr_threads++; |
1251 | atomic_inc(¤t->signal->live); | 1260 | atomic_inc(¤t->signal->live); |
1261 | atomic_inc(¤t->signal->sigcnt); | ||
1252 | p->group_leader = current->group_leader; | 1262 | p->group_leader = current->group_leader; |
1253 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); | 1263 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); |
1254 | } | 1264 | } |
@@ -1261,7 +1271,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1261 | p->nsproxy->pid_ns->child_reaper = p; | 1271 | p->nsproxy->pid_ns->child_reaper = p; |
1262 | 1272 | ||
1263 | p->signal->leader_pid = pid; | 1273 | p->signal->leader_pid = pid; |
1264 | tty_kref_put(p->signal->tty); | ||
1265 | p->signal->tty = tty_kref_get(current->signal->tty); | 1274 | p->signal->tty = tty_kref_get(current->signal->tty); |
1266 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); | 1275 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); |
1267 | attach_pid(p, PIDTYPE_SID, task_session(current)); | 1276 | attach_pid(p, PIDTYPE_SID, task_session(current)); |
@@ -1294,7 +1303,7 @@ bad_fork_cleanup_mm: | |||
1294 | mmput(p->mm); | 1303 | mmput(p->mm); |
1295 | bad_fork_cleanup_signal: | 1304 | bad_fork_cleanup_signal: |
1296 | if (!(clone_flags & CLONE_THREAD)) | 1305 | if (!(clone_flags & CLONE_THREAD)) |
1297 | __cleanup_signal(p->signal); | 1306 | free_signal_struct(p->signal); |
1298 | bad_fork_cleanup_sighand: | 1307 | bad_fork_cleanup_sighand: |
1299 | __cleanup_sighand(p->sighand); | 1308 | __cleanup_sighand(p->sighand); |
1300 | bad_fork_cleanup_fs: | 1309 | bad_fork_cleanup_fs: |
@@ -1329,6 +1338,16 @@ noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_re | |||
1329 | return regs; | 1338 | return regs; |
1330 | } | 1339 | } |
1331 | 1340 | ||
1341 | static inline void init_idle_pids(struct pid_link *links) | ||
1342 | { | ||
1343 | enum pid_type type; | ||
1344 | |||
1345 | for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { | ||
1346 | INIT_HLIST_NODE(&links[type].node); /* not really needed */ | ||
1347 | links[type].pid = &init_struct_pid; | ||
1348 | } | ||
1349 | } | ||
1350 | |||
1332 | struct task_struct * __cpuinit fork_idle(int cpu) | 1351 | struct task_struct * __cpuinit fork_idle(int cpu) |
1333 | { | 1352 | { |
1334 | struct task_struct *task; | 1353 | struct task_struct *task; |
@@ -1336,8 +1355,10 @@ struct task_struct * __cpuinit fork_idle(int cpu) | |||
1336 | 1355 | ||
1337 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, | 1356 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, |
1338 | &init_struct_pid, 0); | 1357 | &init_struct_pid, 0); |
1339 | if (!IS_ERR(task)) | 1358 | if (!IS_ERR(task)) { |
1359 | init_idle_pids(task->pids); | ||
1340 | init_idle(task, cpu); | 1360 | init_idle(task, cpu); |
1361 | } | ||
1341 | 1362 | ||
1342 | return task; | 1363 | return task; |
1343 | } | 1364 | } |
@@ -1509,14 +1530,6 @@ static void check_unshare_flags(unsigned long *flags_ptr) | |||
1509 | *flags_ptr |= CLONE_SIGHAND; | 1530 | *flags_ptr |= CLONE_SIGHAND; |
1510 | 1531 | ||
1511 | /* | 1532 | /* |
1512 | * If unsharing signal handlers and the task was created | ||
1513 | * using CLONE_THREAD, then must unshare the thread | ||
1514 | */ | ||
1515 | if ((*flags_ptr & CLONE_SIGHAND) && | ||
1516 | (atomic_read(¤t->signal->count) > 1)) | ||
1517 | *flags_ptr |= CLONE_THREAD; | ||
1518 | |||
1519 | /* | ||
1520 | * If unsharing namespace, must also unshare filesystem information. | 1533 | * If unsharing namespace, must also unshare filesystem information. |
1521 | */ | 1534 | */ |
1522 | if (*flags_ptr & CLONE_NEWNS) | 1535 | if (*flags_ptr & CLONE_NEWNS) |
diff --git a/kernel/groups.c b/kernel/groups.c index 2b45b2ee3964..53b1916c9492 100644 --- a/kernel/groups.c +++ b/kernel/groups.c | |||
@@ -164,12 +164,6 @@ int groups_search(const struct group_info *group_info, gid_t grp) | |||
164 | */ | 164 | */ |
165 | int set_groups(struct cred *new, struct group_info *group_info) | 165 | int set_groups(struct cred *new, struct group_info *group_info) |
166 | { | 166 | { |
167 | int retval; | ||
168 | |||
169 | retval = security_task_setgroups(group_info); | ||
170 | if (retval) | ||
171 | return retval; | ||
172 | |||
173 | put_group_info(new->group_info); | 167 | put_group_info(new->group_info); |
174 | groups_sort(group_info); | 168 | groups_sort(group_info); |
175 | get_group_info(group_info); | 169 | get_group_info(group_info); |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 0086628b6e97..5c69e996bd0f 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -89,7 +89,7 @@ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) | |||
89 | 89 | ||
90 | do { | 90 | do { |
91 | seq = read_seqbegin(&xtime_lock); | 91 | seq = read_seqbegin(&xtime_lock); |
92 | xts = current_kernel_time(); | 92 | xts = __current_kernel_time(); |
93 | tom = wall_to_monotonic; | 93 | tom = wall_to_monotonic; |
94 | } while (read_seqretry(&xtime_lock, seq)); | 94 | } while (read_seqretry(&xtime_lock, seq)); |
95 | 95 | ||
@@ -1749,35 +1749,15 @@ void __init hrtimers_init(void) | |||
1749 | } | 1749 | } |
1750 | 1750 | ||
1751 | /** | 1751 | /** |
1752 | * schedule_hrtimeout_range - sleep until timeout | 1752 | * schedule_hrtimeout_range_clock - sleep until timeout |
1753 | * @expires: timeout value (ktime_t) | 1753 | * @expires: timeout value (ktime_t) |
1754 | * @delta: slack in expires timeout (ktime_t) | 1754 | * @delta: slack in expires timeout (ktime_t) |
1755 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 1755 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
1756 | * | 1756 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
1757 | * Make the current task sleep until the given expiry time has | ||
1758 | * elapsed. The routine will return immediately unless | ||
1759 | * the current task state has been set (see set_current_state()). | ||
1760 | * | ||
1761 | * The @delta argument gives the kernel the freedom to schedule the | ||
1762 | * actual wakeup to a time that is both power and performance friendly. | ||
1763 | * The kernel give the normal best effort behavior for "@expires+@delta", | ||
1764 | * but may decide to fire the timer earlier, but no earlier than @expires. | ||
1765 | * | ||
1766 | * You can set the task state as follows - | ||
1767 | * | ||
1768 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | ||
1769 | * pass before the routine returns. | ||
1770 | * | ||
1771 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1772 | * delivered to the current task. | ||
1773 | * | ||
1774 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1775 | * routine returns. | ||
1776 | * | ||
1777 | * Returns 0 when the timer has expired otherwise -EINTR | ||
1778 | */ | 1757 | */ |
1779 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | 1758 | int __sched |
1780 | const enum hrtimer_mode mode) | 1759 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, |
1760 | const enum hrtimer_mode mode, int clock) | ||
1781 | { | 1761 | { |
1782 | struct hrtimer_sleeper t; | 1762 | struct hrtimer_sleeper t; |
1783 | 1763 | ||
@@ -1799,7 +1779,7 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |||
1799 | return -EINTR; | 1779 | return -EINTR; |
1800 | } | 1780 | } |
1801 | 1781 | ||
1802 | hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode); | 1782 | hrtimer_init_on_stack(&t.timer, clock, mode); |
1803 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); | 1783 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
1804 | 1784 | ||
1805 | hrtimer_init_sleeper(&t, current); | 1785 | hrtimer_init_sleeper(&t, current); |
@@ -1818,6 +1798,41 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |||
1818 | 1798 | ||
1819 | return !t.task ? 0 : -EINTR; | 1799 | return !t.task ? 0 : -EINTR; |
1820 | } | 1800 | } |
1801 | |||
1802 | /** | ||
1803 | * schedule_hrtimeout_range - sleep until timeout | ||
1804 | * @expires: timeout value (ktime_t) | ||
1805 | * @delta: slack in expires timeout (ktime_t) | ||
1806 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | ||
1807 | * | ||
1808 | * Make the current task sleep until the given expiry time has | ||
1809 | * elapsed. The routine will return immediately unless | ||
1810 | * the current task state has been set (see set_current_state()). | ||
1811 | * | ||
1812 | * The @delta argument gives the kernel the freedom to schedule the | ||
1813 | * actual wakeup to a time that is both power and performance friendly. | ||
1814 | * The kernel give the normal best effort behavior for "@expires+@delta", | ||
1815 | * but may decide to fire the timer earlier, but no earlier than @expires. | ||
1816 | * | ||
1817 | * You can set the task state as follows - | ||
1818 | * | ||
1819 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | ||
1820 | * pass before the routine returns. | ||
1821 | * | ||
1822 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1823 | * delivered to the current task. | ||
1824 | * | ||
1825 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1826 | * routine returns. | ||
1827 | * | ||
1828 | * Returns 0 when the timer has expired otherwise -EINTR | ||
1829 | */ | ||
1830 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | ||
1831 | const enum hrtimer_mode mode) | ||
1832 | { | ||
1833 | return schedule_hrtimeout_range_clock(expires, delta, mode, | ||
1834 | CLOCK_MONOTONIC); | ||
1835 | } | ||
1821 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); | 1836 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1822 | 1837 | ||
1823 | /** | 1838 | /** |
diff --git a/kernel/hw_breakpoint.c b/kernel/hw_breakpoint.c index 03808ed342a6..7a56b22e0602 100644 --- a/kernel/hw_breakpoint.c +++ b/kernel/hw_breakpoint.c | |||
@@ -40,23 +40,29 @@ | |||
40 | #include <linux/percpu.h> | 40 | #include <linux/percpu.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | #include <linux/init.h> | 42 | #include <linux/init.h> |
43 | #include <linux/slab.h> | ||
43 | #include <linux/cpu.h> | 44 | #include <linux/cpu.h> |
44 | #include <linux/smp.h> | 45 | #include <linux/smp.h> |
45 | 46 | ||
46 | #include <linux/hw_breakpoint.h> | 47 | #include <linux/hw_breakpoint.h> |
47 | 48 | ||
49 | |||
48 | /* | 50 | /* |
49 | * Constraints data | 51 | * Constraints data |
50 | */ | 52 | */ |
51 | 53 | ||
52 | /* Number of pinned cpu breakpoints in a cpu */ | 54 | /* Number of pinned cpu breakpoints in a cpu */ |
53 | static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned); | 55 | static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]); |
54 | 56 | ||
55 | /* Number of pinned task breakpoints in a cpu */ | 57 | /* Number of pinned task breakpoints in a cpu */ |
56 | static DEFINE_PER_CPU(unsigned int, nr_task_bp_pinned[HBP_NUM]); | 58 | static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]); |
57 | 59 | ||
58 | /* Number of non-pinned cpu/task breakpoints in a cpu */ | 60 | /* Number of non-pinned cpu/task breakpoints in a cpu */ |
59 | static DEFINE_PER_CPU(unsigned int, nr_bp_flexible); | 61 | static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]); |
62 | |||
63 | static int nr_slots[TYPE_MAX]; | ||
64 | |||
65 | static int constraints_initialized; | ||
60 | 66 | ||
61 | /* Gather the number of total pinned and un-pinned bp in a cpuset */ | 67 | /* Gather the number of total pinned and un-pinned bp in a cpuset */ |
62 | struct bp_busy_slots { | 68 | struct bp_busy_slots { |
@@ -67,16 +73,29 @@ struct bp_busy_slots { | |||
67 | /* Serialize accesses to the above constraints */ | 73 | /* Serialize accesses to the above constraints */ |
68 | static DEFINE_MUTEX(nr_bp_mutex); | 74 | static DEFINE_MUTEX(nr_bp_mutex); |
69 | 75 | ||
76 | __weak int hw_breakpoint_weight(struct perf_event *bp) | ||
77 | { | ||
78 | return 1; | ||
79 | } | ||
80 | |||
81 | static inline enum bp_type_idx find_slot_idx(struct perf_event *bp) | ||
82 | { | ||
83 | if (bp->attr.bp_type & HW_BREAKPOINT_RW) | ||
84 | return TYPE_DATA; | ||
85 | |||
86 | return TYPE_INST; | ||
87 | } | ||
88 | |||
70 | /* | 89 | /* |
71 | * Report the maximum number of pinned breakpoints a task | 90 | * Report the maximum number of pinned breakpoints a task |
72 | * have in this cpu | 91 | * have in this cpu |
73 | */ | 92 | */ |
74 | static unsigned int max_task_bp_pinned(int cpu) | 93 | static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) |
75 | { | 94 | { |
76 | int i; | 95 | int i; |
77 | unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned, cpu); | 96 | unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); |
78 | 97 | ||
79 | for (i = HBP_NUM -1; i >= 0; i--) { | 98 | for (i = nr_slots[type] - 1; i >= 0; i--) { |
80 | if (tsk_pinned[i] > 0) | 99 | if (tsk_pinned[i] > 0) |
81 | return i + 1; | 100 | return i + 1; |
82 | } | 101 | } |
@@ -84,7 +103,7 @@ static unsigned int max_task_bp_pinned(int cpu) | |||
84 | return 0; | 103 | return 0; |
85 | } | 104 | } |
86 | 105 | ||
87 | static int task_bp_pinned(struct task_struct *tsk) | 106 | static int task_bp_pinned(struct task_struct *tsk, enum bp_type_idx type) |
88 | { | 107 | { |
89 | struct perf_event_context *ctx = tsk->perf_event_ctxp; | 108 | struct perf_event_context *ctx = tsk->perf_event_ctxp; |
90 | struct list_head *list; | 109 | struct list_head *list; |
@@ -105,7 +124,8 @@ static int task_bp_pinned(struct task_struct *tsk) | |||
105 | */ | 124 | */ |
106 | list_for_each_entry(bp, list, event_entry) { | 125 | list_for_each_entry(bp, list, event_entry) { |
107 | if (bp->attr.type == PERF_TYPE_BREAKPOINT) | 126 | if (bp->attr.type == PERF_TYPE_BREAKPOINT) |
108 | count++; | 127 | if (find_slot_idx(bp) == type) |
128 | count += hw_breakpoint_weight(bp); | ||
109 | } | 129 | } |
110 | 130 | ||
111 | raw_spin_unlock_irqrestore(&ctx->lock, flags); | 131 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
@@ -118,18 +138,19 @@ static int task_bp_pinned(struct task_struct *tsk) | |||
118 | * a given cpu (cpu > -1) or in all of them (cpu = -1). | 138 | * a given cpu (cpu > -1) or in all of them (cpu = -1). |
119 | */ | 139 | */ |
120 | static void | 140 | static void |
121 | fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp) | 141 | fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp, |
142 | enum bp_type_idx type) | ||
122 | { | 143 | { |
123 | int cpu = bp->cpu; | 144 | int cpu = bp->cpu; |
124 | struct task_struct *tsk = bp->ctx->task; | 145 | struct task_struct *tsk = bp->ctx->task; |
125 | 146 | ||
126 | if (cpu >= 0) { | 147 | if (cpu >= 0) { |
127 | slots->pinned = per_cpu(nr_cpu_bp_pinned, cpu); | 148 | slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu); |
128 | if (!tsk) | 149 | if (!tsk) |
129 | slots->pinned += max_task_bp_pinned(cpu); | 150 | slots->pinned += max_task_bp_pinned(cpu, type); |
130 | else | 151 | else |
131 | slots->pinned += task_bp_pinned(tsk); | 152 | slots->pinned += task_bp_pinned(tsk, type); |
132 | slots->flexible = per_cpu(nr_bp_flexible, cpu); | 153 | slots->flexible = per_cpu(nr_bp_flexible[type], cpu); |
133 | 154 | ||
134 | return; | 155 | return; |
135 | } | 156 | } |
@@ -137,16 +158,16 @@ fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp) | |||
137 | for_each_online_cpu(cpu) { | 158 | for_each_online_cpu(cpu) { |
138 | unsigned int nr; | 159 | unsigned int nr; |
139 | 160 | ||
140 | nr = per_cpu(nr_cpu_bp_pinned, cpu); | 161 | nr = per_cpu(nr_cpu_bp_pinned[type], cpu); |
141 | if (!tsk) | 162 | if (!tsk) |
142 | nr += max_task_bp_pinned(cpu); | 163 | nr += max_task_bp_pinned(cpu, type); |
143 | else | 164 | else |
144 | nr += task_bp_pinned(tsk); | 165 | nr += task_bp_pinned(tsk, type); |
145 | 166 | ||
146 | if (nr > slots->pinned) | 167 | if (nr > slots->pinned) |
147 | slots->pinned = nr; | 168 | slots->pinned = nr; |
148 | 169 | ||
149 | nr = per_cpu(nr_bp_flexible, cpu); | 170 | nr = per_cpu(nr_bp_flexible[type], cpu); |
150 | 171 | ||
151 | if (nr > slots->flexible) | 172 | if (nr > slots->flexible) |
152 | slots->flexible = nr; | 173 | slots->flexible = nr; |
@@ -154,31 +175,49 @@ fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp) | |||
154 | } | 175 | } |
155 | 176 | ||
156 | /* | 177 | /* |
178 | * For now, continue to consider flexible as pinned, until we can | ||
179 | * ensure no flexible event can ever be scheduled before a pinned event | ||
180 | * in a same cpu. | ||
181 | */ | ||
182 | static void | ||
183 | fetch_this_slot(struct bp_busy_slots *slots, int weight) | ||
184 | { | ||
185 | slots->pinned += weight; | ||
186 | } | ||
187 | |||
188 | /* | ||
157 | * Add a pinned breakpoint for the given task in our constraint table | 189 | * Add a pinned breakpoint for the given task in our constraint table |
158 | */ | 190 | */ |
159 | static void toggle_bp_task_slot(struct task_struct *tsk, int cpu, bool enable) | 191 | static void toggle_bp_task_slot(struct task_struct *tsk, int cpu, bool enable, |
192 | enum bp_type_idx type, int weight) | ||
160 | { | 193 | { |
161 | unsigned int *tsk_pinned; | 194 | unsigned int *tsk_pinned; |
162 | int count = 0; | 195 | int old_count = 0; |
196 | int old_idx = 0; | ||
197 | int idx = 0; | ||
163 | 198 | ||
164 | count = task_bp_pinned(tsk); | 199 | old_count = task_bp_pinned(tsk, type); |
200 | old_idx = old_count - 1; | ||
201 | idx = old_idx + weight; | ||
165 | 202 | ||
166 | tsk_pinned = per_cpu(nr_task_bp_pinned, cpu); | 203 | tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); |
167 | if (enable) { | 204 | if (enable) { |
168 | tsk_pinned[count]++; | 205 | tsk_pinned[idx]++; |
169 | if (count > 0) | 206 | if (old_count > 0) |
170 | tsk_pinned[count-1]--; | 207 | tsk_pinned[old_idx]--; |
171 | } else { | 208 | } else { |
172 | tsk_pinned[count]--; | 209 | tsk_pinned[idx]--; |
173 | if (count > 0) | 210 | if (old_count > 0) |
174 | tsk_pinned[count-1]++; | 211 | tsk_pinned[old_idx]++; |
175 | } | 212 | } |
176 | } | 213 | } |
177 | 214 | ||
178 | /* | 215 | /* |
179 | * Add/remove the given breakpoint in our constraint table | 216 | * Add/remove the given breakpoint in our constraint table |
180 | */ | 217 | */ |
181 | static void toggle_bp_slot(struct perf_event *bp, bool enable) | 218 | static void |
219 | toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, | ||
220 | int weight) | ||
182 | { | 221 | { |
183 | int cpu = bp->cpu; | 222 | int cpu = bp->cpu; |
184 | struct task_struct *tsk = bp->ctx->task; | 223 | struct task_struct *tsk = bp->ctx->task; |
@@ -186,20 +225,20 @@ static void toggle_bp_slot(struct perf_event *bp, bool enable) | |||
186 | /* Pinned counter task profiling */ | 225 | /* Pinned counter task profiling */ |
187 | if (tsk) { | 226 | if (tsk) { |
188 | if (cpu >= 0) { | 227 | if (cpu >= 0) { |
189 | toggle_bp_task_slot(tsk, cpu, enable); | 228 | toggle_bp_task_slot(tsk, cpu, enable, type, weight); |
190 | return; | 229 | return; |
191 | } | 230 | } |
192 | 231 | ||
193 | for_each_online_cpu(cpu) | 232 | for_each_online_cpu(cpu) |
194 | toggle_bp_task_slot(tsk, cpu, enable); | 233 | toggle_bp_task_slot(tsk, cpu, enable, type, weight); |
195 | return; | 234 | return; |
196 | } | 235 | } |
197 | 236 | ||
198 | /* Pinned counter cpu profiling */ | 237 | /* Pinned counter cpu profiling */ |
199 | if (enable) | 238 | if (enable) |
200 | per_cpu(nr_cpu_bp_pinned, bp->cpu)++; | 239 | per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight; |
201 | else | 240 | else |
202 | per_cpu(nr_cpu_bp_pinned, bp->cpu)--; | 241 | per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight; |
203 | } | 242 | } |
204 | 243 | ||
205 | /* | 244 | /* |
@@ -246,14 +285,29 @@ static void toggle_bp_slot(struct perf_event *bp, bool enable) | |||
246 | static int __reserve_bp_slot(struct perf_event *bp) | 285 | static int __reserve_bp_slot(struct perf_event *bp) |
247 | { | 286 | { |
248 | struct bp_busy_slots slots = {0}; | 287 | struct bp_busy_slots slots = {0}; |
288 | enum bp_type_idx type; | ||
289 | int weight; | ||
249 | 290 | ||
250 | fetch_bp_busy_slots(&slots, bp); | 291 | /* We couldn't initialize breakpoint constraints on boot */ |
292 | if (!constraints_initialized) | ||
293 | return -ENOMEM; | ||
294 | |||
295 | /* Basic checks */ | ||
296 | if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY || | ||
297 | bp->attr.bp_type == HW_BREAKPOINT_INVALID) | ||
298 | return -EINVAL; | ||
299 | |||
300 | type = find_slot_idx(bp); | ||
301 | weight = hw_breakpoint_weight(bp); | ||
302 | |||
303 | fetch_bp_busy_slots(&slots, bp, type); | ||
304 | fetch_this_slot(&slots, weight); | ||
251 | 305 | ||
252 | /* Flexible counters need to keep at least one slot */ | 306 | /* Flexible counters need to keep at least one slot */ |
253 | if (slots.pinned + (!!slots.flexible) == HBP_NUM) | 307 | if (slots.pinned + (!!slots.flexible) > nr_slots[type]) |
254 | return -ENOSPC; | 308 | return -ENOSPC; |
255 | 309 | ||
256 | toggle_bp_slot(bp, true); | 310 | toggle_bp_slot(bp, true, type, weight); |
257 | 311 | ||
258 | return 0; | 312 | return 0; |
259 | } | 313 | } |
@@ -273,7 +327,12 @@ int reserve_bp_slot(struct perf_event *bp) | |||
273 | 327 | ||
274 | static void __release_bp_slot(struct perf_event *bp) | 328 | static void __release_bp_slot(struct perf_event *bp) |
275 | { | 329 | { |
276 | toggle_bp_slot(bp, false); | 330 | enum bp_type_idx type; |
331 | int weight; | ||
332 | |||
333 | type = find_slot_idx(bp); | ||
334 | weight = hw_breakpoint_weight(bp); | ||
335 | toggle_bp_slot(bp, false, type, weight); | ||
277 | } | 336 | } |
278 | 337 | ||
279 | void release_bp_slot(struct perf_event *bp) | 338 | void release_bp_slot(struct perf_event *bp) |
@@ -308,6 +367,28 @@ int dbg_release_bp_slot(struct perf_event *bp) | |||
308 | return 0; | 367 | return 0; |
309 | } | 368 | } |
310 | 369 | ||
370 | static int validate_hw_breakpoint(struct perf_event *bp) | ||
371 | { | ||
372 | int ret; | ||
373 | |||
374 | ret = arch_validate_hwbkpt_settings(bp); | ||
375 | if (ret) | ||
376 | return ret; | ||
377 | |||
378 | if (arch_check_bp_in_kernelspace(bp)) { | ||
379 | if (bp->attr.exclude_kernel) | ||
380 | return -EINVAL; | ||
381 | /* | ||
382 | * Don't let unprivileged users set a breakpoint in the trap | ||
383 | * path to avoid trap recursion attacks. | ||
384 | */ | ||
385 | if (!capable(CAP_SYS_ADMIN)) | ||
386 | return -EPERM; | ||
387 | } | ||
388 | |||
389 | return 0; | ||
390 | } | ||
391 | |||
311 | int register_perf_hw_breakpoint(struct perf_event *bp) | 392 | int register_perf_hw_breakpoint(struct perf_event *bp) |
312 | { | 393 | { |
313 | int ret; | 394 | int ret; |
@@ -316,17 +397,7 @@ int register_perf_hw_breakpoint(struct perf_event *bp) | |||
316 | if (ret) | 397 | if (ret) |
317 | return ret; | 398 | return ret; |
318 | 399 | ||
319 | /* | 400 | ret = validate_hw_breakpoint(bp); |
320 | * Ptrace breakpoints can be temporary perf events only | ||
321 | * meant to reserve a slot. In this case, it is created disabled and | ||
322 | * we don't want to check the params right now (as we put a null addr) | ||
323 | * But perf tools create events as disabled and we want to check | ||
324 | * the params for them. | ||
325 | * This is a quick hack that will be removed soon, once we remove | ||
326 | * the tmp breakpoints from ptrace | ||
327 | */ | ||
328 | if (!bp->attr.disabled || !bp->overflow_handler) | ||
329 | ret = arch_validate_hwbkpt_settings(bp, bp->ctx->task); | ||
330 | 401 | ||
331 | /* if arch_validate_hwbkpt_settings() fails then release bp slot */ | 402 | /* if arch_validate_hwbkpt_settings() fails then release bp slot */ |
332 | if (ret) | 403 | if (ret) |
@@ -373,7 +444,7 @@ int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *att | |||
373 | if (attr->disabled) | 444 | if (attr->disabled) |
374 | goto end; | 445 | goto end; |
375 | 446 | ||
376 | err = arch_validate_hwbkpt_settings(bp, bp->ctx->task); | 447 | err = validate_hw_breakpoint(bp); |
377 | if (!err) | 448 | if (!err) |
378 | perf_event_enable(bp); | 449 | perf_event_enable(bp); |
379 | 450 | ||
@@ -480,7 +551,36 @@ static struct notifier_block hw_breakpoint_exceptions_nb = { | |||
480 | 551 | ||
481 | static int __init init_hw_breakpoint(void) | 552 | static int __init init_hw_breakpoint(void) |
482 | { | 553 | { |
554 | unsigned int **task_bp_pinned; | ||
555 | int cpu, err_cpu; | ||
556 | int i; | ||
557 | |||
558 | for (i = 0; i < TYPE_MAX; i++) | ||
559 | nr_slots[i] = hw_breakpoint_slots(i); | ||
560 | |||
561 | for_each_possible_cpu(cpu) { | ||
562 | for (i = 0; i < TYPE_MAX; i++) { | ||
563 | task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu); | ||
564 | *task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i], | ||
565 | GFP_KERNEL); | ||
566 | if (!*task_bp_pinned) | ||
567 | goto err_alloc; | ||
568 | } | ||
569 | } | ||
570 | |||
571 | constraints_initialized = 1; | ||
572 | |||
483 | return register_die_notifier(&hw_breakpoint_exceptions_nb); | 573 | return register_die_notifier(&hw_breakpoint_exceptions_nb); |
574 | |||
575 | err_alloc: | ||
576 | for_each_possible_cpu(err_cpu) { | ||
577 | if (err_cpu == cpu) | ||
578 | break; | ||
579 | for (i = 0; i < TYPE_MAX; i++) | ||
580 | kfree(per_cpu(nr_task_bp_pinned[i], cpu)); | ||
581 | } | ||
582 | |||
583 | return -ENOMEM; | ||
484 | } | 584 | } |
485 | core_initcall(init_hw_breakpoint); | 585 | core_initcall(init_hw_breakpoint); |
486 | 586 | ||
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 76d5a671bfe1..27e5c6911223 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
@@ -370,9 +370,6 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
370 | irqreturn_t ret, retval = IRQ_NONE; | 370 | irqreturn_t ret, retval = IRQ_NONE; |
371 | unsigned int status = 0; | 371 | unsigned int status = 0; |
372 | 372 | ||
373 | if (!(action->flags & IRQF_DISABLED)) | ||
374 | local_irq_enable_in_hardirq(); | ||
375 | |||
376 | do { | 373 | do { |
377 | trace_irq_handler_entry(irq, action); | 374 | trace_irq_handler_entry(irq, action); |
378 | ret = action->handler(irq, action->dev_id); | 375 | ret = action->handler(irq, action->dev_id); |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 704e488730a5..3164ba7ce151 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -138,6 +138,22 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
138 | return 0; | 138 | return 0; |
139 | } | 139 | } |
140 | 140 | ||
141 | int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) | ||
142 | { | ||
143 | struct irq_desc *desc = irq_to_desc(irq); | ||
144 | unsigned long flags; | ||
145 | |||
146 | if (!desc) | ||
147 | return -EINVAL; | ||
148 | |||
149 | raw_spin_lock_irqsave(&desc->lock, flags); | ||
150 | desc->affinity_hint = m; | ||
151 | raw_spin_unlock_irqrestore(&desc->lock, flags); | ||
152 | |||
153 | return 0; | ||
154 | } | ||
155 | EXPORT_SYMBOL_GPL(irq_set_affinity_hint); | ||
156 | |||
141 | #ifndef CONFIG_AUTO_IRQ_AFFINITY | 157 | #ifndef CONFIG_AUTO_IRQ_AFFINITY |
142 | /* | 158 | /* |
143 | * Generic version of the affinity autoselector. | 159 | * Generic version of the affinity autoselector. |
@@ -757,16 +773,6 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
757 | if (new->flags & IRQF_ONESHOT) | 773 | if (new->flags & IRQF_ONESHOT) |
758 | desc->status |= IRQ_ONESHOT; | 774 | desc->status |= IRQ_ONESHOT; |
759 | 775 | ||
760 | /* | ||
761 | * Force MSI interrupts to run with interrupts | ||
762 | * disabled. The multi vector cards can cause stack | ||
763 | * overflows due to nested interrupts when enough of | ||
764 | * them are directed to a core and fire at the same | ||
765 | * time. | ||
766 | */ | ||
767 | if (desc->msi_desc) | ||
768 | new->flags |= IRQF_DISABLED; | ||
769 | |||
770 | if (!(desc->status & IRQ_NOAUTOEN)) { | 776 | if (!(desc->status & IRQ_NOAUTOEN)) { |
771 | desc->depth = 0; | 777 | desc->depth = 0; |
772 | desc->status &= ~IRQ_DISABLED; | 778 | desc->status &= ~IRQ_DISABLED; |
@@ -916,6 +922,12 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
916 | desc->chip->disable(irq); | 922 | desc->chip->disable(irq); |
917 | } | 923 | } |
918 | 924 | ||
925 | #ifdef CONFIG_SMP | ||
926 | /* make sure affinity_hint is cleaned up */ | ||
927 | if (WARN_ON_ONCE(desc->affinity_hint)) | ||
928 | desc->affinity_hint = NULL; | ||
929 | #endif | ||
930 | |||
919 | raw_spin_unlock_irqrestore(&desc->lock, flags); | 931 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
920 | 932 | ||
921 | unregister_handler_proc(irq, action); | 933 | unregister_handler_proc(irq, action); |
@@ -1027,7 +1039,6 @@ EXPORT_SYMBOL(free_irq); | |||
1027 | * Flags: | 1039 | * Flags: |
1028 | * | 1040 | * |
1029 | * IRQF_SHARED Interrupt is shared | 1041 | * IRQF_SHARED Interrupt is shared |
1030 | * IRQF_DISABLED Disable local interrupts while processing | ||
1031 | * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy | 1042 | * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy |
1032 | * IRQF_TRIGGER_* Specify active edge(s) or level | 1043 | * IRQF_TRIGGER_* Specify active edge(s) or level |
1033 | * | 1044 | * |
@@ -1041,25 +1052,6 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
1041 | int retval; | 1052 | int retval; |
1042 | 1053 | ||
1043 | /* | 1054 | /* |
1044 | * handle_IRQ_event() always ignores IRQF_DISABLED except for | ||
1045 | * the _first_ irqaction (sigh). That can cause oopsing, but | ||
1046 | * the behavior is classified as "will not fix" so we need to | ||
1047 | * start nudging drivers away from using that idiom. | ||
1048 | */ | ||
1049 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) == | ||
1050 | (IRQF_SHARED|IRQF_DISABLED)) { | ||
1051 | pr_warning( | ||
1052 | "IRQ %d/%s: IRQF_DISABLED is not guaranteed on shared IRQs\n", | ||
1053 | irq, devname); | ||
1054 | } | ||
1055 | |||
1056 | #ifdef CONFIG_LOCKDEP | ||
1057 | /* | ||
1058 | * Lockdep wants atomic interrupt handlers: | ||
1059 | */ | ||
1060 | irqflags |= IRQF_DISABLED; | ||
1061 | #endif | ||
1062 | /* | ||
1063 | * Sanity-check: shared interrupts must pass in a real dev-ID, | 1055 | * Sanity-check: shared interrupts must pass in a real dev-ID, |
1064 | * otherwise we'll have trouble later trying to figure out | 1056 | * otherwise we'll have trouble later trying to figure out |
1065 | * which interrupt is which (messes up the interrupt freeing | 1057 | * which interrupt is which (messes up the interrupt freeing |
@@ -1120,3 +1112,40 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
1120 | return retval; | 1112 | return retval; |
1121 | } | 1113 | } |
1122 | EXPORT_SYMBOL(request_threaded_irq); | 1114 | EXPORT_SYMBOL(request_threaded_irq); |
1115 | |||
1116 | /** | ||
1117 | * request_any_context_irq - allocate an interrupt line | ||
1118 | * @irq: Interrupt line to allocate | ||
1119 | * @handler: Function to be called when the IRQ occurs. | ||
1120 | * Threaded handler for threaded interrupts. | ||
1121 | * @flags: Interrupt type flags | ||
1122 | * @name: An ascii name for the claiming device | ||
1123 | * @dev_id: A cookie passed back to the handler function | ||
1124 | * | ||
1125 | * This call allocates interrupt resources and enables the | ||
1126 | * interrupt line and IRQ handling. It selects either a | ||
1127 | * hardirq or threaded handling method depending on the | ||
1128 | * context. | ||
1129 | * | ||
1130 | * On failure, it returns a negative value. On success, | ||
1131 | * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. | ||
1132 | */ | ||
1133 | int request_any_context_irq(unsigned int irq, irq_handler_t handler, | ||
1134 | unsigned long flags, const char *name, void *dev_id) | ||
1135 | { | ||
1136 | struct irq_desc *desc = irq_to_desc(irq); | ||
1137 | int ret; | ||
1138 | |||
1139 | if (!desc) | ||
1140 | return -EINVAL; | ||
1141 | |||
1142 | if (desc->status & IRQ_NESTED_THREAD) { | ||
1143 | ret = request_threaded_irq(irq, NULL, handler, | ||
1144 | flags, name, dev_id); | ||
1145 | return !ret ? IRQC_IS_NESTED : ret; | ||
1146 | } | ||
1147 | |||
1148 | ret = request_irq(irq, handler, flags, name, dev_id); | ||
1149 | return !ret ? IRQC_IS_HARDIRQ : ret; | ||
1150 | } | ||
1151 | EXPORT_SYMBOL_GPL(request_any_context_irq); | ||
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c index 7a6eb04ef6b5..09a2ee540bd2 100644 --- a/kernel/irq/proc.c +++ b/kernel/irq/proc.c | |||
@@ -32,6 +32,27 @@ static int irq_affinity_proc_show(struct seq_file *m, void *v) | |||
32 | return 0; | 32 | return 0; |
33 | } | 33 | } |
34 | 34 | ||
35 | static int irq_affinity_hint_proc_show(struct seq_file *m, void *v) | ||
36 | { | ||
37 | struct irq_desc *desc = irq_to_desc((long)m->private); | ||
38 | unsigned long flags; | ||
39 | cpumask_var_t mask; | ||
40 | |||
41 | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) | ||
42 | return -ENOMEM; | ||
43 | |||
44 | raw_spin_lock_irqsave(&desc->lock, flags); | ||
45 | if (desc->affinity_hint) | ||
46 | cpumask_copy(mask, desc->affinity_hint); | ||
47 | raw_spin_unlock_irqrestore(&desc->lock, flags); | ||
48 | |||
49 | seq_cpumask(m, mask); | ||
50 | seq_putc(m, '\n'); | ||
51 | free_cpumask_var(mask); | ||
52 | |||
53 | return 0; | ||
54 | } | ||
55 | |||
35 | #ifndef is_affinity_mask_valid | 56 | #ifndef is_affinity_mask_valid |
36 | #define is_affinity_mask_valid(val) 1 | 57 | #define is_affinity_mask_valid(val) 1 |
37 | #endif | 58 | #endif |
@@ -84,6 +105,11 @@ static int irq_affinity_proc_open(struct inode *inode, struct file *file) | |||
84 | return single_open(file, irq_affinity_proc_show, PDE(inode)->data); | 105 | return single_open(file, irq_affinity_proc_show, PDE(inode)->data); |
85 | } | 106 | } |
86 | 107 | ||
108 | static int irq_affinity_hint_proc_open(struct inode *inode, struct file *file) | ||
109 | { | ||
110 | return single_open(file, irq_affinity_hint_proc_show, PDE(inode)->data); | ||
111 | } | ||
112 | |||
87 | static const struct file_operations irq_affinity_proc_fops = { | 113 | static const struct file_operations irq_affinity_proc_fops = { |
88 | .open = irq_affinity_proc_open, | 114 | .open = irq_affinity_proc_open, |
89 | .read = seq_read, | 115 | .read = seq_read, |
@@ -92,6 +118,13 @@ static const struct file_operations irq_affinity_proc_fops = { | |||
92 | .write = irq_affinity_proc_write, | 118 | .write = irq_affinity_proc_write, |
93 | }; | 119 | }; |
94 | 120 | ||
121 | static const struct file_operations irq_affinity_hint_proc_fops = { | ||
122 | .open = irq_affinity_hint_proc_open, | ||
123 | .read = seq_read, | ||
124 | .llseek = seq_lseek, | ||
125 | .release = single_release, | ||
126 | }; | ||
127 | |||
95 | static int default_affinity_show(struct seq_file *m, void *v) | 128 | static int default_affinity_show(struct seq_file *m, void *v) |
96 | { | 129 | { |
97 | seq_cpumask(m, irq_default_affinity); | 130 | seq_cpumask(m, irq_default_affinity); |
@@ -147,6 +180,26 @@ static const struct file_operations default_affinity_proc_fops = { | |||
147 | .release = single_release, | 180 | .release = single_release, |
148 | .write = default_affinity_write, | 181 | .write = default_affinity_write, |
149 | }; | 182 | }; |
183 | |||
184 | static int irq_node_proc_show(struct seq_file *m, void *v) | ||
185 | { | ||
186 | struct irq_desc *desc = irq_to_desc((long) m->private); | ||
187 | |||
188 | seq_printf(m, "%d\n", desc->node); | ||
189 | return 0; | ||
190 | } | ||
191 | |||
192 | static int irq_node_proc_open(struct inode *inode, struct file *file) | ||
193 | { | ||
194 | return single_open(file, irq_node_proc_show, PDE(inode)->data); | ||
195 | } | ||
196 | |||
197 | static const struct file_operations irq_node_proc_fops = { | ||
198 | .open = irq_node_proc_open, | ||
199 | .read = seq_read, | ||
200 | .llseek = seq_lseek, | ||
201 | .release = single_release, | ||
202 | }; | ||
150 | #endif | 203 | #endif |
151 | 204 | ||
152 | static int irq_spurious_proc_show(struct seq_file *m, void *v) | 205 | static int irq_spurious_proc_show(struct seq_file *m, void *v) |
@@ -231,6 +284,13 @@ void register_irq_proc(unsigned int irq, struct irq_desc *desc) | |||
231 | /* create /proc/irq/<irq>/smp_affinity */ | 284 | /* create /proc/irq/<irq>/smp_affinity */ |
232 | proc_create_data("smp_affinity", 0600, desc->dir, | 285 | proc_create_data("smp_affinity", 0600, desc->dir, |
233 | &irq_affinity_proc_fops, (void *)(long)irq); | 286 | &irq_affinity_proc_fops, (void *)(long)irq); |
287 | |||
288 | /* create /proc/irq/<irq>/affinity_hint */ | ||
289 | proc_create_data("affinity_hint", 0400, desc->dir, | ||
290 | &irq_affinity_hint_proc_fops, (void *)(long)irq); | ||
291 | |||
292 | proc_create_data("node", 0444, desc->dir, | ||
293 | &irq_node_proc_fops, (void *)(long)irq); | ||
234 | #endif | 294 | #endif |
235 | 295 | ||
236 | proc_create_data("spurious", 0444, desc->dir, | 296 | proc_create_data("spurious", 0444, desc->dir, |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 13aff293f4de..6f6d091b5757 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/init.h> | 16 | #include <linux/init.h> |
17 | #include <linux/seq_file.h> | 17 | #include <linux/seq_file.h> |
18 | #include <linux/fs.h> | 18 | #include <linux/fs.h> |
19 | #include <linux/kdb.h> | ||
19 | #include <linux/err.h> | 20 | #include <linux/err.h> |
20 | #include <linux/proc_fs.h> | 21 | #include <linux/proc_fs.h> |
21 | #include <linux/sched.h> /* for cond_resched */ | 22 | #include <linux/sched.h> /* for cond_resched */ |
@@ -516,6 +517,26 @@ static int kallsyms_open(struct inode *inode, struct file *file) | |||
516 | return ret; | 517 | return ret; |
517 | } | 518 | } |
518 | 519 | ||
520 | #ifdef CONFIG_KGDB_KDB | ||
521 | const char *kdb_walk_kallsyms(loff_t *pos) | ||
522 | { | ||
523 | static struct kallsym_iter kdb_walk_kallsyms_iter; | ||
524 | if (*pos == 0) { | ||
525 | memset(&kdb_walk_kallsyms_iter, 0, | ||
526 | sizeof(kdb_walk_kallsyms_iter)); | ||
527 | reset_iter(&kdb_walk_kallsyms_iter, 0); | ||
528 | } | ||
529 | while (1) { | ||
530 | if (!update_iter(&kdb_walk_kallsyms_iter, *pos)) | ||
531 | return NULL; | ||
532 | ++*pos; | ||
533 | /* Some debugging symbols have no name. Ignore them. */ | ||
534 | if (kdb_walk_kallsyms_iter.name[0]) | ||
535 | return kdb_walk_kallsyms_iter.name; | ||
536 | } | ||
537 | } | ||
538 | #endif /* CONFIG_KGDB_KDB */ | ||
539 | |||
519 | static const struct file_operations kallsyms_operations = { | 540 | static const struct file_operations kallsyms_operations = { |
520 | .open = kallsyms_open, | 541 | .open = kallsyms_open, |
521 | .read = seq_read, | 542 | .read = seq_read, |
diff --git a/kernel/kgdb.c b/kernel/kgdb.c deleted file mode 100644 index 11f3515ca83f..000000000000 --- a/kernel/kgdb.c +++ /dev/null | |||
@@ -1,1764 +0,0 @@ | |||
1 | /* | ||
2 | * KGDB stub. | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2008 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | #include <linux/pid_namespace.h> | ||
31 | #include <linux/clocksource.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/console.h> | ||
35 | #include <linux/threads.h> | ||
36 | #include <linux/uaccess.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/module.h> | ||
39 | #include <linux/ptrace.h> | ||
40 | #include <linux/reboot.h> | ||
41 | #include <linux/string.h> | ||
42 | #include <linux/delay.h> | ||
43 | #include <linux/sched.h> | ||
44 | #include <linux/sysrq.h> | ||
45 | #include <linux/init.h> | ||
46 | #include <linux/kgdb.h> | ||
47 | #include <linux/pid.h> | ||
48 | #include <linux/smp.h> | ||
49 | #include <linux/mm.h> | ||
50 | |||
51 | #include <asm/cacheflush.h> | ||
52 | #include <asm/byteorder.h> | ||
53 | #include <asm/atomic.h> | ||
54 | #include <asm/system.h> | ||
55 | #include <asm/unaligned.h> | ||
56 | |||
57 | static int kgdb_break_asap; | ||
58 | |||
59 | #define KGDB_MAX_THREAD_QUERY 17 | ||
60 | struct kgdb_state { | ||
61 | int ex_vector; | ||
62 | int signo; | ||
63 | int err_code; | ||
64 | int cpu; | ||
65 | int pass_exception; | ||
66 | unsigned long thr_query; | ||
67 | unsigned long threadid; | ||
68 | long kgdb_usethreadid; | ||
69 | struct pt_regs *linux_regs; | ||
70 | }; | ||
71 | |||
72 | /* Exception state values */ | ||
73 | #define DCPU_WANT_MASTER 0x1 /* Waiting to become a master kgdb cpu */ | ||
74 | #define DCPU_NEXT_MASTER 0x2 /* Transition from one master cpu to another */ | ||
75 | #define DCPU_IS_SLAVE 0x4 /* Slave cpu enter exception */ | ||
76 | #define DCPU_SSTEP 0x8 /* CPU is single stepping */ | ||
77 | |||
78 | static struct debuggerinfo_struct { | ||
79 | void *debuggerinfo; | ||
80 | struct task_struct *task; | ||
81 | int exception_state; | ||
82 | } kgdb_info[NR_CPUS]; | ||
83 | |||
84 | /** | ||
85 | * kgdb_connected - Is a host GDB connected to us? | ||
86 | */ | ||
87 | int kgdb_connected; | ||
88 | EXPORT_SYMBOL_GPL(kgdb_connected); | ||
89 | |||
90 | /* All the KGDB handlers are installed */ | ||
91 | static int kgdb_io_module_registered; | ||
92 | |||
93 | /* Guard for recursive entry */ | ||
94 | static int exception_level; | ||
95 | |||
96 | static struct kgdb_io *kgdb_io_ops; | ||
97 | static DEFINE_SPINLOCK(kgdb_registration_lock); | ||
98 | |||
99 | /* kgdb console driver is loaded */ | ||
100 | static int kgdb_con_registered; | ||
101 | /* determine if kgdb console output should be used */ | ||
102 | static int kgdb_use_con; | ||
103 | |||
104 | static int __init opt_kgdb_con(char *str) | ||
105 | { | ||
106 | kgdb_use_con = 1; | ||
107 | return 0; | ||
108 | } | ||
109 | |||
110 | early_param("kgdbcon", opt_kgdb_con); | ||
111 | |||
112 | module_param(kgdb_use_con, int, 0644); | ||
113 | |||
114 | /* | ||
115 | * Holds information about breakpoints in a kernel. These breakpoints are | ||
116 | * added and removed by gdb. | ||
117 | */ | ||
118 | static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { | ||
119 | [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } | ||
120 | }; | ||
121 | |||
122 | /* | ||
123 | * The CPU# of the active CPU, or -1 if none: | ||
124 | */ | ||
125 | atomic_t kgdb_active = ATOMIC_INIT(-1); | ||
126 | |||
127 | /* | ||
128 | * We use NR_CPUs not PERCPU, in case kgdb is used to debug early | ||
129 | * bootup code (which might not have percpu set up yet): | ||
130 | */ | ||
131 | static atomic_t passive_cpu_wait[NR_CPUS]; | ||
132 | static atomic_t cpu_in_kgdb[NR_CPUS]; | ||
133 | atomic_t kgdb_setting_breakpoint; | ||
134 | |||
135 | struct task_struct *kgdb_usethread; | ||
136 | struct task_struct *kgdb_contthread; | ||
137 | |||
138 | int kgdb_single_step; | ||
139 | pid_t kgdb_sstep_pid; | ||
140 | |||
141 | /* Our I/O buffers. */ | ||
142 | static char remcom_in_buffer[BUFMAX]; | ||
143 | static char remcom_out_buffer[BUFMAX]; | ||
144 | |||
145 | /* Storage for the registers, in GDB format. */ | ||
146 | static unsigned long gdb_regs[(NUMREGBYTES + | ||
147 | sizeof(unsigned long) - 1) / | ||
148 | sizeof(unsigned long)]; | ||
149 | |||
150 | /* to keep track of the CPU which is doing the single stepping*/ | ||
151 | atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); | ||
152 | |||
153 | /* | ||
154 | * If you are debugging a problem where roundup (the collection of | ||
155 | * all other CPUs) is a problem [this should be extremely rare], | ||
156 | * then use the nokgdbroundup option to avoid roundup. In that case | ||
157 | * the other CPUs might interfere with your debugging context, so | ||
158 | * use this with care: | ||
159 | */ | ||
160 | static int kgdb_do_roundup = 1; | ||
161 | |||
162 | static int __init opt_nokgdbroundup(char *str) | ||
163 | { | ||
164 | kgdb_do_roundup = 0; | ||
165 | |||
166 | return 0; | ||
167 | } | ||
168 | |||
169 | early_param("nokgdbroundup", opt_nokgdbroundup); | ||
170 | |||
171 | /* | ||
172 | * Finally, some KGDB code :-) | ||
173 | */ | ||
174 | |||
175 | /* | ||
176 | * Weak aliases for breakpoint management, | ||
177 | * can be overriden by architectures when needed: | ||
178 | */ | ||
179 | int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | ||
180 | { | ||
181 | int err; | ||
182 | |||
183 | err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); | ||
184 | if (err) | ||
185 | return err; | ||
186 | |||
187 | return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, | ||
188 | BREAK_INSTR_SIZE); | ||
189 | } | ||
190 | |||
191 | int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | ||
192 | { | ||
193 | return probe_kernel_write((char *)addr, | ||
194 | (char *)bundle, BREAK_INSTR_SIZE); | ||
195 | } | ||
196 | |||
197 | int __weak kgdb_validate_break_address(unsigned long addr) | ||
198 | { | ||
199 | char tmp_variable[BREAK_INSTR_SIZE]; | ||
200 | int err; | ||
201 | /* Validate setting the breakpoint and then removing it. In the | ||
202 | * remove fails, the kernel needs to emit a bad message because we | ||
203 | * are deep trouble not being able to put things back the way we | ||
204 | * found them. | ||
205 | */ | ||
206 | err = kgdb_arch_set_breakpoint(addr, tmp_variable); | ||
207 | if (err) | ||
208 | return err; | ||
209 | err = kgdb_arch_remove_breakpoint(addr, tmp_variable); | ||
210 | if (err) | ||
211 | printk(KERN_ERR "KGDB: Critical breakpoint error, kernel " | ||
212 | "memory destroyed at: %lx", addr); | ||
213 | return err; | ||
214 | } | ||
215 | |||
216 | unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) | ||
217 | { | ||
218 | return instruction_pointer(regs); | ||
219 | } | ||
220 | |||
221 | int __weak kgdb_arch_init(void) | ||
222 | { | ||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | int __weak kgdb_skipexception(int exception, struct pt_regs *regs) | ||
227 | { | ||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | void __weak | ||
232 | kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) | ||
233 | { | ||
234 | return; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. | ||
239 | * @regs: Current &struct pt_regs. | ||
240 | * | ||
241 | * This function will be called if the particular architecture must | ||
242 | * disable hardware debugging while it is processing gdb packets or | ||
243 | * handling exception. | ||
244 | */ | ||
245 | void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | ||
246 | { | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * GDB remote protocol parser: | ||
251 | */ | ||
252 | |||
253 | static int hex(char ch) | ||
254 | { | ||
255 | if ((ch >= 'a') && (ch <= 'f')) | ||
256 | return ch - 'a' + 10; | ||
257 | if ((ch >= '0') && (ch <= '9')) | ||
258 | return ch - '0'; | ||
259 | if ((ch >= 'A') && (ch <= 'F')) | ||
260 | return ch - 'A' + 10; | ||
261 | return -1; | ||
262 | } | ||
263 | |||
264 | /* scan for the sequence $<data>#<checksum> */ | ||
265 | static void get_packet(char *buffer) | ||
266 | { | ||
267 | unsigned char checksum; | ||
268 | unsigned char xmitcsum; | ||
269 | int count; | ||
270 | char ch; | ||
271 | |||
272 | do { | ||
273 | /* | ||
274 | * Spin and wait around for the start character, ignore all | ||
275 | * other characters: | ||
276 | */ | ||
277 | while ((ch = (kgdb_io_ops->read_char())) != '$') | ||
278 | /* nothing */; | ||
279 | |||
280 | kgdb_connected = 1; | ||
281 | checksum = 0; | ||
282 | xmitcsum = -1; | ||
283 | |||
284 | count = 0; | ||
285 | |||
286 | /* | ||
287 | * now, read until a # or end of buffer is found: | ||
288 | */ | ||
289 | while (count < (BUFMAX - 1)) { | ||
290 | ch = kgdb_io_ops->read_char(); | ||
291 | if (ch == '#') | ||
292 | break; | ||
293 | checksum = checksum + ch; | ||
294 | buffer[count] = ch; | ||
295 | count = count + 1; | ||
296 | } | ||
297 | buffer[count] = 0; | ||
298 | |||
299 | if (ch == '#') { | ||
300 | xmitcsum = hex(kgdb_io_ops->read_char()) << 4; | ||
301 | xmitcsum += hex(kgdb_io_ops->read_char()); | ||
302 | |||
303 | if (checksum != xmitcsum) | ||
304 | /* failed checksum */ | ||
305 | kgdb_io_ops->write_char('-'); | ||
306 | else | ||
307 | /* successful transfer */ | ||
308 | kgdb_io_ops->write_char('+'); | ||
309 | if (kgdb_io_ops->flush) | ||
310 | kgdb_io_ops->flush(); | ||
311 | } | ||
312 | } while (checksum != xmitcsum); | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * Send the packet in buffer. | ||
317 | * Check for gdb connection if asked for. | ||
318 | */ | ||
319 | static void put_packet(char *buffer) | ||
320 | { | ||
321 | unsigned char checksum; | ||
322 | int count; | ||
323 | char ch; | ||
324 | |||
325 | /* | ||
326 | * $<packet info>#<checksum>. | ||
327 | */ | ||
328 | while (1) { | ||
329 | kgdb_io_ops->write_char('$'); | ||
330 | checksum = 0; | ||
331 | count = 0; | ||
332 | |||
333 | while ((ch = buffer[count])) { | ||
334 | kgdb_io_ops->write_char(ch); | ||
335 | checksum += ch; | ||
336 | count++; | ||
337 | } | ||
338 | |||
339 | kgdb_io_ops->write_char('#'); | ||
340 | kgdb_io_ops->write_char(hex_asc_hi(checksum)); | ||
341 | kgdb_io_ops->write_char(hex_asc_lo(checksum)); | ||
342 | if (kgdb_io_ops->flush) | ||
343 | kgdb_io_ops->flush(); | ||
344 | |||
345 | /* Now see what we get in reply. */ | ||
346 | ch = kgdb_io_ops->read_char(); | ||
347 | |||
348 | if (ch == 3) | ||
349 | ch = kgdb_io_ops->read_char(); | ||
350 | |||
351 | /* If we get an ACK, we are done. */ | ||
352 | if (ch == '+') | ||
353 | return; | ||
354 | |||
355 | /* | ||
356 | * If we get the start of another packet, this means | ||
357 | * that GDB is attempting to reconnect. We will NAK | ||
358 | * the packet being sent, and stop trying to send this | ||
359 | * packet. | ||
360 | */ | ||
361 | if (ch == '$') { | ||
362 | kgdb_io_ops->write_char('-'); | ||
363 | if (kgdb_io_ops->flush) | ||
364 | kgdb_io_ops->flush(); | ||
365 | return; | ||
366 | } | ||
367 | } | ||
368 | } | ||
369 | |||
370 | /* | ||
371 | * Convert the memory pointed to by mem into hex, placing result in buf. | ||
372 | * Return a pointer to the last char put in buf (null). May return an error. | ||
373 | */ | ||
374 | int kgdb_mem2hex(char *mem, char *buf, int count) | ||
375 | { | ||
376 | char *tmp; | ||
377 | int err; | ||
378 | |||
379 | /* | ||
380 | * We use the upper half of buf as an intermediate buffer for the | ||
381 | * raw memory copy. Hex conversion will work against this one. | ||
382 | */ | ||
383 | tmp = buf + count; | ||
384 | |||
385 | err = probe_kernel_read(tmp, mem, count); | ||
386 | if (!err) { | ||
387 | while (count > 0) { | ||
388 | buf = pack_hex_byte(buf, *tmp); | ||
389 | tmp++; | ||
390 | count--; | ||
391 | } | ||
392 | |||
393 | *buf = 0; | ||
394 | } | ||
395 | |||
396 | return err; | ||
397 | } | ||
398 | |||
399 | /* | ||
400 | * Copy the binary array pointed to by buf into mem. Fix $, #, and | ||
401 | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. | ||
402 | * The input buf is overwitten with the result to write to mem. | ||
403 | */ | ||
404 | static int kgdb_ebin2mem(char *buf, char *mem, int count) | ||
405 | { | ||
406 | int size = 0; | ||
407 | char *c = buf; | ||
408 | |||
409 | while (count-- > 0) { | ||
410 | c[size] = *buf++; | ||
411 | if (c[size] == 0x7d) | ||
412 | c[size] = *buf++ ^ 0x20; | ||
413 | size++; | ||
414 | } | ||
415 | |||
416 | return probe_kernel_write(mem, c, size); | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * Convert the hex array pointed to by buf into binary to be placed in mem. | ||
421 | * Return a pointer to the character AFTER the last byte written. | ||
422 | * May return an error. | ||
423 | */ | ||
424 | int kgdb_hex2mem(char *buf, char *mem, int count) | ||
425 | { | ||
426 | char *tmp_raw; | ||
427 | char *tmp_hex; | ||
428 | |||
429 | /* | ||
430 | * We use the upper half of buf as an intermediate buffer for the | ||
431 | * raw memory that is converted from hex. | ||
432 | */ | ||
433 | tmp_raw = buf + count * 2; | ||
434 | |||
435 | tmp_hex = tmp_raw - 1; | ||
436 | while (tmp_hex >= buf) { | ||
437 | tmp_raw--; | ||
438 | *tmp_raw = hex(*tmp_hex--); | ||
439 | *tmp_raw |= hex(*tmp_hex--) << 4; | ||
440 | } | ||
441 | |||
442 | return probe_kernel_write(mem, tmp_raw, count); | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * While we find nice hex chars, build a long_val. | ||
447 | * Return number of chars processed. | ||
448 | */ | ||
449 | int kgdb_hex2long(char **ptr, unsigned long *long_val) | ||
450 | { | ||
451 | int hex_val; | ||
452 | int num = 0; | ||
453 | int negate = 0; | ||
454 | |||
455 | *long_val = 0; | ||
456 | |||
457 | if (**ptr == '-') { | ||
458 | negate = 1; | ||
459 | (*ptr)++; | ||
460 | } | ||
461 | while (**ptr) { | ||
462 | hex_val = hex(**ptr); | ||
463 | if (hex_val < 0) | ||
464 | break; | ||
465 | |||
466 | *long_val = (*long_val << 4) | hex_val; | ||
467 | num++; | ||
468 | (*ptr)++; | ||
469 | } | ||
470 | |||
471 | if (negate) | ||
472 | *long_val = -*long_val; | ||
473 | |||
474 | return num; | ||
475 | } | ||
476 | |||
477 | /* Write memory due to an 'M' or 'X' packet. */ | ||
478 | static int write_mem_msg(int binary) | ||
479 | { | ||
480 | char *ptr = &remcom_in_buffer[1]; | ||
481 | unsigned long addr; | ||
482 | unsigned long length; | ||
483 | int err; | ||
484 | |||
485 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | ||
486 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | ||
487 | if (binary) | ||
488 | err = kgdb_ebin2mem(ptr, (char *)addr, length); | ||
489 | else | ||
490 | err = kgdb_hex2mem(ptr, (char *)addr, length); | ||
491 | if (err) | ||
492 | return err; | ||
493 | if (CACHE_FLUSH_IS_SAFE) | ||
494 | flush_icache_range(addr, addr + length); | ||
495 | return 0; | ||
496 | } | ||
497 | |||
498 | return -EINVAL; | ||
499 | } | ||
500 | |||
501 | static void error_packet(char *pkt, int error) | ||
502 | { | ||
503 | error = -error; | ||
504 | pkt[0] = 'E'; | ||
505 | pkt[1] = hex_asc[(error / 10)]; | ||
506 | pkt[2] = hex_asc[(error % 10)]; | ||
507 | pkt[3] = '\0'; | ||
508 | } | ||
509 | |||
510 | /* | ||
511 | * Thread ID accessors. We represent a flat TID space to GDB, where | ||
512 | * the per CPU idle threads (which under Linux all have PID 0) are | ||
513 | * remapped to negative TIDs. | ||
514 | */ | ||
515 | |||
516 | #define BUF_THREAD_ID_SIZE 16 | ||
517 | |||
518 | static char *pack_threadid(char *pkt, unsigned char *id) | ||
519 | { | ||
520 | char *limit; | ||
521 | |||
522 | limit = pkt + BUF_THREAD_ID_SIZE; | ||
523 | while (pkt < limit) | ||
524 | pkt = pack_hex_byte(pkt, *id++); | ||
525 | |||
526 | return pkt; | ||
527 | } | ||
528 | |||
529 | static void int_to_threadref(unsigned char *id, int value) | ||
530 | { | ||
531 | unsigned char *scan; | ||
532 | int i = 4; | ||
533 | |||
534 | scan = (unsigned char *)id; | ||
535 | while (i--) | ||
536 | *scan++ = 0; | ||
537 | put_unaligned_be32(value, scan); | ||
538 | } | ||
539 | |||
540 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | ||
541 | { | ||
542 | /* | ||
543 | * Non-positive TIDs are remapped to the cpu shadow information | ||
544 | */ | ||
545 | if (tid == 0 || tid == -1) | ||
546 | tid = -atomic_read(&kgdb_active) - 2; | ||
547 | if (tid < -1 && tid > -NR_CPUS - 2) { | ||
548 | if (kgdb_info[-tid - 2].task) | ||
549 | return kgdb_info[-tid - 2].task; | ||
550 | else | ||
551 | return idle_task(-tid - 2); | ||
552 | } | ||
553 | if (tid <= 0) { | ||
554 | printk(KERN_ERR "KGDB: Internal thread select error\n"); | ||
555 | dump_stack(); | ||
556 | return NULL; | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * find_task_by_pid_ns() does not take the tasklist lock anymore | ||
561 | * but is nicely RCU locked - hence is a pretty resilient | ||
562 | * thing to use: | ||
563 | */ | ||
564 | return find_task_by_pid_ns(tid, &init_pid_ns); | ||
565 | } | ||
566 | |||
567 | /* | ||
568 | * Some architectures need cache flushes when we set/clear a | ||
569 | * breakpoint: | ||
570 | */ | ||
571 | static void kgdb_flush_swbreak_addr(unsigned long addr) | ||
572 | { | ||
573 | if (!CACHE_FLUSH_IS_SAFE) | ||
574 | return; | ||
575 | |||
576 | if (current->mm && current->mm->mmap_cache) { | ||
577 | flush_cache_range(current->mm->mmap_cache, | ||
578 | addr, addr + BREAK_INSTR_SIZE); | ||
579 | } | ||
580 | /* Force flush instruction cache if it was outside the mm */ | ||
581 | flush_icache_range(addr, addr + BREAK_INSTR_SIZE); | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | * SW breakpoint management: | ||
586 | */ | ||
587 | static int kgdb_activate_sw_breakpoints(void) | ||
588 | { | ||
589 | unsigned long addr; | ||
590 | int error; | ||
591 | int ret = 0; | ||
592 | int i; | ||
593 | |||
594 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
595 | if (kgdb_break[i].state != BP_SET) | ||
596 | continue; | ||
597 | |||
598 | addr = kgdb_break[i].bpt_addr; | ||
599 | error = kgdb_arch_set_breakpoint(addr, | ||
600 | kgdb_break[i].saved_instr); | ||
601 | if (error) { | ||
602 | ret = error; | ||
603 | printk(KERN_INFO "KGDB: BP install failed: %lx", addr); | ||
604 | continue; | ||
605 | } | ||
606 | |||
607 | kgdb_flush_swbreak_addr(addr); | ||
608 | kgdb_break[i].state = BP_ACTIVE; | ||
609 | } | ||
610 | return ret; | ||
611 | } | ||
612 | |||
613 | static int kgdb_set_sw_break(unsigned long addr) | ||
614 | { | ||
615 | int err = kgdb_validate_break_address(addr); | ||
616 | int breakno = -1; | ||
617 | int i; | ||
618 | |||
619 | if (err) | ||
620 | return err; | ||
621 | |||
622 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
623 | if ((kgdb_break[i].state == BP_SET) && | ||
624 | (kgdb_break[i].bpt_addr == addr)) | ||
625 | return -EEXIST; | ||
626 | } | ||
627 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
628 | if (kgdb_break[i].state == BP_REMOVED && | ||
629 | kgdb_break[i].bpt_addr == addr) { | ||
630 | breakno = i; | ||
631 | break; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | if (breakno == -1) { | ||
636 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
637 | if (kgdb_break[i].state == BP_UNDEFINED) { | ||
638 | breakno = i; | ||
639 | break; | ||
640 | } | ||
641 | } | ||
642 | } | ||
643 | |||
644 | if (breakno == -1) | ||
645 | return -E2BIG; | ||
646 | |||
647 | kgdb_break[breakno].state = BP_SET; | ||
648 | kgdb_break[breakno].type = BP_BREAKPOINT; | ||
649 | kgdb_break[breakno].bpt_addr = addr; | ||
650 | |||
651 | return 0; | ||
652 | } | ||
653 | |||
654 | static int kgdb_deactivate_sw_breakpoints(void) | ||
655 | { | ||
656 | unsigned long addr; | ||
657 | int error; | ||
658 | int ret = 0; | ||
659 | int i; | ||
660 | |||
661 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
662 | if (kgdb_break[i].state != BP_ACTIVE) | ||
663 | continue; | ||
664 | addr = kgdb_break[i].bpt_addr; | ||
665 | error = kgdb_arch_remove_breakpoint(addr, | ||
666 | kgdb_break[i].saved_instr); | ||
667 | if (error) { | ||
668 | printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr); | ||
669 | ret = error; | ||
670 | } | ||
671 | |||
672 | kgdb_flush_swbreak_addr(addr); | ||
673 | kgdb_break[i].state = BP_SET; | ||
674 | } | ||
675 | return ret; | ||
676 | } | ||
677 | |||
678 | static int kgdb_remove_sw_break(unsigned long addr) | ||
679 | { | ||
680 | int i; | ||
681 | |||
682 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
683 | if ((kgdb_break[i].state == BP_SET) && | ||
684 | (kgdb_break[i].bpt_addr == addr)) { | ||
685 | kgdb_break[i].state = BP_REMOVED; | ||
686 | return 0; | ||
687 | } | ||
688 | } | ||
689 | return -ENOENT; | ||
690 | } | ||
691 | |||
692 | int kgdb_isremovedbreak(unsigned long addr) | ||
693 | { | ||
694 | int i; | ||
695 | |||
696 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
697 | if ((kgdb_break[i].state == BP_REMOVED) && | ||
698 | (kgdb_break[i].bpt_addr == addr)) | ||
699 | return 1; | ||
700 | } | ||
701 | return 0; | ||
702 | } | ||
703 | |||
704 | static int remove_all_break(void) | ||
705 | { | ||
706 | unsigned long addr; | ||
707 | int error; | ||
708 | int i; | ||
709 | |||
710 | /* Clear memory breakpoints. */ | ||
711 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
712 | if (kgdb_break[i].state != BP_ACTIVE) | ||
713 | goto setundefined; | ||
714 | addr = kgdb_break[i].bpt_addr; | ||
715 | error = kgdb_arch_remove_breakpoint(addr, | ||
716 | kgdb_break[i].saved_instr); | ||
717 | if (error) | ||
718 | printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n", | ||
719 | addr); | ||
720 | setundefined: | ||
721 | kgdb_break[i].state = BP_UNDEFINED; | ||
722 | } | ||
723 | |||
724 | /* Clear hardware breakpoints. */ | ||
725 | if (arch_kgdb_ops.remove_all_hw_break) | ||
726 | arch_kgdb_ops.remove_all_hw_break(); | ||
727 | |||
728 | return 0; | ||
729 | } | ||
730 | |||
731 | /* | ||
732 | * Remap normal tasks to their real PID, | ||
733 | * CPU shadow threads are mapped to -CPU - 2 | ||
734 | */ | ||
735 | static inline int shadow_pid(int realpid) | ||
736 | { | ||
737 | if (realpid) | ||
738 | return realpid; | ||
739 | |||
740 | return -raw_smp_processor_id() - 2; | ||
741 | } | ||
742 | |||
743 | static char gdbmsgbuf[BUFMAX + 1]; | ||
744 | |||
745 | static void kgdb_msg_write(const char *s, int len) | ||
746 | { | ||
747 | char *bufptr; | ||
748 | int wcount; | ||
749 | int i; | ||
750 | |||
751 | /* 'O'utput */ | ||
752 | gdbmsgbuf[0] = 'O'; | ||
753 | |||
754 | /* Fill and send buffers... */ | ||
755 | while (len > 0) { | ||
756 | bufptr = gdbmsgbuf + 1; | ||
757 | |||
758 | /* Calculate how many this time */ | ||
759 | if ((len << 1) > (BUFMAX - 2)) | ||
760 | wcount = (BUFMAX - 2) >> 1; | ||
761 | else | ||
762 | wcount = len; | ||
763 | |||
764 | /* Pack in hex chars */ | ||
765 | for (i = 0; i < wcount; i++) | ||
766 | bufptr = pack_hex_byte(bufptr, s[i]); | ||
767 | *bufptr = '\0'; | ||
768 | |||
769 | /* Move up */ | ||
770 | s += wcount; | ||
771 | len -= wcount; | ||
772 | |||
773 | /* Write packet */ | ||
774 | put_packet(gdbmsgbuf); | ||
775 | } | ||
776 | } | ||
777 | |||
778 | /* | ||
779 | * Return true if there is a valid kgdb I/O module. Also if no | ||
780 | * debugger is attached a message can be printed to the console about | ||
781 | * waiting for the debugger to attach. | ||
782 | * | ||
783 | * The print_wait argument is only to be true when called from inside | ||
784 | * the core kgdb_handle_exception, because it will wait for the | ||
785 | * debugger to attach. | ||
786 | */ | ||
787 | static int kgdb_io_ready(int print_wait) | ||
788 | { | ||
789 | if (!kgdb_io_ops) | ||
790 | return 0; | ||
791 | if (kgdb_connected) | ||
792 | return 1; | ||
793 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
794 | return 1; | ||
795 | if (print_wait) | ||
796 | printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); | ||
797 | return 1; | ||
798 | } | ||
799 | |||
800 | /* | ||
801 | * All the functions that start with gdb_cmd are the various | ||
802 | * operations to implement the handlers for the gdbserial protocol | ||
803 | * where KGDB is communicating with an external debugger | ||
804 | */ | ||
805 | |||
806 | /* Handle the '?' status packets */ | ||
807 | static void gdb_cmd_status(struct kgdb_state *ks) | ||
808 | { | ||
809 | /* | ||
810 | * We know that this packet is only sent | ||
811 | * during initial connect. So to be safe, | ||
812 | * we clear out our breakpoints now in case | ||
813 | * GDB is reconnecting. | ||
814 | */ | ||
815 | remove_all_break(); | ||
816 | |||
817 | remcom_out_buffer[0] = 'S'; | ||
818 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | ||
819 | } | ||
820 | |||
821 | /* Handle the 'g' get registers request */ | ||
822 | static void gdb_cmd_getregs(struct kgdb_state *ks) | ||
823 | { | ||
824 | struct task_struct *thread; | ||
825 | void *local_debuggerinfo; | ||
826 | int i; | ||
827 | |||
828 | thread = kgdb_usethread; | ||
829 | if (!thread) { | ||
830 | thread = kgdb_info[ks->cpu].task; | ||
831 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | ||
832 | } else { | ||
833 | local_debuggerinfo = NULL; | ||
834 | for_each_online_cpu(i) { | ||
835 | /* | ||
836 | * Try to find the task on some other | ||
837 | * or possibly this node if we do not | ||
838 | * find the matching task then we try | ||
839 | * to approximate the results. | ||
840 | */ | ||
841 | if (thread == kgdb_info[i].task) | ||
842 | local_debuggerinfo = kgdb_info[i].debuggerinfo; | ||
843 | } | ||
844 | } | ||
845 | |||
846 | /* | ||
847 | * All threads that don't have debuggerinfo should be | ||
848 | * in schedule() sleeping, since all other CPUs | ||
849 | * are in kgdb_wait, and thus have debuggerinfo. | ||
850 | */ | ||
851 | if (local_debuggerinfo) { | ||
852 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | ||
853 | } else { | ||
854 | /* | ||
855 | * Pull stuff saved during switch_to; nothing | ||
856 | * else is accessible (or even particularly | ||
857 | * relevant). | ||
858 | * | ||
859 | * This should be enough for a stack trace. | ||
860 | */ | ||
861 | sleeping_thread_to_gdb_regs(gdb_regs, thread); | ||
862 | } | ||
863 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | ||
864 | } | ||
865 | |||
866 | /* Handle the 'G' set registers request */ | ||
867 | static void gdb_cmd_setregs(struct kgdb_state *ks) | ||
868 | { | ||
869 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | ||
870 | |||
871 | if (kgdb_usethread && kgdb_usethread != current) { | ||
872 | error_packet(remcom_out_buffer, -EINVAL); | ||
873 | } else { | ||
874 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | ||
875 | strcpy(remcom_out_buffer, "OK"); | ||
876 | } | ||
877 | } | ||
878 | |||
879 | /* Handle the 'm' memory read bytes */ | ||
880 | static void gdb_cmd_memread(struct kgdb_state *ks) | ||
881 | { | ||
882 | char *ptr = &remcom_in_buffer[1]; | ||
883 | unsigned long length; | ||
884 | unsigned long addr; | ||
885 | int err; | ||
886 | |||
887 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | ||
888 | kgdb_hex2long(&ptr, &length) > 0) { | ||
889 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | ||
890 | if (err) | ||
891 | error_packet(remcom_out_buffer, err); | ||
892 | } else { | ||
893 | error_packet(remcom_out_buffer, -EINVAL); | ||
894 | } | ||
895 | } | ||
896 | |||
897 | /* Handle the 'M' memory write bytes */ | ||
898 | static void gdb_cmd_memwrite(struct kgdb_state *ks) | ||
899 | { | ||
900 | int err = write_mem_msg(0); | ||
901 | |||
902 | if (err) | ||
903 | error_packet(remcom_out_buffer, err); | ||
904 | else | ||
905 | strcpy(remcom_out_buffer, "OK"); | ||
906 | } | ||
907 | |||
908 | /* Handle the 'X' memory binary write bytes */ | ||
909 | static void gdb_cmd_binwrite(struct kgdb_state *ks) | ||
910 | { | ||
911 | int err = write_mem_msg(1); | ||
912 | |||
913 | if (err) | ||
914 | error_packet(remcom_out_buffer, err); | ||
915 | else | ||
916 | strcpy(remcom_out_buffer, "OK"); | ||
917 | } | ||
918 | |||
919 | /* Handle the 'D' or 'k', detach or kill packets */ | ||
920 | static void gdb_cmd_detachkill(struct kgdb_state *ks) | ||
921 | { | ||
922 | int error; | ||
923 | |||
924 | /* The detach case */ | ||
925 | if (remcom_in_buffer[0] == 'D') { | ||
926 | error = remove_all_break(); | ||
927 | if (error < 0) { | ||
928 | error_packet(remcom_out_buffer, error); | ||
929 | } else { | ||
930 | strcpy(remcom_out_buffer, "OK"); | ||
931 | kgdb_connected = 0; | ||
932 | } | ||
933 | put_packet(remcom_out_buffer); | ||
934 | } else { | ||
935 | /* | ||
936 | * Assume the kill case, with no exit code checking, | ||
937 | * trying to force detach the debugger: | ||
938 | */ | ||
939 | remove_all_break(); | ||
940 | kgdb_connected = 0; | ||
941 | } | ||
942 | } | ||
943 | |||
944 | /* Handle the 'R' reboot packets */ | ||
945 | static int gdb_cmd_reboot(struct kgdb_state *ks) | ||
946 | { | ||
947 | /* For now, only honor R0 */ | ||
948 | if (strcmp(remcom_in_buffer, "R0") == 0) { | ||
949 | printk(KERN_CRIT "Executing emergency reboot\n"); | ||
950 | strcpy(remcom_out_buffer, "OK"); | ||
951 | put_packet(remcom_out_buffer); | ||
952 | |||
953 | /* | ||
954 | * Execution should not return from | ||
955 | * machine_emergency_restart() | ||
956 | */ | ||
957 | machine_emergency_restart(); | ||
958 | kgdb_connected = 0; | ||
959 | |||
960 | return 1; | ||
961 | } | ||
962 | return 0; | ||
963 | } | ||
964 | |||
965 | /* Handle the 'q' query packets */ | ||
966 | static void gdb_cmd_query(struct kgdb_state *ks) | ||
967 | { | ||
968 | struct task_struct *g; | ||
969 | struct task_struct *p; | ||
970 | unsigned char thref[8]; | ||
971 | char *ptr; | ||
972 | int i; | ||
973 | int cpu; | ||
974 | int finished = 0; | ||
975 | |||
976 | switch (remcom_in_buffer[1]) { | ||
977 | case 's': | ||
978 | case 'f': | ||
979 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { | ||
980 | error_packet(remcom_out_buffer, -EINVAL); | ||
981 | break; | ||
982 | } | ||
983 | |||
984 | i = 0; | ||
985 | remcom_out_buffer[0] = 'm'; | ||
986 | ptr = remcom_out_buffer + 1; | ||
987 | if (remcom_in_buffer[1] == 'f') { | ||
988 | /* Each cpu is a shadow thread */ | ||
989 | for_each_online_cpu(cpu) { | ||
990 | ks->thr_query = 0; | ||
991 | int_to_threadref(thref, -cpu - 2); | ||
992 | pack_threadid(ptr, thref); | ||
993 | ptr += BUF_THREAD_ID_SIZE; | ||
994 | *(ptr++) = ','; | ||
995 | i++; | ||
996 | } | ||
997 | } | ||
998 | |||
999 | do_each_thread(g, p) { | ||
1000 | if (i >= ks->thr_query && !finished) { | ||
1001 | int_to_threadref(thref, p->pid); | ||
1002 | pack_threadid(ptr, thref); | ||
1003 | ptr += BUF_THREAD_ID_SIZE; | ||
1004 | *(ptr++) = ','; | ||
1005 | ks->thr_query++; | ||
1006 | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) | ||
1007 | finished = 1; | ||
1008 | } | ||
1009 | i++; | ||
1010 | } while_each_thread(g, p); | ||
1011 | |||
1012 | *(--ptr) = '\0'; | ||
1013 | break; | ||
1014 | |||
1015 | case 'C': | ||
1016 | /* Current thread id */ | ||
1017 | strcpy(remcom_out_buffer, "QC"); | ||
1018 | ks->threadid = shadow_pid(current->pid); | ||
1019 | int_to_threadref(thref, ks->threadid); | ||
1020 | pack_threadid(remcom_out_buffer + 2, thref); | ||
1021 | break; | ||
1022 | case 'T': | ||
1023 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { | ||
1024 | error_packet(remcom_out_buffer, -EINVAL); | ||
1025 | break; | ||
1026 | } | ||
1027 | ks->threadid = 0; | ||
1028 | ptr = remcom_in_buffer + 17; | ||
1029 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1030 | if (!getthread(ks->linux_regs, ks->threadid)) { | ||
1031 | error_packet(remcom_out_buffer, -EINVAL); | ||
1032 | break; | ||
1033 | } | ||
1034 | if ((int)ks->threadid > 0) { | ||
1035 | kgdb_mem2hex(getthread(ks->linux_regs, | ||
1036 | ks->threadid)->comm, | ||
1037 | remcom_out_buffer, 16); | ||
1038 | } else { | ||
1039 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | ||
1040 | |||
1041 | sprintf(tmpstr, "shadowCPU%d", | ||
1042 | (int)(-ks->threadid - 2)); | ||
1043 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | ||
1044 | } | ||
1045 | break; | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | /* Handle the 'H' task query packets */ | ||
1050 | static void gdb_cmd_task(struct kgdb_state *ks) | ||
1051 | { | ||
1052 | struct task_struct *thread; | ||
1053 | char *ptr; | ||
1054 | |||
1055 | switch (remcom_in_buffer[1]) { | ||
1056 | case 'g': | ||
1057 | ptr = &remcom_in_buffer[2]; | ||
1058 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1059 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1060 | if (!thread && ks->threadid > 0) { | ||
1061 | error_packet(remcom_out_buffer, -EINVAL); | ||
1062 | break; | ||
1063 | } | ||
1064 | kgdb_usethread = thread; | ||
1065 | ks->kgdb_usethreadid = ks->threadid; | ||
1066 | strcpy(remcom_out_buffer, "OK"); | ||
1067 | break; | ||
1068 | case 'c': | ||
1069 | ptr = &remcom_in_buffer[2]; | ||
1070 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1071 | if (!ks->threadid) { | ||
1072 | kgdb_contthread = NULL; | ||
1073 | } else { | ||
1074 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1075 | if (!thread && ks->threadid > 0) { | ||
1076 | error_packet(remcom_out_buffer, -EINVAL); | ||
1077 | break; | ||
1078 | } | ||
1079 | kgdb_contthread = thread; | ||
1080 | } | ||
1081 | strcpy(remcom_out_buffer, "OK"); | ||
1082 | break; | ||
1083 | } | ||
1084 | } | ||
1085 | |||
1086 | /* Handle the 'T' thread query packets */ | ||
1087 | static void gdb_cmd_thread(struct kgdb_state *ks) | ||
1088 | { | ||
1089 | char *ptr = &remcom_in_buffer[1]; | ||
1090 | struct task_struct *thread; | ||
1091 | |||
1092 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1093 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1094 | if (thread) | ||
1095 | strcpy(remcom_out_buffer, "OK"); | ||
1096 | else | ||
1097 | error_packet(remcom_out_buffer, -EINVAL); | ||
1098 | } | ||
1099 | |||
1100 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | ||
1101 | static void gdb_cmd_break(struct kgdb_state *ks) | ||
1102 | { | ||
1103 | /* | ||
1104 | * Since GDB-5.3, it's been drafted that '0' is a software | ||
1105 | * breakpoint, '1' is a hardware breakpoint, so let's do that. | ||
1106 | */ | ||
1107 | char *bpt_type = &remcom_in_buffer[1]; | ||
1108 | char *ptr = &remcom_in_buffer[2]; | ||
1109 | unsigned long addr; | ||
1110 | unsigned long length; | ||
1111 | int error = 0; | ||
1112 | |||
1113 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | ||
1114 | /* Unsupported */ | ||
1115 | if (*bpt_type > '4') | ||
1116 | return; | ||
1117 | } else { | ||
1118 | if (*bpt_type != '0' && *bpt_type != '1') | ||
1119 | /* Unsupported. */ | ||
1120 | return; | ||
1121 | } | ||
1122 | |||
1123 | /* | ||
1124 | * Test if this is a hardware breakpoint, and | ||
1125 | * if we support it: | ||
1126 | */ | ||
1127 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | ||
1128 | /* Unsupported. */ | ||
1129 | return; | ||
1130 | |||
1131 | if (*(ptr++) != ',') { | ||
1132 | error_packet(remcom_out_buffer, -EINVAL); | ||
1133 | return; | ||
1134 | } | ||
1135 | if (!kgdb_hex2long(&ptr, &addr)) { | ||
1136 | error_packet(remcom_out_buffer, -EINVAL); | ||
1137 | return; | ||
1138 | } | ||
1139 | if (*(ptr++) != ',' || | ||
1140 | !kgdb_hex2long(&ptr, &length)) { | ||
1141 | error_packet(remcom_out_buffer, -EINVAL); | ||
1142 | return; | ||
1143 | } | ||
1144 | |||
1145 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | ||
1146 | error = kgdb_set_sw_break(addr); | ||
1147 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | ||
1148 | error = kgdb_remove_sw_break(addr); | ||
1149 | else if (remcom_in_buffer[0] == 'Z') | ||
1150 | error = arch_kgdb_ops.set_hw_breakpoint(addr, | ||
1151 | (int)length, *bpt_type - '0'); | ||
1152 | else if (remcom_in_buffer[0] == 'z') | ||
1153 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | ||
1154 | (int) length, *bpt_type - '0'); | ||
1155 | |||
1156 | if (error == 0) | ||
1157 | strcpy(remcom_out_buffer, "OK"); | ||
1158 | else | ||
1159 | error_packet(remcom_out_buffer, error); | ||
1160 | } | ||
1161 | |||
1162 | /* Handle the 'C' signal / exception passing packets */ | ||
1163 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | ||
1164 | { | ||
1165 | /* C09 == pass exception | ||
1166 | * C15 == detach kgdb, pass exception | ||
1167 | */ | ||
1168 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | ||
1169 | |||
1170 | ks->pass_exception = 1; | ||
1171 | remcom_in_buffer[0] = 'c'; | ||
1172 | |||
1173 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | ||
1174 | |||
1175 | ks->pass_exception = 1; | ||
1176 | remcom_in_buffer[0] = 'D'; | ||
1177 | remove_all_break(); | ||
1178 | kgdb_connected = 0; | ||
1179 | return 1; | ||
1180 | |||
1181 | } else { | ||
1182 | kgdb_msg_write("KGDB only knows signal 9 (pass)" | ||
1183 | " and 15 (pass and disconnect)\n" | ||
1184 | "Executing a continue without signal passing\n", 0); | ||
1185 | remcom_in_buffer[0] = 'c'; | ||
1186 | } | ||
1187 | |||
1188 | /* Indicate fall through */ | ||
1189 | return -1; | ||
1190 | } | ||
1191 | |||
1192 | /* | ||
1193 | * This function performs all gdbserial command procesing | ||
1194 | */ | ||
1195 | static int gdb_serial_stub(struct kgdb_state *ks) | ||
1196 | { | ||
1197 | int error = 0; | ||
1198 | int tmp; | ||
1199 | |||
1200 | /* Clear the out buffer. */ | ||
1201 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
1202 | |||
1203 | if (kgdb_connected) { | ||
1204 | unsigned char thref[8]; | ||
1205 | char *ptr; | ||
1206 | |||
1207 | /* Reply to host that an exception has occurred */ | ||
1208 | ptr = remcom_out_buffer; | ||
1209 | *ptr++ = 'T'; | ||
1210 | ptr = pack_hex_byte(ptr, ks->signo); | ||
1211 | ptr += strlen(strcpy(ptr, "thread:")); | ||
1212 | int_to_threadref(thref, shadow_pid(current->pid)); | ||
1213 | ptr = pack_threadid(ptr, thref); | ||
1214 | *ptr++ = ';'; | ||
1215 | put_packet(remcom_out_buffer); | ||
1216 | } | ||
1217 | |||
1218 | kgdb_usethread = kgdb_info[ks->cpu].task; | ||
1219 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | ||
1220 | ks->pass_exception = 0; | ||
1221 | |||
1222 | while (1) { | ||
1223 | error = 0; | ||
1224 | |||
1225 | /* Clear the out buffer. */ | ||
1226 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
1227 | |||
1228 | get_packet(remcom_in_buffer); | ||
1229 | |||
1230 | switch (remcom_in_buffer[0]) { | ||
1231 | case '?': /* gdbserial status */ | ||
1232 | gdb_cmd_status(ks); | ||
1233 | break; | ||
1234 | case 'g': /* return the value of the CPU registers */ | ||
1235 | gdb_cmd_getregs(ks); | ||
1236 | break; | ||
1237 | case 'G': /* set the value of the CPU registers - return OK */ | ||
1238 | gdb_cmd_setregs(ks); | ||
1239 | break; | ||
1240 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | ||
1241 | gdb_cmd_memread(ks); | ||
1242 | break; | ||
1243 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
1244 | gdb_cmd_memwrite(ks); | ||
1245 | break; | ||
1246 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
1247 | gdb_cmd_binwrite(ks); | ||
1248 | break; | ||
1249 | /* kill or detach. KGDB should treat this like a | ||
1250 | * continue. | ||
1251 | */ | ||
1252 | case 'D': /* Debugger detach */ | ||
1253 | case 'k': /* Debugger detach via kill */ | ||
1254 | gdb_cmd_detachkill(ks); | ||
1255 | goto default_handle; | ||
1256 | case 'R': /* Reboot */ | ||
1257 | if (gdb_cmd_reboot(ks)) | ||
1258 | goto default_handle; | ||
1259 | break; | ||
1260 | case 'q': /* query command */ | ||
1261 | gdb_cmd_query(ks); | ||
1262 | break; | ||
1263 | case 'H': /* task related */ | ||
1264 | gdb_cmd_task(ks); | ||
1265 | break; | ||
1266 | case 'T': /* Query thread status */ | ||
1267 | gdb_cmd_thread(ks); | ||
1268 | break; | ||
1269 | case 'z': /* Break point remove */ | ||
1270 | case 'Z': /* Break point set */ | ||
1271 | gdb_cmd_break(ks); | ||
1272 | break; | ||
1273 | case 'C': /* Exception passing */ | ||
1274 | tmp = gdb_cmd_exception_pass(ks); | ||
1275 | if (tmp > 0) | ||
1276 | goto default_handle; | ||
1277 | if (tmp == 0) | ||
1278 | break; | ||
1279 | /* Fall through on tmp < 0 */ | ||
1280 | case 'c': /* Continue packet */ | ||
1281 | case 's': /* Single step packet */ | ||
1282 | if (kgdb_contthread && kgdb_contthread != current) { | ||
1283 | /* Can't switch threads in kgdb */ | ||
1284 | error_packet(remcom_out_buffer, -EINVAL); | ||
1285 | break; | ||
1286 | } | ||
1287 | kgdb_activate_sw_breakpoints(); | ||
1288 | /* Fall through to default processing */ | ||
1289 | default: | ||
1290 | default_handle: | ||
1291 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
1292 | ks->signo, | ||
1293 | ks->err_code, | ||
1294 | remcom_in_buffer, | ||
1295 | remcom_out_buffer, | ||
1296 | ks->linux_regs); | ||
1297 | /* | ||
1298 | * Leave cmd processing on error, detach, | ||
1299 | * kill, continue, or single step. | ||
1300 | */ | ||
1301 | if (error >= 0 || remcom_in_buffer[0] == 'D' || | ||
1302 | remcom_in_buffer[0] == 'k') { | ||
1303 | error = 0; | ||
1304 | goto kgdb_exit; | ||
1305 | } | ||
1306 | |||
1307 | } | ||
1308 | |||
1309 | /* reply to the request */ | ||
1310 | put_packet(remcom_out_buffer); | ||
1311 | } | ||
1312 | |||
1313 | kgdb_exit: | ||
1314 | if (ks->pass_exception) | ||
1315 | error = 1; | ||
1316 | return error; | ||
1317 | } | ||
1318 | |||
1319 | static int kgdb_reenter_check(struct kgdb_state *ks) | ||
1320 | { | ||
1321 | unsigned long addr; | ||
1322 | |||
1323 | if (atomic_read(&kgdb_active) != raw_smp_processor_id()) | ||
1324 | return 0; | ||
1325 | |||
1326 | /* Panic on recursive debugger calls: */ | ||
1327 | exception_level++; | ||
1328 | addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
1329 | kgdb_deactivate_sw_breakpoints(); | ||
1330 | |||
1331 | /* | ||
1332 | * If the break point removed ok at the place exception | ||
1333 | * occurred, try to recover and print a warning to the end | ||
1334 | * user because the user planted a breakpoint in a place that | ||
1335 | * KGDB needs in order to function. | ||
1336 | */ | ||
1337 | if (kgdb_remove_sw_break(addr) == 0) { | ||
1338 | exception_level = 0; | ||
1339 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
1340 | kgdb_activate_sw_breakpoints(); | ||
1341 | printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n", | ||
1342 | addr); | ||
1343 | WARN_ON_ONCE(1); | ||
1344 | |||
1345 | return 1; | ||
1346 | } | ||
1347 | remove_all_break(); | ||
1348 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
1349 | |||
1350 | if (exception_level > 1) { | ||
1351 | dump_stack(); | ||
1352 | panic("Recursive entry to debugger"); | ||
1353 | } | ||
1354 | |||
1355 | printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); | ||
1356 | dump_stack(); | ||
1357 | panic("Recursive entry to debugger"); | ||
1358 | |||
1359 | return 1; | ||
1360 | } | ||
1361 | |||
1362 | static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs) | ||
1363 | { | ||
1364 | unsigned long flags; | ||
1365 | int sstep_tries = 100; | ||
1366 | int error = 0; | ||
1367 | int i, cpu; | ||
1368 | int trace_on = 0; | ||
1369 | acquirelock: | ||
1370 | /* | ||
1371 | * Interrupts will be restored by the 'trap return' code, except when | ||
1372 | * single stepping. | ||
1373 | */ | ||
1374 | local_irq_save(flags); | ||
1375 | |||
1376 | cpu = ks->cpu; | ||
1377 | kgdb_info[cpu].debuggerinfo = regs; | ||
1378 | kgdb_info[cpu].task = current; | ||
1379 | /* | ||
1380 | * Make sure the above info reaches the primary CPU before | ||
1381 | * our cpu_in_kgdb[] flag setting does: | ||
1382 | */ | ||
1383 | atomic_inc(&cpu_in_kgdb[cpu]); | ||
1384 | |||
1385 | /* | ||
1386 | * CPU will loop if it is a slave or request to become a kgdb | ||
1387 | * master cpu and acquire the kgdb_active lock: | ||
1388 | */ | ||
1389 | while (1) { | ||
1390 | if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { | ||
1391 | if (atomic_cmpxchg(&kgdb_active, -1, cpu) == cpu) | ||
1392 | break; | ||
1393 | } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { | ||
1394 | if (!atomic_read(&passive_cpu_wait[cpu])) | ||
1395 | goto return_normal; | ||
1396 | } else { | ||
1397 | return_normal: | ||
1398 | /* Return to normal operation by executing any | ||
1399 | * hw breakpoint fixup. | ||
1400 | */ | ||
1401 | if (arch_kgdb_ops.correct_hw_break) | ||
1402 | arch_kgdb_ops.correct_hw_break(); | ||
1403 | if (trace_on) | ||
1404 | tracing_on(); | ||
1405 | atomic_dec(&cpu_in_kgdb[cpu]); | ||
1406 | touch_softlockup_watchdog_sync(); | ||
1407 | clocksource_touch_watchdog(); | ||
1408 | local_irq_restore(flags); | ||
1409 | return 0; | ||
1410 | } | ||
1411 | cpu_relax(); | ||
1412 | } | ||
1413 | |||
1414 | /* | ||
1415 | * For single stepping, try to only enter on the processor | ||
1416 | * that was single stepping. To gaurd against a deadlock, the | ||
1417 | * kernel will only try for the value of sstep_tries before | ||
1418 | * giving up and continuing on. | ||
1419 | */ | ||
1420 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && | ||
1421 | (kgdb_info[cpu].task && | ||
1422 | kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { | ||
1423 | atomic_set(&kgdb_active, -1); | ||
1424 | touch_softlockup_watchdog_sync(); | ||
1425 | clocksource_touch_watchdog(); | ||
1426 | local_irq_restore(flags); | ||
1427 | |||
1428 | goto acquirelock; | ||
1429 | } | ||
1430 | |||
1431 | if (!kgdb_io_ready(1)) { | ||
1432 | error = 1; | ||
1433 | goto kgdb_restore; /* No I/O connection, so resume the system */ | ||
1434 | } | ||
1435 | |||
1436 | /* | ||
1437 | * Don't enter if we have hit a removed breakpoint. | ||
1438 | */ | ||
1439 | if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) | ||
1440 | goto kgdb_restore; | ||
1441 | |||
1442 | /* Call the I/O driver's pre_exception routine */ | ||
1443 | if (kgdb_io_ops->pre_exception) | ||
1444 | kgdb_io_ops->pre_exception(); | ||
1445 | |||
1446 | kgdb_disable_hw_debug(ks->linux_regs); | ||
1447 | |||
1448 | /* | ||
1449 | * Get the passive CPU lock which will hold all the non-primary | ||
1450 | * CPU in a spin state while the debugger is active | ||
1451 | */ | ||
1452 | if (!kgdb_single_step) { | ||
1453 | for (i = 0; i < NR_CPUS; i++) | ||
1454 | atomic_inc(&passive_cpu_wait[i]); | ||
1455 | } | ||
1456 | |||
1457 | #ifdef CONFIG_SMP | ||
1458 | /* Signal the other CPUs to enter kgdb_wait() */ | ||
1459 | if ((!kgdb_single_step) && kgdb_do_roundup) | ||
1460 | kgdb_roundup_cpus(flags); | ||
1461 | #endif | ||
1462 | |||
1463 | /* | ||
1464 | * Wait for the other CPUs to be notified and be waiting for us: | ||
1465 | */ | ||
1466 | for_each_online_cpu(i) { | ||
1467 | while (!atomic_read(&cpu_in_kgdb[i])) | ||
1468 | cpu_relax(); | ||
1469 | } | ||
1470 | |||
1471 | /* | ||
1472 | * At this point the primary processor is completely | ||
1473 | * in the debugger and all secondary CPUs are quiescent | ||
1474 | */ | ||
1475 | kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); | ||
1476 | kgdb_deactivate_sw_breakpoints(); | ||
1477 | kgdb_single_step = 0; | ||
1478 | kgdb_contthread = current; | ||
1479 | exception_level = 0; | ||
1480 | trace_on = tracing_is_on(); | ||
1481 | if (trace_on) | ||
1482 | tracing_off(); | ||
1483 | |||
1484 | /* Talk to debugger with gdbserial protocol */ | ||
1485 | error = gdb_serial_stub(ks); | ||
1486 | |||
1487 | /* Call the I/O driver's post_exception routine */ | ||
1488 | if (kgdb_io_ops->post_exception) | ||
1489 | kgdb_io_ops->post_exception(); | ||
1490 | |||
1491 | atomic_dec(&cpu_in_kgdb[ks->cpu]); | ||
1492 | |||
1493 | if (!kgdb_single_step) { | ||
1494 | for (i = NR_CPUS-1; i >= 0; i--) | ||
1495 | atomic_dec(&passive_cpu_wait[i]); | ||
1496 | /* | ||
1497 | * Wait till all the CPUs have quit | ||
1498 | * from the debugger. | ||
1499 | */ | ||
1500 | for_each_online_cpu(i) { | ||
1501 | while (atomic_read(&cpu_in_kgdb[i])) | ||
1502 | cpu_relax(); | ||
1503 | } | ||
1504 | } | ||
1505 | |||
1506 | kgdb_restore: | ||
1507 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { | ||
1508 | int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); | ||
1509 | if (kgdb_info[sstep_cpu].task) | ||
1510 | kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; | ||
1511 | else | ||
1512 | kgdb_sstep_pid = 0; | ||
1513 | } | ||
1514 | if (trace_on) | ||
1515 | tracing_on(); | ||
1516 | /* Free kgdb_active */ | ||
1517 | atomic_set(&kgdb_active, -1); | ||
1518 | touch_softlockup_watchdog_sync(); | ||
1519 | clocksource_touch_watchdog(); | ||
1520 | local_irq_restore(flags); | ||
1521 | |||
1522 | return error; | ||
1523 | } | ||
1524 | |||
1525 | /* | ||
1526 | * kgdb_handle_exception() - main entry point from a kernel exception | ||
1527 | * | ||
1528 | * Locking hierarchy: | ||
1529 | * interface locks, if any (begin_session) | ||
1530 | * kgdb lock (kgdb_active) | ||
1531 | */ | ||
1532 | int | ||
1533 | kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) | ||
1534 | { | ||
1535 | struct kgdb_state kgdb_var; | ||
1536 | struct kgdb_state *ks = &kgdb_var; | ||
1537 | int ret; | ||
1538 | |||
1539 | ks->cpu = raw_smp_processor_id(); | ||
1540 | ks->ex_vector = evector; | ||
1541 | ks->signo = signo; | ||
1542 | ks->ex_vector = evector; | ||
1543 | ks->err_code = ecode; | ||
1544 | ks->kgdb_usethreadid = 0; | ||
1545 | ks->linux_regs = regs; | ||
1546 | |||
1547 | if (kgdb_reenter_check(ks)) | ||
1548 | return 0; /* Ouch, double exception ! */ | ||
1549 | kgdb_info[ks->cpu].exception_state |= DCPU_WANT_MASTER; | ||
1550 | ret = kgdb_cpu_enter(ks, regs); | ||
1551 | kgdb_info[ks->cpu].exception_state &= ~DCPU_WANT_MASTER; | ||
1552 | return ret; | ||
1553 | } | ||
1554 | |||
1555 | int kgdb_nmicallback(int cpu, void *regs) | ||
1556 | { | ||
1557 | #ifdef CONFIG_SMP | ||
1558 | struct kgdb_state kgdb_var; | ||
1559 | struct kgdb_state *ks = &kgdb_var; | ||
1560 | |||
1561 | memset(ks, 0, sizeof(struct kgdb_state)); | ||
1562 | ks->cpu = cpu; | ||
1563 | ks->linux_regs = regs; | ||
1564 | |||
1565 | if (!atomic_read(&cpu_in_kgdb[cpu]) && | ||
1566 | atomic_read(&kgdb_active) != -1 && | ||
1567 | atomic_read(&kgdb_active) != cpu) { | ||
1568 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
1569 | kgdb_cpu_enter(ks, regs); | ||
1570 | kgdb_info[cpu].exception_state &= ~DCPU_IS_SLAVE; | ||
1571 | return 0; | ||
1572 | } | ||
1573 | #endif | ||
1574 | return 1; | ||
1575 | } | ||
1576 | |||
1577 | static void kgdb_console_write(struct console *co, const char *s, | ||
1578 | unsigned count) | ||
1579 | { | ||
1580 | unsigned long flags; | ||
1581 | |||
1582 | /* If we're debugging, or KGDB has not connected, don't try | ||
1583 | * and print. */ | ||
1584 | if (!kgdb_connected || atomic_read(&kgdb_active) != -1) | ||
1585 | return; | ||
1586 | |||
1587 | local_irq_save(flags); | ||
1588 | kgdb_msg_write(s, count); | ||
1589 | local_irq_restore(flags); | ||
1590 | } | ||
1591 | |||
1592 | static struct console kgdbcons = { | ||
1593 | .name = "kgdb", | ||
1594 | .write = kgdb_console_write, | ||
1595 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
1596 | .index = -1, | ||
1597 | }; | ||
1598 | |||
1599 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1600 | static void sysrq_handle_gdb(int key, struct tty_struct *tty) | ||
1601 | { | ||
1602 | if (!kgdb_io_ops) { | ||
1603 | printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); | ||
1604 | return; | ||
1605 | } | ||
1606 | if (!kgdb_connected) | ||
1607 | printk(KERN_CRIT "Entering KGDB\n"); | ||
1608 | |||
1609 | kgdb_breakpoint(); | ||
1610 | } | ||
1611 | |||
1612 | static struct sysrq_key_op sysrq_gdb_op = { | ||
1613 | .handler = sysrq_handle_gdb, | ||
1614 | .help_msg = "debug(G)", | ||
1615 | .action_msg = "DEBUG", | ||
1616 | }; | ||
1617 | #endif | ||
1618 | |||
1619 | static void kgdb_register_callbacks(void) | ||
1620 | { | ||
1621 | if (!kgdb_io_module_registered) { | ||
1622 | kgdb_io_module_registered = 1; | ||
1623 | kgdb_arch_init(); | ||
1624 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1625 | register_sysrq_key('g', &sysrq_gdb_op); | ||
1626 | #endif | ||
1627 | if (kgdb_use_con && !kgdb_con_registered) { | ||
1628 | register_console(&kgdbcons); | ||
1629 | kgdb_con_registered = 1; | ||
1630 | } | ||
1631 | } | ||
1632 | } | ||
1633 | |||
1634 | static void kgdb_unregister_callbacks(void) | ||
1635 | { | ||
1636 | /* | ||
1637 | * When this routine is called KGDB should unregister from the | ||
1638 | * panic handler and clean up, making sure it is not handling any | ||
1639 | * break exceptions at the time. | ||
1640 | */ | ||
1641 | if (kgdb_io_module_registered) { | ||
1642 | kgdb_io_module_registered = 0; | ||
1643 | kgdb_arch_exit(); | ||
1644 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1645 | unregister_sysrq_key('g', &sysrq_gdb_op); | ||
1646 | #endif | ||
1647 | if (kgdb_con_registered) { | ||
1648 | unregister_console(&kgdbcons); | ||
1649 | kgdb_con_registered = 0; | ||
1650 | } | ||
1651 | } | ||
1652 | } | ||
1653 | |||
1654 | static void kgdb_initial_breakpoint(void) | ||
1655 | { | ||
1656 | kgdb_break_asap = 0; | ||
1657 | |||
1658 | printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); | ||
1659 | kgdb_breakpoint(); | ||
1660 | } | ||
1661 | |||
1662 | /** | ||
1663 | * kgdb_register_io_module - register KGDB IO module | ||
1664 | * @new_kgdb_io_ops: the io ops vector | ||
1665 | * | ||
1666 | * Register it with the KGDB core. | ||
1667 | */ | ||
1668 | int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops) | ||
1669 | { | ||
1670 | int err; | ||
1671 | |||
1672 | spin_lock(&kgdb_registration_lock); | ||
1673 | |||
1674 | if (kgdb_io_ops) { | ||
1675 | spin_unlock(&kgdb_registration_lock); | ||
1676 | |||
1677 | printk(KERN_ERR "kgdb: Another I/O driver is already " | ||
1678 | "registered with KGDB.\n"); | ||
1679 | return -EBUSY; | ||
1680 | } | ||
1681 | |||
1682 | if (new_kgdb_io_ops->init) { | ||
1683 | err = new_kgdb_io_ops->init(); | ||
1684 | if (err) { | ||
1685 | spin_unlock(&kgdb_registration_lock); | ||
1686 | return err; | ||
1687 | } | ||
1688 | } | ||
1689 | |||
1690 | kgdb_io_ops = new_kgdb_io_ops; | ||
1691 | |||
1692 | spin_unlock(&kgdb_registration_lock); | ||
1693 | |||
1694 | printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", | ||
1695 | new_kgdb_io_ops->name); | ||
1696 | |||
1697 | /* Arm KGDB now. */ | ||
1698 | kgdb_register_callbacks(); | ||
1699 | |||
1700 | if (kgdb_break_asap) | ||
1701 | kgdb_initial_breakpoint(); | ||
1702 | |||
1703 | return 0; | ||
1704 | } | ||
1705 | EXPORT_SYMBOL_GPL(kgdb_register_io_module); | ||
1706 | |||
1707 | /** | ||
1708 | * kkgdb_unregister_io_module - unregister KGDB IO module | ||
1709 | * @old_kgdb_io_ops: the io ops vector | ||
1710 | * | ||
1711 | * Unregister it with the KGDB core. | ||
1712 | */ | ||
1713 | void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops) | ||
1714 | { | ||
1715 | BUG_ON(kgdb_connected); | ||
1716 | |||
1717 | /* | ||
1718 | * KGDB is no longer able to communicate out, so | ||
1719 | * unregister our callbacks and reset state. | ||
1720 | */ | ||
1721 | kgdb_unregister_callbacks(); | ||
1722 | |||
1723 | spin_lock(&kgdb_registration_lock); | ||
1724 | |||
1725 | WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops); | ||
1726 | kgdb_io_ops = NULL; | ||
1727 | |||
1728 | spin_unlock(&kgdb_registration_lock); | ||
1729 | |||
1730 | printk(KERN_INFO | ||
1731 | "kgdb: Unregistered I/O driver %s, debugger disabled.\n", | ||
1732 | old_kgdb_io_ops->name); | ||
1733 | } | ||
1734 | EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); | ||
1735 | |||
1736 | /** | ||
1737 | * kgdb_breakpoint - generate breakpoint exception | ||
1738 | * | ||
1739 | * This function will generate a breakpoint exception. It is used at the | ||
1740 | * beginning of a program to sync up with a debugger and can be used | ||
1741 | * otherwise as a quick means to stop program execution and "break" into | ||
1742 | * the debugger. | ||
1743 | */ | ||
1744 | void kgdb_breakpoint(void) | ||
1745 | { | ||
1746 | atomic_inc(&kgdb_setting_breakpoint); | ||
1747 | wmb(); /* Sync point before breakpoint */ | ||
1748 | arch_kgdb_breakpoint(); | ||
1749 | wmb(); /* Sync point after breakpoint */ | ||
1750 | atomic_dec(&kgdb_setting_breakpoint); | ||
1751 | } | ||
1752 | EXPORT_SYMBOL_GPL(kgdb_breakpoint); | ||
1753 | |||
1754 | static int __init opt_kgdb_wait(char *str) | ||
1755 | { | ||
1756 | kgdb_break_asap = 1; | ||
1757 | |||
1758 | if (kgdb_io_module_registered) | ||
1759 | kgdb_initial_breakpoint(); | ||
1760 | |||
1761 | return 0; | ||
1762 | } | ||
1763 | |||
1764 | early_param("kgdbwait", opt_kgdb_wait); | ||
diff --git a/kernel/kmod.c b/kernel/kmod.c index bf0e231d9702..6e9b19667a8d 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
@@ -116,27 +116,16 @@ int __request_module(bool wait, const char *fmt, ...) | |||
116 | 116 | ||
117 | trace_module_request(module_name, wait, _RET_IP_); | 117 | trace_module_request(module_name, wait, _RET_IP_); |
118 | 118 | ||
119 | ret = call_usermodehelper(modprobe_path, argv, envp, | 119 | ret = call_usermodehelper_fns(modprobe_path, argv, envp, |
120 | wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); | 120 | wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC, |
121 | NULL, NULL, NULL); | ||
122 | |||
121 | atomic_dec(&kmod_concurrent); | 123 | atomic_dec(&kmod_concurrent); |
122 | return ret; | 124 | return ret; |
123 | } | 125 | } |
124 | EXPORT_SYMBOL(__request_module); | 126 | EXPORT_SYMBOL(__request_module); |
125 | #endif /* CONFIG_MODULES */ | 127 | #endif /* CONFIG_MODULES */ |
126 | 128 | ||
127 | struct subprocess_info { | ||
128 | struct work_struct work; | ||
129 | struct completion *complete; | ||
130 | struct cred *cred; | ||
131 | char *path; | ||
132 | char **argv; | ||
133 | char **envp; | ||
134 | enum umh_wait wait; | ||
135 | int retval; | ||
136 | struct file *stdin; | ||
137 | void (*cleanup)(char **argv, char **envp); | ||
138 | }; | ||
139 | |||
140 | /* | 129 | /* |
141 | * This is the task which runs the usermode application | 130 | * This is the task which runs the usermode application |
142 | */ | 131 | */ |
@@ -145,36 +134,10 @@ static int ____call_usermodehelper(void *data) | |||
145 | struct subprocess_info *sub_info = data; | 134 | struct subprocess_info *sub_info = data; |
146 | int retval; | 135 | int retval; |
147 | 136 | ||
148 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | ||
149 | |||
150 | /* Unblock all signals */ | ||
151 | spin_lock_irq(¤t->sighand->siglock); | 137 | spin_lock_irq(¤t->sighand->siglock); |
152 | flush_signal_handlers(current, 1); | 138 | flush_signal_handlers(current, 1); |
153 | sigemptyset(¤t->blocked); | ||
154 | recalc_sigpending(); | ||
155 | spin_unlock_irq(¤t->sighand->siglock); | 139 | spin_unlock_irq(¤t->sighand->siglock); |
156 | 140 | ||
157 | /* Install the credentials */ | ||
158 | commit_creds(sub_info->cred); | ||
159 | sub_info->cred = NULL; | ||
160 | |||
161 | /* Install input pipe when needed */ | ||
162 | if (sub_info->stdin) { | ||
163 | struct files_struct *f = current->files; | ||
164 | struct fdtable *fdt; | ||
165 | /* no races because files should be private here */ | ||
166 | sys_close(0); | ||
167 | fd_install(0, sub_info->stdin); | ||
168 | spin_lock(&f->file_lock); | ||
169 | fdt = files_fdtable(f); | ||
170 | FD_SET(0, fdt->open_fds); | ||
171 | FD_CLR(0, fdt->close_on_exec); | ||
172 | spin_unlock(&f->file_lock); | ||
173 | |||
174 | /* and disallow core files too */ | ||
175 | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0}; | ||
176 | } | ||
177 | |||
178 | /* We can run anywhere, unlike our parent keventd(). */ | 141 | /* We can run anywhere, unlike our parent keventd(). */ |
179 | set_cpus_allowed_ptr(current, cpu_all_mask); | 142 | set_cpus_allowed_ptr(current, cpu_all_mask); |
180 | 143 | ||
@@ -184,9 +147,16 @@ static int ____call_usermodehelper(void *data) | |||
184 | */ | 147 | */ |
185 | set_user_nice(current, 0); | 148 | set_user_nice(current, 0); |
186 | 149 | ||
150 | if (sub_info->init) { | ||
151 | retval = sub_info->init(sub_info); | ||
152 | if (retval) | ||
153 | goto fail; | ||
154 | } | ||
155 | |||
187 | retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp); | 156 | retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp); |
188 | 157 | ||
189 | /* Exec failed? */ | 158 | /* Exec failed? */ |
159 | fail: | ||
190 | sub_info->retval = retval; | 160 | sub_info->retval = retval; |
191 | do_exit(0); | 161 | do_exit(0); |
192 | } | 162 | } |
@@ -194,9 +164,7 @@ static int ____call_usermodehelper(void *data) | |||
194 | void call_usermodehelper_freeinfo(struct subprocess_info *info) | 164 | void call_usermodehelper_freeinfo(struct subprocess_info *info) |
195 | { | 165 | { |
196 | if (info->cleanup) | 166 | if (info->cleanup) |
197 | (*info->cleanup)(info->argv, info->envp); | 167 | (*info->cleanup)(info); |
198 | if (info->cred) | ||
199 | put_cred(info->cred); | ||
200 | kfree(info); | 168 | kfree(info); |
201 | } | 169 | } |
202 | EXPORT_SYMBOL(call_usermodehelper_freeinfo); | 170 | EXPORT_SYMBOL(call_usermodehelper_freeinfo); |
@@ -207,16 +175,16 @@ static int wait_for_helper(void *data) | |||
207 | struct subprocess_info *sub_info = data; | 175 | struct subprocess_info *sub_info = data; |
208 | pid_t pid; | 176 | pid_t pid; |
209 | 177 | ||
210 | /* Install a handler: if SIGCLD isn't handled sys_wait4 won't | 178 | /* If SIGCLD is ignored sys_wait4 won't populate the status. */ |
211 | * populate the status, but will return -ECHILD. */ | 179 | spin_lock_irq(¤t->sighand->siglock); |
212 | allow_signal(SIGCHLD); | 180 | current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL; |
181 | spin_unlock_irq(¤t->sighand->siglock); | ||
213 | 182 | ||
214 | pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); | 183 | pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); |
215 | if (pid < 0) { | 184 | if (pid < 0) { |
216 | sub_info->retval = pid; | 185 | sub_info->retval = pid; |
217 | } else { | 186 | } else { |
218 | int ret; | 187 | int ret = -ECHILD; |
219 | |||
220 | /* | 188 | /* |
221 | * Normally it is bogus to call wait4() from in-kernel because | 189 | * Normally it is bogus to call wait4() from in-kernel because |
222 | * wait4() wants to write the exit code to a userspace address. | 190 | * wait4() wants to write the exit code to a userspace address. |
@@ -237,10 +205,7 @@ static int wait_for_helper(void *data) | |||
237 | sub_info->retval = ret; | 205 | sub_info->retval = ret; |
238 | } | 206 | } |
239 | 207 | ||
240 | if (sub_info->wait == UMH_NO_WAIT) | 208 | complete(sub_info->complete); |
241 | call_usermodehelper_freeinfo(sub_info); | ||
242 | else | ||
243 | complete(sub_info->complete); | ||
244 | return 0; | 209 | return 0; |
245 | } | 210 | } |
246 | 211 | ||
@@ -249,15 +214,13 @@ static void __call_usermodehelper(struct work_struct *work) | |||
249 | { | 214 | { |
250 | struct subprocess_info *sub_info = | 215 | struct subprocess_info *sub_info = |
251 | container_of(work, struct subprocess_info, work); | 216 | container_of(work, struct subprocess_info, work); |
252 | pid_t pid; | ||
253 | enum umh_wait wait = sub_info->wait; | 217 | enum umh_wait wait = sub_info->wait; |
254 | 218 | pid_t pid; | |
255 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | ||
256 | 219 | ||
257 | /* CLONE_VFORK: wait until the usermode helper has execve'd | 220 | /* CLONE_VFORK: wait until the usermode helper has execve'd |
258 | * successfully We need the data structures to stay around | 221 | * successfully We need the data structures to stay around |
259 | * until that is done. */ | 222 | * until that is done. */ |
260 | if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT) | 223 | if (wait == UMH_WAIT_PROC) |
261 | pid = kernel_thread(wait_for_helper, sub_info, | 224 | pid = kernel_thread(wait_for_helper, sub_info, |
262 | CLONE_FS | CLONE_FILES | SIGCHLD); | 225 | CLONE_FS | CLONE_FILES | SIGCHLD); |
263 | else | 226 | else |
@@ -266,15 +229,16 @@ static void __call_usermodehelper(struct work_struct *work) | |||
266 | 229 | ||
267 | switch (wait) { | 230 | switch (wait) { |
268 | case UMH_NO_WAIT: | 231 | case UMH_NO_WAIT: |
232 | call_usermodehelper_freeinfo(sub_info); | ||
269 | break; | 233 | break; |
270 | 234 | ||
271 | case UMH_WAIT_PROC: | 235 | case UMH_WAIT_PROC: |
272 | if (pid > 0) | 236 | if (pid > 0) |
273 | break; | 237 | break; |
274 | sub_info->retval = pid; | ||
275 | /* FALLTHROUGH */ | 238 | /* FALLTHROUGH */ |
276 | |||
277 | case UMH_WAIT_EXEC: | 239 | case UMH_WAIT_EXEC: |
240 | if (pid < 0) | ||
241 | sub_info->retval = pid; | ||
278 | complete(sub_info->complete); | 242 | complete(sub_info->complete); |
279 | } | 243 | } |
280 | } | 244 | } |
@@ -376,80 +340,37 @@ struct subprocess_info *call_usermodehelper_setup(char *path, char **argv, | |||
376 | sub_info->path = path; | 340 | sub_info->path = path; |
377 | sub_info->argv = argv; | 341 | sub_info->argv = argv; |
378 | sub_info->envp = envp; | 342 | sub_info->envp = envp; |
379 | sub_info->cred = prepare_usermodehelper_creds(); | ||
380 | if (!sub_info->cred) { | ||
381 | kfree(sub_info); | ||
382 | return NULL; | ||
383 | } | ||
384 | |||
385 | out: | 343 | out: |
386 | return sub_info; | 344 | return sub_info; |
387 | } | 345 | } |
388 | EXPORT_SYMBOL(call_usermodehelper_setup); | 346 | EXPORT_SYMBOL(call_usermodehelper_setup); |
389 | 347 | ||
390 | /** | 348 | /** |
391 | * call_usermodehelper_setkeys - set the session keys for usermode helper | 349 | * call_usermodehelper_setfns - set a cleanup/init function |
392 | * @info: a subprocess_info returned by call_usermodehelper_setup | ||
393 | * @session_keyring: the session keyring for the process | ||
394 | */ | ||
395 | void call_usermodehelper_setkeys(struct subprocess_info *info, | ||
396 | struct key *session_keyring) | ||
397 | { | ||
398 | #ifdef CONFIG_KEYS | ||
399 | struct thread_group_cred *tgcred = info->cred->tgcred; | ||
400 | key_put(tgcred->session_keyring); | ||
401 | tgcred->session_keyring = key_get(session_keyring); | ||
402 | #else | ||
403 | BUG(); | ||
404 | #endif | ||
405 | } | ||
406 | EXPORT_SYMBOL(call_usermodehelper_setkeys); | ||
407 | |||
408 | /** | ||
409 | * call_usermodehelper_setcleanup - set a cleanup function | ||
410 | * @info: a subprocess_info returned by call_usermodehelper_setup | 350 | * @info: a subprocess_info returned by call_usermodehelper_setup |
411 | * @cleanup: a cleanup function | 351 | * @cleanup: a cleanup function |
352 | * @init: an init function | ||
353 | * @data: arbitrary context sensitive data | ||
412 | * | 354 | * |
413 | * The cleanup function is just befor ethe subprocess_info is about to | 355 | * The init function is used to customize the helper process prior to |
356 | * exec. A non-zero return code causes the process to error out, exit, | ||
357 | * and return the failure to the calling process | ||
358 | * | ||
359 | * The cleanup function is just before ethe subprocess_info is about to | ||
414 | * be freed. This can be used for freeing the argv and envp. The | 360 | * be freed. This can be used for freeing the argv and envp. The |
415 | * Function must be runnable in either a process context or the | 361 | * Function must be runnable in either a process context or the |
416 | * context in which call_usermodehelper_exec is called. | 362 | * context in which call_usermodehelper_exec is called. |
417 | */ | 363 | */ |
418 | void call_usermodehelper_setcleanup(struct subprocess_info *info, | 364 | void call_usermodehelper_setfns(struct subprocess_info *info, |
419 | void (*cleanup)(char **argv, char **envp)) | 365 | int (*init)(struct subprocess_info *info), |
366 | void (*cleanup)(struct subprocess_info *info), | ||
367 | void *data) | ||
420 | { | 368 | { |
421 | info->cleanup = cleanup; | 369 | info->cleanup = cleanup; |
370 | info->init = init; | ||
371 | info->data = data; | ||
422 | } | 372 | } |
423 | EXPORT_SYMBOL(call_usermodehelper_setcleanup); | 373 | EXPORT_SYMBOL(call_usermodehelper_setfns); |
424 | |||
425 | /** | ||
426 | * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin | ||
427 | * @sub_info: a subprocess_info returned by call_usermodehelper_setup | ||
428 | * @filp: set to the write-end of a pipe | ||
429 | * | ||
430 | * This constructs a pipe, and sets the read end to be the stdin of the | ||
431 | * subprocess, and returns the write-end in *@filp. | ||
432 | */ | ||
433 | int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info, | ||
434 | struct file **filp) | ||
435 | { | ||
436 | struct file *f; | ||
437 | |||
438 | f = create_write_pipe(0); | ||
439 | if (IS_ERR(f)) | ||
440 | return PTR_ERR(f); | ||
441 | *filp = f; | ||
442 | |||
443 | f = create_read_pipe(f, 0); | ||
444 | if (IS_ERR(f)) { | ||
445 | free_write_pipe(*filp); | ||
446 | return PTR_ERR(f); | ||
447 | } | ||
448 | sub_info->stdin = f; | ||
449 | |||
450 | return 0; | ||
451 | } | ||
452 | EXPORT_SYMBOL(call_usermodehelper_stdinpipe); | ||
453 | 374 | ||
454 | /** | 375 | /** |
455 | * call_usermodehelper_exec - start a usermode application | 376 | * call_usermodehelper_exec - start a usermode application |
@@ -469,9 +390,6 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info, | |||
469 | DECLARE_COMPLETION_ONSTACK(done); | 390 | DECLARE_COMPLETION_ONSTACK(done); |
470 | int retval = 0; | 391 | int retval = 0; |
471 | 392 | ||
472 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | ||
473 | validate_creds(sub_info->cred); | ||
474 | |||
475 | helper_lock(); | 393 | helper_lock(); |
476 | if (sub_info->path[0] == '\0') | 394 | if (sub_info->path[0] == '\0') |
477 | goto out; | 395 | goto out; |
@@ -498,41 +416,6 @@ unlock: | |||
498 | } | 416 | } |
499 | EXPORT_SYMBOL(call_usermodehelper_exec); | 417 | EXPORT_SYMBOL(call_usermodehelper_exec); |
500 | 418 | ||
501 | /** | ||
502 | * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin | ||
503 | * @path: path to usermode executable | ||
504 | * @argv: arg vector for process | ||
505 | * @envp: environment for process | ||
506 | * @filp: set to the write-end of a pipe | ||
507 | * | ||
508 | * This is a simple wrapper which executes a usermode-helper function | ||
509 | * with a pipe as stdin. It is implemented entirely in terms of | ||
510 | * lower-level call_usermodehelper_* functions. | ||
511 | */ | ||
512 | int call_usermodehelper_pipe(char *path, char **argv, char **envp, | ||
513 | struct file **filp) | ||
514 | { | ||
515 | struct subprocess_info *sub_info; | ||
516 | int ret; | ||
517 | |||
518 | sub_info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL); | ||
519 | if (sub_info == NULL) | ||
520 | return -ENOMEM; | ||
521 | |||
522 | ret = call_usermodehelper_stdinpipe(sub_info, filp); | ||
523 | if (ret < 0) { | ||
524 | call_usermodehelper_freeinfo(sub_info); | ||
525 | return ret; | ||
526 | } | ||
527 | |||
528 | ret = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC); | ||
529 | if (ret < 0) /* Failed to execute helper, close pipe */ | ||
530 | filp_close(*filp, NULL); | ||
531 | |||
532 | return ret; | ||
533 | } | ||
534 | EXPORT_SYMBOL(call_usermodehelper_pipe); | ||
535 | |||
536 | void __init usermodehelper_init(void) | 419 | void __init usermodehelper_init(void) |
537 | { | 420 | { |
538 | khelper_wq = create_singlethread_workqueue("khelper"); | 421 | khelper_wq = create_singlethread_workqueue("khelper"); |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index 0ed46f3e51e9..282035f3ae96 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -1588,6 +1588,72 @@ static void __kprobes kill_kprobe(struct kprobe *p) | |||
1588 | arch_remove_kprobe(p); | 1588 | arch_remove_kprobe(p); |
1589 | } | 1589 | } |
1590 | 1590 | ||
1591 | /* Disable one kprobe */ | ||
1592 | int __kprobes disable_kprobe(struct kprobe *kp) | ||
1593 | { | ||
1594 | int ret = 0; | ||
1595 | struct kprobe *p; | ||
1596 | |||
1597 | mutex_lock(&kprobe_mutex); | ||
1598 | |||
1599 | /* Check whether specified probe is valid. */ | ||
1600 | p = __get_valid_kprobe(kp); | ||
1601 | if (unlikely(p == NULL)) { | ||
1602 | ret = -EINVAL; | ||
1603 | goto out; | ||
1604 | } | ||
1605 | |||
1606 | /* If the probe is already disabled (or gone), just return */ | ||
1607 | if (kprobe_disabled(kp)) | ||
1608 | goto out; | ||
1609 | |||
1610 | kp->flags |= KPROBE_FLAG_DISABLED; | ||
1611 | if (p != kp) | ||
1612 | /* When kp != p, p is always enabled. */ | ||
1613 | try_to_disable_aggr_kprobe(p); | ||
1614 | |||
1615 | if (!kprobes_all_disarmed && kprobe_disabled(p)) | ||
1616 | disarm_kprobe(p); | ||
1617 | out: | ||
1618 | mutex_unlock(&kprobe_mutex); | ||
1619 | return ret; | ||
1620 | } | ||
1621 | EXPORT_SYMBOL_GPL(disable_kprobe); | ||
1622 | |||
1623 | /* Enable one kprobe */ | ||
1624 | int __kprobes enable_kprobe(struct kprobe *kp) | ||
1625 | { | ||
1626 | int ret = 0; | ||
1627 | struct kprobe *p; | ||
1628 | |||
1629 | mutex_lock(&kprobe_mutex); | ||
1630 | |||
1631 | /* Check whether specified probe is valid. */ | ||
1632 | p = __get_valid_kprobe(kp); | ||
1633 | if (unlikely(p == NULL)) { | ||
1634 | ret = -EINVAL; | ||
1635 | goto out; | ||
1636 | } | ||
1637 | |||
1638 | if (kprobe_gone(kp)) { | ||
1639 | /* This kprobe has gone, we couldn't enable it. */ | ||
1640 | ret = -EINVAL; | ||
1641 | goto out; | ||
1642 | } | ||
1643 | |||
1644 | if (p != kp) | ||
1645 | kp->flags &= ~KPROBE_FLAG_DISABLED; | ||
1646 | |||
1647 | if (!kprobes_all_disarmed && kprobe_disabled(p)) { | ||
1648 | p->flags &= ~KPROBE_FLAG_DISABLED; | ||
1649 | arm_kprobe(p); | ||
1650 | } | ||
1651 | out: | ||
1652 | mutex_unlock(&kprobe_mutex); | ||
1653 | return ret; | ||
1654 | } | ||
1655 | EXPORT_SYMBOL_GPL(enable_kprobe); | ||
1656 | |||
1591 | void __kprobes dump_kprobe(struct kprobe *kp) | 1657 | void __kprobes dump_kprobe(struct kprobe *kp) |
1592 | { | 1658 | { |
1593 | printk(KERN_WARNING "Dumping kprobe:\n"); | 1659 | printk(KERN_WARNING "Dumping kprobe:\n"); |
@@ -1805,72 +1871,6 @@ static const struct file_operations debugfs_kprobes_operations = { | |||
1805 | .release = seq_release, | 1871 | .release = seq_release, |
1806 | }; | 1872 | }; |
1807 | 1873 | ||
1808 | /* Disable one kprobe */ | ||
1809 | int __kprobes disable_kprobe(struct kprobe *kp) | ||
