diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/Makefile | 3 | ||||
| -rw-r--r-- | kernel/audit.c | 24 | ||||
| -rw-r--r-- | kernel/audit.h | 25 | ||||
| -rw-r--r-- | kernel/auditfilter.c | 99 | ||||
| -rw-r--r-- | kernel/auditsc.c | 74 | ||||
| -rw-r--r-- | kernel/cgroup.c | 7 | ||||
| -rw-r--r-- | kernel/compat.c | 15 | ||||
| -rw-r--r-- | kernel/hrtimer.c | 22 | ||||
| -rw-r--r-- | kernel/kgdb.c | 1700 | ||||
| -rw-r--r-- | kernel/posix-cpu-timers.c | 30 | ||||
| -rw-r--r-- | kernel/printk.c | 17 | ||||
| -rw-r--r-- | kernel/sched_fair.c | 6 | ||||
| -rw-r--r-- | kernel/semaphore.c | 264 | ||||
| -rw-r--r-- | kernel/signal.c | 71 | ||||
| -rw-r--r-- | kernel/time/clocksource.c | 30 | ||||
| -rw-r--r-- | kernel/time/tick-broadcast.c | 2 | ||||
| -rw-r--r-- | kernel/time/tick-common.c | 4 | ||||
| -rw-r--r-- | kernel/time/tick-oneshot.c | 2 | ||||
| -rw-r--r-- | kernel/time/tick-sched.c | 6 | ||||
| -rw-r--r-- | kernel/timer.c | 16 | ||||
| -rw-r--r-- | kernel/workqueue.c | 2 |
21 files changed, 2187 insertions, 232 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 6c584c55a6e9..6c5f081132a4 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -8,7 +8,7 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \ | |||
| 8 | signal.o sys.o kmod.o workqueue.o pid.o \ | 8 | signal.o sys.o kmod.o workqueue.o pid.o \ |
| 9 | rcupdate.o extable.o params.o posix-timers.o \ | 9 | rcupdate.o extable.o params.o posix-timers.o \ |
| 10 | kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ | 10 | kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ |
| 11 | hrtimer.o rwsem.o nsproxy.o srcu.o \ | 11 | hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ |
| 12 | notifier.o ksysfs.o pm_qos_params.o | 12 | notifier.o ksysfs.o pm_qos_params.o |
| 13 | 13 | ||
| 14 | obj-$(CONFIG_SYSCTL) += sysctl_check.o | 14 | obj-$(CONFIG_SYSCTL) += sysctl_check.o |
| @@ -53,6 +53,7 @@ obj-$(CONFIG_AUDIT) += audit.o auditfilter.o | |||
| 53 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | 53 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o |
| 54 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o | 54 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o |
| 55 | obj-$(CONFIG_KPROBES) += kprobes.o | 55 | obj-$(CONFIG_KPROBES) += kprobes.o |
| 56 | obj-$(CONFIG_KGDB) += kgdb.o | ||
| 56 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o | 57 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o |
| 57 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 58 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
| 58 | obj-$(CONFIG_SECCOMP) += seccomp.o | 59 | obj-$(CONFIG_SECCOMP) += seccomp.o |
diff --git a/kernel/audit.c b/kernel/audit.c index b782b046543d..a7b16086d36f 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
| @@ -21,7 +21,7 @@ | |||
| 21 | * | 21 | * |
| 22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> | 22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| 23 | * | 23 | * |
| 24 | * Goals: 1) Integrate fully with SELinux. | 24 | * Goals: 1) Integrate fully with Security Modules. |
| 25 | * 2) Minimal run-time overhead: | 25 | * 2) Minimal run-time overhead: |
| 26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). | 26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). |
| 27 | * b) Small when syscall auditing is enabled and no audit record | 27 | * b) Small when syscall auditing is enabled and no audit record |
| @@ -55,7 +55,6 @@ | |||
| 55 | #include <net/netlink.h> | 55 | #include <net/netlink.h> |
| 56 | #include <linux/skbuff.h> | 56 | #include <linux/skbuff.h> |
| 57 | #include <linux/netlink.h> | 57 | #include <linux/netlink.h> |
| 58 | #include <linux/selinux.h> | ||
| 59 | #include <linux/inotify.h> | 58 | #include <linux/inotify.h> |
| 60 | #include <linux/freezer.h> | 59 | #include <linux/freezer.h> |
| 61 | #include <linux/tty.h> | 60 | #include <linux/tty.h> |
| @@ -265,13 +264,13 @@ static int audit_log_config_change(char *function_name, int new, int old, | |||
| 265 | char *ctx = NULL; | 264 | char *ctx = NULL; |
| 266 | u32 len; | 265 | u32 len; |
| 267 | 266 | ||
| 268 | rc = selinux_sid_to_string(sid, &ctx, &len); | 267 | rc = security_secid_to_secctx(sid, &ctx, &len); |
| 269 | if (rc) { | 268 | if (rc) { |
| 270 | audit_log_format(ab, " sid=%u", sid); | 269 | audit_log_format(ab, " sid=%u", sid); |
| 271 | allow_changes = 0; /* Something weird, deny request */ | 270 | allow_changes = 0; /* Something weird, deny request */ |
| 272 | } else { | 271 | } else { |
| 273 | audit_log_format(ab, " subj=%s", ctx); | 272 | audit_log_format(ab, " subj=%s", ctx); |
| 274 | kfree(ctx); | 273 | security_release_secctx(ctx, len); |
| 275 | } | 274 | } |
| 276 | } | 275 | } |
| 277 | audit_log_format(ab, " res=%d", allow_changes); | 276 | audit_log_format(ab, " res=%d", allow_changes); |
| @@ -550,12 +549,13 @@ static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, | |||
| 550 | audit_log_format(*ab, "user pid=%d uid=%u auid=%u", | 549 | audit_log_format(*ab, "user pid=%d uid=%u auid=%u", |
| 551 | pid, uid, auid); | 550 | pid, uid, auid); |
| 552 | if (sid) { | 551 | if (sid) { |
| 553 | rc = selinux_sid_to_string(sid, &ctx, &len); | 552 | rc = security_secid_to_secctx(sid, &ctx, &len); |
| 554 | if (rc) | 553 | if (rc) |
| 555 | audit_log_format(*ab, " ssid=%u", sid); | 554 | audit_log_format(*ab, " ssid=%u", sid); |
| 556 | else | 555 | else { |
| 557 | audit_log_format(*ab, " subj=%s", ctx); | 556 | audit_log_format(*ab, " subj=%s", ctx); |
| 558 | kfree(ctx); | 557 | security_release_secctx(ctx, len); |
| 558 | } | ||
| 559 | } | 559 | } |
| 560 | 560 | ||
| 561 | return rc; | 561 | return rc; |
| @@ -758,18 +758,18 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
| 758 | break; | 758 | break; |
| 759 | } | 759 | } |
| 760 | case AUDIT_SIGNAL_INFO: | 760 | case AUDIT_SIGNAL_INFO: |
| 761 | err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); | 761 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
| 762 | if (err) | 762 | if (err) |
| 763 | return err; | 763 | return err; |
| 764 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 764 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
| 765 | if (!sig_data) { | 765 | if (!sig_data) { |
| 766 | kfree(ctx); | 766 | security_release_secctx(ctx, len); |
| 767 | return -ENOMEM; | 767 | return -ENOMEM; |
| 768 | } | 768 | } |
| 769 | sig_data->uid = audit_sig_uid; | 769 | sig_data->uid = audit_sig_uid; |
| 770 | sig_data->pid = audit_sig_pid; | 770 | sig_data->pid = audit_sig_pid; |
| 771 | memcpy(sig_data->ctx, ctx, len); | 771 | memcpy(sig_data->ctx, ctx, len); |
| 772 | kfree(ctx); | 772 | security_release_secctx(ctx, len); |
| 773 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 773 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
| 774 | 0, 0, sig_data, sizeof(*sig_data) + len); | 774 | 0, 0, sig_data, sizeof(*sig_data) + len); |
| 775 | kfree(sig_data); | 775 | kfree(sig_data); |
| @@ -881,10 +881,6 @@ static int __init audit_init(void) | |||
| 881 | audit_enabled = audit_default; | 881 | audit_enabled = audit_default; |
| 882 | audit_ever_enabled |= !!audit_default; | 882 | audit_ever_enabled |= !!audit_default; |
| 883 | 883 | ||
| 884 | /* Register the callback with selinux. This callback will be invoked | ||
| 885 | * when a new policy is loaded. */ | ||
| 886 | selinux_audit_set_callback(&selinux_audit_rule_update); | ||
| 887 | |||
| 888 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); | 884 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); |
| 889 | 885 | ||
| 890 | #ifdef CONFIG_AUDITSYSCALL | 886 | #ifdef CONFIG_AUDITSYSCALL |
diff --git a/kernel/audit.h b/kernel/audit.h index 2554bd524fd1..3cfc54ee3e1f 100644 --- a/kernel/audit.h +++ b/kernel/audit.h | |||
| @@ -65,34 +65,9 @@ struct audit_watch { | |||
| 65 | struct list_head rules; /* associated rules */ | 65 | struct list_head rules; /* associated rules */ |
| 66 | }; | 66 | }; |
| 67 | 67 | ||
| 68 | struct audit_field { | ||
| 69 | u32 type; | ||
| 70 | u32 val; | ||
| 71 | u32 op; | ||
| 72 | char *se_str; | ||
| 73 | struct selinux_audit_rule *se_rule; | ||
| 74 | }; | ||
| 75 | |||
| 76 | struct audit_tree; | 68 | struct audit_tree; |
| 77 | struct audit_chunk; | 69 | struct audit_chunk; |
| 78 | 70 | ||
| 79 | struct audit_krule { | ||
| 80 | int vers_ops; | ||
| 81 | u32 flags; | ||
| 82 | u32 listnr; | ||
| 83 | u32 action; | ||
| 84 | u32 mask[AUDIT_BITMASK_SIZE]; | ||
| 85 | u32 buflen; /* for data alloc on list rules */ | ||
| 86 | u32 field_count; | ||
| 87 | char *filterkey; /* ties events to rules */ | ||
| 88 | struct audit_field *fields; | ||
| 89 | struct audit_field *arch_f; /* quick access to arch field */ | ||
| 90 | struct audit_field *inode_f; /* quick access to an inode field */ | ||
| 91 | struct audit_watch *watch; /* associated watch */ | ||
| 92 | struct audit_tree *tree; /* associated watched tree */ | ||
| 93 | struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ | ||
| 94 | }; | ||
| 95 | |||
| 96 | struct audit_entry { | 71 | struct audit_entry { |
| 97 | struct list_head list; | 72 | struct list_head list; |
| 98 | struct rcu_head rcu; | 73 | struct rcu_head rcu; |
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c index 2f2914b7cc30..28fef6bf8534 100644 --- a/kernel/auditfilter.c +++ b/kernel/auditfilter.c | |||
| @@ -28,7 +28,7 @@ | |||
| 28 | #include <linux/netlink.h> | 28 | #include <linux/netlink.h> |
| 29 | #include <linux/sched.h> | 29 | #include <linux/sched.h> |
| 30 | #include <linux/inotify.h> | 30 | #include <linux/inotify.h> |
| 31 | #include <linux/selinux.h> | 31 | #include <linux/security.h> |
| 32 | #include "audit.h" | 32 | #include "audit.h" |
| 33 | 33 | ||
| 34 | /* | 34 | /* |
| @@ -38,7 +38,7 @@ | |||
| 38 | * Synchronizes writes and blocking reads of audit's filterlist | 38 | * Synchronizes writes and blocking reads of audit's filterlist |
| 39 | * data. Rcu is used to traverse the filterlist and access | 39 | * data. Rcu is used to traverse the filterlist and access |
| 40 | * contents of structs audit_entry, audit_watch and opaque | 40 | * contents of structs audit_entry, audit_watch and opaque |
| 41 | * selinux rules during filtering. If modified, these structures | 41 | * LSM rules during filtering. If modified, these structures |
| 42 | * must be copied and replace their counterparts in the filterlist. | 42 | * must be copied and replace their counterparts in the filterlist. |
| 43 | * An audit_parent struct is not accessed during filtering, so may | 43 | * An audit_parent struct is not accessed during filtering, so may |
| 44 | * be written directly provided audit_filter_mutex is held. | 44 | * be written directly provided audit_filter_mutex is held. |
| @@ -139,8 +139,8 @@ static inline void audit_free_rule(struct audit_entry *e) | |||
| 139 | if (e->rule.fields) | 139 | if (e->rule.fields) |
| 140 | for (i = 0; i < e->rule.field_count; i++) { | 140 | for (i = 0; i < e->rule.field_count; i++) { |
| 141 | struct audit_field *f = &e->rule.fields[i]; | 141 | struct audit_field *f = &e->rule.fields[i]; |
| 142 | kfree(f->se_str); | 142 | kfree(f->lsm_str); |
| 143 | selinux_audit_rule_free(f->se_rule); | 143 | security_audit_rule_free(f->lsm_rule); |
| 144 | } | 144 | } |
| 145 | kfree(e->rule.fields); | 145 | kfree(e->rule.fields); |
| 146 | kfree(e->rule.filterkey); | 146 | kfree(e->rule.filterkey); |
| @@ -554,8 +554,8 @@ static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, | |||
| 554 | f->op = data->fieldflags[i] & AUDIT_OPERATORS; | 554 | f->op = data->fieldflags[i] & AUDIT_OPERATORS; |
| 555 | f->type = data->fields[i]; | 555 | f->type = data->fields[i]; |
| 556 | f->val = data->values[i]; | 556 | f->val = data->values[i]; |
| 557 | f->se_str = NULL; | 557 | f->lsm_str = NULL; |
| 558 | f->se_rule = NULL; | 558 | f->lsm_rule = NULL; |
| 559 | switch(f->type) { | 559 | switch(f->type) { |
| 560 | case AUDIT_PID: | 560 | case AUDIT_PID: |
| 561 | case AUDIT_UID: | 561 | case AUDIT_UID: |
| @@ -597,12 +597,12 @@ static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, | |||
| 597 | goto exit_free; | 597 | goto exit_free; |
| 598 | entry->rule.buflen += f->val; | 598 | entry->rule.buflen += f->val; |
| 599 | 599 | ||
| 600 | err = selinux_audit_rule_init(f->type, f->op, str, | 600 | err = security_audit_rule_init(f->type, f->op, str, |
| 601 | &f->se_rule); | 601 | (void **)&f->lsm_rule); |
| 602 | /* Keep currently invalid fields around in case they | 602 | /* Keep currently invalid fields around in case they |
| 603 | * become valid after a policy reload. */ | 603 | * become valid after a policy reload. */ |
| 604 | if (err == -EINVAL) { | 604 | if (err == -EINVAL) { |
| 605 | printk(KERN_WARNING "audit rule for selinux " | 605 | printk(KERN_WARNING "audit rule for LSM " |
| 606 | "\'%s\' is invalid\n", str); | 606 | "\'%s\' is invalid\n", str); |
| 607 | err = 0; | 607 | err = 0; |
| 608 | } | 608 | } |
| @@ -610,7 +610,7 @@ static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, | |||
| 610 | kfree(str); | 610 | kfree(str); |
| 611 | goto exit_free; | 611 | goto exit_free; |
| 612 | } else | 612 | } else |
| 613 | f->se_str = str; | 613 | f->lsm_str = str; |
| 614 | break; | 614 | break; |
| 615 | case AUDIT_WATCH: | 615 | case AUDIT_WATCH: |
| 616 | str = audit_unpack_string(&bufp, &remain, f->val); | 616 | str = audit_unpack_string(&bufp, &remain, f->val); |
| @@ -754,7 +754,7 @@ static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) | |||
| 754 | case AUDIT_OBJ_LEV_LOW: | 754 | case AUDIT_OBJ_LEV_LOW: |
| 755 | case AUDIT_OBJ_LEV_HIGH: | 755 | case AUDIT_OBJ_LEV_HIGH: |
| 756 | data->buflen += data->values[i] = | 756 | data->buflen += data->values[i] = |
| 757 | audit_pack_string(&bufp, f->se_str); | 757 | audit_pack_string(&bufp, f->lsm_str); |
| 758 | break; | 758 | break; |
| 759 | case AUDIT_WATCH: | 759 | case AUDIT_WATCH: |
| 760 | data->buflen += data->values[i] = | 760 | data->buflen += data->values[i] = |
| @@ -806,7 +806,7 @@ static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) | |||
| 806 | case AUDIT_OBJ_TYPE: | 806 | case AUDIT_OBJ_TYPE: |
| 807 | case AUDIT_OBJ_LEV_LOW: | 807 | case AUDIT_OBJ_LEV_LOW: |
| 808 | case AUDIT_OBJ_LEV_HIGH: | 808 | case AUDIT_OBJ_LEV_HIGH: |
| 809 | if (strcmp(a->fields[i].se_str, b->fields[i].se_str)) | 809 | if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) |
| 810 | return 1; | 810 | return 1; |
| 811 | break; | 811 | break; |
| 812 | case AUDIT_WATCH: | 812 | case AUDIT_WATCH: |
| @@ -862,28 +862,28 @@ out: | |||
| 862 | return new; | 862 | return new; |
| 863 | } | 863 | } |
| 864 | 864 | ||
| 865 | /* Duplicate selinux field information. The se_rule is opaque, so must be | 865 | /* Duplicate LSM field information. The lsm_rule is opaque, so must be |
| 866 | * re-initialized. */ | 866 | * re-initialized. */ |
| 867 | static inline int audit_dupe_selinux_field(struct audit_field *df, | 867 | static inline int audit_dupe_lsm_field(struct audit_field *df, |
| 868 | struct audit_field *sf) | 868 | struct audit_field *sf) |
| 869 | { | 869 | { |
| 870 | int ret = 0; | 870 | int ret = 0; |
| 871 | char *se_str; | 871 | char *lsm_str; |
| 872 | 872 | ||
| 873 | /* our own copy of se_str */ | 873 | /* our own copy of lsm_str */ |
| 874 | se_str = kstrdup(sf->se_str, GFP_KERNEL); | 874 | lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); |
| 875 | if (unlikely(!se_str)) | 875 | if (unlikely(!lsm_str)) |
| 876 | return -ENOMEM; | 876 | return -ENOMEM; |
| 877 | df->se_str = se_str; | 877 | df->lsm_str = lsm_str; |
| 878 | 878 | ||
| 879 | /* our own (refreshed) copy of se_rule */ | 879 | /* our own (refreshed) copy of lsm_rule */ |
| 880 | ret = selinux_audit_rule_init(df->type, df->op, df->se_str, | 880 | ret = security_audit_rule_init(df->type, df->op, df->lsm_str, |
| 881 | &df->se_rule); | 881 | (void **)&df->lsm_rule); |
| 882 | /* Keep currently invalid fields around in case they | 882 | /* Keep currently invalid fields around in case they |
| 883 | * become valid after a policy reload. */ | 883 | * become valid after a policy reload. */ |
| 884 | if (ret == -EINVAL) { | 884 | if (ret == -EINVAL) { |
| 885 | printk(KERN_WARNING "audit rule for selinux \'%s\' is " | 885 | printk(KERN_WARNING "audit rule for LSM \'%s\' is " |
| 886 | "invalid\n", df->se_str); | 886 | "invalid\n", df->lsm_str); |
| 887 | ret = 0; | 887 | ret = 0; |
| 888 | } | 888 | } |
| 889 | 889 | ||
