diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/Makefile | 1 | ||||
| -rw-r--r-- | kernel/exit.c | 16 | ||||
| -rw-r--r-- | kernel/fork.c | 12 | ||||
| -rw-r--r-- | kernel/mutex.c | 2 | ||||
| -rw-r--r-- | kernel/perf_counter.c | 4260 | ||||
| -rw-r--r-- | kernel/sched.c | 57 | ||||
| -rw-r--r-- | kernel/sys.c | 7 | ||||
| -rw-r--r-- | kernel/sys_ni.c | 3 | ||||
| -rw-r--r-- | kernel/sysctl.c | 27 | ||||
| -rw-r--r-- | kernel/timer.c | 3 |
10 files changed, 4377 insertions, 11 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index a35eee3436de..90b53f6dc226 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -96,6 +96,7 @@ obj-$(CONFIG_TRACING) += trace/ | |||
| 96 | obj-$(CONFIG_X86_DS) += trace/ | 96 | obj-$(CONFIG_X86_DS) += trace/ |
| 97 | obj-$(CONFIG_SMP) += sched_cpupri.o | 97 | obj-$(CONFIG_SMP) += sched_cpupri.o |
| 98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
| 99 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | ||
| 99 | 100 | ||
| 100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 101 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
| 101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 102 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/exit.c b/kernel/exit.c index cab535c427b8..49cdf6946f34 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
| @@ -48,6 +48,7 @@ | |||
| 48 | #include <linux/tracehook.h> | 48 | #include <linux/tracehook.h> |
| 49 | #include <linux/fs_struct.h> | 49 | #include <linux/fs_struct.h> |
| 50 | #include <linux/init_task.h> | 50 | #include <linux/init_task.h> |
| 51 | #include <linux/perf_counter.h> | ||
| 51 | #include <trace/events/sched.h> | 52 | #include <trace/events/sched.h> |
| 52 | 53 | ||
| 53 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
| @@ -154,6 +155,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
| 154 | { | 155 | { |
| 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 156 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
| 156 | 157 | ||
| 158 | #ifdef CONFIG_PERF_COUNTERS | ||
| 159 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | ||
| 160 | #endif | ||
| 157 | trace_sched_process_free(tsk); | 161 | trace_sched_process_free(tsk); |
| 158 | put_task_struct(tsk); | 162 | put_task_struct(tsk); |
| 159 | } | 163 | } |
| @@ -170,6 +174,7 @@ repeat: | |||
| 170 | atomic_dec(&__task_cred(p)->user->processes); | 174 | atomic_dec(&__task_cred(p)->user->processes); |
| 171 | 175 | ||
| 172 | proc_flush_task(p); | 176 | proc_flush_task(p); |
| 177 | |||
| 173 | write_lock_irq(&tasklist_lock); | 178 | write_lock_irq(&tasklist_lock); |
| 174 | tracehook_finish_release_task(p); | 179 | tracehook_finish_release_task(p); |
| 175 | __exit_signal(p); | 180 | __exit_signal(p); |
| @@ -971,16 +976,19 @@ NORET_TYPE void do_exit(long code) | |||
| 971 | module_put(tsk->binfmt->module); | 976 | module_put(tsk->binfmt->module); |
| 972 | 977 | ||
| 973 | proc_exit_connector(tsk); | 978 | proc_exit_connector(tsk); |
| 979 | |||
| 980 | /* | ||
| 981 | * Flush inherited counters to the parent - before the parent | ||
| 982 | * gets woken up by child-exit notifications. | ||
| 983 | */ | ||
| 984 | perf_counter_exit_task(tsk); | ||
| 985 | |||
| 974 | exit_notify(tsk, group_dead); | 986 | exit_notify(tsk, group_dead); |
| 975 | #ifdef CONFIG_NUMA | 987 | #ifdef CONFIG_NUMA |
| 976 | mpol_put(tsk->mempolicy); | 988 | mpol_put(tsk->mempolicy); |
| 977 | tsk->mempolicy = NULL; | 989 | tsk->mempolicy = NULL; |
| 978 | #endif | 990 | #endif |
| 979 | #ifdef CONFIG_FUTEX | 991 | #ifdef CONFIG_FUTEX |
| 980 | /* | ||
| 981 | * This must happen late, after the PID is not | ||
| 982 | * hashed anymore: | ||
| 983 | */ | ||
| 984 | if (unlikely(!list_empty(&tsk->pi_state_list))) | 992 | if (unlikely(!list_empty(&tsk->pi_state_list))) |
| 985 | exit_pi_state_list(tsk); | 993 | exit_pi_state_list(tsk); |
| 986 | if (unlikely(current->pi_state_cache)) | 994 | if (unlikely(current->pi_state_cache)) |
diff --git a/kernel/fork.c b/kernel/fork.c index bb762b4dd217..4430eb1376f2 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -62,6 +62,7 @@ | |||
| 62 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
| 63 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
| 64 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
| 65 | #include <linux/perf_counter.h> | ||
| 65 | 66 | ||
| 66 | #include <asm/pgtable.h> | 67 | #include <asm/pgtable.h> |
| 67 | #include <asm/pgalloc.h> | 68 | #include <asm/pgalloc.h> |
| @@ -1096,6 +1097,10 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1096 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1097 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
| 1097 | sched_fork(p, clone_flags); | 1098 | sched_fork(p, clone_flags); |
| 1098 | 1099 | ||
| 1100 | retval = perf_counter_init_task(p); | ||
| 1101 | if (retval) | ||
| 1102 | goto bad_fork_cleanup_policy; | ||
| 1103 | |||
| 1099 | if ((retval = audit_alloc(p))) | 1104 | if ((retval = audit_alloc(p))) |
| 1100 | goto bad_fork_cleanup_policy; | 1105 | goto bad_fork_cleanup_policy; |
| 1101 | /* copy all the process information */ | 1106 | /* copy all the process information */ |
| @@ -1290,6 +1295,7 @@ bad_fork_cleanup_semundo: | |||
| 1290 | bad_fork_cleanup_audit: | 1295 | bad_fork_cleanup_audit: |
| 1291 | audit_free(p); | 1296 | audit_free(p); |
| 1292 | bad_fork_cleanup_policy: | 1297 | bad_fork_cleanup_policy: |
| 1298 | perf_counter_free_task(p); | ||
| 1293 | #ifdef CONFIG_NUMA | 1299 | #ifdef CONFIG_NUMA |
| 1294 | mpol_put(p->mempolicy); | 1300 | mpol_put(p->mempolicy); |
| 1295 | bad_fork_cleanup_cgroup: | 1301 | bad_fork_cleanup_cgroup: |
| @@ -1403,6 +1409,12 @@ long do_fork(unsigned long clone_flags, | |||
| 1403 | if (clone_flags & CLONE_VFORK) { | 1409 | if (clone_flags & CLONE_VFORK) { |
| 1404 | p->vfork_done = &vfork; | 1410 | p->vfork_done = &vfork; |
| 1405 | init_completion(&vfork); | 1411 | init_completion(&vfork); |
| 1412 | } else if (!(clone_flags & CLONE_VM)) { | ||
| 1413 | /* | ||
| 1414 | * vfork will do an exec which will call | ||
| 1415 | * set_task_comm() | ||
| 1416 | */ | ||
| 1417 | perf_counter_fork(p); | ||
| 1406 | } | 1418 | } |
| 1407 | 1419 | ||
| 1408 | audit_finish_fork(p); | 1420 | audit_finish_fork(p); |
diff --git a/kernel/mutex.c b/kernel/mutex.c index e5cc0cd28d54..947b3ad551f8 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
| @@ -89,7 +89,7 @@ __mutex_lock_slowpath(atomic_t *lock_count); | |||
| 89 | * | 89 | * |
| 90 | * This function is similar to (but not equivalent to) down(). | 90 | * This function is similar to (but not equivalent to) down(). |
| 91 | */ | 91 | */ |
| 92 | void inline __sched mutex_lock(struct mutex *lock) | 92 | void __sched mutex_lock(struct mutex *lock) |
| 93 | { | 93 | { |
| 94 | might_sleep(); | 94 | might_sleep(); |
| 95 | /* | 95 | /* |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 000000000000..ef5d8a5b2453 --- /dev/null +++ b/kernel/perf_counter.c | |||
| @@ -0,0 +1,4260 @@ | |||
| 1 | /* | ||
| 2 | * Performance counter core code | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_counter.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU counters: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_counters __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_counters __read_mostly; | ||
| 43 | static atomic_t nr_mmap_counters __read_mostly; | ||
| 44 | static atomic_t nr_comm_counters __read_mostly; | ||
| 45 | |||
| 46 | /* | ||
| 47 | * perf counter paranoia level: | ||
| 48 | * 0 - not paranoid | ||
| 49 | * 1 - disallow cpu counters to unpriv | ||
| 50 | * 2 - disallow kernel profiling to unpriv | ||
| 51 | */ | ||
| 52 | int sysctl_perf_counter_paranoid __read_mostly; | ||
| 53 | |||
| 54 | static inline bool perf_paranoid_cpu(void) | ||
| 55 | { | ||
| 56 | return sysctl_perf_counter_paranoid > 0; | ||
| 57 | } | ||
| 58 | |||
| 59 | static inline bool perf_paranoid_kernel(void) | ||
| 60 | { | ||
| 61 | return sysctl_perf_counter_paranoid > 1; | ||
| 62 | } | ||
| 63 | |||
| 64 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 65 | |||
| 66 | /* | ||
| 67 | * max perf counter sample rate | ||
| 68 | */ | ||
| 69 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
| 70 | |||
| 71 | static atomic64_t perf_counter_id; | ||
| 72 | |||
| 73 | /* | ||
| 74 | * Lock for (sysadmin-configurable) counter reservations: | ||
| 75 | */ | ||
| 76 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 77 | |||
| 78 | /* | ||
| 79 | * Architecture provided APIs - weak aliases: | ||
| 80 | */ | ||
| 81 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
| 82 | { | ||
| 83 | return NULL; | ||
| 84 | } | ||
| 85 | |||
| 86 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 87 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 88 | |||
| 89 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
| 90 | |||
| 91 | int __weak | ||
| 92 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
| 93 | struct perf_cpu_context *cpuctx, | ||
| 94 | struct perf_counter_context *ctx, int cpu) | ||
| 95 | { | ||
| 96 | return 0; | ||
| 97 | } | ||
| 98 | |||
| 99 | void __weak perf_counter_print_debug(void) { } | ||
| 100 | |||
| 101 | static DEFINE_PER_CPU(int, disable_count); | ||
| 102 | |||
| 103 | void __perf_disable(void) | ||
| 104 | { | ||
| 105 | __get_cpu_var(disable_count)++; | ||
| 106 | } | ||
| 107 | |||
| 108 | bool __perf_enable(void) | ||
| 109 | { | ||
| 110 | return !--__get_cpu_var(disable_count); | ||
| 111 | } | ||
| 112 | |||
| 113 | void perf_disable(void) | ||
| 114 | { | ||
| 115 | __perf_disable(); | ||
| 116 | hw_perf_disable(); | ||
| 117 | } | ||
| 118 | |||
| 119 | void perf_enable(void) | ||
| 120 | { | ||
| 121 | if (__perf_enable()) | ||
| 122 | hw_perf_enable(); | ||
| 123 | } | ||
| 124 | |||
| 125 | static void get_ctx(struct perf_counter_context *ctx) | ||
| 126 | { | ||
| 127 | atomic_inc(&ctx->refcount); | ||
| 128 | } | ||
| 129 | |||
| 130 | static void free_ctx(struct rcu_head *head) | ||
| 131 | { | ||
| 132 | struct perf_counter_context *ctx; | ||
| 133 | |||
| 134 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
| 135 | kfree(ctx); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void put_ctx(struct perf_counter_context *ctx) | ||
| 139 | { | ||
| 140 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 141 | if (ctx->parent_ctx) | ||
| 142 | put_ctx(ctx->parent_ctx); | ||
| 143 | if (ctx->task) | ||
| 144 | put_task_struct(ctx->task); | ||
| 145 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 146 | } | ||
| 147 | } | ||
| 148 | |||
| 149 | /* | ||
| 150 | * Get the perf_counter_context for a task and lock it. | ||
| 151 | * This has to cope with with the fact that until it is locked, | ||
| 152 | * the context could get moved to another task. | ||
| 153 | */ | ||
| 154 | static struct perf_counter_context * | ||
| 155 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 156 | { | ||
| 157 | struct perf_counter_context *ctx; | ||
| 158 | |||
| 159 | rcu_read_lock(); | ||
| 160 | retry: | ||
| 161 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
| 162 | if (ctx) { | ||
| 163 | /* | ||
| 164 | * If this context is a clone of another, it might | ||
| 165 | * get swapped for another underneath us by | ||
| 166 | * perf_counter_task_sched_out, though the | ||
| 167 | * rcu_read_lock() protects us from any context | ||
| 168 | * getting freed. Lock the context and check if it | ||
| 169 | * got swapped before we could get the lock, and retry | ||
| 170 | * if so. If we locked the right context, then it | ||
| 171 | * can't get swapped on us any more. | ||
| 172 | */ | ||
| 173 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 174 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
| 175 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 176 | goto retry; | ||