1810 | { | ||
1811 | int ret = 0; | ||
1812 | struct kprobe *p; | ||
1813 | |||
1814 | mutex_lock(&kprobe_mutex); | ||
1815 | |||
1816 | /* Check whether specified probe is valid. */ | ||
1817 | p = __get_valid_kprobe(kp); | ||
1818 | if (unlikely(p == NULL)) { | ||
1819 | ret = -EINVAL; | ||
1820 | goto out; | ||
1821 | } | ||
1822 | |||
1823 | /* If the probe is already disabled (or gone), just return */ | ||
1824 | if (kprobe_disabled(kp)) | ||
1825 | goto out; | ||
1826 | |||
1827 | kp->flags |= KPROBE_FLAG_DISABLED; | ||
1828 | if (p != kp) | ||
1829 | /* When kp != p, p is always enabled. */ | ||
1830 | try_to_disable_aggr_kprobe(p); | ||
1831 | |||
1832 | if (!kprobes_all_disarmed && kprobe_disabled(p)) | ||
1833 | disarm_kprobe(p); | ||
1834 | out: | ||
1835 | mutex_unlock(&kprobe_mutex); | ||
1836 | return ret; | ||
1837 | } | ||
1838 | EXPORT_SYMBOL_GPL(disable_kprobe); | ||
1839 | |||
1840 | /* Enable one kprobe */ | ||
1841 | int __kprobes enable_kprobe(struct kprobe *kp) | ||
1842 | { | ||
1843 | int ret = 0; | ||
1844 | struct kprobe *p; | ||
1845 | |||
1846 | mutex_lock(&kprobe_mutex); | ||
1847 | |||
1848 | /* Check whether specified probe is valid. */ | ||
1849 | p = __get_valid_kprobe(kp); | ||
1850 | if (unlikely(p == NULL)) { | ||
1851 | ret = -EINVAL; | ||
1852 | goto out; | ||
1853 | } | ||
1854 | |||
1855 | if (kprobe_gone(kp)) { | ||
1856 | /* This kprobe has gone, we couldn't enable it. */ | ||
1857 | ret = -EINVAL; | ||
1858 | goto out; | ||
1859 | } | ||
1860 | |||
1861 | if (p != kp) | ||
1862 | kp->flags &= ~KPROBE_FLAG_DISABLED; | ||
1863 | |||
1864 | if (!kprobes_all_disarmed && kprobe_disabled(p)) { | ||
1865 | p->flags &= ~KPROBE_FLAG_DISABLED; | ||
1866 | arm_kprobe(p); | ||
1867 | } | ||
1868 | out: | ||
1869 | mutex_unlock(&kprobe_mutex); | ||
1870 | return ret; | ||
1871 | } | ||
1872 | EXPORT_SYMBOL_GPL(enable_kprobe); | ||
1873 | |||
1874 | static void __kprobes arm_all_kprobes(void) | 1874 | static void __kprobes arm_all_kprobes(void) |
1875 | { | 1875 | { |
1876 | struct hlist_head *head; | 1876 | struct hlist_head *head; |
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c index 21fe3c426948..0b624e791805 100644 --- a/kernel/ksysfs.c +++ b/kernel/ksysfs.c | |||
@@ -138,7 +138,8 @@ extern const void __start_notes __attribute__((weak)); | |||
138 | extern const void __stop_notes __attribute__((weak)); | 138 | extern const void __stop_notes __attribute__((weak)); |
139 | #define notes_size (&__stop_notes - &__start_notes) | 139 | #define notes_size (&__stop_notes - &__start_notes) |
140 | 140 | ||
141 | static ssize_t notes_read(struct kobject *kobj, struct bin_attribute *bin_attr, | 141 | static ssize_t notes_read(struct file *filp, struct kobject *kobj, |
142 | struct bin_attribute *bin_attr, | ||
142 | char *buf, loff_t off, size_t count) | 143 | char *buf, loff_t off, size_t count) |
143 | { | 144 | { |
144 | memcpy(buf, &__start_notes + off, count); | 145 | memcpy(buf, &__start_notes + off, count); |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 2594e1ce41cb..54286798c37b 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -431,20 +431,7 @@ static struct stack_trace lockdep_init_trace = { | |||
431 | /* | 431 | /* |
432 | * Various lockdep statistics: | 432 | * Various lockdep statistics: |
433 | */ | 433 | */ |
434 | atomic_t chain_lookup_hits; | 434 | DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); |
435 | atomic_t chain_lookup_misses; | ||
436 | atomic_t hardirqs_on_events; | ||
437 | atomic_t hardirqs_off_events; | ||
438 | atomic_t redundant_hardirqs_on; | ||
439 | atomic_t redundant_hardirqs_off; | ||
440 | atomic_t softirqs_on_events; | ||
441 | atomic_t softirqs_off_events; | ||
442 | atomic_t redundant_softirqs_on; | ||
443 | atomic_t redundant_softirqs_off; | ||
444 | atomic_t nr_unused_locks; | ||
445 | atomic_t nr_cyclic_checks; | ||
446 | atomic_t nr_find_usage_forwards_checks; | ||
447 | atomic_t nr_find_usage_backwards_checks; | ||
448 | #endif | 435 | #endif |
449 | 436 | ||
450 | /* | 437 | /* |
@@ -748,7 +735,7 @@ register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) | |||
748 | return NULL; | 735 | return NULL; |
749 | } | 736 | } |
750 | class = lock_classes + nr_lock_classes++; | 737 | class = lock_classes + nr_lock_classes++; |
751 | debug_atomic_inc(&nr_unused_locks); | 738 | debug_atomic_inc(nr_unused_locks); |
752 | class->key = key; | 739 | class->key = key; |
753 | class->name = lock->name; | 740 | class->name = lock->name; |
754 | class->subclass = subclass; | 741 | class->subclass = subclass; |
@@ -818,7 +805,8 @@ static struct lock_list *alloc_list_entry(void) | |||
818 | * Add a new dependency to the head of the list: | 805 | * Add a new dependency to the head of the list: |
819 | */ | 806 | */ |
820 | static int add_lock_to_list(struct lock_class *class, struct lock_class *this, | 807 | static int add_lock_to_list(struct lock_class *class, struct lock_class *this, |
821 | struct list_head *head, unsigned long ip, int distance) | 808 | struct list_head *head, unsigned long ip, |
809 | int distance, struct stack_trace *trace) | ||
822 | { | 810 | { |
823 | struct lock_list *entry; | 811 | struct lock_list *entry; |
824 | /* | 812 | /* |
@@ -829,11 +817,9 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this, | |||
829 | if (!entry) | 817 | if (!entry) |
830 | return 0; | 818 | return 0; |
831 | 819 | ||
832 | if (!save_trace(&entry->trace)) | ||
833 | return 0; | ||
834 | |||
835 | entry->class = this; | 820 | entry->class = this; |
836 | entry->distance = distance; | 821 | entry->distance = distance; |
822 | entry->trace = *trace; | ||
837 | /* | 823 | /* |
838 | * Since we never remove from the dependency list, the list can | 824 | * Since we never remove from the dependency list, the list can |
839 | * be walked lockless by other CPUs, it's only allocation | 825 | * be walked lockless by other CPUs, it's only allocation |
@@ -1205,7 +1191,7 @@ check_noncircular(struct lock_list *root, struct lock_class *target, | |||
1205 | { | 1191 | { |
1206 | int result; | 1192 | int result; |
1207 | 1193 | ||
1208 | debug_atomic_inc(&nr_cyclic_checks); | 1194 | debug_atomic_inc(nr_cyclic_checks); |
1209 | 1195 | ||
1210 | result = __bfs_forwards(root, target, class_equal, target_entry); | 1196 | result = __bfs_forwards(root, target, class_equal, target_entry); |
1211 | 1197 | ||
@@ -1242,7 +1228,7 @@ find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, | |||
1242 | { | 1228 | { |
1243 | int result; | 1229 | int result; |
1244 | 1230 | ||
1245 | debug_atomic_inc(&nr_find_usage_forwards_checks); | 1231 | debug_atomic_inc(nr_find_usage_forwards_checks); |
1246 | 1232 | ||
1247 | result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); | 1233 | result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); |
1248 | 1234 | ||
@@ -1265,7 +1251,7 @@ find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, | |||
1265 | { | 1251 | { |
1266 | int result; | 1252 | int result; |
1267 | 1253 | ||
1268 | debug_atomic_inc(&nr_find_usage_backwards_checks); | 1254 | debug_atomic_inc(nr_find_usage_backwards_checks); |
1269 | 1255 | ||
1270 | result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); | 1256 | result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); |
1271 | 1257 | ||
@@ -1635,12 +1621,20 @@ check_deadlock(struct task_struct *curr, struct held_lock *next, | |||
1635 | */ | 1621 | */ |
1636 | static int | 1622 | static int |
1637 | check_prev_add(struct task_struct *curr, struct held_lock *prev, | 1623 | check_prev_add(struct task_struct *curr, struct held_lock *prev, |
1638 | struct held_lock *next, int distance) | 1624 | struct held_lock *next, int distance, int trylock_loop) |
1639 | { | 1625 | { |
1640 | struct lock_list *entry; | 1626 | struct lock_list *entry; |
1641 | int ret; | 1627 | int ret; |
1642 | struct lock_list this; | 1628 | struct lock_list this; |
1643 | struct lock_list *uninitialized_var(target_entry); | 1629 | struct lock_list *uninitialized_var(target_entry); |
1630 | /* | ||
1631 | * Static variable, serialized by the graph_lock(). | ||
1632 | * | ||
1633 | * We use this static variable to save the stack trace in case | ||
1634 | * we call into this function multiple times due to encountering | ||
1635 | * trylocks in the held lock stack. | ||
1636 | */ | ||
1637 | static struct stack_trace trace; | ||
1644 | 1638 | ||
1645 | /* | 1639 | /* |
1646 | * Prove that the new <prev> -> <next> dependency would not | 1640 | * Prove that the new <prev> -> <next> dependency would not |
@@ -1688,20 +1682,23 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, | |||
1688 | } | 1682 | } |
1689 | } | 1683 | } |
1690 | 1684 | ||
1685 | if (!trylock_loop && !save_trace(&trace)) | ||
1686 | return 0; | ||
1687 | |||
1691 | /* | 1688 | /* |
1692 | * Ok, all validations passed, add the new lock | 1689 | * Ok, all validations passed, add the new lock |
1693 | * to the previous lock's dependency list: | 1690 | * to the previous lock's dependency list: |
1694 | */ | 1691 | */ |
1695 | ret = add_lock_to_list(hlock_class(prev), hlock_class(next), | 1692 | ret = add_lock_to_list(hlock_class(prev), hlock_class(next), |
1696 | &hlock_class(prev)->locks_after, | 1693 | &hlock_class(prev)->locks_after, |
1697 | next->acquire_ip, distance); | 1694 | next->acquire_ip, distance, &trace); |
1698 | 1695 | ||
1699 | if (!ret) | 1696 | if (!ret) |
1700 | return 0; | 1697 | return 0; |
1701 | 1698 | ||
1702 | ret = add_lock_to_list(hlock_class(next), hlock_class(prev), | 1699 | ret = add_lock_to_list(hlock_class(next), hlock_class(prev), |
1703 | &hlock_class(next)->locks_before, | 1700 | &hlock_class(next)->locks_before, |
1704 | next->acquire_ip, distance); | 1701 | next->acquire_ip, distance, &trace); |
1705 | if (!ret) | 1702 | if (!ret) |
1706 | return 0; | 1703 | return 0; |
1707 | 1704 | ||
@@ -1731,6 +1728,7 @@ static int | |||
1731 | check_prevs_add(struct task_struct *curr, struct held_lock *next) | 1728 | check_prevs_add(struct task_struct *curr, struct held_lock *next) |
1732 | { | 1729 | { |
1733 | int depth = curr->lockdep_depth; | 1730 | int depth = curr->lockdep_depth; |
1731 | int trylock_loop = 0; | ||
1734 | struct held_lock *hlock; | 1732 | struct held_lock *hlock; |
1735 | 1733 | ||
1736 | /* | 1734 | /* |
@@ -1756,7 +1754,8 @@ check_prevs_add(struct task_struct *curr, struct held_lock *next) | |||
1756 | * added: | 1754 | * added: |
1757 | */ | 1755 | */ |
1758 | if (hlock->read != 2) { | 1756 | if (hlock->read != 2) { |
1759 | if (!check_prev_add(curr, hlock, next, distance)) | 1757 | if (!check_prev_add(curr, hlock, next, |
1758 | distance, trylock_loop)) | ||
1760 | return 0; | 1759 | return 0; |
1761 | /* | 1760 | /* |
1762 | * Stop after the first non-trylock entry, | 1761 | * Stop after the first non-trylock entry, |
@@ -1779,6 +1778,7 @@ check_prevs_add(struct task_struct *curr, struct held_lock *next) | |||
1779 | if (curr->held_locks[depth].irq_context != | 1778 | if (curr->held_locks[depth].irq_context != |
1780 | curr->held_locks[depth-1].irq_context) | 1779 | curr->held_locks[depth-1].irq_context) |
1781 | break; | 1780 | break; |
1781 | trylock_loop = 1; | ||
1782 | } | 1782 | } |
1783 | return 1; | 1783 | return 1; |
1784 | out_bug: | 1784 | out_bug: |
@@ -1825,7 +1825,7 @@ static inline int lookup_chain_cache(struct task_struct *curr, | |||
1825 | list_for_each_entry(chain, hash_head, entry) { | 1825 | list_for_each_entry(chain, hash_head, entry) { |
1826 | if (chain->chain_key == chain_key) { | 1826 | if (chain->chain_key == chain_key) { |
1827 | cache_hit: | 1827 | cache_hit: |
1828 | debug_atomic_inc(&chain_lookup_hits); | 1828 | debug_atomic_inc(chain_lookup_hits); |
1829 | if (very_verbose(class)) | 1829 | if (very_verbose(class)) |
1830 | printk("\nhash chain already cached, key: " | 1830 | printk("\nhash chain already cached, key: " |
1831 | "%016Lx tail class: [%p] %s\n", | 1831 | "%016Lx tail class: [%p] %s\n", |
@@ -1890,7 +1890,7 @@ cache_hit: | |||
1890 | chain_hlocks[chain->base + j] = class - lock_classes; | 1890 | chain_hlocks[chain->base + j] = class - lock_classes; |
1891 | } | 1891 | } |
1892 | list_add_tail_rcu(&chain->entry, hash_head); | 1892 | list_add_tail_rcu(&chain->entry, hash_head); |
1893 | debug_atomic_inc(&chain_lookup_misses); | 1893 | debug_atomic_inc(chain_lookup_misses); |
1894 | inc_chains(); | 1894 | inc_chains(); |
1895 | 1895 | ||
1896 | return 1; | 1896 | return 1; |
@@ -2311,7 +2311,12 @@ void trace_hardirqs_on_caller(unsigned long ip) | |||
2311 | return; | 2311 | return; |
2312 | 2312 | ||
2313 | if (unlikely(curr->hardirqs_enabled)) { | 2313 | if (unlikely(curr->hardirqs_enabled)) { |
2314 | debug_atomic_inc(&redundant_hardirqs_on); | 2314 | /* |
2315 | * Neither irq nor preemption are disabled here | ||
2316 | * so this is racy by nature but loosing one hit | ||
2317 | * in a stat is not a big deal. | ||
2318 | */ | ||
2319 | __debug_atomic_inc(redundant_hardirqs_on); | ||
2315 | return; | 2320 | return; |
2316 | } | 2321 | } |
2317 | /* we'll do an OFF -> ON transition: */ | 2322 | /* we'll do an OFF -> ON transition: */ |
@@ -2338,7 +2343,7 @@ void trace_hardirqs_on_caller(unsigned long ip) | |||
2338 | 2343 | ||
2339 | curr->hardirq_enable_ip = ip; | 2344 | curr->hardirq_enable_ip = ip; |
2340 | curr->hardirq_enable_event = ++curr->irq_events; | 2345 | curr->hardirq_enable_event = ++curr->irq_events; |
2341 | debug_atomic_inc(&hardirqs_on_events); | 2346 | debug_atomic_inc(hardirqs_on_events); |
2342 | } | 2347 | } |
2343 | EXPORT_SYMBOL(trace_hardirqs_on_caller); | 2348 | EXPORT_SYMBOL(trace_hardirqs_on_caller); |
2344 | 2349 | ||
@@ -2370,9 +2375,9 @@ void trace_hardirqs_off_caller(unsigned long ip) | |||
2370 | curr->hardirqs_enabled = 0; | 2375 | curr->hardirqs_enabled = 0; |
2371 | curr->hardirq_disable_ip = ip; | 2376 | curr->hardirq_disable_ip = ip; |
2372 | curr->hardirq_disable_event = ++curr->irq_events; | 2377 | curr->hardirq_disable_event = ++curr->irq_events; |
2373 | debug_atomic_inc(&hardirqs_off_events); | 2378 | debug_atomic_inc(hardirqs_off_events); |
2374 | } else | 2379 | } else |
2375 | debug_atomic_inc(&redundant_hardirqs_off); | 2380 | debug_atomic_inc(redundant_hardirqs_off); |
2376 | } | 2381 | } |
2377 | EXPORT_SYMBOL(trace_hardirqs_off_caller); | 2382 | EXPORT_SYMBOL(trace_hardirqs_off_caller); |
2378 | 2383 | ||
@@ -2396,7 +2401,7 @@ void trace_softirqs_on(unsigned long ip) | |||
2396 | return; | 2401 | return; |
2397 | 2402 | ||
2398 | if (curr->softirqs_enabled) { | 2403 | if (curr->softirqs_enabled) { |
2399 | debug_atomic_inc(&redundant_softirqs_on); | 2404 | debug_atomic_inc(redundant_softirqs_on); |
2400 | return; | 2405 | return; |
2401 | } | 2406 | } |
2402 | 2407 | ||
@@ -2406,7 +2411,7 @@ void trace_softirqs_on(unsigned long ip) | |||
2406 | curr->softirqs_enabled = 1; | 2411 | curr->softirqs_enabled = 1; |
2407 | curr->softirq_enable_ip = ip; | 2412 | curr->softirq_enable_ip = ip; |
2408 | curr->softirq_enable_event = ++curr->irq_events; | 2413 | curr->softirq_enable_event = ++curr->irq_events; |
2409 | debug_atomic_inc(&softirqs_on_events); | 2414 | debug_atomic_inc(softirqs_on_events); |
2410 | /* | 2415 | /* |
2411 | * We are going to turn softirqs on, so set the | 2416 | * We are going to turn softirqs on, so set the |
2412 | * usage bit for all held locks, if hardirqs are | 2417 | * usage bit for all held locks, if hardirqs are |
@@ -2436,10 +2441,10 @@ void trace_softirqs_off(unsigned long ip) | |||
2436 | curr->softirqs_enabled = 0; | 2441 | curr->softirqs_enabled = 0; |
2437 | curr->softirq_disable_ip = ip; | 2442 | curr->softirq_disable_ip = ip; |
2438 | curr->softirq_disable_event = ++curr->irq_events; | 2443 | curr->softirq_disable_event = ++curr->irq_events; |
2439 | debug_atomic_inc(&softirqs_off_events); | 2444 | debug_atomic_inc(softirqs_off_events); |
2440 | DEBUG_LOCKS_WARN_ON(!softirq_count()); | 2445 | DEBUG_LOCKS_WARN_ON(!softirq_count()); |
2441 | } else | 2446 | } else |
2442 | debug_atomic_inc(&redundant_softirqs_off); | 2447 | debug_atomic_inc(redundant_softirqs_off); |
2443 | } | 2448 | } |
2444 | 2449 | ||
2445 | static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) | 2450 | static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) |
@@ -2644,7 +2649,7 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this, | |||
2644 | return 0; | 2649 | return 0; |
2645 | break; | 2650 | break; |
2646 | case LOCK_USED: | 2651 | case LOCK_USED: |
2647 | debug_atomic_dec(&nr_unused_locks); | 2652 | debug_atomic_dec(nr_unused_locks); |
2648 | break; | 2653 | break; |
2649 | default: | 2654 | default: |
2650 | if (!debug_locks_off_graph_unlock()) | 2655 | if (!debug_locks_off_graph_unlock()) |
@@ -2706,6 +2711,8 @@ void lockdep_init_map(struct lockdep_map *lock, const char *name, | |||
2706 | } | 2711 | } |
2707 | EXPORT_SYMBOL_GPL(lockdep_init_map); | 2712 | EXPORT_SYMBOL_GPL(lockdep_init_map); |
2708 | 2713 | ||
2714 | struct lock_class_key __lockdep_no_validate__; | ||
2715 | |||
2709 | /* | 2716 | /* |
2710 | * This gets called for every mutex_lock*()/spin_lock*() operation. | 2717 | * This gets called for every mutex_lock*()/spin_lock*() operation. |
2711 | * We maintain the dependency maps and validate the locking attempt: | 2718 | * We maintain the dependency maps and validate the locking attempt: |
@@ -2740,6 +2747,9 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2740 | return 0; | 2747 | return 0; |
2741 | } | 2748 | } |
2742 | 2749 | ||
2750 | if (lock->key == &__lockdep_no_validate__) | ||
2751 | check = 1; | ||
2752 | |||
2743 | if (!subclass) | 2753 | if (!subclass) |
2744 | class = lock->class_cache; | 2754 | class = lock->class_cache; |
2745 | /* | 2755 | /* |
@@ -2750,7 +2760,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2750 | if (!class) | 2760 | if (!class) |
2751 | return 0; | 2761 | return 0; |
2752 | } | 2762 | } |
2753 | debug_atomic_inc((atomic_t *)&class->ops); | 2763 | atomic_inc((atomic_t *)&class->ops); |
2754 | if (very_verbose(class)) { | 2764 | if (very_verbose(class)) { |
2755 | printk("\nacquire class [%p] %s", class->key, class->name); | 2765 | printk("\nacquire class [%p] %s", class->key, class->name); |
2756 | if (class->name_version > 1) | 2766 | if (class->name_version > 1) |
@@ -3227,7 +3237,7 @@ void lock_release(struct lockdep_map *lock, int nested, | |||
3227 | raw_local_irq_save(flags); | 3237 | raw_local_irq_save(flags); |
3228 | check_flags(flags); | 3238 | check_flags(flags); |
3229 | current->lockdep_recursion = 1; | 3239 | current->lockdep_recursion = 1; |
3230 | trace_lock_release(lock, nested, ip); | 3240 | trace_lock_release(lock, ip); |
3231 | __lock_release(lock, nested, ip); | 3241 | __lock_release(lock, nested, ip); |
3232 | current->lockdep_recursion = 0; | 3242 | current->lockdep_recursion = 0; |
3233 | raw_local_irq_restore(flags); | 3243 | raw_local_irq_restore(flags); |
@@ -3380,7 +3390,7 @@ found_it: | |||
3380 | hlock->holdtime_stamp = now; | 3390 | hlock->holdtime_stamp = now; |
3381 | } | 3391 | } |
3382 | 3392 | ||
3383 | trace_lock_acquired(lock, ip, waittime); | 3393 | trace_lock_acquired(lock, ip); |
3384 | 3394 | ||
3385 | stats = get_lock_stats(hlock_class(hlock)); | 3395 | stats = get_lock_stats(hlock_class(hlock)); |
3386 | if (waittime) { | 3396 | if (waittime) { |
@@ -3801,8 +3811,11 @@ void lockdep_rcu_dereference(const char *file, const int line) | |||
3801 | { | 3811 | { |
3802 | struct task_struct *curr = current; | 3812 | struct task_struct *curr = current; |
3803 | 3813 | ||
3814 | #ifndef CONFIG_PROVE_RCU_REPEATEDLY | ||
3804 | if (!debug_locks_off()) | 3815 | if (!debug_locks_off()) |
3805 | return; | 3816 | return; |
3817 | #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */ | ||
3818 | /* Note: the following can be executed concurrently, so be careful. */ | ||
3806 | printk("\n===================================================\n"); | 3819 | printk("\n===================================================\n"); |
3807 | printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n"); | 3820 | printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n"); |
3808 | printk( "---------------------------------------------------\n"); | 3821 | printk( "---------------------------------------------------\n"); |
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h index a2ee95ad1313..4f560cfedc8f 100644 --- a/kernel/lockdep_internals.h +++ b/kernel/lockdep_internals.h | |||
@@ -110,30 +110,60 @@ lockdep_count_backward_deps(struct lock_class *class) | |||
110 | #endif | 110 | #endif |
111 | 111 | ||
112 | #ifdef CONFIG_DEBUG_LOCKDEP | 112 | #ifdef CONFIG_DEBUG_LOCKDEP |
113 | |||
114 | #include <asm/local.h> | ||
113 | /* | 115 | /* |
114 | * Various lockdep statistics: | 116 | * Various lockdep statistics. |
117 | * We want them per cpu as they are often accessed in fast path | ||
118 | * and we want to avoid too much cache bouncing. | ||
115 | */ | 119 | */ |
116 | extern atomic_t chain_lookup_hits; | 120 | struct lockdep_stats { |
117 | extern atomic_t chain_lookup_misses; | 121 | int chain_lookup_hits; |
118 | extern atomic_t hardirqs_on_events; | 122 | int chain_lookup_misses; |
119 | extern atomic_t hardirqs_off_events; | 123 | int hardirqs_on_events; |
120 | extern atomic_t redundant_hardirqs_on; | 124 | int hardirqs_off_events; |
121 | extern atomic_t redundant_hardirqs_off; | 125 | int redundant_hardirqs_on; |
122 | extern atomic_t softirqs_on_events; | 126 | int redundant_hardirqs_off; |
123 | extern atomic_t softirqs_off_events; | 127 | int softirqs_on_events; |
124 | extern atomic_t redundant_softirqs_on; | 128 | int softirqs_off_events; |
125 | extern atomic_t redundant_softirqs_off; | 129 | int redundant_softirqs_on; |
126 | extern atomic_t nr_unused_locks; | 130 | int redundant_softirqs_off; |
127 | extern atomic_t nr_cyclic_checks; | 131 | int nr_unused_locks; |
128 | extern atomic_t nr_cyclic_check_recursions; | 132 | int nr_cyclic_checks; |
129 | extern atomic_t nr_find_usage_forwards_checks; | 133 | int nr_cyclic_check_recursions; |
130 | extern atomic_t nr_find_usage_forwards_recursions; | 134 | int nr_find_usage_forwards_checks; |
131 | extern atomic_t nr_find_usage_backwards_checks; | 135 | int nr_find_usage_forwards_recursions; |
132 | extern atomic_t nr_find_usage_backwards_recursions; | 136 | int nr_find_usage_backwards_checks; |
133 | # define debug_atomic_inc(ptr) atomic_inc(ptr) | 137 | int nr_find_usage_backwards_recursions; |
134 | # define debug_atomic_dec(ptr) atomic_dec(ptr) | 138 | }; |
135 | # define debug_atomic_read(ptr) atomic_read(ptr) | 139 | |
140 | DECLARE_PER_CPU(struct lockdep_stats, lockdep_stats); | ||
141 | |||
142 | #define __debug_atomic_inc(ptr) \ | ||
143 | this_cpu_inc(lockdep_stats.ptr); | ||
144 | |||
145 | #define debug_atomic_inc(ptr) { \ | ||
146 | WARN_ON_ONCE(!irqs_disabled()); \ | ||
147 | __this_cpu_inc(lockdep_stats.ptr); \ | ||
148 | } | ||
149 | |||
150 | #define debug_atomic_dec(ptr) { \ | ||
151 | WARN_ON_ONCE(!irqs_disabled()); \ | ||
152 | __this_cpu_dec(lockdep_stats.ptr); \ | ||
153 | } | ||
154 | |||
155 | #define debug_atomic_read(ptr) ({ \ | ||
156 | struct lockdep_stats *__cpu_lockdep_stats; \ | ||
157 | unsigned long long __total = 0; \ | ||
158 | int __cpu; \ | ||
159 | for_each_possible_cpu(__cpu) { \ | ||
160 | __cpu_lockdep_stats = &per_cpu(lockdep_stats, __cpu); \ | ||
161 | __total += __cpu_lockdep_stats->ptr; \ | ||
162 | } \ | ||
163 | __total; \ | ||
164 | }) | ||
136 | #else | 165 | #else |
166 | # define __debug_atomic_inc(ptr) do { } while (0) | ||
137 | # define debug_atomic_inc(ptr) do { } while (0) | 167 | # define debug_atomic_inc(ptr) do { } while (0) |
138 | # define debug_atomic_dec(ptr) do { } while (0) | 168 | # define debug_atomic_dec(ptr) do { } while (0) |
139 | # define debug_atomic_read(ptr) 0 | 169 | # define debug_atomic_read(ptr) 0 |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4aba4f3584c..59b76c8ce9d7 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -184,34 +184,34 @@ static const struct file_operations proc_lockdep_chains_operations = { | |||
184 | static void lockdep_stats_debug_show(struct seq_file *m) | 184 | static void lockdep_stats_debug_show(struct seq_file *m) |
185 | { | 185 | { |
186 | #ifdef CONFIG_DEBUG_LOCKDEP | 186 | #ifdef CONFIG_DEBUG_LOCKDEP |
187 | unsigned int hi1 = debug_atomic_read(&hardirqs_on_events), | 187 | unsigned long long hi1 = debug_atomic_read(hardirqs_on_events), |
188 | hi2 = debug_atomic_read(&hardirqs_off_events), | 188 | hi2 = debug_atomic_read(hardirqs_off_events), |
189 | hr1 = debug_atomic_read(&redundant_hardirqs_on), | 189 | hr1 = debug_atomic_read(redundant_hardirqs_on), |
190 | hr2 = debug_atomic_read(&redundant_hardirqs_off), | 190 | hr2 = debug_atomic_read(redundant_hardirqs_off), |
191 | si1 = debug_atomic_read(&softirqs_on_events), | 191 | si1 = debug_atomic_read(softirqs_on_events), |
192 | si2 = debug_atomic_read(&softirqs_off_events), | 192 | si2 = debug_atomic_read(softirqs_off_events), |
193 | sr1 = debug_atomic_read(&redundant_softirqs_on), | 193 | sr1 = debug_atomic_read(redundant_softirqs_on), |
194 | sr2 = debug_atomic_read(&redundant_softirqs_off); | 194 | sr2 = debug_atomic_read(redundant_softirqs_off); |
195 | 195 | ||
196 | seq_printf(m, " chain lookup misses: %11u\n", | 196 | seq_printf(m, " chain lookup misses: %11llu\n", |
197 | debug_atomic_read(&chain_lookup_misses)); | 197 | debug_atomic_read(chain_lookup_misses)); |
198 | seq_printf(m, " chain lookup hits: %11u\n", | 198 | seq_printf(m, " chain lookup hits: %11llu\n", |
199 | debug_atomic_read(&chain_lookup_hits)); | 199 | debug_atomic_read(chain_lookup_hits)); |
200 | seq_printf(m, " cyclic checks: %11u\n", | 200 | seq_printf(m, " cyclic checks: %11llu\n", |
201 | debug_atomic_read(&nr_cyclic_checks)); | 201 | debug_atomic_read(nr_cyclic_checks)); |
202 | seq_printf(m, " find-mask forwards checks: %11u\n", | 202 | seq_printf(m, " find-mask forwards checks: %11llu\n", |
203 | debug_atomic_read(&nr_find_usage_forwards_checks)); | 203 | debug_atomic_read(nr_find_usage_forwards_checks)); |
204 | seq_printf(m, " find-mask backwards checks: %11u\n", | 204 | seq_printf(m, " find-mask backwards checks: %11llu\n", |
205 | debug_atomic_read(&nr_find_usage_backwards_checks)); | 205 | debug_atomic_read(nr_find_usage_backwards_checks)); |
206 | 206 | ||
207 | seq_printf(m, " hardirq on events: %11u\n", hi1); | 207 | seq_printf(m, " hardirq on events: %11llu\n", hi1); |
208 | seq_printf(m, " hardirq off events: %11u\n", hi2); | 208 | seq_printf(m, " hardirq off events: %11llu\n", hi2); |
209 | seq_printf(m, " redundant hardirq ons: %11u\n", hr1); | 209 | seq_printf(m, " redundant hardirq ons: %11llu\n", hr1); |
210 | seq_printf(m, " redundant hardirq offs: %11u\n", hr2); | 210 | seq_printf(m, " redundant hardirq offs: %11llu\n", hr2); |
211 | seq_printf(m, " softirq on events: %11u\n", si1); | 211 | seq_printf(m, " softirq on events: %11llu\n", si1); |
212 | seq_printf(m, " softirq off events: %11u\n", si2); | 212 | seq_printf(m, " softirq off events: %11llu\n", si2); |
213 | seq_printf(m, " redundant softirq ons: %11u\n", sr1); | 213 | seq_printf(m, " redundant softirq ons: %11llu\n", sr1); |
214 | seq_printf(m, " redundant softirq offs: %11u\n", sr2); | 214 | seq_printf(m, " redundant softirq offs: %11llu\n", sr2); |
215 | #endif | 215 | #endif |
216 | } | 216 | } |
217 | 217 | ||
@@ -263,7 +263,7 @@ static int lockdep_stats_show(struct seq_file *m, void *v) | |||
263 | #endif | 263 | #endif |
264 | } | 264 | } |
265 | #ifdef CONFIG_DEBUG_LOCKDEP | 265 | #ifdef CONFIG_DEBUG_LOCKDEP |
266 | DEBUG_LOCKS_WARN_ON(debug_atomic_read(&nr_unused_locks) != nr_unused); | 266 | DEBUG_LOCKS_WARN_ON(debug_atomic_read(nr_unused_locks) != nr_unused); |
267 | #endif | 267 | #endif |
268 | seq_printf(m, " lock-classes: %11lu [max: %lu]\n", | 268 | seq_printf(m, " lock-classes: %11lu [max: %lu]\n", |
269 | nr_lock_classes, MAX_LOCKDEP_KEYS); | 269 | nr_lock_classes, MAX_LOCKDEP_KEYS); |
diff --git a/kernel/module.c b/kernel/module.c index 1016b75b026a..333fbcc96978 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -59,8 +59,6 @@ | |||
59 | #define CREATE_TRACE_POINTS | 59 | #define CREATE_TRACE_POINTS |
60 | #include <trace/events/module.h> | 60 | #include <trace/events/module.h> |
61 | 61 | ||
62 | EXPORT_TRACEPOINT_SYMBOL(module_get); | ||
63 | |||
64 | #if 0 | 62 | #if 0 |
65 | #define DEBUGP printk | 63 | #define DEBUGP printk |
66 | #else | 64 | #else |
@@ -79,6 +77,10 @@ EXPORT_TRACEPOINT_SYMBOL(module_get); | |||
79 | DEFINE_MUTEX(module_mutex); | 77 | DEFINE_MUTEX(module_mutex); |
80 | EXPORT_SYMBOL_GPL(module_mutex); | 78 | EXPORT_SYMBOL_GPL(module_mutex); |
81 | static LIST_HEAD(modules); | 79 | static LIST_HEAD(modules); |
80 | #ifdef CONFIG_KGDB_KDB | ||
81 | struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */ | ||
82 | #endif /* CONFIG_KGDB_KDB */ | ||
83 | |||
82 | 84 | ||
83 | /* Block module loading/unloading? */ | 85 | /* Block module loading/unloading? */ |
84 | int modules_disabled = 0; | 86 | int modules_disabled = 0; |
@@ -178,8 +180,6 @@ extern const struct kernel_symbol __start___ksymtab_gpl[]; | |||
178 | extern const struct kernel_symbol __stop___ksymtab_gpl[]; | 180 | extern const struct kernel_symbol __stop___ksymtab_gpl[]; |
179 | extern const struct kernel_symbol __start___ksymtab_gpl_future[]; | 181 | extern const struct kernel_symbol __start___ksymtab_gpl_future[]; |
180 | extern const struct kernel_symbol __stop___ksymtab_gpl_future[]; | 182 | extern const struct kernel_symbol __stop___ksymtab_gpl_future[]; |
181 | extern const struct kernel_symbol __start___ksymtab_gpl_future[]; | ||
182 | extern const struct kernel_symbol __stop___ksymtab_gpl_future[]; | ||
183 | extern const unsigned long __start___kcrctab[]; | 183 | extern const unsigned long __start___kcrctab[]; |
184 | extern const unsigned long __start___kcrctab_gpl[]; | 184 | extern const unsigned long __start___kcrctab_gpl[]; |
185 | extern const unsigned long __start___kcrctab_gpl_future[]; | 185 | extern const unsigned long __start___kcrctab_gpl_future[]; |
@@ -515,6 +515,9 @@ MODINFO_ATTR(srcversion); | |||
515 | static char last_unloaded_module[MODULE_NAME_LEN+1]; | 515 | static char last_unloaded_module[MODULE_NAME_LEN+1]; |
516 | 516 | ||
517 | #ifdef CONFIG_MODULE_UNLOAD | 517 | #ifdef CONFIG_MODULE_UNLOAD |
518 | |||
519 | EXPORT_TRACEPOINT_SYMBOL(module_get); | ||
520 | |||
518 | /* Init the unload section of the module. */ | 521 | /* Init the unload section of the module. */ |
519 | static void module_unload_init(struct module *mod) | 522 | static void module_unload_init(struct module *mod) |
520 | { | 523 | { |
@@ -723,16 +726,8 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
723 | return -EFAULT; | 726 | return -EFAULT; |
724 | name[MODULE_NAME_LEN-1] = '\0'; | 727 | name[MODULE_NAME_LEN-1] = '\0'; |
725 | 728 | ||
726 | /* Create stop_machine threads since free_module relies on | 729 | if (mutex_lock_interruptible(&module_mutex) != 0) |
727 | * a non-failing stop_machine call. */ | 730 | return -EINTR; |
728 | ret = stop_machine_create(); | ||
729 | if (ret) | ||
730 | return ret; | ||
731 | |||
732 | if (mutex_lock_interruptible(&module_mutex) != 0) { | ||
733 | ret = -EINTR; | ||
734 | goto out_stop; | ||
735 | } | ||
736 | 731 | ||
737 | mod = find_module(name); | 732 | mod = find_module(name); |
738 | if (!mod) { | 733 | if (!mod) { |
@@ -792,8 +787,6 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
792 | 787 | ||
793 | out: | 788 | out: |
794 | mutex_unlock(&module_mutex); | 789 | mutex_unlock(&module_mutex); |
795 | out_stop: | ||
796 | stop_machine_destroy(); | ||
797 | return ret; | 790 | return ret; |
798 | } | 791 | } |
799 | 792 | ||
@@ -867,8 +860,7 @@ void module_put(struct module *module) | |||
867 | smp_wmb(); /* see comment in module_refcount */ | 860 | smp_wmb(); /* see comment in module_refcount */ |
868 | __this_cpu_inc(module->refptr->decs); | 861 | __this_cpu_inc(module->refptr->decs); |
869 | 862 | ||
870 | trace_module_put(module, _RET_IP_, | 863 | trace_module_put(module, _RET_IP_); |
871 | __this_cpu_read(module->refptr->decs)); | ||
872 | /* Maybe they're waiting for us to drop reference? */ | 864 | /* Maybe they're waiting for us to drop reference? */ |
873 | if (unlikely(!module_is_live(module))) | 865 | if (unlikely(!module_is_live(module))) |
874 | wake_up_process(module->waiter); | 866 | wake_up_process(module->waiter); |
@@ -1192,7 +1184,7 @@ struct module_notes_attrs { | |||
1192 | struct bin_attribute attrs[0]; | 1184 | struct bin_attribute attrs[0]; |
1193 | }; | 1185 | }; |
1194 | 1186 | ||
1195 | static ssize_t module_notes_read(struct kobject *kobj, | 1187 | static ssize_t module_notes_read(struct file *filp, struct kobject *kobj, |
1196 | struct bin_attribute *bin_attr, | 1188 | struct bin_attribute *bin_attr, |
1197 | char *buf, loff_t pos, size_t count) | 1189 | char *buf, loff_t pos, size_t count) |
1198 | { | 1190 | { |
diff --git a/kernel/padata.c b/kernel/padata.c index fd03513c7327..fdd8ae609ce3 100644 --- a/kernel/padata.c +++ b/kernel/padata.c | |||
@@ -29,7 +29,7 @@ | |||
29 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
30 | 30 | ||
31 | #define MAX_SEQ_NR INT_MAX - NR_CPUS | 31 | #define MAX_SEQ_NR INT_MAX - NR_CPUS |
32 | #define MAX_OBJ_NUM 10000 * NR_CPUS | 32 | #define MAX_OBJ_NUM 1000 |
33 | 33 | ||
34 | static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) | 34 | static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) |
35 | { | 35 | { |
@@ -88,7 +88,7 @@ static void padata_parallel_worker(struct work_struct *work) | |||
88 | local_bh_enable(); | 88 | local_bh_enable(); |
89 | } | 89 | } |
90 | 90 | ||
91 | /* | 91 | /** |
92 | * padata_do_parallel - padata parallelization function | 92 | * padata_do_parallel - padata parallelization function |
93 | * | 93 | * |
94 | * @pinst: padata instance | 94 | * @pinst: padata instance |
@@ -152,6 +152,23 @@ out: | |||
152 | } | 152 | } |
153 | EXPORT_SYMBOL(padata_do_parallel); | 153 | EXPORT_SYMBOL(padata_do_parallel); |
154 | 154 | ||
155 | /* | ||
156 | * padata_get_next - Get the next object that needs serialization. | ||
157 | * | ||
158 | * Return values are: | ||
159 | * | ||
160 | * A pointer to the control struct of the next object that needs | ||
161 | * serialization, if present in one of the percpu reorder queues. | ||
162 | * | ||
163 | * NULL, if all percpu reorder queues are empty. | ||
164 | * | ||
165 | * -EINPROGRESS, if the next object that needs serialization will | ||
166 | * be parallel processed by another cpu and is not yet present in | ||
167 | * the cpu's reorder queue. | ||
168 | * | ||
169 | * -ENODATA, if this cpu has to do the parallel processing for | ||
170 | * the next object. | ||
171 | */ | ||
155 | static struct padata_priv *padata_get_next(struct parallel_data *pd) | 172 | static struct padata_priv *padata_get_next(struct parallel_data *pd) |
156 | { | 173 | { |
157 | int cpu, num_cpus, empty, calc_seq_nr; | 174 | int cpu, num_cpus, empty, calc_seq_nr; |
@@ -173,7 +190,7 @@ static struct padata_priv *padata_get_next(struct parallel_data *pd) | |||
173 | 190 | ||
174 | /* | 191 | /* |
175 | * Calculate the seq_nr of the object that should be | 192 | * Calculate the seq_nr of the object that should be |
176 | * next in this queue. | 193 | * next in this reorder queue. |
177 | */ | 194 | */ |
178 | overrun = 0; | 195 | overrun = 0; |
179 | calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus) | 196 | calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus) |
@@ -231,7 +248,8 @@ static struct padata_priv *padata_get_next(struct parallel_data *pd) | |||
231 | goto out; | 248 | goto out; |
232 | } | 249 | } |
233 | 250 | ||
234 | if (next_nr % num_cpus == next_queue->cpu_index) { | 251 | queue = per_cpu_ptr(pd->queue, smp_processor_id()); |
252 | if (queue->cpu_index == next_queue->cpu_index) { | ||
235 | padata = ERR_PTR(-ENODATA); | 253 | padata = ERR_PTR(-ENODATA); |
236 | goto out; | 254 | goto out; |
237 | } | 255 | } |
@@ -247,19 +265,40 @@ static void padata_reorder(struct parallel_data *pd) | |||
247 | struct padata_queue *queue; | 265 | struct padata_queue *queue; |
248 | struct padata_instance *pinst = pd->pinst; | 266 | struct padata_instance *pinst = pd->pinst; |
249 | 267 | ||
250 | try_again: | 268 | /* |
269 | * We need to ensure that only one cpu can work on dequeueing of | ||
270 | * the reorder queue the time. Calculating in which percpu reorder | ||
271 | * queue the next object will arrive takes some time. A spinlock | ||
272 | * would be highly contended. Also it is not clear in which order | ||
273 | * the objects arrive to the reorder queues. So a cpu could wait to | ||
274 | * get the lock just to notice that there is nothing to do at the | ||
275 | * moment. Therefore we use a trylock and let the holder of the lock | ||
276 | * care for all the objects enqueued during the holdtime of the lock. | ||
277 | */ | ||
251 | if (!spin_trylock_bh(&pd->lock)) | 278 | if (!spin_trylock_bh(&pd->lock)) |
252 | goto out; | 279 | return; |
253 | 280 | ||
254 | while (1) { | 281 | while (1) { |
255 | padata = padata_get_next(pd); | 282 | padata = padata_get_next(pd); |
256 | 283 | ||
284 | /* | ||
285 | * All reorder queues are empty, or the next object that needs | ||
286 | * serialization is parallel processed by another cpu and is | ||
287 | * still on it's way to the cpu's reorder queue, nothing to | ||
288 | * do for now. | ||
289 | */ | ||
257 | if (!padata || PTR_ERR(padata) == -EINPROGRESS) | 290 | if (!padata || PTR_ERR(padata) == -EINPROGRESS) |
258 | break; | 291 | break; |
259 | 292 | ||
293 | /* | ||
294 | * This cpu has to do the parallel processing of the next | ||
295 | * object. It's waiting in the cpu's parallelization queue, | ||
296 | * so exit imediately. | ||
297 | */ | ||
260 | if (PTR_ERR(padata) == -ENODATA) { | 298 | if (PTR_ERR(padata) == -ENODATA) { |
299 | del_timer(&pd->timer); | ||
261 | spin_unlock_bh(&pd->lock); | 300 | spin_unlock_bh(&pd->lock); |
262 | goto out; | 301 | return; |
263 | } | 302 | } |
264 | 303 | ||
265 | queue = per_cpu_ptr(pd->queue, padata->cb_cpu); | 304 | queue = per_cpu_ptr(pd->queue, padata->cb_cpu); |
@@ -273,13 +312,27 @@ try_again: | |||
273 | 312 | ||
274 | spin_unlock_bh(&pd->lock); | 313 | spin_unlock_bh(&pd->lock); |
275 | 314 | ||
276 | if (atomic_read(&pd->reorder_objects)) | 315 | /* |
277 | goto try_again; | 316 | * The next object that needs serialization might have arrived to |
317 | * the reorder queues in the meantime, we will be called again | ||
318 | * from the timer function if noone else cares for it. | ||
319 | */ | ||
320 | if (atomic_read(&pd->reorder_objects) | ||
321 | && !(pinst->flags & PADATA_RESET)) | ||
322 | mod_timer(&pd->timer, jiffies + HZ); | ||
323 | else | ||
324 | del_timer(&pd->timer); | ||
278 | 325 | ||
279 | out: | ||
280 | return; | 326 | return; |
281 | } | 327 | } |
282 | 328 | ||
329 | static void padata_reorder_timer(unsigned long arg) | ||
330 | { | ||
331 | struct parallel_data *pd = (struct parallel_data *)arg; | ||
332 | |||
333 | padata_reorder(pd); | ||
334 | } | ||
335 | |||
283 | static void padata_serial_worker(struct work_struct *work) | 336 | static void padata_serial_worker(struct work_struct *work) |
284 | { | 337 | { |
285 | struct padata_queue *queue; | 338 | struct padata_queue *queue; |
@@ -308,7 +361,7 @@ static void padata_serial_worker(struct work_struct *work) | |||
308 | local_bh_enable(); | 361 | local_bh_enable(); |
309 | } | 362 | } |
310 | 363 | ||
311 | /* | 364 | /** |
312 | * padata_do_serial - padata serialization function | 365 | * padata_do_serial - padata serialization function |
313 | * | 366 | * |
314 | * @padata: object to be serialized. | 367 | * @padata: object to be serialized. |
@@ -338,6 +391,7 @@ void padata_do_serial(struct padata_priv *padata) | |||
338 | } | 391 | } |
339 | EXPORT_SYMBOL(padata_do_serial); | 392 | EXPORT_SYMBOL(padata_do_serial); |
340 | 393 | ||
394 | /* Allocate and initialize the internal cpumask dependend resources. */ | ||
341 | static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | 395 | static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, |
342 | const struct cpumask *cpumask) | 396 | const struct cpumask *cpumask) |
343 | { | 397 | { |
@@ -358,17 +412,15 @@ static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | |||
358 | if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL)) | 412 | if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL)) |
359 | goto err_free_queue; | 413 | goto err_free_queue; |
360 | 414 | ||
361 | for_each_possible_cpu(cpu) { | 415 | cpumask_and(pd->cpumask, cpumask, cpu_active_mask); |
416 | |||
417 | for_each_cpu(cpu, pd->cpumask) { | ||
362 | queue = per_cpu_ptr(pd->queue, cpu); | 418 | queue = per_cpu_ptr(pd->queue, cpu); |
363 | 419 | ||
364 | queue->pd = pd; | 420 | queue->pd = pd; |
365 | 421 | ||
366 | if (cpumask_test_cpu(cpu, cpumask) | 422 | queue->cpu_index = cpu_index; |
367 | && cpumask_test_cpu(cpu, cpu_active_mask)) { | 423 | cpu_index++; |
368 | queue->cpu_index = cpu_index; | ||
369 | cpu_index++; | ||
370 | } else | ||
371 | queue->cpu_index = -1; | ||
372 | 424 | ||
373 | INIT_LIST_HEAD(&queue->reorder.list); | 425 | INIT_LIST_HEAD(&queue->reorder.list); |
374 | INIT_LIST_HEAD(&queue->parallel.list); | 426 | INIT_LIST_HEAD(&queue->parallel.list); |
@@ -382,11 +434,10 @@ static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | |||
382 | atomic_set(&queue->num_obj, 0); | 434 | atomic_set(&queue->num_obj, 0); |
383 | } | 435 | } |
384 | 436 | ||
385 | cpumask_and(pd->cpumask, cpumask, cpu_active_mask); | ||
386 | |||
387 | num_cpus = cpumask_weight(pd->cpumask); | 437 | num_cpus = cpumask_weight(pd->cpumask); |
388 | pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1; | 438 | pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1; |
389 | 439 | ||
440 | setup_timer(&pd->timer, padata_reorder_timer, (unsigned long)pd); | ||
390 | atomic_set(&pd->seq_nr, -1); | 441 | atomic_set(&pd->seq_nr, -1); |
391 | atomic_set(&pd->reorder_objects, 0); | 442 | atomic_set(&pd->reorder_objects, 0); |
392 | atomic_set(&pd->refcnt, 0); | 443 | atomic_set(&pd->refcnt, 0); |
@@ -410,6 +461,31 @@ static void padata_free_pd(struct parallel_data *pd) | |||
410 | kfree(pd); | 461 | kfree(pd); |
411 | } | 462 | } |
412 | 463 | ||
464 | /* Flush all objects out of the padata queues. */ | ||
465 | static void padata_flush_queues(struct parallel_data *pd) | ||
466 | { | ||
467 | int cpu; | ||
468 | struct padata_queue *queue; | ||
469 | |||
470 | for_each_cpu(cpu, pd->cpumask) { | ||
471 | queue = per_cpu_ptr(pd->queue, cpu); | ||
472 | flush_work(&queue->pwork); | ||
473 | } | ||
474 | |||
475 | del_timer_sync(&pd->timer); | ||
476 | |||
477 | if (atomic_read(&pd->reorder_objects)) | ||
478 | padata_reorder(pd); | ||
479 | |||
480 | for_each_cpu(cpu, pd->cpumask) { | ||
481 | queue = per_cpu_ptr(pd->queue, cpu); | ||
482 | flush_work(&queue->swork); | ||
483 | } | ||
484 | |||
485 | BUG_ON(atomic_read(&pd->refcnt) != 0); | ||
486 | } | ||
487 | |||
488 | /* Replace the internal control stucture with a new one. */ | ||
413 | static void padata_replace(struct padata_instance *pinst, | 489 | static void padata_replace(struct padata_instance *pinst, |
414 | struct parallel_data *pd_new) | 490 | struct parallel_data *pd_new) |
415 | { | 491 | { |
@@ -421,17 +497,13 @@ static void padata_replace(struct padata_instance *pinst, | |||
421 | 497 | ||
422 | synchronize_rcu(); | 498 | synchronize_rcu(); |
423 | 499 | ||
424 | while (atomic_read(&pd_old->refcnt) != 0) | 500 | padata_flush_queues(pd_old); |
425 | yield(); | ||
426 | |||
427 | flush_workqueue(pinst->wq); | ||
428 | |||
429 | padata_free_pd(pd_old); | 501 | padata_free_pd(pd_old); |
430 | 502 | ||
431 | pinst->flags &= ~PADATA_RESET; | 503 | pinst->flags &= ~PADATA_RESET; |
432 | } | 504 | } |
433 | 505 | ||
434 | /* | 506 | /** |
435 | * padata_set_cpumask - set the cpumask that padata should use | 507 | * padata_set_cpumask - set the cpumask that padata should use |
436 | * | 508 | * |
437 | * @pinst: padata instance | 509 | * @pinst: padata instance |
@@ -443,10 +515,10 @@ int padata_set_cpumask(struct padata_instance *pinst, | |||
443 | struct parallel_data *pd; | 515 | struct parallel_data *pd; |
444 | int err = 0; | 516 | int err = 0; |
445 | 517 | ||
446 | might_sleep(); | ||
447 | |||
448 | mutex_lock(&pinst->lock); | 518 | mutex_lock(&pinst->lock); |
449 | 519 | ||
520 | get_online_cpus(); | ||
521 | |||
450 | pd = padata_alloc_pd(pinst, cpumask); | 522 | pd = padata_alloc_pd(pinst, cpumask); |
451 | if (!pd) { | 523 | if (!pd) { |
452 | err = -ENOMEM; | 524 | err = -ENOMEM; |
@@ -458,6 +530,8 @@ int padata_set_cpumask(struct padata_instance *pinst, | |||
458 | padata_replace(pinst, pd); | 530 | padata_replace(pinst, pd); |
459 | 531 | ||
460 | out: | 532 | out: |
533 | put_online_cpus(); | ||
534 | |||
461 | mutex_unlock(&pinst->lock); | 535 | mutex_unlock(&pinst->lock); |
462 | 536 | ||
463 | return err; | 537 | return err; |
@@ -479,7 +553,7 @@ static int __padata_add_cpu(struct padata_instance *pinst, int cpu) | |||
479 | return 0; | 553 | return 0; |
480 | } | 554 | } |
481 | 555 | ||
482 | /* | 556 | /** |
483 | * padata_add_cpu - add a cpu to the padata cpumask | 557 | * padata_add_cpu - add a cpu to the padata cpumask |
484 | * | 558 | * |
485 | * @pinst: padata instance | 559 | * @pinst: padata instance |
@@ -489,12 +563,12 @@ int padata_add_cpu(struct padata_instance *pinst, int cpu) | |||
489 | { | 563 | { |
490 | int err; | 564 | int err; |
491 | 565 | ||
492 | might_sleep(); | ||
493 | |||
494 | mutex_lock(&pinst->lock); | 566 | mutex_lock(&pinst->lock); |
495 | 567 | ||
568 | get_online_cpus(); | ||
496 | cpumask_set_cpu(cpu, pinst->cpumask); | 569 | cpumask_set_cpu(cpu, pinst->cpumask); |
497 | err = __padata_add_cpu(pinst, cpu); | 570 | err = __padata_add_cpu(pinst, cpu); |
571 | put_online_cpus(); | ||
498 | 572 | ||
499 | mutex_unlock(&pinst->lock); | 573 | mutex_unlock(&pinst->lock); |
500 | 574 | ||
@@ -517,7 +591,7 @@ static int __padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
517 | return 0; | 591 | return 0; |
518 | } | 592 | } |
519 | 593 | ||
520 | /* | 594 | /** |
521 | * padata_remove_cpu - remove a cpu from the padata cpumask | 595 | * padata_remove_cpu - remove a cpu from the padata cpumask |
522 | * | 596 | * |
523 | * @pinst: padata instance | 597 | * @pinst: padata instance |
@@ -527,12 +601,12 @@ int padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
527 | { | 601 | { |
528 | int err; | 602 | int err; |
529 | 603 | ||
530 | might_sleep(); | ||
531 | |||
532 | mutex_lock(&pinst->lock); | 604 | mutex_lock(&pinst->lock); |
533 | 605 | ||
606 | get_online_cpus(); | ||
534 | cpumask_clear_cpu(cpu, pinst->cpumask); | 607 | cpumask_clear_cpu(cpu, pinst->cpumask); |
535 | err = __padata_remove_cpu(pinst, cpu); | 608 | err = __padata_remove_cpu(pinst, cpu); |
609 | put_online_cpus(); | ||
536 | 610 | ||
537 | mutex_unlock(&pinst->lock); | 611 | mutex_unlock(&pinst->lock); |
538 | 612 | ||
@@ -540,38 +614,35 @@ int padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
540 | } | 614 | } |
541 | EXPORT_SYMBOL(padata_remove_cpu); | 615 | EXPORT_SYMBOL(padata_remove_cpu); |
542 | 616 | ||
543 | /* | 617 | /** |
544 | * padata_start - start the parallel processing | 618 | * padata_start - start the parallel processing |
545 | * | 619 | * |
546 | * @pinst: padata instance to start | 620 | * @pinst: padata instance to start |
547 | */ | 621 | */ |
548 | void padata_start(struct padata_instance *pinst) | 622 | void padata_start(struct padata_instance *pinst) |
549 | { | 623 | { |
550 | might_sleep(); | ||
551 | |||
552 | mutex_lock(&pinst->lock); | 624 | mutex_lock(&pinst->lock); |
553 | pinst->flags |= PADATA_INIT; | 625 | pinst->flags |= PADATA_INIT; |
554 | mutex_unlock(&pinst->lock); | 626 | mutex_unlock(&pinst->lock); |
555 | } | 627 | } |
556 | EXPORT_SYMBOL(padata_start); | 628 | EXPORT_SYMBOL(padata_start); |
557 | 629 | ||
558 | /* | 630 | /** |
559 | * padata_stop - stop the parallel processing | 631 | * padata_stop - stop the parallel processing |
560 | * | 632 | * |
561 | * @pinst: padata instance to stop | 633 | * @pinst: padata instance to stop |
562 | */ | 634 | */ |
563 | void padata_stop(struct padata_instance *pinst) | 635 | void padata_stop(struct padata_instance *pinst) |
564 | { | 636 | { |
565 | might_sleep(); | ||
566 | |||
567 | mutex_lock(&pinst->lock); | 637 | mutex_lock(&pinst->lock); |
568 | pinst->flags &= ~PADATA_INIT; | 638 | pinst->flags &= ~PADATA_INIT; |
569 | mutex_unlock(&pinst->lock); | 639 | mutex_unlock(&pinst->lock); |
570 | } | 640 | } |
571 | EXPORT_SYMBOL(padata_stop); | 641 | EXPORT_SYMBOL(padata_stop); |
572 | 642 | ||
573 | static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | 643 | #ifdef CONFIG_HOTPLUG_CPU |
574 | unsigned long action, void *hcpu) | 644 | static int padata_cpu_callback(struct notifier_block *nfb, |
645 | unsigned long action, void *hcpu) | ||
575 | { | 646 | { |
576 | int err; | 647 | int err; |
577 | struct padata_instance *pinst; | 648 | struct padata_instance *pinst; |
@@ -588,7 +659,7 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
588 | err = __padata_add_cpu(pinst, cpu); | 659 | err = __padata_add_cpu(pinst, cpu); |
589 | mutex_unlock(&pinst->lock); | 660 | mutex_unlock(&pinst->lock); |
590 | if (err) | 661 | if (err) |
591 | return NOTIFY_BAD; | 662 | return notifier_from_errno(err); |
592 | break; | 663 | break; |
593 | 664 | ||
594 | case CPU_DOWN_PREPARE: | 665 | case CPU_DOWN_PREPARE: |
@@ -599,7 +670,7 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
599 | err = __padata_remove_cpu(pinst, cpu); | 670 | err = __padata_remove_cpu(pinst, cpu); |
600 | mutex_unlock(&pinst->lock); | 671 | mutex_unlock(&pinst->lock); |
601 | if (err) | 672 | if (err) |
602 | return NOTIFY_BAD; | 673 | return notifier_from_errno(err); |
603 | break; | 674 | break; |
604 | 675 | ||
605 | case CPU_UP_CANCELED: | 676 | case CPU_UP_CANCELED: |
@@ -621,8 +692,9 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
621 | 692 | ||
622 | return NOTIFY_OK; | 693 | return NOTIFY_OK; |
623 | } | 694 | } |
695 | #endif | ||
624 | 696 | ||
625 | /* | 697 | /** |
626 | * padata_alloc - allocate and initialize a padata instance | 698 | * padata_alloc - allocate and initialize a padata instance |
627 | * | 699 | * |
628 | * @cpumask: cpumask that padata uses for parallelization | 700 | * @cpumask: cpumask that padata uses for parallelization |
@@ -631,7 +703,6 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
631 | struct padata_instance *padata_alloc(const struct cpumask *cpumask, | 703 | struct padata_instance *padata_alloc(const struct cpumask *cpumask, |
632 | struct workqueue_struct *wq) | 704 | struct workqueue_struct *wq) |
633 | { | 705 | { |
634 | int err; | ||
635 | struct padata_instance *pinst; | 706 | struct padata_instance *pinst; |
636 | struct parallel_data *pd; | 707 | struct parallel_data *pd; |
637 | 708 | ||
@@ -639,6 +710,8 @@ struct padata_instance *padata_alloc(const struct cpumask *cpumask, | |||
639 | if (!pinst) | 710 | if (!pinst) |
640 | goto err; | 711 | goto err; |
641 | 712 | ||
713 | get_online_cpus(); | ||
714 | |||
642 | pd = padata_alloc_pd(pinst, cpumask); | 715 | pd = padata_alloc_pd(pinst, cpumask); |
643 | if (!pd) | 716 | if (!pd) |
644 | goto err_free_inst; | 717 | goto err_free_inst; |
@@ -654,31 +727,32 @@ struct padata_instance *padata_alloc(const struct cpumask *cpumask, | |||
654 | 727 | ||
655 | pinst->flags = 0; | 728 | pinst->flags = 0; |
656 | 729 | ||
730 | #ifdef CONFIG_HOTPLUG_CPU | ||
657 | pinst->cpu_notifier.notifier_call = padata_cpu_callback; | 731 | pinst->cpu_notifier.notifier_call = padata_cpu_callback; |
658 | pinst->cpu_notifier.priority = 0; | 732 | pinst->cpu_notifier.priority = 0; |
659 | err = register_hotcpu_notifier(&pinst->cpu_notifier); | 733 | register_hotcpu_notifier(&pinst->cpu_notifier); |
660 | if (err) | 734 | #endif |
661 | goto err_free_cpumask; | 735 | |
736 | put_online_cpus(); | ||
662 | 737 | ||
663 | mutex_init(&pinst->lock); | 738 | mutex_init(&pinst->lock); |
664 | 739 | ||
665 | return pinst; | 740 | return pinst; |
666 | 741 | ||
667 | err_free_cpumask: | ||
668 | free_cpumask_var(pinst->cpumask); | ||
669 | err_free_pd: | 742 | err_free_pd: |
670 | padata_free_pd(pd); | 743 | padata_free_pd(pd); |
671 | err_free_inst: | 744 | err_free_inst: |
672 | kfree(pinst); | 745 | kfree(pinst); |
746 | put_online_cpus(); | ||
673 | err: | 747 | err: |
674 | return NULL; | 748 | return NULL; |
675 | } | 749 | } |
676 | EXPORT_SYMBOL(padata_alloc); | 750 | EXPORT_SYMBOL(padata_alloc); |
677 | 751 | ||
678 | /* | 752 | /** |
679 | * padata_free - free a padata instance | 753 | * padata_free - free a padata instance |
680 | * | 754 | * |
681 | * @ padata_inst: padata instance to free | 755 | * @padata_inst: padata instance to free |
682 | */ | 756 | */ |
683 | void padata_free(struct padata_instance *pinst) | 757 | void padata_free(struct padata_instance *pinst) |
684 | { | 758 | { |
@@ -686,10 +760,13 @@ void padata_free(struct padata_instance *pinst) | |||
686 | 760 | ||
687 | synchronize_rcu(); | 761 | synchronize_rcu(); |
688 | 762 | ||
689 | while (atomic_read(&pinst->pd->refcnt) != 0) | 763 | #ifdef CONFIG_HOTPLUG_CPU |
690 | yield(); | ||
691 | |||
692 | unregister_hotcpu_notifier(&pinst->cpu_notifier); | 764 | unregister_hotcpu_notifier(&pinst->cpu_notifier); |
765 | #endif | ||
766 | get_online_cpus(); | ||
767 | padata_flush_queues(pinst->pd); | ||
768 | put_online_cpus(); | ||
769 | |||
693 | padata_free_pd(pinst->pd); | 770 | padata_free_pd(pinst->pd); |
694 | free_cpumask_var(pinst->cpumask); | 771 | free_cpumask_var(pinst->cpumask); |
695 | kfree(pinst); | 772 | kfree(pinst); |
diff --git a/kernel/panic.c b/kernel/panic.c index 13d966b4c14a..3b16cd93fa7d 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -87,6 +87,7 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
87 | */ | 87 | */ |
88 | preempt_disable(); | 88 | preempt_disable(); |
89 | 89 | ||
90 | console_verbose(); | ||
90 | bust_spinlocks(1); | 91 | bust_spinlocks(1); |
91 | va_start(args, fmt); | 92 | va_start(args, fmt); |
92 | vsnprintf(buf, sizeof(buf), fmt, args); | 93 | vsnprintf(buf, sizeof(buf), fmt, args); |
@@ -178,6 +179,7 @@ static const struct tnt tnts[] = { | |||
178 | { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' }, | 179 | { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' }, |
179 | { TAINT_WARN, 'W', ' ' }, | 180 | { TAINT_WARN, 'W', ' ' }, |
180 | { TAINT_CRAP, 'C', ' ' }, | 181 | { TAINT_CRAP, 'C', ' ' }, |
182 | { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' }, | ||
181 | }; | 183 | }; |
182 | 184 | ||
183 | /** | 185 | /** |
@@ -194,6 +196,7 @@ static const struct tnt tnts[] = { | |||
194 | * 'A' - ACPI table overridden. | 196 | * 'A' - ACPI table overridden. |
195 | * 'W' - Taint on warning. | 197 | * 'W' - Taint on warning. |
196 | * 'C' - modules from drivers/staging are loaded. | 198 | * 'C' - modules from drivers/staging are loaded. |
199 | * 'I' - Working around severe firmware bug. | ||
197 | * | 200 | * |
198 | * The string is overwritten by the next call to print_tainted(). | 201 | * The string is overwritten by the next call to print_tainted(). |
199 | */ | 202 | */ |
@@ -365,7 +368,8 @@ struct slowpath_args { | |||
365 | va_list args; | 368 | va_list args; |
366 | }; | 369 | }; |
367 | 370 | ||
368 | static void warn_slowpath_common(const char *file, int line, void *caller, struct slowpath_args *args) | 371 | static void warn_slowpath_common(const char *file, int line, void *caller, |
372 | unsigned taint, struct slowpath_args *args) | ||
369 | { | 373 | { |
370 | const char *board; | 374 | const char *board; |
371 | 375 | ||
@@ -381,7 +385,7 @@ static void warn_slowpath_common(const char *file, int line, void *caller, struc | |||
381 | print_modules(); | 385 | print_modules(); |
382 | dump_stack(); | 386 | dump_stack(); |
383 | print_oops_end_marker(); | 387 | print_oops_end_marker(); |
384 | add_taint(TAINT_WARN); | 388 | add_taint(taint); |
385 | } | 389 | } |
386 | 390 | ||
387 | void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) | 391 | void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) |
@@ -390,14 +394,29 @@ void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) | |||
390 | 394 | ||
391 | args.fmt = fmt; | 395 | args.fmt = fmt; |
392 | va_start(args.args, fmt); | 396 | va_start(args.args, fmt); |
393 | warn_slowpath_common(file, line, __builtin_return_address(0), &args); | 397 | warn_slowpath_common(file, line, __builtin_return_address(0), |
398 | TAINT_WARN, &args); | ||
394 | va_end(args.args); | 399 | va_end(args.args); |
395 | } | 400 | } |
396 | EXPORT_SYMBOL(warn_slowpath_fmt); | 401 | EXPORT_SYMBOL(warn_slowpath_fmt); |
397 | 402 | ||
403 | void warn_slowpath_fmt_taint(const char *file, int line, | ||
404 | unsigned taint, const char *fmt, ...) | ||
405 | { | ||
406 | struct slowpath_args args; | ||
407 | |||
408 | args.fmt = fmt; | ||
409 | va_start(args.args, fmt); | ||
410 | warn_slowpath_common(file, line, __builtin_return_address(0), | ||
411 | taint, &args); | ||
412 | va_end(args.args); | ||
413 | } | ||
414 | EXPORT_SYMBOL(warn_slowpath_fmt_taint); | ||
415 | |||
398 | void warn_slowpath_null(const char *file, int line) | 416 | void warn_slowpath_null(const char *file, int line) |
399 | { | 417 | { |
400 | warn_slowpath_common(file, line, __builtin_return_address(0), NULL); | 418 | warn_slowpath_common(file, line, __builtin_return_address(0), |
419 | TAINT_WARN, NULL); | ||
401 | } | 420 | } |
402 | EXPORT_SYMBOL(warn_slowpath_null); | 421 | EXPORT_SYMBOL(warn_slowpath_null); |
403 | #endif | 422 | #endif |
diff --git a/kernel/perf_event.c b/kernel/perf_event.c index 3d1552d3c12b..bd7ce8ca5bb9 100644 --- a/kernel/perf_event.c +++ b/kernel/perf_event.c | |||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/file.h> | 16 | #include <linux/file.h> |
17 | #include <linux/poll.h> | 17 | #include <linux/poll.h> |
18 | #include <linux/slab.h> | 18 | #include <linux/slab.h> |
19 | #include <linux/hash.h> | ||
19 | #include <linux/sysfs.h> | 20 | #include <linux/sysfs.h> |
20 | #include <linux/dcache.h> | 21 | #include <linux/dcache.h> |
21 | #include <linux/percpu.h> | 22 | #include <linux/percpu.h> |
@@ -82,14 +83,6 @@ extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | |||
82 | void __weak hw_perf_disable(void) { barrier(); } | 83 | void __weak hw_perf_disable(void) { barrier(); } |
83 | void __weak hw_perf_enable(void) { barrier(); } | 84 | void __weak hw_perf_enable(void) { barrier(); } |
84 | 85 | ||
85 | int __weak | ||
86 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
87 | struct perf_cpu_context *cpuctx, | ||
88 | struct perf_event_context *ctx) | ||
89 | { | ||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | void __weak perf_event_print_debug(void) { } | 86 | void __weak perf_event_print_debug(void) { } |
94 | 87 | ||
95 | static DEFINE_PER_CPU(int, perf_disable_count); | 88 | static DEFINE_PER_CPU(int, perf_disable_count); |
@@ -262,6 +255,18 @@ static void update_event_times(struct perf_event *event) | |||
262 | event->total_time_running = run_end - event->tstamp_running; | 255 | event->total_time_running = run_end - event->tstamp_running; |
263 | } | 256 | } |
264 | 257 | ||
258 | /* | ||
259 | * Update total_time_enabled and total_time_running for all events in a group. | ||
260 | */ | ||
261 | static void update_group_times(struct perf_event *leader) | ||
262 | { | ||
263 | struct perf_event *event; | ||
264 | |||
265 | update_event_times(leader); | ||
266 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
267 | update_event_times(event); | ||
268 | } | ||
269 | |||
265 | static struct list_head * | 270 | static struct list_head * |
266 | ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) | 271 | ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) |
267 | { | 272 | { |
@@ -315,8 +320,6 @@ list_add_event(struct perf_event *event, struct perf_event_context *ctx) | |||
315 | static void | 320 | static void |
316 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | 321 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
317 | { | 322 | { |
318 | struct perf_event *sibling, *tmp; | ||
319 | |||
320 | if (list_empty(&event->group_entry)) | 323 | if (list_empty(&event->group_entry)) |
321 | return; | 324 | return; |
322 | ctx->nr_events--; | 325 | ctx->nr_events--; |
@@ -329,7 +332,7 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx) | |||
329 | if (event->group_leader != event) | 332 | if (event->group_leader != event) |
330 | event->group_leader->nr_siblings--; | 333 | event->group_leader->nr_siblings--; |
331 | 334 | ||
332 | update_event_times(event); | 335 | update_group_times(event); |
333 | 336 | ||
334 | /* | 337 | /* |
335 | * If event was in error state, then keep it | 338 | * If event was in error state, then keep it |
@@ -340,6 +343,12 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx) | |||
340 | */ | 343 | */ |
341 | if (event->state > PERF_EVENT_STATE_OFF) | 344 | if (event->state > PERF_EVENT_STATE_OFF) |
342 | event->state = PERF_EVENT_STATE_OFF; | 345 | event->state = PERF_EVENT_STATE_OFF; |
346 | } | ||
347 | |||
348 | static void | ||
349 | perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx) | ||
350 | { | ||
351 | struct perf_event *sibling, *tmp; | ||
343 | 352 | ||
344 | /* | 353 | /* |
345 | * If this was a group event with sibling events then | 354 | * If this was a group event with sibling events then |
@@ -505,18 +514,6 @@ retry: | |||
505 | } | 514 | } |
506 | 515 | ||
507 | /* | 516 | /* |
508 | * Update total_time_enabled and total_time_running for all events in a group. | ||
509 | */ | ||
510 | static void update_group_times(struct perf_event *leader) | ||
511 | { | ||
512 | struct perf_event *event; | ||
513 | |||
514 | update_event_times(leader); | ||
515 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
516 | update_event_times(event); | ||
517 | } | ||
518 | |||
519 | /* | ||
520 | * Cross CPU call to disable a performance event | 517 | * Cross CPU call to disable a performance event |
521 | */ | 518 | */ |
522 | static void __perf_event_disable(void *info) | 519 | static void __perf_event_disable(void *info) |
@@ -640,15 +637,20 @@ group_sched_in(struct perf_event *group_event, | |||
640 | struct perf_cpu_context *cpuctx, | 637 | struct perf_cpu_context *cpuctx, |
641 | struct perf_event_context *ctx) | 638 | struct perf_event_context *ctx) |
642 | { | 639 | { |
643 | struct perf_event *event, *partial_group; | 640 | struct perf_event *event, *partial_group = NULL; |
641 | const struct pmu *pmu = group_event->pmu; | ||
642 | bool txn = false; | ||
644 | int ret; | 643 | int ret; |
645 | 644 | ||
646 | if (group_event->state == PERF_EVENT_STATE_OFF) | 645 | if (group_event->state == PERF_EVENT_STATE_OFF) |
647 | return 0; | 646 | return 0; |
648 | 647 | ||
649 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx); | 648 | /* Check if group transaction availabe */ |
650 | if (ret) | 649 | if (pmu->start_txn) |
651 | return ret < 0 ? ret : 0; | 650 | txn = true; |
651 | |||
652 | if (txn) | ||
653 | pmu->start_txn(pmu); | ||
652 | 654 | ||
653 | if (event_sched_in(group_event, cpuctx, ctx)) | 655 | if (event_sched_in(group_event, cpuctx, ctx)) |
654 | return -EAGAIN; | 656 | return -EAGAIN; |
@@ -663,9 +665,19 @@ group_sched_in(struct perf_event *group_event, | |||
663 | } | 665 | } |
664 | } | 666 | } |
665 | 667 | ||
666 | return 0; | 668 | if (!txn) |
669 | return 0; | ||
670 | |||
671 | ret = pmu->commit_txn(pmu); | ||
672 | if (!ret) { | ||
673 | pmu->cancel_txn(pmu); | ||
674 | return 0; | ||
675 | } | ||
667 | 676 | ||
668 | group_error: | 677 | group_error: |
678 | if (txn) | ||
679 | pmu->cancel_txn(pmu); | ||
680 | |||
669 | /* | 681 | /* |
670 | * Groups can be scheduled in as one unit only, so undo any | 682 | * Groups can be scheduled in as one unit only, so undo any |
671 | * partial group before returning: | 683 | * partial group before returning: |
@@ -1367,6 +1379,8 @@ void perf_event_task_sched_in(struct task_struct *task) | |||
1367 | if (cpuctx->task_ctx == ctx) | 1379 | if (cpuctx->task_ctx == ctx) |
1368 | return; | 1380 | return; |
1369 | 1381 | ||
1382 | perf_disable(); | ||
1383 | |||
1370 | /* | 1384 | /* |
1371 | * We want to keep the following priority order: | 1385 | * We want to keep the following priority order: |
1372 | * cpu pinned (that don't need to move), task pinned, | 1386 | * cpu pinned (that don't need to move), task pinned, |
@@ -1379,6 +1393,8 @@ void perf_event_task_sched_in(struct task_struct *task) | |||
1379 | ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); | 1393 | ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); |
1380 | 1394 | ||
1381 | cpuctx->task_ctx = ctx; | 1395 | cpuctx->task_ctx = ctx; |
1396 | |||
1397 | perf_enable(); | ||
1382 | } | 1398 | } |
1383 | 1399 | ||
1384 | #define MAX_INTERRUPTS (~0ULL) | 1400 | #define MAX_INTERRUPTS (~0ULL) |
@@ -1856,9 +1872,30 @@ int perf_event_release_kernel(struct perf_event *event) | |||
1856 | { | 1872 | { |
1857 | struct perf_event_context *ctx = event->ctx; | 1873 | struct perf_event_context *ctx = event->ctx; |
1858 | 1874 | ||
1875 | /* | ||
1876 | * Remove from the PMU, can't get re-enabled since we got | ||
1877 | * here because the last ref went. | ||
1878 | */ | ||
1879 | perf_event_disable(event); | ||
1880 | |||
1859 | WARN_ON_ONCE(ctx->parent_ctx); | 1881 | WARN_ON_ONCE(ctx->parent_ctx); |
1860 | mutex_lock(&ctx->mutex); | 1882 | /* |
1861 | perf_event_remove_from_context(event); | 1883 | * There are two ways this annotation is useful: |
1884 | * | ||
1885 | * 1) there is a lock recursion from perf_event_exit_task | ||
1886 | * see the comment there. | ||
1887 | * | ||
1888 | * 2) there is a lock-inversion with mmap_sem through | ||
1889 | * perf_event_read_group(), which takes faults while | ||
1890 | * holding ctx->mutex, however this is called after | ||
1891 | * the last filedesc died, so there is no possibility | ||
1892 | * to trigger the AB-BA case. | ||
1893 | */ | ||
1894 | mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); | ||
1895 | raw_spin_lock_irq(&ctx->lock); | ||
1896 | list_del_event(event, ctx); | ||
1897 | perf_destroy_group(event, ctx); | ||
1898 | raw_spin_unlock_irq(&ctx->lock); | ||
1862 | mutex_unlock(&ctx->mutex); | 1899 | mutex_unlock(&ctx->mutex); |
1863 | 1900 | ||
1864 | mutex_lock(&event->owner->perf_event_mutex); | 1901 | mutex_lock(&event->owner->perf_event_mutex); |
@@ -2260,11 +2297,6 @@ unlock: | |||
2260 | rcu_read_unlock(); | 2297 | rcu_read_unlock(); |
2261 | } | 2298 | } |
2262 | 2299 | ||
2263 | static unsigned long perf_data_size(struct perf_mmap_data *data) | ||
2264 | { | ||
2265 | return data->nr_pages << (PAGE_SHIFT + data->data_order); | ||
2266 | } | ||
2267 | |||
2268 | #ifndef CONFIG_PERF_USE_VMALLOC | 2300 | #ifndef CONFIG_PERF_USE_VMALLOC |
2269 | 2301 | ||
2270 | /* | 2302 | /* |
@@ -2283,6 +2315,19 @@ perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | |||
2283 | return virt_to_page(data->data_pages[pgoff - 1]); | 2315 | return virt_to_page(data->data_pages[pgoff - 1]); |
2284 | } | 2316 | } |
2285 | 2317 | ||
2318 | static void *perf_mmap_alloc_page(int cpu) | ||
2319 | { | ||
2320 | struct page *page; | ||
2321 | int node; | ||
2322 | |||
2323 | node = (cpu == -1) ? cpu : cpu_to_node(cpu); | ||
2324 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | ||
2325 | if (!page) | ||
2326 | return NULL; | ||
2327 | |||
2328 | return page_address(page); | ||
2329 | } | ||
2330 | |||
2286 | static struct perf_mmap_data * | 2331 | static struct perf_mmap_data * |
2287 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | 2332 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) |
2288 | { | 2333 | { |
@@ -2299,17 +2344,16 @@ perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | |||
2299 | if (!data) | 2344 | if (!data) |
2300 | goto fail; | 2345 | goto fail; |
2301 | 2346 | ||
2302 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | 2347 | data->user_page = perf_mmap_alloc_page(event->cpu); |
2303 | if (!data->user_page) | 2348 | if (!data->user_page) |
2304 | goto fail_user_page; | 2349 | goto fail_user_page; |
2305 | 2350 | ||
2306 | for (i = 0; i < nr_pages; i++) { | 2351 | for (i = 0; i < nr_pages; i++) { |
2307 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | 2352 | data->data_pages[i] = perf_mmap_alloc_page(event->cpu); |
2308 | if (!data->data_pages[i]) | 2353 | if (!data->data_pages[i]) |
2309 | goto fail_data_pages; | 2354 | goto fail_data_pages; |
2310 | } | 2355 | } |
2311 | 2356 | ||
2312 | data->data_order = 0; | ||
2313 | data->nr_pages = nr_pages; | 2357 | data->nr_pages = nr_pages; |
2314 | 2358 | ||
2315 | return data; | 2359 | return data; |
@@ -2345,6 +2389,11 @@ static void perf_mmap_data_free(struct perf_mmap_data *data) | |||
2345 | kfree(data); | 2389 | kfree(data); |
2346 | } | 2390 | } |
2347 | 2391 | ||
2392 | static inline int page_order(struct perf_mmap_data *data) | ||
2393 | { | ||
2394 | return 0; | ||
2395 | } | ||
2396 | |||
2348 | #else | 2397 | #else |
2349 | 2398 | ||
2350 | /* | 2399 | /* |
@@ -2353,10 +2402,15 @@ static void perf_mmap_data_free(struct perf_mmap_data *data) | |||
2353 | * Required for architectures that have d-cache aliasing issues. | 2402 | * Required for architectures that have d-cache aliasing issues. |
2354 | */ | 2403 | */ |
2355 | 2404 | ||
2405 | static inline int page_order(struct perf_mmap_data *data) | ||
2406 | { | ||
2407 | return data->page_order; | ||
2408 | } | ||
2409 | |||
2356 | static struct page * | 2410 | static struct page * |
2357 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | 2411 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) |
2358 | { | 2412 | { |
2359 | if (pgoff > (1UL << data->data_order)) | 2413 | if (pgoff > (1UL << page_order(data))) |
2360 | return NULL; | 2414 | return NULL; |
2361 | 2415 | ||
2362 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | 2416 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); |
@@ -2376,7 +2430,7 @@ static void perf_mmap_data_free_work(struct work_struct *work) | |||
2376 | int i, nr; | 2430 | int i, nr; |
2377 | 2431 | ||
2378 | data = container_of(work, struct perf_mmap_data, work); | 2432 | data = container_of(work, struct perf_mmap_data, work); |
2379 | nr = 1 << data->data_order; | 2433 | nr = 1 << page_order(data); |
2380 | 2434 | ||
2381 | base = data->user_page; | 2435 | base = data->user_page; |
2382 | for (i = 0; i < nr + 1; i++) | 2436 | for (i = 0; i < nr + 1; i++) |
@@ -2415,7 +2469,7 @@ perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | |||
2415 | 2469 | ||
2416 | data->user_page = all_buf; | 2470 | data->user_page = all_buf; |
2417 | data->data_pages[0] = all_buf + PAGE_SIZE; | 2471 | data->data_pages[0] = all_buf + PAGE_SIZE; |
2418 | data->data_order = ilog2(nr_pages); | 2472 | data->page_order = ilog2(nr_pages); |
2419 | data->nr_pages = 1; | 2473 | data->nr_pages = 1; |
2420 | 2474 | ||
2421 | return data; | 2475 | return data; |
@@ -2429,6 +2483,11 @@ fail: | |||
2429 | 2483 | ||
2430 | #endif | 2484 | #endif |
2431 | 2485 | ||
2486 | static unsigned long perf_data_size(struct perf_mmap_data *data) | ||
2487 | { | ||
2488 | return data->nr_pages << (PAGE_SHIFT + page_order(data)); | ||
2489 | } | ||
2490 | |||
2432 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 2491 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
2433 | { | 2492 | { |
2434 | struct perf_event *event = vma->vm_file->private_data; | 2493 | struct perf_event *event = vma->vm_file->private_data; |
@@ -2469,8 +2528,6 @@ perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | |||
2469 | { | 2528 | { |
2470 | long max_size = perf_data_size(data); | 2529 | long max_size = perf_data_size(data); |
2471 | 2530 | ||
2472 | atomic_set(&data->lock, -1); | ||
2473 | |||
2474 | if (event->attr.watermark) { | 2531 | if (event->attr.watermark) { |
2475 | data->watermark = min_t(long, max_size, | 2532 | data->watermark = min_t(long, max_size, |
2476 | event->attr.wakeup_watermark); | 2533 | event->attr.wakeup_watermark); |
@@ -2543,6 +2600,14 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) | |||
2543 | long user_extra, extra; | 2600 | long user_extra, extra; |
2544 | int ret = 0; | 2601 | int ret = 0; |
2545 | 2602 | ||
2603 | /* | ||
2604 | * Don't allow mmap() of inherited per-task counters. This would | ||
2605 | * create a performance issue due to all children writing to the | ||
2606 | * same buffer. | ||
2607 | */ | ||
2608 | if (event->cpu == -1 && event->attr.inherit) | ||
2609 | return -EINVAL; | ||
2610 | |||
2546 | if (!(vma->vm_flags & VM_SHARED)) | 2611 | if (!(vma->vm_flags & VM_SHARED)) |
2547 | return -EINVAL; | 2612 | return -EINVAL; |
2548 | 2613 | ||
@@ -2642,6 +2707,7 @@ static int perf_fasync(int fd, struct file *filp, int on) | |||
2642 | } | 2707 | } |
2643 | 2708 | ||
2644 | static const struct file_operations perf_fops = { | 2709 | static const struct file_operations perf_fops = { |
2710 | .llseek = no_llseek, | ||
2645 | .release = perf_release, | 2711 | .release = perf_release, |
2646 | .read = perf_read, | 2712 | .read = perf_read, |
2647 | .poll = perf_poll, | 2713 | .poll = perf_poll, |
@@ -2792,6 +2858,27 @@ void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int ski | |||
2792 | 2858 | ||
2793 | 2859 | ||
2794 | /* | 2860 | /* |
2861 | * We assume there is only KVM supporting the callbacks. | ||
2862 | * Later on, we might change it to a list if there is | ||
2863 | * another virtualization implementation supporting the callbacks. | ||
2864 | */ | ||
2865 | struct perf_guest_info_callbacks *perf_guest_cbs; | ||
2866 | |||
2867 | int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | ||
2868 | { | ||
2869 | perf_guest_cbs = cbs; | ||
2870 | return 0; | ||
2871 | } | ||
2872 | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); | ||
2873 | |||
2874 | int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | ||
2875 | { | ||
2876 | perf_guest_cbs = NULL; | ||
2877 | return 0; | ||
2878 | } | ||
2879 | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); | ||
2880 | |||
2881 | /* | ||
2795 | * Output | 2882 | * Output |
2796 | */ | 2883 | */ |
2797 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | 2884 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, |
@@ -2826,120 +2913,80 @@ static void perf_output_wakeup(struct perf_output_handle *handle) | |||
2826 | } | 2913 | } |
2827 | 2914 | ||
2828 | /* | 2915 | /* |
2829 | * Curious locking construct. | ||
2830 | * | ||
2831 | * We need to ensure a later event_id doesn't publish a head when a former | 2916 | * We need to ensure a later event_id doesn't publish a head when a former |
2832 | * event_id isn't done writing. However since we need to deal with NMIs we | 2917 | * event isn't done writing. However since we need to deal with NMIs we |
2833 | * cannot fully serialize things. | 2918 | * cannot fully serialize things. |
2834 | * | 2919 | * |
2835 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2836 | * nesting on a single CPU. | ||
2837 | * | ||
2838 | * We only publish the head (and generate a wakeup) when the outer-most | 2920 | * We only publish the head (and generate a wakeup) when the outer-most |
2839 | * event_id completes. | 2921 | * event completes. |
2840 | */ | 2922 | */ |
2841 | static void perf_output_lock(struct perf_output_handle *handle) | 2923 | static void perf_output_get_handle(struct perf_output_handle *handle) |
2842 | { | 2924 | { |
2843 | struct perf_mmap_data *data = handle->data; | 2925 | struct perf_mmap_data *data = handle->data; |
2844 | int cur, cpu = get_cpu(); | ||
2845 | 2926 | ||
2846 | handle->locked = 0; | 2927 | preempt_disable(); |
2847 | 2928 | local_inc(&data->nest); | |
2848 | for (;;) { | 2929 | handle->wakeup = local_read(&data->wakeup); |
2849 | cur = atomic_cmpxchg(&data->lock, -1, cpu); | ||
2850 | if (cur == -1) { | ||
2851 | handle->locked = 1; | ||
2852 | break; | ||
2853 | } | ||
2854 | if (cur == cpu) | ||
2855 | break; | ||
2856 | |||
2857 | cpu_relax(); | ||
2858 | } | ||
2859 | } | 2930 | } |
2860 | 2931 | ||
2861 | static void perf_output_unlock(struct perf_output_handle *handle) | 2932 | static void perf_output_put_handle(struct perf_output_handle *handle) |
2862 | { | 2933 | { |
2863 | struct perf_mmap_data *data = handle->data; | 2934 | struct perf_mmap_data *data = handle->data; |
2864 | unsigned long head; | 2935 | unsigned long head; |
2865 | int cpu; | ||
2866 | |||
2867 | data->done_head = data->head; | ||
2868 | |||
2869 | if (!handle->locked) | ||
2870 | goto out; | ||
2871 | 2936 | ||
2872 | again: | 2937 | again: |
2873 | /* | 2938 | head = local_read(&data->head); |
2874 | * The xchg implies a full barrier that ensures all writes are done | ||
2875 | * before we publish the new head, matched by a rmb() in userspace when | ||
2876 | * reading this position. | ||
2877 | */ | ||
2878 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2879 | data->user_page->data_head = head; | ||
2880 | 2939 | ||
2881 | /* | 2940 | /* |
2882 | * NMI can happen here, which means we can miss a done_head update. | 2941 | * IRQ/NMI can happen here, which means we can miss a head update. |
2883 | */ | 2942 | */ |
2884 | 2943 | ||
2885 | cpu = atomic_xchg(&data->lock, -1); | 2944 | if (!local_dec_and_test(&data->nest)) |
2886 | WARN_ON_ONCE(cpu != smp_processor_id()); | 2945 | goto out; |
2887 | 2946 | ||
2888 | /* | 2947 | /* |
2889 | * Therefore we have to validate we did not indeed do so. | 2948 | * Publish the known good head. Rely on the full barrier implied |
2949 | * by atomic_dec_and_test() order the data->head read and this | ||
2950 | * write. | ||
2890 | */ | 2951 | */ |
2891 | if (unlikely(atomic_long_read(&data->done_head))) { | 2952 | data->user_page->data_head = head; |
2892 | /* | ||
2893 | * Since we had it locked, we can lock it again. | ||
2894 | */ | ||
2895 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2896 | cpu_relax(); | ||
2897 | 2953 | ||
2954 | /* | ||
2955 | * Now check if we missed an update, rely on the (compiler) | ||
2956 | * barrier in atomic_dec_and_test() to re-read data->head. | ||
2957 | */ | ||
2958 | if (unlikely(head != local_read(&data->head))) { | ||
2959 | local_inc(&data->nest); | ||
2898 | goto again; | 2960 | goto again; |
2899 | } | 2961 | } |
2900 | 2962 | ||
2901 | if (atomic_xchg(&data->wakeup, 0)) | 2963 | if (handle->wakeup != local_read(&data->wakeup)) |
2902 | perf_output_wakeup(handle); | 2964 | perf_output_wakeup(handle); |
2903 | out: | 2965 | |
2904 | put_cpu(); | 2966 | out: |
2967 | preempt_enable(); | ||
2905 | } | 2968 | } |
2906 | 2969 | ||
2907 | void perf_output_copy(struct perf_output_handle *handle, | 2970 | __always_inline void perf_output_copy(struct perf_output_handle *handle, |
2908 | const void *buf, unsigned int len) | 2971 | const void *buf, unsigned int len) |
2909 | { | 2972 | { |
2910 | unsigned int pages_mask; | ||
2911 | unsigned long offset; | ||
2912 | unsigned int size; | ||
2913 | void **pages; | ||
2914 | |||
2915 | offset = handle->offset; | ||
2916 | pages_mask = handle->data->nr_pages - 1; | ||
2917 | pages = handle->data->data_pages; | ||
2918 | |||
2919 | do { | 2973 | do { |
2920 | unsigned long page_offset; | 2974 | unsigned long size = min_t(unsigned long, handle->size, len); |
2921 | unsigned long page_size; | ||
2922 | int nr; | ||
2923 | 2975 | ||
2924 | nr = (offset >> PAGE_SHIFT) & pages_mask; | 2976 | memcpy(handle->addr, buf, size); |
2925 | page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); | ||
2926 | page_offset = offset & (page_size - 1); | ||
2927 | size = min_t(unsigned int, page_size - page_offset, len); | ||
2928 | 2977 | ||
2929 | memcpy(pages[nr] + page_offset, buf, size); | 2978 | len -= size; |
2979 | handle->addr += size; | ||
2980 | handle->size -= size; | ||
2981 | if (!handle->size) { | ||
2982 | struct perf_mmap_data *data = handle->data; | ||
2930 | 2983 | ||
2931 | len -= size; | 2984 | handle->page++; |
2932 | buf += size; | 2985 | handle->page &= data->nr_pages - 1; |
2933 | offset += size; | 2986 | handle->addr = data->data_pages[handle->page]; |
2987 | handle->size = PAGE_SIZE << page_order(data); | ||
2988 | } | ||
2934 | } while (len); | 2989 | } while (len); |
2935 | |||
2936 | handle->offset = offset; | ||
2937 | |||
2938 | /* | ||
2939 | * Check we didn't copy past our reservation window, taking the | ||
2940 | * possible unsigned int wrap into account. | ||
2941 | */ | ||
2942 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2943 | } | 2990 | } |
2944 | 2991 | ||
2945 | int perf_output_begin(struct perf_output_handle *handle, | 2992 | int perf_output_begin(struct perf_output_handle *handle, |
@@ -2977,13 +3024,13 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2977 | handle->sample = sample; | 3024 | handle->sample = sample; |
2978 | 3025 | ||
2979 | if (!data->nr_pages) | 3026 | if (!data->nr_pages) |
2980 | goto fail; | 3027 | goto out; |
2981 | 3028 | ||
2982 | have_lost = atomic_read(&data->lost); | 3029 | have_lost = local_read(&data->lost); |
2983 | if (have_lost) | 3030 | if (have_lost) |
2984 | size += sizeof(lost_event); | 3031 | size += sizeof(lost_event); |
2985 | 3032 | ||
2986 | perf_output_lock(handle); | 3033 | perf_output_get_handle(handle); |
2987 | 3034 | ||
2988 | do { | 3035 | do { |
2989 | /* | 3036 | /* |
@@ -2993,24 +3040,28 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2993 | */ | 3040 | */ |
2994 | tail = ACCESS_ONCE(data->user_page->data_tail); | 3041 | tail = ACCESS_ONCE(data->user_page->data_tail); |
2995 | smp_rmb(); | 3042 | smp_rmb(); |
2996 | offset = head = atomic_long_read(&data->head); | 3043 | offset = head = local_read(&data->head); |
2997 | head += size; | 3044 | head += size; |
2998 | if (unlikely(!perf_output_space(data, tail, offset, head))) | 3045 | if (unlikely(!perf_output_space(data, tail, offset, head))) |
2999 | goto fail; | 3046 | goto fail; |
3000 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | 3047 | } while (local_cmpxchg(&data->head, offset, head) != offset); |
3001 | 3048 | ||
3002 | handle->offset = offset; | 3049 | if (head - local_read(&data->wakeup) > data->watermark) |
3003 | handle->head = head; | 3050 | local_add(data->watermark, &data->wakeup); |
3004 | 3051 | ||
3005 | if (head - tail > data->watermark) | 3052 | handle->page = offset >> (PAGE_SHIFT + page_order(data)); |
3006 | atomic_set(&data->wakeup, 1); | 3053 | handle->page &= data->nr_pages - 1; |
3054 | handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1); | ||
3055 | handle->addr = data->data_pages[handle->page]; | ||
3056 | handle->addr += handle->size; | ||
3057 | handle->size = (PAGE_SIZE << page_order(data)) - handle->size; | ||
3007 | 3058 | ||
3008 | if (have_lost) { | 3059 | if (have_lost) { |
3009 | lost_event.header.type = PERF_RECORD_LOST; | 3060 | lost_event.header.type = PERF_RECORD_LOST; |
3010 | lost_event.header.misc = 0; | 3061 | lost_event.header.misc = 0; |
3011 | lost_event.header.size = sizeof(lost_event); | 3062 | lost_event.header.size = sizeof(lost_event); |
3012 | lost_event.id = event->id; | 3063 | lost_event.id = event->id; |
3013 | lost_event.lost = atomic_xchg(&data->lost, 0); | 3064 | lost_event.lost = local_xchg(&data->lost, 0); |
3014 | 3065 | ||
3015 | perf_output_put(handle, lost_event); | 3066 | perf_output_put(handle, lost_event); |
3016 | } | 3067 | } |
@@ -3018,8 +3069,8 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
3018 | return 0; | 3069 | return 0; |
3019 | 3070 | ||
3020 | fail: | 3071 | fail: |
3021 | atomic_inc(&data->lost); | 3072 | local_inc(&data->lost); |
3022 | perf_output_unlock(handle); | 3073 | perf_output_put_handle(handle); |
3023 | out: | 3074 | out: |
3024 | rcu_read_unlock(); | 3075 | rcu_read_unlock(); |
3025 | 3076 | ||
@@ -3034,14 +3085,14 @@ void perf_output_end(struct perf_output_handle *handle) | |||
3034 | int wakeup_events = event->attr.wakeup_events; | 3085 | int wakeup_events = event->attr.wakeup_events; |
3035 | 3086 | ||
3036 | if (handle->sample && wakeup_events) { | 3087 | if (handle->sample && wakeup_events) { |
3037 | int events = atomic_inc_return(&data->events); | 3088 | int events = local_inc_return(&data->events); |
3038 | if (events >= wakeup_events) { | 3089 | if (events >= wakeup_events) { |
3039 | atomic_sub(wakeup_events, &data->events); | 3090 | local_sub(wakeup_events, &data->events); |
3040 | atomic_set(&data->wakeup, 1); | 3091 | local_inc(&data->wakeup); |
3041 | } | 3092 | } |
3042 | } | 3093 | } |
3043 | 3094 | ||
3044 | perf_output_unlock(handle); | 3095 | perf_output_put_handle(handle); |
3045 | rcu_read_unlock(); | 3096 | rcu_read_unlock(); |
3046 | } | 3097 | } |
3047 | 3098 | ||
@@ -3377,22 +3428,13 @@ static void perf_event_task_output(struct perf_event *event, | |||
3377 | { | 3428 | { |
3378 | struct perf_output_handle handle; | 3429 | struct perf_output_handle handle; |
3379 | struct task_struct *task = task_event->task; | 3430 | struct task_struct *task = task_event->task; |
3380 | unsigned long flags; | ||
3381 | int size, ret; | 3431 | int size, ret; |
3382 | 3432 | ||
3383 | /* | ||
3384 | * If this CPU attempts to acquire an rq lock held by a CPU spinning | ||
3385 | * in perf_output_lock() from interrupt context, it's game over. | ||
3386 | */ | ||
3387 | local_irq_save(flags); | ||
3388 | |||
3389 | size = task_event->event_id.header.size; | 3433 | size = task_event->event_id.header.size; |
3390 | ret = perf_output_begin(&handle, event, size, 0, 0); | 3434 | ret = perf_output_begin(&handle, event, size, 0, 0); |
3391 | 3435 | ||
3392 | if (ret) { | 3436 | if (ret) |
3393 | local_irq_restore(flags); | ||
3394 | return; | 3437 | return; |
3395 | } | ||
3396 | 3438 | ||
3397 | task_event->event_id.pid = perf_event_pid(event, task); | 3439 | task_event->event_id.pid = perf_event_pid(event, task); |
3398 | task_event->event_id.ppid = perf_event_pid(event, current); | 3440 | task_event->event_id.ppid = perf_event_pid(event, current); |
@@ -3403,7 +3445,6 @@ static void perf_event_task_output(struct perf_event *event, | |||
3403 | perf_output_put(&handle, task_event->event_id); | 3445 | perf_output_put(&handle, task_event->event_id); |
3404 | 3446 | ||
3405 | perf_output_end(&handle); | 3447 | perf_output_end(&handle); |
3406 | local_irq_restore(flags); | ||
3407 | } | 3448 | } |
3408 | 3449 | ||
3409 | static int perf_event_task_match(struct perf_event *event) | 3450 | static int perf_event_task_match(struct perf_event *event) |
@@ -3743,7 +3784,7 @@ void __perf_event_mmap(struct vm_area_struct *vma) | |||
3743 | .event_id = { | 3784 | .event_id = { |
3744 | .header = { | 3785 | .header = { |
3745 | .type = PERF_RECORD_MMAP, | 3786 | .type = PERF_RECORD_MMAP, |
3746 | .misc = 0, | 3787 | .misc = PERF_RECORD_MISC_USER, |
3747 | /* .size */ | 3788 | /* .size */ |
3748 | }, | 3789 | }, |
3749 | /* .pid */ | 3790 | /* .pid */ |
@@ -3961,39 +4002,6 @@ static void perf_swevent_add(struct perf_event *event, u64 nr, | |||
3961 | perf_swevent_overflow(event, 0, nmi, data, regs); | 4002 | perf_swevent_overflow(event, 0, nmi, data, regs); |
3962 | } | 4003 | } |
3963 | 4004 | ||
3964 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3965 | { | ||
3966 | /* | ||
3967 | * The event is active, we're good! | ||
3968 | */ | ||
3969 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3970 | return 1; | ||
3971 | |||
3972 | /* | ||
3973 | * The event is off/error, not counting. | ||
3974 | */ | ||
3975 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3976 | return 0; | ||
3977 | |||
3978 | /* | ||
3979 | * The event is inactive, if the context is active | ||
3980 | * we're part of a group that didn't make it on the 'pmu', | ||
3981 | * not counting. | ||
3982 | */ | ||
3983 | if (event->ctx->is_active) | ||
3984 | return 0; | ||
3985 | |||
3986 | /* | ||
3987 | * We're inactive and the context is too, this means the | ||
3988 | * task is scheduled out, we're counting events that happen | ||
3989 | * to us, like migration events. | ||
3990 | */ | ||
3991 | return 1; | ||
3992 | } | ||
3993 | |||
3994 | static int perf_tp_event_match(struct perf_event *event, | ||
3995 | struct perf_sample_data *data); | ||
3996 | |||
3997 | static int perf_exclude_event(struct perf_event *event, | 4005 | static int perf_exclude_event(struct perf_event *event, |
3998 | struct pt_regs *regs) | 4006 | struct pt_regs *regs) |
3999 | { | 4007 | { |
@@ -4014,12 +4022,6 @@ static int perf_swevent_match(struct perf_event *event, | |||
4014 | struct perf_sample_data *data, | 4022 | struct perf_sample_data *data, |
4015 | struct pt_regs *regs) | 4023 | struct pt_regs *regs) |
4016 | { | 4024 | { |
4017 | if (event->cpu != -1 && event->cpu != smp_processor_id()) | ||
4018 | return 0; | ||
4019 | |||
4020 | if (!perf_swevent_is_counting(event)) | ||
4021 | return 0; | ||
4022 | |||
4023 | if (event->attr.type != type) | 4025 | if (event->attr.type != type) |
4024 | return 0; | 4026 | return 0; |
4025 | 4027 | ||
@@ -4029,30 +4031,88 @@ static int perf_swevent_match(struct perf_event *event, | |||
4029 | if (perf_exclude_event(event, regs)) | 4031 | if (perf_exclude_event(event, regs)) |
4030 | return 0; | 4032 | return 0; |
4031 | 4033 | ||
4032 | if (event->attr.type == PERF_TYPE_TRACEPOINT && | ||
4033 | !perf_tp_event_match(event, data)) | ||
4034 | return 0; | ||
4035 | |||
4036 | return 1; | 4034 | return 1; |
4037 | } | 4035 | } |
4038 | 4036 | ||
4039 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | 4037 | static inline u64 swevent_hash(u64 type, u32 event_id) |
4040 | enum perf_type_id type, | ||
4041 | u32 event_id, u64 nr, int nmi, | ||
4042 | struct perf_sample_data *data, | ||
4043 | struct pt_regs *regs) | ||
4044 | { | 4038 | { |
4039 | u64 val = event_id | (type << 32); | ||
4040 | |||
4041 | return hash_64(val, SWEVENT_HLIST_BITS); | ||
4042 | } | ||
4043 | |||
4044 | static inline struct hlist_head * | ||
4045 | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) | ||
4046 | { | ||
4047 | u64 hash = swevent_hash(type, event_id); | ||
4048 | |||
4049 | return &hlist->heads[hash]; | ||
4050 | } | ||
4051 | |||
4052 | /* For the read side: events when they trigger */ | ||
4053 | static inline struct hlist_head * | ||
4054 | find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id) | ||
4055 | { | ||
4056 | struct swevent_hlist *hlist; | ||
4057 | |||
4058 | hlist = rcu_dereference(ctx->swevent_hlist); | ||
4059 | if (!hlist) | ||
4060 | return NULL; | ||
4061 | |||
4062 | return __find_swevent_head(hlist, type, event_id); | ||
4063 | } | ||
4064 | |||
4065 | /* For the event head insertion and removal in the hlist */ | ||
4066 | static inline struct hlist_head * | ||
4067 | find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event) | ||
4068 | { | ||
4069 | struct swevent_hlist *hlist; | ||
4070 | u32 event_id = event->attr.config; | ||
4071 | u64 type = event->attr.type; | ||
4072 | |||
4073 | /* | ||
4074 | * Event scheduling is always serialized against hlist allocation | ||
4075 | * and release. Which makes the protected version suitable here. | ||
4076 | * The context lock guarantees that. | ||
4077 | */ | ||
4078 | hlist = rcu_dereference_protected(ctx->swevent_hlist, | ||
4079 | lockdep_is_held(&event->ctx->lock)); | ||
4080 | if (!hlist) | ||
4081 | return NULL; | ||
4082 | |||
4083 | return __find_swevent_head(hlist, type, event_id); | ||
4084 | } | ||
4085 | |||
4086 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
4087 | u64 nr, int nmi, | ||
4088 | struct perf_sample_data *data, | ||
4089 | struct pt_regs *regs) | ||
4090 | { | ||
4091 | struct perf_cpu_context *cpuctx; | ||
4045 | struct perf_event *event; | 4092 | struct perf_event *event; |
4093 | struct hlist_node *node; | ||
4094 | struct hlist_head *head; | ||
4046 | 4095 | ||
4047 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 4096 | cpuctx = &__get_cpu_var(perf_cpu_context); |
4097 | |||
4098 | rcu_read_lock(); | ||
4099 | |||
4100 | head = find_swevent_head_rcu(cpuctx, type, event_id); | ||
4101 | |||
4102 | if (!head) | ||
4103 | goto end; | ||
4104 | |||
4105 | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | ||
4048 | if (perf_swevent_match(event, type, event_id, data, regs)) | 4106 | if (perf_swevent_match(event, type, event_id, data, regs)) |
4049 | perf_swevent_add(event, nr, nmi, data, regs); | 4107 | perf_swevent_add(event, nr, nmi, data, regs); |
4050 | } | 4108 | } |
4109 | end: | ||
4110 | rcu_read_unlock(); | ||
4051 | } | 4111 | } |
4052 | 4112 | ||
4053 | int perf_swevent_get_recursion_context(void) | 4113 | int perf_swevent_get_recursion_context(void) |
4054 | { | 4114 | { |
4055 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | 4115 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
4056 | int rctx; | 4116 | int rctx; |
4057 | 4117 | ||
4058 | if (in_nmi()) | 4118 | if (in_nmi()) |
@@ -4064,10 +4124,8 @@ int perf_swevent_get_recursion_context(void) | |||
4064 | else | 4124 | else |
4065 | rctx = 0; | 4125 | rctx = 0; |
4066 | 4126 | ||
4067 | if (cpuctx->recursion[rctx]) { | 4127 | if (cpuctx->recursion[rctx]) |
4068 | put_cpu_var(perf_cpu_context); | ||
4069 | return -1; | 4128 | return -1; |
4070 | } | ||
4071 | 4129 | ||
4072 | cpuctx->recursion[rctx]++; | 4130 | cpuctx->recursion[rctx]++; |
4073 | barrier(); | 4131 | barrier(); |
@@ -4081,31 +4139,9 @@ void perf_swevent_put_recursion_context(int rctx) | |||
4081 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 4139 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
4082 | barrier(); | 4140 | barrier(); |
4083 | cpuctx->recursion[rctx]--; | 4141 | cpuctx->recursion[rctx]--; |
4084 | put_cpu_var(perf_cpu_context); | ||
4085 | } | 4142 | } |
4086 | EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context); | 4143 | EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context); |
4087 | 4144 | ||
4088 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
4089 | u64 nr, int nmi, | ||
4090 | struct perf_sample_data *data, | ||
4091 | struct pt_regs *regs) | ||
4092 | { | ||
4093 | struct perf_cpu_context *cpuctx; | ||
4094 | struct perf_event_context *ctx; | ||
4095 | |||
4096 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4097 | rcu_read_lock(); | ||
4098 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
4099 | nr, nmi, data, regs); | ||
4100 | /* | ||
4101 | * doesn't really matter which of the child contexts the | ||
4102 | * events ends up in. | ||
4103 | */ | ||
4104 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
4105 | if (ctx) | ||
4106 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
4107 | rcu_read_unlock(); | ||
4108 | } | ||
4109 | 4145 | ||
4110 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | 4146 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, |
4111 | struct pt_regs *regs, u64 addr) | 4147 | struct pt_regs *regs, u64 addr) |
@@ -4113,6 +4149,7 @@ void __perf_sw_event(u32 event_id, u64 nr, int nmi, | |||
4113 | struct perf_sample_data data; | 4149 | struct perf_sample_data data; |
4114 | int rctx; | 4150 | int rctx; |
4115 | 4151 | ||
4152 | preempt_disable_notrace(); | ||
4116 | rctx = perf_swevent_get_recursion_context(); | 4153 | rctx = perf_swevent_get_recursion_context(); |
4117 | if (rctx < 0) | 4154 | if (rctx < 0) |
4118 | return; | 4155 | return; |
@@ -4122,6 +4159,7 @@ void __perf_sw_event(u32 event_id, u64 nr, int nmi, | |||
4122 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); | 4159 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); |
4123 | 4160 | ||
4124 | perf_swevent_put_recursion_context(rctx); | 4161 | perf_swevent_put_recursion_context(rctx); |
4162 | preempt_enable_notrace(); | ||
4125 | } | 4163 | } |
4126 | 4164 | ||
4127 | static void perf_swevent_read(struct perf_event *event) | 4165 | static void perf_swevent_read(struct perf_event *event) |
@@ -4131,16 +4169,28 @@ static void perf_swevent_read(struct perf_event *event) | |||
4131 | static int perf_swevent_enable(struct perf_event *event) | 4169 | static int perf_swevent_enable(struct perf_event *event) |
4132 | { | 4170 | { |
4133 | struct hw_perf_event *hwc = &event->hw; | 4171 | struct hw_perf_event *hwc = &event->hw; |
4172 | struct perf_cpu_context *cpuctx; | ||
4173 | struct hlist_head *head; | ||
4174 | |||
4175 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4134 | 4176 | ||
4135 | if (hwc->sample_period) { | 4177 | if (hwc->sample_period) { |
4136 | hwc->last_period = hwc->sample_period; | 4178 | hwc->last_period = hwc->sample_period; |
4137 | perf_swevent_set_period(event); | 4179 | perf_swevent_set_period(event); |
4138 | } | 4180 | } |
4181 | |||
4182 | head = find_swevent_head(cpuctx, event); | ||
4183 | if (WARN_ON_ONCE(!head)) | ||
4184 | return -EINVAL; | ||
4185 | |||
4186 | hlist_add_head_rcu(&event->hlist_entry, head); | ||
4187 | |||
4139 | return 0; | 4188 | return 0; |
4140 | } | 4189 | } |
4141 | 4190 | ||
4142 | static void perf_swevent_disable(struct perf_event *event) | 4191 | static void perf_swevent_disable(struct perf_event *event) |
4143 | { | 4192 | { |
4193 | hlist_del_rcu(&event->hlist_entry); | ||
4144 | } | 4194 | } |
4145 | 4195 | ||
4146 | static const struct pmu perf_ops_generic = { | 4196 | static const struct pmu perf_ops_generic = { |
@@ -4168,15 +4218,8 @@ static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | |||
4168 | perf_sample_data_init(&data, 0); | 4218 | perf_sample_data_init(&data, 0); |
4169 | data.period = event->hw.last_period; | 4219 | data.period = event->hw.last_period; |
4170 | regs = get_irq_regs(); | 4220 | regs = get_irq_regs(); |
4171 | /* | ||
4172 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
4173 | * context, provide the next best thing, the user IP. | ||
4174 | */ | ||
4175 | if ((event->attr.exclude_kernel || !regs) && | ||
4176 | !event->attr.exclude_user) | ||
4177 | regs = task_pt_regs(current); | ||
4178 | 4221 | ||
4179 | if (regs) { | 4222 | if (regs && !perf_exclude_event(event, regs)) { |
4180 | if (!(event->attr.exclude_idle && current->pid == 0)) | 4223 | if (!(event->attr.exclude_idle && current->pid == 0)) |
4181 | if (perf_event_overflow(event, 0, &data, regs)) | 4224 | if (perf_event_overflow(event, 0, &data, regs)) |
4182 | ret = HRTIMER_NORESTART; | 4225 | ret = HRTIMER_NORESTART; |
@@ -4324,27 +4367,122 @@ static const struct pmu perf_ops_task_clock = { | |||
4324 | .read = task_clock_perf_event_read, | 4367 | .read = task_clock_perf_event_read, |
4325 | }; | 4368 | }; |
4326 | 4369 | ||
4327 | #ifdef CONFIG_EVENT_TRACING | 4370 | /* Deref the hlist from the update side */ |
4371 | static inline struct swevent_hlist * | ||
4372 | swevent_hlist_deref(struct perf_cpu_context *cpuctx) | ||
4373 | { | ||
4374 | return rcu_dereference_protected(cpuctx->swevent_hlist, | ||
4375 | lockdep_is_held(&cpuctx->hlist_mutex)); | ||
4376 | } | ||
4328 | 4377 | ||
4329 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | 4378 | static void swevent_hlist_release_rcu(struct rcu_head *rcu_head) |
4330 | int entry_size, struct pt_regs *regs) | ||
4331 | { | 4379 | { |
4332 | struct perf_sample_data data; | 4380 | struct swevent_hlist *hlist; |
4333 | struct perf_raw_record raw = { | ||
4334 | .size = entry_size, | ||
4335 | .data = record, | ||
4336 | }; | ||
4337 | 4381 | ||
4338 | perf_sample_data_init(&data, addr); | 4382 | hlist = container_of(rcu_head, struct swevent_hlist, rcu_head); |
4339 | data.raw = &raw; | 4383 | kfree(hlist); |
4384 | } | ||
4340 | 4385 | ||
4341 | /* Trace events already protected against recursion */ | 4386 | static void swevent_hlist_release(struct perf_cpu_context *cpuctx) |
4342 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | 4387 | { |
4343 | &data, regs); | 4388 | struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx); |
4389 | |||
4390 | if (!hlist) | ||
4391 | return; | ||
4392 | |||
4393 | rcu_assign_pointer(cpuctx->swevent_hlist, NULL); | ||
4394 | call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu); | ||
4344 | } | 4395 | } |
4345 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4346 | 4396 | ||
4347 | static int perf_tp_event_match(struct perf_event *event, | 4397 | static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) |
4398 | { | ||
4399 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4400 | |||
4401 | mutex_lock(&cpuctx->hlist_mutex); | ||
4402 | |||
4403 | if (!--cpuctx->hlist_refcount) | ||
4404 | swevent_hlist_release(cpuctx); | ||
4405 | |||
4406 | mutex_unlock(&cpuctx->hlist_mutex); | ||
4407 | } | ||
4408 | |||
4409 | static void swevent_hlist_put(struct perf_event *event) | ||
4410 | { | ||
4411 | int cpu; | ||
4412 | |||
4413 | if (event->cpu != -1) { | ||
4414 | swevent_hlist_put_cpu(event, event->cpu); | ||
4415 | return; | ||
4416 | } | ||
4417 | |||
4418 | for_each_possible_cpu(cpu) | ||
4419 | swevent_hlist_put_cpu(event, cpu); | ||
4420 | } | ||
4421 | |||
4422 | static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) | ||
4423 | { | ||
4424 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4425 | int err = 0; | ||
4426 | |||
4427 | mutex_lock(&cpuctx->hlist_mutex); | ||
4428 | |||
4429 | if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) { | ||
4430 | struct swevent_hlist *hlist; | ||
4431 | |||
4432 | hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | ||
4433 | if (!hlist) { | ||
4434 | err = -ENOMEM; | ||
4435 | goto exit; | ||
4436 | } | ||
4437 | rcu_assign_pointer(cpuctx->swevent_hlist, hlist); | ||
4438 | } | ||
4439 | cpuctx->hlist_refcount++; | ||
4440 | exit: | ||
4441 | mutex_unlock(&cpuctx->hlist_mutex); | ||
4442 | |||
4443 | return err; | ||
4444 | } | ||
4445 | |||
4446 | static int swevent_hlist_get(struct perf_event *event) | ||
4447 | { | ||
4448 | int err; | ||
4449 | int cpu, failed_cpu; | ||
4450 | |||
4451 | if (event->cpu != -1) | ||
4452 | return swevent_hlist_get_cpu(event, event->cpu); | ||
4453 | |||
4454 | get_online_cpus(); | ||
4455 | for_each_possible_cpu(cpu) { | ||
4456 | err = swevent_hlist_get_cpu(event, cpu); | ||
4457 | if (err) { | ||
4458 | failed_cpu = cpu; | ||
4459 | goto fail; | ||
4460 | } | ||
4461 | } | ||
4462 | put_online_cpus(); | ||
4463 | |||
4464 | return 0; | ||
4465 | fail: | ||
4466 | for_each_possible_cpu(cpu) { | ||
4467 | if (cpu == failed_cpu) | ||
4468 | break; | ||
4469 | swevent_hlist_put_cpu(event, cpu); | ||
4470 | } | ||
4471 | |||
4472 | put_online_cpus(); | ||
4473 | return err; | ||
4474 | } | ||
4475 | |||
4476 | #ifdef CONFIG_EVENT_TRACING | ||
4477 | |||
4478 | static const struct pmu perf_ops_tracepoint = { | ||
4479 | .enable = perf_trace_enable, | ||
4480 | .disable = perf_trace_disable, | ||
4481 | .read = perf_swevent_read, | ||
4482 | .unthrottle = perf_swevent_unthrottle, | ||
4483 | }; | ||
4484 | |||
4485 | static int perf_tp_filter_match(struct perf_event *event, | ||
4348 | struct perf_sample_data *data) | 4486 | struct perf_sample_data *data) |
4349 | { | 4487 | { |
4350 | void *record = data->raw->data; | 4488 | void *record = data->raw->data; |
@@ -4354,13 +4492,55 @@ static int perf_tp_event_match(struct perf_event *event, | |||
4354 | return 0; | 4492 | return 0; |
4355 | } | 4493 | } |
4356 | 4494 | ||
4495 | static int perf_tp_event_match(struct perf_event *event, | ||
4496 | struct perf_sample_data *data, | ||
4497 | struct pt_regs *regs) | ||
4498 | { | ||
4499 | /* | ||
4500 | * All tracepoints are from kernel-space. | ||
4501 | */ | ||
4502 | if (event->attr.exclude_kernel) | ||
4503 | return 0; | ||
4504 | |||
4505 | if (!perf_tp_filter_match(event, data)) | ||
4506 | return 0; | ||
4507 | |||
4508 | return 1; | ||
4509 | } | ||
4510 | |||
4511 | void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, | ||
4512 | struct pt_regs *regs, struct hlist_head *head) | ||
4513 | { | ||
4514 | struct perf_sample_data data; | ||
4515 | struct perf_event *event; | ||
4516 | struct hlist_node *node; | ||
4517 | |||
4518 | struct perf_raw_record raw = { | ||
4519 | .size = entry_size, | ||
4520 | .data = record, | ||
4521 | }; | ||
4522 | |||
4523 | perf_sample_data_init(&data, addr); | ||
4524 | data.raw = &raw; | ||
4525 | |||
4526 | rcu_read_lock(); | ||
4527 | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | ||
4528 | if (perf_tp_event_match(event, &data, regs)) | ||
4529 | perf_swevent_add(event, count, 1, &data, regs); | ||
4530 | } | ||
4531 | rcu_read_unlock(); | ||
4532 | } | ||
4533 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4534 | |||
4357 | static void tp_perf_event_destroy(struct perf_event *event) | 4535 | static void tp_perf_event_destroy(struct perf_event *event) |
4358 | { | 4536 | { |
4359 | perf_trace_disable(event->attr.config); | 4537 | perf_trace_destroy(event); |
4360 | } | 4538 | } |
4361 | 4539 | ||
4362 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | 4540 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4363 | { | 4541 | { |
4542 | int err; | ||
4543 | |||
4364 | /* | 4544 | /* |
4365 | * Raw tracepoint data is a severe data leak, only allow root to | 4545 | * Raw tracepoint data is a severe data leak, only allow root to |
4366 | * have these. | 4546 | * have these. |
@@ -4370,12 +4550,13 @@ static const struct pmu *tp_perf_event_init(struct perf_event *event) | |||
4370 | !capable(CAP_SYS_ADMIN)) | 4550 | !capable(CAP_SYS_ADMIN)) |
4371 | return ERR_PTR(-EPERM); | 4551 | return ERR_PTR(-EPERM); |
4372 | 4552 | ||
4373 | if (perf_trace_enable(event->attr.config)) | 4553 | err = perf_trace_init(event); |
4554 | if (err) | ||
4374 | return NULL; | 4555 | return NULL; |
4375 | 4556 | ||
4376 | event->destroy = tp_perf_event_destroy; | 4557 | event->destroy = tp_perf_event_destroy; |
4377 | 4558 | ||
4378 | return &perf_ops_generic; | 4559 | return &perf_ops_tracepoint; |
4379 | } | 4560 | } |
4380 | 4561 | ||
4381 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 4562 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
@@ -4403,12 +4584,6 @@ static void perf_event_free_filter(struct perf_event *event) | |||
4403 | 4584 | ||
4404 | #else | 4585 | #else |
4405 | 4586 | ||
4406 | static int perf_tp_event_match(struct perf_event *event, | ||
4407 | struct perf_sample_data *data) | ||
4408 | { | ||
4409 | return 1; | ||
4410 | } | ||
4411 | |||
4412 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | 4587 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4413 | { | 4588 | { |
4414 | return NULL; | 4589 | return NULL; |
@@ -4474,6 +4649,7 @@ static void sw_perf_event_destroy(struct perf_event *event) | |||
4474 | WARN_ON(event->parent); | 4649 | WARN_ON(event->parent); |
4475 | 4650 | ||
4476 | atomic_dec(&perf_swevent_enabled[event_id]); | 4651 | atomic_dec(&perf_swevent_enabled[event_id]); |
4652 | swevent_hlist_put(event); | ||
4477 | } | 4653 | } |
4478 | 4654 | ||
4479 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | 4655 | static const struct pmu *sw_perf_event_init(struct perf_event *event) |
@@ -4512,6 +4688,12 @@ static const struct pmu *sw_perf_event_init(struct perf_event *event) | |||
4512 | case PERF_COUNT_SW_ALIGNMENT_FAULTS: | 4688 | case PERF_COUNT_SW_ALIGNMENT_FAULTS: |
4513 | case PERF_COUNT_SW_EMULATION_FAULTS: | 4689 | case PERF_COUNT_SW_EMULATION_FAULTS: |
4514 | if (!event->parent) { | 4690 | if (!event->parent) { |
4691 | int err; | ||
4692 | |||
4693 | err = swevent_hlist_get(event); | ||
4694 | if (err) | ||
4695 | return ERR_PTR(err); | ||
4696 | |||
4515 | atomic_inc(&perf_swevent_enabled[event_id]); | 4697 | atomic_inc(&perf_swevent_enabled[event_id]); |
4516 | event->destroy = sw_perf_event_destroy; | 4698 | event->destroy = sw_perf_event_destroy; |
4517 | } | 4699 | } |
@@ -4738,6 +4920,13 @@ static int perf_event_set_output(struct perf_event *event, int output_fd) | |||
4738 | int fput_needed = 0; | 4920 | int fput_needed = 0; |
4739 | int ret = -EINVAL; | 4921 | int ret = -EINVAL; |
4740 | 4922 | ||
4923 | /* | ||
4924 | * Don't allow output of inherited per-task events. This would | ||
4925 | * create performance issues due to cross cpu access. | ||
4926 | */ | ||
4927 | if (event->cpu == -1 && event->attr.inherit) | ||
4928 | return -EINVAL; | ||
4929 | |||
4741 | if (!output_fd) | 4930 | if (!output_fd) |
4742 | goto set; | 4931 | goto set; |
4743 | 4932 | ||
@@ -4758,6 +4947,18 @@ static int perf_event_set_output(struct perf_event *event, int output_fd) | |||
4758 | if (event->data) | 4947 | if (event->data) |
4759 | goto out; | 4948 | goto out; |
4760 | 4949 | ||
4950 | /* | ||
4951 | * Don't allow cross-cpu buffers | ||
4952 | */ | ||
4953 | if (output_event->cpu != event->cpu) | ||
4954 | goto out; | ||
4955 | |||
4956 | /* | ||
4957 | * If its not a per-cpu buffer, it must be the same task. | ||
4958 | */ | ||
4959 | if (output_event->cpu == -1 && output_event->ctx != event->ctx) | ||
4960 | goto out; | ||
4961 | |||
4761 | atomic_long_inc(&output_file->f_count); | 4962 | atomic_long_inc(&output_file->f_count); |
4762 | 4963 | ||
4763 | set: | 4964 | set: |
@@ -4798,8 +4999,8 @@ SYSCALL_DEFINE5(perf_event_open, | |||
4798 | struct perf_event_context *ctx; | 4999 | struct perf_event_context *ctx; |
4799 | struct file *event_file = NULL; | 5000 | struct file *event_file = NULL; |
4800 | struct file *group_file = NULL; | 5001 | struct file *group_file = NULL; |
5002 | int event_fd; | ||
4801 | int fput_needed = 0; | 5003 | int fput_needed = 0; |
4802 | int fput_needed2 = 0; | ||
4803 | int err; | 5004 | int err; |
4804 | 5005 | ||
4805 | /* for future expandability... */ | 5006 | /* for future expandability... */ |
@@ -4820,12 +5021,18 @@ SYSCALL_DEFINE5(perf_event_open, | |||
4820 | return -EINVAL; | 5021 | return -EINVAL; |
4821 | } | 5022 | } |
4822 | 5023 | ||
5024 | event_fd = get_unused_fd_flags(O_RDWR); | ||
5025 | if (event_fd < 0) | ||
5026 | return event_fd; | ||
5027 | |||
4823 | /* | 5028 | /* |
4824 | * Get the target context (task or percpu): | 5029 | * Get the target context (task or percpu): |
4825 | */ | 5030 | */ |
4826 | ctx = find_get_context(pid, cpu); | 5031 | ctx = find_get_context(pid, cpu); |
4827 | if (IS_ERR(ctx)) | 5032 | if (IS_ERR(ctx)) { |
4828 | return PTR_ERR(ctx); | 5033 | err = PTR_ERR(ctx); |
5034 | goto err_fd; | ||
5035 | } | ||
4829 | 5036 | ||
4830 | /* | 5037 | /* |
4831 | * Look up the group leader (we will attach this event to it): | 5038 | * Look up the group leader (we will attach this event to it): |
@@ -4865,13 +5072,11 @@ SYSCALL_DEFINE5(perf_event_open, | |||
4865 | if (IS_ERR(event)) | 5072 | if (IS_ERR(event)) |
4866 | goto err_put_context; | 5073 | goto err_put_context; |
4867 | 5074 | ||
4868 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR); | 5075 | event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); |
4869 | if (err < 0) | 5076 | if (IS_ERR(event_file)) { |
4870 | goto err_free_put_context; | 5077 | err = PTR_ERR(event_file); |
4871 | |||
4872 | event_file = fget_light(err, &fput_needed2); | ||
4873 | if (!event_file) | ||
4874 | goto err_free_put_context; | 5078 | goto err_free_put_context; |
5079 | } | ||
4875 | 5080 | ||
4876 | if (flags & PERF_FLAG_FD_OUTPUT) { | 5081 | if (flags & PERF_FLAG_FD_OUTPUT) { |
4877 | err = perf_event_set_output(event, group_fd); | 5082 | err = perf_event_set_output(event, group_fd); |
@@ -4892,19 +5097,19 @@ SYSCALL_DEFINE5(perf_event_open, | |||
4892 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | 5097 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
4893 | mutex_unlock(¤t->perf_event_mutex); | 5098 | mutex_unlock(¤t->perf_event_mutex); |
4894 | 5099 | ||
4895 | err_fput_free_put_context: | 5100 | fput_light(group_file, fput_needed); |
4896 | fput_light(event_file, fput_needed2); | 5101 | fd_install(event_fd, event_file); |
5102 | return event_fd; | ||
4897 | 5103 | ||
5104 | err_fput_free_put_context: | ||
5105 | fput(event_file); | ||
4898 | err_free_put_context: | 5106 | err_free_put_context: |
4899 | if (err < 0) | 5107 | free_event(event); |
4900 | free_event(event); | ||
4901 | |||
4902 | err_put_context: | 5108 | err_put_context: |
4903 | if (err < 0) | ||
4904 | put_ctx(ctx); | ||
4905 | |||
4906 | fput_light(group_file, fput_needed); | 5109 | fput_light(group_file, fput_needed); |