| @@ -891,7 +891,7 @@ static inline int audit_dupe_selinux_field(struct audit_field *df, | |||
| 891 | } | 891 | } |
| 892 | 892 | ||
| 893 | /* Duplicate an audit rule. This will be a deep copy with the exception | 893 | /* Duplicate an audit rule. This will be a deep copy with the exception |
| 894 | * of the watch - that pointer is carried over. The selinux specific fields | 894 | * of the watch - that pointer is carried over. The LSM specific fields |
| 895 | * will be updated in the copy. The point is to be able to replace the old | 895 | * will be updated in the copy. The point is to be able to replace the old |
| 896 | * rule with the new rule in the filterlist, then free the old rule. | 896 | * rule with the new rule in the filterlist, then free the old rule. |
| 897 | * The rlist element is undefined; list manipulations are handled apart from | 897 | * The rlist element is undefined; list manipulations are handled apart from |
| @@ -930,7 +930,7 @@ static struct audit_entry *audit_dupe_rule(struct audit_krule *old, | |||
| 930 | new->tree = old->tree; | 930 | new->tree = old->tree; |
| 931 | memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); | 931 | memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); |
| 932 | 932 | ||
| 933 | /* deep copy this information, updating the se_rule fields, because | 933 | /* deep copy this information, updating the lsm_rule fields, because |
| 934 | * the originals will all be freed when the old rule is freed. */ | 934 | * the originals will all be freed when the old rule is freed. */ |
| 935 | for (i = 0; i < fcount; i++) { | 935 | for (i = 0; i < fcount; i++) { |
| 936 | switch (new->fields[i].type) { | 936 | switch (new->fields[i].type) { |
| @@ -944,7 +944,7 @@ static struct audit_entry *audit_dupe_rule(struct audit_krule *old, | |||
| 944 | case AUDIT_OBJ_TYPE: | 944 | case AUDIT_OBJ_TYPE: |
| 945 | case AUDIT_OBJ_LEV_LOW: | 945 | case AUDIT_OBJ_LEV_LOW: |
| 946 | case AUDIT_OBJ_LEV_HIGH: | 946 | case AUDIT_OBJ_LEV_HIGH: |
| 947 | err = audit_dupe_selinux_field(&new->fields[i], | 947 | err = audit_dupe_lsm_field(&new->fields[i], |
| 948 | &old->fields[i]); | 948 | &old->fields[i]); |
| 949 | break; | 949 | break; |
| 950 | case AUDIT_FILTERKEY: | 950 | case AUDIT_FILTERKEY: |
| @@ -1515,11 +1515,12 @@ static void audit_log_rule_change(uid_t loginuid, u32 sid, char *action, | |||
| 1515 | if (sid) { | 1515 | if (sid) { |
| 1516 | char *ctx = NULL; | 1516 | char *ctx = NULL; |
| 1517 | u32 len; | 1517 | u32 len; |
| 1518 | if (selinux_sid_to_string(sid, &ctx, &len)) | 1518 | if (security_secid_to_secctx(sid, &ctx, &len)) |
| 1519 | audit_log_format(ab, " ssid=%u", sid); | 1519 | audit_log_format(ab, " ssid=%u", sid); |
| 1520 | else | 1520 | else { |
| 1521 | audit_log_format(ab, " subj=%s", ctx); | 1521 | audit_log_format(ab, " subj=%s", ctx); |
| 1522 | kfree(ctx); | 1522 | security_release_secctx(ctx, len); |
| 1523 | } | ||
| 1523 | } | 1524 | } |
| 1524 | audit_log_format(ab, " op=%s rule key=", action); | 1525 | audit_log_format(ab, " op=%s rule key=", action); |
| 1525 | if (rule->filterkey) | 1526 | if (rule->filterkey) |
| @@ -1761,38 +1762,12 @@ unlock_and_return: | |||
| 1761 | return result; | 1762 | return result; |
| 1762 | } | 1763 | } |
| 1763 | 1764 | ||
| 1764 | /* Check to see if the rule contains any selinux fields. Returns 1 if there | 1765 | /* This function will re-initialize the lsm_rule field of all applicable rules. |
| 1765 | are selinux fields specified in the rule, 0 otherwise. */ | 1766 | * It will traverse the filter lists serarching for rules that contain LSM |
| 1766 | static inline int audit_rule_has_selinux(struct audit_krule *rule) | ||
| 1767 | { | ||
| 1768 | int i; | ||
| 1769 | |||
| 1770 | for (i = 0; i < rule->field_count; i++) { | ||
| 1771 | struct audit_field *f = &rule->fields[i]; | ||
| 1772 | switch (f->type) { | ||
| 1773 | case AUDIT_SUBJ_USER: | ||
| 1774 | case AUDIT_SUBJ_ROLE: | ||
| 1775 | case AUDIT_SUBJ_TYPE: | ||
| 1776 | case AUDIT_SUBJ_SEN: | ||
| 1777 | case AUDIT_SUBJ_CLR: | ||
| 1778 | case AUDIT_OBJ_USER: | ||
| 1779 | case AUDIT_OBJ_ROLE: | ||
| 1780 | case AUDIT_OBJ_TYPE: | ||
| 1781 | case AUDIT_OBJ_LEV_LOW: | ||
| 1782 | case AUDIT_OBJ_LEV_HIGH: | ||
| 1783 | return 1; | ||
| 1784 | } | ||
| 1785 | } | ||
| 1786 | |||
| 1787 | return 0; | ||
| 1788 | } | ||
| 1789 | |||
| 1790 | /* This function will re-initialize the se_rule field of all applicable rules. | ||
| 1791 | * It will traverse the filter lists serarching for rules that contain selinux | ||
| 1792 | * specific filter fields. When such a rule is found, it is copied, the | 1767 | * specific filter fields. When such a rule is found, it is copied, the |
| 1793 | * selinux field is re-initialized, and the old rule is replaced with the | 1768 | * LSM field is re-initialized, and the old rule is replaced with the |
| 1794 | * updated rule. */ | 1769 | * updated rule. */ |
| 1795 | int selinux_audit_rule_update(void) | 1770 | int audit_update_lsm_rules(void) |
| 1796 | { | 1771 | { |
| 1797 | struct audit_entry *entry, *n, *nentry; | 1772 | struct audit_entry *entry, *n, *nentry; |
| 1798 | struct audit_watch *watch; | 1773 | struct audit_watch *watch; |
| @@ -1804,7 +1779,7 @@ int selinux_audit_rule_update(void) | |||
| 1804 | 1779 | ||
| 1805 | for (i = 0; i < AUDIT_NR_FILTERS; i++) { | 1780 | for (i = 0; i < AUDIT_NR_FILTERS; i++) { |
| 1806 | list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) { | 1781 | list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) { |
| 1807 | if (!audit_rule_has_selinux(&entry->rule)) | 1782 | if (!security_audit_rule_known(&entry->rule)) |
| 1808 | continue; | 1783 | continue; |
| 1809 | 1784 | ||
| 1810 | watch = entry->rule.watch; | 1785 | watch = entry->rule.watch; |
| @@ -1815,7 +1790,7 @@ int selinux_audit_rule_update(void) | |||
| 1815 | * return value */ | 1790 | * return value */ |
| 1816 | if (!err) | 1791 | if (!err) |
| 1817 | err = PTR_ERR(nentry); | 1792 | err = PTR_ERR(nentry); |
| 1818 | audit_panic("error updating selinux filters"); | 1793 | audit_panic("error updating LSM filters"); |
| 1819 | if (watch) | 1794 | if (watch) |
| 1820 | list_del(&entry->rule.rlist); | 1795 | list_del(&entry->rule.rlist); |
| 1821 | list_del_rcu(&entry->list); | 1796 | list_del_rcu(&entry->list); |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 782262e4107d..56e56ed594a8 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
| @@ -61,7 +61,6 @@ | |||
| 61 | #include <linux/security.h> | 61 | #include <linux/security.h> |
| 62 | #include <linux/list.h> | 62 | #include <linux/list.h> |
| 63 | #include <linux/tty.h> | 63 | #include <linux/tty.h> |
| 64 | #include <linux/selinux.h> | ||
| 65 | #include <linux/binfmts.h> | 64 | #include <linux/binfmts.h> |
| 66 | #include <linux/highmem.h> | 65 | #include <linux/highmem.h> |
| 67 | #include <linux/syscalls.h> | 66 | #include <linux/syscalls.h> |
| @@ -528,14 +527,14 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
| 528 | match for now to avoid losing information that | 527 | match for now to avoid losing information that |
| 529 | may be wanted. An error message will also be | 528 | may be wanted. An error message will also be |
| 530 | logged upon error */ | 529 | logged upon error */ |
| 531 | if (f->se_rule) { | 530 | if (f->lsm_rule) { |
| 532 | if (need_sid) { | 531 | if (need_sid) { |
| 533 | selinux_get_task_sid(tsk, &sid); | 532 | security_task_getsecid(tsk, &sid); |
| 534 | need_sid = 0; | 533 | need_sid = 0; |
| 535 | } | 534 | } |
| 536 | result = selinux_audit_rule_match(sid, f->type, | 535 | result = security_audit_rule_match(sid, f->type, |
| 537 | f->op, | 536 | f->op, |
| 538 | f->se_rule, | 537 | f->lsm_rule, |
| 539 | ctx); | 538 | ctx); |
| 540 | } | 539 | } |
| 541 | break; | 540 | break; |
| @@ -546,18 +545,18 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
| 546 | case AUDIT_OBJ_LEV_HIGH: | 545 | case AUDIT_OBJ_LEV_HIGH: |
| 547 | /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR | 546 | /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR |
| 548 | also applies here */ | 547 | also applies here */ |
| 549 | if (f->se_rule) { | 548 | if (f->lsm_rule) { |
| 550 | /* Find files that match */ | 549 | /* Find files that match */ |
| 551 | if (name) { | 550 | if (name) { |
| 552 | result = selinux_audit_rule_match( | 551 | result = security_audit_rule_match( |
| 553 | name->osid, f->type, f->op, | 552 | name->osid, f->type, f->op, |
| 554 | f->se_rule, ctx); | 553 | f->lsm_rule, ctx); |
| 555 | } else if (ctx) { | 554 | } else if (ctx) { |
| 556 | for (j = 0; j < ctx->name_count; j++) { | 555 | for (j = 0; j < ctx->name_count; j++) { |
| 557 | if (selinux_audit_rule_match( | 556 | if (security_audit_rule_match( |
| 558 | ctx->names[j].osid, | 557 | ctx->names[j].osid, |
| 559 | f->type, f->op, | 558 | f->type, f->op, |
| 560 | f->se_rule, ctx)) { | 559 | f->lsm_rule, ctx)) { |
| 561 | ++result; | 560 | ++result; |
| 562 | break; | 561 | break; |
| 563 | } | 562 | } |
| @@ -570,7 +569,7 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
| 570 | aux = aux->next) { | 569 | aux = aux->next) { |
| 571 | if (aux->type == AUDIT_IPC) { | 570 | if (aux->type == AUDIT_IPC) { |
| 572 | struct audit_aux_data_ipcctl *axi = (void *)aux; | 571 | struct audit_aux_data_ipcctl *axi = (void *)aux; |
| 573 | if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) { | 572 | if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) { |
| 574 | ++result; | 573 | ++result; |
| 575 | break; | 574 | break; |
| 576 | } | 575 | } |
| @@ -885,11 +884,11 @@ void audit_log_task_context(struct audit_buffer *ab) | |||
| 885 | int error; | 884 | int error; |
| 886 | u32 sid; | 885 | u32 sid; |
| 887 | 886 | ||
| 888 | selinux_get_task_sid(current, &sid); | 887 | security_task_getsecid(current, &sid); |
| 889 | if (!sid) | 888 | if (!sid) |
| 890 | return; | 889 | return; |
| 891 | 890 | ||
| 892 | error = selinux_sid_to_string(sid, &ctx, &len); | 891 | error = security_secid_to_secctx(sid, &ctx, &len); |
| 893 | if (error) { | 892 | if (error) { |
| 894 | if (error != -EINVAL) | 893 | if (error != -EINVAL) |
| 895 | goto error_path; | 894 | goto error_path; |
| @@ -897,7 +896,7 @@ void audit_log_task_context(struct audit_buffer *ab) | |||
| 897 | } | 896 | } |
| 898 | 897 | ||
| 899 | audit_log_format(ab, " subj=%s", ctx); | 898 | audit_log_format(ab, " subj=%s", ctx); |
| 900 | kfree(ctx); | 899 | security_release_secctx(ctx, len); |
| 901 | return; | 900 | return; |
| 902 | 901 | ||
| 903 | error_path: | 902 | error_path: |
| @@ -941,7 +940,7 @@ static int audit_log_pid_context(struct audit_context *context, pid_t pid, | |||
| 941 | u32 sid, char *comm) | 940 | u32 sid, char *comm) |
| 942 | { | 941 | { |
| 943 | struct audit_buffer *ab; | 942 | struct audit_buffer *ab; |
| 944 | char *s = NULL; | 943 | char *ctx = NULL; |
| 945 | u32 len; | 944 | u32 len; |
| 946 | int rc = 0; | 945 | int rc = 0; |
| 947 | 946 | ||
| @@ -951,15 +950,16 @@ static int audit_log_pid_context(struct audit_context *context, pid_t pid, | |||
| 951 | 950 | ||
| 952 | audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, | 951 | audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, |
| 953 | uid, sessionid); | 952 | uid, sessionid); |
| 954 | if (selinux_sid_to_string(sid, &s, &len)) { | 953 | if (security_secid_to_secctx(sid, &ctx, &len)) { |
| 955 | audit_log_format(ab, " obj=(none)"); | 954 | audit_log_format(ab, " obj=(none)"); |
| 956 | rc = 1; | 955 | rc = 1; |
| 957 | } else | 956 | } else { |
| 958 | audit_log_format(ab, " obj=%s", s); | 957 | audit_log_format(ab, " obj=%s", ctx); |
| 958 | security_release_secctx(ctx, len); | ||
| 959 | } | ||
| 959 | audit_log_format(ab, " ocomm="); | 960 | audit_log_format(ab, " ocomm="); |
| 960 | audit_log_untrustedstring(ab, comm); | 961 | audit_log_untrustedstring(ab, comm); |
| 961 | audit_log_end(ab); | 962 | audit_log_end(ab); |
| 962 | kfree(s); | ||
| 963 | 963 | ||
| 964 | return rc; | 964 | return rc; |
| 965 | } | 965 | } |
| @@ -1271,14 +1271,15 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts | |||
| 1271 | if (axi->osid != 0) { | 1271 | if (axi->osid != 0) { |
| 1272 | char *ctx = NULL; | 1272 | char *ctx = NULL; |
| 1273 | u32 len; | 1273 | u32 len; |
| 1274 | if (selinux_sid_to_string( | 1274 | if (security_secid_to_secctx( |
| 1275 | axi->osid, &ctx, &len)) { | 1275 | axi->osid, &ctx, &len)) { |
| 1276 | audit_log_format(ab, " osid=%u", | 1276 | audit_log_format(ab, " osid=%u", |
| 1277 | axi->osid); | 1277 | axi->osid); |
| 1278 | call_panic = 1; | 1278 | call_panic = 1; |
| 1279 | } else | 1279 | } else { |
| 1280 | audit_log_format(ab, " obj=%s", ctx); | 1280 | audit_log_format(ab, " obj=%s", ctx); |
| 1281 | kfree(ctx); | 1281 | security_release_secctx(ctx, len); |
| 1282 | } | ||
| 1282 | } | 1283 | } |
| 1283 | break; } | 1284 | break; } |
| 1284 | 1285 | ||
| @@ -1392,13 +1393,14 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts | |||
| 1392 | if (n->osid != 0) { | 1393 | if (n->osid != 0) { |
| 1393 | char *ctx = NULL; | 1394 | char *ctx = NULL; |
| 1394 | u32 len; | 1395 | u32 len; |
| 1395 | if (selinux_sid_to_string( | 1396 | if (security_secid_to_secctx( |
| 1396 | n->osid, &ctx, &len)) { | 1397 | n->osid, &ctx, &len)) { |
| 1397 | audit_log_format(ab, " osid=%u", n->osid); | 1398 | audit_log_format(ab, " osid=%u", n->osid); |
| 1398 | call_panic = 2; | 1399 | call_panic = 2; |
| 1399 | } else | 1400 | } else { |
| 1400 | audit_log_format(ab, " obj=%s", ctx); | 1401 | audit_log_format(ab, " obj=%s", ctx); |
| 1401 | kfree(ctx); | 1402 | security_release_secctx(ctx, len); |
| 1403 | } | ||
| 1402 | } | 1404 | } |
| 1403 | 1405 | ||
| 1404 | audit_log_end(ab); | 1406 | audit_log_end(ab); |
| @@ -1775,7 +1777,7 @@ static void audit_copy_inode(struct audit_names *name, const struct inode *inode | |||
| 1775 | name->uid = inode->i_uid; | 1777 | name->uid = inode->i_uid; |
| 1776 | name->gid = inode->i_gid; | 1778 | name->gid = inode->i_gid; |
| 1777 | name->rdev = inode->i_rdev; | 1779 | name->rdev = inode->i_rdev; |
| 1778 | selinux_get_inode_sid(inode, &name->osid); | 1780 | security_inode_getsecid(inode, &name->osid); |
| 1779 | } | 1781 | } |
| 1780 | 1782 | ||
| 1781 | /** | 1783 | /** |
| @@ -2190,8 +2192,7 @@ int __audit_ipc_obj(struct kern_ipc_perm *ipcp) | |||
| 2190 | ax->uid = ipcp->uid; | 2192 | ax->uid = ipcp->uid; |
| 2191 | ax->gid = ipcp->gid; | 2193 | ax->gid = ipcp->gid; |
| 2192 | ax->mode = ipcp->mode; | 2194 | ax->mode = ipcp->mode; |
| 2193 | selinux_get_ipc_sid(ipcp, &ax->osid); | 2195 | security_ipc_getsecid(ipcp, &ax->osid); |
| 2194 | |||
| 2195 | ax->d.type = AUDIT_IPC; | 2196 | ax->d.type = AUDIT_IPC; |
| 2196 | ax->d.next = context->aux; | 2197 | ax->d.next = context->aux; |
| 2197 | context->aux = (void *)ax; | 2198 | context->aux = (void *)ax; |
| @@ -2343,7 +2344,7 @@ void __audit_ptrace(struct task_struct *t) | |||
| 2343 | context->target_auid = audit_get_loginuid(t); | 2344 | context->target_auid = audit_get_loginuid(t); |
| 2344 | context->target_uid = t->uid; | 2345 | context->target_uid = t->uid; |
| 2345 | context->target_sessionid = audit_get_sessionid(t); | 2346 | context->target_sessionid = audit_get_sessionid(t); |
| 2346 | selinux_get_task_sid(t, &context->target_sid); | 2347 | security_task_getsecid(t, &context->target_sid); |
| 2347 | memcpy(context->target_comm, t->comm, TASK_COMM_LEN); | 2348 | memcpy(context->target_comm, t->comm, TASK_COMM_LEN); |
| 2348 | } | 2349 | } |
| 2349 | 2350 | ||
| @@ -2371,7 +2372,7 @@ int __audit_signal_info(int sig, struct task_struct *t) | |||
| 2371 | audit_sig_uid = tsk->loginuid; | 2372 | audit_sig_uid = tsk->loginuid; |
| 2372 | else | 2373 | else |
| 2373 | audit_sig_uid = tsk->uid; | 2374 | audit_sig_uid = tsk->uid; |
| 2374 | selinux_get_task_sid(tsk, &audit_sig_sid); | 2375 | security_task_getsecid(tsk, &audit_sig_sid); |
| 2375 | } | 2376 | } |
| 2376 | if (!audit_signals || audit_dummy_context()) | 2377 | if (!audit_signals || audit_dummy_context()) |
| 2377 | return 0; | 2378 | return 0; |
| @@ -2384,7 +2385,7 @@ int __audit_signal_info(int sig, struct task_struct *t) | |||
| 2384 | ctx->target_auid = audit_get_loginuid(t); | 2385 | ctx->target_auid = audit_get_loginuid(t); |
| 2385 | ctx->target_uid = t->uid; | 2386 | ctx->target_uid = t->uid; |