| 177 | } | ||
| 178 | } | ||
| 179 | rcu_read_unlock(); | ||
| 180 | return ctx; | ||
| 181 | } | ||
| 182 | |||
| 183 | /* | ||
| 184 | * Get the context for a task and increment its pin_count so it | ||
| 185 | * can't get swapped to another task. This also increments its | ||
| 186 | * reference count so that the context can't get freed. | ||
| 187 | */ | ||
| 188 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
| 189 | { | ||
| 190 | struct perf_counter_context *ctx; | ||
| 191 | unsigned long flags; | ||
| 192 | |||
| 193 | ctx = perf_lock_task_context(task, &flags); | ||
| 194 | if (ctx) { | ||
| 195 | ++ctx->pin_count; | ||
| 196 | get_ctx(ctx); | ||
| 197 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 198 | } | ||
| 199 | return ctx; | ||
| 200 | } | ||
| 201 | |||
| 202 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
| 203 | { | ||
| 204 | unsigned long flags; | ||
| 205 | |||
| 206 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 207 | --ctx->pin_count; | ||
| 208 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 209 | put_ctx(ctx); | ||
| 210 | } | ||
| 211 | |||
| 212 | /* | ||
| 213 | * Add a counter from the lists for its context. | ||
| 214 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 215 | */ | ||
| 216 | static void | ||
| 217 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 218 | { | ||
| 219 | struct perf_counter *group_leader = counter->group_leader; | ||
| 220 | |||
| 221 | /* | ||
| 222 | * Depending on whether it is a standalone or sibling counter, | ||
| 223 | * add it straight to the context's counter list, or to the group | ||
| 224 | * leader's sibling list: | ||
| 225 | */ | ||
| 226 | if (group_leader == counter) | ||
| 227 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
| 228 | else { | ||
| 229 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
| 230 | group_leader->nr_siblings++; | ||
| 231 | } | ||
| 232 | |||
| 233 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
| 234 | ctx->nr_counters++; | ||
| 235 | } | ||
| 236 | |||
| 237 | /* | ||
| 238 | * Remove a counter from the lists for its context. | ||
| 239 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 240 | */ | ||
| 241 | static void | ||
| 242 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 243 | { | ||
| 244 | struct perf_counter *sibling, *tmp; | ||
| 245 | |||
| 246 | if (list_empty(&counter->list_entry)) | ||
| 247 | return; | ||
| 248 | ctx->nr_counters--; | ||
| 249 | |||
| 250 | list_del_init(&counter->list_entry); | ||
| 251 | list_del_rcu(&counter->event_entry); | ||
| 252 | |||
| 253 | if (counter->group_leader != counter) | ||
| 254 | counter->group_leader->nr_siblings--; | ||
| 255 | |||
| 256 | /* | ||
| 257 | * If this was a group counter with sibling counters then | ||
| 258 | * upgrade the siblings to singleton counters by adding them | ||
| 259 | * to the context list directly: | ||
| 260 | */ | ||
| 261 | list_for_each_entry_safe(sibling, tmp, | ||
| 262 | &counter->sibling_list, list_entry) { | ||
| 263 | |||
| 264 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
| 265 | sibling->group_leader = sibling; | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | static void | ||
| 270 | counter_sched_out(struct perf_counter *counter, | ||
| 271 | struct perf_cpu_context *cpuctx, | ||
| 272 | struct perf_counter_context *ctx) | ||
| 273 | { | ||
| 274 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 275 | return; | ||
| 276 | |||
| 277 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 278 | counter->tstamp_stopped = ctx->time; | ||
| 279 | counter->pmu->disable(counter); | ||
| 280 | counter->oncpu = -1; | ||
| 281 | |||
| 282 | if (!is_software_counter(counter)) | ||
| 283 | cpuctx->active_oncpu--; | ||
| 284 | ctx->nr_active--; | ||
| 285 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
| 286 | cpuctx->exclusive = 0; | ||
| 287 | } | ||
| 288 | |||
| 289 | static void | ||
| 290 | group_sched_out(struct perf_counter *group_counter, | ||
| 291 | struct perf_cpu_context *cpuctx, | ||
| 292 | struct perf_counter_context *ctx) | ||
| 293 | { | ||
| 294 | struct perf_counter *counter; | ||
| 295 | |||
| 296 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 297 | return; | ||
| 298 | |||
| 299 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 300 | |||
| 301 | /* | ||
| 302 | * Schedule out siblings (if any): | ||
| 303 | */ | ||
| 304 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
| 305 | counter_sched_out(counter, cpuctx, ctx); | ||
| 306 | |||
| 307 | if (group_counter->attr.exclusive) | ||
| 308 | cpuctx->exclusive = 0; | ||
| 309 | } | ||
| 310 | |||
| 311 | /* | ||
| 312 | * Cross CPU call to remove a performance counter | ||
| 313 | * | ||
| 314 | * We disable the counter on the hardware level first. After that we | ||
| 315 | * remove it from the context list. | ||
| 316 | */ | ||
| 317 | static void __perf_counter_remove_from_context(void *info) | ||
| 318 | { | ||
| 319 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 320 | struct perf_counter *counter = info; | ||
| 321 | struct perf_counter_context *ctx = counter->ctx; | ||
| 322 | |||
| 323 | /* | ||
| 324 | * If this is a task context, we need to check whether it is | ||
| 325 | * the current task context of this cpu. If not it has been | ||
| 326 | * scheduled out before the smp call arrived. | ||
| 327 | */ | ||
| 328 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 329 | return; | ||
| 330 | |||
| 331 | spin_lock(&ctx->lock); | ||
| 332 | /* | ||
| 333 | * Protect the list operation against NMI by disabling the | ||
| 334 | * counters on a global level. | ||
| 335 | */ | ||
| 336 | perf_disable(); | ||
| 337 | |||
| 338 | counter_sched_out(counter, cpuctx, ctx); | ||
| 339 | |||
| 340 | list_del_counter(counter, ctx); | ||
| 341 | |||
| 342 | if (!ctx->task) { | ||
| 343 | /* | ||
| 344 | * Allow more per task counters with respect to the | ||
| 345 | * reservation: | ||
| 346 | */ | ||
| 347 | cpuctx->max_pertask = | ||
| 348 | min(perf_max_counters - ctx->nr_counters, | ||
| 349 | perf_max_counters - perf_reserved_percpu); | ||
| 350 | } | ||
| 351 | |||
| 352 | perf_enable(); | ||
| 353 | spin_unlock(&ctx->lock); | ||
| 354 | } | ||
| 355 | |||
| 356 | |||
| 357 | /* | ||
| 358 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
| 359 | * | ||
| 360 | * Must be called with ctx->mutex held. | ||
| 361 | * | ||
| 362 | * CPU counters are removed with a smp call. For task counters we only | ||
| 363 | * call when the task is on a CPU. | ||
| 364 | * | ||
| 365 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 366 | * every task struct that counter->ctx->task could possibly point to | ||
| 367 | * remains valid. This is OK when called from perf_release since | ||
| 368 | * that only calls us on the top-level context, which can't be a clone. | ||
| 369 | * When called from perf_counter_exit_task, it's OK because the | ||
| 370 | * context has been detached from its task. | ||
| 371 | */ | ||
| 372 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
| 373 | { | ||
| 374 | struct perf_counter_context *ctx = counter->ctx; | ||
| 375 | struct task_struct *task = ctx->task; | ||
| 376 | |||
| 377 | if (!task) { | ||
| 378 | /* | ||
| 379 | * Per cpu counters are removed via an smp call and | ||
| 380 | * the removal is always sucessful. | ||
| 381 | */ | ||
| 382 | smp_call_function_single(counter->cpu, | ||
| 383 | __perf_counter_remove_from_context, | ||
| 384 | counter, 1); | ||
| 385 | return; | ||
| 386 | } | ||
| 387 | |||
| 388 | retry: | ||
| 389 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
| 390 | counter); | ||
| 391 | |||
| 392 | spin_lock_irq(&ctx->lock); | ||
| 393 | /* | ||
| 394 | * If the context is active we need to retry the smp call. | ||
| 395 | */ | ||
| 396 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
| 397 | spin_unlock_irq(&ctx->lock); | ||
| 398 | goto retry; | ||
| 399 | } | ||
| 400 | |||
| 401 | /* | ||
| 402 | * The lock prevents that this context is scheduled in so we | ||
| 403 | * can remove the counter safely, if the call above did not | ||
| 404 | * succeed. | ||
| 405 | */ | ||
| 406 | if (!list_empty(&counter->list_entry)) { | ||
| 407 | list_del_counter(counter, ctx); | ||
| 408 | } | ||
| 409 | spin_unlock_irq(&ctx->lock); | ||
| 410 | } | ||
| 411 | |||
| 412 | static inline u64 perf_clock(void) | ||
| 413 | { | ||
| 414 | return cpu_clock(smp_processor_id()); | ||
| 415 | } | ||
| 416 | |||
| 417 | /* | ||
| 418 | * Update the record of the current time in a context. | ||
| 419 | */ | ||
| 420 | static void update_context_time(struct perf_counter_context *ctx) | ||
| 421 | { | ||
| 422 | u64 now = perf_clock(); | ||
| 423 | |||
| 424 | ctx->time += now - ctx->timestamp; | ||
| 425 | ctx->timestamp = now; | ||
| 426 | } | ||
| 427 | |||
| 428 | /* | ||
| 429 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
| 430 | */ | ||
| 431 | static void update_counter_times(struct perf_counter *counter) | ||
| 432 | { | ||
| 433 | struct perf_counter_context *ctx = counter->ctx; | ||
| 434 | u64 run_end; | ||
| 435 | |||
| 436 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
| 437 | return; | ||
| 438 | |||
| 439 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
| 440 | |||
| 441 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
| 442 | run_end = counter->tstamp_stopped; | ||
| 443 | else | ||
| 444 | run_end = ctx->time; | ||
| 445 | |||
| 446 | counter->total_time_running = run_end - counter->tstamp_running; | ||
| 447 | } | ||
| 448 | |||
| 449 | /* | ||
| 450 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
| 451 | */ | ||
| 452 | static void update_group_times(struct perf_counter *leader) | ||
| 453 | { | ||
| 454 | struct perf_counter *counter; | ||
| 455 | |||
| 456 | update_counter_times(leader); | ||
| 457 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 458 | update_counter_times(counter); | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * Cross CPU call to disable a performance counter | ||
| 463 | */ | ||
| 464 | static void __perf_counter_disable(void *info) | ||
| 465 | { | ||
| 466 | struct perf_counter *counter = info; | ||
| 467 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 468 | struct perf_counter_context *ctx = counter->ctx; | ||
| 469 | |||
| 470 | /* | ||
| 471 | * If this is a per-task counter, need to check whether this | ||
| 472 | * counter's task is the current task on this cpu. | ||
| 473 | */ | ||
| 474 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 475 | return; | ||
| 476 | |||
| 477 | spin_lock(&ctx->lock); | ||
| 478 | |||
| 479 | /* | ||
| 480 | * If the counter is on, turn it off. | ||
| 481 | * If it is in error state, leave it in error state. | ||
| 482 | */ | ||
| 483 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
| 484 | update_context_time(ctx); | ||
| 485 | update_counter_times(counter); | ||
| 486 | if (counter == counter->group_leader) | ||
| 487 | group_sched_out(counter, cpuctx, ctx); | ||
| 488 | else | ||
| 489 | counter_sched_out(counter, cpuctx, ctx); | ||
| 490 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 491 | } | ||
| 492 | |||
| 493 | spin_unlock(&ctx->lock); | ||
| 494 | } | ||
| 495 | |||
| 496 | /* | ||
| 497 | * Disable a counter. | ||
| 498 | * | ||
| 499 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 500 | * every task struct that counter->ctx->task could possibly point to | ||
| 501 | * remains valid. This condition is satisifed when called through | ||
| 502 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
| 503 | * hold the top-level counter's child_mutex, so any descendant that | ||
| 504 | * goes to exit will block in sync_child_counter. | ||
| 505 | * When called from perf_pending_counter it's OK because counter->ctx | ||