4907 | 5110 | put_ctx(ctx); | |
5111 | err_fd: | ||
5112 | put_unused_fd(event_fd); | ||
4908 | return err; | 5113 | return err; |
4909 | } | 5114 | } |
4910 | 5115 | ||
@@ -5176,7 +5381,7 @@ void perf_event_exit_task(struct task_struct *child) | |||
5176 | * | 5381 | * |
5177 | * But since its the parent context it won't be the same instance. | 5382 | * But since its the parent context it won't be the same instance. |
5178 | */ | 5383 | */ |
5179 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | 5384 | mutex_lock(&child_ctx->mutex); |
5180 | 5385 | ||
5181 | again: | 5386 | again: |
5182 | list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, | 5387 | list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, |
@@ -5384,6 +5589,7 @@ static void __init perf_event_init_all_cpus(void) | |||
5384 | 5589 | ||
5385 | for_each_possible_cpu(cpu) { | 5590 | for_each_possible_cpu(cpu) { |
5386 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 5591 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
5592 | mutex_init(&cpuctx->hlist_mutex); | ||
5387 | __perf_event_init_context(&cpuctx->ctx, NULL); | 5593 | __perf_event_init_context(&cpuctx->ctx, NULL); |
5388 | } | 5594 | } |
5389 | } | 5595 | } |
@@ -5397,6 +5603,16 @@ static void __cpuinit perf_event_init_cpu(int cpu) | |||
5397 | spin_lock(&perf_resource_lock); | 5603 | spin_lock(&perf_resource_lock); |
5398 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | 5604 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; |
5399 | spin_unlock(&perf_resource_lock); | 5605 | spin_unlock(&perf_resource_lock); |
5606 | |||
5607 | mutex_lock(&cpuctx->hlist_mutex); | ||
5608 | if (cpuctx->hlist_refcount > 0) { | ||
5609 | struct swevent_hlist *hlist; | ||
5610 | |||
5611 | hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | ||
5612 | WARN_ON_ONCE(!hlist); | ||
5613 | rcu_assign_pointer(cpuctx->swevent_hlist, hlist); | ||
5614 | } | ||
5615 | mutex_unlock(&cpuctx->hlist_mutex); | ||
5400 | } | 5616 | } |
5401 | 5617 | ||
5402 | #ifdef CONFIG_HOTPLUG_CPU | 5618 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -5416,6 +5632,10 @@ static void perf_event_exit_cpu(int cpu) | |||
5416 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 5632 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
5417 | struct perf_event_context *ctx = &cpuctx->ctx; | 5633 | struct perf_event_context *ctx = &cpuctx->ctx; |
5418 | 5634 | ||
5635 | mutex_lock(&cpuctx->hlist_mutex); | ||
5636 | swevent_hlist_release(cpuctx); | ||
5637 | mutex_unlock(&cpuctx->hlist_mutex); | ||
5638 | |||
5419 | mutex_lock(&ctx->mutex); | 5639 | mutex_lock(&ctx->mutex); |
5420 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | 5640 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); |
5421 | mutex_unlock(&ctx->mutex); | 5641 | mutex_unlock(&ctx->mutex); |
diff --git a/kernel/pid.c b/kernel/pid.c index aebb30d9c233..e9fd8c132d26 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -513,6 +513,13 @@ void __init pidhash_init(void) | |||
513 | 513 | ||
514 | void __init pidmap_init(void) | 514 | void __init pidmap_init(void) |
515 | { | 515 | { |
516 | /* bump default and minimum pid_max based on number of cpus */ | ||
517 | pid_max = min(pid_max_max, max_t(int, pid_max, | ||
518 | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | ||
519 | pid_max_min = max_t(int, pid_max_min, | ||
520 | PIDS_PER_CPU_MIN * num_possible_cpus()); | ||
521 | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | ||
522 | |||
516 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 523 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
517 | /* Reserve PID 0. We never call free_pidmap(0) */ | 524 | /* Reserve PID 0. We never call free_pidmap(0) */ |
518 | set_bit(0, init_pid_ns.pidmap[0].page); | 525 | set_bit(0, init_pid_ns.pidmap[0].page); |
diff --git a/kernel/pm_qos_params.c b/kernel/pm_qos_params.c index 3db49b9ca374..f42d3f737a33 100644 --- a/kernel/pm_qos_params.c +++ b/kernel/pm_qos_params.c | |||
@@ -2,7 +2,7 @@ | |||
2 | * This module exposes the interface to kernel space for specifying | 2 | * This module exposes the interface to kernel space for specifying |
3 | * QoS dependencies. It provides infrastructure for registration of: | 3 | * QoS dependencies. It provides infrastructure for registration of: |
4 | * | 4 | * |
5 | * Dependents on a QoS value : register requirements | 5 | * Dependents on a QoS value : register requests |
6 | * Watchers of QoS value : get notified when target QoS value changes | 6 | * Watchers of QoS value : get notified when target QoS value changes |
7 | * | 7 | * |
8 | * This QoS design is best effort based. Dependents register their QoS needs. | 8 | * This QoS design is best effort based. Dependents register their QoS needs. |
@@ -14,19 +14,21 @@ | |||
14 | * timeout: usec <-- currently not used. | 14 | * timeout: usec <-- currently not used. |
15 | * throughput: kbs (kilo byte / sec) | 15 | * throughput: kbs (kilo byte / sec) |
16 | * | 16 | * |
17 | * There are lists of pm_qos_objects each one wrapping requirements, notifiers | 17 | * There are lists of pm_qos_objects each one wrapping requests, notifiers |
18 | * | 18 | * |
19 | * User mode requirements on a QOS parameter register themselves to the | 19 | * User mode requests on a QOS parameter register themselves to the |
20 | * subsystem by opening the device node /dev/... and writing there request to | 20 | * subsystem by opening the device node /dev/... and writing there request to |
21 | * the node. As long as the process holds a file handle open to the node the | 21 | * the node. As long as the process holds a file handle open to the node the |
22 | * client continues to be accounted for. Upon file release the usermode | 22 | * client continues to be accounted for. Upon file release the usermode |
23 | * requirement is removed and a new qos target is computed. This way when the | 23 | * request is removed and a new qos target is computed. This way when the |
24 | * requirement that the application has is cleaned up when closes the file | 24 | * request that the application has is cleaned up when closes the file |
25 | * pointer or exits the pm_qos_object will get an opportunity to clean up. | 25 | * pointer or exits the pm_qos_object will get an opportunity to clean up. |
26 | * | 26 | * |
27 | * Mark Gross <mgross@linux.intel.com> | 27 | * Mark Gross <mgross@linux.intel.com> |
28 | */ | 28 | */ |
29 | 29 | ||
30 | /*#define DEBUG*/ | ||
31 | |||
30 | #include <linux/pm_qos_params.h> | 32 | #include <linux/pm_qos_params.h> |
31 | #include <linux/sched.h> | 33 | #include <linux/sched.h> |
32 | #include <linux/spinlock.h> | 34 | #include <linux/spinlock.h> |
@@ -42,25 +44,25 @@ | |||
42 | #include <linux/uaccess.h> | 44 | #include <linux/uaccess.h> |
43 | 45 | ||
44 | /* | 46 | /* |
45 | * locking rule: all changes to requirements or notifiers lists | 47 | * locking rule: all changes to requests or notifiers lists |
46 | * or pm_qos_object list and pm_qos_objects need to happen with pm_qos_lock | 48 | * or pm_qos_object list and pm_qos_objects need to happen with pm_qos_lock |
47 | * held, taken with _irqsave. One lock to rule them all | 49 | * held, taken with _irqsave. One lock to rule them all |
48 | */ | 50 | */ |
49 | struct requirement_list { | 51 | struct pm_qos_request_list { |
50 | struct list_head list; | 52 | struct list_head list; |
51 | union { | 53 | union { |
52 | s32 value; | 54 | s32 value; |
53 | s32 usec; | 55 | s32 usec; |
54 | s32 kbps; | 56 | s32 kbps; |
55 | }; | 57 | }; |
56 | char *name; | 58 | int pm_qos_class; |
57 | }; | 59 | }; |
58 | 60 | ||
59 | static s32 max_compare(s32 v1, s32 v2); | 61 | static s32 max_compare(s32 v1, s32 v2); |
60 | static s32 min_compare(s32 v1, s32 v2); | 62 | static s32 min_compare(s32 v1, s32 v2); |
61 | 63 | ||
62 | struct pm_qos_object { | 64 | struct pm_qos_object { |
63 | struct requirement_list requirements; | 65 | struct pm_qos_request_list requests; |
64 | struct blocking_notifier_head *notifiers; | 66 | struct blocking_notifier_head *notifiers; |
65 | struct miscdevice pm_qos_power_miscdev; | 67 | struct miscdevice pm_qos_power_miscdev; |
66 | char *name; | 68 | char *name; |
@@ -72,7 +74,7 @@ struct pm_qos_object { | |||
72 | static struct pm_qos_object null_pm_qos; | 74 | static struct pm_qos_object null_pm_qos; |
73 | static BLOCKING_NOTIFIER_HEAD(cpu_dma_lat_notifier); | 75 | static BLOCKING_NOTIFIER_HEAD(cpu_dma_lat_notifier); |
74 | static struct pm_qos_object cpu_dma_pm_qos = { | 76 | static struct pm_qos_object cpu_dma_pm_qos = { |
75 | .requirements = {LIST_HEAD_INIT(cpu_dma_pm_qos.requirements.list)}, | 77 | .requests = {LIST_HEAD_INIT(cpu_dma_pm_qos.requests.list)}, |
76 | .notifiers = &cpu_dma_lat_notifier, | 78 | .notifiers = &cpu_dma_lat_notifier, |
77 | .name = "cpu_dma_latency", | 79 | .name = "cpu_dma_latency", |
78 | .default_value = 2000 * USEC_PER_SEC, | 80 | .default_value = 2000 * USEC_PER_SEC, |
@@ -82,7 +84,7 @@ static struct pm_qos_object cpu_dma_pm_qos = { | |||
82 | 84 | ||
83 | static BLOCKING_NOTIFIER_HEAD(network_lat_notifier); | 85 | static BLOCKING_NOTIFIER_HEAD(network_lat_notifier); |
84 | static struct pm_qos_object network_lat_pm_qos = { | 86 | static struct pm_qos_object network_lat_pm_qos = { |
85 | .requirements = {LIST_HEAD_INIT(network_lat_pm_qos.requirements.list)}, | 87 | .requests = {LIST_HEAD_INIT(network_lat_pm_qos.requests.list)}, |
86 | .notifiers = &network_lat_notifier, | 88 | .notifiers = &network_lat_notifier, |
87 | .name = "network_latency", | 89 | .name = "network_latency", |
88 | .default_value = 2000 * USEC_PER_SEC, | 90 | .default_value = 2000 * USEC_PER_SEC, |
@@ -93,8 +95,7 @@ static struct pm_qos_object network_lat_pm_qos = { | |||
93 | 95 | ||
94 | static BLOCKING_NOTIFIER_HEAD(network_throughput_notifier); | 96 | static BLOCKING_NOTIFIER_HEAD(network_throughput_notifier); |
95 | static struct pm_qos_object network_throughput_pm_qos = { | 97 | static struct pm_qos_object network_throughput_pm_qos = { |
96 | .requirements = | 98 | .requests = {LIST_HEAD_INIT(network_throughput_pm_qos.requests.list)}, |
97 | {LIST_HEAD_INIT(network_throughput_pm_qos.requirements.list)}, | ||
98 | .notifiers = &network_throughput_notifier, | 99 | .notifiers = &network_throughput_notifier, |
99 | .name = "network_throughput", | 100 | .name = "network_throughput", |
100 | .default_value = 0, | 101 | .default_value = 0, |
@@ -135,31 +136,34 @@ static s32 min_compare(s32 v1, s32 v2) | |||
135 | } | 136 | } |
136 | 137 | ||
137 | 138 | ||
138 | static void update_target(int target) | 139 | static void update_target(int pm_qos_class) |
139 | { | 140 | { |
140 | s32 extreme_value; | 141 | s32 extreme_value; |
141 | struct requirement_list *node; | 142 | struct pm_qos_request_list *node; |
142 | unsigned long flags; | 143 | unsigned long flags; |
143 | int call_notifier = 0; | 144 | int call_notifier = 0; |
144 | 145 | ||
145 | spin_lock_irqsave(&pm_qos_lock, flags); | 146 | spin_lock_irqsave(&pm_qos_lock, flags); |
146 | extreme_value = pm_qos_array[target]->default_value; | 147 | extreme_value = pm_qos_array[pm_qos_class]->default_value; |
147 | list_for_each_entry(node, | 148 | list_for_each_entry(node, |
148 | &pm_qos_array[target]->requirements.list, list) { | 149 | &pm_qos_array[pm_qos_class]->requests.list, list) { |
149 | extreme_value = pm_qos_array[target]->comparitor( | 150 | extreme_value = pm_qos_array[pm_qos_class]->comparitor( |
150 | extreme_value, node->value); | 151 | extreme_value, node->value); |
151 | } | 152 | } |
152 | if (atomic_read(&pm_qos_array[target]->target_value) != extreme_value) { | 153 | if (atomic_read(&pm_qos_array[pm_qos_class]->target_value) != |
154 | extreme_value) { | ||
153 | call_notifier = 1; | 155 | call_notifier = 1; |
154 | atomic_set(&pm_qos_array[target]->target_value, extreme_value); | 156 | atomic_set(&pm_qos_array[pm_qos_class]->target_value, |
155 | pr_debug(KERN_ERR "new target for qos %d is %d\n", target, | 157 | extreme_value); |
156 | atomic_read(&pm_qos_array[target]->target_value)); | 158 | pr_debug(KERN_ERR "new target for qos %d is %d\n", pm_qos_class, |
159 | atomic_read(&pm_qos_array[pm_qos_class]->target_value)); | ||
157 | } | 160 | } |
158 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 161 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
159 | 162 | ||
160 | if (call_notifier) | 163 | if (call_notifier) |
161 | blocking_notifier_call_chain(pm_qos_array[target]->notifiers, | 164 | blocking_notifier_call_chain( |
162 | (unsigned long) extreme_value, NULL); | 165 | pm_qos_array[pm_qos_class]->notifiers, |
166 | (unsigned long) extreme_value, NULL); | ||
163 | } | 167 | } |
164 | 168 | ||
165 | static int register_pm_qos_misc(struct pm_qos_object *qos) | 169 | static int register_pm_qos_misc(struct pm_qos_object *qos) |
@@ -185,125 +189,112 @@ static int find_pm_qos_object_by_minor(int minor) | |||
185 | } | 189 | } |
186 | 190 | ||
187 | /** | 191 | /** |
188 | * pm_qos_requirement - returns current system wide qos expectation | 192 | * pm_qos_request - returns current system wide qos expectation |
189 | * @pm_qos_class: identification of which qos value is requested | 193 | * @pm_qos_class: identification of which qos value is requested |
190 | * | 194 | * |
191 | * This function returns the current target value in an atomic manner. | 195 | * This function returns the current target value in an atomic manner. |
192 | */ | 196 | */ |
193 | int pm_qos_requirement(int pm_qos_class) | 197 | int pm_qos_request(int pm_qos_class) |
194 | { | 198 | { |
195 | return atomic_read(&pm_qos_array[pm_qos_class]->target_value); | 199 | return atomic_read(&pm_qos_array[pm_qos_class]->target_value); |
196 | } | 200 | } |
197 | EXPORT_SYMBOL_GPL(pm_qos_requirement); | 201 | EXPORT_SYMBOL_GPL(pm_qos_request); |
198 | 202 | ||
199 | /** | 203 | /** |
200 | * pm_qos_add_requirement - inserts new qos request into the list | 204 | * pm_qos_add_request - inserts new qos request into the list |
201 | * @pm_qos_class: identifies which list of qos request to us | 205 | * @pm_qos_class: identifies which list of qos request to us |
202 | * @name: identifies the request | ||
203 | * @value: defines the qos request | 206 | * @value: defines the qos request |
204 | * | 207 | * |
205 | * This function inserts a new entry in the pm_qos_class list of requested qos | 208 | * This function inserts a new entry in the pm_qos_class list of requested qos |
206 | * performance characteristics. It recomputes the aggregate QoS expectations | 209 | * performance characteristics. It recomputes the aggregate QoS expectations |
207 | * for the pm_qos_class of parameters. | 210 | * for the pm_qos_class of parameters, and returns the pm_qos_request list |
211 | * element as a handle for use in updating and removal. Call needs to save | ||
212 | * this handle for later use. | ||
208 | */ | 213 | */ |
209 | int pm_qos_add_requirement(int pm_qos_class, char *name, s32 value) | 214 | struct pm_qos_request_list *pm_qos_add_request(int pm_qos_class, s32 value) |
210 | { | 215 | { |
211 | struct requirement_list *dep; | 216 | struct pm_qos_request_list *dep; |
212 | unsigned long flags; | 217 | unsigned long flags; |
213 | 218 | ||
214 | dep = kzalloc(sizeof(struct requirement_list), GFP_KERNEL); | 219 | dep = kzalloc(sizeof(struct pm_qos_request_list), GFP_KERNEL); |
215 | if (dep) { | 220 | if (dep) { |
216 | if (value == PM_QOS_DEFAULT_VALUE) | 221 | if (value == PM_QOS_DEFAULT_VALUE) |
217 | dep->value = pm_qos_array[pm_qos_class]->default_value; | 222 | dep->value = pm_qos_array[pm_qos_class]->default_value; |
218 | else | 223 | else |
219 | dep->value = value; | 224 | dep->value = value; |
220 | dep->name = kstrdup(name, GFP_KERNEL); | 225 | dep->pm_qos_class = pm_qos_class; |
221 | if (!dep->name) | ||
222 | goto cleanup; | ||
223 | 226 | ||
224 | spin_lock_irqsave(&pm_qos_lock, flags); | 227 | spin_lock_irqsave(&pm_qos_lock, flags); |
225 | list_add(&dep->list, | 228 | list_add(&dep->list, |
226 | &pm_qos_array[pm_qos_class]->requirements.list); | 229 | &pm_qos_array[pm_qos_class]->requests.list); |
227 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 230 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
228 | update_target(pm_qos_class); | 231 | update_target(pm_qos_class); |
229 | |||
230 | return 0; | ||
231 | } | 232 | } |
232 | 233 | ||
233 | cleanup: | 234 | return dep; |
234 | kfree(dep); | ||
235 | return -ENOMEM; | ||
236 | } | 235 | } |
237 | EXPORT_SYMBOL_GPL(pm_qos_add_requirement); | 236 | EXPORT_SYMBOL_GPL(pm_qos_add_request); |
238 | 237 | ||
239 | /** | 238 | /** |
240 | * pm_qos_update_requirement - modifies an existing qos request | 239 | * pm_qos_update_request - modifies an existing qos request |
241 | * @pm_qos_class: identifies which list of qos request to us | 240 | * @pm_qos_req : handle to list element holding a pm_qos request to use |
242 | * @name: identifies the request | ||
243 | * @value: defines the qos request | 241 | * @value: defines the qos request |
244 | * | 242 | * |
245 | * Updates an existing qos requirement for the pm_qos_class of parameters along | 243 | * Updates an existing qos request for the pm_qos_class of parameters along |
246 | * with updating the target pm_qos_class value. | 244 | * with updating the target pm_qos_class value. |
247 | * | 245 | * |
248 | * If the named request isn't in the list then no change is made. | 246 | * Attempts are made to make this code callable on hot code paths. |
249 | */ | 247 | */ |
250 | int pm_qos_update_requirement(int pm_qos_class, char *name, s32 new_value) | 248 | void pm_qos_update_request(struct pm_qos_request_list *pm_qos_req, |
249 | s32 new_value) | ||
251 | { | 250 | { |
252 | unsigned long flags; | 251 | unsigned long flags; |
253 | struct requirement_list *node; | ||
254 | int pending_update = 0; | 252 | int pending_update = 0; |
253 | s32 temp; | ||
255 | 254 | ||
256 | spin_lock_irqsave(&pm_qos_lock, flags); | 255 | if (pm_qos_req) { /*guard against callers passing in null */ |
257 | list_for_each_entry(node, | 256 | spin_lock_irqsave(&pm_qos_lock, flags); |
258 | &pm_qos_array[pm_qos_class]->requirements.list, list) { | 257 | if (new_value == PM_QOS_DEFAULT_VALUE) |
259 | if (strcmp(node->name, name) == 0) { | 258 | temp = pm_qos_array[pm_qos_req->pm_qos_class]->default_value; |
260 | if (new_value == PM_QOS_DEFAULT_VALUE) | 259 | else |
261 | node->value = | 260 | temp = new_value; |
262 | pm_qos_array[pm_qos_class]->default_value; | 261 | |
263 | else | 262 | if (temp != pm_qos_req->value) { |
264 | node->value = new_value; | ||
265 | pending_update = 1; | 263 | pending_update = 1; |
266 | break; | 264 | pm_qos_req->value = temp; |
267 | } | 265 | } |
266 | spin_unlock_irqrestore(&pm_qos_lock, flags); | ||
267 | if (pending_update) | ||
268 | update_target(pm_qos_req->pm_qos_class); | ||
268 | } | 269 | } |
269 | spin_unlock_irqrestore(&pm_qos_lock, flags); | ||
270 | if (pending_update) | ||
271 | update_target(pm_qos_class); | ||
272 | |||
273 | return 0; | ||
274 | } | 270 | } |
275 | EXPORT_SYMBOL_GPL(pm_qos_update_requirement); | 271 | EXPORT_SYMBOL_GPL(pm_qos_update_request); |
276 | 272 | ||
277 | /** | 273 | /** |
278 | * pm_qos_remove_requirement - modifies an existing qos request | 274 | * pm_qos_remove_request - modifies an existing qos request |
279 | * @pm_qos_class: identifies which list of qos request to us | 275 | * @pm_qos_req: handle to request list element |
280 | * @name: identifies the request | ||
281 | * | 276 | * |
282 | * Will remove named qos request from pm_qos_class list of parameters and | 277 | * Will remove pm qos request from the list of requests and |
283 | * recompute the current target value for the pm_qos_class. | 278 | * recompute the current target value for the pm_qos_class. Call this |
279 | * on slow code paths. | ||
284 | */ | 280 | */ |
285 | void pm_qos_remove_requirement(int pm_qos_class, char *name) | 281 | void pm_qos_remove_request(struct pm_qos_request_list *pm_qos_req) |
286 | { | 282 | { |
287 | unsigned long flags; | 283 | unsigned long flags; |
288 | struct requirement_list *node; | 284 | int qos_class; |
289 | int pending_update = 0; | ||
290 | 285 | ||
286 | if (pm_qos_req == NULL) | ||
287 | return; | ||
288 | /* silent return to keep pcm code cleaner */ | ||
289 | |||
290 | qos_class = pm_qos_req->pm_qos_class; | ||
291 | spin_lock_irqsave(&pm_qos_lock, flags); | 291 | spin_lock_irqsave(&pm_qos_lock, flags); |
292 | list_for_each_entry(node, | 292 | list_del(&pm_qos_req->list); |
293 | &pm_qos_array[pm_qos_class]->requirements.list, list) { | 293 | kfree(pm_qos_req); |
294 | if (strcmp(node->name, name) == 0) { | ||
295 | kfree(node->name); | ||
296 | list_del(&node->list); | ||
297 | kfree(node); | ||
298 | pending_update = 1; | ||
299 | break; | ||
300 | } | ||
301 | } | ||
302 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 294 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
303 | if (pending_update) | 295 | update_target(qos_class); |
304 | update_target(pm_qos_class); | ||
305 | } | 296 | } |
306 | EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); | 297 | EXPORT_SYMBOL_GPL(pm_qos_remove_request); |
307 | 298 | ||
308 | /** | 299 | /** |
309 | * pm_qos_add_notifier - sets notification entry for changes to target value | 300 | * pm_qos_add_notifier - sets notification entry for changes to target value |
@@ -313,7 +304,7 @@ EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); | |||
313 | * will register the notifier into a notification chain that gets called | 304 | * will register the notifier into a notification chain that gets called |
314 | * upon changes to the pm_qos_class target value. | 305 | * upon changes to the pm_qos_class target value. |
315 | */ | 306 | */ |
316 | int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) | 307 | int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) |
317 | { | 308 | { |
318 | int retval; | 309 | int retval; |
319 | 310 | ||
@@ -343,21 +334,16 @@ int pm_qos_remove_notifier(int pm_qos_class, struct notifier_block *notifier) | |||
343 | } | 334 | } |
344 | EXPORT_SYMBOL_GPL(pm_qos_remove_notifier); | 335 | EXPORT_SYMBOL_GPL(pm_qos_remove_notifier); |
345 | 336 | ||
346 | #define PID_NAME_LEN 32 | ||
347 | |||
348 | static int pm_qos_power_open(struct inode *inode, struct file *filp) | 337 | static int pm_qos_power_open(struct inode *inode, struct file *filp) |
349 | { | 338 | { |
350 | int ret; | ||
351 | long pm_qos_class; | 339 | long pm_qos_class; |
352 | char name[PID_NAME_LEN]; | ||
353 | 340 | ||
354 | pm_qos_class = find_pm_qos_object_by_minor(iminor(inode)); | 341 | pm_qos_class = find_pm_qos_object_by_minor(iminor(inode)); |
355 | if (pm_qos_class >= 0) { | 342 | if (pm_qos_class >= 0) { |
356 | filp->private_data = (void *)pm_qos_class; | 343 | filp->private_data = (void *) pm_qos_add_request(pm_qos_class, |
357 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | 344 | PM_QOS_DEFAULT_VALUE); |
358 | ret = pm_qos_add_requirement(pm_qos_class, name, | 345 | |
359 | PM_QOS_DEFAULT_VALUE); | 346 | if (filp->private_data) |
360 | if (ret >= 0) | ||
361 | return 0; | 347 | return 0; |
362 | } | 348 | } |
363 | return -EPERM; | 349 | return -EPERM; |
@@ -365,32 +351,40 @@ static int pm_qos_power_open(struct inode *inode, struct file *filp) | |||
365 | 351 | ||
366 | static int pm_qos_power_release(struct inode *inode, struct file *filp) | 352 | static int pm_qos_power_release(struct inode *inode, struct file *filp) |
367 | { | 353 | { |
368 | int pm_qos_class; | 354 | struct pm_qos_request_list *req; |
369 | char name[PID_NAME_LEN]; | ||
370 | 355 | ||
371 | pm_qos_class = (long)filp->private_data; | 356 | req = (struct pm_qos_request_list *)filp->private_data; |
372 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | 357 | pm_qos_remove_request(req); |
373 | pm_qos_remove_requirement(pm_qos_class, name); | ||
374 | 358 | ||
375 | return 0; | 359 | return 0; |
376 | } | 360 | } |
377 | 361 | ||
362 | |||
378 | static ssize_t pm_qos_power_write(struct file *filp, const char __user *buf, | 363 | static ssize_t pm_qos_power_write(struct file *filp, const char __user *buf, |
379 | size_t count, loff_t *f_pos) | 364 | size_t count, loff_t *f_pos) |
380 | { | 365 | { |
381 | s32 value; | 366 | s32 value; |
382 | int pm_qos_class; | 367 | int x; |
383 | char name[PID_NAME_LEN]; | 368 | char ascii_value[11]; |
384 | 369 | struct pm_qos_request_list *pm_qos_req; | |
385 | pm_qos_class = (long)filp->private_data; | 370 | |
386 | if (count != sizeof(s32)) | 371 | if (count == sizeof(s32)) { |
372 | if (copy_from_user(&value, buf, sizeof(s32))) | ||
373 | return -EFAULT; | ||
374 | } else if (count == 11) { /* len('0x12345678/0') */ | ||
375 | if (copy_from_user(ascii_value, buf, 11)) | ||
376 | return -EFAULT; | ||
377 | x = sscanf(ascii_value, "%x", &value); | ||
378 | if (x != 1) | ||
379 | return -EINVAL; | ||
380 | pr_debug(KERN_ERR "%s, %d, 0x%x\n", ascii_value, x, value); | ||
381 | } else | ||
387 | return -EINVAL; | 382 | return -EINVAL; |
388 | if (copy_from_user(&value, buf, sizeof(s32))) | ||
389 | return -EFAULT; | ||
390 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | ||
391 | pm_qos_update_requirement(pm_qos_class, name, value); | ||
392 | 383 | ||
393 | return sizeof(s32); | 384 | pm_qos_req = (struct pm_qos_request_list *)filp->private_data; |
385 | pm_qos_update_request(pm_qos_req, value); | ||
386 | |||
387 | return count; | ||
394 | } | 388 | } |
395 | 389 | ||
396 | 390 | ||
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index bc7704b3a443..9829646d399c 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -11,19 +11,18 @@ | |||
11 | #include <trace/events/timer.h> | 11 | #include <trace/events/timer.h> |
12 | 12 | ||
13 | /* | 13 | /* |
14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | ||
16 | * siglock protection since other code may update expiration cache as | ||
17 | * well. | ||
15 | */ | 18 | */ |
16 | void update_rlimit_cpu(unsigned long rlim_new) | 19 | void update_rlimit_cpu(unsigned long rlim_new) |
17 | { | 20 | { |
18 | cputime_t cputime = secs_to_cputime(rlim_new); | 21 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
20 | 22 | ||
21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || | 23 | spin_lock_irq(¤t->sighand->siglock); |
22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
23 | spin_lock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | ||
25 | spin_unlock_irq(¤t->sighand->siglock); | ||
26 | } | ||
27 | } | 26 | } |
28 | 27 | ||
29 | static int check_clock(const clockid_t which_clock) | 28 | static int check_clock(const clockid_t which_clock) |
@@ -364,7 +363,7 @@ int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) | |||
364 | } | 363 | } |
365 | } else { | 364 | } else { |
366 | read_lock(&tasklist_lock); | 365 | read_lock(&tasklist_lock); |
367 | if (thread_group_leader(p) && p->signal) { | 366 | if (thread_group_leader(p) && p->sighand) { |
368 | error = | 367 | error = |
369 | cpu_clock_sample_group(which_clock, | 368 | cpu_clock_sample_group(which_clock, |
370 | p, &rtn); | 369 | p, &rtn); |
@@ -440,7 +439,7 @@ int posix_cpu_timer_del(struct k_itimer *timer) | |||
440 | 439 | ||
441 | if (likely(p != NULL)) { | 440 | if (likely(p != NULL)) { |
442 | read_lock(&tasklist_lock); | 441 | read_lock(&tasklist_lock); |
443 | if (unlikely(p->signal == NULL)) { | 442 | if (unlikely(p->sighand == NULL)) { |
444 | /* | 443 | /* |
445 | * We raced with the reaping of the task. | 444 | * We raced with the reaping of the task. |
446 | * The deletion should have cleared us off the list. | 445 | * The deletion should have cleared us off the list. |
@@ -548,111 +547,62 @@ static inline int expires_gt(cputime_t expires, cputime_t new_exp) | |||
548 | cputime_gt(expires, new_exp); | 547 | cputime_gt(expires, new_exp); |
549 | } | 548 | } |
550 | 549 | ||
551 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
552 | { | ||
553 | return !cputime_eq(expires, cputime_zero) && | ||
554 | cputime_le(expires, new_exp); | ||
555 | } | ||
556 | /* | 550 | /* |
557 | * Insert the timer on the appropriate list before any timers that | 551 | * Insert the timer on the appropriate list before any timers that |
558 | * expire later. This must be called with the tasklist_lock held | 552 | * expire later. This must be called with the tasklist_lock held |
559 | * for reading, and interrupts disabled. | 553 | * for reading, interrupts disabled and p->sighand->siglock taken. |
560 | */ | 554 | */ |
561 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | 555 | static void arm_timer(struct k_itimer *timer) |
562 | { | 556 | { |
563 | struct task_struct *p = timer->it.cpu.task; | 557 | struct task_struct *p = timer->it.cpu.task; |
564 | struct list_head *head, *listpos; | 558 | struct list_head *head, *listpos; |
559 | struct task_cputime *cputime_expires; | ||
565 | struct cpu_timer_list *const nt = &timer->it.cpu; | 560 | struct cpu_timer_list *const nt = &timer->it.cpu; |
566 | struct cpu_timer_list *next; | 561 | struct cpu_timer_list *next; |
567 | unsigned long i; | ||
568 | 562 | ||
569 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | 563 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
570 | p->cpu_timers : p->signal->cpu_timers); | 564 | head = p->cpu_timers; |
565 | cputime_expires = &p->cputime_expires; | ||
566 | } else { | ||
567 | head = p->signal->cpu_timers; | ||
568 | cputime_expires = &p->signal->cputime_expires; | ||
569 | } | ||
571 | head += CPUCLOCK_WHICH(timer->it_clock); | 570 | head += CPUCLOCK_WHICH(timer->it_clock); |
572 | 571 | ||
573 | BUG_ON(!irqs_disabled()); | ||
574 | spin_lock(&p->sighand->siglock); | ||
575 | |||
576 | listpos = head; | 572 | listpos = head; |
577 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 573 | list_for_each_entry(next, head, entry) { |
578 | list_for_each_entry(next, head, entry) { | 574 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) |
579 | if (next->expires.sched > nt->expires.sched) | 575 | break; |
580 | break; | 576 | listpos = &next->entry; |
581 | listpos = &next->entry; | ||
582 | } | ||
583 | } else { | ||
584 | list_for_each_entry(next, head, entry) { | ||
585 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) | ||
586 | break; | ||
587 | listpos = &next->entry; | ||
588 | } | ||
589 | } | 577 | } |
590 | list_add(&nt->entry, listpos); | 578 | list_add(&nt->entry, listpos); |
591 | 579 | ||
592 | if (listpos == head) { | 580 | if (listpos == head) { |
581 | union cpu_time_count *exp = &nt->expires; | ||
582 | |||
593 | /* | 583 | /* |
594 | * We are the new earliest-expiring timer. | 584 | * We are the new earliest-expiring POSIX 1.b timer, hence |
595 | * If we are a thread timer, there can always | 585 | * need to update expiration cache. Take into account that |
596 | * be a process timer telling us to stop earlier. | 586 | * for process timers we share expiration cache with itimers |
587 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | ||
597 | */ | 588 | */ |
598 | 589 | ||
599 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 590 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
600 | union cpu_time_count *exp = &nt->expires; | 591 | case CPUCLOCK_PROF: |
601 | 592 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | |
602 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 593 | cputime_expires->prof_exp = exp->cpu; |
603 | default: | 594 | break; |
604 | BUG(); | 595 | case CPUCLOCK_VIRT: |
605 | case CPUCLOCK_PROF: | 596 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) |
606 | if (expires_gt(p->cputime_expires.prof_exp, | 597 | cputime_expires->virt_exp = exp->cpu; |
607 | exp->cpu)) | 598 | break; |
608 | p->cputime_expires.prof_exp = exp->cpu; | 599 | case CPUCLOCK_SCHED: |
609 | break; | 600 | if (cputime_expires->sched_exp == 0 || |
610 | case CPUCLOCK_VIRT: | 601 | cputime_expires->sched_exp > exp->sched) |
611 | if (expires_gt(p->cputime_expires.virt_exp, | 602 | cputime_expires->sched_exp = exp->sched; |
612 | exp->cpu)) | 603 | break; |
613 | p->cputime_expires.virt_exp = exp->cpu; | ||
614 | break; | ||
615 | case CPUCLOCK_SCHED: | ||
616 | if (p->cputime_expires.sched_exp == 0 || | ||
617 | p->cputime_expires.sched_exp > exp->sched) | ||
618 | p->cputime_expires.sched_exp = | ||
619 | exp->sched; | ||
620 | break; | ||
621 | } | ||
622 | } else { | ||
623 | struct signal_struct *const sig = p->signal; | ||
624 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
625 | |||
626 | /* | ||
627 | * For a process timer, set the cached expiration time. | ||
628 | */ | ||
629 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
630 | default: | ||
631 | BUG(); | ||
632 | case CPUCLOCK_VIRT: | ||
633 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, | ||
634 | exp->cpu)) | ||
635 | break; | ||
636 | sig->cputime_expires.virt_exp = exp->cpu; | ||
637 | break; | ||
638 | case CPUCLOCK_PROF: | ||
639 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, | ||
640 | exp->cpu)) | ||
641 | break; | ||
642 | i = sig->rlim[RLIMIT_CPU].rlim_cur; | ||
643 | if (i != RLIM_INFINITY && | ||
644 | i <= cputime_to_secs(exp->cpu)) | ||
645 | break; | ||
646 | sig->cputime_expires.prof_exp = exp->cpu; | ||
647 | break; | ||
648 | case CPUCLOCK_SCHED: | ||
649 | sig->cputime_expires.sched_exp = exp->sched; | ||
650 | break; | ||
651 | } | ||
652 | } | 604 | } |
653 | } | 605 | } |
654 | |||
655 | spin_unlock(&p->sighand->siglock); | ||
656 | } | 606 | } |
657 | 607 | ||
658 | /* | 608 | /* |
@@ -660,7 +610,12 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
660 | */ | 610 | */ |
661 | static void cpu_timer_fire(struct k_itimer *timer) | 611 | static void cpu_timer_fire(struct k_itimer *timer) |
662 | { | 612 | { |
663 | if (unlikely(timer->sigq == NULL)) { | 613 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
614 | /* | ||
615 | * User don't want any signal. | ||
616 | */ | ||
617 | timer->it.cpu.expires.sched = 0; | ||
618 | } else if (unlikely(timer->sigq == NULL)) { | ||
664 | /* | 619 | /* |
665 | * This a special case for clock_nanosleep, | 620 | * This a special case for clock_nanosleep, |
666 | * not a normal timer from sys_timer_create. | 621 | * not a normal timer from sys_timer_create. |
@@ -721,7 +676,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
721 | struct itimerspec *new, struct itimerspec *old) | 676 | struct itimerspec *new, struct itimerspec *old) |
722 | { | 677 | { |
723 | struct task_struct *p = timer->it.cpu.task; | 678 | struct task_struct *p = timer->it.cpu.task; |
724 | union cpu_time_count old_expires, new_expires, val; | 679 | union cpu_time_count old_expires, new_expires, old_incr, val; |
725 | int ret; | 680 | int ret; |
726 | 681 | ||
727 | if (unlikely(p == NULL)) { | 682 | if (unlikely(p == NULL)) { |
@@ -736,10 +691,10 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
736 | read_lock(&tasklist_lock); | 691 | read_lock(&tasklist_lock); |
737 | /* | 692 | /* |
738 | * We need the tasklist_lock to protect against reaping that | 693 | * We need the tasklist_lock to protect against reaping that |
739 | * clears p->signal. If p has just been reaped, we can no | 694 | * clears p->sighand. If p has just been reaped, we can no |
740 | * longer get any information about it at all. | 695 | * longer get any information about it at all. |
741 | */ | 696 | */ |
742 | if (unlikely(p->signal == NULL)) { | 697 | if (unlikely(p->sighand == NULL)) { |
743 | read_unlock(&tasklist_lock); | 698 | read_unlock(&tasklist_lock); |
744 | put_task_struct(p); | 699 | put_task_struct(p); |
745 | timer->it.cpu.task = NULL; | 700 | timer->it.cpu.task = NULL; |
@@ -752,6 +707,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
752 | BUG_ON(!irqs_disabled()); | 707 | BUG_ON(!irqs_disabled()); |
753 | 708 | ||
754 | ret = 0; | 709 | ret = 0; |
710 | old_incr = timer->it.cpu.incr; | ||
755 | spin_lock(&p->sighand->siglock); | 711 | spin_lock(&p->sighand->siglock); |
756 | old_expires = timer->it.cpu.expires; | 712 | old_expires = timer->it.cpu.expires; |
757 | if (unlikely(timer->it.cpu.firing)) { | 713 | if (unlikely(timer->it.cpu.firing)) { |
@@ -759,7 +715,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
759 | ret = TIMER_RETRY; | 715 | ret = TIMER_RETRY; |
760 | } else | 716 | } else |
761 | list_del_init(&timer->it.cpu.entry); | 717 | list_del_init(&timer->it.cpu.entry); |
762 | spin_unlock(&p->sighand->siglock); | ||
763 | 718 | ||
764 | /* | 719 | /* |
765 | * We need to sample the current value to convert the new | 720 | * We need to sample the current value to convert the new |
@@ -813,6 +768,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
813 | * disable this firing since we are already reporting | 768 | * disable this firing since we are already reporting |
814 | * it as an overrun (thanks to bump_cpu_timer above). | 769 | * it as an overrun (thanks to bump_cpu_timer above). |
815 | */ | 770 | */ |
771 | spin_unlock(&p->sighand->siglock); | ||
816 | read_unlock(&tasklist_lock); | 772 | read_unlock(&tasklist_lock); |
817 | goto out; | 773 | goto out; |
818 | } | 774 | } |
@@ -828,11 +784,11 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
828 | */ | 784 | */ |
829 | timer->it.cpu.expires = new_expires; | 785 | timer->it.cpu.expires = new_expires; |
830 | if (new_expires.sched != 0 && | 786 | if (new_expires.sched != 0 && |
831 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
832 | cpu_time_before(timer->it_clock, val, new_expires)) { | 787 | cpu_time_before(timer->it_clock, val, new_expires)) { |
833 | arm_timer(timer, val); | 788 | arm_timer(timer); |
834 | } | 789 | } |
835 | 790 | ||
791 | spin_unlock(&p->sighand->siglock); | ||
836 | read_unlock(&tasklist_lock); | 792 | read_unlock(&tasklist_lock); |
837 | 793 | ||
838 | /* | 794 | /* |
@@ -853,7 +809,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
853 | timer->it_overrun = -1; | 809 | timer->it_overrun = -1; |
854 | 810 | ||
855 | if (new_expires.sched != 0 && | 811 | if (new_expires.sched != 0 && |
856 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
857 | !cpu_time_before(timer->it_clock, val, new_expires)) { | 812 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
858 | /* | 813 | /* |
859 | * The designated time already passed, so we notify | 814 | * The designated time already passed, so we notify |
@@ -867,7 +822,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
867 | out: | 822 | out: |
868 | if (old) { | 823 | if (old) { |
869 | sample_to_timespec(timer->it_clock, | 824 | sample_to_timespec(timer->it_clock, |
870 | timer->it.cpu.incr, &old->it_interval); | 825 | old_incr, &old->it_interval); |
871 | } | 826 | } |
872 | return ret; | 827 | return ret; |
873 | } | 828 | } |
@@ -908,7 +863,7 @@ void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |||
908 | clear_dead = p->exit_state; | 863 | clear_dead = p->exit_state; |
909 | } else { | 864 | } else { |
910 | read_lock(&tasklist_lock); | 865 | read_lock(&tasklist_lock); |
911 | if (unlikely(p->signal == NULL)) { | 866 | if (unlikely(p->sighand == NULL)) { |
912 | /* | 867 | /* |
913 | * The process has been reaped. | 868 | * The process has been reaped. |
914 | * We can't even collect a sample any more. | 869 | * We can't even collect a sample any more. |
@@ -927,25 +882,6 @@ void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |||
927 | read_unlock(&tasklist_lock); | 882 | read_unlock(&tasklist_lock); |
928 | } | 883 | } |
929 | 884 | ||
930 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
931 | if (timer->it.cpu.incr.sched == 0 && | ||
932 | cpu_time_before(timer->it_clock, | ||
933 | timer->it.cpu.expires, now)) { | ||
934 | /* | ||
935 | * Do-nothing timer expired and has no reload, | ||
936 | * so it's as if it was never set. | ||
937 | */ | ||
938 | timer->it.cpu.expires.sched = 0; | ||
939 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
940 | return; | ||
941 | } | ||
942 | /* | ||
943 | * Account for any expirations and reloads that should | ||
944 | * have happened. | ||
945 | */ | ||
946 | bump_cpu_timer(timer, now); | ||
947 | } | ||
948 | |||
949 | if (unlikely(clear_dead)) { | 885 | if (unlikely(clear_dead)) { |
950 | /* | 886 | /* |
951 | * We've noticed that the thread is dead, but | 887 | * We've noticed that the thread is dead, but |
@@ -1066,16 +1002,9 @@ static void stop_process_timers(struct signal_struct *sig) | |||
1066 | struct thread_group_cputimer *cputimer = &sig->cputimer; | 1002 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
1067 | unsigned long flags; | 1003 | unsigned long flags; |
1068 | 1004 | ||
1069 | if (!cputimer->running) | ||
1070 | return; | ||
1071 | |||
1072 | spin_lock_irqsave(&cputimer->lock, flags); | 1005 | spin_lock_irqsave(&cputimer->lock, flags); |
1073 | cputimer->running = 0; | 1006 | cputimer->running = 0; |
1074 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1007 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1075 | |||
1076 | sig->cputime_expires.prof_exp = cputime_zero; | ||
1077 | sig->cputime_expires.virt_exp = cputime_zero; | ||
1078 | sig->cputime_expires.sched_exp = 0; | ||
1079 | } | 1008 | } |
1080 | 1009 | ||
1081 | static u32 onecputick; | 1010 | static u32 onecputick; |
@@ -1112,6 +1041,23 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | |||
1112 | } | 1041 | } |
1113 | } | 1042 | } |
1114 | 1043 | ||
1044 | /** | ||
1045 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | ||
1046 | * | ||
1047 | * @cputime: The struct to compare. | ||
1048 | * | ||
1049 | * Checks @cputime to see if all fields are zero. Returns true if all fields | ||
1050 | * are zero, false if any field is nonzero. | ||
1051 | */ | ||
1052 | static inline int task_cputime_zero(const struct task_cputime *cputime) | ||
1053 | { | ||
1054 | if (cputime_eq(cputime->utime, cputime_zero) && | ||
1055 | cputime_eq(cputime->stime, cputime_zero) && | ||
1056 | cputime->sum_exec_runtime == 0) | ||
1057 | return 1; | ||
1058 | return 0; | ||
1059 | } | ||
1060 | |||
1115 | /* | 1061 | /* |
1116 | * Check for any per-thread CPU timers that have fired and move them | 1062 | * Check for any per-thread CPU timers that have fired and move them |
1117 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1063 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1129,19 +1075,6 @@ static void check_process_timers(struct task_struct *tsk, | |||
1129 | unsigned long soft; | 1075 | unsigned long soft; |
1130 | 1076 | ||
1131 | /* | 1077 | /* |
1132 | * Don't sample the current process CPU clocks if there are no timers. | ||
1133 | */ | ||
1134 | if (list_empty(&timers[CPUCLOCK_PROF]) && | ||
1135 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && | ||
1136 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | ||
1137 | list_empty(&timers[CPUCLOCK_VIRT]) && | ||
1138 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && | ||
1139 | list_empty(&timers[CPUCLOCK_SCHED])) { | ||
1140 | stop_process_timers(sig); | ||
1141 | return; | ||
1142 | } | ||
1143 | |||
1144 | /* | ||
1145 | * Collect the current process totals. | 1078 | * Collect the current process totals. |
1146 | */ | 1079 | */ |
1147 | thread_group_cputimer(tsk, &cputime); | 1080 | thread_group_cputimer(tsk, &cputime); |
@@ -1230,18 +1163,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1230 | } | 1163 | } |
1231 | } | 1164 | } |
1232 | 1165 | ||
1233 | if (!cputime_eq(prof_expires, cputime_zero) && | 1166 | sig->cputime_expires.prof_exp = prof_expires; |
1234 | (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) || | 1167 | sig->cputime_expires.virt_exp = virt_expires; |
1235 | cputime_gt(sig->cputime_expires.prof_exp, prof_expires))) | 1168 | sig->cputime_expires.sched_exp = sched_expires; |
1236 | sig->cputime_expires.prof_exp = prof_expires; | 1169 | if (task_cputime_zero(&sig->cputime_expires)) |
1237 | if (!cputime_eq(virt_expires, cputime_zero) && | 1170 | stop_process_timers(sig); |
1238 | (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) || | ||
1239 | cputime_gt(sig->cputime_expires.virt_exp, virt_expires))) | ||
1240 | sig->cputime_expires.virt_exp = virt_expires; | ||
1241 | if (sched_expires != 0 && | ||
1242 | (sig->cputime_expires.sched_exp == 0 || | ||
1243 | sig->cputime_expires.sched_exp > sched_expires)) | ||
1244 | sig->cputime_expires.sched_exp = sched_expires; | ||
1245 | } | 1171 | } |
1246 | 1172 | ||
1247 | /* | 1173 | /* |
@@ -1270,9 +1196,10 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1270 | goto out; | 1196 | goto out; |
1271 | } | 1197 | } |
1272 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | 1198 | read_lock(&tasklist_lock); /* arm_timer needs it. */ |
1199 | spin_lock(&p->sighand->siglock); | ||
1273 | } else { | 1200 | } else { |
1274 | read_lock(&tasklist_lock); | 1201 | read_lock(&tasklist_lock); |
1275 | if (unlikely(p->signal == NULL)) { | 1202 | if (unlikely(p->sighand == NULL)) { |
1276 | /* | 1203 | /* |
1277 | * The process has been reaped. | 1204 | * The process has been reaped. |
1278 | * We can't even collect a sample any more. | 1205 | * We can't even collect a sample any more. |
@@ -1290,6 +1217,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1290 | clear_dead_task(timer, now); | 1217 | clear_dead_task(timer, now); |
1291 | goto out_unlock; | 1218 | goto out_unlock; |
1292 | } | 1219 | } |
1220 | spin_lock(&p->sighand->siglock); | ||
1293 | cpu_timer_sample_group(timer->it_clock, p, &now); | 1221 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1294 | bump_cpu_timer(timer, now); | 1222 | bump_cpu_timer(timer, now); |
1295 | /* Leave the tasklist_lock locked for the call below. */ | 1223 | /* Leave the tasklist_lock locked for the call below. */ |
@@ -1298,7 +1226,9 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1298 | /* | 1226 | /* |
1299 | * Now re-arm for the new expiry time. | 1227 | * Now re-arm for the new expiry time. |
1300 | */ | 1228 | */ |
1301 | arm_timer(timer, now); | 1229 | BUG_ON(!irqs_disabled()); |
1230 | arm_timer(timer); | ||
1231 | spin_unlock(&p->sighand->siglock); | ||
1302 | 1232 | ||
1303 | out_unlock: | 1233 | out_unlock: |
1304 | read_unlock(&tasklist_lock); | 1234 | read_unlock(&tasklist_lock); |
@@ -1310,23 +1240,6 @@ out: | |||
1310 | } | 1240 | } |
1311 | 1241 | ||
1312 | /** | 1242 | /** |
1313 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | ||
1314 | * | ||
1315 | * @cputime: The struct to compare. | ||
1316 | * | ||
1317 | * Checks @cputime to see if all fields are zero. Returns true if all fields | ||
1318 | * are zero, false if any field is nonzero. | ||
1319 | */ | ||
1320 | static inline int task_cputime_zero(const struct task_cputime *cputime) | ||
1321 | { | ||
1322 | if (cputime_eq(cputime->utime, cputime_zero) && | ||
1323 | cputime_eq(cputime->stime, cputime_zero) && | ||
1324 | cputime->sum_exec_runtime == 0) | ||
1325 | return 1; | ||
1326 | return 0; | ||
1327 | } | ||
1328 | |||
1329 | /** | ||
1330 | * task_cputime_expired - Compare two task_cputime entities. | 1243 | * task_cputime_expired - Compare two task_cputime entities. |
1331 | * | 1244 | * |
1332 | * @sample: The task_cputime structure to be checked for expiration. | 1245 | * @sample: The task_cputime structure to be checked for expiration. |
@@ -1382,7 +1295,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
1382 | } | 1295 | } |
1383 | 1296 | ||
1384 | sig = tsk->signal; | 1297 | sig = tsk->signal; |
1385 | if (!task_cputime_zero(&sig->cputime_expires)) { | 1298 | if (sig->cputimer.running) { |
1386 | struct task_cputime group_sample; | 1299 | struct task_cputime group_sample; |
1387 | 1300 | ||
1388 | thread_group_cputimer(tsk, &group_sample); | 1301 | thread_group_cputimer(tsk, &group_sample); |
@@ -1390,7 +1303,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
1390 | return 1; | 1303 | return 1; |
1391 | } | 1304 | } |
1392 | 1305 | ||
1393 | return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY; | 1306 | return 0; |
1394 | } | 1307 | } |
1395 | 1308 | ||
1396 | /* | 1309 | /* |
@@ -1419,7 +1332,12 @@ void run_posix_cpu_timers(struct task_struct *tsk) | |||
1419 | * put them on the firing list. | 1332 | * put them on the firing list. |
1420 | */ | 1333 | */ |
1421 | check_thread_timers(tsk, &firing); | 1334 | check_thread_timers(tsk, &firing); |
1422 | check_process_timers(tsk, &firing); | 1335 | /* |
1336 | * If there are any active process wide timers (POSIX 1.b, itimers, | ||
1337 | * RLIMIT_CPU) cputimer must be running. | ||
1338 | */ | ||
1339 | if (tsk->signal->cputimer.running) | ||
1340 | check_process_timers(tsk, &firing); | ||
1423 | 1341 | ||
1424 | /* | 1342 | /* |
1425 | * We must release these locks before taking any timer's lock. | 1343 | * We must release these locks before taking any timer's lock. |
@@ -1456,21 +1374,23 @@ void run_posix_cpu_timers(struct task_struct *tsk) | |||
1456 | } | 1374 | } |
1457 | 1375 | ||
1458 | /* | 1376 | /* |
1459 | * Set one of the process-wide special case CPU timers. | 1377 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
1460 | * The tsk->sighand->siglock must be held by the caller. | 1378 | * The tsk->sighand->siglock must be held by the caller. |
1461 | * The *newval argument is relative and we update it to be absolute, *oldval | ||
1462 | * is absolute and we update it to be relative. | ||
1463 | */ | 1379 | */ |
1464 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 1380 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
1465 | cputime_t *newval, cputime_t *oldval) | 1381 | cputime_t *newval, cputime_t *oldval) |
1466 | { | 1382 | { |
1467 | union cpu_time_count now; | 1383 | union cpu_time_count now; |
1468 | struct list_head *head; | ||
1469 | 1384 | ||
1470 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 1385 | BUG_ON(clock_idx == CPUCLOCK_SCHED); |
1471 | cpu_timer_sample_group(clock_idx, tsk, &now); | 1386 | cpu_timer_sample_group(clock_idx, tsk, &now); |
1472 | 1387 | ||
1473 | if (oldval) { | 1388 | if (oldval) { |
1389 | /* | ||
1390 | * We are setting itimer. The *oldval is absolute and we update | ||
1391 | * it to be relative, *newval argument is relative and we update | ||
1392 | * it to be absolute. | ||
1393 | */ | ||
1474 | if (!cputime_eq(*oldval, cputime_zero)) { | 1394 | if (!cputime_eq(*oldval, cputime_zero)) { |
1475 | if (cputime_le(*oldval, now.cpu)) { | 1395 | if (cputime_le(*oldval, now.cpu)) { |
1476 | /* Just about to fire. */ | 1396 | /* Just about to fire. */ |
@@ -1483,33 +1403,21 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1483 | if (cputime_eq(*newval, cputime_zero)) | 1403 | if (cputime_eq(*newval, cputime_zero)) |
1484 | return; | 1404 | return; |
1485 | *newval = cputime_add(*newval, now.cpu); | 1405 | *newval = cputime_add(*newval, now.cpu); |
1486 | |||
1487 | /* | ||
1488 | * If the RLIMIT_CPU timer will expire before the | ||
1489 | * ITIMER_PROF timer, we have nothing else to do. | ||
1490 | */ | ||
1491 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | ||
1492 | < cputime_to_secs(*newval)) | ||
1493 | return; | ||
1494 | } | 1406 | } |
1495 | 1407 | ||
1496 | /* | 1408 | /* |
1497 | * Check whether there are any process timers already set to fire | 1409 | * Update expiration cache if we are the earliest timer, or eventually |
1498 | * before this one. If so, we don't have anything more to do. | 1410 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
1499 | */ | 1411 | */ |
1500 | head = &tsk->signal->cpu_timers[clock_idx]; | 1412 | switch (clock_idx) { |
1501 | if (list_empty(head) || | 1413 | case CPUCLOCK_PROF: |
1502 | cputime_ge(list_first_entry(head, | 1414 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
1503 | struct cpu_timer_list, entry)->expires.cpu, | ||
1504 | *newval)) { | ||
1505 | switch (clock_idx) { | ||
1506 | case CPUCLOCK_PROF: | ||
1507 | tsk->signal->cputime_expires.prof_exp = *newval; | 1415 | tsk->signal->cputime_expires.prof_exp = *newval; |
1508 | break; | 1416 | break; |
1509 | case CPUCLOCK_VIRT: | 1417 | case CPUCLOCK_VIRT: |
1418 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | ||
1510 | tsk->signal->cputime_expires.virt_exp = *newval; | 1419 | tsk->signal->cputime_expires.virt_exp = *newval; |
1511 | break; | 1420 | break; |
1512 | } | ||
1513 | } | 1421 | } |
1514 | } | 1422 | } |
1515 | 1423 | ||
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 00d1fda58ab6..ad723420acc3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -559,14 +559,7 @@ SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | |||
559 | new_timer->it_id = (timer_t) new_timer_id; | 559 | new_timer->it_id = (timer_t) new_timer_id; |
560 | new_timer->it_clock = which_clock; | 560 | new_timer->it_clock = which_clock; |
561 | new_timer->it_overrun = -1; | 561 | new_timer->it_overrun = -1; |
562 | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | ||
563 | if (error) | ||
564 | goto out; | ||
565 | 562 | ||
566 | /* | ||
567 | * return the timer_id now. The next step is hard to | ||
568 | * back out if there is an error. | ||
569 | */ | ||
570 | if (copy_to_user(created_timer_id, | 563 | if (copy_to_user(created_timer_id, |
571 | &new_timer_id, sizeof (new_timer_id))) { | 564 | &new_timer_id, sizeof (new_timer_id))) { |
572 | error = -EFAULT; | 565 | error = -EFAULT; |
@@ -597,6 +590,10 @@ SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | |||
597 | new_timer->sigq->info.si_tid = new_timer->it_id; | 590 | new_timer->sigq->info.si_tid = new_timer->it_id; |
598 | new_timer->sigq->info.si_code = SI_TIMER; | 591 | new_timer->sigq->info.si_code = SI_TIMER; |
599 | 592 | ||
593 | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | ||
594 | if (error) | ||
595 | goto out; | ||
596 | |||
600 | spin_lock_irq(¤t->sighand->siglock); | 597 | spin_lock_irq(¤t->sighand->siglock); |
601 | new_timer->it_signal = current->signal; | 598 | new_timer->it_signal = current->signal; |
602 | list_add(&new_timer->list, ¤t->signal->posix_timers); | 599 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
diff --git a/kernel/power/Makefile b/kernel/power/Makefile index 43191815f874..524e058dcf06 100644 --- a/kernel/power/Makefile +++ b/kernel/power/Makefile | |||
@@ -8,7 +8,8 @@ obj-$(CONFIG_PM_SLEEP) += console.o | |||
8 | obj-$(CONFIG_FREEZER) += process.o | 8 | obj-$(CONFIG_FREEZER) += process.o |
9 | obj-$(CONFIG_SUSPEND) += suspend.o | 9 | obj-$(CONFIG_SUSPEND) += suspend.o |
10 | obj-$(CONFIG_PM_TEST_SUSPEND) += suspend_test.o | 10 | obj-$(CONFIG_PM_TEST_SUSPEND) += suspend_test.o |
11 | obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o | 11 | obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o \ |
12 | block_io.o | ||
12 | obj-$(CONFIG_HIBERNATION_NVS) += hibernate_nvs.o | 13 | obj-$(CONFIG_HIBERNATION_NVS) += hibernate_nvs.o |
13 | 14 | ||
14 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o | 15 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o |
diff --git a/kernel/power/block_io.c b/kernel/power/block_io.c new file mode 100644 index 000000000000..97024fd40cd5 --- /dev/null +++ b/kernel/power/block_io.c | |||
@@ -0,0 +1,103 @@ | |||
1 | /* | ||
2 | * This file provides functions for block I/O operations on swap/file. | ||
3 | * | ||
4 | * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> | ||
5 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | */ | ||
9 | |||
10 | #include <linux/bio.h> | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/pagemap.h> | ||
13 | #include <linux/swap.h> | ||
14 | |||
15 | #include "power.h" | ||
16 | |||
17 | /** | ||
18 | * submit - submit BIO request. | ||
19 | * @rw: READ or WRITE. | ||
20 | * @off physical offset of page. | ||
21 | * @page: page we're reading or writing. | ||
22 | * @bio_chain: list of pending biod (for async reading) | ||
23 | * | ||
24 | * Straight from the textbook - allocate and initialize the bio. | ||
25 | * If we're reading, make sure the page is marked as dirty. | ||
26 | * Then submit it and, if @bio_chain == NULL, wait. | ||
27 | */ | ||
28 | static int submit(int rw, struct block_device *bdev, sector_t sector, | ||
29 | struct page *page, struct bio **bio_chain) | ||
30 | { | ||
31 | const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | ||
32 | struct bio *bio; | ||
33 | |||
34 | bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); | ||
35 | bio->bi_sector = sector; | ||
36 | bio->bi_bdev = bdev; | ||
37 | bio->bi_end_io = end_swap_bio_read; | ||
38 | |||
39 | if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { | ||
40 | printk(KERN_ERR "PM: Adding page to bio failed at %llu\n", | ||
41 | (unsigned long long)sector); | ||
42 | bio_put(bio); | ||
43 | return -EFAULT; | ||
44 | } | ||
45 | |||
46 | lock_page(page); | ||
47 | bio_get(bio); | ||
48 | |||
49 | if (bio_chain == NULL) { | ||
50 | submit_bio(bio_rw, bio); | ||
51 | wait_on_page_locked(page); | ||
52 | if (rw == READ) | ||
53 | bio_set_pages_dirty(bio); | ||
54 | bio_put(bio); | ||
55 | } else { | ||
56 | if (rw == READ) | ||
57 | get_page(page); /* These pages are freed later */ | ||
58 | bio->bi_private = *bio_chain; | ||
59 | *bio_chain = bio; | ||
60 | submit_bio(bio_rw, bio); | ||
61 | } | ||
62 | return 0; | ||
63 | } | ||
64 | |||
65 | int hib_bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
66 | { | ||
67 | return submit(READ, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), | ||
68 | virt_to_page(addr), bio_chain); | ||
69 | } | ||
70 | |||
71 | int hib_bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
72 | { | ||
73 | return submit(WRITE, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), | ||
74 | virt_to_page(addr), bio_chain); | ||
75 | } | ||
76 | |||
77 | int hib_wait_on_bio_chain(struct bio **bio_chain) | ||
78 | { | ||
79 | struct bio *bio; | ||
80 | struct bio *next_bio; | ||
81 | int ret = 0; | ||
82 | |||
83 | if (bio_chain == NULL) | ||
84 | return 0; | ||
85 | |||
86 | bio = *bio_chain; | ||
87 | if (bio == NULL) | ||
88 | return 0; | ||
89 | while (bio) { | ||
90 | struct page *page; | ||
91 | |||
92 | next_bio = bio->bi_private; | ||
93 | page = bio->bi_io_vec[0].bv_page; | ||
94 | wait_on_page_locked(page); | ||
95 | if (!PageUptodate(page) || PageError(page)) | ||
96 | ret = -EIO; | ||
97 | put_page(page); | ||
98 | bio_put(bio); | ||
99 | bio = next_bio; | ||
100 | } | ||
101 | *bio_chain = NULL; | ||
102 | return ret; | ||
103 | } | ||
diff --git a/kernel/power/power.h b/kernel/power/power.h index 46c5a26630a3..006270fe382d 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
@@ -97,24 +97,12 @@ extern int hibernate_preallocate_memory(void); | |||
97 | */ | 97 | */ |
98 | 98 | ||
99 | struct snapshot_handle { | 99 | struct snapshot_handle { |
100 | loff_t offset; /* number of the last byte ready for reading | ||
101 | * or writing in the sequence | ||
102 | */ | ||
103 | unsigned int cur; /* number of the block of PAGE_SIZE bytes the | 100 | unsigned int cur; /* number of the block of PAGE_SIZE bytes the |
104 | * next operation will refer to (ie. current) | 101 | * next operation will refer to (ie. current) |
105 | */ | 102 | */ |
106 | unsigned int cur_offset; /* offset with respect to the current | ||
107 | * block (for the next operation) | ||
108 | */ | ||
109 | unsigned int prev; /* number of the block of PAGE_SIZE bytes that | ||
110 | * was the current one previously | ||
111 | */ | ||
112 | void *buffer; /* address of the block to read from | 103 | void *buffer; /* address of the block to read from |
113 | * or write to | 104 | * or write to |
114 | */ | 105 | */ |
115 | unsigned int buf_offset; /* location to read from or write to, | ||
116 | * given as a displacement from 'buffer' | ||
117 | */ | ||
118 | int sync_read; /* Set to one to notify the caller of | 106 | int sync_read; /* Set to one to notify the caller of |
119 | * snapshot_write_next() that it may | 107 | * snapshot_write_next() that it may |
120 | * need to call wait_on_bio_chain() | 108 | * need to call wait_on_bio_chain() |
@@ -125,12 +113,12 @@ struct snapshot_handle { | |||
125 | * snapshot_read_next()/snapshot_write_next() is allowed to | 113 | * snapshot_read_next()/snapshot_write_next() is allowed to |
126 | * read/write data after the function returns | 114 | * read/write data after the function returns |
127 | */ | 115 | */ |
128 | #define data_of(handle) ((handle).buffer + (handle).buf_offset) | 116 | #define data_of(handle) ((handle).buffer) |
129 | 117 | ||
130 | extern unsigned int snapshot_additional_pages(struct zone *zone); | 118 | extern unsigned int snapshot_additional_pages(struct zone *zone); |
131 | extern unsigned long snapshot_get_image_size(void); | 119 | extern unsigned long snapshot_get_image_size(void); |
132 | extern int snapshot_read_next(struct snapshot_handle *handle, size_t count); | 120 | extern int snapshot_read_next(struct snapshot_handle *handle); |
133 | extern int snapshot_write_next(struct snapshot_handle *handle, size_t count); | 121 | extern int snapshot_write_next(struct snapshot_handle *handle); |
134 | extern void snapshot_write_finalize(struct snapshot_handle *handle); | 122 | extern void snapshot_write_finalize(struct snapshot_handle *handle); |
135 | extern int snapshot_image_loaded(struct snapshot_handle *handle); | 123 | extern int snapshot_image_loaded(struct snapshot_handle *handle); |
136 | 124 | ||
@@ -154,6 +142,15 @@ extern int swsusp_read(unsigned int *flags_p); | |||
154 | extern int swsusp_write(unsigned int flags); | 142 | extern int swsusp_write(unsigned int flags); |
155 | extern void swsusp_close(fmode_t); | 143 | extern void swsusp_close(fmode_t); |
156 | 144 | ||
145 | /* kernel/power/block_io.c */ | ||
146 | extern struct block_device *hib_resume_bdev; | ||
147 | |||
148 | extern int hib_bio_read_page(pgoff_t page_off, void *addr, | ||
149 | struct bio **bio_chain); | ||
150 | extern int hib_bio_write_page(pgoff_t page_off, void *addr, | ||
151 | struct bio **bio_chain); | ||
152 | extern int hib_wait_on_bio_chain(struct bio **bio_chain); | ||
153 | |||
157 | struct timeval; | 154 | struct timeval; |
158 | /* kernel/power/swsusp.c */ | 155 | /* kernel/power/swsusp.c */ |
159 | extern void swsusp_show_speed(struct timeval *, struct timeval *, | 156 | extern void swsusp_show_speed(struct timeval *, struct timeval *, |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index be861c26dda7..25ce010e9f8b 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -1604,14 +1604,9 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) | |||
1604 | * snapshot_handle structure. The structure gets updated and a pointer | 1604 | * snapshot_handle structure. The structure gets updated and a pointer |
1605 | * to it should be passed to this function every next time. | 1605 | * to it should be passed to this function every next time. |
1606 | * | 1606 | * |
1607 | * The @count parameter should contain the number of bytes the caller | ||
1608 | * wants to read from the snapshot. It must not be zero. | ||
1609 | * | ||
1610 | * On success the function returns a positive number. Then, the caller | 1607 | * On success the function returns a positive number. Then, the caller |
1611 | * is allowed to read up to the returned number of bytes from the memory | 1608 | * is allowed to read up to the returned number of bytes from the memory |
1612 | * location computed by the data_of() macro. The number returned | 1609 | * location computed by the data_of() macro. |
1613 | * may be smaller than @count, but this only happens if the read would | ||
1614 | * cross a page boundary otherwise. | ||
1615 | * | 1610 | * |
1616 | * The function returns 0 to indicate the end of data stream condition, | 1611 | * The function returns 0 to indicate the end of data stream condition, |
1617 | * and a negative number is returned on error. In such cases the | 1612 | * and a negative number is returned on error. In such cases the |
@@ -1619,7 +1614,7 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) | |||
1619 | * any more. | 1614 | * any more. |
1620 | */ | 1615 | */ |
1621 | 1616 | ||
1622 | int snapshot_read_next(struct snapshot_handle *handle, size_t count) | 1617 | int snapshot_read_next(struct snapshot_handle *handle) |
1623 | { | 1618 | { |
1624 | if (handle->cur > nr_meta_pages + nr_copy_pages) | 1619 | if (handle->cur > nr_meta_pages + nr_copy_pages) |
1625 | return 0; | 1620 | return 0; |
@@ -1630,7 +1625,7 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) | |||
1630 | if (!buffer) | 1625 | if (!buffer) |
1631 | return -ENOMEM; | 1626 | return -ENOMEM; |
1632 | } | 1627 | } |
1633 | if (!handle->offset) { | 1628 | if (!handle->cur) { |
1634 | int error; | 1629 | int error; |
1635 | 1630 | ||
1636 | error = init_header((struct swsusp_info *)buffer); | 1631 | error = init_header((struct swsusp_info *)buffer); |
@@ -1639,42 +1634,30 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) | |||
1639 | handle->buffer = buffer; | 1634 | handle->buffer = buffer; |
1640 | memory_bm_position_reset(&orig_bm); | 1635 | memory_bm_position_reset(&orig_bm); |
1641 | memory_bm_position_reset(©_bm); | 1636 | memory_bm_position_reset(©_bm); |
1642 | } | 1637 | } else if (handle->cur <= nr_meta_pages) { |
1643 | if (handle->prev < handle->cur) { | 1638 | memset(buffer, 0, PAGE_SIZE); |
1644 | if (handle->cur <= nr_meta_pages) { | 1639 | pack_pfns(buffer, &orig_bm); |
1645 | memset(buffer, 0, PAGE_SIZE); | 1640 | } else { |
1646 | pack_pfns(buffer, &orig_bm); | 1641 | struct page *page; |
1647 | } else { | ||
1648 | struct page *page; | ||
1649 | 1642 | ||
1650 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); | 1643 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); |
1651 | if (PageHighMem(page)) { | 1644 | if (PageHighMem(page)) { |
1652 | /* Highmem pages are copied to the buffer, | 1645 | /* Highmem pages are copied to the buffer, |
1653 | * because we can't return with a kmapped | 1646 | * because we can't return with a kmapped |
1654 | * highmem page (we may not be called again). | 1647 | * highmem page (we may not be called again). |
1655 | */ | 1648 | */ |
1656 | void *kaddr; | 1649 | void *kaddr; |
1657 | 1650 | ||
1658 | kaddr = kmap_atomic(page, KM_USER0); | 1651 | kaddr = kmap_atomic(page, KM_USER0); |
1659 | memcpy(buffer, kaddr, PAGE_SIZE); | 1652 | memcpy(buffer, kaddr, PAGE_SIZE); |
1660 | kunmap_atomic(kaddr, KM_USER0); | 1653 | kunmap_atomic(kaddr, KM_USER0); |
1661 | handle->buffer = buffer; | 1654 | handle->buffer = buffer; |
1662 | } else { | 1655 | } else { |
1663 | handle->buffer = page_address(page); | 1656 | handle->buffer = page_address(page); |
1664 | } | ||
1665 | } | 1657 | } |
1666 | handle->prev = handle->cur; | ||
1667 | } | ||
1668 | handle->buf_offset = handle->cur_offset; | ||
1669 | if (handle->cur_offset + count >= PAGE_SIZE) { | ||
1670 | count = PAGE_SIZE - handle->cur_offset; | ||
1671 | handle->cur_offset = 0; | ||
1672 | handle->cur++; | ||
1673 | } else { | ||
1674 | handle->cur_offset += count; | ||
1675 | } | 1658 | } |
1676 | handle->offset += count; | 1659 | handle->cur++; |
1677 | return count; | 1660 | return PAGE_SIZE; |
1678 | } | 1661 | } |
1679 | 1662 | ||
1680 | /** | 1663 | /** |
@@ -2133,14 +2116,9 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) | |||
2133 | * snapshot_handle structure. The structure gets updated and a pointer | 2116 | * snapshot_handle structure. The structure gets updated and a pointer |
2134 | * to it should be passed to this function every next time. | 2117 | * to it should be passed to this function every next time. |
2135 | * | 2118 | * |
2136 | * The @count parameter should contain the number of bytes the caller | ||
2137 | * wants to write to the image. It must not be zero. | ||
2138 | * | ||
2139 | * On success the function returns a positive number. Then, the caller | 2119 | * On success the function returns a positive number. Then, the caller |
2140 | * is allowed to write up to the returned number of bytes to the memory | 2120 | * is allowed to write up to the returned number of bytes to the memory |
2141 | * location computed by the data_of() macro. The number returned | 2121 | * location computed by the data_of() macro. |
2142 | * may be smaller than @count, but this only happens if the write would | ||
2143 | * cross a page boundary otherwise. | ||
2144 | * | 2122 | * |
2145 | * The function returns 0 to indicate the "end of file" condition, | 2123 | * The function returns 0 to indicate the "end of file" condition, |
2146 | * and a negative number is returned on error. In such cases the | 2124 | * and a negative number is returned on error. In such cases the |
@@ -2148,16 +2126,18 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) | |||
2148 | * any more. | 2126 | * any more. |
2149 | */ | 2127 | */ |
2150 | 2128 | ||
2151 | int snapshot_write_next(struct snapshot_handle *handle, size_t count) | 2129 | int snapshot_write_next(struct snapshot_handle *handle) |
2152 | { | 2130 | { |
2153 | static struct chain_allocator ca; | 2131 | static struct chain_allocator ca; |
2154 | int error = 0; | 2132 | int error = 0; |
2155 | 2133 | ||
2156 | /* Check if we have already loaded the entire image */ | 2134 | /* Check if we have already loaded the entire image */ |
2157 | if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) | 2135 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) |
2158 | return 0; | 2136 | return 0; |
2159 | 2137 | ||
2160 | if (handle->offset == 0) { | 2138 | handle->sync_read = 1; |
2139 | |||
2140 | if (!handle->cur) { | ||
2161 | if (!buffer) | 2141 | if (!buffer) |
2162 | /* This makes the buffer be freed by swsusp_free() */ | 2142 | /* This makes the buffer be freed by swsusp_free() */ |
2163 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); | 2143 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
@@ -2166,56 +2146,43 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count) | |||
2166 | return -ENOMEM; | 2146 | return -ENOMEM; |
2167 | 2147 | ||
2168 | handle->buffer = buffer; | 2148 | handle->buffer = buffer; |
2169 | } | 2149 | } else if (handle->cur == 1) { |
2170 | handle->sync_read = 1; | 2150 | error = load_header(buffer); |
2171 | if (handle->prev < handle->cur) { | 2151 | if (error) |
2172 | if (handle->prev == 0) { | 2152 | return error; |
2173 | error = load_header(buffer); | ||
2174 | if (error) | ||
2175 | return error; | ||
2176 | 2153 | ||
2177 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); | 2154 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); |
2178 | if (error) | 2155 | if (error) |
2179 | return error; | 2156 | return error; |
2157 | |||
2158 | } else if (handle->cur <= nr_meta_pages + 1) { | ||
2159 | error = unpack_orig_pfns(buffer, ©_bm); | ||
2160 | if (error) | ||
2161 | return error; | ||
2180 | 2162 | ||
2181 | } else if (handle->prev <= nr_meta_pages) { | 2163 | if (handle->cur == nr_meta_pages + 1) { |
2182 | error = unpack_orig_pfns(buffer, ©_bm); | 2164 | error = prepare_image(&orig_bm, ©_bm); |
2183 | if (error) | 2165 | if (error) |
2184 | return error; | 2166 | return error; |
2185 | 2167 | ||
2186 | if (handle->prev == nr_meta_pages) { | 2168 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); |
2187 | error = prepare_image(&orig_bm, ©_bm); | 2169 | memory_bm_position_reset(&orig_bm); |
2188 | if (error) | 2170 | restore_pblist = NULL; |
2189 | return error; | ||
2190 | |||
2191 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); | ||
2192 | memory_bm_position_reset(&orig_bm); | ||
2193 | restore_pblist = NULL; | ||
2194 | handle->buffer = get_buffer(&orig_bm, &ca); | ||
2195 | handle->sync_read = 0; | ||
2196 | if (IS_ERR(handle->buffer)) | ||
2197 | return PTR_ERR(handle->buffer); | ||
2198 | } | ||
2199 | } else { | ||
2200 | copy_last_highmem_page(); | ||
2201 | handle->buffer = get_buffer(&orig_bm, &ca); | 2171 | handle->buffer = get_buffer(&orig_bm, &ca); |
2172 | handle->sync_read = 0; | ||
2202 | if (IS_ERR(handle->buffer)) | 2173 | if (IS_ERR(handle->buffer)) |
2203 | return PTR_ERR(handle->buffer); | 2174 | return PTR_ERR(handle->buffer); |
2204 | if (handle->buffer != buffer) | ||
2205 | handle->sync_read = 0; | ||
2206 | } | 2175 | } |
2207 | handle->prev = handle->cur; | ||
2208 | } | ||
2209 | handle->buf_offset = handle->cur_offset; | ||
2210 | if (handle->cur_offset + count >= PAGE_SIZE) { | ||
2211 | count = PAGE_SIZE - handle->cur_offset; | ||
2212 | handle->cur_offset = 0; | ||
2213 | handle->cur++; | ||
2214 | } else { | 2176 | } else { |
2215 | handle->cur_offset += count; | 2177 | copy_last_highmem_page(); |
2178 | handle->buffer = get_buffer(&orig_bm, &ca); | ||
2179 | if (IS_ERR(handle->buffer)) | ||
2180 | return PTR_ERR(handle->buffer); | ||
2181 | if (handle->buffer != buffer) | ||
2182 | handle->sync_read = 0; | ||
2216 | } | 2183 | } |
2217 | handle->offset += count; | 2184 | handle->cur++; |
2218 | return count; | 2185 | return PAGE_SIZE; |
2219 | } | 2186 | } |
2220 | 2187 | ||
2221 | /** | 2188 | /** |
@@ -2230,7 +2197,7 @@ void snapshot_write_finalize(struct snapshot_handle *handle) | |||
2230 | { | 2197 | { |
2231 | copy_last_highmem_page(); | 2198 | copy_last_highmem_page(); |
2232 | /* Free only if we have loaded the image entirely */ | 2199 | /* Free only if we have loaded the image entirely */ |
2233 | if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { | 2200 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { |
2234 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); | 2201 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); |
2235 | free_highmem_data(); | 2202 | free_highmem_data(); |
2236 | } | 2203 | } |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 66824d71983a..b0bb21778391 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
@@ -29,6 +29,40 @@ | |||
29 | 29 | ||
30 | #define SWSUSP_SIG "S1SUSPEND" | 30 | #define SWSUSP_SIG "S1SUSPEND" |
31 | 31 | ||
32 | /* | ||
33 | * The swap map is a data structure used for keeping track of each page | ||
34 | * written to a swap partition. It consists of many swap_map_page | ||
35 | * structures that contain each an array of MAP_PAGE_SIZE swap entries. | ||
36 | * These structures are stored on the swap and linked together with the | ||
37 | * help of the .next_swap member. | ||
38 | * | ||
39 | * The swap map is created during suspend. The swap map pages are | ||
40 | * allocated and populated one at a time, so we only need one memory | ||
41 | * page to set up the entire structure. | ||
42 | * | ||
43 | * During resume we also only need to use one swap_map_page structure | ||
44 | * at a time. | ||
45 | */ | ||
46 | |||
47 | #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) | ||
48 | |||
49 | struct swap_map_page { | ||
50 | sector_t entries[MAP_PAGE_ENTRIES]; | ||
51 | sector_t next_swap; | ||
52 | }; | ||
53 | |||
54 | /** | ||
55 | * The swap_map_handle structure is used for handling swap in | ||
56 | * a file-alike way | ||
57 | */ | ||
58 | |||
59 | struct swap_map_handle { | ||
60 | struct swap_map_page *cur; | ||
61 | sector_t cur_swap; | ||
62 | sector_t first_sector; | ||
63 | unsigned int k; | ||
64 | }; | ||
65 | |||
32 | struct swsusp_header { | 66 | struct swsusp_header { |
33 | char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)]; | 67 | char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)]; |
34 | sector_t image; | 68 | sector_t image; |
@@ -145,110 +179,24 @@ int swsusp_swap_in_use(void) | |||
145 | */ | 179 | */ |
146 | 180 | ||
147 | static unsigned short root_swap = 0xffff; | 181 | static unsigned short root_swap = 0xffff; |
148 | static struct block_device *resume_bdev; | 182 | struct block_device *hib_resume_bdev; |
149 | |||
150 | /** | ||
151 | * submit - submit BIO request. | ||
152 | * @rw: READ or WRITE. | ||
153 | * @off physical offset of page. | ||
154 | * @page: page we're reading or writing. | ||
155 | * @bio_chain: list of pending biod (for async reading) | ||
156 | * | ||
157 | * Straight from the textbook - allocate and initialize the bio. | ||
158 | * If we're reading, make sure the page is marked as dirty. | ||
159 | * Then submit it and, if @bio_chain == NULL, wait. | ||
160 | */ | ||
161 | static int submit(int rw, pgoff_t page_off, struct page *page, | ||
162 | struct bio **bio_chain) | ||
163 | { | ||
164 | const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | ||
165 | struct bio *bio; | ||
166 | |||
167 | bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); | ||
168 | bio->bi_sector = page_off * (PAGE_SIZE >> 9); | ||
169 | bio->bi_bdev = resume_bdev; | ||
170 | bio->bi_end_io = end_swap_bio_read; | ||
171 | |||
172 | if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { | ||
173 | printk(KERN_ERR "PM: Adding page to bio failed at %ld\n", | ||
174 | page_off); | ||
175 | bio_put(bio); | ||
176 | return -EFAULT; | ||
177 | } | ||
178 | |||
179 | lock_page(page); | ||
180 | bio_get(bio); | ||
181 | |||
182 | if (bio_chain == NULL) { | ||
183 | submit_bio(bio_rw, bio); | ||
184 | wait_on_page_locked(page); | ||
185 | if (rw == READ) | ||
186 | bio_set_pages_dirty(bio); | ||
187 | bio_put(bio); | ||
188 | } else { | ||
189 | if (rw == READ) | ||
190 | get_page(page); /* These pages are freed later */ | ||
191 | bio->bi_private = *bio_chain; | ||
192 | *bio_chain = bio; | ||
193 | submit_bio(bio_rw, bio); | ||
194 | } | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | static int bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
199 | { | ||
200 | return submit(READ, page_off, virt_to_page(addr), bio_chain); | ||
201 | } | ||
202 | |||
203 | static int bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
204 | { | ||
205 | return submit(WRITE, page_off, virt_to_page(addr), bio_chain); | ||
206 | } | ||
207 | |||
208 | static int wait_on_bio_chain(struct bio **bio_chain) | ||
209 | { | ||
210 | struct bio *bio; | ||
211 | struct bio *next_bio; | ||
212 | int ret = 0; | ||
213 | |||
214 | if (bio_chain == NULL) | ||
215 | return 0; | ||
216 | |||
217 | bio = *bio_chain; | ||
218 | if (bio == NULL) | ||
219 | return 0; | ||
220 | while (bio) { | ||
221 | struct page *page; | ||
222 | |||
223 | next_bio = bio->bi_private; | ||
224 | page = bio->bi_io_vec[0].bv_page; | ||
225 | wait_on_page_locked(page); | ||
226 | if (!PageUptodate(page) || PageError(page)) | ||
227 | ret = -EIO; | ||
228 | put_page(page); | ||
229 | bio_put(bio); | ||
230 | bio = next_bio; | ||
231 | } | ||
232 | *bio_chain = NULL; | ||
233 | return ret; | ||
234 | } | ||
235 | 183 | ||
236 | /* | 184 | /* |
237 | * Saving part | 185 | * Saving part |
238 | */ | 186 | */ |
239 | 187 | ||
240 | static int mark_swapfiles(sector_t start, unsigned int flags) | 188 | static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) |
241 | { | 189 | { |
242 | int error; | 190 | int error; |
243 | 191 | ||
244 | bio_read_page(swsusp_resume_block, swsusp_header, NULL); | 192 | hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL); |
245 | if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || | 193 | if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || |
246 | !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { | 194 | !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { |
247 | memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); | 195 | memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); |
248 | memcpy(swsusp_header->sig,SWSUSP_SIG, 10); | 196 | memcpy(swsusp_header->sig,SWSUSP_SIG, 10); |
249 | swsusp_header->image = start; | 197 | swsusp_header->image = handle->first_sector; |
250 | swsusp_header->flags = flags; | 198 | swsusp_header->flags = flags; |
251 | error = bio_write_page(swsusp_resume_block, | 199 | error = hib_bio_write_page(swsusp_resume_block, |
252 | swsusp_header, NULL); | 200 | swsusp_header, NULL); |
253 | } else { | 201 | } else { |
254 | printk(KERN_ERR "PM: Swap header not found!\n"); | 202 | printk(KERN_ERR "PM: Swap header not found!\n"); |
@@ -260,25 +208,26 @@ static int mark_swapfiles(sector_t start, unsigned int flags) | |||
260 | /** | 208 | /** |
261 | * swsusp_swap_check - check if the resume device is a swap device | 209 | * swsusp_swap_check - check if the resume device is a swap device |
262 | * and get its index (if so) | 210 | * and get its index (if so) |
211 | * | ||
212 | * This is called before saving image | ||
263 | */ | 213 | */ |
264 | 214 | static int swsusp_swap_check(void) | |
265 | static int swsusp_swap_check(void) /* This is called before saving image */ | ||
266 | { | 215 | { |
267 | int res; | 216 | int res; |
268 | 217 | ||
269 | res = swap_type_of(swsusp_resume_device, swsusp_resume_block, | 218 | res = swap_type_of(swsusp_resume_device, swsusp_resume_block, |
270 | &resume_bdev); | 219 | &hib_resume_bdev); |
271 | if (res < 0) | 220 | if (res < 0) |
272 | return res; | 221 | return res; |
273 | 222 | ||
274 | root_swap = res; | 223 | root_swap = res; |
275 | res = blkdev_get(resume_bdev, FMODE_WRITE); | 224 | res = blkdev_get(hib_resume_bdev, FMODE_WRITE); |
276 | if (res) | 225 | if (res) |
277 | return res; | 226 | return res; |
278 | 227 | ||
279 | res = set_blocksize(resume_bdev, PAGE_SIZE); | 228 | res = set_blocksize(hib_resume_bdev, PAGE_SIZE); |
280 | if (res < 0) | 229 | if (res < 0) |
281 | blkdev_put(resume_bdev, FMODE_WRITE); | 230 | blkdev_put(hib_resume_bdev, FMODE_WRITE); |
282 | 231 | ||
283 | return res; | 232 | return res; |
284 | } | 233 | } |
@@ -309,42 +258,9 @@ static int write_page(void *buf, sector_t offset, struct bio **bio_chain) | |||
309 | } else { | 258 | } else { |
310 | src = buf; | 259 | src = buf; |
311 | } | 260 | } |
312 | return bio_write_page(offset, src, bio_chain); | 261 | return hib_bio_write_page(offset, src, bio_chain); |
313 | } | 262 | } |
314 | 263 | ||
315 | /* | ||
316 | * The swap map is a data structure used for keeping track of each page | ||
317 | * written to a swap partition. It consists of many swap_map_page | ||
318 | * structures that contain each an array of MAP_PAGE_SIZE swap entries. | ||
319 | * These structures are stored on the swap and linked together with the | ||
320 | * help of the .next_swap member. | ||
321 | * | ||
322 | * The swap map is created during suspend. The swap map pages are | ||
323 | * allocated and populated one at a time, so we only need one memory | ||
324 | * page to set up the entire structure. | ||
325 | * | ||
326 | * During resume we also only need to use one swap_map_page structure | ||
327 | * at a time. | ||
328 | */ | ||
329 | |||
330 | #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) | ||
331 | |||
332 | struct swap_map_page { | ||
333 | sector_t entries[MAP_PAGE_ENTRIES]; | ||
334 | sector_t next_swap; | ||
335 | }; | ||
336 | |||
337 | /** | ||
338 | * The swap_map_handle structure is used for handling swap in | ||
339 | * a file-alike way | ||
340 | */ | ||
341 | |||
342 | struct swap_map_handle { | ||
343 | struct swap_map_page *cur; | ||
344 | sector_t cur_swap; | ||
345 | unsigned int k; | ||
346 | }; | ||
347 | |||
348 | static void release_swap_writer(struct swap_map_handle *handle) | 264 | static void release_swap_writer(struct swap_map_handle *handle) |
349 | { | 265 | { |
350 | if (handle->cur) | 266 | if (handle->cur) |
@@ -354,16 +270,33 @@ static void release_swap_writer(struct swap_map_handle *handle) | |||
354 | 270 | ||
355 | static int get_swap_writer(struct swap_map_handle *handle) | 271 | static int get_swap_writer(struct swap_map_handle *handle) |
356 | { | 272 | { |
273 | int ret; | ||
274 | |||
275 | ret = swsusp_swap_check(); | ||
276 | if (ret) { | ||
277 | if (ret != -ENOSPC) | ||
278 | printk(KERN_ERR "PM: Cannot find swap device, try " | ||
279 | "swapon -a.\n"); | ||
280 | return ret; | ||
281 | } | ||
357 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); | 282 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); |
358 | if (!handle->cur) | 283 | if (!handle->cur) { |
359 | return -ENOMEM; | 284 | ret = -ENOMEM; |
285 | goto err_close; | ||
286 | } | ||
360 | handle->cur_swap = alloc_swapdev_block(root_swap); | 287 | handle->cur_swap = alloc_swapdev_block(root_swap); |
361 | if (!handle->cur_swap) { | 288 | if (!handle->cur_swap) { |
362 | release_swap_writer(handle); | 289 | ret = -ENOSPC; |
363 | return -ENOSPC; | 290 | goto err_rel; |
364 | } | 291 | } |
365 | handle->k = 0; | 292 | handle->k = 0; |
293 | handle->first_sector = handle->cur_swap; | ||
366 | return 0; | 294 | return 0; |
295 | err_rel: | ||
296 | release_swap_writer(handle); | ||
297 | err_close: | ||
298 | swsusp_close(FMODE_WRITE); | ||
299 | return ret; | ||
367 | } | 300 | } |
368 | 301 | ||
369 | static int swap_write_page(struct swap_map_handle *handle, void *buf, | 302 | static int swap_write_page(struct swap_map_handle *handle, void *buf, |
@@ -380,7 +313,7 @@ static int swap_write_page(struct swap_map_handle *handle, void *buf, | |||
380 | return error; | 313 | return error; |
381 | handle->cur->entries[handle->k++] = offset; | 314 | handle->cur->entries[handle->k++] = offset; |
382 | if (handle->k >= MAP_PAGE_ENTRIES) { | 315 | if (handle->k >= MAP_PAGE_ENTRIES) { |
383 | error = wait_on_bio_chain(bio_chain); | 316 | error = hib_wait_on_bio_chain(bio_chain); |
384 | if (error) | 317 | if (error) |
385 | goto out; | 318 | goto out; |
386 | offset = alloc_swapdev_block(root_swap); | 319 | offset = alloc_swapdev_block(root_swap); |
@@ -406,6 +339,24 @@ static int flush_swap_writer(struct swap_map_handle *handle) | |||
406 | return -EINVAL; | 339 | return -EINVAL; |
407 | } | 340 | } |
408 | 341 | ||
342 | static int swap_writer_finish(struct swap_map_handle *handle, | ||
343 | unsigned int flags, int error) | ||
344 | { | ||
345 | if (!error) { | ||
346 | flush_swap_writer(handle); | ||
347 | printk(KERN_INFO "PM: S"); | ||
348 | error = mark_swapfiles(handle, flags); | ||
349 | printk("|\n"); | ||
350 | } | ||
351 | |||
352 | if (error) | ||
353 | free_all_swap_pages(root_swap); | ||
354 | release_swap_writer(handle); | ||
355 | swsusp_close(FMODE_WRITE); | ||
356 | |||
357 | return error; | ||
358 | } | ||
359 | |||
409 | /** | 360 | /** |
410 | * save_image - save the suspend image data | 361 | * save_image - save the suspend image data |
411 | */ | 362 | */ |
@@ -431,7 +382,7 @@ static int save_image(struct swap_map_handle *handle, | |||
431 | bio = NULL; | 382 | bio = NULL; |
432 | do_gettimeofday(&start); | 383 | do_gettimeofday(&start); |
433 | while (1) { | 384 | while (1) { |
434 | ret = snapshot_read_next(snapshot, PAGE_SIZE); | 385 | ret = snapshot_read_next(snapshot); |
435 | if (ret <= 0) | 386 | if (ret <= 0) |
436 | break; | 387 | break; |
437 | ret = swap_write_page(handle, data_of(*snapshot), &bio); | 388 | ret = swap_write_page(handle, data_of(*snapshot), &bio); |
@@ -441,7 +392,7 @@ static int save_image(struct swap_map_handle *handle, | |||
441 | printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m); | 392 | printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m); |
442 | nr_pages++; | 393 | nr_pages++; |
443 | } | 394 | } |
444 | err2 = wait_on_bio_chain(&bio); | 395 | err2 = hib_wait_on_bio_chain(&bio); |
445 | do_gettimeofday(&stop); | 396 | do_gettimeofday(&stop); |
446 | if (!ret) | 397 | if (!ret) |
447 | ret = err2; | 398 | ret = err2; |
@@ -483,50 +434,34 @@ int swsusp_write(unsigned int flags) | |||
483 | struct swap_map_handle handle; | 434 | struct swap_map_handle handle; |
484 | struct snapshot_handle snapshot; | 435 | struct snapshot_handle snapshot; |
485 | struct swsusp_info *header; | 436 | struct swsusp_info *header; |
437 | unsigned long pages; | ||
486 | int error; | 438 | int error; |
487 | 439 | ||
488 | error = swsusp_swap_check(); | 440 | pages = snapshot_get_image_size(); |
441 | error = get_swap_writer(&handle); | ||
489 | if (error) { | 442 | if (error) { |
490 | printk(KERN_ERR "PM: Cannot find swap device, try " | 443 | printk(KERN_ERR "PM: Cannot get swap writer\n"); |
491 | "swapon -a.\n"); | ||
492 | return error; | 444 | return error; |
493 | } | 445 | } |
446 | if (!enough_swap(pages)) { | ||
447 | printk(KERN_ERR "PM: Not enough free swap\n"); | ||
448 | error = -ENOSPC; | ||
449 | goto out_finish; | ||
450 | } | ||
494 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | 451 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); |
495 | error = snapshot_read_next(&snapshot, PAGE_SIZE); | 452 | error = snapshot_read_next(&snapshot); |
496 | if (error < PAGE_SIZE) { | 453 | if (error < PAGE_SIZE) { |
497 | if (error >= 0) | 454 | if (error >= 0) |
498 | error = -EFAULT; | 455 | error = -EFAULT; |
499 | 456 | ||
500 | goto out; | 457 | goto out_finish; |
501 | } | 458 | } |
502 | header = (struct swsusp_info *)data_of(snapshot); | 459 | header = (struct swsusp_info *)data_of(snapshot); |
503 | if (!enough_swap(header->pages)) { | 460 | error = swap_write_page(&handle, header, NULL); |
504 | printk(KERN_ERR "PM: Not enough free swap\n"); | 461 | if (!error) |
505 | error = -ENOSPC; | 462 | error = save_image(&handle, &snapshot, pages - 1); |
506 | goto out; | 463 | out_finish: |
507 | } | 464 | error = swap_writer_finish(&handle, flags, error); |
508 | error = get_swap_writer(&handle); | ||
509 | if (!error) { | ||
510 | sector_t start = handle.cur_swap; | ||
511 | |||
512 | error = swap_write_page(&handle, header, NULL); | ||
513 | if (!error) | ||
514 | error = save_image(&handle, &snapshot, | ||
515 | header->pages - 1); | ||
516 | |||
517 | if (!error) { | ||
518 | flush_swap_writer(&handle); | ||
519 | printk(KERN_INFO "PM: S"); | ||
520 | error = mark_swapfiles(start, flags); | ||
521 | printk("|\n"); | ||
522 | } | ||
523 | } | ||
524 | if (error) | ||
525 | free_all_swap_pages(root_swap); | ||
526 | |||
527 | release_swap_writer(&handle); | ||
528 | out: | ||
529 | swsusp_close(FMODE_WRITE); | ||
530 | return error; | 465 | return error; |
531 | } | 466 | } |
532 | 467 | ||
@@ -542,18 +477,21 @@ static void release_swap_reader(struct swap_map_handle *handle) | |||
542 | handle->cur = NULL; | 477 | handle->cur = NULL; |
543 | } | 478 | } |
544 | 479 | ||
545 | static int get_swap_reader(struct swap_map_handle *handle, sector_t start) | 480 | static int get_swap_reader(struct swap_map_handle *handle, |
481 | unsigned int *flags_p) | ||
546 | { | 482 | { |
547 | int error; | 483 | int error; |
548 | 484 | ||
549 | if (!start) | 485 | *flags_p = swsusp_header->flags; |
486 | |||
487 | if (!swsusp_header->image) /* how can this happen? */ | ||
550 | return -EINVAL; | 488 | return -EINVAL; |
551 | 489 | ||
552 | handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH); | 490 | handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH); |
553 | if (!handle->cur) | 491 | if (!handle->cur) |
554 | return -ENOMEM; | 492 | return -ENOMEM; |
555 | 493 | ||
556 | error = bio_read_page(start, handle->cur, NULL); | 494 | error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL); |
557 | if (error) { | 495 | if (error) { |
558 | release_swap_reader(handle); | 496 | release_swap_reader(handle); |
559 | return error; | 497 | return error; |
@@ -573,21 +511,28 @@ static int swap_read_page(struct swap_map_handle *handle, void *buf, | |||
573 | offset = handle->cur->entries[handle->k]; | 511 | offset = handle->cur->entries[handle->k]; |
574 | if (!offset) | 512 | if (!offset) |
575 | return -EFAULT; | 513 | return -EFAULT; |
576 | error = bio_read_page(offset, buf, bio_chain); | 514 | error = hib_bio_read_page(offset, buf, bio_chain); |
577 | if (error) | 515 | if (error) |
578 | return error; | 516 | return error; |
579 | if (++handle->k >= MAP_PAGE_ENTRIES) { | 517 | if (++handle->k >= MAP_PAGE_ENTRIES) { |
580 | error = wait_on_bio_chain(bio_chain); | 518 | error = hib_wait_on_bio_chain(bio_chain); |
581 | handle->k = 0; | 519 | handle->k = 0; |
582 | offset = handle->cur->next_swap; | 520 | offset = handle->cur->next_swap; |
583 | if (!offset) | 521 | if (!offset) |
584 | release_swap_reader(handle); | 522 | release_swap_reader(handle); |
585 | else if (!error) | 523 | else if (!error) |
586 | error = bio_read_page(offset, handle->cur, NULL); | 524 | error = hib_bio_read_page(offset, handle->cur, NULL); |
587 | } | 525 | } |
588 | return error; | 526 | return error; |
589 | } | 527 | } |
590 | 528 | ||
529 | static int swap_reader_finish(struct swap_map_handle *handle) | ||
530 | { | ||
531 | release_swap_reader(handle); | ||
532 | |||
533 | return 0; | ||
534 | } | ||
535 | |||
591 | /** | 536 | /** |
592 | * load_image - load the image using the swap map handle | 537 | * load_image - load the image using the swap map handle |
593 | * @handle and the snapshot handle @snapshot | 538 | * @handle and the snapshot handle @snapshot |
@@ -615,21 +560,21 @@ static int load_image(struct swap_map_handle *handle, | |||
615 | bio = NULL; | 560 | bio = NULL; |
616 | do_gettimeofday(&start); | 561 | do_gettimeofday(&start); |
617 | for ( ; ; ) { | 562 | for ( ; ; ) { |
618 | error = snapshot_write_next(snapshot, PAGE_SIZE); | 563 | error = snapshot_write_next(snapshot); |
619 | if (error <= 0) | 564 | if (error <= 0) |
620 | break; | 565 | break; |
621 | error = swap_read_page(handle, data_of(*snapshot), &bio); | 566 | error = swap_read_page(handle, data_of(*snapshot), &bio); |
622 | if (error) | 567 | if (error) |
623 | break; | 568 | break; |
624 | if (snapshot->sync_read) | 569 | if (snapshot->sync_read) |
625 | error = wait_on_bio_chain(&bio); | 570 | error = hib_wait_on_bio_chain(&bio); |
626 | if (error) | 571 | if (error) |
627 | break; | 572 | break; |
628 | if (!(nr_pages % m)) | 573 | if (!(nr_pages % m)) |
629 | printk("\b\b\b\b%3d%%", nr_pages / m); | 574 | printk("\b\b\b\b%3d%%", nr_pages / m); |
630 | nr_pages++; | 575 | nr_pages++; |
631 | } | 576 | } |
632 | err2 = wait_on_bio_chain(&bio); | 577 | err2 = hib_wait_on_bio_chain(&bio); |
633 | do_gettimeofday(&stop); | 578 | do_gettimeofday(&stop); |
634 | if (!error) | 579 | if (!error) |
635 | error = err2; | 580 | error = err2; |
@@ -657,20 +602,20 @@ int swsusp_read(unsigned int *flags_p) | |||
657 | struct snapshot_handle snapshot; | 602 | struct snapshot_handle snapshot; |
658 | struct swsusp_info *header; | 603 | struct swsusp_info *header; |
659 | 604 | ||
660 | *flags_p = swsusp_header->flags; | ||
661 | |||
662 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | 605 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); |
663 | error = snapshot_write_next(&snapshot, PAGE_SIZE); | 606 | error = snapshot_write_next(&snapshot); |
664 | if (error < PAGE_SIZE) | 607 | if (error < PAGE_SIZE) |
665 | return error < 0 ? error : -EFAULT; | 608 | return error < 0 ? error : -EFAULT; |
666 | header = (struct swsusp_info *)data_of(snapshot); | 609 | header = (struct swsusp_info *)data_of(snapshot); |
667 | error = get_swap_reader(&handle, swsusp_header->image); | 610 | error = get_swap_reader(&handle, flags_p); |
611 | if (error) | ||
612 | goto end; | ||
668 | if (!error) | 613 | if (!error) |
669 | error = swap_read_page(&handle, header, NULL); | 614 | error = swap_read_page(&handle, header, NULL); |
670 | if (!error) | 615 | if (!error) |
671 | error = load_image(&handle, &snapshot, header->pages - 1); | 616 | error = load_image(&handle, &snapshot, header->pages - 1); |
672 | release_swap_reader(&handle); | 617 | swap_reader_finish(&handle); |
673 | 618 | end: | |
674 | if (!error) | 619 | if (!error) |
675 | pr_debug("PM: Image successfully loaded\n"); | 620 | pr_debug("PM: Image successfully loaded\n"); |
676 | else | 621 | else |
@@ -686,11 +631,11 @@ int swsusp_check(void) | |||
686 | { | 631 | { |
687 | int error; | 632 | int error; |
688 | 633 | ||
689 | resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); | 634 | hib_resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); |
690 | if (!IS_ERR(resume_bdev)) { | 635 | if (!IS_ERR(hib_resume_bdev)) { |
691 | set_blocksize(resume_bdev, PAGE_SIZE); | 636 | set_blocksize(hib_resume_bdev, PAGE_SIZE); |
692 | memset(swsusp_header, 0, PAGE_SIZE); | 637 | memset(swsusp_header, 0, PAGE_SIZE); |
693 | error = bio_read_page(swsusp_resume_block, | 638 | error = hib_bio_read_page(swsusp_resume_block, |
694 | swsusp_header, NULL); | 639 | swsusp_header, NULL); |
695 | if (error) | 640 | if (error) |
696 | goto put; | 641 | goto put; |
@@ -698,7 +643,7 @@ int swsusp_check(void) | |||
698 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { | 643 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { |
699 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); | 644 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); |
700 | /* Reset swap signature now */ | 645 | /* Reset swap signature now */ |
701 | error = bio_write_page(swsusp_resume_block, | 646 | error = hib_bio_write_page(swsusp_resume_block, |
702 | swsusp_header, NULL); | 647 | swsusp_header, NULL); |
703 | } else { | 648 | } else { |
704 | error = -EINVAL; | 649 | error = -EINVAL; |
@@ -706,11 +651,11 @@ int swsusp_check(void) | |||
706 | 651 | ||
707 | put: | 652 | put: |
708 | if (error) | 653 | if (error) |
709 | blkdev_put(resume_bdev, FMODE_READ); | 654 | blkdev_put(hib_resume_bdev, FMODE_READ); |
710 | else | 655 | else |
711 | pr_debug("PM: Signature found, resuming\n"); | 656 | pr_debug("PM: Signature found, resuming\n"); |
712 | } else { | 657 | } else { |
713 | error = PTR_ERR(resume_bdev); | 658 | error = PTR_ERR(hib_resume_bdev); |
714 | } | 659 | } |
715 | 660 | ||
716 | if (error) | 661 | if (error) |
@@ -725,12 +670,12 @@ put: | |||
725 | 670 | ||
726 | void swsusp_close(fmode_t mode) | 671 | void swsusp_close(fmode_t mode) |
727 | { | 672 | { |
728 | if (IS_ERR(resume_bdev)) { | 673 | if (IS_ERR(hib_resume_bdev)) { |
729 | pr_debug("PM: Image device not initialised\n"); | 674 | pr_debug("PM: Image device not initialised\n"); |
730 | return; | 675 | return; |
731 | } | 676 | } |
732 | 677 | ||
733 | blkdev_put(resume_bdev, mode); | 678 | blkdev_put(hib_resume_bdev, mode); |
734 | } | 679 | } |
735 | 680 | ||
736 | static int swsusp_header_init(void) | 681 | static int swsusp_header_init(void) |
diff --git a/kernel/power/user.c b/kernel/power/user.c index a8c96212bc1b..e819e17877ca 100644 --- a/kernel/power/user.c +++ b/kernel/power/user.c | |||
@@ -151,6 +151,7 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, | |||
151 | { | 151 | { |
152 | struct snapshot_data *data; | 152 | struct snapshot_data *data; |
153 | ssize_t res; | 153 | ssize_t res; |
154 | loff_t pg_offp = *offp & ~PAGE_MASK; | ||
154 | 155 | ||
155 | mutex_lock(&pm_mutex); | 156 | mutex_lock(&pm_mutex); |
156 | 157 | ||
@@ -159,14 +160,19 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, | |||
159 | res = -ENODATA; | 160 | res = -ENODATA; |
160 | goto Unlock; | 161 | goto Unlock; |
161 | } | 162 | } |
162 | res = snapshot_read_next(&data->handle, count); | 163 | if (!pg_offp) { /* on page boundary? */ |
163 | if (res > 0) { | 164 | res = snapshot_read_next(&data->handle); |
164 | if (copy_to_user(buf, data_of(data->handle), res)) | 165 | if (res <= 0) |
165 | res = -EFAULT; | 166 | goto Unlock; |
166 | else | 167 | } else { |
167 | *offp = data->handle.offset; | 168 | res = PAGE_SIZE - pg_offp; |
168 | } | 169 | } |
169 | 170 | ||
171 | res = simple_read_from_buffer(buf, count, &pg_offp, | ||
172 | data_of(data->handle), res); | ||
173 | if (res > 0) | ||
174 | *offp += res; | ||
175 | |||
170 | Unlock: | 176 | Unlock: |
171 | mutex_unlock(&pm_mutex); | 177 | mutex_unlock(&pm_mutex); |
172 | 178 | ||
@@ -178,18 +184,25 @@ static ssize_t snapshot_write(struct file *filp, const char __user *buf, | |||
178 | { | 184 | { |
179 | struct snapshot_data *data; | 185 | struct snapshot_data *data; |
180 | ssize_t res; | 186 | ssize_t res; |
187 | loff_t pg_offp = *offp & ~PAGE_MASK; | ||
181 | 188 | ||
182 | mutex_lock(&pm_mutex); | 189 | mutex_lock(&pm_mutex); |
183 | 190 | ||
184 | data = filp->private_data; | 191 | data = filp->private_data; |
185 | res = snapshot_write_next(&data->handle, count); | 192 | |
186 | if (res > 0) { | 193 | if (!pg_offp) { |
187 | if (copy_from_user(data_of(data->handle), buf, res)) | 194 | res = snapshot_write_next(&data->handle); |
188 | res = -EFAULT; | 195 | if (res <= 0) |
189 | else | 196 | goto unlock; |
190 | *offp = data->handle.offset; | 197 | } else { |
198 | res = PAGE_SIZE - pg_offp; | ||
191 | } | 199 | } |
192 | 200 | ||
201 | res = simple_write_to_buffer(data_of(data->handle), res, &pg_offp, | ||
202 | buf, count); | ||
203 | if (res > 0) | ||
204 | *offp += res; | ||
205 | unlock: | ||
193 | mutex_unlock(&pm_mutex); | 206 | mutex_unlock(&pm_mutex); |
194 | 207 | ||
195 | return res; | 208 | return res; |
diff --git a/kernel/printk.c b/kernel/printk.c index 75077ad0b537..444b770c9595 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/bootmem.h> | 33 | #include <linux/bootmem.h> |
34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
35 | #include <linux/kexec.h> | 35 | #include <linux/kexec.h> |
36 | #include <linux/kdb.h> | ||
36 | #include <linux/ratelimit.h> | 37 | #include <linux/ratelimit.h> |
37 | #include <linux/kmsg_dump.h> | 38 | #include <linux/kmsg_dump.h> |
38 | #include <linux/syslog.h> | 39 | #include <linux/syslog.h> |
@@ -413,6 +414,22 @@ SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) | |||
413 | return do_syslog(type, buf, len, SYSLOG_FROM_CALL); | 414 | return do_syslog(type, buf, len, SYSLOG_FROM_CALL); |
414 | } | 415 | } |
415 | 416 | ||
417 | #ifdef CONFIG_KGDB_KDB | ||
418 | /* kdb dmesg command needs access to the syslog buffer. do_syslog() | ||
419 | * uses locks so it cannot be used during debugging. Just tell kdb | ||
420 | * where the start and end of the physical and logical logs are. This | ||
421 | * is equivalent to do_syslog(3). | ||
422 | */ | ||
423 | void kdb_syslog_data(char *syslog_data[4]) | ||
424 | { | ||
425 | syslog_data[0] = log_buf; | ||
426 | syslog_data[1] = log_buf + log_buf_len; | ||
427 | syslog_data[2] = log_buf + log_end - | ||
428 | (logged_chars < log_buf_len ? logged_chars : log_buf_len); | ||
429 | syslog_data[3] = log_buf + log_end; | ||
430 | } | ||
431 | #endif /* CONFIG_KGDB_KDB */ | ||
432 | |||
416 | /* | 433 | /* |
417 | * Call the console drivers on a range of log_buf | 434 | * Call the console drivers on a range of log_buf |
418 | */ | 435 | */ |
@@ -586,6 +603,14 @@ asmlinkage int printk(const char *fmt, ...) | |||
586 | va_list args; | 603 | va_list args; |
587 | int r; | 604 | int r; |
588 | 605 | ||
606 | #ifdef CONFIG_KGDB_KDB | ||
607 | if (unlikely(kdb_trap_printk)) { | ||
608 | va_start(args, fmt); | ||
609 | r = vkdb_printf(fmt, args); | ||
610 | va_end(args); | ||
611 | return r; | ||
612 | } | ||
613 | #endif | ||
589 | va_start(args, fmt); | 614 | va_start(args, fmt); |
590 | r = vprintk(fmt, args); | 615 | r = vprintk(fmt, args); |
591 | va_end(args); | 616 | va_end(args); |
diff --git a/kernel/profile.c b/kernel/profile.c index dfadc5b729f1..b22a899934cc 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
@@ -365,14 +365,14 @@ static int __cpuinit profile_cpu_callback(struct notifier_block *info, | |||
365 | switch (action) { | 365 | switch (action) { |
366 | case CPU_UP_PREPARE: | 366 | case CPU_UP_PREPARE: |
367 | case CPU_UP_PREPARE_FROZEN: | 367 | case CPU_UP_PREPARE_FROZEN: |
368 | node = cpu_to_node(cpu); | 368 | node = cpu_to_mem(cpu); |
369 | per_cpu(cpu_profile_flip, cpu) = 0; | 369 | per_cpu(cpu_profile_flip, cpu) = 0; |
370 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | 370 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { |
371 | page = alloc_pages_exact_node(node, | 371 | page = alloc_pages_exact_node(node, |
372 | GFP_KERNEL | __GFP_ZERO, | 372 | GFP_KERNEL | __GFP_ZERO, |
373 | 0); | 373 | 0); |
374 | if (!page) | 374 | if (!page) |
375 | return NOTIFY_BAD; | 375 | return notifier_from_errno(-ENOMEM); |
376 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); | 376 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); |
377 | } | 377 | } |
378 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | 378 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { |
@@ -388,7 +388,7 @@ out_free: | |||
388 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 388 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
389 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 389 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; |
390 | __free_page(page); | 390 | __free_page(page); |
391 | return NOTIFY_BAD; | 391 | return notifier_from_errno(-ENOMEM); |
392 | case CPU_ONLINE: | 392 | case CPU_ONLINE: |
393 | case CPU_ONLINE_FROZEN: | 393 | case CPU_ONLINE_FROZEN: |
394 | if (prof_cpu_mask != NULL) | 394 | if (prof_cpu_mask != NULL) |
@@ -567,7 +567,7 @@ static int create_hash_tables(void) | |||
567 | int cpu; | 567 | int cpu; |
568 | 568 | ||
569 | for_each_online_cpu(cpu) { | 569 | for_each_online_cpu(cpu) { |
570 | int node = cpu_to_node(cpu); | 570 | int node = cpu_to_mem(cpu); |
571 | struct page *page; | 571 | struct page *page; |
572 | 572 | ||
573 | page = alloc_pages_exact_node(node, | 573 | page = alloc_pages_exact_node(node, |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 42ad8ae729a0..74a3d693c196 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -14,7 +14,6 @@ | |||
14 | #include <linux/mm.h> | 14 | #include <linux/mm.h> |
15 | #include <linux/highmem.h> | 15 | #include <linux/highmem.h> |
16 | #include <linux/pagemap.h> | 16 | #include <linux/pagemap.h> |
17 | #include <linux/smp_lock.h> | ||
18 | #include <linux/ptrace.h> | 17 | #include <linux/ptrace.h> |
19 | #include <linux/security.h> | 18 | #include <linux/security.h> |
20 | #include <linux/signal.h> | 19 | #include <linux/signal.h> |
@@ -76,7 +75,6 @@ void __ptrace_unlink(struct task_struct *child) | |||
76 | child->parent = child->real_parent; | 75 | child->parent = child->real_parent; |
77 | list_del_init(&child->ptrace_entry); | 76 | list_del_init(&child->ptrace_entry); |
78 | 77 | ||
79 | arch_ptrace_untrace(child); | ||
80 | if (task_is_traced(child)) | 78 | if (task_is_traced(child)) |
81 | ptrace_untrace(child); | 79 | ptrace_untrace(child); |
82 | } | 80 | } |
@@ -596,6 +594,32 @@ int ptrace_request(struct task_struct *child, long request, | |||
596 | ret = ptrace_detach(child, data); | 594 | ret = ptrace_detach(child, data); |
597 | break; | 595 | break; |
598 | 596 | ||
597 | #ifdef CONFIG_BINFMT_ELF_FDPIC | ||
598 | case PTRACE_GETFDPIC: { | ||
599 | struct mm_struct *mm = get_task_mm(child); | ||
600 | unsigned long tmp = 0; | ||
601 | |||
602 | ret = -ESRCH; | ||
603 | if (!mm) | ||
604 | break; | ||
605 | |||
606 | switch (addr) { | ||
607 | case PTRACE_GETFDPIC_EXEC: | ||
608 | tmp = mm->context.exec_fdpic_loadmap; | ||
609 | break; | ||
610 | case PTRACE_GETFDPIC_INTERP: | ||
611 | tmp = mm->context.interp_fdpic_loadmap; | ||
612 | break; | ||
613 | default: | ||
614 | break; | ||
615 | } | ||
616 | mmput(mm); | ||
617 | |||
618 | ret = put_user(tmp, (unsigned long __user *) data); | ||
619 | break; | ||
620 | } | ||
621 | #endif | ||
622 | |||
599 | #ifdef PTRACE_SINGLESTEP | 623 | #ifdef PTRACE_SINGLESTEP |
600 | case PTRACE_SINGLESTEP: | 624 | case PTRACE_SINGLESTEP: |
601 | #endif | 625 | #endif |
@@ -666,10 +690,6 @@ SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data) | |||
666 | struct task_struct *child; | 690 | struct task_struct *child; |
667 | long ret; | 691 | long ret; |
668 | 692 | ||
669 | /* | ||
670 | * This lock_kernel fixes a subtle race with suid exec | ||
671 | */ | ||
672 | lock_kernel(); | ||
673 | if (request == PTRACE_TRACEME) { | 693 | if (request == PTRACE_TRACEME) { |
674 | ret = ptrace_traceme(); | 694 | ret = ptrace_traceme(); |
675 | if (!ret) | 695 | if (!ret) |
@@ -703,7 +723,6 @@ SYSCALL_DEFINE4(ptrace, long, request, long, pid, long, addr, long, data) | |||
703 | out_put_task_struct: | 723 | out_put_task_struct: |
704 | put_task_struct(child); | 724 | put_task_struct(child); |
705 | out: | 725 | out: |
706 | unlock_kernel(); | ||
707 | return ret; | 726 | return ret; |
708 | } | 727 | } |
709 | 728 | ||
@@ -813,10 +832,6 @@ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, | |||
813 | struct task_struct *child; | 832 | struct task_struct *child; |
814 | long ret; | 833 | long ret; |
815 | 834 | ||
816 | /* | ||
817 | * This lock_kernel fixes a subtle race with suid exec | ||
818 | */ | ||
819 | lock_kernel(); | ||
820 | if (request == PTRACE_TRACEME) { | 835 | if (request == PTRACE_TRACEME) { |
821 | ret = ptrace_traceme(); | 836 | ret = ptrace_traceme(); |
822 | goto out; | 837 | goto out; |
@@ -846,7 +861,6 @@ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, | |||
846 | out_put_task_struct: | 861 | out_put_task_struct: |
847 | put_task_struct(child); | 862 | put_task_struct(child); |
848 | out: | 863 | out: |
849 | unlock_kernel(); | ||
850 | return ret; | 864 | return ret; |
851 | } | 865 | } |
852 | #endif /* CONFIG_COMPAT */ | 866 | #endif /* CONFIG_COMPAT */ |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index 49d808e833b0..72a8dc9567f5 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -44,7 +44,6 @@ | |||
44 | #include <linux/cpu.h> | 44 | #include <linux/cpu.h> |
45 | #include <linux/mutex.h> | 45 | #include <linux/mutex.h> |
46 | #include <linux/module.h> | 46 | #include <linux/module.h> |
47 | #include <linux/kernel_stat.h> | ||
48 | #include <linux/hardirq.h> | 47 | #include <linux/hardirq.h> |
49 | 48 | ||
50 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 49 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
@@ -64,9 +63,6 @@ struct lockdep_map rcu_sched_lock_map = | |||
64 | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); | 63 | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); |
65 | #endif | 64 | #endif |
66 | 65 | ||
67 | int rcu_scheduler_active __read_mostly; | ||
68 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | ||
69 | |||
70 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 66 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
71 | 67 | ||
72 | int debug_lockdep_rcu_enabled(void) | 68 | int debug_lockdep_rcu_enabled(void) |
@@ -97,21 +93,6 @@ EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); | |||
97 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | 93 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
98 | 94 | ||
99 | /* | 95 | /* |
100 | * This function is invoked towards the end of the scheduler's initialization | ||
101 | * process. Before this is called, the idle task might contain | ||
102 | * RCU read-side critical sections (during which time, this idle | ||
103 | * task is booting the system). After this function is called, the | ||
104 | * idle tasks are prohibited from containing RCU read-side critical | ||
105 | * sections. | ||
106 | */ | ||
107 | void rcu_scheduler_starting(void) | ||
108 | { | ||
109 | WARN_ON(num_online_cpus() != 1); | ||
110 | WARN_ON(nr_context_switches() > 0); | ||
111 | rcu_scheduler_active = 1; | ||
112 | } | ||
113 | |||
114 | /* | ||
115 | * Awaken the corresponding synchronize_rcu() instance now that a | 96 | * Awaken the corresponding synchronize_rcu() instance now that a |
116 | * grace period has elapsed. | 97 | * grace period has elapsed. |
117 | */ | 98 | */ |
diff --git a/kernel/rcutiny.c b/kernel/rcutiny.c index 9f6d9ff2572c..38729d3cd236 100644 --- a/kernel/rcutiny.c +++ b/kernel/rcutiny.c | |||
@@ -44,9 +44,9 @@ struct rcu_ctrlblk { | |||
44 | }; | 44 | }; |
45 | 45 | ||
46 | /* Definition for rcupdate control block. */ | 46 | /* Definition for rcupdate control block. */ |
47 | static struct rcu_ctrlblk rcu_ctrlblk = { | 47 | static struct rcu_ctrlblk rcu_sched_ctrlblk = { |
48 | .donetail = &rcu_ctrlblk.rcucblist, | 48 | .donetail = &rcu_sched_ctrlblk.rcucblist, |
49 | .curtail = &rcu_ctrlblk.rcucblist, | 49 | .curtail = &rcu_sched_ctrlblk.rcucblist, |
50 | }; | 50 | }; |
51 | 51 | ||
52 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { | 52 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { |
@@ -54,6 +54,11 @@ static struct rcu_ctrlblk rcu_bh_ctrlblk = { | |||
54 | .curtail = &rcu_bh_ctrlblk.rcucblist, | 54 | .curtail = &rcu_bh_ctrlblk.rcucblist, |
55 | }; | 55 | }; |
56 | 56 | ||
57 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
58 | int rcu_scheduler_active __read_mostly; | ||
59 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | ||
60 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | ||
61 | |||
57 | #ifdef CONFIG_NO_HZ | 62 | #ifdef CONFIG_NO_HZ |
58 | 63 | ||
59 | static long rcu_dynticks_nesting = 1; | 64 | static long rcu_dynticks_nesting = 1; |
@@ -108,7 +113,8 @@ static int rcu_qsctr_help(struct rcu_ctrlblk *rcp) | |||
108 | */ | 113 | */ |
109 | void rcu_sched_qs(int cpu) | 114 | void rcu_sched_qs(int cpu) |