| 2386 | ctx->target_sessionid = audit_get_sessionid(t); | 2387 | ctx->target_sessionid = audit_get_sessionid(t); |
| 2387 | selinux_get_task_sid(t, &ctx->target_sid); | 2388 | security_task_getsecid(t, &ctx->target_sid); |
| 2388 | memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); | 2389 | memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); |
| 2389 | return 0; | 2390 | return 0; |
| 2390 | } | 2391 | } |
| @@ -2405,7 +2406,7 @@ int __audit_signal_info(int sig, struct task_struct *t) | |||
| 2405 | axp->target_auid[axp->pid_count] = audit_get_loginuid(t); | 2406 | axp->target_auid[axp->pid_count] = audit_get_loginuid(t); |
| 2406 | axp->target_uid[axp->pid_count] = t->uid; | 2407 | axp->target_uid[axp->pid_count] = t->uid; |
| 2407 | axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); | 2408 | axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); |
| 2408 | selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]); | 2409 | security_task_getsecid(t, &axp->target_sid[axp->pid_count]); |
| 2409 | memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); | 2410 | memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); |
| 2410 | axp->pid_count++; | 2411 | axp->pid_count++; |
| 2411 | 2412 | ||
| @@ -2435,16 +2436,17 @@ void audit_core_dumps(long signr) | |||
| 2435 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); | 2436 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); |
| 2436 | audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", | 2437 | audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", |
| 2437 | auid, current->uid, current->gid, sessionid); | 2438 | auid, current->uid, current->gid, sessionid); |
| 2438 | selinux_get_task_sid(current, &sid); | 2439 | security_task_getsecid(current, &sid); |
| 2439 | if (sid) { | 2440 | if (sid) { |
| 2440 | char *ctx = NULL; | 2441 | char *ctx = NULL; |
| 2441 | u32 len; | 2442 | u32 len; |
| 2442 | 2443 | ||
| 2443 | if (selinux_sid_to_string(sid, &ctx, &len)) | 2444 | if (security_secid_to_secctx(sid, &ctx, &len)) |
| 2444 | audit_log_format(ab, " ssid=%u", sid); | 2445 | audit_log_format(ab, " ssid=%u", sid); |
| 2445 | else | 2446 | else { |
| 2446 | audit_log_format(ab, " subj=%s", ctx); | 2447 | audit_log_format(ab, " subj=%s", ctx); |
| 2447 | kfree(ctx); | 2448 | security_release_secctx(ctx, len); |
| 2449 | } | ||
| 2448 | } | 2450 | } |
| 2449 | audit_log_format(ab, " pid=%d comm=", current->pid); | 2451 | audit_log_format(ab, " pid=%d comm=", current->pid); |
| 2450 | audit_log_untrustedstring(ab, current->comm); | 2452 | audit_log_untrustedstring(ab, current->comm); |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 2727f9238359..6d8de051382b 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
| @@ -1722,7 +1722,12 @@ void cgroup_enable_task_cg_lists(void) | |||
| 1722 | use_task_css_set_links = 1; | 1722 | use_task_css_set_links = 1; |
| 1723 | do_each_thread(g, p) { | 1723 | do_each_thread(g, p) { |
| 1724 | task_lock(p); | 1724 | task_lock(p); |
| 1725 | if (list_empty(&p->cg_list)) | 1725 | /* |
| 1726 | * We should check if the process is exiting, otherwise | ||
| 1727 | * it will race with cgroup_exit() in that the list | ||
| 1728 | * entry won't be deleted though the process has exited. | ||
| 1729 | */ | ||
| 1730 | if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) | ||
| 1726 | list_add(&p->cg_list, &p->cgroups->tasks); | 1731 | list_add(&p->cg_list, &p->cgroups->tasks); |
| 1727 | task_unlock(p); | 1732 | task_unlock(p); |
| 1728 | } while_each_thread(g, p); | 1733 | } while_each_thread(g, p); |
diff --git a/kernel/compat.c b/kernel/compat.c index 5f0e201bcfd3..9c48abfcd4a5 100644 --- a/kernel/compat.c +++ b/kernel/compat.c | |||
| @@ -47,15 +47,14 @@ static long compat_nanosleep_restart(struct restart_block *restart) | |||
| 47 | mm_segment_t oldfs; | 47 | mm_segment_t oldfs; |
| 48 | long ret; | 48 | long ret; |
| 49 | 49 | ||
| 50 | rmtp = (struct compat_timespec __user *)(restart->arg1); | 50 | restart->nanosleep.rmtp = (struct timespec __user *) &rmt; |
| 51 | restart->arg1 = (unsigned long)&rmt; | ||
| 52 | oldfs = get_fs(); | 51 | oldfs = get_fs(); |
| 53 | set_fs(KERNEL_DS); | 52 | set_fs(KERNEL_DS); |
| 54 | ret = hrtimer_nanosleep_restart(restart); | 53 | ret = hrtimer_nanosleep_restart(restart); |
| 55 | set_fs(oldfs); | 54 | set_fs(oldfs); |
| 56 | 55 | ||
| 57 | if (ret) { | 56 | if (ret) { |
| 58 | restart->arg1 = (unsigned long)rmtp; | 57 | rmtp = restart->nanosleep.compat_rmtp; |
| 59 | 58 | ||
| 60 | if (rmtp && put_compat_timespec(&rmt, rmtp)) | 59 | if (rmtp && put_compat_timespec(&rmt, rmtp)) |
| 61 | return -EFAULT; | 60 | return -EFAULT; |
| @@ -89,7 +88,7 @@ asmlinkage long compat_sys_nanosleep(struct compat_timespec __user *rqtp, | |||
| 89 | = ¤t_thread_info()->restart_block; | 88 | = ¤t_thread_info()->restart_block; |
| 90 | 89 | ||
| 91 | restart->fn = compat_nanosleep_restart; | 90 | restart->fn = compat_nanosleep_restart; |
| 92 | restart->arg1 = (unsigned long)rmtp; | 91 | restart->nanosleep.compat_rmtp = rmtp; |
| 93 | 92 | ||
| 94 | if (rmtp && put_compat_timespec(&rmt, rmtp)) | 93 | if (rmtp && put_compat_timespec(&rmt, rmtp)) |
| 95 | return -EFAULT; | 94 | return -EFAULT; |
| @@ -607,9 +606,9 @@ static long compat_clock_nanosleep_restart(struct restart_block *restart) | |||
| 607 | long err; | 606 | long err; |
| 608 | mm_segment_t oldfs; | 607 | mm_segment_t oldfs; |
| 609 | struct timespec tu; | 608 | struct timespec tu; |
| 610 | struct compat_timespec *rmtp = (struct compat_timespec *)(restart->arg1); | 609 | struct compat_timespec *rmtp = restart->nanosleep.compat_rmtp; |
| 611 | 610 | ||
| 612 | restart->arg1 = (unsigned long) &tu; | 611 | restart->nanosleep.rmtp = (struct timespec __user *) &tu; |
| 613 | oldfs = get_fs(); | 612 | oldfs = get_fs(); |
| 614 | set_fs(KERNEL_DS); | 613 | set_fs(KERNEL_DS); |
| 615 | err = clock_nanosleep_restart(restart); | 614 | err = clock_nanosleep_restart(restart); |
| @@ -621,7 +620,7 @@ static long compat_clock_nanosleep_restart(struct restart_block *restart) | |||
| 621 | 620 | ||
| 622 | if (err == -ERESTART_RESTARTBLOCK) { | 621 | if (err == -ERESTART_RESTARTBLOCK) { |
| 623 | restart->fn = compat_clock_nanosleep_restart; | 622 | restart->fn = compat_clock_nanosleep_restart; |
| 624 | restart->arg1 = (unsigned long) rmtp; | 623 | restart->nanosleep.compat_rmtp = rmtp; |
| 625 | } | 624 | } |
| 626 | return err; | 625 | return err; |
| 627 | } | 626 | } |
| @@ -652,7 +651,7 @@ long compat_sys_clock_nanosleep(clockid_t which_clock, int flags, | |||
| 652 | if (err == -ERESTART_RESTARTBLOCK) { | 651 | if (err == -ERESTART_RESTARTBLOCK) { |
| 653 | restart = ¤t_thread_info()->restart_block; | 652 | restart = ¤t_thread_info()->restart_block; |
| 654 | restart->fn = compat_clock_nanosleep_restart; | 653 | restart->fn = compat_clock_nanosleep_restart; |
| 655 | restart->arg1 = (unsigned long) rmtp; | 654 | restart->nanosleep.compat_rmtp = rmtp; |
| 656 | } | 655 | } |
| 657 | return err; | 656 | return err; |
| 658 | } | 657 | } |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 98bee013f71f..c642ef75069f 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
| @@ -1354,13 +1354,13 @@ long __sched hrtimer_nanosleep_restart(struct restart_block *restart) | |||
| 1354 | struct hrtimer_sleeper t; | 1354 | struct hrtimer_sleeper t; |
| 1355 | struct timespec __user *rmtp; | 1355 | struct timespec __user *rmtp; |
| 1356 | 1356 | ||
| 1357 | hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS); | 1357 | hrtimer_init(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS); |
| 1358 | t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2; | 1358 | t.timer.expires.tv64 = restart->nanosleep.expires; |
| 1359 | 1359 | ||
| 1360 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) | 1360 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
| 1361 | return 0; | 1361 | return 0; |
| 1362 | 1362 | ||
| 1363 | rmtp = (struct timespec __user *)restart->arg1; | 1363 | rmtp = restart->nanosleep.rmtp; |
| 1364 | if (rmtp) { | 1364 | if (rmtp) { |
| 1365 | int ret = update_rmtp(&t.timer, rmtp); | 1365 | int ret = update_rmtp(&t.timer, rmtp); |
| 1366 | if (ret <= 0) | 1366 | if (ret <= 0) |
| @@ -1394,10 +1394,9 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | |||
| 1394 | 1394 | ||
| 1395 | restart = ¤t_thread_info()->restart_block; | 1395 | restart = ¤t_thread_info()->restart_block; |
| 1396 | restart->fn = hrtimer_nanosleep_restart; | 1396 | restart->fn = hrtimer_nanosleep_restart; |
| 1397 | restart->arg0 = (unsigned long) t.timer.base->index; | 1397 | restart->nanosleep.index = t.timer.base->index; |
| 1398 | restart->arg1 = (unsigned long) rmtp; | 1398 | restart->nanosleep.rmtp = rmtp; |
| 1399 | restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF; | 1399 | restart->nanosleep.expires = t.timer.expires.tv64; |
| 1400 | restart->arg3 = t.timer.expires.tv64 >> 32; | ||
| 1401 | 1400 | ||
| 1402 | return -ERESTART_RESTARTBLOCK; | 1401 | return -ERESTART_RESTARTBLOCK; |
| 1403 | } | 1402 | } |
| @@ -1425,7 +1424,6 @@ static void __cpuinit init_hrtimers_cpu(int cpu) | |||
| 1425 | int i; | 1424 | int i; |
| 1426 | 1425 | ||
| 1427 | spin_lock_init(&cpu_base->lock); | 1426 | spin_lock_init(&cpu_base->lock); |
| 1428 | lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key); | ||
| 1429 | 1427 | ||
| 1430 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | 1428 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
| 1431 | cpu_base->clock_base[i].cpu_base = cpu_base; | 1429 | cpu_base->clock_base[i].cpu_base = cpu_base; |
| @@ -1466,16 +1464,16 @@ static void migrate_hrtimers(int cpu) | |||
| 1466 | tick_cancel_sched_timer(cpu); | 1464 | tick_cancel_sched_timer(cpu); |
| 1467 | 1465 | ||
| 1468 | local_irq_disable(); | 1466 | local_irq_disable(); |
| 1469 | double_spin_lock(&new_base->lock, &old_base->lock, | 1467 | spin_lock(&new_base->lock); |
| 1470 | smp_processor_id() < cpu); | 1468 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 1471 | 1469 | ||
| 1472 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 1470 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 1473 | migrate_hrtimer_list(&old_base->clock_base[i], | 1471 | migrate_hrtimer_list(&old_base->clock_base[i], |
| 1474 | &new_base->clock_base[i]); | 1472 | &new_base->clock_base[i]); |
| 1475 | } | 1473 | } |
| 1476 | 1474 | ||
| 1477 | double_spin_unlock(&new_base->lock, &old_base->lock, | 1475 | spin_unlock(&old_base->lock); |
| 1478 | smp_processor_id() < cpu); | 1476 | spin_unlock(&new_base->lock); |
| 1479 | local_irq_enable(); | 1477 | local_irq_enable(); |
| 1480 | put_cpu_var(hrtimer_bases); | 1478 | put_cpu_var(hrtimer_bases); |
| 1481 | } | 1479 | } |
diff --git a/kernel/kgdb.c b/kernel/kgdb.c new file mode 100644 index 000000000000..1bd0ec1c80b2 --- /dev/null +++ b/kernel/kgdb.c | |||
| @@ -0,0 +1,1700 @@ | |||
| 1 | /* | ||
| 2 | * KGDB stub. | ||
| 3 | * | ||
| 4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
| 5 | * | ||
| 6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
| 7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
| 8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
| 9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
| 10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
| 11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
| 12 | * Copyright (C) 2005-2008 Wind River Systems, Inc. | ||
| 13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
| 14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
| 15 | * | ||
| 16 | * Contributors at various stages not listed above: | ||
| 17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
| 18 | * George Anzinger <george@mvista.com> | ||
| 19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
| 20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
| 21 | * Jim Kingdon, Cygnus Support. | ||
| 22 | * | ||
| 23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
| 24 | * Tigran Aivazian <tigran@sco.com> | ||
| 25 | * | ||
| 26 | * This file is licensed under the terms of the GNU General Public License | ||
| 27 | * version 2. This program is licensed "as is" without any warranty of any | ||
| 28 | * kind, whether express or implied. | ||
| 29 | */ | ||
| 30 | #include <linux/pid_namespace.h> | ||
| 31 | #include <linux/clocksource.h> | ||
| 32 | #include <linux/interrupt.h> | ||
| 33 | #include <linux/spinlock.h> | ||
| 34 | #include <linux/console.h> | ||
| 35 | #include <linux/threads.h> | ||
| 36 | #include <linux/uaccess.h> | ||
| 37 | #include <linux/kernel.h> | ||
| 38 | #include <linux/module.h> | ||
| 39 | #include <linux/ptrace.h> | ||
| 40 | #include <linux/reboot.h> | ||
| 41 | #include <linux/string.h> | ||
| 42 | #include <linux/delay.h> | ||
| 43 | #include <linux/sched.h> | ||
| 44 | #include <linux/sysrq.h> | ||
| 45 | #include <linux/init.h> | ||
| 46 | #include <linux/kgdb.h> | ||
| 47 | #include <linux/pid.h> | ||
| 48 | #include <linux/smp.h> | ||
| 49 | #include <linux/mm.h> | ||
| 50 | |||
| 51 | #include <asm/cacheflush.h> | ||
| 52 | #include <asm/byteorder.h> | ||
| 53 | #include <asm/atomic.h> | ||
| 54 | #include <asm/system.h> | ||
| 55 | |||
| 56 | static int kgdb_break_asap; | ||
| 57 | |||
| 58 | struct kgdb_state { | ||
| 59 | int ex_vector; | ||
| 60 | int signo; | ||
| 61 | int err_code; | ||
| 62 | int cpu; | ||
| 63 | int pass_exception; | ||
| 64 | long threadid; | ||
| 65 | long kgdb_usethreadid; | ||
| 66 | struct pt_regs *linux_regs; | ||
| 67 | }; | ||
| 68 | |||
| 69 | static struct debuggerinfo_struct { | ||
| 70 | void *debuggerinfo; | ||
| 71 | struct task_struct *task; | ||
| 72 | } kgdb_info[NR_CPUS]; | ||
| 73 | |||
| 74 | /** | ||
| 75 | * kgdb_connected - Is a host GDB connected to us? | ||
| 76 | */ | ||
| 77 | int kgdb_connected; | ||
| 78 | EXPORT_SYMBOL_GPL(kgdb_connected); | ||
| 79 | |||
| 80 | /* All the KGDB handlers are installed */ | ||
| 81 | static int kgdb_io_module_registered; | ||
| 82 | |||
| 83 | /* Guard for recursive entry */ | ||
| 84 | static int exception_level; | ||
| 85 | |||
| 86 | static struct kgdb_io *kgdb_io_ops; | ||
| 87 | static DEFINE_SPINLOCK(kgdb_registration_lock); | ||
| 88 | |||
| 89 | /* kgdb console driver is loaded */ | ||
| 90 | static int kgdb_con_registered; | ||
| 91 | /* determine if kgdb console output should be used */ | ||
| 92 | static int kgdb_use_con; | ||
| 93 | |||
| 94 | static int __init opt_kgdb_con(char *str) | ||
| 95 | { | ||
| 96 | kgdb_use_con = 1; | ||
| 97 | return 0; | ||
| 98 | } | ||
| 99 | |||
| 100 | early_param("kgdbcon", opt_kgdb_con); | ||
| 101 | |||
| 102 | module_param(kgdb_use_con, int, 0644); | ||
| 103 | |||
| 104 | /* | ||
| 105 | * Holds information about breakpoints in a kernel. These breakpoints are | ||
| 106 | * added and removed by gdb. | ||
| 107 | */ | ||
| 108 | static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { | ||
| 109 | [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } | ||
| 110 | }; | ||
| 111 | |||
| 112 | /* | ||
| 113 | * The CPU# of the active CPU, or -1 if none: | ||
| 114 | */ | ||
| 115 | atomic_t kgdb_active = ATOMIC_INIT(-1); | ||
| 116 | |||
| 117 | /* | ||
| 118 | * We use NR_CPUs not PERCPU, in case kgdb is used to debug early | ||
| 119 | * bootup code (which might not have percpu set up yet): | ||
| 120 | */ | ||
| 121 | static atomic_t passive_cpu_wait[NR_CPUS]; | ||
| 122 | static atomic_t cpu_in_kgdb[NR_CPUS]; | ||
| 123 | atomic_t kgdb_setting_breakpoint; | ||
| 124 | |||
| 125 | struct task_struct *kgdb_usethread; | ||
| 126 | struct task_struct *kgdb_contthread; | ||
| 127 | |||
| 128 | int kgdb_single_step; | ||
| 129 | |||
| 130 | /* Our I/O buffers. */ | ||
| 131 | static char remcom_in_buffer[BUFMAX]; | ||
| 132 | static char remcom_out_buffer[BUFMAX]; | ||
| 133 | |||
| 134 | /* Storage for the registers, in GDB format. */ | ||
| 135 | static unsigned long gdb_regs[(NUMREGBYTES + | ||
| 136 | sizeof(unsigned long) - 1) / | ||
| 137 | sizeof(unsigned long)]; | ||
| 138 | |||
| 139 | /* to keep track of the CPU which is doing the single stepping*/ | ||
| 140 | atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); | ||
| 141 | |||
| 142 | /* | ||
| 143 | * If you are debugging a problem where roundup (the collection of | ||
| 144 | * all other CPUs) is a problem [this should be extremely rare], | ||
| 145 | * then use the nokgdbroundup option to avoid roundup. In that case | ||
| 146 | * the other CPUs might interfere with your debugging context, so | ||