| 506 | * is the current context on this CPU and preemption is disabled, | ||
| 507 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
| 508 | */ | ||
| 509 | static void perf_counter_disable(struct perf_counter *counter) | ||
| 510 | { | ||
| 511 | struct perf_counter_context *ctx = counter->ctx; | ||
| 512 | struct task_struct *task = ctx->task; | ||
| 513 | |||
| 514 | if (!task) { | ||
| 515 | /* | ||
| 516 | * Disable the counter on the cpu that it's on | ||
| 517 | */ | ||
| 518 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
| 519 | counter, 1); | ||
| 520 | return; | ||
| 521 | } | ||
| 522 | |||
| 523 | retry: | ||
| 524 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
| 525 | |||
| 526 | spin_lock_irq(&ctx->lock); | ||
| 527 | /* | ||
| 528 | * If the counter is still active, we need to retry the cross-call. | ||
| 529 | */ | ||
| 530 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 531 | spin_unlock_irq(&ctx->lock); | ||
| 532 | goto retry; | ||
| 533 | } | ||
| 534 | |||
| 535 | /* | ||
| 536 | * Since we have the lock this context can't be scheduled | ||
| 537 | * in, so we can change the state safely. | ||
| 538 | */ | ||
| 539 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 540 | update_counter_times(counter); | ||
| 541 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 542 | } | ||
| 543 | |||
| 544 | spin_unlock_irq(&ctx->lock); | ||
| 545 | } | ||
| 546 | |||
| 547 | static int | ||
| 548 | counter_sched_in(struct perf_counter *counter, | ||
| 549 | struct perf_cpu_context *cpuctx, | ||
| 550 | struct perf_counter_context *ctx, | ||
| 551 | int cpu) | ||
| 552 | { | ||
| 553 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
| 554 | return 0; | ||
| 555 | |||
| 556 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
| 557 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 558 | /* | ||
| 559 | * The new state must be visible before we turn it on in the hardware: | ||
| 560 | */ | ||
| 561 | smp_wmb(); | ||
| 562 | |||
| 563 | if (counter->pmu->enable(counter)) { | ||
| 564 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 565 | counter->oncpu = -1; | ||
| 566 | return -EAGAIN; | ||
| 567 | } | ||
| 568 | |||
| 569 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
| 570 | |||
| 571 | if (!is_software_counter(counter)) | ||
| 572 | cpuctx->active_oncpu++; | ||
| 573 | ctx->nr_active++; | ||
| 574 | |||
| 575 | if (counter->attr.exclusive) | ||
| 576 | cpuctx->exclusive = 1; | ||
| 577 | |||
| 578 | return 0; | ||
| 579 | } | ||
| 580 | |||
| 581 | static int | ||
| 582 | group_sched_in(struct perf_counter *group_counter, | ||
| 583 | struct perf_cpu_context *cpuctx, | ||
| 584 | struct perf_counter_context *ctx, | ||
| 585 | int cpu) | ||
| 586 | { | ||
| 587 | struct perf_counter *counter, *partial_group; | ||
| 588 | int ret; | ||
| 589 | |||
| 590 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
| 591 | return 0; | ||
| 592 | |||
| 593 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
| 594 | if (ret) | ||
| 595 | return ret < 0 ? ret : 0; | ||
| 596 | |||
| 597 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
| 598 | return -EAGAIN; | ||
| 599 | |||
| 600 | /* | ||
| 601 | * Schedule in siblings as one group (if any): | ||
| 602 | */ | ||
| 603 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 604 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
| 605 | partial_group = counter; | ||
| 606 | goto group_error; | ||
| 607 | } | ||
| 608 | } | ||
| 609 | |||
| 610 | return 0; | ||
| 611 | |||
| 612 | group_error: | ||
| 613 | /* | ||
| 614 | * Groups can be scheduled in as one unit only, so undo any | ||
| 615 | * partial group before returning: | ||
| 616 | */ | ||
| 617 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 618 | if (counter == partial_group) | ||
| 619 | break; | ||
| 620 | counter_sched_out(counter, cpuctx, ctx); | ||
| 621 | } | ||
| 622 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 623 | |||
| 624 | return -EAGAIN; | ||
| 625 | } | ||
| 626 | |||
| 627 | /* | ||
| 628 | * Return 1 for a group consisting entirely of software counters, | ||
| 629 | * 0 if the group contains any hardware counters. | ||
| 630 | */ | ||
| 631 | static int is_software_only_group(struct perf_counter *leader) | ||
| 632 | { | ||
| 633 | struct perf_counter *counter; | ||
| 634 | |||
| 635 | if (!is_software_counter(leader)) | ||
| 636 | return 0; | ||
| 637 | |||
| 638 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 639 | if (!is_software_counter(counter)) | ||
| 640 | return 0; | ||
| 641 | |||
| 642 | return 1; | ||
| 643 | } | ||
| 644 | |||
| 645 | /* | ||
| 646 | * Work out whether we can put this counter group on the CPU now. | ||
| 647 | */ | ||
| 648 | static int group_can_go_on(struct perf_counter *counter, | ||
| 649 | struct perf_cpu_context *cpuctx, | ||
| 650 | int can_add_hw) | ||
| 651 | { | ||
| 652 | /* | ||
| 653 | * Groups consisting entirely of software counters can always go on. | ||
| 654 | */ | ||
| 655 | if (is_software_only_group(counter)) | ||
| 656 | return 1; | ||
| 657 | /* | ||
| 658 | * If an exclusive group is already on, no other hardware | ||
| 659 | * counters can go on. | ||
| 660 | */ | ||
| 661 | if (cpuctx->exclusive) | ||
| 662 | return 0; | ||
| 663 | /* | ||
| 664 | * If this group is exclusive and there are already | ||
| 665 | * counters on the CPU, it can't go on. | ||
| 666 | */ | ||
| 667 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
| 668 | return 0; | ||
| 669 | /* | ||
| 670 | * Otherwise, try to add it if all previous groups were able | ||
| 671 | * to go on. | ||
| 672 | */ | ||
| 673 | return can_add_hw; | ||
| 674 | } | ||
| 675 | |||
| 676 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
| 677 | struct perf_counter_context *ctx) | ||
| 678 | { | ||
| 679 | list_add_counter(counter, ctx); | ||
| 680 | counter->tstamp_enabled = ctx->time; | ||
| 681 | counter->tstamp_running = ctx->time; | ||
| 682 | counter->tstamp_stopped = ctx->time; | ||
| 683 | } | ||
| 684 | |||
| 685 | /* | ||
| 686 | * Cross CPU call to install and enable a performance counter | ||
| 687 | * | ||
| 688 | * Must be called with ctx->mutex held | ||
| 689 | */ | ||
| 690 | static void __perf_install_in_context(void *info) | ||
| 691 | { | ||
| 692 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 693 | struct perf_counter *counter = info; | ||
| 694 | struct perf_counter_context *ctx = counter->ctx; | ||
| 695 | struct perf_counter *leader = counter->group_leader; | ||
| 696 | int cpu = smp_processor_id(); | ||
| 697 | int err; | ||
| 698 | |||
| 699 | /* | ||
| 700 | * If this is a task context, we need to check whether it is | ||
| 701 | * the current task context of this cpu. If not it has been | ||
| 702 | * scheduled out before the smp call arrived. | ||
| 703 | * Or possibly this is the right context but it isn't | ||
| 704 | * on this cpu because it had no counters. | ||
| 705 | */ | ||
| 706 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 707 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 708 | return; | ||
| 709 | cpuctx->task_ctx = ctx; | ||
| 710 | } | ||
| 711 | |||
| 712 | spin_lock(&ctx->lock); | ||
| 713 | ctx->is_active = 1; | ||
| 714 | update_context_time(ctx); | ||
| 715 | |||
| 716 | /* | ||
| 717 | * Protect the list operation against NMI by disabling the | ||
| 718 | * counters on a global level. NOP for non NMI based counters. | ||
| 719 | */ | ||
| 720 | perf_disable(); | ||
| 721 | |||
| 722 | add_counter_to_ctx(counter, ctx); | ||
| 723 | |||
| 724 | /* | ||
| 725 | * Don't put the counter on if it is disabled or if | ||
| 726 | * it is in a group and the group isn't on. | ||
| 727 | */ | ||
| 728 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
| 729 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
| 730 | goto unlock; | ||
| 731 | |||
| 732 | /* | ||
| 733 | * An exclusive counter can't go on if there are already active | ||
| 734 | * hardware counters, and no hardware counter can go on if there | ||
| 735 | * is already an exclusive counter on. | ||
| 736 | */ | ||
| 737 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
| 738 | err = -EEXIST; | ||
| 739 | else | ||
| 740 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 741 | |||
| 742 | if (err) { | ||
| 743 | /* | ||
| 744 | * This counter couldn't go on. If it is in a group | ||
| 745 | * then we have to pull the whole group off. | ||
| 746 | * If the counter group is pinned then put it in error state. | ||
| 747 | */ | ||
| 748 | if (leader != counter) | ||
| 749 | group_sched_out(leader, cpuctx, ctx); | ||
| 750 | if (leader->attr.pinned) { | ||
| 751 | update_group_times(leader); | ||
| 752 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 753 | } | ||
| 754 | } | ||
| 755 | |||
| 756 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 757 | cpuctx->max_pertask--; | ||
| 758 | |||
| 759 | unlock: | ||
| 760 | perf_enable(); | ||
| 761 | |||
| 762 | spin_unlock(&ctx->lock); | ||
| 763 | } | ||
| 764 | |||
| 765 | /* | ||
| 766 | * Attach a performance counter to a context | ||
| 767 | * | ||
| 768 | * First we add the counter to the list with the hardware enable bit | ||
| 769 | * in counter->hw_config cleared. | ||
| 770 | * | ||
| 771 | * If the counter is attached to a task which is on a CPU we use a smp | ||
| 772 | * call to enable it in the task context. The task might have been | ||
| 773 | * scheduled away, but we check this in the smp call again. | ||
| 774 | * | ||
| 775 | * Must be called with ctx->mutex held. | ||
| 776 | */ | ||
| 777 | static void | ||
| 778 | perf_install_in_context(struct perf_counter_context *ctx, | ||
| 779 | struct perf_counter *counter, | ||
| 780 | int cpu) | ||
| 781 | { | ||
| 782 | struct task_struct *task = ctx->task; | ||
| 783 | |||
| 784 | if (!task) { | ||
| 785 | /* | ||
| 786 | * Per cpu counters are installed via an smp call and | ||
| 787 | * the install is always sucessful. | ||
| 788 | */ | ||
| 789 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 790 | counter, 1); | ||
| 791 | return; | ||
| 792 | } | ||
| 793 | |||
| 794 | retry: | ||
| 795 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 796 | counter); | ||
| 797 | |||
| 798 | spin_lock_irq(&ctx->lock); | ||
| 799 | /* | ||
| 800 | * we need to retry the smp call. | ||
| 801 | */ | ||
| 802 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
| 803 | spin_unlock_irq(&ctx->lock); | ||
| 804 | goto retry; | ||
| 805 | } | ||
| 806 | |||
| 807 | /* | ||
| 808 | * The lock prevents that this context is scheduled in so we | ||
| 809 | * can add the counter safely, if it the call above did not | ||
| 810 | * succeed. | ||
| 811 | */ | ||
| 812 | if (list_empty(&counter->list_entry)) | ||
| 813 | add_counter_to_ctx(counter, ctx); | ||
| 814 | spin_unlock_irq(&ctx->lock); | ||
| 815 | } | ||
| 816 | |||
| 817 | /* | ||
| 818 | * Cross CPU call to enable a performance counter | ||
| 819 | */ | ||
| 820 | static void __perf_counter_enable(void *info) | ||
| 821 | { | ||
| 822 | struct perf_counter *counter = info; | ||
| 823 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 824 | struct perf_counter_context *ctx = counter->ctx; | ||
| 825 | struct perf_counter *leader = counter->group_leader; | ||
| 826 | int err; | ||
| 827 | |||
| 828 | /* | ||
| 829 | * If this is a per-task counter, need to check whether this | ||
| 830 | * counter's task is the current task on this cpu. | ||
| 831 | */ | ||
| 832 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 833 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 834 | return; | ||
| 835 | cpuctx->task_ctx = ctx; | ||
| 836 | } | ||
| 837 | |||
| 838 | spin_lock(&ctx->lock); | ||
| 839 | ctx->is_active = 1; | ||
| 840 | update_context_time(ctx); | ||
| 841 | |||
| 842 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 843 | goto unlock; | ||