110 | { | 115 | { |
111 | if (rcu_qsctr_help(&rcu_ctrlblk) + rcu_qsctr_help(&rcu_bh_ctrlblk)) | 116 | if (rcu_qsctr_help(&rcu_sched_ctrlblk) + |
117 | rcu_qsctr_help(&rcu_bh_ctrlblk)) | ||
112 | raise_softirq(RCU_SOFTIRQ); | 118 | raise_softirq(RCU_SOFTIRQ); |
113 | } | 119 | } |
114 | 120 | ||
@@ -173,7 +179,7 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp) | |||
173 | */ | 179 | */ |
174 | static void rcu_process_callbacks(struct softirq_action *unused) | 180 | static void rcu_process_callbacks(struct softirq_action *unused) |
175 | { | 181 | { |
176 | __rcu_process_callbacks(&rcu_ctrlblk); | 182 | __rcu_process_callbacks(&rcu_sched_ctrlblk); |
177 | __rcu_process_callbacks(&rcu_bh_ctrlblk); | 183 | __rcu_process_callbacks(&rcu_bh_ctrlblk); |
178 | } | 184 | } |
179 | 185 | ||
@@ -187,7 +193,8 @@ static void rcu_process_callbacks(struct softirq_action *unused) | |||
187 | * | 193 | * |
188 | * Cool, huh? (Due to Josh Triplett.) | 194 | * Cool, huh? (Due to Josh Triplett.) |
189 | * | 195 | * |
190 | * But we want to make this a static inline later. | 196 | * But we want to make this a static inline later. The cond_resched() |
197 | * currently makes this problematic. | ||
191 | */ | 198 | */ |
192 | void synchronize_sched(void) | 199 | void synchronize_sched(void) |
193 | { | 200 | { |
@@ -195,12 +202,6 @@ void synchronize_sched(void) | |||
195 | } | 202 | } |
196 | EXPORT_SYMBOL_GPL(synchronize_sched); | 203 | EXPORT_SYMBOL_GPL(synchronize_sched); |
197 | 204 | ||
198 | void synchronize_rcu_bh(void) | ||
199 | { | ||
200 | synchronize_sched(); | ||
201 | } | ||
202 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
203 | |||
204 | /* | 205 | /* |
205 | * Helper function for call_rcu() and call_rcu_bh(). | 206 | * Helper function for call_rcu() and call_rcu_bh(). |
206 | */ | 207 | */ |
@@ -226,7 +227,7 @@ static void __call_rcu(struct rcu_head *head, | |||
226 | */ | 227 | */ |
227 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 228 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
228 | { | 229 | { |
229 | __call_rcu(head, func, &rcu_ctrlblk); | 230 | __call_rcu(head, func, &rcu_sched_ctrlblk); |
230 | } | 231 | } |
231 | EXPORT_SYMBOL_GPL(call_rcu); | 232 | EXPORT_SYMBOL_GPL(call_rcu); |
232 | 233 | ||
@@ -244,11 +245,13 @@ void rcu_barrier(void) | |||
244 | { | 245 | { |
245 | struct rcu_synchronize rcu; | 246 | struct rcu_synchronize rcu; |
246 | 247 | ||
248 | init_rcu_head_on_stack(&rcu.head); | ||
247 | init_completion(&rcu.completion); | 249 | init_completion(&rcu.completion); |
248 | /* Will wake me after RCU finished. */ | 250 | /* Will wake me after RCU finished. */ |
249 | call_rcu(&rcu.head, wakeme_after_rcu); | 251 | call_rcu(&rcu.head, wakeme_after_rcu); |
250 | /* Wait for it. */ | 252 | /* Wait for it. */ |
251 | wait_for_completion(&rcu.completion); | 253 | wait_for_completion(&rcu.completion); |
254 | destroy_rcu_head_on_stack(&rcu.head); | ||
252 | } | 255 | } |
253 | EXPORT_SYMBOL_GPL(rcu_barrier); | 256 | EXPORT_SYMBOL_GPL(rcu_barrier); |
254 | 257 | ||
@@ -256,11 +259,13 @@ void rcu_barrier_bh(void) | |||
256 | { | 259 | { |
257 | struct rcu_synchronize rcu; | 260 | struct rcu_synchronize rcu; |
258 | 261 | ||
262 | init_rcu_head_on_stack(&rcu.head); | ||
259 | init_completion(&rcu.completion); | 263 | init_completion(&rcu.completion); |
260 | /* Will wake me after RCU finished. */ | 264 | /* Will wake me after RCU finished. */ |
261 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | 265 | call_rcu_bh(&rcu.head, wakeme_after_rcu); |
262 | /* Wait for it. */ | 266 | /* Wait for it. */ |
263 | wait_for_completion(&rcu.completion); | 267 | wait_for_completion(&rcu.completion); |
268 | destroy_rcu_head_on_stack(&rcu.head); | ||
264 | } | 269 | } |
265 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | 270 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); |
266 | 271 | ||
@@ -268,11 +273,13 @@ void rcu_barrier_sched(void) | |||
268 | { | 273 | { |
269 | struct rcu_synchronize rcu; | 274 | struct rcu_synchronize rcu; |
270 | 275 | ||
276 | init_rcu_head_on_stack(&rcu.head); | ||
271 | init_completion(&rcu.completion); | 277 | init_completion(&rcu.completion); |
272 | /* Will wake me after RCU finished. */ | 278 | /* Will wake me after RCU finished. */ |
273 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | 279 | call_rcu_sched(&rcu.head, wakeme_after_rcu); |
274 | /* Wait for it. */ | 280 | /* Wait for it. */ |
275 | wait_for_completion(&rcu.completion); | 281 | wait_for_completion(&rcu.completion); |
282 | destroy_rcu_head_on_stack(&rcu.head); | ||
276 | } | 283 | } |
277 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | 284 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); |
278 | 285 | ||
@@ -280,3 +287,5 @@ void __init rcu_init(void) | |||
280 | { | 287 | { |
281 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 288 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
282 | } | 289 | } |
290 | |||
291 | #include "rcutiny_plugin.h" | ||
diff --git a/kernel/rcutiny_plugin.h b/kernel/rcutiny_plugin.h new file mode 100644 index 000000000000..d223a92bc742 --- /dev/null +++ b/kernel/rcutiny_plugin.h | |||
@@ -0,0 +1,39 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
3 | * Internal non-public definitions that provide either classic | ||
4 | * or preemptable semantics. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | * | ||
20 | * Copyright IBM Corporation, 2009 | ||
21 | * | ||
22 | * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
23 | */ | ||
24 | |||
25 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
26 | |||
27 | #include <linux/kernel_stat.h> | ||
28 | |||
29 | /* | ||
30 | * During boot, we forgive RCU lockdep issues. After this function is | ||
31 | * invoked, we start taking RCU lockdep issues seriously. | ||
32 | */ | ||
33 | void rcu_scheduler_starting(void) | ||
34 | { | ||
35 | WARN_ON(nr_context_switches() > 0); | ||
36 | rcu_scheduler_active = 1; | ||
37 | } | ||
38 | |||
39 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | ||
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 58df55bf83ed..6535ac8bc6a5 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -464,9 +464,11 @@ static void rcu_bh_torture_synchronize(void) | |||
464 | { | 464 | { |
465 | struct rcu_bh_torture_synchronize rcu; | 465 | struct rcu_bh_torture_synchronize rcu; |
466 | 466 | ||
467 | init_rcu_head_on_stack(&rcu.head); | ||
467 | init_completion(&rcu.completion); | 468 | init_completion(&rcu.completion); |
468 | call_rcu_bh(&rcu.head, rcu_bh_torture_wakeme_after_cb); | 469 | call_rcu_bh(&rcu.head, rcu_bh_torture_wakeme_after_cb); |
469 | wait_for_completion(&rcu.completion); | 470 | wait_for_completion(&rcu.completion); |
471 | destroy_rcu_head_on_stack(&rcu.head); | ||
470 | } | 472 | } |
471 | 473 | ||
472 | static struct rcu_torture_ops rcu_bh_ops = { | 474 | static struct rcu_torture_ops rcu_bh_ops = { |
@@ -669,7 +671,7 @@ static struct rcu_torture_ops sched_expedited_ops = { | |||
669 | .sync = synchronize_sched_expedited, | 671 | .sync = synchronize_sched_expedited, |
670 | .cb_barrier = NULL, | 672 | .cb_barrier = NULL, |
671 | .fqs = rcu_sched_force_quiescent_state, | 673 | .fqs = rcu_sched_force_quiescent_state, |
672 | .stats = rcu_expedited_torture_stats, | 674 | .stats = NULL, |
673 | .irq_capable = 1, | 675 | .irq_capable = 1, |
674 | .name = "sched_expedited" | 676 | .name = "sched_expedited" |
675 | }; | 677 | }; |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 3ec8160fc75f..d4437345706f 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
@@ -46,6 +46,7 @@ | |||
46 | #include <linux/cpu.h> | 46 | #include <linux/cpu.h> |
47 | #include <linux/mutex.h> | 47 | #include <linux/mutex.h> |
48 | #include <linux/time.h> | 48 | #include <linux/time.h> |
49 | #include <linux/kernel_stat.h> | ||
49 | 50 | ||
50 | #include "rcutree.h" | 51 | #include "rcutree.h" |
51 | 52 | ||
@@ -53,8 +54,8 @@ | |||
53 | 54 | ||
54 | static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; | 55 | static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; |
55 | 56 | ||
56 | #define RCU_STATE_INITIALIZER(name) { \ | 57 | #define RCU_STATE_INITIALIZER(structname) { \ |
57 | .level = { &name.node[0] }, \ | 58 | .level = { &structname.node[0] }, \ |
58 | .levelcnt = { \ | 59 | .levelcnt = { \ |
59 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ | 60 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ |
60 | NUM_RCU_LVL_1, \ | 61 | NUM_RCU_LVL_1, \ |
@@ -65,13 +66,14 @@ static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; | |||
65 | .signaled = RCU_GP_IDLE, \ | 66 | .signaled = RCU_GP_IDLE, \ |
66 | .gpnum = -300, \ | 67 | .gpnum = -300, \ |
67 | .completed = -300, \ | 68 | .completed = -300, \ |
68 | .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \ | 69 | .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \ |
69 | .orphan_cbs_list = NULL, \ | 70 | .orphan_cbs_list = NULL, \ |
70 | .orphan_cbs_tail = &name.orphan_cbs_list, \ | 71 | .orphan_cbs_tail = &structname.orphan_cbs_list, \ |
71 | .orphan_qlen = 0, \ | 72 | .orphan_qlen = 0, \ |
72 | .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \ | 73 | .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \ |
73 | .n_force_qs = 0, \ | 74 | .n_force_qs = 0, \ |
74 | .n_force_qs_ngp = 0, \ | 75 | .n_force_qs_ngp = 0, \ |
76 | .name = #structname, \ | ||
75 | } | 77 | } |
76 | 78 | ||
77 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); | 79 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); |
@@ -80,6 +82,9 @@ DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); | |||
80 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | 82 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
81 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 83 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); |
82 | 84 | ||
85 | int rcu_scheduler_active __read_mostly; | ||
86 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | ||
87 | |||
83 | /* | 88 | /* |
84 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s | 89 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s |
85 | * permit this function to be invoked without holding the root rcu_node | 90 | * permit this function to be invoked without holding the root rcu_node |
@@ -97,25 +102,32 @@ static int rcu_gp_in_progress(struct rcu_state *rsp) | |||
97 | */ | 102 | */ |
98 | void rcu_sched_qs(int cpu) | 103 | void rcu_sched_qs(int cpu) |
99 | { | 104 | { |
100 | struct rcu_data *rdp; | 105 | struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); |
101 | 106 | ||
102 | rdp = &per_cpu(rcu_sched_data, cpu); | ||
103 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | 107 | rdp->passed_quiesc_completed = rdp->gpnum - 1; |
104 | barrier(); | 108 | barrier(); |
105 | rdp->passed_quiesc = 1; | 109 | rdp->passed_quiesc = 1; |
106 | rcu_preempt_note_context_switch(cpu); | ||
107 | } | 110 | } |
108 | 111 | ||
109 | void rcu_bh_qs(int cpu) | 112 | void rcu_bh_qs(int cpu) |
110 | { | 113 | { |
111 | struct rcu_data *rdp; | 114 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); |
112 | 115 | ||
113 | rdp = &per_cpu(rcu_bh_data, cpu); | ||
114 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | 116 | rdp->passed_quiesc_completed = rdp->gpnum - 1; |
115 | barrier(); | 117 | barrier(); |
116 | rdp->passed_quiesc = 1; | 118 | rdp->passed_quiesc = 1; |
117 | } | 119 | } |
118 | 120 | ||
121 | /* | ||
122 | * Note a context switch. This is a quiescent state for RCU-sched, | ||
123 | * and requires special handling for preemptible RCU. | ||
124 | */ | ||
125 | void rcu_note_context_switch(int cpu) | ||
126 | { | ||
127 | rcu_sched_qs(cpu); | ||
128 | rcu_preempt_note_context_switch(cpu); | ||
129 | } | ||
130 | |||
119 | #ifdef CONFIG_NO_HZ | 131 | #ifdef CONFIG_NO_HZ |
120 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { | 132 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { |
121 | .dynticks_nesting = 1, | 133 | .dynticks_nesting = 1, |
@@ -438,6 +450,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | |||
438 | 450 | ||
439 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 451 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
440 | 452 | ||
453 | int rcu_cpu_stall_panicking __read_mostly; | ||
454 | |||
441 | static void record_gp_stall_check_time(struct rcu_state *rsp) | 455 | static void record_gp_stall_check_time(struct rcu_state *rsp) |
442 | { | 456 | { |
443 | rsp->gp_start = jiffies; | 457 | rsp->gp_start = jiffies; |
@@ -470,7 +484,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
470 | 484 | ||
471 | /* OK, time to rat on our buddy... */ | 485 | /* OK, time to rat on our buddy... */ |
472 | 486 | ||
473 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | 487 | printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {", |
488 | rsp->name); | ||
474 | rcu_for_each_leaf_node(rsp, rnp) { | 489 | rcu_for_each_leaf_node(rsp, rnp) { |
475 | raw_spin_lock_irqsave(&rnp->lock, flags); | 490 | raw_spin_lock_irqsave(&rnp->lock, flags); |
476 | rcu_print_task_stall(rnp); | 491 | rcu_print_task_stall(rnp); |
@@ -481,7 +496,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
481 | if (rnp->qsmask & (1UL << cpu)) | 496 | if (rnp->qsmask & (1UL << cpu)) |
482 | printk(" %d", rnp->grplo + cpu); | 497 | printk(" %d", rnp->grplo + cpu); |
483 | } | 498 | } |
484 | printk(" (detected by %d, t=%ld jiffies)\n", | 499 | printk("} (detected by %d, t=%ld jiffies)\n", |
485 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 500 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); |
486 | trigger_all_cpu_backtrace(); | 501 | trigger_all_cpu_backtrace(); |
487 | 502 | ||
@@ -497,8 +512,8 @@ static void print_cpu_stall(struct rcu_state *rsp) | |||
497 | unsigned long flags; | 512 | unsigned long flags; |
498 | struct rcu_node *rnp = rcu_get_root(rsp); | 513 | struct rcu_node *rnp = rcu_get_root(rsp); |
499 | 514 | ||
500 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | 515 | printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n", |
501 | smp_processor_id(), jiffies - rsp->gp_start); | 516 | rsp->name, smp_processor_id(), jiffies - rsp->gp_start); |
502 | trigger_all_cpu_backtrace(); | 517 | trigger_all_cpu_backtrace(); |
503 | 518 | ||
504 | raw_spin_lock_irqsave(&rnp->lock, flags); | 519 | raw_spin_lock_irqsave(&rnp->lock, flags); |
@@ -515,6 +530,8 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |||
515 | long delta; | 530 | long delta; |
516 | struct rcu_node *rnp; | 531 | struct rcu_node *rnp; |
517 | 532 | ||
533 | if (rcu_cpu_stall_panicking) | ||
534 | return; | ||
518 | delta = jiffies - rsp->jiffies_stall; | 535 | delta = jiffies - rsp->jiffies_stall; |
519 | rnp = rdp->mynode; | 536 | rnp = rdp->mynode; |
520 | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { | 537 | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { |
@@ -529,6 +546,21 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |||
529 | } | 546 | } |
530 | } | 547 | } |
531 | 548 | ||
549 | static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) | ||
550 | { | ||
551 | rcu_cpu_stall_panicking = 1; | ||
552 | return NOTIFY_DONE; | ||
553 | } | ||
554 | |||
555 | static struct notifier_block rcu_panic_block = { | ||
556 | .notifier_call = rcu_panic, | ||
557 | }; | ||
558 | |||
559 | static void __init check_cpu_stall_init(void) | ||
560 | { | ||
561 | atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); | ||
562 | } | ||
563 | |||
532 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 564 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
533 | 565 | ||
534 | static void record_gp_stall_check_time(struct rcu_state *rsp) | 566 | static void record_gp_stall_check_time(struct rcu_state *rsp) |
@@ -539,6 +571,10 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |||
539 | { | 571 | { |
540 | } | 572 | } |
541 | 573 | ||
574 | static void __init check_cpu_stall_init(void) | ||
575 | { | ||
576 | } | ||
577 | |||
542 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 578 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
543 | 579 | ||
544 | /* | 580 | /* |
@@ -1125,8 +1161,6 @@ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) | |||
1125 | */ | 1161 | */ |
1126 | void rcu_check_callbacks(int cpu, int user) | 1162 | void rcu_check_callbacks(int cpu, int user) |
1127 | { | 1163 | { |
1128 | if (!rcu_pending(cpu)) | ||
1129 | return; /* if nothing for RCU to do. */ | ||
1130 | if (user || | 1164 | if (user || |
1131 | (idle_cpu(cpu) && rcu_scheduler_active && | 1165 | (idle_cpu(cpu) && rcu_scheduler_active && |
1132 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | 1166 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
@@ -1158,7 +1192,8 @@ void rcu_check_callbacks(int cpu, int user) | |||
1158 | rcu_bh_qs(cpu); | 1192 | rcu_bh_qs(cpu); |
1159 | } | 1193 | } |
1160 | rcu_preempt_check_callbacks(cpu); | 1194 | rcu_preempt_check_callbacks(cpu); |
1161 | raise_softirq(RCU_SOFTIRQ); | 1195 | if (rcu_pending(cpu)) |
1196 | raise_softirq(RCU_SOFTIRQ); | ||
1162 | } | 1197 | } |
1163 | 1198 | ||
1164 | #ifdef CONFIG_SMP | 1199 | #ifdef CONFIG_SMP |
@@ -1236,11 +1271,11 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |||
1236 | break; /* grace period idle or initializing, ignore. */ | 1271 | break; /* grace period idle or initializing, ignore. */ |
1237 | 1272 | ||
1238 | case RCU_SAVE_DYNTICK: | 1273 | case RCU_SAVE_DYNTICK: |
1239 | |||
1240 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ | ||
1241 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) | 1274 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) |
1242 | break; /* So gcc recognizes the dead code. */ | 1275 | break; /* So gcc recognizes the dead code. */ |
1243 | 1276 | ||
1277 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ | ||
1278 | |||
1244 | /* Record dyntick-idle state. */ | 1279 | /* Record dyntick-idle state. */ |
1245 | force_qs_rnp(rsp, dyntick_save_progress_counter); | 1280 | force_qs_rnp(rsp, dyntick_save_progress_counter); |
1246 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ | 1281 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ |
@@ -1449,11 +1484,13 @@ void synchronize_sched(void) | |||
1449 | if (rcu_blocking_is_gp()) | 1484 | if (rcu_blocking_is_gp()) |
1450 | return; | 1485 | return; |
1451 | 1486 | ||
1487 | init_rcu_head_on_stack(&rcu.head); | ||
1452 | init_completion(&rcu.completion); | 1488 | init_completion(&rcu.completion); |
1453 | /* Will wake me after RCU finished. */ | 1489 | /* Will wake me after RCU finished. */ |
1454 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | 1490 | call_rcu_sched(&rcu.head, wakeme_after_rcu); |
1455 | /* Wait for it. */ | 1491 | /* Wait for it. */ |
1456 | wait_for_completion(&rcu.completion); | 1492 | wait_for_completion(&rcu.completion); |
1493 | destroy_rcu_head_on_stack(&rcu.head); | ||
1457 | } | 1494 | } |
1458 | EXPORT_SYMBOL_GPL(synchronize_sched); | 1495 | EXPORT_SYMBOL_GPL(synchronize_sched); |
1459 | 1496 | ||
@@ -1473,11 +1510,13 @@ void synchronize_rcu_bh(void) | |||
1473 | if (rcu_blocking_is_gp()) | 1510 | if (rcu_blocking_is_gp()) |
1474 | return; | 1511 | return; |
1475 | 1512 | ||
1513 | init_rcu_head_on_stack(&rcu.head); | ||
1476 | init_completion(&rcu.completion); | 1514 | init_completion(&rcu.completion); |
1477 | /* Will wake me after RCU finished. */ | 1515 | /* Will wake me after RCU finished. */ |
1478 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | 1516 | call_rcu_bh(&rcu.head, wakeme_after_rcu); |
1479 | /* Wait for it. */ | 1517 | /* Wait for it. */ |
1480 | wait_for_completion(&rcu.completion); | 1518 | wait_for_completion(&rcu.completion); |
1519 | destroy_rcu_head_on_stack(&rcu.head); | ||
1481 | } | 1520 | } |
1482 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | 1521 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); |
1483 | 1522 | ||
@@ -1498,8 +1537,20 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | |||
1498 | check_cpu_stall(rsp, rdp); | 1537 | check_cpu_stall(rsp, rdp); |
1499 | 1538 | ||
1500 | /* Is the RCU core waiting for a quiescent state from this CPU? */ | 1539 | /* Is the RCU core waiting for a quiescent state from this CPU? */ |
1501 | if (rdp->qs_pending) { | 1540 | if (rdp->qs_pending && !rdp->passed_quiesc) { |
1541 | |||
1542 | /* | ||
1543 | * If force_quiescent_state() coming soon and this CPU | ||
1544 | * needs a quiescent state, and this is either RCU-sched | ||
1545 | * or RCU-bh, force a local reschedule. | ||
1546 | */ | ||
1502 | rdp->n_rp_qs_pending++; | 1547 | rdp->n_rp_qs_pending++; |
1548 | if (!rdp->preemptable && | ||
1549 | ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1, | ||
1550 | jiffies)) | ||
1551 | set_need_resched(); | ||
1552 | } else if (rdp->qs_pending && rdp->passed_quiesc) { | ||
1553 | rdp->n_rp_report_qs++; | ||
1503 | return 1; | 1554 | return 1; |
1504 | } | 1555 | } |
1505 | 1556 | ||
@@ -1767,6 +1818,21 @@ static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | |||
1767 | } | 1818 | } |
1768 | 1819 | ||
1769 | /* | 1820 | /* |
1821 | * This function is invoked towards the end of the scheduler's initialization | ||
1822 | * process. Before this is called, the idle task might contain | ||
1823 | * RCU read-side critical sections (during which time, this idle | ||
1824 | * task is booting the system). After this function is called, the | ||
1825 | * idle tasks are prohibited from containing RCU read-side critical | ||
1826 | * sections. This function also enables RCU lockdep checking. | ||
1827 | */ | ||
1828 | void rcu_scheduler_starting(void) | ||
1829 | { | ||
1830 | WARN_ON(num_online_cpus() != 1); | ||
1831 | WARN_ON(nr_context_switches() > 0); | ||
1832 | rcu_scheduler_active = 1; | ||
1833 | } | ||
1834 | |||
1835 | /* | ||
1770 | * Compute the per-level fanout, either using the exact fanout specified | 1836 | * Compute the per-level fanout, either using the exact fanout specified |
1771 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | 1837 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. |
1772 | */ | 1838 | */ |
@@ -1849,6 +1915,14 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
1849 | INIT_LIST_HEAD(&rnp->blocked_tasks[3]); | 1915 | INIT_LIST_HEAD(&rnp->blocked_tasks[3]); |
1850 | } | 1916 | } |
1851 | } | 1917 | } |
1918 | |||
1919 | rnp = rsp->level[NUM_RCU_LVLS - 1]; | ||
1920 | for_each_possible_cpu(i) { | ||
1921 | while (i > rnp->grphi) | ||
1922 | rnp++; | ||
1923 | rsp->rda[i]->mynode = rnp; | ||
1924 | rcu_boot_init_percpu_data(i, rsp); | ||
1925 | } | ||
1852 | } | 1926 | } |
1853 | 1927 | ||
1854 | /* | 1928 | /* |
@@ -1859,19 +1933,11 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
1859 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ | 1933 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
1860 | do { \ | 1934 | do { \ |
1861 | int i; \ | 1935 | int i; \ |
1862 | int j; \ | ||
1863 | struct rcu_node *rnp; \ | ||
1864 | \ | 1936 | \ |
1865 | rcu_init_one(rsp); \ | ||
1866 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | ||
1867 | j = 0; \ | ||
1868 | for_each_possible_cpu(i) { \ | 1937 | for_each_possible_cpu(i) { \ |
1869 | if (i > rnp[j].grphi) \ | ||
1870 | j++; \ | ||
1871 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | ||
1872 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | 1938 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ |
1873 | rcu_boot_init_percpu_data(i, rsp); \ | ||
1874 | } \ | 1939 | } \ |
1940 | rcu_init_one(rsp); \ | ||
1875 | } while (0) | 1941 | } while (0) |
1876 | 1942 | ||
1877 | void __init rcu_init(void) | 1943 | void __init rcu_init(void) |
@@ -1879,12 +1945,6 @@ void __init rcu_init(void) | |||
1879 | int cpu; | 1945 | int cpu; |
1880 | 1946 | ||
1881 | rcu_bootup_announce(); | 1947 | rcu_bootup_announce(); |
1882 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
1883 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | ||
1884 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
1885 | #if NUM_RCU_LVL_4 != 0 | ||
1886 | printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n"); | ||
1887 | #endif /* #if NUM_RCU_LVL_4 != 0 */ | ||
1888 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); | 1948 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
1889 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); | 1949 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); |
1890 | __rcu_init_preempt(); | 1950 | __rcu_init_preempt(); |
@@ -1898,6 +1958,7 @@ void __init rcu_init(void) | |||
1898 | cpu_notifier(rcu_cpu_notify, 0); | 1958 | cpu_notifier(rcu_cpu_notify, 0); |
1899 | for_each_online_cpu(cpu) | 1959 | for_each_online_cpu(cpu) |
1900 | rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); | 1960 | rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); |
1961 | check_cpu_stall_init(); | ||
1901 | } | 1962 | } |
1902 | 1963 | ||
1903 | #include "rcutree_plugin.h" | 1964 | #include "rcutree_plugin.h" |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index 4a525a30e08e..14c040b18ed0 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
@@ -223,6 +223,7 @@ struct rcu_data { | |||
223 | /* 5) __rcu_pending() statistics. */ | 223 | /* 5) __rcu_pending() statistics. */ |
224 | unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */ | 224 | unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */ |
225 | unsigned long n_rp_qs_pending; | 225 | unsigned long n_rp_qs_pending; |
226 | unsigned long n_rp_report_qs; | ||
226 | unsigned long n_rp_cb_ready; | 227 | unsigned long n_rp_cb_ready; |
227 | unsigned long n_rp_cpu_needs_gp; | 228 | unsigned long n_rp_cpu_needs_gp; |
228 | unsigned long n_rp_gp_completed; | 229 | unsigned long n_rp_gp_completed; |
@@ -326,6 +327,7 @@ struct rcu_state { | |||
326 | unsigned long jiffies_stall; /* Time at which to check */ | 327 | unsigned long jiffies_stall; /* Time at which to check */ |
327 | /* for CPU stalls. */ | 328 | /* for CPU stalls. */ |
328 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 329 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
330 | char *name; /* Name of structure. */ | ||
329 | }; | 331 | }; |
330 | 332 | ||
331 | /* Return values for rcu_preempt_offline_tasks(). */ | 333 | /* Return values for rcu_preempt_offline_tasks(). */ |
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 79b53bda8943..0e4f420245d9 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
@@ -26,6 +26,45 @@ | |||
26 | 26 | ||
27 | #include <linux/delay.h> | 27 | #include <linux/delay.h> |
28 | 28 | ||
29 | /* | ||
30 | * Check the RCU kernel configuration parameters and print informative | ||
31 | * messages about anything out of the ordinary. If you like #ifdef, you | ||
32 | * will love this function. | ||
33 | */ | ||
34 | static void __init rcu_bootup_announce_oddness(void) | ||
35 | { | ||
36 | #ifdef CONFIG_RCU_TRACE | ||
37 | printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n"); | ||
38 | #endif | ||
39 | #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) | ||
40 | printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n", | ||
41 | CONFIG_RCU_FANOUT); | ||
42 | #endif | ||
43 | #ifdef CONFIG_RCU_FANOUT_EXACT | ||
44 | printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n"); | ||
45 | #endif | ||
46 | #ifdef CONFIG_RCU_FAST_NO_HZ | ||
47 | printk(KERN_INFO | ||
48 | "\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | ||
49 | #endif | ||
50 | #ifdef CONFIG_PROVE_RCU | ||
51 | printk(KERN_INFO "\tRCU lockdep checking is enabled.\n"); | ||
52 | #endif | ||
53 | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE | ||
54 | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); | ||
55 | #endif | ||
56 | #ifndef CONFIG_RCU_CPU_STALL_DETECTOR | ||
57 | printk(KERN_INFO | ||
58 | "\tRCU-based detection of stalled CPUs is disabled.\n"); | ||
59 | #endif | ||
60 | #ifndef CONFIG_RCU_CPU_STALL_VERBOSE | ||
61 | printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n"); | ||
62 | #endif | ||
63 | #if NUM_RCU_LVL_4 != 0 | ||
64 | printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n"); | ||
65 | #endif | ||
66 | } | ||
67 | |||
29 | #ifdef CONFIG_TREE_PREEMPT_RCU | 68 | #ifdef CONFIG_TREE_PREEMPT_RCU |
30 | 69 | ||
31 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | 70 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); |
@@ -38,8 +77,8 @@ static int rcu_preempted_readers_exp(struct rcu_node *rnp); | |||
38 | */ | 77 | */ |
39 | static void __init rcu_bootup_announce(void) | 78 | static void __init rcu_bootup_announce(void) |
40 | { | 79 | { |
41 | printk(KERN_INFO | 80 | printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n"); |
42 | "Experimental preemptable hierarchical RCU implementation.\n"); | 81 | rcu_bootup_announce_oddness(); |
43 | } | 82 | } |
44 | 83 | ||
45 | /* | 84 | /* |
@@ -75,13 +114,19 @@ EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | |||
75 | * that this just means that the task currently running on the CPU is | 114 | * that this just means that the task currently running on the CPU is |
76 | * not in a quiescent state. There might be any number of tasks blocked | 115 | * not in a quiescent state. There might be any number of tasks blocked |
77 | * while in an RCU read-side critical section. | 116 | * while in an RCU read-side critical section. |
117 | * | ||
118 | * Unlike the other rcu_*_qs() functions, callers to this function | ||
119 | * must disable irqs in order to protect the assignment to | ||
120 | * ->rcu_read_unlock_special. | ||
78 | */ | 121 | */ |
79 | static void rcu_preempt_qs(int cpu) | 122 | static void rcu_preempt_qs(int cpu) |
80 | { | 123 | { |
81 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 124 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); |
125 | |||
82 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | 126 | rdp->passed_quiesc_completed = rdp->gpnum - 1; |
83 | barrier(); | 127 | barrier(); |
84 | rdp->passed_quiesc = 1; | 128 | rdp->passed_quiesc = 1; |
129 | current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
85 | } | 130 | } |
86 | 131 | ||
87 | /* | 132 | /* |
@@ -144,9 +189,8 @@ static void rcu_preempt_note_context_switch(int cpu) | |||
144 | * grace period, then the fact that the task has been enqueued | 189 | * grace period, then the fact that the task has been enqueued |
145 | * means that we continue to block the current grace period. | 190 | * means that we continue to block the current grace period. |
146 | */ | 191 | */ |
147 | rcu_preempt_qs(cpu); | ||
148 | local_irq_save(flags); | 192 | local_irq_save(flags); |
149 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 193 | rcu_preempt_qs(cpu); |
150 | local_irq_restore(flags); | 194 | local_irq_restore(flags); |
151 | } | 195 | } |
152 | 196 | ||
@@ -236,7 +280,6 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
236 | */ | 280 | */ |
237 | special = t->rcu_read_unlock_special; | 281 | special = t->rcu_read_unlock_special; |
238 | if (special & RCU_READ_UNLOCK_NEED_QS) { | 282 | if (special & RCU_READ_UNLOCK_NEED_QS) { |
239 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
240 | rcu_preempt_qs(smp_processor_id()); | 283 | rcu_preempt_qs(smp_processor_id()); |
241 | } | 284 | } |
242 | 285 | ||
@@ -473,7 +516,6 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
473 | struct task_struct *t = current; | 516 | struct task_struct *t = current; |
474 | 517 | ||
475 | if (t->rcu_read_lock_nesting == 0) { | 518 | if (t->rcu_read_lock_nesting == 0) { |
476 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
477 | rcu_preempt_qs(cpu); | 519 | rcu_preempt_qs(cpu); |
478 | return; | 520 | return; |
479 | } | 521 | } |
@@ -515,11 +557,13 @@ void synchronize_rcu(void) | |||
515 | if (!rcu_scheduler_active) | 557 | if (!rcu_scheduler_active) |
516 | return; | 558 | return; |
517 | 559 | ||
560 | init_rcu_head_on_stack(&rcu.head); | ||
518 | init_completion(&rcu.completion); | 561 | init_completion(&rcu.completion); |
519 | /* Will wake me after RCU finished. */ | 562 | /* Will wake me after RCU finished. */ |
520 | call_rcu(&rcu.head, wakeme_after_rcu); | 563 | call_rcu(&rcu.head, wakeme_after_rcu); |
521 | /* Wait for it. */ | 564 | /* Wait for it. */ |
522 | wait_for_completion(&rcu.completion); | 565 | wait_for_completion(&rcu.completion); |
566 | destroy_rcu_head_on_stack(&rcu.head); | ||
523 | } | 567 | } |
524 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 568 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
525 | 569 | ||
@@ -754,6 +798,7 @@ void exit_rcu(void) | |||
754 | static void __init rcu_bootup_announce(void) | 798 | static void __init rcu_bootup_announce(void) |
755 | { | 799 | { |
756 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | 800 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); |
801 | rcu_bootup_announce_oddness(); | ||
757 | } | 802 | } |
758 | 803 | ||
759 | /* | 804 | /* |
@@ -1008,6 +1053,8 @@ static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff); | |||
1008 | int rcu_needs_cpu(int cpu) | 1053 | int rcu_needs_cpu(int cpu) |
1009 | { | 1054 | { |
1010 | int c = 0; | 1055 | int c = 0; |
1056 | int snap; | ||
1057 | int snap_nmi; | ||
1011 | int thatcpu; | 1058 | int thatcpu; |
1012 | 1059 | ||
1013 | /* Check for being in the holdoff period. */ | 1060 | /* Check for being in the holdoff period. */ |
@@ -1015,12 +1062,18 @@ int rcu_needs_cpu(int cpu) | |||
1015 | return rcu_needs_cpu_quick_check(cpu); | 1062 | return rcu_needs_cpu_quick_check(cpu); |
1016 | 1063 | ||
1017 | /* Don't bother unless we are the last non-dyntick-idle CPU. */ | 1064 | /* Don't bother unless we are the last non-dyntick-idle CPU. */ |
1018 | for_each_cpu_not(thatcpu, nohz_cpu_mask) | 1065 | for_each_online_cpu(thatcpu) { |
1019 | if (thatcpu != cpu) { | 1066 | if (thatcpu == cpu) |
1067 | continue; | ||
1068 | snap = per_cpu(rcu_dynticks, thatcpu).dynticks; | ||
1069 | snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi; | ||
1070 | smp_mb(); /* Order sampling of snap with end of grace period. */ | ||
1071 | if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) { | ||
1020 | per_cpu(rcu_dyntick_drain, cpu) = 0; | 1072 | per_cpu(rcu_dyntick_drain, cpu) = 0; |
1021 | per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; | 1073 | per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; |
1022 | return rcu_needs_cpu_quick_check(cpu); | 1074 | return rcu_needs_cpu_quick_check(cpu); |
1023 | } | 1075 | } |
1076 | } | ||
1024 | 1077 | ||
1025 | /* Check and update the rcu_dyntick_drain sequencing. */ | 1078 | /* Check and update the rcu_dyntick_drain sequencing. */ |
1026 | if (per_cpu(rcu_dyntick_drain, cpu) <= 0) { | 1079 | if (per_cpu(rcu_dyntick_drain, cpu) <= 0) { |
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index d45db2e35d27..36c95b45738e 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
@@ -241,11 +241,13 @@ static const struct file_operations rcugp_fops = { | |||
241 | static void print_one_rcu_pending(struct seq_file *m, struct rcu_data *rdp) | 241 | static void print_one_rcu_pending(struct seq_file *m, struct rcu_data *rdp) |
242 | { | 242 | { |
243 | seq_printf(m, "%3d%cnp=%ld " | 243 | seq_printf(m, "%3d%cnp=%ld " |
244 | "qsp=%ld cbr=%ld cng=%ld gpc=%ld gps=%ld nf=%ld nn=%ld\n", | 244 | "qsp=%ld rpq=%ld cbr=%ld cng=%ld " |
245 | "gpc=%ld gps=%ld nf=%ld nn=%ld\n", | ||
245 | rdp->cpu, | 246 | rdp->cpu, |
246 | cpu_is_offline(rdp->cpu) ? '!' : ' ', | 247 | cpu_is_offline(rdp->cpu) ? '!' : ' ', |
247 | rdp->n_rcu_pending, | 248 | rdp->n_rcu_pending, |
248 | rdp->n_rp_qs_pending, | 249 | rdp->n_rp_qs_pending, |
250 | rdp->n_rp_report_qs, | ||
249 | rdp->n_rp_cb_ready, | 251 | rdp->n_rp_cb_ready, |
250 | rdp->n_rp_cpu_needs_gp, | 252 | rdp->n_rp_cpu_needs_gp, |
251 | rdp->n_rp_gp_completed, | 253 | rdp->n_rp_gp_completed, |
diff --git a/kernel/relay.c b/kernel/relay.c index 3d97f2821611..c7cf397fb929 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -539,7 +539,7 @@ static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, | |||
539 | "relay_hotcpu_callback: cpu %d buffer " | 539 | "relay_hotcpu_callback: cpu %d buffer " |
540 | "creation failed\n", hotcpu); | 540 | "creation failed\n", hotcpu); |
541 | mutex_unlock(&relay_channels_mutex); | 541 | mutex_unlock(&relay_channels_mutex); |
542 | return NOTIFY_BAD; | 542 | return notifier_from_errno(-ENOMEM); |
543 | } | 543 | } |
544 | } | 544 | } |
545 | mutex_unlock(&relay_channels_mutex); | 545 | mutex_unlock(&relay_channels_mutex); |
@@ -1231,8 +1231,8 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1231 | size_t read_subbuf = read_start / subbuf_size; | 1231 | size_t read_subbuf = read_start / subbuf_size; |
1232 | size_t padding = rbuf->padding[read_subbuf]; | 1232 | size_t padding = rbuf->padding[read_subbuf]; |
1233 | size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; | 1233 | size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; |
1234 | struct page *pages[PIPE_BUFFERS]; | 1234 | struct page *pages[PIPE_DEF_BUFFERS]; |
1235 | struct partial_page partial[PIPE_BUFFERS]; | 1235 | struct partial_page partial[PIPE_DEF_BUFFERS]; |
1236 | struct splice_pipe_desc spd = { | 1236 | struct splice_pipe_desc spd = { |
1237 | .pages = pages, | 1237 | .pages = pages, |
1238 | .nr_pages = 0, | 1238 | .nr_pages = 0, |
@@ -1245,6 +1245,8 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1245 | 1245 | ||
1246 | if (rbuf->subbufs_produced == rbuf->subbufs_consumed) | 1246 | if (rbuf->subbufs_produced == rbuf->subbufs_consumed) |
1247 | return 0; | 1247 | return 0; |
1248 | if (splice_grow_spd(pipe, &spd)) | ||
1249 | return -ENOMEM; | ||
1248 | 1250 | ||
1249 | /* | 1251 | /* |
1250 | * Adjust read len, if longer than what is available | 1252 | * Adjust read len, if longer than what is available |
@@ -1255,7 +1257,7 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1255 | subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; | 1257 | subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; |
1256 | pidx = (read_start / PAGE_SIZE) % subbuf_pages; | 1258 | pidx = (read_start / PAGE_SIZE) % subbuf_pages; |
1257 | poff = read_start & ~PAGE_MASK; | 1259 | poff = read_start & ~PAGE_MASK; |
1258 | nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS); | 1260 | nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers); |
1259 | 1261 | ||
1260 | for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { | 1262 | for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { |
1261 | unsigned int this_len, this_end, private; | 1263 | unsigned int this_len, this_end, private; |
@@ -1289,16 +1291,19 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1289 | } | 1291 | } |
1290 | } | 1292 | } |
1291 | 1293 | ||
1294 | ret = 0; | ||
1292 | if (!spd.nr_pages) | 1295 | if (!spd.nr_pages) |
1293 | return 0; | 1296 | goto out; |
1294 | 1297 | ||
1295 | ret = *nonpad_ret = splice_to_pipe(pipe, &spd); | 1298 | ret = *nonpad_ret = splice_to_pipe(pipe, &spd); |
1296 | if (ret < 0 || ret < total_len) | 1299 | if (ret < 0 || ret < total_len) |
1297 | return ret; | 1300 | goto out; |
1298 | 1301 | ||
1299 | if (read_start + ret == nonpad_end) | 1302 | if (read_start + ret == nonpad_end) |
1300 | ret += padding; | 1303 | ret += padding; |
1301 | 1304 | ||
1305 | out: | ||
1306 | splice_shrink_spd(pipe, &spd); | ||
1302 | return ret; | 1307 | return ret; |
1303 | } | 1308 | } |
1304 | 1309 | ||
diff --git a/kernel/resource.c b/kernel/resource.c index 9c358e263534..7b36976e5dea 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -15,6 +15,7 @@ | |||
15 | #include <linux/spinlock.h> | 15 | #include <linux/spinlock.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/proc_fs.h> | 17 | #include <linux/proc_fs.h> |
18 | #include <linux/sched.h> | ||
18 | #include <linux/seq_file.h> | 19 | #include <linux/seq_file.h> |
19 | #include <linux/device.h> | 20 | #include <linux/device.h> |
20 | #include <linux/pfn.h> | 21 | #include <linux/pfn.h> |
@@ -681,6 +682,8 @@ resource_size_t resource_alignment(struct resource *res) | |||
681 | * release_region releases a matching busy region. | 682 | * release_region releases a matching busy region. |
682 | */ | 683 | */ |
683 | 684 | ||
685 | static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); | ||
686 | |||
684 | /** | 687 | /** |
685 | * __request_region - create a new busy resource region | 688 | * __request_region - create a new busy resource region |
686 | * @parent: parent resource descriptor | 689 | * @parent: parent resource descriptor |
@@ -693,6 +696,7 @@ struct resource * __request_region(struct resource *parent, | |||
693 | resource_size_t start, resource_size_t n, | 696 | resource_size_t start, resource_size_t n, |
694 | const char *name, int flags) | 697 | const char *name, int flags) |
695 | { | 698 | { |
699 | DECLARE_WAITQUEUE(wait, current); | ||
696 | struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); | 700 | struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); |
697 | 701 | ||
698 | if (!res) | 702 | if (!res) |
@@ -717,7 +721,15 @@ struct resource * __request_region(struct resource *parent, | |||
717 | if (!(conflict->flags & IORESOURCE_BUSY)) | 721 | if (!(conflict->flags & IORESOURCE_BUSY)) |
718 | continue; | 722 | continue; |
719 | } | 723 | } |
720 | 724 | if (conflict->flags & flags & IORESOURCE_MUXED) { | |
725 | add_wait_queue(&muxed_resource_wait, &wait); | ||
726 | write_unlock(&resource_lock); | ||
727 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
728 | schedule(); | ||
729 | remove_wait_queue(&muxed_resource_wait, &wait); | ||
730 | write_lock(&resource_lock); | ||
731 | continue; | ||
732 | } | ||
721 | /* Uhhuh, that didn't work out.. */ | 733 | /* Uhhuh, that didn't work out.. */ |
722 | kfree(res); | 734 | kfree(res); |
723 | res = NULL; | 735 | res = NULL; |
@@ -791,6 +803,8 @@ void __release_region(struct resource *parent, resource_size_t start, | |||
791 | break; | 803 | break; |
792 | *p = res->sibling; | 804 | *p = res->sibling; |
793 | write_unlock(&resource_lock); | 805 | write_unlock(&resource_lock); |
806 | if (res->flags & IORESOURCE_MUXED) | ||
807 | wake_up(&muxed_resource_wait); | ||
794 | kfree(res); | 808 | kfree(res); |
795 | return; | 809 | return; |
796 | } | 810 | } |
diff --git a/kernel/sched.c b/kernel/sched.c index 4d051c7517fd..d48408142503 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -55,9 +55,9 @@ | |||
55 | #include <linux/cpu.h> | 55 | #include <linux/cpu.h> |
56 | #include <linux/cpuset.h> | 56 | #include <linux/cpuset.h> |
57 | #include <linux/percpu.h> | 57 | #include <linux/percpu.h> |
58 | #include <linux/kthread.h> | ||
59 | #include <linux/proc_fs.h> | 58 | #include <linux/proc_fs.h> |
60 | #include <linux/seq_file.h> | 59 | #include <linux/seq_file.h> |
60 | #include <linux/stop_machine.h> | ||
61 | #include <linux/sysctl.h> | 61 | #include <linux/sysctl.h> |
62 | #include <linux/syscalls.h> | 62 | #include <linux/syscalls.h> |
63 | #include <linux/times.h> | 63 | #include <linux/times.h> |
@@ -503,8 +503,11 @@ struct rq { | |||
503 | #define CPU_LOAD_IDX_MAX 5 | 503 | #define CPU_LOAD_IDX_MAX 5 |
504 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 504 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
505 | #ifdef CONFIG_NO_HZ | 505 | #ifdef CONFIG_NO_HZ |
506 | u64 nohz_stamp; | ||
506 | unsigned char in_nohz_recently; | 507 | unsigned char in_nohz_recently; |
507 | #endif | 508 | #endif |
509 | unsigned int skip_clock_update; | ||
510 | |||
508 | /* capture load from *all* tasks on this cpu: */ | 511 | /* capture load from *all* tasks on this cpu: */ |
509 | struct load_weight load; | 512 | struct load_weight load; |
510 | unsigned long nr_load_updates; | 513 | unsigned long nr_load_updates; |
@@ -546,15 +549,13 @@ struct rq { | |||
546 | int post_schedule; | 549 | int post_schedule; |
547 | int active_balance; | 550 | int active_balance; |
548 | int push_cpu; | 551 | int push_cpu; |
552 | struct cpu_stop_work active_balance_work; | ||
549 | /* cpu of this runqueue: */ | 553 | /* cpu of this runqueue: */ |
550 | int cpu; | 554 | int cpu; |
551 | int online; | 555 | int online; |
552 | 556 | ||
553 | unsigned long avg_load_per_task; | 557 | unsigned long avg_load_per_task; |
554 | 558 | ||
555 | struct task_struct *migration_thread; | ||
556 | struct list_head migration_queue; | ||
557 | |||
558 | u64 rt_avg; | 559 | u64 rt_avg; |
559 | u64 age_stamp; | 560 | u64 age_stamp; |
560 | u64 idle_stamp; | 561 | u64 idle_stamp; |
@@ -602,6 +603,13 @@ static inline | |||
602 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 603 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
603 | { | 604 | { |
604 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 605 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
606 | |||
607 | /* | ||
608 | * A queue event has occurred, and we're going to schedule. In | ||
609 | * this case, we can save a useless back to back clock update. | ||
610 | */ | ||
611 | if (test_tsk_need_resched(p)) | ||
612 | rq->skip_clock_update = 1; | ||
605 | } | 613 | } |
606 | 614 | ||
607 | static inline int cpu_of(struct rq *rq) | 615 | static inline int cpu_of(struct rq *rq) |
@@ -636,7 +644,8 @@ static inline int cpu_of(struct rq *rq) | |||
636 | 644 | ||
637 | inline void update_rq_clock(struct rq *rq) | 645 | inline void update_rq_clock(struct rq *rq) |
638 | { | 646 | { |
639 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 647 | if (!rq->skip_clock_update) |
648 | rq->clock = sched_clock_cpu(cpu_of(rq)); | ||
640 | } | 649 | } |
641 | 650 | ||
642 | /* | 651 | /* |
@@ -914,16 +923,12 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
914 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 923 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
915 | 924 | ||
916 | /* | 925 | /* |
917 | * Check whether the task is waking, we use this to synchronize against | 926 | * Check whether the task is waking, we use this to synchronize ->cpus_allowed |
918 | * ttwu() so that task_cpu() reports a stable number. | 927 | * against ttwu(). |
919 | * | ||
920 | * We need to make an exception for PF_STARTING tasks because the fork | ||
921 | * path might require task_rq_lock() to work, eg. it can call | ||
922 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
923 | */ | 928 | */ |
924 | static inline int task_is_waking(struct task_struct *p) | 929 | static inline int task_is_waking(struct task_struct *p) |
925 | { | 930 | { |
926 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | 931 | return unlikely(p->state == TASK_WAKING); |
927 | } | 932 | } |
928 | 933 | ||
929 | /* | 934 | /* |
@@ -936,11 +941,9 @@ static inline struct rq *__task_rq_lock(struct task_struct *p) | |||
936 | struct rq *rq; | 941 | struct rq *rq; |
937 | 942 | ||
938 | for (;;) { | 943 | for (;;) { |
939 | while (task_is_waking(p)) | ||
940 | cpu_relax(); | ||
941 | rq = task_rq(p); | 944 | rq = task_rq(p); |
942 | raw_spin_lock(&rq->lock); | 945 | raw_spin_lock(&rq->lock); |
943 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | 946 | if (likely(rq == task_rq(p))) |
944 | return rq; | 947 | return rq; |
945 | raw_spin_unlock(&rq->lock); | 948 | raw_spin_unlock(&rq->lock); |
946 | } | 949 | } |
@@ -957,25 +960,15 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
957 | struct rq *rq; | 960 | struct rq *rq; |
958 | 961 | ||
959 | for (;;) { | 962 | for (;;) { |
960 | while (task_is_waking(p)) | ||
961 | cpu_relax(); | ||
962 | local_irq_save(*flags); | 963 | local_irq_save(*flags); |
963 | rq = task_rq(p); | 964 | rq = task_rq(p); |
964 | raw_spin_lock(&rq->lock); | 965 | raw_spin_lock(&rq->lock); |
965 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | 966 | if (likely(rq == task_rq(p))) |
966 | return rq; | 967 | return rq; |
967 | raw_spin_unlock_irqrestore(&rq->lock, *flags); | 968 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
968 | } | 969 | } |
969 | } | 970 | } |
970 | 971 | ||
971 | void task_rq_unlock_wait(struct task_struct *p) | ||
972 | { | ||
973 | struct rq *rq = task_rq(p); | ||
974 | |||
975 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | ||
976 | raw_spin_unlock_wait(&rq->lock); | ||
977 | } | ||
978 | |||
979 | static void __task_rq_unlock(struct rq *rq) | 972 | static void __task_rq_unlock(struct rq *rq) |
980 | __releases(rq->lock) | 973 | __releases(rq->lock) |
981 | { | 974 | { |
@@ -1239,6 +1232,17 @@ void wake_up_idle_cpu(int cpu) | |||
1239 | if (!tsk_is_polling(rq->idle)) | 1232 | if (!tsk_is_polling(rq->idle)) |
1240 | smp_send_reschedule(cpu); | 1233 | smp_send_reschedule(cpu); |
1241 | } | 1234 | } |
1235 | |||
1236 | int nohz_ratelimit(int cpu) | ||
1237 | { | ||
1238 | struct rq *rq = cpu_rq(cpu); | ||
1239 | u64 diff = rq->clock - rq->nohz_stamp; | ||
1240 | |||
1241 | rq->nohz_stamp = rq->clock; | ||
1242 | |||
1243 | return diff < (NSEC_PER_SEC / HZ) >> 1; | ||
1244 | } | ||
1245 | |||
1242 | #endif /* CONFIG_NO_HZ */ | 1246 | #endif /* CONFIG_NO_HZ */ |
1243 | 1247 | ||
1244 | static u64 sched_avg_period(void) | 1248 | static u64 sched_avg_period(void) |
@@ -1781,8 +1785,6 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |||
1781 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 1785 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1782 | } | 1786 | } |
1783 | } | 1787 | } |
1784 | update_rq_clock(rq1); | ||
1785 | update_rq_clock(rq2); | ||
1786 | } | 1788 | } |
1787 | 1789 | ||
1788 | /* | 1790 | /* |
@@ -1813,7 +1815,7 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1813 | } | 1815 | } |
1814 | #endif | 1816 | #endif |
1815 | 1817 | ||
1816 | static void calc_load_account_active(struct rq *this_rq); | 1818 | static void calc_load_account_idle(struct rq *this_rq); |
1817 | static void update_sysctl(void); | 1819 | static void update_sysctl(void); |
1818 | static int get_update_sysctl_factor(void); | 1820 | static int get_update_sysctl_factor(void); |
1819 | 1821 | ||
@@ -1870,62 +1872,43 @@ static void set_load_weight(struct task_struct *p) | |||
1870 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 1872 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; |
1871 | } | 1873 | } |
1872 | 1874 | ||
1873 | static void update_avg(u64 *avg, u64 sample) | 1875 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
1874 | { | ||
1875 | s64 diff = sample - *avg; | ||
1876 | *avg += diff >> 3; | ||
1877 | } | ||
1878 | |||
1879 | static void | ||
1880 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1881 | { | 1876 | { |
1882 | if (wakeup) | 1877 | update_rq_clock(rq); |
1883 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
1884 | |||
1885 | sched_info_queued(p); | 1878 | sched_info_queued(p); |
1886 | p->sched_class->enqueue_task(rq, p, wakeup, head); | 1879 | p->sched_class->enqueue_task(rq, p, flags); |
1887 | p->se.on_rq = 1; | 1880 | p->se.on_rq = 1; |
1888 | } | 1881 | } |
1889 | 1882 | ||
1890 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1883 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
1891 | { | 1884 | { |
1892 | if (sleep) { | 1885 | update_rq_clock(rq); |
1893 | if (p->se.last_wakeup) { | ||
1894 | update_avg(&p->se.avg_overlap, | ||
1895 | p->se.sum_exec_runtime - p->se.last_wakeup); | ||
1896 | p->se.last_wakeup = 0; | ||
1897 | } else { | ||
1898 | update_avg(&p->se.avg_wakeup, | ||
1899 | sysctl_sched_wakeup_granularity); | ||
1900 | } | ||
1901 | } | ||
1902 | |||
1903 | sched_info_dequeued(p); | 1886 | sched_info_dequeued(p); |
1904 | p->sched_class->dequeue_task(rq, p, sleep); | 1887 | p->sched_class->dequeue_task(rq, p, flags); |
1905 | p->se.on_rq = 0; | 1888 | p->se.on_rq = 0; |
1906 | } | 1889 | } |
1907 | 1890 | ||
1908 | /* | 1891 | /* |
1909 | * activate_task - move a task to the runqueue. | 1892 | * activate_task - move a task to the runqueue. |
1910 | */ | 1893 | */ |
1911 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | 1894 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1912 | { | 1895 | { |
1913 | if (task_contributes_to_load(p)) | 1896 | if (task_contributes_to_load(p)) |
1914 | rq->nr_uninterruptible--; | 1897 | rq->nr_uninterruptible--; |
1915 | 1898 | ||
1916 | enqueue_task(rq, p, wakeup, false); | 1899 | enqueue_task(rq, p, flags); |
1917 | inc_nr_running(rq); | 1900 | inc_nr_running(rq); |
1918 | } | 1901 | } |
1919 | 1902 | ||
1920 | /* | 1903 | /* |
1921 | * deactivate_task - remove a task from the runqueue. | 1904 | * deactivate_task - remove a task from the runqueue. |
1922 | */ | 1905 | */ |
1923 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | 1906 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1924 | { | 1907 | { |
1925 | if (task_contributes_to_load(p)) | 1908 | if (task_contributes_to_load(p)) |
1926 | rq->nr_uninterruptible++; | 1909 | rq->nr_uninterruptible++; |
1927 | 1910 | ||
1928 | dequeue_task(rq, p, sleep); | 1911 | dequeue_task(rq, p, flags); |
1929 | dec_nr_running(rq); | 1912 | dec_nr_running(rq); |
1930 | } | 1913 | } |
1931 | 1914 | ||
@@ -2054,21 +2037,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
2054 | __set_task_cpu(p, new_cpu); | 2037 | __set_task_cpu(p, new_cpu); |
2055 | } | 2038 | } |
2056 | 2039 | ||
2057 | struct migration_req { | 2040 | struct migration_arg { |
2058 | struct list_head list; | ||
2059 | |||
2060 | struct task_struct *task; | 2041 | struct task_struct *task; |
2061 | int dest_cpu; | 2042 | int dest_cpu; |
2062 | |||
2063 | struct completion done; | ||
2064 | }; | 2043 | }; |
2065 | 2044 | ||
2045 | static int migration_cpu_stop(void *data); | ||
2046 | |||
2066 | /* | 2047 | /* |
2067 | * The task's runqueue lock must be held. | 2048 | * The task's runqueue lock must be held. |
2068 | * Returns true if you have to wait for migration thread. | 2049 | * Returns true if you have to wait for migration thread. |
2069 | */ | 2050 | */ |
2070 | static int | 2051 | static bool migrate_task(struct task_struct *p, int dest_cpu) |
2071 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | ||
2072 | { | 2052 | { |
2073 | struct rq *rq = task_rq(p); | 2053 | struct rq *rq = task_rq(p); |
2074 | 2054 | ||
@@ -2076,58 +2056,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
2076 | * If the task is not on a runqueue (and not running), then | 2056 | * If the task is not on a runqueue (and not running), then |
2077 | * the next wake-up will properly place the task. | 2057 | * the next wake-up will properly place the task. |
2078 | */ | 2058 | */ |
2079 | if (!p->se.on_rq && !task_running(rq, p)) | 2059 | return p->se.on_rq || task_running(rq, p); |
2080 | return 0; | ||
2081 | |||
2082 | init_completion(&req->done); | ||
2083 | req->task = p; | ||
2084 | req->dest_cpu = dest_cpu; | ||
2085 | list_add(&req->list, &rq->migration_queue); | ||
2086 | |||
2087 | return 1; | ||
2088 | } | ||
2089 | |||
2090 | /* | ||
2091 | * wait_task_context_switch - wait for a thread to complete at least one | ||
2092 | * context switch. | ||
2093 | * | ||
2094 | * @p must not be current. | ||
2095 | */ | ||
2096 | void wait_task_context_switch(struct task_struct *p) | ||
2097 | { | ||
2098 | unsigned long nvcsw, nivcsw, flags; | ||
2099 | int running; | ||
2100 | struct rq *rq; | ||
2101 | |||
2102 | nvcsw = p->nvcsw; | ||
2103 | nivcsw = p->nivcsw; | ||
2104 | for (;;) { | ||
2105 | /* | ||
2106 | * The runqueue is assigned before the actual context | ||
2107 | * switch. We need to take the runqueue lock. | ||
2108 | * | ||
2109 | * We could check initially without the lock but it is | ||
2110 | * very likely that we need to take the lock in every | ||
2111 | * iteration. | ||
2112 | */ | ||
2113 | rq = task_rq_lock(p, &flags); | ||
2114 | running = task_running(rq, p); | ||
2115 | task_rq_unlock(rq, &flags); | ||
2116 | |||
2117 | if (likely(!running)) | ||
2118 | break; | ||
2119 | /* | ||
2120 | * The switch count is incremented before the actual | ||
2121 | * context switch. We thus wait for two switches to be | ||
2122 | * sure at least one completed. | ||
2123 | */ | ||
2124 | if ((p->nvcsw - nvcsw) > 1) | ||
2125 | break; | ||
2126 | if ((p->nivcsw - nivcsw) > 1) | ||
2127 | break; | ||
2128 | |||
2129 | cpu_relax(); | ||
2130 | } | ||
2131 | } | 2060 | } |
2132 | 2061 | ||
2133 | /* | 2062 | /* |
@@ -2185,7 +2114,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
2185 | * just go back and repeat. | 2114 | * just go back and repeat. |
2186 | */ | 2115 | */ |
2187 | rq = task_rq_lock(p, &flags); | 2116 | rq = task_rq_lock(p, &flags); |
2188 | trace_sched_wait_task(rq, p); | 2117 | trace_sched_wait_task(p); |
2189 | running = task_running(rq, p); | 2118 | running = task_running(rq, p); |
2190 | on_rq = p->se.on_rq; | 2119 | on_rq = p->se.on_rq; |
2191 | ncsw = 0; | 2120 | ncsw = 0; |
@@ -2283,6 +2212,9 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2283 | } | 2212 | } |
2284 | 2213 | ||
2285 | #ifdef CONFIG_SMP | 2214 | #ifdef CONFIG_SMP |
2215 | /* | ||
2216 | * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. | ||
2217 | */ | ||
2286 | static int select_fallback_rq(int cpu, struct task_struct *p) | 2218 | static int select_fallback_rq(int cpu, struct task_struct *p) |
2287 | { | 2219 | { |
2288 | int dest_cpu; | 2220 | int dest_cpu; |
@@ -2299,12 +2231,8 @@ static int select_fallback_rq(int cpu, struct task_struct *p) | |||
2299 | return dest_cpu; | 2231 | return dest_cpu; |
2300 | 2232 | ||
2301 | /* No more Mr. Nice Guy. */ | 2233 | /* No more Mr. Nice Guy. */ |
2302 | if (dest_cpu >= nr_cpu_ids) { | 2234 | if (unlikely(dest_cpu >= nr_cpu_ids)) { |
2303 | rcu_read_lock(); | 2235 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
2304 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
2305 | rcu_read_unlock(); | ||
2306 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
2307 | |||
2308 | /* | 2236 | /* |
2309 | * Don't tell them about moving exiting tasks or | 2237 | * Don't tell them about moving exiting tasks or |
2310 | * kernel threads (both mm NULL), since they never | 2238 | * kernel threads (both mm NULL), since they never |
@@ -2321,17 +2249,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p) | |||
2321 | } | 2249 | } |
2322 | 2250 | ||
2323 | /* | 2251 | /* |
2324 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without | 2252 | * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. |
2325 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | ||
2326 | * by: | ||
2327 | * | ||
2328 | * exec: is unstable, retry loop | ||
2329 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | ||
2330 | */ | 2253 | */ |
2331 | static inline | 2254 | static inline |
2332 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | 2255 | int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) |
2333 | { | 2256 | { |
2334 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | 2257 | int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); |
2335 | 2258 | ||
2336 | /* | 2259 | /* |
2337 | * In order not to call set_task_cpu() on a blocking task we need | 2260 | * In order not to call set_task_cpu() on a blocking task we need |
@@ -2349,6 +2272,12 @@ int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | |||
2349 | 2272 | ||
2350 | return cpu; | 2273 | return cpu; |
2351 | } | 2274 | } |
2275 | |||
2276 | static void update_avg(u64 *avg, u64 sample) | ||
2277 | { | ||
2278 | s64 diff = sample - *avg; | ||
2279 | *avg += diff >> 3; | ||
2280 | } | ||
2352 | #endif | 2281 | #endif |
2353 | 2282 | ||
2354 | /*** | 2283 | /*** |
@@ -2370,16 +2299,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2370 | { | 2299 | { |
2371 | int cpu, orig_cpu, this_cpu, success = 0; | 2300 | int cpu, orig_cpu, this_cpu, success = 0; |
2372 | unsigned long flags; | 2301 | unsigned long flags; |
2302 | unsigned long en_flags = ENQUEUE_WAKEUP; | ||
2373 | struct rq *rq; | 2303 | struct rq *rq; |
2374 | 2304 | ||
2375 | if (!sched_feat(SYNC_WAKEUPS)) | ||
2376 | wake_flags &= ~WF_SYNC; | ||
2377 | |||
2378 | this_cpu = get_cpu(); | 2305 | this_cpu = get_cpu(); |
2379 | 2306 | ||
2380 | smp_wmb(); | 2307 | smp_wmb(); |
2381 | rq = task_rq_lock(p, &flags); | 2308 | rq = task_rq_lock(p, &flags); |
2382 | update_rq_clock(rq); | ||
2383 | if (!(p->state & state)) | 2309 | if (!(p->state & state)) |
2384 | goto out; | 2310 | goto out; |
2385 | 2311 | ||
@@ -2399,28 +2325,26 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2399 | * | 2325 | * |
2400 | * First fix up the nr_uninterruptible count: | 2326 | * First fix up the nr_uninterruptible count: |
2401 | */ | 2327 | */ |
2402 | if (task_contributes_to_load(p)) | 2328 | if (task_contributes_to_load(p)) { |
2403 | rq->nr_uninterruptible--; | 2329 | if (likely(cpu_online(orig_cpu))) |
2330 | rq->nr_uninterruptible--; | ||
2331 | else | ||
2332 | this_rq()->nr_uninterruptible--; | ||
2333 | } | ||
2404 | p->state = TASK_WAKING; | 2334 | p->state = TASK_WAKING; |
2405 | 2335 | ||
2406 | if (p->sched_class->task_waking) | 2336 | if (p->sched_class->task_waking) { |
2407 | p->sched_class->task_waking(rq, p); | 2337 | p->sched_class->task_waking(rq, p); |
2338 | en_flags |= ENQUEUE_WAKING; | ||
2339 | } | ||
2408 | 2340 | ||
2409 | __task_rq_unlock(rq); | 2341 | cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); |
2410 | 2342 | if (cpu != orig_cpu) | |
2411 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
2412 | if (cpu != orig_cpu) { | ||
2413 | /* | ||
2414 | * Since we migrate the task without holding any rq->lock, | ||
2415 | * we need to be careful with task_rq_lock(), since that | ||
2416 | * might end up locking an invalid rq. | ||
2417 | */ | ||
2418 | set_task_cpu(p, cpu); | 2343 | set_task_cpu(p, cpu); |
2419 | } | 2344 | __task_rq_unlock(rq); |
2420 | 2345 | ||
2421 | rq = cpu_rq(cpu); | 2346 | rq = cpu_rq(cpu); |
2422 | raw_spin_lock(&rq->lock); | 2347 | raw_spin_lock(&rq->lock); |
2423 | update_rq_clock(rq); | ||
2424 | 2348 | ||
2425 | /* | 2349 | /* |
2426 | * We migrated the task without holding either rq->lock, however | 2350 | * We migrated the task without holding either rq->lock, however |
@@ -2448,36 +2372,20 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2448 | 2372 | ||
2449 | out_activate: | 2373 | out_activate: |
2450 | #endif /* CONFIG_SMP */ | 2374 | #endif /* CONFIG_SMP */ |
2451 | schedstat_inc(p, se.nr_wakeups); | 2375 | schedstat_inc(p, se.statistics.nr_wakeups); |
2452 | if (wake_flags & WF_SYNC) | 2376 | if (wake_flags & WF_SYNC) |
2453 | schedstat_inc(p, se.nr_wakeups_sync); | 2377 | schedstat_inc(p, se.statistics.nr_wakeups_sync); |
2454 | if (orig_cpu != cpu) | 2378 | if (orig_cpu != cpu) |
2455 | schedstat_inc(p, se.nr_wakeups_migrate); | 2379 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
2456 | if (cpu == this_cpu) | 2380 | if (cpu == this_cpu) |
2457 | schedstat_inc(p, se.nr_wakeups_local); | 2381 | schedstat_inc(p, se.statistics.nr_wakeups_local); |
2458 | else | 2382 | else |
2459 | schedstat_inc(p, se.nr_wakeups_remote); | 2383 | schedstat_inc(p, se.statistics.nr_wakeups_remote); |
2460 | activate_task(rq, p, 1); | 2384 | activate_task(rq, p, en_flags); |
2461 | success = 1; | 2385 | success = 1; |
2462 | 2386 | ||
2463 | /* | ||
2464 | * Only attribute actual wakeups done by this task. | ||
2465 | */ | ||
2466 | if (!in_interrupt()) { | ||
2467 | struct sched_entity *se = ¤t->se; | ||
2468 | u64 sample = se->sum_exec_runtime; | ||
2469 | |||
2470 | if (se->last_wakeup) | ||
2471 | sample -= se->last_wakeup; | ||
2472 | else | ||
2473 | sample -= se->start_runtime; | ||
2474 | update_avg(&se->avg_wakeup, sample); | ||
2475 | |||
2476 | se->last_wakeup = se->sum_exec_runtime; | ||
2477 | } | ||
2478 | |||
2479 | out_running: | 2387 | out_running: |
2480 | trace_sched_wakeup(rq, p, success); | 2388 | trace_sched_wakeup(p, success); |
2481 | check_preempt_curr(rq, p, wake_flags); | 2389 | check_preempt_curr(rq, p, wake_flags); |
2482 | 2390 | ||
2483 | p->state = TASK_RUNNING; | 2391 | p->state = TASK_RUNNING; |
@@ -2537,42 +2445,9 @@ static void __sched_fork(struct task_struct *p) | |||
2537 | p->se.sum_exec_runtime = 0; | 2445 | p->se.sum_exec_runtime = 0; |
2538 | p->se.prev_sum_exec_runtime = 0; | 2446 | p->se.prev_sum_exec_runtime = 0; |
2539 | p->se.nr_migrations = 0; | 2447 | p->se.nr_migrations = 0; |
2540 | p->se.last_wakeup = 0; | ||
2541 | p->se.avg_overlap = 0; | ||
2542 | p->se.start_runtime = 0; | ||
2543 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
2544 | 2448 | ||
2545 | #ifdef CONFIG_SCHEDSTATS | 2449 | #ifdef CONFIG_SCHEDSTATS |
2546 | p->se.wait_start = 0; | 2450 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
2547 | p->se.wait_max = 0; | ||
2548 | p->se.wait_count = 0; | ||
2549 | p->se.wait_sum = 0; | ||
2550 | |||
2551 | p->se.sleep_start = 0; | ||
2552 | p->se.sleep_max = 0; | ||
2553 | p->se.sum_sleep_runtime = 0; | ||
2554 | |||
2555 | p->se.block_start = 0; | ||
2556 | p->se.block_max = 0; | ||
2557 | p->se.exec_max = 0; | ||
2558 | p->se.slice_max = 0; | ||
2559 | |||
2560 | p->se.nr_migrations_cold = 0; | ||
2561 | p->se.nr_failed_migrations_affine = 0; | ||
2562 | p->se.nr_failed_migrations_running = 0; | ||
2563 | p->se.nr_failed_migrations_hot = 0; | ||
2564 | p->se.nr_forced_migrations = 0; | ||
2565 | |||
2566 | p->se.nr_wakeups = 0; | ||
2567 | p->se.nr_wakeups_sync = 0; | ||
2568 | p->se.nr_wakeups_migrate = 0; | ||
2569 | p->se.nr_wakeups_local = 0; | ||
2570 | p->se.nr_wakeups_remote = 0; | ||
2571 | p->se.nr_wakeups_affine = 0; | ||
2572 | p->se.nr_wakeups_affine_attempts = 0; | ||
2573 | p->se.nr_wakeups_passive = 0; | ||
2574 | p->se.nr_wakeups_idle = 0; | ||
2575 | |||
2576 | #endif | 2451 | #endif |
2577 | 2452 | ||
2578 | INIT_LIST_HEAD(&p->rt.run_list); | 2453 | INIT_LIST_HEAD(&p->rt.run_list); |
@@ -2593,11 +2468,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2593 | 2468 | ||
2594 | __sched_fork(p); | 2469 | __sched_fork(p); |
2595 | /* | 2470 | /* |
2596 | * We mark the process as waking here. This guarantees that | 2471 | * We mark the process as running here. This guarantees that |
2597 | * nobody will actually run it, and a signal or other external | 2472 | * nobody will actually run it, and a signal or other external |
2598 | * event cannot wake it up and insert it on the runqueue either. | 2473 | * event cannot wake it up and insert it on the runqueue either. |
2599 | */ | 2474 | */ |
2600 | p->state = TASK_WAKING; | 2475 | p->state = TASK_RUNNING; |
2601 | 2476 | ||
2602 | /* | 2477 | /* |
2603 | * Revert to default priority/policy on fork if requested. | 2478 | * Revert to default priority/policy on fork if requested. |
@@ -2664,31 +2539,27 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2664 | int cpu __maybe_unused = get_cpu(); | 2539 | int cpu __maybe_unused = get_cpu(); |
2665 | 2540 | ||
2666 | #ifdef CONFIG_SMP | 2541 | #ifdef CONFIG_SMP |
2542 | rq = task_rq_lock(p, &flags); | ||
2543 | p->state = TASK_WAKING; | ||
2544 | |||
2667 | /* | 2545 | /* |
2668 | * Fork balancing, do it here and not earlier because: | 2546 | * Fork balancing, do it here and not earlier because: |
2669 | * - cpus_allowed can change in the fork path | 2547 | * - cpus_allowed can change in the fork path |
2670 | * - any previously selected cpu might disappear through hotplug | 2548 | * - any previously selected cpu might disappear through hotplug |
2671 | * | 2549 | * |
2672 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | 2550 | * We set TASK_WAKING so that select_task_rq() can drop rq->lock |
2673 | * ->cpus_allowed is stable, we have preemption disabled, meaning | 2551 | * without people poking at ->cpus_allowed. |
2674 | * cpu_online_mask is stable. | ||
2675 | */ | 2552 | */ |
2676 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | 2553 | cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); |
2677 | set_task_cpu(p, cpu); | 2554 | set_task_cpu(p, cpu); |
2678 | #endif | ||
2679 | |||
2680 | /* | ||
2681 | * Since the task is not on the rq and we still have TASK_WAKING set | ||
2682 | * nobody else will migrate this task. | ||
2683 | */ | ||
2684 | rq = cpu_rq(cpu); | ||
2685 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
2686 | 2555 | ||
2687 | BUG_ON(p->state != TASK_WAKING); | ||
2688 | p->state = TASK_RUNNING; | 2556 | p->state = TASK_RUNNING; |
2689 | update_rq_clock(rq); | 2557 | task_rq_unlock(rq, &flags); |
2558 | #endif | ||
2559 | |||
2560 | rq = task_rq_lock(p, &flags); | ||
2690 | activate_task(rq, p, 0); | 2561 | activate_task(rq, p, 0); |
2691 | trace_sched_wakeup_new(rq, p, 1); | 2562 | trace_sched_wakeup_new(p, 1); |
2692 | check_preempt_curr(rq, p, WF_FORK); | 2563 | check_preempt_curr(rq, p, WF_FORK); |
2693 | #ifdef CONFIG_SMP | 2564 | #ifdef CONFIG_SMP |
2694 | if (p->sched_class->task_woken) | 2565 | if (p->sched_class->task_woken) |
@@ -2908,7 +2779,7 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
2908 | struct mm_struct *mm, *oldmm; | 2779 | struct mm_struct *mm, *oldmm; |
2909 | 2780 | ||
2910 | prepare_task_switch(rq, prev, next); | 2781 | prepare_task_switch(rq, prev, next); |
2911 | trace_sched_switch(rq, prev, next); | 2782 | trace_sched_switch(prev, next); |
2912 | mm = next->mm; | 2783 | mm = next->mm; |
2913 | oldmm = prev->active_mm; | 2784 | oldmm = prev->active_mm; |
2914 | /* | 2785 | /* |
@@ -3025,6 +2896,61 @@ static unsigned long calc_load_update; | |||
3025 | unsigned long avenrun[3]; | 2896 | unsigned long avenrun[3]; |
3026 | EXPORT_SYMBOL(avenrun); | 2897 | EXPORT_SYMBOL(avenrun); |
3027 | 2898 | ||
2899 | static long calc_load_fold_active(struct rq *this_rq) | ||
2900 | { | ||
2901 | long nr_active, delta = 0; | ||
2902 | |||
2903 | nr_active = this_rq->nr_running; | ||
2904 | nr_active += (long) this_rq->nr_uninterruptible; | ||
2905 | |||
2906 | if (nr_active != this_rq->calc_load_active) { | ||
2907 | delta = nr_active - this_rq->calc_load_active; | ||
2908 | this_rq->calc_load_active = nr_active; | ||
2909 | } | ||
2910 | |||
2911 | return delta; | ||
2912 | } | ||
2913 | |||
2914 | #ifdef CONFIG_NO_HZ | ||
2915 | /* | ||
2916 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | ||
2917 | * | ||
2918 | * When making the ILB scale, we should try to pull this in as well. | ||
2919 | */ | ||
2920 | static atomic_long_t calc_load_tasks_idle; | ||
2921 | |||
2922 | static void calc_load_account_idle(struct rq *this_rq) | ||
2923 | { | ||
2924 | long delta; | ||
2925 | |||
2926 | delta = calc_load_fold_active(this_rq); | ||
2927 | if (delta) | ||
2928 | atomic_long_add(delta, &calc_load_tasks_idle); | ||
2929 | } | ||
2930 | |||
2931 | static long calc_load_fold_idle(void) | ||
2932 | { | ||
2933 | long delta = 0; | ||
2934 | |||
2935 | /* | ||
2936 | * Its got a race, we don't care... | ||
2937 | */ | ||
2938 | if (atomic_long_read(&calc_load_tasks_idle)) | ||
2939 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | ||
2940 | |||
2941 | return delta; | ||
2942 | } | ||
2943 | #else | ||
2944 | static void calc_load_account_idle(struct rq *this_rq) | ||
2945 | { | ||
2946 | } | ||
2947 | |||
2948 | static inline long calc_load_fold_idle(void) | ||
2949 | { | ||
2950 | return 0; | ||
2951 | } | ||
2952 | #endif | ||
2953 | |||
3028 | /** | 2954 | /** |
3029 | * get_avenrun - get the load average array | 2955 | * get_avenrun - get the load average array |
3030 | * @loads: pointer to dest load array | 2956 | * @loads: pointer to dest load array |
@@ -3071,20 +2997,22 @@ void calc_global_load(void) | |||
3071 | } | 2997 | } |
3072 | 2998 | ||
3073 | /* | 2999 | /* |
3074 | * Either called from update_cpu_load() or from a cpu going idle | 3000 | * Called from update_cpu_load() to periodically update this CPU's |
3001 | * active count. | ||
3075 | */ | 3002 | */ |
3076 | static void calc_load_account_active(struct rq *this_rq) | 3003 | static void calc_load_account_active(struct rq *this_rq) |
3077 | { | 3004 | { |
3078 | long nr_active, delta; | 3005 | long delta; |
3079 | 3006 | ||
3080 | nr_active = this_rq->nr_running; | 3007 | if (time_before(jiffies, this_rq->calc_load_update)) |
3081 | nr_active += (long) this_rq->nr_uninterruptible; | 3008 | return; |
3082 | 3009 | ||
3083 | if (nr_active != this_rq->calc_load_active) { | 3010 | delta = calc_load_fold_active(this_rq); |
3084 | delta = nr_active - this_rq->calc_load_active; | 3011 | delta += calc_load_fold_idle(); |
3085 | this_rq->calc_load_active = nr_active; | 3012 | if (delta) |
3086 | atomic_long_add(delta, &calc_load_tasks); | 3013 | atomic_long_add(delta, &calc_load_tasks); |
3087 | } | 3014 | |
3015 | this_rq->calc_load_update += LOAD_FREQ; | ||
3088 | } | 3016 | } |
3089 | 3017 | ||
3090 | /* | 3018 | /* |
@@ -3116,10 +3044,7 @@ static void update_cpu_load(struct rq *this_rq) | |||
3116 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | 3044 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
3117 | } | 3045 | } |
3118 | 3046 | ||
3119 | if (time_after_eq(jiffies, this_rq->calc_load_update)) { | 3047 | calc_load_account_active(this_rq); |
3120 | this_rq->calc_load_update += LOAD_FREQ; | ||
3121 | calc_load_account_active(this_rq); | ||
3122 | } | ||
3123 | } | 3048 | } |
3124 | 3049 | ||
3125 | #ifdef CONFIG_SMP | 3050 | #ifdef CONFIG_SMP |
@@ -3131,44 +3056,27 @@ static void update_cpu_load(struct rq *this_rq) | |||
3131 | void sched_exec(void) | 3056 | void sched_exec(void) |
3132 | { | 3057 | { |
3133 | struct task_struct *p = current; | 3058 | struct task_struct *p = current; |
3134 | struct migration_req req; | ||
3135 | int dest_cpu, this_cpu; | ||
3136 | unsigned long flags; | 3059 | unsigned long flags; |
3137 | struct rq *rq; | 3060 | struct rq *rq; |
3138 | 3061 | int dest_cpu; | |
3139 | again: | ||
3140 | this_cpu = get_cpu(); | ||
3141 | dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
3142 | if (dest_cpu == this_cpu) { | ||
3143 | put_cpu(); | ||
3144 | return; | ||
3145 | } | ||
3146 | 3062 | ||
3147 | rq = task_rq_lock(p, &flags); | 3063 | rq = task_rq_lock(p, &flags); |
3148 | put_cpu(); | 3064 | dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); |
3065 | if (dest_cpu == smp_processor_id()) | ||
3066 | goto unlock; | ||
3149 | 3067 | ||
3150 | /* | 3068 | /* |
3151 | * select_task_rq() can race against ->cpus_allowed | 3069 | * select_task_rq() can race against ->cpus_allowed |
3152 | */ | 3070 | */ |
3153 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | 3071 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && |
3154 | || unlikely(!cpu_active(dest_cpu))) { | 3072 | likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { |
3155 | task_rq_unlock(rq, &flags); | 3073 | struct migration_arg arg = { p, dest_cpu }; |
3156 | goto again; | ||
3157 | } | ||
3158 | 3074 | ||
3159 | /* force the process onto the specified CPU */ | ||
3160 | if (migrate_task(p, dest_cpu, &req)) { | ||
3161 | /* Need to wait for migration thread (might exit: take ref). */ | ||
3162 | struct task_struct *mt = rq->migration_thread; | ||
3163 | |||
3164 | get_task_struct(mt); | ||
3165 | task_rq_unlock(rq, &flags); | 3075 | task_rq_unlock(rq, &flags); |
3166 | wake_up_process(mt); | 3076 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
3167 | put_task_struct(mt); | ||
3168 | wait_for_completion(&req.done); | ||
3169 | |||
3170 | return; | 3077 | return; |
3171 | } | 3078 | } |
3079 | unlock: | ||
3172 | task_rq_unlock(rq, &flags); | 3080 | task_rq_unlock(rq, &flags); |
3173 | } | 3081 | } |
3174 | 3082 | ||
@@ -3640,23 +3548,9 @@ static inline void schedule_debug(struct task_struct *prev) | |||
3640 | 3548 | ||
3641 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 3549 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
3642 | { | 3550 | { |
3643 | if (prev->state == TASK_RUNNING) { | 3551 | if (prev->se.on_rq) |
3644 | u64 runtime = prev->se.sum_exec_runtime; | 3552 | update_rq_clock(rq); |
3645 | 3553 | rq->skip_clock_update = 0; | |
3646 | runtime -= prev->se.prev_sum_exec_runtime; | ||
3647 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
3648 | |||
3649 | /* | ||
3650 | * In order to avoid avg_overlap growing stale when we are | ||
3651 | * indeed overlapping and hence not getting put to sleep, grow | ||
3652 | * the avg_overlap on preemption. | ||
3653 | * | ||
3654 | * We use the average preemption runtime because that | ||
3655 | * correlates to the amount of cache footprint a task can | ||
3656 | * build up. | ||
3657 | */ | ||
3658 | update_avg(&prev->se.avg_overlap, runtime); | ||
3659 | } | ||
3660 | prev->sched_class->put_prev_task(rq, prev); | 3554 | prev->sched_class->put_prev_task(rq, prev); |
3661 | } | 3555 | } |
3662 | 3556 | ||
@@ -3706,7 +3600,7 @@ need_resched: | |||
3706 | preempt_disable(); | 3600 | preempt_disable(); |
3707 | cpu = smp_processor_id(); | 3601 | cpu = smp_processor_id(); |
3708 | rq = cpu_rq(cpu); | 3602 | rq = cpu_rq(cpu); |
3709 | rcu_sched_qs(cpu); | 3603 | rcu_note_context_switch(cpu); |
3710 | prev = rq->curr; | 3604 | prev = rq->curr; |
3711 | switch_count = &prev->nivcsw; | 3605 | switch_count = &prev->nivcsw; |
3712 | 3606 | ||
@@ -3719,14 +3613,13 @@ need_resched_nonpreemptible: | |||
3719 | hrtick_clear(rq); | 3613 | hrtick_clear(rq); |
3720 | 3614 | ||
3721 | raw_spin_lock_irq(&rq->lock); | 3615 | raw_spin_lock_irq(&rq->lock); |
3722 | update_rq_clock(rq); | ||
3723 | clear_tsk_need_resched(prev); | 3616 | clear_tsk_need_resched(prev); |
3724 | 3617 | ||
3725 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 3618 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
3726 | if (unlikely(signal_pending_state(prev->state, prev))) | 3619 | if (unlikely(signal_pending_state(prev->state, prev))) |
3727 | prev->state = TASK_RUNNING; | 3620 | prev->state = TASK_RUNNING; |
3728 | else | 3621 | else |
3729 | deactivate_task(rq, prev, 1); | 3622 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
3730 | switch_count = &prev->nvcsw; | 3623 | switch_count = &prev->nvcsw; |
3731 | } | 3624 | } |
3732 | 3625 | ||
@@ -3950,6 +3843,7 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
3950 | { | 3843 | { |
3951 | __wake_up_common(q, mode, 1, 0, NULL); | 3844 | __wake_up_common(q, mode, 1, 0, NULL); |
3952 | } | 3845 | } |
3846 | EXPORT_SYMBOL_GPL(__wake_up_locked); | ||
3953 | 3847 | ||
3954 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | 3848 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
3955 | { | 3849 | { |
@@ -4049,8 +3943,7 @@ do_wait_for_common(struct completion *x, long timeout, int state) | |||
4049 | if (!x->done) { | 3943 | if (!x->done) { |
4050 | DECLARE_WAITQUEUE(wait, current); | 3944 | DECLARE_WAITQUEUE(wait, current); |
4051 | 3945 | ||
4052 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 3946 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
4053 | __add_wait_queue_tail(&x->wait, &wait); | ||
4054 | do { | 3947 | do { |
4055 | if (signal_pending_state(state, current)) { | 3948 | if (signal_pending_state(state, current)) { |
4056 | timeout = -ERESTARTSYS; | 3949 | timeout = -ERESTARTSYS; |
@@ -4293,7 +4186,6 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
4293 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4186 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
4294 | 4187 | ||
4295 | rq = task_rq_lock(p, &flags); | 4188 | rq = task_rq_lock(p, &flags); |
4296 | update_rq_clock(rq); | ||
4297 | 4189 | ||
4298 | oldprio = p->prio; | 4190 | oldprio = p->prio; |
4299 | prev_class = p->sched_class; | 4191 | prev_class = p->sched_class; |
@@ -4314,7 +4206,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
4314 | if (running) | 4206 | if (running) |
4315 | p->sched_class->set_curr_task(rq); | 4207 | p->sched_class->set_curr_task(rq); |
4316 | if (on_rq) { | 4208 | if (on_rq) { |
4317 | enqueue_task(rq, p, 0, oldprio < prio); | 4209 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
4318 | 4210 | ||
4319 | check_class_changed(rq, p, prev_class, oldprio, running); | 4211 | check_class_changed(rq, p, prev_class, oldprio, running); |
4320 | } | 4212 | } |
@@ -4336,7 +4228,6 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4336 | * the task might be in the middle of scheduling on another CPU. | 4228 | * the task might be in the middle of scheduling on another CPU. |
4337 | */ | 4229 | */ |
4338 | rq = task_rq_lock(p, &flags); | 4230 | rq = task_rq_lock(p, &flags); |
4339 | update_rq_clock(rq); | ||
4340 | /* | 4231 | /* |
4341 | * The RT priorities are set via sched_setscheduler(), but we still | 4232 | * The RT priorities are set via sched_setscheduler(), but we still |
4342 | * allow the 'normal' nice value to be set - but as expected | 4233 | * allow the 'normal' nice value to be set - but as expected |
@@ -4358,7 +4249,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4358 | delta = p->prio - old_prio; | 4249 | delta = p->prio - old_prio; |
4359 | 4250 | ||
4360 | if (on_rq) { | 4251 | if (on_rq) { |
4361 | enqueue_task(rq, p, 0, false); | 4252 | enqueue_task(rq, p, 0); |
4362 | /* | 4253 | /* |
4363 | * If the task increased its priority or is running and | 4254 | * If the task increased its priority or is running and |
4364 | * lowered its priority, then reschedule its CPU: | 4255 | * lowered its priority, then reschedule its CPU: |
@@ -4619,7 +4510,6 @@ recheck: | |||
4619 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 4510 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4620 | goto recheck; | 4511 | goto recheck; |
4621 | } | 4512 | } |
4622 | update_rq_clock(rq); | ||
4623 | on_rq = p->se.on_rq; | 4513 | on_rq = p->se.on_rq; |
4624 | running = task_current(rq, p); | 4514 | running = task_current(rq, p); |
4625 | if (on_rq) | 4515 | if (on_rq) |
@@ -5356,17 +5246,15 @@ static inline void sched_init_granularity(void) | |||
5356 | /* | 5246 | /* |
5357 | * This is how migration works: | 5247 | * This is how migration works: |
5358 | * | 5248 | * |
5359 | * 1) we queue a struct migration_req structure in the source CPU's | 5249 | * 1) we invoke migration_cpu_stop() on the target CPU using |
5360 | * runqueue and wake up that CPU's migration thread. | 5250 | * stop_one_cpu(). |
5361 | * 2) we down() the locked semaphore => thread blocks. | 5251 | * 2) stopper starts to run (implicitly forcing the migrated thread |
5362 | * 3) migration thread wakes up (implicitly it forces the migrated | 5252 | * off the CPU) |
5363 | * thread off the CPU) | 5253 | * 3) it checks whether the migrated task is still in the wrong runqueue. |
5364 | * 4) it gets the migration request and checks whether the migrated | 5254 | * 4) if it's in the wrong runqueue then the migration thread removes |
5365 | * task is still in the wrong runqueue. | ||
5366 | * 5) if it's in the wrong runqueue then the migration thread removes | ||
5367 | * it and puts it into the right queue. | 5255 | * it and puts it into the right queue. |
5368 | * 6) migration thread up()s the semaphore. | 5256 | * 5) stopper completes and stop_one_cpu() returns and the migration |
5369 | * 7) we wake up and the migration is done. | 5257 | * is done. |
5370 | */ | 5258 | */ |
5371 | 5259 | ||
5372 | /* | 5260 | /* |
@@ -5380,12 +5268,23 @@ static inline void sched_init_granularity(void) | |||
5380 | */ | 5268 | */ |
5381 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 5269 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
5382 | { | 5270 | { |
5383 | struct migration_req req; | ||
5384 | unsigned long flags; | 5271 | unsigned long flags; |
5385 | struct rq *rq; | 5272 | struct rq *rq; |
5273 | unsigned int dest_cpu; | ||
5386 | int ret = 0; | 5274 | int ret = 0; |
5387 | 5275 | ||
5276 | /* | ||
5277 | * Serialize against TASK_WAKING so that ttwu() and wunt() can | ||
5278 | * drop the rq->lock and still rely on ->cpus_allowed. | ||
5279 | */ | ||
5280 | again: | ||
5281 | while (task_is_waking(p)) | ||
5282 | cpu_relax(); | ||
5388 | rq = task_rq_lock(p, &flags); | 5283 | rq = task_rq_lock(p, &flags); |
5284 | if (task_is_waking(p)) { | ||
5285 | task_rq_unlock(rq, &flags); | ||
5286 | goto again; | ||
5287 | } | ||
5389 | 5288 | ||
5390 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 5289 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
5391 | ret = -EINVAL; | 5290 | ret = -EINVAL; |
@@ -5409,15 +5308,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
5409 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 5308 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
5410 | goto out; | 5309 | goto out; |
5411 | 5310 | ||
5412 | if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { | 5311 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
5312 | if (migrate_task(p, dest_cpu)) { | ||
5313 | struct migration_arg arg = { p, dest_cpu }; | ||
5413 | /* Need help from migration thread: drop lock and wait. */ | 5314 | /* Need help from migration thread: drop lock and wait. */ |
5414 | struct task_struct *mt = rq->migration_thread; | ||
5415 | |||
5416 | get_task_struct(mt); | ||
5417 | task_rq_unlock(rq, &flags); | 5315 | task_rq_unlock(rq, &flags); |
5418 | wake_up_process(mt); | 5316 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
5419 | put_task_struct(mt); | ||
5420 | wait_for_completion(&req.done); | ||
5421 | tlb_migrate_finish(p->mm); | 5317 | tlb_migrate_finish(p->mm); |
5422 | return 0; | 5318 | return 0; |
5423 | } | 5319 | } |
@@ -5475,98 +5371,49 @@ fail: | |||
5475 | return ret; | 5371 | return ret; |
5476 | } | 5372 | } |
5477 | 5373 | ||
5478 | #define RCU_MIGRATION_IDLE 0 | ||
5479 | #define RCU_MIGRATION_NEED_QS 1 | ||
5480 | #define RCU_MIGRATION_GOT_QS 2 | ||
5481 | #define RCU_MIGRATION_MUST_SYNC 3 | ||
5482 | |||
5483 | /* | 5374 | /* |
5484 | * migration_thread - this is a highprio system thread that performs | 5375 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
5485 | * thread migration by bumping thread off CPU then 'pushing' onto | 5376 | * and performs thread migration by bumping thread off CPU then |
5486 | * another runqueue. | 5377 | * 'pushing' onto another runqueue. |
5487 | */ | 5378 | */ |
5488 | static int migration_thread(void *data) | 5379 | static int migration_cpu_stop(void *data) |
5489 | { | ||
5490 | int badcpu; | ||
5491 | int cpu = (long)data; | ||
5492 | struct rq *rq; | ||
5493 | |||
5494 | rq = cpu_rq(cpu); | ||
5495 | BUG_ON(rq->migration_thread != current); | ||
5496 | |||
5497 | set_current_state(TASK_INTERRUPTIBLE); | ||
5498 | while (!kthread_should_stop()) { | ||
5499 | struct migration_req *req; | ||
5500 | struct list_head *head; | ||
5501 | |||
5502 | raw_spin_lock_irq(&rq->lock); | ||
5503 | |||
5504 | if (cpu_is_offline(cpu)) { | ||
5505 | raw_spin_unlock_irq(&rq->lock); | ||
5506 | break; | ||
5507 | } | ||
5508 | |||
5509 | if (rq->active_balance) { | ||
5510 | active_load_balance(rq, cpu); | ||
5511 | rq->active_balance = 0; | ||
5512 | } | ||
5513 | |||
5514 | head = &rq->migration_queue; | ||
5515 | |||
5516 | if (list_empty(head)) { | ||
5517 | raw_spin_unlock_irq(&rq->lock); | ||
5518 | schedule(); | ||
5519 | set_current_state(TASK_INTERRUPTIBLE); | ||
5520 | continue; | ||
5521 | } | ||
5522 | req = list_entry(head->next, struct migration_req, list); | ||
5523 | list_del_init(head->next); | ||
5524 | |||
5525 | if (req->task != NULL) { | ||
5526 | raw_spin_unlock(&rq->lock); | ||
5527 | __migrate_task(req->task, cpu, req->dest_cpu); | ||
5528 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | ||
5529 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | ||
5530 | raw_spin_unlock(&rq->lock); | ||
5531 | } else { | ||
5532 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | ||
5533 | raw_spin_unlock(&rq->lock); | ||
5534 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | ||
5535 | } | ||
5536 | local_irq_enable(); | ||
5537 | |||
5538 | complete(&req->done); | ||
5539 | } | ||
5540 | __set_current_state(TASK_RUNNING); | ||
5541 | |||
5542 | return 0; | ||
5543 | } | ||
5544 | |||
5545 | #ifdef CONFIG_HOTPLUG_CPU | ||
5546 | |||
5547 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | ||
5548 | { | 5380 | { |
5549 | int ret; | 5381 | struct migration_arg *arg = data; |
5550 | 5382 | ||
5383 | /* | ||
5384 | * The original target cpu might have gone down and we might | ||
5385 | * be on another cpu but it doesn't matter. | ||
5386 | */ | ||
5551 | local_irq_disable(); | 5387 | local_irq_disable(); |
5552 | ret = __migrate_task(p, src_cpu, dest_cpu); | 5388 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
5553 | local_irq_enable(); | 5389 | local_irq_enable(); |
5554 | return ret; | 5390 | return 0; |
5555 | } | 5391 | } |
5556 | 5392 | ||
5393 | #ifdef CONFIG_HOTPLUG_CPU | ||
5557 | /* | 5394 | /* |
5558 | * Figure out where task on dead CPU should go, use force if necessary. | 5395 | * Figure out where task on dead CPU should go, use force if necessary. |
5559 | */ | 5396 | */ |
5560 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 5397 | void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
5561 | { | 5398 | { |
5562 | int dest_cpu; | 5399 | struct rq *rq = cpu_rq(dead_cpu); |
5400 | int needs_cpu, uninitialized_var(dest_cpu); | ||
5401 | unsigned long flags; | ||
5563 | 5402 | ||
5564 | again: | 5403 | local_irq_save(flags); |
5565 | dest_cpu = select_fallback_rq(dead_cpu, p); | ||
5566 | 5404 | ||
5567 | /* It can have affinity changed while we were choosing. */ | 5405 | raw_spin_lock(&rq->lock); |
5568 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | 5406 | needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); |
5569 | goto again; | 5407 | if (needs_cpu) |
5408 | dest_cpu = select_fallback_rq(dead_cpu, p); | ||
5409 | raw_spin_unlock(&rq->lock); | ||
5410 | /* | ||
5411 | * It can only fail if we race with set_cpus_allowed(), | ||
5412 | * in the racer should migrate the task anyway. | ||
5413 | */ | ||
5414 | if (needs_cpu) | ||
5415 | __migrate_task(p, dead_cpu, dest_cpu); | ||
5416 | local_irq_restore(flags); | ||
5570 | } | 5417 | } |
5571 | 5418 | ||
5572 | /* | 5419 | /* |
@@ -5630,7 +5477,6 @@ void sched_idle_next(void) | |||
5630 | 5477 | ||
5631 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 5478 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
5632 | 5479 | ||
5633 | update_rq_clock(rq); | ||
5634 | activate_task(rq, p, 0); | 5480 | activate_task(rq, p, 0); |
5635 | 5481 | ||
5636 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 5482 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
@@ -5685,7 +5531,6 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
5685 | for ( ; ; ) { | 5531 | for ( ; ; ) { |
5686 | if (!rq->nr_running) | 5532 | if (!rq->nr_running) |
5687 | break; | 5533 | break; |
5688 | update_rq_clock(rq); | ||
5689 | next = pick_next_task(rq); | 5534 | next = pick_next_task(rq); |
5690 | if (!next) | 5535 | if (!next) |
5691 | break; | 5536 | break; |
@@ -5908,35 +5753,20 @@ static void set_rq_offline(struct rq *rq) | |||
5908 | static int __cpuinit | 5753 | static int __cpuinit |
5909 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 5754 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
5910 | { | 5755 | { |
5911 | struct task_struct *p; | ||
5912 | int cpu = (long)hcpu; | 5756 | int cpu = (long)hcpu; |
5913 | unsigned long flags; | 5757 | unsigned long flags; |
5914 | struct rq *rq; | 5758 | struct rq *rq = cpu_rq(cpu); |
5915 | 5759 | ||
5916 | switch (action) { | 5760 | switch (action) { |
5917 | 5761 | ||
5918 | case CPU_UP_PREPARE: | 5762 | case CPU_UP_PREPARE: |
5919 | case CPU_UP_PREPARE_FROZEN: | 5763 | case CPU_UP_PREPARE_FROZEN: |
5920 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | ||
5921 | if (IS_ERR(p)) | ||
5922 | return NOTIFY_BAD; | ||
5923 | kthread_bind(p, cpu); | ||
5924 | /* Must be high prio: stop_machine expects to yield to it. */ | ||
5925 | rq = task_rq_lock(p, &flags); | ||
5926 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | ||
5927 | task_rq_unlock(rq, &flags); | ||
5928 | get_task_struct(p); | ||
5929 | cpu_rq(cpu)->migration_thread = p; | ||
5930 | rq->calc_load_update = calc_load_update; | 5764 | rq->calc_load_update = calc_load_update; |
5931 | break; | 5765 | break; |
5932 | 5766 | ||
5933 | case CPU_ONLINE: | 5767 | case CPU_ONLINE: |
5934 | case CPU_ONLINE_FROZEN: | 5768 | case CPU_ONLINE_FROZEN: |
5935 | /* Strictly unnecessary, as first user will wake it. */ | ||
5936 | wake_up_process(cpu_rq(cpu)->migration_thread); | ||
5937 | |||
5938 | /* Update our root-domain */ | 5769 | /* Update our root-domain */ |
5939 | rq = cpu_rq(cpu); | ||
5940 | raw_spin_lock_irqsave(&rq->lock, flags); | 5770 | raw_spin_lock_irqsave(&rq->lock, flags); |
5941 | if (rq->rd) { | 5771 | if (rq->rd) { |
5942 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5772 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
@@ -5947,61 +5777,24 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
5947 | break; | 5777 | break; |
5948 | 5778 | ||
5949 | #ifdef CONFIG_HOTPLUG_CPU | 5779 | #ifdef CONFIG_HOTPLUG_CPU |
5950 | case CPU_UP_CANCELED: | ||
5951 | case CPU_UP_CANCELED_FROZEN: | ||
5952 | if (!cpu_rq(cpu)->migration_thread) | ||
5953 | break; | ||
5954 | /* Unbind it from offline cpu so it can run. Fall thru. */ | ||
5955 | kthread_bind(cpu_rq(cpu)->migration_thread, | ||
5956 | cpumask_any(cpu_online_mask)); | ||
5957 | kthread_stop(cpu_rq(cpu)->migration_thread); | ||
5958 | put_task_struct(cpu_rq(cpu)->migration_thread); | ||
5959 | cpu_rq(cpu)->migration_thread = NULL; | ||
5960 | break; | ||
5961 | |||
5962 | case CPU_DEAD: | 5780 | case CPU_DEAD: |
5963 | case CPU_DEAD_FROZEN: | 5781 | case CPU_DEAD_FROZEN: |
5964 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ | ||
5965 | migrate_live_tasks(cpu); | 5782 | migrate_live_tasks(cpu); |
5966 | rq = cpu_rq(cpu); | ||
5967 | kthread_stop(rq->migration_thread); | ||
5968 | put_task_struct(rq->migration_thread); | ||
5969 | rq->migration_thread = NULL; | ||
5970 | /* Idle task back to normal (off runqueue, low prio) */ | 5783 | /* Idle task back to normal (off runqueue, low prio) */ |
5971 | raw_spin_lock_irq(&rq->lock); | 5784 | raw_spin_lock_irq(&rq->lock); |
5972 | update_rq_clock(rq); | ||
5973 | deactivate_task(rq, rq->idle, 0); | 5785 | deactivate_task(rq, rq->idle, 0); |
5974 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 5786 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
5975 | rq->idle->sched_class = &idle_sched_class; | 5787 | rq->idle->sched_class = &idle_sched_class; |
5976 | migrate_dead_tasks(cpu); | 5788 | migrate_dead_tasks(cpu); |
5977 | raw_spin_unlock_irq(&rq->lock); | 5789 | raw_spin_unlock_irq(&rq->lock); |
5978 | cpuset_unlock(); | ||
5979 | migrate_nr_uninterruptible(rq); | 5790 | migrate_nr_uninterruptible(rq); |
5980 | BUG_ON(rq->nr_running != 0); | 5791 | BUG_ON(rq->nr_running != 0); |
5981 | calc_global_load_remove(rq); | 5792 | calc_global_load_remove(rq); |
5982 | /* | ||
5983 | * No need to migrate the tasks: it was best-effort if | ||
5984 | * they didn't take sched_hotcpu_mutex. Just wake up | ||
5985 | * the requestors. | ||
5986 | */ | ||
5987 | raw_spin_lock_irq(&rq->lock); | ||
5988 | while (!list_empty(&rq->migration_queue)) { | ||
5989 | struct migration_req *req; | ||
5990 | |||
5991 | req = list_entry(rq->migration_queue.next, | ||
5992 | struct migration_req, list); | ||
5993 | list_del_init(&req->list); | ||
5994 | raw_spin_unlock_irq(&rq->lock); | ||
5995 | complete(&req->done); | ||
5996 | raw_spin_lock_irq(&rq->lock); | ||
5997 | } | ||
5998 | raw_spin_unlock_irq(&rq->lock); | ||
5999 | break; | 5793 | break; |
6000 | 5794 | ||
6001 | case CPU_DYING: | 5795 | case CPU_DYING: |
6002 | case CPU_DYING_FROZEN: | 5796 | case CPU_DYING_FROZEN: |
6003 | /* Update our root-domain */ | 5797 | /* Update our root-domain */ |
6004 | rq = cpu_rq(cpu); | ||
6005 | raw_spin_lock_irqsave(&rq->lock, flags); | 5798 | raw_spin_lock_irqsave(&rq->lock, flags); |
6006 | if (rq->rd) { | 5799 | if (rq->rd) { |
6007 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5800 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
@@ -6332,6 +6125,9 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |||
6332 | struct rq *rq = cpu_rq(cpu); | 6125 | struct rq *rq = cpu_rq(cpu); |
6333 | struct sched_domain *tmp; | 6126 | struct sched_domain *tmp; |
6334 | 6127 | ||
6128 | for (tmp = sd; tmp; tmp = tmp->parent) | ||
6129 | tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); | ||
6130 | |||
6335 | /* Remove the sched domains which do not contribute to scheduling. */ | 6131 | /* Remove the sched domains which do not contribute to scheduling. */ |
6336 | for (tmp = sd; tmp; ) { | 6132 | for (tmp = sd; tmp; ) { |
6337 | struct sched_domain *parent = tmp->parent; | 6133 | struct sched_domain *parent = tmp->parent; |
@@ -7815,10 +7611,8 @@ void __init sched_init(void) | |||
7815 | rq->push_cpu = 0; | 7611 | rq->push_cpu = 0; |
7816 | rq->cpu = i; | 7612 | rq->cpu = i; |
7817 | rq->online = 0; | 7613 | rq->online = 0; |
7818 | rq->migration_thread = NULL; | ||
7819 | rq->idle_stamp = 0; | 7614 | rq->idle_stamp = 0; |
7820 | rq->avg_idle = 2*sysctl_sched_migration_cost; | 7615 | rq->avg_idle = 2*sysctl_sched_migration_cost; |
7821 | INIT_LIST_HEAD(&rq->migration_queue); | ||
7822 | rq_attach_root(rq, &def_root_domain); | 7616 | rq_attach_root(rq, &def_root_domain); |
7823 | #endif | 7617 | #endif |
7824 | init_rq_hrtick(rq); | 7618 | init_rq_hrtick(rq); |
@@ -7919,7 +7713,6 @@ static void normalize_task(struct rq *rq, struct task_struct *p) | |||
7919 | { | 7713 | { |
7920 | int on_rq; | 7714 | int on_rq; |
7921 | 7715 | ||
7922 | update_rq_clock(rq); | ||
7923 | on_rq = p->se.on_rq; | 7716 | on_rq = p->se.on_rq; |
7924 | if (on_rq) | 7717 | if (on_rq) |
7925 | deactivate_task(rq, p, 0); | 7718 | deactivate_task(rq, p, 0); |
@@ -7946,9 +7739,9 @@ void normalize_rt_tasks(void) | |||
7946 | 7739 | ||
7947 | p->se.exec_start = 0; | 7740 | p->se.exec_start = 0; |
7948 | #ifdef CONFIG_SCHEDSTATS | 7741 | #ifdef CONFIG_SCHEDSTATS |
7949 | p->se.wait_start = 0; | 7742 | p->se.statistics.wait_start = 0; |
7950 | p->se.sleep_start = 0; | 7743 | p->se.statistics.sleep_start = 0; |
7951 | p->se.block_start = 0; | 7744 | p->se.statistics.block_start = 0; |
7952 | #endif | 7745 | #endif |
7953 | 7746 | ||
7954 | if (!rt_task(p)) { | 7747 | if (!rt_task(p)) { |
@@ -7975,9 +7768,9 @@ void normalize_rt_tasks(void) | |||
7975 | 7768 | ||
7976 | #endif /* CONFIG_MAGIC_SYSRQ */ | 7769 | #endif /* CONFIG_MAGIC_SYSRQ */ |
7977 | 7770 | ||
7978 | #ifdef CONFIG_IA64 | 7771 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
7979 | /* | 7772 | /* |
7980 | * These functions are only useful for the IA64 MCA handling. | 7773 | * These functions are only useful for the IA64 MCA handling, or kdb. |
7981 | * | 7774 | * |
7982 | * They can only be called when the whole system has been | 7775 | * They can only be called when the whole system has been |
7983 | * stopped - every CPU needs to be quiescent, and no scheduling | 7776 | * stopped - every CPU needs to be quiescent, and no scheduling |
@@ -7997,6 +7790,9 @@ struct task_struct *curr_task(int cpu) | |||
7997 | return cpu_curr(cpu); | 7790 | return cpu_curr(cpu); |
7998 | } | 7791 | } |
7999 | 7792 | ||
7793 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | ||
7794 | |||
7795 | #ifdef CONFIG_IA64 | ||
8000 | /** | 7796 | /** |
8001 | * set_curr_task - set the current task for a given cpu. | 7797 | * set_curr_task - set the current task for a given cpu. |
8002 | * @cpu: the processor in question. | 7798 | * @cpu: the processor in question. |
@@ -8281,8 +8077,6 @@ void sched_move_task(struct task_struct *tsk) | |||
8281 | 8077 | ||
8282 | rq = task_rq_lock(tsk, &flags); | 8078 | rq = task_rq_lock(tsk, &flags); |
8283 | 8079 | ||
8284 | update_rq_clock(rq); | ||
8285 | |||
8286 | running = task_current(rq, tsk); | 8080 | running = task_current(rq, tsk); |
8287 | on_rq = tsk->se.on_rq; | 8081 | on_rq = tsk->se.on_rq; |
8288 | 8082 | ||
@@ -8301,7 +8095,7 @@ void sched_move_task(struct task_struct *tsk) | |||
8301 | if (unlikely(running)) | 8095 | if (unlikely(running)) |
8302 | tsk->sched_class->set_curr_task(rq); | 8096 | tsk->sched_class->set_curr_task(rq); |
8303 | if (on_rq) | 8097 | if (on_rq) |
8304 | enqueue_task(rq, tsk, 0, false); | 8098 | enqueue_task(rq, tsk, 0); |
8305 | 8099 | ||
8306 | task_rq_unlock(rq, &flags); | 8100 | task_rq_unlock(rq, &flags); |
8307 | } | 8101 | } |
@@ -9115,43 +8909,32 @@ struct cgroup_subsys cpuacct_subsys = { | |||
9115 | 8909 | ||
9116 | #ifndef CONFIG_SMP | 8910 | #ifndef CONFIG_SMP |
9117 | 8911 | ||
9118 | int rcu_expedited_torture_stats(char *page) | ||
9119 | { | ||
9120 | return 0; | ||
9121 | } | ||
9122 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
9123 | |||
9124 | void synchronize_sched_expedited(void) | 8912 | void synchronize_sched_expedited(void) |
9125 | { | 8913 | { |
8914 | barrier(); | ||
9126 | } | 8915 | } |
9127 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 8916 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); |
9128 | 8917 | ||
9129 | #else /* #ifndef CONFIG_SMP */ | 8918 | #else /* #ifndef CONFIG_SMP */ |
9130 | 8919 | ||
9131 | static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | 8920 | static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); |
9132 | static DEFINE_MUTEX(rcu_sched_expedited_mutex); | ||
9133 | 8921 | ||
9134 | #define RCU_EXPEDITED_STATE_POST -2 | 8922 | static int synchronize_sched_expedited_cpu_stop(void *data) |
9135 | #define RCU_EXPEDITED_STATE_IDLE -1 | ||
9136 | |||
9137 | static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
9138 | |||
9139 | int rcu_expedited_torture_stats(char *page) | ||
9140 | { | 8923 | { |
9141 | int cnt = 0; | 8924 | /* |
9142 | int cpu; | 8925 | * There must be a full memory barrier on each affected CPU |
9143 | 8926 | * between the time that try_stop_cpus() is called and the | |
9144 | cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | 8927 | * time that it returns. |
9145 | for_each_online_cpu(cpu) { | 8928 | * |
9146 | cnt += sprintf(&page[cnt], " %d:%d", | 8929 | * In the current initial implementation of cpu_stop, the |
9147 | cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | 8930 | * above condition is already met when the control reaches |
9148 | } | 8931 | * this point and the following smp_mb() is not strictly |
9149 | cnt += sprintf(&page[cnt], "\n"); | 8932 | * necessary. Do smp_mb() anyway for documentation and |
9150 | return cnt; | 8933 | * robustness against future implementation changes. |
8934 | */ | ||
8935 | smp_mb(); /* See above comment block. */ | ||
8936 | return 0; | ||
9151 | } | 8937 | } |
9152 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
9153 | |||
9154 | static long synchronize_sched_expedited_count; | ||
9155 | 8938 | ||
9156 | /* | 8939 | /* |
9157 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | 8940 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" |
@@ -9165,18 +8948,14 @@ static long synchronize_sched_expedited_count; | |||
9165 | */ | 8948 | */ |
9166 | void synchronize_sched_expedited(void) | 8949 | void synchronize_sched_expedited(void) |
9167 | { | 8950 | { |
9168 | int cpu; | 8951 | int snap, trycount = 0; |
9169 | unsigned long flags; | ||
9170 | bool need_full_sync = 0; | ||
9171 | struct rq *rq; | ||
9172 | struct migration_req *req; | ||
9173 | long snap; | ||
9174 | int trycount = 0; | ||
9175 | 8952 | ||
9176 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | 8953 | smp_mb(); /* ensure prior mod happens before capturing snap. */ |
9177 | snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | 8954 | snap = atomic_read(&synchronize_sched_expedited_count) + 1; |
9178 | get_online_cpus(); | 8955 | get_online_cpus(); |
9179 | while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | 8956 | while (try_stop_cpus(cpu_online_mask, |
8957 | synchronize_sched_expedited_cpu_stop, | ||
8958 | NULL) == -EAGAIN) { | ||
9180 | put_online_cpus(); | 8959 | put_online_cpus(); |
9181 | if (trycount++ < 10) | 8960 | if (trycount++ < 10) |
9182 | udelay(trycount * num_online_cpus()); | 8961 | udelay(trycount * num_online_cpus()); |
@@ -9184,41 +8963,15 @@ void synchronize_sched_expedited(void) | |||
9184 | synchronize_sched(); | 8963 | synchronize_sched(); |
9185 | return; | 8964 | return; |
9186 | } | 8965 | } |
9187 | if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | 8966 | if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { |
9188 | smp_mb(); /* ensure test happens before caller kfree */ | 8967 | smp_mb(); /* ensure test happens before caller kfree */ |
9189 | return; | 8968 | return; |
9190 | } | 8969 | } |
9191 | get_online_cpus(); | 8970 | get_online_cpus(); |
9192 | } | 8971 | } |
9193 | rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | 8972 | atomic_inc(&synchronize_sched_expedited_count); |
9194 | for_each_online_cpu(cpu) { | 8973 | smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ |
9195 | rq = cpu_rq(cpu); | ||
9196 | req = &per_cpu(rcu_migration_req, cpu); | ||
9197 | init_completion(&req->done); | ||
9198 | req->task = NULL; | ||
9199 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | ||
9200 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
9201 | list_add(&req->list, &rq->migration_queue); | ||
9202 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
9203 | wake_up_process(rq->migration_thread); | ||
9204 | } | ||
9205 | for_each_online_cpu(cpu) { | ||
9206 | rcu_expedited_state = cpu; | ||
9207 | req = &per_cpu(rcu_migration_req, cpu); | ||
9208 | rq = cpu_rq(cpu); | ||
9209 | wait_for_completion(&req->done); | ||
9210 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
9211 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | ||
9212 | need_full_sync = 1; | ||
9213 | req->dest_cpu = RCU_MIGRATION_IDLE; | ||
9214 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
9215 | } | ||
9216 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
9217 | synchronize_sched_expedited_count++; | ||
9218 | mutex_unlock(&rcu_sched_expedited_mutex); | ||
9219 | put_online_cpus(); | 8974 | put_online_cpus(); |
9220 | if (need_full_sync) | ||
9221 | synchronize_sched(); | ||
9222 | } | 8975 | } |
9223 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 8976 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); |
9224 | 8977 | ||
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index 5b496132c28a..906a0f718cb3 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -41,6 +41,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
41 | return (unsigned long long)(jiffies - INITIAL_JIFFIES) | 41 | return (unsigned long long)(jiffies - INITIAL_JIFFIES) |
42 | * (NSEC_PER_SEC / HZ); | 42 | * (NSEC_PER_SEC / HZ); |
43 | } | 43 | } |
44 | EXPORT_SYMBOL_GPL(sched_clock); | ||
44 | 45 | ||
45 | static __read_mostly int sched_clock_running; | 46 | static __read_mostly int sched_clock_running; |
46 | 47 | ||
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 19be00ba6123..35565395d00d 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -70,16 +70,16 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, | |||
70 | PN(se->vruntime); | 70 | PN(se->vruntime); |
71 | PN(se->sum_exec_runtime); | 71 | PN(se->sum_exec_runtime); |
72 | #ifdef CONFIG_SCHEDSTATS | 72 | #ifdef CONFIG_SCHEDSTATS |
73 | PN(se->wait_start); | 73 | PN(se->statistics.wait_start); |
74 | PN(se->sleep_start); | 74 | PN(se->statistics.sleep_start); |
75 | PN(se->block_start); | 75 | PN(se->statistics.block_start); |
76 | PN(se->sleep_max); | 76 | PN(se->statistics.sleep_max); |
77 | PN(se->block_max); | 77 | PN(se->statistics.block_max); |
78 | PN(se->exec_max); | 78 | PN(se->statistics.exec_max); |
79 | PN(se->slice_max); | 79 | PN(se->statistics.slice_max); |
80 | PN(se->wait_max); | 80 | PN(se->statistics.wait_max); |
81 | PN(se->wait_sum); | 81 | PN(se->statistics.wait_sum); |
82 | P(se->wait_count); | 82 | P(se->statistics.wait_count); |
83 | #endif | 83 | #endif |
84 | P(se->load.weight); | 84 | P(se->load.weight); |
85 | #undef PN | 85 | #undef PN |
@@ -104,7 +104,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) | |||
104 | SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", | 104 | SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", |
105 | SPLIT_NS(p->se.vruntime), | 105 | SPLIT_NS(p->se.vruntime), |
106 | SPLIT_NS(p->se.sum_exec_runtime), | 106 | SPLIT_NS(p->se.sum_exec_runtime), |
107 | SPLIT_NS(p->se.sum_sleep_runtime)); | 107 | SPLIT_NS(p->se.statistics.sum_sleep_runtime)); |
108 | #else | 108 | #else |
109 | SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", | 109 | SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", |
110 | 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); | 110 | 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); |
@@ -175,11 +175,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) | |||
175 | task_group_path(tg, path, sizeof(path)); | 175 | task_group_path(tg, path, sizeof(path)); |
176 | 176 | ||
177 | SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); | 177 | SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); |
178 | #elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED) | ||
179 | { | ||
180 | uid_t uid = cfs_rq->tg->uid; | ||
181 | SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid); | ||
182 | } | ||
183 | #else | 178 | #else |
184 | SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); | 179 | SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); |
185 | #endif | 180 | #endif |
@@ -386,15 +381,9 @@ __initcall(init_sched_debug_procfs); | |||
386 | void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | 381 | void proc_sched_show_task(struct task_struct *p, struct seq_file *m) |
387 | { | 382 | { |
388 | unsigned long nr_switches; | 383 | unsigned long nr_switches; |
389 | unsigned long flags; | ||
390 | int num_threads = 1; | ||
391 | |||
392 | if (lock_task_sighand(p, &flags)) { | ||
393 | num_threads = atomic_read(&p->signal->count); | ||
394 | unlock_task_sighand(p, &flags); | ||
395 | } | ||
396 | 384 | ||
397 | SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads); | 385 | SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, |
386 | get_nr_threads(p)); | ||
398 | SEQ_printf(m, | 387 | SEQ_printf(m, |
399 | "---------------------------------------------------------\n"); | 388 | "---------------------------------------------------------\n"); |
400 | #define __P(F) \ | 389 | #define __P(F) \ |
@@ -409,40 +398,38 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
409 | PN(se.exec_start); | 398 | PN(se.exec_start); |
410 | PN(se.vruntime); | 399 | PN(se.vruntime); |
411 | PN(se.sum_exec_runtime); | 400 | PN(se.sum_exec_runtime); |
412 | PN(se.avg_overlap); | ||
413 | PN(se.avg_wakeup); | ||
414 | 401 | ||
415 | nr_switches = p->nvcsw + p->nivcsw; | 402 | nr_switches = p->nvcsw + p->nivcsw; |
416 | 403 | ||
417 | #ifdef CONFIG_SCHEDSTATS | 404 | #ifdef CONFIG_SCHEDSTATS |
418 | PN(se.wait_start); | 405 | PN(se.statistics.wait_start); |
419 | PN(se.sleep_start); | 406 | PN(se.statistics.sleep_start); |
420 | PN(se.block_start); | 407 | PN(se.statistics.block_start); |
421 | PN(se.sleep_max); | 408 | PN(se.statistics.sleep_max); |
422 | PN(se.block_max); | 409 | PN(se.statistics.block_max); |
423 | PN(se.exec_max); | 410 | PN(se.statistics.exec_max); |
424 | PN(se.slice_max); | 411 | PN(se.statistics.slice_max); |
425 | PN(se.wait_max); | 412 | PN(se.statistics.wait_max); |
426 | PN(se.wait_sum); | 413 | PN(se.statistics.wait_sum); |
427 | P(se.wait_count); | 414 | P(se.statistics.wait_count); |
428 | PN(se.iowait_sum); | 415 | PN(se.statistics.iowait_sum); |
429 | P(se.iowait_count); | 416 | P(se.statistics.iowait_count); |
430 | P(sched_info.bkl_count); | 417 | P(sched_info.bkl_count); |
431 | P(se.nr_migrations); | 418 | P(se.nr_migrations); |
432 | P(se.nr_migrations_cold); | 419 | P(se.statistics.nr_migrations_cold); |
433 | P(se.nr_failed_migrations_affine); | 420 | P(se.statistics.nr_failed_migrations_affine); |
434 | P(se.nr_failed_migrations_running); | 421 | P(se.statistics.nr_failed_migrations_running); |
435 | P(se.nr_failed_migrations_hot); | 422 | P(se.statistics.nr_failed_migrations_hot); |
436 | P(se.nr_forced_migrations); | 423 | P(se.statistics.nr_forced_migrations); |
437 | P(se.nr_wakeups); | 424 | P(se.statistics.nr_wakeups); |
438 | P(se.nr_wakeups_sync); | 425 | P(se.statistics.nr_wakeups_sync); |
439 | P(se.nr_wakeups_migrate); | 426 | P(se.statistics.nr_wakeups_migrate); |
440 | P(se.nr_wakeups_local); | 427 | P(se.statistics.nr_wakeups_local); |
441 | P(se.nr_wakeups_remote); | 428 | P(se.statistics.nr_wakeups_remote); |
442 | P(se.nr_wakeups_affine); | 429 | P(se.statistics.nr_wakeups_affine); |
443 | P(se.nr_wakeups_affine_attempts); | 430 | P(se.statistics.nr_wakeups_affine_attempts); |
444 | P(se.nr_wakeups_passive); | 431 | P(se.statistics.nr_wakeups_passive); |