| 147 | * use this with care: | ||
| 148 | */ | ||
| 149 | int kgdb_do_roundup = 1; | ||
| 150 | |||
| 151 | static int __init opt_nokgdbroundup(char *str) | ||
| 152 | { | ||
| 153 | kgdb_do_roundup = 0; | ||
| 154 | |||
| 155 | return 0; | ||
| 156 | } | ||
| 157 | |||
| 158 | early_param("nokgdbroundup", opt_nokgdbroundup); | ||
| 159 | |||
| 160 | /* | ||
| 161 | * Finally, some KGDB code :-) | ||
| 162 | */ | ||
| 163 | |||
| 164 | /* | ||
| 165 | * Weak aliases for breakpoint management, | ||
| 166 | * can be overriden by architectures when needed: | ||
| 167 | */ | ||
| 168 | int __weak kgdb_validate_break_address(unsigned long addr) | ||
| 169 | { | ||
| 170 | char tmp_variable[BREAK_INSTR_SIZE]; | ||
| 171 | |||
| 172 | return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE); | ||
| 173 | } | ||
| 174 | |||
| 175 | int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | ||
| 176 | { | ||
| 177 | int err; | ||
| 178 | |||
| 179 | err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); | ||
| 180 | if (err) | ||
| 181 | return err; | ||
| 182 | |||
| 183 | return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, | ||
| 184 | BREAK_INSTR_SIZE); | ||
| 185 | } | ||
| 186 | |||
| 187 | int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | ||
| 188 | { | ||
| 189 | return probe_kernel_write((char *)addr, | ||
| 190 | (char *)bundle, BREAK_INSTR_SIZE); | ||
| 191 | } | ||
| 192 | |||
| 193 | unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) | ||
| 194 | { | ||
| 195 | return instruction_pointer(regs); | ||
| 196 | } | ||
| 197 | |||
| 198 | int __weak kgdb_arch_init(void) | ||
| 199 | { | ||
| 200 | return 0; | ||
| 201 | } | ||
| 202 | |||
| 203 | int __weak kgdb_skipexception(int exception, struct pt_regs *regs) | ||
| 204 | { | ||
| 205 | return 0; | ||
| 206 | } | ||
| 207 | |||
| 208 | void __weak | ||
| 209 | kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) | ||
| 210 | { | ||
| 211 | return; | ||
| 212 | } | ||
| 213 | |||
| 214 | /** | ||
| 215 | * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. | ||
| 216 | * @regs: Current &struct pt_regs. | ||
| 217 | * | ||
| 218 | * This function will be called if the particular architecture must | ||
| 219 | * disable hardware debugging while it is processing gdb packets or | ||
| 220 | * handling exception. | ||
| 221 | */ | ||
| 222 | void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | ||
| 223 | { | ||
| 224 | } | ||
| 225 | |||
| 226 | /* | ||
| 227 | * GDB remote protocol parser: | ||
| 228 | */ | ||
| 229 | |||
| 230 | static const char hexchars[] = "0123456789abcdef"; | ||
| 231 | |||
| 232 | static int hex(char ch) | ||
| 233 | { | ||
| 234 | if ((ch >= 'a') && (ch <= 'f')) | ||
| 235 | return ch - 'a' + 10; | ||
| 236 | if ((ch >= '0') && (ch <= '9')) | ||
| 237 | return ch - '0'; | ||
| 238 | if ((ch >= 'A') && (ch <= 'F')) | ||
| 239 | return ch - 'A' + 10; | ||
| 240 | return -1; | ||
| 241 | } | ||
| 242 | |||
| 243 | /* scan for the sequence $<data>#<checksum> */ | ||
| 244 | static void get_packet(char *buffer) | ||
| 245 | { | ||
| 246 | unsigned char checksum; | ||
| 247 | unsigned char xmitcsum; | ||
| 248 | int count; | ||
| 249 | char ch; | ||
| 250 | |||
| 251 | do { | ||
| 252 | /* | ||
| 253 | * Spin and wait around for the start character, ignore all | ||
| 254 | * other characters: | ||
| 255 | */ | ||
| 256 | while ((ch = (kgdb_io_ops->read_char())) != '$') | ||
| 257 | /* nothing */; | ||
| 258 | |||
| 259 | kgdb_connected = 1; | ||
| 260 | checksum = 0; | ||
| 261 | xmitcsum = -1; | ||
| 262 | |||
| 263 | count = 0; | ||
| 264 | |||
| 265 | /* | ||
| 266 | * now, read until a # or end of buffer is found: | ||
| 267 | */ | ||
| 268 | while (count < (BUFMAX - 1)) { | ||
| 269 | ch = kgdb_io_ops->read_char(); | ||
| 270 | if (ch == '#') | ||
| 271 | break; | ||
| 272 | checksum = checksum + ch; | ||
| 273 | buffer[count] = ch; | ||
| 274 | count = count + 1; | ||
| 275 | } | ||
| 276 | buffer[count] = 0; | ||
| 277 | |||
| 278 | if (ch == '#') { | ||
| 279 | xmitcsum = hex(kgdb_io_ops->read_char()) << 4; | ||
| 280 | xmitcsum += hex(kgdb_io_ops->read_char()); | ||
| 281 | |||
| 282 | if (checksum != xmitcsum) | ||
| 283 | /* failed checksum */ | ||
| 284 | kgdb_io_ops->write_char('-'); | ||
| 285 | else | ||
| 286 | /* successful transfer */ | ||
| 287 | kgdb_io_ops->write_char('+'); | ||
| 288 | if (kgdb_io_ops->flush) | ||
| 289 | kgdb_io_ops->flush(); | ||
| 290 | } | ||
| 291 | } while (checksum != xmitcsum); | ||
| 292 | } | ||
| 293 | |||
| 294 | /* | ||
| 295 | * Send the packet in buffer. | ||
| 296 | * Check for gdb connection if asked for. | ||
| 297 | */ | ||
| 298 | static void put_packet(char *buffer) | ||
| 299 | { | ||
| 300 | unsigned char checksum; | ||
| 301 | int count; | ||
| 302 | char ch; | ||
| 303 | |||
| 304 | /* | ||
| 305 | * $<packet info>#<checksum>. | ||
| 306 | */ | ||
| 307 | while (1) { | ||
| 308 | kgdb_io_ops->write_char('$'); | ||
| 309 | checksum = 0; | ||
| 310 | count = 0; | ||
| 311 | |||
| 312 | while ((ch = buffer[count])) { | ||
| 313 | kgdb_io_ops->write_char(ch); | ||
| 314 | checksum += ch; | ||
| 315 | count++; | ||
| 316 | } | ||
| 317 | |||
| 318 | kgdb_io_ops->write_char('#'); | ||
| 319 | kgdb_io_ops->write_char(hexchars[checksum >> 4]); | ||
| 320 | kgdb_io_ops->write_char(hexchars[checksum & 0xf]); | ||
| 321 | if (kgdb_io_ops->flush) | ||
| 322 | kgdb_io_ops->flush(); | ||
| 323 | |||
| 324 | /* Now see what we get in reply. */ | ||
| 325 | ch = kgdb_io_ops->read_char(); | ||
| 326 | |||
| 327 | if (ch == 3) | ||
| 328 | ch = kgdb_io_ops->read_char(); | ||
| 329 | |||
| 330 | /* If we get an ACK, we are done. */ | ||
| 331 | if (ch == '+') | ||
| 332 | return; | ||
| 333 | |||
| 334 | /* | ||
| 335 | * If we get the start of another packet, this means | ||
| 336 | * that GDB is attempting to reconnect. We will NAK | ||
| 337 | * the packet being sent, and stop trying to send this | ||
| 338 | * packet. | ||
| 339 | */ | ||
| 340 | if (ch == '$') { | ||
| 341 | kgdb_io_ops->write_char('-'); | ||
| 342 | if (kgdb_io_ops->flush) | ||
| 343 | kgdb_io_ops->flush(); | ||
| 344 | return; | ||
| 345 | } | ||
| 346 | } | ||
| 347 | } | ||
| 348 | |||
| 349 | static char *pack_hex_byte(char *pkt, u8 byte) | ||
| 350 | { | ||
| 351 | *pkt++ = hexchars[byte >> 4]; | ||
| 352 | *pkt++ = hexchars[byte & 0xf]; | ||
| 353 | |||
| 354 | return pkt; | ||
| 355 | } | ||
| 356 | |||
| 357 | /* | ||
| 358 | * Convert the memory pointed to by mem into hex, placing result in buf. | ||
| 359 | * Return a pointer to the last char put in buf (null). May return an error. | ||
| 360 | */ | ||
| 361 | int kgdb_mem2hex(char *mem, char *buf, int count) | ||
| 362 | { | ||
| 363 | char *tmp; | ||
| 364 | int err; | ||
| 365 | |||
| 366 | /* | ||
| 367 | * We use the upper half of buf as an intermediate buffer for the | ||
| 368 | * raw memory copy. Hex conversion will work against this one. | ||
| 369 | */ | ||
| 370 | tmp = buf + count; | ||
| 371 | |||
| 372 | err = probe_kernel_read(tmp, mem, count); | ||
| 373 | if (!err) { | ||
| 374 | while (count > 0) { | ||
| 375 | buf = pack_hex_byte(buf, *tmp); | ||
| 376 | tmp++; | ||
| 377 | count--; | ||
| 378 | } | ||
| 379 | |||
| 380 | *buf = 0; | ||
| 381 | } | ||
| 382 | |||
| 383 | return err; | ||
| 384 | } | ||
| 385 | |||
| 386 | /* | ||
| 387 | * Copy the binary array pointed to by buf into mem. Fix $, #, and | ||
| 388 | * 0x7d escaped with 0x7d. Return a pointer to the character after | ||
| 389 | * the last byte written. | ||
| 390 | */ | ||
| 391 | static int kgdb_ebin2mem(char *buf, char *mem, int count) | ||
| 392 | { | ||
| 393 | int err = 0; | ||
| 394 | char c; | ||
| 395 | |||
| 396 | while (count-- > 0) { | ||
| 397 | c = *buf++; | ||
| 398 | if (c == 0x7d) | ||
| 399 | c = *buf++ ^ 0x20; | ||
| 400 | |||
| 401 | err = probe_kernel_write(mem, &c, 1); | ||
| 402 | if (err) | ||
| 403 | break; | ||
| 404 | |||
| 405 | mem++; | ||
| 406 | } | ||
| 407 | |||
| 408 | return err; | ||
| 409 | } | ||
| 410 | |||
| 411 | /* | ||
| 412 | * Convert the hex array pointed to by buf into binary to be placed in mem. | ||
| 413 | * Return a pointer to the character AFTER the last byte written. | ||
| 414 | * May return an error. | ||
| 415 | */ | ||
| 416 | int kgdb_hex2mem(char *buf, char *mem, int count) | ||
| 417 | { | ||
| 418 | char *tmp_raw; | ||
| 419 | char *tmp_hex; | ||
| 420 | |||
| 421 | /* | ||
| 422 | * We use the upper half of buf as an intermediate buffer for the | ||
| 423 | * raw memory that is converted from hex. | ||
| 424 | */ | ||
| 425 | tmp_raw = buf + count * 2; | ||
| 426 | |||
| 427 | tmp_hex = tmp_raw - 1; | ||
| 428 | while (tmp_hex >= buf) { | ||
| 429 | tmp_raw--; | ||
| 430 | *tmp_raw = hex(*tmp_hex--); | ||
| 431 | *tmp_raw |= hex(*tmp_hex--) << 4; | ||
| 432 | } | ||
| 433 | |||
| 434 | return probe_kernel_write(mem, tmp_raw, count); | ||
| 435 | } | ||
| 436 | |||
| 437 | /* | ||
| 438 | * While we find nice hex chars, build a long_val. | ||
| 439 | * Return number of chars processed. | ||
| 440 | */ | ||
| 441 | int kgdb_hex2long(char **ptr, long *long_val) | ||
| 442 | { | ||
| 443 | int hex_val; | ||
| 444 | int num = 0; | ||
| 445 | |||
| 446 | *long_val = 0; | ||
| 447 | |||
| 448 | while (**ptr) { | ||
| 449 | hex_val = hex(**ptr); | ||
| 450 | if (hex_val < 0) | ||
| 451 | break; | ||
| 452 | |||
| 453 | *long_val = (*long_val << 4) | hex_val; | ||
| 454 | num++; | ||
| 455 | (*ptr)++; | ||
| 456 | } | ||
| 457 | |||
| 458 | return num; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* Write memory due to an 'M' or 'X' packet. */ | ||
| 462 | static int write_mem_msg(int binary) | ||
| 463 | { | ||
| 464 | char *ptr = &remcom_in_buffer[1]; | ||
| 465 | unsigned long addr; | ||
| 466 | unsigned long length; | ||
| 467 | int err; | ||
| 468 | |||
| 469 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | ||
| 470 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | ||
| 471 | if (binary) | ||
| 472 | err = kgdb_ebin2mem(ptr, (char *)addr, length); | ||
| 473 | else | ||
| 474 | err = kgdb_hex2mem(ptr, (char *)addr, length); | ||
| 475 | if (err) | ||
| 476 | return err; | ||
| 477 | if (CACHE_FLUSH_IS_SAFE) | ||
| 478 | flush_icache_range(addr, addr + length + 1); | ||
| 479 | return 0; | ||
| 480 | } | ||
| 481 | |||
| 482 | return -EINVAL; | ||
| 483 | } | ||
| 484 | |||
| 485 | static void error_packet(char *pkt, int error) | ||
| 486 | { | ||
| 487 | error = -error; | ||
| 488 | pkt[0] = 'E'; | ||
| 489 | pkt[1] = hexchars[(error / 10)]; | ||
| 490 | pkt[2] = hexchars[(error % 10)]; | ||
| 491 | pkt[3] = '\0'; | ||
| 492 | } | ||
| 493 | |||
| 494 | /* | ||
| 495 | * Thread ID accessors. We represent a flat TID space to GDB, where | ||
| 496 | * the per CPU idle threads (which under Linux all have PID 0) are | ||
| 497 | * remapped to negative TIDs. | ||
| 498 | */ | ||
| 499 | |||
| 500 | #define BUF_THREAD_ID_SIZE 16 | ||
| 501 | |||
| 502 | static char *pack_threadid(char *pkt, unsigned char *id) | ||
| 503 | { | ||
| 504 | char *limit; | ||
| 505 | |||
| 506 | limit = pkt + BUF_THREAD_ID_SIZE; | ||
| 507 | while (pkt < limit) | ||
| 508 | pkt = pack_hex_byte(pkt, *id++); | ||
| 509 | |||
| 510 | return pkt; | ||
| 511 | } | ||
| 512 | |||
| 513 | static void int_to_threadref(unsigned char *id, int value) | ||
| 514 | { | ||
| 515 | unsigned char *scan; | ||
| 516 | int i = 4; | ||
| 517 | |||
| 518 | scan = (unsigned char *)id; | ||
| 519 | while (i--) | ||
| 520 | *scan++ = 0; | ||
| 521 | *scan++ = (value >> 24) & 0xff; | ||
| 522 | *scan++ = (value >> 16) & 0xff; | ||
| 523 | *scan++ = (value >> 8) & 0xff; | ||
| 524 | *scan++ = (value & 0xff); | ||
| 525 | } | ||
| 526 | |||
| 527 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | ||
| 528 | { | ||
| 529 | /* | ||
| 530 | * Non-positive TIDs are remapped idle tasks: | ||
| 531 | */ | ||
| 532 | if (tid <= 0) | ||
| 533 | return idle_task(-tid); | ||
| 534 | |||
| 535 | /* | ||
| 536 | * find_task_by_pid_ns() does not take the tasklist lock anymore | ||
| 537 | * but is nicely RCU locked - hence is a pretty resilient | ||
| 538 | * thing to use: | ||
| 539 | */ | ||
| 540 | return find_task_by_pid_ns(tid, &init_pid_ns); | ||
| 541 | } | ||
| 542 | |||
| 543 | /* | ||
| 544 | * CPU debug state control: | ||
| 545 | */ | ||
| 546 | |||
| 547 | #ifdef CONFIG_SMP | ||
| 548 | static void kgdb_wait(struct pt_regs *regs) | ||
| 549 | { | ||
| 550 | unsigned long flags; | ||
| 551 | int cpu; | ||
| 552 | |||
| 553 | local_irq_save(flags); | ||
| 554 | cpu = raw_smp_processor_id(); | ||
| 555 | kgdb_info[cpu].debuggerinfo = regs; | ||
| 556 | kgdb_info[cpu].task = current; | ||
| 557 | /* | ||
| 558 | * Make sure the above info reaches the primary CPU before | ||
| 559 | * our cpu_in_kgdb[] flag setting does: | ||
| 560 | */ | ||
| 561 | smp_wmb(); | ||
| 562 | atomic_set(&cpu_in_kgdb[cpu], 1); | ||
| 563 | |||
| 564 | /* Wait till primary CPU is done with debugging */ | ||
| 565 | while (atomic_read(&passive_cpu_wait[cpu])) | ||
| 566 | cpu_relax(); | ||
| 567 | |||
| 568 | kgdb_info[cpu].debuggerinfo = NULL; | ||
| 569 | kgdb_info[cpu].task = NULL; | ||
| 570 | |||
| 571 | /* fix up hardware debug registers on local cpu */ | ||
| 572 | if (arch_kgdb_ops.correct_hw_break) | ||
| 573 | arch_kgdb_ops.correct_hw_break(); | ||
| 574 | |||
| 575 | /* Signal the primary CPU that we are done: */ | ||
| 576 | atomic_set(&cpu_in_kgdb[cpu], 0); | ||
| 577 | clocksource_touch_watchdog(); | ||
| 578 | local_irq_restore(flags); | ||
| 579 | } | ||
| 580 | #endif | ||
| 581 | |||
| 582 | /* | ||
| 583 | * Some architectures need cache flushes when we set/clear a | ||
| 584 | * breakpoint: | ||
| 585 | */ | ||
| 586 | static void kgdb_flush_swbreak_addr(unsigned long addr) | ||
| 587 | { | ||
| 588 | if (!CACHE_FLUSH_IS_SAFE) | ||
| 589 | return; | ||
| 590 | |||
| 591 | if (current->mm && current->mm->mmap_cache) { | ||
| 592 | flush_cache_range(current->mm->mmap_cache, | ||
| 593 | addr, addr + BREAK_INSTR_SIZE); | ||
| 594 | } | ||
| 595 | /* Force flush instruction cache if it was outside the mm */ | ||
| 596 | flush_icache_range(addr, addr + BREAK_INSTR_SIZE); | ||
| 597 | } | ||
| 598 | |||
| 599 | /* | ||
| 600 | * SW breakpoint management: | ||
| 601 | */ | ||
| 602 | static int kgdb_activate_sw_breakpoints(void) | ||
| 603 | { | ||
| 604 | unsigned long addr; | ||
| 605 | int error = 0; | ||
| 606 | int i; | ||
| 607 | |||
| 608 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 609 | if (kgdb_break[i].state != BP_SET) | ||
| 610 | continue; | ||
| 611 | |||
| 612 | addr = kgdb_break[i].bpt_addr; | ||
| 613 | error = kgdb_arch_set_breakpoint(addr, | ||
| 614 | kgdb_break[i].saved_instr); | ||
| 615 | if (error) | ||
| 616 | return error; | ||
| 617 | |||
| 618 | kgdb_flush_swbreak_addr(addr); | ||
| 619 | kgdb_break[i].state = BP_ACTIVE; | ||
| 620 | } | ||
| 621 | return 0; | ||
| 622 | } | ||
| 623 | |||
| 624 | static int kgdb_set_sw_break(unsigned long addr) | ||
| 625 | { | ||
| 626 | int err = kgdb_validate_break_address(addr); | ||
| 627 | int breakno = -1; | ||
| 628 | int i; | ||
| 629 | |||
| 630 | if (err) | ||
| 631 | return err; | ||
| 632 | |||
| 633 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 634 | if ((kgdb_break[i].state == BP_SET) && | ||
| 635 | (kgdb_break[i].bpt_addr == addr)) | ||
| 636 | return -EEXIST; | ||
| 637 | } | ||
| 638 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 639 | if (kgdb_break[i].state == BP_REMOVED && | ||
| 640 | kgdb_break[i].bpt_addr == addr) { | ||
| 641 | breakno = i; | ||
| 642 | break; | ||
| 643 | } | ||
| 644 | } | ||
| 645 | |||
| 646 | if (breakno == -1) { | ||
| 647 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 648 | if (kgdb_break[i].state == BP_UNDEFINED) { | ||
| 649 | breakno = i; | ||
| 650 | break; | ||
| 651 | } | ||
| 652 | } | ||
| 653 | } | ||
| 654 | |||
| 655 | if (breakno == -1) | ||
| 656 | return -E2BIG; | ||
| 657 | |||
| 658 | kgdb_break[breakno].state = BP_SET; | ||
| 659 | kgdb_break[breakno].type = BP_BREAKPOINT; | ||
| 660 | kgdb_break[breakno].bpt_addr = addr; | ||
| 661 | |||
| 662 | return 0; | ||
| 663 | } | ||
| 664 | |||
| 665 | static int kgdb_deactivate_sw_breakpoints(void) | ||
| 666 | { | ||
| 667 | unsigned long addr; | ||
| 668 | int error = 0; | ||
| 669 | int i; | ||
| 670 | |||
