diff options
Diffstat (limited to 'kernel')
36 files changed, 2265 insertions, 1056 deletions
diff --git a/kernel/async.c b/kernel/async.c index f565891f2c9b..968ef9457d4e 100644 --- a/kernel/async.c +++ b/kernel/async.c | |||
| @@ -49,6 +49,7 @@ asynchronous and synchronous parts of the kernel. | |||
| 49 | */ | 49 | */ |
| 50 | 50 | ||
| 51 | #include <linux/async.h> | 51 | #include <linux/async.h> |
| 52 | #include <linux/bug.h> | ||
| 52 | #include <linux/module.h> | 53 | #include <linux/module.h> |
| 53 | #include <linux/wait.h> | 54 | #include <linux/wait.h> |
| 54 | #include <linux/sched.h> | 55 | #include <linux/sched.h> |
| @@ -387,20 +388,11 @@ static int async_manager_thread(void *unused) | |||
| 387 | 388 | ||
| 388 | static int __init async_init(void) | 389 | static int __init async_init(void) |
| 389 | { | 390 | { |
| 390 | if (async_enabled) | 391 | async_enabled = |
| 391 | if (IS_ERR(kthread_run(async_manager_thread, NULL, | 392 | !IS_ERR(kthread_run(async_manager_thread, NULL, "async/mgr")); |
| 392 | "async/mgr"))) | ||
| 393 | async_enabled = 0; | ||
| 394 | return 0; | ||
| 395 | } | ||
| 396 | 393 | ||
| 397 | static int __init setup_async(char *str) | 394 | WARN_ON(!async_enabled); |
| 398 | { | 395 | return 0; |
| 399 | async_enabled = 1; | ||
| 400 | return 1; | ||
| 401 | } | 396 | } |
| 402 | 397 | ||
| 403 | __setup("fastboot", setup_async); | ||
| 404 | |||
| 405 | |||
| 406 | core_initcall(async_init); | 398 | core_initcall(async_init); |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 9edb5c4b79b4..c500ca7239b2 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
| @@ -1071,7 +1071,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1071 | mutex_unlock(&cgroup_mutex); | 1071 | mutex_unlock(&cgroup_mutex); |
| 1072 | } | 1072 | } |
| 1073 | 1073 | ||
| 1074 | return simple_set_mnt(mnt, sb); | 1074 | simple_set_mnt(mnt, sb); |
| 1075 | return 0; | ||
| 1075 | 1076 | ||
| 1076 | free_cg_links: | 1077 | free_cg_links: |
| 1077 | free_cg_links(&tmp_cg_links); | 1078 | free_cg_links(&tmp_cg_links); |
| @@ -1627,7 +1628,7 @@ static struct inode_operations cgroup_dir_inode_operations = { | |||
| 1627 | static int cgroup_create_file(struct dentry *dentry, int mode, | 1628 | static int cgroup_create_file(struct dentry *dentry, int mode, |
| 1628 | struct super_block *sb) | 1629 | struct super_block *sb) |
| 1629 | { | 1630 | { |
| 1630 | static struct dentry_operations cgroup_dops = { | 1631 | static const struct dentry_operations cgroup_dops = { |
| 1631 | .d_iput = cgroup_diput, | 1632 | .d_iput = cgroup_diput, |
| 1632 | }; | 1633 | }; |
| 1633 | 1634 | ||
diff --git a/kernel/exit.c b/kernel/exit.c index efd30ccf3858..167e1e3ad7c6 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
| @@ -980,12 +980,9 @@ static void check_stack_usage(void) | |||
| 980 | { | 980 | { |
| 981 | static DEFINE_SPINLOCK(low_water_lock); | 981 | static DEFINE_SPINLOCK(low_water_lock); |
| 982 | static int lowest_to_date = THREAD_SIZE; | 982 | static int lowest_to_date = THREAD_SIZE; |
| 983 | unsigned long *n = end_of_stack(current); | ||
| 984 | unsigned long free; | 983 | unsigned long free; |
| 985 | 984 | ||
| 986 | while (*n == 0) | 985 | free = stack_not_used(current); |
| 987 | n++; | ||
| 988 | free = (unsigned long)n - (unsigned long)end_of_stack(current); | ||
| 989 | 986 | ||
| 990 | if (free >= lowest_to_date) | 987 | if (free >= lowest_to_date) |
| 991 | return; | 988 | return; |
diff --git a/kernel/fork.c b/kernel/fork.c index 4854c2c4a82e..6715ebc3761d 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -61,6 +61,7 @@ | |||
| 61 | #include <linux/proc_fs.h> | 61 | #include <linux/proc_fs.h> |
| 62 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
| 63 | #include <trace/sched.h> | 63 | #include <trace/sched.h> |
| 64 | #include <linux/magic.h> | ||
| 64 | 65 | ||
| 65 | #include <asm/pgtable.h> | 66 | #include <asm/pgtable.h> |
| 66 | #include <asm/pgalloc.h> | 67 | #include <asm/pgalloc.h> |
| @@ -212,6 +213,8 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 212 | { | 213 | { |
| 213 | struct task_struct *tsk; | 214 | struct task_struct *tsk; |
| 214 | struct thread_info *ti; | 215 | struct thread_info *ti; |
| 216 | unsigned long *stackend; | ||
| 217 | |||
| 215 | int err; | 218 | int err; |
| 216 | 219 | ||
| 217 | prepare_to_copy(orig); | 220 | prepare_to_copy(orig); |
| @@ -237,6 +240,8 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 237 | goto out; | 240 | goto out; |
| 238 | 241 | ||
| 239 | setup_thread_stack(tsk, orig); | 242 | setup_thread_stack(tsk, orig); |
| 243 | stackend = end_of_stack(tsk); | ||
| 244 | *stackend = STACK_END_MAGIC; /* for overflow detection */ | ||
| 240 | 245 | ||
| 241 | #ifdef CONFIG_CC_STACKPROTECTOR | 246 | #ifdef CONFIG_CC_STACKPROTECTOR |
| 242 | tsk->stack_canary = get_random_int(); | 247 | tsk->stack_canary = get_random_int(); |
diff --git a/kernel/futex.c b/kernel/futex.c index 438701adce23..6b50a024bca2 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
| @@ -114,7 +114,9 @@ struct futex_q { | |||
| 114 | }; | 114 | }; |
| 115 | 115 | ||
| 116 | /* | 116 | /* |
| 117 | * Split the global futex_lock into every hash list lock. | 117 | * Hash buckets are shared by all the futex_keys that hash to the same |
| 118 | * location. Each key may have multiple futex_q structures, one for each task | ||
| 119 | * waiting on a futex. | ||
| 118 | */ | 120 | */ |
| 119 | struct futex_hash_bucket { | 121 | struct futex_hash_bucket { |
| 120 | spinlock_t lock; | 122 | spinlock_t lock; |
| @@ -189,8 +191,7 @@ static void drop_futex_key_refs(union futex_key *key) | |||
| 189 | /** | 191 | /** |
| 190 | * get_futex_key - Get parameters which are the keys for a futex. | 192 | * get_futex_key - Get parameters which are the keys for a futex. |
| 191 | * @uaddr: virtual address of the futex | 193 | * @uaddr: virtual address of the futex |
| 192 | * @shared: NULL for a PROCESS_PRIVATE futex, | 194 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
| 193 | * ¤t->mm->mmap_sem for a PROCESS_SHARED futex | ||
| 194 | * @key: address where result is stored. | 195 | * @key: address where result is stored. |
| 195 | * | 196 | * |
| 196 | * Returns a negative error code or 0 | 197 | * Returns a negative error code or 0 |
| @@ -200,9 +201,7 @@ static void drop_futex_key_refs(union futex_key *key) | |||
| 200 | * offset_within_page). For private mappings, it's (uaddr, current->mm). | 201 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
| 201 | * We can usually work out the index without swapping in the page. | 202 | * We can usually work out the index without swapping in the page. |
| 202 | * | 203 | * |
| 203 | * fshared is NULL for PROCESS_PRIVATE futexes | 204 | * lock_page() might sleep, the caller should not hold a spinlock. |
| 204 | * For other futexes, it points to ¤t->mm->mmap_sem and | ||
| 205 | * caller must have taken the reader lock. but NOT any spinlocks. | ||
| 206 | */ | 205 | */ |
| 207 | static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key) | 206 | static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key) |
| 208 | { | 207 | { |
| @@ -299,41 +298,6 @@ static int get_futex_value_locked(u32 *dest, u32 __user *from) | |||
| 299 | return ret ? -EFAULT : 0; | 298 | return ret ? -EFAULT : 0; |
| 300 | } | 299 | } |
| 301 | 300 | ||
| 302 | /* | ||
| 303 | * Fault handling. | ||
| 304 | */ | ||
| 305 | static int futex_handle_fault(unsigned long address, int attempt) | ||
| 306 | { | ||
| 307 | struct vm_area_struct * vma; | ||
| 308 | struct mm_struct *mm = current->mm; | ||
| 309 | int ret = -EFAULT; | ||
| 310 | |||
| 311 | if (attempt > 2) | ||
| 312 | return ret; | ||
| 313 | |||
| 314 | down_read(&mm->mmap_sem); | ||
| 315 | vma = find_vma(mm, address); | ||
| 316 | if (vma && address >= vma->vm_start && | ||
| 317 | (vma->vm_flags & VM_WRITE)) { | ||
| 318 | int fault; | ||
| 319 | fault = handle_mm_fault(mm, vma, address, 1); | ||
| 320 | if (unlikely((fault & VM_FAULT_ERROR))) { | ||
| 321 | #if 0 | ||
| 322 | /* XXX: let's do this when we verify it is OK */ | ||
| 323 | if (ret & VM_FAULT_OOM) | ||
| 324 | ret = -ENOMEM; | ||
| 325 | #endif | ||
| 326 | } else { | ||
| 327 | ret = 0; | ||
| 328 | if (fault & VM_FAULT_MAJOR) | ||
| 329 | current->maj_flt++; | ||
| 330 | else | ||
| 331 | current->min_flt++; | ||
| 332 | } | ||
| 333 | } | ||
| 334 | up_read(&mm->mmap_sem); | ||
| 335 | return ret; | ||
| 336 | } | ||
| 337 | 301 | ||
| 338 | /* | 302 | /* |
| 339 | * PI code: | 303 | * PI code: |
| @@ -589,10 +553,9 @@ static void wake_futex(struct futex_q *q) | |||
| 589 | * The waiting task can free the futex_q as soon as this is written, | 553 | * The waiting task can free the futex_q as soon as this is written, |
| 590 | * without taking any locks. This must come last. | 554 | * without taking any locks. This must come last. |
| 591 | * | 555 | * |
| 592 | * A memory barrier is required here to prevent the following store | 556 | * A memory barrier is required here to prevent the following store to |
| 593 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock | 557 | * lock_ptr from getting ahead of the wakeup. Clearing the lock at the |
| 594 | * at the end of wake_up_all() does not prevent this store from | 558 | * end of wake_up() does not prevent this store from moving. |
| 595 | * moving. | ||
| 596 | */ | 559 | */ |
| 597 | smp_wmb(); | 560 | smp_wmb(); |
| 598 | q->lock_ptr = NULL; | 561 | q->lock_ptr = NULL; |
| @@ -692,9 +655,16 @@ double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |||
| 692 | } | 655 | } |
| 693 | } | 656 | } |
| 694 | 657 | ||
| 658 | static inline void | ||
| 659 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | ||
| 660 | { | ||
| 661 | spin_unlock(&hb1->lock); | ||
| 662 | if (hb1 != hb2) | ||
| 663 | spin_unlock(&hb2->lock); | ||
| 664 | } | ||
| 665 | |||
| 695 | /* | 666 | /* |
| 696 | * Wake up all waiters hashed on the physical page that is mapped | 667 | * Wake up waiters matching bitset queued on this futex (uaddr). |
| 697 | * to this virtual address: | ||
| 698 | */ | 668 | */ |
| 699 | static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset) | 669 | static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset) |
| 700 | { | 670 | { |
| @@ -750,9 +720,9 @@ futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2, | |||
| 750 | struct futex_hash_bucket *hb1, *hb2; | 720 | struct futex_hash_bucket *hb1, *hb2; |
| 751 | struct plist_head *head; | 721 | struct plist_head *head; |
| 752 | struct futex_q *this, *next; | 722 | struct futex_q *this, *next; |
| 753 | int ret, op_ret, attempt = 0; | 723 | int ret, op_ret; |
| 754 | 724 | ||
| 755 | retryfull: | 725 | retry: |
| 756 | ret = get_futex_key(uaddr1, fshared, &key1); | 726 | ret = get_futex_key(uaddr1, fshared, &key1); |
| 757 | if (unlikely(ret != 0)) | 727 | if (unlikely(ret != 0)) |
| 758 | goto out; | 728 | goto out; |
| @@ -763,16 +733,13 @@ retryfull: | |||
| 763 | hb1 = hash_futex(&key1); | 733 | hb1 = hash_futex(&key1); |
| 764 | hb2 = hash_futex(&key2); | 734 | hb2 = hash_futex(&key2); |
| 765 | 735 | ||
| 766 | retry: | ||
| 767 | double_lock_hb(hb1, hb2); | 736 | double_lock_hb(hb1, hb2); |
| 768 | 737 | retry_private: | |
| 769 | op_ret = futex_atomic_op_inuser(op, uaddr2); | 738 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
| 770 | if (unlikely(op_ret < 0)) { | 739 | if (unlikely(op_ret < 0)) { |
| 771 | u32 dummy; | 740 | u32 dummy; |
| 772 | 741 | ||
| 773 | spin_unlock(&hb1->lock); | 742 | double_unlock_hb(hb1, hb2); |
| 774 | if (hb1 != hb2) | ||
| 775 | spin_unlock(&hb2->lock); | ||
| 776 | 743 | ||
| 777 | #ifndef CONFIG_MMU | 744 | #ifndef CONFIG_MMU |
| 778 | /* | 745 | /* |
| @@ -788,26 +755,16 @@ retry: | |||
| 788 | goto out_put_keys; | 755 | goto out_put_keys; |
| 789 | } | 756 | } |
| 790 | 757 | ||
| 791 | /* | ||
| 792 | * futex_atomic_op_inuser needs to both read and write | ||
| 793 | * *(int __user *)uaddr2, but we can't modify it | ||
| 794 | * non-atomically. Therefore, if get_user below is not | ||
| 795 | * enough, we need to handle the fault ourselves, while | ||
| 796 | * still holding the mmap_sem. | ||
| 797 | */ | ||
| 798 | if (attempt++) { | ||
| 799 | ret = futex_handle_fault((unsigned long)uaddr2, | ||
| 800 | attempt); | ||
| 801 | if (ret) | ||
| 802 | goto out_put_keys; | ||
| 803 | goto retry; | ||
| 804 | } | ||
| 805 | |||
| 806 | ret = get_user(dummy, uaddr2); | 758 | ret = get_user(dummy, uaddr2); |
| 807 | if (ret) | 759 | if (ret) |
| 808 | return ret; | 760 | goto out_put_keys; |
| 761 | |||
| 762 | if (!fshared) | ||
| 763 | goto retry_private; | ||
| 809 | 764 | ||
| 810 | goto retryfull; | 765 | put_futex_key(fshared, &key2); |
| 766 | put_futex_key(fshared, &key1); | ||
| 767 | goto retry; | ||
| 811 | } | 768 | } |
| 812 | 769 | ||
| 813 | head = &hb1->chain; | 770 | head = &hb1->chain; |
| @@ -834,9 +791,7 @@ retry: | |||
| 834 | ret += op_ret; | 791 | ret += op_ret; |
| 835 | } | 792 | } |
| 836 | 793 | ||
| 837 | spin_unlock(&hb1->lock); | 794 | double_unlock_hb(hb1, hb2); |
| 838 | if (hb1 != hb2) | ||
| 839 | spin_unlock(&hb2->lock); | ||
| 840 | out_put_keys: | 795 | out_put_keys: |
| 841 | put_futex_key(fshared, &key2); | 796 | put_futex_key(fshared, &key2); |
| 842 | out_put_key1: | 797 | out_put_key1: |
| @@ -869,6 +824,7 @@ retry: | |||
| 869 | hb1 = hash_futex(&key1); | 824 | hb1 = hash_futex(&key1); |
| 870 | hb2 = hash_futex(&key2); | 825 | hb2 = hash_futex(&key2); |
| 871 | 826 | ||
| 827 | retry_private: | ||
| 872 | double_lock_hb(hb1, hb2); | 828 | double_lock_hb(hb1, hb2); |
| 873 | 829 | ||
| 874 | if (likely(cmpval != NULL)) { | 830 | if (likely(cmpval != NULL)) { |
| @@ -877,16 +833,18 @@ retry: | |||
| 877 | ret = get_futex_value_locked(&curval, uaddr1); | 833 | ret = get_futex_value_locked(&curval, uaddr1); |
| 878 | 834 | ||
| 879 | if (unlikely(ret)) { | 835 | if (unlikely(ret)) { |
| 880 | spin_unlock(&hb1->lock); | 836 | double_unlock_hb(hb1, hb2); |
| 881 | if (hb1 != hb2) | ||
| 882 | spin_unlock(&hb2->lock); | ||
| 883 | 837 | ||
| 884 | ret = get_user(curval, uaddr1); | 838 | ret = get_user(curval, uaddr1); |
| 839 | if (ret) | ||
| 840 | goto out_put_keys; | ||
| 885 | 841 | ||
| 886 | if (!ret) | 842 | if (!fshared) |
| 887 | goto retry; | 843 | goto retry_private; |
| 888 | 844 | ||
| 889 | goto out_put_keys; | 845 | put_futex_key(fshared, &key2); |
| 846 | put_futex_key(fshared, &key1); | ||
| 847 | goto retry; | ||
| 890 | } | 848 | } |
| 891 | if (curval != *cmpval) { | 849 | if (curval != *cmpval) { |
| 892 | ret = -EAGAIN; | 850 | ret = -EAGAIN; |
| @@ -923,9 +881,7 @@ retry: | |||
| 923 | } | 881 | } |
| 924 | 882 | ||
| 925 | out_unlock: | 883 | out_unlock: |
| 926 | spin_unlock(&hb1->lock); | 884 | double_unlock_hb(hb1, hb2); |
| 927 | if (hb1 != hb2) | ||
| 928 | spin_unlock(&hb2->lock); | ||
| 929 | 885 | ||
| 930 | /* drop_futex_key_refs() must be called outside the spinlocks. */ | 886 | /* drop_futex_key_refs() must be called outside the spinlocks. */ |
| 931 | while (--drop_count >= 0) | 887 | while (--drop_count >= 0) |
| @@ -1063,7 +1019,7 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |||
| 1063 | struct futex_pi_state *pi_state = q->pi_state; | 1019 | struct futex_pi_state *pi_state = q->pi_state; |
| 1064 | struct task_struct *oldowner = pi_state->owner; | 1020 | struct task_struct *oldowner = pi_state->owner; |
| 1065 | u32 uval, curval, newval; | 1021 | u32 uval, curval, newval; |
| 1066 | int ret, attempt = 0; | 1022 | int ret; |
| 1067 | 1023 | ||
| 1068 | /* Owner died? */ | 1024 | /* Owner died? */ |
| 1069 | if (!pi_state->owner) | 1025 | if (!pi_state->owner) |
| @@ -1076,11 +1032,9 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |||
| 1076 | * in the user space variable. This must be atomic as we have | 1032 | * in the user space variable. This must be atomic as we have |
| 1077 | * to preserve the owner died bit here. | 1033 | * to preserve the owner died bit here. |
| 1078 | * | 1034 | * |
| 1079 | * Note: We write the user space value _before_ changing the | 1035 | * Note: We write the user space value _before_ changing the pi_state |
| 1080 | * pi_state because we can fault here. Imagine swapped out | 1036 | * because we can fault here. Imagine swapped out pages or a fork |
| 1081 | * pages or a fork, which was running right before we acquired | 1037 | * that marked all the anonymous memory readonly for cow. |
| 1082 | * mmap_sem, that marked all the anonymous memory readonly for | ||
| 1083 | * cow. | ||
| 1084 | * | 1038 | * |
| 1085 | * Modifying pi_state _before_ the user space value would | 1039 | * Modifying pi_state _before_ the user space value would |
| 1086 | * leave the pi_state in an inconsistent state when we fault | 1040 | * leave the pi_state in an inconsistent state when we fault |
| @@ -1136,7 +1090,7 @@ retry: | |||
| 1136 | handle_fault: | 1090 | handle_fault: |
| 1137 | spin_unlock(q->lock_ptr); | 1091 | spin_unlock(q->lock_ptr); |
| 1138 | 1092 | ||
| 1139 | ret = futex_handle_fault((unsigned long)uaddr, attempt++); | 1093 | ret = get_user(uval, uaddr); |
| 1140 | 1094 | ||
| 1141 | spin_lock(q->lock_ptr); | 1095 | spin_lock(q->lock_ptr); |
| 1142 | 1096 | ||
| @@ -1185,10 +1139,11 @@ retry: | |||
| 1185 | if (unlikely(ret != 0)) | 1139 | if (unlikely(ret != 0)) |
| 1186 | goto out; | 1140 | goto out; |
| 1187 | 1141 | ||
| 1142 | retry_private: | ||
| 1188 | hb = queue_lock(&q); | 1143 | hb = queue_lock(&q); |
| 1189 | 1144 | ||
| 1190 | /* | 1145 | /* |
| 1191 | * Access the page AFTER the futex is queued. | 1146 | * Access the page AFTER the hash-bucket is locked. |
| 1192 | * Order is important: | 1147 | * Order is important: |
| 1193 | * | 1148 | * |
| 1194 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | 1149 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); |
| @@ -1204,20 +1159,23 @@ retry: | |||
| 1204 | * a wakeup when *uaddr != val on entry to the syscall. This is | 1159 | * a wakeup when *uaddr != val on entry to the syscall. This is |
| 1205 | * rare, but normal. | 1160 | * rare, but normal. |
| 1206 | * | 1161 | * |
| 1207 | * for shared futexes, we hold the mmap semaphore, so the mapping | 1162 | * For shared futexes, we hold the mmap semaphore, so the mapping |
| 1208 | * cannot have changed since we looked it up in get_futex_key. | 1163 | * cannot have changed since we looked it up in get_futex_key. |
| 1209 | */ | 1164 | */ |
| 1210 | ret = get_futex_value_locked(&uval, uaddr); | 1165 | ret = get_futex_value_locked(&uval, uaddr); |
| 1211 | 1166 | ||
| 1212 | if (unlikely(ret)) { | 1167 | if (unlikely(ret)) { |
| 1213 | queue_unlock(&q, hb); | 1168 | queue_unlock(&q, hb); |
| 1214 | put_futex_key(fshared, &q.key); | ||
| 1215 | 1169 | ||
| 1216 | ret = get_user(uval, uaddr); | 1170 | ret = get_user(uval, uaddr); |
| 1171 | if (ret) | ||
| 1172 | goto out_put_key; | ||
| 1217 | 1173 | ||
| 1218 | if (!ret) | 1174 | if (!fshared) |
| 1219 | goto retry; | 1175 | goto retry_private; |
| 1220 | goto out; | 1176 | |
| 1177 | put_futex_key(fshared, &q.key); | ||
| 1178 | goto retry; | ||
| 1221 | } | 1179 | } |
| 1222 | ret = -EWOULDBLOCK; | 1180 | ret = -EWOULDBLOCK; |
| 1223 | if (unlikely(uval != val)) { | 1181 | if (unlikely(uval != val)) { |
| @@ -1248,16 +1206,13 @@ retry: | |||
| 1248 | if (!abs_time) | 1206 | if (!abs_time) |
| 1249 | schedule(); | 1207 | schedule(); |
| 1250 | else { | 1208 | else { |
| 1251 | unsigned long slack; | ||
| 1252 | slack = current->timer_slack_ns; | ||
| 1253 | if (rt_task(current)) | ||
| 1254 | slack = 0; | ||
| 1255 | hrtimer_init_on_stack(&t.timer, | 1209 | hrtimer_init_on_stack(&t.timer, |
| 1256 | clockrt ? CLOCK_REALTIME : | 1210 | clockrt ? CLOCK_REALTIME : |
| 1257 | CLOCK_MONOTONIC, | 1211 | CLOCK_MONOTONIC, |
| 1258 | HRTIMER_MODE_ABS); | 1212 | HRTIMER_MODE_ABS); |
| 1259 | hrtimer_init_sleeper(&t, current); | 1213 | hrtimer_init_sleeper(&t, current); |
| 1260 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack); | 1214 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, |
| 1215 | current->timer_slack_ns); | ||
| 1261 | 1216 | ||
| 1262 | hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS); | 1217 | hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS); |
| 1263 | if (!hrtimer_active(&t.timer)) | 1218 | if (!hrtimer_active(&t.timer)) |
| @@ -1354,7 +1309,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared, | |||
| 1354 | struct futex_hash_bucket *hb; | 1309 | struct futex_hash_bucket *hb; |
| 1355 | u32 uval, newval, curval; | 1310 | u32 uval, newval, curval; |
| 1356 | struct futex_q q; | 1311 | struct futex_q q; |
| 1357 | int ret, lock_taken, ownerdied = 0, attempt = 0; | 1312 | int ret, lock_taken, ownerdied = 0; |
| 1358 | 1313 | ||
| 1359 | if (refill_pi_state_cache()) | 1314 | if (refill_pi_state_cache()) |
| 1360 | return -ENOMEM; | 1315 | return -ENOMEM; |
| @@ -1374,7 +1329,7 @@ retry: | |||
| 1374 | if (unlikely(ret != 0)) | 1329 | if (unlikely(ret != 0)) |
| 1375 | goto out; | 1330 | goto out; |
| 1376 | 1331 | ||
| 1377 | retry_unlocked: | 1332 | retry_private: |
| 1378 | hb = queue_lock(&q); | 1333 | hb = queue_lock(&q); |
| 1379 | 1334 | ||
| 1380 | retry_locked: | 1335 | retry_locked: |
| @@ -1458,6 +1413,7 @@ retry_locked: | |||
| 1458 | * exit to complete. | 1413 | * exit to complete. |
| 1459 | */ | 1414 | */ |
| 1460 | queue_unlock(&q, hb); | 1415 | queue_unlock(&q, hb); |
| 1416 | put_futex_key(fshared, &q.key); | ||
| 1461 | cond_resched(); | 1417 | cond_resched(); |
| 1462 | goto retry; | 1418 | goto retry; |
| 1463 | 1419 | ||
| @@ -1564,6 +1520,13 @@ retry_locked: | |||
| 1564 | } | 1520 | } |
| 1565 | } | 1521 | } |
| 1566 | 1522 | ||
| 1523 | /* | ||
| 1524 | * If fixup_pi_state_owner() faulted and was unable to handle the | ||
| 1525 | * fault, unlock it and return the fault to userspace. | ||
| 1526 | */ | ||
| 1527 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | ||
| 1528 | rt_mutex_unlock(&q.pi_state->pi_mutex); | ||
| 1529 | |||
| 1567 | /* Unqueue and drop the lock */ | 1530 | /* Unqueue and drop the lock */ |
| 1568 | unqueue_me_pi(&q); | 1531 | unqueue_me_pi(&q); |
| 1569 | 1532 | ||
| @@ -1591,22 +1554,18 @@ uaddr_faulted: | |||
| 1591 | */ | 1554 | */ |
| 1592 | queue_unlock(&q, hb); | 1555 | queue_unlock(&q, hb); |
| 1593 | 1556 | ||
| 1594 | if (attempt++) { | ||
| 1595 | ret = futex_handle_fault((unsigned long)uaddr, attempt); | ||
| 1596 | if (ret) | ||
| 1597 | goto out_put_key; | ||
| 1598 | goto retry_unlocked; | ||
| 1599 | } | ||
| 1600 | |||
| 1601 | ret = get_user(uval, uaddr); | 1557 | ret = get_user(uval, uaddr); |
| 1602 | if (!ret) | 1558 | if (ret) |
| 1603 | goto retry; | 1559 | goto out_put_key; |
| 1604 | 1560 | ||
| 1605 | if (to) | 1561 | if (!fshared) |
| 1606 | destroy_hrtimer_on_stack(&to->timer); | 1562 | goto retry_private; |
| 1607 | return ret; | 1563 | |
| 1564 | put_futex_key(fshared, &q.key); | ||
| 1565 | goto retry; | ||
| 1608 | } | 1566 | } |
| 1609 | 1567 | ||
| 1568 | |||
| 1610 | /* | 1569 | /* |
| 1611 | * Userspace attempted a TID -> 0 atomic transition, and failed. | 1570 | * Userspace attempted a TID -> 0 atomic transition, and failed. |
| 1612 | * This is the in-kernel slowpath: we look up the PI state (if any), | 1571 | * This is the in-kernel slowpath: we look up the PI state (if any), |
| @@ -1619,7 +1578,7 @@ static int futex_unlock_pi(u32 __user *uaddr, int fshared) | |||
| 1619 | u32 uval; | 1578 | u32 uval; |
| 1620 | struct plist_head *head; | 1579 | struct plist_head *head; |
| 1621 | union futex_key key = FUTEX_KEY_INIT; | 1580 | union futex_key key = FUTEX_KEY_INIT; |
| 1622 | int ret, attempt = 0; | 1581 | int ret; |
| 1623 | 1582 | ||
| 1624 | retry: | 1583 | retry: |
| 1625 | if (get_user(uval, uaddr)) | 1584 | if (get_user(uval, uaddr)) |
| @@ -1635,7 +1594,6 @@ retry: | |||
| 1635 | goto out; | 1594 | goto out; |
| 1636 | 1595 | ||
| 1637 | hb = hash_futex(&key); | 1596 | hb = hash_futex(&key); |
| 1638 | retry_unlocked: | ||
| 1639 | spin_lock(&hb->lock); | 1597 | spin_lock(&hb->lock); |
| 1640 | 1598 | ||
| 1641 | /* | 1599 | /* |
| @@ -1700,14 +1658,7 @@ pi_faulted: | |||
| 1700 | * we have to drop the mmap_sem in order to call get_user(). | 1658 | * we have to drop the mmap_sem in order to call get_user(). |
| 1701 | */ | 1659 | */ |
| 1702 | spin_unlock(&hb->lock); | 1660 | spin_unlock(&hb->lock); |
| 1703 | 1661 | put_futex_key(fshared, &key); | |
| 1704 | if (attempt++) { | ||
| 1705 | ret = futex_handle_fault((unsigned long)uaddr, attempt); | ||
| 1706 | if (ret) | ||
| 1707 | goto out; | ||
| 1708 | uval = 0; | ||
| 1709 | goto retry_unlocked; | ||
| 1710 | } | ||
| 1711 | 1662 | ||
| 1712 | ret = get_user(uval, uaddr); | 1663 | ret = get_user(uval, uaddr); |
| 1713 | if (!ret) | 1664 | if (!ret) |
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index 7de11bd64dfe..c687ba4363f2 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c | |||
| @@ -46,7 +46,10 @@ void dynamic_irq_init(unsigned int irq) | |||
| 46 | desc->irq_count = 0; | 46 | desc->irq_count = 0; |
| 47 | desc->irqs_unhandled = 0; | 47 | desc->irqs_unhandled = 0; |
| 48 | #ifdef CONFIG_SMP | 48 | #ifdef CONFIG_SMP |
| 49 | cpumask_setall(&desc->affinity); | 49 | cpumask_setall(desc->affinity); |
| 50 | #ifdef CONFIG_GENERIC_PENDING_IRQ | ||
| 51 | cpumask_clear(desc->pending_mask); | ||
| 52 | #endif | ||
| 50 | #endif | 53 | #endif |
| 51 | spin_unlock_irqrestore(&desc->lock, flags); | 54 | spin_unlock_irqrestore(&desc->lock, flags); |
| 52 | } | 55 | } |
| @@ -78,6 +81,7 @@ void dynamic_irq_cleanup(unsigned int irq) | |||
| 78 | desc->handle_irq = handle_bad_irq; | 81 | desc->handle_irq = handle_bad_irq; |
| 79 | desc->chip = &no_irq_chip; | 82 | desc->chip = &no_irq_chip; |
| 80 | desc->name = NULL; | 83 | desc->name = NULL; |
| 84 | clear_kstat_irqs(desc); | ||
| 81 | spin_unlock_irqrestore(&desc->lock, flags); | 85 | spin_unlock_irqrestore(&desc->lock, flags); |
| 82 | } | 86 | } |
| 83 | 87 | ||
| @@ -290,7 +294,8 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq) | |||
| 290 | desc->chip->mask_ack(irq); | 294 | desc->chip->mask_ack(irq); |
| 291 | else { | 295 | else { |
| 292 | desc->chip->mask(irq); | 296 | desc->chip->mask(irq); |
| 293 | desc->chip->ack(irq); | 297 | if (desc->chip->ack) |
| 298 | desc->chip->ack(irq); | ||
| 294 | } | 299 | } |
| 295 | } | 300 | } |
| 296 | 301 | ||
| @@ -476,7 +481,8 @@ handle_edge_irq(unsigned int irq, struct irq_desc *desc) | |||
| 476 | kstat_incr_irqs_this_cpu(irq, desc); | 481 | kstat_incr_irqs_this_cpu(irq, desc); |
| 477 | 482 | ||
| 478 | /* Start handling the irq */ | 483 | /* Start handling the irq */ |
| 479 | desc->chip->ack(irq); | 484 | if (desc->chip->ack) |
| 485 | desc->chip->ack(irq); | ||
| 480 | desc = irq_remap_to_desc(irq, desc); | 486 | desc = irq_remap_to_desc(irq, desc); |
| 481 | 487 | ||
| 482 | /* Mark the IRQ currently in progress.*/ | 488 | /* Mark the IRQ currently in progress.*/ |
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 3aba8d12f328..9ebf77968871 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
| @@ -17,6 +17,7 @@ | |||
| 17 | #include <linux/kernel_stat.h> | 17 | #include <linux/kernel_stat.h> |
| 18 | #include <linux/rculist.h> | 18 | #include <linux/rculist.h> |
| 19 | #include <linux/hash.h> | 19 | #include <linux/hash.h> |
| 20 | #include <linux/bootmem.h> | ||
| 20 | 21 | ||
| 21 | #include "internals.h" | 22 | #include "internals.h" |
| 22 | 23 | ||
| @@ -69,6 +70,7 @@ int nr_irqs = NR_IRQS; | |||
| 69 | EXPORT_SYMBOL_GPL(nr_irqs); | 70 | EXPORT_SYMBOL_GPL(nr_irqs); |
| 70 | 71 | ||
| 71 | #ifdef CONFIG_SPARSE_IRQ | 72 | #ifdef CONFIG_SPARSE_IRQ |
| 73 | |||
| 72 | static struct irq_desc irq_desc_init = { | 74 | static struct irq_desc irq_desc_init = { |
| 73 | .irq = -1, | 75 | .irq = -1, |
| 74 | .status = IRQ_DISABLED, | 76 | .status = IRQ_DISABLED, |
| @@ -76,26 +78,25 @@ static struct irq_desc irq_desc_init = { | |||
| 76 | .handle_irq = handle_bad_irq, | 78 | .handle_irq = handle_bad_irq, |
| 77 | .depth = 1, | 79 | .depth = 1, |
| 78 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), | 80 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), |
| 79 | #ifdef CONFIG_SMP | ||
| 80 | .affinity = CPU_MASK_ALL | ||
| 81 | #endif | ||
| 82 | }; | 81 | }; |
| 83 | 82 | ||
| 84 | void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr) | 83 | void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr) |
| 85 | { | 84 | { |
| 86 | unsigned long bytes; | ||
| 87 | char *ptr; | ||
| 88 | int node; | 85 | int node; |
| 89 | 86 | void *ptr; | |
| 90 | /* Compute how many bytes we need per irq and allocate them */ | ||
| 91 | bytes = nr * sizeof(unsigned int); | ||
| 92 | 87 | ||
| 93 | node = cpu_to_node(cpu); | 88 | node = cpu_to_node(cpu); |
| 94 | ptr = kzalloc_node(bytes, GFP_ATOMIC, node); | 89 | ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), GFP_ATOMIC, node); |
| 95 | printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node); | ||
| 96 | 90 | ||
| 97 | if (ptr) | 91 | /* |
| 98 | desc->kstat_irqs = (unsigned int *)ptr; | 92 | * don't overwite if can not get new one |
| 93 | * init_copy_kstat_irqs() could still use old one | ||
| 94 | */ | ||
| 95 | if (ptr) { | ||
| 96 | printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", | ||
| 97 | cpu, node); | ||
| 98 | desc->kstat_irqs = ptr; | ||
| 99 | } | ||
| 99 | } | 100 | } |
| 100 | 101 | ||
| 101 | static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | 102 | static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) |
| @@ -113,6 +114,10 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | |||
| 113 | printk(KERN_ERR "can not alloc kstat_irqs\n"); | 114 | printk(KERN_ERR "can not alloc kstat_irqs\n"); |
| 114 | BUG_ON(1); | 115 | BUG_ON(1); |
| 115 | } | 116 | } |
| 117 | if (!init_alloc_desc_masks(desc, cpu, false)) { | ||
| 118 | printk(KERN_ERR "can not alloc irq_desc cpumasks\n"); | ||
| 119 | BUG_ON(1); | ||
| 120 | } | ||
| 116 | arch_init_chip_data(desc, cpu); | 121 | arch_init_chip_data(desc, cpu); |
| 117 | } | 122 | } |
| 118 | 123 | ||