| 844 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 845 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
| 846 | |||
| 847 | /* | ||
| 848 | * If the counter is in a group and isn't the group leader, | ||
| 849 | * then don't put it on unless the group is on. | ||
| 850 | */ | ||
| 851 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 852 | goto unlock; | ||
| 853 | |||
| 854 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
| 855 | err = -EEXIST; | ||
| 856 | } else { | ||
| 857 | perf_disable(); | ||
| 858 | if (counter == leader) | ||
| 859 | err = group_sched_in(counter, cpuctx, ctx, | ||
| 860 | smp_processor_id()); | ||
| 861 | else | ||
| 862 | err = counter_sched_in(counter, cpuctx, ctx, | ||
| 863 | smp_processor_id()); | ||
| 864 | perf_enable(); | ||
| 865 | } | ||
| 866 | |||
| 867 | if (err) { | ||
| 868 | /* | ||
| 869 | * If this counter can't go on and it's part of a | ||
| 870 | * group, then the whole group has to come off. | ||
| 871 | */ | ||
| 872 | if (leader != counter) | ||
| 873 | group_sched_out(leader, cpuctx, ctx); | ||
| 874 | if (leader->attr.pinned) { | ||
| 875 | update_group_times(leader); | ||
| 876 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 877 | } | ||
| 878 | } | ||
| 879 | |||
| 880 | unlock: | ||
| 881 | spin_unlock(&ctx->lock); | ||
| 882 | } | ||
| 883 | |||
| 884 | /* | ||
| 885 | * Enable a counter. | ||
| 886 | * | ||
| 887 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 888 | * every task struct that counter->ctx->task could possibly point to | ||
| 889 | * remains valid. This condition is satisfied when called through | ||
| 890 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
| 891 | * for perf_counter_disable. | ||
| 892 | */ | ||
| 893 | static void perf_counter_enable(struct perf_counter *counter) | ||
| 894 | { | ||
| 895 | struct perf_counter_context *ctx = counter->ctx; | ||
| 896 | struct task_struct *task = ctx->task; | ||
| 897 | |||
| 898 | if (!task) { | ||
| 899 | /* | ||
| 900 | * Enable the counter on the cpu that it's on | ||
| 901 | */ | ||
| 902 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
| 903 | counter, 1); | ||
| 904 | return; | ||
| 905 | } | ||
| 906 | |||
| 907 | spin_lock_irq(&ctx->lock); | ||
| 908 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 909 | goto out; | ||
| 910 | |||
| 911 | /* | ||
| 912 | * If the counter is in error state, clear that first. | ||
| 913 | * That way, if we see the counter in error state below, we | ||
| 914 | * know that it has gone back into error state, as distinct | ||
| 915 | * from the task having been scheduled away before the | ||
| 916 | * cross-call arrived. | ||
| 917 | */ | ||
| 918 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 919 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 920 | |||
| 921 | retry: | ||
| 922 | spin_unlock_irq(&ctx->lock); | ||
| 923 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
| 924 | |||
| 925 | spin_lock_irq(&ctx->lock); | ||
| 926 | |||
| 927 | /* | ||
| 928 | * If the context is active and the counter is still off, | ||
| 929 | * we need to retry the cross-call. | ||
| 930 | */ | ||
| 931 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
| 932 | goto retry; | ||
| 933 | |||
| 934 | /* | ||
| 935 | * Since we have the lock this context can't be scheduled | ||
| 936 | * in, so we can change the state safely. | ||
| 937 | */ | ||
| 938 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
| 939 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 940 | counter->tstamp_enabled = | ||
| 941 | ctx->time - counter->total_time_enabled; | ||
| 942 | } | ||
| 943 | out: | ||
| 944 | spin_unlock_irq(&ctx->lock); | ||
| 945 | } | ||
| 946 | |||
| 947 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
| 948 | { | ||
| 949 | /* | ||
| 950 | * not supported on inherited counters | ||
| 951 | */ | ||
| 952 | if (counter->attr.inherit) | ||
| 953 | return -EINVAL; | ||
| 954 | |||
| 955 | atomic_add(refresh, &counter->event_limit); | ||
| 956 | perf_counter_enable(counter); | ||
| 957 | |||
| 958 | return 0; | ||
| 959 | } | ||
| 960 | |||
| 961 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
| 962 | struct perf_cpu_context *cpuctx) | ||
| 963 | { | ||
| 964 | struct perf_counter *counter; | ||
| 965 | |||
| 966 | spin_lock(&ctx->lock); | ||
| 967 | ctx->is_active = 0; | ||
| 968 | if (likely(!ctx->nr_counters)) | ||
| 969 | goto out; | ||
| 970 | update_context_time(ctx); | ||
| 971 | |||
| 972 | perf_disable(); | ||
| 973 | if (ctx->nr_active) { | ||
| 974 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 975 | if (counter != counter->group_leader) | ||
| 976 | counter_sched_out(counter, cpuctx, ctx); | ||
| 977 | else | ||
| 978 | group_sched_out(counter, cpuctx, ctx); | ||
| 979 | } | ||
| 980 | } | ||
| 981 | perf_enable(); | ||
| 982 | out: | ||
| 983 | spin_unlock(&ctx->lock); | ||
| 984 | } | ||
| 985 | |||
| 986 | /* | ||
| 987 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 988 | * have both been cloned from the same version of the same context | ||
| 989 | * and they both have the same number of enabled counters. | ||
| 990 | * If the number of enabled counters is the same, then the set | ||
| 991 | * of enabled counters should be the same, because these are both | ||
| 992 | * inherited contexts, therefore we can't access individual counters | ||
| 993 | * in them directly with an fd; we can only enable/disable all | ||
| 994 | * counters via prctl, or enable/disable all counters in a family | ||
| 995 | * via ioctl, which will have the same effect on both contexts. | ||
| 996 | */ | ||
| 997 | static int context_equiv(struct perf_counter_context *ctx1, | ||
| 998 | struct perf_counter_context *ctx2) | ||
| 999 | { | ||
| 1000 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1001 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1002 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1003 | } | ||
| 1004 | |||
| 1005 | /* | ||
| 1006 | * Called from scheduler to remove the counters of the current task, | ||
| 1007 | * with interrupts disabled. | ||
| 1008 | * | ||
| 1009 | * We stop each counter and update the counter value in counter->count. | ||
| 1010 | * | ||
| 1011 | * This does not protect us against NMI, but disable() | ||
| 1012 | * sets the disabled bit in the control field of counter _before_ | ||
| 1013 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1014 | * not restart the counter. | ||
| 1015 | */ | ||
| 1016 | void perf_counter_task_sched_out(struct task_struct *task, | ||
| 1017 | struct task_struct *next, int cpu) | ||
| 1018 | { | ||
| 1019 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1020 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1021 | struct perf_counter_context *next_ctx; | ||
| 1022 | struct perf_counter_context *parent; | ||
| 1023 | struct pt_regs *regs; | ||
| 1024 | int do_switch = 1; | ||
| 1025 | |||
| 1026 | regs = task_pt_regs(task); | ||
| 1027 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1028 | |||
| 1029 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1030 | return; | ||
| 1031 | |||
| 1032 | update_context_time(ctx); | ||
| 1033 | |||
| 1034 | rcu_read_lock(); | ||
| 1035 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1036 | next_ctx = next->perf_counter_ctxp; | ||
| 1037 | if (parent && next_ctx && | ||
| 1038 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1039 | /* | ||
| 1040 | * Looks like the two contexts are clones, so we might be | ||
| 1041 | * able to optimize the context switch. We lock both | ||
| 1042 | * contexts and check that they are clones under the | ||
| 1043 | * lock (including re-checking that neither has been | ||
| 1044 | * uncloned in the meantime). It doesn't matter which | ||
| 1045 | * order we take the locks because no other cpu could | ||
| 1046 | * be trying to lock both of these tasks. | ||
| 1047 | */ | ||
| 1048 | spin_lock(&ctx->lock); | ||
| 1049 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1050 | if (context_equiv(ctx, next_ctx)) { | ||
| 1051 | /* | ||
| 1052 | * XXX do we need a memory barrier of sorts | ||
| 1053 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
| 1054 | */ | ||
| 1055 | task->perf_counter_ctxp = next_ctx; | ||
| 1056 | next->perf_counter_ctxp = ctx; | ||
| 1057 | ctx->task = next; | ||
| 1058 | next_ctx->task = task; | ||
| 1059 | do_switch = 0; | ||
| 1060 | } | ||
| 1061 | spin_unlock(&next_ctx->lock); | ||
| 1062 | spin_unlock(&ctx->lock); | ||
| 1063 | } | ||
| 1064 | rcu_read_unlock(); | ||
| 1065 | |||
| 1066 | if (do_switch) { | ||
| 1067 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1068 | cpuctx->task_ctx = NULL; | ||
| 1069 | } | ||
| 1070 | } | ||
| 1071 | |||
| 1072 | /* | ||
| 1073 | * Called with IRQs disabled | ||
| 1074 | */ | ||
| 1075 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
| 1076 | { | ||
| 1077 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1078 | |||
| 1079 | if (!cpuctx->task_ctx) | ||
| 1080 | return; | ||
| 1081 | |||
| 1082 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1083 | return; | ||
| 1084 | |||
| 1085 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1086 | cpuctx->task_ctx = NULL; | ||
| 1087 | } | ||
| 1088 | |||
| 1089 | /* | ||
| 1090 | * Called with IRQs disabled | ||
| 1091 | */ | ||
| 1092 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1093 | { | ||
| 1094 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1095 | } | ||
| 1096 | |||
| 1097 | static void | ||
| 1098 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
| 1099 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1100 | { | ||
| 1101 | struct perf_counter *counter; | ||
| 1102 | int can_add_hw = 1; | ||
| 1103 | |||
| 1104 | spin_lock(&ctx->lock); | ||
| 1105 | ctx->is_active = 1; | ||
| 1106 | if (likely(!ctx->nr_counters)) | ||
| 1107 | goto out; | ||
| 1108 | |||
| 1109 | ctx->timestamp = perf_clock(); | ||
| 1110 | |||
| 1111 | perf_disable(); | ||
| 1112 | |||
| 1113 | /* | ||
| 1114 | * First go through the list and put on any pinned groups | ||
| 1115 | * in order to give them the best chance of going on. | ||
| 1116 | */ | ||
| 1117 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1118 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1119 | !counter->attr.pinned) | ||
| 1120 | continue; | ||
| 1121 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1122 | continue; | ||
| 1123 | |||
| 1124 | if (counter != counter->group_leader) | ||
| 1125 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1126 | else { | ||
| 1127 | if (group_can_go_on(counter, cpuctx, 1)) | ||
| 1128 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1129 | } | ||
| 1130 | |||
| 1131 | /* | ||
| 1132 | * If this pinned group hasn't been scheduled, | ||
| 1133 | * put it in error state. | ||
| 1134 | */ | ||
| 1135 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1136 | update_group_times(counter); | ||
| 1137 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
| 1138 | } | ||
| 1139 | } | ||
| 1140 | |||
| 1141 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1142 | /* | ||
| 1143 | * Ignore counters in OFF or ERROR state, and | ||
| 1144 | * ignore pinned counters since we did them already. | ||
| 1145 | */ | ||
| 1146 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1147 | counter->attr.pinned) | ||
| 1148 | continue; | ||
| 1149 | |||
| 1150 | /* | ||
| 1151 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1152 | * of counters: | ||
| 1153 | */ | ||
| 1154 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1155 | continue; | ||
| 1156 | |||
| 1157 | if (counter != counter->group_leader) { | ||
| 1158 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1159 | can_add_hw = 0; | ||
| 1160 | } else { | ||
| 1161 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