| 671 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 672 | if (kgdb_break[i].state != BP_ACTIVE) | ||
| 673 | continue; | ||
| 674 | addr = kgdb_break[i].bpt_addr; | ||
| 675 | error = kgdb_arch_remove_breakpoint(addr, | ||
| 676 | kgdb_break[i].saved_instr); | ||
| 677 | if (error) | ||
| 678 | return error; | ||
| 679 | |||
| 680 | kgdb_flush_swbreak_addr(addr); | ||
| 681 | kgdb_break[i].state = BP_SET; | ||
| 682 | } | ||
| 683 | return 0; | ||
| 684 | } | ||
| 685 | |||
| 686 | static int kgdb_remove_sw_break(unsigned long addr) | ||
| 687 | { | ||
| 688 | int i; | ||
| 689 | |||
| 690 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 691 | if ((kgdb_break[i].state == BP_SET) && | ||
| 692 | (kgdb_break[i].bpt_addr == addr)) { | ||
| 693 | kgdb_break[i].state = BP_REMOVED; | ||
| 694 | return 0; | ||
| 695 | } | ||
| 696 | } | ||
| 697 | return -ENOENT; | ||
| 698 | } | ||
| 699 | |||
| 700 | int kgdb_isremovedbreak(unsigned long addr) | ||
| 701 | { | ||
| 702 | int i; | ||
| 703 | |||
| 704 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 705 | if ((kgdb_break[i].state == BP_REMOVED) && | ||
| 706 | (kgdb_break[i].bpt_addr == addr)) | ||
| 707 | return 1; | ||
| 708 | } | ||
| 709 | return 0; | ||
| 710 | } | ||
| 711 | |||
| 712 | int remove_all_break(void) | ||
| 713 | { | ||
| 714 | unsigned long addr; | ||
| 715 | int error; | ||
| 716 | int i; | ||
| 717 | |||
| 718 | /* Clear memory breakpoints. */ | ||
| 719 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
| 720 | if (kgdb_break[i].state != BP_ACTIVE) | ||
| 721 | goto setundefined; | ||
| 722 | addr = kgdb_break[i].bpt_addr; | ||
| 723 | error = kgdb_arch_remove_breakpoint(addr, | ||
| 724 | kgdb_break[i].saved_instr); | ||
| 725 | if (error) | ||
| 726 | printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n", | ||
| 727 | addr); | ||
| 728 | setundefined: | ||
| 729 | kgdb_break[i].state = BP_UNDEFINED; | ||
| 730 | } | ||
| 731 | |||
| 732 | /* Clear hardware breakpoints. */ | ||
| 733 | if (arch_kgdb_ops.remove_all_hw_break) | ||
| 734 | arch_kgdb_ops.remove_all_hw_break(); | ||
| 735 | |||
| 736 | return 0; | ||
| 737 | } | ||
| 738 | |||
| 739 | /* | ||
| 740 | * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs: | ||
| 741 | */ | ||
| 742 | static inline int shadow_pid(int realpid) | ||
| 743 | { | ||
| 744 | if (realpid) | ||
| 745 | return realpid; | ||
| 746 | |||
| 747 | return -1-raw_smp_processor_id(); | ||
| 748 | } | ||
| 749 | |||
| 750 | static char gdbmsgbuf[BUFMAX + 1]; | ||
| 751 | |||
| 752 | static void kgdb_msg_write(const char *s, int len) | ||
| 753 | { | ||
| 754 | char *bufptr; | ||
| 755 | int wcount; | ||
| 756 | int i; | ||
| 757 | |||
| 758 | /* 'O'utput */ | ||
| 759 | gdbmsgbuf[0] = 'O'; | ||
| 760 | |||
| 761 | /* Fill and send buffers... */ | ||
| 762 | while (len > 0) { | ||
| 763 | bufptr = gdbmsgbuf + 1; | ||
| 764 | |||
| 765 | /* Calculate how many this time */ | ||
| 766 | if ((len << 1) > (BUFMAX - 2)) | ||
| 767 | wcount = (BUFMAX - 2) >> 1; | ||
| 768 | else | ||
| 769 | wcount = len; | ||
| 770 | |||
| 771 | /* Pack in hex chars */ | ||
| 772 | for (i = 0; i < wcount; i++) | ||
| 773 | bufptr = pack_hex_byte(bufptr, s[i]); | ||
| 774 | *bufptr = '\0'; | ||
| 775 | |||
| 776 | /* Move up */ | ||
| 777 | s += wcount; | ||
| 778 | len -= wcount; | ||
| 779 | |||
| 780 | /* Write packet */ | ||
| 781 | put_packet(gdbmsgbuf); | ||
| 782 | } | ||
| 783 | } | ||
| 784 | |||
| 785 | /* | ||
| 786 | * Return true if there is a valid kgdb I/O module. Also if no | ||
| 787 | * debugger is attached a message can be printed to the console about | ||
| 788 | * waiting for the debugger to attach. | ||
| 789 | * | ||
| 790 | * The print_wait argument is only to be true when called from inside | ||
| 791 | * the core kgdb_handle_exception, because it will wait for the | ||
| 792 | * debugger to attach. | ||
| 793 | */ | ||
| 794 | static int kgdb_io_ready(int print_wait) | ||
| 795 | { | ||
| 796 | if (!kgdb_io_ops) | ||
| 797 | return 0; | ||
| 798 | if (kgdb_connected) | ||
| 799 | return 1; | ||
| 800 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
| 801 | return 1; | ||
| 802 | if (print_wait) | ||
| 803 | printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); | ||
| 804 | return 1; | ||
| 805 | } | ||
| 806 | |||
| 807 | /* | ||
| 808 | * All the functions that start with gdb_cmd are the various | ||
| 809 | * operations to implement the handlers for the gdbserial protocol | ||
| 810 | * where KGDB is communicating with an external debugger | ||
| 811 | */ | ||
| 812 | |||
| 813 | /* Handle the '?' status packets */ | ||
| 814 | static void gdb_cmd_status(struct kgdb_state *ks) | ||
| 815 | { | ||
| 816 | /* | ||
| 817 | * We know that this packet is only sent | ||
| 818 | * during initial connect. So to be safe, | ||
| 819 | * we clear out our breakpoints now in case | ||
| 820 | * GDB is reconnecting. | ||
| 821 | */ | ||
| 822 | remove_all_break(); | ||
| 823 | |||
| 824 | remcom_out_buffer[0] = 'S'; | ||
| 825 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | ||
| 826 | } | ||
| 827 | |||
| 828 | /* Handle the 'g' get registers request */ | ||
| 829 | static void gdb_cmd_getregs(struct kgdb_state *ks) | ||
| 830 | { | ||
| 831 | struct task_struct *thread; | ||
| 832 | void *local_debuggerinfo; | ||
| 833 | int i; | ||
| 834 | |||
| 835 | thread = kgdb_usethread; | ||
| 836 | if (!thread) { | ||
| 837 | thread = kgdb_info[ks->cpu].task; | ||
| 838 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | ||
| 839 | } else { | ||
| 840 | local_debuggerinfo = NULL; | ||
| 841 | for (i = 0; i < NR_CPUS; i++) { | ||
| 842 | /* | ||
| 843 | * Try to find the task on some other | ||
| 844 | * or possibly this node if we do not | ||
| 845 | * find the matching task then we try | ||
| 846 | * to approximate the results. | ||
| 847 | */ | ||
| 848 | if (thread == kgdb_info[i].task) | ||
| 849 | local_debuggerinfo = kgdb_info[i].debuggerinfo; | ||
| 850 | } | ||
| 851 | } | ||
| 852 | |||
| 853 | /* | ||
| 854 | * All threads that don't have debuggerinfo should be | ||
| 855 | * in __schedule() sleeping, since all other CPUs | ||
| 856 | * are in kgdb_wait, and thus have debuggerinfo. | ||
| 857 | */ | ||
| 858 | if (local_debuggerinfo) { | ||
| 859 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | ||
| 860 | } else { | ||
| 861 | /* | ||
| 862 | * Pull stuff saved during switch_to; nothing | ||
| 863 | * else is accessible (or even particularly | ||
| 864 | * relevant). | ||
| 865 | * | ||
| 866 | * This should be enough for a stack trace. | ||
| 867 | */ | ||
| 868 | sleeping_thread_to_gdb_regs(gdb_regs, thread); | ||
| 869 | } | ||
| 870 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | ||
| 871 | } | ||
| 872 | |||
| 873 | /* Handle the 'G' set registers request */ | ||
| 874 | static void gdb_cmd_setregs(struct kgdb_state *ks) | ||
| 875 | { | ||
| 876 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | ||
| 877 | |||
| 878 | if (kgdb_usethread && kgdb_usethread != current) { | ||
| 879 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 880 | } else { | ||
| 881 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | ||
| 882 | strcpy(remcom_out_buffer, "OK"); | ||
| 883 | } | ||
| 884 | } | ||
| 885 | |||
| 886 | /* Handle the 'm' memory read bytes */ | ||
| 887 | static void gdb_cmd_memread(struct kgdb_state *ks) | ||
| 888 | { | ||
| 889 | char *ptr = &remcom_in_buffer[1]; | ||
| 890 | unsigned long length; | ||
| 891 | unsigned long addr; | ||
| 892 | int err; | ||
| 893 | |||
| 894 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | ||
| 895 | kgdb_hex2long(&ptr, &length) > 0) { | ||
| 896 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | ||
| 897 | if (err) | ||
| 898 | error_packet(remcom_out_buffer, err); | ||
| 899 | } else { | ||
| 900 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 901 | } | ||
| 902 | } | ||
| 903 | |||
| 904 | /* Handle the 'M' memory write bytes */ | ||
| 905 | static void gdb_cmd_memwrite(struct kgdb_state *ks) | ||
| 906 | { | ||
| 907 | int err = write_mem_msg(0); | ||
| 908 | |||
| 909 | if (err) | ||
| 910 | error_packet(remcom_out_buffer, err); | ||
| 911 | else | ||
| 912 | strcpy(remcom_out_buffer, "OK"); | ||
| 913 | } | ||
| 914 | |||
| 915 | /* Handle the 'X' memory binary write bytes */ | ||
| 916 | static void gdb_cmd_binwrite(struct kgdb_state *ks) | ||
| 917 | { | ||
| 918 | int err = write_mem_msg(1); | ||
| 919 | |||
| 920 | if (err) | ||
| 921 | error_packet(remcom_out_buffer, err); | ||
| 922 | else | ||
| 923 | strcpy(remcom_out_buffer, "OK"); | ||
| 924 | } | ||
| 925 | |||
| 926 | /* Handle the 'D' or 'k', detach or kill packets */ | ||
| 927 | static void gdb_cmd_detachkill(struct kgdb_state *ks) | ||
| 928 | { | ||
| 929 | int error; | ||
| 930 | |||
| 931 | /* The detach case */ | ||
| 932 | if (remcom_in_buffer[0] == 'D') { | ||
| 933 | error = remove_all_break(); | ||
| 934 | if (error < 0) { | ||
| 935 | error_packet(remcom_out_buffer, error); | ||
| 936 | } else { | ||
| 937 | strcpy(remcom_out_buffer, "OK"); | ||
| 938 | kgdb_connected = 0; | ||
| 939 | } | ||
| 940 | put_packet(remcom_out_buffer); | ||
| 941 | } else { | ||
| 942 | /* | ||
| 943 | * Assume the kill case, with no exit code checking, | ||
| 944 | * trying to force detach the debugger: | ||
| 945 | */ | ||
| 946 | remove_all_break(); | ||
| 947 | kgdb_connected = 0; | ||
| 948 | } | ||
| 949 | } | ||
| 950 | |||
| 951 | /* Handle the 'R' reboot packets */ | ||
| 952 | static int gdb_cmd_reboot(struct kgdb_state *ks) | ||
| 953 | { | ||
| 954 | /* For now, only honor R0 */ | ||
| 955 | if (strcmp(remcom_in_buffer, "R0") == 0) { | ||
| 956 | printk(KERN_CRIT "Executing emergency reboot\n"); | ||
| 957 | strcpy(remcom_out_buffer, "OK"); | ||
| 958 | put_packet(remcom_out_buffer); | ||
| 959 | |||
| 960 | /* | ||
| 961 | * Execution should not return from | ||
| 962 | * machine_emergency_restart() | ||
| 963 | */ | ||
| 964 | machine_emergency_restart(); | ||
| 965 | kgdb_connected = 0; | ||
| 966 | |||
| 967 | return 1; | ||
| 968 | } | ||
| 969 | return 0; | ||
| 970 | } | ||
| 971 | |||
| 972 | /* Handle the 'q' query packets */ | ||
| 973 | static void gdb_cmd_query(struct kgdb_state *ks) | ||
| 974 | { | ||
| 975 | struct task_struct *thread; | ||
| 976 | unsigned char thref[8]; | ||
| 977 | char *ptr; | ||
| 978 | int i; | ||
| 979 | |||
| 980 | switch (remcom_in_buffer[1]) { | ||
| 981 | case 's': | ||
| 982 | case 'f': | ||
| 983 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { | ||
| 984 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 985 | break; | ||
| 986 | } | ||
| 987 | |||
| 988 | if (remcom_in_buffer[1] == 'f') | ||
| 989 | ks->threadid = 1; | ||
| 990 | |||
| 991 | remcom_out_buffer[0] = 'm'; | ||
| 992 | ptr = remcom_out_buffer + 1; | ||
| 993 | |||
| 994 | for (i = 0; i < 17; ks->threadid++) { | ||
| 995 | thread = getthread(ks->linux_regs, ks->threadid); | ||
| 996 | if (thread) { | ||
| 997 | int_to_threadref(thref, ks->threadid); | ||
| 998 | pack_threadid(ptr, thref); | ||
| 999 | ptr += BUF_THREAD_ID_SIZE; | ||
| 1000 | *(ptr++) = ','; | ||
| 1001 | i++; | ||
| 1002 | } | ||
| 1003 | } | ||
| 1004 | *(--ptr) = '\0'; | ||
| 1005 | break; | ||
| 1006 | |||
| 1007 | case 'C': | ||
| 1008 | /* Current thread id */ | ||
| 1009 | strcpy(remcom_out_buffer, "QC"); | ||
| 1010 | ks->threadid = shadow_pid(current->pid); | ||
| 1011 | int_to_threadref(thref, ks->threadid); | ||
| 1012 | pack_threadid(remcom_out_buffer + 2, thref); | ||
| 1013 | break; | ||
| 1014 | case 'T': | ||
| 1015 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { | ||
| 1016 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1017 | break; | ||
| 1018 | } | ||
| 1019 | ks->threadid = 0; | ||
| 1020 | ptr = remcom_in_buffer + 17; | ||
| 1021 | kgdb_hex2long(&ptr, &ks->threadid); | ||
| 1022 | if (!getthread(ks->linux_regs, ks->threadid)) { | ||
| 1023 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1024 | break; | ||
| 1025 | } | ||
| 1026 | if (ks->threadid > 0) { | ||
| 1027 | kgdb_mem2hex(getthread(ks->linux_regs, | ||
| 1028 | ks->threadid)->comm, | ||
| 1029 | remcom_out_buffer, 16); | ||
| 1030 | } else { | ||
| 1031 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | ||
| 1032 | |||
| 1033 | sprintf(tmpstr, "Shadow task %d for pid 0", | ||
| 1034 | (int)(-ks->threadid-1)); | ||
| 1035 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | ||
| 1036 | } | ||
| 1037 | break; | ||
| 1038 | } | ||
| 1039 | } | ||
| 1040 | |||
| 1041 | /* Handle the 'H' task query packets */ | ||
| 1042 | static void gdb_cmd_task(struct kgdb_state *ks) | ||
| 1043 | { | ||
| 1044 | struct task_struct *thread; | ||
| 1045 | char *ptr; | ||
| 1046 | |||
| 1047 | switch (remcom_in_buffer[1]) { | ||
| 1048 | case 'g': | ||
| 1049 | ptr = &remcom_in_buffer[2]; | ||
| 1050 | kgdb_hex2long(&ptr, &ks->threadid); | ||
| 1051 | thread = getthread(ks->linux_regs, ks->threadid); | ||
| 1052 | if (!thread && ks->threadid > 0) { | ||
| 1053 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1054 | break; | ||
| 1055 | } | ||
| 1056 | kgdb_usethread = thread; | ||
| 1057 | ks->kgdb_usethreadid = ks->threadid; | ||
| 1058 | strcpy(remcom_out_buffer, "OK"); | ||
| 1059 | break; | ||
| 1060 | case 'c': | ||
| 1061 | ptr = &remcom_in_buffer[2]; | ||
| 1062 | kgdb_hex2long(&ptr, &ks->threadid); | ||
| 1063 | if (!ks->threadid) { | ||
| 1064 | kgdb_contthread = NULL; | ||
| 1065 | } else { | ||
| 1066 | thread = getthread(ks->linux_regs, ks->threadid); | ||
| 1067 | if (!thread && ks->threadid > 0) { | ||
| 1068 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1069 | break; | ||
| 1070 | } | ||
| 1071 | kgdb_contthread = thread; | ||
| 1072 | } | ||
| 1073 | strcpy(remcom_out_buffer, "OK"); | ||
| 1074 | break; | ||
| 1075 | } | ||
| 1076 | } | ||
| 1077 | |||
| 1078 | /* Handle the 'T' thread query packets */ | ||
| 1079 | static void gdb_cmd_thread(struct kgdb_state *ks) | ||
| 1080 | { | ||
| 1081 | char *ptr = &remcom_in_buffer[1]; | ||
| 1082 | struct task_struct *thread; | ||
| 1083 | |||
| 1084 | kgdb_hex2long(&ptr, &ks->threadid); | ||
| 1085 | thread = getthread(ks->linux_regs, ks->threadid); | ||
| 1086 | if (thread) | ||
| 1087 | strcpy(remcom_out_buffer, "OK"); | ||
| 1088 | else | ||
| 1089 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1090 | } | ||
| 1091 | |||
| 1092 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | ||
| 1093 | static void gdb_cmd_break(struct kgdb_state *ks) | ||
| 1094 | { | ||
| 1095 | /* | ||
| 1096 | * Since GDB-5.3, it's been drafted that '0' is a software | ||
| 1097 | * breakpoint, '1' is a hardware breakpoint, so let's do that. | ||
| 1098 | */ | ||
| 1099 | char *bpt_type = &remcom_in_buffer[1]; | ||
| 1100 | char *ptr = &remcom_in_buffer[2]; | ||
| 1101 | unsigned long addr; | ||
| 1102 | unsigned long length; | ||
| 1103 | int error = 0; | ||
| 1104 | |||
| 1105 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | ||
| 1106 | /* Unsupported */ | ||
| 1107 | if (*bpt_type > '4') | ||
| 1108 | return; | ||
| 1109 | } else { | ||
| 1110 | if (*bpt_type != '0' && *bpt_type != '1') | ||
| 1111 | /* Unsupported. */ | ||
| 1112 | return; | ||
| 1113 | } | ||
| 1114 | |||
| 1115 | /* | ||
| 1116 | * Test if this is a hardware breakpoint, and | ||
| 1117 | * if we support it: | ||
| 1118 | */ | ||
| 1119 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | ||
| 1120 | /* Unsupported. */ | ||
| 1121 | return; | ||
| 1122 | |||
| 1123 | if (*(ptr++) != ',') { | ||
| 1124 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1125 | return; | ||
| 1126 | } | ||
| 1127 | if (!kgdb_hex2long(&ptr, &addr)) { | ||
| 1128 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1129 | return; | ||
| 1130 | } | ||
| 1131 | if (*(ptr++) != ',' || | ||
| 1132 | !kgdb_hex2long(&ptr, &length)) { | ||
| 1133 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1134 | return; | ||
| 1135 | } | ||
| 1136 | |||
| 1137 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | ||
| 1138 | error = kgdb_set_sw_break(addr); | ||
| 1139 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | ||
| 1140 | error = kgdb_remove_sw_break(addr); | ||
| 1141 | else if (remcom_in_buffer[0] == 'Z') | ||
| 1142 | error = arch_kgdb_ops.set_hw_breakpoint(addr, | ||
| 1143 | (int)length, *bpt_type - '0'); | ||
| 1144 | else if (remcom_in_buffer[0] == 'z') | ||