445 | P(se.nr_wakeups_idle); | 432 | P(se.statistics.nr_wakeups_idle); |
446 | 433 | ||
447 | { | 434 | { |
448 | u64 avg_atom, avg_per_cpu; | 435 | u64 avg_atom, avg_per_cpu; |
@@ -493,31 +480,6 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
493 | void proc_sched_set_task(struct task_struct *p) | 480 | void proc_sched_set_task(struct task_struct *p) |
494 | { | 481 | { |
495 | #ifdef CONFIG_SCHEDSTATS | 482 | #ifdef CONFIG_SCHEDSTATS |
496 | p->se.wait_max = 0; | 483 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
497 | p->se.wait_sum = 0; | ||
498 | p->se.wait_count = 0; | ||
499 | p->se.iowait_sum = 0; | ||
500 | p->se.iowait_count = 0; | ||
501 | p->se.sleep_max = 0; | ||
502 | p->se.sum_sleep_runtime = 0; | ||
503 | p->se.block_max = 0; | ||
504 | p->se.exec_max = 0; | ||
505 | p->se.slice_max = 0; | ||
506 | p->se.nr_migrations = 0; | ||
507 | p->se.nr_migrations_cold = 0; | ||
508 | p->se.nr_failed_migrations_affine = 0; | ||
509 | p->se.nr_failed_migrations_running = 0; | ||
510 | p->se.nr_failed_migrations_hot = 0; | ||
511 | p->se.nr_forced_migrations = 0; | ||
512 | p->se.nr_wakeups = 0; | ||
513 | p->se.nr_wakeups_sync = 0; | ||
514 | p->se.nr_wakeups_migrate = 0; | ||
515 | p->se.nr_wakeups_local = 0; | ||
516 | p->se.nr_wakeups_remote = 0; | ||
517 | p->se.nr_wakeups_affine = 0; | ||
518 | p->se.nr_wakeups_affine_attempts = 0; | ||
519 | p->se.nr_wakeups_passive = 0; | ||
520 | p->se.nr_wakeups_idle = 0; | ||
521 | p->sched_info.bkl_count = 0; | ||
522 | #endif | 484 | #endif |
523 | } | 485 | } |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 5a5ea2cd924f..217e4a9393e4 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -35,8 +35,8 @@ | |||
35 | * (to see the precise effective timeslice length of your workload, | 35 | * (to see the precise effective timeslice length of your workload, |
36 | * run vmstat and monitor the context-switches (cs) field) | 36 | * run vmstat and monitor the context-switches (cs) field) |
37 | */ | 37 | */ |
38 | unsigned int sysctl_sched_latency = 5000000ULL; | 38 | unsigned int sysctl_sched_latency = 6000000ULL; |
39 | unsigned int normalized_sysctl_sched_latency = 5000000ULL; | 39 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
40 | 40 | ||
41 | /* | 41 | /* |
42 | * The initial- and re-scaling of tunables is configurable | 42 | * The initial- and re-scaling of tunables is configurable |
@@ -52,15 +52,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling | |||
52 | 52 | ||
53 | /* | 53 | /* |
54 | * Minimal preemption granularity for CPU-bound tasks: | 54 | * Minimal preemption granularity for CPU-bound tasks: |
55 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 55 | * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds) |
56 | */ | 56 | */ |
57 | unsigned int sysctl_sched_min_granularity = 1000000ULL; | 57 | unsigned int sysctl_sched_min_granularity = 2000000ULL; |
58 | unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL; | 58 | unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL; |
59 | 59 | ||
60 | /* | 60 | /* |
61 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 61 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
62 | */ | 62 | */ |
63 | static unsigned int sched_nr_latency = 5; | 63 | static unsigned int sched_nr_latency = 3; |
64 | 64 | ||
65 | /* | 65 | /* |
66 | * After fork, child runs first. If set to 0 (default) then | 66 | * After fork, child runs first. If set to 0 (default) then |
@@ -505,7 +505,8 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | |||
505 | { | 505 | { |
506 | unsigned long delta_exec_weighted; | 506 | unsigned long delta_exec_weighted; |
507 | 507 | ||
508 | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 508 | schedstat_set(curr->statistics.exec_max, |
509 | max((u64)delta_exec, curr->statistics.exec_max)); | ||
509 | 510 | ||
510 | curr->sum_exec_runtime += delta_exec; | 511 | curr->sum_exec_runtime += delta_exec; |
511 | schedstat_add(cfs_rq, exec_clock, delta_exec); | 512 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
@@ -548,7 +549,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
548 | static inline void | 549 | static inline void |
549 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 550 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
550 | { | 551 | { |
551 | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 552 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); |
552 | } | 553 | } |
553 | 554 | ||
554 | /* | 555 | /* |
@@ -567,18 +568,18 @@ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
567 | static void | 568 | static void |
568 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 569 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
569 | { | 570 | { |
570 | schedstat_set(se->wait_max, max(se->wait_max, | 571 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, |
571 | rq_of(cfs_rq)->clock - se->wait_start)); | 572 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); |
572 | schedstat_set(se->wait_count, se->wait_count + 1); | 573 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); |
573 | schedstat_set(se->wait_sum, se->wait_sum + | 574 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + |
574 | rq_of(cfs_rq)->clock - se->wait_start); | 575 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
575 | #ifdef CONFIG_SCHEDSTATS | 576 | #ifdef CONFIG_SCHEDSTATS |
576 | if (entity_is_task(se)) { | 577 | if (entity_is_task(se)) { |
577 | trace_sched_stat_wait(task_of(se), | 578 | trace_sched_stat_wait(task_of(se), |
578 | rq_of(cfs_rq)->clock - se->wait_start); | 579 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
579 | } | 580 | } |
580 | #endif | 581 | #endif |
581 | schedstat_set(se->wait_start, 0); | 582 | schedstat_set(se->statistics.wait_start, 0); |
582 | } | 583 | } |
583 | 584 | ||
584 | static inline void | 585 | static inline void |
@@ -657,39 +658,39 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
657 | if (entity_is_task(se)) | 658 | if (entity_is_task(se)) |
658 | tsk = task_of(se); | 659 | tsk = task_of(se); |
659 | 660 | ||
660 | if (se->sleep_start) { | 661 | if (se->statistics.sleep_start) { |
661 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 662 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; |
662 | 663 | ||
663 | if ((s64)delta < 0) | 664 | if ((s64)delta < 0) |
664 | delta = 0; | 665 | delta = 0; |
665 | 666 | ||
666 | if (unlikely(delta > se->sleep_max)) | 667 | if (unlikely(delta > se->statistics.sleep_max)) |
667 | se->sleep_max = delta; | 668 | se->statistics.sleep_max = delta; |
668 | 669 | ||
669 | se->sleep_start = 0; | 670 | se->statistics.sleep_start = 0; |
670 | se->sum_sleep_runtime += delta; | 671 | se->statistics.sum_sleep_runtime += delta; |
671 | 672 | ||
672 | if (tsk) { | 673 | if (tsk) { |
673 | account_scheduler_latency(tsk, delta >> 10, 1); | 674 | account_scheduler_latency(tsk, delta >> 10, 1); |
674 | trace_sched_stat_sleep(tsk, delta); | 675 | trace_sched_stat_sleep(tsk, delta); |
675 | } | 676 | } |
676 | } | 677 | } |
677 | if (se->block_start) { | 678 | if (se->statistics.block_start) { |
678 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 679 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; |
679 | 680 | ||
680 | if ((s64)delta < 0) | 681 | if ((s64)delta < 0) |
681 | delta = 0; | 682 | delta = 0; |
682 | 683 | ||
683 | if (unlikely(delta > se->block_max)) | 684 | if (unlikely(delta > se->statistics.block_max)) |
684 | se->block_max = delta; | 685 | se->statistics.block_max = delta; |
685 | 686 | ||
686 | se->block_start = 0; | 687 | se->statistics.block_start = 0; |
687 | se->sum_sleep_runtime += delta; | 688 | se->statistics.sum_sleep_runtime += delta; |
688 | 689 | ||
689 | if (tsk) { | 690 | if (tsk) { |
690 | if (tsk->in_iowait) { | 691 | if (tsk->in_iowait) { |
691 | se->iowait_sum += delta; | 692 | se->statistics.iowait_sum += delta; |
692 | se->iowait_count++; | 693 | se->statistics.iowait_count++; |
693 | trace_sched_stat_iowait(tsk, delta); | 694 | trace_sched_stat_iowait(tsk, delta); |
694 | } | 695 | } |
695 | 696 | ||
@@ -737,20 +738,10 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
737 | vruntime += sched_vslice(cfs_rq, se); | 738 | vruntime += sched_vslice(cfs_rq, se); |
738 | 739 | ||
739 | /* sleeps up to a single latency don't count. */ | 740 | /* sleeps up to a single latency don't count. */ |
740 | if (!initial && sched_feat(FAIR_SLEEPERS)) { | 741 | if (!initial) { |
741 | unsigned long thresh = sysctl_sched_latency; | 742 | unsigned long thresh = sysctl_sched_latency; |
742 | 743 | ||
743 | /* | 744 | /* |
744 | * Convert the sleeper threshold into virtual time. | ||
745 | * SCHED_IDLE is a special sub-class. We care about | ||
746 | * fairness only relative to other SCHED_IDLE tasks, | ||
747 | * all of which have the same weight. | ||
748 | */ | ||
749 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || | ||
750 | task_of(se)->policy != SCHED_IDLE)) | ||
751 | thresh = calc_delta_fair(thresh, se); | ||
752 | |||
753 | /* | ||
754 | * Halve their sleep time's effect, to allow | 745 | * Halve their sleep time's effect, to allow |
755 | * for a gentler effect of sleepers: | 746 | * for a gentler effect of sleepers: |
756 | */ | 747 | */ |
@@ -766,9 +757,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
766 | se->vruntime = vruntime; | 757 | se->vruntime = vruntime; |
767 | } | 758 | } |
768 | 759 | ||
769 | #define ENQUEUE_WAKEUP 1 | ||
770 | #define ENQUEUE_MIGRATE 2 | ||
771 | |||
772 | static void | 760 | static void |
773 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 761 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
774 | { | 762 | { |
@@ -776,7 +764,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
776 | * Update the normalized vruntime before updating min_vruntime | 764 | * Update the normalized vruntime before updating min_vruntime |
777 | * through callig update_curr(). | 765 | * through callig update_curr(). |
778 | */ | 766 | */ |
779 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE)) | 767 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) |
780 | se->vruntime += cfs_rq->min_vruntime; | 768 | se->vruntime += cfs_rq->min_vruntime; |
781 | 769 | ||
782 | /* | 770 | /* |
@@ -812,7 +800,7 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
812 | } | 800 | } |
813 | 801 | ||
814 | static void | 802 | static void |
815 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 803 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
816 | { | 804 | { |
817 | /* | 805 | /* |
818 | * Update run-time statistics of the 'current'. | 806 | * Update run-time statistics of the 'current'. |
@@ -820,15 +808,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | |||
820 | update_curr(cfs_rq); | 808 | update_curr(cfs_rq); |
821 | 809 | ||
822 | update_stats_dequeue(cfs_rq, se); | 810 | update_stats_dequeue(cfs_rq, se); |
823 | if (sleep) { | 811 | if (flags & DEQUEUE_SLEEP) { |
824 | #ifdef CONFIG_SCHEDSTATS | 812 | #ifdef CONFIG_SCHEDSTATS |
825 | if (entity_is_task(se)) { | 813 | if (entity_is_task(se)) { |
826 | struct task_struct *tsk = task_of(se); | 814 | struct task_struct *tsk = task_of(se); |
827 | 815 | ||
828 | if (tsk->state & TASK_INTERRUPTIBLE) | 816 | if (tsk->state & TASK_INTERRUPTIBLE) |
829 | se->sleep_start = rq_of(cfs_rq)->clock; | 817 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; |
830 | if (tsk->state & TASK_UNINTERRUPTIBLE) | 818 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
831 | se->block_start = rq_of(cfs_rq)->clock; | 819 | se->statistics.block_start = rq_of(cfs_rq)->clock; |
832 | } | 820 | } |
833 | #endif | 821 | #endif |
834 | } | 822 | } |
@@ -845,7 +833,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | |||
845 | * update can refer to the ->curr item and we need to reflect this | 833 | * update can refer to the ->curr item and we need to reflect this |
846 | * movement in our normalized position. | 834 | * movement in our normalized position. |
847 | */ | 835 | */ |
848 | if (!sleep) | 836 | if (!(flags & DEQUEUE_SLEEP)) |
849 | se->vruntime -= cfs_rq->min_vruntime; | 837 | se->vruntime -= cfs_rq->min_vruntime; |
850 | } | 838 | } |
851 | 839 | ||
@@ -912,7 +900,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
912 | * when there are only lesser-weight tasks around): | 900 | * when there are only lesser-weight tasks around): |
913 | */ | 901 | */ |
914 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 902 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
915 | se->slice_max = max(se->slice_max, | 903 | se->statistics.slice_max = max(se->statistics.slice_max, |
916 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | 904 | se->sum_exec_runtime - se->prev_sum_exec_runtime); |
917 | } | 905 | } |
918 | #endif | 906 | #endif |
@@ -1054,16 +1042,10 @@ static inline void hrtick_update(struct rq *rq) | |||
1054 | * then put the task into the rbtree: | 1042 | * then put the task into the rbtree: |
1055 | */ | 1043 | */ |
1056 | static void | 1044 | static void |
1057 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) | 1045 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1058 | { | 1046 | { |
1059 | struct cfs_rq *cfs_rq; | 1047 | struct cfs_rq *cfs_rq; |
1060 | struct sched_entity *se = &p->se; | 1048 | struct sched_entity *se = &p->se; |
1061 | int flags = 0; | ||
1062 | |||
1063 | if (wakeup) | ||
1064 | flags |= ENQUEUE_WAKEUP; | ||
1065 | if (p->state == TASK_WAKING) | ||
1066 | flags |= ENQUEUE_MIGRATE; | ||
1067 | 1049 | ||
1068 | for_each_sched_entity(se) { | 1050 | for_each_sched_entity(se) { |
1069 | if (se->on_rq) | 1051 | if (se->on_rq) |
@@ -1081,18 +1063,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) | |||
1081 | * decreased. We remove the task from the rbtree and | 1063 | * decreased. We remove the task from the rbtree and |
1082 | * update the fair scheduling stats: | 1064 | * update the fair scheduling stats: |
1083 | */ | 1065 | */ |
1084 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 1066 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1085 | { | 1067 | { |
1086 | struct cfs_rq *cfs_rq; | 1068 | struct cfs_rq *cfs_rq; |
1087 | struct sched_entity *se = &p->se; | 1069 | struct sched_entity *se = &p->se; |
1088 | 1070 | ||
1089 | for_each_sched_entity(se) { | 1071 | for_each_sched_entity(se) { |
1090 | cfs_rq = cfs_rq_of(se); | 1072 | cfs_rq = cfs_rq_of(se); |
1091 | dequeue_entity(cfs_rq, se, sleep); | 1073 | dequeue_entity(cfs_rq, se, flags); |
1092 | /* Don't dequeue parent if it has other entities besides us */ | 1074 | /* Don't dequeue parent if it has other entities besides us */ |
1093 | if (cfs_rq->load.weight) | 1075 | if (cfs_rq->load.weight) |
1094 | break; | 1076 | break; |
1095 | sleep = 1; | 1077 | flags |= DEQUEUE_SLEEP; |
1096 | } | 1078 | } |
1097 | 1079 | ||
1098 | hrtick_update(rq); | 1080 | hrtick_update(rq); |
@@ -1240,7 +1222,6 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
1240 | 1222 | ||
1241 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 1223 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1242 | { | 1224 | { |
1243 | struct task_struct *curr = current; | ||
1244 | unsigned long this_load, load; | 1225 | unsigned long this_load, load; |
1245 | int idx, this_cpu, prev_cpu; | 1226 | int idx, this_cpu, prev_cpu; |
1246 | unsigned long tl_per_task; | 1227 | unsigned long tl_per_task; |
@@ -1255,18 +1236,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1255 | load = source_load(prev_cpu, idx); | 1236 | load = source_load(prev_cpu, idx); |
1256 | this_load = target_load(this_cpu, idx); | 1237 | this_load = target_load(this_cpu, idx); |
1257 | 1238 | ||
1258 | if (sync) { | ||
1259 | if (sched_feat(SYNC_LESS) && | ||
1260 | (curr->se.avg_overlap > sysctl_sched_migration_cost || | ||
1261 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
1262 | sync = 0; | ||
1263 | } else { | ||
1264 | if (sched_feat(SYNC_MORE) && | ||
1265 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
1266 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
1267 | sync = 1; | ||
1268 | } | ||
1269 | |||
1270 | /* | 1239 | /* |
1271 | * If sync wakeup then subtract the (maximum possible) | 1240 | * If sync wakeup then subtract the (maximum possible) |
1272 | * effect of the currently running task from the load | 1241 | * effect of the currently running task from the load |
@@ -1306,7 +1275,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1306 | if (sync && balanced) | 1275 | if (sync && balanced) |
1307 | return 1; | 1276 | return 1; |
1308 | 1277 | ||
1309 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1278 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); |
1310 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1279 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1311 | 1280 | ||
1312 | if (balanced || | 1281 | if (balanced || |
@@ -1318,7 +1287,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1318 | * there is no bad imbalance. | 1287 | * there is no bad imbalance. |
1319 | */ | 1288 | */ |
1320 | schedstat_inc(sd, ttwu_move_affine); | 1289 | schedstat_inc(sd, ttwu_move_affine); |
1321 | schedstat_inc(p, se.nr_wakeups_affine); | 1290 | schedstat_inc(p, se.statistics.nr_wakeups_affine); |
1322 | 1291 | ||
1323 | return 1; | 1292 | return 1; |
1324 | } | 1293 | } |
@@ -1406,29 +1375,48 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |||
1406 | /* | 1375 | /* |
1407 | * Try and locate an idle CPU in the sched_domain. | 1376 | * Try and locate an idle CPU in the sched_domain. |
1408 | */ | 1377 | */ |
1409 | static int | 1378 | static int select_idle_sibling(struct task_struct *p, int target) |
1410 | select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) | ||
1411 | { | 1379 | { |
1412 | int cpu = smp_processor_id(); | 1380 | int cpu = smp_processor_id(); |
1413 | int prev_cpu = task_cpu(p); | 1381 | int prev_cpu = task_cpu(p); |
1382 | struct sched_domain *sd; | ||
1414 | int i; | 1383 | int i; |
1415 | 1384 | ||
1416 | /* | 1385 | /* |
1417 | * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE | 1386 | * If the task is going to be woken-up on this cpu and if it is |
1418 | * test in select_task_rq_fair) and the prev_cpu is idle then that's | 1387 | * already idle, then it is the right target. |
1419 | * always a better target than the current cpu. | ||
1420 | */ | 1388 | */ |
1421 | if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) | 1389 | if (target == cpu && idle_cpu(cpu)) |
1390 | return cpu; | ||
1391 | |||
1392 | /* | ||
1393 | * If the task is going to be woken-up on the cpu where it previously | ||
1394 | * ran and if it is currently idle, then it the right target. | ||
1395 | */ | ||
1396 | if (target == prev_cpu && idle_cpu(prev_cpu)) | ||
1422 | return prev_cpu; | 1397 | return prev_cpu; |
1423 | 1398 | ||
1424 | /* | 1399 | /* |
1425 | * Otherwise, iterate the domain and find an elegible idle cpu. | 1400 | * Otherwise, iterate the domains and find an elegible idle cpu. |
1426 | */ | 1401 | */ |
1427 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | 1402 | for_each_domain(target, sd) { |
1428 | if (!cpu_rq(i)->cfs.nr_running) { | 1403 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) |
1429 | target = i; | ||
1430 | break; | 1404 | break; |
1405 | |||
1406 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | ||
1407 | if (idle_cpu(i)) { | ||
1408 | target = i; | ||
1409 | break; | ||
1410 | } | ||
1431 | } | 1411 | } |
1412 | |||
1413 | /* | ||
1414 | * Lets stop looking for an idle sibling when we reached | ||
1415 | * the domain that spans the current cpu and prev_cpu. | ||
1416 | */ | ||
1417 | if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && | ||
1418 | cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | ||
1419 | break; | ||
1432 | } | 1420 | } |
1433 | 1421 | ||
1434 | return target; | 1422 | return target; |
@@ -1445,7 +1433,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) | |||
1445 | * | 1433 | * |
1446 | * preempt must be disabled. | 1434 | * preempt must be disabled. |
1447 | */ | 1435 | */ |
1448 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | 1436 | static int |
1437 | select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags) | ||
1449 | { | 1438 | { |
1450 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 1439 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; |
1451 | int cpu = smp_processor_id(); | 1440 | int cpu = smp_processor_id(); |
@@ -1456,8 +1445,7 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1456 | int sync = wake_flags & WF_SYNC; | 1445 | int sync = wake_flags & WF_SYNC; |
1457 | 1446 | ||
1458 | if (sd_flag & SD_BALANCE_WAKE) { | 1447 | if (sd_flag & SD_BALANCE_WAKE) { |
1459 | if (sched_feat(AFFINE_WAKEUPS) && | 1448 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) |
1460 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1461 | want_affine = 1; | 1449 | want_affine = 1; |
1462 | new_cpu = prev_cpu; | 1450 | new_cpu = prev_cpu; |
1463 | } | 1451 | } |
@@ -1491,34 +1479,13 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1491 | } | 1479 | } |
1492 | 1480 | ||
1493 | /* | 1481 | /* |
1494 | * While iterating the domains looking for a spanning | 1482 | * If both cpu and prev_cpu are part of this domain, |
1495 | * WAKE_AFFINE domain, adjust the affine target to any idle cpu | 1483 | * cpu is a valid SD_WAKE_AFFINE target. |
1496 | * in cache sharing domains along the way. | ||
1497 | */ | 1484 | */ |
1498 | if (want_affine) { | 1485 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
1499 | int target = -1; | 1486 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { |
1500 | 1487 | affine_sd = tmp; | |
1501 | /* | 1488 | want_affine = 0; |
1502 | * If both cpu and prev_cpu are part of this domain, | ||
1503 | * cpu is a valid SD_WAKE_AFFINE target. | ||
1504 | */ | ||
1505 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) | ||
1506 | target = cpu; | ||
1507 | |||
1508 | /* | ||
1509 | * If there's an idle sibling in this domain, make that | ||
1510 | * the wake_affine target instead of the current cpu. | ||
1511 | */ | ||
1512 | if (tmp->flags & SD_SHARE_PKG_RESOURCES) | ||
1513 | target = select_idle_sibling(p, tmp, target); | ||
1514 | |||
1515 | if (target >= 0) { | ||
1516 | if (tmp->flags & SD_WAKE_AFFINE) { | ||
1517 | affine_sd = tmp; | ||
1518 | want_affine = 0; | ||
1519 | } | ||
1520 | cpu = target; | ||
1521 | } | ||
1522 | } | 1489 | } |
1523 | 1490 | ||
1524 | if (!want_sd && !want_affine) | 1491 | if (!want_sd && !want_affine) |
@@ -1531,22 +1498,29 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1531 | sd = tmp; | 1498 | sd = tmp; |
1532 | } | 1499 | } |
1533 | 1500 | ||
1501 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1534 | if (sched_feat(LB_SHARES_UPDATE)) { | 1502 | if (sched_feat(LB_SHARES_UPDATE)) { |
1535 | /* | 1503 | /* |
1536 | * Pick the largest domain to update shares over | 1504 | * Pick the largest domain to update shares over |
1537 | */ | 1505 | */ |
1538 | tmp = sd; | 1506 | tmp = sd; |
1539 | if (affine_sd && (!tmp || | 1507 | if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight)) |
1540 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
1541 | cpumask_weight(sched_domain_span(sd)))) | ||
1542 | tmp = affine_sd; | 1508 | tmp = affine_sd; |
1543 | 1509 | ||
1544 | if (tmp) | 1510 | if (tmp) { |
1511 | raw_spin_unlock(&rq->lock); | ||
1545 | update_shares(tmp); | 1512 | update_shares(tmp); |
1513 | raw_spin_lock(&rq->lock); | ||
1514 | } | ||
1546 | } | 1515 | } |
1516 | #endif | ||
1547 | 1517 | ||
1548 | if (affine_sd && wake_affine(affine_sd, p, sync)) | 1518 | if (affine_sd) { |
1549 | return cpu; | 1519 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) |
1520 | return select_idle_sibling(p, cpu); | ||
1521 | else | ||
1522 | return select_idle_sibling(p, prev_cpu); | ||
1523 | } | ||
1550 | 1524 | ||
1551 | while (sd) { | 1525 | while (sd) { |
1552 | int load_idx = sd->forkexec_idx; | 1526 | int load_idx = sd->forkexec_idx; |
@@ -1576,10 +1550,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1576 | 1550 | ||
1577 | /* Now try balancing at a lower domain level of new_cpu */ | 1551 | /* Now try balancing at a lower domain level of new_cpu */ |
1578 | cpu = new_cpu; | 1552 | cpu = new_cpu; |
1579 | weight = cpumask_weight(sched_domain_span(sd)); | 1553 | weight = sd->span_weight; |
1580 | sd = NULL; | 1554 | sd = NULL; |
1581 | for_each_domain(cpu, tmp) { | 1555 | for_each_domain(cpu, tmp) { |
1582 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | 1556 | if (weight <= tmp->span_weight) |
1583 | break; | 1557 | break; |
1584 | if (tmp->flags & sd_flag) | 1558 | if (tmp->flags & sd_flag) |
1585 | sd = tmp; | 1559 | sd = tmp; |
@@ -1591,63 +1565,26 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1591 | } | 1565 | } |
1592 | #endif /* CONFIG_SMP */ | 1566 | #endif /* CONFIG_SMP */ |
1593 | 1567 | ||
1594 | /* | ||
1595 | * Adaptive granularity | ||
1596 | * | ||
1597 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
1598 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
1599 | * | ||
1600 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
1601 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
1602 | * to run for at least the amount of time we'd like to run. | ||
1603 | * | ||
1604 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
1605 | * | ||
1606 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
1607 | * degrading latency on load. | ||
1608 | */ | ||
1609 | static unsigned long | ||
1610 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1611 | { | ||
1612 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1613 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
1614 | u64 gran = 0; | ||
1615 | |||
1616 | if (this_run < expected_wakeup) | ||
1617 | gran = expected_wakeup - this_run; | ||
1618 | |||
1619 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
1620 | } | ||
1621 | |||
1622 | static unsigned long | 1568 | static unsigned long |
1623 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 1569 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) |
1624 | { | 1570 | { |
1625 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1571 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1626 | 1572 | ||
1627 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
1628 | gran = adaptive_gran(curr, se); | ||
1629 | |||
1630 | /* | 1573 | /* |
1631 | * Since its curr running now, convert the gran from real-time | 1574 | * Since its curr running now, convert the gran from real-time |
1632 | * to virtual-time in his units. | 1575 | * to virtual-time in his units. |
1576 | * | ||
1577 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1578 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1579 | * the resulting gran will be larger, therefore penalizing the | ||
1580 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1581 | * be smaller, again penalizing the lighter task. | ||
1582 | * | ||
1583 | * This is especially important for buddies when the leftmost | ||
1584 | * task is higher priority than the buddy. | ||
1633 | */ | 1585 | */ |
1634 | if (sched_feat(ASYM_GRAN)) { | 1586 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
1635 | /* | 1587 | gran = calc_delta_fair(gran, se); |
1636 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1637 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1638 | * the resulting gran will be larger, therefore penalizing the | ||
1639 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1640 | * be smaller, again penalizing the lighter task. | ||
1641 | * | ||
1642 | * This is especially important for buddies when the leftmost | ||
1643 | * task is higher priority than the buddy. | ||
1644 | */ | ||
1645 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
1646 | gran = calc_delta_fair(gran, se); | ||
1647 | } else { | ||
1648 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
1649 | gran = calc_delta_fair(gran, curr); | ||
1650 | } | ||
1651 | 1588 | ||
1652 | return gran; | 1589 | return gran; |
1653 | } | 1590 | } |
@@ -1705,7 +1642,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
1705 | struct task_struct *curr = rq->curr; | 1642 | struct task_struct *curr = rq->curr; |
1706 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1643 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1707 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1644 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1708 | int sync = wake_flags & WF_SYNC; | ||
1709 | int scale = cfs_rq->nr_running >= sched_nr_latency; | 1645 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
1710 | 1646 | ||
1711 | if (unlikely(rt_prio(p->prio))) | 1647 | if (unlikely(rt_prio(p->prio))) |
@@ -1738,14 +1674,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
1738 | if (unlikely(curr->policy == SCHED_IDLE)) | 1674 | if (unlikely(curr->policy == SCHED_IDLE)) |
1739 | goto preempt; | 1675 | goto preempt; |
1740 | 1676 | ||
1741 | if (sched_feat(WAKEUP_SYNC) && sync) | ||
1742 | goto preempt; | ||
1743 | |||
1744 | if (sched_feat(WAKEUP_OVERLAP) && | ||
1745 | se->avg_overlap < sysctl_sched_migration_cost && | ||
1746 | pse->avg_overlap < sysctl_sched_migration_cost) | ||
1747 | goto preempt; | ||
1748 | |||
1749 | if (!sched_feat(WAKEUP_PREEMPT)) | 1677 | if (!sched_feat(WAKEUP_PREEMPT)) |
1750 | return; | 1678 | return; |
1751 | 1679 | ||
@@ -1844,13 +1772,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
1844 | * 3) are cache-hot on their current CPU. | 1772 | * 3) are cache-hot on their current CPU. |
1845 | */ | 1773 | */ |
1846 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | 1774 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
1847 | schedstat_inc(p, se.nr_failed_migrations_affine); | 1775 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); |
1848 | return 0; | 1776 | return 0; |
1849 | } | 1777 | } |
1850 | *all_pinned = 0; | 1778 | *all_pinned = 0; |
1851 | 1779 | ||
1852 | if (task_running(rq, p)) { | 1780 | if (task_running(rq, p)) { |
1853 | schedstat_inc(p, se.nr_failed_migrations_running); | 1781 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); |
1854 | return 0; | 1782 | return 0; |
1855 | } | 1783 | } |
1856 | 1784 | ||
@@ -1866,14 +1794,14 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
1866 | #ifdef CONFIG_SCHEDSTATS | 1794 | #ifdef CONFIG_SCHEDSTATS |
1867 | if (tsk_cache_hot) { | 1795 | if (tsk_cache_hot) { |
1868 | schedstat_inc(sd, lb_hot_gained[idle]); | 1796 | schedstat_inc(sd, lb_hot_gained[idle]); |
1869 | schedstat_inc(p, se.nr_forced_migrations); | 1797 | schedstat_inc(p, se.statistics.nr_forced_migrations); |
1870 | } | 1798 | } |
1871 | #endif | 1799 | #endif |
1872 | return 1; | 1800 | return 1; |
1873 | } | 1801 | } |
1874 | 1802 | ||
1875 | if (tsk_cache_hot) { | 1803 | if (tsk_cache_hot) { |
1876 | schedstat_inc(p, se.nr_failed_migrations_hot); | 1804 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); |
1877 | return 0; | 1805 | return 0; |
1878 | } | 1806 | } |
1879 | return 1; | 1807 | return 1; |
@@ -2311,7 +2239,7 @@ unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | |||
2311 | 2239 | ||
2312 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | 2240 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) |
2313 | { | 2241 | { |
2314 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 2242 | unsigned long weight = sd->span_weight; |
2315 | unsigned long smt_gain = sd->smt_gain; | 2243 | unsigned long smt_gain = sd->smt_gain; |
2316 | 2244 | ||
2317 | smt_gain /= weight; | 2245 | smt_gain /= weight; |
@@ -2344,7 +2272,7 @@ unsigned long scale_rt_power(int cpu) | |||
2344 | 2272 | ||
2345 | static void update_cpu_power(struct sched_domain *sd, int cpu) | 2273 | static void update_cpu_power(struct sched_domain *sd, int cpu) |
2346 | { | 2274 | { |
2347 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 2275 | unsigned long weight = sd->span_weight; |
2348 | unsigned long power = SCHED_LOAD_SCALE; | 2276 | unsigned long power = SCHED_LOAD_SCALE; |
2349 | struct sched_group *sdg = sd->groups; | 2277 | struct sched_group *sdg = sd->groups; |
2350 | 2278 | ||
@@ -2870,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle) | |||
2870 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 2798 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
2871 | } | 2799 | } |
2872 | 2800 | ||
2801 | static int active_load_balance_cpu_stop(void *data); | ||
2802 | |||
2873 | /* | 2803 | /* |
2874 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 2804 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
2875 | * tasks if there is an imbalance. | 2805 | * tasks if there is an imbalance. |
@@ -2959,8 +2889,9 @@ redo: | |||
2959 | if (need_active_balance(sd, sd_idle, idle)) { | 2889 | if (need_active_balance(sd, sd_idle, idle)) { |
2960 | raw_spin_lock_irqsave(&busiest->lock, flags); | 2890 | raw_spin_lock_irqsave(&busiest->lock, flags); |
2961 | 2891 | ||
2962 | /* don't kick the migration_thread, if the curr | 2892 | /* don't kick the active_load_balance_cpu_stop, |
2963 | * task on busiest cpu can't be moved to this_cpu | 2893 | * if the curr task on busiest cpu can't be |
2894 | * moved to this_cpu | ||
2964 | */ | 2895 | */ |
2965 | if (!cpumask_test_cpu(this_cpu, | 2896 | if (!cpumask_test_cpu(this_cpu, |
2966 | &busiest->curr->cpus_allowed)) { | 2897 | &busiest->curr->cpus_allowed)) { |
@@ -2970,14 +2901,22 @@ redo: | |||
2970 | goto out_one_pinned; | 2901 | goto out_one_pinned; |
2971 | } | 2902 | } |
2972 | 2903 | ||
2904 | /* | ||
2905 | * ->active_balance synchronizes accesses to | ||
2906 | * ->active_balance_work. Once set, it's cleared | ||
2907 | * only after active load balance is finished. | ||
2908 | */ | ||
2973 | if (!busiest->active_balance) { | 2909 | if (!busiest->active_balance) { |
2974 | busiest->active_balance = 1; | 2910 | busiest->active_balance = 1; |
2975 | busiest->push_cpu = this_cpu; | 2911 | busiest->push_cpu = this_cpu; |
2976 | active_balance = 1; | 2912 | active_balance = 1; |
2977 | } | 2913 | } |
2978 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | 2914 | raw_spin_unlock_irqrestore(&busiest->lock, flags); |
2915 | |||
2979 | if (active_balance) | 2916 | if (active_balance) |
2980 | wake_up_process(busiest->migration_thread); | 2917 | stop_one_cpu_nowait(cpu_of(busiest), |
2918 | active_load_balance_cpu_stop, busiest, | ||
2919 | &busiest->active_balance_work); | ||
2981 | 2920 | ||
2982 | /* | 2921 | /* |
2983 | * We've kicked active balancing, reset the failure | 2922 | * We've kicked active balancing, reset the failure |
@@ -3084,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
3084 | } | 3023 | } |
3085 | 3024 | ||
3086 | /* | 3025 | /* |
3087 | * active_load_balance is run by migration threads. It pushes running tasks | 3026 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes |
3088 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 3027 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
3089 | * running on each physical CPU where possible, and avoids physical / | 3028 | * least 1 task to be running on each physical CPU where possible, and |
3090 | * logical imbalances. | 3029 | * avoids physical / logical imbalances. |
3091 | * | ||
3092 | * Called with busiest_rq locked. | ||
3093 | */ | 3030 | */ |
3094 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 3031 | static int active_load_balance_cpu_stop(void *data) |
3095 | { | 3032 | { |
3033 | struct rq *busiest_rq = data; | ||
3034 | int busiest_cpu = cpu_of(busiest_rq); | ||
3096 | int target_cpu = busiest_rq->push_cpu; | 3035 | int target_cpu = busiest_rq->push_cpu; |
3036 | struct rq *target_rq = cpu_rq(target_cpu); | ||
3097 | struct sched_domain *sd; | 3037 | struct sched_domain *sd; |
3098 | struct rq *target_rq; | 3038 | |
3039 | raw_spin_lock_irq(&busiest_rq->lock); | ||
3040 | |||
3041 | /* make sure the requested cpu hasn't gone down in the meantime */ | ||
3042 | if (unlikely(busiest_cpu != smp_processor_id() || | ||
3043 | !busiest_rq->active_balance)) | ||
3044 | goto out_unlock; | ||
3099 | 3045 | ||
3100 | /* Is there any task to move? */ | 3046 | /* Is there any task to move? */ |
3101 | if (busiest_rq->nr_running <= 1) | 3047 | if (busiest_rq->nr_running <= 1) |
3102 | return; | 3048 | goto out_unlock; |
3103 | |||
3104 | target_rq = cpu_rq(target_cpu); | ||
3105 | 3049 | ||
3106 | /* | 3050 | /* |
3107 | * This condition is "impossible", if it occurs | 3051 | * This condition is "impossible", if it occurs |
@@ -3112,8 +3056,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | |||
3112 | 3056 | ||
3113 | /* move a task from busiest_rq to target_rq */ | 3057 | /* move a task from busiest_rq to target_rq */ |
3114 | double_lock_balance(busiest_rq, target_rq); | 3058 | double_lock_balance(busiest_rq, target_rq); |
3115 | update_rq_clock(busiest_rq); | ||
3116 | update_rq_clock(target_rq); | ||
3117 | 3059 | ||
3118 | /* Search for an sd spanning us and the target CPU. */ | 3060 | /* Search for an sd spanning us and the target CPU. */ |
3119 | for_each_domain(target_cpu, sd) { | 3061 | for_each_domain(target_cpu, sd) { |
@@ -3132,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | |||
3132 | schedstat_inc(sd, alb_failed); | 3074 | schedstat_inc(sd, alb_failed); |
3133 | } | 3075 | } |
3134 | double_unlock_balance(busiest_rq, target_rq); | 3076 | double_unlock_balance(busiest_rq, target_rq); |
3077 | out_unlock: | ||
3078 | busiest_rq->active_balance = 0; | ||
3079 | raw_spin_unlock_irq(&busiest_rq->lock); | ||
3080 | return 0; | ||
3135 | } | 3081 | } |
3136 | 3082 | ||
3137 | #ifdef CONFIG_NO_HZ | 3083 | #ifdef CONFIG_NO_HZ |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index d5059fd761d9..83c66e8ad3ee 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,11 +1,4 @@ | |||
1 | /* | 1 | /* |
2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
3 | * considers the task to be running during that period. This gives it | ||
4 | * a service deficit on wakeup, allowing it to run sooner. | ||
5 | */ | ||
6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
7 | |||
8 | /* | ||
9 | * Only give sleepers 50% of their service deficit. This allows | 2 | * Only give sleepers 50% of their service deficit. This allows |
10 | * them to run sooner, but does not allow tons of sleepers to | 3 | * them to run sooner, but does not allow tons of sleepers to |
11 | * rip the spread apart. | 4 | * rip the spread apart. |
@@ -13,13 +6,6 @@ SCHED_FEAT(FAIR_SLEEPERS, 1) | |||
13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | 6 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) |
14 | 7 | ||
15 | /* | 8 | /* |
16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
17 | * longer period, and lighter task an effective shorter period they | ||
18 | * are considered running. | ||
19 | */ | ||
20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | ||
21 | |||
22 | /* | ||
23 | * Place new tasks ahead so that they do not starve already running | 9 | * Place new tasks ahead so that they do not starve already running |
24 | * tasks | 10 | * tasks |
25 | */ | 11 | */ |
@@ -31,37 +17,6 @@ SCHED_FEAT(START_DEBIT, 1) | |||
31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 17 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
32 | 18 | ||
33 | /* | 19 | /* |
34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
35 | * [0, sched_wakeup_gran_ns] | ||
36 | */ | ||
37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
38 | |||
39 | /* | ||
40 | * When converting the wakeup granularity to virtual time, do it such | ||
41 | * that heavier tasks preempting a lighter task have an edge. | ||
42 | */ | ||
43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
44 | |||
45 | /* | ||
46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
47 | */ | ||
48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
49 | |||
50 | /* | ||
51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
52 | * don't get preempted. | ||
53 | */ | ||
54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
55 | |||
56 | /* | ||
57 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
58 | * the remote end is likely to consume the data we just wrote, and | ||
59 | * therefore has cache benefit from being placed on the same cpu, see | ||
60 | * also AFFINE_WAKEUPS. | ||
61 | */ | ||
62 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
63 | |||
64 | /* | ||
65 | * Based on load and program behaviour, see if it makes sense to place | 20 | * Based on load and program behaviour, see if it makes sense to place |
66 | * a newly woken task on the same cpu as the task that woke it -- | 21 | * a newly woken task on the same cpu as the task that woke it -- |
67 | * improve cache locality. Typically used with SYNC wakeups as | 22 | * improve cache locality. Typically used with SYNC wakeups as |
@@ -70,16 +25,6 @@ SCHED_FEAT(SYNC_WAKEUPS, 1) | |||
70 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 25 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
71 | 26 | ||
72 | /* | 27 | /* |
73 | * Weaken SYNC hint based on overlap | ||
74 | */ | ||
75 | SCHED_FEAT(SYNC_LESS, 1) | ||
76 | |||
77 | /* | ||
78 | * Add SYNC hint based on overlap | ||
79 | */ | ||
80 | SCHED_FEAT(SYNC_MORE, 0) | ||
81 | |||
82 | /* | ||
83 | * Prefer to schedule the task we woke last (assuming it failed | 28 | * Prefer to schedule the task we woke last (assuming it failed |
84 | * wakeup-preemption), since its likely going to consume data we | 29 | * wakeup-preemption), since its likely going to consume data we |
85 | * touched, increases cache locality. | 30 | * touched, increases cache locality. |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index a8a6d8a50947..9fa0f402c87c 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
@@ -6,7 +6,8 @@ | |||
6 | */ | 6 | */ |
7 | 7 | ||
8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) | 9 | static int |
10 | select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | ||
10 | { | 11 | { |
11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 12 | return task_cpu(p); /* IDLE tasks as never migrated */ |
12 | } | 13 | } |
@@ -22,8 +23,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl | |||
22 | static struct task_struct *pick_next_task_idle(struct rq *rq) | 23 | static struct task_struct *pick_next_task_idle(struct rq *rq) |
23 | { | 24 | { |
24 | schedstat_inc(rq, sched_goidle); | 25 | schedstat_inc(rq, sched_goidle); |
25 | /* adjust the active tasks as we might go into a long sleep */ | 26 | calc_load_account_idle(rq); |
26 | calc_load_account_active(rq); | ||
27 | return rq->idle; | 27 | return rq->idle; |
28 | } | 28 | } |
29 | 29 | ||
@@ -32,7 +32,7 @@ static struct task_struct *pick_next_task_idle(struct rq *rq) | |||
32 | * message if some code attempts to do it: | 32 | * message if some code attempts to do it: |
33 | */ | 33 | */ |
34 | static void | 34 | static void |
35 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep) | 35 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) |
36 | { | 36 | { |
37 | raw_spin_unlock_irq(&rq->lock); | 37 | raw_spin_unlock_irq(&rq->lock); |
38 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 38 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index b5b920ae2ea7..8afb953e31c6 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -613,7 +613,7 @@ static void update_curr_rt(struct rq *rq) | |||
613 | if (unlikely((s64)delta_exec < 0)) | 613 | if (unlikely((s64)delta_exec < 0)) |
614 | delta_exec = 0; | 614 | delta_exec = 0; |
615 | 615 | ||
616 | schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); | 616 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); |
617 | 617 | ||
618 | curr->se.sum_exec_runtime += delta_exec; | 618 | curr->se.sum_exec_runtime += delta_exec; |
619 | account_group_exec_runtime(curr, delta_exec); | 619 | account_group_exec_runtime(curr, delta_exec); |
@@ -888,20 +888,20 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |||
888 | * Adding/removing a task to/from a priority array: | 888 | * Adding/removing a task to/from a priority array: |
889 | */ | 889 | */ |
890 | static void | 890 | static void |
891 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head) | 891 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
892 | { | 892 | { |
893 | struct sched_rt_entity *rt_se = &p->rt; | 893 | struct sched_rt_entity *rt_se = &p->rt; |
894 | 894 | ||
895 | if (wakeup) | 895 | if (flags & ENQUEUE_WAKEUP) |
896 | rt_se->timeout = 0; | 896 | rt_se->timeout = 0; |
897 | 897 | ||
898 | enqueue_rt_entity(rt_se, head); | 898 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); |
899 | 899 | ||
900 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | 900 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
901 | enqueue_pushable_task(rq, p); | 901 | enqueue_pushable_task(rq, p); |
902 | } | 902 | } |
903 | 903 | ||
904 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 904 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
905 | { | 905 | { |
906 | struct sched_rt_entity *rt_se = &p->rt; | 906 | struct sched_rt_entity *rt_se = &p->rt; |
907 | 907 | ||
@@ -948,10 +948,9 @@ static void yield_task_rt(struct rq *rq) | |||
948 | #ifdef CONFIG_SMP | 948 | #ifdef CONFIG_SMP |
949 | static int find_lowest_rq(struct task_struct *task); | 949 | static int find_lowest_rq(struct task_struct *task); |
950 | 950 | ||
951 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | 951 | static int |
952 | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | ||
952 | { | 953 | { |
953 | struct rq *rq = task_rq(p); | ||
954 | |||
955 | if (sd_flag != SD_BALANCE_WAKE) | 954 | if (sd_flag != SD_BALANCE_WAKE) |
956 | return smp_processor_id(); | 955 | return smp_processor_id(); |
957 | 956 | ||
diff --git a/kernel/signal.c b/kernel/signal.c index dbd7fe073c55..906ae5a1779c 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -642,7 +642,7 @@ static inline bool si_fromuser(const struct siginfo *info) | |||
642 | static int check_kill_permission(int sig, struct siginfo *info, | 642 | static int check_kill_permission(int sig, struct siginfo *info, |
643 | struct task_struct *t) | 643 | struct task_struct *t) |
644 | { | 644 | { |
645 | const struct cred *cred = current_cred(), *tcred; | 645 | const struct cred *cred, *tcred; |
646 | struct pid *sid; | 646 | struct pid *sid; |
647 | int error; | 647 | int error; |
648 | 648 | ||
@@ -656,8 +656,10 @@ static int check_kill_permission(int sig, struct siginfo *info, | |||
656 | if (error) | 656 | if (error) |
657 | return error; | 657 | return error; |
658 | 658 | ||
659 | cred = current_cred(); | ||
659 | tcred = __task_cred(t); | 660 | tcred = __task_cred(t); |
660 | if ((cred->euid ^ tcred->suid) && | 661 | if (!same_thread_group(current, t) && |
662 | (cred->euid ^ tcred->suid) && | ||
661 | (cred->euid ^ tcred->uid) && | 663 | (cred->euid ^ tcred->uid) && |
662 | (cred->uid ^ tcred->suid) && | 664 | (cred->uid ^ tcred->suid) && |
663 | (cred->uid ^ tcred->uid) && | 665 | (cred->uid ^ tcred->uid) && |
@@ -1083,23 +1085,24 @@ force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
1083 | /* | 1085 | /* |
1084 | * Nuke all other threads in the group. | 1086 | * Nuke all other threads in the group. |
1085 | */ | 1087 | */ |
1086 | void zap_other_threads(struct task_struct *p) | 1088 | int zap_other_threads(struct task_struct *p) |
1087 | { | 1089 | { |
1088 | struct task_struct *t; | 1090 | struct task_struct *t = p; |
1091 | int count = 0; | ||
1089 | 1092 | ||
1090 | p->signal->group_stop_count = 0; | 1093 | p->signal->group_stop_count = 0; |
1091 | 1094 | ||
1092 | for (t = next_thread(p); t != p; t = next_thread(t)) { | 1095 | while_each_thread(p, t) { |
1093 | /* | 1096 | count++; |
1094 | * Don't bother with already dead threads | 1097 | |
1095 | */ | 1098 | /* Don't bother with already dead threads */ |
1096 | if (t->exit_state) | 1099 | if (t->exit_state) |
1097 | continue; | 1100 | continue; |
1098 | |||
1099 | /* SIGKILL will be handled before any pending SIGSTOP */ | ||
1100 | sigaddset(&t->pending.signal, SIGKILL); | 1101 | sigaddset(&t->pending.signal, SIGKILL); |
1101 | signal_wake_up(t, 1); | 1102 | signal_wake_up(t, 1); |
1102 | } | 1103 | } |
1104 | |||
1105 | return count; | ||
1103 | } | 1106 | } |
1104 | 1107 | ||
1105 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1108 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
@@ -2735,3 +2738,43 @@ void __init signals_init(void) | |||
2735 | { | 2738 | { |
2736 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); | 2739 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); |
2737 | } | 2740 | } |
2741 | |||
2742 | #ifdef CONFIG_KGDB_KDB | ||
2743 | #include <linux/kdb.h> | ||
2744 | /* | ||
2745 | * kdb_send_sig_info - Allows kdb to send signals without exposing | ||
2746 | * signal internals. This function checks if the required locks are | ||
2747 | * available before calling the main signal code, to avoid kdb | ||
2748 | * deadlocks. | ||
2749 | */ | ||
2750 | void | ||
2751 | kdb_send_sig_info(struct task_struct *t, struct siginfo *info) | ||
2752 | { | ||
2753 | static struct task_struct *kdb_prev_t; | ||
2754 | int sig, new_t; | ||
2755 | if (!spin_trylock(&t->sighand->siglock)) { | ||
2756 | kdb_printf("Can't do kill command now.\n" | ||
2757 | "The sigmask lock is held somewhere else in " | ||
2758 | "kernel, try again later\n"); | ||
2759 | return; | ||
2760 | } | ||
2761 | spin_unlock(&t->sighand->siglock); | ||
2762 | new_t = kdb_prev_t != t; | ||
2763 | kdb_prev_t = t; | ||
2764 | if (t->state != TASK_RUNNING && new_t) { | ||
2765 | kdb_printf("Process is not RUNNING, sending a signal from " | ||
2766 | "kdb risks deadlock\n" | ||
2767 | "on the run queue locks. " | ||
2768 | "The signal has _not_ been sent.\n" | ||
2769 | "Reissue the kill command if you want to risk " | ||
2770 | "the deadlock.\n"); | ||
2771 | return; | ||
2772 | } | ||
2773 | sig = info->si_signo; | ||
2774 | if (send_sig_info(sig, info, t)) | ||
2775 | kdb_printf("Fail to deliver Signal %d to process %d.\n", | ||
2776 | sig, t->pid); | ||
2777 | else | ||
2778 | kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); | ||
2779 | } | ||
2780 | #endif /* CONFIG_KGDB_KDB */ | ||
diff --git a/kernel/smp.c b/kernel/smp.c index 3fc697336183..75c970c715d3 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -52,7 +52,7 @@ hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
52 | case CPU_UP_PREPARE_FROZEN: | 52 | case CPU_UP_PREPARE_FROZEN: |
53 | if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, | 53 | if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, |
54 | cpu_to_node(cpu))) | 54 | cpu_to_node(cpu))) |
55 | return NOTIFY_BAD; | 55 | return notifier_from_errno(-ENOMEM); |
56 | break; | 56 | break; |
57 | 57 | ||
58 | #ifdef CONFIG_HOTPLUG_CPU | 58 | #ifdef CONFIG_HOTPLUG_CPU |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 7c1a67ef0274..825e1126008f 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -716,7 +716,7 @@ static int run_ksoftirqd(void * __bind_cpu) | |||
716 | preempt_enable_no_resched(); | 716 | preempt_enable_no_resched(); |
717 | cond_resched(); | 717 | cond_resched(); |
718 | preempt_disable(); | 718 | preempt_disable(); |
719 | rcu_sched_qs((long)__bind_cpu); | 719 | rcu_note_context_switch((long)__bind_cpu); |
720 | } | 720 | } |
721 | preempt_enable(); | 721 | preempt_enable(); |
722 | set_current_state(TASK_INTERRUPTIBLE); | 722 | set_current_state(TASK_INTERRUPTIBLE); |
@@ -808,7 +808,7 @@ static int __cpuinit cpu_callback(struct notifier_block *nfb, | |||
808 | p = kthread_create(run_ksoftirqd, hcpu, "ksoftirqd/%d", hotcpu); | 808 | p = kthread_create(run_ksoftirqd, hcpu, "ksoftirqd/%d", hotcpu); |
809 | if (IS_ERR(p)) { | 809 | if (IS_ERR(p)) { |
810 | printk("ksoftirqd for %i failed\n", hotcpu); | 810 | printk("ksoftirqd for %i failed\n", hotcpu); |
811 | return NOTIFY_BAD; | 811 | return notifier_from_errno(PTR_ERR(p)); |
812 | } | 812 | } |
813 | kthread_bind(p, hotcpu); | 813 | kthread_bind(p, hotcpu); |
814 | per_cpu(ksoftirqd, hotcpu) = p; | 814 | per_cpu(ksoftirqd, hotcpu) = p; |
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 9bb9fb1bd79c..b4e7431e7c78 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
@@ -1,17 +1,384 @@ | |||
1 | /* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. | 1 | /* |
2 | * GPL v2 and any later version. | 2 | * kernel/stop_machine.c |
3 | * | ||
4 | * Copyright (C) 2008, 2005 IBM Corporation. | ||
5 | * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au | ||
6 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
7 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
8 | * | ||
9 | * This file is released under the GPLv2 and any later version. | ||
3 | */ | 10 | */ |
11 | #include <linux/completion.h> | ||
4 | #include <linux/cpu.h> | 12 | #include <linux/cpu.h> |
5 | #include <linux/err.h> | 13 | #include <linux/init.h> |
6 | #include <linux/kthread.h> | 14 | #include <linux/kthread.h> |
7 | #include <linux/module.h> | 15 | #include <linux/module.h> |
16 | #include <linux/percpu.h> | ||
8 | #include <linux/sched.h> | 17 | #include <linux/sched.h> |
9 | #include <linux/stop_machine.h> | 18 | #include <linux/stop_machine.h> |
10 | #include <linux/syscalls.h> | ||
11 | #include <linux/interrupt.h> | 19 | #include <linux/interrupt.h> |
20 | #include <linux/kallsyms.h> | ||
12 | 21 | ||
13 | #include <asm/atomic.h> | 22 | #include <asm/atomic.h> |
14 | #include <asm/uaccess.h> | 23 | |
24 | /* | ||
25 | * Structure to determine completion condition and record errors. May | ||
26 | * be shared by works on different cpus. | ||
27 | */ | ||
28 | struct cpu_stop_done { | ||
29 | atomic_t nr_todo; /* nr left to execute */ | ||
30 | bool executed; /* actually executed? */ | ||
31 | int ret; /* collected return value */ | ||
32 | struct completion completion; /* fired if nr_todo reaches 0 */ | ||
33 | }; | ||
34 | |||
35 | /* the actual stopper, one per every possible cpu, enabled on online cpus */ | ||
36 | struct cpu_stopper { | ||
37 | spinlock_t lock; | ||
38 | struct list_head works; /* list of pending works */ | ||
39 | struct task_struct *thread; /* stopper thread */ | ||
40 | bool enabled; /* is this stopper enabled? */ | ||
41 | }; | ||
42 | |||
43 | static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); | ||
44 | |||
45 | static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) | ||
46 | { | ||
47 | memset(done, 0, sizeof(*done)); | ||
48 | atomic_set(&done->nr_todo, nr_todo); | ||
49 | init_completion(&done->completion); | ||
50 | } | ||
51 | |||
52 | /* signal completion unless @done is NULL */ | ||
53 | static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) | ||
54 | { | ||
55 | if (done) { | ||
56 | if (executed) | ||
57 | done->executed = true; | ||
58 | if (atomic_dec_and_test(&done->nr_todo)) | ||
59 | complete(&done->completion); | ||
60 | } | ||
61 | } | ||
62 | |||
63 | /* queue @work to @stopper. if offline, @work is completed immediately */ | ||
64 | static void cpu_stop_queue_work(struct cpu_stopper *stopper, | ||
65 | struct cpu_stop_work *work) | ||
66 | { | ||
67 | unsigned long flags; | ||
68 | |||
69 | spin_lock_irqsave(&stopper->lock, flags); | ||
70 | |||
71 | if (stopper->enabled) { | ||
72 | list_add_tail(&work->list, &stopper->works); | ||
73 | wake_up_process(stopper->thread); | ||
74 | } else | ||
75 | cpu_stop_signal_done(work->done, false); | ||
76 | |||
77 | spin_unlock_irqrestore(&stopper->lock, flags); | ||
78 | } | ||
79 | |||
80 | /** | ||
81 | * stop_one_cpu - stop a cpu | ||
82 | * @cpu: cpu to stop | ||
83 | * @fn: function to execute | ||
84 | * @arg: argument to @fn | ||
85 | * | ||
86 | * Execute @fn(@arg) on @cpu. @fn is run in a process context with | ||
87 | * the highest priority preempting any task on the cpu and | ||
88 | * monopolizing it. This function returns after the execution is | ||
89 | * complete. | ||
90 | * | ||
91 | * This function doesn't guarantee @cpu stays online till @fn | ||
92 | * completes. If @cpu goes down in the middle, execution may happen | ||
93 | * partially or fully on different cpus. @fn should either be ready | ||
94 | * for that or the caller should ensure that @cpu stays online until | ||
95 | * this function completes. | ||
96 | * | ||
97 | * CONTEXT: | ||
98 | * Might sleep. | ||
99 | * | ||
100 | * RETURNS: | ||
101 | * -ENOENT if @fn(@arg) was not executed because @cpu was offline; | ||
102 | * otherwise, the return value of @fn. | ||
103 | */ | ||
104 | int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) | ||
105 | { | ||
106 | struct cpu_stop_done done; | ||
107 | struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; | ||
108 | |||
109 | cpu_stop_init_done(&done, 1); | ||
110 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work); | ||
111 | wait_for_completion(&done.completion); | ||
112 | return done.executed ? done.ret : -ENOENT; | ||
113 | } | ||
114 | |||
115 | /** | ||
116 | * stop_one_cpu_nowait - stop a cpu but don't wait for completion | ||
117 | * @cpu: cpu to stop | ||
118 | * @fn: function to execute | ||
119 | * @arg: argument to @fn | ||
120 | * | ||
121 | * Similar to stop_one_cpu() but doesn't wait for completion. The | ||
122 | * caller is responsible for ensuring @work_buf is currently unused | ||
123 | * and will remain untouched until stopper starts executing @fn. | ||
124 | * | ||
125 | * CONTEXT: | ||
126 | * Don't care. | ||
127 | */ | ||
128 | void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, | ||
129 | struct cpu_stop_work *work_buf) | ||
130 | { | ||
131 | *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; | ||
132 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf); | ||
133 | } | ||
134 | |||
135 | /* static data for stop_cpus */ | ||
136 | static DEFINE_MUTEX(stop_cpus_mutex); | ||
137 | static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); | ||
138 | |||
139 | int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
140 | { | ||
141 | struct cpu_stop_work *work; | ||
142 | struct cpu_stop_done done; | ||
143 | unsigned int cpu; | ||
144 | |||
145 | /* initialize works and done */ | ||
146 | for_each_cpu(cpu, cpumask) { | ||
147 | work = &per_cpu(stop_cpus_work, cpu); | ||
148 | work->fn = fn; | ||
149 | work->arg = arg; | ||
150 | work->done = &done; | ||
151 | } | ||
152 | cpu_stop_init_done(&done, cpumask_weight(cpumask)); | ||
153 | |||
154 | /* | ||
155 | * Disable preemption while queueing to avoid getting | ||
156 | * preempted by a stopper which might wait for other stoppers | ||
157 | * to enter @fn which can lead to deadlock. | ||
158 | */ | ||
159 | preempt_disable(); | ||
160 | for_each_cpu(cpu, cpumask) | ||
161 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), | ||
162 | &per_cpu(stop_cpus_work, cpu)); | ||
163 | preempt_enable(); | ||
164 | |||
165 | wait_for_completion(&done.completion); | ||
166 | return done.executed ? done.ret : -ENOENT; | ||
167 | } | ||
168 | |||
169 | /** | ||
170 | * stop_cpus - stop multiple cpus | ||
171 | * @cpumask: cpus to stop | ||
172 | * @fn: function to execute | ||
173 | * @arg: argument to @fn | ||
174 | * | ||
175 | * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, | ||
176 | * @fn is run in a process context with the highest priority | ||
177 | * preempting any task on the cpu and monopolizing it. This function | ||
178 | * returns after all executions are complete. | ||
179 | * | ||
180 | * This function doesn't guarantee the cpus in @cpumask stay online | ||
181 | * till @fn completes. If some cpus go down in the middle, execution | ||
182 | * on the cpu may happen partially or fully on different cpus. @fn | ||
183 | * should either be ready for that or the caller should ensure that | ||
184 | * the cpus stay online until this function completes. | ||
185 | * | ||
186 | * All stop_cpus() calls are serialized making it safe for @fn to wait | ||
187 | * for all cpus to start executing it. | ||
188 | * | ||
189 | * CONTEXT: | ||
190 | * Might sleep. | ||
191 | * | ||
192 | * RETURNS: | ||
193 | * -ENOENT if @fn(@arg) was not executed at all because all cpus in | ||
194 | * @cpumask were offline; otherwise, 0 if all executions of @fn | ||
195 | * returned 0, any non zero return value if any returned non zero. | ||
196 | */ | ||
197 | int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
198 | { | ||
199 | int ret; | ||
200 | |||
201 | /* static works are used, process one request at a time */ | ||
202 | mutex_lock(&stop_cpus_mutex); | ||
203 | ret = __stop_cpus(cpumask, fn, arg); | ||
204 | mutex_unlock(&stop_cpus_mutex); | ||
205 | return ret; | ||
206 | } | ||
207 | |||
208 | /** | ||
209 | * try_stop_cpus - try to stop multiple cpus | ||
210 | * @cpumask: cpus to stop | ||
211 | * @fn: function to execute | ||
212 | * @arg: argument to @fn | ||
213 | * | ||
214 | * Identical to stop_cpus() except that it fails with -EAGAIN if | ||
215 | * someone else is already using the facility. | ||
216 | * | ||
217 | * CONTEXT: | ||
218 | * Might sleep. | ||
219 | * | ||
220 | * RETURNS: | ||
221 | * -EAGAIN if someone else is already stopping cpus, -ENOENT if | ||
222 | * @fn(@arg) was not executed at all because all cpus in @cpumask were | ||
223 | * offline; otherwise, 0 if all executions of @fn returned 0, any non | ||
224 | * zero return value if any returned non zero. | ||
225 | */ | ||
226 | int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
227 | { | ||
228 | int ret; | ||
229 | |||
230 | /* static works are used, process one request at a time */ | ||
231 | if (!mutex_trylock(&stop_cpus_mutex)) | ||
232 | return -EAGAIN; | ||
233 | ret = __stop_cpus(cpumask, fn, arg); | ||
234 | mutex_unlock(&stop_cpus_mutex); | ||
235 | return ret; | ||
236 | } | ||
237 | |||
238 | static int cpu_stopper_thread(void *data) | ||
239 | { | ||
240 | struct cpu_stopper *stopper = data; | ||
241 | struct cpu_stop_work *work; | ||
242 | int ret; | ||
243 | |||
244 | repeat: | ||
245 | set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ | ||
246 | |||
247 | if (kthread_should_stop()) { | ||
248 | __set_current_state(TASK_RUNNING); | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | work = NULL; | ||
253 | spin_lock_irq(&stopper->lock); | ||
254 | if (!list_empty(&stopper->works)) { | ||
255 | work = list_first_entry(&stopper->works, | ||
256 | struct cpu_stop_work, list); | ||
257 | list_del_init(&work->list); | ||
258 | } | ||
259 | spin_unlock_irq(&stopper->lock); | ||
260 | |||
261 | if (work) { | ||
262 | cpu_stop_fn_t fn = work->fn; | ||
263 | void *arg = work->arg; | ||
264 | struct cpu_stop_done *done = work->done; | ||
265 | char ksym_buf[KSYM_NAME_LEN]; | ||
266 | |||
267 | __set_current_state(TASK_RUNNING); | ||
268 | |||
269 | /* cpu stop callbacks are not allowed to sleep */ | ||
270 | preempt_disable(); | ||
271 | |||
272 | ret = fn(arg); | ||
273 | if (ret) | ||
274 | done->ret = ret; | ||
275 | |||
276 | /* restore preemption and check it's still balanced */ | ||
277 | preempt_enable(); | ||
278 | WARN_ONCE(preempt_count(), | ||
279 | "cpu_stop: %s(%p) leaked preempt count\n", | ||
280 | kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, | ||
281 | ksym_buf), arg); | ||
282 | |||
283 | cpu_stop_signal_done(done, true); | ||
284 | } else | ||
285 | schedule(); | ||
286 | |||
287 | goto repeat; | ||
288 | } | ||
289 | |||
290 | /* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */ | ||
291 | static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb, | ||
292 | unsigned long action, void *hcpu) | ||
293 | { | ||
294 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | ||
295 | unsigned int cpu = (unsigned long)hcpu; | ||
296 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); | ||
297 | struct task_struct *p; | ||
298 | |||
299 | switch (action & ~CPU_TASKS_FROZEN) { | ||
300 | case CPU_UP_PREPARE: | ||
301 | BUG_ON(stopper->thread || stopper->enabled || | ||
302 | !list_empty(&stopper->works)); | ||
303 | p = kthread_create(cpu_stopper_thread, stopper, "migration/%d", | ||
304 | cpu); | ||
305 | if (IS_ERR(p)) | ||
306 | return NOTIFY_BAD; | ||
307 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
308 | get_task_struct(p); | ||
309 | stopper->thread = p; | ||
310 | break; | ||
311 | |||
312 | case CPU_ONLINE: | ||
313 | kthread_bind(stopper->thread, cpu); | ||
314 | /* strictly unnecessary, as first user will wake it */ | ||
315 | wake_up_process(stopper->thread); | ||
316 | /* mark enabled */ | ||
317 | spin_lock_irq(&stopper->lock); | ||
318 | stopper->enabled = true; | ||
319 | spin_unlock_irq(&stopper->lock); | ||
320 | break; | ||
321 | |||
322 | #ifdef CONFIG_HOTPLUG_CPU | ||
323 | case CPU_UP_CANCELED: | ||
324 | case CPU_DEAD: | ||
325 | { | ||
326 | struct cpu_stop_work *work; | ||
327 | |||
328 | /* kill the stopper */ | ||
329 | kthread_stop(stopper->thread); | ||
330 | /* drain remaining works */ | ||
331 | spin_lock_irq(&stopper->lock); | ||
332 | list_for_each_entry(work, &stopper->works, list) | ||
333 | cpu_stop_signal_done(work->done, false); | ||
334 | stopper->enabled = false; | ||
335 | spin_unlock_irq(&stopper->lock); | ||
336 | /* release the stopper */ | ||
337 | put_task_struct(stopper->thread); | ||
338 | stopper->thread = NULL; | ||
339 | break; | ||
340 | } | ||
341 | #endif | ||
342 | } | ||
343 | |||
344 | return NOTIFY_OK; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Give it a higher priority so that cpu stopper is available to other | ||
349 | * cpu notifiers. It currently shares the same priority as sched | ||
350 | * migration_notifier. | ||
351 | */ | ||
352 | static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = { | ||
353 | .notifier_call = cpu_stop_cpu_callback, | ||
354 | .priority = 10, | ||
355 | }; | ||
356 | |||
357 | static int __init cpu_stop_init(void) | ||
358 | { | ||
359 | void *bcpu = (void *)(long)smp_processor_id(); | ||
360 | unsigned int cpu; | ||
361 | int err; | ||
362 | |||
363 | for_each_possible_cpu(cpu) { | ||
364 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); | ||
365 | |||
366 | spin_lock_init(&stopper->lock); | ||
367 | INIT_LIST_HEAD(&stopper->works); | ||
368 | } | ||
369 | |||
370 | /* start one for the boot cpu */ | ||
371 | err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE, | ||
372 | bcpu); | ||
373 | BUG_ON(err == NOTIFY_BAD); | ||
374 | cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu); | ||
375 | register_cpu_notifier(&cpu_stop_cpu_notifier); | ||
376 | |||
377 | return 0; | ||
378 | } | ||
379 | early_initcall(cpu_stop_init); | ||
380 | |||
381 | #ifdef CONFIG_STOP_MACHINE | ||
15 | 382 | ||
16 | /* This controls the threads on each CPU. */ | 383 | /* This controls the threads on each CPU. */ |
17 | enum stopmachine_state { | 384 | enum stopmachine_state { |
@@ -26,174 +393,94 @@ enum stopmachine_state { | |||
26 | /* Exit */ | 393 | /* Exit */ |
27 | STOPMACHINE_EXIT, | 394 | STOPMACHINE_EXIT, |
28 | }; | 395 | }; |
29 | static enum stopmachine_state state; | ||
30 | 396 | ||
31 | struct stop_machine_data { | 397 | struct stop_machine_data { |
32 | int (*fn)(void *); | 398 | int (*fn)(void *); |
33 | void *data; | 399 | void *data; |
34 | int fnret; | 400 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ |
401 | unsigned int num_threads; | ||
402 | const struct cpumask *active_cpus; | ||
403 | |||
404 | enum stopmachine_state state; | ||
405 | atomic_t thread_ack; | ||
35 | }; | 406 | }; |
36 | 407 | ||
37 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ | 408 | static void set_state(struct stop_machine_data *smdata, |
38 | static unsigned int num_threads; | 409 | enum stopmachine_state newstate) |
39 | static atomic_t thread_ack; | ||
40 | static DEFINE_MUTEX(lock); | ||
41 | /* setup_lock protects refcount, stop_machine_wq and stop_machine_work. */ | ||
42 | static DEFINE_MUTEX(setup_lock); | ||
43 | /* Users of stop_machine. */ | ||
44 | static int refcount; | ||
45 | static struct workqueue_struct *stop_machine_wq; | ||
46 | static struct stop_machine_data active, idle; | ||
47 | static const struct cpumask *active_cpus; | ||
48 | static void __percpu *stop_machine_work; | ||
49 | |||
50 | static void set_state(enum stopmachine_state newstate) | ||
51 | { | 410 | { |
52 | /* Reset ack counter. */ | 411 | /* Reset ack counter. */ |
53 | atomic_set(&thread_ack, num_threads); | 412 | atomic_set(&smdata->thread_ack, smdata->num_threads); |
54 | smp_wmb(); | 413 | smp_wmb(); |
55 | state = newstate; | 414 | smdata->state = newstate; |
56 | } | 415 | } |
57 | 416 | ||
58 | /* Last one to ack a state moves to the next state. */ | 417 | /* Last one to ack a state moves to the next state. */ |
59 | static void ack_state(void) | 418 | static void ack_state(struct stop_machine_data *smdata) |
60 | { | 419 | { |
61 | if (atomic_dec_and_test(&thread_ack)) | 420 | if (atomic_dec_and_test(&smdata->thread_ack)) |
62 | set_state(state + 1); | 421 | set_state(smdata, smdata->state + 1); |
63 | } | 422 | } |
64 | 423 | ||
65 | /* This is the actual function which stops the CPU. It runs | 424 | /* This is the cpu_stop function which stops the CPU. */ |
66 | * in the context of a dedicated stopmachine workqueue. */ | 425 | static int stop_machine_cpu_stop(void *data) |
67 | static void stop_cpu(struct work_struct *unused) | ||
68 | { | 426 | { |
427 | struct stop_machine_data *smdata = data; | ||
69 | enum stopmachine_state curstate = STOPMACHINE_NONE; | 428 | enum stopmachine_state curstate = STOPMACHINE_NONE; |
70 | struct stop_machine_data *smdata = &idle; | 429 | int cpu = smp_processor_id(), err = 0; |
71 | int cpu = smp_processor_id(); | 430 | bool is_active; |
72 | int err; | 431 | |
432 | if (!smdata->active_cpus) | ||
433 | is_active = cpu == cpumask_first(cpu_online_mask); | ||
434 | else | ||
435 | is_active = cpumask_test_cpu(cpu, smdata->active_cpus); | ||
73 | 436 | ||
74 | if (!active_cpus) { | ||
75 | if (cpu == cpumask_first(cpu_online_mask)) | ||
76 | smdata = &active; | ||
77 | } else { | ||
78 | if (cpumask_test_cpu(cpu, active_cpus)) | ||
79 | smdata = &active; | ||
80 | } | ||
81 | /* Simple state machine */ | 437 | /* Simple state machine */ |
82 | do { | 438 | do { |
83 | /* Chill out and ensure we re-read stopmachine_state. */ | 439 | /* Chill out and ensure we re-read stopmachine_state. */ |
84 | cpu_relax(); | 440 | cpu_relax(); |
85 | if (state != curstate) { | 441 | if (smdata->state != curstate) { |
86 | curstate = state; | 442 | curstate = smdata->state; |
87 | switch (curstate) { | 443 | switch (curstate) { |
88 | case STOPMACHINE_DISABLE_IRQ: | 444 | case STOPMACHINE_DISABLE_IRQ: |
89 | local_irq_disable(); | 445 | local_irq_disable(); |
90 | hard_irq_disable(); | 446 | hard_irq_disable(); |
91 | break; | 447 | break; |
92 | case STOPMACHINE_RUN: | 448 | case STOPMACHINE_RUN: |
93 | /* On multiple CPUs only a single error code | 449 | if (is_active) |
94 | * is needed to tell that something failed. */ | 450 | err = smdata->fn(smdata->data); |
95 | err = smdata->fn(smdata->data); | ||
96 | if (err) | ||
97 | smdata->fnret = err; | ||
98 | break; | 451 | break; |
99 | default: | 452 | default: |
100 | break; | 453 | break; |
101 | } | 454 | } |
102 | ack_state(); | 455 | ack_state(smdata); |
103 | } | 456 | } |
104 | } while (curstate != STOPMACHINE_EXIT); | 457 | } while (curstate != STOPMACHINE_EXIT); |
105 | 458 | ||
106 | local_irq_enable(); | 459 | local_irq_enable(); |
460 | return err; | ||
107 | } | 461 | } |
108 | 462 | ||
109 | /* Callback for CPUs which aren't supposed to do anything. */ | ||
110 | static int chill(void *unused) | ||
111 | { | ||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | int stop_machine_create(void) | ||
116 | { | ||
117 | mutex_lock(&setup_lock); | ||
118 | if (refcount) | ||
119 | goto done; | ||
120 | stop_machine_wq = create_rt_workqueue("kstop"); | ||
121 | if (!stop_machine_wq) | ||
122 | goto err_out; | ||
123 | stop_machine_work = alloc_percpu(struct work_struct); | ||
124 | if (!stop_machine_work) | ||
125 | goto err_out; | ||
126 | done: | ||
127 | refcount++; | ||
128 | mutex_unlock(&setup_lock); | ||
129 | return 0; | ||
130 | |||
131 | err_out: | ||
132 | if (stop_machine_wq) | ||
133 | destroy_workqueue(stop_machine_wq); | ||
134 | mutex_unlock(&setup_lock); | ||
135 | return -ENOMEM; | ||
136 | } | ||
137 | EXPORT_SYMBOL_GPL(stop_machine_create); | ||
138 | |||
139 | void stop_machine_destroy(void) | ||
140 | { | ||
141 | mutex_lock(&setup_lock); | ||
142 | refcount--; | ||
143 | if (refcount) | ||
144 | goto done; | ||
145 | destroy_workqueue(stop_machine_wq); | ||
146 | free_percpu(stop_machine_work); | ||
147 | done: | ||
148 | mutex_unlock(&setup_lock); | ||
149 | } | ||
150 | EXPORT_SYMBOL_GPL(stop_machine_destroy); | ||
151 | |||
152 | int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | 463 | int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) |
153 | { | 464 | { |
154 | struct work_struct *sm_work; | 465 | struct stop_machine_data smdata = { .fn = fn, .data = data, |
155 | int i, ret; | 466 | .num_threads = num_online_cpus(), |
156 | 467 | .active_cpus = cpus }; | |
157 | /* Set up initial state. */ | 468 | |
158 | mutex_lock(&lock); | 469 | /* Set the initial state and stop all online cpus. */ |
159 | num_threads = num_online_cpus(); | 470 | set_state(&smdata, STOPMACHINE_PREPARE); |
160 | active_cpus = cpus; | 471 | return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); |
161 | active.fn = fn; | ||
162 | active.data = data; | ||
163 | active.fnret = 0; | ||
164 | idle.fn = chill; | ||
165 | idle.data = NULL; | ||
166 | |||
167 | set_state(STOPMACHINE_PREPARE); | ||
168 | |||
169 | /* Schedule the stop_cpu work on all cpus: hold this CPU so one | ||
170 | * doesn't hit this CPU until we're ready. */ | ||
171 | get_cpu(); | ||
172 | for_each_online_cpu(i) { | ||
173 | sm_work = per_cpu_ptr(stop_machine_work, i); | ||
174 | INIT_WORK(sm_work, stop_cpu); | ||
175 | queue_work_on(i, stop_machine_wq, sm_work); | ||
176 | } | ||
177 | /* This will release the thread on our CPU. */ | ||
178 | put_cpu(); | ||
179 | flush_workqueue(stop_machine_wq); | ||
180 | ret = active.fnret; | ||
181 | mutex_unlock(&lock); | ||
182 | return ret; | ||
183 | } | 472 | } |
184 | 473 | ||
185 | int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | 474 | int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) |
186 | { | 475 | { |
187 | int ret; | 476 | int ret; |
188 | 477 | ||
189 | ret = stop_machine_create(); | ||
190 | if (ret) | ||
191 | return ret; | ||
192 | /* No CPUs can come up or down during this. */ | 478 | /* No CPUs can come up or down during this. */ |
193 | get_online_cpus(); | 479 | get_online_cpus(); |
194 | ret = __stop_machine(fn, data, cpus); | 480 | ret = __stop_machine(fn, data, cpus); |
195 | put_online_cpus(); | 481 | put_online_cpus(); |
196 | stop_machine_destroy(); | ||
197 | return ret; | 482 | return ret; |
198 | } | 483 | } |
199 | EXPORT_SYMBOL_GPL(stop_machine); | 484 | EXPORT_SYMBOL_GPL(stop_machine); |
485 | |||
486 | #endif /* CONFIG_STOP_MACHINE */ | ||
diff --git a/kernel/sys.c b/kernel/sys.c index 7cb426a58965..e83ddbbaf89d 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -492,10 +492,6 @@ SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) | |||
492 | return -ENOMEM; | 492 | return -ENOMEM; |
493 | old = current_cred(); | 493 | old = current_cred(); |
494 | 494 | ||
495 | retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); | ||
496 | if (retval) | ||
497 | goto error; | ||
498 | |||
499 | retval = -EPERM; | 495 | retval = -EPERM; |
500 | if (rgid != (gid_t) -1) { | 496 | if (rgid != (gid_t) -1) { |
501 | if (old->gid == rgid || | 497 | if (old->gid == rgid || |
@@ -543,10 +539,6 @@ SYSCALL_DEFINE1(setgid, gid_t, gid) | |||
543 | return -ENOMEM; | 539 | return -ENOMEM; |
544 | old = current_cred(); | 540 | old = current_cred(); |
545 | 541 | ||
546 | retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); | ||
547 | if (retval) | ||
548 | goto error; | ||
549 | |||
550 | retval = -EPERM; | 542 | retval = -EPERM; |
551 | if (capable(CAP_SETGID)) | 543 | if (capable(CAP_SETGID)) |
552 | new->gid = new->egid = new->sgid = new->fsgid = gid; | 544 | new->gid = new->egid = new->sgid = new->fsgid = gid; |
@@ -610,10 +602,6 @@ SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) | |||
610 | return -ENOMEM; | 602 | return -ENOMEM; |
611 | old = current_cred(); | 603 | old = current_cred(); |
612 | 604 | ||
613 | retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); | ||
614 | if (retval) | ||
615 | goto error; | ||
616 | |||
617 | retval = -EPERM; | 605 | retval = -EPERM; |
618 | if (ruid != (uid_t) -1) { | 606 | if (ruid != (uid_t) -1) { |
619 | new->uid = ruid; | 607 | new->uid = ruid; |
@@ -675,10 +663,6 @@ SYSCALL_DEFINE1(setuid, uid_t, uid) | |||
675 | return -ENOMEM; | 663 | return -ENOMEM; |
676 | old = current_cred(); | 664 | old = current_cred(); |
677 | 665 | ||
678 | retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); | ||
679 | if (retval) | ||
680 | goto error; | ||
681 | |||
682 | retval = -EPERM; | 666 | retval = -EPERM; |
683 | if (capable(CAP_SETUID)) { | 667 | if (capable(CAP_SETUID)) { |
684 | new->suid = new->uid = uid; | 668 | new->suid = new->uid = uid; |
@@ -719,9 +703,6 @@ SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) | |||
719 | if (!new) | 703 | if (!new) |
720 | return -ENOMEM; | 704 | return -ENOMEM; |
721 | 705 | ||
722 | retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); | ||
723 | if (retval) | ||
724 | goto error; | ||
725 | old = current_cred(); | 706 | old = current_cred(); |
726 | 707 | ||
727 | retval = -EPERM; | 708 | retval = -EPERM; |
@@ -788,10 +769,6 @@ SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) | |||
788 | return -ENOMEM; | 769 | return -ENOMEM; |
789 | old = current_cred(); | 770 | old = current_cred(); |
790 | 771 | ||
791 | retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); | ||
792 | if (retval) | ||
793 | goto error; | ||
794 | |||
795 | retval = -EPERM; | 772 | retval = -EPERM; |
796 | if (!capable(CAP_SETGID)) { | 773 | if (!capable(CAP_SETGID)) { |
797 | if (rgid != (gid_t) -1 && rgid != old->gid && | 774 | if (rgid != (gid_t) -1 && rgid != old->gid && |
@@ -851,9 +828,6 @@ SYSCALL_DEFINE1(setfsuid, uid_t, uid) | |||
851 | old = current_cred(); | 828 | old = current_cred(); |
852 | old_fsuid = old->fsuid; | 829 | old_fsuid = old->fsuid; |
853 | 830 | ||
854 | if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0) | ||
855 | goto error; | ||
856 | |||
857 | if (uid == old->uid || uid == old->euid || | 831 | if (uid == old->uid || uid == old->euid || |
858 | uid == old->suid || uid == old->fsuid || | 832 | uid == old->suid || uid == old->fsuid || |
859 | capable(CAP_SETUID)) { | 833 | capable(CAP_SETUID)) { |
@@ -864,7 +838,6 @@ SYSCALL_DEFINE1(setfsuid, uid_t, uid) | |||
864 | } | 838 | } |
865 | } | 839 | } |
866 | 840 | ||
867 | error: | ||
868 | abort_creds(new); | 841 | abort_creds(new); |
869 | return old_fsuid; | 842 | return old_fsuid; |
870 | 843 | ||
@@ -888,9 +861,6 @@ SYSCALL_DEFINE1(setfsgid, gid_t, gid) | |||
888 | old = current_cred(); | 861 | old = current_cred(); |
889 | old_fsgid = old->fsgid; | 862 | old_fsgid = old->fsgid; |
890 | 863 | ||
891 | if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) | ||
892 | goto error; | ||
893 | |||
894 | if (gid == old->gid || gid == old->egid || | 864 | if (gid == old->gid || gid == old->egid || |
895 | gid == old->sgid || gid == old->fsgid || | 865 | gid == old->sgid || gid == old->fsgid || |
896 | capable(CAP_SETGID)) { | 866 | capable(CAP_SETGID)) { |
@@ -900,7 +870,6 @@ SYSCALL_DEFINE1(setfsgid, gid_t, gid) | |||
900 | } | 870 | } |
901 | } | 871 | } |
902 | 872 | ||
903 | error: | ||
904 | abort_creds(new); | 873 | abort_creds(new); |
905 | return old_fsgid; | 874 | return old_fsgid; |
906 | 875 | ||
@@ -1663,9 +1632,9 @@ SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, | |||
1663 | 1632 | ||
1664 | char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; | 1633 | char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; |
1665 | 1634 | ||
1666 | static void argv_cleanup(char **argv, char **envp) | 1635 | static void argv_cleanup(struct subprocess_info *info) |
1667 | { | 1636 | { |
1668 | argv_free(argv); | 1637 | argv_free(info->argv); |
1669 | } | 1638 | } |
1670 | 1639 | ||
1671 | /** | 1640 | /** |
@@ -1699,7 +1668,7 @@ int orderly_poweroff(bool force) | |||
1699 | goto out; | 1668 | goto out; |
1700 | } | 1669 | } |
1701 | 1670 | ||
1702 | call_usermodehelper_setcleanup(info, argv_cleanup); | 1671 | call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); |
1703 | 1672 | ||
1704 | ret = call_usermodehelper_exec(info, UMH_NO_WAIT); | 1673 | ret = call_usermodehelper_exec(info, UMH_NO_WAIT); |
1705 | 1674 | ||
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 8686b0f5fc12..997080f00e0b 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -37,6 +37,7 @@ | |||
37 | #include <linux/highuid.h> | 37 | #include <linux/highuid.h> |
38 | #include <linux/writeback.h> | 38 | #include <linux/writeback.h> |
39 | #include <linux/ratelimit.h> | 39 | #include <linux/ratelimit.h> |
40 | #include <linux/compaction.h> | ||
40 | #include <linux/hugetlb.h> | 41 | #include <linux/hugetlb.h> |
41 | #include <linux/initrd.h> | 42 | #include <linux/initrd.h> |
42 | #include <linux/key.h> | 43 | #include <linux/key.h> |
@@ -52,6 +53,7 @@ | |||
52 | #include <linux/slow-work.h> | 53 | #include <linux/slow-work.h> |
53 | #include <linux/perf_event.h> | 54 | #include <linux/perf_event.h> |
54 | #include <linux/kprobes.h> | 55 | #include <linux/kprobes.h> |
56 | #include <linux/pipe_fs_i.h> | ||
55 | 57 | ||
56 | #include <asm/uaccess.h> | 58 | #include <asm/uaccess.h> |
57 | #include <asm/processor.h> | 59 | #include <asm/processor.h> |
@@ -163,6 +165,27 @@ static int proc_taint(struct ctl_table *table, int write, | |||
163 | void __user *buffer, size_t *lenp, loff_t *ppos); | 165 | void __user *buffer, size_t *lenp, loff_t *ppos); |
164 | #endif | 166 | #endif |
165 | 167 | ||
168 | #ifdef CONFIG_MAGIC_SYSRQ | ||
169 | static int __sysrq_enabled; /* Note: sysrq code ises it's own private copy */ | ||
170 | |||
171 | static int sysrq_sysctl_handler(ctl_table *table, int write, | ||
172 | void __user *buffer, size_t *lenp, | ||
173 | loff_t *ppos) | ||
174 | { | ||
175 | int error; | ||
176 | |||
177 | error = proc_dointvec(table, write, buffer, lenp, ppos); | ||
178 | if (error) | ||
179 | return error; | ||
180 | |||
181 | if (write) | ||
182 | sysrq_toggle_support(__sysrq_enabled); | ||
183 | |||
184 | return 0; | ||
185 | } | ||
186 | |||
187 | #endif | ||
188 | |||
166 | static struct ctl_table root_table[]; | 189 | static struct ctl_table root_table[]; |
167 | static struct ctl_table_root sysctl_table_root; | 190 | static struct ctl_table_root sysctl_table_root; |
168 | static struct ctl_table_header root_table_header = { | 191 | static struct ctl_table_header root_table_header = { |
@@ -240,6 +263,11 @@ static int min_sched_shares_ratelimit = 100000; /* 100 usec */ | |||
240 | static int max_sched_shares_ratelimit = NSEC_PER_SEC; /* 1 second */ | 263 | static int max_sched_shares_ratelimit = NSEC_PER_SEC; /* 1 second */ |
241 | #endif | 264 | #endif |
242 | 265 | ||
266 | #ifdef CONFIG_COMPACTION | ||
267 | static int min_extfrag_threshold; | ||
268 | static int max_extfrag_threshold = 1000; | ||
269 | #endif | ||
270 | |||
243 | static struct ctl_table kern_table[] = { | 271 | static struct ctl_table kern_table[] = { |
244 | { | 272 | { |
245 | .procname = "sched_child_runs_first", | 273 | .procname = "sched_child_runs_first", |
@@ -567,7 +595,7 @@ static struct ctl_table kern_table[] = { | |||
567 | .data = &__sysrq_enabled, | 595 | .data = &__sysrq_enabled, |
568 | .maxlen = sizeof (int), | 596 | .maxlen = sizeof (int), |
569 | .mode = 0644, | 597 | .mode = 0644, |
570 | .proc_handler = proc_dointvec, | 598 | .proc_handler = sysrq_sysctl_handler, |
571 | }, | 599 | }, |
572 | #endif | 600 | #endif |
573 | #ifdef CONFIG_PROC_SYSCTL | 601 | #ifdef CONFIG_PROC_SYSCTL |
@@ -621,7 +649,7 @@ static struct ctl_table kern_table[] = { | |||
621 | #endif | 649 | #endif |
622 | { | 650 | { |
623 | .procname = "userprocess_debug", | 651 | .procname = "userprocess_debug", |
624 | .data = &sysctl_userprocess_debug, | 652 | .data = &show_unhandled_signals, |
625 | .maxlen = sizeof(int), | 653 | .maxlen = sizeof(int), |
626 | .mode = 0644, | 654 | .mode = 0644, |
627 | .proc_handler = proc_dointvec, | 655 | .proc_handler = proc_dointvec, |
@@ -1099,6 +1127,25 @@ static struct ctl_table vm_table[] = { | |||
1099 | .mode = 0644, | 1127 | .mode = 0644, |
1100 | .proc_handler = drop_caches_sysctl_handler, | 1128 | .proc_handler = drop_caches_sysctl_handler, |
1101 | }, | 1129 | }, |
1130 | #ifdef CONFIG_COMPACTION | ||
1131 | { | ||
1132 | .procname = "compact_memory", | ||
1133 | .data = &sysctl_compact_memory, | ||
1134 | .maxlen = sizeof(int), | ||
1135 | .mode = 0200, | ||
1136 | .proc_handler = sysctl_compaction_handler, | ||
1137 | }, | ||
1138 | { | ||
1139 | .procname = "extfrag_threshold", | ||
1140 | .data = &sysctl_extfrag_threshold, | ||
1141 | .maxlen = sizeof(int), | ||
1142 | .mode = 0644, | ||
1143 | .proc_handler = sysctl_extfrag_handler, | ||
1144 | .extra1 = &min_extfrag_threshold, | ||
1145 | .extra2 = &max_extfrag_threshold, | ||
1146 | }, | ||
1147 | |||
1148 | #endif /* CONFIG_COMPACTION */ | ||
1102 | { | 1149 | { |
1103 | .procname = "min_free_kbytes", | 1150 | .procname = "min_free_kbytes", |
1104 | .data = &min_free_kbytes, | 1151 | .data = &min_free_kbytes, |
@@ -1423,6 +1470,14 @@ static struct ctl_table fs_table[] = { | |||
1423 | .child = binfmt_misc_table, | 1470 | .child = binfmt_misc_table, |
1424 | }, | 1471 | }, |
1425 | #endif | 1472 | #endif |
1473 | { | ||
1474 | .procname = "pipe-max-pages", | ||
1475 | .data = &pipe_max_pages, | ||
1476 | .maxlen = sizeof(int), | ||
1477 | .mode = 0644, | ||
1478 | .proc_handler = &proc_dointvec_minmax, | ||
1479 | .extra1 = &two, | ||
1480 | }, | ||
1426 | /* | 1481 | /* |
1427 | * NOTE: do not add new entries to this table unless you have read | 1482 | * NOTE: do not add new entries to this table unless you have read |
1428 | * Documentation/sysctl/ctl_unnumbered.txt | 1483 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -1431,7 +1486,8 @@ static struct ctl_table fs_table[] = { | |||
1431 | }; | 1486 | }; |
1432 | 1487 | ||
1433 | static struct ctl_table debug_table[] = { | 1488 | static struct ctl_table debug_table[] = { |
1434 | #if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) | 1489 | #if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) || \ |
1490 | defined(CONFIG_S390) | ||
1435 | { | 1491 | { |
1436 | .procname = "exception-trace", | 1492 | .procname = "exception-trace", |
1437 | .data = &show_unhandled_signals, | 1493 | .data = &show_unhandled_signals, |
@@ -2040,8 +2096,132 @@ int proc_dostring(struct ctl_table *table, int write, | |||
2040 | buffer, lenp, ppos); | 2096 | buffer, lenp, ppos); |
2041 | } | 2097 | } |
2042 | 2098 | ||
2099 | static size_t proc_skip_spaces(char **buf) | ||
2100 | { | ||
2101 | size_t ret; | ||
2102 | char *tmp = skip_spaces(*buf); | ||
2103 | ret = tmp - *buf; | ||
2104 | *buf = tmp; | ||
2105 | return ret; | ||
2106 | } | ||
2107 | |||
2108 | static void proc_skip_char(char **buf, size_t *size, const char v) | ||
2109 | { | ||
2110 | while (*size) { | ||
2111 | if (**buf != v) | ||
2112 | break; | ||
2113 | (*size)--; | ||
2114 | (*buf)++; | ||
2115 | } | ||
2116 | } | ||
2117 | |||
2118 | #define TMPBUFLEN 22 | ||
2119 | /** | ||
2120 | * proc_get_long - reads an ASCII formatted integer from a user buffer | ||
2121 | * | ||
2122 | * @buf: a kernel buffer | ||
2123 | * @size: size of the kernel buffer | ||
2124 | * @val: this is where the number will be stored | ||
2125 | * @neg: set to %TRUE if number is negative | ||
2126 | * @perm_tr: a vector which contains the allowed trailers | ||
2127 | * @perm_tr_len: size of the perm_tr vector | ||
2128 | * @tr: pointer to store the trailer character | ||
2129 | * | ||
2130 | * In case of success %0 is returned and @buf and @size are updated with | ||
2131 | * the amount of bytes read. If @tr is non-NULL and a trailing | ||
2132 | * character exists (size is non-zero after returning from this | ||
2133 | * function), @tr is updated with the trailing character. | ||
2134 | */ | ||
2135 | static int proc_get_long(char **buf, size_t *size, | ||
2136 | unsigned long *val, bool *neg, | ||
2137 | const char *perm_tr, unsigned perm_tr_len, char *tr) | ||
2138 | { | ||
2139 | int len; | ||
2140 | char *p, tmp[TMPBUFLEN]; | ||
2141 | |||
2142 | if (!*size) | ||
2143 | return -EINVAL; | ||
2144 | |||
2145 | len = *size; | ||
2146 | if (len > TMPBUFLEN - 1) | ||
2147 | len = TMPBUFLEN - 1; | ||
2148 | |||
2149 | memcpy(tmp, *buf, len); | ||
2150 | |||
2151 | tmp[len] = 0; | ||
2152 | p = tmp; | ||
2153 | if (*p == '-' && *size > 1) { | ||
2154 | *neg = true; | ||
2155 | p++; | ||
2156 | } else | ||
2157 | *neg = false; | ||
2158 | if (!isdigit(*p)) | ||
2159 | return -EINVAL; | ||
2160 | |||
2161 | *val = simple_strtoul(p, &p, 0); | ||
2162 | |||
2163 | len = p - tmp; | ||
2164 | |||
2165 | /* We don't know if the next char is whitespace thus we may accept | ||
2166 | * invalid integers (e.g. 1234...a) or two integers instead of one | ||
2167 | * (e.g. 123...1). So lets not allow such large numbers. */ | ||
2168 | if (len == TMPBUFLEN - 1) | ||
2169 | return -EINVAL; | ||
2170 | |||
2171 | if (len < *size && perm_tr_len && !memchr(perm_tr, *p, perm_tr_len)) | ||
2172 | return -EINVAL; | ||
2173 | |||
2174 | if (tr && (len < *size)) | ||
2175 | *tr = *p; | ||
2176 | |||
2177 | *buf += len; | ||
2178 | *size -= len; | ||
2179 | |||
2180 | return 0; | ||
2181 | } | ||
2182 | |||
2183 | /** | ||
2184 | * proc_put_long - converts an integer to a decimal ASCII formatted string | ||
2185 | * | ||
2186 | * @buf: the user buffer | ||
2187 | * @size: the size of the user buffer | ||
2188 | * @val: the integer to be converted | ||
2189 | * @neg: sign of the number, %TRUE for negative | ||
2190 | * | ||
2191 | * In case of success %0 is returned and @buf and @size are updated with | ||
2192 | * the amount of bytes written. | ||
2193 | */ | ||
2194 | static int proc_put_long(void __user **buf, size_t *size, unsigned long val, | ||
2195 | bool neg) | ||
2196 | { | ||
2197 | int len; | ||
2198 | char tmp[TMPBUFLEN], *p = tmp; | ||
2199 | |||
2200 | sprintf(p, "%s%lu", neg ? "-" : "", val); | ||
2201 | len = strlen(tmp); | ||
2202 | if (len > *size) | ||
2203 | len = *size; | ||
2204 | if (copy_to_user(*buf, tmp, len)) | ||
2205 | return -EFAULT; | ||
2206 | *size -= len; | ||
2207 | *buf += len; | ||
2208 | return 0; | ||
2209 | } | ||
2210 | #undef TMPBUFLEN | ||
2211 | |||
2212 | static int proc_put_char(void __user **buf, size_t *size, char c) | ||
2213 | { | ||
2214 | if (*size) { | ||
2215 | char __user **buffer = (char __user **)buf; | ||
2216 | if (put_user(c, *buffer)) | ||
2217 | return -EFAULT; | ||
2218 | (*size)--, (*buffer)++; | ||
2219 | *buf = *buffer; | ||
2220 | } | ||
2221 | return 0; | ||
2222 | } | ||
2043 | 2223 | ||
2044 | static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | 2224 | static int do_proc_dointvec_conv(bool *negp, unsigned long *lvalp, |
2045 | int *valp, | 2225 | int *valp, |
2046 | int write, void *data) | 2226 | int write, void *data) |
2047 | { | 2227 | { |
@@ -2050,33 +2230,31 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
2050 | } else { | 2230 | } else { |
2051 | int val = *valp; | 2231 | int val = *valp; |
2052 | if (val < 0) { | 2232 | if (val < 0) { |
2053 | *negp = -1; | 2233 | *negp = true; |
2054 | *lvalp = (unsigned long)-val; | 2234 | *lvalp = (unsigned long)-val; |
2055 | } else { | 2235 | } else { |
2056 | *negp = 0; | 2236 | *negp = false; |
2057 | *lvalp = (unsigned long)val; | 2237 | *lvalp = (unsigned long)val; |
2058 | } | 2238 | } |
2059 | } | 2239 | } |
2060 | return 0; | 2240 | return 0; |
2061 | } | 2241 | } |
2062 | 2242 | ||
2243 | static const char proc_wspace_sep[] = { ' ', '\t', '\n' }; | ||
2244 | |||
2063 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2245 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
2064 | int write, void __user *buffer, | 2246 | int write, void __user *buffer, |
2065 | size_t *lenp, loff_t *ppos, | 2247 | size_t *lenp, loff_t *ppos, |
2066 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2248 | int (*conv)(bool *negp, unsigned long *lvalp, int *valp, |
2067 | int write, void *data), | 2249 | int write, void *data), |
2068 | void *data) | 2250 | void *data) |
2069 | { | 2251 | { |
2070 | #define TMPBUFLEN 21 | 2252 | int *i, vleft, first = 1, err = 0; |
2071 | int *i, vleft, first = 1, neg; | 2253 | unsigned long page = 0; |
2072 | unsigned long lval; | 2254 | size_t left; |
2073 | size_t left, len; | 2255 | char *kbuf; |
2074 | 2256 | ||
2075 | char buf[TMPBUFLEN], *p; | 2257 | if (!tbl_data || !table->maxlen || !*lenp || (*ppos && !write)) { |
2076 | char __user *s = buffer; | ||
2077 | |||
2078 | if (!tbl_data || !table->maxlen || !*lenp || | ||
2079 | (*ppos && !write)) { | ||
2080 | *lenp = 0; | 2258 | *lenp = 0; |
2081 | return 0; | 2259 | return 0; |
2082 | } | 2260 | } |
@@ -2088,89 +2266,71 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
2088 | if (!conv) | 2266 | if (!conv) |
2089 | conv = do_proc_dointvec_conv; | 2267 | conv = do_proc_dointvec_conv; |
2090 | 2268 | ||
2269 | if (write) { | ||
2270 | if (left > PAGE_SIZE - 1) | ||
2271 | left = PAGE_SIZE - 1; | ||
2272 | page = __get_free_page(GFP_TEMPORARY); | ||
2273 | kbuf = (char *) page; | ||
2274 | if (!kbuf) | ||
2275 | return -ENOMEM; | ||
2276 | if (copy_from_user(kbuf, buffer, left)) { | ||
2277 | err = -EFAULT; | ||
2278 | goto free; | ||
2279 | } | ||
2280 | kbuf[left] = 0; | ||
2281 | } | ||
2282 | |||
2091 | for (; left && vleft--; i++, first=0) { | 2283 | for (; left && vleft--; i++, first=0) { |
2284 | unsigned long lval; | ||
2285 | bool neg; | ||
2286 | |||
2092 | if (write) { | 2287 | if (write) { |
2093 | while (left) { | 2288 | left -= proc_skip_spaces(&kbuf); |
2094 | char c; | 2289 | |
2095 | if (get_user(c, s)) | ||
2096 | return -EFAULT; | ||
2097 | if (!isspace(c)) | ||
2098 | break; | ||
2099 | left--; | ||
2100 | s++; | ||
2101 | } | ||
2102 | if (!left) | 2290 | if (!left) |
2103 | break; | 2291 | break; |
2104 | neg = 0; | 2292 | err = proc_get_long(&kbuf, &left, &lval, &neg, |
2105 | len = left; | 2293 | proc_wspace_sep, |
2106 | if (len > sizeof(buf) - 1) | 2294 | sizeof(proc_wspace_sep), NULL); |
2107 | len = sizeof(buf) - 1; | 2295 | if (err) |
2108 | if (copy_from_user(buf, s, len)) | ||
2109 | return -EFAULT; | ||
2110 | buf[len] = 0; | ||
2111 | p = buf; | ||
2112 | if (*p == '-' && left > 1) { | ||
2113 | neg = 1; | ||
2114 | p++; | ||
2115 | } | ||
2116 | if (*p < '0' || *p > '9') | ||
2117 | break; | 2296 | break; |
2118 | 2297 | if (conv(&neg, &lval, i, 1, data)) { | |
2119 | lval = simple_strtoul(p, &p, 0); | 2298 | err = -EINVAL; |
2120 | |||
2121 | len = p-buf; | ||
2122 | if ((len < left) && *p && !isspace(*p)) | ||
2123 | break; | ||
2124 | s += len; | ||
2125 | left -= len; | ||
2126 | |||
2127 | if (conv(&neg, &lval, i, 1, data)) | ||
2128 | break; | 2299 | break; |
2300 | } | ||
2129 | } else { | 2301 | } else { |
2130 | p = buf; | 2302 | if (conv(&neg, &lval, i, 0, data)) { |
2303 | err = -EINVAL; | ||
2304 | break; | ||
2305 | } | ||
2131 | if (!first) | 2306 | if (!first) |
2132 | *p++ = '\t'; | 2307 | err = proc_put_char(&buffer, &left, '\t'); |
2133 | 2308 | if (err) | |
2134 | if (conv(&neg, &lval, i, 0, data)) | 2309 | break; |
2310 | err = proc_put_long(&buffer, &left, lval, neg); | ||
2311 | if (err) | ||
2135 | break; | 2312 | break; |
2136 | |||
2137 | sprintf(p, "%s%lu", neg ? "-" : "", lval); | ||
2138 | len = strlen(buf); | ||
2139 | if (len > left) | ||
2140 | len = left; | ||
2141 | if(copy_to_user(s, buf, len)) | ||
2142 | return -EFAULT; | ||
2143 | left -= len; | ||
2144 | s += len; | ||
2145 | } | 2313 | } |
2146 | } | 2314 | } |
2147 | 2315 | ||
2148 | if (!write && !first && left) { | 2316 | if (!write && !first && left && !err) |
2149 | if(put_user('\n', s)) | 2317 | err = proc_put_char(&buffer, &left, '\n'); |
2150 | return -EFAULT; | 2318 | if (write && !err && left) |
2151 | left--, s++; | 2319 | left -= proc_skip_spaces(&kbuf); |
2152 | } | 2320 | free: |
2153 | if (write) { | 2321 | if (write) { |
2154 | while (left) { | 2322 | free_page(page); |
2155 | char c; | 2323 | if (first) |
2156 | if (get_user(c, s++)) | 2324 | return err ? : -EINVAL; |
2157 | return -EFAULT; | ||
2158 | if (!isspace(c)) | ||
2159 | break; | ||
2160 | left--; | ||
2161 | } | ||
2162 | } | 2325 | } |
2163 | if (write && first) | ||
2164 | return -EINVAL; | ||
2165 | *lenp -= left; | 2326 | *lenp -= left; |
2166 | *ppos += *lenp; | 2327 | *ppos += *lenp; |
2167 | return 0; | 2328 | return err; |
2168 | #undef TMPBUFLEN | ||
2169 | } | 2329 | } |
2170 | 2330 | ||
2171 | static int do_proc_dointvec(struct ctl_table *table, int write, | 2331 | static int do_proc_dointvec(struct ctl_table *table, int write, |
2172 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2332 | void __user *buffer, size_t *lenp, loff_t *ppos, |
2173 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2333 | int (*conv)(bool *negp, unsigned long *lvalp, int *valp, |
2174 | int write, void *data), | 2334 | int write, void *data), |
2175 | void *data) | 2335 | void *data) |
2176 | { | 2336 | { |
@@ -2238,8 +2398,8 @@ struct do_proc_dointvec_minmax_conv_param { | |||
2238 | int *max; | 2398 | int *max; |
2239 | }; | 2399 | }; |
2240 | 2400 | ||
2241 | static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | 2401 | static int do_proc_dointvec_minmax_conv(bool *negp, unsigned long *lvalp, |
2242 | int *valp, | 2402 | int *valp, |
2243 | int write, void *data) | 2403 | int write, void *data) |
2244 | { | 2404 | { |
2245 | struct do_proc_dointvec_minmax_conv_param *param = data; | 2405 | struct do_proc_dointvec_minmax_conv_param *param = data; |
@@ -2252,10 +2412,10 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2252 | } else { | 2412 | } else { |
2253 | int val = *valp; | 2413 | int val = *valp; |
2254 | if (val < 0) { | 2414 | if (val < 0) { |
2255 | *negp = -1; | 2415 | *negp = true; |
2256 | *lvalp = (unsigned long)-val; | 2416 | *lvalp = (unsigned long)-val; |
2257 | } else { | 2417 | } else { |
2258 | *negp = 0; | 2418 | *negp = false; |
2259 | *lvalp = (unsigned long)val; | 2419 | *lvalp = (unsigned long)val; |
2260 | } | 2420 | } |
2261 | } | 2421 | } |
@@ -2295,102 +2455,78 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
2295 | unsigned long convmul, | 2455 | unsigned long convmul, |
2296 | unsigned long convdiv) | 2456 | unsigned long convdiv) |
2297 | { | 2457 | { |
2298 | #define TMPBUFLEN 21 | 2458 | unsigned long *i, *min, *max; |
2299 | unsigned long *i, *min, *max, val; | 2459 | int vleft, first = 1, err = 0; |
2300 | int vleft, first=1, neg; | 2460 | unsigned long page = 0; |
2301 | size_t len, left; | 2461 | size_t left; |
2302 | char buf[TMPBUFLEN], *p; | 2462 | char *kbuf; |
2303 | char __user *s = buffer; | 2463 | |
2304 | 2464 | if (!data || !table->maxlen || !*lenp || (*ppos && !write)) { | |
2305 | if (!data || !table->maxlen || !*lenp || | ||
2306 | (*ppos && !write)) { | ||
2307 | *lenp = 0; | 2465 | *lenp = 0; |
2308 | return 0; | 2466 | return 0; |
2309 | } | 2467 | } |
2310 | 2468 | ||
2311 | i = (unsigned long *) data; | 2469 | i = (unsigned long *) data; |
2312 | min = (unsigned long *) table->extra1; | 2470 | min = (unsigned long *) table->extra1; |
2313 | max = (unsigned long *) table->extra2; | 2471 | max = (unsigned long *) table->extra2; |
2314 | vleft = table->maxlen / sizeof(unsigned long); | 2472 | vleft = table->maxlen / sizeof(unsigned long); |
2315 | left = *lenp; | 2473 | left = *lenp; |
2316 | 2474 | ||
2475 | if (write) { | ||
2476 | if (left > PAGE_SIZE - 1) | ||
2477 | left = PAGE_SIZE - 1; | ||
2478 | page = __get_free_page(GFP_TEMPORARY); | ||
2479 | kbuf = (char *) page; | ||
2480 | if (!kbuf) | ||
2481 | return -ENOMEM; | ||
2482 | if (copy_from_user(kbuf, buffer, left)) { | ||
2483 | err = -EFAULT; | ||
2484 | goto free; | ||
2485 | } | ||
2486 | kbuf[left] = 0; | ||
2487 | } | ||
2488 | |||
2317 | for (; left && vleft--; i++, min++, max++, first=0) { | 2489 | for (; left && vleft--; i++, min++, max++, first=0) { |
2490 | unsigned long val; | ||
2491 | |||
2318 | if (write) { | 2492 | if (write) { |
2319 | while (left) { | 2493 | bool neg; |
2320 | char c; | 2494 | |
2321 | if (get_user(c, s)) | 2495 | left -= proc_skip_spaces(&kbuf); |
2322 | return -EFAULT; | 2496 | |
2323 | if (!isspace(c)) | 2497 | err = proc_get_long(&kbuf, &left, &val, &neg, |
2324 | break; | 2498 | proc_wspace_sep, |
2325 | left--; | 2499 | sizeof(proc_wspace_sep), NULL); |
2326 | s++; | 2500 | if (err) |
2327 | } | ||
2328 | if (!left) | ||
2329 | break; | ||
2330 | neg = 0; | ||
2331 | len = left; | ||
2332 | if (len > TMPBUFLEN-1) | ||
2333 | len = TMPBUFLEN-1; | ||
2334 | if (copy_from_user(buf, s, len)) | ||
2335 | return -EFAULT; | ||
2336 | buf[len] = 0; | ||
2337 | p = buf; | ||
2338 | if (*p == '-' && left > 1) { | ||
2339 | neg = 1; | ||
2340 | p++; | ||
2341 | } | ||
2342 | if (*p < '0' || *p > '9') | ||
2343 | break; | ||
2344 | val = simple_strtoul(p, &p, 0) * convmul / convdiv ; | ||
2345 | len = p-buf; | ||
2346 | if ((len < left) && *p && !isspace(*p)) | ||
2347 | break; | 2501 | break; |
2348 | if (neg) | 2502 | if (neg) |
2349 | val = -val; | ||
2350 | s += len; | ||
2351 | left -= len; | ||
2352 | |||
2353 | if(neg) | ||
2354 | continue; | 2503 | continue; |
2355 | if ((min && val < *min) || (max && val > *max)) | 2504 | if ((min && val < *min) || (max && val > *max)) |
2356 | continue; | 2505 | continue; |
2357 | *i = val; | 2506 | *i = val; |
2358 | } else { | 2507 | } else { |
2359 | p = buf; | 2508 | val = convdiv * (*i) / convmul; |
2360 | if (!first) | 2509 | if (!first) |
2361 | *p++ = '\t'; | 2510 | err = proc_put_char(&buffer, &left, '\t'); |
2362 | sprintf(p, "%lu", convdiv * (*i) / convmul); | 2511 | err = proc_put_long(&buffer, &left, val, false); |
2363 | len = strlen(buf); | 2512 | if (err) |
2364 | if (len > left) | 2513 | break; |
2365 | len = left; | ||
2366 | if(copy_to_user(s, buf, len)) | ||
2367 | return -EFAULT; | ||
2368 | left -= len; | ||
2369 | s += len; | ||
2370 | } | 2514 | } |
2371 | } | 2515 | } |
2372 | 2516 | ||
2373 | if (!write && !first && left) { | 2517 | if (!write && !first && left && !err) |
2374 | if(put_user('\n', s)) | 2518 | err = proc_put_char(&buffer, &left, '\n'); |
2375 | return -EFAULT; | 2519 | if (write && !err) |
2376 | left--, s++; | 2520 | left -= proc_skip_spaces(&kbuf); |
2377 | } | 2521 | free: |
2378 | if (write) { | 2522 | if (write) { |
2379 | while (left) { | 2523 | free_page(page); |
2380 | char c; | 2524 | if (first) |
2381 | if (get_user(c, s++)) | 2525 | return err ? : -EINVAL; |
2382 | return -EFAULT; | ||
2383 | if (!isspace(c)) | ||
2384 | break; | ||
2385 | left--; | ||
2386 | } | ||
2387 | } | 2526 | } |
2388 | if (write && first) | ||
2389 | return -EINVAL; | ||
2390 | *lenp -= left; | 2527 | *lenp -= left; |
2391 | *ppos += *lenp; | 2528 | *ppos += *lenp; |
2392 | return 0; | 2529 | return err; |
2393 | #undef TMPBUFLEN | ||
2394 | } | 2530 | } |
2395 | 2531 | ||
2396 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2532 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
@@ -2451,7 +2587,7 @@ int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | |||
2451 | } | 2587 | } |
2452 | 2588 | ||
2453 | 2589 | ||
2454 | static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | 2590 | static int do_proc_dointvec_jiffies_conv(bool *negp, unsigned long *lvalp, |
2455 | int *valp, | 2591 | int *valp, |
2456 | int write, void *data) | 2592 | int write, void *data) |
2457 | { | 2593 | { |
@@ -2463,10 +2599,10 @@ static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2463 | int val = *valp; | 2599 | int val = *valp; |
2464 | unsigned long lval; | 2600 | unsigned long lval; |
2465 | if (val < 0) { | 2601 | if (val < 0) { |
2466 | *negp = -1; | 2602 | *negp = true; |
2467 | lval = (unsigned long)-val; | 2603 | lval = (unsigned long)-val; |
2468 | } else { | 2604 | } else { |
2469 | *negp = 0; | 2605 | *negp = false; |
2470 | lval = (unsigned long)val; | 2606 | lval = (unsigned long)val; |
2471 | } | 2607 | } |
2472 | *lvalp = lval / HZ; | 2608 | *lvalp = lval / HZ; |
@@ -2474,7 +2610,7 @@ static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2474 | return 0; | 2610 | return 0; |
2475 | } | 2611 | } |
2476 | 2612 | ||
2477 | static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | 2613 | static int do_proc_dointvec_userhz_jiffies_conv(bool *negp, unsigned long *lvalp, |
2478 | int *valp, | 2614 | int *valp, |
2479 | int write, void *data) | 2615 | int write, void *data) |
2480 | { | 2616 | { |
@@ -2486,10 +2622,10 @@ static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2486 | int val = *valp; | 2622 | int val = *valp; |
2487 | unsigned long lval; | 2623 | unsigned long lval; |
2488 | if (val < 0) { | 2624 | if (val < 0) { |
2489 | *negp = -1; | 2625 | *negp = true; |
2490 | lval = (unsigned long)-val; | 2626 | lval = (unsigned long)-val; |
2491 | } else { | 2627 | } else { |
2492 | *negp = 0; | 2628 | *negp = false; |
2493 | lval = (unsigned long)val; | 2629 | lval = (unsigned long)val; |
2494 | } | 2630 | } |
2495 | *lvalp = jiffies_to_clock_t(lval); | 2631 | *lvalp = jiffies_to_clock_t(lval); |
@@ -2497,7 +2633,7 @@ static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2497 | return 0; | 2633 | return 0; |
2498 | } | 2634 | } |
2499 | 2635 | ||
2500 | static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | 2636 | static int do_proc_dointvec_ms_jiffies_conv(bool *negp, unsigned long *lvalp, |
2501 | int *valp, | 2637 | int *valp, |
2502 | int write, void *data) | 2638 | int write, void *data) |
2503 | { | 2639 | { |
@@ -2507,10 +2643,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2507 | int val = *valp; | 2643 | int val = *valp; |
2508 | unsigned long lval; | 2644 | unsigned long lval; |
2509 | if (val < 0) { | 2645 | if (val < 0) { |
2510 | *negp = -1; | 2646 | *negp = true; |
2511 | lval = (unsigned long)-val; | 2647 | lval = (unsigned long)-val; |
2512 | } else { | 2648 | } else { |
2513 | *negp = 0; | 2649 | *negp = false; |
2514 | lval = (unsigned long)val; | 2650 | lval = (unsigned long)val; |
2515 | } | 2651 | } |
2516 | *lvalp = jiffies_to_msecs(lval); | 2652 | *lvalp = jiffies_to_msecs(lval); |
@@ -2607,6 +2743,157 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, | |||
2607 | return 0; | 2743 | return 0; |
2608 | } | 2744 | } |
2609 | 2745 | ||
2746 | /** | ||
2747 | * proc_do_large_bitmap - read/write from/to a large bitmap | ||
2748 | * @table: the sysctl table | ||
2749 | * @write: %TRUE if this is a write to the sysctl file | ||
2750 | * @buffer: the user buffer | ||
2751 | * @lenp: the size of the user buffer | ||
2752 | * @ppos: file position | ||
2753 | * | ||
2754 | * The bitmap is stored at table->data and the bitmap length (in bits) | ||
2755 | * in table->maxlen. | ||
2756 | * | ||
2757 | * We use a range comma separated format (e.g. 1,3-4,10-10) so that | ||
2758 | * large bitmaps may be represented in a compact manner. Writing into | ||
2759 | * the file will clear the bitmap then update it with the given input. | ||
2760 | * | ||
2761 | * Returns 0 on success. | ||
2762 | */ | ||
2763 | int proc_do_large_bitmap(struct ctl_table *table, int write, | ||
2764 | void __user *buffer, size_t *lenp, loff_t *ppos) | ||
2765 | { | ||
2766 | int err = 0; | ||
2767 | bool first = 1; | ||
2768 | size_t left = *lenp; | ||
2769 | unsigned long bitmap_len = table->maxlen; | ||
2770 | unsigned long *bitmap = (unsigned long *) table->data; | ||
2771 | unsigned long *tmp_bitmap = NULL; | ||
2772 | char tr_a[] = { '-', ',', '\n' }, tr_b[] = { ',', '\n', 0 }, c; | ||
2773 | |||
2774 | if (!bitmap_len || !left || (*ppos && !write)) { | ||
2775 | *lenp = 0; | ||
2776 | return 0; | ||
2777 | } | ||
2778 | |||
2779 | if (write) { | ||
2780 | unsigned long page = 0; | ||
2781 | char *kbuf; | ||
2782 | |||
2783 | if (left > PAGE_SIZE - 1) | ||
2784 | left = PAGE_SIZE - 1; | ||
2785 | |||
2786 | page = __get_free_page(GFP_TEMPORARY); | ||
2787 | kbuf = (char *) page; | ||
2788 | if (!kbuf) | ||
2789 | return -ENOMEM; | ||
2790 | if (copy_from_user(kbuf, buffer, left)) { | ||
2791 | free_page(page); | ||
2792 | return -EFAULT; | ||
2793 | } | ||
2794 | kbuf[left] = 0; | ||
2795 | |||
2796 | tmp_bitmap = kzalloc(BITS_TO_LONGS(bitmap_len) * sizeof(unsigned long), | ||
2797 | GFP_KERNEL); | ||
2798 | if (!tmp_bitmap) { | ||
2799 | free_page(page); | ||
2800 | return -ENOMEM; | ||
2801 | } | ||
2802 | proc_skip_char(&kbuf, &left, '\n'); | ||
2803 | while (!err && left) { | ||
2804 | unsigned long val_a, val_b; | ||
2805 | bool neg; | ||
2806 | |||
2807 | err = proc_get_long(&kbuf, &left, &val_a, &neg, tr_a, | ||
2808 | sizeof(tr_a), &c); | ||
2809 | if (err) | ||
2810 | break; | ||
2811 | if (val_a >= bitmap_len || neg) { | ||
2812 | err = -EINVAL; | ||
2813 | break; | ||
2814 | } | ||
2815 | |||
2816 | val_b = val_a; | ||
2817 | if (left) { | ||
2818 | kbuf++; | ||
2819 | left--; | ||
2820 | } | ||
2821 | |||
2822 | if (c == '-') { | ||
2823 | err = proc_get_long(&kbuf, &left, &val_b, | ||
2824 | &neg, tr_b, sizeof(tr_b), | ||
2825 | &c); | ||
2826 | if (err) | ||
2827 | break; | ||
2828 | if (val_b >= bitmap_len || neg || | ||
2829 | val_a > val_b) { | ||
2830 | err = -EINVAL; | ||
2831 | break; | ||
2832 | } | ||
2833 | if (left) { | ||
2834 | kbuf++; | ||
2835 | left--; | ||
2836 | } | ||
2837 | } | ||
2838 | |||
2839 | while (val_a <= val_b) | ||
2840 | set_bit(val_a++, tmp_bitmap); | ||
2841 | |||
2842 | first = 0; | ||
2843 | proc_skip_char(&kbuf, &left, '\n'); | ||
2844 | } | ||
2845 | free_page(page); | ||
2846 | } else { | ||
2847 | unsigned long bit_a, bit_b = 0; | ||
2848 | |||
2849 | while (left) { | ||
2850 | bit_a = find_next_bit(bitmap, bitmap_len, bit_b); | ||
2851 | if (bit_a >= bitmap_len) | ||
2852 | break; | ||
2853 | bit_b = find_next_zero_bit(bitmap, bitmap_len, | ||
2854 | bit_a + 1) - 1; | ||
2855 | |||
2856 | if (!first) { | ||
2857 | err = proc_put_char(&buffer, &left, ','); | ||
2858 | if (err) | ||
2859 | break; | ||
2860 | } | ||
2861 | err = proc_put_long(&buffer, &left, bit_a, false); | ||
2862 | if (err) | ||
2863 | break; | ||
2864 | if (bit_a != bit_b) { | ||
2865 | err = proc_put_char(&buffer, &left, '-'); | ||
2866 | if (err) | ||
2867 | break; | ||
2868 | err = proc_put_long(&buffer, &left, bit_b, false); | ||
2869 | if (err) | ||
2870 | break; | ||
2871 | } | ||
2872 | |||
2873 | first = 0; bit_b++; | ||
2874 | } | ||
2875 | if (!err) | ||
2876 | err = proc_put_char(&buffer, &left, '\n'); | ||
2877 | } | ||
2878 | |||
2879 | if (!err) { | ||
2880 | if (write) { | ||
2881 | if (*ppos) | ||
2882 | bitmap_or(bitmap, bitmap, tmp_bitmap, bitmap_len); | ||
2883 | else | ||
2884 | memcpy(bitmap, tmp_bitmap, | ||
2885 | BITS_TO_LONGS(bitmap_len) * sizeof(unsigned long)); | ||
2886 | } | ||
2887 | kfree(tmp_bitmap); | ||
2888 | *lenp -= left; | ||
2889 | *ppos += *lenp; | ||
2890 | return 0; | ||
2891 | } else { | ||
2892 | kfree(tmp_bitmap); | ||
2893 | return err; | ||
2894 | } | ||
2895 | } | ||
2896 | |||
2610 | #else /* CONFIG_PROC_FS */ | 2897 | #else /* CONFIG_PROC_FS */ |
2611 | 2898 | ||
2612 | int proc_dostring(struct ctl_table *table, int write, | 2899 | int proc_dostring(struct ctl_table *table, int write, |
diff --git a/kernel/sysctl_binary.c b/kernel/sysctl_binary.c index 59030570f5ca..1357c5786064 100644 --- a/kernel/sysctl_binary.c +++ b/kernel/sysctl_binary.c | |||
@@ -13,6 +13,7 @@ | |||
13 | #include <linux/file.h> | 13 | #include <linux/file.h> |
14 | #include <linux/ctype.h> | 14 | #include <linux/ctype.h> |
15 | #include <linux/netdevice.h> | 15 | #include <linux/netdevice.h> |
16 | #include <linux/kernel.h> | ||
16 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
17 | 18 | ||
18 | #ifdef CONFIG_SYSCTL_SYSCALL | 19 | #ifdef CONFIG_SYSCTL_SYSCALL |
@@ -224,7 +225,6 @@ static const struct bin_table bin_net_ipv4_route_table[] = { | |||
224 | { CTL_INT, NET_IPV4_ROUTE_MTU_EXPIRES, "mtu_expires" }, | 225 | { CTL_INT, NET_IPV4_ROUTE_MTU_EXPIRES, "mtu_expires" }, |