| @@ -121,7 +126,7 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | |||
| 121 | */ | 126 | */ |
| 122 | DEFINE_SPINLOCK(sparse_irq_lock); | 127 | DEFINE_SPINLOCK(sparse_irq_lock); |
| 123 | 128 | ||
| 124 | struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly; | 129 | struct irq_desc **irq_desc_ptrs __read_mostly; |
| 125 | 130 | ||
| 126 | static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { | 131 | static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { |
| 127 | [0 ... NR_IRQS_LEGACY-1] = { | 132 | [0 ... NR_IRQS_LEGACY-1] = { |
| @@ -131,14 +136,10 @@ static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_sm | |||
| 131 | .handle_irq = handle_bad_irq, | 136 | .handle_irq = handle_bad_irq, |
| 132 | .depth = 1, | 137 | .depth = 1, |
| 133 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), | 138 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), |
| 134 | #ifdef CONFIG_SMP | ||
| 135 | .affinity = CPU_MASK_ALL | ||
| 136 | #endif | ||
| 137 | } | 139 | } |
| 138 | }; | 140 | }; |
| 139 | 141 | ||
| 140 | /* FIXME: use bootmem alloc ...*/ | 142 | static unsigned int *kstat_irqs_legacy; |
| 141 | static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS]; | ||
| 142 | 143 | ||
| 143 | int __init early_irq_init(void) | 144 | int __init early_irq_init(void) |
| 144 | { | 145 | { |
| @@ -148,18 +149,30 @@ int __init early_irq_init(void) | |||
| 148 | 149 | ||
| 149 | init_irq_default_affinity(); | 150 | init_irq_default_affinity(); |
| 150 | 151 | ||
| 152 | /* initialize nr_irqs based on nr_cpu_ids */ | ||
| 153 | arch_probe_nr_irqs(); | ||
| 154 | printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs); | ||
| 155 | |||
| 151 | desc = irq_desc_legacy; | 156 | desc = irq_desc_legacy; |
| 152 | legacy_count = ARRAY_SIZE(irq_desc_legacy); | 157 | legacy_count = ARRAY_SIZE(irq_desc_legacy); |
| 153 | 158 | ||
| 159 | /* allocate irq_desc_ptrs array based on nr_irqs */ | ||
| 160 | irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *)); | ||
| 161 | |||
| 162 | /* allocate based on nr_cpu_ids */ | ||
| 163 | /* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */ | ||
| 164 | kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids * | ||
| 165 | sizeof(int)); | ||
| 166 | |||
| 154 | for (i = 0; i < legacy_count; i++) { | 167 | for (i = 0; i < legacy_count; i++) { |
| 155 | desc[i].irq = i; | 168 | desc[i].irq = i; |
| 156 | desc[i].kstat_irqs = kstat_irqs_legacy[i]; | 169 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; |
| 157 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); | 170 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); |
| 158 | 171 | init_alloc_desc_masks(&desc[i], 0, true); | |
| 159 | irq_desc_ptrs[i] = desc + i; | 172 | irq_desc_ptrs[i] = desc + i; |
| 160 | } | 173 | } |
| 161 | 174 | ||
| 162 | for (i = legacy_count; i < NR_IRQS; i++) | 175 | for (i = legacy_count; i < nr_irqs; i++) |
| 163 | irq_desc_ptrs[i] = NULL; | 176 | irq_desc_ptrs[i] = NULL; |
| 164 | 177 | ||
| 165 | return arch_early_irq_init(); | 178 | return arch_early_irq_init(); |
| @@ -167,7 +180,10 @@ int __init early_irq_init(void) | |||
| 167 | 180 | ||
| 168 | struct irq_desc *irq_to_desc(unsigned int irq) | 181 | struct irq_desc *irq_to_desc(unsigned int irq) |
| 169 | { | 182 | { |
| 170 | return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL; | 183 | if (irq_desc_ptrs && irq < nr_irqs) |
| 184 | return irq_desc_ptrs[irq]; | ||
| 185 | |||
| 186 | return NULL; | ||
| 171 | } | 187 | } |
| 172 | 188 | ||
| 173 | struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | 189 | struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) |
| @@ -176,10 +192,9 @@ struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | |||
| 176 | unsigned long flags; | 192 | unsigned long flags; |
| 177 | int node; | 193 | int node; |
| 178 | 194 | ||
| 179 | if (irq >= NR_IRQS) { | 195 | if (irq >= nr_irqs) { |
| 180 | printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n", | 196 | WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n", |
| 181 | irq, NR_IRQS); | 197 | irq, nr_irqs); |
| 182 | WARN_ON(1); | ||
| 183 | return NULL; | 198 | return NULL; |
| 184 | } | 199 | } |
| 185 | 200 | ||
| @@ -221,12 +236,10 @@ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { | |||
| 221 | .handle_irq = handle_bad_irq, | 236 | .handle_irq = handle_bad_irq, |
| 222 | .depth = 1, | 237 | .depth = 1, |
| 223 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), | 238 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), |
| 224 | #ifdef CONFIG_SMP | ||
| 225 | .affinity = CPU_MASK_ALL | ||
| 226 | #endif | ||
| 227 | } | 239 | } |
| 228 | }; | 240 | }; |
| 229 | 241 | ||
| 242 | static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS]; | ||
| 230 | int __init early_irq_init(void) | 243 | int __init early_irq_init(void) |
| 231 | { | 244 | { |
| 232 | struct irq_desc *desc; | 245 | struct irq_desc *desc; |
| @@ -235,12 +248,16 @@ int __init early_irq_init(void) | |||
| 235 | 248 | ||
| 236 | init_irq_default_affinity(); | 249 | init_irq_default_affinity(); |
| 237 | 250 | ||
| 251 | printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS); | ||
| 252 | |||
| 238 | desc = irq_desc; | 253 | desc = irq_desc; |
| 239 | count = ARRAY_SIZE(irq_desc); | 254 | count = ARRAY_SIZE(irq_desc); |
| 240 | 255 | ||
| 241 | for (i = 0; i < count; i++) | 256 | for (i = 0; i < count; i++) { |
| 242 | desc[i].irq = i; | 257 | desc[i].irq = i; |
| 243 | 258 | init_alloc_desc_masks(&desc[i], 0, true); | |
| 259 | desc[i].kstat_irqs = kstat_irqs_all[i]; | ||
| 260 | } | ||
| 244 | return arch_early_irq_init(); | 261 | return arch_early_irq_init(); |
| 245 | } | 262 | } |
| 246 | 263 | ||
| @@ -255,6 +272,11 @@ struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | |||
| 255 | } | 272 | } |
| 256 | #endif /* !CONFIG_SPARSE_IRQ */ | 273 | #endif /* !CONFIG_SPARSE_IRQ */ |
| 257 | 274 | ||
| 275 | void clear_kstat_irqs(struct irq_desc *desc) | ||
| 276 | { | ||
| 277 | memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs))); | ||
| 278 | } | ||
| 279 | |||
| 258 | /* | 280 | /* |
| 259 | * What should we do if we get a hw irq event on an illegal vector? | 281 | * What should we do if we get a hw irq event on an illegal vector? |
| 260 | * Each architecture has to answer this themself. | 282 | * Each architecture has to answer this themself. |
| @@ -328,6 +350,8 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
| 328 | irqreturn_t ret, retval = IRQ_NONE; | 350 | irqreturn_t ret, retval = IRQ_NONE; |
| 329 | unsigned int status = 0; | 351 | unsigned int status = 0; |
| 330 | 352 | ||
| 353 | WARN_ONCE(!in_irq(), "BUG: IRQ handler called from non-hardirq context!"); | ||
| 354 | |||
| 331 | if (!(action->flags & IRQF_DISABLED)) | 355 | if (!(action->flags & IRQF_DISABLED)) |
| 332 | local_irq_enable_in_hardirq(); | 356 | local_irq_enable_in_hardirq(); |
| 333 | 357 | ||
| @@ -347,6 +371,11 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
| 347 | } | 371 | } |
| 348 | 372 | ||
| 349 | #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ | 373 | #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ |
| 374 | |||
| 375 | #ifdef CONFIG_ENABLE_WARN_DEPRECATED | ||
| 376 | # warning __do_IRQ is deprecated. Please convert to proper flow handlers | ||
| 377 | #endif | ||
| 378 | |||
| 350 | /** | 379 | /** |
| 351 | * __do_IRQ - original all in one highlevel IRQ handler | 380 | * __do_IRQ - original all in one highlevel IRQ handler |
| 352 | * @irq: the interrupt number | 381 | * @irq: the interrupt number |
| @@ -467,12 +496,10 @@ void early_init_irq_lock_class(void) | |||
| 467 | } | 496 | } |
| 468 | } | 497 | } |
| 469 | 498 | ||
| 470 | #ifdef CONFIG_SPARSE_IRQ | ||
| 471 | unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) | 499 | unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) |
| 472 | { | 500 | { |
| 473 | struct irq_desc *desc = irq_to_desc(irq); | 501 | struct irq_desc *desc = irq_to_desc(irq); |
| 474 | return desc ? desc->kstat_irqs[cpu] : 0; | 502 | return desc ? desc->kstat_irqs[cpu] : 0; |
| 475 | } | 503 | } |
| 476 | #endif | ||
| 477 | EXPORT_SYMBOL(kstat_irqs_cpu); | 504 | EXPORT_SYMBOL(kstat_irqs_cpu); |
| 478 | 505 | ||
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index e6d0a43cc125..ee1aa9f8e8b9 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h | |||
| @@ -15,8 +15,16 @@ extern int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | |||
| 15 | 15 | ||
| 16 | extern struct lock_class_key irq_desc_lock_class; | 16 | extern struct lock_class_key irq_desc_lock_class; |
| 17 | extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr); | 17 | extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr); |
| 18 | extern void clear_kstat_irqs(struct irq_desc *desc); | ||
| 18 | extern spinlock_t sparse_irq_lock; | 19 | extern spinlock_t sparse_irq_lock; |
| 20 | |||
| 21 | #ifdef CONFIG_SPARSE_IRQ | ||
| 22 | /* irq_desc_ptrs allocated at boot time */ | ||
| 23 | extern struct irq_desc **irq_desc_ptrs; | ||
| 24 | #else | ||
| 25 | /* irq_desc_ptrs is a fixed size array */ | ||
| 19 | extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; | 26 | extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; |
| 27 | #endif | ||
| 20 | 28 | ||
| 21 | #ifdef CONFIG_PROC_FS | 29 | #ifdef CONFIG_PROC_FS |
| 22 | extern void register_irq_proc(unsigned int irq, struct irq_desc *desc); | 30 | extern void register_irq_proc(unsigned int irq, struct irq_desc *desc); |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 291f03664552..6458e99984c0 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
| @@ -90,14 +90,14 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
| 90 | 90 | ||
| 91 | #ifdef CONFIG_GENERIC_PENDING_IRQ | 91 | #ifdef CONFIG_GENERIC_PENDING_IRQ |
| 92 | if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) { | 92 | if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) { |
| 93 | cpumask_copy(&desc->affinity, cpumask); | 93 | cpumask_copy(desc->affinity, cpumask); |
| 94 | desc->chip->set_affinity(irq, cpumask); | 94 | desc->chip->set_affinity(irq, cpumask); |
| 95 | } else { | 95 | } else { |
| 96 | desc->status |= IRQ_MOVE_PENDING; | 96 | desc->status |= IRQ_MOVE_PENDING; |
| 97 | cpumask_copy(&desc->pending_mask, cpumask); | 97 | cpumask_copy(desc->pending_mask, cpumask); |
| 98 | } | 98 | } |
| 99 | #else | 99 | #else |
| 100 | cpumask_copy(&desc->affinity, cpumask); | 100 | cpumask_copy(desc->affinity, cpumask); |
| 101 | desc->chip->set_affinity(irq, cpumask); | 101 | desc->chip->set_affinity(irq, cpumask); |
| 102 | #endif | 102 | #endif |
| 103 | desc->status |= IRQ_AFFINITY_SET; | 103 | desc->status |= IRQ_AFFINITY_SET; |
| @@ -109,7 +109,7 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
| 109 | /* | 109 | /* |
| 110 | * Generic version of the affinity autoselector. | 110 | * Generic version of the affinity autoselector. |
| 111 | */ | 111 | */ |
| 112 | int do_irq_select_affinity(unsigned int irq, struct irq_desc *desc) | 112 | static int setup_affinity(unsigned int irq, struct irq_desc *desc) |
| 113 | { | 113 | { |
| 114 | if (!irq_can_set_affinity(irq)) | 114 | if (!irq_can_set_affinity(irq)) |
| 115 | return 0; | 115 | return 0; |
| @@ -119,21 +119,21 @@ int do_irq_select_affinity(unsigned int irq, struct irq_desc *desc) | |||
| 119 | * one of the targets is online. | 119 | * one of the targets is online. |
| 120 | */ | 120 | */ |
| 121 | if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) { | 121 | if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) { |
| 122 | if (cpumask_any_and(&desc->affinity, cpu_online_mask) | 122 | if (cpumask_any_and(desc->affinity, cpu_online_mask) |
| 123 | < nr_cpu_ids) | 123 | < nr_cpu_ids) |
| 124 | goto set_affinity; | 124 | goto set_affinity; |
| 125 | else | 125 | else |
| 126 | desc->status &= ~IRQ_AFFINITY_SET; | 126 | desc->status &= ~IRQ_AFFINITY_SET; |
| 127 | } | 127 | } |
| 128 | 128 | ||
| 129 | cpumask_and(&desc->affinity, cpu_online_mask, irq_default_affinity); | 129 | cpumask_and(desc->affinity, cpu_online_mask, irq_default_affinity); |
| 130 | set_affinity: | 130 | set_affinity: |
| 131 | desc->chip->set_affinity(irq, &desc->affinity); | 131 | desc->chip->set_affinity(irq, desc->affinity); |
| 132 | 132 | ||
| 133 | return 0; | 133 | return 0; |
| 134 | } | 134 | } |
| 135 | #else | 135 | #else |
| 136 | static inline int do_irq_select_affinity(unsigned int irq, struct irq_desc *d) | 136 | static inline int setup_affinity(unsigned int irq, struct irq_desc *d) |
| 137 | { | 137 | { |
| 138 | return irq_select_affinity(irq); | 138 | return irq_select_affinity(irq); |
| 139 | } | 139 | } |
| @@ -149,14 +149,14 @@ int irq_select_affinity_usr(unsigned int irq) | |||
| 149 | int ret; | 149 | int ret; |
| 150 | 150 | ||
| 151 | spin_lock_irqsave(&desc->lock, flags); | 151 | spin_lock_irqsave(&desc->lock, flags); |
| 152 | ret = do_irq_select_affinity(irq, desc); | 152 | ret = setup_affinity(irq, desc); |
| 153 | spin_unlock_irqrestore(&desc->lock, flags); | 153 | spin_unlock_irqrestore(&desc->lock, flags); |
| 154 | 154 | ||
| 155 | return ret; | 155 | return ret; |
| 156 | } | 156 | } |
| 157 | 157 | ||
| 158 | #else | 158 | #else |
| 159 | static inline int do_irq_select_affinity(int irq, struct irq_desc *desc) | 159 | static inline int setup_affinity(unsigned int irq, struct irq_desc *desc) |
| 160 | { | 160 | { |
| 161 | return 0; | 161 | return 0; |
| 162 | } | 162 | } |
| @@ -389,9 +389,9 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | |||
| 389 | * allocate special interrupts that are part of the architecture. | 389 | * allocate special interrupts that are part of the architecture. |
| 390 | */ | 390 | */ |
| 391 | static int | 391 | static int |
| 392 | __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | 392 | __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) |
| 393 | { | 393 | { |
| 394 | struct irqaction *old, **p; | 394 | struct irqaction *old, **old_ptr; |
| 395 | const char *old_name = NULL; | 395 | const char *old_name = NULL; |
| 396 | unsigned long flags; | 396 | unsigned long flags; |
| 397 | int shared = 0; | 397 | int shared = 0; |
| @@ -423,8 +423,8 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
| 423 | * The following block of code has to be executed atomically | 423 | * The following block of code has to be executed atomically |
| 424 | */ | 424 | */ |
| 425 | spin_lock_irqsave(&desc->lock, flags); | 425 | spin_lock_irqsave(&desc->lock, flags); |
| 426 | p = &desc->action; | 426 | old_ptr = &desc->action; |
| 427 | old = *p; | 427 | old = *old_ptr; |
| 428 | if (old) { | 428 | if (old) { |
| 429 | /* | 429 | /* |
| 430 | * Can't share interrupts unless both agree to and are | 430 | * Can't share interrupts unless both agree to and are |
| @@ -447,8 +447,8 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
| 447 | 447 | ||
| 448 | /* add new interrupt at end of irq queue */ | 448 | /* add new interrupt at end of irq queue */ |
| 449 | do { | 449 | do { |
| 450 | p = &old->next; | 450 | old_ptr = &old->next; |
| 451 | old = *p; | 451 | old = *old_ptr; |
| 452 | } while (old); | 452 | } while (old); |
| 453 | shared = 1; | 453 | shared = 1; |
| 454 | } | 454 | } |
| @@ -488,7 +488,7 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
| 488 | desc->status |= IRQ_NO_BALANCING; | 488 | desc->status |= IRQ_NO_BALANCING; |
| 489 | 489 | ||
| 490 | /* Set default affinity mask once everything is setup */ | 490 | /* Set default affinity mask once everything is setup */ |
| 491 | do_irq_select_affinity(irq, desc); | 491 | setup_affinity(irq, desc); |
| 492 | 492 | ||
| 493 | } else if ((new->flags & IRQF_TRIGGER_MASK) | 493 | } else if ((new->flags & IRQF_TRIGGER_MASK) |
| 494 | && (new->flags & IRQF_TRIGGER_MASK) | 494 | && (new->flags & IRQF_TRIGGER_MASK) |
| @@ -499,7 +499,7 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
| 499 | (int)(new->flags & IRQF_TRIGGER_MASK)); | 499 | (int)(new->flags & IRQF_TRIGGER_MASK)); |
| 500 | } | 500 | } |
| 501 | 501 | ||
| 502 | *p = new; | 502 | *old_ptr = new; |
| 503 | 503 | ||
| 504 | /* Reset broken irq detection when installing new handler */ | 504 | /* Reset broken irq detection when installing new handler */ |
| 505 | desc->irq_count = 0; | 505 | desc->irq_count = 0; |
| @@ -549,90 +549,117 @@ int setup_irq(unsigned int irq, struct irqaction *act) | |||
| 549 | 549 | ||
| 550 | return __setup_irq(irq, desc, act); | 550 | return __setup_irq(irq, desc, act); |
| 551 | } | 551 | } |
| 552 | EXPORT_SYMBOL_GPL(setup_irq); | ||
| 552 | 553 | ||
| 553 | /** | 554 | /* |
| 554 | * free_irq - free an interrupt | 555 | * Internal function to unregister an irqaction - used to free |
| 555 | * @irq: Interrupt line to free | 556 | * regular and special interrupts that are part of the architecture. |
| 556 | * @dev_id: Device identity to free | ||
| 557 | * | ||
| 558 | * Remove an interrupt handler. The handler is removed and if the | ||
| 559 | * interrupt line is no longer in use by any driver it is disabled. | ||
| 560 | * On a shared IRQ the caller must ensure the interrupt is disabled | ||
| 561 | * on the card it drives before calling this function. The function | ||
| 562 | * does not return until any executing interrupts for this IRQ | ||
| 563 | * have completed. | ||
| 564 | * | ||
| 565 | * This function must not be called from interrupt context. | ||
| 566 | */ | 557 | */ |
| 567 | void free_irq(unsigned int irq, void *dev_id) | 558 | static struct irqaction *__free_irq(unsigned int irq, void *dev_id) |
| 568 | { | 559 | { |
| 569 | struct irq_desc *desc = irq_to_desc(irq); | 560 | struct irq_desc *desc = irq_to_desc(irq); |
| 570 | struct irqaction **p; | 561 | struct irqaction *action, **action_ptr; |
| 571 | unsigned long flags; | 562 | unsigned long flags; |
| 572 | 563 | ||
| 573 | WARN_ON(in_interrupt()); | 564 | WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); |
| 574 | 565 | ||
| 575 | if (!desc) | 566 | if (!desc) |
| 576 | return; | 567 | return NULL; |
| 577 | 568 | ||
| 578 | spin_lock_irqsave(&desc->lock, flags); | 569 | spin_lock_irqsave(&desc->lock, flags); |
| 579 | p = &desc->action; | 570 | |
| 571 | /* | ||
| 572 | * There can be multiple actions per IRQ descriptor, find the right | ||
| 573 | * one based on the dev_id: | ||
| 574 | */ | ||
| 575 | action_ptr = &desc->action; | ||
| 580 | for (;;) { | 576 | for (;;) { |
| 581 | struct irqaction *action = *p; | 577 | action = *action_ptr; |
| 582 | 578 | ||
| 583 | if (action) { | 579 | if (!action) { |
| 584 | struct irqaction **pp = p; | 580 | WARN(1, "Trying to free already-free IRQ %d\n", irq); |
| 581 | spin_unlock_irqrestore(&desc->lock, flags); | ||
| 585 | 582 | ||
| 586 | p = &action->next; | 583 | return NULL; |
| 587 | if (action->dev_id != dev_id) | 584 | } |
| 588 | continue; | ||
| 589 | 585 | ||
| 590 | /* Found it - now remove it from the list of entries */ | 586 | if (action->dev_id == dev_id) |
| 591 | *pp = action->next; | 587 | break; |
| 588 | action_ptr = &action->next; | ||
| 589 | } | ||
| 592 | 590 | ||
| 593 | /* Currently used only by UML, might disappear one day.*/ | 591 | /* Found it - now remove it from the list of entries: */ |
| 592 | *action_ptr = action->next; | ||
| 593 | |||
| 594 | /* Currently used only by UML, might disappear one day: */ | ||
| 594 | #ifdef CONFIG_IRQ_RELEASE_METHOD | 595 | #ifdef CONFIG_IRQ_RELEASE_METHOD |
| 595 | if (desc->chip->release) | 596 | if (desc->chip->release) |
| 596 | desc->chip->release(irq, dev_id); | 597 | desc->chip->release(irq, dev_id); |
| 597 | #endif | 598 | #endif |
| 598 | 599 | ||
| 599 | if (!desc->action) { | 600 | /* If this was the last handler, shut down the IRQ line: */ |
| 600 | desc->status |= IRQ_DISABLED; | 601 | if (!desc->action) { |
| 601 | if (desc->chip->shutdown) | 602 | desc->status |= IRQ_DISABLED; |
| 602 | desc->chip->shutdown(irq); | 603 | if (desc->chip->shutdown) |
| 603 | else | 604 | desc->chip->shutdown(irq); |
| 604 | desc->chip->disable(irq); | 605 | else |
| 605 | } | 606 | desc->chip->disable(irq); |
| 606 | spin_unlock_irqrestore(&desc->lock, flags); | 607 | } |
| 607 | unregister_handler_proc(irq, action); | 608 | spin_unlock_irqrestore(&desc->lock, flags); |
| 609 | |||
| 610 | unregister_handler_proc(irq, action); | ||
| 611 | |||
| 612 | /* Make sure it's not being used on another CPU: */ | ||
| 613 | synchronize_irq(irq); | ||
| 608 | 614 | ||
| 609 | /* Make sure it's not being used on another CPU */ | ||
| 610 | synchronize_irq(irq); | ||
| 611 | #ifdef CONFIG_DEBUG_SHIRQ | ||
| 612 | /* | ||
| 613 | * It's a shared IRQ -- the driver ought to be | ||
| 614 | * prepared for it to happen even now it's | ||
| 615 | * being freed, so let's make sure.... We do | ||
| 616 | * this after actually deregistering it, to | ||
| 617 | * make sure that a 'real' IRQ doesn't run in | ||
| 618 | * parallel with our fake | ||
| 619 | */ | ||
| 620 | if (action->flags & IRQF_SHARED) { | ||
| 621 | local_irq_save(flags); | ||
| 622 | action->handler(irq, dev_id); | ||
| 623 | local_irq_restore(flags); | ||
| 624 | } | ||
| 625 | #endif | ||
| 626 | kfree(action); | ||
| 627 | return; | ||
| 628 | } | ||
| 629 | printk(KERN_ERR "Trying to free already-free IRQ %d\n", irq); | ||
| 630 | #ifdef CONFIG_DEBUG_SHIRQ | 615 | #ifdef CONFIG_DEBUG_SHIRQ |
| 631 | dump_stack(); | 616 | /* |
| 632 | #endif | 617 | * It's a shared IRQ -- the driver ought to be prepared for an IRQ |
| 633 | spin_unlock_irqrestore(&desc->lock, flags); | 618 | * event to happen even now it's being freed, so let's make sure that |
| 634 | return; | 619 | * is so by doing an extra call to the handler .... |
| 620 | * | ||
| 621 | * ( We do this after actually deregistering it, to make sure that a | ||
| 622 | * 'real' IRQ doesn't run in * parallel with our fake. ) | ||
| 623 | */ | ||
| 624 | if (action->flags & IRQF_SHARED) { | ||
| 625 | local_irq_save(flags); | ||
| 626 | action->handler(irq, dev_id); | ||
| 627 | local_irq_restore(flags); | ||
| 635 | } | 628 | } |
| 629 | #endif | ||
| 630 | return action; | ||
| 631 | } | ||
| 632 | |||
| 633 | /** | ||
| 634 | * remove_irq - free an interrupt | ||
| 635 | * @irq: Interrupt line to free | ||
| 636 | * @act: irqaction for the interrupt | ||
| 637 | * | ||
| 638 | * Used to remove interrupts statically setup by the early boot process. | ||
| 639 | */ | ||
| 640 | void remove_irq(unsigned int irq, struct irqaction *act) | ||
| 641 | { | ||
| 642 | __free_irq(irq, act->dev_id); | ||
| 643 | } | ||
| 644 | EXPORT_SYMBOL_GPL(remove_irq); | ||
| 645 | |||
| 646 | /** | ||
| 647 | * free_irq - free an interrupt allocated with request_irq | ||
| 648 | * @irq: Interrupt line to free | ||
| 649 | * @dev_id: Device identity to free | ||
| 650 | * | ||
| 651 | * Remove an interrupt handler. The handler is removed and if the | ||
| 652 | * interrupt line is no longer in use by any driver it is disabled. | ||
| 653 | * On a shared IRQ the caller must ensure the interrupt is disabled | ||
| 654 | * on the card it drives before calling this function. The function | ||
| 655 | * does not return until any executing interrupts for this IRQ | ||
| 656 | * have completed. | ||
| 657 | * | ||
| 658 | * This function must not be called from interrupt context. | ||
| 659 | */ | ||
| 660 | void free_irq(unsigned int irq, void *dev_id) | ||
| 661 | { | ||
| 662 | kfree(__free_irq(irq, dev_id)); | ||
| 636 | } | 663 | } |
| 637 | EXPORT_SYMBOL(free_irq); | 664 | EXPORT_SYMBOL(free_irq); |
| 638 | 665 | ||
| @@ -679,11 +706,12 @@ int request_irq(unsigned int irq, irq_handler_t handler, | |||
| 679 | * the behavior is classified as "will not fix" so we need to | 706 | * the behavior is classified as "will not fix" so we need to |
| 680 | * start nudging drivers away from using that idiom. | 707 | * start nudging drivers away from using that idiom. |
| 681 | */ | 708 | */ |
| 682 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) | 709 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) == |
| 683 | == (IRQF_SHARED|IRQF_DISABLED)) | 710 | (IRQF_SHARED|IRQF_DISABLED)) { |
| 684 | pr_warning("IRQ %d/%s: IRQF_DISABLED is not " | 711 | pr_warning( |
| 685 | "guaranteed on shared IRQs\n", | 712 | "IRQ %d/%s: IRQF_DISABLED is not guaranteed on shared IRQs\n", |
| 686 | irq, devname); | 713 | irq, devname); |
| 714 | } | ||
| 687 | 715 | ||
| 688 | #ifdef CONFIG_LOCKDEP | 716 | #ifdef CONFIG_LOCKDEP |
| 689 | /* | 717 | /* |
| @@ -709,15 +737,13 @@ int request_irq(unsigned int irq, irq_handler_t handler, | |||
| 709 | if (!handler) | 737 | if (!handler) |
| 710 | return -EINVAL; | 738 | return -EINVAL; |
| 711 | 739 | ||
| 712 | action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC); | 740 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); |
| 713 | if (!action) | 741 | if (!action) |
| 714 | return -ENOMEM; | 742 | return -ENOMEM; |
| 715 | 743 | ||
| 716 | action->handler = handler; | 744 | action->handler = handler; |
| 717 | action->flags = irqflags; | 745 | action->flags = irqflags; |
| 718 | cpus_clear(action->mask); | ||
| 719 | action->name = devname; | 746 | action->name = devname; |
| 720 | action->next = NULL; | ||
| 721 | action->dev_id = dev_id; | 747 | action->dev_id = dev_id; |
| 722 | 748 | ||
| 723 | retval = __setup_irq(irq, desc, action); | 749 | retval = __setup_irq(irq, desc, action); |
diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c index bd72329e630c..e05ad9be43b7 100644 --- a/kernel/irq/migration.c +++ b/kernel/irq/migration.c | |||
| @@ -18,7 +18,7 @@ void move_masked_irq(int irq) | |||
| 18 | 18 | ||
| 19 | desc->status &= ~IRQ_MOVE_PENDING; | 19 | desc->status &= ~IRQ_MOVE_PENDING; |
| 20 | 20 | ||
| 21 | if (unlikely(cpumask_empty(&desc->pending_mask))) | 21 | if (unlikely(cpumask_empty(desc->pending_mask))) |
| 22 | return; | 22 | return; |
| 23 | 23 | ||
| 24 | if (!desc->chip->set_affinity) | 24 | if (!desc->chip->set_affinity) |
| @@ -38,13 +38,13 @@ void move_masked_irq(int irq) | |||
| 38 | * For correct operation this depends on the caller | 38 | * For correct operation this depends on the caller |
| 39 | * masking the irqs. | 39 | * masking the irqs. |
| 40 | */ | 40 | */ |
| 41 | if (likely(cpumask_any_and(&desc->pending_mask, cpu_online_mask) | 41 | if (likely(cpumask_any_and(desc->pending_mask, cpu_online_mask) |
| 42 | < nr_cpu_ids)) { | 42 | < nr_cpu_ids)) { |
| 43 | cpumask_and(&desc->affinity, | 43 | cpumask_and(desc->affinity, |
| 44 | &desc->pending_mask, cpu_online_mask); | 44 | desc->pending_mask, cpu_online_mask); |
| 45 | desc->chip->set_affinity(irq, &desc->affinity); | 45 | desc->chip->set_affinity(irq, desc->affinity); |
| 46 | } | 46 | } |
| 47 | cpumask_clear(&desc->pending_mask); | 47 | cpumask_clear(desc->pending_mask); |
| 48 | } | 48 | } |
| 49 | 49 | ||
| 50 | void move_native_irq(int irq) | 50 | void move_native_irq(int irq) |
diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c index acd88356ac76..243d6121e50e 100644 --- a/kernel/irq/numa_migrate.c +++ b/kernel/irq/numa_migrate.c | |||
| @@ -17,16 +17,11 @@ static void init_copy_kstat_irqs(struct irq_desc *old_desc, | |||
| 17 | struct irq_desc *desc, | 17 | struct irq_desc *desc, |
| 18 | int cpu, int nr) | 18 | int cpu, int nr) |
| 19 | { | 19 | { |
| 20 | unsigned long bytes; | ||
| 21 | |||
| 22 | init_kstat_irqs(desc, cpu, nr); | 20 | init_kstat_irqs(desc, cpu, nr); |
| 23 | 21 | ||
| 24 | if (desc->kstat_irqs != old_desc->kstat_irqs) { | 22 | if (desc->kstat_irqs != old_desc->kstat_irqs) |
| 25 | /* Compute how many bytes we need per irq and allocate them */ | 23 | memcpy(desc->kstat_irqs, old_desc->kstat_irqs, |
| 26 | bytes = nr * sizeof(unsigned int); | 24 | nr * sizeof(*desc->kstat_irqs)); |
| 27 | |||
| 28 | memcpy(desc->kstat_irqs, old_desc->kstat_irqs, bytes); | ||
| 29 | } | ||
| 30 | } | 25 | } |
| 31 | 26 | ||
| 32 | static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) | 27 | static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) |
| @@ -38,15 +33,22 @@ static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) | |||
| 38 | old_desc->kstat_irqs = NULL; | 33 | old_desc->kstat_irqs = NULL; |
| 39 | } | 34 | } |
| 40 | 35 | ||
| 41 | static void init_copy_one_irq_desc(int irq, struct irq_desc *old_desc, | 36 | static bool init_copy_one_irq_desc(int irq, struct irq_desc *old_desc, |
| 42 | struct irq_desc *desc, int cpu) | 37 | struct irq_desc *desc, int cpu) |
| 43 | { | 38 | { |
| 44 | memcpy(desc, old_desc, sizeof(struct irq_desc)); | 39 | memcpy(desc, old_desc, sizeof(struct irq_desc)); |
| 40 | if (!init_alloc_desc_masks(desc, cpu, false)) { | ||
| 41 | printk(KERN_ERR "irq %d: can not get new irq_desc cpumask " | ||
| 42 | "for migration.\n", irq); | ||
| 43 | return false; | ||
| 44 | } | ||
| 45 | spin_lock_init(&desc->lock); | 45 | spin_lock_init(&desc->lock); |
| 46 | desc->cpu = cpu; | 46 | desc->cpu = cpu; |
| 47 | lockdep_set_class(&desc->lock, &irq_desc_lock_class); | 47 | lockdep_set_class(&desc->lock, &irq_desc_lock_class); |
| 48 | init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids); | 48 | init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids); |
| 49 | init_copy_desc_masks(old_desc, desc); | ||
| 49 | arch_init_copy_chip_data(old_desc, desc, cpu); | 50 | arch_init_copy_chip_data(old_desc, desc, cpu); |
| 51 | return true; | ||
| 50 | } | 52 | } |
| 51 | 53 | ||
| 52 | static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc) | 54 | static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc) |
| @@ -76,12 +78,18 @@ static struct irq_desc *__real_move_irq_desc(struct irq_desc *old_desc, | |||
| 76 | node = cpu_to_node(cpu); | 78 | node = cpu_to_node(cpu); |
| 77 | desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); | 79 | desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); |
| 78 | if (!desc) { | 80 | if (!desc) { |
| 79 | printk(KERN_ERR "irq %d: can not get new irq_desc for migration.\n", irq); | 81 | printk(KERN_ERR "irq %d: can not get new irq_desc " |
| 82 | "for migration.\n", irq); | ||
| 83 | /* still use old one */ | ||
| 84 | desc = old_desc; | ||
| 85 | goto out_unlock; | ||
| 86 | } | ||