| 1145 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | ||
| 1146 | (int) length, *bpt_type - '0'); | ||
| 1147 | |||
| 1148 | if (error == 0) | ||
| 1149 | strcpy(remcom_out_buffer, "OK"); | ||
| 1150 | else | ||
| 1151 | error_packet(remcom_out_buffer, error); | ||
| 1152 | } | ||
| 1153 | |||
| 1154 | /* Handle the 'C' signal / exception passing packets */ | ||
| 1155 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | ||
| 1156 | { | ||
| 1157 | /* C09 == pass exception | ||
| 1158 | * C15 == detach kgdb, pass exception | ||
| 1159 | */ | ||
| 1160 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | ||
| 1161 | |||
| 1162 | ks->pass_exception = 1; | ||
| 1163 | remcom_in_buffer[0] = 'c'; | ||
| 1164 | |||
| 1165 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | ||
| 1166 | |||
| 1167 | ks->pass_exception = 1; | ||
| 1168 | remcom_in_buffer[0] = 'D'; | ||
| 1169 | remove_all_break(); | ||
| 1170 | kgdb_connected = 0; | ||
| 1171 | return 1; | ||
| 1172 | |||
| 1173 | } else { | ||
| 1174 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1175 | return 0; | ||
| 1176 | } | ||
| 1177 | |||
| 1178 | /* Indicate fall through */ | ||
| 1179 | return -1; | ||
| 1180 | } | ||
| 1181 | |||
| 1182 | /* | ||
| 1183 | * This function performs all gdbserial command procesing | ||
| 1184 | */ | ||
| 1185 | static int gdb_serial_stub(struct kgdb_state *ks) | ||
| 1186 | { | ||
| 1187 | int error = 0; | ||
| 1188 | int tmp; | ||
| 1189 | |||
| 1190 | /* Clear the out buffer. */ | ||
| 1191 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
| 1192 | |||
| 1193 | if (kgdb_connected) { | ||
| 1194 | unsigned char thref[8]; | ||
| 1195 | char *ptr; | ||
| 1196 | |||
| 1197 | /* Reply to host that an exception has occurred */ | ||
| 1198 | ptr = remcom_out_buffer; | ||
| 1199 | *ptr++ = 'T'; | ||
| 1200 | ptr = pack_hex_byte(ptr, ks->signo); | ||
| 1201 | ptr += strlen(strcpy(ptr, "thread:")); | ||
| 1202 | int_to_threadref(thref, shadow_pid(current->pid)); | ||
| 1203 | ptr = pack_threadid(ptr, thref); | ||
| 1204 | *ptr++ = ';'; | ||
| 1205 | put_packet(remcom_out_buffer); | ||
| 1206 | } | ||
| 1207 | |||
| 1208 | kgdb_usethread = kgdb_info[ks->cpu].task; | ||
| 1209 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | ||
| 1210 | ks->pass_exception = 0; | ||
| 1211 | |||
| 1212 | while (1) { | ||
| 1213 | error = 0; | ||
| 1214 | |||
| 1215 | /* Clear the out buffer. */ | ||
| 1216 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
| 1217 | |||
| 1218 | get_packet(remcom_in_buffer); | ||
| 1219 | |||
| 1220 | switch (remcom_in_buffer[0]) { | ||
| 1221 | case '?': /* gdbserial status */ | ||
| 1222 | gdb_cmd_status(ks); | ||
| 1223 | break; | ||
| 1224 | case 'g': /* return the value of the CPU registers */ | ||
| 1225 | gdb_cmd_getregs(ks); | ||
| 1226 | break; | ||
| 1227 | case 'G': /* set the value of the CPU registers - return OK */ | ||
| 1228 | gdb_cmd_setregs(ks); | ||
| 1229 | break; | ||
| 1230 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | ||
| 1231 | gdb_cmd_memread(ks); | ||
| 1232 | break; | ||
| 1233 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
| 1234 | gdb_cmd_memwrite(ks); | ||
| 1235 | break; | ||
| 1236 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
| 1237 | gdb_cmd_binwrite(ks); | ||
| 1238 | break; | ||
| 1239 | /* kill or detach. KGDB should treat this like a | ||
| 1240 | * continue. | ||
| 1241 | */ | ||
| 1242 | case 'D': /* Debugger detach */ | ||
| 1243 | case 'k': /* Debugger detach via kill */ | ||
| 1244 | gdb_cmd_detachkill(ks); | ||
| 1245 | goto default_handle; | ||
| 1246 | case 'R': /* Reboot */ | ||
| 1247 | if (gdb_cmd_reboot(ks)) | ||
| 1248 | goto default_handle; | ||
| 1249 | break; | ||
| 1250 | case 'q': /* query command */ | ||
| 1251 | gdb_cmd_query(ks); | ||
| 1252 | break; | ||
| 1253 | case 'H': /* task related */ | ||
| 1254 | gdb_cmd_task(ks); | ||
| 1255 | break; | ||
| 1256 | case 'T': /* Query thread status */ | ||
| 1257 | gdb_cmd_thread(ks); | ||
| 1258 | break; | ||
| 1259 | case 'z': /* Break point remove */ | ||
| 1260 | case 'Z': /* Break point set */ | ||
| 1261 | gdb_cmd_break(ks); | ||
| 1262 | break; | ||
| 1263 | case 'C': /* Exception passing */ | ||
| 1264 | tmp = gdb_cmd_exception_pass(ks); | ||
| 1265 | if (tmp > 0) | ||
| 1266 | goto default_handle; | ||
| 1267 | if (tmp == 0) | ||
| 1268 | break; | ||
| 1269 | /* Fall through on tmp < 0 */ | ||
| 1270 | case 'c': /* Continue packet */ | ||
| 1271 | case 's': /* Single step packet */ | ||
| 1272 | if (kgdb_contthread && kgdb_contthread != current) { | ||
| 1273 | /* Can't switch threads in kgdb */ | ||
| 1274 | error_packet(remcom_out_buffer, -EINVAL); | ||
| 1275 | break; | ||
| 1276 | } | ||
| 1277 | kgdb_activate_sw_breakpoints(); | ||
| 1278 | /* Fall through to default processing */ | ||
| 1279 | default: | ||
| 1280 | default_handle: | ||
| 1281 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
| 1282 | ks->signo, | ||
| 1283 | ks->err_code, | ||
| 1284 | remcom_in_buffer, | ||
| 1285 | remcom_out_buffer, | ||
| 1286 | ks->linux_regs); | ||
| 1287 | /* | ||
| 1288 | * Leave cmd processing on error, detach, | ||
| 1289 | * kill, continue, or single step. | ||
| 1290 | */ | ||
| 1291 | if (error >= 0 || remcom_in_buffer[0] == 'D' || | ||
| 1292 | remcom_in_buffer[0] == 'k') { | ||
| 1293 | error = 0; | ||
| 1294 | goto kgdb_exit; | ||
| 1295 | } | ||
| 1296 | |||
| 1297 | } | ||
| 1298 | |||
| 1299 | /* reply to the request */ | ||
| 1300 | put_packet(remcom_out_buffer); | ||
| 1301 | } | ||
| 1302 | |||
| 1303 | kgdb_exit: | ||
| 1304 | if (ks->pass_exception) | ||
| 1305 | error = 1; | ||
| 1306 | return error; | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | static int kgdb_reenter_check(struct kgdb_state *ks) | ||
| 1310 | { | ||
| 1311 | unsigned long addr; | ||
| 1312 | |||
| 1313 | if (atomic_read(&kgdb_active) != raw_smp_processor_id()) | ||
| 1314 | return 0; | ||
| 1315 | |||
| 1316 | /* Panic on recursive debugger calls: */ | ||
| 1317 | exception_level++; | ||
| 1318 | addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
| 1319 | kgdb_deactivate_sw_breakpoints(); | ||
| 1320 | |||
| 1321 | /* | ||
| 1322 | * If the break point removed ok at the place exception | ||
| 1323 | * occurred, try to recover and print a warning to the end | ||
| 1324 | * user because the user planted a breakpoint in a place that | ||
| 1325 | * KGDB needs in order to function. | ||
| 1326 | */ | ||
| 1327 | if (kgdb_remove_sw_break(addr) == 0) { | ||
| 1328 | exception_level = 0; | ||
| 1329 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
| 1330 | kgdb_activate_sw_breakpoints(); | ||
| 1331 | printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n", | ||
| 1332 | addr); | ||
| 1333 | WARN_ON_ONCE(1); | ||
| 1334 | |||
| 1335 | return 1; | ||
| 1336 | } | ||
| 1337 | remove_all_break(); | ||
| 1338 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
| 1339 | |||
| 1340 | if (exception_level > 1) { | ||
| 1341 | dump_stack(); | ||
| 1342 | panic("Recursive entry to debugger"); | ||
| 1343 | } | ||
| 1344 | |||
| 1345 | printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); | ||
| 1346 | dump_stack(); | ||
| 1347 | panic("Recursive entry to debugger"); | ||
| 1348 | |||
| 1349 | return 1; | ||
| 1350 | } | ||
| 1351 | |||
| 1352 | /* | ||
| 1353 | * kgdb_handle_exception() - main entry point from a kernel exception | ||
| 1354 | * | ||
| 1355 | * Locking hierarchy: | ||
| 1356 | * interface locks, if any (begin_session) | ||
| 1357 | * kgdb lock (kgdb_active) | ||
| 1358 | */ | ||
| 1359 | int | ||
| 1360 | kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) | ||
| 1361 | { | ||
| 1362 | struct kgdb_state kgdb_var; | ||
| 1363 | struct kgdb_state *ks = &kgdb_var; | ||
| 1364 | unsigned long flags; | ||
| 1365 | int error = 0; | ||
| 1366 | int i, cpu; | ||
| 1367 | |||
| 1368 | ks->cpu = raw_smp_processor_id(); | ||
| 1369 | ks->ex_vector = evector; | ||
| 1370 | ks->signo = signo; | ||
| 1371 | ks->ex_vector = evector; | ||
| 1372 | ks->err_code = ecode; | ||
| 1373 | ks->kgdb_usethreadid = 0; | ||
| 1374 | ks->linux_regs = regs; | ||
| 1375 | |||
| 1376 | if (kgdb_reenter_check(ks)) | ||
| 1377 | return 0; /* Ouch, double exception ! */ | ||
| 1378 | |||
| 1379 | acquirelock: | ||
| 1380 | /* | ||
| 1381 | * Interrupts will be restored by the 'trap return' code, except when | ||
| 1382 | * single stepping. | ||
| 1383 | */ | ||
| 1384 | local_irq_save(flags); | ||
| 1385 | |||
| 1386 | cpu = raw_smp_processor_id(); | ||
| 1387 | |||
| 1388 | /* | ||
| 1389 | * Acquire the kgdb_active lock: | ||
| 1390 | */ | ||
| 1391 | while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1) | ||
| 1392 | cpu_relax(); | ||
| 1393 | |||
| 1394 | /* | ||
| 1395 | * Do not start the debugger connection on this CPU if the last | ||
| 1396 | * instance of the exception handler wanted to come into the | ||
| 1397 | * debugger on a different CPU via a single step | ||
| 1398 | */ | ||
| 1399 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && | ||
| 1400 | atomic_read(&kgdb_cpu_doing_single_step) != cpu) { | ||
| 1401 | |||
| 1402 | atomic_set(&kgdb_active, -1); | ||
| 1403 | clocksource_touch_watchdog(); | ||
| 1404 | local_irq_restore(flags); | ||
| 1405 | |||
| 1406 | goto acquirelock; | ||
| 1407 | } | ||
| 1408 | |||
| 1409 | if (!kgdb_io_ready(1)) { | ||
| 1410 | error = 1; | ||
| 1411 | goto kgdb_restore; /* No I/O connection, so resume the system */ | ||
| 1412 | } | ||
| 1413 | |||
| 1414 | /* | ||
| 1415 | * Don't enter if we have hit a removed breakpoint. | ||
| 1416 | */ | ||
| 1417 | if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) | ||
| 1418 | goto kgdb_restore; | ||
| 1419 | |||
| 1420 | /* Call the I/O driver's pre_exception routine */ | ||
| 1421 | if (kgdb_io_ops->pre_exception) | ||
| 1422 | kgdb_io_ops->pre_exception(); | ||
| 1423 | |||
| 1424 | kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs; | ||
| 1425 | kgdb_info[ks->cpu].task = current; | ||
| 1426 | |||
| 1427 | kgdb_disable_hw_debug(ks->linux_regs); | ||
| 1428 | |||
| 1429 | /* | ||
| 1430 | * Get the passive CPU lock which will hold all the non-primary | ||
| 1431 | * CPU in a spin state while the debugger is active | ||
| 1432 | */ | ||
| 1433 | if (!kgdb_single_step || !kgdb_contthread) { | ||
| 1434 | for (i = 0; i < NR_CPUS; i++) | ||
| 1435 | atomic_set(&passive_cpu_wait[i], 1); | ||
| 1436 | } | ||
| 1437 | |||
| 1438 | /* | ||
| 1439 | * spin_lock code is good enough as a barrier so we don't | ||
| 1440 | * need one here: | ||
| 1441 | */ | ||
| 1442 | atomic_set(&cpu_in_kgdb[ks->cpu], 1); | ||
| 1443 | |||
| 1444 | #ifdef CONFIG_SMP | ||
| 1445 | /* Signal the other CPUs to enter kgdb_wait() */ | ||
| 1446 | if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup) | ||
| 1447 | kgdb_roundup_cpus(flags); | ||
| 1448 | #endif | ||
| 1449 | |||
| 1450 | /* | ||
| 1451 | * Wait for the other CPUs to be notified and be waiting for us: | ||
| 1452 | */ | ||
| 1453 | for_each_online_cpu(i) { | ||
| 1454 | while (!atomic_read(&cpu_in_kgdb[i])) | ||
| 1455 | cpu_relax(); | ||
| 1456 | } | ||
| 1457 | |||
| 1458 | /* | ||
| 1459 | * At this point the primary processor is completely | ||
| 1460 | * in the debugger and all secondary CPUs are quiescent | ||
| 1461 | */ | ||
| 1462 | kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); | ||
| 1463 | kgdb_deactivate_sw_breakpoints(); | ||
| 1464 | kgdb_single_step = 0; | ||
| 1465 | kgdb_contthread = NULL; | ||
| 1466 | exception_level = 0; | ||
| 1467 | |||
| 1468 | /* Talk to debugger with gdbserial protocol */ | ||
| 1469 | error = gdb_serial_stub(ks); | ||
| 1470 | |||
| 1471 | /* Call the I/O driver's post_exception routine */ | ||
| 1472 | if (kgdb_io_ops->post_exception) | ||
| 1473 | kgdb_io_ops->post_exception(); | ||
| 1474 | |||
| 1475 | kgdb_info[ks->cpu].debuggerinfo = NULL; | ||
| 1476 | kgdb_info[ks->cpu].task = NULL; | ||
| 1477 | atomic_set(&cpu_in_kgdb[ks->cpu], 0); | ||
| 1478 | |||
| 1479 | if (!kgdb_single_step || !kgdb_contthread) { | ||
| 1480 | for (i = NR_CPUS-1; i >= 0; i--) | ||
| 1481 | atomic_set(&passive_cpu_wait[i], 0); | ||
| 1482 | /* | ||
| 1483 | * Wait till all the CPUs have quit | ||
| 1484 | * from the debugger. | ||
| 1485 | */ | ||
| 1486 | for_each_online_cpu(i) { | ||
| 1487 | while (atomic_read(&cpu_in_kgdb[i])) | ||
| 1488 | cpu_relax(); | ||
| 1489 | } | ||
| 1490 | } | ||
| 1491 | |||
| 1492 | kgdb_restore: | ||
| 1493 | /* Free kgdb_active */ | ||
| 1494 | atomic_set(&kgdb_active, -1); | ||
| 1495 | clocksource_touch_watchdog(); | ||
| 1496 | local_irq_restore(flags); | ||
| 1497 | |||
| 1498 | return error; | ||
| 1499 | } | ||
| 1500 | |||
| 1501 | int kgdb_nmicallback(int cpu, void *regs) | ||
| 1502 | { | ||
| 1503 | #ifdef CONFIG_SMP | ||
| 1504 | if (!atomic_read(&cpu_in_kgdb[cpu]) && | ||
| 1505 | atomic_read(&kgdb_active) != cpu && | ||
| 1506 | atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) { | ||
| 1507 | kgdb_wait((struct pt_regs *)regs); | ||
| 1508 | return 0; | ||
| 1509 | } | ||
| 1510 | #endif | ||
| 1511 | return 1; | ||
| 1512 | } | ||
| 1513 | |||
| 1514 | void kgdb_console_write(struct console *co, const char *s, unsigned count) | ||
| 1515 | { | ||
| 1516 | unsigned long flags; | ||
| 1517 | |||
| 1518 | /* If we're debugging, or KGDB has not connected, don't try | ||
| 1519 | * and print. */ | ||
| 1520 | if (!kgdb_connected || atomic_read(&kgdb_active) != -1) | ||
| 1521 | return; | ||
| 1522 | |||
| 1523 | local_irq_save(flags); | ||
| 1524 | kgdb_msg_write(s, count); | ||
| 1525 | local_irq_restore(flags); | ||
| 1526 | } | ||
| 1527 | |||
| 1528 | static struct console kgdbcons = { | ||
| 1529 | .name = "kgdb", | ||
| 1530 | .write = kgdb_console_write, | ||
| 1531 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
| 1532 | .index = -1, | ||
| 1533 | }; | ||
| 1534 | |||
| 1535 | #ifdef CONFIG_MAGIC_SYSRQ | ||
| 1536 | static void sysrq_handle_gdb(int key, struct tty_struct *tty) | ||
| 1537 | { | ||
| 1538 | if (!kgdb_io_ops) { | ||
| 1539 | printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); | ||
| 1540 | return; | ||
| 1541 | } | ||
| 1542 | if (!kgdb_connected) | ||
| 1543 | printk(KERN_CRIT "Entering KGDB\n"); | ||
| 1544 | |||
| 1545 | kgdb_breakpoint(); | ||
| 1546 | } | ||
| 1547 | |||
| 1548 | static struct sysrq_key_op sysrq_gdb_op = { | ||
| 1549 | .handler = sysrq_handle_gdb, | ||
| 1550 | .help_msg = "Gdb", | ||
| 1551 | .action_msg = "GDB", | ||
| 1552 | }; | ||
| 1553 | #endif | ||
| 1554 | |||
| 1555 | static void kgdb_register_callbacks(void) | ||
| 1556 | { | ||
| 1557 | if (!kgdb_io_module_registered) { | ||
| 1558 | kgdb_io_module_registered = 1; | ||
| 1559 | kgdb_arch_init(); | ||
| 1560 | #ifdef CONFIG_MAGIC_SYSRQ | ||
| 1561 | register_sysrq_key('g', &sysrq_gdb_op); | ||
| 1562 | #endif | ||
| 1563 | if (kgdb_use_con && !kgdb_con_registered) { | ||
| 1564 | register_console(&kgdbcons); | ||
| 1565 | kgdb_con_registered = 1; | ||
| 1566 | } | ||
| 1567 | } | ||
| 1568 | } | ||
| 1569 | |||
| 1570 | static void kgdb_unregister_callbacks(void) | ||
| 1571 | { | ||
| 1572 | /* | ||
| 1573 | * When this routine is called KGDB should unregister from the | ||
| 1574 | * panic handler and clean up, making sure it is not handling any | ||
| 1575 | * break exceptions at the time. | ||
| 1576 | */ | ||
| 1577 | if (kgdb_io_module_registered) { | ||
| 1578 | kgdb_io_module_registered = 0; | ||
| 1579 | kgdb_arch_exit(); | ||
| 1580 | #ifdef CONFIG_MAGIC_SYSRQ | ||
| 1581 | unregister_sysrq_key('g', &sysrq_gdb_op); | ||
| 1582 | #endif | ||
| 1583 | if (kgdb_con_registered) { | ||
| 1584 | unregister_console(&kgdbcons); | ||
| 1585 | kgdb_con_registered = 0; | ||
| 1586 | } | ||
| 1587 | } | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | static void kgdb_initial_breakpoint(void) | ||
| 1591 | { | ||
| 1592 | kgdb_break_asap = 0; | ||
| 1593 | |||
| 1594 | printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); | ||
| 1595 | kgdb_breakpoint(); | ||
| 1596 | } | ||
| 1597 | |||
| 1598 | /** | ||
| 1599 | * kgdb_register_io_module - register KGDB IO module | ||
| 1600 | * @new_kgdb_io_ops: the io ops vector | ||
| 1601 | * | ||
| 1602 | * Register it with the KGDB core. | ||
| 1603 | */ | ||
| 1604 | int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops) | ||
| 1605 | { | ||
| 1606 | int err; | ||
| 1607 | |||