225 | { CTL_INT, NET_IPV4_ROUTE_MIN_PMTU, "min_pmtu" }, | 226 | { CTL_INT, NET_IPV4_ROUTE_MIN_PMTU, "min_pmtu" }, |
226 | { CTL_INT, NET_IPV4_ROUTE_MIN_ADVMSS, "min_adv_mss" }, | 227 | { CTL_INT, NET_IPV4_ROUTE_MIN_ADVMSS, "min_adv_mss" }, |
227 | { CTL_INT, NET_IPV4_ROUTE_SECRET_INTERVAL, "secret_interval" }, | ||
228 | {} | 228 | {} |
229 | }; | 229 | }; |
230 | 230 | ||
@@ -1125,11 +1125,6 @@ out: | |||
1125 | return result; | 1125 | return result; |
1126 | } | 1126 | } |
1127 | 1127 | ||
1128 | static unsigned hex_value(int ch) | ||
1129 | { | ||
1130 | return isdigit(ch) ? ch - '0' : ((ch | 0x20) - 'a') + 10; | ||
1131 | } | ||
1132 | |||
1133 | static ssize_t bin_uuid(struct file *file, | 1128 | static ssize_t bin_uuid(struct file *file, |
1134 | void __user *oldval, size_t oldlen, void __user *newval, size_t newlen) | 1129 | void __user *oldval, size_t oldlen, void __user *newval, size_t newlen) |
1135 | { | 1130 | { |
@@ -1157,7 +1152,8 @@ static ssize_t bin_uuid(struct file *file, | |||
1157 | if (!isxdigit(str[0]) || !isxdigit(str[1])) | 1152 | if (!isxdigit(str[0]) || !isxdigit(str[1])) |
1158 | goto out; | 1153 | goto out; |
1159 | 1154 | ||
1160 | uuid[i] = (hex_value(str[0]) << 4) | hex_value(str[1]); | 1155 | uuid[i] = (hex_to_bin(str[0]) << 4) | |
1156 | hex_to_bin(str[1]); | ||
1161 | str += 2; | 1157 | str += 2; |
1162 | if (*str == '-') | 1158 | if (*str == '-') |
1163 | str++; | 1159 | str++; |
diff --git a/kernel/time.c b/kernel/time.c index 656dccfe1cbb..848b1c2ab09a 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -132,12 +132,11 @@ SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, | |||
132 | */ | 132 | */ |
133 | static inline void warp_clock(void) | 133 | static inline void warp_clock(void) |
134 | { | 134 | { |
135 | write_seqlock_irq(&xtime_lock); | 135 | struct timespec adjust; |
136 | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 136 | |
137 | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 137 | adjust = current_kernel_time(); |
138 | update_xtime_cache(0); | 138 | adjust.tv_sec += sys_tz.tz_minuteswest * 60; |
139 | write_sequnlock_irq(&xtime_lock); | 139 | do_settimeofday(&adjust); |
140 | clock_was_set(); | ||
141 | } | 140 | } |
142 | 141 | ||
143 | /* | 142 | /* |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 1f5dde637457..f08e99c1d561 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -625,6 +625,54 @@ static void clocksource_enqueue(struct clocksource *cs) | |||
625 | list_add(&cs->list, entry); | 625 | list_add(&cs->list, entry); |
626 | } | 626 | } |
627 | 627 | ||
628 | |||
629 | /* | ||
630 | * Maximum time we expect to go between ticks. This includes idle | ||
631 | * tickless time. It provides the trade off between selecting a | ||
632 | * mult/shift pair that is very precise but can only handle a short | ||
633 | * period of time, vs. a mult/shift pair that can handle long periods | ||
634 | * of time but isn't as precise. | ||
635 | * | ||
636 | * This is a subsystem constant, and actual hardware limitations | ||
637 | * may override it (ie: clocksources that wrap every 3 seconds). | ||
638 | */ | ||
639 | #define MAX_UPDATE_LENGTH 5 /* Seconds */ | ||
640 | |||
641 | /** | ||
642 | * __clocksource_register_scale - Used to install new clocksources | ||
643 | * @t: clocksource to be registered | ||
644 | * @scale: Scale factor multiplied against freq to get clocksource hz | ||
645 | * @freq: clocksource frequency (cycles per second) divided by scale | ||
646 | * | ||
647 | * Returns -EBUSY if registration fails, zero otherwise. | ||
648 | * | ||
649 | * This *SHOULD NOT* be called directly! Please use the | ||
650 | * clocksource_register_hz() or clocksource_register_khz helper functions. | ||
651 | */ | ||
652 | int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) | ||
653 | { | ||
654 | |||
655 | /* | ||
656 | * Ideally we want to use some of the limits used in | ||
657 | * clocksource_max_deferment, to provide a more informed | ||
658 | * MAX_UPDATE_LENGTH. But for now this just gets the | ||
659 | * register interface working properly. | ||
660 | */ | ||
661 | clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, | ||
662 | NSEC_PER_SEC/scale, | ||
663 | MAX_UPDATE_LENGTH*scale); | ||
664 | cs->max_idle_ns = clocksource_max_deferment(cs); | ||
665 | |||
666 | mutex_lock(&clocksource_mutex); | ||
667 | clocksource_enqueue(cs); | ||
668 | clocksource_select(); | ||
669 | clocksource_enqueue_watchdog(cs); | ||
670 | mutex_unlock(&clocksource_mutex); | ||
671 | return 0; | ||
672 | } | ||
673 | EXPORT_SYMBOL_GPL(__clocksource_register_scale); | ||
674 | |||
675 | |||
628 | /** | 676 | /** |
629 | * clocksource_register - Used to install new clocksources | 677 | * clocksource_register - Used to install new clocksources |
630 | * @t: clocksource to be registered | 678 | * @t: clocksource to be registered |
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7c0f180d6e9d..c63116863a80 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -69,7 +69,7 @@ static s64 time_freq; | |||
69 | /* time at last adjustment (secs): */ | 69 | /* time at last adjustment (secs): */ |
70 | static long time_reftime; | 70 | static long time_reftime; |
71 | 71 | ||
72 | long time_adjust; | 72 | static long time_adjust; |
73 | 73 | ||
74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ | 74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
75 | static s64 ntp_tick_adj; | 75 | static s64 ntp_tick_adj; |
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index f992762d7f51..1d7b9bc1c034 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
@@ -150,14 +150,32 @@ static void tick_nohz_update_jiffies(ktime_t now) | |||
150 | touch_softlockup_watchdog(); | 150 | touch_softlockup_watchdog(); |
151 | } | 151 | } |
152 | 152 | ||
153 | /* | ||
154 | * Updates the per cpu time idle statistics counters | ||
155 | */ | ||
156 | static void | ||
157 | update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time) | ||
158 | { | ||
159 | ktime_t delta; | ||
160 | |||
161 | if (ts->idle_active) { | ||
162 | delta = ktime_sub(now, ts->idle_entrytime); | ||
163 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
164 | if (nr_iowait_cpu() > 0) | ||
165 | ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); | ||
166 | ts->idle_entrytime = now; | ||
167 | } | ||
168 | |||
169 | if (last_update_time) | ||
170 | *last_update_time = ktime_to_us(now); | ||
171 | |||
172 | } | ||
173 | |||
153 | static void tick_nohz_stop_idle(int cpu, ktime_t now) | 174 | static void tick_nohz_stop_idle(int cpu, ktime_t now) |
154 | { | 175 | { |
155 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 176 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
156 | ktime_t delta; | ||
157 | 177 | ||
158 | delta = ktime_sub(now, ts->idle_entrytime); | 178 | update_ts_time_stats(ts, now, NULL); |
159 | ts->idle_lastupdate = now; | ||
160 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
161 | ts->idle_active = 0; | 179 | ts->idle_active = 0; |
162 | 180 | ||
163 | sched_clock_idle_wakeup_event(0); | 181 | sched_clock_idle_wakeup_event(0); |
@@ -165,20 +183,32 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now) | |||
165 | 183 | ||
166 | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) | 184 | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) |
167 | { | 185 | { |
168 | ktime_t now, delta; | 186 | ktime_t now; |
169 | 187 | ||
170 | now = ktime_get(); | 188 | now = ktime_get(); |
171 | if (ts->idle_active) { | 189 | |
172 | delta = ktime_sub(now, ts->idle_entrytime); | 190 | update_ts_time_stats(ts, now, NULL); |
173 | ts->idle_lastupdate = now; | 191 | |
174 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
175 | } | ||
176 | ts->idle_entrytime = now; | 192 | ts->idle_entrytime = now; |
177 | ts->idle_active = 1; | 193 | ts->idle_active = 1; |
178 | sched_clock_idle_sleep_event(); | 194 | sched_clock_idle_sleep_event(); |
179 | return now; | 195 | return now; |
180 | } | 196 | } |
181 | 197 | ||
198 | /** | ||
199 | * get_cpu_idle_time_us - get the total idle time of a cpu | ||
200 | * @cpu: CPU number to query | ||
201 | * @last_update_time: variable to store update time in | ||
202 | * | ||
203 | * Return the cummulative idle time (since boot) for a given | ||
204 | * CPU, in microseconds. The idle time returned includes | ||
205 | * the iowait time (unlike what "top" and co report). | ||
206 | * | ||
207 | * This time is measured via accounting rather than sampling, | ||
208 | * and is as accurate as ktime_get() is. | ||
209 | * | ||
210 | * This function returns -1 if NOHZ is not enabled. | ||
211 | */ | ||
182 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 212 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) |
183 | { | 213 | { |
184 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 214 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
@@ -186,15 +216,38 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | |||
186 | if (!tick_nohz_enabled) | 216 | if (!tick_nohz_enabled) |
187 | return -1; | 217 | return -1; |
188 | 218 | ||
189 | if (ts->idle_active) | 219 | update_ts_time_stats(ts, ktime_get(), last_update_time); |
190 | *last_update_time = ktime_to_us(ts->idle_lastupdate); | ||
191 | else | ||
192 | *last_update_time = ktime_to_us(ktime_get()); | ||
193 | 220 | ||
194 | return ktime_to_us(ts->idle_sleeptime); | 221 | return ktime_to_us(ts->idle_sleeptime); |
195 | } | 222 | } |
196 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); | 223 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); |
197 | 224 | ||
225 | /* | ||
226 | * get_cpu_iowait_time_us - get the total iowait time of a cpu | ||
227 | * @cpu: CPU number to query | ||
228 | * @last_update_time: variable to store update time in | ||
229 | * | ||
230 | * Return the cummulative iowait time (since boot) for a given | ||
231 | * CPU, in microseconds. | ||
232 | * | ||
233 | * This time is measured via accounting rather than sampling, | ||
234 | * and is as accurate as ktime_get() is. | ||
235 | * | ||
236 | * This function returns -1 if NOHZ is not enabled. | ||
237 | */ | ||
238 | u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) | ||
239 | { | ||
240 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
241 | |||
242 | if (!tick_nohz_enabled) | ||
243 | return -1; | ||
244 | |||
245 | update_ts_time_stats(ts, ktime_get(), last_update_time); | ||
246 | |||
247 | return ktime_to_us(ts->iowait_sleeptime); | ||
248 | } | ||
249 | EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); | ||
250 | |||
198 | /** | 251 | /** |
199 | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task | 252 | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task |
200 | * | 253 | * |
@@ -262,6 +315,9 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
262 | goto end; | 315 | goto end; |
263 | } | 316 | } |
264 | 317 | ||
318 | if (nohz_ratelimit(cpu)) | ||
319 | goto end; | ||
320 | |||
265 | ts->idle_calls++; | 321 | ts->idle_calls++; |
266 | /* Read jiffies and the time when jiffies were updated last */ | 322 | /* Read jiffies and the time when jiffies were updated last */ |
267 | do { | 323 | do { |
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index 39f6177fafac..caf8d4d4f5c8 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
@@ -165,13 +165,6 @@ struct timespec raw_time; | |||
165 | /* flag for if timekeeping is suspended */ | 165 | /* flag for if timekeeping is suspended */ |
166 | int __read_mostly timekeeping_suspended; | 166 | int __read_mostly timekeeping_suspended; |
167 | 167 | ||
168 | static struct timespec xtime_cache __attribute__ ((aligned (16))); | ||
169 | void update_xtime_cache(u64 nsec) | ||
170 | { | ||
171 | xtime_cache = xtime; | ||
172 | timespec_add_ns(&xtime_cache, nsec); | ||
173 | } | ||
174 | |||
175 | /* must hold xtime_lock */ | 168 | /* must hold xtime_lock */ |
176 | void timekeeping_leap_insert(int leapsecond) | 169 | void timekeeping_leap_insert(int leapsecond) |
177 | { | 170 | { |
@@ -332,8 +325,6 @@ int do_settimeofday(struct timespec *tv) | |||
332 | 325 | ||
333 | xtime = *tv; | 326 | xtime = *tv; |
334 | 327 | ||
335 | update_xtime_cache(0); | ||
336 | |||
337 | timekeeper.ntp_error = 0; | 328 | timekeeper.ntp_error = 0; |
338 | ntp_clear(); | 329 | ntp_clear(); |
339 | 330 | ||
@@ -559,7 +550,6 @@ void __init timekeeping_init(void) | |||
559 | } | 550 | } |
560 | set_normalized_timespec(&wall_to_monotonic, | 551 | set_normalized_timespec(&wall_to_monotonic, |
561 | -boot.tv_sec, -boot.tv_nsec); | 552 | -boot.tv_sec, -boot.tv_nsec); |
562 | update_xtime_cache(0); | ||
563 | total_sleep_time.tv_sec = 0; | 553 | total_sleep_time.tv_sec = 0; |
564 | total_sleep_time.tv_nsec = 0; | 554 | total_sleep_time.tv_nsec = 0; |
565 | write_sequnlock_irqrestore(&xtime_lock, flags); | 555 | write_sequnlock_irqrestore(&xtime_lock, flags); |
@@ -593,7 +583,6 @@ static int timekeeping_resume(struct sys_device *dev) | |||
593 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); | 583 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
594 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); | 584 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
595 | } | 585 | } |
596 | update_xtime_cache(0); | ||
597 | /* re-base the last cycle value */ | 586 | /* re-base the last cycle value */ |
598 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); | 587 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
599 | timekeeper.ntp_error = 0; | 588 | timekeeper.ntp_error = 0; |
@@ -788,7 +777,6 @@ void update_wall_time(void) | |||
788 | { | 777 | { |
789 | struct clocksource *clock; | 778 | struct clocksource *clock; |
790 | cycle_t offset; | 779 | cycle_t offset; |
791 | u64 nsecs; | ||
792 | int shift = 0, maxshift; | 780 | int shift = 0, maxshift; |
793 | 781 | ||
794 | /* Make sure we're fully resumed: */ | 782 | /* Make sure we're fully resumed: */ |
@@ -847,7 +835,9 @@ void update_wall_time(void) | |||
847 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; | 835 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
848 | } | 836 | } |
849 | 837 | ||
850 | /* store full nanoseconds into xtime after rounding it up and | 838 | |
839 | /* | ||
840 | * Store full nanoseconds into xtime after rounding it up and | ||
851 | * add the remainder to the error difference. | 841 | * add the remainder to the error difference. |
852 | */ | 842 | */ |
853 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; | 843 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
@@ -855,8 +845,15 @@ void update_wall_time(void) | |||
855 | timekeeper.ntp_error += timekeeper.xtime_nsec << | 845 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
856 | timekeeper.ntp_error_shift; | 846 | timekeeper.ntp_error_shift; |
857 | 847 | ||
858 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); | 848 | /* |
859 | update_xtime_cache(nsecs); | 849 | * Finally, make sure that after the rounding |
850 | * xtime.tv_nsec isn't larger then NSEC_PER_SEC | ||
851 | */ | ||
852 | if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) { | ||
853 | xtime.tv_nsec -= NSEC_PER_SEC; | ||
854 | xtime.tv_sec++; | ||
855 | second_overflow(); | ||
856 | } | ||
860 | 857 | ||
861 | /* check to see if there is a new clocksource to use */ | 858 | /* check to see if there is a new clocksource to use */ |
862 | update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); | 859 | update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); |
@@ -896,13 +893,13 @@ EXPORT_SYMBOL_GPL(monotonic_to_bootbased); | |||
896 | 893 | ||
897 | unsigned long get_seconds(void) | 894 | unsigned long get_seconds(void) |
898 | { | 895 | { |
899 | return xtime_cache.tv_sec; | 896 | return xtime.tv_sec; |
900 | } | 897 | } |
901 | EXPORT_SYMBOL(get_seconds); | 898 | EXPORT_SYMBOL(get_seconds); |
902 | 899 | ||
903 | struct timespec __current_kernel_time(void) | 900 | struct timespec __current_kernel_time(void) |
904 | { | 901 | { |
905 | return xtime_cache; | 902 | return xtime; |
906 | } | 903 | } |
907 | 904 | ||
908 | struct timespec current_kernel_time(void) | 905 | struct timespec current_kernel_time(void) |
@@ -913,7 +910,7 @@ struct timespec current_kernel_time(void) | |||
913 | do { | 910 | do { |
914 | seq = read_seqbegin(&xtime_lock); | 911 | seq = read_seqbegin(&xtime_lock); |
915 | 912 | ||
916 | now = xtime_cache; | 913 | now = xtime; |
917 | } while (read_seqretry(&xtime_lock, seq)); | 914 | } while (read_seqretry(&xtime_lock, seq)); |
918 | 915 | ||
919 | return now; | 916 | return now; |
@@ -928,7 +925,7 @@ struct timespec get_monotonic_coarse(void) | |||
928 | do { | 925 | do { |
929 | seq = read_seqbegin(&xtime_lock); | 926 | seq = read_seqbegin(&xtime_lock); |
930 | 927 | ||
931 | now = xtime_cache; | 928 | now = xtime; |
932 | mono = wall_to_monotonic; | 929 | mono = wall_to_monotonic; |
933 | } while (read_seqretry(&xtime_lock, seq)); | 930 | } while (read_seqretry(&xtime_lock, seq)); |
934 | 931 | ||
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index 1a4a7dd78777..ab8f5e33fa92 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c | |||
@@ -176,6 +176,7 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now) | |||
176 | P_ns(idle_waketime); | 176 | P_ns(idle_waketime); |
177 | P_ns(idle_exittime); | 177 | P_ns(idle_exittime); |
178 | P_ns(idle_sleeptime); | 178 | P_ns(idle_sleeptime); |
179 | P_ns(iowait_sleeptime); | ||
179 | P(last_jiffies); | 180 | P(last_jiffies); |
180 | P(next_jiffies); | 181 | P(next_jiffies); |
181 | P_ns(idle_expires); | 182 | P_ns(idle_expires); |
diff --git a/kernel/timer.c b/kernel/timer.c index aeb6a54f2771..2454172a80d3 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -319,6 +319,24 @@ unsigned long round_jiffies_up_relative(unsigned long j) | |||
319 | } | 319 | } |
320 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | 320 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); |
321 | 321 | ||
322 | /** | ||
323 | * set_timer_slack - set the allowed slack for a timer | ||
324 | * @slack_hz: the amount of time (in jiffies) allowed for rounding | ||
325 | * | ||
326 | * Set the amount of time, in jiffies, that a certain timer has | ||
327 | * in terms of slack. By setting this value, the timer subsystem | ||
328 | * will schedule the actual timer somewhere between | ||
329 | * the time mod_timer() asks for, and that time plus the slack. | ||
330 | * | ||
331 | * By setting the slack to -1, a percentage of the delay is used | ||
332 | * instead. | ||
333 | */ | ||
334 | void set_timer_slack(struct timer_list *timer, int slack_hz) | ||
335 | { | ||
336 | timer->slack = slack_hz; | ||
337 | } | ||
338 | EXPORT_SYMBOL_GPL(set_timer_slack); | ||
339 | |||
322 | 340 | ||
323 | static inline void set_running_timer(struct tvec_base *base, | 341 | static inline void set_running_timer(struct tvec_base *base, |
324 | struct timer_list *timer) | 342 | struct timer_list *timer) |
@@ -550,6 +568,7 @@ static void __init_timer(struct timer_list *timer, | |||
550 | { | 568 | { |
551 | timer->entry.next = NULL; | 569 | timer->entry.next = NULL; |
552 | timer->base = __raw_get_cpu_var(tvec_bases); | 570 | timer->base = __raw_get_cpu_var(tvec_bases); |
571 | timer->slack = -1; | ||
553 | #ifdef CONFIG_TIMER_STATS | 572 | #ifdef CONFIG_TIMER_STATS |
554 | timer->start_site = NULL; | 573 | timer->start_site = NULL; |
555 | timer->start_pid = -1; | 574 | timer->start_pid = -1; |
@@ -715,6 +734,46 @@ int mod_timer_pending(struct timer_list *timer, unsigned long expires) | |||
715 | } | 734 | } |
716 | EXPORT_SYMBOL(mod_timer_pending); | 735 | EXPORT_SYMBOL(mod_timer_pending); |
717 | 736 | ||
737 | /* | ||
738 | * Decide where to put the timer while taking the slack into account | ||
739 | * | ||
740 | * Algorithm: | ||
741 | * 1) calculate the maximum (absolute) time | ||
742 | * 2) calculate the highest bit where the expires and new max are different | ||
743 | * 3) use this bit to make a mask | ||
744 | * 4) use the bitmask to round down the maximum time, so that all last | ||
745 | * bits are zeros | ||
746 | */ | ||
747 | static inline | ||
748 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | ||
749 | { | ||
750 | unsigned long expires_limit, mask; | ||
751 | int bit; | ||
752 | |||
753 | expires_limit = expires; | ||
754 | |||
755 | if (timer->slack >= 0) { | ||
756 | expires_limit = expires + timer->slack; | ||
757 | } else { | ||
758 | unsigned long now = jiffies; | ||
759 | |||
760 | /* No slack, if already expired else auto slack 0.4% */ | ||
761 | if (time_after(expires, now)) | ||
762 | expires_limit = expires + (expires - now)/256; | ||
763 | } | ||
764 | mask = expires ^ expires_limit; | ||
765 | if (mask == 0) | ||
766 | return expires; | ||
767 | |||
768 | bit = find_last_bit(&mask, BITS_PER_LONG); | ||
769 | |||
770 | mask = (1 << bit) - 1; | ||
771 | |||
772 | expires_limit = expires_limit & ~(mask); | ||
773 | |||
774 | return expires_limit; | ||
775 | } | ||
776 | |||
718 | /** | 777 | /** |
719 | * mod_timer - modify a timer's timeout | 778 | * mod_timer - modify a timer's timeout |
720 | * @timer: the timer to be modified | 779 | * @timer: the timer to be modified |
@@ -745,6 +804,8 @@ int mod_timer(struct timer_list *timer, unsigned long expires) | |||
745 | if (timer_pending(timer) && timer->expires == expires) | 804 | if (timer_pending(timer) && timer->expires == expires) |
746 | return 1; | 805 | return 1; |
747 | 806 | ||
807 | expires = apply_slack(timer, expires); | ||
808 | |||
748 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); | 809 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
749 | } | 810 | } |
750 | EXPORT_SYMBOL(mod_timer); | 811 | EXPORT_SYMBOL(mod_timer); |
@@ -955,6 +1016,47 @@ static int cascade(struct tvec_base *base, struct tvec *tv, int index) | |||
955 | return index; | 1016 | return index; |
956 | } | 1017 | } |
957 | 1018 | ||
1019 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), | ||
1020 | unsigned long data) | ||
1021 | { | ||
1022 | int preempt_count = preempt_count(); | ||
1023 | |||
1024 | #ifdef CONFIG_LOCKDEP | ||
1025 | /* | ||
1026 | * It is permissible to free the timer from inside the | ||
1027 | * function that is called from it, this we need to take into | ||
1028 | * account for lockdep too. To avoid bogus "held lock freed" | ||
1029 | * warnings as well as problems when looking into | ||
1030 | * timer->lockdep_map, make a copy and use that here. | ||
1031 | */ | ||
1032 | struct lockdep_map lockdep_map = timer->lockdep_map; | ||
1033 | #endif | ||
1034 | /* | ||
1035 | * Couple the lock chain with the lock chain at | ||
1036 | * del_timer_sync() by acquiring the lock_map around the fn() | ||
1037 | * call here and in del_timer_sync(). | ||
1038 | */ | ||
1039 | lock_map_acquire(&lockdep_map); | ||
1040 | |||
1041 | trace_timer_expire_entry(timer); | ||
1042 | fn(data); | ||
1043 | trace_timer_expire_exit(timer); | ||
1044 | |||
1045 | lock_map_release(&lockdep_map); | ||
1046 | |||
1047 | if (preempt_count != preempt_count()) { | ||
1048 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", | ||
1049 | fn, preempt_count, preempt_count()); | ||
1050 | /* | ||
1051 | * Restore the preempt count. That gives us a decent | ||
1052 | * chance to survive and extract information. If the | ||
1053 | * callback kept a lock held, bad luck, but not worse | ||
1054 | * than the BUG() we had. | ||
1055 | */ | ||
1056 | preempt_count() = preempt_count; | ||
1057 | } | ||
1058 | } | ||
1059 | |||
958 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) | 1060 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
959 | 1061 | ||
960 | /** | 1062 | /** |
@@ -998,45 +1100,7 @@ static inline void __run_timers(struct tvec_base *base) | |||
998 | detach_timer(timer, 1); | 1100 | detach_timer(timer, 1); |
999 | 1101 | ||
1000 | spin_unlock_irq(&base->lock); | 1102 | spin_unlock_irq(&base->lock); |
1001 | { | 1103 | call_timer_fn(timer, fn, data); |
1002 | int preempt_count = preempt_count(); | ||
1003 | |||
1004 | #ifdef CONFIG_LOCKDEP | ||
1005 | /* | ||
1006 | * It is permissible to free the timer from | ||
1007 | * inside the function that is called from | ||
1008 | * it, this we need to take into account for | ||
1009 | * lockdep too. To avoid bogus "held lock | ||
1010 | * freed" warnings as well as problems when | ||
1011 | * looking into timer->lockdep_map, make a | ||
1012 | * copy and use that here. | ||
1013 | */ | ||
1014 | struct lockdep_map lockdep_map = | ||
1015 | timer->lockdep_map; | ||
1016 | #endif | ||
1017 | /* | ||
1018 | * Couple the lock chain with the lock chain at | ||
1019 | * del_timer_sync() by acquiring the lock_map | ||
1020 | * around the fn() call here and in | ||
1021 | * del_timer_sync(). | ||
1022 | */ | ||
1023 | lock_map_acquire(&lockdep_map); | ||
1024 | |||
1025 | trace_timer_expire_entry(timer); | ||
1026 | fn(data); | ||
1027 | trace_timer_expire_exit(timer); | ||
1028 | |||
1029 | lock_map_release(&lockdep_map); | ||
1030 | |||
1031 | if (preempt_count != preempt_count()) { | ||
1032 | printk(KERN_ERR "huh, entered %p " | ||
1033 | "with preempt_count %08x, exited" | ||
1034 | " with %08x?\n", | ||
1035 | fn, preempt_count, | ||
1036 | preempt_count()); | ||
1037 | BUG(); | ||
1038 | } | ||
1039 | } | ||
1040 | spin_lock_irq(&base->lock); | 1104 | spin_lock_irq(&base->lock); |
1041 | } | 1105 | } |
1042 | } | 1106 | } |
@@ -1620,11 +1684,14 @@ static int __cpuinit timer_cpu_notify(struct notifier_block *self, | |||
1620 | unsigned long action, void *hcpu) | 1684 | unsigned long action, void *hcpu) |
1621 | { | 1685 | { |
1622 | long cpu = (long)hcpu; | 1686 | long cpu = (long)hcpu; |
1687 | int err; | ||
1688 | |||
1623 | switch(action) { | 1689 | switch(action) { |
1624 | case CPU_UP_PREPARE: | 1690 | case CPU_UP_PREPARE: |
1625 | case CPU_UP_PREPARE_FROZEN: | 1691 | case CPU_UP_PREPARE_FROZEN: |
1626 | if (init_timers_cpu(cpu) < 0) | 1692 | err = init_timers_cpu(cpu); |
1627 | return NOTIFY_BAD; | 1693 | if (err < 0) |
1694 | return notifier_from_errno(err); | ||
1628 | break; | 1695 | break; |
1629 | #ifdef CONFIG_HOTPLUG_CPU | 1696 | #ifdef CONFIG_HOTPLUG_CPU |
1630 | case CPU_DEAD: | 1697 | case CPU_DEAD: |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 13e13d428cd3..8b1797c4545b 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -44,9 +44,6 @@ config HAVE_FTRACE_MCOUNT_RECORD | |||
44 | help | 44 | help |
45 | See Documentation/trace/ftrace-design.txt | 45 | See Documentation/trace/ftrace-design.txt |
46 | 46 | ||
47 | config HAVE_HW_BRANCH_TRACER | ||
48 | bool | ||
49 | |||
50 | config HAVE_SYSCALL_TRACEPOINTS | 47 | config HAVE_SYSCALL_TRACEPOINTS |
51 | bool | 48 | bool |
52 | help | 49 | help |
@@ -374,14 +371,6 @@ config STACK_TRACER | |||
374 | 371 | ||
375 | Say N if unsure. | 372 | Say N if unsure. |
376 | 373 | ||
377 | config HW_BRANCH_TRACER | ||
378 | depends on HAVE_HW_BRANCH_TRACER | ||
379 | bool "Trace hw branches" | ||
380 | select GENERIC_TRACER | ||
381 | help | ||
382 | This tracer records all branches on the system in a circular | ||
383 | buffer, giving access to the last N branches for each cpu. | ||
384 | |||
385 | config KMEMTRACE | 374 | config KMEMTRACE |
386 | bool "Trace SLAB allocations" | 375 | bool "Trace SLAB allocations" |
387 | select GENERIC_TRACER | 376 | select GENERIC_TRACER |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 78edc6490038..ffb1a5b0550e 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
@@ -41,7 +41,6 @@ obj-$(CONFIG_MMIOTRACE) += trace_mmiotrace.o | |||
41 | obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | 41 | obj-$(CONFIG_BOOT_TRACER) += trace_boot.o |
42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | ||
45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 44 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 45 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 46 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c index b3bc91a3f510..36ea2b65dcdc 100644 --- a/kernel/trace/blktrace.c +++ b/kernel/trace/blktrace.c | |||
@@ -675,28 +675,33 @@ static void blk_add_trace_rq(struct request_queue *q, struct request *rq, | |||
675 | } | 675 | } |
676 | } | 676 | } |
677 | 677 | ||
678 | static void blk_add_trace_rq_abort(struct request_queue *q, struct request *rq) | 678 | static void blk_add_trace_rq_abort(void *ignore, |
679 | struct request_queue *q, struct request *rq) | ||
679 | { | 680 | { |
680 | blk_add_trace_rq(q, rq, BLK_TA_ABORT); | 681 | blk_add_trace_rq(q, rq, BLK_TA_ABORT); |
681 | } | 682 | } |
682 | 683 | ||
683 | static void blk_add_trace_rq_insert(struct request_queue *q, struct request *rq) | 684 | static void blk_add_trace_rq_insert(void *ignore, |
685 | struct request_queue *q, struct request *rq) | ||
684 | { | 686 | { |
685 | blk_add_trace_rq(q, rq, BLK_TA_INSERT); | 687 | blk_add_trace_rq(q, rq, BLK_TA_INSERT); |
686 | } | 688 | } |
687 | 689 | ||
688 | static void blk_add_trace_rq_issue(struct request_queue *q, struct request *rq) | 690 | static void blk_add_trace_rq_issue(void *ignore, |
691 | struct request_queue *q, struct request *rq) | ||
689 | { | 692 | { |
690 | blk_add_trace_rq(q, rq, BLK_TA_ISSUE); | 693 | blk_add_trace_rq(q, rq, BLK_TA_ISSUE); |
691 | } | 694 | } |
692 | 695 | ||
693 | static void blk_add_trace_rq_requeue(struct request_queue *q, | 696 | static void blk_add_trace_rq_requeue(void *ignore, |
697 | struct request_queue *q, | ||
694 | struct request *rq) | 698 | struct request *rq) |
695 | { | 699 | { |
696 | blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); | 700 | blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); |
697 | } | 701 | } |
698 | 702 | ||
699 | static void blk_add_trace_rq_complete(struct request_queue *q, | 703 | static void blk_add_trace_rq_complete(void *ignore, |
704 | struct request_queue *q, | ||
700 | struct request *rq) | 705 | struct request *rq) |
701 | { | 706 | { |
702 | blk_add_trace_rq(q, rq, BLK_TA_COMPLETE); | 707 | blk_add_trace_rq(q, rq, BLK_TA_COMPLETE); |
@@ -724,34 +729,40 @@ static void blk_add_trace_bio(struct request_queue *q, struct bio *bio, | |||
724 | !bio_flagged(bio, BIO_UPTODATE), 0, NULL); | 729 | !bio_flagged(bio, BIO_UPTODATE), 0, NULL); |
725 | } | 730 | } |
726 | 731 | ||
727 | static void blk_add_trace_bio_bounce(struct request_queue *q, struct bio *bio) | 732 | static void blk_add_trace_bio_bounce(void *ignore, |
733 | struct request_queue *q, struct bio *bio) | ||
728 | { | 734 | { |
729 | blk_add_trace_bio(q, bio, BLK_TA_BOUNCE); | 735 | blk_add_trace_bio(q, bio, BLK_TA_BOUNCE); |
730 | } | 736 | } |
731 | 737 | ||
732 | static void blk_add_trace_bio_complete(struct request_queue *q, struct bio *bio) | 738 | static void blk_add_trace_bio_complete(void *ignore, |
739 | struct request_queue *q, struct bio *bio) | ||
733 | { | 740 | { |
734 | blk_add_trace_bio(q, bio, BLK_TA_COMPLETE); | 741 | blk_add_trace_bio(q, bio, BLK_TA_COMPLETE); |
735 | } | 742 | } |
736 | 743 | ||
737 | static void blk_add_trace_bio_backmerge(struct request_queue *q, | 744 | static void blk_add_trace_bio_backmerge(void *ignore, |
745 | struct request_queue *q, | ||
738 | struct bio *bio) | 746 | struct bio *bio) |
739 | { | 747 | { |
740 | blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); | 748 | blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); |
741 | } | 749 | } |
742 | 750 | ||
743 | static void blk_add_trace_bio_frontmerge(struct request_queue *q, | 751 | static void blk_add_trace_bio_frontmerge(void *ignore, |
752 | struct request_queue *q, | ||
744 | struct bio *bio) | 753 | struct bio *bio) |
745 | { | 754 | { |
746 | blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); | 755 | blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); |
747 | } | 756 | } |
748 | 757 | ||
749 | static void blk_add_trace_bio_queue(struct request_queue *q, struct bio *bio) | 758 | static void blk_add_trace_bio_queue(void *ignore, |
759 | struct request_queue *q, struct bio *bio) | ||
750 | { | 760 | { |
751 | blk_add_trace_bio(q, bio, BLK_TA_QUEUE); | 761 | blk_add_trace_bio(q, bio, BLK_TA_QUEUE); |
752 | } | 762 | } |
753 | 763 | ||
754 | static void blk_add_trace_getrq(struct request_queue *q, | 764 | static void blk_add_trace_getrq(void *ignore, |
765 | struct request_queue *q, | ||
755 | struct bio *bio, int rw) | 766 | struct bio *bio, int rw) |
756 | { | 767 | { |
757 | if (bio) | 768 | if (bio) |
@@ -765,7 +776,8 @@ static void blk_add_trace_getrq(struct request_queue *q, | |||
765 | } | 776 | } |
766 | 777 | ||
767 | 778 | ||
768 | static void blk_add_trace_sleeprq(struct request_queue *q, | 779 | static void blk_add_trace_sleeprq(void *ignore, |
780 | struct request_queue *q, | ||
769 | struct bio *bio, int rw) | 781 | struct bio *bio, int rw) |
770 | { | 782 | { |
771 | if (bio) | 783 | if (bio) |
@@ -779,7 +791,7 @@ static void blk_add_trace_sleeprq(struct request_queue *q, | |||
779 | } | 791 | } |
780 | } | 792 | } |
781 | 793 | ||
782 | static void blk_add_trace_plug(struct request_queue *q) | 794 | static void blk_add_trace_plug(void *ignore, struct request_queue *q) |
783 | { | 795 | { |
784 | struct blk_trace *bt = q->blk_trace; | 796 | struct blk_trace *bt = q->blk_trace; |
785 | 797 | ||
@@ -787,7 +799,7 @@ static void blk_add_trace_plug(struct request_queue *q) | |||
787 | __blk_add_trace(bt, 0, 0, 0, BLK_TA_PLUG, 0, 0, NULL); | 799 | __blk_add_trace(bt, 0, 0, 0, BLK_TA_PLUG, 0, 0, NULL); |
788 | } | 800 | } |
789 | 801 | ||
790 | static void blk_add_trace_unplug_io(struct request_queue *q) | 802 | static void blk_add_trace_unplug_io(void *ignore, struct request_queue *q) |
791 | { | 803 | { |
792 | struct blk_trace *bt = q->blk_trace; | 804 | struct blk_trace *bt = q->blk_trace; |
793 | 805 | ||
@@ -800,7 +812,7 @@ static void blk_add_trace_unplug_io(struct request_queue *q) | |||
800 | } | 812 | } |
801 | } | 813 | } |
802 | 814 | ||
803 | static void blk_add_trace_unplug_timer(struct request_queue *q) | 815 | static void blk_add_trace_unplug_timer(void *ignore, struct request_queue *q) |
804 | { | 816 | { |
805 | struct blk_trace *bt = q->blk_trace; | 817 | struct blk_trace *bt = q->blk_trace; |
806 | 818 | ||
@@ -813,7 +825,8 @@ static void blk_add_trace_unplug_timer(struct request_queue *q) | |||
813 | } | 825 | } |
814 | } | 826 | } |
815 | 827 | ||
816 | static void blk_add_trace_split(struct request_queue *q, struct bio *bio, | 828 | static void blk_add_trace_split(void *ignore, |
829 | struct request_queue *q, struct bio *bio, | ||
817 | unsigned int pdu) | 830 | unsigned int pdu) |
818 | { | 831 | { |
819 | struct blk_trace *bt = q->blk_trace; | 832 | struct blk_trace *bt = q->blk_trace; |
@@ -839,8 +852,9 @@ static void blk_add_trace_split(struct request_queue *q, struct bio *bio, | |||
839 | * it spans a stripe (or similar). Add a trace for that action. | 852 | * it spans a stripe (or similar). Add a trace for that action. |
840 | * | 853 | * |
841 | **/ | 854 | **/ |
842 | static void blk_add_trace_remap(struct request_queue *q, struct bio *bio, | 855 | static void blk_add_trace_remap(void *ignore, |
843 | dev_t dev, sector_t from) | 856 | struct request_queue *q, struct bio *bio, |
857 | dev_t dev, sector_t from) | ||
844 | { | 858 | { |
845 | struct blk_trace *bt = q->blk_trace; | 859 | struct blk_trace *bt = q->blk_trace; |
846 | struct blk_io_trace_remap r; | 860 | struct blk_io_trace_remap r; |
@@ -869,7 +883,8 @@ static void blk_add_trace_remap(struct request_queue *q, struct bio *bio, | |||
869 | * Add a trace for that action. | 883 | * Add a trace for that action. |
870 | * | 884 | * |
871 | **/ | 885 | **/ |
872 | static void blk_add_trace_rq_remap(struct request_queue *q, | 886 | static void blk_add_trace_rq_remap(void *ignore, |
887 | struct request_queue *q, | ||
873 | struct request *rq, dev_t dev, | 888 | struct request *rq, dev_t dev, |
874 | sector_t from) | 889 | sector_t from) |
875 | { | 890 | { |
@@ -921,64 +936,64 @@ static void blk_register_tracepoints(void) | |||
921 | { | 936 | { |
922 | int ret; | 937 | int ret; |
923 | 938 | ||
924 | ret = register_trace_block_rq_abort(blk_add_trace_rq_abort); | 939 | ret = register_trace_block_rq_abort(blk_add_trace_rq_abort, NULL); |
925 | WARN_ON(ret); | 940 | WARN_ON(ret); |
926 | ret = register_trace_block_rq_insert(blk_add_trace_rq_insert); | 941 | ret = register_trace_block_rq_insert(blk_add_trace_rq_insert, NULL); |
927 | WARN_ON(ret); | 942 | WARN_ON(ret); |
928 | ret = register_trace_block_rq_issue(blk_add_trace_rq_issue); | 943 | ret = register_trace_block_rq_issue(blk_add_trace_rq_issue, NULL); |
929 | WARN_ON(ret); | 944 | WARN_ON(ret); |
930 | ret = register_trace_block_rq_requeue(blk_add_trace_rq_requeue); | 945 | ret = register_trace_block_rq_requeue(blk_add_trace_rq_requeue, NULL); |
931 | WARN_ON(ret); | 946 | WARN_ON(ret); |
932 | ret = register_trace_block_rq_complete(blk_add_trace_rq_complete); | 947 | ret = register_trace_block_rq_complete(blk_add_trace_rq_complete, NULL); |
933 | WARN_ON(ret); | 948 | WARN_ON(ret); |
934 | ret = register_trace_block_bio_bounce(blk_add_trace_bio_bounce); | 949 | ret = register_trace_block_bio_bounce(blk_add_trace_bio_bounce, NULL); |
935 | WARN_ON(ret); | 950 | WARN_ON(ret); |
936 | ret = register_trace_block_bio_complete(blk_add_trace_bio_complete); | 951 | ret = register_trace_block_bio_complete(blk_add_trace_bio_complete, NULL); |
937 | WARN_ON(ret); | 952 | WARN_ON(ret); |
938 | ret = register_trace_block_bio_backmerge(blk_add_trace_bio_backmerge); | 953 | ret = register_trace_block_bio_backmerge(blk_add_trace_bio_backmerge, NULL); |
939 | WARN_ON(ret); | 954 | WARN_ON(ret); |
940 | ret = register_trace_block_bio_frontmerge(blk_add_trace_bio_frontmerge); | 955 | ret = register_trace_block_bio_frontmerge(blk_add_trace_bio_frontmerge, NULL); |
941 | WARN_ON(ret); | 956 | WARN_ON(ret); |
942 | ret = register_trace_block_bio_queue(blk_add_trace_bio_queue); | 957 | ret = register_trace_block_bio_queue(blk_add_trace_bio_queue, NULL); |
943 | WARN_ON(ret); | 958 | WARN_ON(ret); |
944 | ret = register_trace_block_getrq(blk_add_trace_getrq); | 959 | ret = register_trace_block_getrq(blk_add_trace_getrq, NULL); |
945 | WARN_ON(ret); | 960 | WARN_ON(ret); |
946 | ret = register_trace_block_sleeprq(blk_add_trace_sleeprq); | 961 | ret = register_trace_block_sleeprq(blk_add_trace_sleeprq, NULL); |
947 | WARN_ON(ret); | 962 | WARN_ON(ret); |
948 | ret = register_trace_block_plug(blk_add_trace_plug); | 963 | ret = register_trace_block_plug(blk_add_trace_plug, NULL); |
949 | WARN_ON(ret); | 964 | WARN_ON(ret); |
950 | ret = register_trace_block_unplug_timer(blk_add_trace_unplug_timer); | 965 | ret = register_trace_block_unplug_timer(blk_add_trace_unplug_timer, NULL); |
951 | WARN_ON(ret); | 966 | WARN_ON(ret); |
952 | ret = register_trace_block_unplug_io(blk_add_trace_unplug_io); | 967 | ret = register_trace_block_unplug_io(blk_add_trace_unplug_io, NULL); |
953 | WARN_ON(ret); | 968 | WARN_ON(ret); |
954 | ret = register_trace_block_split(blk_add_trace_split); | 969 | ret = register_trace_block_split(blk_add_trace_split, NULL); |
955 | WARN_ON(ret); | 970 | WARN_ON(ret); |
956 | ret = register_trace_block_remap(blk_add_trace_remap); | 971 | ret = register_trace_block_remap(blk_add_trace_remap, NULL); |
957 | WARN_ON(ret); | 972 | WARN_ON(ret); |
958 | ret = register_trace_block_rq_remap(blk_add_trace_rq_remap); | 973 | ret = register_trace_block_rq_remap(blk_add_trace_rq_remap, NULL); |
959 | WARN_ON(ret); | 974 | WARN_ON(ret); |
960 | } | 975 | } |
961 | 976 | ||
962 | static void blk_unregister_tracepoints(void) | 977 | static void blk_unregister_tracepoints(void) |
963 | { | 978 | { |
964 | unregister_trace_block_rq_remap(blk_add_trace_rq_remap); | 979 | unregister_trace_block_rq_remap(blk_add_trace_rq_remap, NULL); |
965 | unregister_trace_block_remap(blk_add_trace_remap); | 980 | unregister_trace_block_remap(blk_add_trace_remap, NULL); |
966 | unregister_trace_block_split(blk_add_trace_split); | 981 | unregister_trace_block_split(blk_add_trace_split, NULL); |
967 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io); | 982 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io, NULL); |
968 | unregister_trace_block_unplug_timer(blk_add_trace_unplug_timer); | 983 | unregister_trace_block_unplug_timer(blk_add_trace_unplug_timer, NULL); |
969 | unregister_trace_block_plug(blk_add_trace_plug); | 984 | unregister_trace_block_plug(blk_add_trace_plug, NULL); |
970 | unregister_trace_block_sleeprq(blk_add_trace_sleeprq); | 985 | unregister_trace_block_sleeprq(blk_add_trace_sleeprq, NULL); |
971 | unregister_trace_block_getrq(blk_add_trace_getrq); | 986 | unregister_trace_block_getrq(blk_add_trace_getrq, NULL); |
972 | unregister_trace_block_bio_queue(blk_add_trace_bio_queue); | 987 | unregister_trace_block_bio_queue(blk_add_trace_bio_queue, NULL); |
973 | unregister_trace_block_bio_frontmerge(blk_add_trace_bio_frontmerge); | 988 | unregister_trace_block_bio_frontmerge(blk_add_trace_bio_frontmerge, NULL); |
974 | unregister_trace_block_bio_backmerge(blk_add_trace_bio_backmerge); | 989 | unregister_trace_block_bio_backmerge(blk_add_trace_bio_backmerge, NULL); |
975 | unregister_trace_block_bio_complete(blk_add_trace_bio_complete); | 990 | unregister_trace_block_bio_complete(blk_add_trace_bio_complete, NULL); |
976 | unregister_trace_block_bio_bounce(blk_add_trace_bio_bounce); | 991 | unregister_trace_block_bio_bounce(blk_add_trace_bio_bounce, NULL); |
977 | unregister_trace_block_rq_complete(blk_add_trace_rq_complete); | 992 | unregister_trace_block_rq_complete(blk_add_trace_rq_complete, NULL); |
978 | unregister_trace_block_rq_requeue(blk_add_trace_rq_requeue); | 993 | unregister_trace_block_rq_requeue(blk_add_trace_rq_requeue, NULL); |
979 | unregister_trace_block_rq_issue(blk_add_trace_rq_issue); | 994 | unregister_trace_block_rq_issue(blk_add_trace_rq_issue, NULL); |
980 | unregister_trace_block_rq_insert(blk_add_trace_rq_insert); | 995 | unregister_trace_block_rq_insert(blk_add_trace_rq_insert, NULL); |
981 | unregister_trace_block_rq_abort(blk_add_trace_rq_abort); | 996 | unregister_trace_block_rq_abort(blk_add_trace_rq_abort, NULL); |
982 | 997 | ||
983 | tracepoint_synchronize_unregister(); | 998 | tracepoint_synchronize_unregister(); |
984 | } | 999 | } |
@@ -1321,7 +1336,7 @@ out: | |||
1321 | } | 1336 | } |
1322 | 1337 | ||
1323 | static enum print_line_t blk_trace_event_print(struct trace_iterator *iter, | 1338 | static enum print_line_t blk_trace_event_print(struct trace_iterator *iter, |
1324 | int flags) | 1339 | int flags, struct trace_event *event) |
1325 | { | 1340 | { |
1326 | return print_one_line(iter, false); | 1341 | return print_one_line(iter, false); |
1327 | } | 1342 | } |
@@ -1343,7 +1358,8 @@ static int blk_trace_synthesize_old_trace(struct trace_iterator *iter) | |||
1343 | } | 1358 | } |
1344 | 1359 | ||
1345 | static enum print_line_t | 1360 | static enum print_line_t |
1346 | blk_trace_event_print_binary(struct trace_iterator *iter, int flags) | 1361 | blk_trace_event_print_binary(struct trace_iterator *iter, int flags, |
1362 | struct trace_event *event) | ||
1347 | { | 1363 | { |
1348 | return blk_trace_synthesize_old_trace(iter) ? | 1364 | return blk_trace_synthesize_old_trace(iter) ? |
1349 | TRACE_TYPE_HANDLED : TRACE_TYPE_PARTIAL_LINE; | 1365 | TRACE_TYPE_HANDLED : TRACE_TYPE_PARTIAL_LINE; |
@@ -1381,12 +1397,16 @@ static struct tracer blk_tracer __read_mostly = { | |||
1381 | .set_flag = blk_tracer_set_flag, | 1397 | .set_flag = blk_tracer_set_flag, |
1382 | }; | 1398 | }; |
1383 | 1399 | ||
1384 | static struct trace_event trace_blk_event = { | 1400 | static struct trace_event_functions trace_blk_event_funcs = { |
1385 | .type = TRACE_BLK, | ||
1386 | .trace = blk_trace_event_print, | 1401 | .trace = blk_trace_event_print, |
1387 | .binary = blk_trace_event_print_binary, | 1402 | .binary = blk_trace_event_print_binary, |
1388 | }; | 1403 | }; |
1389 | 1404 | ||
1405 | static struct trace_event trace_blk_event = { | ||
1406 | .type = TRACE_BLK, | ||
1407 | .funcs = &trace_blk_event_funcs, | ||
1408 | }; | ||
1409 | |||
1390 | static int __init init_blk_tracer(void) | 1410 | static int __init init_blk_tracer(void) |
1391 | { | 1411 | { |
1392 | if (!register_ftrace_event(&trace_blk_event)) { | 1412 | if (!register_ftrace_event(&trace_blk_event)) { |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 2404b59b3097..6d2cb14f9449 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -264,6 +264,7 @@ struct ftrace_profile { | |||
264 | unsigned long counter; | 264 | unsigned long counter; |
265 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 265 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
266 | unsigned long long time; | 266 | unsigned long long time; |
267 | unsigned long long time_squared; | ||
267 | #endif | 268 | #endif |
268 | }; | 269 | }; |
269 | 270 | ||
@@ -366,9 +367,9 @@ static int function_stat_headers(struct seq_file *m) | |||
366 | { | 367 | { |
367 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 368 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
368 | seq_printf(m, " Function " | 369 | seq_printf(m, " Function " |
369 | "Hit Time Avg\n" | 370 | "Hit Time Avg s^2\n" |
370 | " -------- " | 371 | " -------- " |
371 | "--- ---- ---\n"); | 372 | "--- ---- --- ---\n"); |
372 | #else | 373 | #else |
373 | seq_printf(m, " Function Hit\n" | 374 | seq_printf(m, " Function Hit\n" |
374 | " -------- ---\n"); | 375 | " -------- ---\n"); |
@@ -384,6 +385,7 @@ static int function_stat_show(struct seq_file *m, void *v) | |||
384 | static DEFINE_MUTEX(mutex); | 385 | static DEFINE_MUTEX(mutex); |
385 | static struct trace_seq s; | 386 | static struct trace_seq s; |
386 | unsigned long long avg; | 387 | unsigned long long avg; |
388 | unsigned long long stddev; | ||
387 | #endif | 389 | #endif |
388 | 390 | ||
389 | kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); | 391 | kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); |
@@ -394,11 +396,25 @@ static int function_stat_show(struct seq_file *m, void *v) | |||
394 | avg = rec->time; | 396 | avg = rec->time; |
395 | do_div(avg, rec->counter); | 397 | do_div(avg, rec->counter); |
396 | 398 | ||
399 | /* Sample standard deviation (s^2) */ | ||
400 | if (rec->counter <= 1) | ||
401 | stddev = 0; | ||
402 | else { | ||
403 | stddev = rec->time_squared - rec->counter * avg * avg; | ||
404 | /* | ||
405 | * Divide only 1000 for ns^2 -> us^2 conversion. | ||
406 | * trace_print_graph_duration will divide 1000 again. | ||
407 | */ | ||
408 | do_div(stddev, (rec->counter - 1) * 1000); | ||
409 | } | ||
410 | |||
397 | mutex_lock(&mutex); | 411 | mutex_lock(&mutex); |
398 | trace_seq_init(&s); | 412 | trace_seq_init(&s); |
399 | trace_print_graph_duration(rec->time, &s); | 413 | trace_print_graph_duration(rec->time, &s); |
400 | trace_seq_puts(&s, " "); | 414 | trace_seq_puts(&s, " "); |
401 | trace_print_graph_duration(avg, &s); | 415 | trace_print_graph_duration(avg, &s); |
416 | trace_seq_puts(&s, " "); | ||
417 | trace_print_graph_duration(stddev, &s); | ||
402 | trace_print_seq(m, &s); | 418 | trace_print_seq(m, &s); |
403 | mutex_unlock(&mutex); | 419 | mutex_unlock(&mutex); |
404 | #endif | 420 | #endif |
@@ -650,6 +666,10 @@ static void profile_graph_return(struct ftrace_graph_ret *trace) | |||
650 | if (!stat->hash || !ftrace_profile_enabled) | 666 | if (!stat->hash || !ftrace_profile_enabled) |
651 | goto out; | 667 | goto out; |
652 | 668 | ||
669 | /* If the calltime was zero'd ignore it */ | ||
670 | if (!trace->calltime) | ||
671 | goto out; | ||
672 | |||
653 | calltime = trace->rettime - trace->calltime; | 673 | calltime = trace->rettime - trace->calltime; |
654 | 674 | ||
655 | if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) { | 675 | if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) { |
@@ -668,8 +688,10 @@ static void profile_graph_return(struct ftrace_graph_ret *trace) | |||
668 | } | 688 | } |
669 | 689 | ||
670 | rec = ftrace_find_profiled_func(stat, trace->func); | 690 | rec = ftrace_find_profiled_func(stat, trace->func); |
671 | if (rec) | 691 | if (rec) { |
672 | rec->time += calltime; | 692 | rec->time += calltime; |
693 | rec->time_squared += calltime * calltime; | ||
694 | } | ||
673 | 695 | ||
674 | out: | 696 | out: |
675 | local_irq_restore(flags); | 697 | local_irq_restore(flags); |
@@ -3212,8 +3234,8 @@ free: | |||
3212 | } | 3234 | } |
3213 | 3235 | ||
3214 | static void | 3236 | static void |
3215 | ftrace_graph_probe_sched_switch(struct rq *__rq, struct task_struct *prev, | 3237 | ftrace_graph_probe_sched_switch(void *ignore, |
3216 | struct task_struct *next) | 3238 | struct task_struct *prev, struct task_struct *next) |
3217 | { | 3239 | { |
3218 | unsigned long long timestamp; | 3240 | unsigned long long timestamp; |
3219 | int index; | 3241 | int index; |
@@ -3267,7 +3289,7 @@ static int start_graph_tracing(void) | |||
3267 | } while (ret == -EAGAIN); | 3289 | } while (ret == -EAGAIN); |
3268 | 3290 | ||
3269 | if (!ret) { | 3291 | if (!ret) { |
3270 | ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch); | 3292 | ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); |
3271 | if (ret) | 3293 | if (ret) |
3272 | pr_info("ftrace_graph: Couldn't activate tracepoint" | 3294 | pr_info("ftrace_graph: Couldn't activate tracepoint" |
3273 | " probe to kernel_sched_switch\n"); | 3295 | " probe to kernel_sched_switch\n"); |
@@ -3339,11 +3361,11 @@ void unregister_ftrace_graph(void) | |||
3339 | goto out; | 3361 | goto out; |
3340 | 3362 | ||
3341 | ftrace_graph_active--; | 3363 | ftrace_graph_active--; |
3342 | unregister_trace_sched_switch(ftrace_graph_probe_sched_switch); | ||
3343 | ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; | 3364 | ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; |
3344 | ftrace_graph_entry = ftrace_graph_entry_stub; | 3365 | ftrace_graph_entry = ftrace_graph_entry_stub; |
3345 | ftrace_shutdown(FTRACE_STOP_FUNC_RET); | 3366 | ftrace_shutdown(FTRACE_STOP_FUNC_RET); |
3346 | unregister_pm_notifier(&ftrace_suspend_notifier); | 3367 | unregister_pm_notifier(&ftrace_suspend_notifier); |
3368 | unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); | ||
3347 | 3369 | ||
3348 | out: | 3370 | out: |
3349 | mutex_unlock(&ftrace_lock); | 3371 | mutex_unlock(&ftrace_lock); |
diff --git a/kernel/trace/kmemtrace.c b/kernel/trace/kmemtrace.c index a91da69f153a..bbfc1bb1660b 100644 --- a/kernel/trace/kmemtrace.c +++ b/kernel/trace/kmemtrace.c | |||
@@ -95,7 +95,8 @@ static inline void kmemtrace_free(enum kmemtrace_type_id type_id, | |||
95 | trace_wake_up(); | 95 | trace_wake_up(); |
96 | } | 96 | } |
97 | 97 | ||
98 | static void kmemtrace_kmalloc(unsigned long call_site, | 98 | static void kmemtrace_kmalloc(void *ignore, |
99 | unsigned long call_site, | ||
99 | const void *ptr, | 100 | const void *ptr, |
100 | size_t bytes_req, | 101 | size_t bytes_req, |
101 | size_t bytes_alloc, | 102 | size_t bytes_alloc, |
@@ -105,7 +106,8 @@ static void kmemtrace_kmalloc(unsigned long call_site, | |||
105 | bytes_req, bytes_alloc, gfp_flags, -1); | 106 | bytes_req, bytes_alloc, gfp_flags, -1); |
106 | } | 107 | } |
107 | 108 | ||
108 | static void kmemtrace_kmem_cache_alloc(unsigned long call_site, | 109 | static void kmemtrace_kmem_cache_alloc(void *ignore, |
110 | unsigned long call_site, | ||
109 | const void *ptr, | 111 | const void *ptr, |
110 | size_t bytes_req, | 112 | size_t bytes_req, |
111 | size_t bytes_alloc, | 113 | size_t bytes_alloc, |
@@ -115,7 +117,8 @@ static void kmemtrace_kmem_cache_alloc(unsigned long call_site, | |||
115 | bytes_req, bytes_alloc, gfp_flags, -1); | 117 | bytes_req, bytes_alloc, gfp_flags, -1); |
116 | } | 118 | } |
117 | 119 | ||
118 | static void kmemtrace_kmalloc_node(unsigned long call_site, | 120 | static void kmemtrace_kmalloc_node(void *ignore, |
121 | unsigned long call_site, | ||
119 | const void *ptr, | 122 | const void *ptr, |
120 | size_t bytes_req, | 123 | size_t bytes_req, |
121 | size_t bytes_alloc, | 124 | size_t bytes_alloc, |
@@ -126,7 +129,8 @@ static void kmemtrace_kmalloc_node(unsigned long call_site, | |||
126 | bytes_req, bytes_alloc, gfp_flags, node); | 129 | bytes_req, bytes_alloc, gfp_flags, node); |
127 | } | 130 | } |
128 | 131 | ||
129 | static void kmemtrace_kmem_cache_alloc_node(unsigned long call_site, | 132 | static void kmemtrace_kmem_cache_alloc_node(void *ignore, |
133 | unsigned long call_site, | ||
130 | const void *ptr, | 134 | const void *ptr, |
131 | size_t bytes_req, | 135 | size_t bytes_req, |
132 | size_t bytes_alloc, | 136 | size_t bytes_alloc, |
@@ -137,12 +141,14 @@ static void kmemtrace_kmem_cache_alloc_node(unsigned long call_site, | |||
137 | bytes_req, bytes_alloc, gfp_flags, node); | 141 | bytes_req, bytes_alloc, gfp_flags, node); |
138 | } | 142 | } |
139 | 143 | ||
140 | static void kmemtrace_kfree(unsigned long call_site, const void *ptr) | 144 | static void |
145 | kmemtrace_kfree(void *ignore, unsigned long call_site, const void *ptr) | ||
141 | { | 146 | { |
142 | kmemtrace_free(KMEMTRACE_TYPE_KMALLOC, call_site, ptr); | 147 | kmemtrace_free(KMEMTRACE_TYPE_KMALLOC, call_site, ptr); |
143 | } | 148 | } |
144 | 149 | ||
145 | static void kmemtrace_kmem_cache_free(unsigned long call_site, const void *ptr) | 150 | static void kmemtrace_kmem_cache_free(void *ignore, |
151 | unsigned long call_site, const void *ptr) | ||
146 | { | 152 | { |
147 | kmemtrace_free(KMEMTRACE_TYPE_CACHE, call_site, ptr); | 153 | kmemtrace_free(KMEMTRACE_TYPE_CACHE, call_site, ptr); |
148 | } | 154 | } |
@@ -151,34 +157,34 @@ static int kmemtrace_start_probes(void) | |||
151 | { | 157 | { |
152 | int err; | 158 | int err; |
153 | 159 | ||
154 | err = register_trace_kmalloc(kmemtrace_kmalloc); | 160 | err = register_trace_kmalloc(kmemtrace_kmalloc, NULL); |
155 | if (err) | 161 | if (err) |
156 | return err; | 162 | return err; |
157 | err = register_trace_kmem_cache_alloc(kmemtrace_kmem_cache_alloc); | 163 | err = register_trace_kmem_cache_alloc(kmemtrace_kmem_cache_alloc, NULL); |
158 | if (err) | 164 | if (err) |
159 | return err; | 165 | return err; |
160 | err = register_trace_kmalloc_node(kmemtrace_kmalloc_node); | 166 | err = register_trace_kmalloc_node(kmemtrace_kmalloc_node, NULL); |
161 | if (err) | 167 | if (err) |
162 | return err; | 168 | return err; |
163 | err = register_trace_kmem_cache_alloc_node(kmemtrace_kmem_cache_alloc_node); | 169 | err = register_trace_kmem_cache_alloc_node(kmemtrace_kmem_cache_alloc_node, NULL); |
164 | if (err) | 170 | if (err) |
165 | return err; | 171 | return err; |
166 | err = register_trace_kfree(kmemtrace_kfree); | 172 | err = register_trace_kfree(kmemtrace_kfree, NULL); |
167 | if (err) | 173 | if (err) |
168 | return err; | 174 | return err; |
169 | err = register_trace_kmem_cache_free(kmemtrace_kmem_cache_free); | 175 | err = register_trace_kmem_cache_free(kmemtrace_kmem_cache_free, NULL); |
170 | 176 | ||
171 | return err; | 177 | return err; |
172 | } | 178 | } |
173 | 179 | ||
174 | static void kmemtrace_stop_probes(void) | 180 | static void kmemtrace_stop_probes(void) |
175 | { | 181 | { |
176 | unregister_trace_kmalloc(kmemtrace_kmalloc); | 182 | unregister_trace_kmalloc(kmemtrace_kmalloc, NULL); |
177 | unregister_trace_kmem_cache_alloc(kmemtrace_kmem_cache_alloc); | 183 | unregister_trace_kmem_cache_alloc(kmemtrace_kmem_cache_alloc, NULL); |
178 | unregister_trace_kmalloc_node(kmemtrace_kmalloc_node); | 184 | unregister_trace_kmalloc_node(kmemtrace_kmalloc_node, NULL); |
179 | unregister_trace_kmem_cache_alloc_node(kmemtrace_kmem_cache_alloc_node); | 185 | unregister_trace_kmem_cache_alloc_node(kmemtrace_kmem_cache_alloc_node, NULL); |
180 | unregister_trace_kfree(kmemtrace_kfree); | 186 | unregister_trace_kfree(kmemtrace_kfree, NULL); |
181 | unregister_trace_kmem_cache_free(kmemtrace_kmem_cache_free); | 187 | unregister_trace_kmem_cache_free(kmemtrace_kmem_cache_free, NULL); |
182 | } | 188 | } |
183 | 189 | ||
184 | static int kmem_trace_init(struct trace_array *tr) | 190 | static int kmem_trace_init(struct trace_array *tr) |
@@ -237,7 +243,8 @@ struct kmemtrace_user_event_alloc { | |||
237 | }; | 243 | }; |
238 | 244 | ||
239 | static enum print_line_t | 245 | static enum print_line_t |
240 | kmemtrace_print_alloc(struct trace_iterator *iter, int flags) | 246 | kmemtrace_print_alloc(struct trace_iterator *iter, int flags, |
247 | struct trace_event *event) | ||
241 | { | 248 | { |
242 | struct trace_seq *s = &iter->seq; | 249 | struct trace_seq *s = &iter->seq; |
243 | struct kmemtrace_alloc_entry *entry; | 250 | struct kmemtrace_alloc_entry *entry; |
@@ -257,7 +264,8 @@ kmemtrace_print_alloc(struct trace_iterator *iter, int flags) | |||
257 | } | 264 | } |
258 | 265 | ||
259 | static enum print_line_t | 266 | static enum print_line_t |
260 | kmemtrace_print_free(struct trace_iterator *iter, int flags) | 267 | kmemtrace_print_free(struct trace_iterator *iter, int flags, |
268 | struct trace_event *event) | ||
261 | { | 269 | { |
262 | struct trace_seq *s = &iter->seq; | 270 | struct trace_seq *s = &iter->seq; |
263 | struct kmemtrace_free_entry *entry; | 271 | struct kmemtrace_free_entry *entry; |
@@ -275,7 +283,8 @@ kmemtrace_print_free(struct trace_iterator *iter, int flags) | |||
275 | } | 283 | } |
276 | 284 | ||
277 | static enum print_line_t | 285 | static enum print_line_t |
278 | kmemtrace_print_alloc_user(struct trace_iterator *iter, int flags) | 286 | kmemtrace_print_alloc_user(struct trace_iterator *iter, int flags, |
287 | struct trace_event *event) | ||
279 | { | 288 | { |
280 | struct trace_seq *s = &iter->seq; | 289 | struct trace_seq *s = &iter->seq; |
281 | struct kmemtrace_alloc_entry *entry; | 290 | struct kmemtrace_alloc_entry *entry; |
@@ -309,7 +318,8 @@ kmemtrace_print_alloc_user(struct trace_iterator *iter, int flags) | |||
309 | } | 318 | } |
310 | 319 | ||
311 | static enum print_line_t | 320 | static enum print_line_t |
312 | kmemtrace_print_free_user(struct trace_iterator *iter, int flags) | 321 | kmemtrace_print_free_user(struct trace_iterator *iter, int flags, |
322 | struct trace_event *event) | ||
313 | { | 323 | { |
314 | struct trace_seq *s = &iter->seq; | 324 | struct trace_seq *s = &iter->seq; |
315 | struct kmemtrace_free_entry *entry; | 325 | struct kmemtrace_free_entry *entry; |
@@ -463,18 +473,26 @@ static enum print_line_t kmemtrace_print_line(struct trace_iterator *iter) | |||
463 | } | 473 | } |
464 | } | 474 | } |
465 | 475 | ||
466 | static struct trace_event kmem_trace_alloc = { | 476 | static struct trace_event_functions kmem_trace_alloc_funcs = { |
467 | .type = TRACE_KMEM_ALLOC, | ||
468 | .trace = kmemtrace_print_alloc, | 477 | .trace = kmemtrace_print_alloc, |
469 | .binary = kmemtrace_print_alloc_user, | 478 | .binary = kmemtrace_print_alloc_user, |
470 | }; | 479 | }; |
471 | 480 | ||
472 | static struct trace_event kmem_trace_free = { | 481 | static struct trace_event kmem_trace_alloc = { |
473 | .type = TRACE_KMEM_FREE, | 482 | .type = TRACE_KMEM_ALLOC, |
483 | .funcs = &kmem_trace_alloc_funcs, | ||
484 | }; | ||
485 | |||
486 | static struct trace_event_functions kmem_trace_free_funcs = { | ||
474 | .trace = kmemtrace_print_free, | 487 | .trace = kmemtrace_print_free, |
475 | .binary = kmemtrace_print_free_user, | 488 | .binary = kmemtrace_print_free_user, |
476 | }; | 489 | }; |
477 | 490 | ||
491 | static struct trace_event kmem_trace_free = { | ||
492 | .type = TRACE_KMEM_FREE, | ||
493 | .funcs = &kmem_trace_free_funcs, | ||
494 | }; | ||
495 | |||
478 | static struct tracer kmem_tracer __read_mostly = { | 496 | static struct tracer kmem_tracer __read_mostly = { |
479 | .name = "kmemtrace", | 497 | .name = "kmemtrace", |
480 | .init = kmem_trace_init, | 498 | .init = kmem_trace_init, |
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 41ca394feb22..7f6059c5aa94 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
@@ -319,6 +319,11 @@ EXPORT_SYMBOL_GPL(ring_buffer_event_data); | |||
319 | #define TS_MASK ((1ULL << TS_SHIFT) - 1) | 319 | #define TS_MASK ((1ULL << TS_SHIFT) - 1) |
320 | #define TS_DELTA_TEST (~TS_MASK) | 320 | #define TS_DELTA_TEST (~TS_MASK) |
321 | 321 | ||
322 | /* Flag when events were overwritten */ | ||
323 | #define RB_MISSED_EVENTS (1 << 31) | ||
324 | /* Missed count stored at end */ | ||
325 | #define RB_MISSED_STORED (1 << 30) | ||
326 | |||
322 | struct buffer_data_page { | 327 | struct buffer_data_page { |
323 | u64 time_stamp; /* page time stamp */ | 328 | u64 time_stamp; /* page time stamp */ |
324 | local_t commit; /* write committed index */ | 329 | local_t commit; /* write committed index */ |
@@ -338,6 +343,7 @@ struct buffer_page { | |||
338 | local_t write; /* index for next write */ | 343 | local_t write; /* index for next write */ |
339 | unsigned read; /* index for next read */ | 344 | unsigned read; /* index for next read */ |
340 | local_t entries; /* entries on this page */ | 345 | local_t entries; /* entries on this page */ |
346 | unsigned long real_end; /* real end of data */ | ||
341 | struct buffer_data_page *page; /* Actual data page */ | 347 | struct buffer_data_page *page; /* Actual data page */ |
342 | }; | 348 | }; |
343 | 349 | ||
@@ -417,6 +423,12 @@ int ring_buffer_print_page_header(struct trace_seq *s) | |||
417 | (unsigned int)sizeof(field.commit), | 423 | (unsigned int)sizeof(field.commit), |
418 | (unsigned int)is_signed_type(long)); | 424 | (unsigned int)is_signed_type(long)); |
419 | 425 | ||
426 | ret = trace_seq_printf(s, "\tfield: int overwrite;\t" | ||
427 | "offset:%u;\tsize:%u;\tsigned:%u;\n", | ||
428 | (unsigned int)offsetof(typeof(field), commit), | ||
429 | 1, | ||
430 | (unsigned int)is_signed_type(long)); | ||
431 | |||
420 | ret = trace_seq_printf(s, "\tfield: char data;\t" | 432 | ret = trace_seq_printf(s, "\tfield: char data;\t" |
421 | "offset:%u;\tsize:%u;\tsigned:%u;\n", | 433 | "offset:%u;\tsize:%u;\tsigned:%u;\n", |
422 | (unsigned int)offsetof(typeof(field), data), | 434 | (unsigned int)offsetof(typeof(field), data), |
@@ -440,6 +452,8 @@ struct ring_buffer_per_cpu { | |||
440 | struct buffer_page *tail_page; /* write to tail */ | 452 | struct buffer_page *tail_page; /* write to tail */ |
441 | struct buffer_page *commit_page; /* committed pages */ | 453 | struct buffer_page *commit_page; /* committed pages */ |
442 | struct buffer_page *reader_page; | 454 | struct buffer_page *reader_page; |
455 | unsigned long lost_events; | ||
456 | unsigned long last_overrun; | ||
443 | local_t commit_overrun; | 457 | local_t commit_overrun; |
444 | local_t overrun; | 458 | local_t overrun; |
445 | local_t entries; | 459 | local_t entries; |
@@ -1762,6 +1776,13 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
1762 | kmemcheck_annotate_bitfield(event, bitfield); | 1776 | kmemcheck_annotate_bitfield(event, bitfield); |
1763 | 1777 | ||
1764 | /* | 1778 | /* |
1779 | * Save the original length to the meta data. | ||
1780 | * This will be used by the reader to add lost event | ||
1781 | * counter. | ||
1782 | */ | ||
1783 | tail_page->real_end = tail; | ||
1784 | |||
1785 | /* | ||
1765 | * If this event is bigger than the minimum size, then | 1786 | * If this event is bigger than the minimum size, then |
1766 | * we need to be careful that we don't subtract the | 1787 | * we need to be careful that we don't subtract the |
1767 | * write counter enough to allow another writer to slip | 1788 | * write counter enough to allow another writer to slip |
@@ -1979,17 +2000,13 @@ rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, | |||
1979 | u64 *ts, u64 *delta) | 2000 | u64 *ts, u64 *delta) |
1980 | { | 2001 | { |
1981 | struct ring_buffer_event *event; | 2002 | struct ring_buffer_event *event; |
1982 | static int once; | ||
1983 | int ret; | 2003 | int ret; |
1984 | 2004 | ||
1985 | if (unlikely(*delta > (1ULL << 59) && !once++)) { | 2005 | WARN_ONCE(*delta > (1ULL << 59), |
1986 | printk(KERN_WARNING "Delta way too big! %llu" | 2006 | KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n", |
1987 | " ts=%llu write stamp = %llu\n", | 2007 | (unsigned long long)*delta, |
1988 | (unsigned long long)*delta, | 2008 | (unsigned long long)*ts, |
1989 | (unsigned long long)*ts, | 2009 | (unsigned long long)cpu_buffer->write_stamp); |
1990 | (unsigned long long)cpu_buffer->write_stamp); | ||
1991 | WARN_ON(1); | ||
1992 | } | ||
1993 | 2010 | ||
1994 | /* | 2011 | /* |
1995 | * The delta is too big, we to add a | 2012 | * The delta is too big, we to add a |
@@ -2838,6 +2855,7 @@ static struct buffer_page * | |||
2838 | rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | 2855 | rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) |
2839 | { | 2856 | { |
2840 | struct buffer_page *reader = NULL; | 2857 | struct buffer_page *reader = NULL; |
2858 | unsigned long overwrite; | ||
2841 | unsigned long flags; | 2859 | unsigned long flags; |
2842 | int nr_loops = 0; | 2860 | int nr_loops = 0; |
2843 | int ret; | 2861 | int ret; |
@@ -2879,6 +2897,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | |||
2879 | local_set(&cpu_buffer->reader_page->write, 0); | 2897 | local_set(&cpu_buffer->reader_page->write, 0); |
2880 | local_set(&cpu_buffer->reader_page->entries, 0); | 2898 | local_set(&cpu_buffer->reader_page->entries, 0); |
2881 | local_set(&cpu_buffer->reader_page->page->commit, 0); | 2899 | local_set(&cpu_buffer->reader_page->page->commit, 0); |
2900 | cpu_buffer->reader_page->real_end = 0; | ||
2882 | 2901 | ||
2883 | spin: | 2902 | spin: |
2884 | /* | 2903 | /* |
@@ -2899,6 +2918,18 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | |||
2899 | rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); | 2918 | rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); |
2900 | 2919 | ||
2901 | /* | 2920 | /* |
2921 | * We want to make sure we read the overruns after we set up our | ||
2922 | * pointers to the next object. The writer side does a | ||
2923 | * cmpxchg to cross pages which acts as the mb on the writer | ||
2924 | * side. Note, the reader will constantly fail the swap | ||
2925 | * while the writer is updating the pointers, so this | ||
2926 | * guarantees that the overwrite recorded here is the one we | ||
2927 | * want to compare with the last_overrun. | ||
2928 | */ | ||
2929 | smp_mb(); | ||
2930 | overwrite = local_read(&(cpu_buffer->overrun)); | ||
2931 | |||
2932 | /* | ||
2902 | * Here's the tricky part. | 2933 | * Here's the tricky part. |
2903 | * | 2934 | * |
2904 | * We need to move the pointer past the header page. | 2935 | * We need to move the pointer past the header page. |
@@ -2929,6 +2960,11 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | |||
2929 | cpu_buffer->reader_page = reader; | 2960 | cpu_buffer->reader_page = reader; |
2930 | rb_reset_reader_page(cpu_buffer); | 2961 | rb_reset_reader_page(cpu_buffer); |
2931 | 2962 | ||
2963 | if (overwrite != cpu_buffer->last_overrun) { | ||
2964 | cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; | ||
2965 | cpu_buffer->last_overrun = overwrite; | ||
2966 | } | ||
2967 | |||
2932 | goto again; | 2968 | goto again; |
2933 | 2969 | ||
2934 | out: | 2970 | out: |
@@ -3005,8 +3041,14 @@ static void rb_advance_iter(struct ring_buffer_iter *iter) | |||
3005 | rb_advance_iter(iter); | 3041 | rb_advance_iter(iter); |
3006 | } | 3042 | } |
3007 | 3043 | ||
3044 | static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) | ||
3045 | { | ||
3046 | return cpu_buffer->lost_events; | ||
3047 | } | ||
3048 | |||
3008 | static struct ring_buffer_event * | 3049 | static struct ring_buffer_event * |
3009 | rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) | 3050 | rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, |
3051 | unsigned long *lost_events) | ||
3010 | { | 3052 | { |
3011 | struct ring_buffer_event *event; | 3053 | struct ring_buffer_event *event; |
3012 | struct buffer_page *reader; | 3054 | struct buffer_page *reader; |
@@ -3058,6 +3100,8 @@ rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) | |||
3058 | ring_buffer_normalize_time_stamp(cpu_buffer->buffer, | 3100 | ring_buffer_normalize_time_stamp(cpu_buffer->buffer, |
3059 | cpu_buffer->cpu, ts); | 3101 | cpu_buffer->cpu, ts); |
3060 | } | 3102 | } |
3103 | if (lost_events) | ||
3104 | *lost_events = rb_lost_events(cpu_buffer); | ||
3061 | return event; | 3105 | return event; |
3062 | 3106 | ||
3063 | default: | 3107 | default: |
@@ -3168,12 +3212,14 @@ static inline int rb_ok_to_lock(void) | |||
3168 | * @buffer: The ring buffer to read | 3212 | * @buffer: The ring buffer to read |
3169 | * @cpu: The cpu to peak at | 3213 | * @cpu: The cpu to peak at |
3170 | * @ts: The timestamp counter of this event. | 3214 | * @ts: The timestamp counter of this event. |
3215 | * @lost_events: a variable to store if events were lost (may be NULL) | ||
3171 | * | 3216 | * |
3172 | * This will return the event that will be read next, but does | 3217 | * This will return the event that will be read next, but does |
3173 | * not consume the data. | 3218 | * not consume the data. |
3174 | */ | 3219 | */ |
3175 | struct ring_buffer_event * | 3220 | struct ring_buffer_event * |
3176 | ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | 3221 | ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, |
3222 | unsigned long *lost_events) | ||
3177 | { | 3223 | { |
3178 | struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; | 3224 | struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; |
3179 | struct ring_buffer_event *event; | 3225 | struct ring_buffer_event *event; |
@@ -3188,7 +3234,7 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3188 | local_irq_save(flags); | 3234 | local_irq_save(flags); |
3189 | if (dolock) | 3235 | if (dolock) |
3190 | spin_lock(&cpu_buffer->reader_lock); | 3236 | spin_lock(&cpu_buffer->reader_lock); |
3191 | event = rb_buffer_peek(cpu_buffer, ts); | 3237 | event = rb_buffer_peek(cpu_buffer, ts, lost_events); |
3192 | if (event && event->type_len == RINGBUF_TYPE_PADDING) | 3238 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
3193 | rb_advance_reader(cpu_buffer); | 3239 | rb_advance_reader(cpu_buffer); |
3194 | if (dolock) | 3240 | if (dolock) |
@@ -3230,13 +3276,17 @@ ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) | |||
3230 | /** | 3276 | /** |
3231 | * ring_buffer_consume - return an event and consume it | 3277 | * ring_buffer_consume - return an event and consume it |
3232 | * @buffer: The ring buffer to get the next event from | 3278 | * @buffer: The ring buffer to get the next event from |
3279 | * @cpu: the cpu to read the buffer from | ||
3280 | * @ts: a variable to store the timestamp (may be NULL) | ||
3281 | * @lost_events: a variable to store if events were lost (may be NULL) | ||
3233 | * | 3282 | * |
3234 | * Returns the next event in the ring buffer, and that event is consumed. | 3283 | * Returns the next event in the ring buffer, and that event is consumed. |
3235 | * Meaning, that sequential reads will keep returning a different event, | 3284 | * Meaning, that sequential reads will keep returning a different event, |
3236 | * and eventually empty the ring buffer if the producer is slower. | 3285 | * and eventually empty the ring buffer if the producer is slower. |
3237 | */ | 3286 | */ |
3238 | struct ring_buffer_event * | 3287 | struct ring_buffer_event * |
3239 | ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | 3288 | ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, |
3289 | unsigned long *lost_events) | ||
3240 | { | 3290 | { |
3241 | struct ring_buffer_per_cpu *cpu_buffer; | 3291 | struct ring_buffer_per_cpu *cpu_buffer; |
3242 | struct ring_buffer_event *event = NULL; | 3292 | struct ring_buffer_event *event = NULL; |
@@ -3257,9 +3307,11 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3257 | if (dolock) | 3307 | if (dolock) |
3258 | spin_lock(&cpu_buffer->reader_lock); | 3308 | spin_lock(&cpu_buffer->reader_lock); |
3259 | 3309 | ||
3260 | event = rb_buffer_peek(cpu_buffer, ts); | 3310 | event = rb_buffer_peek(cpu_buffer, ts, lost_events); |
3261 | if (event) | 3311 | if (event) { |
3312 | cpu_buffer->lost_events = 0; | ||
3262 | rb_advance_reader(cpu_buffer); | 3313 | rb_advance_reader(cpu_buffer); |
3314 | } | ||
3263 | 3315 | ||
3264 | if (dolock) | 3316 | if (dolock) |
3265 | spin_unlock(&cpu_buffer->reader_lock); | 3317 | spin_unlock(&cpu_buffer->reader_lock); |
@@ -3276,23 +3328,30 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3276 | EXPORT_SYMBOL_GPL(ring_buffer_consume); | 3328 | EXPORT_SYMBOL_GPL(ring_buffer_consume); |
3277 | 3329 | ||
3278 | /** | 3330 | /** |
3279 | * ring_buffer_read_start - start a non consuming read of the buffer | 3331 | * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer |
3280 | * @buffer: The ring buffer to read from | 3332 | * @buffer: The ring buffer to read from |
3281 | * @cpu: The cpu buffer to iterate over | 3333 | * @cpu: The cpu buffer to iterate over |
3282 | * | 3334 | * |
3283 | * This starts up an iteration through the buffer. It also disables | 3335 | * This performs the initial preparations necessary to iterate |
3284 | * the recording to the buffer until the reading is finished. | 3336 | * through the buffer. Memory is allocated, buffer recording |
3285 | * This prevents the reading from being corrupted. This is not | 3337 | * is disabled, and the iterator pointer is returned to the caller. |
3286 | * a consuming read, so a producer is not expected. | ||
3287 | * | 3338 | * |
3288 | * Must be paired with ring_buffer_finish. | 3339 | * Disabling buffer recordng prevents the reading from being |
3340 | * corrupted. This is not a consuming read, so a producer is not | ||
3341 | * expected. | ||
3342 | * | ||
3343 | * After a sequence of ring_buffer_read_prepare calls, the user is | ||
3344 | * expected to make at least one call to ring_buffer_prepare_sync. | ||
3345 | * Afterwards, ring_buffer_read_start is invoked to get things going | ||
3346 | * for real. | ||
3347 | * | ||
3348 | * This overall must be paired with ring_buffer_finish. | ||
3289 | */ | 3349 | */ |
3290 | struct ring_buffer_iter * | 3350 | struct ring_buffer_iter * |
3291 | ring_buffer_read_start(struct ring_buffer *buffer, int cpu) | 3351 | ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) |
3292 | { | 3352 | { |
3293 | struct ring_buffer_per_cpu *cpu_buffer; | 3353 | struct ring_buffer_per_cpu *cpu_buffer; |
3294 | struct ring_buffer_iter *iter; | 3354 | struct ring_buffer_iter *iter; |
3295 | unsigned long flags; | ||
3296 | 3355 | ||
3297 | if (!cpumask_test_cpu(cpu, buffer->cpumask)) | 3356 | if (!cpumask_test_cpu(cpu, buffer->cpumask)) |
3298 | return NULL; | 3357 | return NULL; |
@@ -3306,15 +3365,52 @@ ring_buffer_read_start(struct ring_buffer *buffer, int cpu) | |||
3306 | iter->cpu_buffer = cpu_buffer; | 3365 | iter->cpu_buffer = cpu_buffer; |
3307 | 3366 | ||
3308 | atomic_inc(&cpu_buffer->record_disabled); | 3367 | atomic_inc(&cpu_buffer->record_disabled); |
3368 | |||
3369 | return iter; | ||
3370 | } | ||
3371 | EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); | ||
3372 | |||
3373 | /** | ||
3374 | * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls | ||
3375 | * | ||
3376 | * All previously invoked ring_buffer_read_prepare calls to prepare | ||
3377 | * iterators will be synchronized. Afterwards, read_buffer_read_start | ||
3378 | * calls on those iterators are allowed. | ||
3379 | */ | ||
3380 | void | ||
3381 | ring_buffer_read_prepare_sync(void) | ||
3382 | { | ||
3309 | synchronize_sched(); | 3383 | synchronize_sched(); |
3384 | } | ||
3385 | EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); | ||
3386 | |||
3387 | /** | ||
3388 | * ring_buffer_read_start - start a non consuming read of the buffer | ||
3389 | * @iter: The iterator returned by ring_buffer_read_prepare | ||
3390 | * | ||
3391 | * This finalizes the startup of an iteration through the buffer. | ||
3392 | * The iterator comes from a call to ring_buffer_read_prepare and | ||
3393 | * an intervening ring_buffer_read_prepare_sync must have been | ||
3394 | * performed. | ||
3395 | * | ||
3396 | * Must be paired with ring_buffer_finish. | ||
3397 | */ | ||
3398 | void | ||
3399 | ring_buffer_read_start(struct ring_buffer_iter *iter) | ||
3400 | { | ||
3401 | struct ring_buffer_per_cpu *cpu_buffer; | ||
3402 | unsigned long flags; | ||
3403 | |||
3404 | if (!iter) | ||
3405 | return; | ||
3406 | |||
3407 | cpu_buffer = iter->cpu_buffer; | ||
3310 | 3408 | ||
3311 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); | 3409 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); |
3312 | arch_spin_lock(&cpu_buffer->lock); | 3410 | arch_spin_lock(&cpu_buffer->lock); |
3313 | rb_iter_reset(iter); | 3411 | rb_iter_reset(iter); |
3314 | arch_spin_unlock(&cpu_buffer->lock); | 3412 | arch_spin_unlock(&cpu_buffer->lock); |
3315 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); | 3413 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); |
3316 | |||
3317 | return iter; | ||
3318 | } | 3414 | } |
3319 | EXPORT_SYMBOL_GPL(ring_buffer_read_start); | 3415 | EXPORT_SYMBOL_GPL(ring_buffer_read_start); |
3320 | 3416 | ||
@@ -3408,6 +3504,9 @@ rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) | |||
3408 | cpu_buffer->write_stamp = 0; | 3504 | cpu_buffer->write_stamp = 0; |
3409 | cpu_buffer->read_stamp = 0; | 3505 | cpu_buffer->read_stamp = 0; |
3410 | 3506 | ||
3507 | cpu_buffer->lost_events = 0; | ||
3508 | cpu_buffer->last_overrun = 0; | ||
3509 | |||
3411 | rb_head_page_activate(cpu_buffer); | 3510 | rb_head_page_activate(cpu_buffer); |
3412 | } | 3511 | } |
3413 | 3512 | ||
@@ -3683,6 +3782,7 @@ int ring_buffer_read_page(struct ring_buffer *buffer, | |||
3683 | struct ring_buffer_event *event; | 3782 | struct ring_buffer_event *event; |
3684 | struct buffer_data_page *bpage; | 3783 | struct buffer_data_page *bpage; |
3685 | struct buffer_page *reader; | 3784 | struct buffer_page *reader; |
3785 | unsigned long missed_events; | ||
3686 | unsigned long flags; | 3786 | unsigned long flags; |
3687 | unsigned int commit; | 3787 | unsigned int commit; |
3688 | unsigned int read; | 3788 | unsigned int read; |
@@ -3719,6 +3819,9 @@ int ring_buffer_read_page(struct ring_buffer *buffer, | |||
3719 | read = reader->read; | 3819 | read = reader->read; |
3720 | commit = rb_page_commit(reader); | 3820 | commit = rb_page_commit(reader); |
3721 | 3821 | ||
3822 | /* Check if any events were dropped */ | ||
3823 | missed_events = cpu_buffer->lost_events; | ||
3824 | |||
3722 | /* | 3825 | /* |
3723 | * If this page has been partially read or | 3826 | * If this page has been partially read or |
3724 | * if len is not big enough to read the rest of the page or | 3827 | * if len is not big enough to read the rest of the page or |
@@ -3779,9 +3882,35 @@ int ring_buffer_read_page(struct ring_buffer *buffer, | |||
3779 | local_set(&reader->entries, 0); | 3882 | local_set(&reader->entries, 0); |
3780 | reader->read = 0; | 3883 | reader->read = 0; |
3781 | *data_page = bpage; | 3884 | *data_page = bpage; |
3885 | |||
3886 | /* | ||
3887 | * Use the real_end for the data size, | ||
3888 | * This gives us a chance to store the lost events | ||
3889 | * on the page. | ||
3890 | */ | ||
3891 | if (reader->real_end) | ||
3892 | local_set(&bpage->commit, reader->real_end); | ||
3782 | } | 3893 | } |
3783 | ret = read; | 3894 | ret = read; |
3784 | 3895 | ||
3896 | cpu_buffer->lost_events = 0; | ||
3897 | /* | ||
3898 | * Set a flag in the commit field if we lost events | ||
3899 | */ | ||
3900 | if (missed_events) { | ||
3901 | commit = local_read(&bpage->commit); | ||
3902 | |||
3903 | /* If there is room at the end of the page to save the | ||
3904 | * missed events, then record it there. | ||
3905 | */ | ||
3906 | if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { | ||
3907 | memcpy(&bpage->data[commit], &missed_events, | ||
3908 | sizeof(missed_events)); | ||
3909 | local_add(RB_MISSED_STORED, &bpage->commit); | ||
3910 | } | ||
3911 | local_add(RB_MISSED_EVENTS, &bpage->commit); | ||
3912 | } | ||
3913 | |||
3785 | out_unlock: | 3914 | out_unlock: |
3786 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); | 3915 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); |
3787 | 3916 | ||
diff --git a/kernel/trace/ring_buffer_benchmark.c b/kernel/trace/ring_buffer_benchmark.c index df74c7982255..302f8a614635 100644 --- a/kernel/trace/ring_buffer_benchmark.c +++ b/kernel/trace/ring_buffer_benchmark.c | |||
@@ -81,7 +81,7 @@ static enum event_status read_event(int cpu) | |||
81 | int *entry; | 81 | int *entry; |
82 | u64 ts; | 82 | u64 ts; |
83 | 83 | ||
84 | event = ring_buffer_consume(buffer, cpu, &ts); | 84 | event = ring_buffer_consume(buffer, cpu, &ts, NULL); |
85 | if (!event) | 85 | if (!event) |
86 | return EVENT_DROPPED; | 86 | return EVENT_DROPPED; |
87 | 87 | ||
@@ -113,7 +113,8 @@ static enum event_status read_page(int cpu) | |||
113 | ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1); | 113 | ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1); |
114 | if (ret >= 0) { | 114 | if (ret >= 0) { |
115 | rpage = bpage; | 115 | rpage = bpage; |
116 | commit = local_read(&rpage->commit); | 116 | /* The commit may have missed event flags set, clear them */ |
117 | commit = local_read(&rpage->commit) & 0xfffff; | ||
117 | for (i = 0; i < commit && !kill_test; i += inc) { | 118 | for (i = 0; i < commit && !kill_test; i += inc) { |
118 | 119 | ||
119 | if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) { | 120 | if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) { |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 44f916a04065..55e48511d7c8 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -117,9 +117,12 @@ static cpumask_var_t __read_mostly tracing_buffer_mask; | |||
117 | * | 117 | * |
118 | * It is default off, but you can enable it with either specifying | 118 | * It is default off, but you can enable it with either specifying |
119 | * "ftrace_dump_on_oops" in the kernel command line, or setting | 119 | * "ftrace_dump_on_oops" in the kernel command line, or setting |
120 | * /proc/sys/kernel/ftrace_dump_on_oops to true. | 120 | * /proc/sys/kernel/ftrace_dump_on_oops |
121 | * Set 1 if you want to dump buffers of all CPUs | ||
122 | * Set 2 if you want to dump the buffer of the CPU that triggered oops | ||
121 | */ | 123 | */ |
122 | int ftrace_dump_on_oops; | 124 | |
125 | enum ftrace_dump_mode ftrace_dump_on_oops; | ||
123 | 126 | ||
124 | static int tracing_set_tracer(const char *buf); | 127 | static int tracing_set_tracer(const char *buf); |
125 | 128 | ||
@@ -139,8 +142,17 @@ __setup("ftrace=", set_cmdline_ftrace); | |||
139 | 142 | ||
140 | static int __init set_ftrace_dump_on_oops(char *str) | 143 | static int __init set_ftrace_dump_on_oops(char *str) |
141 | { | 144 | { |
142 | ftrace_dump_on_oops = 1; | 145 | if (*str++ != '=' || !*str) { |
143 | return 1; | 146 | ftrace_dump_on_oops = DUMP_ALL; |
147 | return 1; | ||
148 | } | ||
149 | |||
150 | if (!strcmp("orig_cpu", str)) { | ||
151 | ftrace_dump_on_oops = DUMP_ORIG; | ||
152 | return 1; | ||
153 | } | ||
154 | |||
155 | return 0; | ||
144 | } | 156 | } |
145 | __setup("ftrace_dump_on_oops", set_ftrace_dump_on_oops); | 157 | __setup("ftrace_dump_on_oops", set_ftrace_dump_on_oops); |
146 | 158 | ||
@@ -1545,7 +1557,8 @@ static void trace_iterator_increment(struct trace_iterator *iter) | |||
1545 | } | 1557 | } |
1546 | 1558 | ||
1547 | static struct trace_entry * | 1559 | static struct trace_entry * |
1548 | peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts) | 1560 | peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts, |
1561 | unsigned long *lost_events) | ||
1549 | { | 1562 | { |
1550 | struct ring_buffer_event *event; | 1563 | struct ring_buffer_event *event; |
1551 | struct ring_buffer_iter *buf_iter = iter->buffer_iter[cpu]; | 1564 | struct ring_buffer_iter *buf_iter = iter->buffer_iter[cpu]; |
@@ -1556,7 +1569,8 @@ peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts) | |||
1556 | if (buf_iter) | 1569 | if (buf_iter) |
1557 | event = ring_buffer_iter_peek(buf_iter, ts); | 1570 | event = ring_buffer_iter_peek(buf_iter, ts); |
1558 | else | 1571 | else |
1559 | event = ring_buffer_peek(iter->tr->buffer, cpu, ts); | 1572 | event = ring_buffer_peek(iter->tr->buffer, cpu, ts, |
1573 | lost_events); | ||
1560 | 1574 | ||
1561 | ftrace_enable_cpu(); | 1575 | ftrace_enable_cpu(); |
1562 | 1576 | ||
@@ -1564,10 +1578,12 @@ peek_next_entry(struct trace_iterator *iter, int cpu, u64 *ts) | |||
1564 | } | 1578 | } |
1565 | 1579 | ||
1566 | static struct trace_entry * | 1580 | static struct trace_entry * |
1567 | __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | 1581 | __find_next_entry(struct trace_iterator *iter, int *ent_cpu, |
1582 | unsigned long *missing_events, u64 *ent_ts) | ||
1568 | { | 1583 | { |
1569 | struct ring_buffer *buffer = iter->tr->buffer; | 1584 | struct ring_buffer *buffer = iter->tr->buffer; |
1570 | struct trace_entry *ent, *next = NULL; | 1585 | struct trace_entry *ent, *next = NULL; |
1586 | unsigned long lost_events = 0, next_lost = 0; | ||
1571 | int cpu_file = iter->cpu_file; | 1587 | int cpu_file = iter->cpu_file; |
1572 | u64 next_ts = 0, ts; | 1588 | u64 next_ts = 0, ts; |
1573 | int next_cpu = -1; | 1589 | int next_cpu = -1; |
@@ -1580,7 +1596,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | |||
1580 | if (cpu_file > TRACE_PIPE_ALL_CPU) { | 1596 | if (cpu_file > TRACE_PIPE_ALL_CPU) { |
1581 | if (ring_buffer_empty_cpu(buffer, cpu_file)) | 1597 | if (ring_buffer_empty_cpu(buffer, cpu_file)) |
1582 | return NULL; | 1598 | return NULL; |
1583 | ent = peek_next_entry(iter, cpu_file, ent_ts); | 1599 | ent = peek_next_entry(iter, cpu_file, ent_ts, missing_events); |
1584 | if (ent_cpu) | 1600 | if (ent_cpu) |
1585 | *ent_cpu = cpu_file; | 1601 | *ent_cpu = cpu_file; |
1586 | 1602 | ||
@@ -1592,7 +1608,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | |||
1592 | if (ring_buffer_empty_cpu(buffer, cpu)) | 1608 | if (ring_buffer_empty_cpu(buffer, cpu)) |
1593 | continue; | 1609 | continue; |
1594 | 1610 | ||
1595 | ent = peek_next_entry(iter, cpu, &ts); | 1611 | ent = peek_next_entry(iter, cpu, &ts, &lost_events); |
1596 | 1612 | ||
1597 | /* | 1613 | /* |
1598 | * Pick the entry with the smallest timestamp: | 1614 | * Pick the entry with the smallest timestamp: |
@@ -1601,6 +1617,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | |||
1601 | next = ent; | 1617 | next = ent; |
1602 | next_cpu = cpu; | 1618 | next_cpu = cpu; |
1603 | next_ts = ts; | 1619 | next_ts = ts; |
1620 | next_lost = lost_events; | ||
1604 | } | 1621 | } |
1605 | } | 1622 | } |
1606 | 1623 | ||
@@ -1610,6 +1627,9 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | |||
1610 | if (ent_ts) | 1627 | if (ent_ts) |
1611 | *ent_ts = next_ts; | 1628 | *ent_ts = next_ts; |
1612 | 1629 | ||
1630 | if (missing_events) | ||
1631 | *missing_events = next_lost; | ||
1632 | |||
1613 | return next; | 1633 | return next; |
1614 | } | 1634 | } |
1615 | 1635 | ||
@@ -1617,13 +1637,14 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts) | |||
1617 | struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, | 1637 | struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, |
1618 | int *ent_cpu, u64 *ent_ts) | 1638 | int *ent_cpu, u64 *ent_ts) |
1619 | { | 1639 | { |
1620 | return __find_next_entry(iter, ent_cpu, ent_ts); | 1640 | return __find_next_entry(iter, ent_cpu, NULL, ent_ts); |
1621 | } | 1641 | } |
1622 | 1642 | ||
1623 | /* Find the next real entry, and increment the iterator to the next entry */ | 1643 | /* Find the next real entry, and increment the iterator to the next entry */ |
1624 | static void *find_next_entry_inc(struct trace_iterator *iter) | 1644 | static void *find_next_entry_inc(struct trace_iterator *iter) |
1625 | { | 1645 | { |
1626 | iter->ent = __find_next_entry(iter, &iter->cpu, &iter->ts); | 1646 | iter->ent = __find_next_entry(iter, &iter->cpu, |
1647 | &iter->lost_events, &iter->ts); | ||
1627 | 1648 | ||
1628 | if (iter->ent) | 1649 | if (iter->ent) |
1629 | trace_iterator_increment(iter); | 1650 | trace_iterator_increment(iter); |
@@ -1635,7 +1656,8 @@ static void trace_consume(struct trace_iterator *iter) | |||
1635 | { | 1656 | { |
1636 | /* Don't allow ftrace to trace into the ring buffers */ | 1657 | /* Don't allow ftrace to trace into the ring buffers */ |
1637 | ftrace_disable_cpu(); | 1658 | ftrace_disable_cpu(); |
1638 | ring_buffer_consume(iter->tr->buffer, iter->cpu, &iter->ts); | 1659 | ring_buffer_consume(iter->tr->buffer, iter->cpu, &iter->ts, |
1660 | &iter->lost_events); | ||
1639 | ftrace_enable_cpu(); | 1661 | ftrace_enable_cpu(); |
1640 | } | 1662 | } |
1641 | 1663 | ||
@@ -1786,7 +1808,7 @@ static void print_func_help_header(struct seq_file *m) | |||
1786 | } | 1808 | } |
1787 | 1809 | ||
1788 | 1810 | ||
1789 | static void | 1811 | void |
1790 | print_trace_header(struct seq_file *m, struct trace_iterator *iter) | 1812 | print_trace_header(struct seq_file *m, struct trace_iterator *iter) |
1791 | { | 1813 | { |
1792 | unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); | 1814 | unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); |
@@ -1914,7 +1936,7 @@ static enum print_line_t print_trace_fmt(struct trace_iterator *iter) | |||
1914 | } | 1936 | } |
1915 | 1937 | ||
1916 | if (event) | 1938 | if (event) |
1917 | return event->trace(iter, sym_flags); | 1939 | return event->funcs->trace(iter, sym_flags, event); |
1918 | 1940 | ||
1919 | if (!trace_seq_printf(s, "Unknown type %d\n", entry->type)) | 1941 | if (!trace_seq_printf(s, "Unknown type %d\n", entry->type)) |
1920 | goto partial; | 1942 | goto partial; |
@@ -1940,7 +1962,7 @@ static enum print_line_t print_raw_fmt(struct trace_iterator *iter) | |||
1940 | 1962 | ||
1941 | event = ftrace_find_event(entry->type); | 1963 | event = ftrace_find_event(entry->type); |
1942 | if (event) | 1964 | if (event) |
1943 | return event->raw(iter, 0); | 1965 | return event->funcs->raw(iter, 0, event); |
1944 | 1966 | ||
1945 | if (!trace_seq_printf(s, "%d ?\n", entry->type)) | 1967 | if (!trace_seq_printf(s, "%d ?\n", entry->type)) |
1946 | goto partial; | 1968 | goto partial; |
@@ -1967,7 +1989,7 @@ static enum print_line_t print_hex_fmt(struct trace_iterator *iter) | |||
1967 | 1989 | ||
1968 | event = ftrace_find_event(entry->type); | 1990 | event = ftrace_find_event(entry->type); |
1969 | if (event) { | 1991 | if (event) { |
1970 | enum print_line_t ret = event->hex(iter, 0); | 1992 | enum print_line_t ret = event->funcs->hex(iter, 0, event); |
1971 | if (ret != TRACE_TYPE_HANDLED) | 1993 | if (ret != TRACE_TYPE_HANDLED) |
1972 | return ret; | 1994 | return ret; |
1973 | } | 1995 | } |
@@ -1992,10 +2014,11 @@ static enum print_line_t print_bin_fmt(struct trace_iterator *iter) | |||
1992 | } | 2014 | } |
1993 | 2015 | ||
1994 | event = ftrace_find_event(entry->type); | 2016 | event = ftrace_find_event(entry->type); |
1995 | return event ? event->binary(iter, 0) : TRACE_TYPE_HANDLED; | 2017 | return event ? event->funcs->binary(iter, 0, event) : |
2018 | TRACE_TYPE_HANDLED; | ||
1996 | } | 2019 | } |
1997 | 2020 | ||
1998 | static int trace_empty(struct trace_iterator *iter) | 2021 | int trace_empty(struct trace_iterator *iter) |
1999 | { | 2022 | { |
2000 | int cpu; | 2023 | int cpu; |
2001 | 2024 | ||
@@ -2030,6 +2053,10 @@ static enum print_line_t print_trace_line(struct trace_iterator *iter) | |||
2030 | { | 2053 | { |
2031 | enum print_line_t ret; | 2054 | enum print_line_t ret; |
2032 | 2055 | ||
2056 | if (iter->lost_events) | ||
2057 | trace_seq_printf(&iter->seq, "CPU:%d [LOST %lu EVENTS]\n", | ||
2058 | iter->cpu, iter->lost_events); | ||
2059 | |||
2033 | if (iter->trace && iter->trace->print_line) { | 2060 | if (iter->trace && iter->trace->print_line) { |
2034 | ret = iter->trace->print_line(iter); | 2061 | ret = iter->trace->print_line(iter); |
2035 | if (ret != TRACE_TYPE_UNHANDLED) | 2062 | if (ret != TRACE_TYPE_UNHANDLED) |
@@ -2058,6 +2085,23 @@ static enum print_line_t print_trace_line(struct trace_iterator *iter) | |||
2058 | return print_trace_fmt(iter); | 2085 | return print_trace_fmt(iter); |
2059 | } | 2086 | } |
2060 | 2087 | ||
2088 | void trace_default_header(struct seq_file *m) | ||
2089 | { | ||
2090 | struct trace_iterator *iter = m->private; | ||
2091 | |||
2092 | if (iter->iter_flags & TRACE_FILE_LAT_FMT) { | ||
2093 | /* print nothing if the buffers are empty */ | ||
2094 | if (trace_empty(iter)) | ||
2095 | return; | ||
2096 | print_trace_header(m, iter); | ||
2097 | if (!(trace_flags & TRACE_ITER_VERBOSE)) | ||
2098 | print_lat_help_header(m); | ||
2099 | } else { | ||
2100 | if (!(trace_flags & TRACE_ITER_VERBOSE)) | ||
2101 | print_func_help_header(m); | ||
2102 | } | ||
2103 | } | ||
2104 | |||
2061 | static int s_show(struct seq_file *m, void *v) | 2105 | static int s_show(struct seq_file *m, void *v) |
2062 | { | 2106 | { |
2063 | struct trace_iterator *iter = v; | 2107 | struct trace_iterator *iter = v; |
@@ -2070,17 +2114,9 @@ static int s_show(struct seq_file *m, void *v) | |||
2070 | } | 2114 | } |
2071 | if (iter->trace && iter->trace->print_header) | 2115 | if (iter->trace && iter->trace->print_header) |
2072 | iter->trace->print_header(m); | 2116 | iter->trace->print_header(m); |
2073 | else if (iter->iter_flags & TRACE_FILE_LAT_FMT) { | 2117 | else |
2074 | /* print nothing if the buffers are empty */ | 2118 | trace_default_header(m); |
2075 | if (trace_empty(iter)) | 2119 | |
2076 | return 0; | ||
2077 | print_trace_header(m, iter); | ||
2078 | if (!(trace_flags & TRACE_ITER_VERBOSE)) | ||
2079 | print_lat_help_header(m); | ||
2080 | } else { | ||
2081 | if (!(trace_flags & TRACE_ITER_VERBOSE)) | ||
2082 | print_func_help_header(m); | ||
2083 | } | ||
2084 | } else if (iter->leftover) { | 2120 | } else if (iter->leftover) { |
2085 | /* | 2121 | /* |
2086 | * If we filled the seq_file buffer earlier, we | 2122 | * If we filled the seq_file buffer earlier, we |
@@ -2166,15 +2202,20 @@ __tracing_open(struct inode *inode, struct file *file) | |||
2166 | 2202 | ||
2167 | if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { | 2203 | if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { |
2168 | for_each_tracing_cpu(cpu) { | 2204 | for_each_tracing_cpu(cpu) { |
2169 | |||
2170 | iter->buffer_iter[cpu] = | 2205 | iter->buffer_iter[cpu] = |
2171 | ring_buffer_read_start(iter->tr->buffer, cpu); | 2206 | ring_buffer_read_prepare(iter->tr->buffer, cpu); |
2207 | } | ||
2208 | ring_buffer_read_prepare_sync(); | ||
2209 | for_each_tracing_cpu(cpu) { | ||
2210 | ring_buffer_read_start(iter->buffer_iter[cpu]); | ||
2172 | tracing_iter_reset(iter, cpu); | 2211 | tracing_iter_reset(iter, cpu); |
2173 | } | 2212 | } |
2174 | } else { | 2213 | } else { |
2175 | cpu = iter->cpu_file; | 2214 | cpu = iter->cpu_file; |
2176 | iter->buffer_iter[cpu] = | 2215 | iter->buffer_iter[cpu] = |
2177 | ring_buffer_read_start(iter->tr->buffer, cpu); | 2216 | ring_buffer_read_prepare(iter->tr->buffer, cpu); |
2217 | ring_buffer_read_prepare_sync(); | ||
2218 | ring_buffer_read_start(iter->buffer_iter[cpu]); | ||
2178 | tracing_iter_reset(iter, cpu); | 2219 | tracing_iter_reset(iter, cpu); |
2179 | } | 2220 | } |
2180 | 2221 | ||
@@ -3269,12 +3310,12 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3269 | size_t len, | 3310 | size_t len, |
3270 | unsigned int flags) | 3311 | unsigned int flags) |
3271 | { | 3312 | { |
3272 | struct page *pages[PIPE_BUFFERS]; | 3313 | struct page *pages_def[PIPE_DEF_BUFFERS]; |
3273 | struct partial_page partial[PIPE_BUFFERS]; | 3314 | struct partial_page partial_def[PIPE_DEF_BUFFERS]; |
3274 | struct trace_iterator *iter = filp->private_data; | 3315 | struct trace_iterator *iter = filp->private_data; |
3275 | struct splice_pipe_desc spd = { | 3316 | struct splice_pipe_desc spd = { |
3276 | .pages = pages, | 3317 | .pages = pages_def, |
3277 | .partial = partial, | 3318 | .partial = partial_def, |
3278 | .nr_pages = 0, /* This gets updated below. */ | 3319 | .nr_pages = 0, /* This gets updated below. */ |
3279 | .flags = flags, | 3320 | .flags = flags, |
3280 | .ops = &tracing_pipe_buf_ops, | 3321 | .ops = &tracing_pipe_buf_ops, |
@@ -3285,6 +3326,9 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3285 | size_t rem; | 3326 | size_t rem; |
3286 | unsigned int i; | 3327 | unsigned int i; |
3287 | 3328 | ||
3329 | if (splice_grow_spd(pipe, &spd)) | ||
3330 | return -ENOMEM; | ||
3331 | |||
3288 | /* copy the tracer to avoid using a global lock all around */ | 3332 | /* copy the tracer to avoid using a global lock all around */ |
3289 | mutex_lock(&trace_types_lock); | 3333 | mutex_lock(&trace_types_lock); |
3290 | if (unlikely(old_tracer != current_trace && current_trace)) { | 3334 | if (unlikely(old_tracer != current_trace && current_trace)) { |
@@ -3315,23 +3359,23 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3315 | trace_access_lock(iter->cpu_file); | 3359 | trace_access_lock(iter->cpu_file); |
3316 | 3360 | ||
3317 | /* Fill as many pages as possible. */ | 3361 | /* Fill as many pages as possible. */ |
3318 | for (i = 0, rem = len; i < PIPE_BUFFERS && rem; i++) { | 3362 | for (i = 0, rem = len; i < pipe->buffers && rem; i++) { |
3319 | pages[i] = alloc_page(GFP_KERNEL); | 3363 | spd.pages[i] = alloc_page(GFP_KERNEL); |
3320 | if (!pages[i]) | 3364 | if (!spd.pages[i]) |
3321 | break; | 3365 | break; |
3322 | 3366 | ||
3323 | rem = tracing_fill_pipe_page(rem, iter); | 3367 | rem = tracing_fill_pipe_page(rem, iter); |
3324 | 3368 | ||
3325 | /* Copy the data into the page, so we can start over. */ | 3369 | /* Copy the data into the page, so we can start over. */ |
3326 | ret = trace_seq_to_buffer(&iter->seq, | 3370 | ret = trace_seq_to_buffer(&iter->seq, |
3327 | page_address(pages[i]), | 3371 | page_address(spd.pages[i]), |
3328 | iter->seq.len); | 3372 | iter->seq.len); |
3329 | if (ret < 0) { | 3373 | if (ret < 0) { |
3330 | __free_page(pages[i]); | 3374 | __free_page(spd.pages[i]); |
3331 | break; | 3375 | break; |
3332 | } | 3376 | } |
3333 | partial[i].offset = 0; | 3377 | spd.partial[i].offset = 0; |
3334 | partial[i].len = iter->seq.len; | 3378 | spd.partial[i].len = iter->seq.len; |
3335 | 3379 | ||
3336 | trace_seq_init(&iter->seq); | 3380 | trace_seq_init(&iter->seq); |
3337 | } | 3381 | } |
@@ -3342,12 +3386,14 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3342 | 3386 | ||
3343 | spd.nr_pages = i; | 3387 | spd.nr_pages = i; |
3344 | 3388 | ||
3345 | return splice_to_pipe(pipe, &spd); | 3389 | ret = splice_to_pipe(pipe, &spd); |
3390 | out: | ||
3391 | splice_shrink_spd(pipe, &spd); | ||
3392 | return ret; | ||
3346 | 3393 | ||
3347 | out_err: | 3394 | out_err: |
3348 | mutex_unlock(&iter->mutex); | 3395 | mutex_unlock(&iter->mutex); |
3349 | 3396 | goto out; | |
3350 | return ret; | ||
3351 | } | 3397 | } |
3352 | 3398 | ||
3353 | static ssize_t | 3399 | static ssize_t |
@@ -3746,11 +3792,11 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3746 | unsigned int flags) | 3792 | unsigned int flags) |
3747 | { | 3793 | { |
3748 | struct ftrace_buffer_info *info = file->private_data; | 3794 | struct ftrace_buffer_info *info = file->private_data; |
3749 | struct partial_page partial[PIPE_BUFFERS]; | 3795 | struct partial_page partial_def[PIPE_DEF_BUFFERS]; |
3750 | struct page *pages[PIPE_BUFFERS]; | 3796 | struct page *pages_def[PIPE_DEF_BUFFERS]; |
3751 | struct splice_pipe_desc spd = { | 3797 | struct splice_pipe_desc spd = { |
3752 | .pages = pages, | 3798 | .pages = pages_def, |
3753 | .partial = partial, | 3799 | .partial = partial_def, |
3754 | .flags = flags, | 3800 | .flags = flags, |
3755 | .ops = &buffer_pipe_buf_ops, | 3801 | .ops = &buffer_pipe_buf_ops, |
3756 | .spd_release = buffer_spd_release, | 3802 | .spd_release = buffer_spd_release, |
@@ -3759,22 +3805,28 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3759 | int entries, size, i; | 3805 | int entries, size, i; |
3760 | size_t ret; | 3806 | size_t ret; |
3761 | 3807 | ||
3808 | if (splice_grow_spd(pipe, &spd)) | ||
3809 | return -ENOMEM; | ||
3810 | |||
3762 | if (*ppos & (PAGE_SIZE - 1)) { | 3811 | if (*ppos & (PAGE_SIZE - 1)) { |
3763 | WARN_ONCE(1, "Ftrace: previous read must page-align\n"); | 3812 | WARN_ONCE(1, "Ftrace: previous read must page-align\n"); |
3764 | return -EINVAL; | 3813 | ret = -EINVAL; |
3814 | goto out; | ||
3765 | } | 3815 | } |
3766 | 3816 | ||
3767 | if (len & (PAGE_SIZE - 1)) { | 3817 | if (len & (PAGE_SIZE - 1)) { |
3768 | WARN_ONCE(1, "Ftrace: splice_read should page-align\n"); | 3818 | WARN_ONCE(1, "Ftrace: splice_read should page-align\n"); |
3769 | if (len < PAGE_SIZE) | 3819 | if (len < PAGE_SIZE) { |
3770 | return -EINVAL; | 3820 | ret = -EINVAL; |
3821 | goto out; | ||
3822 | } | ||
3771 | len &= PAGE_MASK; | 3823 | len &= PAGE_MASK; |
3772 | } | 3824 | } |
3773 | 3825 | ||
3774 | trace_access_lock(info->cpu); | 3826 | trace_access_lock(info->cpu); |
3775 | entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); | 3827 | entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); |
3776 | 3828 | ||
3777 | for (i = 0; i < PIPE_BUFFERS && len && entries; i++, len -= PAGE_SIZE) { | 3829 | for (i = 0; i < pipe->buffers && len && entries; i++, len -= PAGE_SIZE) { |
3778 | struct page *page; | 3830 | struct page *page; |
3779 | int r; | 3831 | int r; |
3780 | 3832 | ||
@@ -3829,11 +3881,12 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3829 | else | 3881 | else |
3830 | ret = 0; | 3882 | ret = 0; |
3831 | /* TODO: block */ | 3883 | /* TODO: block */ |
3832 | return ret; | 3884 | goto out; |
3833 | } | 3885 | } |
3834 | 3886 | ||
3835 | ret = splice_to_pipe(pipe, &spd); | 3887 | ret = splice_to_pipe(pipe, &spd); |
3836 | 3888 | splice_shrink_spd(pipe, &spd); | |
3889 | out: | ||
3837 | return ret; | 3890 | return ret; |
3838 | } | 3891 | } |
3839 | 3892 | ||
@@ -4324,7 +4377,7 @@ static int trace_panic_handler(struct notifier_block *this, | |||
4324 | unsigned long event, void *unused) | 4377 | unsigned long event, void *unused) |
4325 | { | 4378 | { |
4326 | if (ftrace_dump_on_oops) | 4379 | if (ftrace_dump_on_oops) |
4327 | ftrace_dump(); | 4380 | ftrace_dump(ftrace_dump_on_oops); |
4328 | return NOTIFY_OK; | 4381 | return NOTIFY_OK; |
4329 | } | 4382 | } |
4330 | 4383 | ||
@@ -4341,7 +4394,7 @@ static int trace_die_handler(struct notifier_block *self, | |||
4341 | switch (val) { | 4394 | switch (val) { |
4342 | case DIE_OOPS: | 4395 | case DIE_OOPS: |
4343 | if (ftrace_dump_on_oops) | 4396 | if (ftrace_dump_on_oops) |
4344 | ftrace_dump(); | 4397 | ftrace_dump(ftrace_dump_on_oops); |
4345 | break; | 4398 | break; |
4346 | default: | 4399 | default: |
4347 | break; | 4400 | break; |
@@ -4382,7 +4435,8 @@ trace_printk_seq(struct trace_seq *s) | |||
4382 | trace_seq_init(s); | 4435 | trace_seq_init(s); |
4383 | } | 4436 | } |
4384 | 4437 | ||
4385 | static void __ftrace_dump(bool disable_tracing) | 4438 | static void |
4439 | __ftrace_dump(bool disable_tracing, enum ftrace_dump_mode oops_dump_mode) | ||
4386 | { | 4440 | { |
4387 | static arch_spinlock_t ftrace_dump_lock = | 4441 | static arch_spinlock_t ftrace_dump_lock = |
4388 | (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; | 4442 | (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; |
@@ -4415,12 +4469,25 @@ static void __ftrace_dump(bool disable_tracing) | |||
4415 | /* don't look at user memory in panic mode */ | 4469 | /* don't look at user memory in panic mode */ |
4416 | trace_flags &= ~TRACE_ITER_SYM_USEROBJ; | 4470 | trace_flags &= ~TRACE_ITER_SYM_USEROBJ; |
4417 | 4471 | ||
4418 | printk(KERN_TRACE "Dumping ftrace buffer:\n"); | ||
4419 | |||
4420 | /* Simulate the iterator */ | 4472 | /* Simulate the iterator */ |
4421 | iter.tr = &global_trace; | 4473 | iter.tr = &global_trace; |
4422 | iter.trace = current_trace; | 4474 | iter.trace = current_trace; |
4423 | iter.cpu_file = TRACE_PIPE_ALL_CPU; | 4475 | |
4476 | switch (oops_dump_mode) { | ||
4477 | case DUMP_ALL: | ||
4478 | iter.cpu_file = TRACE_PIPE_ALL_CPU; | ||
4479 | break; | ||
4480 | case DUMP_ORIG: | ||
4481 | iter.cpu_file = raw_smp_processor_id(); | ||
4482 | break; | ||
4483 | case DUMP_NONE: | ||
4484 | goto out_enable; | ||
4485 | default: | ||
4486 | printk(KERN_TRACE "Bad dumping mode, switching to all CPUs dump\n"); | ||
4487 | iter.cpu_file = TRACE_PIPE_ALL_CPU; | ||
4488 | } | ||
4489 | |||
4490 | printk(KERN_TRACE "Dumping ftrace buffer:\n"); | ||
4424 | 4491 | ||
4425 | /* | 4492 | /* |
4426 | * We need to stop all tracing on all CPUS to read the | 4493 | * We need to stop all tracing on all CPUS to read the |
@@ -4459,6 +4526,7 @@ static void __ftrace_dump(bool disable_tracing) | |||
4459 | else | 4526 | else |
4460 | printk(KERN_TRACE "---------------------------------\n"); | 4527 | printk(KERN_TRACE "---------------------------------\n"); |
4461 | 4528 | ||
4529 | out_enable: | ||
4462 | /* Re-enable tracing if requested */ | 4530 | /* Re-enable tracing if requested */ |
4463 | if (!disable_tracing) { | 4531 | if (!disable_tracing) { |
4464 | trace_flags |= old_userobj; | 4532 | trace_flags |= old_userobj; |
@@ -4475,9 +4543,9 @@ static void __ftrace_dump(bool disable_tracing) | |||
4475 | } | 4543 | } |
4476 | 4544 | ||
4477 | /* By default: disable tracing after the dump */ | 4545 | /* By default: disable tracing after the dump */ |
4478 | void ftrace_dump(void) | 4546 | void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) |
4479 | { | 4547 | { |
4480 | __ftrace_dump(true); | 4548 | __ftrace_dump(true, oops_dump_mode); |
4481 | } | 4549 | } |
4482 | 4550 | ||
4483 | __init static int tracer_alloc_buffers(void) | 4551 | __init static int tracer_alloc_buffers(void) |
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index 2825ef2c0b15..2cd96399463f 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
@@ -34,7 +34,6 @@ enum trace_type { | |||
34 | TRACE_GRAPH_RET, | 34 | TRACE_GRAPH_RET, |
35 | TRACE_GRAPH_ENT, | 35 | TRACE_GRAPH_ENT, |
36 | TRACE_USER_STACK, | 36 | TRACE_USER_STACK, |
37 | TRACE_HW_BRANCHES, | ||
38 | TRACE_KMEM_ALLOC, | 37 | TRACE_KMEM_ALLOC, |
39 | TRACE_KMEM_FREE, | 38 | TRACE_KMEM_FREE, |
40 | TRACE_BLK, | 39 | TRACE_BLK, |
@@ -103,29 +102,17 @@ struct syscall_trace_exit { | |||
103 | long ret; | 102 | long ret; |
104 | }; | 103 | }; |
105 | 104 | ||
106 | struct kprobe_trace_entry { | 105 | struct kprobe_trace_entry_head { |
107 | struct trace_entry ent; | 106 | struct trace_entry ent; |
108 | unsigned long ip; | 107 | unsigned long ip; |
109 | int nargs; | ||
110 | unsigned long args[]; | ||
111 | }; | 108 | }; |
112 | 109 | ||
113 | #define SIZEOF_KPROBE_TRACE_ENTRY(n) \ | 110 | struct kretprobe_trace_entry_head { |
114 | (offsetof(struct kprobe_trace_entry, args) + \ | ||
115 | (sizeof(unsigned long) * (n))) | ||
116 | |||
117 | struct kretprobe_trace_entry { | ||
118 | struct trace_entry ent; | 111 | struct trace_entry ent; |
119 | unsigned long func; | 112 | unsigned long func; |
120 | unsigned long ret_ip; | 113 | unsigned long ret_ip; |
121 | int nargs; | ||
122 | unsigned long args[]; | ||
123 | }; | 114 | }; |
124 | 115 | ||
125 | #define SIZEOF_KRETPROBE_TRACE_ENTRY(n) \ | ||
126 | (offsetof(struct kretprobe_trace_entry, args) + \ | ||
127 | (sizeof(unsigned long) * (n))) | ||
128 | |||
129 | /* | 116 | /* |
130 | * trace_flag_type is an enumeration that holds different | 117 | * trace_flag_type is an enumeration that holds different |
131 | * states when a trace occurs. These are: | 118 | * states when a trace occurs. These are: |
@@ -229,7 +216,6 @@ extern void __ftrace_bad_type(void); | |||
229 | TRACE_GRAPH_ENT); \ | 216 | TRACE_GRAPH_ENT); \ |
230 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 217 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
231 | TRACE_GRAPH_RET); \ | 218 | TRACE_GRAPH_RET); \ |
232 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | ||
233 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 219 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
234 | TRACE_KMEM_ALLOC); \ | 220 | TRACE_KMEM_ALLOC); \ |
235 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 221 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
@@ -378,6 +364,9 @@ void trace_function(struct trace_array *tr, | |||
378 | unsigned long ip, | 364 | unsigned long ip, |
379 | unsigned long parent_ip, | 365 | unsigned long parent_ip, |
380 | unsigned long flags, int pc); | 366 | unsigned long flags, int pc); |
367 | void trace_default_header(struct seq_file *m); | ||
368 | void print_trace_header(struct seq_file *m, struct trace_iterator *iter); | ||
369 | int trace_empty(struct trace_iterator *iter); | ||
381 | 370 | ||
382 | void trace_graph_return(struct ftrace_graph_ret *trace); | 371 | void trace_graph_return(struct ftrace_graph_ret *trace); |
383 | int trace_graph_entry(struct ftrace_graph_ent *trace); | 372 | int trace_graph_entry(struct ftrace_graph_ent *trace); |
@@ -416,12 +405,12 @@ void ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, | |||
416 | void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, | 405 | void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, |
417 | int pc); | 406 | int pc); |
418 | #else | 407 | #else |
419 | static inline void ftrace_trace_stack(struct trace_array *tr, | 408 | static inline void ftrace_trace_stack(struct ring_buffer *buffer, |
420 | unsigned long flags, int skip, int pc) | 409 | unsigned long flags, int skip, int pc) |
421 | { | 410 | { |
422 | } | 411 | } |
423 | 412 | ||
424 | static inline void ftrace_trace_userstack(struct trace_array *tr, | 413 | static inline void ftrace_trace_userstack(struct ring_buffer *buffer, |
425 | unsigned long flags, int pc) | 414 | unsigned long flags, int pc) |
426 | { | 415 | { |
427 | } | 416 | } |
@@ -467,8 +456,6 @@ extern int trace_selftest_startup_sysprof(struct tracer *trace, | |||
467 | struct trace_array *tr); | 456 | struct trace_array *tr); |
468 | extern int trace_selftest_startup_branch(struct tracer *trace, | 457 | extern int trace_selftest_startup_branch(struct tracer *trace, |
469 | struct trace_array *tr); | 458 | struct trace_array *tr); |
470 | extern int trace_selftest_startup_hw_branches(struct tracer *trace, | ||
471 | struct trace_array *tr); | ||
472 | extern int trace_selftest_startup_ksym(struct tracer *trace, | 459 | extern int trace_selftest_startup_ksym(struct tracer *trace, |
473 | struct trace_array *tr); | 460 | struct trace_array *tr); |
474 | #endif /* CONFIG_FTRACE_STARTUP_TEST */ | 461 | #endif /* CONFIG_FTRACE_STARTUP_TEST */ |
@@ -491,9 +478,29 @@ extern int trace_clock_id; | |||
491 | 478 | ||
492 | /* Standard output formatting function used for function return traces */ | 479 | /* Standard output formatting function used for function return traces */ |
493 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 480 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
494 | extern enum print_line_t print_graph_function(struct trace_iterator *iter); | 481 | |
482 | /* Flag options */ | ||
483 | #define TRACE_GRAPH_PRINT_OVERRUN 0x1 | ||
484 | #define TRACE_GRAPH_PRINT_CPU 0x2 | ||
485 | #define TRACE_GRAPH_PRINT_OVERHEAD 0x4 | ||
486 | #define TRACE_GRAPH_PRINT_PROC 0x8 | ||
487 | #define TRACE_GRAPH_PRINT_DURATION 0x10 | ||
488 | #define TRACE_GRAPH_PRINT_ABS_TIME 0x20 | ||
489 | |||
490 | extern enum print_line_t | ||
491 | print_graph_function_flags(struct trace_iterator *iter, u32 flags); | ||
492 | extern void print_graph_headers_flags(struct seq_file *s, u32 flags); | ||
495 | extern enum print_line_t | 493 | extern enum print_line_t |
496 | trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); | 494 | trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); |
495 | extern void graph_trace_open(struct trace_iterator *iter); | ||
496 | extern void graph_trace_close(struct trace_iterator *iter); | ||
497 | extern int __trace_graph_entry(struct trace_array *tr, | ||
498 | struct ftrace_graph_ent *trace, | ||
499 | unsigned long flags, int pc); | ||
500 | extern void __trace_graph_return(struct trace_array *tr, | ||
501 | struct ftrace_graph_ret *trace, | ||
502 | unsigned long flags, int pc); | ||
503 | |||
497 | 504 | ||
498 | #ifdef CONFIG_DYNAMIC_FTRACE | 505 | #ifdef CONFIG_DYNAMIC_FTRACE |
499 | /* TODO: make this variable */ | 506 | /* TODO: make this variable */ |
@@ -524,7 +531,7 @@ static inline int ftrace_graph_addr(unsigned long addr) | |||