| 1162 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1163 | can_add_hw = 0; | ||
| 1164 | } | ||
| 1165 | } | ||
| 1166 | } | ||
| 1167 | perf_enable(); | ||
| 1168 | out: | ||
| 1169 | spin_unlock(&ctx->lock); | ||
| 1170 | } | ||
| 1171 | |||
| 1172 | /* | ||
| 1173 | * Called from scheduler to add the counters of the current task | ||
| 1174 | * with interrupts disabled. | ||
| 1175 | * | ||
| 1176 | * We restore the counter value and then enable it. | ||
| 1177 | * | ||
| 1178 | * This does not protect us against NMI, but enable() | ||
| 1179 | * sets the enabled bit in the control field of counter _before_ | ||
| 1180 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1181 | * keep the counter running. | ||
| 1182 | */ | ||
| 1183 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
| 1184 | { | ||
| 1185 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1186 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1187 | |||
| 1188 | if (likely(!ctx)) | ||
| 1189 | return; | ||
| 1190 | if (cpuctx->task_ctx == ctx) | ||
| 1191 | return; | ||
| 1192 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1193 | cpuctx->task_ctx = ctx; | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1197 | { | ||
| 1198 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 1199 | |||
| 1200 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1201 | } | ||
| 1202 | |||
| 1203 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1204 | |||
| 1205 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
| 1206 | static void perf_log_period(struct perf_counter *counter, u64 period); | ||
| 1207 | |||
| 1208 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
| 1209 | { | ||
| 1210 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 1211 | u64 period, sample_period; | ||
| 1212 | s64 delta; | ||
| 1213 | |||
| 1214 | events *= hwc->sample_period; | ||
| 1215 | period = div64_u64(events, counter->attr.sample_freq); | ||
| 1216 | |||
| 1217 | delta = (s64)(period - hwc->sample_period); | ||
| 1218 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1219 | |||
| 1220 | sample_period = hwc->sample_period + delta; | ||
| 1221 | |||
| 1222 | if (!sample_period) | ||
| 1223 | sample_period = 1; | ||
| 1224 | |||
| 1225 | perf_log_period(counter, sample_period); | ||
| 1226 | |||
| 1227 | hwc->sample_period = sample_period; | ||
| 1228 | } | ||
| 1229 | |||
| 1230 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
| 1231 | { | ||
| 1232 | struct perf_counter *counter; | ||
| 1233 | struct hw_perf_counter *hwc; | ||
| 1234 | u64 interrupts, freq; | ||
| 1235 | |||
| 1236 | spin_lock(&ctx->lock); | ||
| 1237 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1238 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 1239 | continue; | ||
| 1240 | |||
| 1241 | hwc = &counter->hw; | ||
| 1242 | |||
| 1243 | interrupts = hwc->interrupts; | ||
| 1244 | hwc->interrupts = 0; | ||
| 1245 | |||
| 1246 | /* | ||
| 1247 | * unthrottle counters on the tick | ||
| 1248 | */ | ||
| 1249 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1250 | perf_log_throttle(counter, 1); | ||
| 1251 | counter->pmu->unthrottle(counter); | ||
| 1252 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
| 1253 | } | ||
| 1254 | |||
| 1255 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
| 1256 | continue; | ||
| 1257 | |||
| 1258 | /* | ||
| 1259 | * if the specified freq < HZ then we need to skip ticks | ||
| 1260 | */ | ||
| 1261 | if (counter->attr.sample_freq < HZ) { | ||
| 1262 | freq = counter->attr.sample_freq; | ||
| 1263 | |||
| 1264 | hwc->freq_count += freq; | ||
| 1265 | hwc->freq_interrupts += interrupts; | ||
| 1266 | |||
| 1267 | if (hwc->freq_count < HZ) | ||
| 1268 | continue; | ||
| 1269 | |||
| 1270 | interrupts = hwc->freq_interrupts; | ||
| 1271 | hwc->freq_interrupts = 0; | ||
| 1272 | hwc->freq_count -= HZ; | ||
| 1273 | } else | ||
| 1274 | freq = HZ; | ||
| 1275 | |||
| 1276 | perf_adjust_period(counter, freq * interrupts); | ||
| 1277 | |||
| 1278 | /* | ||
| 1279 | * In order to avoid being stalled by an (accidental) huge | ||
| 1280 | * sample period, force reset the sample period if we didn't | ||
| 1281 | * get any events in this freq period. | ||
| 1282 | */ | ||
| 1283 | if (!interrupts) { | ||
| 1284 | perf_disable(); | ||
| 1285 | counter->pmu->disable(counter); | ||
| 1286 | atomic_set(&hwc->period_left, 0); | ||
| 1287 | counter->pmu->enable(counter); | ||
| 1288 | perf_enable(); | ||
| 1289 | } | ||
| 1290 | } | ||
| 1291 | spin_unlock(&ctx->lock); | ||
| 1292 | } | ||
| 1293 | |||
| 1294 | /* | ||
| 1295 | * Round-robin a context's counters: | ||
| 1296 | */ | ||
| 1297 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
| 1298 | { | ||
| 1299 | struct perf_counter *counter; | ||
| 1300 | |||
| 1301 | if (!ctx->nr_counters) | ||
| 1302 | return; | ||
| 1303 | |||
| 1304 | spin_lock(&ctx->lock); | ||
| 1305 | /* | ||
| 1306 | * Rotate the first entry last (works just fine for group counters too): | ||
| 1307 | */ | ||
| 1308 | perf_disable(); | ||
| 1309 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1310 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
| 1311 | break; | ||
| 1312 | } | ||
| 1313 | perf_enable(); | ||
| 1314 | |||
| 1315 | spin_unlock(&ctx->lock); | ||
| 1316 | } | ||
| 1317 | |||
| 1318 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
| 1319 | { | ||
| 1320 | struct perf_cpu_context *cpuctx; | ||
| 1321 | struct perf_counter_context *ctx; | ||
| 1322 | |||
| 1323 | if (!atomic_read(&nr_counters)) | ||
| 1324 | return; | ||
| 1325 | |||
| 1326 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1327 | ctx = curr->perf_counter_ctxp; | ||
| 1328 | |||
| 1329 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1330 | if (ctx) | ||
| 1331 | perf_ctx_adjust_freq(ctx); | ||
| 1332 | |||
| 1333 | perf_counter_cpu_sched_out(cpuctx); | ||
| 1334 | if (ctx) | ||
| 1335 | __perf_counter_task_sched_out(ctx); | ||
| 1336 | |||
| 1337 | rotate_ctx(&cpuctx->ctx); | ||
| 1338 | if (ctx) | ||
| 1339 | rotate_ctx(ctx); | ||
| 1340 | |||
| 1341 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
| 1342 | if (ctx) | ||
| 1343 | perf_counter_task_sched_in(curr, cpu); | ||
| 1344 | } | ||
| 1345 | |||
| 1346 | /* | ||
| 1347 | * Cross CPU call to read the hardware counter | ||
| 1348 | */ | ||
| 1349 | static void __read(void *info) | ||
| 1350 | { | ||
| 1351 | struct perf_counter *counter = info; | ||
| 1352 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1353 | unsigned long flags; | ||
| 1354 | |||
| 1355 | local_irq_save(flags); | ||
| 1356 | if (ctx->is_active) | ||
| 1357 | update_context_time(ctx); | ||
| 1358 | counter->pmu->read(counter); | ||
| 1359 | update_counter_times(counter); | ||
| 1360 | local_irq_restore(flags); | ||
| 1361 | } | ||
| 1362 | |||
| 1363 | static u64 perf_counter_read(struct perf_counter *counter) | ||
| 1364 | { | ||
| 1365 | /* | ||
| 1366 | * If counter is enabled and currently active on a CPU, update the | ||
| 1367 | * value in the counter structure: | ||
| 1368 | */ | ||
| 1369 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 1370 | smp_call_function_single(counter->oncpu, | ||
| 1371 | __read, counter, 1); | ||
| 1372 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1373 | update_counter_times(counter); | ||
| 1374 | } | ||
| 1375 | |||
| 1376 | return atomic64_read(&counter->count); | ||
| 1377 | } | ||
| 1378 | |||
| 1379 | /* | ||
| 1380 | * Initialize the perf_counter context in a task_struct: | ||
| 1381 | */ | ||
| 1382 | static void | ||
| 1383 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
| 1384 | struct task_struct *task) | ||
| 1385 | { | ||
| 1386 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1387 | spin_lock_init(&ctx->lock); | ||
| 1388 | mutex_init(&ctx->mutex); | ||
| 1389 | INIT_LIST_HEAD(&ctx->counter_list); | ||
| 1390 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1391 | atomic_set(&ctx->refcount, 1); | ||
| 1392 | ctx->task = task; | ||
| 1393 | } | ||
| 1394 | |||
| 1395 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
| 1396 | { | ||
| 1397 | struct perf_counter_context *parent_ctx; | ||
| 1398 | struct perf_counter_context *ctx; | ||
| 1399 | struct perf_cpu_context *cpuctx; | ||
| 1400 | struct task_struct *task; | ||
| 1401 | unsigned long flags; | ||
| 1402 | int err; | ||
| 1403 | |||
| 1404 | /* | ||
| 1405 | * If cpu is not a wildcard then this is a percpu counter: | ||
| 1406 | */ | ||
| 1407 | if (cpu != -1) { | ||
| 1408 | /* Must be root to operate on a CPU counter: */ | ||
| 1409 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1410 | return ERR_PTR(-EACCES); | ||
| 1411 | |||
| 1412 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1413 | return ERR_PTR(-EINVAL); | ||
| 1414 | |||
| 1415 | /* | ||
| 1416 | * We could be clever and allow to attach a counter to an | ||
| 1417 | * offline CPU and activate it when the CPU comes up, but | ||
| 1418 | * that's for later. | ||
| 1419 | */ | ||
| 1420 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1421 | return ERR_PTR(-ENODEV); | ||
| 1422 | |||
| 1423 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1424 | ctx = &cpuctx->ctx; | ||
| 1425 | get_ctx(ctx); | ||
| 1426 | |||
| 1427 | return ctx; | ||
| 1428 | } | ||
| 1429 | |||
| 1430 | rcu_read_lock(); | ||
| 1431 | if (!pid) | ||
| 1432 | task = current; | ||
| 1433 | else | ||
| 1434 | task = find_task_by_vpid(pid); | ||
| 1435 | if (task) | ||
| 1436 | get_task_struct(task); | ||
| 1437 | rcu_read_unlock(); | ||
| 1438 | |||
| 1439 | if (!task) | ||
| 1440 | return ERR_PTR(-ESRCH); | ||
| 1441 | |||
| 1442 | /* | ||
| 1443 | * Can't attach counters to a dying task. | ||
| 1444 | */ | ||
| 1445 | err = -ESRCH; | ||
| 1446 | if (task->flags & PF_EXITING) | ||
| 1447 | goto errout; | ||
| 1448 | |||
| 1449 | /* Reuse ptrace permission checks for now. */ | ||
| 1450 | err = -EACCES; | ||
| 1451 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1452 | goto errout; | ||
| 1453 | |||
| 1454 | retry: | ||
| 1455 | ctx = perf_lock_task_context(task, &flags); | ||
| 1456 | if (ctx) { | ||
| 1457 | parent_ctx = ctx->parent_ctx; | ||
| 1458 | if (parent_ctx) { | ||
| 1459 | put_ctx(parent_ctx); | ||
| 1460 | ctx->parent_ctx = NULL; /* no longer a clone */ | ||
| 1461 | } | ||
| 1462 | /* | ||
| 1463 | * Get an extra reference before dropping the lock so that | ||
| 1464 | * this context won't get freed if the task exits. | ||
| 1465 | */ | ||
| 1466 | get_ctx(ctx); | ||
| 1467 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1468 | } | ||
| 1469 | |||
| 1470 | if (!ctx) { | ||
| 1471 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 1472 | err = -ENOMEM; | ||
| 1473 | if (!ctx) | ||
| 1474 | goto errout; | ||
| 1475 | __perf_counter_init_context(ctx, task); | ||
| 1476 | get_ctx(ctx); | ||
| 1477 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
| 1478 | /* | ||
| 1479 | * We raced with some other task; use | ||
| 1480 | * the context they set. | ||
| 1481 | */ | ||
| 1482 | kfree(ctx); | ||
| 1483 | goto retry; | ||
| 1484 | } | ||
| 1485 | get_task_struct(task); | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | put_task_struct(task); | ||
| 1489 | return ctx; | ||
| 1490 | |||
| 1491 | errout: | ||
| 1492 | put_task_struct(task); | ||
| 1493 | return ERR_PTR(err); | ||
| 1494 | } | ||
| 1495 | |||
| 1496 | static void free_counter_rcu(struct rcu_head *head) | ||
| 1497 | { | ||
| 1498 | struct perf_counter *counter; | ||
| 1499 | |||
| 1500 | counter = container_of(head, struct perf_counter, rcu_head); | ||
| 1501 | if (counter->ns) | ||
| 1502 | put_pid_ns(counter->ns); | ||
| 1503 | kfree(counter); | ||
| 1504 | } | ||
| 1505 | |||
| 1506 | static void perf_pending_sync(struct perf_counter *counter); | ||
| 1507 | |||