| 87 | if (!init_copy_one_irq_desc(irq, old_desc, desc, cpu)) { | ||
| 80 | /* still use old one */ | 88 | /* still use old one */ |
| 89 | kfree(desc); | ||
| 81 | desc = old_desc; | 90 | desc = old_desc; |
| 82 | goto out_unlock; | 91 | goto out_unlock; |
| 83 | } | 92 | } |
| 84 | init_copy_one_irq_desc(irq, old_desc, desc, cpu); | ||
| 85 | 93 | ||
| 86 | irq_desc_ptrs[irq] = desc; | 94 | irq_desc_ptrs[irq] = desc; |
| 87 | spin_unlock_irqrestore(&sparse_irq_lock, flags); | 95 | spin_unlock_irqrestore(&sparse_irq_lock, flags); |
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c index aae3f742bcec..692363dd591f 100644 --- a/kernel/irq/proc.c +++ b/kernel/irq/proc.c | |||
| @@ -20,11 +20,11 @@ static struct proc_dir_entry *root_irq_dir; | |||
| 20 | static int irq_affinity_proc_show(struct seq_file *m, void *v) | 20 | static int irq_affinity_proc_show(struct seq_file *m, void *v) |
| 21 | { | 21 | { |
| 22 | struct irq_desc *desc = irq_to_desc((long)m->private); | 22 | struct irq_desc *desc = irq_to_desc((long)m->private); |
| 23 | const struct cpumask *mask = &desc->affinity; | 23 | const struct cpumask *mask = desc->affinity; |
| 24 | 24 | ||
| 25 | #ifdef CONFIG_GENERIC_PENDING_IRQ | 25 | #ifdef CONFIG_GENERIC_PENDING_IRQ |
| 26 | if (desc->status & IRQ_MOVE_PENDING) | 26 | if (desc->status & IRQ_MOVE_PENDING) |
| 27 | mask = &desc->pending_mask; | 27 | mask = desc->pending_mask; |
| 28 | #endif | 28 | #endif |
| 29 | seq_cpumask(m, mask); | 29 | seq_cpumask(m, mask); |
| 30 | seq_putc(m, '\n'); | 30 | seq_putc(m, '\n'); |
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c index dd364c11e56e..4d568294de3e 100644 --- a/kernel/irq/spurious.c +++ b/kernel/irq/spurious.c | |||
| @@ -104,7 +104,7 @@ static int misrouted_irq(int irq) | |||
| 104 | return ok; | 104 | return ok; |
| 105 | } | 105 | } |
| 106 | 106 | ||
| 107 | static void poll_spurious_irqs(unsigned long dummy) | 107 | static void poll_all_shared_irqs(void) |
| 108 | { | 108 | { |
| 109 | struct irq_desc *desc; | 109 | struct irq_desc *desc; |
| 110 | int i; | 110 | int i; |
| @@ -123,11 +123,23 @@ static void poll_spurious_irqs(unsigned long dummy) | |||
| 123 | 123 | ||
| 124 | try_one_irq(i, desc); | 124 | try_one_irq(i, desc); |
| 125 | } | 125 | } |
| 126 | } | ||
| 127 | |||
| 128 | static void poll_spurious_irqs(unsigned long dummy) | ||
| 129 | { | ||
| 130 | poll_all_shared_irqs(); | ||
| 126 | 131 | ||
| 127 | mod_timer(&poll_spurious_irq_timer, | 132 | mod_timer(&poll_spurious_irq_timer, |
| 128 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); | 133 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); |
| 129 | } | 134 | } |
| 130 | 135 | ||
| 136 | #ifdef CONFIG_DEBUG_SHIRQ | ||
| 137 | void debug_poll_all_shared_irqs(void) | ||
| 138 | { | ||
| 139 | poll_all_shared_irqs(); | ||
| 140 | } | ||
| 141 | #endif | ||
| 142 | |||
| 131 | /* | 143 | /* |
| 132 | * If 99,900 of the previous 100,000 interrupts have not been handled | 144 | * If 99,900 of the previous 100,000 interrupts have not been handled |
| 133 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic | 145 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic |
diff --git a/kernel/kexec.c b/kernel/kexec.c index 483899578259..c7fd6692939d 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c | |||
| @@ -1130,7 +1130,7 @@ void crash_save_cpu(struct pt_regs *regs, int cpu) | |||
| 1130 | return; | 1130 | return; |
| 1131 | memset(&prstatus, 0, sizeof(prstatus)); | 1131 | memset(&prstatus, 0, sizeof(prstatus)); |
| 1132 | prstatus.pr_pid = current->pid; | 1132 | prstatus.pr_pid = current->pid; |
| 1133 | elf_core_copy_regs(&prstatus.pr_reg, regs); | 1133 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
| 1134 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 1134 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
| 1135 | &prstatus, sizeof(prstatus)); | 1135 | &prstatus, sizeof(prstatus)); |
| 1136 | final_note(buf); | 1136 | final_note(buf); |
diff --git a/kernel/latencytop.c b/kernel/latencytop.c index 449db466bdbc..ca07c5c0c914 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c | |||
| @@ -9,6 +9,44 @@ | |||
| 9 | * as published by the Free Software Foundation; version 2 | 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. | 10 | * of the License. |
| 11 | */ | 11 | */ |
| 12 | |||
| 13 | /* | ||
| 14 | * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is | ||
| 15 | * used by the "latencytop" userspace tool. The latency that is tracked is not | ||
| 16 | * the 'traditional' interrupt latency (which is primarily caused by something | ||
| 17 | * else consuming CPU), but instead, it is the latency an application encounters | ||
| 18 | * because the kernel sleeps on its behalf for various reasons. | ||
| 19 | * | ||
| 20 | * This code tracks 2 levels of statistics: | ||
| 21 | * 1) System level latency | ||
| 22 | * 2) Per process latency | ||
| 23 | * | ||
| 24 | * The latency is stored in fixed sized data structures in an accumulated form; | ||
| 25 | * if the "same" latency cause is hit twice, this will be tracked as one entry | ||
| 26 | * in the data structure. Both the count, total accumulated latency and maximum | ||
| 27 | * latency are tracked in this data structure. When the fixed size structure is | ||
| 28 | * full, no new causes are tracked until the buffer is flushed by writing to | ||
| 29 | * the /proc file; the userspace tool does this on a regular basis. | ||
| 30 | * | ||
| 31 | * A latency cause is identified by a stringified backtrace at the point that | ||
| 32 | * the scheduler gets invoked. The userland tool will use this string to | ||
| 33 | * identify the cause of the latency in human readable form. | ||
| 34 | * | ||
| 35 | * The information is exported via /proc/latency_stats and /proc/<pid>/latency. | ||
| 36 | * These files look like this: | ||
| 37 | * | ||
| 38 | * Latency Top version : v0.1 | ||
| 39 | * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl | ||
| 40 | * | | | | | ||
| 41 | * | | | +----> the stringified backtrace | ||
| 42 | * | | +---------> The maximum latency for this entry in microseconds | ||
| 43 | * | +--------------> The accumulated latency for this entry (microseconds) | ||
| 44 | * +-------------------> The number of times this entry is hit | ||
| 45 | * | ||
| 46 | * (note: the average latency is the accumulated latency divided by the number | ||
| 47 | * of times) | ||
| 48 | */ | ||
| 49 | |||
| 12 | #include <linux/latencytop.h> | 50 | #include <linux/latencytop.h> |
| 13 | #include <linux/kallsyms.h> | 51 | #include <linux/kallsyms.h> |
| 14 | #include <linux/seq_file.h> | 52 | #include <linux/seq_file.h> |
| @@ -72,7 +110,7 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
| 72 | firstnonnull = i; | 110 | firstnonnull = i; |
| 73 | continue; | 111 | continue; |
| 74 | } | 112 | } |
| 75 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 113 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
| 76 | unsigned long record = lat->backtrace[q]; | 114 | unsigned long record = lat->backtrace[q]; |
| 77 | 115 | ||
| 78 | if (latency_record[i].backtrace[q] != record) { | 116 | if (latency_record[i].backtrace[q] != record) { |
| @@ -101,31 +139,52 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
| 101 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); | 139 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); |
| 102 | } | 140 | } |
| 103 | 141 | ||
| 104 | static inline void store_stacktrace(struct task_struct *tsk, struct latency_record *lat) | 142 | /* |
| 143 | * Iterator to store a backtrace into a latency record entry | ||
| 144 | */ | ||
| 145 | static inline void store_stacktrace(struct task_struct *tsk, | ||
| 146 | struct latency_record *lat) | ||
| 105 | { | 147 | { |
| 106 | struct stack_trace trace; | 148 | struct stack_trace trace; |
| 107 | 149 | ||
| 108 | memset(&trace, 0, sizeof(trace)); | 150 | memset(&trace, 0, sizeof(trace)); |
| 109 | trace.max_entries = LT_BACKTRACEDEPTH; | 151 | trace.max_entries = LT_BACKTRACEDEPTH; |
| 110 | trace.entries = &lat->backtrace[0]; | 152 | trace.entries = &lat->backtrace[0]; |
| 111 | trace.skip = 0; | ||
| 112 | save_stack_trace_tsk(tsk, &trace); | 153 | save_stack_trace_tsk(tsk, &trace); |
| 113 | } | 154 | } |
| 114 | 155 | ||
| 156 | /** | ||
| 157 | * __account_scheduler_latency - record an occured latency | ||
| 158 | * @tsk - the task struct of the task hitting the latency | ||
| 159 | * @usecs - the duration of the latency in microseconds | ||
| 160 | * @inter - 1 if the sleep was interruptible, 0 if uninterruptible | ||
| 161 | * | ||
| 162 | * This function is the main entry point for recording latency entries | ||
| 163 | * as called by the scheduler. | ||
| 164 | * | ||
| 165 | * This function has a few special cases to deal with normal 'non-latency' | ||
| 166 | * sleeps: specifically, interruptible sleep longer than 5 msec is skipped | ||
| 167 | * since this usually is caused by waiting for events via select() and co. | ||
| 168 | * | ||
| 169 | * Negative latencies (caused by time going backwards) are also explicitly | ||
| 170 | * skipped. | ||
| 171 | */ | ||
| 115 | void __sched | 172 | void __sched |
| 116 | account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | 173 | __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) |
| 117 | { | 174 | { |
| 118 | unsigned long flags; | 175 | unsigned long flags; |
| 119 | int i, q; | 176 | int i, q; |
| 120 | struct latency_record lat; | 177 | struct latency_record lat; |
| 121 | 178 | ||
| 122 | if (!latencytop_enabled) | ||
| 123 | return; | ||
| 124 | |||
| 125 | /* Long interruptible waits are generally user requested... */ | 179 | /* Long interruptible waits are generally user requested... */ |
| 126 | if (inter && usecs > 5000) | 180 | if (inter && usecs > 5000) |
| 127 | return; | 181 | return; |
| 128 | 182 | ||
| 183 | /* Negative sleeps are time going backwards */ | ||
| 184 | /* Zero-time sleeps are non-interesting */ | ||
| 185 | if (usecs <= 0) | ||
| 186 | return; | ||
| 187 | |||
| 129 | memset(&lat, 0, sizeof(lat)); | 188 | memset(&lat, 0, sizeof(lat)); |
| 130 | lat.count = 1; | 189 | lat.count = 1; |
| 131 | lat.time = usecs; | 190 | lat.time = usecs; |
| @@ -143,12 +202,12 @@ account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | |||
| 143 | if (tsk->latency_record_count >= LT_SAVECOUNT) | 202 | if (tsk->latency_record_count >= LT_SAVECOUNT) |
| 144 | goto out_unlock; | 203 | goto out_unlock; |
| 145 | 204 | ||
| 146 | for (i = 0; i < LT_SAVECOUNT ; i++) { | 205 | for (i = 0; i < LT_SAVECOUNT; i++) { |
| 147 | struct latency_record *mylat; | 206 | struct latency_record *mylat; |
| 148 | int same = 1; | 207 | int same = 1; |
| 149 | 208 | ||
| 150 | mylat = &tsk->latency_record[i]; | 209 | mylat = &tsk->latency_record[i]; |
| 151 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 210 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
| 152 | unsigned long record = lat.backtrace[q]; | 211 | unsigned long record = lat.backtrace[q]; |
| 153 | 212 | ||
| 154 | if (mylat->backtrace[q] != record) { | 213 | if (mylat->backtrace[q] != record) { |
| @@ -186,7 +245,7 @@ static int lstats_show(struct seq_file *m, void *v) | |||
| 186 | for (i = 0; i < MAXLR; i++) { | 245 | for (i = 0; i < MAXLR; i++) { |
| 187 | if (latency_record[i].backtrace[0]) { | 246 | if (latency_record[i].backtrace[0]) { |
| 188 | int q; | 247 | int q; |
| 189 | seq_printf(m, "%i %li %li ", | 248 | seq_printf(m, "%i %lu %lu ", |
| 190 | latency_record[i].count, | 249 | latency_record[i].count, |
| 191 | latency_record[i].time, | 250 | latency_record[i].time, |
| 192 | latency_record[i].max); | 251 | latency_record[i].max); |
| @@ -223,7 +282,7 @@ static int lstats_open(struct inode *inode, struct file *filp) | |||
| 223 | return single_open(filp, lstats_show, NULL); | 282 | return single_open(filp, lstats_show, NULL); |
| 224 | } | 283 | } |
| 225 | 284 | ||
| 226 | static struct file_operations lstats_fops = { | 285 | static const struct file_operations lstats_fops = { |
| 227 | .open = lstats_open, | 286 | .open = lstats_open, |
| 228 | .read = seq_read, | 287 | .read = seq_read, |
| 229 | .write = lstats_write, | 288 | .write = lstats_write, |
| @@ -236,4 +295,4 @@ static int __init init_lstats_procfs(void) | |||
| 236 | proc_create("latency_stats", 0644, NULL, &lstats_fops); | 295 | proc_create("latency_stats", 0644, NULL, &lstats_fops); |
| 237 | return 0; | 296 | return 0; |
| 238 | } | 297 | } |
| 239 | __initcall(init_lstats_procfs); | 298 | device_initcall(init_lstats_procfs); |
diff --git a/kernel/module.c b/kernel/module.c index 1196f5d11700..f77ac320d0b5 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
| @@ -51,6 +51,7 @@ | |||
| 51 | #include <linux/tracepoint.h> | 51 | #include <linux/tracepoint.h> |
| 52 | #include <linux/ftrace.h> | 52 | #include <linux/ftrace.h> |
| 53 | #include <linux/async.h> | 53 | #include <linux/async.h> |
| 54 | #include <linux/percpu.h> | ||
| 54 | 55 | ||
| 55 | #if 0 | 56 | #if 0 |
| 56 | #define DEBUGP printk | 57 | #define DEBUGP printk |
| @@ -366,6 +367,34 @@ static struct module *find_module(const char *name) | |||
| 366 | } | 367 | } |
| 367 | 368 | ||
| 368 | #ifdef CONFIG_SMP | 369 | #ifdef CONFIG_SMP |
| 370 | |||
| 371 | #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
| 372 | |||
| 373 | static void *percpu_modalloc(unsigned long size, unsigned long align, | ||
| 374 | const char *name) | ||
| 375 | { | ||
| 376 | void *ptr; | ||
| 377 | |||
| 378 | if (align > PAGE_SIZE) { | ||
| 379 | printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n", | ||
| 380 | name, align, PAGE_SIZE); | ||
| 381 | align = PAGE_SIZE; | ||
| 382 | } | ||
| 383 | |||
| 384 | ptr = __alloc_reserved_percpu(size, align); | ||
| 385 | if (!ptr) | ||
| 386 | printk(KERN_WARNING | ||
| 387 | "Could not allocate %lu bytes percpu data\n", size); | ||
| 388 | return ptr; | ||
| 389 | } | ||
| 390 | |||
| 391 | static void percpu_modfree(void *freeme) | ||
| 392 | { | ||
| 393 | free_percpu(freeme); | ||
| 394 | } | ||
| 395 | |||
| 396 | #else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | ||
| 397 | |||
| 369 | /* Number of blocks used and allocated. */ | 398 | /* Number of blocks used and allocated. */ |
| 370 | static unsigned int pcpu_num_used, pcpu_num_allocated; | 399 | static unsigned int pcpu_num_used, pcpu_num_allocated; |
| 371 | /* Size of each block. -ve means used. */ | 400 | /* Size of each block. -ve means used. */ |
| @@ -480,21 +509,6 @@ static void percpu_modfree(void *freeme) | |||
| 480 | } | 509 | } |
| 481 | } | 510 | } |
| 482 | 511 | ||
| 483 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | ||
| 484 | Elf_Shdr *sechdrs, | ||
| 485 | const char *secstrings) | ||
| 486 | { | ||
| 487 | return find_sec(hdr, sechdrs, secstrings, ".data.percpu"); | ||
| 488 | } | ||
| 489 | |||
| 490 | static void percpu_modcopy(void *pcpudest, const void *from, unsigned long size) | ||
| 491 | { | ||
| 492 | int cpu; | ||
| 493 | |||
| 494 | for_each_possible_cpu(cpu) | ||
| 495 | memcpy(pcpudest + per_cpu_offset(cpu), from, size); | ||
| 496 | } | ||
| 497 | |||
| 498 | static int percpu_modinit(void) | 512 | static int percpu_modinit(void) |
| 499 | { | 513 | { |
| 500 | pcpu_num_used = 2; | 514 | pcpu_num_used = 2; |
| @@ -513,7 +527,26 @@ static int percpu_modinit(void) | |||
| 513 | return 0; | 527 | return 0; |
| 514 | } | 528 | } |
| 515 | __initcall(percpu_modinit); | 529 | __initcall(percpu_modinit); |
| 530 | |||
| 531 | #endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | ||
| 532 | |||
| 533 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | ||
| 534 | Elf_Shdr *sechdrs, | ||
| 535 | const char *secstrings) | ||
| 536 | { | ||
| 537 | return find_sec(hdr, sechdrs, secstrings, ".data.percpu"); | ||
| 538 | } | ||
| 539 | |||
| 540 | static void percpu_modcopy(void *pcpudest, const void *from, unsigned long size) | ||
| 541 | { | ||
| 542 | int cpu; | ||
| 543 | |||
| 544 | for_each_possible_cpu(cpu) | ||
| 545 | memcpy(pcpudest + per_cpu_offset(cpu), from, size); | ||
| 546 | } | ||
| 547 | |||
| 516 | #else /* ... !CONFIG_SMP */ | 548 | #else /* ... !CONFIG_SMP */ |
| 549 | |||
| 517 | static inline void *percpu_modalloc(unsigned long size, unsigned long align, | 550 | static inline void *percpu_modalloc(unsigned long size, unsigned long align, |
| 518 | const char *name) | 551 | const char *name) |
| 519 | { | 552 | { |
| @@ -535,6 +568,7 @@ static inline void percpu_modcopy(void *pcpudst, const void *src, | |||
| 535 | /* pcpusec should be 0, and size of that section should be 0. */ | 568 | /* pcpusec should be 0, and size of that section should be 0. */ |
| 536 | BUG_ON(size != 0); | 569 | BUG_ON(size != 0); |
| 537 | } | 570 | } |
| 571 | |||
| 538 | #endif /* CONFIG_SMP */ | 572 | #endif /* CONFIG_SMP */ |
| 539 | 573 | ||
| 540 | #define MODINFO_ATTR(field) \ | 574 | #define MODINFO_ATTR(field) \ |
| @@ -822,7 +856,7 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
| 822 | mutex_lock(&module_mutex); | 856 | mutex_lock(&module_mutex); |
| 823 | /* Store the name of the last unloaded module for diagnostic purposes */ | 857 | /* Store the name of the last unloaded module for diagnostic purposes */ |
| 824 | strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); | 858 | strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); |
| 825 | unregister_dynamic_debug_module(mod->name); | 859 | ddebug_remove_module(mod->name); |
| 826 | free_module(mod); | 860 | free_module(mod); |
| 827 | 861 | ||
| 828 | out: | 862 | out: |
| @@ -1827,19 +1861,13 @@ static inline void add_kallsyms(struct module *mod, | |||
| 1827 | } | 1861 | } |
| 1828 | #endif /* CONFIG_KALLSYMS */ | 1862 | #endif /* CONFIG_KALLSYMS */ |
| 1829 | 1863 | ||
| 1830 | static void dynamic_printk_setup(struct mod_debug *debug, unsigned int num) | 1864 | static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num) |
| 1831 | { | 1865 | { |
| 1832 | #ifdef CONFIG_DYNAMIC_PRINTK_DEBUG | 1866 | #ifdef CONFIG_DYNAMIC_DEBUG |
| 1833 | unsigned int i; | 1867 | if (ddebug_add_module(debug, num, debug->modname)) |
| 1834 | 1868 | printk(KERN_ERR "dynamic debug error adding module: %s\n", | |
| 1835 | for (i = 0; i < num; i++) { | 1869 | debug->modname); |
| 1836 | register_dynamic_debug_module(debug[i].modname, | 1870 | #endif |
| 1837 | debug[i].type, | ||
| 1838 | debug[i].logical_modname, | ||
| 1839 | debug[i].flag_names, | ||
| 1840 | debug[i].hash, debug[i].hash2); | ||
| 1841 | } | ||
| 1842 | #endif /* CONFIG_DYNAMIC_PRINTK_DEBUG */ | ||
| 1843 | } | 1871 | } |
| 1844 | 1872 | ||
| 1845 | static void *module_alloc_update_bounds(unsigned long size) | 1873 | static void *module_alloc_update_bounds(unsigned long size) |
| @@ -2213,12 +2241,13 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2213 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2241 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); |
| 2214 | 2242 | ||
| 2215 | if (!mod->taints) { | 2243 | if (!mod->taints) { |
| 2216 | struct mod_debug *debug; | 2244 | struct _ddebug *debug; |
| 2217 | unsigned int num_debug; | 2245 | unsigned int num_debug; |
| 2218 | 2246 | ||
| 2219 | debug = section_objs(hdr, sechdrs, secstrings, "__verbose", | 2247 | debug = section_objs(hdr, sechdrs, secstrings, "__verbose", |
| 2220 | sizeof(*debug), &num_debug); | 2248 | sizeof(*debug), &num_debug); |
| 2221 | dynamic_printk_setup(debug, num_debug); | 2249 | if (debug) |
| 2250 | dynamic_debug_setup(debug, num_debug); | ||
| 2222 | } | 2251 | } |
| 2223 | 2252 | ||
| 2224 | /* sechdrs[0].sh_size is always zero */ | 2253 | /* sechdrs[0].sh_size is always zero */ |
diff --git a/kernel/panic.c b/kernel/panic.c index 2a2ff36ff44d..32fe4eff1b89 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
| @@ -74,6 +74,9 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 74 | vsnprintf(buf, sizeof(buf), fmt, args); | 74 | vsnprintf(buf, sizeof(buf), fmt, args); |
| 75 | va_end(args); | 75 | va_end(args); |
| 76 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); | 76 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); |
| 77 | #ifdef CONFIG_DEBUG_BUGVERBOSE | ||
| 78 | dump_stack(); | ||
| 79 | #endif | ||
| 77 | bust_spinlocks(0); | 80 | bust_spinlocks(0); |
| 78 | 81 | ||
| 79 | /* | 82 | /* |
| @@ -355,15 +358,18 @@ EXPORT_SYMBOL(warn_slowpath); | |||
| 355 | #endif | 358 | #endif |
| 356 | 359 | ||
| 357 | #ifdef CONFIG_CC_STACKPROTECTOR | 360 | #ifdef CONFIG_CC_STACKPROTECTOR |
| 361 | |||
| 358 | /* | 362 | /* |
| 359 | * Called when gcc's -fstack-protector feature is used, and | 363 | * Called when gcc's -fstack-protector feature is used, and |
| 360 | * gcc detects corruption of the on-stack canary value | 364 | * gcc detects corruption of the on-stack canary value |
| 361 | */ | 365 | */ |
| 362 | void __stack_chk_fail(void) | 366 | void __stack_chk_fail(void) |
| 363 | { | 367 | { |
| 364 | panic("stack-protector: Kernel stack is corrupted"); | 368 | panic("stack-protector: Kernel stack is corrupted in: %p\n", |
| 369 | __builtin_return_address(0)); | ||
| 365 | } | 370 | } |
| 366 | EXPORT_SYMBOL(__stack_chk_fail); | 371 | EXPORT_SYMBOL(__stack_chk_fail); |
| 372 | |||
| 367 | #endif | 373 | #endif |
| 368 | 374 | ||
| 369 | core_param(panic, panic_timeout, int, 0644); | 375 | core_param(panic, panic_timeout, int, 0644); |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e976e505648d..8e5d9a68b022 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -1370,7 +1370,8 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
| 1370 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) | 1370 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
| 1371 | return 1; | 1371 | return 1; |
| 1372 | } | 1372 | } |
| 1373 | return 0; | 1373 | |
| 1374 | return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY; | ||
| 1374 | } | 1375 | } |
| 1375 | 1376 | ||
| 1376 | /* | 1377 | /* |
diff --git a/kernel/relay.c b/kernel/relay.c index 9d79b7854fa6..8f2179c8056f 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
| @@ -750,7 +750,7 @@ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) | |||
| 750 | * from the scheduler (trying to re-grab | 750 | * from the scheduler (trying to re-grab |
| 751 | * rq->lock), so defer it. | 751 | * rq->lock), so defer it. |
| 752 | */ | 752 | */ |
| 753 | __mod_timer(&buf->timer, jiffies + 1); | 753 | mod_timer(&buf->timer, jiffies + 1); |
| 754 | } | 754 | } |
| 755 | 755 | ||
| 756 | old = buf->data; | 756 | old = buf->data; |
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c2ba67..5757e03cfac0 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
| 331 | */ | 331 | */ |
| 332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); |
| 333 | 333 | ||
| 334 | #ifdef CONFIG_SMP | ||
| 335 | static int root_task_group_empty(void) | ||
| 336 | { | ||
| 337 | return list_empty(&root_task_group.children); | ||
| 338 | } | ||
| 339 | #endif | ||
| 340 | |||
| 334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED |
| 336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
| @@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 391 | 398 | ||
| 392 | #else | 399 | #else |
| 393 | 400 | ||
| 401 | #ifdef CONFIG_SMP | ||
| 402 | static int root_task_group_empty(void) | ||
| 403 | { | ||
| 404 | return 1; | ||
| 405 | } | ||
| 406 | #endif | ||
| 407 | |||
| 394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) |
| 396 | { | 410 | { |
| @@ -467,11 +481,17 @@ struct rt_rq { | |||
| 467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; |
| 468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; |
| 469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { |
| 485 | int curr; /* highest queued rt task prio */ | ||
| 486 | #ifdef CONFIG_SMP | ||
| 487 | int next; /* next highest */ | ||
| 488 | #endif | ||
| 489 | } highest_prio; | ||
| 471 | #endif | 490 | #endif |
| 472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP |
| 473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; |
| 474 | int overloaded; | 493 | int overloaded; |
| 494 | struct plist_head pushable_tasks; | ||
| 475 | #endif | 495 | #endif |
| 476 | int rt_throttled; | 496 | int rt_throttled; |
| 477 | u64 rt_time; | 497 | u64 rt_time; |
| @@ -549,7 +569,6 @@ struct rq { | |||
| 549 | unsigned long nr_running; | 569 | unsigned long nr_running; |
| 550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 |
| 551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| 552 | unsigned char idle_at_tick; | ||
| 553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ |
| 554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; |
| 555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; |
| @@ -590,6 +609,7 @@ struct rq { | |||
| 590 | struct root_domain *rd; | 609 | struct root_domain *rd; |
| 591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; |
| 592 | 611 | ||
| 612 | unsigned char idle_at_tick; | ||
| 593 | /* For active balancing */ | 613 | /* For active balancing */ |
| 594 | int active_balance; | 614 | int active_balance; |
| 595 | int push_cpu; | 615 | int push_cpu; |
| @@ -618,9 +638,6 @@ struct rq { | |||
| 618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| 619 | 639 | ||
| 620 | /* sys_sched_yield() stats */ | 640 | /* sys_sched_yield() stats */ |
| 621 | unsigned int yld_exp_empty; | ||
| 622 | unsigned int yld_act_empty; | ||
| 623 | unsigned int yld_both_empty; | ||
| 624 | unsigned int yld_count; | 641 | unsigned int yld_count; |
| 625 | 642 | ||
| 626 | /* schedule() stats */ | 643 | /* schedule() stats */ |
| @@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) | |||
| 1183 | 1200 | ||
| 1184 | assert_spin_locked(&task_rq(p)->lock); | 1201 | assert_spin_locked(&task_rq(p)->lock); |
| 1185 | 1202 | ||
| 1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1203 | if (test_tsk_need_resched(p)) |
| 1187 | return; | 1204 | return; |
| 1188 | 1205 | ||
| 1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1206 | set_tsk_need_resched(p); |
| 1190 | 1207 | ||
| 1191 | cpu = task_cpu(p); | 1208 | cpu = task_cpu(p); |
| 1192 | if (cpu == smp_processor_id()) | 1209 | if (cpu == smp_processor_id()) |
| @@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) | |||
| 1242 | * lockless. The worst case is that the other CPU runs the | 1259 | * lockless. The worst case is that the other CPU runs the |
| 1243 | * idle task through an additional NOOP schedule() | 1260 | * idle task through an additional NOOP schedule() |
| 1244 | */ | 1261 | */ |
| 1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1262 | set_tsk_need_resched(rq->idle); |
| 1246 | 1263 | ||
| 1247 | /* NEED_RESCHED must be visible before we test polling */ | 1264 | /* NEED_RESCHED must be visible before we test polling */ |
| 1248 | smp_mb(); | 1265 | smp_mb(); |
| @@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1610 | 1627 | ||
| 1611 | #endif | 1628 | #endif |
| 1612 | 1629 | ||
| 1630 | #ifdef CONFIG_PREEMPT | ||
| 1631 | |||
| 1613 | /* | 1632 | /* |
| 1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1633 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1634 | * way at the expense of forcing extra atomic operations in all | ||
| 1635 | * invocations. This assures that the double_lock is acquired using the | ||
| 1636 | * same underlying policy as the spinlock_t on this architecture, which | ||
| 1637 | * reduces latency compared to the unfair variant below. However, it | ||
| 1638 | * also adds more overhead and therefore may reduce throughput. | ||
| 1615 | */ | 1639 | */ |
| 1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1640 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1641 | __releases(this_rq->lock) | ||
| 1642 | __acquires(busiest->lock) | ||
| 1643 | __acquires(this_rq->lock) | ||
| 1644 | { | ||
| 1645 | spin_unlock(&this_rq->lock); | ||
| 1646 | double_rq_lock(this_rq, busiest); | ||
| 1647 | |||
| 1648 | return 1; | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | #else | ||
| 1652 | /* | ||
| 1653 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
| 1654 | * latency by eliminating extra atomic operations when the locks are | ||
| 1655 | * already in proper order on entry. This favors lower cpu-ids and will | ||
| 1656 | * grant the double lock to lower cpus over higher ids under contention, | ||
| 1657 | * regardless of entry order into the function. | ||
| 1658 | */ | ||
| 1659 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1617 | __releases(this_rq->lock) | 1660 | __releases(this_rq->lock) |
| 1618 | __acquires(busiest->lock) | 1661 | __acquires(busiest->lock) |
| 1619 | __acquires(this_rq->lock) | 1662 | __acquires(this_rq->lock) |
| 1620 | { | 1663 | { |
| 1621 | int ret = 0; | 1664 | int ret = 0; |
| 1622 | 1665 | ||
| 1623 | if (unlikely(!irqs_disabled())) { | ||
| 1624 | /* printk() doesn't work good under rq->lock */ | ||
| 1625 | spin_unlock(&this_rq->lock); | ||
| 1626 | BUG_ON(1); | ||
| 1627 | } | ||
| 1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1666 | if (unlikely(!spin_trylock(&busiest->lock))) { |
| 1629 | if (busiest < this_rq) { | 1667 | if (busiest < this_rq) { |
| 1630 | spin_unlock(&this_rq->lock); | 1668 | spin_unlock(&this_rq->lock); |
| @@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
| 1637 | return ret; | 1675 | return ret; |
| 1638 | } | 1676 | } |
| 1639 | 1677 | ||
| 1678 | #endif /* CONFIG_PREEMPT */ | ||
| 1679 | |||
| 1680 | /* | ||
| 1681 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
| 1682 | */ | ||
| 1683 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1684 | { | ||
| 1685 | if (unlikely(!irqs_disabled())) { | ||
| 1686 | /* printk() doesn't work good under rq->lock */ | ||
| 1687 | spin_unlock(&this_rq->lock); | ||
| 1688 | BUG_ON(1); | ||
| 1689 | } | ||
| 1690 | |||
| 1691 | return _double_lock_balance(this_rq, busiest); | ||
| 1692 | } | ||
| 1693 | |||
| 1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1694 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| 1641 | __releases(busiest->lock) | 1695 | __releases(busiest->lock) |
| 1642 | { | 1696 | { |
| @@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