524 | #endif /* CONFIG_DYNAMIC_FTRACE */ | 531 | #endif /* CONFIG_DYNAMIC_FTRACE */ |
525 | #else /* CONFIG_FUNCTION_GRAPH_TRACER */ | 532 | #else /* CONFIG_FUNCTION_GRAPH_TRACER */ |
526 | static inline enum print_line_t | 533 | static inline enum print_line_t |
527 | print_graph_function(struct trace_iterator *iter) | 534 | print_graph_function_flags(struct trace_iterator *iter, u32 flags) |
528 | { | 535 | { |
529 | return TRACE_TYPE_UNHANDLED; | 536 | return TRACE_TYPE_UNHANDLED; |
530 | } | 537 | } |
@@ -771,12 +778,15 @@ extern void print_subsystem_event_filter(struct event_subsystem *system, | |||
771 | struct trace_seq *s); | 778 | struct trace_seq *s); |
772 | extern int filter_assign_type(const char *type); | 779 | extern int filter_assign_type(const char *type); |
773 | 780 | ||
781 | struct list_head * | ||
782 | trace_get_fields(struct ftrace_event_call *event_call); | ||
783 | |||
774 | static inline int | 784 | static inline int |
775 | filter_check_discard(struct ftrace_event_call *call, void *rec, | 785 | filter_check_discard(struct ftrace_event_call *call, void *rec, |
776 | struct ring_buffer *buffer, | 786 | struct ring_buffer *buffer, |
777 | struct ring_buffer_event *event) | 787 | struct ring_buffer_event *event) |
778 | { | 788 | { |
779 | if (unlikely(call->filter_active) && | 789 | if (unlikely(call->flags & TRACE_EVENT_FL_FILTERED) && |
780 | !filter_match_preds(call->filter, rec)) { | 790 | !filter_match_preds(call->filter, rec)) { |
781 | ring_buffer_discard_commit(buffer, event); | 791 | ring_buffer_discard_commit(buffer, event); |
782 | return 1; | 792 | return 1; |
diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c index b9bc4d470177..8d3538b4ea5f 100644 --- a/kernel/trace/trace_branch.c +++ b/kernel/trace/trace_branch.c | |||
@@ -143,7 +143,7 @@ static void branch_trace_reset(struct trace_array *tr) | |||
143 | } | 143 | } |
144 | 144 | ||
145 | static enum print_line_t trace_branch_print(struct trace_iterator *iter, | 145 | static enum print_line_t trace_branch_print(struct trace_iterator *iter, |
146 | int flags) | 146 | int flags, struct trace_event *event) |
147 | { | 147 | { |
148 | struct trace_branch *field; | 148 | struct trace_branch *field; |
149 | 149 | ||
@@ -167,9 +167,13 @@ static void branch_print_header(struct seq_file *s) | |||
167 | " |\n"); | 167 | " |\n"); |
168 | } | 168 | } |
169 | 169 | ||
170 | static struct trace_event_functions trace_branch_funcs = { | ||
171 | .trace = trace_branch_print, | ||
172 | }; | ||
173 | |||
170 | static struct trace_event trace_branch_event = { | 174 | static struct trace_event trace_branch_event = { |
171 | .type = TRACE_BRANCH, | 175 | .type = TRACE_BRANCH, |
172 | .trace = trace_branch_print, | 176 | .funcs = &trace_branch_funcs, |
173 | }; | 177 | }; |
174 | 178 | ||
175 | static struct tracer branch_trace __read_mostly = | 179 | static struct tracer branch_trace __read_mostly = |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h index c16a08f399df..dc008c1240da 100644 --- a/kernel/trace/trace_entries.h +++ b/kernel/trace/trace_entries.h | |||
@@ -318,18 +318,6 @@ FTRACE_ENTRY(branch, trace_branch, | |||
318 | __entry->func, __entry->file, __entry->correct) | 318 | __entry->func, __entry->file, __entry->correct) |
319 | ); | 319 | ); |
320 | 320 | ||
321 | FTRACE_ENTRY(hw_branch, hw_branch_entry, | ||
322 | |||
323 | TRACE_HW_BRANCHES, | ||
324 | |||
325 | F_STRUCT( | ||
326 | __field( u64, from ) | ||
327 | __field( u64, to ) | ||
328 | ), | ||
329 | |||
330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | ||
331 | ); | ||
332 | |||
333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | 321 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, |
334 | 322 | ||
335 | TRACE_KMEM_ALLOC, | 323 | TRACE_KMEM_ALLOC, |
diff --git a/kernel/trace/trace_event_perf.c b/kernel/trace/trace_event_perf.c index 0565bb42566f..cb6f365016e4 100644 --- a/kernel/trace/trace_event_perf.c +++ b/kernel/trace/trace_event_perf.c | |||
@@ -9,13 +9,9 @@ | |||
9 | #include <linux/kprobes.h> | 9 | #include <linux/kprobes.h> |
10 | #include "trace.h" | 10 | #include "trace.h" |
11 | 11 | ||
12 | DEFINE_PER_CPU(struct pt_regs, perf_trace_regs); | ||
13 | EXPORT_PER_CPU_SYMBOL_GPL(perf_trace_regs); | ||
14 | |||
15 | EXPORT_SYMBOL_GPL(perf_arch_fetch_caller_regs); | 12 | EXPORT_SYMBOL_GPL(perf_arch_fetch_caller_regs); |
16 | 13 | ||
17 | static char *perf_trace_buf; | 14 | static char *perf_trace_buf[4]; |
18 | static char *perf_trace_buf_nmi; | ||
19 | 15 | ||
20 | /* | 16 | /* |
21 | * Force it to be aligned to unsigned long to avoid misaligned accesses | 17 | * Force it to be aligned to unsigned long to avoid misaligned accesses |
@@ -27,57 +23,82 @@ typedef typeof(unsigned long [PERF_MAX_TRACE_SIZE / sizeof(unsigned long)]) | |||
27 | /* Count the events in use (per event id, not per instance) */ | 23 | /* Count the events in use (per event id, not per instance) */ |
28 | static int total_ref_count; | 24 | static int total_ref_count; |
29 | 25 | ||
30 | static int perf_trace_event_enable(struct ftrace_event_call *event) | 26 | static int perf_trace_event_init(struct ftrace_event_call *tp_event, |
27 | struct perf_event *p_event) | ||
31 | { | 28 | { |
32 | char *buf; | 29 | struct hlist_head *list; |
33 | int ret = -ENOMEM; | 30 | int ret = -ENOMEM; |
31 | int cpu; | ||
34 | 32 | ||
35 | if (event->perf_refcount++ > 0) | 33 | p_event->tp_event = tp_event; |
34 | if (tp_event->perf_refcount++ > 0) | ||
36 | return 0; | 35 | return 0; |
37 | 36 | ||
38 | if (!total_ref_count) { | 37 | list = alloc_percpu(struct hlist_head); |
39 | buf = (char *)alloc_percpu(perf_trace_t); | 38 | if (!list) |
40 | if (!buf) | 39 | goto fail; |
41 | goto fail_buf; | ||
42 | 40 | ||
43 | rcu_assign_pointer(perf_trace_buf, buf); | 41 | for_each_possible_cpu(cpu) |
42 | INIT_HLIST_HEAD(per_cpu_ptr(list, cpu)); | ||
44 | 43 | ||
45 | buf = (char *)alloc_percpu(perf_trace_t); | 44 | tp_event->perf_events = list; |
46 | if (!buf) | ||
47 | goto fail_buf_nmi; | ||
48 | 45 | ||
49 | rcu_assign_pointer(perf_trace_buf_nmi, buf); | 46 | if (!total_ref_count) { |
50 | } | 47 | char *buf; |
48 | int i; | ||
51 | 49 | ||
52 | ret = event->perf_event_enable(event); | 50 | for (i = 0; i < 4; i++) { |
53 | if (!ret) { | 51 | buf = (char *)alloc_percpu(perf_trace_t); |
54 | total_ref_count++; | 52 | if (!buf) |
55 | return 0; | 53 | goto fail; |
54 | |||
55 | perf_trace_buf[i] = buf; | ||
56 | } | ||
56 | } | 57 | } |
57 | 58 | ||
58 | fail_buf_nmi: | 59 | if (tp_event->class->reg) |
60 | ret = tp_event->class->reg(tp_event, TRACE_REG_PERF_REGISTER); | ||
61 | else | ||
62 | ret = tracepoint_probe_register(tp_event->name, | ||
63 | tp_event->class->perf_probe, | ||
64 | tp_event); | ||
65 | |||
66 | if (ret) | ||
67 | goto fail; | ||
68 | |||
69 | total_ref_count++; | ||
70 | return 0; | ||
71 | |||
72 | fail: | ||
59 | if (!total_ref_count) { | 73 | if (!total_ref_count) { |
60 | free_percpu(perf_trace_buf_nmi); | 74 | int i; |
61 | free_percpu(perf_trace_buf); | 75 | |
62 | perf_trace_buf_nmi = NULL; | 76 | for (i = 0; i < 4; i++) { |
63 | perf_trace_buf = NULL; | 77 | free_percpu(perf_trace_buf[i]); |
78 | perf_trace_buf[i] = NULL; | ||
79 | } | ||
80 | } | ||
81 | |||
82 | if (!--tp_event->perf_refcount) { | ||
83 | free_percpu(tp_event->perf_events); | ||
84 | tp_event->perf_events = NULL; | ||
64 | } | 85 | } |
65 | fail_buf: | ||
66 | event->perf_refcount--; | ||
67 | 86 | ||
68 | return ret; | 87 | return ret; |
69 | } | 88 | } |
70 | 89 | ||
71 | int perf_trace_enable(int event_id) | 90 | int perf_trace_init(struct perf_event *p_event) |
72 | { | 91 | { |
73 | struct ftrace_event_call *event; | 92 | struct ftrace_event_call *tp_event; |
93 | int event_id = p_event->attr.config; | ||
74 | int ret = -EINVAL; | 94 | int ret = -EINVAL; |
75 | 95 | ||
76 | mutex_lock(&event_mutex); | 96 | mutex_lock(&event_mutex); |
77 | list_for_each_entry(event, &ftrace_events, list) { | 97 | list_for_each_entry(tp_event, &ftrace_events, list) { |
78 | if (event->id == event_id && event->perf_event_enable && | 98 | if (tp_event->event.type == event_id && |
79 | try_module_get(event->mod)) { | 99 | tp_event->class && tp_event->class->perf_probe && |
80 | ret = perf_trace_event_enable(event); | 100 | try_module_get(tp_event->mod)) { |
101 | ret = perf_trace_event_init(tp_event, p_event); | ||
81 | break; | 102 | break; |
82 | } | 103 | } |
83 | } | 104 | } |
@@ -86,90 +107,78 @@ int perf_trace_enable(int event_id) | |||
86 | return ret; | 107 | return ret; |
87 | } | 108 | } |
88 | 109 | ||
89 | static void perf_trace_event_disable(struct ftrace_event_call *event) | 110 | int perf_trace_enable(struct perf_event *p_event) |
90 | { | 111 | { |
91 | char *buf, *nmi_buf; | 112 | struct ftrace_event_call *tp_event = p_event->tp_event; |
92 | 113 | struct hlist_head *list; | |
93 | if (--event->perf_refcount > 0) | ||
94 | return; | ||
95 | |||
96 | event->perf_event_disable(event); | ||
97 | 114 | ||
98 | if (!--total_ref_count) { | 115 | list = tp_event->perf_events; |
99 | buf = perf_trace_buf; | 116 | if (WARN_ON_ONCE(!list)) |
100 | rcu_assign_pointer(perf_trace_buf, NULL); | 117 | return -EINVAL; |
101 | 118 | ||
102 | nmi_buf = perf_trace_buf_nmi; | 119 | list = per_cpu_ptr(list, smp_processor_id()); |
103 | rcu_assign_pointer(perf_trace_buf_nmi, NULL); | 120 | hlist_add_head_rcu(&p_event->hlist_entry, list); |
104 | 121 | ||
105 | /* | 122 | return 0; |
106 | * Ensure every events in profiling have finished before | 123 | } |
107 | * releasing the buffers | ||
108 | */ | ||
109 | synchronize_sched(); | ||
110 | 124 | ||
111 | free_percpu(buf); | 125 | void perf_trace_disable(struct perf_event *p_event) |
112 | free_percpu(nmi_buf); | 126 | { |
113 | } | 127 | hlist_del_rcu(&p_event->hlist_entry); |
114 | } | 128 | } |
115 | 129 | ||
116 | void perf_trace_disable(int event_id) | 130 | void perf_trace_destroy(struct perf_event *p_event) |
117 | { | 131 | { |
118 | struct ftrace_event_call *event; | 132 | struct ftrace_event_call *tp_event = p_event->tp_event; |
133 | int i; | ||
119 | 134 | ||
120 | mutex_lock(&event_mutex); | 135 | if (--tp_event->perf_refcount > 0) |
121 | list_for_each_entry(event, &ftrace_events, list) { | 136 | return; |
122 | if (event->id == event_id) { | 137 | |
123 | perf_trace_event_disable(event); | 138 | if (tp_event->class->reg) |
124 | module_put(event->mod); | 139 | tp_event->class->reg(tp_event, TRACE_REG_PERF_UNREGISTER); |
125 | break; | 140 | else |
141 | tracepoint_probe_unregister(tp_event->name, | ||
142 | tp_event->class->perf_probe, | ||
143 | tp_event); | ||
144 | |||
145 | free_percpu(tp_event->perf_events); | ||
146 | tp_event->perf_events = NULL; | ||
147 | |||
148 | if (!--total_ref_count) { | ||
149 | for (i = 0; i < 4; i++) { | ||
150 | free_percpu(perf_trace_buf[i]); | ||
151 | perf_trace_buf[i] = NULL; | ||
126 | } | 152 | } |
127 | } | 153 | } |
128 | mutex_unlock(&event_mutex); | ||
129 | } | 154 | } |
130 | 155 | ||
131 | __kprobes void *perf_trace_buf_prepare(int size, unsigned short type, | 156 | __kprobes void *perf_trace_buf_prepare(int size, unsigned short type, |
132 | int *rctxp, unsigned long *irq_flags) | 157 | struct pt_regs *regs, int *rctxp) |
133 | { | 158 | { |
134 | struct trace_entry *entry; | 159 | struct trace_entry *entry; |
135 | char *trace_buf, *raw_data; | 160 | unsigned long flags; |
136 | int pc, cpu; | 161 | char *raw_data; |
162 | int pc; | ||
137 | 163 | ||
138 | BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(unsigned long)); | 164 | BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(unsigned long)); |
139 | 165 | ||
140 | pc = preempt_count(); | 166 | pc = preempt_count(); |
141 | 167 | ||
142 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
143 | local_irq_save(*irq_flags); | ||
144 | |||
145 | *rctxp = perf_swevent_get_recursion_context(); | 168 | *rctxp = perf_swevent_get_recursion_context(); |
146 | if (*rctxp < 0) | 169 | if (*rctxp < 0) |
147 | goto err_recursion; | 170 | return NULL; |
148 | |||
149 | cpu = smp_processor_id(); | ||
150 | |||
151 | if (in_nmi()) | ||
152 | trace_buf = rcu_dereference_sched(perf_trace_buf_nmi); | ||
153 | else | ||
154 | trace_buf = rcu_dereference_sched(perf_trace_buf); | ||
155 | |||
156 | if (!trace_buf) | ||
157 | goto err; | ||
158 | 171 | ||
159 | raw_data = per_cpu_ptr(trace_buf, cpu); | 172 | raw_data = per_cpu_ptr(perf_trace_buf[*rctxp], smp_processor_id()); |
160 | 173 | ||
161 | /* zero the dead bytes from align to not leak stack to user */ | 174 | /* zero the dead bytes from align to not leak stack to user */ |
162 | memset(&raw_data[size - sizeof(u64)], 0, sizeof(u64)); | 175 | memset(&raw_data[size - sizeof(u64)], 0, sizeof(u64)); |
163 | 176 | ||
164 | entry = (struct trace_entry *)raw_data; | 177 | entry = (struct trace_entry *)raw_data; |
165 | tracing_generic_entry_update(entry, *irq_flags, pc); | 178 | local_save_flags(flags); |
179 | tracing_generic_entry_update(entry, flags, pc); | ||
166 | entry->type = type; | 180 | entry->type = type; |
167 | 181 | ||
168 | return raw_data; | 182 | return raw_data; |
169 | err: | ||
170 | perf_swevent_put_recursion_context(*rctxp); | ||
171 | err_recursion: | ||
172 | local_irq_restore(*irq_flags); | ||
173 | return NULL; | ||
174 | } | 183 | } |
175 | EXPORT_SYMBOL_GPL(perf_trace_buf_prepare); | 184 | EXPORT_SYMBOL_GPL(perf_trace_buf_prepare); |
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index c697c7043349..53cffc0b0801 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
@@ -29,11 +29,23 @@ DEFINE_MUTEX(event_mutex); | |||
29 | 29 | ||
30 | LIST_HEAD(ftrace_events); | 30 | LIST_HEAD(ftrace_events); |
31 | 31 | ||
32 | struct list_head * | ||
33 | trace_get_fields(struct ftrace_event_call *event_call) | ||
34 | { | ||
35 | if (!event_call->class->get_fields) | ||
36 | return &event_call->class->fields; | ||
37 | return event_call->class->get_fields(event_call); | ||
38 | } | ||
39 | |||
32 | int trace_define_field(struct ftrace_event_call *call, const char *type, | 40 | int trace_define_field(struct ftrace_event_call *call, const char *type, |
33 | const char *name, int offset, int size, int is_signed, | 41 | const char *name, int offset, int size, int is_signed, |
34 | int filter_type) | 42 | int filter_type) |
35 | { | 43 | { |
36 | struct ftrace_event_field *field; | 44 | struct ftrace_event_field *field; |
45 | struct list_head *head; | ||
46 | |||
47 | if (WARN_ON(!call->class)) | ||
48 | return 0; | ||
37 | 49 | ||
38 | field = kzalloc(sizeof(*field), GFP_KERNEL); | 50 | field = kzalloc(sizeof(*field), GFP_KERNEL); |
39 | if (!field) | 51 | if (!field) |
@@ -56,7 +68,8 @@ int trace_define_field(struct ftrace_event_call *call, const char *type, | |||
56 | field->size = size; | 68 | field->size = size; |
57 | field->is_signed = is_signed; | 69 | field->is_signed = is_signed; |
58 | 70 | ||
59 | list_add(&field->link, &call->fields); | 71 | head = trace_get_fields(call); |
72 | list_add(&field->link, head); | ||
60 | 73 | ||
61 | return 0; | 74 | return 0; |
62 | 75 | ||
@@ -94,8 +107,10 @@ static int trace_define_common_fields(struct ftrace_event_call *call) | |||
94 | void trace_destroy_fields(struct ftrace_event_call *call) | 107 | void trace_destroy_fields(struct ftrace_event_call *call) |
95 | { | 108 | { |
96 | struct ftrace_event_field *field, *next; | 109 | struct ftrace_event_field *field, *next; |
110 | struct list_head *head; | ||
97 | 111 | ||
98 | list_for_each_entry_safe(field, next, &call->fields, link) { | 112 | head = trace_get_fields(call); |
113 | list_for_each_entry_safe(field, next, head, link) { | ||
99 | list_del(&field->link); | 114 | list_del(&field->link); |
100 | kfree(field->type); | 115 | kfree(field->type); |
101 | kfree(field->name); | 116 | kfree(field->name); |
@@ -107,11 +122,9 @@ int trace_event_raw_init(struct ftrace_event_call *call) | |||
107 | { | 122 | { |
108 | int id; | 123 | int id; |
109 | 124 | ||
110 | id = register_ftrace_event(call->event); | 125 | id = register_ftrace_event(&call->event); |
111 | if (!id) | 126 | if (!id) |
112 | return -ENODEV; | 127 | return -ENODEV; |
113 | call->id = id; | ||
114 | INIT_LIST_HEAD(&call->fields); | ||
115 | 128 | ||
116 | return 0; | 129 | return 0; |
117 | } | 130 | } |
@@ -124,23 +137,33 @@ static int ftrace_event_enable_disable(struct ftrace_event_call *call, | |||
124 | 137 | ||
125 | switch (enable) { | 138 | switch (enable) { |
126 | case 0: | 139 | case 0: |
127 | if (call->enabled) { | 140 | if (call->flags & TRACE_EVENT_FL_ENABLED) { |
128 | call->enabled = 0; | 141 | call->flags &= ~TRACE_EVENT_FL_ENABLED; |
129 | tracing_stop_cmdline_record(); | 142 | tracing_stop_cmdline_record(); |
130 | call->unregfunc(call); | 143 | if (call->class->reg) |
144 | call->class->reg(call, TRACE_REG_UNREGISTER); | ||
145 | else | ||
146 | tracepoint_probe_unregister(call->name, | ||
147 | call->class->probe, | ||
148 | call); | ||
131 | } | 149 | } |
132 | break; | 150 | break; |
133 | case 1: | 151 | case 1: |
134 | if (!call->enabled) { | 152 | if (!(call->flags & TRACE_EVENT_FL_ENABLED)) { |
135 | tracing_start_cmdline_record(); | 153 | tracing_start_cmdline_record(); |
136 | ret = call->regfunc(call); | 154 | if (call->class->reg) |
155 | ret = call->class->reg(call, TRACE_REG_REGISTER); | ||
156 | else | ||
157 | ret = tracepoint_probe_register(call->name, | ||
158 | call->class->probe, | ||
159 | call); | ||
137 | if (ret) { | 160 | if (ret) { |
138 | tracing_stop_cmdline_record(); | 161 | tracing_stop_cmdline_record(); |
139 | pr_info("event trace: Could not enable event " | 162 | pr_info("event trace: Could not enable event " |
140 | "%s\n", call->name); | 163 | "%s\n", call->name); |
141 | break; | 164 | break; |
142 | } | 165 | } |
143 | call->enabled = 1; | 166 | call->flags |= TRACE_EVENT_FL_ENABLED; |
144 | } | 167 | } |
145 | break; | 168 | break; |
146 | } | 169 | } |
@@ -171,15 +194,16 @@ static int __ftrace_set_clr_event(const char *match, const char *sub, | |||
171 | mutex_lock(&event_mutex); | 194 | mutex_lock(&event_mutex); |
172 | list_for_each_entry(call, &ftrace_events, list) { | 195 | list_for_each_entry(call, &ftrace_events, list) { |
173 | 196 | ||
174 | if (!call->name || !call->regfunc) | 197 | if (!call->name || !call->class || |
198 | (!call->class->probe && !call->class->reg)) | ||
175 | continue; | 199 | continue; |
176 | 200 | ||
177 | if (match && | 201 | if (match && |
178 | strcmp(match, call->name) != 0 && | 202 | strcmp(match, call->name) != 0 && |
179 | strcmp(match, call->system) != 0) | 203 | strcmp(match, call->class->system) != 0) |
180 | continue; | 204 | continue; |
181 | 205 | ||
182 | if (sub && strcmp(sub, call->system) != 0) | 206 | if (sub && strcmp(sub, call->class->system) != 0) |
183 | continue; | 207 | continue; |
184 | 208 | ||
185 | if (event && strcmp(event, call->name) != 0) | 209 | if (event && strcmp(event, call->name) != 0) |
@@ -297,7 +321,7 @@ t_next(struct seq_file *m, void *v, loff_t *pos) | |||
297 | * The ftrace subsystem is for showing formats only. | 321 | * The ftrace subsystem is for showing formats only. |
298 | * They can not be enabled or disabled via the event files. | 322 | * They can not be enabled or disabled via the event files. |
299 | */ | 323 | */ |
300 | if (call->regfunc) | 324 | if (call->class && (call->class->probe || call->class->reg)) |
301 | return call; | 325 | return call; |
302 | } | 326 | } |
303 | 327 | ||
@@ -328,7 +352,7 @@ s_next(struct seq_file *m, void *v, loff_t *pos) | |||
328 | (*pos)++; | 352 | (*pos)++; |
329 | 353 | ||
330 | list_for_each_entry_continue(call, &ftrace_events, list) { | 354 | list_for_each_entry_continue(call, &ftrace_events, list) { |
331 | if (call->enabled) | 355 | if (call->flags & TRACE_EVENT_FL_ENABLED) |
332 | return call; | 356 | return call; |
333 | } | 357 | } |
334 | 358 | ||
@@ -355,8 +379,8 @@ static int t_show(struct seq_file *m, void *v) | |||
355 | { | 379 | { |
356 | struct ftrace_event_call *call = v; | 380 | struct ftrace_event_call *call = v; |
357 | 381 | ||
358 | if (strcmp(call->system, TRACE_SYSTEM) != 0) | 382 | if (strcmp(call->class->system, TRACE_SYSTEM) != 0) |
359 | seq_printf(m, "%s:", call->system); | 383 | seq_printf(m, "%s:", call->class->system); |
360 | seq_printf(m, "%s\n", call->name); | 384 | seq_printf(m, "%s\n", call->name); |
361 | 385 | ||
362 | return 0; | 386 | return 0; |
@@ -387,7 +411,7 @@ event_enable_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
387 | struct ftrace_event_call *call = filp->private_data; | 411 | struct ftrace_event_call *call = filp->private_data; |
388 | char *buf; | 412 | char *buf; |
389 | 413 | ||
390 | if (call->enabled) | 414 | if (call->flags & TRACE_EVENT_FL_ENABLED) |
391 | buf = "1\n"; | 415 | buf = "1\n"; |
392 | else | 416 | else |
393 | buf = "0\n"; | 417 | buf = "0\n"; |
@@ -450,10 +474,11 @@ system_enable_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
450 | 474 | ||
451 | mutex_lock(&event_mutex); | 475 | mutex_lock(&event_mutex); |
452 | list_for_each_entry(call, &ftrace_events, list) { | 476 | list_for_each_entry(call, &ftrace_events, list) { |
453 | if (!call->name || !call->regfunc) | 477 | if (!call->name || !call->class || |
478 | (!call->class->probe && !call->class->reg)) | ||
454 | continue; | 479 | continue; |
455 | 480 | ||
456 | if (system && strcmp(call->system, system) != 0) | 481 | if (system && strcmp(call->class->system, system) != 0) |
457 | continue; | 482 | continue; |
458 | 483 | ||
459 | /* | 484 | /* |
@@ -461,7 +486,7 @@ system_enable_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
461 | * or if all events or cleared, or if we have | 486 | * or if all events or cleared, or if we have |
462 | * a mixture. | 487 | * a mixture. |
463 | */ | 488 | */ |
464 | set |= (1 << !!call->enabled); | 489 | set |= (1 << !!(call->flags & TRACE_EVENT_FL_ENABLED)); |
465 | 490 | ||
466 | /* | 491 | /* |
467 | * If we have a mixture, no need to look further. | 492 | * If we have a mixture, no need to look further. |
@@ -525,6 +550,7 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
525 | { | 550 | { |
526 | struct ftrace_event_call *call = filp->private_data; | 551 | struct ftrace_event_call *call = filp->private_data; |
527 | struct ftrace_event_field *field; | 552 | struct ftrace_event_field *field; |
553 | struct list_head *head; | ||
528 | struct trace_seq *s; | 554 | struct trace_seq *s; |
529 | int common_field_count = 5; | 555 | int common_field_count = 5; |
530 | char *buf; | 556 | char *buf; |
@@ -540,10 +566,11 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
540 | trace_seq_init(s); | 566 | trace_seq_init(s); |
541 | 567 | ||
542 | trace_seq_printf(s, "name: %s\n", call->name); | 568 | trace_seq_printf(s, "name: %s\n", call->name); |
543 | trace_seq_printf(s, "ID: %d\n", call->id); | 569 | trace_seq_printf(s, "ID: %d\n", call->event.type); |
544 | trace_seq_printf(s, "format:\n"); | 570 | trace_seq_printf(s, "format:\n"); |
545 | 571 | ||
546 | list_for_each_entry_reverse(field, &call->fields, link) { | 572 | head = trace_get_fields(call); |
573 | list_for_each_entry_reverse(field, head, link) { | ||
547 | /* | 574 | /* |
548 | * Smartly shows the array type(except dynamic array). | 575 | * Smartly shows the array type(except dynamic array). |
549 | * Normal: | 576 | * Normal: |
@@ -613,7 +640,7 @@ event_id_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) | |||
613 | return -ENOMEM; | 640 | return -ENOMEM; |
614 | 641 | ||
615 | trace_seq_init(s); | 642 | trace_seq_init(s); |
616 | trace_seq_printf(s, "%d\n", call->id); | 643 | trace_seq_printf(s, "%d\n", call->event.type); |
617 | 644 | ||
618 | r = simple_read_from_buffer(ubuf, cnt, ppos, | 645 | r = simple_read_from_buffer(ubuf, cnt, ppos, |
619 | s->buffer, s->len); | 646 | s->buffer, s->len); |
@@ -919,14 +946,15 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
919 | const struct file_operations *filter, | 946 | const struct file_operations *filter, |
920 | const struct file_operations *format) | 947 | const struct file_operations *format) |
921 | { | 948 | { |
949 | struct list_head *head; | ||
922 | int ret; | 950 | int ret; |
923 | 951 | ||
924 | /* | 952 | /* |
925 | * If the trace point header did not define TRACE_SYSTEM | 953 | * If the trace point header did not define TRACE_SYSTEM |
926 | * then the system would be called "TRACE_SYSTEM". | 954 | * then the system would be called "TRACE_SYSTEM". |
927 | */ | 955 | */ |
928 | if (strcmp(call->system, TRACE_SYSTEM) != 0) | 956 | if (strcmp(call->class->system, TRACE_SYSTEM) != 0) |
929 | d_events = event_subsystem_dir(call->system, d_events); | 957 | d_events = event_subsystem_dir(call->class->system, d_events); |
930 | 958 | ||
931 | call->dir = debugfs_create_dir(call->name, d_events); | 959 | call->dir = debugfs_create_dir(call->name, d_events); |
932 | if (!call->dir) { | 960 | if (!call->dir) { |
@@ -935,22 +963,31 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
935 | return -1; | 963 | return -1; |
936 | } | 964 | } |
937 | 965 | ||
938 | if (call->regfunc) | 966 | if (call->class->probe || call->class->reg) |
939 | trace_create_file("enable", 0644, call->dir, call, | 967 | trace_create_file("enable", 0644, call->dir, call, |
940 | enable); | 968 | enable); |
941 | 969 | ||
942 | if (call->id && call->perf_event_enable) | 970 | #ifdef CONFIG_PERF_EVENTS |
971 | if (call->event.type && (call->class->perf_probe || call->class->reg)) | ||
943 | trace_create_file("id", 0444, call->dir, call, | 972 | trace_create_file("id", 0444, call->dir, call, |
944 | id); | 973 | id); |
974 | #endif | ||
945 | 975 | ||
946 | if (call->define_fields) { | 976 | if (call->class->define_fields) { |
947 | ret = trace_define_common_fields(call); | 977 | /* |
948 | if (!ret) | 978 | * Other events may have the same class. Only update |
949 | ret = call->define_fields(call); | 979 | * the fields if they are not already defined. |
950 | if (ret < 0) { | 980 | */ |
951 | pr_warning("Could not initialize trace point" | 981 | head = trace_get_fields(call); |
952 | " events/%s\n", call->name); | 982 | if (list_empty(head)) { |
953 | return ret; | 983 | ret = trace_define_common_fields(call); |
984 | if (!ret) | ||
985 | ret = call->class->define_fields(call); | ||
986 | if (ret < 0) { | ||
987 | pr_warning("Could not initialize trace point" | ||
988 | " events/%s\n", call->name); | ||
989 | return ret; | ||
990 | } | ||
954 | } | 991 | } |
955 | trace_create_file("filter", 0644, call->dir, call, | 992 | trace_create_file("filter", 0644, call->dir, call, |
956 | filter); | 993 | filter); |
@@ -970,8 +1007,8 @@ static int __trace_add_event_call(struct ftrace_event_call *call) | |||
970 | if (!call->name) | 1007 | if (!call->name) |
971 | return -EINVAL; | 1008 | return -EINVAL; |
972 | 1009 | ||
973 | if (call->raw_init) { | 1010 | if (call->class->raw_init) { |
974 | ret = call->raw_init(call); | 1011 | ret = call->class->raw_init(call); |
975 | if (ret < 0) { | 1012 | if (ret < 0) { |
976 | if (ret != -ENOSYS) | 1013 | if (ret != -ENOSYS) |
977 | pr_warning("Could not initialize trace " | 1014 | pr_warning("Could not initialize trace " |
@@ -1035,13 +1072,13 @@ static void remove_subsystem_dir(const char *name) | |||
1035 | static void __trace_remove_event_call(struct ftrace_event_call *call) | 1072 | static void __trace_remove_event_call(struct ftrace_event_call *call) |
1036 | { | 1073 | { |
1037 | ftrace_event_enable_disable(call, 0); | 1074 | ftrace_event_enable_disable(call, 0); |
1038 | if (call->event) | 1075 | if (call->event.funcs) |
1039 | __unregister_ftrace_event(call->event); | 1076 | __unregister_ftrace_event(&call->event); |
1040 | debugfs_remove_recursive(call->dir); | 1077 | debugfs_remove_recursive(call->dir); |
1041 | list_del(&call->list); | 1078 | list_del(&call->list); |
1042 | trace_destroy_fields(call); | 1079 | trace_destroy_fields(call); |
1043 | destroy_preds(call); | 1080 | destroy_preds(call); |
1044 | remove_subsystem_dir(call->system); | 1081 | remove_subsystem_dir(call->class->system); |
1045 | } | 1082 | } |
1046 | 1083 | ||
1047 | /* Remove an event_call */ | 1084 | /* Remove an event_call */ |
@@ -1132,8 +1169,8 @@ static void trace_module_add_events(struct module *mod) | |||
1132 | /* The linker may leave blanks */ | 1169 | /* The linker may leave blanks */ |
1133 | if (!call->name) | 1170 | if (!call->name) |
1134 | continue; | 1171 | continue; |
1135 | if (call->raw_init) { | 1172 | if (call->class->raw_init) { |
1136 | ret = call->raw_init(call); | 1173 | ret = call->class->raw_init(call); |
1137 | if (ret < 0) { | 1174 | if (ret < 0) { |
1138 | if (ret != -ENOSYS) | 1175 | if (ret != -ENOSYS) |
1139 | pr_warning("Could not initialize trace " | 1176 | pr_warning("Could not initialize trace " |
@@ -1286,8 +1323,8 @@ static __init int event_trace_init(void) | |||
1286 | /* The linker may leave blanks */ | 1323 | /* The linker may leave blanks */ |
1287 | if (!call->name) | 1324 | if (!call->name) |
1288 | continue; | 1325 | continue; |
1289 | if (call->raw_init) { | 1326 | if (call->class->raw_init) { |
1290 | ret = call->raw_init(call); | 1327 | ret = call->class->raw_init(call); |
1291 | if (ret < 0) { | 1328 | if (ret < 0) { |
1292 | if (ret != -ENOSYS) | 1329 | if (ret != -ENOSYS) |
1293 | pr_warning("Could not initialize trace " | 1330 | pr_warning("Could not initialize trace " |
@@ -1388,8 +1425,8 @@ static __init void event_trace_self_tests(void) | |||
1388 | 1425 | ||
1389 | list_for_each_entry(call, &ftrace_events, list) { | 1426 | list_for_each_entry(call, &ftrace_events, list) { |
1390 | 1427 | ||
1391 | /* Only test those that have a regfunc */ | 1428 | /* Only test those that have a probe */ |
1392 | if (!call->regfunc) | 1429 | if (!call->class || !call->class->probe) |
1393 | continue; | 1430 | continue; |
1394 | 1431 | ||
1395 | /* | 1432 | /* |
@@ -1399,8 +1436,8 @@ static __init void event_trace_self_tests(void) | |||
1399 | * syscalls as we test. | 1436 | * syscalls as we test. |
1400 | */ | 1437 | */ |
1401 | #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS | 1438 | #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS |
1402 | if (call->system && | 1439 | if (call->class->system && |
1403 | strcmp(call->system, "syscalls") == 0) | 1440 | strcmp(call->class->system, "syscalls") == 0) |
1404 | continue; | 1441 | continue; |
1405 | #endif | 1442 | #endif |
1406 | 1443 | ||
@@ -1410,7 +1447,7 @@ static __init void event_trace_self_tests(void) | |||
1410 | * If an event is already enabled, someone is using | 1447 | * If an event is already enabled, someone is using |
1411 | * it and the self test should not be on. | 1448 | * it and the self test should not be on. |
1412 | */ | 1449 | */ |
1413 | if (call->enabled) { | 1450 | if (call->flags & TRACE_EVENT_FL_ENABLED) { |
1414 | pr_warning("Enabled event during self test!\n"); | 1451 | pr_warning("Enabled event during self test!\n"); |
1415 | WARN_ON_ONCE(1); | 1452 | WARN_ON_ONCE(1); |
1416 | continue; | 1453 | continue; |
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c index 88c0b6dbd7fe..57bb1bb32999 100644 --- a/kernel/trace/trace_events_filter.c +++ b/kernel/trace/trace_events_filter.c | |||
@@ -500,8 +500,10 @@ static struct ftrace_event_field * | |||
500 | find_event_field(struct ftrace_event_call *call, char *name) | 500 | find_event_field(struct ftrace_event_call *call, char *name) |
501 | { | 501 | { |
502 | struct ftrace_event_field *field; | 502 | struct ftrace_event_field *field; |
503 | struct list_head *head; | ||
503 | 504 | ||
504 | list_for_each_entry(field, &call->fields, link) { | 505 | head = trace_get_fields(call); |
506 | list_for_each_entry(field, head, link) { | ||
505 | if (!strcmp(field->name, name)) | 507 | if (!strcmp(field->name, name)) |
506 | return field; | 508 | return field; |
507 | } | 509 | } |
@@ -545,7 +547,7 @@ static void filter_disable_preds(struct ftrace_event_call *call) | |||
545 | struct event_filter *filter = call->filter; | 547 | struct event_filter *filter = call->filter; |
546 | int i; | 548 | int i; |
547 | 549 | ||
548 | call->filter_active = 0; | 550 | call->flags &= ~TRACE_EVENT_FL_FILTERED; |
549 | filter->n_preds = 0; | 551 | filter->n_preds = 0; |
550 | 552 | ||
551 | for (i = 0; i < MAX_FILTER_PRED; i++) | 553 | for (i = 0; i < MAX_FILTER_PRED; i++) |
@@ -572,7 +574,7 @@ void destroy_preds(struct ftrace_event_call *call) | |||
572 | { | 574 | { |
573 | __free_preds(call->filter); | 575 | __free_preds(call->filter); |
574 | call->filter = NULL; | 576 | call->filter = NULL; |
575 | call->filter_active = 0; | 577 | call->flags &= ~TRACE_EVENT_FL_FILTERED; |
576 | } | 578 | } |
577 | 579 | ||
578 | static struct event_filter *__alloc_preds(void) | 580 | static struct event_filter *__alloc_preds(void) |
@@ -611,7 +613,7 @@ static int init_preds(struct ftrace_event_call *call) | |||
611 | if (call->filter) | 613 | if (call->filter) |
612 | return 0; | 614 | return 0; |
613 | 615 | ||
614 | call->filter_active = 0; | 616 | call->flags &= ~TRACE_EVENT_FL_FILTERED; |
615 | call->filter = __alloc_preds(); | 617 | call->filter = __alloc_preds(); |
616 | if (IS_ERR(call->filter)) | 618 | if (IS_ERR(call->filter)) |
617 | return PTR_ERR(call->filter); | 619 | return PTR_ERR(call->filter); |
@@ -625,10 +627,10 @@ static int init_subsystem_preds(struct event_subsystem *system) | |||
625 | int err; | 627 | int err; |
626 | 628 | ||
627 | list_for_each_entry(call, &ftrace_events, list) { | 629 | list_for_each_entry(call, &ftrace_events, list) { |
628 | if (!call->define_fields) | 630 | if (!call->class || !call->class->define_fields) |
629 | continue; | 631 | continue; |
630 | 632 | ||
631 | if (strcmp(call->system, system->name) != 0) | 633 | if (strcmp(call->class->system, system->name) != 0) |
632 | continue; | 634 | continue; |
633 | 635 | ||
634 | err = init_preds(call); | 636 | err = init_preds(call); |
@@ -644,10 +646,10 @@ static void filter_free_subsystem_preds(struct event_subsystem *system) | |||
644 | struct ftrace_event_call *call; | 646 | struct ftrace_event_call *call; |
645 | 647 | ||
646 | list_for_each_entry(call, &ftrace_events, list) { | 648 | list_for_each_entry(call, &ftrace_events, list) { |
647 | if (!call->define_fields) | 649 | if (!call->class || !call->class->define_fields) |
648 | continue; | 650 | continue; |
649 | 651 | ||
650 | if (strcmp(call->system, system->name) != 0) | 652 | if (strcmp(call->class->system, system->name) != 0) |
651 | continue; | 653 | continue; |
652 | 654 | ||
653 | filter_disable_preds(call); | 655 | filter_disable_preds(call); |
@@ -1249,10 +1251,10 @@ static int replace_system_preds(struct event_subsystem *system, | |||
1249 | list_for_each_entry(call, &ftrace_events, list) { | 1251 | list_for_each_entry(call, &ftrace_events, list) { |
1250 | struct event_filter *filter = call->filter; | 1252 | struct event_filter *filter = call->filter; |
1251 | 1253 | ||
1252 | if (!call->define_fields) | 1254 | if (!call->class || !call->class->define_fields) |
1253 | continue; | 1255 | continue; |
1254 | 1256 | ||
1255 | if (strcmp(call->system, system->name) != 0) | 1257 | if (strcmp(call->class->system, system->name) != 0) |
1256 | continue; | 1258 | continue; |
1257 | 1259 | ||
1258 | /* try to see if the filter can be applied */ | 1260 | /* try to see if the filter can be applied */ |
@@ -1266,7 +1268,7 @@ static int replace_system_preds(struct event_subsystem *system, | |||
1266 | if (err) | 1268 | if (err) |
1267 | filter_disable_preds(call); | 1269 | filter_disable_preds(call); |
1268 | else { | 1270 | else { |
1269 | call->filter_active = 1; | 1271 | call->flags |= TRACE_EVENT_FL_FILTERED; |
1270 | replace_filter_string(filter, filter_string); | 1272 | replace_filter_string(filter, filter_string); |
1271 | } | 1273 | } |
1272 | fail = false; | 1274 | fail = false; |
@@ -1315,7 +1317,7 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | |||
1315 | if (err) | 1317 | if (err) |
1316 | append_filter_err(ps, call->filter); | 1318 | append_filter_err(ps, call->filter); |
1317 | else | 1319 | else |
1318 | call->filter_active = 1; | 1320 | call->flags |= TRACE_EVENT_FL_FILTERED; |
1319 | out: | 1321 | out: |
1320 | filter_opstack_clear(ps); | 1322 | filter_opstack_clear(ps); |
1321 | postfix_clear(ps); | 1323 | postfix_clear(ps); |
@@ -1393,12 +1395,12 @@ int ftrace_profile_set_filter(struct perf_event *event, int event_id, | |||
1393 | mutex_lock(&event_mutex); | 1395 | mutex_lock(&event_mutex); |
1394 | 1396 | ||
1395 | list_for_each_entry(call, &ftrace_events, list) { | 1397 | list_for_each_entry(call, &ftrace_events, list) { |
1396 | if (call->id == event_id) | 1398 | if (call->event.type == event_id) |
1397 | break; | 1399 | break; |
1398 | } | 1400 | } |
1399 | 1401 | ||
1400 | err = -EINVAL; | 1402 | err = -EINVAL; |
1401 | if (!call) | 1403 | if (&call->list == &ftrace_events) |
1402 | goto out_unlock; | 1404 | goto out_unlock; |
1403 | 1405 | ||
1404 | err = -EEXIST; | 1406 | err = -EEXIST; |
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c index e091f64ba6ce..8536e2a65969 100644 --- a/kernel/trace/trace_export.c +++ b/kernel/trace/trace_export.c | |||
@@ -127,7 +127,7 @@ ftrace_define_fields_##name(struct ftrace_event_call *event_call) \ | |||
127 | 127 | ||
128 | static int ftrace_raw_init_event(struct ftrace_event_call *call) | 128 | static int ftrace_raw_init_event(struct ftrace_event_call *call) |
129 | { | 129 | { |
130 | INIT_LIST_HEAD(&call->fields); | 130 | INIT_LIST_HEAD(&call->class->fields); |
131 | return 0; | 131 | return 0; |
132 | } | 132 | } |
133 | 133 | ||
@@ -153,17 +153,21 @@ static int ftrace_raw_init_event(struct ftrace_event_call *call) | |||
153 | #define F_printk(fmt, args...) #fmt ", " __stringify(args) | 153 | #define F_printk(fmt, args...) #fmt ", " __stringify(args) |
154 | 154 | ||
155 | #undef FTRACE_ENTRY | 155 | #undef FTRACE_ENTRY |
156 | #define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ | 156 | #define FTRACE_ENTRY(call, struct_name, etype, tstruct, print) \ |
157 | \ | ||
158 | struct ftrace_event_class event_class_ftrace_##call = { \ | ||
159 | .system = __stringify(TRACE_SYSTEM), \ | ||
160 | .define_fields = ftrace_define_fields_##call, \ | ||
161 | .raw_init = ftrace_raw_init_event, \ | ||
162 | }; \ | ||
157 | \ | 163 | \ |
158 | struct ftrace_event_call __used \ | 164 | struct ftrace_event_call __used \ |
159 | __attribute__((__aligned__(4))) \ | 165 | __attribute__((__aligned__(4))) \ |
160 | __attribute__((section("_ftrace_events"))) event_##call = { \ | 166 | __attribute__((section("_ftrace_events"))) event_##call = { \ |
161 | .name = #call, \ | 167 | .name = #call, \ |
162 | .id = type, \ | 168 | .event.type = etype, \ |
163 | .system = __stringify(TRACE_SYSTEM), \ | 169 | .class = &event_class_ftrace_##call, \ |
164 | .raw_init = ftrace_raw_init_event, \ | ||
165 | .print_fmt = print, \ | 170 | .print_fmt = print, \ |
166 | .define_fields = ftrace_define_fields_##call, \ | ||
167 | }; \ | 171 | }; \ |
168 | 172 | ||
169 | #include "trace_entries.h" | 173 | #include "trace_entries.h" |
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index 9aed1a5cf553..79f4bac99a94 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c | |||
@@ -40,7 +40,7 @@ struct fgraph_data { | |||
40 | #define TRACE_GRAPH_PRINT_OVERHEAD 0x4 | 40 | #define TRACE_GRAPH_PRINT_OVERHEAD 0x4 |
41 | #define TRACE_GRAPH_PRINT_PROC 0x8 | 41 | #define TRACE_GRAPH_PRINT_PROC 0x8 |
42 | #define TRACE_GRAPH_PRINT_DURATION 0x10 | 42 | #define TRACE_GRAPH_PRINT_DURATION 0x10 |
43 | #define TRACE_GRAPH_PRINT_ABS_TIME 0X20 | 43 | #define TRACE_GRAPH_PRINT_ABS_TIME 0x20 |
44 | 44 | ||
45 | static struct tracer_opt trace_opts[] = { | 45 | static struct tracer_opt trace_opts[] = { |
46 | /* Display overruns? (for self-debug purpose) */ | 46 | /* Display overruns? (for self-debug purpose) */ |
@@ -179,7 +179,7 @@ unsigned long ftrace_return_to_handler(unsigned long frame_pointer) | |||
179 | return ret; | 179 | return ret; |
180 | } | 180 | } |
181 | 181 | ||
182 | static int __trace_graph_entry(struct trace_array *tr, | 182 | int __trace_graph_entry(struct trace_array *tr, |
183 | struct ftrace_graph_ent *trace, | 183 | struct ftrace_graph_ent *trace, |
184 | unsigned long flags, | 184 | unsigned long flags, |
185 | int pc) | 185 | int pc) |
@@ -246,7 +246,7 @@ int trace_graph_thresh_entry(struct ftrace_graph_ent *trace) | |||
246 | return trace_graph_entry(trace); | 246 | return trace_graph_entry(trace); |
247 | } | 247 | } |
248 | 248 | ||
249 | static void __trace_graph_return(struct trace_array *tr, | 249 | void __trace_graph_return(struct trace_array *tr, |
250 | struct ftrace_graph_ret *trace, | 250 | struct ftrace_graph_ret *trace, |
251 | unsigned long flags, | 251 | unsigned long flags, |
252 | int pc) | 252 | int pc) |
@@ -490,9 +490,10 @@ get_return_for_leaf(struct trace_iterator *iter, | |||
490 | * We need to consume the current entry to see | 490 | * We need to consume the current entry to see |
491 | * the next one. | 491 | * the next one. |
492 | */ | 492 | */ |
493 | ring_buffer_consume(iter->tr->buffer, iter->cpu, NULL); | 493 | ring_buffer_consume(iter->tr->buffer, iter->cpu, |
494 | NULL, NULL); | ||
494 | event = ring_buffer_peek(iter->tr->buffer, iter->cpu, | 495 | event = ring_buffer_peek(iter->tr->buffer, iter->cpu, |
495 | NULL); | 496 | NULL, NULL); |
496 | } | 497 | } |
497 | 498 | ||
498 | if (!event) | 499 | if (!event) |
@@ -526,17 +527,18 @@ get_return_for_leaf(struct trace_iterator *iter, | |||
526 | 527 | ||
527 | /* Signal a overhead of time execution to the output */ | 528 | /* Signal a overhead of time execution to the output */ |
528 | static int | 529 | static int |
529 | print_graph_overhead(unsigned long long duration, struct trace_seq *s) | 530 | print_graph_overhead(unsigned long long duration, struct trace_seq *s, |
531 | u32 flags) | ||
530 | { | 532 | { |
531 | /* If duration disappear, we don't need anything */ | 533 | /* If duration disappear, we don't need anything */ |
532 | if (!(tracer_flags.val & TRACE_GRAPH_PRINT_DURATION)) | 534 | if (!(flags & TRACE_GRAPH_PRINT_DURATION)) |
533 | return 1; | 535 | return 1; |
534 | 536 | ||
535 | /* Non nested entry or return */ | 537 | /* Non nested entry or return */ |
536 | if (duration == -1) | 538 | if (duration == -1) |
537 | return trace_seq_printf(s, " "); | 539 | return trace_seq_printf(s, " "); |
538 | 540 | ||
539 | if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERHEAD) { | 541 | if (flags & TRACE_GRAPH_PRINT_OVERHEAD) { |
540 | /* Duration exceeded 100 msecs */ | 542 | /* Duration exceeded 100 msecs */ |
541 | if (duration > 100000ULL) | 543 | if (duration > 100000ULL) |
542 | return trace_seq_printf(s, "! "); | 544 | return trace_seq_printf(s, "! "); |
@@ -562,7 +564,7 @@ static int print_graph_abs_time(u64 t, struct trace_seq *s) | |||
562 | 564 | ||
563 | static enum print_line_t | 565 | static enum print_line_t |
564 | print_graph_irq(struct trace_iterator *iter, unsigned long addr, | 566 | print_graph_irq(struct trace_iterator *iter, unsigned long addr, |
565 | enum trace_type type, int cpu, pid_t pid) | 567 | enum trace_type type, int cpu, pid_t pid, u32 flags) |
566 | { | 568 | { |
567 | int ret; | 569 | int ret; |
568 | struct trace_seq *s = &iter->seq; | 570 | struct trace_seq *s = &iter->seq; |
@@ -572,21 +574,21 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
572 | return TRACE_TYPE_UNHANDLED; | 574 | return TRACE_TYPE_UNHANDLED; |
573 | 575 | ||
574 | /* Absolute time */ | 576 | /* Absolute time */ |
575 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) { | 577 | if (flags & TRACE_GRAPH_PRINT_ABS_TIME) { |
576 | ret = print_graph_abs_time(iter->ts, s); | 578 | ret = print_graph_abs_time(iter->ts, s); |
577 | if (!ret) | 579 | if (!ret) |
578 | return TRACE_TYPE_PARTIAL_LINE; | 580 | return TRACE_TYPE_PARTIAL_LINE; |
579 | } | 581 | } |
580 | 582 | ||
581 | /* Cpu */ | 583 | /* Cpu */ |
582 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) { | 584 | if (flags & TRACE_GRAPH_PRINT_CPU) { |
583 | ret = print_graph_cpu(s, cpu); | 585 | ret = print_graph_cpu(s, cpu); |
584 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 586 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
585 | return TRACE_TYPE_PARTIAL_LINE; | 587 | return TRACE_TYPE_PARTIAL_LINE; |
586 | } | 588 | } |
587 | 589 | ||
588 | /* Proc */ | 590 | /* Proc */ |
589 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { | 591 | if (flags & TRACE_GRAPH_PRINT_PROC) { |
590 | ret = print_graph_proc(s, pid); | 592 | ret = print_graph_proc(s, pid); |
591 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 593 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
592 | return TRACE_TYPE_PARTIAL_LINE; | 594 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -596,7 +598,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
596 | } | 598 | } |
597 | 599 | ||
598 | /* No overhead */ | 600 | /* No overhead */ |
599 | ret = print_graph_overhead(-1, s); | 601 | ret = print_graph_overhead(-1, s, flags); |
600 | if (!ret) | 602 | if (!ret) |
601 | return TRACE_TYPE_PARTIAL_LINE; | 603 | return TRACE_TYPE_PARTIAL_LINE; |
602 | 604 | ||
@@ -609,7 +611,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
609 | return TRACE_TYPE_PARTIAL_LINE; | 611 | return TRACE_TYPE_PARTIAL_LINE; |
610 | 612 | ||
611 | /* Don't close the duration column if haven't one */ | 613 | /* Don't close the duration column if haven't one */ |
612 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 614 | if (flags & TRACE_GRAPH_PRINT_DURATION) |
613 | trace_seq_printf(s, " |"); | 615 | trace_seq_printf(s, " |"); |
614 | ret = trace_seq_printf(s, "\n"); | 616 | ret = trace_seq_printf(s, "\n"); |
615 | 617 | ||
@@ -679,7 +681,8 @@ print_graph_duration(unsigned long long duration, struct trace_seq *s) | |||
679 | static enum print_line_t | 681 | static enum print_line_t |
680 | print_graph_entry_leaf(struct trace_iterator *iter, | 682 | print_graph_entry_leaf(struct trace_iterator *iter, |
681 | struct ftrace_graph_ent_entry *entry, | 683 | struct ftrace_graph_ent_entry *entry, |
682 | struct ftrace_graph_ret_entry *ret_entry, struct trace_seq *s) | 684 | struct ftrace_graph_ret_entry *ret_entry, |
685 | struct trace_seq *s, u32 flags) | ||
683 | { | 686 | { |
684 | struct fgraph_data *data = iter->private; | 687 | struct fgraph_data *data = iter->private; |
685 | struct ftrace_graph_ret *graph_ret; | 688 | struct ftrace_graph_ret *graph_ret; |
@@ -711,12 +714,12 @@ print_graph_entry_leaf(struct trace_iterator *iter, | |||
711 | } | 714 | } |
712 | 715 | ||
713 | /* Overhead */ | 716 | /* Overhead */ |
714 | ret = print_graph_overhead(duration, s); | 717 | ret = print_graph_overhead(duration, s, flags); |
715 | if (!ret) | 718 | if (!ret) |
716 | return TRACE_TYPE_PARTIAL_LINE; | 719 | return TRACE_TYPE_PARTIAL_LINE; |
717 | 720 | ||
718 | /* Duration */ | 721 | /* Duration */ |
719 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { | 722 | if (flags & TRACE_GRAPH_PRINT_DURATION) { |
720 | ret = print_graph_duration(duration, s); | 723 | ret = print_graph_duration(duration, s); |
721 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 724 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
722 | return TRACE_TYPE_PARTIAL_LINE; | 725 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -739,7 +742,7 @@ print_graph_entry_leaf(struct trace_iterator *iter, | |||
739 | static enum print_line_t | 742 | static enum print_line_t |
740 | print_graph_entry_nested(struct trace_iterator *iter, | 743 | print_graph_entry_nested(struct trace_iterator *iter, |
741 | struct ftrace_graph_ent_entry *entry, | 744 | struct ftrace_graph_ent_entry *entry, |
742 | struct trace_seq *s, int cpu) | 745 | struct trace_seq *s, int cpu, u32 flags) |
743 | { | 746 | { |
744 | struct ftrace_graph_ent *call = &entry->graph_ent; | 747 | struct ftrace_graph_ent *call = &entry->graph_ent; |
745 | struct fgraph_data *data = iter->private; | 748 | struct fgraph_data *data = iter->private; |
@@ -759,12 +762,12 @@ print_graph_entry_nested(struct trace_iterator *iter, | |||
759 | } | 762 | } |
760 | 763 | ||
761 | /* No overhead */ | 764 | /* No overhead */ |
762 | ret = print_graph_overhead(-1, s); | 765 | ret = print_graph_overhead(-1, s, flags); |
763 | if (!ret) | 766 | if (!ret) |
764 | return TRACE_TYPE_PARTIAL_LINE; | 767 | return TRACE_TYPE_PARTIAL_LINE; |
765 | 768 | ||
766 | /* No time */ | 769 | /* No time */ |
767 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { | 770 | if (flags & TRACE_GRAPH_PRINT_DURATION) { |
768 | ret = trace_seq_printf(s, " | "); | 771 | ret = trace_seq_printf(s, " | "); |
769 | if (!ret) | 772 | if (!ret) |
770 | return TRACE_TYPE_PARTIAL_LINE; | 773 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -790,7 +793,7 @@ print_graph_entry_nested(struct trace_iterator *iter, | |||
790 | 793 | ||
791 | static enum print_line_t | 794 | static enum print_line_t |
792 | print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | 795 | print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, |
793 | int type, unsigned long addr) | 796 | int type, unsigned long addr, u32 flags) |
794 | { | 797 | { |
795 | struct fgraph_data *data = iter->private; | 798 | struct fgraph_data *data = iter->private; |
796 | struct trace_entry *ent = iter->ent; | 799 | struct trace_entry *ent = iter->ent; |
@@ -803,27 +806,27 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | |||
803 | 806 | ||
804 | if (type) { | 807 | if (type) { |
805 | /* Interrupt */ | 808 | /* Interrupt */ |
806 | ret = print_graph_irq(iter, addr, type, cpu, ent->pid); | 809 | ret = print_graph_irq(iter, addr, type, cpu, ent->pid, flags); |
807 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 810 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
808 | return TRACE_TYPE_PARTIAL_LINE; | 811 | return TRACE_TYPE_PARTIAL_LINE; |
809 | } | 812 | } |
810 | 813 | ||
811 | /* Absolute time */ | 814 | /* Absolute time */ |
812 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) { | 815 | if (flags & TRACE_GRAPH_PRINT_ABS_TIME) { |
813 | ret = print_graph_abs_time(iter->ts, s); | 816 | ret = print_graph_abs_time(iter->ts, s); |
814 | if (!ret) | 817 | if (!ret) |
815 | return TRACE_TYPE_PARTIAL_LINE; | 818 | return TRACE_TYPE_PARTIAL_LINE; |
816 | } | 819 | } |
817 | 820 | ||
818 | /* Cpu */ | 821 | /* Cpu */ |
819 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) { | 822 | if (flags & TRACE_GRAPH_PRINT_CPU) { |
820 | ret = print_graph_cpu(s, cpu); | 823 | ret = print_graph_cpu(s, cpu); |
821 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 824 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
822 | return TRACE_TYPE_PARTIAL_LINE; | 825 | return TRACE_TYPE_PARTIAL_LINE; |
823 | } | 826 | } |
824 | 827 | ||
825 | /* Proc */ | 828 | /* Proc */ |
826 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { | 829 | if (flags & TRACE_GRAPH_PRINT_PROC) { |
827 | ret = print_graph_proc(s, ent->pid); | 830 | ret = print_graph_proc(s, ent->pid); |
828 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 831 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
829 | return TRACE_TYPE_PARTIAL_LINE; | 832 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -845,7 +848,7 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | |||
845 | 848 | ||
846 | static enum print_line_t | 849 | static enum print_line_t |
847 | print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s, | 850 | print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s, |
848 | struct trace_iterator *iter) | 851 | struct trace_iterator *iter, u32 flags) |
849 | { | 852 | { |
850 | struct fgraph_data *data = iter->private; | 853 | struct fgraph_data *data = iter->private; |
851 | struct ftrace_graph_ent *call = &field->graph_ent; | 854 | struct ftrace_graph_ent *call = &field->graph_ent; |
@@ -853,14 +856,14 @@ print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s, | |||
853 | static enum print_line_t ret; | 856 | static enum print_line_t ret; |
854 | int cpu = iter->cpu; | 857 | int cpu = iter->cpu; |
855 | 858 | ||
856 | if (print_graph_prologue(iter, s, TRACE_GRAPH_ENT, call->func)) | 859 | if (print_graph_prologue(iter, s, TRACE_GRAPH_ENT, call->func, flags)) |
857 | return TRACE_TYPE_PARTIAL_LINE; | 860 | return TRACE_TYPE_PARTIAL_LINE; |
858 | 861 | ||
859 | leaf_ret = get_return_for_leaf(iter, field); | 862 | leaf_ret = get_return_for_leaf(iter, field); |
860 | if (leaf_ret) | 863 | if (leaf_ret) |
861 | ret = print_graph_entry_leaf(iter, field, leaf_ret, s); | 864 | ret = print_graph_entry_leaf(iter, field, leaf_ret, s, flags); |
862 | else | 865 | else |
863 | ret = print_graph_entry_nested(iter, field, s, cpu); | 866 | ret = print_graph_entry_nested(iter, field, s, cpu, flags); |
864 | 867 | ||
865 | if (data) { | 868 | if (data) { |
866 | /* | 869 | /* |
@@ -879,7 +882,8 @@ print_graph_entry(struct ftrace_graph_ent_entry *field, struct trace_seq *s, | |||
879 | 882 | ||
880 | static enum print_line_t | 883 | static enum print_line_t |
881 | print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, | 884 | print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, |
882 | struct trace_entry *ent, struct trace_iterator *iter) | 885 | struct trace_entry *ent, struct trace_iterator *iter, |
886 | u32 flags) | ||
883 | { | 887 | { |
884 | unsigned long long duration = trace->rettime - trace->calltime; | 888 | unsigned long long duration = trace->rettime - trace->calltime; |
885 | struct fgraph_data *data = iter->private; | 889 | struct fgraph_data *data = iter->private; |
@@ -909,16 +913,16 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, | |||
909 | } | 913 | } |
910 | } | 914 | } |
911 | 915 | ||
912 | if (print_graph_prologue(iter, s, 0, 0)) | 916 | if (print_graph_prologue(iter, s, 0, 0, flags)) |
913 | return TRACE_TYPE_PARTIAL_LINE; | 917 | return TRACE_TYPE_PARTIAL_LINE; |
914 | 918 | ||
915 | /* Overhead */ | 919 | /* Overhead */ |
916 | ret = print_graph_overhead(duration, s); | 920 | ret = print_graph_overhead(duration, s, flags); |
917 | if (!ret) | 921 | if (!ret) |
918 | return TRACE_TYPE_PARTIAL_LINE; | 922 | return TRACE_TYPE_PARTIAL_LINE; |
919 | 923 | ||
920 | /* Duration */ | 924 | /* Duration */ |
921 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { | 925 | if (flags & TRACE_GRAPH_PRINT_DURATION) { |
922 | ret = print_graph_duration(duration, s); | 926 | ret = print_graph_duration(duration, s); |
923 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 927 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
924 | return TRACE_TYPE_PARTIAL_LINE; | 928 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -948,14 +952,15 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, | |||
948 | } | 952 | } |
949 | 953 | ||
950 | /* Overrun */ | 954 | /* Overrun */ |
951 | if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERRUN) { | 955 | if (flags & TRACE_GRAPH_PRINT_OVERRUN) { |
952 | ret = trace_seq_printf(s, " (Overruns: %lu)\n", | 956 | ret = trace_seq_printf(s, " (Overruns: %lu)\n", |
953 | trace->overrun); | 957 | trace->overrun); |
954 | if (!ret) | 958 | if (!ret) |
955 | return TRACE_TYPE_PARTIAL_LINE; | 959 | return TRACE_TYPE_PARTIAL_LINE; |
956 | } | 960 | } |
957 | 961 | ||
958 | ret = print_graph_irq(iter, trace->func, TRACE_GRAPH_RET, cpu, pid); | 962 | ret = print_graph_irq(iter, trace->func, TRACE_GRAPH_RET, |
963 | cpu, pid, flags); | ||
959 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 964 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
960 | return TRACE_TYPE_PARTIAL_LINE; | 965 | return TRACE_TYPE_PARTIAL_LINE; |
961 | 966 | ||
@@ -963,8 +968,8 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s, | |||
963 | } | 968 | } |
964 | 969 | ||
965 | static enum print_line_t | 970 | static enum print_line_t |
966 | print_graph_comment(struct trace_seq *s, struct trace_entry *ent, | 971 | print_graph_comment(struct trace_seq *s, struct trace_entry *ent, |
967 | struct trace_iterator *iter) | 972 | struct trace_iterator *iter, u32 flags) |
968 | { | 973 | { |
969 | unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); | 974 | unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); |
970 | struct fgraph_data *data = iter->private; | 975 | struct fgraph_data *data = iter->private; |
@@ -976,16 +981,16 @@ print_graph_comment(struct trace_seq *s, struct trace_entry *ent, | |||
976 | if (data) | 981 | if (data) |
977 | depth = per_cpu_ptr(data->cpu_data, iter->cpu)->depth; | 982 | depth = per_cpu_ptr(data->cpu_data, iter->cpu)->depth; |
978 | 983 | ||
979 | if (print_graph_prologue(iter, s, 0, 0)) | 984 | if (print_graph_prologue(iter, s, 0, 0, flags)) |
980 | return TRACE_TYPE_PARTIAL_LINE; | 985 | return TRACE_TYPE_PARTIAL_LINE; |
981 | 986 | ||
982 | /* No overhead */ | 987 | /* No overhead */ |
983 | ret = print_graph_overhead(-1, s); | 988 | ret = print_graph_overhead(-1, s, flags); |
984 | if (!ret) | 989 | if (!ret) |
985 | return TRACE_TYPE_PARTIAL_LINE; | 990 | return TRACE_TYPE_PARTIAL_LINE; |
986 | 991 | ||
987 | /* No time */ | 992 | /* No time */ |
988 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) { | 993 | if (flags & TRACE_GRAPH_PRINT_DURATION) { |
989 | ret = trace_seq_printf(s, " | "); | 994 | ret = trace_seq_printf(s, " | "); |
990 | if (!ret) | 995 | if (!ret) |
991 | return TRACE_TYPE_PARTIAL_LINE; | 996 | return TRACE_TYPE_PARTIAL_LINE; |
@@ -1020,7 +1025,7 @@ print_graph_comment(struct trace_seq *s, struct trace_entry *ent, | |||
1020 | if (!event) | 1025 | if (!event) |
1021 | return TRACE_TYPE_UNHANDLED; | 1026 | return TRACE_TYPE_UNHANDLED; |
1022 | 1027 | ||
1023 | ret = event->trace(iter, sym_flags); | 1028 | ret = event->funcs->trace(iter, sym_flags, event); |
1024 | if (ret != TRACE_TYPE_HANDLED) | 1029 | if (ret != TRACE_TYPE_HANDLED) |
1025 | return ret; | 1030 | return ret; |
1026 | } | 1031 | } |
@@ -1040,7 +1045,7 @@ print_graph_comment(struct trace_seq *s, struct trace_entry *ent, | |||
1040 | 1045 | ||
1041 | 1046 | ||
1042 | enum print_line_t | 1047 | enum print_line_t |
1043 | print_graph_function(struct trace_iterator *iter) | 1048 | print_graph_function_flags(struct trace_iterator *iter, u32 flags) |
1044 | { | 1049 | { |
1045 | struct ftrace_graph_ent_entry *field; | 1050 | struct ftrace_graph_ent_entry *field; |
1046 | struct fgraph_data *data = iter->private; | 1051 | struct fgraph_data *data = iter->private; |
@@ -1061,7 +1066,7 @@ print_graph_function(struct trace_iterator *iter) | |||
1061 | if (data && data->failed) { | 1066 | if (data && data->failed) { |
1062 | field = &data->ent; | 1067 | field = &data->ent; |
1063 | iter->cpu = data->cpu; | 1068 | iter->cpu = data->cpu; |
1064 | ret = print_graph_entry(field, s, iter); | 1069 | ret = print_graph_entry(field, s, iter, flags); |
1065 | if (ret == TRACE_TYPE_HANDLED && iter->cpu != cpu) { | 1070 | if (ret == TRACE_TYPE_HANDLED && iter->cpu != cpu) { |
1066 | per_cpu_ptr(data->cpu_data, iter->cpu)->ignore = 1; | 1071 | per_cpu_ptr(data->cpu_data, iter->cpu)->ignore = 1; |
1067 | ret = TRACE_TYPE_NO_CONSUME; | 1072 | ret = TRACE_TYPE_NO_CONSUME; |
@@ -1081,32 +1086,50 @@ print_graph_function(struct trace_iterator *iter) | |||
1081 | struct ftrace_graph_ent_entry saved; | 1086 | struct ftrace_graph_ent_entry saved; |
1082 | trace_assign_type(field, entry); | 1087 | trace_assign_type(field, entry); |
1083 | saved = *field; | 1088 | saved = *field; |
1084 | return print_graph_entry(&saved, s, iter); | 1089 | return print_graph_entry(&saved, s, iter, flags); |
1085 | } | 1090 | } |
1086 | case TRACE_GRAPH_RET: { | 1091 | case TRACE_GRAPH_RET: { |
1087 | struct ftrace_graph_ret_entry *field; | 1092 | struct ftrace_graph_ret_entry *field; |
1088 | trace_assign_type(field, entry); | 1093 | trace_assign_type(field, entry); |
1089 | return print_graph_return(&field->ret, s, entry, iter); | 1094 | return print_graph_return(&field->ret, s, entry, iter, flags); |
1090 | } | 1095 | } |
1096 | case TRACE_STACK: | ||
1097 | case TRACE_FN: | ||
1098 | /* dont trace stack and functions as comments */ | ||
1099 | return TRACE_TYPE_UNHANDLED; | ||
1100 | |||
1091 | default: | 1101 | default: |
1092 | return print_graph_comment(s, entry, iter); | 1102 | return print_graph_comment(s, entry, iter, flags); |
1093 | } | 1103 | } |
1094 | 1104 | ||
1095 | return TRACE_TYPE_HANDLED; | 1105 | return TRACE_TYPE_HANDLED; |
1096 | } | 1106 | } |
1097 | 1107 | ||
1098 | static void print_lat_header(struct seq_file *s) | 1108 | static enum print_line_t |
1109 | print_graph_function(struct trace_iterator *iter) | ||
1110 | { | ||
1111 | return print_graph_function_flags(iter, tracer_flags.val); | ||
1112 | } | ||
1113 | |||
1114 | static enum print_line_t | ||
1115 | print_graph_function_event(struct trace_iterator *iter, int flags, | ||
1116 | struct trace_event *event) | ||
1117 | { | ||
1118 | return print_graph_function(iter); | ||
1119 | } | ||
1120 | |||
1121 | static void print_lat_header(struct seq_file *s, u32 flags) | ||
1099 | { | 1122 | { |
1100 | static const char spaces[] = " " /* 16 spaces */ | 1123 | static const char spaces[] = " " /* 16 spaces */ |
1101 | " " /* 4 spaces */ | 1124 | " " /* 4 spaces */ |
1102 | " "; /* 17 spaces */ | 1125 | " "; /* 17 spaces */ |
1103 | int size = 0; | 1126 | int size = 0; |
1104 | 1127 | ||
1105 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1128 | if (flags & TRACE_GRAPH_PRINT_ABS_TIME) |
1106 | size += 16; | 1129 | size += 16; |
1107 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1130 | if (flags & TRACE_GRAPH_PRINT_CPU) |
1108 | size += 4; | 1131 | size += 4; |
1109 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1132 | if (flags & TRACE_GRAPH_PRINT_PROC) |
1110 | size += 17; | 1133 | size += 17; |
1111 | 1134 | ||
1112 | seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); | 1135 | seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); |
@@ -1117,43 +1140,48 @@ static void print_lat_header(struct seq_file *s) | |||
1117 | seq_printf(s, "#%.*s|||| / \n", size, spaces); | 1140 | seq_printf(s, "#%.*s|||| / \n", size, spaces); |
1118 | } | 1141 | } |
1119 | 1142 | ||
1120 | static void print_graph_headers(struct seq_file *s) | 1143 | void print_graph_headers_flags(struct seq_file *s, u32 flags) |
1121 | { | 1144 | { |
1122 | int lat = trace_flags & TRACE_ITER_LATENCY_FMT; | 1145 | int lat = trace_flags & TRACE_ITER_LATENCY_FMT; |
1123 | 1146 | ||
1124 | if (lat) | 1147 | if (lat) |
1125 | print_lat_header(s); | 1148 | print_lat_header(s, flags); |
1126 | 1149 | ||
1127 | /* 1st line */ | 1150 | /* 1st line */ |
1128 | seq_printf(s, "#"); | 1151 | seq_printf(s, "#"); |
1129 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1152 | if (flags & TRACE_GRAPH_PRINT_ABS_TIME) |
1130 | seq_printf(s, " TIME "); | 1153 | seq_printf(s, " TIME "); |
1131 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1154 | if (flags & TRACE_GRAPH_PRINT_CPU) |
1132 | seq_printf(s, " CPU"); | 1155 | seq_printf(s, " CPU"); |
1133 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1156 | if (flags & TRACE_GRAPH_PRINT_PROC) |
1134 | seq_printf(s, " TASK/PID "); | 1157 | seq_printf(s, " TASK/PID "); |
1135 | if (lat) | 1158 | if (lat) |
1136 | seq_printf(s, "|||||"); | 1159 | seq_printf(s, "|||||"); |
1137 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1160 | if (flags & TRACE_GRAPH_PRINT_DURATION) |
1138 | seq_printf(s, " DURATION "); | 1161 | seq_printf(s, " DURATION "); |
1139 | seq_printf(s, " FUNCTION CALLS\n"); | 1162 | seq_printf(s, " FUNCTION CALLS\n"); |
1140 | 1163 | ||
1141 | /* 2nd line */ | 1164 | /* 2nd line */ |
1142 | seq_printf(s, "#"); | 1165 | seq_printf(s, "#"); |
1143 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1166 | if (flags & TRACE_GRAPH_PRINT_ABS_TIME) |
1144 | seq_printf(s, " | "); | 1167 | seq_printf(s, " | "); |
1145 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1168 | if (flags & TRACE_GRAPH_PRINT_CPU) |
1146 | seq_printf(s, " | "); | 1169 | seq_printf(s, " | "); |
1147 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1170 | if (flags & TRACE_GRAPH_PRINT_PROC) |
1148 | seq_printf(s, " | | "); | 1171 | seq_printf(s, " | | "); |
1149 | if (lat) | 1172 | if (lat) |
1150 | seq_printf(s, "|||||"); | 1173 | seq_printf(s, "|||||"); |
1151 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1174 | if (flags & TRACE_GRAPH_PRINT_DURATION) |
1152 | seq_printf(s, " | | "); | 1175 | seq_printf(s, " | | "); |
1153 | seq_printf(s, " | | | |\n"); | 1176 | seq_printf(s, " | | | |\n"); |
1154 | } | 1177 | } |
1155 | 1178 | ||
1156 | static void graph_trace_open(struct trace_iterator *iter) | 1179 | void print_graph_headers(struct seq_file *s) |
1180 | { | ||
1181 | print_graph_headers_flags(s, tracer_flags.val); | ||
1182 | } | ||
1183 | |||
1184 | void graph_trace_open(struct trace_iterator *iter) | ||
1157 | { | 1185 | { |
1158 | /* pid and depth on the last trace processed */ | 1186 | /* pid and depth on the last trace processed */ |
1159 | struct fgraph_data *data; | 1187 | struct fgraph_data *data; |
@@ -1188,7 +1216,7 @@ static void graph_trace_open(struct trace_iterator *iter) | |||
1188 | pr_warning("function graph tracer: not enough memory\n"); | 1216 | pr_warning("function graph tracer: not enough memory\n"); |
1189 | } | 1217 | } |
1190 | 1218 | ||
1191 | static void graph_trace_close(struct trace_iterator *iter) | 1219 | void graph_trace_close(struct trace_iterator *iter) |
1192 | { | 1220 | { |
1193 | struct fgraph_data *data = iter->private; | 1221 | struct fgraph_data *data = iter->private; |
1194 | 1222 | ||
@@ -1198,6 +1226,20 @@ static void graph_trace_close(struct trace_iterator *iter) | |||
1198 | } | 1226 | } |
1199 | } | 1227 | } |
1200 | 1228 | ||
1229 | static struct trace_event_functions graph_functions = { | ||
1230 | .trace = print_graph_function_event, | ||
1231 | }; | ||
1232 | |||
1233 | static struct trace_event graph_trace_entry_event = { | ||
1234 | .type = TRACE_GRAPH_ENT, | ||
1235 | .funcs = &graph_functions, | ||
1236 | }; | ||
1237 | |||
1238 | static struct trace_event graph_trace_ret_event = { | ||
1239 | .type = TRACE_GRAPH_RET, | ||
1240 | .funcs = &graph_functions | ||
1241 | }; | ||
1242 | |||
1201 | static struct tracer graph_trace __read_mostly = { | 1243 | static struct tracer graph_trace __read_mostly = { |
1202 | .name = "function_graph", | 1244 | .name = "function_graph", |
1203 | .open = graph_trace_open, | 1245 | .open = graph_trace_open, |
@@ -1219,6 +1261,16 @@ static __init int init_graph_trace(void) | |||
1219 | { | 1261 | { |
1220 | max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1); | 1262 | max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1); |
1221 | 1263 | ||
1264 | if (!register_ftrace_event(&graph_trace_entry_event)) { | ||
1265 | pr_warning("Warning: could not register graph trace events\n"); | ||
1266 | return 1; | ||
1267 | } | ||
1268 | |||
1269 | if (!register_ftrace_event(&graph_trace_ret_event)) { | ||
1270 | pr_warning("Warning: could not register graph trace events\n"); | ||
1271 | return 1; | ||
1272 | } | ||
1273 | |||
1222 | return register_tracer(&graph_trace); | 1274 | return register_tracer(&graph_trace); |
1223 | } | 1275 | } |
1224 | 1276 | ||
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c deleted file mode 100644 index 7b97000745f5..000000000000 --- a/kernel/trace/trace_hw_branches.c +++ /dev/null | |||
@@ -1,312 +0,0 @@ | |||
1 | /* | ||
2 | * h/w branch tracer for x86 based on BTS | ||
3 | * | ||
4 | * Copyright (C) 2008-2009 Intel Corporation. | ||
5 | * Markus Metzger <markus.t.metzger@gmail.com>, 2008-2009 | ||
6 | */ | ||
7 | #include <linux/kallsyms.h> | ||
8 | #include <linux/debugfs.h> | ||
9 | #include <linux/ftrace.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/cpu.h> | ||
12 | #include <linux/smp.h> | ||
13 | #include <linux/fs.h> | ||
14 | |||
15 | #include <asm/ds.h> | ||
16 | |||
17 | #include "trace_output.h" | ||
18 | #include "trace.h" | ||
19 | |||
20 | |||
21 | #define BTS_BUFFER_SIZE (1 << 13) | ||
22 | |||
23 | static DEFINE_PER_CPU(struct bts_tracer *, hwb_tracer); | ||
24 | static DEFINE_PER_CPU(unsigned char[BTS_BUFFER_SIZE], hwb_buffer); | ||
25 | |||
26 | #define this_tracer per_cpu(hwb_tracer, smp_processor_id()) | ||
27 | |||
28 | static int trace_hw_branches_enabled __read_mostly; | ||
29 | static int trace_hw_branches_suspended __read_mostly; | ||
30 | static struct trace_array *hw_branch_trace __read_mostly; | ||
31 | |||
32 | |||
33 | static void bts_trace_init_cpu(int cpu) | ||
34 | { | ||
35 | per_cpu(hwb_tracer, cpu) = | ||
36 | ds_request_bts_cpu(cpu, per_cpu(hwb_buffer, cpu), | ||
37 | BTS_BUFFER_SIZE, NULL, (size_t)-1, | ||
38 | BTS_KERNEL); | ||
39 | |||
40 | if (IS_ERR(per_cpu(hwb_tracer, cpu))) | ||
41 | per_cpu(hwb_tracer, cpu) = NULL; | ||
42 | } | ||
43 | |||
44 | static int bts_trace_init(struct trace_array *tr) | ||
45 | { | ||
46 | int cpu; | ||
47 | |||
48 | hw_branch_trace = tr; | ||
49 | trace_hw_branches_enabled = 0; | ||
50 | |||
51 | get_online_cpus(); | ||
52 | for_each_online_cpu(cpu) { | ||
53 | bts_trace_init_cpu(cpu); | ||
54 | |||
55 | if (likely(per_cpu(hwb_tracer, cpu))) | ||
56 | trace_hw_branches_enabled = 1; | ||
57 | } | ||
58 | trace_hw_branches_suspended = 0; | ||
59 | put_online_cpus(); | ||
60 | |||
61 | /* If we could not enable tracing on a single cpu, we fail. */ | ||
62 | return trace_hw_branches_enabled ? 0 : -EOPNOTSUPP; | ||
63 | } | ||
64 | |||
65 | static void bts_trace_reset(struct trace_array *tr) | ||
66 | { | ||
67 | int cpu; | ||
68 | |||
69 | get_online_cpus(); | ||
70 | for_each_online_cpu(cpu) { | ||
71 | if (likely(per_cpu(hwb_tracer, cpu))) { | ||
72 | ds_release_bts(per_cpu(hwb_tracer, cpu)); | ||
73 | per_cpu(hwb_tracer, cpu) = NULL; | ||
74 | } | ||
75 | } | ||
76 | trace_hw_branches_enabled = 0; | ||
77 | trace_hw_branches_suspended = 0; | ||
78 | put_online_cpus(); | ||
79 | } | ||
80 | |||
81 | static void bts_trace_start(struct trace_array *tr) | ||
82 | { | ||
83 | int cpu; | ||
84 | |||
85 | get_online_cpus(); | ||
86 | for_each_online_cpu(cpu) | ||
87 | if (likely(per_cpu(hwb_tracer, cpu))) | ||
88 | ds_resume_bts(per_cpu(hwb_tracer, cpu)); | ||
89 | trace_hw_branches_suspended = 0; | ||
90 | put_online_cpus(); | ||
91 | } | ||
92 | |||
93 | static void bts_trace_stop(struct trace_array *tr) | ||
94 | { | ||
95 | int cpu; | ||
96 | |||
97 | get_online_cpus(); | ||
98 | for_each_online_cpu(cpu) | ||
99 | if (likely(per_cpu(hwb_tracer, cpu))) | ||
100 | ds_suspend_bts(per_cpu(hwb_tracer, cpu)); | ||
101 | trace_hw_branches_suspended = 1; | ||
102 | put_online_cpus(); | ||
103 | } | ||
104 | |||
105 | static int __cpuinit bts_hotcpu_handler(struct notifier_block *nfb, | ||
106 | unsigned long action, void *hcpu) | ||
107 | { | ||
108 | int cpu = (long)hcpu; | ||
109 | |||
110 | switch (action) { | ||
111 | case CPU_ONLINE: | ||
112 | case CPU_DOWN_FAILED: | ||
113 | /* The notification is sent with interrupts enabled. */ | ||
114 | if (trace_hw_branches_enabled) { | ||
115 | bts_trace_init_cpu(cpu); | ||
116 | |||
117 | if (trace_hw_branches_suspended && | ||
118 | likely(per_cpu(hwb_tracer, cpu))) | ||
119 | ds_suspend_bts(per_cpu(hwb_tracer, cpu)); | ||
120 | } | ||
121 | break; | ||
122 | |||
123 | case CPU_DOWN_PREPARE: | ||
124 | /* The notification is sent with interrupts enabled. */ | ||
125 | if (likely(per_cpu(hwb_tracer, cpu))) { | ||
126 | ds_release_bts(per_cpu(hwb_tracer, cpu)); | ||
127 | per_cpu(hwb_tracer, cpu) = NULL; | ||
128 | } | ||
129 | } | ||
130 | |||
131 | return NOTIFY_DONE; | ||
132 | } | ||
133 | |||
134 | static struct notifier_block bts_hotcpu_notifier __cpuinitdata = { | ||
135 | .notifier_call = bts_hotcpu_handler | ||
136 | }; | ||
137 | |||
138 | static void bts_trace_print_header(struct seq_file *m) | ||
139 | { | ||
140 | seq_puts(m, "# CPU# TO <- FROM\n"); | ||
141 | } | ||
142 | |||
143 | static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | ||
144 | { | ||
145 | unsigned long symflags = TRACE_ITER_SYM_OFFSET; | ||
146 | struct trace_entry *entry = iter->ent; | ||
147 | struct trace_seq *seq = &iter->seq; | ||
148 | struct hw_branch_entry *it; | ||
149 | |||
150 | trace_assign_type(it, entry); | ||
151 | |||
152 | if (entry->type == TRACE_HW_BRANCHES) { | ||
153 | if (trace_seq_printf(seq, "%4d ", iter->cpu) && | ||
154 | seq_print_ip_sym(seq, it->to, symflags) && | ||
155 | trace_seq_printf(seq, "\t <- ") && | ||
156 | seq_print_ip_sym(seq, it->from, symflags) && | ||
157 | trace_seq_printf(seq, "\n")) | ||
158 | return TRACE_TYPE_HANDLED; | ||
159 | return TRACE_TYPE_PARTIAL_LINE; | ||
160 | } | ||
161 | return TRACE_TYPE_UNHANDLED; | ||
162 | } | ||
163 | |||
164 | void trace_hw_branch(u64 from, u64 to) | ||
165 | { | ||
166 | struct ftrace_event_call *call = &event_hw_branch; | ||
167 | struct trace_array *tr = hw_branch_trace; | ||
168 | struct ring_buffer_event *event; | ||
169 | struct ring_buffer *buf; | ||
170 | struct hw_branch_entry *entry; | ||
171 | unsigned long irq1; | ||
172 | int cpu; | ||
173 | |||
174 | if (unlikely(!tr)) | ||
175 | return; | ||
176 | |||
177 | if (unlikely(!trace_hw_branches_enabled)) | ||
178 | return; | ||
179 | |||
180 | local_irq_save(irq1); | ||
181 | cpu = raw_smp_processor_id(); | ||
182 | if (atomic_inc_return(&tr->data[cpu]->disabled) != 1) | ||
183 | goto out; | ||
184 | |||
185 | buf = tr->buffer; | ||
186 | event = trace_buffer_lock_reserve(buf, TRACE_HW_BRANCHES, | ||
187 | sizeof(*entry), 0, 0); | ||
188 | if (!event) | ||
189 | goto out; | ||
190 | entry = ring_buffer_event_data(event); | ||
191 | tracing_generic_entry_update(&entry->ent, 0, from); | ||
192 | entry->ent.type = TRACE_HW_BRANCHES; | ||
193 | entry->from = from; | ||
194 | entry->to = to; | ||
195 | if (!filter_check_discard(call, entry, buf, event)) | ||
196 | trace_buffer_unlock_commit(buf, event, 0, 0); | ||
197 | |||
198 | out: | ||
199 | atomic_dec(&tr->data[cpu]->disabled); | ||
200 | local_irq_restore(irq1); | ||
201 | } | ||
202 | |||
203 | static void trace_bts_at(const struct bts_trace *trace, void *at) | ||
204 | { | ||
205 | struct bts_struct bts; | ||
206 | int err = 0; | ||
207 | |||
208 | WARN_ON_ONCE(!trace->read); | ||
209 | if (!trace->read) | ||
210 | return; | ||
211 | |||
212 | err = trace->read(this_tracer, at, &bts); | ||
213 | if (err < 0) | ||
214 | return; | ||
215 | |||
216 | switch (bts.qualifier) { | ||
217 | case BTS_BRANCH: | ||
218 | trace_hw_branch(bts.variant.lbr.from, bts.variant.lbr.to); | ||
219 | break; | ||
220 | } | ||
221 | } | ||
222 | |||
223 | /* | ||
224 | * Collect the trace on the current cpu and write it into the ftrace buffer. | ||
225 | * | ||
226 | * pre: tracing must be suspended on the current cpu | ||
227 | */ | ||
228 | static void trace_bts_cpu(void *arg) | ||
229 | { | ||
230 | struct trace_array *tr = (struct trace_array *)arg; | ||
231 | const struct bts_trace *trace; | ||
232 | unsigned char *at; | ||
233 | |||
234 | if (unlikely(!tr)) | ||
235 | return; | ||
236 | |||
237 | if (unlikely(atomic_read(&tr->data[raw_smp_processor_id()]->disabled))) | ||
238 | return; | ||
239 | |||
240 | if (unlikely(!this_tracer)) | ||
241 | return; | ||
242 | |||
243 | trace = ds_read_bts(this_tracer); | ||
244 | if (!trace) | ||
245 | return; | ||
246 | |||
247 | for (at = trace->ds.top; (void *)at < trace->ds.end; | ||
248 | at += trace->ds.size) | ||
249 | trace_bts_at(trace, at); | ||
250 | |||
251 | for (at = trace->ds.begin; (void *)at < trace->ds.top; | ||
252 | at += trace->ds.size) | ||
253 | trace_bts_at(trace, at); | ||
254 | } | ||
255 | |||
256 | static void trace_bts_prepare(struct trace_iterator *iter) | ||
257 | { | ||
258 | int cpu; | ||
259 | |||
260 | get_online_cpus(); | ||
261 | for_each_online_cpu(cpu) | ||
262 | if (likely(per_cpu(hwb_tracer, cpu))) | ||
263 | ds_suspend_bts(per_cpu(hwb_tracer, cpu)); | ||
264 | /* | ||
265 | * We need to collect the trace on the respective cpu since ftrace | ||
266 | * implicitly adds the record for the current cpu. | ||
267 | * Once that is more flexible, we could collect the data from any cpu. | ||
268 | */ | ||
269 | on_each_cpu(trace_bts_cpu, iter->tr, 1); | ||
270 | |||
271 | for_each_online_cpu(cpu) | ||
272 | if (likely(per_cpu(hwb_tracer, cpu))) | ||
273 | ds_resume_bts(per_cpu(hwb_tracer, cpu)); | ||
274 | put_online_cpus(); | ||
275 | } | ||
276 | |||
277 | static void trace_bts_close(struct trace_iterator *iter) | ||
278 | { | ||
279 | tracing_reset_online_cpus(iter->tr); | ||
280 | } | ||
281 | |||
282 | void trace_hw_branch_oops(void) | ||
283 | { | ||
284 | if (this_tracer) { | ||
285 | ds_suspend_bts_noirq(this_tracer); | ||
286 | trace_bts_cpu(hw_branch_trace); | ||
287 | ds_resume_bts_noirq(this_tracer); | ||
288 | } | ||
289 | } | ||
290 | |||
291 | struct tracer bts_tracer __read_mostly = | ||
292 | { | ||
293 | .name = "hw-branch-tracer", | ||
294 | .init = bts_trace_init, | ||
295 | .reset = bts_trace_reset, | ||
296 | .print_header = bts_trace_print_header, | ||
297 | .print_line = bts_trace_print_line, | ||
298 | .start = bts_trace_start, | ||
299 | .stop = bts_trace_stop, | ||
300 | .open = trace_bts_prepare, | ||
301 | .close = trace_bts_close, | ||
302 | #ifdef CONFIG_FTRACE_SELFTEST | ||
303 | .selftest = trace_selftest_startup_hw_branches, | ||
304 | #endif /* CONFIG_FTRACE_SELFTEST */ | ||
305 | }; | ||
306 | |||
307 | __init static int init_bts_trace(void) | ||
308 | { | ||
309 | register_hotcpu_notifier(&bts_hotcpu_notifier); | ||
310 | return register_tracer(&bts_tracer); | ||
311 | } | ||
312 | device_initcall(init_bts_trace); | ||
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c index 2974bc7538c7..6fd486e0cef4 100644 --- a/kernel/trace/trace_irqsoff.c +++ b/kernel/trace/trace_irqsoff.c | |||
@@ -34,6 +34,9 @@ static int trace_type __read_mostly; | |||
34 | 34 | ||
35 | static int save_lat_flag; | 35 | static int save_lat_flag; |
36 | 36 | ||
37 | static void stop_irqsoff_tracer(struct trace_array *tr, int graph); | ||
38 | static int start_irqsoff_tracer(struct trace_array *tr, int graph); | ||
39 | |||
37 | #ifdef CONFIG_PREEMPT_TRACER | 40 | #ifdef CONFIG_PREEMPT_TRACER |
38 | static inline int | 41 | static inline int |
39 | preempt_trace(void) | 42 | preempt_trace(void) |
@@ -55,6 +58,23 @@ irq_trace(void) | |||
55 | # define irq_trace() (0) | 58 | # define irq_trace() (0) |
56 | #endif | 59 | #endif |
57 | 60 | ||
61 | #define TRACE_DISPLAY_GRAPH 1 | ||
62 | |||
63 | static struct tracer_opt trace_opts[] = { | ||
64 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
65 | /* display latency trace as call graph */ | ||
66 | { TRACER_OPT(display-graph, TRACE_DISPLAY_GRAPH) }, | ||
67 | #endif | ||
68 | { } /* Empty entry */ | ||
69 | }; | ||
70 | |||
71 | static struct tracer_flags tracer_flags = { | ||
72 | .val = 0, | ||
73 | .opts = trace_opts, | ||
74 | }; | ||
75 | |||
76 | #define is_graph() (tracer_flags.val & TRACE_DISPLAY_GRAPH) | ||
77 | |||
58 | /* | 78 | /* |
59 | * Sequence count - we record it when starting a measurement and | 79 | * Sequence count - we record it when starting a measurement and |
60 | * skip the latency if the sequence has changed - some other section | 80 | * skip the latency if the sequence has changed - some other section |
@@ -108,6 +128,202 @@ static struct ftrace_ops trace_ops __read_mostly = | |||
108 | }; | 128 | }; |
109 | #endif /* CONFIG_FUNCTION_TRACER */ | 129 | #endif /* CONFIG_FUNCTION_TRACER */ |
110 | 130 | ||
131 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
132 | static int irqsoff_set_flag(u32 old_flags, u32 bit, int set) | ||
133 | { | ||
134 | int cpu; | ||
135 | |||
136 | if (!(bit & TRACE_DISPLAY_GRAPH)) | ||
137 | return -EINVAL; | ||
138 | |||
139 | if (!(is_graph() ^ set)) | ||
140 | return 0; | ||
141 | |||
142 | stop_irqsoff_tracer(irqsoff_trace, !set); | ||
143 | |||
144 | for_each_possible_cpu(cpu) | ||
145 | per_cpu(tracing_cpu, cpu) = 0; | ||
146 | |||
147 | tracing_max_latency = 0; | ||
148 | tracing_reset_online_cpus(irqsoff_trace); | ||
149 | |||
150 | return start_irqsoff_tracer(irqsoff_trace, set); | ||
151 | } | ||
152 | |||
153 | static int irqsoff_graph_entry(struct ftrace_graph_ent *trace) | ||
154 | { | ||
155 | struct trace_array *tr = irqsoff_trace; | ||
156 | struct trace_array_cpu *data; | ||
157 | unsigned long flags; | ||
158 | long disabled; | ||
159 | int ret; | ||
160 | int cpu; | ||
161 | int pc; | ||
162 | |||
163 | cpu = raw_smp_processor_id(); | ||
164 | if (likely(!per_cpu(tracing_cpu, cpu))) | ||
165 | return 0; | ||
166 | |||
167 | local_save_flags(flags); | ||
168 | /* slight chance to get a false positive on tracing_cpu */ | ||
169 | if (!irqs_disabled_flags(flags)) | ||
170 | return 0; | ||
171 | |||
172 | data = tr->data[cpu]; | ||
173 | disabled = atomic_inc_return(&data->disabled); | ||
174 | |||
175 | if (likely(disabled == 1)) { | ||
176 | pc = preempt_count(); | ||
177 | ret = __trace_graph_entry(tr, trace, flags, pc); | ||
178 | } else | ||
179 | ret = 0; | ||
180 | |||
181 | atomic_dec(&data->disabled); | ||
182 | return ret; | ||
183 | } | ||
184 | |||
185 | static void irqsoff_graph_return(struct ftrace_graph_ret *trace) | ||
186 | { | ||
187 | struct trace_array *tr = irqsoff_trace; | ||
188 | struct trace_array_cpu *data; | ||
189 | unsigned long flags; | ||
190 | long disabled; | ||
191 | int cpu; | ||
192 | int pc; | ||
193 | |||
194 | cpu = raw_smp_processor_id(); | ||
195 | if (likely(!per_cpu(tracing_cpu, cpu))) | ||
196 | return; | ||
197 | |||
198 | local_save_flags(flags); | ||
199 | /* slight chance to get a false positive on tracing_cpu */ | ||
200 | if (!irqs_disabled_flags(flags)) | ||
201 | return; | ||
202 | |||
203 | data = tr->data[cpu]; | ||
204 | disabled = atomic_inc_return(&data->disabled); | ||
205 | |||
206 | if (likely(disabled == 1)) { | ||
207 | pc = preempt_count(); | ||
208 | __trace_graph_return(tr, trace, flags, pc); | ||
209 | } | ||
210 | |||
211 | atomic_dec(&data->disabled); | ||
212 | } | ||
213 | |||
214 | static void irqsoff_trace_open(struct trace_iterator *iter) | ||
215 | { | ||
216 | if (is_graph()) | ||
217 | graph_trace_open(iter); | ||
218 | |||
219 | } | ||
220 | |||
221 | static void irqsoff_trace_close(struct trace_iterator *iter) | ||
222 | { | ||
223 | if (iter->private) | ||
224 | graph_trace_close(iter); | ||
225 | } | ||
226 | |||
227 | #define GRAPH_TRACER_FLAGS (TRACE_GRAPH_PRINT_CPU | \ | ||
228 | TRACE_GRAPH_PRINT_PROC) | ||
229 | |||
230 | static enum print_line_t irqsoff_print_line(struct trace_iterator *iter) | ||
231 | { | ||
232 | u32 flags = GRAPH_TRACER_FLAGS; | ||
233 | |||
234 | if (trace_flags & TRACE_ITER_LATENCY_FMT) | ||
235 | flags |= TRACE_GRAPH_PRINT_DURATION; | ||
236 | else | ||
237 | flags |= TRACE_GRAPH_PRINT_ABS_TIME; | ||
238 | |||
239 | /* | ||
240 | * In graph mode call the graph tracer output function, | ||
241 | * otherwise go with the TRACE_FN event handler | ||
242 | */ | ||
243 | if (is_graph()) | ||
244 | return print_graph_function_flags(iter, flags); | ||
245 | |||
246 | return TRACE_TYPE_UNHANDLED; | ||
247 | } | ||
248 | |||
249 | static void irqsoff_print_header(struct seq_file *s) | ||
250 | { | ||
251 | if (is_graph()) { | ||
252 | struct trace_iterator *iter = s->private; | ||
253 | u32 flags = GRAPH_TRACER_FLAGS; | ||
254 | |||
255 | if (trace_flags & TRACE_ITER_LATENCY_FMT) { | ||
256 | /* print nothing if the buffers are empty */ | ||
257 | if (trace_empty(iter)) | ||
258 | return; | ||
259 | |||
260 | print_trace_header(s, iter); | ||
261 | flags |= TRACE_GRAPH_PRINT_DURATION; | ||
262 | } else | ||
263 | flags |= TRACE_GRAPH_PRINT_ABS_TIME; | ||
264 | |||
265 | print_graph_headers_flags(s, flags); | ||
266 | } else | ||
267 | trace_default_header(s); | ||
268 | } | ||
269 | |||
270 | static void | ||
271 | trace_graph_function(struct trace_array *tr, | ||
272 | unsigned long ip, unsigned long flags, int pc) | ||
273 | { | ||
274 | u64 time = trace_clock_local(); | ||
275 | struct ftrace_graph_ent ent = { | ||
276 | .func = ip, | ||
277 | .depth = 0, | ||
278 | }; | ||
279 | struct ftrace_graph_ret ret = { | ||
280 | .func = ip, | ||
281 | .depth = 0, | ||
282 | .calltime = time, | ||
283 | .rettime = time, | ||
284 | }; | ||
285 | |||
286 | __trace_graph_entry(tr, &ent, flags, pc); | ||
287 | __trace_graph_return(tr, &ret, flags, pc); | ||
288 | } | ||
289 | |||
290 | static void | ||
291 | __trace_function(struct trace_array *tr, | ||
292 | unsigned long ip, unsigned long parent_ip, | ||
293 | unsigned long flags, int pc) | ||
294 | { | ||
295 | if (!is_graph()) | ||
296 | trace_function(tr, ip, parent_ip, flags, pc); | ||
297 | else { | ||
298 | trace_graph_function(tr, parent_ip, flags, pc); | ||
299 | trace_graph_function(tr, ip, flags, pc); | ||
300 | } | ||
301 | } | ||
302 | |||
303 | #else | ||
304 | #define __trace_function trace_function | ||
305 | |||
306 | static int irqsoff_set_flag(u32 old_flags, u32 bit, int set) | ||
307 | { | ||
308 | return -EINVAL; | ||
309 | } | ||
310 | |||
311 | static int irqsoff_graph_entry(struct ftrace_graph_ent *trace) | ||
312 | { | ||
313 | return -1; | ||
314 | } | ||
315 | |||
316 | static enum print_line_t irqsoff_print_line(struct trace_iterator *iter) | ||
317 | { | ||
318 | return TRACE_TYPE_UNHANDLED; | ||
319 | } | ||
320 | |||
321 | static void irqsoff_graph_return(struct ftrace_graph_ret *trace) { } | ||
322 | static void irqsoff_print_header(struct seq_file *s) { } | ||
323 | static void irqsoff_trace_open(struct trace_iterator *iter) { } | ||
324 | static void irqsoff_trace_close(struct trace_iterator *iter) { } | ||
325 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | ||
326 | |||
111 | /* | 327 | /* |
112 | * Should this new latency be reported/recorded? | 328 | * Should this new latency be reported/recorded? |
113 | */ | 329 | */ |
@@ -150,7 +366,7 @@ check_critical_timing(struct trace_array *tr, | |||
150 | if (!report_latency(delta)) | 366 | if (!report_latency(delta)) |
151 | goto out_unlock; | 367 | goto out_unlock; |
152 | 368 | ||
153 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 369 | __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
154 | /* Skip 5 functions to get to the irq/preempt enable function */ | 370 | /* Skip 5 functions to get to the irq/preempt enable function */ |
155 | __trace_stack(tr, flags, 5, pc); | 371 | __trace_stack(tr, flags, 5, pc); |
156 | 372 | ||
@@ -172,7 +388,7 @@ out_unlock: | |||
172 | out: | 388 | out: |
173 | data->critical_sequence = max_sequence; | 389 | data->critical_sequence = max_sequence; |
174 | data->preempt_timestamp = ftrace_now(cpu); | 390 | data->preempt_timestamp = ftrace_now(cpu); |
175 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 391 | __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
176 | } | 392 | } |
177 | 393 | ||
178 | static inline void | 394 | static inline void |
@@ -204,7 +420,7 @@ start_critical_timing(unsigned long ip, unsigned long parent_ip) | |||
204 | 420 | ||
205 | local_save_flags(flags); | 421 | local_save_flags(flags); |
206 | 422 | ||
207 | trace_function(tr, ip, parent_ip, flags, preempt_count()); | 423 | __trace_function(tr, ip, parent_ip, flags, preempt_count()); |
208 | 424 | ||
209 | per_cpu(tracing_cpu, cpu) = 1; | 425 | per_cpu(tracing_cpu, cpu) = 1; |
210 | 426 | ||
@@ -238,7 +454,7 @@ stop_critical_timing(unsigned long ip, unsigned long parent_ip) | |||
238 | atomic_inc(&data->disabled); | 454 | atomic_inc(&data->disabled); |
239 | 455 | ||
240 | local_save_flags(flags); | 456 | local_save_flags(flags); |
241 | trace_function(tr, ip, parent_ip, flags, preempt_count()); | 457 | __trace_function(tr, ip, parent_ip, flags, preempt_count()); |
242 | check_critical_timing(tr, data, parent_ip ? : ip, cpu); | 458 | check_critical_timing(tr, data, parent_ip ? : ip, cpu); |
243 | data->critical_start = 0; | 459 | data->critical_start = 0; |
244 | atomic_dec(&data->disabled); | 460 | atomic_dec(&data->disabled); |
@@ -347,19 +563,32 @@ void trace_preempt_off(unsigned long a0, unsigned long a1) | |||
347 | } | 563 | } |
348 | #endif /* CONFIG_PREEMPT_TRACER */ | 564 | #endif /* CONFIG_PREEMPT_TRACER */ |
349 | 565 | ||
350 | static void start_irqsoff_tracer(struct trace_array *tr) | 566 | static int start_irqsoff_tracer(struct trace_array *tr, int graph) |
351 | { | 567 | { |
352 | register_ftrace_function(&trace_ops); | 568 | int ret = 0; |
353 | if (tracing_is_enabled()) | 569 | |
570 | if (!graph) | ||
571 | ret = register_ftrace_function(&trace_ops); | ||
572 | else | ||
573 | ret = register_ftrace_graph(&irqsoff_graph_return, | ||
574 | &irqsoff_graph_entry); | ||
575 | |||
576 | if (!ret && tracing_is_enabled()) | ||
354 | tracer_enabled = 1; | 577 | tracer_enabled = 1; |
355 | else | 578 | else |
356 | tracer_enabled = 0; | 579 | tracer_enabled = 0; |
580 | |||
581 | return ret; | ||
357 | } | 582 | } |
358 | 583 | ||
359 | static void stop_irqsoff_tracer(struct trace_array *tr) | 584 | static void stop_irqsoff_tracer(struct trace_array *tr, int graph) |
360 | { | 585 | { |
361 | tracer_enabled = 0; | 586 | tracer_enabled = 0; |
362 | unregister_ftrace_function(&trace_ops); | 587 | |
588 | if (!graph) | ||
589 | unregister_ftrace_function(&trace_ops); | ||
590 | else | ||
591 | unregister_ftrace_graph(); | ||
363 | } | 592 | } |
364 | 593 | ||
365 | static void __irqsoff_tracer_init(struct trace_array *tr) | 594 | static void __irqsoff_tracer_init(struct trace_array *tr) |
@@ -372,12 +601,14 @@ static void __irqsoff_tracer_init(struct trace_array *tr) | |||
372 | /* make sure that the tracer is visible */ | 601 | /* make sure that the tracer is visible */ |
373 | smp_wmb(); | 602 | smp_wmb(); |
374 | tracing_reset_online_cpus(tr); | 603 | tracing_reset_online_cpus(tr); |
375 | start_irqsoff_tracer(tr); | 604 | |
605 | if (start_irqsoff_tracer(tr, is_graph())) | ||
606 | printk(KERN_ERR "failed to start irqsoff tracer\n"); | ||
376 | } | 607 | } |
377 | 608 | ||
378 | static void irqsoff_tracer_reset(struct trace_array *tr) | 609 | static void irqsoff_tracer_reset(struct trace_array *tr) |
379 | { | 610 | { |
380 | stop_irqsoff_tracer(tr); | 611 | stop_irqsoff_tracer(tr, is_graph()); |
381 | 612 | ||
382 | if (!save_lat_flag) | 613 | if (!save_lat_flag) |
383 | trace_flags &= ~TRACE_ITER_LATENCY_FMT; | 614 | trace_flags &= ~TRACE_ITER_LATENCY_FMT; |
@@ -409,9 +640,15 @@ static struct tracer irqsoff_tracer __read_mostly = | |||
409 | .start = irqsoff_tracer_start, | 640 | .start = irqsoff_tracer_start, |
410 | .stop = irqsoff_tracer_stop, | 641 | .stop = irqsoff_tracer_stop, |
411 | .print_max = 1, | 642 | .print_max = 1, |
643 | .print_header = irqsoff_print_header, | ||
644 | .print_line = irqsoff_print_line, | ||
645 | .flags = &tracer_flags, | ||
646 | .set_flag = irqsoff_set_flag, | ||
412 | #ifdef CONFIG_FTRACE_SELFTEST | 647 | #ifdef CONFIG_FTRACE_SELFTEST |
413 | .selftest = trace_selftest_startup_irqsoff, | 648 | .selftest = trace_selftest_startup_irqsoff, |
414 | #endif | 649 | #endif |
650 | .open = irqsoff_trace_open, | ||
651 | .close = irqsoff_trace_close, | ||
415 | }; | 652 | }; |
416 | # define register_irqsoff(trace) register_tracer(&trace) | 653 | # define register_irqsoff(trace) register_tracer(&trace) |
417 | #else | 654 | #else |
@@ -435,9 +672,15 @@ static struct tracer preemptoff_tracer __read_mostly = | |||
435 | .start = irqsoff_tracer_start, | 672 | .start = irqsoff_tracer_start, |
436 | .stop = irqsoff_tracer_stop, | 673 | .stop = irqsoff_tracer_stop, |
437 | .print_max = 1, | 674 | .print_max = 1, |
675 | .print_header = irqsoff_print_header, | ||
676 | .print_line = irqsoff_print_line, | ||
677 | .flags = &tracer_flags, | ||
678 | .set_flag = irqsoff_set_flag, | ||
438 | #ifdef CONFIG_FTRACE_SELFTEST | 679 | #ifdef CONFIG_FTRACE_SELFTEST |
439 | .selftest = trace_selftest_startup_preemptoff, | 680 | .selftest = trace_selftest_startup_preemptoff, |
440 | #endif | 681 | #endif |
682 | .open = irqsoff_trace_open, | ||
683 | .close = irqsoff_trace_close, | ||
441 | }; | 684 | }; |
442 | # define register_preemptoff(trace) register_tracer(&trace) | 685 | # define register_preemptoff(trace) register_tracer(&trace) |
443 | #else | 686 | #else |
@@ -463,9 +706,15 @@ static struct tracer preemptirqsoff_tracer __read_mostly = | |||
463 | .start = irqsoff_tracer_start, | 706 | .start = irqsoff_tracer_start, |
464 | .stop = irqsoff_tracer_stop, | 707 | .stop = irqsoff_tracer_stop, |
465 | .print_max = 1, | 708 | .print_max = 1, |
709 | .print_header = irqsoff_print_header, | ||
710 | .print_line = irqsoff_print_line, | ||
711 | .flags = &tracer_flags, | ||
712 | .set_flag = irqsoff_set_flag, | ||
466 | #ifdef CONFIG_FTRACE_SELFTEST | 713 | #ifdef CONFIG_FTRACE_SELFTEST |
467 | .selftest = trace_selftest_startup_preemptirqsoff, | 714 | .selftest = trace_selftest_startup_preemptirqsoff, |
468 | #endif | 715 | #endif |
716 | .open = irqsoff_trace_open, | ||
717 | .close = irqsoff_trace_close, | ||
469 | }; | 718 | }; |
470 | 719 | ||
471 | # define register_preemptirqsoff(trace) register_tracer(&trace) | 720 | # define register_preemptirqsoff(trace) register_tracer(&trace) |
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c index 1251e367bae9..faf7cefd15da 100644 --- a/kernel/trace/trace_kprobe.c +++ b/kernel/trace/trace_kprobe.c | |||
@@ -29,6 +29,8 @@ | |||
29 | #include <linux/ctype.h> | 29 | #include <linux/ctype.h> |
30 | #include <linux/ptrace.h> | 30 | #include <linux/ptrace.h> |
31 | #include <linux/perf_event.h> | 31 | #include <linux/perf_event.h> |
32 | #include <linux/stringify.h> | ||
33 | #include <asm/bitsperlong.h> | ||
32 | 34 | ||
33 | #include "trace.h" | 35 | #include "trace.h" |
34 | #include "trace_output.h" | 36 | #include "trace_output.h" |
@@ -40,7 +42,6 @@ | |||
40 | 42 | ||
41 | /* Reserved field names */ | 43 | /* Reserved field names */ |
42 | #define FIELD_STRING_IP "__probe_ip" | 44 | #define FIELD_STRING_IP "__probe_ip" |
43 | #define FIELD_STRING_NARGS "__probe_nargs" | ||
44 | #define FIELD_STRING_RETIP "__probe_ret_ip" | 45 | #define FIELD_STRING_RETIP "__probe_ret_ip" |
45 | #define FIELD_STRING_FUNC "__probe_func" | 46 | #define FIELD_STRING_FUNC "__probe_func" |
46 | 47 | ||
@@ -52,56 +53,102 @@ const char *reserved_field_names[] = { | |||
52 | "common_tgid", | 53 | "common_tgid", |
53 | "common_lock_depth", | 54 | "common_lock_depth", |
54 | FIELD_STRING_IP, | 55 | FIELD_STRING_IP, |
55 | FIELD_STRING_NARGS, | ||
56 | FIELD_STRING_RETIP, | 56 | FIELD_STRING_RETIP, |
57 | FIELD_STRING_FUNC, | 57 | FIELD_STRING_FUNC, |
58 | }; | 58 | }; |
59 | 59 | ||
60 | struct fetch_func { | 60 | /* Printing function type */ |
61 | unsigned long (*func)(struct pt_regs *, void *); | 61 | typedef int (*print_type_func_t)(struct trace_seq *, const char *, void *); |
62 | #define PRINT_TYPE_FUNC_NAME(type) print_type_##type | ||
63 | #define PRINT_TYPE_FMT_NAME(type) print_type_format_##type | ||
64 | |||
65 | /* Printing in basic type function template */ | ||
66 | #define DEFINE_BASIC_PRINT_TYPE_FUNC(type, fmt, cast) \ | ||
67 | static __kprobes int PRINT_TYPE_FUNC_NAME(type)(struct trace_seq *s, \ | ||
68 | const char *name, void *data)\ | ||
69 | { \ | ||
70 | return trace_seq_printf(s, " %s=" fmt, name, (cast)*(type *)data);\ | ||
71 | } \ | ||
72 | static const char PRINT_TYPE_FMT_NAME(type)[] = fmt; | ||
73 | |||
74 | DEFINE_BASIC_PRINT_TYPE_FUNC(u8, "%x", unsigned int) | ||
75 | DEFINE_BASIC_PRINT_TYPE_FUNC(u16, "%x", unsigned int) | ||
76 | DEFINE_BASIC_PRINT_TYPE_FUNC(u32, "%lx", unsigned long) | ||
77 | DEFINE_BASIC_PRINT_TYPE_FUNC(u64, "%llx", unsigned long long) | ||
78 | DEFINE_BASIC_PRINT_TYPE_FUNC(s8, "%d", int) | ||
79 | DEFINE_BASIC_PRINT_TYPE_FUNC(s16, "%d", int) | ||
80 | DEFINE_BASIC_PRINT_TYPE_FUNC(s32, "%ld", long) | ||
81 | DEFINE_BASIC_PRINT_TYPE_FUNC(s64, "%lld", long long) | ||
82 | |||
83 | /* Data fetch function type */ | ||
84 | typedef void (*fetch_func_t)(struct pt_regs *, void *, void *); | ||
85 | |||
86 | struct fetch_param { | ||
87 | fetch_func_t fn; | ||
62 | void *data; | 88 | void *data; |
63 | }; | 89 | }; |
64 | 90 | ||
65 | static __kprobes unsigned long call_fetch(struct fetch_func *f, | 91 | static __kprobes void call_fetch(struct fetch_param *fprm, |
66 | struct pt_regs *regs) | 92 | struct pt_regs *regs, void *dest) |
67 | { | 93 | { |
68 | return f->func(regs, f->data); | 94 | return fprm->fn(regs, fprm->data, dest); |
69 | } | 95 | } |
70 | 96 | ||
71 | /* fetch handlers */ | 97 | #define FETCH_FUNC_NAME(kind, type) fetch_##kind##_##type |
72 | static __kprobes unsigned long fetch_register(struct pt_regs *regs, | 98 | /* |
73 | void *offset) | 99 | * Define macro for basic types - we don't need to define s* types, because |
74 | { | 100 | * we have to care only about bitwidth at recording time. |
75 | return regs_get_register(regs, (unsigned int)((unsigned long)offset)); | 101 | */ |
102 | #define DEFINE_BASIC_FETCH_FUNCS(kind) \ | ||
103 | DEFINE_FETCH_##kind(u8) \ | ||
104 | DEFINE_FETCH_##kind(u16) \ | ||
105 | DEFINE_FETCH_##kind(u32) \ | ||
106 | DEFINE_FETCH_##kind(u64) | ||
107 | |||
108 | #define CHECK_BASIC_FETCH_FUNCS(kind, fn) \ | ||
109 | ((FETCH_FUNC_NAME(kind, u8) == fn) || \ | ||
110 | (FETCH_FUNC_NAME(kind, u16) == fn) || \ | ||
111 | (FETCH_FUNC_NAME(kind, u32) == fn) || \ | ||
112 | (FETCH_FUNC_NAME(kind, u64) == fn)) | ||
113 | |||
114 | /* Data fetch function templates */ | ||
115 | #define DEFINE_FETCH_reg(type) \ | ||
116 | static __kprobes void FETCH_FUNC_NAME(reg, type)(struct pt_regs *regs, \ | ||
117 | void *offset, void *dest) \ | ||
118 | { \ | ||
119 | *(type *)dest = (type)regs_get_register(regs, \ | ||
120 | (unsigned int)((unsigned long)offset)); \ | ||
76 | } | 121 | } |
77 | 122 | DEFINE_BASIC_FETCH_FUNCS(reg) | |
78 | static __kprobes unsigned long fetch_stack(struct pt_regs *regs, | 123 | |
79 | void *num) | 124 | #define DEFINE_FETCH_stack(type) \ |
80 | { | 125 | static __kprobes void FETCH_FUNC_NAME(stack, type)(struct pt_regs *regs,\ |
81 | return regs_get_kernel_stack_nth(regs, | 126 | void *offset, void *dest) \ |
82 | (unsigned int)((unsigned long)num)); | 127 | { \ |
128 | *(type *)dest = (type)regs_get_kernel_stack_nth(regs, \ | ||
129 | (unsigned int)((unsigned long)offset)); \ | ||
83 | } | 130 | } |
131 | DEFINE_BASIC_FETCH_FUNCS(stack) | ||
84 | 132 | ||
85 | static __kprobes unsigned long fetch_memory(struct pt_regs *regs, void *addr) | 133 | #define DEFINE_FETCH_retval(type) \ |
86 | { | 134 | static __kprobes void FETCH_FUNC_NAME(retval, type)(struct pt_regs *regs,\ |
87 | unsigned long retval; | 135 | void *dummy, void *dest) \ |
88 | 136 | { \ | |
89 | if (probe_kernel_address(addr, retval)) | 137 | *(type *)dest = (type)regs_return_value(regs); \ |
90 | return 0; | ||
91 | return retval; | ||
92 | } | 138 | } |
93 | 139 | DEFINE_BASIC_FETCH_FUNCS(retval) | |
94 | static __kprobes unsigned long fetch_retvalue(struct pt_regs *regs, | 140 | |
95 | void *dummy) | 141 | #define DEFINE_FETCH_memory(type) \ |
96 | { | 142 | static __kprobes void FETCH_FUNC_NAME(memory, type)(struct pt_regs *regs,\ |
97 | return regs_return_value(regs); | 143 | void *addr, void *dest) \ |
98 | } | 144 | { \ |
99 | 145 | type retval; \ | |
100 | static __kprobes unsigned long fetch_stack_address(struct pt_regs *regs, | 146 | if (probe_kernel_address(addr, retval)) \ |
101 | void *dummy) | 147 | *(type *)dest = 0; \ |
102 | { | 148 | else \ |
103 | return kernel_stack_pointer(regs); | 149 | *(type *)dest = retval; \ |
104 | } | 150 | } |
151 | DEFINE_BASIC_FETCH_FUNCS(memory) | ||
105 | 152 | ||
106 | /* Memory fetching by symbol */ | 153 | /* Memory fetching by symbol */ |
107 | struct symbol_cache { | 154 | struct symbol_cache { |
@@ -145,51 +192,126 @@ static struct symbol_cache *alloc_symbol_cache(const char *sym, long offset) | |||
145 | return sc; | 192 | return sc; |
146 | } | 193 | } |
147 | 194 | ||
148 | static __kprobes unsigned long fetch_symbol(struct pt_regs *regs, void *data) | 195 | #define DEFINE_FETCH_symbol(type) \ |
149 | { | 196 | static __kprobes void FETCH_FUNC_NAME(symbol, type)(struct pt_regs *regs,\ |
150 | struct symbol_cache *sc = data; | 197 | void *data, void *dest) \ |
151 | 198 | { \ | |
152 | if (sc->addr) | 199 | struct symbol_cache *sc = data; \ |
153 | return fetch_memory(regs, (void *)sc->addr); | 200 | if (sc->addr) \ |
154 | else | 201 | fetch_memory_##type(regs, (void *)sc->addr, dest); \ |
155 | return 0; | 202 | else \ |
203 | *(type *)dest = 0; \ | ||
156 | } | 204 | } |
205 | DEFINE_BASIC_FETCH_FUNCS(symbol) | ||
157 | 206 | ||
158 | /* Special indirect memory access interface */ | 207 | /* Dereference memory access function */ |
159 | struct indirect_fetch_data { | 208 | struct deref_fetch_param { |
160 | struct fetch_func orig; | 209 | struct fetch_param orig; |
161 | long offset; | 210 | long offset; |
162 | }; | 211 | }; |
163 | 212 | ||
164 | static __kprobes unsigned long fetch_indirect(struct pt_regs *regs, void *data) | 213 | #define DEFINE_FETCH_deref(type) \ |
165 | { | 214 | static __kprobes void FETCH_FUNC_NAME(deref, type)(struct pt_regs *regs,\ |
166 | struct indirect_fetch_data *ind = data; | 215 | void *data, void *dest) \ |
167 | unsigned long addr; | 216 | { \ |
168 | 217 | struct deref_fetch_param *dprm = data; \ | |
169 | addr = call_fetch(&ind->orig, regs); | 218 | unsigned long addr; \ |
170 | if (addr) { | 219 | call_fetch(&dprm->orig, regs, &addr); \ |
171 | addr += ind->offset; | 220 | if (addr) { \ |
172 | return fetch_memory(regs, (void *)addr); | 221 | addr += dprm->offset; \ |
173 | } else | 222 | fetch_memory_##type(regs, (void *)addr, dest); \ |
174 | return 0; | 223 | } else \ |
224 | *(type *)dest = 0; \ | ||
175 | } | 225 | } |
226 | DEFINE_BASIC_FETCH_FUNCS(deref) | ||
176 | 227 | ||
177 | static __kprobes void free_indirect_fetch_data(struct indirect_fetch_data *data) | 228 | static __kprobes void free_deref_fetch_param(struct deref_fetch_param *data) |
178 | { | 229 | { |
179 | if (data->orig.func == fetch_indirect) | 230 | if (CHECK_BASIC_FETCH_FUNCS(deref, data->orig.fn)) |
180 | free_indirect_fetch_data(data->orig.data); | 231 | free_deref_fetch_param(data->orig.data); |
181 | else if (data->orig.func == fetch_symbol) | 232 | else if (CHECK_BASIC_FETCH_FUNCS(symbol, data->orig.fn)) |
182 | free_symbol_cache(data->orig.data); | 233 | free_symbol_cache(data->orig.data); |
183 | kfree(data); | 234 | kfree(data); |
184 | } | 235 | } |
185 | 236 | ||
237 | /* Default (unsigned long) fetch type */ | ||
238 | #define __DEFAULT_FETCH_TYPE(t) u##t | ||
239 | #define _DEFAULT_FETCH_TYPE(t) __DEFAULT_FETCH_TYPE(t) | ||
240 | #define DEFAULT_FETCH_TYPE _DEFAULT_FETCH_TYPE(BITS_PER_LONG) | ||
241 | #define DEFAULT_FETCH_TYPE_STR __stringify(DEFAULT_FETCH_TYPE) | ||
242 | |||
243 | #define ASSIGN_FETCH_FUNC(kind, type) \ | ||
244 | .kind = FETCH_FUNC_NAME(kind, type) | ||
245 | |||
246 | #define ASSIGN_FETCH_TYPE(ptype, ftype, sign) \ | ||
247 | {.name = #ptype, \ | ||
248 | .size = sizeof(ftype), \ | ||
249 | .is_signed = sign, \ | ||
250 | .print = PRINT_TYPE_FUNC_NAME(ptype), \ | ||
251 | .fmt = PRINT_TYPE_FMT_NAME(ptype), \ | ||
252 | ASSIGN_FETCH_FUNC(reg, ftype), \ | ||
253 | ASSIGN_FETCH_FUNC(stack, ftype), \ | ||
254 | ASSIGN_FETCH_FUNC(retval, ftype), \ | ||
255 | ASSIGN_FETCH_FUNC(memory, ftype), \ | ||
256 | ASSIGN_FETCH_FUNC(symbol, ftype), \ | ||
257 | ASSIGN_FETCH_FUNC(deref, ftype), \ | ||
258 | } | ||
259 | |||
260 | /* Fetch type information table */ | ||
261 | static const struct fetch_type { | ||
262 | const char *name; /* Name of type */ | ||
263 | size_t size; /* Byte size of type */ | ||
264 | int is_signed; /* Signed flag */ | ||
265 | print_type_func_t print; /* Print functions */ | ||
266 | const char *fmt; /* Fromat string */ | ||
267 | /* Fetch functions */ | ||
268 | fetch_func_t reg; | ||
269 | fetch_func_t stack; | ||
270 | fetch_func_t retval; | ||
271 | fetch_func_t memory; | ||
272 | fetch_func_t symbol; | ||
273 | fetch_func_t deref; | ||
274 | } fetch_type_table[] = { | ||
275 | ASSIGN_FETCH_TYPE(u8, u8, 0), | ||
276 | ASSIGN_FETCH_TYPE(u16, u16, 0), | ||
277 | ASSIGN_FETCH_TYPE(u32, u32, 0), | ||
278 | ASSIGN_FETCH_TYPE(u64, u64, 0), | ||
279 | ASSIGN_FETCH_TYPE(s8, u8, 1), | ||
280 | ASSIGN_FETCH_TYPE(s16, u16, 1), | ||
281 | ASSIGN_FETCH_TYPE(s32, u32, 1), | ||
282 | ASSIGN_FETCH_TYPE(s64, u64, 1), | ||
283 | }; | ||
284 | |||
285 | static const struct fetch_type *find_fetch_type(const char *type) | ||
286 | { | ||
287 | int i; | ||
288 | |||
289 | if (!type) | ||
290 | type = DEFAULT_FETCH_TYPE_STR; | ||
291 | |||
292 | for (i = 0; i < ARRAY_SIZE(fetch_type_table); i++) | ||
293 | if (strcmp(type, fetch_type_table[i].name) == 0) | ||
294 | return &fetch_type_table[i]; | ||
295 | return NULL; | ||
296 | } | ||
297 | |||
298 | /* Special function : only accept unsigned long */ | ||
299 | static __kprobes void fetch_stack_address(struct pt_regs *regs, | ||
300 | void *dummy, void *dest) | ||
301 | { | ||
302 | *(unsigned long *)dest = kernel_stack_pointer(regs); | ||
303 | } | ||
304 | |||
186 | /** | 305 | /** |
187 | * Kprobe event core functions | 306 | * Kprobe event core functions |
188 | */ | 307 | */ |
189 | 308 | ||
190 | struct probe_arg { | 309 | struct probe_arg { |
191 | struct fetch_func fetch; | 310 | struct fetch_param fetch; |
192 | const char *name; | 311 | unsigned int offset; /* Offset from argument entry */ |
312 | const char *name; /* Name of this argument */ | ||
313 | const char *comm; /* Command of this argument */ | ||
314 | const struct fetch_type *type; /* Type of this argument */ | ||
193 | }; | 315 | }; |
194 | 316 | ||
195 | /* Flags for trace_probe */ | 317 | /* Flags for trace_probe */ |
@@ -202,8 +324,9 @@ struct trace_probe { | |||
202 | unsigned long nhit; | 324 | unsigned long nhit; |
203 | unsigned int flags; /* For TP_FLAG_* */ | 325 | unsigned int flags; /* For TP_FLAG_* */ |
204 | const char *symbol; /* symbol name */ | 326 | const char *symbol; /* symbol name */ |
327 | struct ftrace_event_class class; | ||
205 | struct ftrace_event_call call; | 328 | struct ftrace_event_call call; |
206 | struct trace_event event; | 329 | ssize_t size; /* trace entry size */ |
207 | unsigned int nr_args; | 330 | unsigned int nr_args; |
208 | struct probe_arg args[]; | 331 | struct probe_arg args[]; |
209 | }; | 332 | }; |
@@ -212,6 +335,7 @@ struct trace_probe { | |||
212 | (offsetof(struct trace_probe, args) + \ | 335 | (offsetof(struct trace_probe, args) + \ |
213 | (sizeof(struct probe_arg) * (n))) | 336 | (sizeof(struct probe_arg) * (n))) |
214 | 337 | ||
338 | |||
215 | static __kprobes int probe_is_return(struct trace_probe *tp) | 339 | static __kprobes int probe_is_return(struct trace_probe *tp) |
216 | { | 340 | { |
217 | return tp->rp.handler != NULL; | 341 | return tp->rp.handler != NULL; |
@@ -222,49 +346,6 @@ static __kprobes const char *probe_symbol(struct trace_probe *tp) | |||
222 | return tp->symbol ? tp->symbol : "unknown"; | 346 | return tp->symbol ? tp->symbol : "unknown"; |
223 | } | 347 | } |
224 | 348 | ||
225 | static int probe_arg_string(char *buf, size_t n, struct fetch_func *ff) | ||
226 | { | ||
227 | int ret = -EINVAL; | ||
228 | |||
229 | if (ff->func == fetch_register) { | ||
230 | const char *name; | ||
231 | name = regs_query_register_name((unsigned int)((long)ff->data)); | ||
232 | ret = snprintf(buf, n, "%%%s", name); | ||
233 | } else if (ff->func == fetch_stack) | ||
234 | ret = snprintf(buf, n, "$stack%lu", (unsigned long)ff->data); | ||
235 | else if (ff->func == fetch_memory) | ||
236 | ret = snprintf(buf, n, "@0x%p", ff->data); | ||
237 | else if (ff->func == fetch_symbol) { | ||
238 | struct symbol_cache *sc = ff->data; | ||
239 | if (sc->offset) | ||
240 | ret = snprintf(buf, n, "@%s%+ld", sc->symbol, | ||
241 | sc->offset); | ||
242 | else | ||
243 | ret = snprintf(buf, n, "@%s", sc->symbol); | ||
244 | } else if (ff->func == fetch_retvalue) | ||
245 | ret = snprintf(buf, n, "$retval"); | ||
246 | else if (ff->func == fetch_stack_address) | ||
247 | ret = snprintf(buf, n, "$stack"); | ||
248 | else if (ff->func == fetch_indirect) { | ||
249 | struct indirect_fetch_data *id = ff->data; | ||
250 | size_t l = 0; | ||
251 | ret = snprintf(buf, n, "%+ld(", id->offset); | ||
252 | if (ret >= n) | ||
253 | goto end; | ||
254 | l += ret; | ||
255 | ret = probe_arg_string(buf + l, n - l, &id->orig); | ||
256 | if (ret < 0) | ||
257 | goto end; | ||
258 | l += ret; | ||
259 | ret = snprintf(buf + l, n - l, ")"); | ||
260 | ret += l; | ||
261 | } | ||
262 | end: | ||
263 | if (ret >= n) | ||
264 | return -ENOSPC; | ||
265 | return ret; | ||
266 | } | ||
267 | |||
268 | static int register_probe_event(struct trace_probe *tp); | 349 | static int register_probe_event(struct trace_probe *tp); |
269 | static void unregister_probe_event(struct trace_probe *tp); | 350 | static void unregister_probe_event(struct trace_probe *tp); |
270 | 351 | ||
@@ -323,6 +404,7 @@ static struct trace_probe *alloc_trace_probe(const char *group, | |||
323 | goto error; | 404 | goto error; |
324 | } | 405 | } |
325 | 406 | ||
407 | tp->call.class = &tp->class; | ||
326 | tp->call.name = kstrdup(event, GFP_KERNEL); | 408 | tp->call.name = kstrdup(event, GFP_KERNEL); |
327 | if (!tp->call.name) | 409 | if (!tp->call.name) |
328 | goto error; | 410 | goto error; |
@@ -332,8 +414,8 @@ static struct trace_probe *alloc_trace_probe(const char *group, | |||
332 | goto error; | 414 | goto error; |
333 | } | 415 | } |
334 | 416 | ||
335 | tp->call.system = kstrdup(group, GFP_KERNEL); | 417 | tp->class.system = kstrdup(group, GFP_KERNEL); |
336 | if (!tp->call.system) | 418 | if (!tp->class.system) |
337 | goto error; | 419 | goto error; |
338 | 420 | ||
339 | INIT_LIST_HEAD(&tp->list); | 421 | INIT_LIST_HEAD(&tp->list); |
@@ -347,11 +429,12 @@ error: | |||
347 | 429 | ||
348 | static void free_probe_arg(struct probe_arg *arg) | 430 | static void free_probe_arg(struct probe_arg *arg) |
349 | { | 431 | { |
350 | if (arg->fetch.func == fetch_symbol) | 432 | if (CHECK_BASIC_FETCH_FUNCS(deref, arg->fetch.fn)) |
433 | free_deref_fetch_param(arg->fetch.data); | ||
434 | else if (CHECK_BASIC_FETCH_FUNCS(symbol, arg->fetch.fn)) | ||
351 | free_symbol_cache(arg->fetch.data); | 435 | free_symbol_cache(arg->fetch.data); |
352 | else if (arg->fetch.func == fetch_indirect) | ||
353 | free_indirect_fetch_data(arg->fetch.data); | ||
354 | kfree(arg->name); | 436 | kfree(arg->name); |
437 | kfree(arg->comm); | ||
355 | } | 438 | } |
356 | 439 | ||
357 | static void free_trace_probe(struct trace_probe *tp) | 440 | static void free_trace_probe(struct trace_probe *tp) |
@@ -361,7 +444,7 @@ static void free_trace_probe(struct trace_probe *tp) | |||
361 | for (i = 0; i < tp->nr_args; i++) | 444 | for (i = 0; i < tp->nr_args; i++) |
362 | free_probe_arg(&tp->args[i]); | 445 | free_probe_arg(&tp->args[i]); |
363 | 446 | ||
364 | kfree(tp->call.system); | 447 | kfree(tp->call.class->system); |
365 | kfree(tp->call.name); | 448 | kfree(tp->call.name); |
366 | kfree(tp->symbol); | 449 | kfree(tp->symbol); |
367 | kfree(tp); | 450 | kfree(tp); |
@@ -374,7 +457,7 @@ static struct trace_probe *find_probe_event(const char *event, | |||
374 | 457 | ||
375 | list_for_each_entry(tp, &probe_list, list) | 458 | list_for_each_entry(tp, &probe_list, list) |
376 | if (strcmp(tp->call.name, event) == 0 && | 459 | if (strcmp(tp->call.name, event) == 0 && |
377 | strcmp(tp->call.system, group) == 0) | 460 | strcmp(tp->call.class->system, group) == 0) |
378 | return tp; | 461 | return tp; |
379 | return NULL; | 462 | return NULL; |
380 | } | 463 | } |
@@ -399,7 +482,7 @@ static int register_trace_probe(struct trace_probe *tp) | |||
399 | mutex_lock(&probe_lock); | 482 | mutex_lock(&probe_lock); |
400 | 483 | ||
401 | /* register as an event */ | 484 | /* register as an event */ |
402 | old_tp = find_probe_event(tp->call.name, tp->call.system); | 485 | old_tp = find_probe_event(tp->call.name, tp->call.class->system); |
403 | if (old_tp) { | 486 | if (old_tp) { |
404 | /* delete old event */ | 487 | /* delete old event */ |
405 | unregister_trace_probe(old_tp); | 488 | unregister_trace_probe(old_tp); |
@@ -457,28 +540,30 @@ static int split_symbol_offset(char *symbol, unsigned long *offset) | |||
457 | #define PARAM_MAX_ARGS 16 | 540 | #define PARAM_MAX_ARGS 16 |