| 1508 | static void free_counter(struct perf_counter *counter) | ||
| 1509 | { | ||
| 1510 | perf_pending_sync(counter); | ||
| 1511 | |||
| 1512 | atomic_dec(&nr_counters); | ||
| 1513 | if (counter->attr.mmap) | ||
| 1514 | atomic_dec(&nr_mmap_counters); | ||
| 1515 | if (counter->attr.comm) | ||
| 1516 | atomic_dec(&nr_comm_counters); | ||
| 1517 | |||
| 1518 | if (counter->destroy) | ||
| 1519 | counter->destroy(counter); | ||
| 1520 | |||
| 1521 | put_ctx(counter->ctx); | ||
| 1522 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
| 1523 | } | ||
| 1524 | |||
| 1525 | /* | ||
| 1526 | * Called when the last reference to the file is gone. | ||
| 1527 | */ | ||
| 1528 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1529 | { | ||
| 1530 | struct perf_counter *counter = file->private_data; | ||
| 1531 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1532 | |||
| 1533 | file->private_data = NULL; | ||
| 1534 | |||
| 1535 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1536 | mutex_lock(&ctx->mutex); | ||
| 1537 | perf_counter_remove_from_context(counter); | ||
| 1538 | mutex_unlock(&ctx->mutex); | ||
| 1539 | |||
| 1540 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
| 1541 | list_del_init(&counter->owner_entry); | ||
| 1542 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
| 1543 | put_task_struct(counter->owner); | ||
| 1544 | |||
| 1545 | free_counter(counter); | ||
| 1546 | |||
| 1547 | return 0; | ||
| 1548 | } | ||
| 1549 | |||
| 1550 | /* | ||
| 1551 | * Read the performance counter - simple non blocking version for now | ||
| 1552 | */ | ||
| 1553 | static ssize_t | ||
| 1554 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
| 1555 | { | ||
| 1556 | u64 values[3]; | ||
| 1557 | int n; | ||
| 1558 | |||
| 1559 | /* | ||
| 1560 | * Return end-of-file for a read on a counter that is in | ||
| 1561 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1562 | * scheduled on to the CPU at some point). | ||
| 1563 | */ | ||
| 1564 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 1565 | return 0; | ||
| 1566 | |||
| 1567 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1568 | mutex_lock(&counter->child_mutex); | ||
| 1569 | values[0] = perf_counter_read(counter); | ||
| 1570 | n = 1; | ||
| 1571 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1572 | values[n++] = counter->total_time_enabled + | ||
| 1573 | atomic64_read(&counter->child_total_time_enabled); | ||
| 1574 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1575 | values[n++] = counter->total_time_running + | ||
| 1576 | atomic64_read(&counter->child_total_time_running); | ||
| 1577 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
| 1578 | values[n++] = counter->id; | ||
| 1579 | mutex_unlock(&counter->child_mutex); | ||
| 1580 | |||
| 1581 | if (count < n * sizeof(u64)) | ||
| 1582 | return -EINVAL; | ||
| 1583 | count = n * sizeof(u64); | ||
| 1584 | |||
| 1585 | if (copy_to_user(buf, values, count)) | ||
| 1586 | return -EFAULT; | ||
| 1587 | |||
| 1588 | return count; | ||
| 1589 | } | ||
| 1590 | |||
| 1591 | static ssize_t | ||
| 1592 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1593 | { | ||
| 1594 | struct perf_counter *counter = file->private_data; | ||
| 1595 | |||
| 1596 | return perf_read_hw(counter, buf, count); | ||
| 1597 | } | ||
| 1598 | |||
| 1599 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1600 | { | ||
| 1601 | struct perf_counter *counter = file->private_data; | ||
| 1602 | struct perf_mmap_data *data; | ||
| 1603 | unsigned int events = POLL_HUP; | ||
| 1604 | |||
| 1605 | rcu_read_lock(); | ||
| 1606 | data = rcu_dereference(counter->data); | ||
| 1607 | if (data) | ||
| 1608 | events = atomic_xchg(&data->poll, 0); | ||
| 1609 | rcu_read_unlock(); | ||
| 1610 | |||
| 1611 | poll_wait(file, &counter->waitq, wait); | ||
| 1612 | |||
| 1613 | return events; | ||
| 1614 | } | ||
| 1615 | |||
| 1616 | static void perf_counter_reset(struct perf_counter *counter) | ||
| 1617 | { | ||
| 1618 | (void)perf_counter_read(counter); | ||
| 1619 | atomic64_set(&counter->count, 0); | ||
| 1620 | perf_counter_update_userpage(counter); | ||
| 1621 | } | ||
| 1622 | |||
| 1623 | static void perf_counter_for_each_sibling(struct perf_counter *counter, | ||
| 1624 | void (*func)(struct perf_counter *)) | ||
| 1625 | { | ||
| 1626 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1627 | struct perf_counter *sibling; | ||
| 1628 | |||
| 1629 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1630 | mutex_lock(&ctx->mutex); | ||
| 1631 | counter = counter->group_leader; | ||
| 1632 | |||
| 1633 | func(counter); | ||
| 1634 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
| 1635 | func(sibling); | ||
| 1636 | mutex_unlock(&ctx->mutex); | ||
| 1637 | } | ||
| 1638 | |||
| 1639 | /* | ||
| 1640 | * Holding the top-level counter's child_mutex means that any | ||
| 1641 | * descendant process that has inherited this counter will block | ||
| 1642 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
| 1643 | * task existence requirements of perf_counter_enable/disable. | ||
| 1644 | */ | ||
| 1645 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
| 1646 | void (*func)(struct perf_counter *)) | ||
| 1647 | { | ||
| 1648 | struct perf_counter *child; | ||
| 1649 | |||
| 1650 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1651 | mutex_lock(&counter->child_mutex); | ||
| 1652 | func(counter); | ||
| 1653 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1654 | func(child); | ||
| 1655 | mutex_unlock(&counter->child_mutex); | ||
| 1656 | } | ||
| 1657 | |||
| 1658 | static void perf_counter_for_each(struct perf_counter *counter, | ||
| 1659 | void (*func)(struct perf_counter *)) | ||
| 1660 | { | ||
| 1661 | struct perf_counter *child; | ||
| 1662 | |||
| 1663 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1664 | mutex_lock(&counter->child_mutex); | ||
| 1665 | perf_counter_for_each_sibling(counter, func); | ||
| 1666 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1667 | perf_counter_for_each_sibling(child, func); | ||
| 1668 | mutex_unlock(&counter->child_mutex); | ||
| 1669 | } | ||
| 1670 | |||
| 1671 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
| 1672 | { | ||
| 1673 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1674 | unsigned long size; | ||
| 1675 | int ret = 0; | ||
| 1676 | u64 value; | ||
| 1677 | |||
| 1678 | if (!counter->attr.sample_period) | ||
| 1679 | return -EINVAL; | ||
| 1680 | |||
| 1681 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1682 | if (size != sizeof(value)) | ||
| 1683 | return -EFAULT; | ||
| 1684 | |||
| 1685 | if (!value) | ||
| 1686 | return -EINVAL; | ||
| 1687 | |||
| 1688 | spin_lock_irq(&ctx->lock); | ||
| 1689 | if (counter->attr.freq) { | ||
| 1690 | if (value > sysctl_perf_counter_sample_rate) { | ||
| 1691 | ret = -EINVAL; | ||
| 1692 | goto unlock; | ||
| 1693 | } | ||
| 1694 | |||
| 1695 | counter->attr.sample_freq = value; | ||
| 1696 | } else { | ||
| 1697 | perf_log_period(counter, value); | ||
| 1698 | |||
| 1699 | counter->attr.sample_period = value; | ||
| 1700 | counter->hw.sample_period = value; | ||
| 1701 | } | ||
| 1702 | unlock: | ||
| 1703 | spin_unlock_irq(&ctx->lock); | ||
| 1704 | |||
| 1705 | return ret; | ||
| 1706 | } | ||
| 1707 | |||
| 1708 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1709 | { | ||
| 1710 | struct perf_counter *counter = file->private_data; | ||
| 1711 | void (*func)(struct perf_counter *); | ||
| 1712 | u32 flags = arg; | ||
| 1713 | |||
| 1714 | switch (cmd) { | ||
| 1715 | case PERF_COUNTER_IOC_ENABLE: | ||
| 1716 | func = perf_counter_enable; | ||
| 1717 | break; | ||
| 1718 | case PERF_COUNTER_IOC_DISABLE: | ||
| 1719 | func = perf_counter_disable; | ||
| 1720 | break; | ||
| 1721 | case PERF_COUNTER_IOC_RESET: | ||
| 1722 | func = perf_counter_reset; | ||
| 1723 | break; | ||
| 1724 | |||
| 1725 | case PERF_COUNTER_IOC_REFRESH: | ||
| 1726 | return perf_counter_refresh(counter, arg); | ||
| 1727 | |||
| 1728 | case PERF_COUNTER_IOC_PERIOD: | ||
| 1729 | return perf_counter_period(counter, (u64 __user *)arg); | ||
| 1730 | |||
| 1731 | default: | ||
| 1732 | return -ENOTTY; | ||
| 1733 | } | ||
| 1734 | |||
| 1735 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 1736 | perf_counter_for_each(counter, func); | ||
| 1737 | else | ||
| 1738 | perf_counter_for_each_child(counter, func); | ||
| 1739 | |||
| 1740 | return 0; | ||
| 1741 | } | ||
| 1742 | |||
| 1743 | int perf_counter_task_enable(void) | ||
| 1744 | { | ||
| 1745 | struct perf_counter *counter; | ||
| 1746 | |||
| 1747 | mutex_lock(¤t->perf_counter_mutex); | ||
| 1748 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 1749 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
| 1750 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 1751 | |||
| 1752 | return 0; | ||
| 1753 | } | ||
| 1754 | |||
| 1755 | int perf_counter_task_disable(void) | ||
| 1756 | { | ||
| 1757 | struct perf_counter *counter; | ||
| 1758 | |||
| 1759 | mutex_lock(¤t->perf_counter_mutex); | ||
| 1760 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 1761 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
| 1762 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 1763 | |||
| 1764 | return 0; | ||
| 1765 | } | ||
| 1766 | |||
| 1767 | /* | ||
| 1768 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 1769 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 1770 | * code calls this from NMI context. | ||
| 1771 | */ | ||
| 1772 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
| 1773 | { | ||
| 1774 | struct perf_counter_mmap_page *userpg; | ||
| 1775 | struct perf_mmap_data *data; | ||
| 1776 | |||
| 1777 | rcu_read_lock(); | ||
| 1778 | data = rcu_dereference(counter->data); | ||
| 1779 | if (!data) | ||
| 1780 | goto unlock; | ||
| 1781 | |||
| 1782 | userpg = data->user_page; | ||
| 1783 | |||
| 1784 | /* | ||
| 1785 | * Disable preemption so as to not let the corresponding user-space | ||
| 1786 | * spin too long if we get preempted. | ||
| 1787 | */ | ||
| 1788 | preempt_disable(); | ||
| 1789 | ++userpg->lock; | ||
| 1790 | barrier(); | ||
| 1791 | userpg->index = counter->hw.idx; | ||
| 1792 | userpg->offset = atomic64_read(&counter->count); | ||
| 1793 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 1794 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
| 1795 | |||
| 1796 | barrier(); | ||
| 1797 | ++userpg->lock; | ||
| 1798 | preempt_enable(); | ||
| 1799 | unlock: | ||
| 1800 | rcu_read_unlock(); | ||
| 1801 | } | ||
| 1802 | |||
| 1803 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 1804 | { | ||
| 1805 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1806 | struct perf_mmap_data *data; | ||
| 1807 | int ret = VM_FAULT_SIGBUS; | ||
| 1808 | |||
| 1809 | rcu_read_lock(); | ||
| 1810 | data = rcu_dereference(counter->data); | ||
| 1811 | if (!data) | ||
| 1812 | goto unlock; | ||
| 1813 | |||
| 1814 | if (vmf->pgoff == 0) { | ||
| 1815 | vmf->page = virt_to_page(data->user_page); | ||
| 1816 | } else { | ||
| 1817 | int nr = vmf->pgoff - 1; | ||
| 1818 | |||
| 1819 | if ((unsigned)nr > data->nr_pages) | ||
| 1820 | goto unlock; | ||
| 1821 | |||
| 1822 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 1823 | } | ||
| 1824 | get_page(vmf->page); | ||
| 1825 | ret = 0; | ||
| 1826 | unlock: | ||
| 1827 | rcu_read_unlock(); | ||
| 1828 | |||
| 1829 | return ret; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
| 1833 | { | ||
| 1834 | struct perf_mmap_data *data; | ||
| 1835 | unsigned long size; | ||
| 1836 | int i; | ||
| 1837 | |||
| 1838 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 1839 | |||
| 1840 | size = sizeof(struct perf_mmap_data); | ||
| 1841 | size += nr_pages * sizeof(void *); | ||
| 1842 | |||
| 1843 | data = kzalloc(size, GFP_KERNEL); | ||