| 1705 | 1759 | ||
| 1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1760 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
| 1707 | { | 1761 | { |
| 1762 | if (wakeup) | ||
| 1763 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
| 1764 | |||
| 1708 | sched_info_queued(p); | 1765 | sched_info_queued(p); |
| 1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1766 | p->sched_class->enqueue_task(rq, p, wakeup); |
| 1710 | p->se.on_rq = 1; | 1767 | p->se.on_rq = 1; |
| @@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 1712 | 1769 | ||
| 1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1770 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
| 1714 | { | 1771 | { |
| 1715 | if (sleep && p->se.last_wakeup) { | 1772 | if (sleep) { |
| 1716 | update_avg(&p->se.avg_overlap, | 1773 | if (p->se.last_wakeup) { |
| 1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1774 | update_avg(&p->se.avg_overlap, |
| 1718 | p->se.last_wakeup = 0; | 1775 | p->se.sum_exec_runtime - p->se.last_wakeup); |
| 1776 | p->se.last_wakeup = 0; | ||
| 1777 | } else { | ||
| 1778 | update_avg(&p->se.avg_wakeup, | ||
| 1779 | sysctl_sched_wakeup_granularity); | ||
| 1780 | } | ||
| 1719 | } | 1781 | } |
| 1720 | 1782 | ||
| 1721 | sched_info_dequeued(p); | 1783 | sched_info_dequeued(p); |
| @@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
| 2017 | * it must be off the runqueue _entirely_, and not | 2079 | * it must be off the runqueue _entirely_, and not |
| 2018 | * preempted! | 2080 | * preempted! |
| 2019 | * | 2081 | * |
| 2020 | * So if it wa still runnable (but just not actively | 2082 | * So if it was still runnable (but just not actively |
| 2021 | * running right now), it's preempted, and we should | 2083 | * running right now), it's preempted, and we should |
| 2022 | * yield - it could be a while. | 2084 | * yield - it could be a while. |
| 2023 | */ | 2085 | */ |
| @@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2267 | sync = 0; | 2329 | sync = 0; |
| 2268 | 2330 | ||
| 2269 | #ifdef CONFIG_SMP | 2331 | #ifdef CONFIG_SMP |
| 2270 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2332 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
| 2271 | struct sched_domain *sd; | 2333 | struct sched_domain *sd; |
| 2272 | 2334 | ||
| 2273 | this_cpu = raw_smp_processor_id(); | 2335 | this_cpu = raw_smp_processor_id(); |
| @@ -2345,6 +2407,22 @@ out_activate: | |||
| 2345 | activate_task(rq, p, 1); | 2407 | activate_task(rq, p, 1); |
| 2346 | success = 1; | 2408 | success = 1; |
| 2347 | 2409 | ||
| 2410 | /* | ||
| 2411 | * Only attribute actual wakeups done by this task. | ||
| 2412 | */ | ||
| 2413 | if (!in_interrupt()) { | ||
| 2414 | struct sched_entity *se = ¤t->se; | ||
| 2415 | u64 sample = se->sum_exec_runtime; | ||
| 2416 | |||
| 2417 | if (se->last_wakeup) | ||
| 2418 | sample -= se->last_wakeup; | ||
| 2419 | else | ||
| 2420 | sample -= se->start_runtime; | ||
| 2421 | update_avg(&se->avg_wakeup, sample); | ||
| 2422 | |||
| 2423 | se->last_wakeup = se->sum_exec_runtime; | ||
| 2424 | } | ||
| 2425 | |||
| 2348 | out_running: | 2426 | out_running: |
| 2349 | trace_sched_wakeup(rq, p, success); | 2427 | trace_sched_wakeup(rq, p, success); |
| 2350 | check_preempt_curr(rq, p, sync); | 2428 | check_preempt_curr(rq, p, sync); |
| @@ -2355,8 +2433,6 @@ out_running: | |||
| 2355 | p->sched_class->task_wake_up(rq, p); | 2433 | p->sched_class->task_wake_up(rq, p); |
| 2356 | #endif | 2434 | #endif |
| 2357 | out: | 2435 | out: |
| 2358 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
| 2359 | |||
| 2360 | task_rq_unlock(rq, &flags); | 2436 | task_rq_unlock(rq, &flags); |
| 2361 | 2437 | ||
| 2362 | return success; | 2438 | return success; |
| @@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) | |||
| 2386 | p->se.prev_sum_exec_runtime = 0; | 2462 | p->se.prev_sum_exec_runtime = 0; |
| 2387 | p->se.last_wakeup = 0; | 2463 | p->se.last_wakeup = 0; |
| 2388 | p->se.avg_overlap = 0; | 2464 | p->se.avg_overlap = 0; |
| 2465 | p->se.start_runtime = 0; | ||
| 2466 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
| 2389 | 2467 | ||
| 2390 | #ifdef CONFIG_SCHEDSTATS | 2468 | #ifdef CONFIG_SCHEDSTATS |
| 2391 | p->se.wait_start = 0; | 2469 | p->se.wait_start = 0; |
| @@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2448 | /* Want to start with kernel preemption disabled. */ | 2526 | /* Want to start with kernel preemption disabled. */ |
| 2449 | task_thread_info(p)->preempt_count = 1; | 2527 | task_thread_info(p)->preempt_count = 1; |
| 2450 | #endif | 2528 | #endif |
| 2529 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
| 2530 | |||
| 2451 | put_cpu(); | 2531 | put_cpu(); |
| 2452 | } | 2532 | } |
| 2453 | 2533 | ||
| @@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2491 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 2492 | 2572 | ||
| 2493 | /** | 2573 | /** |
| 2494 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2574 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| 2495 | * @notifier: notifier struct to register | 2575 | * @notifier: notifier struct to register |
| 2496 | */ | 2576 | */ |
| 2497 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2577 | void preempt_notifier_register(struct preempt_notifier *notifier) |
| @@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2588 | { | 2668 | { |
| 2589 | struct mm_struct *mm = rq->prev_mm; | 2669 | struct mm_struct *mm = rq->prev_mm; |
| 2590 | long prev_state; | 2670 | long prev_state; |
| 2671 | #ifdef CONFIG_SMP | ||
| 2672 | int post_schedule = 0; | ||
| 2673 | |||
| 2674 | if (current->sched_class->needs_post_schedule) | ||
| 2675 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
| 2676 | #endif | ||
| 2591 | 2677 | ||
| 2592 | rq->prev_mm = NULL; | 2678 | rq->prev_mm = NULL; |
| 2593 | 2679 | ||
| @@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2606 | finish_arch_switch(prev); | 2692 | finish_arch_switch(prev); |
| 2607 | finish_lock_switch(rq, prev); | 2693 | finish_lock_switch(rq, prev); |
| 2608 | #ifdef CONFIG_SMP | 2694 | #ifdef CONFIG_SMP |
| 2609 | if (current->sched_class->post_schedule) | 2695 | if (post_schedule) |
| 2610 | current->sched_class->post_schedule(rq); | 2696 | current->sched_class->post_schedule(rq); |
| 2611 | #endif | 2697 | #endif |
| 2612 | 2698 | ||
| @@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2913 | struct sched_domain *sd, enum cpu_idle_type idle, | 2999 | struct sched_domain *sd, enum cpu_idle_type idle, |
| 2914 | int *all_pinned) | 3000 | int *all_pinned) |
| 2915 | { | 3001 | { |
| 3002 | int tsk_cache_hot = 0; | ||
| 2916 | /* | 3003 | /* |
| 2917 | * We do not migrate tasks that are: | 3004 | * We do not migrate tasks that are: |
| 2918 | * 1) running (obviously), or | 3005 | * 1) running (obviously), or |
| @@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2936 | * 2) too many balance attempts have failed. | 3023 | * 2) too many balance attempts have failed. |
| 2937 | */ | 3024 | */ |
| 2938 | 3025 | ||
| 2939 | if (!task_hot(p, rq->clock, sd) || | 3026 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
| 2940 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3027 | if (!tsk_cache_hot || |
| 3028 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
| 2941 | #ifdef CONFIG_SCHEDSTATS | 3029 | #ifdef CONFIG_SCHEDSTATS |
| 2942 | if (task_hot(p, rq->clock, sd)) { | 3030 | if (tsk_cache_hot) { |
| 2943 | schedstat_inc(sd, lb_hot_gained[idle]); | 3031 | schedstat_inc(sd, lb_hot_gained[idle]); |
| 2944 | schedstat_inc(p, se.nr_forced_migrations); | 3032 | schedstat_inc(p, se.nr_forced_migrations); |
| 2945 | } | 3033 | } |
| @@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2947 | return 1; | 3035 | return 1; |
| 2948 | } | 3036 | } |
| 2949 | 3037 | ||
| 2950 | if (task_hot(p, rq->clock, sd)) { | 3038 | if (tsk_cache_hot) { |
| 2951 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3039 | schedstat_inc(p, se.nr_failed_migrations_hot); |
| 2952 | return 0; | 3040 | return 0; |
| 2953 | } | 3041 | } |
| @@ -2987,6 +3075,16 @@ next: | |||
| 2987 | pulled++; | 3075 | pulled++; |
| 2988 | rem_load_move -= p->se.load.weight; | 3076 | rem_load_move -= p->se.load.weight; |
| 2989 | 3077 | ||
| 3078 | #ifdef CONFIG_PREEMPT | ||
| 3079 | /* | ||
| 3080 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
| 3081 | * will stop after the first task is pulled to minimize the critical | ||
| 3082 | * section. | ||
| 3083 | */ | ||
| 3084 | if (idle == CPU_NEWLY_IDLE) | ||
| 3085 | goto out; | ||
| 3086 | #endif | ||
| 3087 | |||
| 2990 | /* | 3088 | /* |
| 2991 | * We only want to steal up to the prescribed amount of weighted load. | 3089 | * We only want to steal up to the prescribed amount of weighted load. |
| 2992 | */ | 3090 | */ |
| @@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3033 | sd, idle, all_pinned, &this_best_prio); | 3131 | sd, idle, all_pinned, &this_best_prio); |
| 3034 | class = class->next; | 3132 | class = class->next; |
| 3035 | 3133 | ||
| 3134 | #ifdef CONFIG_PREEMPT | ||
| 3135 | /* | ||
| 3136 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 3137 | * kernels will stop after the first task is pulled to minimize | ||
| 3138 | * the critical section. | ||
| 3139 | */ | ||
| 3036 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3140 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
| 3037 | break; | 3141 | break; |
| 3038 | 3142 | #endif | |
| 3039 | } while (class && max_load_move > total_load_moved); | 3143 | } while (class && max_load_move > total_load_moved); |
| 3040 | 3144 | ||
| 3041 | return total_load_moved > 0; | 3145 | return total_load_moved > 0; |
| @@ -3085,246 +3189,480 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3085 | 3189 | ||
| 3086 | return 0; | 3190 | return 0; |
| 3087 | } | 3191 | } |
| 3088 | 3192 | /********** Helpers for find_busiest_group ************************/ | |
| 3089 | /* | 3193 | /* |
| 3090 | * find_busiest_group finds and returns the busiest CPU group within the | 3194 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
| 3091 | * domain. It calculates and returns the amount of weighted load which | 3195 | * during load balancing. |
| 3092 | * should be moved to restore balance via the imbalance parameter. | ||
| 3093 | */ | 3196 | */ |
| 3094 | static struct sched_group * | 3197 | struct sd_lb_stats { |
| 3095 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 3198 | struct sched_group *busiest; /* Busiest group in this sd */ |
| 3096 | unsigned long *imbalance, enum cpu_idle_type idle, | 3199 | struct sched_group *this; /* Local group in this sd */ |
| 3097 | int *sd_idle, const struct cpumask *cpus, int *balance) | 3200 | unsigned long total_load; /* Total load of all groups in sd */ |
| 3098 | { | 3201 | unsigned long total_pwr; /* Total power of all groups in sd */ |
| 3099 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3202 | unsigned long avg_load; /* Average load across all groups in sd */ |
| 3100 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3203 | |
| 3101 | unsigned long max_pull; | 3204 | /** Statistics of this group */ |
| 3102 | unsigned long busiest_load_per_task, busiest_nr_running; | 3205 | unsigned long this_load; |
| 3103 | unsigned long this_load_per_task, this_nr_running; | 3206 | unsigned long this_load_per_task; |
| 3104 | int load_idx, group_imb = 0; | 3207 | unsigned long this_nr_running; |
| 3208 | |||
| 3209 | /* Statistics of the busiest group */ | ||
| 3210 | unsigned long max_load; | ||
| 3211 | unsigned long busiest_load_per_task; | ||
| 3212 | unsigned long busiest_nr_running; | ||
| 3213 | |||
| 3214 | int group_imb; /* Is there imbalance in this sd */ | ||
| 3105 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3215 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| 3106 | int power_savings_balance = 1; | 3216 | int power_savings_balance; /* Is powersave balance needed for this sd */ |
| 3107 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 3217 | struct sched_group *group_min; /* Least loaded group in sd */ |
| 3108 | unsigned long min_nr_running = ULONG_MAX; | 3218 | struct sched_group *group_leader; /* Group which relieves group_min */ |
| 3109 | struct sched_group *group_min = NULL, *group_leader = NULL; | 3219 | unsigned long min_load_per_task; /* load_per_task in group_min */ |
| 3220 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 3221 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 3110 | #endif | 3222 | #endif |
| 3223 | }; | ||
| 3111 | 3224 | ||
| 3112 | max_load = this_load = total_load = total_pwr = 0; | 3225 | /* |
| 3113 | busiest_load_per_task = busiest_nr_running = 0; | 3226 | * sg_lb_stats - stats of a sched_group required for load_balancing |
| 3114 | this_load_per_task = this_nr_running = 0; | 3227 | */ |
| 3228 | struct sg_lb_stats { | ||
| 3229 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 3230 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 3231 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 3232 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 3233 | unsigned long group_capacity; | ||
| 3234 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 3235 | }; | ||
| 3115 | 3236 | ||
| 3116 | if (idle == CPU_NOT_IDLE) | 3237 | /** |
| 3238 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
| 3239 | * @group: The group whose first cpu is to be returned. | ||
| 3240 | */ | ||
| 3241 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
| 3242 | { | ||
| 3243 | return cpumask_first(sched_group_cpus(group)); | ||
| 3244 | } | ||
| 3245 | |||
| 3246 | /** | ||
| 3247 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
| 3248 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
| 3249 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 3250 | */ | ||
| 3251 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 3252 | enum cpu_idle_type idle) | ||
| 3253 | { | ||
| 3254 | int load_idx; | ||
| 3255 | |||
| 3256 | switch (idle) { | ||
| 3257 | case CPU_NOT_IDLE: | ||
| 3117 | load_idx = sd->busy_idx; | 3258 | load_idx = sd->busy_idx; |
| 3118 | else if (idle == CPU_NEWLY_IDLE) | 3259 | break; |
| 3260 | |||
| 3261 | case CPU_NEWLY_IDLE: | ||
| 3119 | load_idx = sd->newidle_idx; | 3262 | load_idx = sd->newidle_idx; |
| 3120 | else | 3263 | break; |
| 3264 | default: | ||
| 3121 | load_idx = sd->idle_idx; | 3265 | load_idx = sd->idle_idx; |
| 3266 | break; | ||
| 3267 | } | ||
| 3122 | 3268 | ||
| 3123 | do { | 3269 | return load_idx; |
| 3124 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3270 | } |
| 3125 | int local_group; | ||
| 3126 | int i; | ||
| 3127 | int __group_imb = 0; | ||
| 3128 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3129 | unsigned long sum_nr_running, sum_weighted_load; | ||
| 3130 | unsigned long sum_avg_load_per_task; | ||
| 3131 | unsigned long avg_load_per_task; | ||
| 3132 | 3271 | ||
| 3133 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3134 | sched_group_cpus(group)); | ||
| 3135 | 3272 | ||
| 3136 | if (local_group) | 3273 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| 3137 | balance_cpu = cpumask_first(sched_group_cpus(group)); | 3274 | /** |
| 3275 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 3276 | * the given sched_domain, during load balancing. | ||
| 3277 | * | ||
| 3278 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 3279 | * @sds: Variable containing the statistics for sd. | ||
| 3280 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 3281 | */ | ||
| 3282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 3283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 3284 | { | ||
| 3285 | /* | ||
| 3286 | * Busy processors will not participate in power savings | ||
| 3287 | * balance. | ||
| 3288 | */ | ||
| 3289 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3290 | sds->power_savings_balance = 0; | ||
| 3291 | else { | ||
| 3292 | sds->power_savings_balance = 1; | ||
| 3293 | sds->min_nr_running = ULONG_MAX; | ||
| 3294 | sds->leader_nr_running = 0; | ||
| 3295 | } | ||
| 3296 | } | ||
| 3138 | 3297 | ||
| 3139 | /* Tally up the load of all CPUs in the group */ | 3298 | /** |
| 3140 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3299 | * update_sd_power_savings_stats - Update the power saving stats for a |
| 3141 | sum_avg_load_per_task = avg_load_per_task = 0; | 3300 | * sched_domain while performing load balancing. |
| 3301 | * | ||
| 3302 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 3303 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3304 | * @local_group: Does group contain the CPU for which we're performing | ||
| 3305 | * load balancing ? | ||
| 3306 | * @sgs: Variable containing the statistics of the group. | ||
| 3307 | */ | ||
| 3308 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 3309 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 3310 | { | ||
| 3142 | 3311 | ||
| 3143 | max_cpu_load = 0; | 3312 | if (!sds->power_savings_balance) |
| 3144 | min_cpu_load = ~0UL; | 3313 | return; |
| 3145 | 3314 | ||
| 3146 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 3315 | /* |
| 3147 | struct rq *rq = cpu_rq(i); | 3316 | * If the local group is idle or completely loaded |
| 3317 | * no need to do power savings balance at this domain | ||
| 3318 | */ | ||
| 3319 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 3320 | !sds->this_nr_running)) | ||
| 3321 | sds->power_savings_balance = 0; | ||
| 3148 | 3322 | ||
| 3149 | if (*sd_idle && rq->nr_running) | 3323 | /* |
| 3150 | *sd_idle = 0; | 3324 | * If a group is already running at full capacity or idle, |
| 3325 | * don't include that group in power savings calculations | ||
| 3326 | */ | ||
| 3327 | if (!sds->power_savings_balance || | ||
| 3328 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 3329 | !sgs->sum_nr_running) | ||
| 3330 | return; | ||
| 3151 | 3331 | ||
| 3152 | /* Bias balancing toward cpus of our domain */ | 3332 | /* |
| 3153 | if (local_group) { | 3333 | * Calculate the group which has the least non-idle load. |
| 3154 | if (idle_cpu(i) && !first_idle_cpu) { | 3334 | * This is the group from where we need to pick up the load |
| 3155 | first_idle_cpu = 1; | 3335 | * for saving power |
| 3156 | balance_cpu = i; | 3336 | */ |
| 3157 | } | 3337 | if ((sgs->sum_nr_running < sds->min_nr_running) || |
| 3338 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 3339 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 3340 | sds->group_min = group; | ||
| 3341 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 3342 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 3343 | sgs->sum_nr_running; | ||
| 3344 | } | ||
| 3158 | 3345 | ||
| 3159 | load = target_load(i, load_idx); | 3346 | /* |
| 3160 | } else { | 3347 | * Calculate the group which is almost near its |
| 3161 | load = source_load(i, load_idx); | 3348 | * capacity but still has some space to pick up some load |
| 3162 | if (load > max_cpu_load) | 3349 | * from other group and save more power |
| 3163 | max_cpu_load = load; | 3350 | */ |
| 3164 | if (min_cpu_load > load) | 3351 | if (sgs->sum_nr_running > sgs->group_capacity - 1) |
| 3165 | min_cpu_load = load; | 3352 | return; |
| 3166 | } | ||
| 3167 | 3353 | ||
| 3168 | avg_load += load; | 3354 | if (sgs->sum_nr_running > sds->leader_nr_running || |
| 3169 | sum_nr_running += rq->nr_running; | 3355 | (sgs->sum_nr_running == sds->leader_nr_running && |
| 3170 | sum_weighted_load += weighted_cpuload(i); | 3356 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { |
| 3357 | sds->group_leader = group; | ||
| 3358 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 3359 | } | ||
| 3360 | } | ||
| 3171 | 3361 | ||
| 3172 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3362 | /** |
| 3173 | } | 3363 | * check_power_save_busiest_group - see if there is potential for some power-savings balance |
| 3364 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3365 | * under consideration. | ||
| 3366 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 3367 | * @imbalance: Variable to store the imbalance. | ||
| 3368 | * | ||
| 3369 | * Description: | ||
| 3370 | * Check if we have potential to perform some power-savings balance. | ||
| 3371 | * If yes, set the busiest group to be the least loaded group in the | ||
| 3372 | * sched_domain, so that it's CPUs can be put to idle. | ||
| 3373 | * | ||
| 3374 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 3375 | * Else returns 0. | ||
| 3376 | */ | ||
| 3377 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3378 | int this_cpu, unsigned long *imbalance) | ||
| 3379 | { | ||
| 3380 | if (!sds->power_savings_balance) | ||
| 3381 | return 0; | ||
| 3174 | 3382 | ||
| 3175 | /* | 3383 | if (sds->this != sds->group_leader || |
| 3176 | * First idle cpu or the first cpu(busiest) in this sched group | 3384 | sds->group_leader == sds->group_min) |
| 3177 | * is eligible for doing load balancing at this and above | 3385 | return 0; |
| 3178 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 3179 | * to do the newly idle load balance. | ||
| 3180 | */ | ||
| 3181 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
| 3182 | balance_cpu != this_cpu && balance) { | ||
| 3183 | *balance = 0; | ||
| 3184 | goto ret; | ||
| 3185 | } | ||
| 3186 | 3386 | ||
| 3187 | total_load += avg_load; | 3387 | *imbalance = sds->min_load_per_task; |
| 3188 | total_pwr += group->__cpu_power; | 3388 | sds->busiest = sds->group_min; |
| 3189 | 3389 | ||
| 3190 | /* Adjust by relative CPU power of the group */ | 3390 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { |
| 3191 | avg_load = sg_div_cpu_power(group, | 3391 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = |
| 3192 | avg_load * SCHED_LOAD_SCALE); | 3392 | group_first_cpu(sds->group_leader); |
| 3393 | } | ||
| 3193 | 3394 | ||
| 3395 | return 1; | ||
| 3194 | 3396 | ||
| 3195 | /* | 3397 | } |
| 3196 | * Consider the group unbalanced when the imbalance is larger | 3398 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 3197 | * than the average weight of two tasks. | 3399 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
| 3198 | * | 3400 | struct sd_lb_stats *sds, enum cpu_idle_type idle) |
| 3199 | * APZ: with cgroup the avg task weight can vary wildly and | 3401 | { |
| 3200 | * might not be a suitable number - should we keep a | 3402 | return; |
| 3201 | * normalized nr_running number somewhere that negates | 3403 | } |
| 3202 | * the hierarchy? | ||
| 3203 | */ | ||
| 3204 | avg_load_per_task = sg_div_cpu_power(group, | ||
| 3205 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | ||
| 3206 | 3404 | ||
| 3207 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3405 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
| 3208 | __group_imb = 1; | 3406 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
| 3407 | { | ||
| 3408 | return; | ||
| 3409 | } | ||
| 3209 | 3410 | ||
| 3210 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3411 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, |
| 3412 | int this_cpu, unsigned long *imbalance) | ||
| 3413 | { | ||
| 3414 | return 0; | ||
| 3415 | } | ||
| 3416 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 3211 | 3417 | ||
| 3418 | |||
| 3419 | /** | ||
| 3420 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3421 | * @group: sched_group whose statistics are to be updated. | ||
| 3422 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3423 | * @idle: Idle status of this_cpu | ||
| 3424 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 3425 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3426 | * @local_group: Does group contain this_cpu. | ||
| 3427 | * @cpus: Set of cpus considered for load balancing. | ||
| 3428 | * @balance: Should we balance. | ||
| 3429 | * @sgs: variable to hold the statistics for this group. | ||
| 3430 | */ | ||
| 3431 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | ||
| 3432 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
| 3433 | int local_group, const struct cpumask *cpus, | ||
| 3434 | int *balance, struct sg_lb_stats *sgs) | ||
| 3435 | { | ||
| 3436 | unsigned long load, max_cpu_load, min_cpu_load; | ||
| 3437 | int i; | ||
| 3438 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3439 | unsigned long sum_avg_load_per_task; | ||
| 3440 | unsigned long avg_load_per_task; | ||
| 3441 | |||
| 3442 | if (local_group) | ||
| 3443 | balance_cpu = group_first_cpu(group); | ||
| 3444 | |||
| 3445 | /* Tally up the load of all CPUs in the group */ | ||
| 3446 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
| 3447 | max_cpu_load = 0; | ||
| 3448 | min_cpu_load = ~0UL; | ||
| 3449 | |||
| 3450 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 3451 | struct rq *rq = cpu_rq(i); | ||
| 3452 | |||
| 3453 | if (*sd_idle && rq->nr_running) | ||
| 3454 | *sd_idle = 0; | ||
| 3455 | |||
| 3456 | /* Bias balancing toward cpus of our domain */ | ||
| 3212 | if (local_group) { | 3457 | if (local_group) { |
| 3213 | this_load = avg_load; | 3458 | if (idle_cpu(i) && !first_idle_cpu) { |
| 3214 | this = group; | 3459 | first_idle_cpu = 1; |
| 3215 | this_nr_running = sum_nr_running; | 3460 | balance_cpu = i; |
| 3216 | this_load_per_task = sum_weighted_load; | 3461 | } |
| 3217 | } else if (avg_load > max_load && | 3462 | |
| 3218 | (sum_nr_running > group_capacity || __group_imb)) { | 3463 | load = target_load(i, load_idx); |
| 3219 | max_load = avg_load; | 3464 | } else { |
| 3220 | busiest = group; | 3465 | load = source_load(i, load_idx); |
| 3221 | busiest_nr_running = sum_nr_running; | 3466 | if (load > max_cpu_load) |
| 3222 | busiest_load_per_task = sum_weighted_load; | 3467 | max_cpu_load = load; |
| 3223 | group_imb = __group_imb; | 3468 | if (min_cpu_load > load) |
| 3469 | min_cpu_load = load; | ||
| 3224 | } | 3470 | } |
| 3225 | 3471 | ||
| 3226 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3472 | sgs->group_load += load; |
| 3227 | /* | 3473 | sgs->sum_nr_running += rq->nr_running; |
| 3228 | * Busy processors will not participate in power savings | 3474 | sgs->sum_weighted_load += weighted_cpuload(i); |
| 3229 | * balance. | ||
| 3230 | */ | ||
| 3231 | if (idle == CPU_NOT_IDLE || | ||
| 3232 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3233 | goto group_next; | ||
| 3234 | 3475 | ||
| 3235 | /* | 3476 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
| 3236 | * If the local group is idle or completely loaded | 3477 | } |
| 3237 | * no need to do power savings balance at this domain | ||
| 3238 | */ | ||
| 3239 | if (local_group && (this_nr_running >= group_capacity || | ||
| 3240 | !this_nr_running)) | ||
| 3241 | power_savings_balance = 0; | ||
| 3242 | 3478 | ||
| 3243 | /* | 3479 | /* |
| 3244 | * If a group is already running at full capacity or idle, | 3480 | * First idle cpu or the first cpu(busiest) in this sched group |
| 3245 | * don't include that group in power savings calculations | 3481 | * is eligible for doing load balancing at this and above |
| 3246 | */ | 3482 | * domains. In the newly idle case, we will allow all the cpu's |
| 3247 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3483 | * to do the newly idle load balance. |
| 3248 | || !sum_nr_running) | 3484 | */ |
| 3249 | goto group_next; | 3485 | if (idle != CPU_NEWLY_IDLE && local_group && |
| 3486 | balance_cpu != this_cpu && balance) { | ||
| 3487 | *balance = 0; | ||
| 3488 | return; | ||
| 3489 | } | ||
| 3250 | 3490 | ||
| 3251 | /* | 3491 | /* Adjust by relative CPU power of the group */ |
| 3252 | * Calculate the group which has the least non-idle load. | 3492 | sgs->avg_load = sg_div_cpu_power(group, |
| 3253 | * This is the group from where we need to pick up the load | 3493 | sgs->group_load * SCHED_LOAD_SCALE); |
| 3254 | * for saving power | ||
| 3255 | */ | ||
| 3256 | if ((sum_nr_running < min_nr_running) || | ||
| 3257 | (sum_nr_running == min_nr_running && | ||
| 3258 | cpumask_first(sched_group_cpus(group)) > | ||
| 3259 | cpumask_first(sched_group_cpus(group_min)))) { | ||
| 3260 | group_min = group; | ||
| 3261 | min_nr_running = sum_nr_running; | ||
| 3262 | min_load_per_task = sum_weighted_load / | ||
| 3263 | sum_nr_running; | ||
| 3264 | } | ||
| 3265 | 3494 | ||
| 3266 | /* | 3495 | |
| 3267 | * Calculate the group which is almost near its | 3496 | /* |
| 3268 | * capacity but still has some space to pick up some load | 3497 | * Consider the group unbalanced when the imbalance is larger |
| 3269 | * from other group and save more power | 3498 | * than the average weight of two tasks. |
| 3270 | */ | 3499 | * |
| 3271 | if (sum_nr_running <= group_capacity - 1) { | 3500 | * APZ: with cgroup the avg task weight can vary wildly and |
| 3272 | if (sum_nr_running > leader_nr_running || | 3501 | * might not be a suitable number - should we keep a |
| 3273 | (sum_nr_running == leader_nr_running && | 3502 | * normalized nr_running number somewhere that negates |
| 3274 | cpumask_first(sched_group_cpus(group)) < | 3503 | * the hierarchy? |
| 3275 | cpumask_first(sched_group_cpus(group_leader)))) { | 3504 | */ |
| 3276 | group_leader = group; | 3505 | avg_load_per_task = sg_div_cpu_power(group, |
| 3277 | leader_nr_running = sum_nr_running; | 3506 | sum_avg_load_per_task * SCHED_LOAD_SCALE); |
| 3278 | } | 3507 | |
| 3508 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
| 3509 | sgs->group_imb = 1; | ||
| 3510 | |||
| 3511 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
| 3512 | |||
| 3513 | } | ||
| 3514 | |||
| 3515 | /** | ||
| 3516 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3517 | * @sd: sched_domain whose statistics are to be updated. | ||
| 3518 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3519 | * @idle: Idle status of this_cpu | ||
| 3520 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3521 | * @cpus: Set of cpus considered for load balancing. | ||
| 3522 | * @balance: Should we balance. | ||
| 3523 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 3524 | */ | ||
| 3525 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 3526 | enum cpu_idle_type idle, int *sd_idle, | ||
| 3527 | const struct cpumask *cpus, int *balance, | ||