458 | #define PARAM_MAX_STACK (THREAD_SIZE / sizeof(unsigned long)) | 541 | #define PARAM_MAX_STACK (THREAD_SIZE / sizeof(unsigned long)) |
459 | 542 | ||
460 | static int parse_probe_vars(char *arg, struct fetch_func *ff, int is_return) | 543 | static int parse_probe_vars(char *arg, const struct fetch_type *t, |
544 | struct fetch_param *f, int is_return) | ||
461 | { | 545 | { |
462 | int ret = 0; | 546 | int ret = 0; |
463 | unsigned long param; | 547 | unsigned long param; |
464 | 548 | ||
465 | if (strcmp(arg, "retval") == 0) { | 549 | if (strcmp(arg, "retval") == 0) { |
466 | if (is_return) { | 550 | if (is_return) |
467 | ff->func = fetch_retvalue; | 551 | f->fn = t->retval; |
468 | ff->data = NULL; | 552 | else |
469 | } else | ||
470 | ret = -EINVAL; | 553 | ret = -EINVAL; |
471 | } else if (strncmp(arg, "stack", 5) == 0) { | 554 | } else if (strncmp(arg, "stack", 5) == 0) { |
472 | if (arg[5] == '\0') { | 555 | if (arg[5] == '\0') { |
473 | ff->func = fetch_stack_address; | 556 | if (strcmp(t->name, DEFAULT_FETCH_TYPE_STR) == 0) |
474 | ff->data = NULL; | 557 | f->fn = fetch_stack_address; |
558 | else | ||
559 | ret = -EINVAL; | ||
475 | } else if (isdigit(arg[5])) { | 560 | } else if (isdigit(arg[5])) { |
476 | ret = strict_strtoul(arg + 5, 10, ¶m); | 561 | ret = strict_strtoul(arg + 5, 10, ¶m); |
477 | if (ret || param > PARAM_MAX_STACK) | 562 | if (ret || param > PARAM_MAX_STACK) |
478 | ret = -EINVAL; | 563 | ret = -EINVAL; |
479 | else { | 564 | else { |
480 | ff->func = fetch_stack; | 565 | f->fn = t->stack; |
481 | ff->data = (void *)param; | 566 | f->data = (void *)param; |
482 | } | 567 | } |
483 | } else | 568 | } else |
484 | ret = -EINVAL; | 569 | ret = -EINVAL; |
@@ -488,7 +573,8 @@ static int parse_probe_vars(char *arg, struct fetch_func *ff, int is_return) | |||
488 | } | 573 | } |
489 | 574 | ||
490 | /* Recursive argument parser */ | 575 | /* Recursive argument parser */ |
491 | static int __parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | 576 | static int __parse_probe_arg(char *arg, const struct fetch_type *t, |
577 | struct fetch_param *f, int is_return) | ||
492 | { | 578 | { |
493 | int ret = 0; | 579 | int ret = 0; |
494 | unsigned long param; | 580 | unsigned long param; |
@@ -497,13 +583,13 @@ static int __parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | |||
497 | 583 | ||
498 | switch (arg[0]) { | 584 | switch (arg[0]) { |
499 | case '$': | 585 | case '$': |
500 | ret = parse_probe_vars(arg + 1, ff, is_return); | 586 | ret = parse_probe_vars(arg + 1, t, f, is_return); |
501 | break; | 587 | break; |
502 | case '%': /* named register */ | 588 | case '%': /* named register */ |
503 | ret = regs_query_register_offset(arg + 1); | 589 | ret = regs_query_register_offset(arg + 1); |
504 | if (ret >= 0) { | 590 | if (ret >= 0) { |
505 | ff->func = fetch_register; | 591 | f->fn = t->reg; |
506 | ff->data = (void *)(unsigned long)ret; | 592 | f->data = (void *)(unsigned long)ret; |
507 | ret = 0; | 593 | ret = 0; |
508 | } | 594 | } |
509 | break; | 595 | break; |
@@ -512,26 +598,22 @@ static int __parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | |||
512 | ret = strict_strtoul(arg + 1, 0, ¶m); | 598 | ret = strict_strtoul(arg + 1, 0, ¶m); |
513 | if (ret) | 599 | if (ret) |
514 | break; | 600 | break; |
515 | ff->func = fetch_memory; | 601 | f->fn = t->memory; |
516 | ff->data = (void *)param; | 602 | f->data = (void *)param; |
517 | } else { | 603 | } else { |
518 | ret = split_symbol_offset(arg + 1, &offset); | 604 | ret = split_symbol_offset(arg + 1, &offset); |
519 | if (ret) | 605 | if (ret) |
520 | break; | 606 | break; |
521 | ff->data = alloc_symbol_cache(arg + 1, offset); | 607 | f->data = alloc_symbol_cache(arg + 1, offset); |
522 | if (ff->data) | 608 | if (f->data) |
523 | ff->func = fetch_symbol; | 609 | f->fn = t->symbol; |
524 | else | ||
525 | ret = -EINVAL; | ||
526 | } | 610 | } |
527 | break; | 611 | break; |
528 | case '+': /* indirect memory */ | 612 | case '+': /* deref memory */ |
529 | case '-': | 613 | case '-': |
530 | tmp = strchr(arg, '('); | 614 | tmp = strchr(arg, '('); |
531 | if (!tmp) { | 615 | if (!tmp) |
532 | ret = -EINVAL; | ||
533 | break; | 616 | break; |
534 | } | ||
535 | *tmp = '\0'; | 617 | *tmp = '\0'; |
536 | ret = strict_strtol(arg + 1, 0, &offset); | 618 | ret = strict_strtol(arg + 1, 0, &offset); |
537 | if (ret) | 619 | if (ret) |
@@ -541,38 +623,58 @@ static int __parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | |||
541 | arg = tmp + 1; | 623 | arg = tmp + 1; |
542 | tmp = strrchr(arg, ')'); | 624 | tmp = strrchr(arg, ')'); |
543 | if (tmp) { | 625 | if (tmp) { |
544 | struct indirect_fetch_data *id; | 626 | struct deref_fetch_param *dprm; |
627 | const struct fetch_type *t2 = find_fetch_type(NULL); | ||
545 | *tmp = '\0'; | 628 | *tmp = '\0'; |
546 | id = kzalloc(sizeof(struct indirect_fetch_data), | 629 | dprm = kzalloc(sizeof(struct deref_fetch_param), |
547 | GFP_KERNEL); | 630 | GFP_KERNEL); |
548 | if (!id) | 631 | if (!dprm) |
549 | return -ENOMEM; | 632 | return -ENOMEM; |
550 | id->offset = offset; | 633 | dprm->offset = offset; |
551 | ret = __parse_probe_arg(arg, &id->orig, is_return); | 634 | ret = __parse_probe_arg(arg, t2, &dprm->orig, |
635 | is_return); | ||
552 | if (ret) | 636 | if (ret) |
553 | kfree(id); | 637 | kfree(dprm); |
554 | else { | 638 | else { |
555 | ff->func = fetch_indirect; | 639 | f->fn = t->deref; |
556 | ff->data = (void *)id; | 640 | f->data = (void *)dprm; |
557 | } | 641 | } |
558 | } else | 642 | } |
559 | ret = -EINVAL; | ||
560 | break; | 643 | break; |
561 | default: | ||
562 | /* TODO: support custom handler */ | ||
563 | ret = -EINVAL; | ||
564 | } | 644 | } |
645 | if (!ret && !f->fn) | ||
646 | ret = -EINVAL; | ||
565 | return ret; | 647 | return ret; |
566 | } | 648 | } |
567 | 649 | ||
568 | /* String length checking wrapper */ | 650 | /* String length checking wrapper */ |
569 | static int parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | 651 | static int parse_probe_arg(char *arg, struct trace_probe *tp, |
652 | struct probe_arg *parg, int is_return) | ||
570 | { | 653 | { |
654 | const char *t; | ||
655 | |||
571 | if (strlen(arg) > MAX_ARGSTR_LEN) { | 656 | if (strlen(arg) > MAX_ARGSTR_LEN) { |
572 | pr_info("Argument is too long.: %s\n", arg); | 657 | pr_info("Argument is too long.: %s\n", arg); |
573 | return -ENOSPC; | 658 | return -ENOSPC; |
574 | } | 659 | } |
575 | return __parse_probe_arg(arg, ff, is_return); | 660 | parg->comm = kstrdup(arg, GFP_KERNEL); |
661 | if (!parg->comm) { | ||
662 | pr_info("Failed to allocate memory for command '%s'.\n", arg); | ||
663 | return -ENOMEM; | ||
664 | } | ||
665 | t = strchr(parg->comm, ':'); | ||
666 | if (t) { | ||
667 | arg[t - parg->comm] = '\0'; | ||
668 | t++; | ||
669 | } | ||
670 | parg->type = find_fetch_type(t); | ||
671 | if (!parg->type) { | ||
672 | pr_info("Unsupported type: %s\n", t); | ||
673 | return -EINVAL; | ||
674 | } | ||
675 | parg->offset = tp->size; | ||
676 | tp->size += parg->type->size; | ||
677 | return __parse_probe_arg(arg, parg->type, &parg->fetch, is_return); | ||
576 | } | 678 | } |
577 | 679 | ||
578 | /* Return 1 if name is reserved or already used by another argument */ | 680 | /* Return 1 if name is reserved or already used by another argument */ |
@@ -602,15 +704,18 @@ static int create_trace_probe(int argc, char **argv) | |||
602 | * @ADDR : fetch memory at ADDR (ADDR should be in kernel) | 704 | * @ADDR : fetch memory at ADDR (ADDR should be in kernel) |
603 | * @SYM[+|-offs] : fetch memory at SYM +|- offs (SYM is a data symbol) | 705 | * @SYM[+|-offs] : fetch memory at SYM +|- offs (SYM is a data symbol) |
604 | * %REG : fetch register REG | 706 | * %REG : fetch register REG |
605 | * Indirect memory fetch: | 707 | * Dereferencing memory fetch: |
606 | * +|-offs(ARG) : fetch memory at ARG +|- offs address. | 708 | * +|-offs(ARG) : fetch memory at ARG +|- offs address. |
607 | * Alias name of args: | 709 | * Alias name of args: |
608 | * NAME=FETCHARG : set NAME as alias of FETCHARG. | 710 | * NAME=FETCHARG : set NAME as alias of FETCHARG. |
711 | * Type of args: | ||
712 | * FETCHARG:TYPE : use TYPE instead of unsigned long. | ||
609 | */ | 713 | */ |
610 | struct trace_probe *tp; | 714 | struct trace_probe *tp; |
611 | int i, ret = 0; | 715 | int i, ret = 0; |
612 | int is_return = 0, is_delete = 0; | 716 | int is_return = 0, is_delete = 0; |
613 | char *symbol = NULL, *event = NULL, *arg = NULL, *group = NULL; | 717 | char *symbol = NULL, *event = NULL, *group = NULL; |
718 | char *arg, *tmp; | ||
614 | unsigned long offset = 0; | 719 | unsigned long offset = 0; |
615 | void *addr = NULL; | 720 | void *addr = NULL; |
616 | char buf[MAX_EVENT_NAME_LEN]; | 721 | char buf[MAX_EVENT_NAME_LEN]; |
@@ -723,13 +828,6 @@ static int create_trace_probe(int argc, char **argv) | |||
723 | else | 828 | else |
724 | arg = argv[i]; | 829 | arg = argv[i]; |
725 | 830 | ||
726 | if (conflict_field_name(argv[i], tp->args, i)) { | ||
727 | pr_info("Argument%d name '%s' conflicts with " | ||
728 | "another field.\n", i, argv[i]); | ||
729 | ret = -EINVAL; | ||
730 | goto error; | ||
731 | } | ||
732 | |||
733 | tp->args[i].name = kstrdup(argv[i], GFP_KERNEL); | 831 | tp->args[i].name = kstrdup(argv[i], GFP_KERNEL); |
734 | if (!tp->args[i].name) { | 832 | if (!tp->args[i].name) { |
735 | pr_info("Failed to allocate argument%d name '%s'.\n", | 833 | pr_info("Failed to allocate argument%d name '%s'.\n", |
@@ -737,9 +835,19 @@ static int create_trace_probe(int argc, char **argv) | |||
737 | ret = -ENOMEM; | 835 | ret = -ENOMEM; |
738 | goto error; | 836 | goto error; |
739 | } | 837 | } |
838 | tmp = strchr(tp->args[i].name, ':'); | ||
839 | if (tmp) | ||
840 | *tmp = '_'; /* convert : to _ */ | ||
841 | |||
842 | if (conflict_field_name(tp->args[i].name, tp->args, i)) { | ||
843 | pr_info("Argument%d name '%s' conflicts with " | ||
844 | "another field.\n", i, argv[i]); | ||
845 | ret = -EINVAL; | ||
846 | goto error; | ||
847 | } | ||
740 | 848 | ||
741 | /* Parse fetch argument */ | 849 | /* Parse fetch argument */ |
742 | ret = parse_probe_arg(arg, &tp->args[i].fetch, is_return); | 850 | ret = parse_probe_arg(arg, tp, &tp->args[i], is_return); |
743 | if (ret) { | 851 | if (ret) { |
744 | pr_info("Parse error at argument%d. (%d)\n", i, ret); | 852 | pr_info("Parse error at argument%d. (%d)\n", i, ret); |
745 | kfree(tp->args[i].name); | 853 | kfree(tp->args[i].name); |
@@ -794,11 +902,10 @@ static void probes_seq_stop(struct seq_file *m, void *v) | |||
794 | static int probes_seq_show(struct seq_file *m, void *v) | 902 | static int probes_seq_show(struct seq_file *m, void *v) |
795 | { | 903 | { |
796 | struct trace_probe *tp = v; | 904 | struct trace_probe *tp = v; |
797 | int i, ret; | 905 | int i; |
798 | char buf[MAX_ARGSTR_LEN + 1]; | ||
799 | 906 | ||
800 | seq_printf(m, "%c", probe_is_return(tp) ? 'r' : 'p'); | 907 | seq_printf(m, "%c", probe_is_return(tp) ? 'r' : 'p'); |
801 | seq_printf(m, ":%s/%s", tp->call.system, tp->call.name); | 908 | seq_printf(m, ":%s/%s", tp->call.class->system, tp->call.name); |
802 | 909 | ||
803 | if (!tp->symbol) | 910 | if (!tp->symbol) |
804 | seq_printf(m, " 0x%p", tp->rp.kp.addr); | 911 | seq_printf(m, " 0x%p", tp->rp.kp.addr); |
@@ -807,15 +914,10 @@ static int probes_seq_show(struct seq_file *m, void *v) | |||
807 | else | 914 | else |
808 | seq_printf(m, " %s", probe_symbol(tp)); | 915 | seq_printf(m, " %s", probe_symbol(tp)); |
809 | 916 | ||
810 | for (i = 0; i < tp->nr_args; i++) { | 917 | for (i = 0; i < tp->nr_args; i++) |
811 | ret = probe_arg_string(buf, MAX_ARGSTR_LEN, &tp->args[i].fetch); | 918 | seq_printf(m, " %s=%s", tp->args[i].name, tp->args[i].comm); |
812 | if (ret < 0) { | ||
813 | pr_warning("Argument%d decoding error(%d).\n", i, ret); | ||
814 | return ret; | ||
815 | } | ||
816 | seq_printf(m, " %s=%s", tp->args[i].name, buf); | ||
817 | } | ||
818 | seq_printf(m, "\n"); | 919 | seq_printf(m, "\n"); |
920 | |||
819 | return 0; | 921 | return 0; |
820 | } | 922 | } |
821 | 923 | ||
@@ -945,9 +1047,10 @@ static const struct file_operations kprobe_profile_ops = { | |||
945 | static __kprobes void kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) | 1047 | static __kprobes void kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) |
946 | { | 1048 | { |
947 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); | 1049 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); |
948 | struct kprobe_trace_entry *entry; | 1050 | struct kprobe_trace_entry_head *entry; |
949 | struct ring_buffer_event *event; | 1051 | struct ring_buffer_event *event; |
950 | struct ring_buffer *buffer; | 1052 | struct ring_buffer *buffer; |
1053 | u8 *data; | ||
951 | int size, i, pc; | 1054 | int size, i, pc; |
952 | unsigned long irq_flags; | 1055 | unsigned long irq_flags; |
953 | struct ftrace_event_call *call = &tp->call; | 1056 | struct ftrace_event_call *call = &tp->call; |
@@ -957,18 +1060,18 @@ static __kprobes void kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) | |||
957 | local_save_flags(irq_flags); | 1060 | local_save_flags(irq_flags); |
958 | pc = preempt_count(); | 1061 | pc = preempt_count(); |
959 | 1062 | ||
960 | size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args); | 1063 | size = sizeof(*entry) + tp->size; |
961 | 1064 | ||
962 | event = trace_current_buffer_lock_reserve(&buffer, call->id, size, | 1065 | event = trace_current_buffer_lock_reserve(&buffer, call->event.type, |
963 | irq_flags, pc); | 1066 | size, irq_flags, pc); |
964 | if (!event) | 1067 | if (!event) |
965 | return; | 1068 | return; |
966 | 1069 | ||
967 | entry = ring_buffer_event_data(event); | 1070 | entry = ring_buffer_event_data(event); |
968 | entry->nargs = tp->nr_args; | ||
969 | entry->ip = (unsigned long)kp->addr; | 1071 | entry->ip = (unsigned long)kp->addr; |
1072 | data = (u8 *)&entry[1]; | ||
970 | for (i = 0; i < tp->nr_args; i++) | 1073 | for (i = 0; i < tp->nr_args; i++) |
971 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1074 | call_fetch(&tp->args[i].fetch, regs, data + tp->args[i].offset); |
972 | 1075 | ||
973 | if (!filter_current_check_discard(buffer, call, entry, event)) | 1076 | if (!filter_current_check_discard(buffer, call, entry, event)) |
974 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); | 1077 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); |
@@ -979,9 +1082,10 @@ static __kprobes void kretprobe_trace_func(struct kretprobe_instance *ri, | |||
979 | struct pt_regs *regs) | 1082 | struct pt_regs *regs) |
980 | { | 1083 | { |
981 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); | 1084 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); |
982 | struct kretprobe_trace_entry *entry; | 1085 | struct kretprobe_trace_entry_head *entry; |
983 | struct ring_buffer_event *event; | 1086 | struct ring_buffer_event *event; |
984 | struct ring_buffer *buffer; | 1087 | struct ring_buffer *buffer; |
1088 | u8 *data; | ||
985 | int size, i, pc; | 1089 | int size, i, pc; |
986 | unsigned long irq_flags; | 1090 | unsigned long irq_flags; |
987 | struct ftrace_event_call *call = &tp->call; | 1091 | struct ftrace_event_call *call = &tp->call; |
@@ -989,19 +1093,19 @@ static __kprobes void kretprobe_trace_func(struct kretprobe_instance *ri, | |||
989 | local_save_flags(irq_flags); | 1093 | local_save_flags(irq_flags); |
990 | pc = preempt_count(); | 1094 | pc = preempt_count(); |
991 | 1095 | ||
992 | size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args); | 1096 | size = sizeof(*entry) + tp->size; |
993 | 1097 | ||
994 | event = trace_current_buffer_lock_reserve(&buffer, call->id, size, | 1098 | event = trace_current_buffer_lock_reserve(&buffer, call->event.type, |
995 | irq_flags, pc); | 1099 | size, irq_flags, pc); |
996 | if (!event) | 1100 | if (!event) |
997 | return; | 1101 | return; |
998 | 1102 | ||
999 | entry = ring_buffer_event_data(event); | 1103 | entry = ring_buffer_event_data(event); |
1000 | entry->nargs = tp->nr_args; | ||
1001 | entry->func = (unsigned long)tp->rp.kp.addr; | 1104 | entry->func = (unsigned long)tp->rp.kp.addr; |
1002 | entry->ret_ip = (unsigned long)ri->ret_addr; | 1105 | entry->ret_ip = (unsigned long)ri->ret_addr; |
1106 | data = (u8 *)&entry[1]; | ||
1003 | for (i = 0; i < tp->nr_args; i++) | 1107 | for (i = 0; i < tp->nr_args; i++) |
1004 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1108 | call_fetch(&tp->args[i].fetch, regs, data + tp->args[i].offset); |
1005 | 1109 | ||
1006 | if (!filter_current_check_discard(buffer, call, entry, event)) | 1110 | if (!filter_current_check_discard(buffer, call, entry, event)) |
1007 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); | 1111 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); |
@@ -1009,17 +1113,17 @@ static __kprobes void kretprobe_trace_func(struct kretprobe_instance *ri, | |||
1009 | 1113 | ||
1010 | /* Event entry printers */ | 1114 | /* Event entry printers */ |
1011 | enum print_line_t | 1115 | enum print_line_t |
1012 | print_kprobe_event(struct trace_iterator *iter, int flags) | 1116 | print_kprobe_event(struct trace_iterator *iter, int flags, |
1117 | struct trace_event *event) | ||
1013 | { | 1118 | { |
1014 | struct kprobe_trace_entry *field; | 1119 | struct kprobe_trace_entry_head *field; |
1015 | struct trace_seq *s = &iter->seq; | 1120 | struct trace_seq *s = &iter->seq; |
1016 | struct trace_event *event; | ||
1017 | struct trace_probe *tp; | 1121 | struct trace_probe *tp; |
1122 | u8 *data; | ||
1018 | int i; | 1123 | int i; |
1019 | 1124 | ||
1020 | field = (struct kprobe_trace_entry *)iter->ent; | 1125 | field = (struct kprobe_trace_entry_head *)iter->ent; |
1021 | event = ftrace_find_event(field->ent.type); | 1126 | tp = container_of(event, struct trace_probe, call.event); |
1022 | tp = container_of(event, struct trace_probe, event); | ||
1023 | 1127 | ||
1024 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) | 1128 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) |
1025 | goto partial; | 1129 | goto partial; |
@@ -1030,9 +1134,10 @@ print_kprobe_event(struct trace_iterator *iter, int flags) | |||
1030 | if (!trace_seq_puts(s, ")")) | 1134 | if (!trace_seq_puts(s, ")")) |
1031 | goto partial; | 1135 | goto partial; |
1032 | 1136 | ||
1033 | for (i = 0; i < field->nargs; i++) | 1137 | data = (u8 *)&field[1]; |
1034 | if (!trace_seq_printf(s, " %s=%lx", | 1138 | for (i = 0; i < tp->nr_args; i++) |
1035 | tp->args[i].name, field->args[i])) | 1139 | if (!tp->args[i].type->print(s, tp->args[i].name, |
1140 | data + tp->args[i].offset)) | ||
1036 | goto partial; | 1141 | goto partial; |
1037 | 1142 | ||
1038 | if (!trace_seq_puts(s, "\n")) | 1143 | if (!trace_seq_puts(s, "\n")) |
@@ -1044,17 +1149,17 @@ partial: | |||
1044 | } | 1149 | } |
1045 | 1150 | ||
1046 | enum print_line_t | 1151 | enum print_line_t |
1047 | print_kretprobe_event(struct trace_iterator *iter, int flags) | 1152 | print_kretprobe_event(struct trace_iterator *iter, int flags, |
1153 | struct trace_event *event) | ||
1048 | { | 1154 | { |
1049 | struct kretprobe_trace_entry *field; | 1155 | struct kretprobe_trace_entry_head *field; |
1050 | struct trace_seq *s = &iter->seq; | 1156 | struct trace_seq *s = &iter->seq; |
1051 | struct trace_event *event; | ||
1052 | struct trace_probe *tp; | 1157 | struct trace_probe *tp; |
1158 | u8 *data; | ||
1053 | int i; | 1159 | int i; |
1054 | 1160 | ||
1055 | field = (struct kretprobe_trace_entry *)iter->ent; | 1161 | field = (struct kretprobe_trace_entry_head *)iter->ent; |
1056 | event = ftrace_find_event(field->ent.type); | 1162 | tp = container_of(event, struct trace_probe, call.event); |
1057 | tp = container_of(event, struct trace_probe, event); | ||
1058 | 1163 | ||
1059 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) | 1164 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) |
1060 | goto partial; | 1165 | goto partial; |
@@ -1071,9 +1176,10 @@ print_kretprobe_event(struct trace_iterator *iter, int flags) | |||
1071 | if (!trace_seq_puts(s, ")")) | 1176 | if (!trace_seq_puts(s, ")")) |
1072 | goto partial; | 1177 | goto partial; |
1073 | 1178 | ||
1074 | for (i = 0; i < field->nargs; i++) | 1179 | data = (u8 *)&field[1]; |
1075 | if (!trace_seq_printf(s, " %s=%lx", | 1180 | for (i = 0; i < tp->nr_args; i++) |
1076 | tp->args[i].name, field->args[i])) | 1181 | if (!tp->args[i].type->print(s, tp->args[i].name, |
1182 | data + tp->args[i].offset)) | ||
1077 | goto partial; | 1183 | goto partial; |
1078 | 1184 | ||
1079 | if (!trace_seq_puts(s, "\n")) | 1185 | if (!trace_seq_puts(s, "\n")) |
@@ -1110,8 +1216,6 @@ static void probe_event_disable(struct ftrace_event_call *call) | |||
1110 | 1216 | ||
1111 | static int probe_event_raw_init(struct ftrace_event_call *event_call) | 1217 | static int probe_event_raw_init(struct ftrace_event_call *event_call) |
1112 | { | 1218 | { |
1113 | INIT_LIST_HEAD(&event_call->fields); | ||
1114 | |||
1115 | return 0; | 1219 | return 0; |
1116 | } | 1220 | } |
1117 | 1221 | ||
@@ -1129,29 +1233,43 @@ static int probe_event_raw_init(struct ftrace_event_call *event_call) | |||
1129 | static int kprobe_event_define_fields(struct ftrace_event_call *event_call) | 1233 | static int kprobe_event_define_fields(struct ftrace_event_call *event_call) |
1130 | { | 1234 | { |
1131 | int ret, i; | 1235 | int ret, i; |
1132 | struct kprobe_trace_entry field; | 1236 | struct kprobe_trace_entry_head field; |
1133 | struct trace_probe *tp = (struct trace_probe *)event_call->data; | 1237 | struct trace_probe *tp = (struct trace_probe *)event_call->data; |
1134 | 1238 | ||
1135 | DEFINE_FIELD(unsigned long, ip, FIELD_STRING_IP, 0); | 1239 | DEFINE_FIELD(unsigned long, ip, FIELD_STRING_IP, 0); |
1136 | DEFINE_FIELD(int, nargs, FIELD_STRING_NARGS, 1); | ||
1137 | /* Set argument names as fields */ | 1240 | /* Set argument names as fields */ |
1138 | for (i = 0; i < tp->nr_args; i++) | 1241 | for (i = 0; i < tp->nr_args; i++) { |
1139 | DEFINE_FIELD(unsigned long, args[i], tp->args[i].name, 0); | 1242 | ret = trace_define_field(event_call, tp->args[i].type->name, |
1243 | tp->args[i].name, | ||
1244 | sizeof(field) + tp->args[i].offset, | ||
1245 | tp->args[i].type->size, | ||
1246 | tp->args[i].type->is_signed, | ||
1247 | FILTER_OTHER); | ||
1248 | if (ret) | ||
1249 | return ret; | ||
1250 | } | ||
1140 | return 0; | 1251 | return 0; |
1141 | } | 1252 | } |
1142 | 1253 | ||
1143 | static int kretprobe_event_define_fields(struct ftrace_event_call *event_call) | 1254 | static int kretprobe_event_define_fields(struct ftrace_event_call *event_call) |
1144 | { | 1255 | { |
1145 | int ret, i; | 1256 | int ret, i; |
1146 | struct kretprobe_trace_entry field; | 1257 | struct kretprobe_trace_entry_head field; |
1147 | struct trace_probe *tp = (struct trace_probe *)event_call->data; | 1258 | struct trace_probe *tp = (struct trace_probe *)event_call->data; |
1148 | 1259 | ||
1149 | DEFINE_FIELD(unsigned long, func, FIELD_STRING_FUNC, 0); | 1260 | DEFINE_FIELD(unsigned long, func, FIELD_STRING_FUNC, 0); |
1150 | DEFINE_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP, 0); | 1261 | DEFINE_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP, 0); |
1151 | DEFINE_FIELD(int, nargs, FIELD_STRING_NARGS, 1); | ||
1152 | /* Set argument names as fields */ | 1262 | /* Set argument names as fields */ |
1153 | for (i = 0; i < tp->nr_args; i++) | 1263 | for (i = 0; i < tp->nr_args; i++) { |
1154 | DEFINE_FIELD(unsigned long, args[i], tp->args[i].name, 0); | 1264 | ret = trace_define_field(event_call, tp->args[i].type->name, |
1265 | tp->args[i].name, | ||
1266 | sizeof(field) + tp->args[i].offset, | ||
1267 | tp->args[i].type->size, | ||
1268 | tp->args[i].type->is_signed, | ||
1269 | FILTER_OTHER); | ||
1270 | if (ret) | ||
1271 | return ret; | ||
1272 | } | ||
1155 | return 0; | 1273 | return 0; |
1156 | } | 1274 | } |
1157 | 1275 | ||
@@ -1176,8 +1294,8 @@ static int __set_print_fmt(struct trace_probe *tp, char *buf, int len) | |||
1176 | pos += snprintf(buf + pos, LEN_OR_ZERO, "\"%s", fmt); | 1294 | pos += snprintf(buf + pos, LEN_OR_ZERO, "\"%s", fmt); |
1177 | 1295 | ||
1178 | for (i = 0; i < tp->nr_args; i++) { | 1296 | for (i = 0; i < tp->nr_args; i++) { |
1179 | pos += snprintf(buf + pos, LEN_OR_ZERO, " %s=%%lx", | 1297 | pos += snprintf(buf + pos, LEN_OR_ZERO, " %s=%s", |
1180 | tp->args[i].name); | 1298 | tp->args[i].name, tp->args[i].type->fmt); |
1181 | } | 1299 | } |
1182 | 1300 | ||
1183 | pos += snprintf(buf + pos, LEN_OR_ZERO, "\", %s", arg); | 1301 | pos += snprintf(buf + pos, LEN_OR_ZERO, "\", %s", arg); |
@@ -1219,28 +1337,30 @@ static __kprobes void kprobe_perf_func(struct kprobe *kp, | |||
1219 | { | 1337 | { |
1220 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); | 1338 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); |
1221 | struct ftrace_event_call *call = &tp->call; | 1339 | struct ftrace_event_call *call = &tp->call; |
1222 | struct kprobe_trace_entry *entry; | 1340 | struct kprobe_trace_entry_head *entry; |
1341 | struct hlist_head *head; | ||
1342 | u8 *data; | ||
1223 | int size, __size, i; | 1343 | int size, __size, i; |
1224 | unsigned long irq_flags; | ||
1225 | int rctx; | 1344 | int rctx; |
1226 | 1345 | ||
1227 | __size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args); | 1346 | __size = sizeof(*entry) + tp->size; |
1228 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); | 1347 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); |
1229 | size -= sizeof(u32); | 1348 | size -= sizeof(u32); |
1230 | if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, | 1349 | if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, |
1231 | "profile buffer not large enough")) | 1350 | "profile buffer not large enough")) |
1232 | return; | 1351 | return; |
1233 | 1352 | ||
1234 | entry = perf_trace_buf_prepare(size, call->id, &rctx, &irq_flags); | 1353 | entry = perf_trace_buf_prepare(size, call->event.type, regs, &rctx); |
1235 | if (!entry) | 1354 | if (!entry) |
1236 | return; | 1355 | return; |
1237 | 1356 | ||
1238 | entry->nargs = tp->nr_args; | ||
1239 | entry->ip = (unsigned long)kp->addr; | 1357 | entry->ip = (unsigned long)kp->addr; |
1358 | data = (u8 *)&entry[1]; | ||
1240 | for (i = 0; i < tp->nr_args; i++) | 1359 | for (i = 0; i < tp->nr_args; i++) |
1241 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1360 | call_fetch(&tp->args[i].fetch, regs, data + tp->args[i].offset); |
1242 | 1361 | ||
1243 | perf_trace_buf_submit(entry, size, rctx, entry->ip, 1, irq_flags, regs); | 1362 | head = per_cpu_ptr(call->perf_events, smp_processor_id()); |
1363 | perf_trace_buf_submit(entry, size, rctx, entry->ip, 1, regs, head); | ||
1244 | } | 1364 | } |
1245 | 1365 | ||
1246 | /* Kretprobe profile handler */ | 1366 | /* Kretprobe profile handler */ |
@@ -1249,30 +1369,31 @@ static __kprobes void kretprobe_perf_func(struct kretprobe_instance *ri, | |||
1249 | { | 1369 | { |
1250 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); | 1370 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); |
1251 | struct ftrace_event_call *call = &tp->call; | 1371 | struct ftrace_event_call *call = &tp->call; |
1252 | struct kretprobe_trace_entry *entry; | 1372 | struct kretprobe_trace_entry_head *entry; |
1373 | struct hlist_head *head; | ||
1374 | u8 *data; | ||
1253 | int size, __size, i; | 1375 | int size, __size, i; |
1254 | unsigned long irq_flags; | ||
1255 | int rctx; | 1376 | int rctx; |
1256 | 1377 | ||
1257 | __size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args); | 1378 | __size = sizeof(*entry) + tp->size; |
1258 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); | 1379 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); |
1259 | size -= sizeof(u32); | 1380 | size -= sizeof(u32); |
1260 | if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, | 1381 | if (WARN_ONCE(size > PERF_MAX_TRACE_SIZE, |
1261 | "profile buffer not large enough")) | 1382 | "profile buffer not large enough")) |
1262 | return; | 1383 | return; |
1263 | 1384 | ||
1264 | entry = perf_trace_buf_prepare(size, call->id, &rctx, &irq_flags); | 1385 | entry = perf_trace_buf_prepare(size, call->event.type, regs, &rctx); |
1265 | if (!entry) | 1386 | if (!entry) |
1266 | return; | 1387 | return; |
1267 | 1388 | ||
1268 | entry->nargs = tp->nr_args; | ||
1269 | entry->func = (unsigned long)tp->rp.kp.addr; | 1389 | entry->func = (unsigned long)tp->rp.kp.addr; |
1270 | entry->ret_ip = (unsigned long)ri->ret_addr; | 1390 | entry->ret_ip = (unsigned long)ri->ret_addr; |
1391 | data = (u8 *)&entry[1]; | ||
1271 | for (i = 0; i < tp->nr_args; i++) | 1392 | for (i = 0; i < tp->nr_args; i++) |
1272 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1393 | call_fetch(&tp->args[i].fetch, regs, data + tp->args[i].offset); |
1273 | 1394 | ||
1274 | perf_trace_buf_submit(entry, size, rctx, entry->ret_ip, 1, | 1395 | head = per_cpu_ptr(call->perf_events, smp_processor_id()); |
1275 | irq_flags, regs); | 1396 | perf_trace_buf_submit(entry, size, rctx, entry->ret_ip, 1, regs, head); |
1276 | } | 1397 | } |
1277 | 1398 | ||
1278 | static int probe_perf_enable(struct ftrace_event_call *call) | 1399 | static int probe_perf_enable(struct ftrace_event_call *call) |
@@ -1302,6 +1423,26 @@ static void probe_perf_disable(struct ftrace_event_call *call) | |||
1302 | } | 1423 | } |
1303 | #endif /* CONFIG_PERF_EVENTS */ | 1424 | #endif /* CONFIG_PERF_EVENTS */ |
1304 | 1425 | ||
1426 | static __kprobes | ||
1427 | int kprobe_register(struct ftrace_event_call *event, enum trace_reg type) | ||
1428 | { | ||
1429 | switch (type) { | ||
1430 | case TRACE_REG_REGISTER: | ||
1431 | return probe_event_enable(event); | ||
1432 | case TRACE_REG_UNREGISTER: | ||
1433 | probe_event_disable(event); | ||
1434 | return 0; | ||
1435 | |||
1436 | #ifdef CONFIG_PERF_EVENTS | ||
1437 | case TRACE_REG_PERF_REGISTER: | ||
1438 | return probe_perf_enable(event); | ||
1439 | case TRACE_REG_PERF_UNREGISTER: | ||
1440 | probe_perf_disable(event); | ||
1441 | return 0; | ||
1442 | #endif | ||
1443 | } | ||
1444 | return 0; | ||
1445 | } | ||
1305 | 1446 | ||
1306 | static __kprobes | 1447 | static __kprobes |
1307 | int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs) | 1448 | int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs) |
@@ -1331,6 +1472,14 @@ int kretprobe_dispatcher(struct kretprobe_instance *ri, struct pt_regs *regs) | |||
1331 | return 0; /* We don't tweek kernel, so just return 0 */ | 1472 | return 0; /* We don't tweek kernel, so just return 0 */ |
1332 | } | 1473 | } |
1333 | 1474 | ||
1475 | static struct trace_event_functions kretprobe_funcs = { | ||
1476 | .trace = print_kretprobe_event | ||
1477 | }; | ||
1478 | |||
1479 | static struct trace_event_functions kprobe_funcs = { | ||
1480 | .trace = print_kprobe_event | ||
1481 | }; | ||
1482 | |||
1334 | static int register_probe_event(struct trace_probe *tp) | 1483 | static int register_probe_event(struct trace_probe *tp) |
1335 | { | 1484 | { |
1336 | struct ftrace_event_call *call = &tp->call; | 1485 | struct ftrace_event_call *call = &tp->call; |
@@ -1338,36 +1487,31 @@ static int register_probe_event(struct trace_probe *tp) | |||
1338 | 1487 | ||
1339 | /* Initialize ftrace_event_call */ | 1488 | /* Initialize ftrace_event_call */ |
1340 | if (probe_is_return(tp)) { | 1489 | if (probe_is_return(tp)) { |
1341 | tp->event.trace = print_kretprobe_event; | 1490 | INIT_LIST_HEAD(&call->class->fields); |
1342 | call->raw_init = probe_event_raw_init; | 1491 | call->event.funcs = &kretprobe_funcs; |
1343 | call->define_fields = kretprobe_event_define_fields; | 1492 | call->class->raw_init = probe_event_raw_init; |
1493 | call->class->define_fields = kretprobe_event_define_fields; | ||
1344 | } else { | 1494 | } else { |
1345 | tp->event.trace = print_kprobe_event; | 1495 | INIT_LIST_HEAD(&call->class->fields); |
1346 | call->raw_init = probe_event_raw_init; | 1496 | call->event.funcs = &kprobe_funcs; |
1347 | call->define_fields = kprobe_event_define_fields; | 1497 | call->class->raw_init = probe_event_raw_init; |
1498 | call->class->define_fields = kprobe_event_define_fields; | ||
1348 | } | 1499 | } |
1349 | if (set_print_fmt(tp) < 0) | 1500 | if (set_print_fmt(tp) < 0) |
1350 | return -ENOMEM; | 1501 | return -ENOMEM; |
1351 | call->event = &tp->event; | 1502 | ret = register_ftrace_event(&call->event); |
1352 | call->id = register_ftrace_event(&tp->event); | 1503 | if (!ret) { |
1353 | if (!call->id) { | ||
1354 | kfree(call->print_fmt); | 1504 | kfree(call->print_fmt); |
1355 | return -ENODEV; | 1505 | return -ENODEV; |
1356 | } | 1506 | } |
1357 | call->enabled = 0; | 1507 | call->flags = 0; |
1358 | call->regfunc = probe_event_enable; | 1508 | call->class->reg = kprobe_register; |
1359 | call->unregfunc = probe_event_disable; | ||
1360 | |||
1361 | #ifdef CONFIG_PERF_EVENTS | ||
1362 | call->perf_event_enable = probe_perf_enable; | ||
1363 | call->perf_event_disable = probe_perf_disable; | ||
1364 | #endif | ||
1365 | call->data = tp; | 1509 | call->data = tp; |
1366 | ret = trace_add_event_call(call); | 1510 | ret = trace_add_event_call(call); |
1367 | if (ret) { | 1511 | if (ret) { |
1368 | pr_info("Failed to register kprobe event: %s\n", call->name); | 1512 | pr_info("Failed to register kprobe event: %s\n", call->name); |
1369 | kfree(call->print_fmt); | 1513 | kfree(call->print_fmt); |
1370 | unregister_ftrace_event(&tp->event); | 1514 | unregister_ftrace_event(&call->event); |
1371 | } | 1515 | } |
1372 | return ret; | 1516 | return ret; |
1373 | } | 1517 | } |
diff --git a/kernel/trace/trace_ksym.c b/kernel/trace/trace_ksym.c index d59cd6879477..8eaf00749b65 100644 --- a/kernel/trace/trace_ksym.c +++ b/kernel/trace/trace_ksym.c | |||
@@ -34,12 +34,6 @@ | |||
34 | 34 | ||
35 | #include <asm/atomic.h> | 35 | #include <asm/atomic.h> |
36 | 36 | ||
37 | /* | ||
38 | * For now, let us restrict the no. of symbols traced simultaneously to number | ||
39 | * of available hardware breakpoint registers. | ||
40 | */ | ||
41 | #define KSYM_TRACER_MAX HBP_NUM | ||
42 | |||
43 | #define KSYM_TRACER_OP_LEN 3 /* rw- */ | 37 | #define KSYM_TRACER_OP_LEN 3 /* rw- */ |
44 | 38 | ||
45 | struct trace_ksym { | 39 | struct trace_ksym { |
@@ -53,7 +47,6 @@ struct trace_ksym { | |||
53 | 47 | ||
54 | static struct trace_array *ksym_trace_array; | 48 | static struct trace_array *ksym_trace_array; |
55 | 49 | ||
56 | static unsigned int ksym_filter_entry_count; | ||
57 | static unsigned int ksym_tracing_enabled; | 50 | static unsigned int ksym_tracing_enabled; |
58 | 51 | ||
59 | static HLIST_HEAD(ksym_filter_head); | 52 | static HLIST_HEAD(ksym_filter_head); |
@@ -181,13 +174,6 @@ int process_new_ksym_entry(char *ksymname, int op, unsigned long addr) | |||
181 | struct trace_ksym *entry; | 174 | struct trace_ksym *entry; |
182 | int ret = -ENOMEM; | 175 | int ret = -ENOMEM; |
183 | 176 | ||
184 | if (ksym_filter_entry_count >= KSYM_TRACER_MAX) { | ||
185 | printk(KERN_ERR "ksym_tracer: Maximum limit:(%d) reached. No" | ||
186 | " new requests for tracing can be accepted now.\n", | ||
187 | KSYM_TRACER_MAX); | ||
188 | return -ENOSPC; | ||
189 | } | ||
190 | |||
191 | entry = kzalloc(sizeof(struct trace_ksym), GFP_KERNEL); | 177 | entry = kzalloc(sizeof(struct trace_ksym), GFP_KERNEL); |
192 | if (!entry) | 178 | if (!entry) |
193 | return -ENOMEM; | 179 | return -ENOMEM; |
@@ -203,13 +189,17 @@ int process_new_ksym_entry(char *ksymname, int op, unsigned long addr) | |||
203 | 189 | ||
204 | if (IS_ERR(entry->ksym_hbp)) { | 190 | if (IS_ERR(entry->ksym_hbp)) { |
205 | ret = PTR_ERR(entry->ksym_hbp); | 191 | ret = PTR_ERR(entry->ksym_hbp); |
206 | printk(KERN_INFO "ksym_tracer request failed. Try again" | 192 | if (ret == -ENOSPC) { |
207 | " later!!\n"); | 193 | printk(KERN_ERR "ksym_tracer: Maximum limit reached." |
194 | " No new requests for tracing can be accepted now.\n"); | ||
195 | } else { | ||
196 | printk(KERN_INFO "ksym_tracer request failed. Try again" | ||
197 | " later!!\n"); | ||
198 | } | ||
208 | goto err; | 199 | goto err; |
209 | } | 200 | } |
210 | 201 | ||
211 | hlist_add_head_rcu(&(entry->ksym_hlist), &ksym_filter_head); | 202 | hlist_add_head_rcu(&(entry->ksym_hlist), &ksym_filter_head); |
212 | ksym_filter_entry_count++; | ||
213 | 203 | ||
214 | return 0; | 204 | return 0; |
215 | 205 | ||
@@ -265,7 +255,6 @@ static void __ksym_trace_reset(void) | |||
265 | hlist_for_each_entry_safe(entry, node, node1, &ksym_filter_head, | 255 | hlist_for_each_entry_safe(entry, node, node1, &ksym_filter_head, |
266 | ksym_hlist) { | 256 | ksym_hlist) { |
267 | unregister_wide_hw_breakpoint(entry->ksym_hbp); | 257 | unregister_wide_hw_breakpoint(entry->ksym_hbp); |
268 | ksym_filter_entry_count--; | ||
269 | hlist_del_rcu(&(entry->ksym_hlist)); | 258 | hlist_del_rcu(&(entry->ksym_hlist)); |
270 | synchronize_rcu(); | 259 | synchronize_rcu(); |
271 | kfree(entry); | 260 | kfree(entry); |
@@ -338,7 +327,6 @@ static ssize_t ksym_trace_filter_write(struct file *file, | |||
338 | goto out_unlock; | 327 | goto out_unlock; |
339 | } | 328 | } |
340 | /* Error or "symbol:---" case: drop it */ | 329 | /* Error or "symbol:---" case: drop it */ |
341 | ksym_filter_entry_count--; | ||
342 | hlist_del_rcu(&(entry->ksym_hlist)); | 330 | hlist_del_rcu(&(entry->ksym_hlist)); |
343 | synchronize_rcu(); | 331 | synchronize_rcu(); |
344 | kfree(entry); | 332 | kfree(entry); |
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index 8e46b3323cdc..57c1b4596470 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
@@ -209,6 +209,7 @@ int trace_seq_putc(struct trace_seq *s, unsigned char c) | |||
209 | 209 | ||
210 | return 1; | 210 | return 1; |
211 | } | 211 | } |
212 | EXPORT_SYMBOL(trace_seq_putc); | ||
212 | 213 | ||
213 | int trace_seq_putmem(struct trace_seq *s, const void *mem, size_t len) | 214 | int trace_seq_putmem(struct trace_seq *s, const void *mem, size_t len) |
214 | { | 215 | { |
@@ -253,7 +254,7 @@ void *trace_seq_reserve(struct trace_seq *s, size_t len) | |||
253 | void *ret; | 254 | void *ret; |
254 | 255 | ||
255 | if (s->full) | 256 | if (s->full) |
256 | return 0; | 257 | return NULL; |
257 | 258 | ||
258 | if (len > ((PAGE_SIZE - 1) - s->len)) { | 259 | if (len > ((PAGE_SIZE - 1) - s->len)) { |
259 | s->full = 1; | 260 | s->full = 1; |
@@ -355,6 +356,21 @@ ftrace_print_symbols_seq(struct trace_seq *p, unsigned long val, | |||
355 | } | 356 | } |
356 | EXPORT_SYMBOL(ftrace_print_symbols_seq); | 357 | EXPORT_SYMBOL(ftrace_print_symbols_seq); |
357 | 358 | ||
359 | const char * | ||
360 | ftrace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int buf_len) | ||
361 | { | ||
362 | int i; | ||
363 | const char *ret = p->buffer + p->len; | ||
364 | |||
365 | for (i = 0; i < buf_len; i++) | ||
366 | trace_seq_printf(p, "%s%2.2x", i == 0 ? "" : " ", buf[i]); | ||
367 | |||
368 | trace_seq_putc(p, 0); | ||
369 | |||
370 | return ret; | ||
371 | } | ||
372 | EXPORT_SYMBOL(ftrace_print_hex_seq); | ||
373 | |||
358 | #ifdef CONFIG_KRETPROBES | 374 | #ifdef CONFIG_KRETPROBES |
359 | static inline const char *kretprobed(const char *name) | 375 | static inline const char *kretprobed(const char *name) |
360 | { | 376 | { |
@@ -726,6 +742,9 @@ int register_ftrace_event(struct trace_event *event) | |||
726 | if (WARN_ON(!event)) | 742 | if (WARN_ON(!event)) |
727 | goto out; | 743 | goto out; |
728 | 744 | ||
745 | if (WARN_ON(!event->funcs)) | ||
746 | goto out; | ||
747 | |||
729 | INIT_LIST_HEAD(&event->list); | 748 | INIT_LIST_HEAD(&event->list); |
730 | 749 | ||
731 | if (!event->type) { | 750 | if (!event->type) { |
@@ -758,14 +777,14 @@ int register_ftrace_event(struct trace_event *event) | |||
758 | goto out; | 777 | goto out; |
759 | } | 778 | } |
760 | 779 | ||
761 | if (event->trace == NULL) | 780 | if (event->funcs->trace == NULL) |
762 | event->trace = trace_nop_print; | 781 | event->funcs->trace = trace_nop_print; |
763 | if (event->raw == NULL) | 782 | if (event->funcs->raw == NULL) |
764 | event->raw = trace_nop_print; | 783 | event->funcs->raw = trace_nop_print; |
765 | if (event->hex == NULL) | 784 | if (event->funcs->hex == NULL) |
766 | event->hex = trace_nop_print; | 785 | event->funcs->hex = trace_nop_print; |
767 | if (event->binary == NULL) | 786 | if (event->funcs->binary == NULL) |
768 | event->binary = trace_nop_print; | 787 | event->funcs->binary = trace_nop_print; |
769 | 788 | ||
770 | key = event->type & (EVENT_HASHSIZE - 1); | 789 | key = event->type & (EVENT_HASHSIZE - 1); |
771 | 790 | ||
@@ -807,13 +826,15 @@ EXPORT_SYMBOL_GPL(unregister_ftrace_event); | |||
807 | * Standard events | 826 | * Standard events |
808 | */ | 827 | */ |
809 | 828 | ||
810 | enum print_line_t trace_nop_print(struct trace_iterator *iter, int flags) | 829 | enum print_line_t trace_nop_print(struct trace_iterator *iter, int flags, |
830 | struct trace_event *event) | ||
811 | { | 831 | { |
812 | return TRACE_TYPE_HANDLED; | 832 | return TRACE_TYPE_HANDLED; |
813 | } | 833 | } |
814 | 834 | ||
815 | /* TRACE_FN */ | 835 | /* TRACE_FN */ |
816 | static enum print_line_t trace_fn_trace(struct trace_iterator *iter, int flags) | 836 | static enum print_line_t trace_fn_trace(struct trace_iterator *iter, int flags, |
837 | struct trace_event *event) | ||
817 | { | 838 | { |
818 | struct ftrace_entry *field; | 839 | struct ftrace_entry *field; |
819 | struct trace_seq *s = &iter->seq; | 840 | struct trace_seq *s = &iter->seq; |
@@ -840,7 +861,8 @@ static enum print_line_t trace_fn_trace(struct trace_iterator *iter, int flags) | |||
840 | return TRACE_TYPE_PARTIAL_LINE; | 861 | return TRACE_TYPE_PARTIAL_LINE; |
841 | } | 862 | } |
842 | 863 | ||
843 | static enum print_line_t trace_fn_raw(struct trace_iterator *iter, int flags) | 864 | static enum print_line_t trace_fn_raw(struct trace_iterator *iter, int flags, |
865 | struct trace_event *event) | ||
844 | { | 866 | { |
845 | struct ftrace_entry *field; | 867 | struct ftrace_entry *field; |
846 | 868 | ||
@@ -854,7 +876,8 @@ static enum print_line_t trace_fn_raw(struct trace_iterator *iter, int flags) | |||
854 | return TRACE_TYPE_HANDLED; | 876 | return TRACE_TYPE_HANDLED; |
855 | } | 877 | } |
856 | 878 | ||
857 | static enum print_line_t trace_fn_hex(struct trace_iterator *iter, int flags) | 879 | static enum print_line_t trace_fn_hex(struct trace_iterator *iter, int flags, |
880 | struct trace_event *event) | ||
858 | { | 881 | { |
859 | struct ftrace_entry *field; | 882 | struct ftrace_entry *field; |
860 | struct trace_seq *s = &iter->seq; | 883 | struct trace_seq *s = &iter->seq; |
@@ -867,7 +890,8 @@ static enum print_line_t trace_fn_hex(struct trace_iterator *iter, int flags) | |||
867 | return TRACE_TYPE_HANDLED; | 890 | return TRACE_TYPE_HANDLED; |
868 | } | 891 | } |
869 | 892 | ||
870 | static enum print_line_t trace_fn_bin(struct trace_iterator *iter, int flags) | 893 | static enum print_line_t trace_fn_bin(struct trace_iterator *iter, int flags, |
894 | struct trace_event *event) | ||
871 | { | 895 | { |
872 | struct ftrace_entry *field; | 896 | struct ftrace_entry *field; |
873 | struct trace_seq *s = &iter->seq; | 897 | struct trace_seq *s = &iter->seq; |
@@ -880,14 +904,18 @@ static enum print_line_t trace_fn_bin(struct trace_iterator *iter, int flags) | |||
880 | return TRACE_TYPE_HANDLED; | 904 | return TRACE_TYPE_HANDLED; |
881 | } | 905 | } |
882 | 906 | ||
883 | static struct trace_event trace_fn_event = { | 907 | static struct trace_event_functions trace_fn_funcs = { |
884 | .type = TRACE_FN, | ||
885 | .trace = trace_fn_trace, | 908 | .trace = trace_fn_trace, |
886 | .raw = trace_fn_raw, | 909 | .raw = trace_fn_raw, |
887 | .hex = trace_fn_hex, | 910 | .hex = trace_fn_hex, |
888 | .binary = trace_fn_bin, | 911 | .binary = trace_fn_bin, |
889 | }; | 912 | }; |
890 | 913 | ||
914 | static struct trace_event trace_fn_event = { | ||
915 | .type = TRACE_FN, | ||
916 | .funcs = &trace_fn_funcs, | ||
917 | }; | ||
918 | |||
891 | /* TRACE_CTX an TRACE_WAKE */ | 919 | /* TRACE_CTX an TRACE_WAKE */ |
892 | static enum print_line_t trace_ctxwake_print(struct trace_iterator *iter, | 920 | static enum print_line_t trace_ctxwake_print(struct trace_iterator *iter, |
893 | char *delim) | 921 | char *delim) |
@@ -916,13 +944,14 @@ static enum print_line_t trace_ctxwake_print(struct trace_iterator *iter, | |||
916 | return TRACE_TYPE_HANDLED; | 944 | return TRACE_TYPE_HANDLED; |
917 | } | 945 | } |
918 | 946 | ||
919 | static enum print_line_t trace_ctx_print(struct trace_iterator *iter, int flags) | 947 | static enum print_line_t trace_ctx_print(struct trace_iterator *iter, int flags, |
948 | struct trace_event *event) | ||
920 | { | 949 | { |
921 | return trace_ctxwake_print(iter, "==>"); | 950 | return trace_ctxwake_print(iter, "==>"); |
922 | } | 951 | } |
923 | 952 | ||
924 | static enum print_line_t trace_wake_print(struct trace_iterator *iter, | 953 | static enum print_line_t trace_wake_print(struct trace_iterator *iter, |
925 | int flags) | 954 | int flags, struct trace_event *event) |
926 | { | 955 | { |
927 | return trace_ctxwake_print(iter, " +"); | 956 | return trace_ctxwake_print(iter, " +"); |
928 | } | 957 | } |
@@ -950,12 +979,14 @@ static int trace_ctxwake_raw(struct trace_iterator *iter, char S) | |||
950 | return TRACE_TYPE_HANDLED; | 979 | return TRACE_TYPE_HANDLED; |
951 | } | 980 | } |
952 | 981 | ||
953 | static enum print_line_t trace_ctx_raw(struct trace_iterator *iter, int flags) | 982 | static enum print_line_t trace_ctx_raw(struct trace_iterator *iter, int flags, |
983 | struct trace_event *event) | ||
954 | { | 984 | { |
955 | return trace_ctxwake_raw(iter, 0); | 985 | return trace_ctxwake_raw(iter, 0); |
956 | } | 986 | } |
957 | 987 | ||
958 | static enum print_line_t trace_wake_raw(struct trace_iterator *iter, int flags) | 988 | static enum print_line_t trace_wake_raw(struct trace_iterator *iter, int flags, |
989 | struct trace_event *event) | ||
959 | { | 990 | { |
960 | return trace_ctxwake_raw(iter, '+'); | 991 | return trace_ctxwake_raw(iter, '+'); |
961 | } | 992 | } |
@@ -984,18 +1015,20 @@ static int trace_ctxwake_hex(struct trace_iterator *iter, char S) | |||
984 | return TRACE_TYPE_HANDLED; | 1015 | return TRACE_TYPE_HANDLED; |
985 | } | 1016 | } |
986 | 1017 | ||
987 | static enum print_line_t trace_ctx_hex(struct trace_iterator *iter, int flags) | 1018 | static enum print_line_t trace_ctx_hex(struct trace_iterator *iter, int flags, |
1019 | struct trace_event *event) | ||
988 | { | 1020 | { |
989 | return trace_ctxwake_hex(iter, 0); | 1021 | return trace_ctxwake_hex(iter, 0); |
990 | } | 1022 | } |
991 | 1023 | ||
992 | static enum print_line_t trace_wake_hex(struct trace_iterator *iter, int flags) | 1024 | static enum print_line_t trace_wake_hex(struct trace_iterator *iter, int flags, |
1025 | struct trace_event *event) | ||
993 | { | 1026 | { |
994 | return trace_ctxwake_hex(iter, '+'); | 1027 | return trace_ctxwake_hex(iter, '+'); |
995 | } | 1028 | } |
996 | 1029 | ||
997 | static enum print_line_t trace_ctxwake_bin(struct trace_iterator *iter, | 1030 | static enum print_line_t trace_ctxwake_bin(struct trace_iterator *iter, |
998 | int flags) | 1031 | int flags, struct trace_event *event) |
999 | { | 1032 | { |
1000 | struct ctx_switch_entry *field; | 1033 | struct ctx_switch_entry *field; |
1001 | struct trace_seq *s = &iter->seq; | 1034 | struct trace_seq *s = &iter->seq; |
@@ -1012,25 +1045,33 @@ static enum print_line_t trace_ctxwake_bin(struct trace_iterator *iter, | |||
1012 | return TRACE_TYPE_HANDLED; | 1045 | return TRACE_TYPE_HANDLED; |
1013 | } | 1046 | } |
1014 | 1047 | ||
1015 | static struct trace_event trace_ctx_event = { | 1048 | static struct trace_event_functions trace_ctx_funcs = { |
1016 | .type = TRACE_CTX, | ||
1017 | .trace = trace_ctx_print, | 1049 | .trace = trace_ctx_print, |
1018 | .raw = trace_ctx_raw, | 1050 | .raw = trace_ctx_raw, |
1019 | .hex = trace_ctx_hex, | 1051 | .hex = trace_ctx_hex, |
1020 | .binary = trace_ctxwake_bin, | 1052 | .binary = trace_ctxwake_bin, |
1021 | }; | 1053 | }; |
1022 | 1054 | ||
1023 | static struct trace_event trace_wake_event = { | 1055 | static struct trace_event trace_ctx_event = { |
1024 | .type = TRACE_WAKE, | 1056 | .type = TRACE_CTX, |
1057 | .funcs = &trace_ctx_funcs, | ||
1058 | }; | ||
1059 | |||
1060 | static struct trace_event_functions trace_wake_funcs = { | ||
1025 | .trace = trace_wake_print, | 1061 | .trace = trace_wake_print, |
1026 | .raw = trace_wake_raw, | 1062 | .raw = trace_wake_raw, |
1027 | .hex = trace_wake_hex, | 1063 | .hex = trace_wake_hex, |
1028 | .binary = trace_ctxwake_bin, | 1064 | .binary = trace_ctxwake_bin, |
1029 | }; | 1065 | }; |
1030 | 1066 | ||
1067 | static struct trace_event trace_wake_event = { | ||
1068 | .type = TRACE_WAKE, | ||
1069 | .funcs = &trace_wake_funcs, | ||
1070 | }; | ||
1071 | |||
1031 | /* TRACE_SPECIAL */ | 1072 | /* TRACE_SPECIAL */ |
1032 | static enum print_line_t trace_special_print(struct trace_iterator *iter, | 1073 | static enum print_line_t trace_special_print(struct trace_iterator *iter, |
1033 | int flags) | 1074 | int flags, struct trace_event *event) |
1034 | { | 1075 | { |
1035 | struct special_entry *field; | 1076 | struct special_entry *field; |
1036 | 1077 | ||
@@ -1046,7 +1087,7 @@ static enum print_line_t trace_special_print(struct trace_iterator *iter, | |||
1046 | } | 1087 | } |
1047 | 1088 | ||
1048 | static enum print_line_t trace_special_hex(struct trace_iterator *iter, | 1089 | static enum print_line_t trace_special_hex(struct trace_iterator *iter, |
1049 | int flags) | 1090 | int flags, struct trace_event *event) |
1050 | { | 1091 | { |
1051 | struct special_entry *field; | 1092 | struct special_entry *field; |
1052 | struct trace_seq *s = &iter->seq; | 1093 | struct trace_seq *s = &iter->seq; |
@@ -1061,7 +1102,7 @@ static enum print_line_t trace_special_hex(struct trace_iterator *iter, | |||
1061 | } | 1102 | } |
1062 | 1103 | ||
1063 | static enum print_line_t trace_special_bin(struct trace_iterator *iter, | 1104 | static enum print_line_t trace_special_bin(struct trace_iterator *iter, |
1064 | int flags) | 1105 | int flags, struct trace_event *event) |
1065 | { | 1106 | { |
1066 | struct special_entry *field; | 1107 | struct special_entry *field; |
1067 | struct trace_seq *s = &iter->seq; | 1108 | struct trace_seq *s = &iter->seq; |
@@ -1075,18 +1116,22 @@ static enum print_line_t trace_special_bin(struct trace_iterator *iter, | |||
1075 | return TRACE_TYPE_HANDLED; | 1116 | return TRACE_TYPE_HANDLED; |
1076 | } | 1117 | } |
1077 | 1118 | ||
1078 | static struct trace_event trace_special_event = { | 1119 | static struct trace_event_functions trace_special_funcs = { |
1079 | .type = TRACE_SPECIAL, | ||
1080 | .trace = trace_special_print, | 1120 | .trace = trace_special_print, |
1081 | .raw = trace_special_print, | 1121 | .raw = trace_special_print, |
1082 | .hex = trace_special_hex, | 1122 | .hex = trace_special_hex, |
1083 | .binary = trace_special_bin, | 1123 | .binary = trace_special_bin, |
1084 | }; | 1124 | }; |
1085 | 1125 | ||
1126 | static struct trace_event trace_special_event = { | ||
1127 | .type = TRACE_SPECIAL, | ||
1128 | .funcs = &trace_special_funcs, | ||
1129 | }; | ||
1130 | |||
1086 | /* TRACE_STACK */ | 1131 | /* TRACE_STACK */ |
1087 | 1132 | ||
1088 | static enum print_line_t trace_stack_print(struct trace_iterator *iter, | 1133 | static enum print_line_t trace_stack_print(struct trace_iterator *iter, |
1089 | int flags) | 1134 | int flags, struct trace_event *event) |
1090 | { | 1135 | { |
1091 | struct stack_entry *field; | 1136 | struct stack_entry *field; |
1092 | struct trace_seq *s = &iter->seq; | 1137 | struct trace_seq *s = &iter->seq; |
@@ -1114,17 +1159,21 @@ static enum print_line_t trace_stack_print(struct trace_iterator *iter, | |||
1114 | return TRACE_TYPE_PARTIAL_LINE; | 1159 | return TRACE_TYPE_PARTIAL_LINE; |
1115 | } | 1160 | } |
1116 | 1161 | ||
1117 | static struct trace_event trace_stack_event = { | 1162 | static struct trace_event_functions trace_stack_funcs = { |
1118 | .type = TRACE_STACK, | ||
1119 | .trace = trace_stack_print, | 1163 | .trace = trace_stack_print, |
1120 | .raw = trace_special_print, | 1164 | .raw = trace_special_print, |
1121 | .hex = trace_special_hex, | 1165 | .hex = trace_special_hex, |
1122 | .binary = trace_special_bin, | 1166 | .binary = trace_special_bin, |
1123 | }; | 1167 | }; |
1124 | 1168 | ||
1169 | static struct trace_event trace_stack_event = { | ||
1170 | .type = TRACE_STACK, | ||
1171 | .funcs = &trace_stack_funcs, | ||
1172 | }; | ||
1173 | |||
1125 | /* TRACE_USER_STACK */ | 1174 | /* TRACE_USER_STACK */ |
1126 | static enum print_line_t trace_user_stack_print(struct trace_iterator *iter, | 1175 | static enum print_line_t trace_user_stack_print(struct trace_iterator *iter, |
1127 | int flags) | 1176 | int flags, struct trace_event *event) |
1128 | { | 1177 | { |
1129 | struct userstack_entry *field; | 1178 | struct userstack_entry *field; |
1130 | struct trace_seq *s = &iter->seq; | 1179 | struct trace_seq *s = &iter->seq; |
@@ -1143,17 +1192,22 @@ static enum print_line_t trace_user_stack_print(struct trace_iterator *iter, | |||
1143 | return TRACE_TYPE_PARTIAL_LINE; | 1192 | return TRACE_TYPE_PARTIAL_LINE; |
1144 | } | 1193 | } |
1145 | 1194 | ||
1146 | static struct trace_event trace_user_stack_event = { | 1195 | static struct trace_event_functions trace_user_stack_funcs = { |
1147 | .type = TRACE_USER_STACK, | ||
1148 | .trace = trace_user_stack_print, | 1196 | .trace = trace_user_stack_print, |
1149 | .raw = trace_special_print, | 1197 | .raw = trace_special_print, |
1150 | .hex = trace_special_hex, | 1198 | .hex = trace_special_hex, |
1151 | .binary = trace_special_bin, | 1199 | .binary = trace_special_bin, |
1152 | }; | 1200 | }; |
1153 | 1201 | ||
1202 | static struct trace_event trace_user_stack_event = { | ||
1203 | .type = TRACE_USER_STACK, | ||
1204 | .funcs = &trace_user_stack_funcs, | ||
1205 | }; | ||
1206 | |||
1154 | /* TRACE_BPRINT */ | 1207 | /* TRACE_BPRINT */ |
1155 | static enum print_line_t | 1208 | static enum print_line_t |
1156 | trace_bprint_print(struct trace_iterator *iter, int flags) | 1209 | trace_bprint_print(struct trace_iterator *iter, int flags, |
1210 | struct trace_event *event) | ||
1157 | { | 1211 | { |
1158 | struct trace_entry *entry = iter->ent; | 1212 | struct trace_entry *entry = iter->ent; |
1159 | struct trace_seq *s = &iter->seq; | 1213 | struct trace_seq *s = &iter->seq; |
@@ -1178,7 +1232,8 @@ trace_bprint_print(struct trace_iterator *iter, int flags) | |||
1178 | 1232 | ||
1179 | 1233 | ||
1180 | static enum print_line_t | 1234 | static enum print_line_t |
1181 | trace_bprint_raw(struct trace_iterator *iter, int flags) | 1235 | trace_bprint_raw(struct trace_iterator *iter, int flags, |
1236 | struct trace_event *event) | ||
1182 | { | 1237 | { |
1183 | struct bprint_entry *field; | 1238 | struct bprint_entry *field; |
1184 | struct trace_seq *s = &iter->seq; | 1239 | struct trace_seq *s = &iter->seq; |
@@ -1197,16 +1252,19 @@ trace_bprint_raw(struct trace_iterator *iter, int flags) | |||
1197 | return TRACE_TYPE_PARTIAL_LINE; | 1252 | return TRACE_TYPE_PARTIAL_LINE; |
1198 | } | 1253 | } |
1199 | 1254 | ||
1255 | static struct trace_event_functions trace_bprint_funcs = { | ||
1256 | .trace = trace_bprint_print, | ||
1257 | .raw = trace_bprint_raw, | ||
1258 | }; | ||
1200 | 1259 | ||
1201 | static struct trace_event trace_bprint_event = { | 1260 | static struct trace_event trace_bprint_event = { |
1202 | .type = TRACE_BPRINT, | 1261 | .type = TRACE_BPRINT, |
1203 | .trace = trace_bprint_print, | 1262 | .funcs = &trace_bprint_funcs, |
1204 | .raw = trace_bprint_raw, | ||
1205 | }; | 1263 | }; |
1206 | 1264 | ||
1207 | /* TRACE_PRINT */ | 1265 | /* TRACE_PRINT */ |
1208 | static enum print_line_t trace_print_print(struct trace_iterator *iter, | 1266 | static enum print_line_t trace_print_print(struct trace_iterator *iter, |
1209 | int flags) | 1267 | int flags, struct trace_event *event) |
1210 | { | 1268 | { |
1211 | struct print_entry *field; | 1269 | struct print_entry *field; |
1212 | struct trace_seq *s = &iter->seq; | 1270 | struct trace_seq *s = &iter->seq; |
@@ -1225,7 +1283,8 @@ static enum print_line_t trace_print_print(struct trace_iterator *iter, | |||
1225 | return TRACE_TYPE_PARTIAL_LINE; | 1283 | return TRACE_TYPE_PARTIAL_LINE; |
1226 | } | 1284 | } |
1227 | 1285 | ||
1228 | static enum print_line_t trace_print_raw(struct trace_iterator *iter, int flags) | 1286 | static enum print_line_t trace_print_raw(struct trace_iterator *iter, int flags, |
1287 | struct trace_event *event) | ||
1229 | { | 1288 | { |
1230 | struct print_entry *field; | 1289 | struct print_entry *field; |
1231 | 1290 | ||
@@ -1240,12 +1299,16 @@ static enum print_line_t trace_print_raw(struct trace_iterator *iter, int flags) | |||
1240 | return TRACE_TYPE_PARTIAL_LINE; | 1299 | return TRACE_TYPE_PARTIAL_LINE; |
1241 | } | 1300 | } |
1242 | 1301 | ||
1243 | static struct trace_event trace_print_event = { | 1302 | static struct trace_event_functions trace_print_funcs = { |
1244 | .type = TRACE_PRINT, | ||
1245 | .trace = trace_print_print, | 1303 | .trace = trace_print_print, |
1246 | .raw = trace_print_raw, | 1304 | .raw = trace_print_raw, |
1247 | }; | 1305 | }; |
1248 | 1306 | ||
1307 | static struct trace_event trace_print_event = { | ||
1308 | .type = TRACE_PRINT, | ||
1309 | .funcs = &trace_print_funcs, | ||
1310 | }; | ||
1311 | |||
1249 | 1312 | ||
1250 | static struct trace_event *events[] __initdata = { | 1313 | static struct trace_event *events[] __initdata = { |
1251 | &trace_fn_event, | 1314 | &trace_fn_event, |
diff --git a/kernel/trace/trace_output.h b/kernel/trace/trace_output.h index 9d91c72ba38b..c038eba0492b 100644 --- a/kernel/trace/trace_output.h +++ b/kernel/trace/trace_output.h | |||
@@ -25,7 +25,7 @@ extern void trace_event_read_unlock(void); | |||
25 | extern struct trace_event *ftrace_find_event(int type); | 25 | extern struct trace_event *ftrace_find_event(int type); |
26 | 26 | ||
27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, | 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, |
28 | int flags); | 28 | int flags, struct trace_event *event); |
29 | extern int | 29 | extern int |
30 | trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry); | 30 | trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry); |
31 | 31 | ||
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c index 5fca0f51fde4..8f758d070c43 100644 --- a/kernel/trace/trace_sched_switch.c +++ b/kernel/trace/trace_sched_switch.c | |||
@@ -50,8 +50,7 @@ tracing_sched_switch_trace(struct trace_array *tr, | |||
50 | } | 50 | } |
51 | 51 | ||
52 | static void | 52 | static void |
53 | probe_sched_switch(struct rq *__rq, struct task_struct *prev, | 53 | probe_sched_switch(void *ignore, struct task_struct *prev, struct task_struct *next) |
54 | struct task_struct *next) | ||
55 | { | 54 | { |
56 | struct trace_array_cpu *data; | 55 | struct trace_array_cpu *data; |
57 | unsigned long flags; | 56 | unsigned long flags; |
@@ -109,7 +108,7 @@ tracing_sched_wakeup_trace(struct trace_array *tr, | |||
109 | } | 108 | } |
110 | 109 | ||
111 | static void | 110 | static void |
112 | probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) | 111 | probe_sched_wakeup(void *ignore, struct task_struct *wakee, int success) |
113 | { | 112 | { |
114 | struct trace_array_cpu *data; | 113 | struct trace_array_cpu *data; |
115 | unsigned long flags; | 114 | unsigned long flags; |
@@ -139,21 +138,21 @@ static int tracing_sched_register(void) | |||
139 | { | 138 | { |
140 | int ret; | 139 | int ret; |
141 | 140 | ||
142 | ret = register_trace_sched_wakeup(probe_sched_wakeup); | 141 | ret = register_trace_sched_wakeup(probe_sched_wakeup, NULL); |
143 | if (ret) { | 142 | if (ret) { |
144 | pr_info("wakeup trace: Couldn't activate tracepoint" | 143 | pr_info("wakeup trace: Couldn't activate tracepoint" |
145 | " probe to kernel_sched_wakeup\n"); | 144 | " probe to kernel_sched_wakeup\n"); |
146 | return ret; | 145 | return ret; |
147 | } | 146 | } |
148 | 147 | ||
149 | ret = register_trace_sched_wakeup_new(probe_sched_wakeup); | 148 | ret = register_trace_sched_wakeup_new(probe_sched_wakeup, NULL); |
150 | if (ret) { | 149 | if (ret) { |
151 | pr_info("wakeup trace: Couldn't activate tracepoint" | 150 | pr_info("wakeup trace: Couldn't activate tracepoint" |
152 | " probe to kernel_sched_wakeup_new\n"); | 151 | " probe to kernel_sched_wakeup_new\n"); |
153 | goto fail_deprobe; | 152 | goto fail_deprobe; |
154 | } | 153 | } |
155 | 154 | ||
156 | ret = register_trace_sched_switch(probe_sched_switch); | 155 | ret = register_trace_sched_switch(probe_sched_switch, NULL); |
157 | if (ret) { | 156 | if (ret) { |
158 | pr_info("sched trace: Couldn't activate tracepoint" | 157 | pr_info("sched trace: Couldn't activate tracepoint" |
159 | " probe to kernel_sched_switch\n"); | 158 | " probe to kernel_sched_switch\n"); |
@@ -162,17 +161,17 @@ static int tracing_sched_register(void) | |||
162 | 161 | ||
163 | return ret; | 162 | return ret; |
164 | fail_deprobe_wake_new: | 163 | fail_deprobe_wake_new: |
165 | unregister_trace_sched_wakeup_new(probe_sched_wakeup); | 164 | unregister_trace_sched_wakeup_new(probe_sched_wakeup, NULL); |
166 | fail_deprobe: | 165 | fail_deprobe: |
167 | unregister_trace_sched_wakeup(probe_sched_wakeup); | 166 | unregister_trace_sched_wakeup(probe_sched_wakeup, NULL); |
168 | return ret; | 167 | return ret; |
169 | } | 168 | } |
170 | 169 | ||
171 | static void tracing_sched_unregister(void) | 170 | static void tracing_sched_unregister(void) |
172 | { | 171 | { |
173 | unregister_trace_sched_switch(probe_sched_switch); | 172 | unregister_trace_sched_switch(probe_sched_switch, NULL); |
174 | unregister_trace_sched_wakeup_new(probe_sched_wakeup); | 173 | unregister_trace_sched_wakeup_new(probe_sched_wakeup, NULL); |
175 | unregister_trace_sched_wakeup(probe_sched_wakeup); | 174 | unregister_trace_sched_wakeup(probe_sched_wakeup, NULL); |
176 | } | 175 | } |
177 | 176 | ||
178 | static void tracing_start_sched_switch(void) | 177 | static void tracing_start_sched_switch(void) |
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index 0271742abb8d..0e73bc2ef8c5 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c | |||
@@ -98,7 +98,8 @@ static int report_latency(cycle_t delta) | |||
98 | return 1; | 98 | return 1; |
99 | } | 99 | } |
100 | 100 | ||
101 | static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | 101 | static void |
102 | probe_wakeup_migrate_task(void *ignore, struct task_struct *task, int cpu) | ||
102 | { | 103 | { |
103 | if (task != wakeup_task) | 104 | if (task != wakeup_task) |
104 | return; | 105 | return; |
@@ -107,8 +108,8 @@ static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | |||
107 | } | 108 | } |
108 | 109 | ||
109 | static void notrace | 110 | static void notrace |
110 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | 111 | probe_wakeup_sched_switch(void *ignore, |
111 | struct task_struct *next) | 112 | struct task_struct *prev, struct task_struct *next) |
112 | { | 113 | { |
113 | struct trace_array_cpu *data; | 114 | struct trace_array_cpu *data; |
114 | cycle_t T0, T1, delta; | 115 | cycle_t T0, T1, delta; |
@@ -200,7 +201,7 @@ static void wakeup_reset(struct trace_array *tr) | |||
200 | } | 201 | } |
201 | 202 | ||
202 | static void | 203 | static void |
203 | probe_wakeup(struct rq *rq, struct task_struct *p, int success) | 204 | probe_wakeup(void *ignore, struct task_struct *p, int success) |
204 | { | 205 | { |
205 | struct trace_array_cpu *data; | 206 | struct trace_array_cpu *data; |
206 | int cpu = smp_processor_id(); | 207 | int cpu = smp_processor_id(); |
@@ -264,28 +265,28 @@ static void start_wakeup_tracer(struct trace_array *tr) | |||
264 | { | 265 | { |
265 | int ret; | 266 | int ret; |
266 | 267 | ||
267 | ret = register_trace_sched_wakeup(probe_wakeup); | 268 | ret = register_trace_sched_wakeup(probe_wakeup, NULL); |
268 | if (ret) { | 269 | if (ret) { |
269 | pr_info("wakeup trace: Couldn't activate tracepoint" | 270 | pr_info("wakeup trace: Couldn't activate tracepoint" |
270 | " probe to kernel_sched_wakeup\n"); | 271 | " probe to kernel_sched_wakeup\n"); |
271 | return; | 272 | return; |
272 | } | 273 | } |
273 | 274 | ||
274 | ret = register_trace_sched_wakeup_new(probe_wakeup); | 275 | ret = register_trace_sched_wakeup_new(probe_wakeup, NULL); |
275 | if (ret) { | 276 | if (ret) { |
276 | pr_info("wakeup trace: Couldn't activate tracepoint" | 277 | pr_info("wakeup trace: Couldn't activate tracepoint" |
277 | " probe to kernel_sched_wakeup_new\n"); | 278 | " probe to kernel_sched_wakeup_new\n"); |
278 | goto fail_deprobe; | 279 | goto fail_deprobe; |
279 | } | 280 | } |
280 | 281 | ||
281 | ret = register_trace_sched_switch(probe_wakeup_sched_switch); | 282 | ret = register_trace_sched_switch(probe_wakeup_sched_switch, NULL); |
282 | if (ret) { | 283 | if (ret) { |
283 | pr_info("sched trace: Couldn't activate tracepoint" | 284 | pr_info("sched trace: Couldn't activate tracepoint" |
284 | " probe to kernel_sched_switch\n"); | 285 | " probe to kernel_sched_switch\n"); |
285 | goto fail_deprobe_wake_new; | 286 | goto fail_deprobe_wake_new; |
286 | } | 287 | } |
287 | 288 | ||
288 | ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task); | 289 | ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task, NULL); |
289 | if (ret) { | 290 | if (ret) { |
290 | pr_info("wakeup trace: Couldn't activate tracepoint" | 291 | pr_info("wakeup trace: Couldn't activate tracepoint" |
291 | " probe to kernel_sched_migrate_task\n"); | 292 | " probe to kernel_sched_migrate_task\n"); |
@@ -312,19 +313,19 @@ static void start_wakeup_tracer(struct trace_array *tr) | |||
312 | 313 | ||
313 | return; | 314 | return; |
314 | fail_deprobe_wake_new: | 315 | fail_deprobe_wake_new: |
315 | unregister_trace_sched_wakeup_new(probe_wakeup); | 316 | unregister_trace_sched_wakeup_new(probe_wakeup, NULL); |
316 | fail_deprobe: | 317 | fail_deprobe: |
317 | unregister_trace_sched_wakeup(probe_wakeup); | 318 | unregister_trace_sched_wakeup(probe_wakeup, NULL); |
318 | } | 319 | } |
319 | 320 | ||
320 | static void stop_wakeup_tracer(struct trace_array *tr) | 321 | static void stop_wakeup_tracer(struct trace_array *tr) |
321 | { | 322 | { |
322 | tracer_enabled = 0; | 323 | tracer_enabled = 0; |
323 | unregister_ftrace_function(&trace_ops); | 324 | unregister_ftrace_function(&trace_ops); |
324 | unregister_trace_sched_switch(probe_wakeup_sched_switch); | 325 | unregister_trace_sched_switch(probe_wakeup_sched_switch, NULL); |
325 | unregister_trace_sched_wakeup_new(probe_wakeup); | 326 | unregister_trace_sched_wakeup_new(probe_wakeup, NULL); |
326 | unregister_trace_sched_wakeup(probe_wakeup); | 327 | unregister_trace_sched_wakeup(probe_wakeup, NULL); |
327 | unregister_trace_sched_migrate_task(probe_wakeup_migrate_task); | 328 | unregister_trace_sched_migrate_task(probe_wakeup_migrate_task, NULL); |
328 | } | 329 | } |
329 | 330 | ||
330 | static int __wakeup_tracer_init(struct trace_array *tr) | 331 | static int __wakeup_tracer_init(struct trace_array *tr) |
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c index 81003b4d617f..250e7f9bd2f0 100644 --- a/kernel/trace/trace_selftest.c +++ b/kernel/trace/trace_selftest.c | |||
@@ -17,7 +17,6 @@ static inline int trace_valid_entry(struct trace_entry *entry) | |||
17 | case TRACE_BRANCH: | 17 | case TRACE_BRANCH: |
18 | case TRACE_GRAPH_ENT: | 18 | case TRACE_GRAPH_ENT: |
19 | case TRACE_GRAPH_RET: | 19 | case TRACE_GRAPH_RET: |
20 | case TRACE_HW_BRANCHES: | ||
21 | case TRACE_KSYM: | 20 | case TRACE_KSYM: |
22 | return 1; | 21 | return 1; |
23 | } | 22 | } |
@@ -30,7 +29,7 @@ static int trace_test_buffer_cpu(struct trace_array *tr, int cpu) | |||
30 | struct trace_entry *entry; | 29 | struct trace_entry *entry; |
31 | unsigned int loops = 0; | 30 | unsigned int loops = 0; |
32 | 31 | ||
33 | while ((event = ring_buffer_consume(tr->buffer, cpu, NULL))) { | 32 | while ((event = ring_buffer_consume(tr->buffer, cpu, NULL, NULL))) { |
34 | entry = ring_buffer_event_data(event); | 33 | entry = ring_buffer_event_data(event); |
35 | 34 | ||
36 | /* | 35 | /* |
@@ -256,7 +255,8 @@ trace_selftest_startup_function(struct tracer *trace, struct trace_array *tr) | |||
256 | /* Maximum number of functions to trace before diagnosing a hang */ | 255 | /* Maximum number of functions to trace before diagnosing a hang */ |
257 | #define GRAPH_MAX_FUNC_TEST 100000000 | 256 | #define GRAPH_MAX_FUNC_TEST 100000000 |
258 | 257 | ||
259 | static void __ftrace_dump(bool disable_tracing); | 258 | static void |
259 | __ftrace_dump(bool disable_tracing, enum ftrace_dump_mode oops_dump_mode); | ||
260 | static unsigned int graph_hang_thresh; | 260 | static unsigned int graph_hang_thresh; |
261 | 261 | ||
262 | /* Wrap the real function entry probe to avoid possible hanging */ | 262 | /* Wrap the real function entry probe to avoid possible hanging */ |
@@ -267,7 +267,7 @@ static int trace_graph_entry_watchdog(struct ftrace_graph_ent *trace) | |||
267 | ftrace_graph_stop(); | 267 | ftrace_graph_stop(); |
268 | printk(KERN_WARNING "BUG: Function graph tracer hang!\n"); | 268 | printk(KERN_WARNING "BUG: Function graph tracer hang!\n"); |
269 | if (ftrace_dump_on_oops) | 269 | if (ftrace_dump_on_oops) |
270 | __ftrace_dump(false); | 270 | __ftrace_dump(false, DUMP_ALL); |
271 | return 0; | 271 | return 0; |
272 | } | 272 | } |
273 | 273 | ||
@@ -755,62 +755,6 @@ trace_selftest_startup_branch(struct tracer *trace, struct trace_array *tr) | |||
755 | } | 755 | } |
756 | #endif /* CONFIG_BRANCH_TRACER */ | 756 | #endif /* CONFIG_BRANCH_TRACER */ |
757 | 757 | ||
758 | #ifdef CONFIG_HW_BRANCH_TRACER | ||
759 | int | ||
760 | trace_selftest_startup_hw_branches(struct tracer *trace, | ||
761 | struct trace_array *tr) | ||
762 | { | ||
763 | struct trace_iterator *iter; | ||
764 | struct tracer tracer; | ||
765 | unsigned long count; | ||
766 | int ret; | ||
767 | |||
768 | if (!trace->open) { | ||
769 | printk(KERN_CONT "missing open function..."); | ||
770 | return -1; | ||
771 | } | ||
772 | |||
773 | ret = tracer_init(trace, tr); | ||
774 | if (ret) { | ||
775 | warn_failed_init_tracer(trace, ret); | ||
776 | return ret; | ||
777 | } | ||
778 | |||
779 | /* | ||
780 | * The hw-branch tracer needs to collect the trace from the various | ||
781 | * cpu trace buffers - before tracing is stopped. | ||
782 | */ | ||
783 | iter = kzalloc(sizeof(*iter), GFP_KERNEL); | ||
784 | if (!iter) | ||
785 | return -ENOMEM; | ||
786 | |||
787 | memcpy(&tracer, trace, sizeof(tracer)); | ||
788 | |||
789 | iter->trace = &tracer; | ||
790 | iter->tr = tr; | ||
791 | iter->pos = -1; | ||
792 | mutex_init(&iter->mutex); | ||
793 | |||
794 | trace->open(iter); | ||
795 | |||
796 | mutex_destroy(&iter->mutex); | ||
797 | kfree(iter); | ||
798 | |||
799 | tracing_stop(); | ||
800 | |||
801 | ret = trace_test_buffer(tr, &count); | ||
802 | trace->reset(tr); | ||
803 | tracing_start(); | ||
804 | |||
805 | if (!ret && !count) { | ||
806 | printk(KERN_CONT "no entries found.."); | ||
807 | ret = -1; | ||
808 | } | ||
809 | |||
810 | return ret; | ||
811 | } | ||
812 | #endif /* CONFIG_HW_BRANCH_TRACER */ | ||
813 | |||
814 | #ifdef CONFIG_KSYM_TRACER | 758 | #ifdef CONFIG_KSYM_TRACER |
815 | static int ksym_selftest_dummy; | 759 | static int ksym_selftest_dummy; |
816 | 760 | ||
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 4d6d711717f2..d2c859cec9ea 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
@@ -15,6 +15,54 @@ static int sys_refcount_exit; | |||
15 | static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls); | 15 | static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls); |
16 | static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls); | 16 | static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls); |
17 | 17 | ||
18 | static int syscall_enter_register(struct ftrace_event_call *event, | ||
19 | enum trace_reg type); | ||
20 | static int syscall_exit_register(struct ftrace_event_call *event, | ||
21 | enum trace_reg type); | ||
22 | |||
23 | static int syscall_enter_define_fields(struct ftrace_event_call *call); | ||
24 | static int syscall_exit_define_fields(struct ftrace_event_call *call); | ||
25 | |||
26 | static struct list_head * | ||
27 | syscall_get_enter_fields(struct ftrace_event_call *call) | ||
28 | { | ||
29 | struct syscall_metadata *entry = call->data; | ||
30 | |||
31 | return &entry->enter_fields; | ||
32 | } | ||
33 | |||
34 | static struct list_head * | ||
35 | syscall_get_exit_fields(struct ftrace_event_call *call) | ||
36 | { | ||
37 | struct syscall_metadata *entry = call->data; | ||
38 | |||
39 | return &entry->exit_fields; | ||
40 | } | ||
41 | |||
42 | struct trace_event_functions enter_syscall_print_funcs = { | ||
43 | .trace = print_syscall_enter, | ||
44 | }; | ||
45 | |||
46 | struct trace_event_functions exit_syscall_print_funcs = { | ||
47 | .trace = print_syscall_exit, | ||
48 | }; | ||
49 | |||
50 | struct ftrace_event_class event_class_syscall_enter = { | ||
51 | .system = "syscalls", | ||
52 | .reg = syscall_enter_register, | ||
53 | .define_fields = syscall_enter_define_fields, | ||
54 | .get_fields = syscall_get_enter_fields, | ||
55 | .raw_init = init_syscall_trace, | ||
56 | }; | ||
57 | |||
58 | struct ftrace_event_class event_class_syscall_exit = { | ||
59 | .system = "syscalls", | ||
60 | .reg = syscall_exit_register, | ||
61 | .define_fields = syscall_exit_define_fields, | ||
62 | .get_fields = syscall_get_exit_fields, | ||
63 | .raw_init = init_syscall_trace, | ||
64 | }; | ||
65 | |||
18 | extern unsigned long __start_syscalls_metadata[]; | 66 | extern unsigned long __start_syscalls_metadata[]; |
19 | extern unsigned long __stop_syscalls_metadata[]; | 67 | extern unsigned long __stop_syscalls_metadata[]; |
20 | 68 | ||
@@ -53,7 +101,8 @@ static struct syscall_metadata *syscall_nr_to_meta(int nr) | |||
53 | } | 101 | } |
54 | 102 | ||
55 | enum print_line_t | 103 | enum print_line_t |
56 | print_syscall_enter(struct trace_iterator *iter, int flags) | 104 | print_syscall_enter(struct trace_iterator *iter, int flags, |
105 | struct trace_event *event) | ||
57 | { | 106 | { |
58 | struct trace_seq *s = &iter->seq; | 107 | struct trace_seq *s = &iter->seq; |
59 | struct trace_entry *ent = iter->ent; | 108 | struct trace_entry *ent = iter->ent; |
@@ -68,7 +117,7 @@ print_syscall_enter(struct trace_iterator *iter, int flags) | |||
68 | if (!entry) | 117 | if (!entry) |
69 | goto end; | 118 | goto end; |
70 | 119 | ||
71 | if (entry->enter_event->id != ent->type) { | 120 | if (entry->enter_event->event.type != ent->type) { |
72 | WARN_ON_ONCE(1); | 121 | WARN_ON_ONCE(1); |
73 | goto end; | 122 | goto end; |
74 | } | 123 | } |
@@ -105,7 +154,8 @@ end: | |||
105 | } | 154 | } |
106 | 155 | ||
107 | enum print_line_t | 156 | enum print_line_t |
108 | print_syscall_exit(struct trace_iterator *iter, int flags) | 157 | print_syscall_exit(struct trace_iterator *iter, int flags, |
158 | struct trace_event *event) | ||
109 | { | 159 | { |
110 | struct trace_seq *s = &iter->seq; | 160 | struct trace_seq *s = &iter->seq; |
111 | struct trace_entry *ent = iter->ent; | 161 | struct trace_entry *ent = iter->ent; |
@@ -123,7 +173,7 @@ print_syscall_exit(struct trace_iterator *iter, int flags) | |||
123 | return TRACE_TYPE_HANDLED; | 173 | return TRACE_TYPE_HANDLED; |
124 | } | 174 | } |
125 | 175 | ||
126 | if (entry->exit_event->id != ent->type) { | 176 | if (entry->exit_event->event.type != ent->type) { |
127 | WARN_ON_ONCE(1); | 177 | WARN_ON_ONCE(1); |
128 | return TRACE_TYPE_UNHANDLED; | 178 | return TRACE_TYPE_UNHANDLED; |
129 | } | 179 | } |
@@ -205,7 +255,7 @@ static void free_syscall_print_fmt(struct ftrace_event_call *call) | |||
205 | kfree(call->print_fmt); | 255 | kfree(call->print_fmt); |
206 | } | 256 | } |
207 | 257 | ||
208 | int syscall_enter_define_fields(struct ftrace_event_call *call) | 258 | static int syscall_enter_define_fields(struct ftrace_event_call *call) |
209 | { | 259 | { |
210 | struct syscall_trace_enter trace; | 260 | struct syscall_trace_enter trace; |
211 | struct syscall_metadata *meta = call->data; | 261 | struct syscall_metadata *meta = call->data; |
@@ -228,7 +278,7 @@ int syscall_enter_define_fields(struct ftrace_event_call *call) | |||
228 | return ret; | 278 | return ret; |
229 | } | 279 | } |
230 | 280 | ||
231 | int syscall_exit_define_fields(struct ftrace_event_call *call) | 281 | static int syscall_exit_define_fields(struct ftrace_event_call *call) |
232 | { | 282 | { |
233 | struct syscall_trace_exit trace; | 283 | struct syscall_trace_exit trace; |
234 | int ret; | 284 | int ret; |
@@ -243,7 +293,7 @@ int syscall_exit_define_fields(struct ftrace_event_call *call) | |||
243 | return ret; | 293 | return ret; |
244 | } | 294 | } |
245 | 295 | ||
246 | void ftrace_syscall_enter(struct pt_regs *regs, long id) | 296 | void ftrace_syscall_enter(void *ignore, struct pt_regs *regs, long id) |
247 | { | 297 | { |
248 | struct syscall_trace_enter *entry; | 298 | struct syscall_trace_enter *entry; |
249 | struct syscall_metadata *sys_data; | 299 | struct syscall_metadata *sys_data; |
@@ -265,7 +315,7 @@ void ftrace_syscall_enter(struct pt_regs *regs, long id) | |||
265 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; | 315 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; |
266 | 316 | ||
267 | event = trace_current_buffer_lock_reserve(&buffer, | 317 | event = trace_current_buffer_lock_reserve(&buffer, |
268 | sys_data->enter_event->id, size, 0, 0); | 318 | sys_data->enter_event->event.type, size, 0, 0); |
269 | if (!event) | 319 | if (!event) |
270 | return; | 320 | return; |
271 | 321 | ||
@@ -278,7 +328,7 @@ void ftrace_syscall_enter(struct pt_regs *regs, long id) | |||
278 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); | 328 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); |
279 | } | 329 | } |
280 | 330 | ||
281 | void ftrace_syscall_exit(struct pt_regs *regs, long ret) | 331 | void ftrace_syscall_exit(void *ignore, struct pt_regs *regs, long ret) |
282 | { | 332 | { |
283 | struct syscall_trace_exit *entry; | 333 | struct syscall_trace_exit *entry; |
284 | struct syscall_metadata *sys_data; | 334 | struct syscall_metadata *sys_data; |
@@ -297,7 +347,7 @@ void ftrace_syscall_exit(struct pt_regs *regs, long ret) | |||
297 | return; | 347 | return; |
298 | 348 | ||
299 | event = trace_current_buffer_lock_reserve(&buffer, | 349 | event = trace_current_buffer_lock_reserve(&buffer, |
300 | sys_data->exit_event->id, sizeof(*entry), 0, 0); | 350 | sys_data->exit_event->event.type, sizeof(*entry), 0, 0); |
301 | if (!event) | 351 | if (!event) |
302 | return; | 352 | return; |
303 | 353 | ||
@@ -320,7 +370,7 @@ int reg_event_syscall_enter(struct ftrace_event_call *call) | |||
320 | return -ENOSYS; | 370 | return -ENOSYS; |
321 | mutex_lock(&syscall_trace_lock); | 371 | mutex_lock(&syscall_trace_lock); |
322 | if (!sys_refcount_enter) | 372 | if (!sys_refcount_enter) |
323 | ret = register_trace_sys_enter(ftrace_syscall_enter); | 373 | ret = register_trace_sys_enter(ftrace_syscall_enter, NULL); |
324 | if (!ret) { | 374 | if (!ret) { |
325 | set_bit(num, enabled_enter_syscalls); | 375 | set_bit(num, enabled_enter_syscalls); |
326 | sys_refcount_enter++; | 376 | sys_refcount_enter++; |
@@ -340,7 +390,7 @@ void unreg_event_syscall_enter(struct ftrace_event_call *call) | |||
340 | sys_refcount_enter--; | 390 | sys_refcount_enter--; |
341 | clear_bit(num, enabled_enter_syscalls); | 391 | clear_bit(num, enabled_enter_syscalls); |
342 | if (!sys_refcount_enter) | 392 | if (!sys_refcount_enter) |
343 | unregister_trace_sys_enter(ftrace_syscall_enter); | 393 | unregister_trace_sys_enter(ftrace_syscall_enter, NULL); |
344 | mutex_unlock(&syscall_trace_lock); | 394 | mutex_unlock(&syscall_trace_lock); |
345 | } | 395 | } |
346 | 396 | ||
@@ -354,7 +404,7 @@ int reg_event_syscall_exit(struct ftrace_event_call *call) | |||
354 | return -ENOSYS; | 404 | return -ENOSYS; |
355 | mutex_lock(&syscall_trace_lock); | 405 | mutex_lock(&syscall_trace_lock); |
356 | if (!sys_refcount_exit) | 406 | if (!sys_refcount_exit) |
357 | ret = register_trace_sys_exit(ftrace_syscall_exit); | 407 | ret = register_trace_sys_exit(ftrace_syscall_exit, NULL); |
358 | if (!ret) { | 408 | if (!ret) { |
359 | set_bit(num, enabled_exit_syscalls); | 409 | set_bit(num, enabled_exit_syscalls); |
360 | sys_refcount_exit++; | 410 | sys_refcount_exit++; |
@@ -374,7 +424,7 @@ void unreg_event_syscall_exit(struct ftrace_event_call *call) | |||
374 | sys_refcount_exit--; | 424 | sys_refcount_exit--; |
375 | clear_bit(num, enabled_exit_syscalls); | 425 | clear_bit(num, enabled_exit_syscalls); |
376 | if (!sys_refcount_exit) | 426 | if (!sys_refcount_exit) |
377 | unregister_trace_sys_exit(ftrace_syscall_exit); | 427 | unregister_trace_sys_exit(ftrace_syscall_exit, NULL); |
378 | mutex_unlock(&syscall_trace_lock); | 428 | mutex_unlock(&syscall_trace_lock); |
379 | } | 429 | } |
380 | 430 | ||
@@ -434,11 +484,11 @@ static DECLARE_BITMAP(enabled_perf_exit_syscalls, NR_syscalls); | |||
434 | static int sys_perf_refcount_enter; | 484 | static int sys_perf_refcount_enter; |
435 | static int sys_perf_refcount_exit; | 485 | static int sys_perf_refcount_exit; |
436 | 486 | ||
437 | static void perf_syscall_enter(struct pt_regs *regs, long id) | 487 | static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id) |
438 | { | 488 | { |
439 | struct syscall_metadata *sys_data; | 489 | struct syscall_metadata *sys_data; |
440 | struct syscall_trace_enter *rec; | 490 | struct syscall_trace_enter *rec; |
441 | unsigned long flags; | 491 | struct hlist_head *head; |
442 | int syscall_nr; | 492 | int syscall_nr; |
443 | int rctx; | 493 | int rctx; |
444 | int size; | 494 | int size; |
@@ -461,14 +511,16 @@ static void perf_syscall_enter(struct pt_regs *regs, long id) | |||
461 | return; | 511 | return; |
462 | 512 | ||
463 | rec = (struct syscall_trace_enter *)perf_trace_buf_prepare(size, | 513 | rec = (struct syscall_trace_enter *)perf_trace_buf_prepare(size, |
464 | sys_data->enter_event->id, &rctx, &flags); | 514 | sys_data->enter_event->event.type, regs, &rctx); |
465 | if (!rec) | 515 | if (!rec) |
466 | return; | 516 | return; |
467 | 517 | ||
468 | rec->nr = syscall_nr; | 518 | rec->nr = syscall_nr; |
469 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 519 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, |
470 | (unsigned long *)&rec->args); | 520 | (unsigned long *)&rec->args); |
471 | perf_trace_buf_submit(rec, size, rctx, 0, 1, flags, regs); | 521 | |
522 | head = per_cpu_ptr(sys_data->enter_event->perf_events, smp_processor_id()); | ||
523 | perf_trace_buf_submit(rec, size, rctx, 0, 1, regs, head); | ||
472 | } | 524 | } |
473 | 525 | ||
474 | int perf_sysenter_enable(struct ftrace_event_call *call) | 526 | int perf_sysenter_enable(struct ftrace_event_call *call) |
@@ -480,7 +532,7 @@ int perf_sysenter_enable(struct ftrace_event_call *call) | |||
480 | 532 | ||
481 | mutex_lock(&syscall_trace_lock); | 533 | mutex_lock(&syscall_trace_lock); |
482 | if (!sys_perf_refcount_enter) | 534 | if (!sys_perf_refcount_enter) |
483 | ret = register_trace_sys_enter(perf_syscall_enter); | 535 | ret = register_trace_sys_enter(perf_syscall_enter, NULL); |
484 | if (ret) { | 536 | if (ret) { |
485 | pr_info("event trace: Could not activate" | 537 | pr_info("event trace: Could not activate" |
486 | "syscall entry trace point"); | 538 | "syscall entry trace point"); |
@@ -502,15 +554,15 @@ void perf_sysenter_disable(struct ftrace_event_call *call) | |||
502 | sys_perf_refcount_enter--; | 554 | sys_perf_refcount_enter--; |
503 | clear_bit(num, enabled_perf_enter_syscalls); | 555 | clear_bit(num, enabled_perf_enter_syscalls); |
504 | if (!sys_perf_refcount_enter) | 556 | if (!sys_perf_refcount_enter) |
505 | unregister_trace_sys_enter(perf_syscall_enter); | 557 | unregister_trace_sys_enter(perf_syscall_enter, NULL); |
506 | mutex_unlock(&syscall_trace_lock); | 558 | mutex_unlock(&syscall_trace_lock); |
507 | } | 559 | } |
508 | 560 | ||
509 | static void perf_syscall_exit(struct pt_regs *regs, long ret) | 561 | static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret) |
510 | { | 562 | { |
511 | struct syscall_metadata *sys_data; | 563 | struct syscall_metadata *sys_data; |
512 | struct syscall_trace_exit *rec; | 564 | struct syscall_trace_exit *rec; |
513 | unsigned long flags; | 565 | struct hlist_head *head; |
514 | int syscall_nr; | 566 | int syscall_nr; |
515 | int rctx; | 567 | int rctx; |
516 | int size; | 568 | int size; |
@@ -536,14 +588,15 @@ static void perf_syscall_exit(struct pt_regs *regs, long ret) | |||
536 | return; | 588 | return; |
537 | 589 | ||
538 | rec = (struct syscall_trace_exit *)perf_trace_buf_prepare(size, | 590 | rec = (struct syscall_trace_exit *)perf_trace_buf_prepare(size, |
539 | sys_data->exit_event->id, &rctx, &flags); | 591 | sys_data->exit_event->event.type, regs, &rctx); |
540 | if (!rec) | 592 | if (!rec) |
541 | return; | 593 | return; |
542 | 594 | ||
543 | rec->nr = syscall_nr; | 595 | rec->nr = syscall_nr; |
544 | rec->ret = syscall_get_return_value(current, regs); | 596 | rec->ret = syscall_get_return_value(current, regs); |
545 | 597 | ||
546 | perf_trace_buf_submit(rec, size, rctx, 0, 1, flags, regs); | 598 | head = per_cpu_ptr(sys_data->exit_event->perf_events, smp_processor_id()); |
599 | perf_trace_buf_submit(rec, size, rctx, 0, 1, regs, head); | ||
547 | } | 600 | } |
548 | 601 | ||
549 | int perf_sysexit_enable(struct ftrace_event_call *call) | 602 | int perf_sysexit_enable(struct ftrace_event_call *call) |
@@ -555,7 +608,7 @@ int perf_sysexit_enable(struct ftrace_event_call *call) | |||
555 | 608 | ||
556 | mutex_lock(&syscall_trace_lock); | 609 | mutex_lock(&syscall_trace_lock); |
557 | if (!sys_perf_refcount_exit) | 610 | if (!sys_perf_refcount_exit) |
558 | ret = register_trace_sys_exit(perf_syscall_exit); | 611 | ret = register_trace_sys_exit(perf_syscall_exit, NULL); |
559 | if (ret) { | 612 | if (ret) { |
560 | pr_info("event trace: Could not activate" | 613 | pr_info("event trace: Could not activate" |
561 | "syscall exit trace point"); | 614 | "syscall exit trace point"); |
@@ -577,9 +630,50 @@ void perf_sysexit_disable(struct ftrace_event_call *call) | |||
577 | sys_perf_refcount_exit--; | 630 | sys_perf_refcount_exit--; |
578 | clear_bit(num, enabled_perf_exit_syscalls); | 631 | clear_bit(num, enabled_perf_exit_syscalls); |
579 | if (!sys_perf_refcount_exit) | 632 | if (!sys_perf_refcount_exit) |
580 | unregister_trace_sys_exit(perf_syscall_exit); | 633 | unregister_trace_sys_exit(perf_syscall_exit, NULL); |
581 | mutex_unlock(&syscall_trace_lock); | 634 | mutex_unlock(&syscall_trace_lock); |
582 | } | 635 | } |
583 | 636 | ||
584 | #endif /* CONFIG_PERF_EVENTS */ | 637 | #endif /* CONFIG_PERF_EVENTS */ |
585 | 638 | ||
639 | static int syscall_enter_register(struct ftrace_event_call *event, | ||
640 | enum trace_reg type) | ||
641 | { | ||
642 | switch (type) { | ||
643 | case TRACE_REG_REGISTER: | ||
644 | return reg_event_syscall_enter(event); | ||
645 | case TRACE_REG_UNREGISTER: | ||
646 | unreg_event_syscall_enter(event); | ||
647 | return 0; | ||
648 | |||
649 | #ifdef CONFIG_PERF_EVENTS | ||
650 | case TRACE_REG_PERF_REGISTER: | ||
651 | return perf_sysenter_enable(event); | ||
652 | case TRACE_REG_PERF_UNREGISTER: | ||
653 | perf_sysenter_disable(event); | ||
654 | return 0; | ||
655 | #endif | ||
656 | } | ||
657 | return 0; | ||
658 | } | ||
659 | |||
660 | static int syscall_exit_register(struct ftrace_event_call *event, | ||
661 | enum trace_reg type) | ||
662 | { | ||
663 | switch (type) { | ||
664 | case TRACE_REG_REGISTER: | ||
665 | return reg_event_syscall_exit(event); | ||
666 | case TRACE_REG_UNREGISTER: | ||
667 | unreg_event_syscall_exit(event); | ||
668 | return 0; | ||
669 | |||
670 | #ifdef CONFIG_PERF_EVENTS | ||
671 | case TRACE_REG_PERF_REGISTER: | ||
672 | return perf_sysexit_enable(event); | ||
673 | case TRACE_REG_PERF_UNREGISTER: | ||
674 | perf_sysexit_disable(event); | ||
675 | return 0; | ||
676 | #endif | ||
677 | } | ||
678 | return 0; | ||
679 | } | ||
diff --git a/kernel/trace/trace_workqueue.c b/kernel/trace/trace_workqueue.c index cc2d2faa7d9e..a7cc3793baf6 100644 --- a/kernel/trace/trace_workqueue.c +++ b/kernel/trace/trace_workqueue.c | |||
@@ -49,7 +49,8 @@ static void cpu_workqueue_stat_free(struct kref *kref) | |||
49 | 49 | ||
50 | /* Insertion of a work */ | 50 | /* Insertion of a work */ |
51 | static void | 51 | static void |
52 | probe_workqueue_insertion(struct task_struct *wq_thread, | 52 | probe_workqueue_insertion(void *ignore, |
53 | struct task_struct *wq_thread, | ||
53 | struct work_struct *work) | 54 | struct work_struct *work) |
54 | { | 55 | { |
55 | int cpu = cpumask_first(&wq_thread->cpus_allowed); | 56 | int cpu = cpumask_first(&wq_thread->cpus_allowed); |
@@ -70,7 +71,8 @@ found: | |||
70 | 71 | ||
71 | /* Execution of a work */ | 72 | /* Execution of a work */ |
72 | static void | 73 | static void |
73 | probe_workqueue_execution(struct task_struct *wq_thread, | 74 | probe_workqueue_execution(void *ignore, |
75 | struct task_struct *wq_thread, | ||
74 | struct work_struct *work) | 76 | struct work_struct *work) |
75 | { | 77 | { |
76 | int cpu = cpumask_first(&wq_thread->cpus_allowed); | 78 | int cpu = cpumask_first(&wq_thread->cpus_allowed); |
@@ -90,7 +92,8 @@ found: | |||
90 | } | 92 | } |
91 | 93 | ||
92 | /* Creation of a cpu workqueue thread */ | 94 | /* Creation of a cpu workqueue thread */ |
93 | static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu) | 95 | static void probe_workqueue_creation(void *ignore, |
96 | struct task_struct *wq_thread, int cpu) | ||
94 | { | 97 | { |
95 | struct cpu_workqueue_stats *cws; | 98 | struct cpu_workqueue_stats *cws; |
96 | unsigned long flags; | 99 | unsigned long flags; |
@@ -114,7 +117,8 @@ static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu) | |||
114 | } | 117 | } |
115 | 118 | ||
116 | /* Destruction of a cpu workqueue thread */ | 119 | /* Destruction of a cpu workqueue thread */ |
117 | static void probe_workqueue_destruction(struct task_struct *wq_thread) | 120 | static void |
121 | probe_workqueue_destruction(void *ignore, struct task_struct *wq_thread) | ||
118 | { | 122 | { |
119 | /* Workqueue only execute on one cpu */ | 123 | /* Workqueue only execute on one cpu */ |
120 | int cpu = cpumask_first(&wq_thread->cpus_allowed); | 124 | int cpu = cpumask_first(&wq_thread->cpus_allowed); |
@@ -259,19 +263,19 @@ int __init trace_workqueue_early_init(void) | |||
259 | { | 263 | { |
260 | int ret, cpu; | 264 | int ret, cpu; |
261 | 265 | ||
262 | ret = register_trace_workqueue_insertion(probe_workqueue_insertion); | 266 | ret = register_trace_workqueue_insertion(probe_workqueue_insertion, NULL); |
263 | if (ret) | 267 | if (ret) |
264 | goto out; | 268 | goto out; |
265 | 269 | ||
266 | ret = register_trace_workqueue_execution(probe_workqueue_execution); | 270 | ret = register_trace_workqueue_execution(probe_workqueue_execution, NULL); |
267 | if (ret) | 271 | if (ret) |
268 | goto no_insertion; | 272 | goto no_insertion; |
269 | 273 | ||
270 | ret = register_trace_workqueue_creation(probe_workqueue_creation); | 274 | ret = register_trace_workqueue_creation(probe_workqueue_creation, NULL); |
271 | if (ret) | 275 | if (ret) |
272 | goto no_execution; | 276 | goto no_execution; |
273 | 277 | ||
274 | ret = register_trace_workqueue_destruction(probe_workqueue_destruction); | 278 | ret = register_trace_workqueue_destruction(probe_workqueue_destruction, NULL); |
275 | if (ret) | 279 | if (ret) |
276 | goto no_creation; | 280 | goto no_creation; |
277 | 281 | ||
@@ -283,11 +287,11 @@ int __init trace_workqueue_early_init(void) | |||
283 | return 0; | 287 | return 0; |
284 | 288 | ||
285 | no_creation: | 289 | no_creation: |
286 | unregister_trace_workqueue_creation(probe_workqueue_creation); | 290 | unregister_trace_workqueue_creation(probe_workqueue_creation, NULL); |
287 | no_execution: | 291 | no_execution: |
288 | unregister_trace_workqueue_execution(probe_workqueue_execution); | 292 | unregister_trace_workqueue_execution(probe_workqueue_execution, NULL); |
289 | no_insertion: | 293 | no_insertion: |
290 | unregister_trace_workqueue_insertion(probe_workqueue_insertion); | 294 | unregister_trace_workqueue_insertion(probe_workqueue_insertion, NULL); |
291 | out: | 295 | out: |
292 | pr_warning("trace_workqueue: unable to trace workqueues\n"); | 296 | pr_warning("trace_workqueue: unable to trace workqueues\n"); |
293 | 297 | ||
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index cc89be5bc0f8..c77f3eceea25 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
@@ -54,7 +54,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
54 | */ | 54 | */ |
55 | struct tracepoint_entry { | 55 | struct tracepoint_entry { |
56 | struct hlist_node hlist; | 56 | struct hlist_node hlist; |
57 | void **funcs; | 57 | struct tracepoint_func *funcs; |
58 | int refcount; /* Number of times armed. 0 if disarmed. */ | 58 | int refcount; /* Number of times armed. 0 if disarmed. */ |
59 | char name[0]; | 59 | char name[0]; |
60 | }; | 60 | }; |
@@ -64,12 +64,12 @@ struct tp_probes { | |||
64 | struct rcu_head rcu; | 64 | struct rcu_head rcu; |
65 | struct list_head list; | 65 | struct list_head list; |
66 | } u; | 66 | } u; |
67 | void *probes[0]; | 67 | struct tracepoint_func probes[0]; |
68 | }; | 68 | }; |
69 | 69 | ||
70 | static inline void *allocate_probes(int count) | 70 | static inline void *allocate_probes(int count) |
71 | { | 71 | { |
72 | struct tp_probes *p = kmalloc(count * sizeof(void *) | 72 | struct tp_probes *p = kmalloc(count * sizeof(struct tracepoint_func) |
73 | + sizeof(struct tp_probes), GFP_KERNEL); | 73 | + sizeof(struct tp_probes), GFP_KERNEL); |
74 | return p == NULL ? NULL : p->probes; | 74 | return p == NULL ? NULL : p->probes; |
75 | } | 75 | } |
@@ -79,7 +79,7 @@ static void rcu_free_old_probes(struct rcu_head *head) | |||
79 | kfree(container_of(head, struct tp_probes, u.rcu)); | 79 | kfree(container_of(head, struct tp_probes, u.rcu)); |
80 | } | 80 | } |
81 | 81 | ||
82 | static inline void release_probes(void *old) | 82 | static inline void release_probes(struct tracepoint_func *old) |
83 | { | 83 | { |
84 | if (old) { | 84 | if (old) { |
85 | struct tp_probes *tp_probes = container_of(old, | 85 | struct tp_probes *tp_probes = container_of(old, |
@@ -95,15 +95,16 @@ static void debug_print_probes(struct tracepoint_entry *entry) | |||
95 | if (!tracepoint_debug || !entry->funcs) | 95 | if (!tracepoint_debug || !entry->funcs) |
96 | return; | 96 | return; |
97 | 97 | ||
98 | for (i = 0; entry->funcs[i]; i++) | 98 | for (i = 0; entry->funcs[i].func; i++) |
99 | printk(KERN_DEBUG "Probe %d : %p\n", i, entry->funcs[i]); | 99 | printk(KERN_DEBUG "Probe %d : %p\n", i, entry->funcs[i].func); |
100 | } | 100 | } |
101 | 101 | ||
102 | static void * | 102 | static struct tracepoint_func * |
103 | tracepoint_entry_add_probe(struct tracepoint_entry *entry, void *probe) | 103 | tracepoint_entry_add_probe(struct tracepoint_entry *entry, |
104 | void *probe, void *data) | ||
104 | { | 105 | { |
105 | int nr_probes = 0; | 106 | int nr_probes = 0; |
106 | void **old, **new; | 107 | struct tracepoint_func *old, *new; |
107 | 108 | ||
108 | WARN_ON(!probe); | 109 | WARN_ON(!probe); |
109 | 110 | ||
@@ -111,8 +112,9 @@ tracepoint_entry_add_probe(struct tracepoint_entry *entry, void *probe) | |||
111 | old = entry->funcs; | 112 | old = entry->funcs; |
112 | if (old) { | 113 | if (old) { |
113 | /* (N -> N+1), (N != 0, 1) probes */ | 114 | /* (N -> N+1), (N != 0, 1) probes */ |
114 | for (nr_probes = 0; old[nr_probes]; nr_probes++) | 115 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) |
115 | if (old[nr_probes] == probe) | 116 | if (old[nr_probes].func == probe && |
117 | old[nr_probes].data == data) | ||
116 | return ERR_PTR(-EEXIST); | 118 | return ERR_PTR(-EEXIST); |
117 | } | 119 | } |
118 | /* + 2 : one for new probe, one for NULL func */ | 120 | /* + 2 : one for new probe, one for NULL func */ |
@@ -120,9 +122,10 @@ tracepoint_entry_add_probe(struct tracepoint_entry *entry, void *probe) | |||
120 | if (new == NULL) | 122 | if (new == NULL) |
121 | return ERR_PTR(-ENOMEM); | 123 | return ERR_PTR(-ENOMEM); |
122 | if (old) | 124 | if (old) |
123 | memcpy(new, old, nr_probes * sizeof(void *)); | 125 | memcpy(new, old, nr_probes * sizeof(struct tracepoint_func)); |
124 | new[nr_probes] = probe; | 126 | new[nr_probes].func = probe; |
125 | new[nr_probes + 1] = NULL; | 127 | new[nr_probes].data = data; |
128 | new[nr_probes + 1].func = NULL; | ||
126 | entry->refcount = nr_probes + 1; | 129 | entry->refcount = nr_probes + 1; |
127 | entry->funcs = new; | 130 | entry->funcs = new; |
128 | debug_print_probes(entry); | 131 | debug_print_probes(entry); |
@@ -130,10 +133,11 @@ tracepoint_entry_add_probe(struct tracepoint_entry *entry, void *probe) | |||
130 | } | 133 | } |
131 | 134 | ||
132 | static void * | 135 | static void * |
133 | tracepoint_entry_remove_probe(struct tracepoint_entry *entry, void *probe) | 136 | tracepoint_entry_remove_probe(struct tracepoint_entry *entry, |
137 | void *probe, void *data) | ||
134 | { | 138 | { |
135 | int nr_probes = 0, nr_del = 0, i; | 139 | int nr_probes = 0, nr_del = 0, i; |
136 | void **old, **new; | 140 | struct tracepoint_func *old, *new; |
137 | 141 | ||
138 | old = entry->funcs; | 142 | old = entry->funcs; |
139 | 143 | ||
@@ -142,8 +146,10 @@ tracepoint_entry_remove_probe(struct tracepoint_entry *entry, void *probe) | |||
142 | 146 | ||
143 | debug_print_probes(entry); | 147 | debug_print_probes(entry); |
144 | /* (N -> M), (N > 1, M >= 0) probes */ | 148 | /* (N -> M), (N > 1, M >= 0) probes */ |
145 | for (nr_probes = 0; old[nr_probes]; nr_probes++) { | 149 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { |
146 | if ((!probe || old[nr_probes] == probe)) | 150 | if (!probe || |
151 | (old[nr_probes].func == probe && | ||
152 | old[nr_probes].data == data)) | ||
147 | nr_del++; | 153 | nr_del++; |
148 | } | 154 | } |
149 | 155 | ||
@@ -160,10 +166,11 @@ tracepoint_entry_remove_probe(struct tracepoint_entry *entry, void *probe) | |||
160 | new = allocate_probes(nr_probes - nr_del + 1); | 166 | new = allocate_probes(nr_probes - nr_del + 1); |
161 | if (new == NULL) | 167 | if (new == NULL) |
162 | return ERR_PTR(-ENOMEM); | 168 | return ERR_PTR(-ENOMEM); |
163 | for (i = 0; old[i]; i++) | 169 | for (i = 0; old[i].func; i++) |
164 | if ((probe && old[i] != probe)) | 170 | if (probe && |
171 | (old[i].func != probe || old[i].data != data)) | ||
165 | new[j++] = old[i]; | 172 | new[j++] = old[i]; |
166 | new[nr_probes - nr_del] = NULL; | 173 | new[nr_probes - nr_del].func = NULL; |
167 | entry->refcount = nr_probes - nr_del; | 174 | entry->refcount = nr_probes - nr_del; |
168 | entry->funcs = new; | 175 | entry->funcs = new; |
169 | } | 176 | } |
@@ -315,18 +322,19 @@ static void tracepoint_update_probes(void) | |||
315 | module_update_tracepoints(); | 322 | module_update_tracepoints(); |
316 | } | 323 | } |
317 | 324 | ||
318 | static void *tracepoint_add_probe(const char *name, void *probe) | 325 | static struct tracepoint_func * |
326 | tracepoint_add_probe(const char *name, void *probe, void *data) | ||
319 | { | 327 | { |
320 | struct tracepoint_entry *entry; | 328 | struct tracepoint_entry *entry; |
321 | void *old; | 329 | struct tracepoint_func *old; |
322 | 330 | ||
323 | entry = get_tracepoint(name); | 331 | entry = get_tracepoint(name); |
324 | if (!entry) { | 332 | if (!entry) { |
325 | entry = add_tracepoint(name); | 333 | entry = add_tracepoint(name); |
326 | if (IS_ERR(entry)) | 334 | if (IS_ERR(entry)) |
327 | return entry; | 335 | return (struct tracepoint_func *)entry; |
328 | } | 336 | } |
329 | old = tracepoint_entry_add_probe(entry, probe); | 337 | old = tracepoint_entry_add_probe(entry, probe, data); |
330 | if (IS_ERR(old) && !entry->refcount) | 338 | if (IS_ERR(old) && !entry->refcount) |
331 | remove_tracepoint(entry); | 339 | remove_tracepoint(entry); |
332 | return old; | 340 | return old; |
@@ -340,12 +348,12 @@ static void *tracepoint_add_probe(const char *name, void *probe) | |||
340 | * Returns 0 if ok, error value on error. | 348 | * Returns 0 if ok, error value on error. |
341 | * The probe address must at least be aligned on the architecture pointer size. | 349 | * The probe address must at least be aligned on the architecture pointer size. |
342 | */ | 350 | */ |
343 | int tracepoint_probe_register(const char *name, void *probe) | 351 | int tracepoint_probe_register(const char *name, void *probe, void *data) |
344 | { | 352 | { |
345 | void *old; | 353 | struct tracepoint_func *old; |
346 | 354 | ||
347 | mutex_lock(&tracepoints_mutex); | 355 | mutex_lock(&tracepoints_mutex); |
348 | old = tracepoint_add_probe(name, probe); | 356 | old = tracepoint_add_probe(name, probe, data); |
349 | mutex_unlock(&tracepoints_mutex); | 357 | mutex_unlock(&tracepoints_mutex); |
350 | if (IS_ERR(old)) | 358 | if (IS_ERR(old)) |
351 | return PTR_ERR(old); | 359 | return PTR_ERR(old); |
@@ -356,15 +364,16 @@ int tracepoint_probe_register(const char *name, void *probe) | |||
356 | } | 364 | } |
357 | EXPORT_SYMBOL_GPL(tracepoint_probe_register); | 365 | EXPORT_SYMBOL_GPL(tracepoint_probe_register); |
358 | 366 | ||
359 | static void *tracepoint_remove_probe(const char *name, void *probe) | 367 | static struct tracepoint_func * |
368 | tracepoint_remove_probe(const char *name, void *probe, void *data) | ||
360 | { | 369 | { |
361 | struct tracepoint_entry *entry; | 370 | struct tracepoint_entry *entry; |
362 | void *old; | 371 | struct tracepoint_func *old; |
363 | 372 | ||
364 | entry = get_tracepoint(name); | 373 | entry = get_tracepoint(name); |
365 | if (!entry) | 374 | if (!entry) |
366 | return ERR_PTR(-ENOENT); | 375 | return ERR_PTR(-ENOENT); |
367 | old = tracepoint_entry_remove_probe(entry, probe); | 376 | old = tracepoint_entry_remove_probe(entry, probe, data); |
368 | if (IS_ERR(old)) | 377 | if (IS_ERR(old)) |
369 | return old; | 378 | return old; |
370 | if (!entry->refcount) | 379 | if (!entry->refcount) |
@@ -382,12 +391,12 @@ static void *tracepoint_remove_probe(const char *name, void *probe) | |||
382 | * itself uses stop_machine(), which insures that every preempt disabled section | 391 | * itself uses stop_machine(), which insures that every preempt disabled section |
383 | * have finished. | 392 | * have finished. |
384 | */ | 393 | */ |
385 | int tracepoint_probe_unregister(const char *name, void *probe) | 394 | int tracepoint_probe_unregister(const char *name, void *probe, void *data) |
386 | { | 395 | { |
387 | void *old; | 396 | struct tracepoint_func *old; |
388 | 397 | ||
389 | mutex_lock(&tracepoints_mutex); | 398 | mutex_lock(&tracepoints_mutex); |
390 | old = tracepoint_remove_probe(name, probe); | 399 | old = tracepoint_remove_probe(name, probe, data); |
391 | mutex_unlock(&tracepoints_mutex); | 400 | mutex_unlock(&tracepoints_mutex); |
392 | if (IS_ERR(old)) | 401 | if (IS_ERR(old)) |
393 | return PTR_ERR(old); | 402 | return PTR_ERR(old); |
@@ -418,12 +427,13 @@ static void tracepoint_add_old_probes(void *old) | |||
418 | * | 427 | * |
419 | * caller must call tracepoint_probe_update_all() | 428 | * caller must call tracepoint_probe_update_all() |
420 | */ | 429 | */ |
421 | int tracepoint_probe_register_noupdate(const char *name, void *probe) | 430 | int tracepoint_probe_register_noupdate(const char *name, void *probe, |
431 | void *data) | ||
422 | { | 432 | { |
423 | void *old; | 433 | struct tracepoint_func *old; |
424 | 434 | ||
425 | mutex_lock(&tracepoints_mutex); | 435 | mutex_lock(&tracepoints_mutex); |
426 | old = tracepoint_add_probe(name, probe); | 436 | old = tracepoint_add_probe(name, probe, data); |
427 | if (IS_ERR(old)) { | 437 | if (IS_ERR(old)) { |
428 | mutex_unlock(&tracepoints_mutex); | 438 | mutex_unlock(&tracepoints_mutex); |
429 | return PTR_ERR(old); | 439 | return PTR_ERR(old); |
@@ -441,12 +451,13 @@ EXPORT_SYMBOL_GPL(tracepoint_probe_register_noupdate); | |||
441 | * | 451 | * |
442 | * caller must call tracepoint_probe_update_all() | 452 | * caller must call tracepoint_probe_update_all() |
443 | */ | 453 | */ |
444 | int tracepoint_probe_unregister_noupdate(const char *name, void *probe) | 454 | int tracepoint_probe_unregister_noupdate(const char *name, void *probe, |
455 | void *data) | ||
445 | { | 456 | { |
446 | void *old; | 457 | struct tracepoint_func *old; |
447 | 458 | ||
448 | mutex_lock(&tracepoints_mutex); | 459 | mutex_lock(&tracepoints_mutex); |
449 | old = tracepoint_remove_probe(name, probe); | 460 | old = tracepoint_remove_probe(name, probe, data); |
450 | if (IS_ERR(old)) { | 461 | if (IS_ERR(old)) { |
451 | mutex_unlock(&tracepoints_mutex); | 462 | mutex_unlock(&tracepoints_mutex); |
452 | return PTR_ERR(old); | 463 | return PTR_ERR(old); |
diff --git a/kernel/user.c b/kernel/user.c index 766467b3bcb7..7e72614b736d 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
@@ -16,7 +16,6 @@ | |||
16 | #include <linux/interrupt.h> | 16 | #include <linux/interrupt.h> |
17 | #include <linux/module.h> | 17 | #include <linux/module.h> |
18 | #include <linux/user_namespace.h> | 18 | #include <linux/user_namespace.h> |
19 | #include "cred-internals.h" | ||
20 | 19 | ||
21 | struct user_namespace init_user_ns = { | 20 | struct user_namespace init_user_ns = { |
22 | .kref = { | 21 | .kref = { |
@@ -137,9 +136,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
137 | struct hlist_head *hashent = uidhashentry(ns, uid); | 136 | struct hlist_head *hashent = uidhashentry(ns, uid); |
138 | struct user_struct *up, *new; | 137 | struct user_struct *up, *new; |
139 | 138 | ||
140 | /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() | ||
141 | * atomic. | ||
142 | */ | ||
143 | spin_lock_irq(&uidhash_lock); | 139 | spin_lock_irq(&uidhash_lock); |
144 | up = uid_hash_find(uid, hashent); | 140 | up = uid_hash_find(uid, hashent); |
145 | spin_unlock_irq(&uidhash_lock); | 141 | spin_unlock_irq(&uidhash_lock); |
@@ -161,11 +157,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
161 | spin_lock_irq(&uidhash_lock); | 157 | spin_lock_irq(&uidhash_lock); |
162 | up = uid_hash_find(uid, hashent); | 158 | up = uid_hash_find(uid, hashent); |
163 | if (up) { | 159 | if (up) { |
164 | /* This case is not possible when CONFIG_USER_SCHED | ||
165 | * is defined, since we serialize alloc_uid() using | ||
166 | * uids_mutex. Hence no need to call | ||
167 | * sched_destroy_user() or remove_user_sysfs_dir(). | ||
168 | */ | ||
169 | key_put(new->uid_keyring); | 160 | key_put(new->uid_keyring); |
170 | key_put(new->session_keyring); | 161 | key_put(new->session_keyring); |
171 | kmem_cache_free(uid_cachep, new); | 162 | kmem_cache_free(uid_cachep, new); |
@@ -178,8 +169,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
178 | 169 | ||
179 | return up; | 170 | return up; |
180 | 171 | ||
181 | put_user_ns(new->user_ns); | ||
182 | kmem_cache_free(uid_cachep, new); | ||
183 | out_unlock: | 172 | out_unlock: |
184 | return NULL; | 173 | return NULL; |
185 | } | 174 | } |
diff --git a/kernel/user_namespace.c b/kernel/user_namespace.c index 076c7c8215b0..b2d70d38dff4 100644 --- a/kernel/user_namespace.c +++ b/kernel/user_namespace.c | |||
@@ -54,8 +54,8 @@ int create_user_ns(struct cred *new) | |||
54 | #endif | 54 | #endif |
55 | /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ | 55 | /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ |
56 | 56 | ||
57 | /* alloc_uid() incremented the userns refcount. Just set it to 1 */ | 57 | /* root_user holds a reference to ns, our reference can be dropped */ |
58 | kref_set(&ns->kref, 1); | 58 | put_user_ns(ns); |
59 | 59 | ||
60 | return 0; | 60 | return 0; |
61 | } | 61 | } |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 5bfb213984b2..327d2deb4451 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -229,6 +229,16 @@ static inline void set_wq_data(struct work_struct *work, | |||
229 | atomic_long_set(&work->data, new); | 229 | atomic_long_set(&work->data, new); |
230 | } | 230 | } |
231 | 231 | ||
232 | /* | ||
233 | * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued. | ||
234 | */ | ||
235 | static inline void clear_wq_data(struct work_struct *work) | ||
236 | { | ||
237 | unsigned long flags = *work_data_bits(work) & | ||
238 | (1UL << WORK_STRUCT_STATIC); | ||
239 | atomic_long_set(&work->data, flags); | ||
240 | } | ||
241 | |||
232 | static inline | 242 | static inline |
233 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 243 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) |
234 | { | 244 | { |
@@ -671,7 +681,7 @@ static int __cancel_work_timer(struct work_struct *work, | |||
671 | wait_on_work(work); | 681 | wait_on_work(work); |
672 | } while (unlikely(ret < 0)); | 682 | } while (unlikely(ret < 0)); |
673 | 683 | ||
674 | work_clear_pending(work); | 684 | clear_wq_data(work); |
675 | return ret; | 685 | return ret; |
676 | } | 686 | } |
677 | 687 | ||
@@ -845,6 +855,30 @@ int schedule_on_each_cpu(work_func_t func) | |||
845 | return 0; | 855 | return 0; |
846 | } | 856 | } |
847 | 857 | ||
858 | /** | ||
859 | * flush_scheduled_work - ensure that any scheduled work has run to completion. | ||
860 | * | ||
861 | * Forces execution of the kernel-global workqueue and blocks until its | ||
862 | * completion. | ||
863 | * | ||
864 | * Think twice before calling this function! It's very easy to get into | ||
865 | * trouble if you don't take great care. Either of the following situations | ||
866 | * will lead to deadlock: | ||
867 | * | ||
868 | * One of the work items currently on the workqueue needs to acquire | ||
869 | * a lock held by your code or its caller. | ||
870 | * | ||
871 | * Your code is running in the context of a work routine. | ||
872 | * | ||
873 | * They will be detected by lockdep when they occur, but the first might not | ||
874 | * occur very often. It depends on what work items are on the workqueue and | ||
875 | * what locks they need, which you have no control over. | ||
876 | * | ||
877 | * In most situations flushing the entire workqueue is overkill; you merely | ||
878 | * need to know that a particular work item isn't queued and isn't running. | ||
879 | * In such cases you should use cancel_delayed_work_sync() or | ||
880 | * cancel_work_sync() instead. | ||
881 | */ | ||
848 | void flush_scheduled_work(void) | 882 | void flush_scheduled_work(void) |
849 | { | 883 | { |
850 | flush_workqueue(keventd_wq); | 884 | flush_workqueue(keventd_wq); |
@@ -1076,7 +1110,7 @@ static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, | |||
1076 | unsigned int cpu = (unsigned long)hcpu; | 1110 | unsigned int cpu = (unsigned long)hcpu; |
1077 | struct cpu_workqueue_struct *cwq; | 1111 | struct cpu_workqueue_struct *cwq; |
1078 | struct workqueue_struct *wq; | 1112 | struct workqueue_struct *wq; |
1079 | int ret = NOTIFY_OK; | 1113 | int err = 0; |
1080 | 1114 | ||
1081 | action &= ~CPU_TASKS_FROZEN; | 1115 | action &= ~CPU_TASKS_FROZEN; |
1082 | 1116 | ||
@@ -1090,12 +1124,13 @@ undo: | |||
1090 | 1124 | ||
1091 | switch (action) { | 1125 | switch (action) { |
1092 | case CPU_UP_PREPARE: | 1126 | case CPU_UP_PREPARE: |
1093 | if (!create_workqueue_thread(cwq, cpu)) | 1127 | err = create_workqueue_thread(cwq, cpu); |
1128 | if (!err) | ||
1094 | break; | 1129 | break; |
1095 | printk(KERN_ERR "workqueue [%s] for %i failed\n", | 1130 | printk(KERN_ERR "workqueue [%s] for %i failed\n", |
1096 | wq->name, cpu); | 1131 | wq->name, cpu); |
1097 | action = CPU_UP_CANCELED; | 1132 | action = CPU_UP_CANCELED; |
1098 | ret = NOTIFY_BAD; | 1133 | err = -ENOMEM; |
1099 | goto undo; | 1134 | goto undo; |
1100 | 1135 | ||
1101 | case CPU_ONLINE: | 1136 | case CPU_ONLINE: |
@@ -1116,7 +1151,7 @@ undo: | |||
1116 | cpumask_clear_cpu(cpu, cpu_populated_map); | 1151 | cpumask_clear_cpu(cpu, cpu_populated_map); |
1117 | } | 1152 | } |
1118 | 1153 | ||
1119 | return ret; | 1154 | return notifier_from_errno(err); |
1120 | } | 1155 | } |
1121 | 1156 | ||
1122 | #ifdef CONFIG_SMP | 1157 | #ifdef CONFIG_SMP |