| 1844 | if (!data) | ||
| 1845 | goto fail; | ||
| 1846 | |||
| 1847 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 1848 | if (!data->user_page) | ||
| 1849 | goto fail_user_page; | ||
| 1850 | |||
| 1851 | for (i = 0; i < nr_pages; i++) { | ||
| 1852 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 1853 | if (!data->data_pages[i]) | ||
| 1854 | goto fail_data_pages; | ||
| 1855 | } | ||
| 1856 | |||
| 1857 | data->nr_pages = nr_pages; | ||
| 1858 | atomic_set(&data->lock, -1); | ||
| 1859 | |||
| 1860 | rcu_assign_pointer(counter->data, data); | ||
| 1861 | |||
| 1862 | return 0; | ||
| 1863 | |||
| 1864 | fail_data_pages: | ||
| 1865 | for (i--; i >= 0; i--) | ||
| 1866 | free_page((unsigned long)data->data_pages[i]); | ||
| 1867 | |||
| 1868 | free_page((unsigned long)data->user_page); | ||
| 1869 | |||
| 1870 | fail_user_page: | ||
| 1871 | kfree(data); | ||
| 1872 | |||
| 1873 | fail: | ||
| 1874 | return -ENOMEM; | ||
| 1875 | } | ||
| 1876 | |||
| 1877 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 1878 | { | ||
| 1879 | struct perf_mmap_data *data; | ||
| 1880 | int i; | ||
| 1881 | |||
| 1882 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 1883 | |||
| 1884 | free_page((unsigned long)data->user_page); | ||
| 1885 | for (i = 0; i < data->nr_pages; i++) | ||
| 1886 | free_page((unsigned long)data->data_pages[i]); | ||
| 1887 | kfree(data); | ||
| 1888 | } | ||
| 1889 | |||
| 1890 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
| 1891 | { | ||
| 1892 | struct perf_mmap_data *data = counter->data; | ||
| 1893 | |||
| 1894 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 1895 | |||
| 1896 | rcu_assign_pointer(counter->data, NULL); | ||
| 1897 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 1898 | } | ||
| 1899 | |||
| 1900 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 1901 | { | ||
| 1902 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1903 | |||
| 1904 | atomic_inc(&counter->mmap_count); | ||
| 1905 | } | ||
| 1906 | |||
| 1907 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 1908 | { | ||
| 1909 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1910 | |||
| 1911 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1912 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
| 1913 | struct user_struct *user = current_user(); | ||
| 1914 | |||
| 1915 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
| 1916 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
| 1917 | perf_mmap_data_free(counter); | ||
| 1918 | mutex_unlock(&counter->mmap_mutex); | ||
| 1919 | } | ||
| 1920 | } | ||
| 1921 | |||
| 1922 | static struct vm_operations_struct perf_mmap_vmops = { | ||
| 1923 | .open = perf_mmap_open, | ||
| 1924 | .close = perf_mmap_close, | ||
| 1925 | .fault = perf_mmap_fault, | ||
| 1926 | }; | ||
| 1927 | |||
| 1928 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 1929 | { | ||
| 1930 | struct perf_counter *counter = file->private_data; | ||
| 1931 | unsigned long user_locked, user_lock_limit; | ||
| 1932 | struct user_struct *user = current_user(); | ||
| 1933 | unsigned long locked, lock_limit; | ||
| 1934 | unsigned long vma_size; | ||
| 1935 | unsigned long nr_pages; | ||
| 1936 | long user_extra, extra; | ||
| 1937 | int ret = 0; | ||
| 1938 | |||
| 1939 | if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE)) | ||
| 1940 | return -EINVAL; | ||
| 1941 | |||
| 1942 | vma_size = vma->vm_end - vma->vm_start; | ||
| 1943 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 1944 | |||
| 1945 | /* | ||
| 1946 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 1947 | * can do bitmasks instead of modulo. | ||
| 1948 | */ | ||
| 1949 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 1950 | return -EINVAL; | ||
| 1951 | |||
| 1952 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 1953 | return -EINVAL; | ||
| 1954 | |||
| 1955 | if (vma->vm_pgoff != 0) | ||
| 1956 | return -EINVAL; | ||
| 1957 | |||
| 1958 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1959 | mutex_lock(&counter->mmap_mutex); | ||
| 1960 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
| 1961 | if (nr_pages != counter->data->nr_pages) | ||
| 1962 | ret = -EINVAL; | ||
| 1963 | goto unlock; | ||
| 1964 | } | ||
| 1965 | |||
| 1966 | user_extra = nr_pages + 1; | ||
| 1967 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
| 1968 | |||
| 1969 | /* | ||
| 1970 | * Increase the limit linearly with more CPUs: | ||
| 1971 | */ | ||
| 1972 | user_lock_limit *= num_online_cpus(); | ||
| 1973 | |||
| 1974 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 1975 | |||
| 1976 | extra = 0; | ||
| 1977 | if (user_locked > user_lock_limit) | ||
| 1978 | extra = user_locked - user_lock_limit; | ||
| 1979 | |||
| 1980 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 1981 | lock_limit >>= PAGE_SHIFT; | ||
| 1982 | locked = vma->vm_mm->locked_vm + extra; | ||
| 1983 | |||
| 1984 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
| 1985 | ret = -EPERM; | ||
| 1986 | goto unlock; | ||
| 1987 | } | ||
| 1988 | |||
| 1989 | WARN_ON(counter->data); | ||
| 1990 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
| 1991 | if (ret) | ||
| 1992 | goto unlock; | ||
| 1993 | |||
| 1994 | atomic_set(&counter->mmap_count, 1); | ||
| 1995 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 1996 | vma->vm_mm->locked_vm += extra; | ||
| 1997 | counter->data->nr_locked = extra; | ||
| 1998 | unlock: | ||
| 1999 | mutex_unlock(&counter->mmap_mutex); | ||
| 2000 | |||
| 2001 | vma->vm_flags &= ~VM_MAYWRITE; | ||
| 2002 | vma->vm_flags |= VM_RESERVED; | ||
| 2003 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2004 | |||
| 2005 | return ret; | ||
| 2006 | } | ||
| 2007 | |||
| 2008 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2009 | { | ||
| 2010 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2011 | struct perf_counter *counter = filp->private_data; | ||
| 2012 | int retval; | ||
| 2013 | |||
| 2014 | mutex_lock(&inode->i_mutex); | ||
| 2015 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
| 2016 | mutex_unlock(&inode->i_mutex); | ||
| 2017 | |||
| 2018 | if (retval < 0) | ||
| 2019 | return retval; | ||
| 2020 | |||
| 2021 | return 0; | ||
| 2022 | } | ||
| 2023 | |||
| 2024 | static const struct file_operations perf_fops = { | ||
| 2025 | .release = perf_release, | ||
| 2026 | .read = perf_read, | ||
| 2027 | .poll = perf_poll, | ||
| 2028 | .unlocked_ioctl = perf_ioctl, | ||
| 2029 | .compat_ioctl = perf_ioctl, | ||
| 2030 | .mmap = perf_mmap, | ||
| 2031 | .fasync = perf_fasync, | ||
| 2032 | }; | ||
| 2033 | |||
| 2034 | /* | ||
| 2035 | * Perf counter wakeup | ||
| 2036 | * | ||
| 2037 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2038 | * to user-space before waking everybody up. | ||
| 2039 | */ | ||
| 2040 | |||
| 2041 | void perf_counter_wakeup(struct perf_counter *counter) | ||
| 2042 | { | ||
| 2043 | wake_up_all(&counter->waitq); | ||
| 2044 | |||
| 2045 | if (counter->pending_kill) { | ||
| 2046 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
| 2047 | counter->pending_kill = 0; | ||
| 2048 | } | ||
| 2049 | } | ||
| 2050 | |||
| 2051 | /* | ||
| 2052 | * Pending wakeups | ||
| 2053 | * | ||
| 2054 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2055 | * | ||
| 2056 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2057 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2058 | */ | ||
| 2059 | |||
| 2060 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
| 2061 | { | ||
| 2062 | struct perf_counter *counter = container_of(entry, | ||
| 2063 | struct perf_counter, pending); | ||
| 2064 | |||
| 2065 | if (counter->pending_disable) { | ||
| 2066 | counter->pending_disable = 0; | ||
| 2067 | perf_counter_disable(counter); | ||
| 2068 | } | ||
| 2069 | |||
| 2070 | if (counter->pending_wakeup) { | ||
| 2071 | counter->pending_wakeup = 0; | ||
| 2072 | perf_counter_wakeup(counter); | ||
| 2073 | } | ||
| 2074 | } | ||
| 2075 | |||
| 2076 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2077 | |||
| 2078 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2079 | PENDING_TAIL, | ||
| 2080 | }; | ||
| 2081 | |||
| 2082 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2083 | void (*func)(struct perf_pending_entry *)) | ||
| 2084 | { | ||
| 2085 | struct perf_pending_entry **head; | ||
| 2086 | |||
| 2087 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2088 | return; | ||
| 2089 | |||
| 2090 | entry->func = func; | ||
| 2091 | |||
| 2092 | head = &get_cpu_var(perf_pending_head); | ||
| 2093 | |||
| 2094 | do { | ||
| 2095 | entry->next = *head; | ||
| 2096 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2097 | |||
| 2098 | set_perf_counter_pending(); | ||
| 2099 | |||
| 2100 | put_cpu_var(perf_pending_head); | ||
| 2101 | } | ||
| 2102 | |||
| 2103 | static int __perf_pending_run(void) | ||
| 2104 | { | ||
| 2105 | struct perf_pending_entry *list; | ||
| 2106 | int nr = 0; | ||
| 2107 | |||
| 2108 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2109 | while (list != PENDING_TAIL) { | ||
| 2110 | void (*func)(struct perf_pending_entry *); | ||
| 2111 | struct perf_pending_entry *entry = list; | ||
| 2112 | |||
| 2113 | list = list->next; | ||
| 2114 | |||
| 2115 | func = entry->func; | ||
| 2116 | entry->next = NULL; | ||
| 2117 | /* | ||
| 2118 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2119 | * so that we won't be waiting forever. | ||
| 2120 | * -- see perf_not_pending(). | ||
| 2121 | */ | ||
| 2122 | smp_wmb(); | ||
| 2123 | |||
| 2124 | func(entry); | ||
| 2125 | nr++; | ||
| 2126 | } | ||
| 2127 | |||
| 2128 | return nr; | ||
| 2129 | } | ||
| 2130 | |||
| 2131 | static inline int perf_not_pending(struct perf_counter *counter) | ||
| 2132 | { | ||
| 2133 | /* | ||
| 2134 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2135 | * need to wait. | ||
| 2136 | */ | ||
| 2137 | get_cpu(); | ||
| 2138 | __perf_pending_run(); | ||
| 2139 | put_cpu(); | ||
| 2140 | |||
| 2141 | /* | ||
| 2142 | * Ensure we see the proper queue state before going to sleep | ||
| 2143 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2144 | */ | ||
| 2145 | smp_rmb(); | ||
| 2146 | return counter->pending.next == NULL; | ||
| 2147 | } | ||
| 2148 | |||
| 2149 | static void perf_pending_sync(struct perf_counter *counter) | ||
| 2150 | { | ||
| 2151 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
| 2152 | } | ||
| 2153 | |||
| 2154 | void perf_counter_do_pending(void) | ||
| 2155 | { | ||
| 2156 | __perf_pending_run(); | ||
| 2157 | } | ||
| 2158 | |||
| 2159 | /* | ||
| 2160 | * Callchain support -- arch specific | ||
| 2161 | */ | ||
| 2162 | |||
| 2163 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2164 | { | ||
| 2165 | return NULL; | ||
| 2166 | } | ||
| 2167 | |||
| 2168 | /* | ||
| 2169 | * Output | ||
| 2170 | */ | ||
| 2171 | |||
| 2172 | struct perf_output_handle { | ||
| 2173 | struct perf_counter *counter; | ||
| 2174 | struct perf_mmap_data *data; | ||
| 2175 | unsigned long head; | ||
| 2176 | unsigned long offset; | ||
| 2177 | int nmi; | ||
| 2178 | int overflow; | ||
| 2179 | int locked; | ||
| 2180 | unsigned long flags; | ||
| 2181 | }; | ||
| 2182 | |||
| 2183 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2184 | { | ||
| 2185 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2186 | |||
| 2187 | if (handle->nmi) { | ||
| 2188 | handle->counter->pending_wakeup = 1; | ||
| 2189 | perf_pending_queue(&handle->counter->pending, | ||
| 2190 | perf_pending_counter); | ||
| 2191 | } else | ||
| 2192 | perf_counter_wakeup(handle->counter); | ||
| 2193 | } | ||
| 2194 | |||
| 2195 | /* | ||
| 2196 | * Curious locking construct. | ||
| 2197 | * | ||
| 2198 | * We need to ensure a later event doesn't publish a head when a former | ||