| 3528 | struct sd_lb_stats *sds) | ||
| 3529 | { | ||
| 3530 | struct sched_group *group = sd->groups; | ||
| 3531 | struct sg_lb_stats sgs; | ||
| 3532 | int load_idx; | ||
| 3533 | |||
| 3534 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 3535 | load_idx = get_sd_load_idx(sd, idle); | ||
| 3536 | |||
| 3537 | do { | ||
| 3538 | int local_group; | ||
| 3539 | |||
| 3540 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3541 | sched_group_cpus(group)); | ||
| 3542 | memset(&sgs, 0, sizeof(sgs)); | ||
| 3543 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | ||
| 3544 | local_group, cpus, balance, &sgs); | ||
| 3545 | |||
| 3546 | if (local_group && balance && !(*balance)) | ||
| 3547 | return; | ||
| 3548 | |||
| 3549 | sds->total_load += sgs.group_load; | ||
| 3550 | sds->total_pwr += group->__cpu_power; | ||
| 3551 | |||
| 3552 | if (local_group) { | ||
| 3553 | sds->this_load = sgs.avg_load; | ||
| 3554 | sds->this = group; | ||
| 3555 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 3556 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 3557 | } else if (sgs.avg_load > sds->max_load && | ||
| 3558 | (sgs.sum_nr_running > sgs.group_capacity || | ||
| 3559 | sgs.group_imb)) { | ||
| 3560 | sds->max_load = sgs.avg_load; | ||
| 3561 | sds->busiest = group; | ||
| 3562 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 3563 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 3564 | sds->group_imb = sgs.group_imb; | ||
| 3279 | } | 3565 | } |
| 3280 | group_next: | 3566 | |
| 3281 | #endif | 3567 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
| 3282 | group = group->next; | 3568 | group = group->next; |
| 3283 | } while (group != sd->groups); | 3569 | } while (group != sd->groups); |
| 3284 | 3570 | ||
| 3285 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3571 | } |
| 3286 | goto out_balanced; | ||
| 3287 | |||
| 3288 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
| 3289 | 3572 | ||
| 3290 | if (this_load >= avg_load || | 3573 | /** |
| 3291 | 100*max_load <= sd->imbalance_pct*this_load) | 3574 | * fix_small_imbalance - Calculate the minor imbalance that exists |
| 3292 | goto out_balanced; | 3575 | * amongst the groups of a sched_domain, during |
| 3576 | * load balancing. | ||
| 3577 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3578 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 3579 | * @imbalance: Variable to store the imbalance. | ||
| 3580 | */ | ||
| 3581 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 3582 | int this_cpu, unsigned long *imbalance) | ||
| 3583 | { | ||
| 3584 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 3585 | unsigned int imbn = 2; | ||
| 3586 | |||
| 3587 | if (sds->this_nr_running) { | ||
| 3588 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 3589 | if (sds->busiest_load_per_task > | ||
| 3590 | sds->this_load_per_task) | ||
| 3591 | imbn = 1; | ||
| 3592 | } else | ||
| 3593 | sds->this_load_per_task = | ||
| 3594 | cpu_avg_load_per_task(this_cpu); | ||
| 3293 | 3595 | ||
| 3294 | busiest_load_per_task /= busiest_nr_running; | 3596 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= |
| 3295 | if (group_imb) | 3597 | sds->busiest_load_per_task * imbn) { |
| 3296 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3598 | *imbalance = sds->busiest_load_per_task; |
| 3599 | return; | ||
| 3600 | } | ||
| 3297 | 3601 | ||
| 3298 | /* | 3602 | /* |
| 3299 | * We're trying to get all the cpus to the average_load, so we don't | 3603 | * OK, we don't have enough imbalance to justify moving tasks, |
| 3300 | * want to push ourselves above the average load, nor do we wish to | 3604 | * however we may be able to increase total CPU power used by |
| 3301 | * reduce the max loaded cpu below the average load, as either of these | 3605 | * moving them. |
| 3302 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3303 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3304 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3305 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3306 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3307 | * appear as very large values with unsigned longs. | ||
| 3308 | */ | 3606 | */ |
| 3309 | if (max_load <= busiest_load_per_task) | ||
| 3310 | goto out_balanced; | ||
| 3311 | 3607 | ||
| 3608 | pwr_now += sds->busiest->__cpu_power * | ||
| 3609 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 3610 | pwr_now += sds->this->__cpu_power * | ||
| 3611 | min(sds->this_load_per_task, sds->this_load); | ||
| 3612 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3613 | |||
| 3614 | /* Amount of load we'd subtract */ | ||
| 3615 | tmp = sg_div_cpu_power(sds->busiest, | ||
| 3616 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3617 | if (sds->max_load > tmp) | ||
| 3618 | pwr_move += sds->busiest->__cpu_power * | ||
| 3619 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 3620 | |||
| 3621 | /* Amount of load we'd add */ | ||
| 3622 | if (sds->max_load * sds->busiest->__cpu_power < | ||
| 3623 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3624 | tmp = sg_div_cpu_power(sds->this, | ||
| 3625 | sds->max_load * sds->busiest->__cpu_power); | ||
| 3626 | else | ||
| 3627 | tmp = sg_div_cpu_power(sds->this, | ||
| 3628 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3629 | pwr_move += sds->this->__cpu_power * | ||
| 3630 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 3631 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3632 | |||
| 3633 | /* Move if we gain throughput */ | ||
| 3634 | if (pwr_move > pwr_now) | ||
| 3635 | *imbalance = sds->busiest_load_per_task; | ||
| 3636 | } | ||
| 3637 | |||
| 3638 | /** | ||
| 3639 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 3640 | * groups of a given sched_domain during load balance. | ||
| 3641 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3642 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 3643 | * @imbalance: The variable to store the imbalance. | ||
| 3644 | */ | ||
| 3645 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 3646 | unsigned long *imbalance) | ||
| 3647 | { | ||
| 3648 | unsigned long max_pull; | ||
| 3312 | /* | 3649 | /* |
| 3313 | * In the presence of smp nice balancing, certain scenarios can have | 3650 | * In the presence of smp nice balancing, certain scenarios can have |
| 3314 | * max load less than avg load(as we skip the groups at or below | 3651 | * max load less than avg load(as we skip the groups at or below |
| 3315 | * its cpu_power, while calculating max_load..) | 3652 | * its cpu_power, while calculating max_load..) |
| 3316 | */ | 3653 | */ |
| 3317 | if (max_load < avg_load) { | 3654 | if (sds->max_load < sds->avg_load) { |
| 3318 | *imbalance = 0; | 3655 | *imbalance = 0; |
| 3319 | goto small_imbalance; | 3656 | return fix_small_imbalance(sds, this_cpu, imbalance); |
| 3320 | } | 3657 | } |
| 3321 | 3658 | ||
| 3322 | /* Don't want to pull so many tasks that a group would go idle */ | 3659 | /* Don't want to pull so many tasks that a group would go idle */ |
| 3323 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3660 | max_pull = min(sds->max_load - sds->avg_load, |
| 3661 | sds->max_load - sds->busiest_load_per_task); | ||
| 3324 | 3662 | ||
| 3325 | /* How much load to actually move to equalise the imbalance */ | 3663 | /* How much load to actually move to equalise the imbalance */ |
| 3326 | *imbalance = min(max_pull * busiest->__cpu_power, | 3664 | *imbalance = min(max_pull * sds->busiest->__cpu_power, |
| 3327 | (avg_load - this_load) * this->__cpu_power) | 3665 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) |
| 3328 | / SCHED_LOAD_SCALE; | 3666 | / SCHED_LOAD_SCALE; |
| 3329 | 3667 | ||
| 3330 | /* | 3668 | /* |
| @@ -3333,78 +3671,110 @@ group_next: | |||
| 3333 | * a think about bumping its value to force at least one task to be | 3671 | * a think about bumping its value to force at least one task to be |
| 3334 | * moved | 3672 | * moved |
| 3335 | */ | 3673 | */ |
| 3336 | if (*imbalance < busiest_load_per_task) { | 3674 | if (*imbalance < sds->busiest_load_per_task) |
| 3337 | unsigned long tmp, pwr_now, pwr_move; | 3675 | return fix_small_imbalance(sds, this_cpu, imbalance); |
| 3338 | unsigned int imbn; | ||
| 3339 | |||
| 3340 | small_imbalance: | ||
| 3341 | pwr_move = pwr_now = 0; | ||
| 3342 | imbn = 2; | ||
| 3343 | if (this_nr_running) { | ||
| 3344 | this_load_per_task /= this_nr_running; | ||
| 3345 | if (busiest_load_per_task > this_load_per_task) | ||
| 3346 | imbn = 1; | ||
| 3347 | } else | ||
| 3348 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | ||
| 3349 | 3676 | ||
| 3350 | if (max_load - this_load + busiest_load_per_task >= | 3677 | } |
| 3351 | busiest_load_per_task * imbn) { | 3678 | /******* find_busiest_group() helpers end here *********************/ |
| 3352 | *imbalance = busiest_load_per_task; | ||
| 3353 | return busiest; | ||
| 3354 | } | ||
| 3355 | 3679 | ||
| 3356 | /* | 3680 | /** |
| 3357 | * OK, we don't have enough imbalance to justify moving tasks, | 3681 | * find_busiest_group - Returns the busiest group within the sched_domain |
| 3358 | * however we may be able to increase total CPU power used by | 3682 | * if there is an imbalance. If there isn't an imbalance, and |
| 3359 | * moving them. | 3683 | * the user has opted for power-savings, it returns a group whose |
| 3360 | */ | 3684 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
| 3685 | * such a group exists. | ||
| 3686 | * | ||
| 3687 | * Also calculates the amount of weighted load which should be moved | ||
| 3688 | * to restore balance. | ||
| 3689 | * | ||
| 3690 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 3691 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 3692 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 3693 | * be moved to restore balance/put a group to idle. | ||
| 3694 | * @idle: The idle status of this_cpu. | ||
| 3695 | * @sd_idle: The idleness of sd | ||
| 3696 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 3697 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 3698 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 3699 | * | ||
| 3700 | * Returns: - the busiest group if imbalance exists. | ||
| 3701 | * - If no imbalance and user has opted for power-savings balance, | ||
| 3702 | * return the least loaded group whose CPUs can be | ||
| 3703 | * put to idle by rebalancing its tasks onto our group. | ||
| 3704 | */ | ||
| 3705 | static struct sched_group * | ||
| 3706 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3707 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3708 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 3709 | { | ||
| 3710 | struct sd_lb_stats sds; | ||
| 3361 | 3711 | ||
| 3362 | pwr_now += busiest->__cpu_power * | 3712 | memset(&sds, 0, sizeof(sds)); |
| 3363 | min(busiest_load_per_task, max_load); | ||
| 3364 | pwr_now += this->__cpu_power * | ||
| 3365 | min(this_load_per_task, this_load); | ||
| 3366 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3367 | |||
| 3368 | /* Amount of load we'd subtract */ | ||
| 3369 | tmp = sg_div_cpu_power(busiest, | ||
| 3370 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3371 | if (max_load > tmp) | ||
| 3372 | pwr_move += busiest->__cpu_power * | ||
| 3373 | min(busiest_load_per_task, max_load - tmp); | ||
| 3374 | |||
| 3375 | /* Amount of load we'd add */ | ||
| 3376 | if (max_load * busiest->__cpu_power < | ||
| 3377 | busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3378 | tmp = sg_div_cpu_power(this, | ||
| 3379 | max_load * busiest->__cpu_power); | ||
| 3380 | else | ||
| 3381 | tmp = sg_div_cpu_power(this, | ||
| 3382 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3383 | pwr_move += this->__cpu_power * | ||
| 3384 | min(this_load_per_task, this_load + tmp); | ||
| 3385 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3386 | 3713 | ||
| 3387 | /* Move if we gain throughput */ | 3714 | /* |
| 3388 | if (pwr_move > pwr_now) | 3715 | * Compute the various statistics relavent for load balancing at |
| 3389 | *imbalance = busiest_load_per_task; | 3716 | * this level. |
| 3390 | } | 3717 | */ |
| 3718 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
| 3719 | balance, &sds); | ||
| 3720 | |||
| 3721 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
| 3722 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
| 3723 | * at this level. | ||
| 3724 | * 2) There is no busy sibling group to pull from. | ||
| 3725 | * 3) This group is the busiest group. | ||
| 3726 | * 4) This group is more busy than the avg busieness at this | ||
| 3727 | * sched_domain. | ||
| 3728 | * 5) The imbalance is within the specified limit. | ||
| 3729 | * 6) Any rebalance would lead to ping-pong | ||
| 3730 | */ | ||
| 3731 | if (balance && !(*balance)) | ||
| 3732 | goto ret; | ||
| 3391 | 3733 | ||
| 3392 | return busiest; | 3734 | if (!sds.busiest || sds.busiest_nr_running == 0) |
| 3735 | goto out_balanced; | ||
| 3393 | 3736 | ||
| 3394 | out_balanced: | 3737 | if (sds.this_load >= sds.max_load) |
| 3395 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3738 | goto out_balanced; |
| 3396 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3397 | goto ret; | ||
| 3398 | 3739 | ||
| 3399 | if (this == group_leader && group_leader != group_min) { | 3740 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
| 3400 | *imbalance = min_load_per_task; | 3741 | |
| 3401 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 3742 | if (sds.this_load >= sds.avg_load) |
| 3402 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 3743 | goto out_balanced; |
| 3403 | cpumask_first(sched_group_cpus(group_leader)); | 3744 | |
| 3404 | } | 3745 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) |
| 3405 | return group_min; | 3746 | goto out_balanced; |
| 3406 | } | 3747 | |
| 3407 | #endif | 3748 | sds.busiest_load_per_task /= sds.busiest_nr_running; |
| 3749 | if (sds.group_imb) | ||
| 3750 | sds.busiest_load_per_task = | ||
| 3751 | min(sds.busiest_load_per_task, sds.avg_load); | ||
| 3752 | |||
| 3753 | /* | ||
| 3754 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 3755 | * want to push ourselves above the average load, nor do we wish to | ||
| 3756 | * reduce the max loaded cpu below the average load, as either of these | ||
| 3757 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3758 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3759 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3760 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3761 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3762 | * appear as very large values with unsigned longs. | ||
| 3763 | */ | ||
| 3764 | if (sds.max_load <= sds.busiest_load_per_task) | ||
| 3765 | goto out_balanced; | ||
| 3766 | |||
| 3767 | /* Looks like there is an imbalance. Compute it */ | ||
| 3768 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 3769 | return sds.busiest; | ||
| 3770 | |||
| 3771 | out_balanced: | ||
| 3772 | /* | ||
| 3773 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 3774 | * to save power. | ||
| 3775 | */ | ||
| 3776 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 3777 | return sds.busiest; | ||
| 3408 | ret: | 3778 | ret: |
| 3409 | *imbalance = 0; | 3779 | *imbalance = 0; |
| 3410 | return NULL; | 3780 | return NULL; |
| @@ -4057,6 +4427,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
| 4057 | #endif | 4427 | #endif |
| 4058 | } | 4428 | } |
| 4059 | 4429 | ||
| 4430 | static inline int on_null_domain(int cpu) | ||
| 4431 | { | ||
| 4432 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4433 | } | ||
| 4434 | |||
| 4060 | /* | 4435 | /* |
| 4061 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4436 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
| 4062 | * | 4437 | * |
| @@ -4114,7 +4489,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
| 4114 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4489 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
| 4115 | return; | 4490 | return; |
| 4116 | #endif | 4491 | #endif |
| 4117 | if (time_after_eq(jiffies, rq->next_balance)) | 4492 | /* Don't need to rebalance while attached to NULL domain */ |
| 4493 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 4494 | likely(!on_null_domain(cpu))) | ||
| 4118 | raise_softirq(SCHED_SOFTIRQ); | 4495 | raise_softirq(SCHED_SOFTIRQ); |
| 4119 | } | 4496 | } |
| 4120 | 4497 | ||
| @@ -4508,11 +4885,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 4508 | #endif | 4885 | #endif |
| 4509 | } | 4886 | } |
| 4510 | 4887 | ||
| 4888 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
| 4889 | { | ||
| 4890 | if (prev->state == TASK_RUNNING) { | ||
| 4891 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 4892 | |||
| 4893 | runtime -= prev->se.prev_sum_exec_runtime; | ||
| 4894 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 4895 | |||
| 4896 | /* | ||
| 4897 | * In order to avoid avg_overlap growing stale when we are | ||
| 4898 | * indeed overlapping and hence not getting put to sleep, grow | ||
| 4899 | * the avg_overlap on preemption. | ||
| 4900 | * | ||
| 4901 | * We use the average preemption runtime because that | ||
| 4902 | * correlates to the amount of cache footprint a task can | ||
| 4903 | * build up. | ||
| 4904 | */ | ||
| 4905 | update_avg(&prev->se.avg_overlap, runtime); | ||
| 4906 | } | ||
| 4907 | prev->sched_class->put_prev_task(rq, prev); | ||
| 4908 | } | ||
| 4909 | |||
| 4511 | /* | 4910 | /* |
| 4512 | * Pick up the highest-prio task: | 4911 | * Pick up the highest-prio task: |
| 4513 | */ | 4912 | */ |
| 4514 | static inline struct task_struct * | 4913 | static inline struct task_struct * |
| 4515 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4914 | pick_next_task(struct rq *rq) |
| 4516 | { | 4915 | { |
| 4517 | const struct sched_class *class; | 4916 | const struct sched_class *class; |
| 4518 | struct task_struct *p; | 4917 | struct task_struct *p; |
| @@ -4586,8 +4985,8 @@ need_resched_nonpreemptible: | |||
| 4586 | if (unlikely(!rq->nr_running)) | 4985 | if (unlikely(!rq->nr_running)) |
| 4587 | idle_balance(cpu, rq); | 4986 | idle_balance(cpu, rq); |
| 4588 | 4987 | ||
| 4589 | prev->sched_class->put_prev_task(rq, prev); | 4988 | put_prev_task(rq, prev); |
| 4590 | next = pick_next_task(rq, prev); | 4989 | next = pick_next_task(rq); |
| 4591 | 4990 | ||
| 4592 | if (likely(prev != next)) { | 4991 | if (likely(prev != next)) { |
| 4593 | sched_info_switch(prev, next); | 4992 | sched_info_switch(prev, next); |
| @@ -4642,7 +5041,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
| 4642 | * between schedule and now. | 5041 | * between schedule and now. |
| 4643 | */ | 5042 | */ |
| 4644 | barrier(); | 5043 | barrier(); |
| 4645 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5044 | } while (need_resched()); |
| 4646 | } | 5045 | } |
| 4647 | EXPORT_SYMBOL(preempt_schedule); | 5046 | EXPORT_SYMBOL(preempt_schedule); |
| 4648 | 5047 | ||
| @@ -4671,7 +5070,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 4671 | * between schedule and now. | 5070 | * between schedule and now. |
| 4672 | */ | 5071 | */ |
| 4673 | barrier(); | 5072 | barrier(); |
| 4674 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5073 | } while (need_resched()); |
| 4675 | } | 5074 | } |
| 4676 | 5075 | ||
| 4677 | #endif /* CONFIG_PREEMPT */ | 5076 | #endif /* CONFIG_PREEMPT */ |
| @@ -5145,7 +5544,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
| 5145 | if (increment > 40) | 5544 | if (increment > 40) |
| 5146 | increment = 40; | 5545 | increment = 40; |
| 5147 | 5546 | ||
| 5148 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5547 | nice = TASK_NICE(current) + increment; |
| 5149 | if (nice < -20) | 5548 | if (nice < -20) |
| 5150 | nice = -20; | 5549 | nice = -20; |
| 5151 | if (nice > 19) | 5550 | if (nice > 19) |
| @@ -5944,12 +6343,7 @@ void sched_show_task(struct task_struct *p) | |||
| 5944 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 6343 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
| 5945 | #endif | 6344 | #endif |
| 5946 | #ifdef CONFIG_DEBUG_STACK_USAGE | 6345 | #ifdef CONFIG_DEBUG_STACK_USAGE |
| 5947 | { | 6346 | free = stack_not_used(p); |
| 5948 | unsigned long *n = end_of_stack(p); | ||
| 5949 | while (!*n) | ||
| 5950 | n++; | ||
| 5951 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | ||
| 5952 | } | ||
| 5953 | #endif | 6347 | #endif |
| 5954 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 6348 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
| 5955 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 6349 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
| @@ -6423,7 +6817,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
| 6423 | if (!rq->nr_running) | 6817 | if (!rq->nr_running) |
| 6424 | break; | 6818 | break; |
| 6425 | update_rq_clock(rq); | 6819 | update_rq_clock(rq); |
| 6426 | next = pick_next_task(rq, rq->curr); | 6820 | next = pick_next_task(rq); |
| 6427 | if (!next) | 6821 | if (!next) |
| 6428 | break; | 6822 | break; |
| 6429 | next->sched_class->put_prev_task(rq, next); | 6823 | next->sched_class->put_prev_task(rq, next); |
| @@ -8218,11 +8612,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
| 8218 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8612 | __set_bit(MAX_RT_PRIO, array->bitmap); |
| 8219 | 8613 | ||
| 8220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8614 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 8221 | rt_rq->highest_prio = MAX_RT_PRIO; | 8615 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
| 8616 | #ifdef CONFIG_SMP | ||
| 8617 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
| 8618 | #endif | ||
| 8222 | #endif | 8619 | #endif |
| 8223 | #ifdef CONFIG_SMP | 8620 | #ifdef CONFIG_SMP |
| 8224 | rt_rq->rt_nr_migratory = 0; | 8621 | rt_rq->rt_nr_migratory = 0; |
| 8225 | rt_rq->overloaded = 0; | 8622 | rt_rq->overloaded = 0; |
| 8623 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
| 8226 | #endif | 8624 | #endif |
| 8227 | 8625 | ||
| 8228 | rt_rq->rt_time = 0; | 8626 | rt_rq->rt_time = 0; |
| @@ -9490,7 +9888,7 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
| 9490 | 9888 | ||
| 9491 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 9889 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
| 9492 | { | 9890 | { |
| 9493 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9891 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| 9494 | u64 data; | 9892 | u64 data; |
| 9495 | 9893 | ||
| 9496 | #ifndef CONFIG_64BIT | 9894 | #ifndef CONFIG_64BIT |
| @@ -9509,7 +9907,7 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
| 9509 | 9907 | ||
| 9510 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 9908 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) |
| 9511 | { | 9909 | { |
| 9512 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9910 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| 9513 | 9911 | ||
| 9514 | #ifndef CONFIG_64BIT | 9912 | #ifndef CONFIG_64BIT |
| 9515 | /* | 9913 | /* |
| @@ -9598,14 +9996,14 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
| 9598 | struct cpuacct *ca; | 9996 | struct cpuacct *ca; |
| 9599 | int cpu; | 9997 | int cpu; |
| 9600 | 9998 | ||
| 9601 | if (!cpuacct_subsys.active) | 9999 | if (unlikely(!cpuacct_subsys.active)) |
| 9602 | return; | 10000 | return; |
| 9603 | 10001 | ||
| 9604 | cpu = task_cpu(tsk); | 10002 | cpu = task_cpu(tsk); |
| 9605 | ca = task_ca(tsk); | 10003 | ca = task_ca(tsk); |
| 9606 | 10004 | ||
| 9607 | for (; ca; ca = ca->parent) { | 10005 | for (; ca; ca = ca->parent) { |
| 9608 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 10006 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| 9609 | *cpuusage += cputime; | 10007 | *cpuusage += cputime; |
| 9610 | } | 10008 | } |
| 9611 | } | 10009 | } |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index a0b0852414cc..390f33234bd0 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
| @@ -24,11 +24,11 @@ | |||
| 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat | 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat |
| 25 | * consistent between cpus (never more than 2 jiffies difference). | 25 | * consistent between cpus (never more than 2 jiffies difference). |
| 26 | */ | 26 | */ |
| 27 | #include <linux/sched.h> | ||
| 28 | #include <linux/percpu.h> | ||
| 29 | #include <linux/spinlock.h> | 27 | #include <linux/spinlock.h> |
| 30 | #include <linux/ktime.h> | ||
| 31 | #include <linux/module.h> | 28 | #include <linux/module.h> |
| 29 | #include <linux/percpu.h> | ||
| 30 | #include <linux/ktime.h> | ||
| 31 | #include <linux/sched.h> | ||
| 32 | 32 | ||
| 33 | /* | 33 | /* |
| 34 | * Scheduler clock - returns current time in nanosec units. | 34 | * Scheduler clock - returns current time in nanosec units. |
| @@ -43,6 +43,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
| 43 | static __read_mostly int sched_clock_running; | 43 | static __read_mostly int sched_clock_running; |
| 44 | 44 | ||
| 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| 46 | __read_mostly int sched_clock_stable; | ||
| 46 | 47 | ||
| 47 | struct sched_clock_data { | 48 | struct sched_clock_data { |
| 48 | /* | 49 | /* |
| @@ -87,7 +88,7 @@ void sched_clock_init(void) | |||
| 87 | } | 88 | } |
| 88 | 89 | ||
| 89 | /* | 90 | /* |
| 90 | * min,max except they take wrapping into account | 91 | * min, max except they take wrapping into account |
| 91 | */ | 92 | */ |
| 92 | 93 | ||
| 93 | static inline u64 wrap_min(u64 x, u64 y) | 94 | static inline u64 wrap_min(u64 x, u64 y) |
| @@ -111,15 +112,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
| 111 | s64 delta = now - scd->tick_raw; | 112 | s64 delta = now - scd->tick_raw; |
| 112 | u64 clock, min_clock, max_clock; | 113 | u64 clock, min_clock, max_clock; |
| 113 | 114 | ||
| 114 | WARN_ON_ONCE(!irqs_disabled()); | ||
| 115 | |||
| 116 | if (unlikely(delta < 0)) | 115 | if (unlikely(delta < 0)) |
| 117 | delta = 0; | 116 | delta = 0; |
| 118 | 117 | ||
| 119 | /* | 118 | /* |
| 120 | * scd->clock = clamp(scd->tick_gtod + delta, | 119 | * scd->clock = clamp(scd->tick_gtod + delta, |
| 121 | * max(scd->tick_gtod, scd->clock), | 120 | * max(scd->tick_gtod, scd->clock), |
| 122 | * scd->tick_gtod + TICK_NSEC); | 121 | * scd->tick_gtod + TICK_NSEC); |
| 123 | */ | 122 | */ |
| 124 | 123 | ||
| 125 | clock = scd->tick_gtod + delta; | 124 | clock = scd->tick_gtod + delta; |
| @@ -148,12 +147,13 @@ static void lock_double_clock(struct sched_clock_data *data1, | |||
| 148 | 147 | ||
| 149 | u64 sched_clock_cpu(int cpu) | 148 | u64 sched_clock_cpu(int cpu) |
| 150 | { | 149 | { |
| 151 | struct sched_clock_data *scd = cpu_sdc(cpu); | ||
| 152 | u64 now, clock, this_clock, remote_clock; | 150 | u64 now, clock, this_clock, remote_clock; |
| 151 | struct sched_clock_data *scd; | ||
| 153 | 152 | ||
| 154 | if (unlikely(!sched_clock_running)) | 153 | if (sched_clock_stable) |
| 155 | return 0ull; | 154 | return sched_clock(); |
| 156 | 155 | ||
| 156 | scd = cpu_sdc(cpu); | ||
| 157 | WARN_ON_ONCE(!irqs_disabled()); | 157 | WARN_ON_ONCE(!irqs_disabled()); |
| 158 | now = sched_clock(); | 158 | now = sched_clock(); |
| 159 | 159 | ||
| @@ -195,14 +195,18 @@ u64 sched_clock_cpu(int cpu) | |||
| 195 | 195 | ||
| 196 | void sched_clock_tick(void) | 196 | void sched_clock_tick(void) |
| 197 | { | 197 | { |
| 198 | struct sched_clock_data *scd = this_scd(); | 198 | struct sched_clock_data *scd; |
| 199 | u64 now, now_gtod; | 199 | u64 now, now_gtod; |
| 200 | 200 | ||
| 201 | if (sched_clock_stable) | ||
| 202 | return; | ||
| 203 | |||
| 201 | if (unlikely(!sched_clock_running)) | 204 | if (unlikely(!sched_clock_running)) |
| 202 | return; | 205 | return; |
| 203 | 206 | ||
| 204 | WARN_ON_ONCE(!irqs_disabled()); | 207 | WARN_ON_ONCE(!irqs_disabled()); |
| 205 | 208 | ||
| 209 | scd = this_scd(); | ||
| 206 | now_gtod = ktime_to_ns(ktime_get()); | 210 | now_gtod = ktime_to_ns(ktime_get()); |
| 207 | now = sched_clock(); | 211 | now = sched_clock(); |
| 208 | 212 | ||
| @@ -250,7 +254,7 @@ u64 sched_clock_cpu(int cpu) | |||
| 250 | return sched_clock(); | 254 | return sched_clock(); |
| 251 | } | 255 | } |
| 252 | 256 | ||
| 253 | #endif | 257 | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| 254 | 258 | ||
| 255 | unsigned long long cpu_clock(int cpu) | 259 | unsigned long long cpu_clock(int cpu) |
| 256 | { | 260 | { |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 16eeba4e4169..467ca72f1657 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
| @@ -272,7 +272,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
| 272 | P(nr_switches); | 272 | P(nr_switches); |
| 273 | P(nr_load_updates); | 273 | P(nr_load_updates); |
| 274 | P(nr_uninterruptible); | 274 | P(nr_uninterruptible); |
| 275 | SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); | ||
| 276 | PN(next_balance); | 275 | PN(next_balance); |
| 277 | P(curr->pid); | 276 | P(curr->pid); |
| 278 | PN(clock); | 277 | PN(clock); |
| @@ -287,9 +286,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
| 287 | #ifdef CONFIG_SCHEDSTATS | 286 | #ifdef CONFIG_SCHEDSTATS |
| 288 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); | 287 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); |
| 289 | 288 | ||
| 290 | P(yld_exp_empty); | ||
| 291 | P(yld_act_empty); | ||
| 292 | P(yld_both_empty); | ||
| 293 | P(yld_count); | 289 | P(yld_count); |
| 294 | 290 | ||
| 295 | P(sched_switch); | 291 | P(sched_switch); |
| @@ -314,7 +310,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
| 314 | u64 now = ktime_to_ns(ktime_get()); | 310 | u64 now = ktime_to_ns(ktime_get()); |
| 315 | int cpu; | 311 | int cpu; |
| 316 | 312 | ||
| 317 | SEQ_printf(m, "Sched Debug Version: v0.08, %s %.*s\n", | 313 | SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n", |
| 318 | init_utsname()->release, | 314 | init_utsname()->release, |
| 319 | (int)strcspn(init_utsname()->version, " "), | 315 | (int)strcspn(init_utsname()->version, " "), |
| 320 | init_utsname()->version); | 316 | init_utsname()->version); |
| @@ -325,6 +321,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