| 1608 | spin_lock(&kgdb_registration_lock); | ||
| 1609 | |||
| 1610 | if (kgdb_io_ops) { | ||
| 1611 | spin_unlock(&kgdb_registration_lock); | ||
| 1612 | |||
| 1613 | printk(KERN_ERR "kgdb: Another I/O driver is already " | ||
| 1614 | "registered with KGDB.\n"); | ||
| 1615 | return -EBUSY; | ||
| 1616 | } | ||
| 1617 | |||
| 1618 | if (new_kgdb_io_ops->init) { | ||
| 1619 | err = new_kgdb_io_ops->init(); | ||
| 1620 | if (err) { | ||
| 1621 | spin_unlock(&kgdb_registration_lock); | ||
| 1622 | return err; | ||
| 1623 | } | ||
| 1624 | } | ||
| 1625 | |||
| 1626 | kgdb_io_ops = new_kgdb_io_ops; | ||
| 1627 | |||
| 1628 | spin_unlock(&kgdb_registration_lock); | ||
| 1629 | |||
| 1630 | printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", | ||
| 1631 | new_kgdb_io_ops->name); | ||
| 1632 | |||
| 1633 | /* Arm KGDB now. */ | ||
| 1634 | kgdb_register_callbacks(); | ||
| 1635 | |||
| 1636 | if (kgdb_break_asap) | ||
| 1637 | kgdb_initial_breakpoint(); | ||
| 1638 | |||
| 1639 | return 0; | ||
| 1640 | } | ||
| 1641 | EXPORT_SYMBOL_GPL(kgdb_register_io_module); | ||
| 1642 | |||
| 1643 | /** | ||
| 1644 | * kkgdb_unregister_io_module - unregister KGDB IO module | ||
| 1645 | * @old_kgdb_io_ops: the io ops vector | ||
| 1646 | * | ||
| 1647 | * Unregister it with the KGDB core. | ||
| 1648 | */ | ||
| 1649 | void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops) | ||
| 1650 | { | ||
| 1651 | BUG_ON(kgdb_connected); | ||
| 1652 | |||
| 1653 | /* | ||
| 1654 | * KGDB is no longer able to communicate out, so | ||
| 1655 | * unregister our callbacks and reset state. | ||
| 1656 | */ | ||
| 1657 | kgdb_unregister_callbacks(); | ||
| 1658 | |||
| 1659 | spin_lock(&kgdb_registration_lock); | ||
| 1660 | |||
| 1661 | WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops); | ||
| 1662 | kgdb_io_ops = NULL; | ||
| 1663 | |||
| 1664 | spin_unlock(&kgdb_registration_lock); | ||
| 1665 | |||
| 1666 | printk(KERN_INFO | ||
| 1667 | "kgdb: Unregistered I/O driver %s, debugger disabled.\n", | ||
| 1668 | old_kgdb_io_ops->name); | ||
| 1669 | } | ||
| 1670 | EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); | ||
| 1671 | |||
| 1672 | /** | ||
| 1673 | * kgdb_breakpoint - generate breakpoint exception | ||
| 1674 | * | ||
| 1675 | * This function will generate a breakpoint exception. It is used at the | ||
| 1676 | * beginning of a program to sync up with a debugger and can be used | ||
| 1677 | * otherwise as a quick means to stop program execution and "break" into | ||
| 1678 | * the debugger. | ||
| 1679 | */ | ||
| 1680 | void kgdb_breakpoint(void) | ||
| 1681 | { | ||
| 1682 | atomic_set(&kgdb_setting_breakpoint, 1); | ||
| 1683 | wmb(); /* Sync point before breakpoint */ | ||
| 1684 | arch_kgdb_breakpoint(); | ||
| 1685 | wmb(); /* Sync point after breakpoint */ | ||
| 1686 | atomic_set(&kgdb_setting_breakpoint, 0); | ||
| 1687 | } | ||
| 1688 | EXPORT_SYMBOL_GPL(kgdb_breakpoint); | ||
| 1689 | |||
| 1690 | static int __init opt_kgdb_wait(char *str) | ||
| 1691 | { | ||
| 1692 | kgdb_break_asap = 1; | ||
| 1693 | |||
| 1694 | if (kgdb_io_module_registered) | ||
| 1695 | kgdb_initial_breakpoint(); | ||
| 1696 | |||
| 1697 | return 0; | ||
| 1698 | } | ||
| 1699 | |||
| 1700 | early_param("kgdbwait", opt_kgdb_wait); | ||
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 2eae91f954ca..ae5c6c147c4b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -1087,45 +1087,45 @@ static void check_process_timers(struct task_struct *tsk, | |||
| 1087 | maxfire = 20; | 1087 | maxfire = 20; |
| 1088 | prof_expires = cputime_zero; | 1088 | prof_expires = cputime_zero; |
| 1089 | while (!list_empty(timers)) { | 1089 | while (!list_empty(timers)) { |
| 1090 | struct cpu_timer_list *t = list_first_entry(timers, | 1090 | struct cpu_timer_list *tl = list_first_entry(timers, |
| 1091 | struct cpu_timer_list, | 1091 | struct cpu_timer_list, |
| 1092 | entry); | 1092 | entry); |
| 1093 | if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) { | 1093 | if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { |
| 1094 | prof_expires = t->expires.cpu; | 1094 | prof_expires = tl->expires.cpu; |
| 1095 | break; | 1095 | break; |
| 1096 | } | 1096 | } |
| 1097 | t->firing = 1; | 1097 | tl->firing = 1; |
| 1098 | list_move_tail(&t->entry, firing); | 1098 | list_move_tail(&tl->entry, firing); |
| 1099 | } | 1099 | } |
| 1100 | 1100 | ||
| 1101 | ++timers; | 1101 | ++timers; |
| 1102 | maxfire = 20; | 1102 | maxfire = 20; |
| 1103 | virt_expires = cputime_zero; | 1103 | virt_expires = cputime_zero; |
| 1104 | while (!list_empty(timers)) { | 1104 | while (!list_empty(timers)) { |
| 1105 | struct cpu_timer_list *t = list_first_entry(timers, | 1105 | struct cpu_timer_list *tl = list_first_entry(timers, |
| 1106 | struct cpu_timer_list, | 1106 | struct cpu_timer_list, |
| 1107 | entry); | 1107 | entry); |
| 1108 | if (!--maxfire || cputime_lt(utime, t->expires.cpu)) { | 1108 | if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { |
| 1109 | virt_expires = t->expires.cpu; | 1109 | virt_expires = tl->expires.cpu; |
| 1110 | break; | 1110 | break; |
| 1111 | } | 1111 | } |
| 1112 | t->firing = 1; | 1112 | tl->firing = 1; |
| 1113 | list_move_tail(&t->entry, firing); | 1113 | list_move_tail(&tl->entry, firing); |
| 1114 | } | 1114 | } |
| 1115 | 1115 | ||
| 1116 | ++timers; | 1116 | ++timers; |
| 1117 | maxfire = 20; | 1117 | maxfire = 20; |
| 1118 | sched_expires = 0; | 1118 | sched_expires = 0; |
| 1119 | while (!list_empty(timers)) { | 1119 | while (!list_empty(timers)) { |
| 1120 | struct cpu_timer_list *t = list_first_entry(timers, | 1120 | struct cpu_timer_list *tl = list_first_entry(timers, |
| 1121 | struct cpu_timer_list, | 1121 | struct cpu_timer_list, |
| 1122 | entry); | 1122 | entry); |
| 1123 | if (!--maxfire || sum_sched_runtime < t->expires.sched) { | 1123 | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { |
| 1124 | sched_expires = t->expires.sched; | 1124 | sched_expires = tl->expires.sched; |
| 1125 | break; | 1125 | break; |
| 1126 | } | 1126 | } |
| 1127 | t->firing = 1; | 1127 | tl->firing = 1; |
| 1128 | list_move_tail(&t->entry, firing); | 1128 | list_move_tail(&tl->entry, firing); |
| 1129 | } | 1129 | } |
| 1130 | 1130 | ||
| 1131 | /* | 1131 | /* |
diff --git a/kernel/printk.c b/kernel/printk.c index c46a20a19a15..bdd4ea8c3f2b 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
| @@ -643,8 +643,21 @@ static int acquire_console_semaphore_for_printk(unsigned int cpu) | |||
| 643 | { | 643 | { |
| 644 | int retval = 0; | 644 | int retval = 0; |
| 645 | 645 | ||
| 646 | if (can_use_console(cpu)) | 646 | if (!try_acquire_console_sem()) { |
| 647 | retval = !try_acquire_console_sem(); | 647 | retval = 1; |
| 648 | |||
| 649 | /* | ||
| 650 | * If we can't use the console, we need to release | ||
| 651 | * the console semaphore by hand to avoid flushing | ||
| 652 | * the buffer. We need to hold the console semaphore | ||
| 653 | * in order to do this test safely. | ||
| 654 | */ | ||
| 655 | if (!can_use_console(cpu)) { | ||
| 656 | console_locked = 0; | ||
| 657 | up(&console_sem); | ||
| 658 | retval = 0; | ||
| 659 | } | ||
| 660 | } | ||
| 648 | printk_cpu = UINT_MAX; | 661 | printk_cpu = UINT_MAX; |
| 649 | spin_unlock(&logbuf_lock); | 662 | spin_unlock(&logbuf_lock); |
| 650 | return retval; | 663 | return retval; |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 86a93376282c..0080968d3e4a 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -510,10 +510,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
| 510 | 510 | ||
| 511 | if (!initial) { | 511 | if (!initial) { |
| 512 | /* sleeps upto a single latency don't count. */ | 512 | /* sleeps upto a single latency don't count. */ |
| 513 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 513 | if (sched_feat(NEW_FAIR_SLEEPERS)) |
| 514 | vruntime -= calc_delta_fair(sysctl_sched_latency, | 514 | vruntime -= sysctl_sched_latency; |
| 515 | &cfs_rq->load); | ||
| 516 | } | ||
| 517 | 515 | ||
| 518 | /* ensure we never gain time by being placed backwards. */ | 516 | /* ensure we never gain time by being placed backwards. */ |
| 519 | vruntime = max_vruntime(se->vruntime, vruntime); | 517 | vruntime = max_vruntime(se->vruntime, vruntime); |
diff --git a/kernel/semaphore.c b/kernel/semaphore.c new file mode 100644 index 000000000000..5c2942e768cd --- /dev/null +++ b/kernel/semaphore.c | |||
| @@ -0,0 +1,264 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) 2008 Intel Corporation | ||
| 3 | * Author: Matthew Wilcox <willy@linux.intel.com> | ||
| 4 | * | ||
| 5 | * Distributed under the terms of the GNU GPL, version 2 | ||
| 6 | * | ||
| 7 | * This file implements counting semaphores. | ||
| 8 | * A counting semaphore may be acquired 'n' times before sleeping. | ||
| 9 | * See mutex.c for single-acquisition sleeping locks which enforce | ||
| 10 | * rules which allow code to be debugged more easily. | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* | ||
| 14 | * Some notes on the implementation: | ||
| 15 | * | ||
| 16 | * The spinlock controls access to the other members of the semaphore. | ||
| 17 | * down_trylock() and up() can be called from interrupt context, so we | ||
| 18 | * have to disable interrupts when taking the lock. It turns out various | ||
| 19 | * parts of the kernel expect to be able to use down() on a semaphore in | ||
| 20 | * interrupt context when they know it will succeed, so we have to use | ||
| 21 | * irqsave variants for down(), down_interruptible() and down_killable() | ||
| 22 | * too. | ||
| 23 | * | ||
| 24 | * The ->count variable represents how many more tasks can acquire this | ||
| 25 | * semaphore. If it's zero, there may be tasks waiting on the wait_list. | ||
| 26 | */ | ||
| 27 | |||
| 28 | #include <linux/compiler.h> | ||
| 29 | #include <linux/kernel.h> | ||
| 30 | #include <linux/module.h> | ||
| 31 | #include <linux/sched.h> | ||
| 32 | #include <linux/semaphore.h> | ||
| 33 | #include <linux/spinlock.h> | ||
| 34 | |||
| 35 | static noinline void __down(struct semaphore *sem); | ||
| 36 | static noinline int __down_interruptible(struct semaphore *sem); | ||
| 37 | static noinline int __down_killable(struct semaphore *sem); | ||
| 38 | static noinline int __down_timeout(struct semaphore *sem, long jiffies); | ||
| 39 | static noinline void __up(struct semaphore *sem); | ||
| 40 | |||
| 41 | /** | ||
| 42 | * down - acquire the semaphore | ||
| 43 | * @sem: the semaphore to be acquired | ||
| 44 | * | ||
| 45 | * Acquires the semaphore. If no more tasks are allowed to acquire the | ||
| 46 | * semaphore, calling this function will put the task to sleep until the | ||
| 47 | * semaphore is released. | ||
| 48 | * | ||
| 49 | * Use of this function is deprecated, please use down_interruptible() or | ||
| 50 | * down_killable() instead. | ||
| 51 | */ | ||
| 52 | void down(struct semaphore *sem) | ||
| 53 | { | ||
| 54 | unsigned long flags; | ||
| 55 | |||
| 56 | spin_lock_irqsave(&sem->lock, flags); | ||
| 57 | if (likely(sem->count > 0)) | ||
| 58 | sem->count--; | ||
| 59 | else | ||
| 60 | __down(sem); | ||
| 61 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 62 | } | ||
| 63 | EXPORT_SYMBOL(down); | ||
| 64 | |||
| 65 | /** | ||
| 66 | * down_interruptible - acquire the semaphore unless interrupted | ||
| 67 | * @sem: the semaphore to be acquired | ||
| 68 | * | ||
| 69 | * Attempts to acquire the semaphore. If no more tasks are allowed to | ||
| 70 | * acquire the semaphore, calling this function will put the task to sleep. | ||
| 71 | * If the sleep is interrupted by a signal, this function will return -EINTR. | ||
| 72 | * If the semaphore is successfully acquired, this function returns 0. | ||
| 73 | */ | ||
| 74 | int down_interruptible(struct semaphore *sem) | ||
| 75 | { | ||
| 76 | unsigned long flags; | ||
| 77 | int result = 0; | ||
| 78 | |||
| 79 | spin_lock_irqsave(&sem->lock, flags); | ||
| 80 | if (likely(sem->count > 0)) | ||
| 81 | sem->count--; | ||
| 82 | else | ||
| 83 | result = __down_interruptible(sem); | ||
| 84 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 85 | |||
| 86 | return result; | ||
| 87 | } | ||
| 88 | EXPORT_SYMBOL(down_interruptible); | ||
| 89 | |||
| 90 | /** | ||
| 91 | * down_killable - acquire the semaphore unless killed | ||
| 92 | * @sem: the semaphore to be acquired | ||
| 93 | * | ||
| 94 | * Attempts to acquire the semaphore. If no more tasks are allowed to | ||
| 95 | * acquire the semaphore, calling this function will put the task to sleep. | ||
| 96 | * If the sleep is interrupted by a fatal signal, this function will return | ||
| 97 | * -EINTR. If the semaphore is successfully acquired, this function returns | ||
| 98 | * 0. | ||
| 99 | */ | ||
| 100 | int down_killable(struct semaphore *sem) | ||
| 101 | { | ||
| 102 | unsigned long flags; | ||
| 103 | int result = 0; | ||
| 104 | |||
| 105 | spin_lock_irqsave(&sem->lock, flags); | ||
| 106 | if (likely(sem->count > 0)) | ||
| 107 | sem->count--; | ||
| 108 | else | ||
| 109 | result = __down_killable(sem); | ||
| 110 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 111 | |||
| 112 | return result; | ||
| 113 | } | ||
| 114 | EXPORT_SYMBOL(down_killable); | ||
| 115 | |||
| 116 | /** | ||
| 117 | * down_trylock - try to acquire the semaphore, without waiting | ||
| 118 | * @sem: the semaphore to be acquired | ||
| 119 | * | ||
| 120 | * Try to acquire the semaphore atomically. Returns 0 if the mutex has | ||
| 121 | * been acquired successfully or 1 if it it cannot be acquired. | ||
| 122 | * | ||
| 123 | * NOTE: This return value is inverted from both spin_trylock and | ||
| 124 | * mutex_trylock! Be careful about this when converting code. | ||
| 125 | * | ||
| 126 | * Unlike mutex_trylock, this function can be used from interrupt context, | ||
| 127 | * and the semaphore can be released by any task or interrupt. | ||
| 128 | */ | ||
| 129 | int down_trylock(struct semaphore *sem) | ||
| 130 | { | ||
| 131 | unsigned long flags; | ||
| 132 | int count; | ||
| 133 | |||
| 134 | spin_lock_irqsave(&sem->lock, flags); | ||
| 135 | count = sem->count - 1; | ||
| 136 | if (likely(count >= 0)) | ||
| 137 | sem->count = count; | ||
| 138 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 139 | |||
| 140 | return (count < 0); | ||
| 141 | } | ||
| 142 | EXPORT_SYMBOL(down_trylock); | ||
| 143 | |||
| 144 | /** | ||
| 145 | * down_timeout - acquire the semaphore within a specified time | ||
| 146 | * @sem: the semaphore to be acquired | ||
| 147 | * @jiffies: how long to wait before failing | ||
| 148 | * | ||
| 149 | * Attempts to acquire the semaphore. If no more tasks are allowed to | ||
| 150 | * acquire the semaphore, calling this function will put the task to sleep. | ||
| 151 | * If the semaphore is not released within the specified number of jiffies, | ||
| 152 | * this function returns -ETIME. It returns 0 if the semaphore was acquired. | ||
| 153 | */ | ||
| 154 | int down_timeout(struct semaphore *sem, long jiffies) | ||
| 155 | { | ||
| 156 | unsigned long flags; | ||
| 157 | int result = 0; | ||
| 158 | |||
| 159 | spin_lock_irqsave(&sem->lock, flags); | ||
| 160 | if (likely(sem->count > 0)) | ||
| 161 | sem->count--; | ||
| 162 | else | ||
| 163 | result = __down_timeout(sem, jiffies); | ||
| 164 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 165 | |||
| 166 | return result; | ||
| 167 | } | ||
| 168 | EXPORT_SYMBOL(down_timeout); | ||
| 169 | |||
| 170 | /** | ||
| 171 | * up - release the semaphore | ||
| 172 | * @sem: the semaphore to release | ||
| 173 | * | ||
| 174 | * Release the semaphore. Unlike mutexes, up() may be called from any | ||
| 175 | * context and even by tasks which have never called down(). | ||
| 176 | */ | ||
| 177 | void up(struct semaphore *sem) | ||
| 178 | { | ||
| 179 | unsigned long flags; | ||
| 180 | |||
| 181 | spin_lock_irqsave(&sem->lock, flags); | ||
| 182 | if (likely(list_empty(&sem->wait_list))) | ||
| 183 | sem->count++; | ||
| 184 | else | ||
| 185 | __up(sem); | ||
| 186 | spin_unlock_irqrestore(&sem->lock, flags); | ||
| 187 | } | ||
| 188 | EXPORT_SYMBOL(up); | ||
| 189 | |||
| 190 | /* Functions for the contended case */ | ||
| 191 | |||
| 192 | struct semaphore_waiter { | ||
| 193 | struct list_head list; | ||
| 194 | struct task_struct *task; | ||
| 195 | int up; | ||
| 196 | }; | ||
| 197 | |||
| 198 | /* | ||
| 199 | * Because this function is inlined, the 'state' parameter will be | ||