| 325 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) | 321 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) |
| 326 | #define PN(x) \ | 322 | #define PN(x) \ |
| 327 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | 323 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) |
| 324 | P(jiffies); | ||
| 328 | PN(sysctl_sched_latency); | 325 | PN(sysctl_sched_latency); |
| 329 | PN(sysctl_sched_min_granularity); | 326 | PN(sysctl_sched_min_granularity); |
| 330 | PN(sysctl_sched_wakeup_granularity); | 327 | PN(sysctl_sched_wakeup_granularity); |
| @@ -397,6 +394,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 397 | PN(se.vruntime); | 394 | PN(se.vruntime); |
| 398 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
| 399 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
| 397 | PN(se.avg_wakeup); | ||
| 400 | 398 | ||
| 401 | nr_switches = p->nvcsw + p->nivcsw; | 399 | nr_switches = p->nvcsw + p->nivcsw; |
| 402 | 400 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 0566f2a03c42..3816f217f119 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -1314,16 +1314,63 @@ out: | |||
| 1314 | } | 1314 | } |
| 1315 | #endif /* CONFIG_SMP */ | 1315 | #endif /* CONFIG_SMP */ |
| 1316 | 1316 | ||
| 1317 | static unsigned long wakeup_gran(struct sched_entity *se) | 1317 | /* |
| 1318 | * Adaptive granularity | ||
| 1319 | * | ||
| 1320 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
| 1321 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
| 1322 | * | ||
| 1323 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
| 1324 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
| 1325 | * to run for at least the amount of time we'd like to run. | ||
| 1326 | * | ||
| 1327 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
| 1328 | * | ||
| 1329 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
| 1330 | * degrading latency on load. | ||
| 1331 | */ | ||
| 1332 | static unsigned long | ||
| 1333 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
| 1334 | { | ||
| 1335 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
| 1336 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
| 1337 | u64 gran = 0; | ||
| 1338 | |||
| 1339 | if (this_run < expected_wakeup) | ||
| 1340 | gran = expected_wakeup - this_run; | ||
| 1341 | |||
| 1342 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
| 1343 | } | ||
| 1344 | |||
| 1345 | static unsigned long | ||
| 1346 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
| 1318 | { | 1347 | { |
| 1319 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1348 | unsigned long gran = sysctl_sched_wakeup_granularity; |
| 1320 | 1349 | ||
| 1350 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
| 1351 | gran = adaptive_gran(curr, se); | ||
| 1352 | |||
| 1321 | /* | 1353 | /* |
| 1322 | * More easily preempt - nice tasks, while not making it harder for | 1354 | * Since its curr running now, convert the gran from real-time |
| 1323 | * + nice tasks. | 1355 | * to virtual-time in his units. |
| 1324 | */ | 1356 | */ |
| 1325 | if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD) | 1357 | if (sched_feat(ASYM_GRAN)) { |
| 1326 | gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se); | 1358 | /* |
| 1359 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
| 1360 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
| 1361 | * the resulting gran will be larger, therefore penalizing the | ||
| 1362 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
| 1363 | * be smaller, again penalizing the lighter task. | ||
| 1364 | * | ||
| 1365 | * This is especially important for buddies when the leftmost | ||
| 1366 | * task is higher priority than the buddy. | ||
| 1367 | */ | ||
| 1368 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
| 1369 | gran = calc_delta_fair(gran, se); | ||
| 1370 | } else { | ||
| 1371 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
| 1372 | gran = calc_delta_fair(gran, curr); | ||
| 1373 | } | ||
| 1327 | 1374 | ||
| 1328 | return gran; | 1375 | return gran; |
| 1329 | } | 1376 | } |
| @@ -1350,7 +1397,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |||
| 1350 | if (vdiff <= 0) | 1397 | if (vdiff <= 0) |
| 1351 | return -1; | 1398 | return -1; |
| 1352 | 1399 | ||
| 1353 | gran = wakeup_gran(curr); | 1400 | gran = wakeup_gran(curr, se); |
| 1354 | if (vdiff > gran) | 1401 | if (vdiff > gran) |
| 1355 | return 1; | 1402 | return 1; |
| 1356 | 1403 | ||
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index da5d93b5d2c6..76f61756e677 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
| @@ -1,5 +1,6 @@ | |||
| 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) |
| 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 1) | 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
| 3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
| 3 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
| 4 | SCHED_FEAT(START_DEBIT, 1) | 5 | SCHED_FEAT(START_DEBIT, 1) |
| 5 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index bac1061cea2f..299d012b4394 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
| @@ -3,6 +3,40 @@ | |||
| 3 | * policies) | 3 | * policies) |
| 4 | */ | 4 | */ |
| 5 | 5 | ||
| 6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
| 7 | { | ||
| 8 | return container_of(rt_se, struct task_struct, rt); | ||
| 9 | } | ||
| 10 | |||
| 11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 12 | |||
| 13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 14 | { | ||
| 15 | return rt_rq->rq; | ||
| 16 | } | ||
| 17 | |||
| 18 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 19 | { | ||
| 20 | return rt_se->rt_rq; | ||
| 21 | } | ||
| 22 | |||
| 23 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
| 24 | |||
| 25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 26 | { | ||
| 27 | return container_of(rt_rq, struct rq, rt); | ||
| 28 | } | ||
| 29 | |||
| 30 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 31 | { | ||
| 32 | struct task_struct *p = rt_task_of(rt_se); | ||
| 33 | struct rq *rq = task_rq(p); | ||
| 34 | |||
| 35 | return &rq->rt; | ||
| 36 | } | ||
| 37 | |||
| 38 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
| 39 | |||
| 6 | #ifdef CONFIG_SMP | 40 | #ifdef CONFIG_SMP |
| 7 | 41 | ||
| 8 | static inline int rt_overloaded(struct rq *rq) | 42 | static inline int rt_overloaded(struct rq *rq) |
| @@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) | |||
| 37 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 71 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
| 38 | } | 72 | } |
| 39 | 73 | ||
| 40 | static void update_rt_migration(struct rq *rq) | 74 | static void update_rt_migration(struct rt_rq *rt_rq) |
| 41 | { | 75 | { |
| 42 | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { |
| 43 | if (!rq->rt.overloaded) { | 77 | if (!rt_rq->overloaded) { |
| 44 | rt_set_overload(rq); | 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
| 45 | rq->rt.overloaded = 1; | 79 | rt_rq->overloaded = 1; |
| 46 | } | 80 | } |
| 47 | } else if (rq->rt.overloaded) { | 81 | } else if (rt_rq->overloaded) { |
| 48 | rt_clear_overload(rq); | 82 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
| 49 | rq->rt.overloaded = 0; | 83 | rt_rq->overloaded = 0; |
| 50 | } | 84 | } |
| 51 | } | 85 | } |
| 52 | #endif /* CONFIG_SMP */ | ||
| 53 | 86 | ||
| 54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 88 | { | ||
| 89 | if (rt_se->nr_cpus_allowed > 1) | ||
| 90 | rt_rq->rt_nr_migratory++; | ||
| 91 | |||
| 92 | update_rt_migration(rt_rq); | ||
| 93 | } | ||
| 94 | |||
| 95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 96 | { | ||
| 97 | if (rt_se->nr_cpus_allowed > 1) | ||
| 98 | rt_rq->rt_nr_migratory--; | ||
| 99 | |||
| 100 | update_rt_migration(rt_rq); | ||
| 101 | } | ||
| 102 | |||
| 103 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 104 | { | ||
| 105 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 106 | plist_node_init(&p->pushable_tasks, p->prio); | ||
| 107 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 108 | } | ||
| 109 | |||
| 110 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 111 | { | ||
| 112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 113 | } | ||
| 114 | |||
| 115 | #else | ||
| 116 | |||
| 117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 55 | { | 118 | { |
| 56 | return container_of(rt_se, struct task_struct, rt); | ||
| 57 | } | 119 | } |
| 58 | 120 | ||
| 121 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 122 | { | ||
| 123 | } | ||
| 124 | |||
| 125 | static inline | ||
| 126 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 127 | { | ||
| 128 | } | ||
| 129 | |||
| 130 | static inline | ||
| 131 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 132 | { | ||
| 133 | } | ||
| 134 | |||
| 135 | #endif /* CONFIG_SMP */ | ||
| 136 | |||
| 59 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 137 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
| 60 | { | 138 | { |
| 61 | return !list_empty(&rt_se->run_list); | 139 | return !list_empty(&rt_se->run_list); |
| @@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
| 79 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 157 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
| 80 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 158 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
| 81 | 159 | ||
| 82 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 83 | { | ||
| 84 | return rt_rq->rq; | ||
| 85 | } | ||
| 86 | |||
| 87 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 88 | { | ||
| 89 | return rt_se->rt_rq; | ||
| 90 | } | ||
| 91 | |||
| 92 | #define for_each_sched_rt_entity(rt_se) \ | 160 | #define for_each_sched_rt_entity(rt_se) \ |
| 93 | for (; rt_se; rt_se = rt_se->parent) | 161 | for (; rt_se; rt_se = rt_se->parent) |
| 94 | 162 | ||
| @@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
| 108 | if (rt_rq->rt_nr_running) { | 176 | if (rt_rq->rt_nr_running) { |
| 109 | if (rt_se && !on_rt_rq(rt_se)) | 177 | if (rt_se && !on_rt_rq(rt_se)) |
| 110 | enqueue_rt_entity(rt_se); | 178 | enqueue_rt_entity(rt_se); |
| 111 | if (rt_rq->highest_prio < curr->prio) | 179 | if (rt_rq->highest_prio.curr < curr->prio) |
| 112 | resched_task(curr); | 180 | resched_task(curr); |
| 113 | } | 181 | } |
| 114 | } | 182 | } |
| @@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
| 176 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 244 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
| 177 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 245 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
| 178 | 246 | ||
| 179 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 180 | { | ||
| 181 | return container_of(rt_rq, struct rq, rt); | ||
| 182 | } | ||
| 183 | |||
| 184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 185 | { | ||
| 186 | struct task_struct *p = rt_task_of(rt_se); | ||
| 187 | struct rq *rq = task_rq(p); | ||
| 188 | |||
| 189 | return &rq->rt; | ||
| 190 | } | ||
| 191 | |||
| 192 | #define for_each_sched_rt_entity(rt_se) \ | 247 | #define for_each_sched_rt_entity(rt_se) \ |
| 193 | for (; rt_se; rt_se = NULL) | 248 | for (; rt_se; rt_se = NULL) |
| 194 | 249 | ||
| @@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
| 473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 528 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
| 474 | 529 | ||
| 475 | if (rt_rq) | 530 | if (rt_rq) |
| 476 | return rt_rq->highest_prio; | 531 | return rt_rq->highest_prio.curr; |
| 477 | #endif | 532 | #endif |
| 478 | 533 | ||
| 479 | return rt_task_of(rt_se)->prio; | 534 | return rt_task_of(rt_se)->prio; |
| @@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) | |||
| 547 | } | 602 | } |
| 548 | } | 603 | } |
| 549 | 604 | ||
| 550 | static inline | 605 | #if defined CONFIG_SMP |
| 551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 606 | |
| 607 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
| 608 | |||
| 609 | static inline int next_prio(struct rq *rq) | ||
| 552 | { | 610 | { |
| 553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 611 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
| 554 | rt_rq->rt_nr_running++; | 612 | |
| 555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 613 | if (next && rt_prio(next->prio)) |
| 556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | 614 | return next->prio; |
| 557 | #ifdef CONFIG_SMP | 615 | else |
| 558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 616 | return MAX_RT_PRIO; |
| 559 | #endif | 617 | } |
| 618 | |||
| 619 | static void | ||
| 620 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
| 621 | { | ||
| 622 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 623 | |||
| 624 | if (prio < prev_prio) { | ||
| 625 | |||
| 626 | /* | ||
| 627 | * If the new task is higher in priority than anything on the | ||
| 628 | * run-queue, we know that the previous high becomes our | ||
| 629 | * next-highest. | ||
| 630 | */ | ||
| 631 | rt_rq->highest_prio.next = prev_prio; | ||
| 560 | 632 | ||
| 561 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
| 562 | #ifdef CONFIG_SMP | ||
| 563 | if (rq->online) | 633 | if (rq->online) |
| 564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 634 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
| 565 | rt_se_prio(rt_se)); | ||
| 566 | #endif | ||
| 567 | } | ||
| 568 | #endif | ||
| 569 | #ifdef CONFIG_SMP | ||
| 570 | if (rt_se->nr_cpus_allowed > 1) { | ||
| 571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 572 | 635 | ||
| 573 | rq->rt.rt_nr_migratory++; | 636 | } else if (prio == rt_rq->highest_prio.curr) |
| 574 | } | 637 | /* |
| 638 | * If the next task is equal in priority to the highest on | ||
| 639 | * the run-queue, then we implicitly know that the next highest | ||
| 640 | * task cannot be any lower than current | ||
| 641 | */ | ||
| 642 | rt_rq->highest_prio.next = prio; | ||
| 643 | else if (prio < rt_rq->highest_prio.next) | ||
| 644 | /* | ||
| 645 | * Otherwise, we need to recompute next-highest | ||
| 646 | */ | ||
| 647 | rt_rq->highest_prio.next = next_prio(rq); | ||
| 648 | } | ||
| 575 | 649 | ||
| 576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 650 | static void |
| 577 | #endif | 651 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
| 578 | #ifdef CONFIG_RT_GROUP_SCHED | 652 | { |
| 579 | if (rt_se_boosted(rt_se)) | 653 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 580 | rt_rq->rt_nr_boosted++; | ||
| 581 | 654 | ||
| 582 | if (rt_rq->tg) | 655 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
| 583 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 656 | rt_rq->highest_prio.next = next_prio(rq); |
| 584 | #else | 657 | |
| 585 | start_rt_bandwidth(&def_rt_bandwidth); | 658 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
| 586 | #endif | 659 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
| 587 | } | 660 | } |
| 588 | 661 | ||
| 662 | #else /* CONFIG_SMP */ | ||
| 663 | |||
| 589 | static inline | 664 | static inline |
| 590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 665 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 591 | { | 666 | static inline |
| 592 | #ifdef CONFIG_SMP | 667 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 593 | int highest_prio = rt_rq->highest_prio; | 668 | |
| 594 | #endif | 669 | #endif /* CONFIG_SMP */ |
| 595 | 670 | ||
| 596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
| 597 | WARN_ON(!rt_rq->rt_nr_running); | ||
| 598 | rt_rq->rt_nr_running--; | ||
| 599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 671 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 672 | static void | ||
| 673 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
| 674 | { | ||
| 675 | int prev_prio = rt_rq->highest_prio.curr; | ||
| 676 | |||
| 677 | if (prio < prev_prio) | ||
| 678 | rt_rq->highest_prio.curr = prio; | ||
| 679 | |||
| 680 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
| 681 | } | ||
| 682 | |||
| 683 | static void | ||
| 684 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
| 685 | { | ||
| 686 | int prev_prio = rt_rq->highest_prio.curr; | ||
| 687 | |||
| 600 | if (rt_rq->rt_nr_running) { | 688 | if (rt_rq->rt_nr_running) { |
| 601 | struct rt_prio_array *array; | ||
| 602 | 689 | ||
| 603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 690 | WARN_ON(prio < prev_prio); |
| 604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 691 | |
| 605 | /* recalculate */ | 692 | /* |
| 606 | array = &rt_rq->active; | 693 | * This may have been our highest task, and therefore |
| 607 | rt_rq->highest_prio = | 694 | * we may have some recomputation to do |
| 695 | */ | ||
| 696 | if (prio == prev_prio) { | ||
| 697 | struct rt_prio_array *array = &rt_rq->active; | ||
| 698 | |||
| 699 | rt_rq->highest_prio.curr = | ||
| 608 | sched_find_first_bit(array->bitmap); | 700 | sched_find_first_bit(array->bitmap); |
| 609 | } /* otherwise leave rq->highest prio alone */ | 701 | } |
| 702 | |||
| 610 | } else | 703 | } else |
| 611 | rt_rq->highest_prio = MAX_RT_PRIO; | 704 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
| 612 | #endif | ||
| 613 | #ifdef CONFIG_SMP | ||
| 614 | if (rt_se->nr_cpus_allowed > 1) { | ||
| 615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 616 | rq->rt.rt_nr_migratory--; | ||
| 617 | } | ||
| 618 | 705 | ||
| 619 | if (rt_rq->highest_prio != highest_prio) { | 706 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
| 620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 707 | } |
| 621 | 708 | ||
| 622 | if (rq->online) | 709 | #else |
| 623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 710 | |
| 624 | rt_rq->highest_prio); | 711 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 625 | } | 712 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 713 | |||
| 714 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
| 626 | 715 | ||
| 627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
| 628 | #endif /* CONFIG_SMP */ | ||
| 629 | #ifdef CONFIG_RT_GROUP_SCHED | 716 | #ifdef CONFIG_RT_GROUP_SCHED |
| 717 | |||
| 718 | static void | ||
| 719 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 720 | { | ||
| 721 | if (rt_se_boosted(rt_se)) | ||
| 722 | rt_rq->rt_nr_boosted++; | ||
| 723 | |||
| 724 | if (rt_rq->tg) | ||
| 725 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
| 726 | } | ||
| 727 | |||
| 728 | static void | ||
| 729 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 730 | { | ||
| 630 | if (rt_se_boosted(rt_se)) | 731 | if (rt_se_boosted(rt_se)) |
| 631 | rt_rq->rt_nr_boosted--; | 732 | rt_rq->rt_nr_boosted--; |
| 632 | 733 | ||
| 633 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 734 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
| 634 | #endif | 735 | } |
| 736 | |||
| 737 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
| 738 | |||
| 739 | static void | ||
| 740 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 741 | { | ||
| 742 | start_rt_bandwidth(&def_rt_bandwidth); | ||
| 743 | } | ||
| 744 | |||
| 745 | static inline | ||
| 746 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
| 747 | |||
| 748 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
| 749 | |||
| 750 | static inline | ||
| 751 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 752 | { | ||
| 753 | int prio = rt_se_prio(rt_se); | ||
| 754 | |||
| 755 | WARN_ON(!rt_prio(prio)); | ||
| 756 | rt_rq->rt_nr_running++; | ||
| 757 | |||
| 758 | inc_rt_prio(rt_rq, prio); | ||
| 759 | inc_rt_migration(rt_se, rt_rq); | ||
| 760 | inc_rt_group(rt_se, rt_rq); | ||
| 761 | } | ||
| 762 | |||
| 763 | static inline | ||
| 764 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 765 | { | ||
| 766 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
| 767 | WARN_ON(!rt_rq->rt_nr_running); | ||
| 768 | rt_rq->rt_nr_running--; | ||
| 769 | |||
| 770 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
| 771 | dec_rt_migration(rt_se, rt_rq); | ||
| 772 | dec_rt_group(rt_se, rt_rq); | ||
| 635 | } | 773 | } |
| 636 | 774 | ||
| 637 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) | 775 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
| @@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 718 | 856 | ||
| 719 | enqueue_rt_entity(rt_se); | 857 | enqueue_rt_entity(rt_se); |
| 720 | 858 | ||
| 859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
| 860 | enqueue_pushable_task(rq, p); | ||
| 861 | |||
| 721 | inc_cpu_load(rq, p->se.load.weight); | 862 | inc_cpu_load(rq, p->se.load.weight); |
| 722 | } | 863 | } |
| 723 | 864 | ||
| @@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
| 728 | update_curr_rt(rq); | 869 | update_curr_rt(rq); |
| 729 | dequeue_rt_entity(rt_se); | 870 | dequeue_rt_entity(rt_se); |
| 730 | 871 | ||
| 872 | dequeue_pushable_task(rq, p); | ||
| 873 | |||
| 731 | dec_cpu_load(rq, p->se.load.weight); | 874 | dec_cpu_load(rq, p->se.load.weight); |
| 732 | } | 875 | } |
| 733 | 876 | ||
| @@ -878,7 +1021,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
| 878 | return next; | 1021 | return next; |
| 879 | } | 1022 | } |
| 880 | 1023 | ||
| 881 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1024 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
| 882 | { | 1025 | { |
| 883 | struct sched_rt_entity *rt_se; | 1026 | struct sched_rt_entity *rt_se; |
| 884 | struct task_struct *p; | 1027 | struct task_struct *p; |
| @@ -900,6 +1043,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
| 900 | 1043 | ||
| 901 | p = rt_task_of(rt_se); | 1044 | p = rt_task_of(rt_se); |
| 902 | p->se.exec_start = rq->clock; | 1045 | p->se.exec_start = rq->clock; |
| 1046 | |||
| 1047 | return p; | ||
| 1048 | } | ||
| 1049 | |||
| 1050 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
| 1051 | { | ||
| 1052 | struct task_struct *p = _pick_next_task_rt(rq); | ||
| 1053 | |||
| 1054 | /* The running task is never eligible for pushing */ | ||
| 1055 | if (p) | ||
| 1056 | dequeue_pushable_task(rq, p); | ||
| 1057 | |||
| 903 | return p; | 1058 | return p; |
| 904 | } | 1059 | } |
| 905 | 1060 | ||
| @@ -907,6 +1062,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
| 907 | { | 1062 | { |
| 908 | update_curr_rt(rq); | 1063 | update_curr_rt(rq); |
| 909 | p->se.exec_start = 0; | 1064 | p->se.exec_start = 0; |
| 1065 | |||
| 1066 | /* | ||
| 1067 | * The previous task needs to be made eligible for pushing | ||
| 1068 | * if it is still active | ||
| 1069 | */ | ||
| 1070 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
| 1071 | enqueue_pushable_task(rq, p); | ||
| 910 | } | 1072 | } |
| 911 | 1073 | ||
| 912 | #ifdef CONFIG_SMP | 1074 | #ifdef CONFIG_SMP |
| @@ -960,12 +1122,13 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |||
| 960 | 1122 | ||
| 961 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 1123 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
| 962 | 1124 | ||
| 963 | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) | 1125 | static inline int pick_optimal_cpu(int this_cpu, |
| 1126 | const struct cpumask *mask) | ||
| 964 | { | 1127 | { |
| 965 | int first; | 1128 | int first; |
| 966 | 1129 | ||
| 967 | /* "this_cpu" is cheaper to preempt than a remote processor */ | 1130 | /* "this_cpu" is cheaper to preempt than a remote processor */ |
| 968 | if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) | 1131 | if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask)) |
| 969 | return this_cpu; | 1132 | return this_cpu; |
| 970 | 1133 | ||
| 971 | first = cpumask_first(mask); | 1134 | first = cpumask_first(mask); |
| @@ -981,6 +1144,7 @@ static int find_lowest_rq(struct task_struct *task) | |||
| 981 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 1144 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
| 982 | int this_cpu = smp_processor_id(); | 1145 | int this_cpu = smp_processor_id(); |
| 983 | int cpu = task_cpu(task); | 1146 | int cpu = task_cpu(task); |
| 1147 | cpumask_var_t domain_mask; | ||
| 984 | 1148 | ||
| 985 | if (task->rt.nr_cpus_allowed == 1) | 1149 | if (task->rt.nr_cpus_allowed == 1) |
| 986 | return -1; /* No other targets possible */ | 1150 | return -1; /* No other targets possible */ |
| @@ -1013,19 +1177,25 @@ static int find_lowest_rq(struct task_struct *task) | |||
| 1013 | if (this_cpu == cpu) | 1177 | if (this_cpu == cpu) |
| 1014 | this_cpu = -1; /* Skip this_cpu opt if the same */ | 1178 | this_cpu = -1; /* Skip this_cpu opt if the same */ |
| 1015 | 1179 | ||
| 1016 | for_each_domain(cpu, sd) { | 1180 | if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) { |
| 1017 | if (sd->flags & SD_WAKE_AFFINE) { | 1181 | for_each_domain(cpu, sd) { |
| 1018 | cpumask_t domain_mask; | 1182 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1019 | int best_cpu; | 1183 | int best_cpu; |
| 1184 | |||
| 1185 | cpumask_and(domain_mask, | ||
| 1186 | sched_domain_span(sd), | ||
| 1187 | lowest_mask); | ||
| 1020 | 1188 | ||
| 1021 | cpumask_and(&domain_mask, sched_domain_span(sd), | 1189 | best_cpu = pick_optimal_cpu(this_cpu, |
| 1022 | lowest_mask); | 1190 | domain_mask); |
| 1023 | 1191 | ||
| 1024 | best_cpu = pick_optimal_cpu(this_cpu, | 1192 | if (best_cpu != -1) { |
| 1025 | &domain_mask); | 1193 | free_cpumask_var(domain_mask); |
| 1026 | if (best_cpu != -1) | 1194 | return best_cpu; |
| 1027 | return best_cpu; | 1195 | } |
| 1196 | } | ||
| 1028 | } | 1197 | } |
| 1198 | free_cpumask_var(domain_mask); | ||
| 1029 | } | 1199 | } |
| 1030 | 1200 | ||
| 1031 | /* | 1201 | /* |
| @@ -1072,7 +1242,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
| 1072 | } | 1242 | } |
| 1073 | 1243 | ||
| 1074 | /* If this rq is still suitable use it. */ | 1244 | /* If this rq is still suitable use it. */ |
| 1075 | if (lowest_rq->rt.highest_prio > task->prio) | 1245 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
| 1076 | break; | 1246 | break; |
| 1077 | 1247 | ||
| 1078 | /* try again */ | 1248 | /* try again */ |
| @@ -1083,6 +1253,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
| 1083 | return lowest_rq; | 1253 | return lowest_rq; |
| 1084 | } | 1254 | } |
| 1085 | 1255 | ||
| 1256 | static inline int has_pushable_tasks(struct rq *rq) | ||
| 1257 | { | ||
| 1258 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
| 1259 | } | ||
| 1260 | |||
| 1261 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
| 1262 | { | ||
| 1263 | struct task_struct *p; | ||
| 1264 | |||
| 1265 | if (!has_pushable_tasks(rq)) | ||
| 1266 | return NULL; | ||
| 1267 | |||
| 1268 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
| 1269 | struct task_struct, pushable_tasks); | ||
| 1270 | |||
| 1271 | BUG_ON(rq->cpu != task_cpu(p)); | ||
| 1272 | BUG_ON(task_current(rq, p)); | ||
| 1273 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
| 1274 | |||
| 1275 | BUG_ON(!p->se.on_rq); | ||
| 1276 | BUG_ON(!rt_task(p)); | ||
| 1277 | |||
| 1278 | return p; | ||
| 1279 | } | ||
| 1280 | |||
| 1086 | /* | 1281 | /* |
| 1087 | * If the current CPU has more than one RT task, see if the non | 1282 | * If the current CPU has more than one RT task, see if the non |
| 1088 | * running task can migrate over to a CPU that is running a task | 1283 | * running task can migrate over to a CPU that is running a task |
| @@ -1092,13 +1287,11 @@ static int push_rt_task(struct rq *rq) | |||
| 1092 | { | 1287 | { |
| 1093 | struct task_struct *next_task; | 1288 | struct task_struct *next_task; |
| 1094 | struct rq *lowest_rq; | 1289 | struct rq *lowest_rq; |
| 1095 | int ret = 0; | ||
| 1096 | int paranoid = RT_MAX_TRIES; | ||
| 1097 | 1290 | ||
| 1098 | if (!rq->rt.overloaded) | 1291 | if (!rq->rt.overloaded) |
| 1099 | return 0; | 1292 | return 0; |
| 1100 | 1293 | ||
| 1101 | next_task = pick_next_highest_task_rt(rq, -1); | 1294 | next_task = pick_next_pushable_task(rq); |
| 1102 | if (!next_task) | 1295 | if (!next_task) |
| 1103 | return 0; | 1296 | return 0; |
| 1104 | 1297 | ||
| @@ -1127,16 +1320,34 @@ static int push_rt_task(struct rq *rq) | |||
| 1127 | struct task_struct *task; | 1320 | struct task_struct *task; |
| 1128 | /* | 1321 | /* |
| 1129 | * find lock_lowest_rq releases rq->lock | 1322 | * find lock_lowest_rq releases rq->lock |
| 1130 | * so it is possible that next_task has changed. | 1323 | * so it is possible that next_task has migrated. |
| 1131 | * If it has, then try again. | 1324 | * |
| 1325 | * We need to make sure that the task is still on the same | ||
| 1326 | * run-queue and is also still the next task eligible for | ||
| 1327 | * pushing. | ||
| 1132 | */ | 1328 | */ |
| 1133 | task = pick_next_highest_task_rt(rq, -1); | 1329 | task = pick_next_pushable_task(rq); |
| 1134 | if (unlikely(task != next_task) && task && paranoid--) { | 1330 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
| 1135 | put_task_struct(next_task); | 1331 | /* |
| 1136 | next_task = task; | 1332 | * If we get here, the task hasnt moved at all, but |
| 1137 | goto retry; | 1333 | * it has failed to push. We will not try again, |
| 1334 | * since the other cpus will pull from us when they | ||
| 1335 | * are ready. | ||
| 1336 | */ | ||
| 1337 | dequeue_pushable_task(rq, next_task); | ||
| 1338 | goto out; | ||
| 1138 | } | 1339 | } |
| 1139 | goto out; | 1340 | |
| 1341 | if (!task) | ||
| 1342 | /* No more tasks, just exit */ | ||
| 1343 | goto out; | ||
| 1344 | |||
| 1345 | /* | ||
| 1346 | * Something has shifted, try again. | ||
| 1347 | */ | ||
| 1348 | put_task_struct(next_task); | ||
| 1349 | next_task = task; | ||
| 1350 | goto retry; | ||
| 1140 | } | 1351 | } |
| 1141 | 1352 | ||
| 1142 | deactivate_task(rq, next_task, 0); | 1353 | deactivate_task(rq, next_task, 0); |
| @@ -1147,23 +1358,12 @@ static int push_rt_task(struct rq *rq) | |||
| 1147 | 1358 | ||
| 1148 | double_unlock_balance(rq, lowest_rq); | 1359 | double_unlock_balance(rq, lowest_rq); |
| 1149 | 1360 | ||
| 1150 | ret = 1; | ||
| 1151 | out: | 1361 | out: |
| 1152 | put_task_struct(next_task); | 1362 | put_task_struct(next_task); |
| 1153 | 1363 | ||
| 1154 | return ret; | 1364 | return 1; |
| 1155 | } | 1365 | } |
| 1156 | 1366 | ||
| 1157 | /* | ||
| 1158 | * TODO: Currently we just use the second highest prio task on | ||
| 1159 | * the queue, and stop when it can't migrate (or there's | ||
| 1160 | * no more RT tasks). There may be a case where a lower | ||
| 1161 | * priority RT task has a different affinity than the | ||
| 1162 | * higher RT task. In this case the lower RT task could | ||
| 1163 | * possibly be able to migrate where as the higher priority | ||
| 1164 | * RT task could not. We currently ignore this issue. | ||
| 1165 | * Enhancements are welcome! | ||
| 1166 | */ | ||
| 1167 | static void push_rt_tasks(struct rq *rq) | 1367 | static void push_rt_tasks(struct rq *rq) |
| 1168 | { | 1368 | { |
| 1169 | /* push_rt_task will return true if it moved an RT */ | 1369 | /* push_rt_task will return true if it moved an RT */ |
| @@ -1174,33 +1374,35 @@ static void push_rt_tasks(struct rq *rq) | |||
| 1174 | static int pull_rt_task(struct rq *this_rq) | 1374 | static int pull_rt_task(struct rq *this_rq) |
| 1175 | { | 1375 | { |
| 1176 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1376 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
| 1177 | struct task_struct *p, *next; | 1377 | struct task_struct *p; |
| 1178 | struct rq *src_rq; | 1378 | struct rq *src_rq; |
| 1179 | 1379 | ||
| 1180 | if (likely(!rt_overloaded(this_rq))) | 1380 | if (likely(!rt_overloaded(this_rq))) |
| 1181 | return 0; | 1381 | return 0; |
| 1182 | 1382 | ||
| 1183 | next = pick_next_task_rt(this_rq); | ||
| 1184 | |||
| 1185 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1383 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
| 1186 | if (this_cpu == cpu) | 1384 | if (this_cpu == cpu) |
| 1187 | continue; | 1385 | continue; |
| 1188 | 1386 | ||
| 1189 | src_rq = cpu_rq(cpu); | 1387 | src_rq = cpu_rq(cpu); |
| 1388 | |||
| 1389 | /* | ||
| 1390 | * Don't bother taking the src_rq->lock if the next highest | ||
| 1391 | * task is known to be lower-priority than our current task. | ||
| 1392 | * This may look racy, but if this value is about to go | ||
| 1393 | * logically higher, the src_rq will push this task away. | ||
| 1394 | * And if its going logically lower, we do not care | ||
| 1395 | */ | ||
| 1396 | if (src_rq->rt.highest_prio.next >= | ||
| 1397 | this_rq->rt.highest_prio.curr) | ||
| 1398 | continue; | ||
| 1399 | |||
| 1190 | /* | 1400 | /* |
| 1191 | * We can potentially drop this_rq's lock in | 1401 | * We can potentially drop this_rq's lock in |
| 1192 | * double_lock_balance, and another CPU could | 1402 | * double_lock_balance, and another CPU could |
| 1193 | * steal our next task - hence we must cause | 1403 | * alter this_rq |
| 1194 | * the caller to recalculate the next task | ||
| 1195 | * in that case: | ||
| 1196 | */ | 1404 | */ |
| 1197 | if (double_lock_balance(this_rq, src_rq)) { | 1405 | double_lock_balance(this_rq, src_rq); |
| 1198 | struct task_struct *old_next = next; | ||
| 1199 | |||
| 1200 | next = pick_next_task_rt(this_rq); | ||
| 1201 | if (next != old_next) | ||
| 1202 | ret = 1; | ||
| 1203 | } | ||
| 1204 | 1406 | ||
| 1205 | /* | 1407 | /* |
| 1206 | * Are there still pullable RT tasks? | 1408 | * Are there still pullable RT tasks? |
| @@ -1214,7 +1416,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1214 | * Do we have an RT task that preempts | 1416 | * Do we have an RT task that preempts |
| 1215 | * the to-be-scheduled task? | 1417 | * the to-be-scheduled task? |
| 1216 | */ | 1418 | */ |
| 1217 | if (p && (!next || (p->prio < next->prio))) { | 1419 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
| 1218 | WARN_ON(p == src_rq->curr); | 1420 | WARN_ON(p == src_rq->curr); |
| 1219 | WARN_ON(!p->se.on_rq); | 1421 | WARN_ON(!p->se.on_rq); |
| 1220 | 1422 | ||
| @@ -1224,12 +1426,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1224 | * This is just that p is wakeing up and hasn't | 1426 | * This is just that p is wakeing up and hasn't |
| 1225 | * had a chance to schedule. We only pull | 1427 | * had a chance to schedule. We only pull |
| 1226 | * p if it is lower in priority than the | 1428 | * p if it is lower in priority than the |
| 1227 | * current task on the run queue or | 1429 | * current task on the run queue |
| 1228 | * this_rq next task is lower in prio than | ||
| 1229 | * the current task on that rq. | ||
| 1230 | */ | 1430 | */ |
| 1231 | if (p->prio < src_rq->curr->prio || | 1431 | if (p->prio < src_rq->curr->prio) |
| 1232 | (next && next->prio < src_rq->curr->prio)) | ||
| 1233 | goto skip; | 1432 | goto skip; |
| 1234 | 1433 | ||
| 1235 | ret = 1; | 1434 | ret = 1; |
| @@ -1242,13 +1441,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1242 | * case there's an even higher prio task | 1441 | * case there's an even higher prio task |
| 1243 | * in another runqueue. (low likelyhood | 1442 | * in another runqueue. (low likelyhood |
| 1244 | * but possible) | 1443 | * but possible) |
| 1245 | * | ||
| 1246 | * Update next so that we won't pick a task | ||
| 1247 | * on another cpu with a priority lower (or equal) | ||
| 1248 | * than the one we just picked. | ||
| 1249 | */ | 1444 | */ |
| 1250 | next = p; | ||
| 1251 | |||
| 1252 | } | 1445 | } |
| 1253 | skip: | 1446 | skip: |
| 1254 | double_unlock_balance(this_rq, src_rq); | 1447 | double_unlock_balance(this_rq, src_rq); |
| @@ -1260,24 +1453,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1260 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1453 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
| 1261 | { | 1454 | { |
| 1262 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1455 | /* Try to pull RT tasks here if we lower this rq's prio */ |
| 1263 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1456 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
| 1264 | pull_rt_task(rq); | 1457 | pull_rt_task(rq); |
| 1265 | } | 1458 | } |
| 1266 | 1459 | ||
| 1460 | /* | ||
| 1461 | * assumes rq->lock is held | ||
| 1462 | */ | ||
| 1463 | static int needs_post_schedule_rt(struct rq *rq) | ||
| 1464 | { | ||
| 1465 | return has_pushable_tasks(rq); | ||
| 1466 | } | ||
| 1467 | |||
| 1267 | static void post_schedule_rt(struct rq *rq) | 1468 | static void post_schedule_rt(struct rq *rq) |
| 1268 | { | 1469 | { |
| 1269 | /* | 1470 | /* |
| 1270 | * If we have more than one rt_task queued, then | 1471 | * This is only called if needs_post_schedule_rt() indicates that |
| 1271 | * see if we can push the other rt_tasks off to other CPUS. | 1472 | * we need to push tasks away |
| 1272 | * Note we may release the rq lock, and since | ||
| 1273 | * the lock was owned by prev, we need to release it | ||
| 1274 | * first via finish_lock_switch and then reaquire it here. | ||
| 1275 | */ | 1473 | */ |
| 1276 | if (unlikely(rq->rt.overloaded)) { | 1474 | spin_lock_irq(&rq->lock); |
| 1277 | spin_lock_irq(&rq->lock); | 1475 | push_rt_tasks(rq); |
| 1278 | push_rt_tasks(rq); | 1476 | spin_unlock_irq(&rq->lock); |
| 1279 | spin_unlock_irq(&rq->lock); | ||
| 1280 | } | ||
| 1281 | } | 1477 | } |
| 1282 | 1478 | ||
| 1283 | /* | 1479 | /* |
| @@ -1288,7 +1484,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
| 1288 | { | 1484 | { |
| 1289 | if (!task_running(rq, p) && | 1485 | if (!task_running(rq, p) && |
| 1290 | !test_tsk_need_resched(rq->curr) && | 1486 | !test_tsk_need_resched(rq->curr) && |
| 1291 | rq->rt.overloaded) | 1487 | has_pushable_tasks(rq) && |
| 1488 | p->rt.nr_cpus_allowed > 1) | ||
| 1292 | push_rt_tasks(rq); | 1489 | push_rt_tasks(rq); |
| 1293 | } | 1490 | } |
| 1294 | 1491 | ||
| @@ -1324,6 +1521,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
| 1324 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1521 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
| 1325 | struct rq *rq = task_rq(p); | 1522 | struct rq *rq = task_rq(p); |
| 1326 | 1523 | ||
| 1524 | if (!task_current(rq, p)) { | ||
| 1525 | /* | ||
| 1526 | * Make sure we dequeue this task from the pushable list | ||
| 1527 | * before going further. It will either remain off of | ||
| 1528 | * the list because we are no longer pushable, or it | ||
| 1529 | * will be requeued. | ||
| 1530 | */ | ||
| 1531 | if (p->rt.nr_cpus_allowed > 1) | ||
| 1532 | dequeue_pushable_task(rq, p); | ||
| 1533 | |||
| 1534 | /* | ||
| 1535 | * Requeue if our weight is changing and still > 1 | ||
| 1536 | */ | ||
| 1537 | if (weight > 1) | ||
| 1538 | enqueue_pushable_task(rq, p); | ||
| 1539 | |||
| 1540 | } | ||
| 1541 | |||
| 1327 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1542 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
| 1328 | rq->rt.rt_nr_migratory++; | 1543 | rq->rt.rt_nr_migratory++; |
| 1329 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1544 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
| @@ -1331,7 +1546,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
| 1331 | rq->rt.rt_nr_migratory--; | 1546 | rq->rt.rt_nr_migratory--; |
| 1332 | } | 1547 | } |
| 1333 | 1548 | ||
| 1334 | update_rt_migration(rq); | 1549 | update_rt_migration(&rq->rt); |
| 1335 | } | 1550 | } |
| 1336 | 1551 | ||
| 1337 | cpumask_copy(&p->cpus_allowed, new_mask); | 1552 | cpumask_copy(&p->cpus_allowed, new_mask); |
| @@ -1346,7 +1561,7 @@ static void rq_online_rt(struct rq *rq) | |||
| 1346 | 1561 | ||
| 1347 | __enable_runtime(rq); | 1562 | __enable_runtime(rq); |
| 1348 | 1563 | ||
| 1349 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1564 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
| 1350 | } | 1565 | } |
| 1351 | 1566 | ||
| 1352 | /* Assumes rq->lock is held */ | 1567 | /* Assumes rq->lock is held */ |
| @@ -1438,7 +1653,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
| 1438 | * can release the rq lock and p could migrate. | 1653 | * can release the rq lock and p could migrate. |
| 1439 | * Only reschedule if p is still on the same runqueue. | 1654 | * Only reschedule if p is still on the same runqueue. |
| 1440 | */ | 1655 | */ |
| 1441 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1656 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
| 1442 | resched_task(p); | 1657 | resched_task(p); |
| 1443 | #else | 1658 | #else |
| 1444 | /* For UP simply resched on drop of prio */ | 1659 | /* For UP simply resched on drop of prio */ |
| @@ -1509,6 +1724,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
| 1509 | struct task_struct *p = rq->curr; | 1724 | struct task_struct *p = rq->curr; |
| 1510 | 1725 | ||
| 1511 | p->se.exec_start = rq->clock; | 1726 | p->se.exec_start = rq->clock; |
| 1727 | |||
| 1728 | /* The running task is never eligible for pushing */ | ||
| 1729 | dequeue_pushable_task(rq, p); | ||
| 1512 | } | 1730 | } |
| 1513 | 1731 | ||
| 1514 | static const struct sched_class rt_sched_class = { | 1732 | static const struct sched_class rt_sched_class = { |
| @@ -1531,6 +1749,7 @@ static const struct sched_class rt_sched_class = { | |||
| 1531 | .rq_online = rq_online_rt, | 1749 | .rq_online = rq_online_rt, |
| 1532 | .rq_offline = rq_offline_rt, | 1750 | .rq_offline = rq_offline_rt, |
| 1533 | .pre_schedule = pre_schedule_rt, | 1751 | .pre_schedule = pre_schedule_rt, |
| 1752 | .needs_post_schedule = needs_post_schedule_rt, | ||
| 1534 | .post_schedule = post_schedule_rt, | 1753 | .post_schedule = post_schedule_rt, |
| 1535 | .task_wake_up = task_wake_up_rt, | 1754 | .task_wake_up = task_wake_up_rt, |
| 1536 | .switched_from = switched_from_rt, | 1755 | .switched_from = switched_from_rt, |
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index a8f93dd374e1..32d2bd4061b0 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h | |||
| @@ -4,7 +4,7 @@ | |||
| 4 | * bump this up when changing the output format or the meaning of an existing | 4 | * bump this up when changing the output format or the meaning of an existing |
| 5 | * format, so that tools can adapt (or abort) | 5 | * format, so that tools can adapt (or abort) |
| 6 | */ | 6 | */ |
| 7 | #define SCHEDSTAT_VERSION 14 | 7 | #define SCHEDSTAT_VERSION 15 |
| 8 | 8 | ||
| 9 | static int show_schedstat(struct seq_file *seq, void *v) | 9 | static int show_schedstat(struct seq_file *seq, void *v) |
| 10 | { | 10 | { |
| @@ -26,9 +26,8 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
| 26 | 26 | ||
| 27 | /* runqueue-specific stats */ | 27 | /* runqueue-specific stats */ |
| 28 | seq_printf(seq, | 28 | seq_printf(seq, |
| 29 | "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", | 29 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", |
| 30 | cpu, rq->yld_both_empty, | 30 | cpu, rq->yld_count, |
| 31 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, | ||
| 32 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | 31 | rq->sched_switch, rq->sched_count, rq->sched_goidle, |
| 33 | rq->ttwu_count, rq->ttwu_local, | 32 | rq->ttwu_count, rq->ttwu_local, |
| 34 | rq->rq_cpu_time, | 33 | rq->rq_cpu_time, |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 9041ea7948fe..57d3f67f6f38 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
| @@ -796,6 +796,11 @@ int __init __weak early_irq_init(void) | |||
| 796 | return 0; | 796 | return 0; |
| 797 | } | 797 | } |
| 798 | 798 | ||
| 799 | int __init __weak arch_probe_nr_irqs(void) | ||
| 800 | { | ||
| 801 | return 0; | ||
| 802 | } | ||
| 803 | |||
| 799 | int __init __weak arch_early_irq_init(void) | 804 | int __init __weak arch_early_irq_init(void) |
| 800 | { | 805 | { |
| 801 | return 0; | 806 | return 0; |
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 0cd415ee62a2..74541ca49536 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
| @@ -170,7 +170,7 @@ int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | |||
| 170 | * doesn't hit this CPU until we're ready. */ | 170 | * doesn't hit this CPU until we're ready. */ |
| 171 | get_cpu(); | 171 | get_cpu(); |
| 172 | for_each_online_cpu(i) { | 172 | for_each_online_cpu(i) { |
| 173 | sm_work = percpu_ptr(stop_machine_work, i); | 173 | sm_work = per_cpu_ptr(stop_machine_work, i); |
| 174 | INIT_WORK(sm_work, stop_cpu); | 174 | INIT_WORK(sm_work, stop_cpu); |
| 175 | queue_work_on(i, stop_machine_wq, sm_work); | 175 | queue_work_on(i, stop_machine_wq, sm_work); |
| 176 | } | 176 | } |
diff --git a/kernel/sysctl_check.c b/kernel/sysctl_check.c index fafeb48f27c0..b38423ca711a 100644 --- a/kernel/sysctl_check.c +++ b/kernel/sysctl_check.c | |||
| @@ -219,6 +219,7 @@ static const struct trans_ctl_table trans_net_ipv4_conf_vars_table[] = { | |||
| 219 | { NET_IPV4_CONF_ARP_IGNORE, "arp_ignore" }, | 219 | { NET_IPV4_CONF_ARP_IGNORE, "arp_ignore" }, |
| 220 | { NET_IPV4_CONF_PROMOTE_SECONDARIES, "promote_secondaries" }, | 220 | { NET_IPV4_CONF_PROMOTE_SECONDARIES, "promote_secondaries" }, |
| 221 | { NET_IPV4_CONF_ARP_ACCEPT, "arp_accept" }, | 221 | { NET_IPV4_CONF_ARP_ACCEPT, "arp_accept" }, |
| 222 | { NET_IPV4_CONF_ARP_NOTIFY, "arp_notify" }, | ||
| 222 | {} | 223 | {} |
| 223 | }; | 224 | }; |
| 224 | 225 | ||
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 905b0b50792d..0b0a6366c9d4 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o |
| 2 | 2 | ||
| 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
| 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c index ea2f48af83cf..d13be216a790 100644 --- a/kernel/time/clockevents.c +++ b/kernel/time/clockevents.c | |||
| @@ -68,6 +68,17 @@ void clockevents_set_mode(struct clock_event_device *dev, | |||
| 68 | if (dev->mode != mode) { | 68 | if (dev->mode != mode) { |
| 69 | dev->set_mode(mode, dev); | 69 | dev->set_mode(mode, dev); |
| 70 | dev->mode = mode; | 70 | dev->mode = mode; |
| 71 | |||
| 72 | /* | ||
| 73 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
| 74 | * on it, so fix it up and emit a warning: | ||
| 75 | */ | ||
| 76 | if (mode == CLOCK_EVT_MODE_ONESHOT) { | ||
| 77 | if (unlikely(!dev->mult)) { | ||
| 78 | dev->mult = 1; | ||
| 79 | WARN_ON(1); | ||
| 80 | } | ||
| 81 | } | ||
| 71 | } | 82 | } |
| 72 | } | 83 | } |
| 73 | 84 | ||
| @@ -168,15 +179,6 @@ void clockevents_register_device(struct clock_event_device *dev) | |||
| 168 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); | 179 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); |
| 169 | BUG_ON(!dev->cpumask); | 180 | BUG_ON(!dev->cpumask); |
| 170 | 181 | ||
| 171 | /* | ||
| 172 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
| 173 | * on it, so fix it up and emit a warning: | ||
| 174 | */ | ||
| 175 | if (unlikely(!dev->mult)) { | ||
| 176 | dev->mult = 1; | ||
| 177 | WARN_ON(1); | ||
| 178 | } | ||
| 179 | |||
| 180 | spin_lock(&clockevents_lock); | 182 | spin_lock(&clockevents_lock); |
| 181 | 183 | ||
| 182 | list_add(&dev->list, &clockevent_devices); | 184 | list_add(&dev->list, &clockevent_devices); |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index ca89e1593f08..c46c931a7fe7 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -31,6 +31,82 @@ | |||
| 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| 32 | #include <linux/tick.h> | 32 | #include <linux/tick.h> |
| 33 | 33 | ||
| 34 | void timecounter_init(struct timecounter *tc, | ||
| 35 | const struct cyclecounter *cc, | ||
| 36 | u64 start_tstamp) | ||
| 37 | { | ||
| 38 | tc->cc = cc; | ||
| 39 | tc->cycle_last = cc->read(cc); | ||
| 40 | tc->nsec = start_tstamp; | ||
| 41 | } | ||
| 42 | EXPORT_SYMBOL(timecounter_init); | ||
| 43 | |||
| 44 | /** | ||
| 45 | * timecounter_read_delta - get nanoseconds since last call of this function | ||
| 46 | * @tc: Pointer to time counter | ||
| 47 | * | ||
| 48 | * When the underlying cycle counter runs over, this will be handled | ||
| 49 | * correctly as long as it does not run over more than once between | ||
| 50 | * calls. | ||
| 51 | * | ||
| 52 | * The first call to this function for a new time counter initializes | ||
| 53 | * the time tracking and returns an undefined result. | ||
| 54 | */ | ||
| 55 | static u64 timecounter_read_delta(struct timecounter *tc) | ||
| 56 | { | ||
| 57 | cycle_t cycle_now, cycle_delta; | ||
| 58 | u64 ns_offset; | ||
| 59 | |||
| 60 | /* read cycle counter: */ | ||
| 61 | cycle_now = tc->cc->read(tc->cc); | ||
| 62 | |||
| 63 | /* calculate the delta since the last timecounter_read_delta(): */ | ||
| 64 | cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; | ||
| 65 | |||
| 66 | /* convert to nanoseconds: */ | ||
| 67 | ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
| 68 | |||
| 69 | /* update time stamp of timecounter_read_delta() call: */ | ||
| 70 | tc->cycle_last = cycle_now; | ||
| 71 | |||
| 72 | return ns_offset; | ||
| 73 | } | ||
| 74 | |||
| 75 | u64 timecounter_read(struct timecounter *tc) | ||
| 76 | { | ||
| 77 | u64 nsec; | ||
| 78 | |||
| 79 | /* increment time by nanoseconds since last call */ | ||
| 80 | nsec = timecounter_read_delta(tc); | ||
| 81 | nsec += tc->nsec; | ||
| 82 | tc->nsec = nsec; | ||
| 83 | |||
| 84 | return nsec; | ||
| 85 | } | ||
| 86 | EXPORT_SYMBOL(timecounter_read); | ||
| 87 | |||
| 88 | u64 timecounter_cyc2time(struct timecounter *tc, | ||
| 89 | cycle_t cycle_tstamp) | ||
| 90 | { | ||
| 91 | u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; | ||
| 92 | u64 nsec; | ||
| 93 | |||
| 94 | /* | ||
| 95 | * Instead of always treating cycle_tstamp as more recent | ||
| 96 | * than tc->cycle_last, detect when it is too far in the | ||
| 97 | * future and treat it as old time stamp instead. | ||
| 98 | */ | ||
| 99 | if (cycle_delta > tc->cc->mask / 2) { | ||
| 100 | cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; | ||
| 101 | nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
| 102 | } else { | ||
| 103 | nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; | ||
| 104 | } | ||
| 105 | |||
| 106 | return nsec; | ||
| 107 | } | ||
| 108 | EXPORT_SYMBOL(timecounter_cyc2time); | ||
| 109 | |||
| 34 | /* XXX - Would like a better way for initializing curr_clocksource */ | 110 | /* XXX - Would like a better way for initializing curr_clocksource */ |
| 35 | extern struct clocksource clocksource_jiffies; | 111 | extern struct clocksource clocksource_jiffies; |
| 36 | 112 | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index f5f793d92415..7fc64375ff43 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
| @@ -1,71 +1,129 @@ | |||
| 1 | /* | 1 | /* |
| 2 | * linux/kernel/time/ntp.c | ||
| 3 | * | ||
| 4 | * NTP state machine interfaces and logic. | 2 | * NTP state machine interfaces and logic. |
| 5 | * | 3 | * |
| 6 | * This code was mainly moved from kernel/timer.c and kernel/time.c | 4 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
| 7 | * Please see those files for relevant copyright info and historical | 5 | * Please see those files for relevant copyright info and historical |
| 8 | * changelogs. | 6 | * changelogs. |
| 9 | */ | 7 | */ |
| 10 | |||
| 11 | #include <linux/mm.h> | ||
| 12 | #include <linux/time.h> | ||
| 13 | #include <linux/timex.h> | ||
| 14 | #include <linux/jiffies.h> | ||
| 15 | #include <linux/hrtimer.h> | ||
| 16 | #include <linux/capability.h> | 8 | #include <linux/capability.h> |
| 17 | #include <linux/math64.h> | ||
| 18 | #include <linux/clocksource.h> | 9 | #include <linux/clocksource.h> |
| 19 | #include <linux/workqueue.h> | 10 | #include <linux/workqueue.h> |
| 20 | #include <asm/timex.h> | 11 | #include <linux/hrtimer.h> |
| 12 | #include <linux/jiffies.h> | ||
| 13 | #include <linux/math64.h> | ||
| 14 | #include <linux/timex.h> | ||
| 15 | #include <linux/time.h> | ||
| 16 | #include <linux/mm.h> | ||
| 21 | 17 | ||
| 22 | /* | 18 | /* |
| 23 | * Timekeeping variables | 19 | * NTP timekeeping variables: |
| 24 | */ | 20 | */ |
| 25 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | ||
| 26 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ | ||
| 27 | u64 tick_length; | ||
| 28 | static u64 tick_length_base; | ||
| 29 | 21 | ||
| 30 | static struct hrtimer leap_timer; | 22 | /* USER_HZ period (usecs): */ |
| 23 | unsigned long tick_usec = TICK_USEC; | ||
| 31 | 24 | ||
| 32 | #define MAX_TICKADJ 500 /* microsecs */ | 25 | /* ACTHZ period (nsecs): */ |
| 33 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ | 26 | unsigned long tick_nsec; |
| 34 | NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 27 | |
| 28 | u64 tick_length; | ||
| 29 | static u64 tick_length_base; | ||
| 30 | |||
| 31 | static struct hrtimer leap_timer; | ||
| 32 | |||
| 33 | #define MAX_TICKADJ 500LL /* usecs */ | ||
| 34 | #define MAX_TICKADJ_SCALED \ | ||
| 35 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | ||
| 35 | 36 | ||
| 36 | /* | 37 | /* |
| 37 | * phase-lock loop variables | 38 | * phase-lock loop variables |
| 38 | */ | 39 | */ |
| 39 | /* TIME_ERROR prevents overwriting the CMOS clock */ | ||
| 40 | static int time_state = TIME_OK; /* clock synchronization status */ | ||
| 41 | int time_status = STA_UNSYNC; /* clock status bits */ | ||
| 42 | static long time_tai; /* TAI offset (s) */ | ||
| 43 | static s64 time_offset; /* time adjustment (ns) */ | ||
| 44 | static long time_constant = 2; /* pll time constant */ | ||
| 45 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | ||
| 46 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | ||
| 47 | static s64 time_freq; /* frequency offset (scaled ns/s)*/ | ||
| 48 | static long time_reftime; /* time at last adjustment (s) */ | ||
| 49 | long time_adjust; | ||
| 50 | static long ntp_tick_adj; | ||
| 51 | 40 | ||
| 41 | /* | ||
| 42 | * clock synchronization status | ||
| 43 | * | ||
| 44 | * (TIME_ERROR prevents overwriting the CMOS clock) | ||
| 45 | */ | ||
| 46 | static int time_state = TIME_OK; | ||
| 47 | |||
| 48 | /* clock status bits: */ | ||
| 49 | int time_status = STA_UNSYNC; | ||
| 50 | |||
| 51 | /* TAI offset (secs): */ | ||
| 52 | static long time_tai; | ||
| 53 | |||
| 54 | /* time adjustment (nsecs): */ | ||
| 55 | static s64 time_offset; | ||
| 56 | |||
| 57 | /* pll time constant: */ | ||
| 58 | static long time_constant = 2; | ||
| 59 | |||
| 60 | /* maximum error (usecs): */ | ||
| 61 | long time_maxerror = NTP_PHASE_LIMIT; | ||
| 62 | |||
| 63 | /* estimated error (usecs): */ | ||
| 64 | long time_esterror = NTP_PHASE_LIMIT; | ||
| 65 | |||
| 66 | /* frequency offset (scaled nsecs/secs): */ | ||
| 67 | static s64 time_freq; | ||
| 68 | |||
| 69 | /* time at last adjustment (secs): */ | ||
| 70 | static long time_reftime; | ||
| 71 | |||
| 72 | long time_adjust; | ||
| 73 | |||
| 74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ | ||
| 75 | static s64 ntp_tick_adj; | ||
| 76 | |||
| 77 | /* | ||
| 78 | * NTP methods: | ||
| 79 | */ | ||
| 80 | |||
| 81 | /* | ||
| 82 | * Update (tick_length, tick_length_base, tick_nsec), based | ||
| 83 | * on (tick_usec, ntp_tick_adj, time_freq): | ||
| 84 | */ | ||
| 52 | static void ntp_update_frequency(void) | 85 | static void ntp_update_frequency(void) |
| 53 | { | 86 | { |
| 54 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 87 | u64 second_length; |
| 55 | << NTP_SCALE_SHIFT; | 88 | u64 new_base; |
| 56 | second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; | 89 | |
| 57 | second_length += time_freq; | 90 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
| 91 | << NTP_SCALE_SHIFT; | ||
| 92 | |||
| 93 | second_length += ntp_tick_adj; | ||
| 94 | second_length += time_freq; | ||
| 58 | 95 | ||
| 59 | tick_length_base = second_length; | 96 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
| 97 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); | ||
| 60 | 98 | ||
| 61 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 99 | /* |
| 62 | tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); | 100 | * Don't wait for the next second_overflow, apply |
| 101 | * the change to the tick length immediately: | ||
| 102 | */ | ||
| 103 | tick_length += new_base - tick_length_base; | ||
| 104 | tick_length_base = new_base; | ||
| 105 | } | ||
| 106 | |||
| 107 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | ||
| 108 | { | ||
| 109 | time_status &= ~STA_MODE; | ||
| 110 | |||
| 111 | if (secs < MINSEC) | ||
| 112 | return 0; | ||
| 113 | |||
| 114 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | ||
| 115 | return 0; | ||
| 116 | |||
| 117 | time_status |= STA_MODE; | ||
| 118 | |||
| 119 | return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | ||
| 63 | } | 120 | } |
| 64 | 121 | ||
| 65 | static void ntp_update_offset(long offset) | 122 | static void ntp_update_offset(long offset) |
| 66 | { | 123 | { |
| 67 | long mtemp; | ||
| 68 | s64 freq_adj; | 124 | s64 freq_adj; |
| 125 | s64 offset64; | ||
| 126 | long secs; | ||
| 69 | 127 | ||
| 70 | if (!(time_status & STA_PLL)) | 128 | if (!(time_status & STA_PLL)) |
| 71 | return; | 129 | return; |
| @@ -84,24 +142,23 @@ static void ntp_update_offset(long offset) | |||
| 84 | * Select how the frequency is to be controlled | 142 | * Select how the frequency is to be controlled |
| 85 | * and in which mode (PLL or FLL). | 143 | * and in which mode (PLL or FLL). |
| 86 | */ | 144 | */ |
| 87 | if (time_status & STA_FREQHOLD || time_reftime == 0) | 145 | secs = xtime.tv_sec - time_reftime; |
| 88 | time_reftime = xtime.tv_sec; | 146 | if (unlikely(time_status & STA_FREQHOLD)) |
| 89 | mtemp = xtime.tv_sec - time_reftime; | 147 | secs = 0; |
| 148 | |||
| 90 | time_reftime = xtime.tv_sec; | 149 | time_reftime = xtime.tv_sec; |
| 91 | 150 | ||
| 92 | freq_adj = (s64)offset * mtemp; | 151 | offset64 = offset; |
| 93 | freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); | 152 | freq_adj = (offset64 * secs) << |
| 94 | time_status &= ~STA_MODE; | 153 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
| 95 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
| 96 | freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), | ||
| 97 | mtemp); | ||
| 98 | time_status |= STA_MODE; | ||
| 99 | } | ||
| 100 | freq_adj += time_freq; | ||
| 101 | freq_adj = min(freq_adj, MAXFREQ_SCALED); | ||
| 102 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
| 103 | 154 | ||
| 104 | time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 155 | freq_adj += ntp_update_offset_fll(offset64, secs); |
| 156 | |||
| 157 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | ||
| 158 | |||
| 159 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
| 160 | |||
| 161 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | ||
| 105 | } | 162 | } |
| 106 | 163 | ||
| 107 | /** | 164 | /** |
| @@ -111,15 +168,15 @@ static void ntp_update_offset(long offset) | |||
| 111 | */ | 168 | */ |
| 112 | void ntp_clear(void) | 169 | void ntp_clear(void) |
| 113 | { | 170 | { |
| 114 | time_adjust = 0; /* stop active adjtime() */ | 171 | time_adjust = 0; /* stop active adjtime() */ |
| 115 | time_status |= STA_UNSYNC; | 172 | time_status |= STA_UNSYNC; |
| 116 | time_maxerror = NTP_PHASE_LIMIT; | 173 | time_maxerror = NTP_PHASE_LIMIT; |
| 117 | time_esterror = NTP_PHASE_LIMIT; | 174 | time_esterror = NTP_PHASE_LIMIT; |
| 118 | 175 | ||
| 119 | ntp_update_frequency(); | 176 | ntp_update_frequency(); |
| 120 | 177 | ||
| 121 | tick_length = tick_length_base; | 178 | tick_length = tick_length_base; |
| 122 | time_offset = 0; | 179 | time_offset = 0; |
| 123 | } | 180 | } |
| 124 | 181 | ||
| 125 | /* | 182 | /* |
| @@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 140 | xtime.tv_sec--; | 197 | xtime.tv_sec--; |
| 141 | wall_to_monotonic.tv_sec++; | 198 | wall_to_monotonic.tv_sec++; |
| 142 | time_state = TIME_OOP; | 199 | time_state = TIME_OOP; |
| 143 | printk(KERN_NOTICE "Clock: " | 200 | printk(KERN_NOTICE |
| 144 | "inserting leap second 23:59:60 UTC\n"); | 201 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| 145 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); | 202 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); |
| 146 | res = HRTIMER_RESTART; | 203 | res = HRTIMER_RESTART; |
| 147 | break; | 204 | break; |
| @@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 150 | time_tai--; | 207 | time_tai--; |
| 151 | wall_to_monotonic.tv_sec--; | 208 | wall_to_monotonic.tv_sec--; |
| 152 | time_state = TIME_WAIT; | 209 | time_state = TIME_WAIT; |
| 153 | printk(KERN_NOTICE "Clock: " | 210 | printk(KERN_NOTICE |
| 154 | "deleting leap second 23:59:59 UTC\n"); | 211 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| 155 | break; | 212 | break; |