| 200 | * constant, and thus optimised away by the compiler. Likewise the | ||
| 201 | * 'timeout' parameter for the cases without timeouts. | ||
| 202 | */ | ||
| 203 | static inline int __sched __down_common(struct semaphore *sem, long state, | ||
| 204 | long timeout) | ||
| 205 | { | ||
| 206 | struct task_struct *task = current; | ||
| 207 | struct semaphore_waiter waiter; | ||
| 208 | |||
| 209 | list_add_tail(&waiter.list, &sem->wait_list); | ||
| 210 | waiter.task = task; | ||
| 211 | waiter.up = 0; | ||
| 212 | |||
| 213 | for (;;) { | ||
| 214 | if (state == TASK_INTERRUPTIBLE && signal_pending(task)) | ||
| 215 | goto interrupted; | ||
| 216 | if (state == TASK_KILLABLE && fatal_signal_pending(task)) | ||
| 217 | goto interrupted; | ||
| 218 | if (timeout <= 0) | ||
| 219 | goto timed_out; | ||
| 220 | __set_task_state(task, state); | ||
| 221 | spin_unlock_irq(&sem->lock); | ||
| 222 | timeout = schedule_timeout(timeout); | ||
| 223 | spin_lock_irq(&sem->lock); | ||
| 224 | if (waiter.up) | ||
| 225 | return 0; | ||
| 226 | } | ||
| 227 | |||
| 228 | timed_out: | ||
| 229 | list_del(&waiter.list); | ||
| 230 | return -ETIME; | ||
| 231 | |||
| 232 | interrupted: | ||
| 233 | list_del(&waiter.list); | ||
| 234 | return -EINTR; | ||
| 235 | } | ||
| 236 | |||
| 237 | static noinline void __sched __down(struct semaphore *sem) | ||
| 238 | { | ||
| 239 | __down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | ||
| 240 | } | ||
| 241 | |||
| 242 | static noinline int __sched __down_interruptible(struct semaphore *sem) | ||
| 243 | { | ||
| 244 | return __down_common(sem, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | ||
| 245 | } | ||
| 246 | |||
| 247 | static noinline int __sched __down_killable(struct semaphore *sem) | ||
| 248 | { | ||
| 249 | return __down_common(sem, TASK_KILLABLE, MAX_SCHEDULE_TIMEOUT); | ||
| 250 | } | ||
| 251 | |||
| 252 | static noinline int __sched __down_timeout(struct semaphore *sem, long jiffies) | ||
| 253 | { | ||
| 254 | return __down_common(sem, TASK_UNINTERRUPTIBLE, jiffies); | ||
| 255 | } | ||
| 256 | |||
| 257 | static noinline void __sched __up(struct semaphore *sem) | ||
| 258 | { | ||
| 259 | struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list, | ||
| 260 | struct semaphore_waiter, list); | ||
| 261 | list_del(&waiter->list); | ||
| 262 | waiter->up = 1; | ||
| 263 | wake_up_process(waiter->task); | ||
| 264 | } | ||
diff --git a/kernel/signal.c b/kernel/signal.c index 6af1210092c3..cc8303cd093d 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
| @@ -1757,6 +1757,45 @@ static int do_signal_stop(int signr) | |||
| 1757 | return 1; | 1757 | return 1; |
| 1758 | } | 1758 | } |
| 1759 | 1759 | ||
| 1760 | static int ptrace_signal(int signr, siginfo_t *info, | ||
| 1761 | struct pt_regs *regs, void *cookie) | ||
| 1762 | { | ||
| 1763 | if (!(current->ptrace & PT_PTRACED)) | ||
| 1764 | return signr; | ||
| 1765 | |||
| 1766 | ptrace_signal_deliver(regs, cookie); | ||
| 1767 | |||
| 1768 | /* Let the debugger run. */ | ||
| 1769 | ptrace_stop(signr, 0, info); | ||
| 1770 | |||
| 1771 | /* We're back. Did the debugger cancel the sig? */ | ||
| 1772 | signr = current->exit_code; | ||
| 1773 | if (signr == 0) | ||
| 1774 | return signr; | ||
| 1775 | |||
| 1776 | current->exit_code = 0; | ||
| 1777 | |||
| 1778 | /* Update the siginfo structure if the signal has | ||
| 1779 | changed. If the debugger wanted something | ||
| 1780 | specific in the siginfo structure then it should | ||
| 1781 | have updated *info via PTRACE_SETSIGINFO. */ | ||
| 1782 | if (signr != info->si_signo) { | ||
| 1783 | info->si_signo = signr; | ||
| 1784 | info->si_errno = 0; | ||
| 1785 | info->si_code = SI_USER; | ||
| 1786 | info->si_pid = task_pid_vnr(current->parent); | ||
| 1787 | info->si_uid = current->parent->uid; | ||
| 1788 | } | ||
| 1789 | |||
| 1790 | /* If the (new) signal is now blocked, requeue it. */ | ||
| 1791 | if (sigismember(¤t->blocked, signr)) { | ||
| 1792 | specific_send_sig_info(signr, info, current); | ||
| 1793 | signr = 0; | ||
| 1794 | } | ||
| 1795 | |||
| 1796 | return signr; | ||
| 1797 | } | ||
| 1798 | |||
| 1760 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 1799 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, |
| 1761 | struct pt_regs *regs, void *cookie) | 1800 | struct pt_regs *regs, void *cookie) |
| 1762 | { | 1801 | { |
| @@ -1785,36 +1824,10 @@ relock: | |||
| 1785 | if (!signr) | 1824 | if (!signr) |
| 1786 | break; /* will return 0 */ | 1825 | break; /* will return 0 */ |
| 1787 | 1826 | ||
| 1788 | if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { | 1827 | if (signr != SIGKILL) { |
| 1789 | ptrace_signal_deliver(regs, cookie); | 1828 | signr = ptrace_signal(signr, info, regs, cookie); |
| 1790 | 1829 | if (!signr) | |
| 1791 | /* Let the debugger run. */ | ||
| 1792 | ptrace_stop(signr, 0, info); | ||
| 1793 | |||
| 1794 | /* We're back. Did the debugger cancel the sig? */ | ||
| 1795 | signr = current->exit_code; | ||
| 1796 | if (signr == 0) | ||
| 1797 | continue; | ||
| 1798 | |||
| 1799 | current->exit_code = 0; | ||
| 1800 | |||
| 1801 | /* Update the siginfo structure if the signal has | ||
| 1802 | changed. If the debugger wanted something | ||
| 1803 | specific in the siginfo structure then it should | ||
| 1804 | have updated *info via PTRACE_SETSIGINFO. */ | ||
| 1805 | if (signr != info->si_signo) { | ||
| 1806 | info->si_signo = signr; | ||
| 1807 | info->si_errno = 0; | ||
| 1808 | info->si_code = SI_USER; | ||
| 1809 | info->si_pid = task_pid_vnr(current->parent); | ||
| 1810 | info->si_uid = current->parent->uid; | ||
| 1811 | } | ||
| 1812 | |||
| 1813 | /* If the (new) signal is now blocked, requeue it. */ | ||
| 1814 | if (sigismember(¤t->blocked, signr)) { | ||
| 1815 | specific_send_sig_info(signr, info, current); | ||
| 1816 | continue; | 1830 | continue; |
| 1817 | } | ||
| 1818 | } | 1831 | } |
| 1819 | 1832 | ||
| 1820 | ka = ¤t->sighand->action[signr-1]; | 1833 | ka = ¤t->sighand->action[signr-1]; |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 7f60097d443a..73961f35fdc8 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -141,8 +141,16 @@ static void clocksource_watchdog(unsigned long data) | |||
| 141 | } | 141 | } |
| 142 | 142 | ||
| 143 | if (!list_empty(&watchdog_list)) { | 143 | if (!list_empty(&watchdog_list)) { |
| 144 | __mod_timer(&watchdog_timer, | 144 | /* |
| 145 | watchdog_timer.expires + WATCHDOG_INTERVAL); | 145 | * Cycle through CPUs to check if the CPUs stay |
| 146 | * synchronized to each other. | ||
| 147 | */ | ||
| 148 | int next_cpu = next_cpu(raw_smp_processor_id(), cpu_online_map); | ||
| 149 | |||
| 150 | if (next_cpu >= NR_CPUS) | ||
| 151 | next_cpu = first_cpu(cpu_online_map); | ||
| 152 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
| 153 | add_timer_on(&watchdog_timer, next_cpu); | ||
| 146 | } | 154 | } |
| 147 | spin_unlock(&watchdog_lock); | 155 | spin_unlock(&watchdog_lock); |
| 148 | } | 156 | } |
| @@ -164,7 +172,8 @@ static void clocksource_check_watchdog(struct clocksource *cs) | |||
| 164 | if (!started && watchdog) { | 172 | if (!started && watchdog) { |
| 165 | watchdog_last = watchdog->read(); | 173 | watchdog_last = watchdog->read(); |
| 166 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | 174 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; |
| 167 | add_timer(&watchdog_timer); | 175 | add_timer_on(&watchdog_timer, |
| 176 | first_cpu(cpu_online_map)); | ||
| 168 | } | 177 | } |
| 169 | } else { | 178 | } else { |
| 170 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 179 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| @@ -185,7 +194,8 @@ static void clocksource_check_watchdog(struct clocksource *cs) | |||
| 185 | watchdog_last = watchdog->read(); | 194 | watchdog_last = watchdog->read(); |
| 186 | watchdog_timer.expires = | 195 | watchdog_timer.expires = |
| 187 | jiffies + WATCHDOG_INTERVAL; | 196 | jiffies + WATCHDOG_INTERVAL; |
| 188 | add_timer(&watchdog_timer); | 197 | add_timer_on(&watchdog_timer, |
| 198 | first_cpu(cpu_online_map)); | ||
| 189 | } | 199 | } |
| 190 | } | 200 | } |
| 191 | } | 201 | } |
| @@ -222,6 +232,18 @@ void clocksource_resume(void) | |||
| 222 | } | 232 | } |
| 223 | 233 | ||
| 224 | /** | 234 | /** |
| 235 | * clocksource_touch_watchdog - Update watchdog | ||
| 236 | * | ||
| 237 | * Update the watchdog after exception contexts such as kgdb so as not | ||
| 238 | * to incorrectly trip the watchdog. | ||
| 239 | * | ||
| 240 | */ | ||
| 241 | void clocksource_touch_watchdog(void) | ||
| 242 | { | ||
| 243 | clocksource_resume_watchdog(); | ||
| 244 | } | ||
| 245 | |||
| 246 | /** | ||
| 225 | * clocksource_get_next - Returns the selected clocksource | 247 | * clocksource_get_next - Returns the selected clocksource |
| 226 | * | 248 | * |
| 227 | */ | 249 | */ |
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c index e1bd50cbbf5d..fdfa0c745bb6 100644 --- a/kernel/time/tick-broadcast.c +++ b/kernel/time/tick-broadcast.c | |||
| @@ -14,7 +14,7 @@ | |||
| 14 | #include <linux/cpu.h> | 14 | #include <linux/cpu.h> |
| 15 | #include <linux/err.h> | 15 | #include <linux/err.h> |
| 16 | #include <linux/hrtimer.h> | 16 | #include <linux/hrtimer.h> |
| 17 | #include <linux/irq.h> | 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/percpu.h> | 18 | #include <linux/percpu.h> |
| 19 | #include <linux/profile.h> | 19 | #include <linux/profile.h> |
| 20 | #include <linux/sched.h> | 20 | #include <linux/sched.h> |
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c index 1bea399a9ef0..4f3886562b8c 100644 --- a/kernel/time/tick-common.c +++ b/kernel/time/tick-common.c | |||
| @@ -14,12 +14,14 @@ | |||
| 14 | #include <linux/cpu.h> | 14 | #include <linux/cpu.h> |
| 15 | #include <linux/err.h> | 15 | #include <linux/err.h> |
| 16 | #include <linux/hrtimer.h> | 16 | #include <linux/hrtimer.h> |
| 17 | #include <linux/irq.h> | 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/percpu.h> | 18 | #include <linux/percpu.h> |
| 19 | #include <linux/profile.h> | 19 | #include <linux/profile.h> |
| 20 | #include <linux/sched.h> | 20 | #include <linux/sched.h> |
| 21 | #include <linux/tick.h> | 21 | #include <linux/tick.h> |
| 22 | 22 | ||
| 23 | #include <asm/irq_regs.h> | ||
| 24 | |||
| 23 | #include "tick-internal.h" | 25 | #include "tick-internal.h" |
| 24 | 26 | ||
| 25 | /* | 27 | /* |
diff --git a/kernel/time/tick-oneshot.c b/kernel/time/tick-oneshot.c index 0258d3115d54..450c04935b66 100644 --- a/kernel/time/tick-oneshot.c +++ b/kernel/time/tick-oneshot.c | |||
| @@ -14,7 +14,7 @@ | |||
| 14 | #include <linux/cpu.h> | 14 | #include <linux/cpu.h> |
| 15 | #include <linux/err.h> | 15 | #include <linux/err.h> |
| 16 | #include <linux/hrtimer.h> | 16 | #include <linux/hrtimer.h> |
| 17 | #include <linux/irq.h> | 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/percpu.h> | 18 | #include <linux/percpu.h> |
| 19 | #include <linux/profile.h> | 19 | #include <linux/profile.h> |
| 20 | #include <linux/sched.h> | 20 | #include <linux/sched.h> |
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index 686da821d376..69dba0c71727 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
| @@ -158,9 +158,8 @@ void tick_nohz_stop_idle(int cpu) | |||
| 158 | } | 158 | } |
| 159 | } | 159 | } |
| 160 | 160 | ||
| 161 | static ktime_t tick_nohz_start_idle(int cpu) | 161 | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) |
| 162 | { | 162 | { |
| 163 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
| 164 | ktime_t now, delta; | 163 | ktime_t now, delta; |
| 165 | 164 | ||
| 166 | now = ktime_get(); | 165 | now = ktime_get(); |
| @@ -201,8 +200,8 @@ void tick_nohz_stop_sched_tick(void) | |||
| 201 | local_irq_save(flags); | 200 | local_irq_save(flags); |
| 202 | 201 | ||
| 203 | cpu = smp_processor_id(); | 202 | cpu = smp_processor_id(); |
| 204 | now = tick_nohz_start_idle(cpu); | ||
| 205 | ts = &per_cpu(tick_cpu_sched, cpu); | 203 | ts = &per_cpu(tick_cpu_sched, cpu); |
| 204 | now = tick_nohz_start_idle(ts); | ||
| 206 | 205 | ||
| 207 | /* | 206 | /* |
| 208 | * If this cpu is offline and it is the one which updates | 207 | * If this cpu is offline and it is the one which updates |
| @@ -222,7 +221,6 @@ void tick_nohz_stop_sched_tick(void) | |||
| 222 | if (need_resched()) | 221 | if (need_resched()) |
| 223 | goto end; | 222 | goto end; |
| 224 | 223 | ||
| 225 | cpu = smp_processor_id(); | ||
| 226 | if (unlikely(local_softirq_pending())) { | 224 | if (unlikely(local_softirq_pending())) { |
| 227 | static int ratelimit; | 225 | static int ratelimit; |
| 228 | 226 | ||
diff --git a/kernel/timer.c b/kernel/timer.c index b024106daa70..f3d35d4ea42e 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -1228,13 +1228,6 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |||
| 1228 | return 0; | 1228 | return 0; |
| 1229 | } | 1229 | } |
| 1230 | 1230 | ||
| 1231 | /* | ||
| 1232 | * lockdep: we want to track each per-CPU base as a separate lock-class, | ||
| 1233 | * but timer-bases are kmalloc()-ed, so we need to attach separate | ||
| 1234 | * keys to them: | ||
| 1235 | */ | ||
| 1236 | static struct lock_class_key base_lock_keys[NR_CPUS]; | ||
| 1237 | |||
| 1238 | static int __cpuinit init_timers_cpu(int cpu) | 1231 | static int __cpuinit init_timers_cpu(int cpu) |
| 1239 | { | 1232 | { |
| 1240 | int j; | 1233 | int j; |
| @@ -1277,7 +1270,6 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
| 1277 | } | 1270 | } |
| 1278 | 1271 | ||
| 1279 | spin_lock_init(&base->lock); | 1272 | spin_lock_init(&base->lock); |
| 1280 | lockdep_set_class(&base->lock, base_lock_keys + cpu); | ||
| 1281 | 1273 | ||
| 1282 | for (j = 0; j < TVN_SIZE; j++) { | 1274 | for (j = 0; j < TVN_SIZE; j++) { |
| 1283 | INIT_LIST_HEAD(base->tv5.vec + j); | 1275 | INIT_LIST_HEAD(base->tv5.vec + j); |
| @@ -1316,8 +1308,8 @@ static void __cpuinit migrate_timers(int cpu) | |||
| 1316 | new_base = get_cpu_var(tvec_bases); | 1308 | new_base = get_cpu_var(tvec_bases); |
| 1317 | 1309 | ||
| 1318 | local_irq_disable(); | 1310 | local_irq_disable(); |
| 1319 | double_spin_lock(&new_base->lock, &old_base->lock, | 1311 | spin_lock(&new_base->lock); |
| 1320 | smp_processor_id() < cpu); | 1312 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 1321 | 1313 | ||
| 1322 | BUG_ON(old_base->running_timer); | 1314 | BUG_ON(old_base->running_timer); |
| 1323 | 1315 | ||
| @@ -1330,8 +1322,8 @@ static void __cpuinit migrate_timers(int cpu) | |||
| 1330 | migrate_timer_list(new_base, old_base->tv5.vec + i); | 1322 | migrate_timer_list(new_base, old_base->tv5.vec + i); |
| 1331 | } | 1323 | } |
| 1332 | 1324 | ||
| 1333 | double_spin_unlock(&new_base->lock, &old_base->lock, | 1325 | spin_unlock(&old_base->lock); |
| 1334 | smp_processor_id() < cpu); | 1326 | spin_unlock(&new_base->lock); |
| 1335 | local_irq_enable(); | 1327 | local_irq_enable(); |
| 1336 | put_cpu_var(tvec_bases); | 1328 | put_cpu_var(tvec_bases); |
| 1337 | } | 1329 | } |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index ff06611655af..00ff4d08e370 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
| @@ -219,6 +219,7 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
| 219 | struct timer_list *timer = &dwork->timer; | 219 | struct timer_list *timer = &dwork->timer; |
| 220 | struct work_struct *work = &dwork->work; | 220 | struct work_struct *work = &dwork->work; |
| 221 | 221 | ||
| 222 | timer_stats_timer_set_start_info(&dwork->timer); | ||
| 222 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 223 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { |
| 223 | BUG_ON(timer_pending(timer)); | 224 | BUG_ON(timer_pending(timer)); |
| 224 | BUG_ON(!list_empty(&work->entry)); | 225 | BUG_ON(!list_empty(&work->entry)); |
| @@ -580,6 +581,7 @@ EXPORT_SYMBOL(schedule_delayed_work); | |||
| 580 | int schedule_delayed_work_on(int cpu, | 581 | int schedule_delayed_work_on(int cpu, |
| 581 | struct delayed_work *dwork, unsigned long delay) | 582 | struct delayed_work *dwork, unsigned long delay) |
| 582 | { | 583 | { |
| 584 | timer_stats_timer_set_start_info(&dwork->timer); | ||
| 583 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 585 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); |
| 584 | } | 586 | } |
| 585 | EXPORT_SYMBOL(schedule_delayed_work_on); | 587 | EXPORT_SYMBOL(schedule_delayed_work_on); |