| 156 | case TIME_OOP: | 213 | case TIME_OOP: |
| 157 | time_tai++; | 214 | time_tai++; |
| @@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 179 | */ | 236 | */ |
| 180 | void second_overflow(void) | 237 | void second_overflow(void) |
| 181 | { | 238 | { |
| 182 | s64 time_adj; | 239 | s64 delta; |
| 183 | 240 | ||
| 184 | /* Bump the maxerror field */ | 241 | /* Bump the maxerror field */ |
| 185 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | 242 | time_maxerror += MAXFREQ / NSEC_PER_USEC; |
| @@ -192,24 +249,30 @@ void second_overflow(void) | |||
| 192 | * Compute the phase adjustment for the next second. The offset is | 249 | * Compute the phase adjustment for the next second. The offset is |
| 193 | * reduced by a fixed factor times the time constant. | 250 | * reduced by a fixed factor times the time constant. |
| 194 | */ | 251 | */ |
| 195 | tick_length = tick_length_base; | 252 | tick_length = tick_length_base; |
| 196 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); | 253 | |
| 197 | time_offset -= time_adj; | 254 | delta = shift_right(time_offset, SHIFT_PLL + time_constant); |
| 198 | tick_length += time_adj; | 255 | time_offset -= delta; |
| 199 | 256 | tick_length += delta; | |
| 200 | if (unlikely(time_adjust)) { | 257 | |
| 201 | if (time_adjust > MAX_TICKADJ) { | 258 | if (!time_adjust) |
| 202 | time_adjust -= MAX_TICKADJ; | 259 | return; |
| 203 | tick_length += MAX_TICKADJ_SCALED; | 260 | |
| 204 | } else if (time_adjust < -MAX_TICKADJ) { | 261 | if (time_adjust > MAX_TICKADJ) { |
| 205 | time_adjust += MAX_TICKADJ; | 262 | time_adjust -= MAX_TICKADJ; |
| 206 | tick_length -= MAX_TICKADJ_SCALED; | 263 | tick_length += MAX_TICKADJ_SCALED; |
| 207 | } else { | 264 | return; |
| 208 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / | ||
| 209 | NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; | ||
| 210 | time_adjust = 0; | ||
| 211 | } | ||
| 212 | } | 265 | } |
| 266 | |||
| 267 | if (time_adjust < -MAX_TICKADJ) { | ||
| 268 | time_adjust += MAX_TICKADJ; | ||
| 269 | tick_length -= MAX_TICKADJ_SCALED; | ||
| 270 | return; | ||
| 271 | } | ||
| 272 | |||
| 273 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | ||
| 274 | << NTP_SCALE_SHIFT; | ||
| 275 | time_adjust = 0; | ||
| 213 | } | 276 | } |
| 214 | 277 | ||
| 215 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 278 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
| @@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work) | |||
| 233 | * This code is run on a timer. If the clock is set, that timer | 296 | * This code is run on a timer. If the clock is set, that timer |
| 234 | * may not expire at the correct time. Thus, we adjust... | 297 | * may not expire at the correct time. Thus, we adjust... |
| 235 | */ | 298 | */ |
| 236 | if (!ntp_synced()) | 299 | if (!ntp_synced()) { |
| 237 | /* | 300 | /* |
| 238 | * Not synced, exit, do not restart a timer (if one is | 301 | * Not synced, exit, do not restart a timer (if one is |
| 239 | * running, let it run out). | 302 | * running, let it run out). |
| 240 | */ | 303 | */ |
| 241 | return; | 304 | return; |
| 305 | } | ||
| 242 | 306 | ||
| 243 | getnstimeofday(&now); | 307 | getnstimeofday(&now); |
| 244 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 308 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) |
| @@ -270,7 +334,116 @@ static void notify_cmos_timer(void) | |||
| 270 | static inline void notify_cmos_timer(void) { } | 334 | static inline void notify_cmos_timer(void) { } |
| 271 | #endif | 335 | #endif |
| 272 | 336 | ||
| 273 | /* adjtimex mainly allows reading (and writing, if superuser) of | 337 | /* |
| 338 | * Start the leap seconds timer: | ||
| 339 | */ | ||
| 340 | static inline void ntp_start_leap_timer(struct timespec *ts) | ||
| 341 | { | ||
| 342 | long now = ts->tv_sec; | ||
| 343 | |||
| 344 | if (time_status & STA_INS) { | ||
| 345 | time_state = TIME_INS; | ||
| 346 | now += 86400 - now % 86400; | ||
| 347 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
| 348 | |||
| 349 | return; | ||
| 350 | } | ||
| 351 | |||
| 352 | if (time_status & STA_DEL) { | ||
| 353 | time_state = TIME_DEL; | ||
| 354 | now += 86400 - (now + 1) % 86400; | ||
| 355 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
| 356 | } | ||
| 357 | } | ||
| 358 | |||
| 359 | /* | ||
| 360 | * Propagate a new txc->status value into the NTP state: | ||
| 361 | */ | ||
| 362 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | ||
| 363 | { | ||
| 364 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | ||
| 365 | time_state = TIME_OK; | ||
| 366 | time_status = STA_UNSYNC; | ||
| 367 | } | ||
| 368 | |||
| 369 | /* | ||
| 370 | * If we turn on PLL adjustments then reset the | ||
| 371 | * reference time to current time. | ||
| 372 | */ | ||
| 373 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | ||
| 374 | time_reftime = xtime.tv_sec; | ||
| 375 | |||
| 376 | /* only set allowed bits */ | ||
| 377 | time_status &= STA_RONLY; | ||
| 378 | time_status |= txc->status & ~STA_RONLY; | ||
| 379 | |||
| 380 | switch (time_state) { | ||
| 381 | case TIME_OK: | ||
| 382 | ntp_start_leap_timer(ts); | ||
| 383 | break; | ||
| 384 | case TIME_INS: | ||
| 385 | case TIME_DEL: | ||
| 386 | time_state = TIME_OK; | ||
| 387 | ntp_start_leap_timer(ts); | ||
| 388 | case TIME_WAIT: | ||
| 389 | if (!(time_status & (STA_INS | STA_DEL))) | ||
| 390 | time_state = TIME_OK; | ||
| 391 | break; | ||
| 392 | case TIME_OOP: | ||
| 393 | hrtimer_restart(&leap_timer); | ||
| 394 | break; | ||
| 395 | } | ||
| 396 | } | ||
| 397 | /* | ||
| 398 | * Called with the xtime lock held, so we can access and modify | ||
| 399 | * all the global NTP state: | ||
| 400 | */ | ||
| 401 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | ||
| 402 | { | ||
| 403 | if (txc->modes & ADJ_STATUS) | ||
| 404 | process_adj_status(txc, ts); | ||
| 405 | |||
| 406 | if (txc->modes & ADJ_NANO) | ||
| 407 | time_status |= STA_NANO; | ||
| 408 | |||
| 409 | if (txc->modes & ADJ_MICRO) | ||
| 410 | time_status &= ~STA_NANO; | ||
| 411 | |||
| 412 | if (txc->modes & ADJ_FREQUENCY) { | ||
| 413 | time_freq = txc->freq * PPM_SCALE; | ||
| 414 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
| 415 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
| 416 | } | ||
| 417 | |||
| 418 | if (txc->modes & ADJ_MAXERROR) | ||
| 419 | time_maxerror = txc->maxerror; | ||
| 420 | |||
| 421 | if (txc->modes & ADJ_ESTERROR) | ||
| 422 | time_esterror = txc->esterror; | ||
| 423 | |||
| 424 | if (txc->modes & ADJ_TIMECONST) { | ||
| 425 | time_constant = txc->constant; | ||
| 426 | if (!(time_status & STA_NANO)) | ||
| 427 | time_constant += 4; | ||
| 428 | time_constant = min(time_constant, (long)MAXTC); | ||
| 429 | time_constant = max(time_constant, 0l); | ||
| 430 | } | ||
| 431 | |||
| 432 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
| 433 | time_tai = txc->constant; | ||
| 434 | |||
| 435 | if (txc->modes & ADJ_OFFSET) | ||
| 436 | ntp_update_offset(txc->offset); | ||
| 437 | |||
| 438 | if (txc->modes & ADJ_TICK) | ||
| 439 | tick_usec = txc->tick; | ||
| 440 | |||
| 441 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | ||
| 442 | ntp_update_frequency(); | ||
| 443 | } | ||
| 444 | |||
| 445 | /* | ||
| 446 | * adjtimex mainly allows reading (and writing, if superuser) of | ||
| 274 | * kernel time-keeping variables. used by xntpd. | 447 | * kernel time-keeping variables. used by xntpd. |
| 275 | */ | 448 | */ |
| 276 | int do_adjtimex(struct timex *txc) | 449 | int do_adjtimex(struct timex *txc) |
| @@ -291,11 +464,14 @@ int do_adjtimex(struct timex *txc) | |||
| 291 | if (txc->modes && !capable(CAP_SYS_TIME)) | 464 | if (txc->modes && !capable(CAP_SYS_TIME)) |
| 292 | return -EPERM; | 465 | return -EPERM; |
| 293 | 466 | ||
| 294 | /* if the quartz is off by more than 10% something is VERY wrong! */ | 467 | /* |
| 468 | * if the quartz is off by more than 10% then | ||
| 469 | * something is VERY wrong! | ||
| 470 | */ | ||
| 295 | if (txc->modes & ADJ_TICK && | 471 | if (txc->modes & ADJ_TICK && |
| 296 | (txc->tick < 900000/USER_HZ || | 472 | (txc->tick < 900000/USER_HZ || |
| 297 | txc->tick > 1100000/USER_HZ)) | 473 | txc->tick > 1100000/USER_HZ)) |
| 298 | return -EINVAL; | 474 | return -EINVAL; |
| 299 | 475 | ||
| 300 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) | 476 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) |
| 301 | hrtimer_cancel(&leap_timer); | 477 | hrtimer_cancel(&leap_timer); |
| @@ -305,7 +481,6 @@ int do_adjtimex(struct timex *txc) | |||
| 305 | 481 | ||
| 306 | write_seqlock_irq(&xtime_lock); | 482 | write_seqlock_irq(&xtime_lock); |
| 307 | 483 | ||
| 308 | /* If there are input parameters, then process them */ | ||
| 309 | if (txc->modes & ADJ_ADJTIME) { | 484 | if (txc->modes & ADJ_ADJTIME) { |
| 310 | long save_adjust = time_adjust; | 485 | long save_adjust = time_adjust; |
| 311 | 486 | ||
| @@ -315,98 +490,24 @@ int do_adjtimex(struct timex *txc) | |||
| 315 | ntp_update_frequency(); | 490 | ntp_update_frequency(); |
| 316 | } | 491 | } |
| 317 | txc->offset = save_adjust; | 492 | txc->offset = save_adjust; |
| 318 | goto adj_done; | 493 | } else { |
| 319 | } | ||
| 320 | if (txc->modes) { | ||
| 321 | long sec; | ||
| 322 | |||
| 323 | if (txc->modes & ADJ_STATUS) { | ||
| 324 | if ((time_status & STA_PLL) && | ||
| 325 | !(txc->status & STA_PLL)) { | ||
| 326 | time_state = TIME_OK; | ||
| 327 | time_status = STA_UNSYNC; | ||
| 328 | } | ||
| 329 | /* only set allowed bits */ | ||
| 330 | time_status &= STA_RONLY; | ||
| 331 | time_status |= txc->status & ~STA_RONLY; | ||
| 332 | |||
| 333 | switch (time_state) { | ||
| 334 | case TIME_OK: | ||
| 335 | start_timer: | ||
| 336 | sec = ts.tv_sec; | ||
| 337 | if (time_status & STA_INS) { | ||
| 338 | time_state = TIME_INS; | ||
| 339 | sec += 86400 - sec % 86400; | ||
| 340 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
| 341 | } else if (time_status & STA_DEL) { | ||
| 342 | time_state = TIME_DEL; | ||
| 343 | sec += 86400 - (sec + 1) % 86400; | ||
| 344 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
| 345 | } | ||
| 346 | break; | ||
| 347 | case TIME_INS: | ||
| 348 | case TIME_DEL: | ||
| 349 | time_state = TIME_OK; | ||
| 350 | goto start_timer; | ||
| 351 | break; | ||
| 352 | case TIME_WAIT: | ||
| 353 | if (!(time_status & (STA_INS | STA_DEL))) | ||
| 354 | time_state = TIME_OK; | ||
| 355 | break; | ||
| 356 | case TIME_OOP: | ||
| 357 | hrtimer_restart(&leap_timer); | ||
| 358 | break; | ||
| 359 | } | ||
| 360 | } | ||
| 361 | |||
| 362 | if (txc->modes & ADJ_NANO) | ||
| 363 | time_status |= STA_NANO; | ||
| 364 | if (txc->modes & ADJ_MICRO) | ||
| 365 | time_status &= ~STA_NANO; | ||
| 366 | |||
| 367 | if (txc->modes & ADJ_FREQUENCY) { | ||
| 368 | time_freq = (s64)txc->freq * PPM_SCALE; | ||
| 369 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
| 370 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
| 371 | } | ||
| 372 | |||
| 373 | if (txc->modes & ADJ_MAXERROR) | ||
| 374 | time_maxerror = txc->maxerror; | ||
| 375 | if (txc->modes & ADJ_ESTERROR) | ||
| 376 | time_esterror = txc->esterror; | ||
| 377 | |||
| 378 | if (txc->modes & ADJ_TIMECONST) { | ||
| 379 | time_constant = txc->constant; | ||
| 380 | if (!(time_status & STA_NANO)) | ||
| 381 | time_constant += 4; | ||
| 382 | time_constant = min(time_constant, (long)MAXTC); | ||
| 383 | time_constant = max(time_constant, 0l); | ||
| 384 | } | ||
| 385 | |||
| 386 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
| 387 | time_tai = txc->constant; | ||
| 388 | |||
| 389 | if (txc->modes & ADJ_OFFSET) | ||
| 390 | ntp_update_offset(txc->offset); | ||
| 391 | if (txc->modes & ADJ_TICK) | ||
| 392 | tick_usec = txc->tick; | ||
| 393 | 494 | ||
| 394 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 495 | /* If there are input parameters, then process them: */ |
| 395 | ntp_update_frequency(); | 496 | if (txc->modes) |
| 396 | } | 497 | process_adjtimex_modes(txc, &ts); |
| 397 | 498 | ||
| 398 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 499 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
| 399 | NTP_SCALE_SHIFT); | 500 | NTP_SCALE_SHIFT); |
| 400 | if (!(time_status & STA_NANO)) | 501 | if (!(time_status & STA_NANO)) |
| 401 | txc->offset /= NSEC_PER_USEC; | 502 | txc->offset /= NSEC_PER_USEC; |
| 503 | } | ||
| 402 | 504 | ||
| 403 | adj_done: | ||
| 404 | result = time_state; /* mostly `TIME_OK' */ | 505 | result = time_state; /* mostly `TIME_OK' */ |
| 405 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 506 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) |
| 406 | result = TIME_ERROR; | 507 | result = TIME_ERROR; |
| 407 | 508 | ||
| 408 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 509 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
| 409 | (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT); | 510 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| 410 | txc->maxerror = time_maxerror; | 511 | txc->maxerror = time_maxerror; |
| 411 | txc->esterror = time_esterror; | 512 | txc->esterror = time_esterror; |
| 412 | txc->status = time_status; | 513 | txc->status = time_status; |
| @@ -425,6 +526,7 @@ adj_done: | |||
| 425 | txc->calcnt = 0; | 526 | txc->calcnt = 0; |
| 426 | txc->errcnt = 0; | 527 | txc->errcnt = 0; |
| 427 | txc->stbcnt = 0; | 528 | txc->stbcnt = 0; |
| 529 | |||
| 428 | write_sequnlock_irq(&xtime_lock); | 530 | write_sequnlock_irq(&xtime_lock); |
| 429 | 531 | ||
| 430 | txc->time.tv_sec = ts.tv_sec; | 532 | txc->time.tv_sec = ts.tv_sec; |
| @@ -440,6 +542,8 @@ adj_done: | |||
| 440 | static int __init ntp_tick_adj_setup(char *str) | 542 | static int __init ntp_tick_adj_setup(char *str) |
| 441 | { | 543 | { |
| 442 | ntp_tick_adj = simple_strtol(str, NULL, 0); | 544 | ntp_tick_adj = simple_strtol(str, NULL, 0); |
| 545 | ntp_tick_adj <<= NTP_SCALE_SHIFT; | ||
| 546 | |||
| 443 | return 1; | 547 | return 1; |
| 444 | } | 548 | } |
| 445 | 549 | ||
diff --git a/kernel/time/timecompare.c b/kernel/time/timecompare.c new file mode 100644 index 000000000000..71e7f1a19156 --- /dev/null +++ b/kernel/time/timecompare.c | |||
| @@ -0,0 +1,191 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2009 Intel Corporation. | ||
| 3 | * Author: Patrick Ohly <patrick.ohly@intel.com> | ||
| 4 | * | ||
| 5 | * This program is free software; you can redistribute it and/or modify | ||
| 6 | * it under the terms of the GNU General Public License as published by | ||
| 7 | * the Free Software Foundation; either version 2 of the License, or | ||
| 8 | * (at your option) any later version. | ||
| 9 | * | ||
| 10 | * This program is distributed in the hope that it will be useful, | ||
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 13 | * GNU General Public License for more details. | ||
| 14 | * | ||
| 15 | * You should have received a copy of the GNU General Public License | ||
| 16 | * along with this program; if not, write to the Free Software | ||
| 17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/timecompare.h> | ||
| 21 | #include <linux/module.h> | ||
| 22 | #include <linux/math64.h> | ||
| 23 | |||
| 24 | /* | ||
| 25 | * fixed point arithmetic scale factor for skew | ||
| 26 | * | ||
| 27 | * Usually one would measure skew in ppb (parts per billion, 1e9), but | ||
| 28 | * using a factor of 2 simplifies the math. | ||
| 29 | */ | ||
| 30 | #define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30) | ||
| 31 | |||
| 32 | ktime_t timecompare_transform(struct timecompare *sync, | ||
| 33 | u64 source_tstamp) | ||
| 34 | { | ||
| 35 | u64 nsec; | ||
| 36 | |||
| 37 | nsec = source_tstamp + sync->offset; | ||
| 38 | nsec += (s64)(source_tstamp - sync->last_update) * sync->skew / | ||
| 39 | TIMECOMPARE_SKEW_RESOLUTION; | ||
| 40 | |||
| 41 | return ns_to_ktime(nsec); | ||
| 42 | } | ||
| 43 | EXPORT_SYMBOL(timecompare_transform); | ||
| 44 | |||
| 45 | int timecompare_offset(struct timecompare *sync, | ||
| 46 | s64 *offset, | ||
| 47 | u64 *source_tstamp) | ||
| 48 | { | ||
| 49 | u64 start_source = 0, end_source = 0; | ||
| 50 | struct { | ||
| 51 | s64 offset; | ||
| 52 | s64 duration_target; | ||
| 53 | } buffer[10], sample, *samples; | ||
| 54 | int counter = 0, i; | ||
| 55 | int used; | ||
| 56 | int index; | ||
| 57 | int num_samples = sync->num_samples; | ||
| 58 | |||
| 59 | if (num_samples > sizeof(buffer)/sizeof(buffer[0])) { | ||
| 60 | samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC); | ||
| 61 | if (!samples) { | ||
| 62 | samples = buffer; | ||
| 63 | num_samples = sizeof(buffer)/sizeof(buffer[0]); | ||
| 64 | } | ||
| 65 | } else { | ||
| 66 | samples = buffer; | ||
| 67 | } | ||
| 68 | |||
| 69 | /* run until we have enough valid samples, but do not try forever */ | ||
| 70 | i = 0; | ||
| 71 | counter = 0; | ||
| 72 | while (1) { | ||
| 73 | u64 ts; | ||
| 74 | ktime_t start, end; | ||
| 75 | |||
| 76 | start = sync->target(); | ||
| 77 | ts = timecounter_read(sync->source); | ||
| 78 | end = sync->target(); | ||
| 79 | |||
| 80 | if (!i) | ||
| 81 | start_source = ts; | ||
| 82 | |||
| 83 | /* ignore negative durations */ | ||
| 84 | sample.duration_target = ktime_to_ns(ktime_sub(end, start)); | ||
| 85 | if (sample.duration_target >= 0) { | ||
| 86 | /* | ||
| 87 | * assume symetric delay to and from source: | ||
| 88 | * average target time corresponds to measured | ||
| 89 | * source time | ||
| 90 | */ | ||
| 91 | sample.offset = | ||
| 92 | ktime_to_ns(ktime_add(end, start)) / 2 - | ||
| 93 | ts; | ||
| 94 | |||
| 95 | /* simple insertion sort based on duration */ | ||
| 96 | index = counter - 1; | ||
| 97 | while (index >= 0) { | ||
| 98 | if (samples[index].duration_target < | ||
| 99 | sample.duration_target) | ||
| 100 | break; | ||
| 101 | samples[index + 1] = samples[index]; | ||
| 102 | index--; | ||
| 103 | } | ||
| 104 | samples[index + 1] = sample; | ||
| 105 | counter++; | ||
| 106 | } | ||
| 107 | |||
| 108 | i++; | ||
| 109 | if (counter >= num_samples || i >= 100000) { | ||
| 110 | end_source = ts; | ||
| 111 | break; | ||
| 112 | } | ||
| 113 | } | ||
| 114 | |||
| 115 | *source_tstamp = (end_source + start_source) / 2; | ||
| 116 | |||
| 117 | /* remove outliers by only using 75% of the samples */ | ||
| 118 | used = counter * 3 / 4; | ||
| 119 | if (!used) | ||
| 120 | used = counter; | ||
| 121 | if (used) { | ||
| 122 | /* calculate average */ | ||
| 123 | s64 off = 0; | ||
| 124 | for (index = 0; index < used; index++) | ||
| 125 | off += samples[index].offset; | ||
| 126 | *offset = div_s64(off, used); | ||
| 127 | } | ||
| 128 | |||
| 129 | if (samples && samples != buffer) | ||
| 130 | kfree(samples); | ||
| 131 | |||
| 132 | return used; | ||
| 133 | } | ||
| 134 | EXPORT_SYMBOL(timecompare_offset); | ||
| 135 | |||
| 136 | void __timecompare_update(struct timecompare *sync, | ||
| 137 | u64 source_tstamp) | ||
| 138 | { | ||
| 139 | s64 offset; | ||
| 140 | u64 average_time; | ||
| 141 | |||
| 142 | if (!timecompare_offset(sync, &offset, &average_time)) | ||
| 143 | return; | ||
| 144 | |||
| 145 | if (!sync->last_update) { | ||
| 146 | sync->last_update = average_time; | ||
| 147 | sync->offset = offset; | ||
| 148 | sync->skew = 0; | ||
| 149 | } else { | ||
| 150 | s64 delta_nsec = average_time - sync->last_update; | ||
| 151 | |||
| 152 | /* avoid division by negative or small deltas */ | ||
| 153 | if (delta_nsec >= 10000) { | ||
| 154 | s64 delta_offset_nsec = offset - sync->offset; | ||
| 155 | s64 skew; /* delta_offset_nsec * | ||
| 156 | TIMECOMPARE_SKEW_RESOLUTION / | ||
| 157 | delta_nsec */ | ||
| 158 | u64 divisor; | ||
| 159 | |||
| 160 | /* div_s64() is limited to 32 bit divisor */ | ||
| 161 | skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION; | ||
| 162 | divisor = delta_nsec; | ||
| 163 | while (unlikely(divisor >= ((s64)1) << 32)) { | ||
| 164 | /* divide both by 2; beware, right shift | ||
| 165 | of negative value has undefined | ||
| 166 | behavior and can only be used for | ||
| 167 | the positive divisor */ | ||
| 168 | skew = div_s64(skew, 2); | ||
| 169 | divisor >>= 1; | ||
| 170 | } | ||
| 171 | skew = div_s64(skew, divisor); | ||
| 172 | |||
| 173 | /* | ||
| 174 | * Calculate new overall skew as 4/16 the | ||
| 175 | * old value and 12/16 the new one. This is | ||
| 176 | * a rather arbitrary tradeoff between | ||
| 177 | * only using the latest measurement (0/16 and | ||
| 178 | * 16/16) and even more weight on past measurements. | ||
| 179 | */ | ||
| 180 | #define TIMECOMPARE_NEW_SKEW_PER_16 12 | ||
| 181 | sync->skew = | ||
| 182 | div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) * | ||
| 183 | sync->skew + | ||
| 184 | TIMECOMPARE_NEW_SKEW_PER_16 * skew, | ||
| 185 | 16); | ||
| 186 | sync->last_update = average_time; | ||
| 187 | sync->offset = offset; | ||
| 188 | } | ||
| 189 | } | ||
| 190 | } | ||
| 191 | EXPORT_SYMBOL(__timecompare_update); | ||
diff --git a/kernel/timer.c b/kernel/timer.c index 13dd64fe143d..9b77fc9a9ac8 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -589,11 +589,14 @@ static struct tvec_base *lock_timer_base(struct timer_list *timer, | |||
| 589 | } | 589 | } |
| 590 | } | 590 | } |
| 591 | 591 | ||
| 592 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 592 | static inline int |
| 593 | __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only) | ||
| 593 | { | 594 | { |
| 594 | struct tvec_base *base, *new_base; | 595 | struct tvec_base *base, *new_base; |
| 595 | unsigned long flags; | 596 | unsigned long flags; |
| 596 | int ret = 0; | 597 | int ret; |
| 598 | |||
| 599 | ret = 0; | ||
| 597 | 600 | ||
| 598 | timer_stats_timer_set_start_info(timer); | 601 | timer_stats_timer_set_start_info(timer); |
| 599 | BUG_ON(!timer->function); | 602 | BUG_ON(!timer->function); |
| @@ -603,6 +606,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) | |||
| 603 | if (timer_pending(timer)) { | 606 | if (timer_pending(timer)) { |
| 604 | detach_timer(timer, 0); | 607 | detach_timer(timer, 0); |
| 605 | ret = 1; | 608 | ret = 1; |
| 609 | } else { | ||
| 610 | if (pending_only) | ||
| 611 | goto out_unlock; | ||
| 606 | } | 612 | } |
| 607 | 613 | ||
| 608 | debug_timer_activate(timer); | 614 | debug_timer_activate(timer); |
| @@ -629,42 +635,28 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) | |||
| 629 | 635 | ||
| 630 | timer->expires = expires; | 636 | timer->expires = expires; |
| 631 | internal_add_timer(base, timer); | 637 | internal_add_timer(base, timer); |
| 638 | |||
| 639 | out_unlock: | ||
| 632 | spin_unlock_irqrestore(&base->lock, flags); | 640 | spin_unlock_irqrestore(&base->lock, flags); |
| 633 | 641 | ||
| 634 | return ret; | 642 | return ret; |
| 635 | } | 643 | } |
| 636 | 644 | ||
| 637 | EXPORT_SYMBOL(__mod_timer); | ||
| 638 | |||
| 639 | /** | 645 | /** |
| 640 | * add_timer_on - start a timer on a particular CPU | 646 | * mod_timer_pending - modify a pending timer's timeout |
| 641 | * @timer: the timer to be added | 647 | * @timer: the pending timer to be modified |
| 642 | * @cpu: the CPU to start it on | 648 | * @expires: new timeout in jiffies |
| 643 | * | 649 | * |
| 644 | * This is not very scalable on SMP. Double adds are not possible. | 650 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
| 651 | * but will not re-activate and modify already deleted timers. | ||
| 652 | * | ||
| 653 | * It is useful for unserialized use of timers. | ||
| 645 | */ | 654 | */ |
| 646 | void add_timer_on(struct timer_list *timer, int cpu) | 655 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
| 647 | { | 656 | { |
| 648 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | 657 | return __mod_timer(timer, expires, true); |
| 649 | unsigned long flags; | ||
| 650 | |||
| 651 | timer_stats_timer_set_start_info(timer); | ||
| 652 | BUG_ON(timer_pending(timer) || !timer->function); | ||
| 653 | spin_lock_irqsave(&base->lock, flags); | ||
| 654 | timer_set_base(timer, base); | ||
| 655 | debug_timer_activate(timer); | ||
| 656 | internal_add_timer(base, timer); | ||
| 657 | /* | ||
| 658 | * Check whether the other CPU is idle and needs to be | ||
| 659 | * triggered to reevaluate the timer wheel when nohz is | ||
| 660 | * active. We are protected against the other CPU fiddling | ||
| 661 | * with the timer by holding the timer base lock. This also | ||
| 662 | * makes sure that a CPU on the way to idle can not evaluate | ||
| 663 | * the timer wheel. | ||
| 664 | */ | ||
| 665 | wake_up_idle_cpu(cpu); | ||
| 666 | spin_unlock_irqrestore(&base->lock, flags); | ||
| 667 | } | 658 | } |
| 659 | EXPORT_SYMBOL(mod_timer_pending); | ||
| 668 | 660 | ||
| 669 | /** | 661 | /** |
| 670 | * mod_timer - modify a timer's timeout | 662 | * mod_timer - modify a timer's timeout |
| @@ -688,9 +680,6 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
| 688 | */ | 680 | */ |
| 689 | int mod_timer(struct timer_list *timer, unsigned long expires) | 681 | int mod_timer(struct timer_list *timer, unsigned long expires) |
| 690 | { | 682 | { |
| 691 | BUG_ON(!timer->function); | ||
| 692 | |||
| 693 | timer_stats_timer_set_start_info(timer); | ||
| 694 | /* | 683 | /* |
| 695 | * This is a common optimization triggered by the | 684 | * This is a common optimization triggered by the |
| 696 | * networking code - if the timer is re-modified | 685 | * networking code - if the timer is re-modified |
| @@ -699,12 +688,62 @@ int mod_timer(struct timer_list *timer, unsigned long expires) | |||
| 699 | if (timer->expires == expires && timer_pending(timer)) | 688 | if (timer->expires == expires && timer_pending(timer)) |
| 700 | return 1; | 689 | return 1; |
| 701 | 690 | ||
| 702 | return __mod_timer(timer, expires); | 691 | return __mod_timer(timer, expires, false); |
| 703 | } | 692 | } |
| 704 | |||
| 705 | EXPORT_SYMBOL(mod_timer); | 693 | EXPORT_SYMBOL(mod_timer); |
| 706 | 694 | ||
| 707 | /** | 695 | /** |
| 696 | * add_timer - start a timer | ||
| 697 | * @timer: the timer to be added | ||
| 698 | * | ||
| 699 | * The kernel will do a ->function(->data) callback from the | ||
| 700 | * timer interrupt at the ->expires point in the future. The | ||
| 701 | * current time is 'jiffies'. | ||
| 702 | * | ||
| 703 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | ||
| 704 | * fields must be set prior calling this function. | ||
| 705 | * | ||
| 706 | * Timers with an ->expires field in the past will be executed in the next | ||
| 707 | * timer tick. | ||
| 708 | */ | ||
| 709 | void add_timer(struct timer_list *timer) | ||
| 710 | { | ||
| 711 | BUG_ON(timer_pending(timer)); | ||
| 712 | mod_timer(timer, timer->expires); | ||
| 713 | } | ||
| 714 | EXPORT_SYMBOL(add_timer); | ||
| 715 | |||
| 716 | /** | ||
| 717 | * add_timer_on - start a timer on a particular CPU | ||
| 718 | * @timer: the timer to be added | ||
| 719 | * @cpu: the CPU to start it on | ||
| 720 | * | ||
| 721 | * This is not very scalable on SMP. Double adds are not possible. | ||
| 722 | */ | ||
| 723 | void add_timer_on(struct timer_list *timer, int cpu) | ||
| 724 | { | ||
| 725 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | ||
| 726 | unsigned long flags; | ||
| 727 | |||
| 728 | timer_stats_timer_set_start_info(timer); | ||
| 729 | BUG_ON(timer_pending(timer) || !timer->function); | ||
| 730 | spin_lock_irqsave(&base->lock, flags); | ||
| 731 | timer_set_base(timer, base); | ||
| 732 | debug_timer_activate(timer); | ||
| 733 | internal_add_timer(base, timer); | ||
| 734 | /* | ||
| 735 | * Check whether the other CPU is idle and needs to be | ||
| 736 | * triggered to reevaluate the timer wheel when nohz is | ||
| 737 | * active. We are protected against the other CPU fiddling | ||
| 738 | * with the timer by holding the timer base lock. This also | ||
| 739 | * makes sure that a CPU on the way to idle can not evaluate | ||
| 740 | * the timer wheel. | ||
| 741 | */ | ||
| 742 | wake_up_idle_cpu(cpu); | ||
| 743 | spin_unlock_irqrestore(&base->lock, flags); | ||
| 744 | } | ||
| 745 | |||
| 746 | /** | ||
| 708 | * del_timer - deactive a timer. | 747 | * del_timer - deactive a timer. |
| 709 | * @timer: the timer to be deactivated | 748 | * @timer: the timer to be deactivated |
| 710 | * | 749 | * |
| @@ -733,7 +772,6 @@ int del_timer(struct timer_list *timer) | |||
| 733 | 772 | ||
| 734 | return ret; | 773 | return ret; |
| 735 | } | 774 | } |
| 736 | |||
| 737 | EXPORT_SYMBOL(del_timer); | 775 | EXPORT_SYMBOL(del_timer); |
| 738 | 776 | ||
| 739 | #ifdef CONFIG_SMP | 777 | #ifdef CONFIG_SMP |
| @@ -767,7 +805,6 @@ out: | |||
| 767 | 805 | ||
| 768 | return ret; | 806 | return ret; |
| 769 | } | 807 | } |
| 770 | |||
| 771 | EXPORT_SYMBOL(try_to_del_timer_sync); | 808 | EXPORT_SYMBOL(try_to_del_timer_sync); |
| 772 | 809 | ||
| 773 | /** | 810 | /** |
| @@ -796,7 +833,6 @@ int del_timer_sync(struct timer_list *timer) | |||
| 796 | cpu_relax(); | 833 | cpu_relax(); |
| 797 | } | 834 | } |
| 798 | } | 835 | } |
| 799 | |||
| 800 | EXPORT_SYMBOL(del_timer_sync); | 836 | EXPORT_SYMBOL(del_timer_sync); |
| 801 | #endif | 837 | #endif |
| 802 | 838 | ||
| @@ -1268,7 +1304,7 @@ signed long __sched schedule_timeout(signed long timeout) | |||
| 1268 | expire = timeout + jiffies; | 1304 | expire = timeout + jiffies; |
| 1269 | 1305 | ||
| 1270 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); | 1306 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
| 1271 | __mod_timer(&timer, expire); | 1307 | __mod_timer(&timer, expire, false); |
| 1272 | schedule(); | 1308 | schedule(); |
| 1273 | del_singleshot_timer_sync(&timer); | 1309 | del_singleshot_timer_sync(&timer); |
| 1274 | 1310 | ||
diff --git a/kernel/user.c b/kernel/user.c index fbb300e6191f..850e0ba41c1e 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
| @@ -20,7 +20,7 @@ | |||
| 20 | 20 | ||
| 21 | struct user_namespace init_user_ns = { | 21 | struct user_namespace init_user_ns = { |
| 22 | .kref = { | 22 | .kref = { |
| 23 | .refcount = ATOMIC_INIT(1), | 23 | .refcount = ATOMIC_INIT(2), |
| 24 | }, | 24 | }, |
| 25 | .creator = &root_user, | 25 | .creator = &root_user, |
| 26 | }; | 26 | }; |