| 2199 | * event isn't done writing. However since we need to deal with NMIs we | ||
| 2200 | * cannot fully serialize things. | ||
| 2201 | * | ||
| 2202 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2203 | * nesting on a single CPU. | ||
| 2204 | * | ||
| 2205 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2206 | * event completes. | ||
| 2207 | */ | ||
| 2208 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2209 | { | ||
| 2210 | struct perf_mmap_data *data = handle->data; | ||
| 2211 | int cpu; | ||
| 2212 | |||
| 2213 | handle->locked = 0; | ||
| 2214 | |||
| 2215 | local_irq_save(handle->flags); | ||
| 2216 | cpu = smp_processor_id(); | ||
| 2217 | |||
| 2218 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2219 | return; | ||
| 2220 | |||
| 2221 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2222 | cpu_relax(); | ||
| 2223 | |||
| 2224 | handle->locked = 1; | ||
| 2225 | } | ||
| 2226 | |||
| 2227 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2228 | { | ||
| 2229 | struct perf_mmap_data *data = handle->data; | ||
| 2230 | unsigned long head; | ||
| 2231 | int cpu; | ||
| 2232 | |||
| 2233 | data->done_head = data->head; | ||
| 2234 | |||
| 2235 | if (!handle->locked) | ||
| 2236 | goto out; | ||
| 2237 | |||
| 2238 | again: | ||
| 2239 | /* | ||
| 2240 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2241 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2242 | * reading this position. | ||
| 2243 | */ | ||
| 2244 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2245 | data->user_page->data_head = head; | ||
| 2246 | |||
| 2247 | /* | ||
| 2248 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2249 | */ | ||
| 2250 | |||
| 2251 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2252 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2253 | |||
| 2254 | /* | ||
| 2255 | * Therefore we have to validate we did not indeed do so. | ||
| 2256 | */ | ||
| 2257 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2258 | /* | ||
| 2259 | * Since we had it locked, we can lock it again. | ||
| 2260 | */ | ||
| 2261 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2262 | cpu_relax(); | ||
| 2263 | |||
| 2264 | goto again; | ||
| 2265 | } | ||
| 2266 | |||
| 2267 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2268 | perf_output_wakeup(handle); | ||
| 2269 | out: | ||
| 2270 | local_irq_restore(handle->flags); | ||
| 2271 | } | ||
| 2272 | |||
| 2273 | static int perf_output_begin(struct perf_output_handle *handle, | ||
| 2274 | struct perf_counter *counter, unsigned int size, | ||
| 2275 | int nmi, int overflow) | ||
| 2276 | { | ||
| 2277 | struct perf_mmap_data *data; | ||
| 2278 | unsigned int offset, head; | ||
| 2279 | |||
| 2280 | /* | ||
| 2281 | * For inherited counters we send all the output towards the parent. | ||
| 2282 | */ | ||
| 2283 | if (counter->parent) | ||
| 2284 | counter = counter->parent; | ||
| 2285 | |||
| 2286 | rcu_read_lock(); | ||
| 2287 | data = rcu_dereference(counter->data); | ||
| 2288 | if (!data) | ||
| 2289 | goto out; | ||
| 2290 | |||
| 2291 | handle->data = data; | ||
| 2292 | handle->counter = counter; | ||
| 2293 | handle->nmi = nmi; | ||
| 2294 | handle->overflow = overflow; | ||
| 2295 | |||
| 2296 | if (!data->nr_pages) | ||
| 2297 | goto fail; | ||
| 2298 | |||
| 2299 | perf_output_lock(handle); | ||
| 2300 | |||
| 2301 | do { | ||
| 2302 | offset = head = atomic_long_read(&data->head); | ||
| 2303 | head += size; | ||
| 2304 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2305 | |||
| 2306 | handle->offset = offset; | ||
| 2307 | handle->head = head; | ||
| 2308 | |||
| 2309 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
| 2310 | atomic_set(&data->wakeup, 1); | ||
| 2311 | |||
| 2312 | return 0; | ||
| 2313 | |||
| 2314 | fail: | ||
| 2315 | perf_output_wakeup(handle); | ||
| 2316 | out: | ||
| 2317 | rcu_read_unlock(); | ||
| 2318 | |||
| 2319 | return -ENOSPC; | ||
| 2320 | } | ||
| 2321 | |||
| 2322 | static void perf_output_copy(struct perf_output_handle *handle, | ||
| 2323 | const void *buf, unsigned int len) | ||
| 2324 | { | ||
| 2325 | unsigned int pages_mask; | ||
| 2326 | unsigned int offset; | ||
| 2327 | unsigned int size; | ||
| 2328 | void **pages; | ||
| 2329 | |||
| 2330 | offset = handle->offset; | ||
| 2331 | pages_mask = handle->data->nr_pages - 1; | ||
| 2332 | pages = handle->data->data_pages; | ||
| 2333 | |||
| 2334 | do { | ||
| 2335 | unsigned int page_offset; | ||
| 2336 | int nr; | ||
| 2337 | |||
| 2338 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2339 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2340 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2341 | |||
| 2342 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2343 | |||
| 2344 | len -= size; | ||
| 2345 | buf += size; | ||
| 2346 | offset += size; | ||
| 2347 | } while (len); | ||
| 2348 | |||
| 2349 | handle->offset = offset; | ||
| 2350 | |||
| 2351 | /* | ||
| 2352 | * Check we didn't copy past our reservation window, taking the | ||
| 2353 | * possible unsigned int wrap into account. | ||
| 2354 | */ | ||
| 2355 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2356 | } | ||
| 2357 | |||
| 2358 | #define perf_output_put(handle, x) \ | ||
| 2359 | perf_output_copy((handle), &(x), sizeof(x)) | ||
| 2360 | |||
| 2361 | static void perf_output_end(struct perf_output_handle *handle) | ||
| 2362 | { | ||
| 2363 | struct perf_counter *counter = handle->counter; | ||
| 2364 | struct perf_mmap_data *data = handle->data; | ||
| 2365 | |||
| 2366 | int wakeup_events = counter->attr.wakeup_events; | ||
| 2367 | |||
| 2368 | if (handle->overflow && wakeup_events) { | ||
| 2369 | int events = atomic_inc_return(&data->events); | ||
| 2370 | if (events >= wakeup_events) { | ||
| 2371 | atomic_sub(wakeup_events, &data->events); | ||
| 2372 | atomic_set(&data->wakeup, 1); | ||
| 2373 | } | ||
| 2374 | } | ||
| 2375 | |||
| 2376 | perf_output_unlock(handle); | ||
| 2377 | rcu_read_unlock(); | ||
| 2378 | } | ||
| 2379 | |||
| 2380 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
| 2381 | { | ||
| 2382 | /* | ||
| 2383 | * only top level counters have the pid namespace they were created in | ||
| 2384 | */ | ||
| 2385 | if (counter->parent) | ||
| 2386 | counter = counter->parent; | ||
| 2387 | |||
| 2388 | return task_tgid_nr_ns(p, counter->ns); | ||
| 2389 | } | ||
| 2390 | |||
| 2391 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
| 2392 | { | ||
| 2393 | /* | ||
| 2394 | * only top level counters have the pid namespace they were created in | ||
| 2395 | */ | ||
| 2396 | if (counter->parent) | ||
| 2397 | counter = counter->parent; | ||
| 2398 | |||
| 2399 | return task_pid_nr_ns(p, counter->ns); | ||
| 2400 | } | ||
| 2401 | |||
| 2402 | static void perf_counter_output(struct perf_counter *counter, int nmi, | ||
| 2403 | struct perf_sample_data *data) | ||
| 2404 | { | ||
| 2405 | int ret; | ||
| 2406 | u64 sample_type = counter->attr.sample_type; | ||
| 2407 | struct perf_output_handle handle; | ||
| 2408 | struct perf_event_header header; | ||
| 2409 | u64 ip; | ||
| 2410 | struct { | ||
| 2411 | u32 pid, tid; | ||
| 2412 | } tid_entry; | ||
| 2413 | struct { | ||
| 2414 | u64 id; | ||
| 2415 | u64 counter; | ||
| 2416 | } group_entry; | ||
| 2417 | struct perf_callchain_entry *callchain = NULL; | ||
| 2418 | int callchain_size = 0; | ||
| 2419 | u64 time; | ||
| 2420 | struct { | ||
| 2421 | u32 cpu, reserved; | ||
| 2422 | } cpu_entry; | ||
| 2423 | |||
| 2424 | header.type = 0; | ||
| 2425 | header.size = sizeof(header); | ||
| 2426 | |||
| 2427 | header.misc = PERF_EVENT_MISC_OVERFLOW; | ||
| 2428 | header.misc |= perf_misc_flags(data->regs); | ||
| 2429 | |||
| 2430 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2431 | ip = perf_instruction_pointer(data->regs); | ||
| 2432 | header.type |= PERF_SAMPLE_IP; | ||
| 2433 | header.size += sizeof(ip); | ||
| 2434 | } | ||
| 2435 | |||
| 2436 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2437 | /* namespace issues */ | ||
| 2438 | tid_entry.pid = perf_counter_pid(counter, current); | ||
| 2439 | tid_entry.tid = perf_counter_tid(counter, current); | ||
| 2440 | |||
| 2441 | header.type |= PERF_SAMPLE_TID; | ||
| 2442 | header.size += sizeof(tid_entry); | ||
| 2443 | } | ||
| 2444 | |||
| 2445 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2446 | /* | ||
| 2447 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
| 2448 | */ | ||
| 2449 | time = sched_clock(); | ||
| 2450 | |||
| 2451 | header.type |= PERF_SAMPLE_TIME; | ||
| 2452 | header.size += sizeof(u64); | ||
| 2453 | } | ||
| 2454 | |||
| 2455 | if (sample_type & PERF_SAMPLE_ADDR) { | ||
| 2456 | header.type |= PERF_SAMPLE_ADDR; | ||
| 2457 | header.size += sizeof(u64); | ||
| 2458 | } | ||
| 2459 | |||
| 2460 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2461 | header.type |= PERF_SAMPLE_ID; | ||
| 2462 | header.size += sizeof(u64); | ||
| 2463 | } | ||
| 2464 | |||
| 2465 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2466 | header.type |= PERF_SAMPLE_CPU; | ||
| 2467 | header.size += sizeof(cpu_entry); | ||
| 2468 | |||
| 2469 | cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2470 | } | ||
| 2471 | |||
| 2472 | if (sample_type & PERF_SAMPLE_PERIOD) { | ||
| 2473 | header.type |= PERF_SAMPLE_PERIOD; | ||
| 2474 | header.size += sizeof(u64); | ||
| 2475 | } | ||
| 2476 | |||
| 2477 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
| 2478 | header.type |= PERF_SAMPLE_GROUP; | ||
| 2479 | header.size += sizeof(u64) + | ||
| 2480 | counter->nr_siblings * sizeof(group_entry); | ||
| 2481 | } | ||
| 2482 | |||
| 2483 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2484 | callchain = perf_callchain(data->regs); | ||
| 2485 | |||
| 2486 | if (callchain) { | ||
| 2487 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
| 2488 | |||
| 2489 | header.type |= PERF_SAMPLE_CALLCHAIN; | ||
| 2490 | header.size += callchain_size; | ||
| 2491 | } | ||
| 2492 | } | ||
| 2493 | |||
| 2494 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
| 2495 | if (ret) | ||
| 2496 | return; | ||
| 2497 | |||
| 2498 | perf_output_put(&handle, header); | ||
| 2499 | |||
| 2500 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2501 | perf_output_put(&handle, ip); | ||
| 2502 | |||
| 2503 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2504 | perf_output_put(&handle, tid_entry); | ||
| 2505 | |||
| 2506 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2507 | perf_output_put(&handle, time); | ||
| 2508 | |||
| 2509 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2510 | perf_output_put(&handle, data->addr); | ||
| 2511 | |||
| 2512 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2513 | perf_output_put(&handle, counter->id); | ||
| 2514 | |||
| 2515 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2516 | perf_output_put(&handle, cpu_entry); | ||
| 2517 | |||
| 2518 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2519 | perf_output_put(&handle, data->period); | ||
| 2520 | |||
| 2521 | /* | ||
| 2522 | * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. | ||
| 2523 | */ | ||
| 2524 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
| 2525 | struct perf_counter *leader, *sub; | ||
| 2526 | u64 nr = counter->nr_siblings; | ||
| 2527 | |||
| 2528 | perf_output_put(&handle, nr); | ||
| 2529 | |||
| 2530 | leader = counter->group_leader; | ||
| 2531 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 2532 | if (sub != counter) | ||
| 2533 | sub->pmu->read(sub); | ||
| 2534 | |||
| 2535 | group_entry.id = sub->id; | ||
| 2536 | group_entry.counter = atomic64_read(&sub->count); | ||
| 2537 | |||
| 2538 | perf_output_put(&handle, group_entry); | ||
| 2539 | } | ||
| 2540 | } | ||
| 2541 | |||
| 2542 | if (callchain) | ||
| 2543 | perf_output_copy(&handle, callchain, callchain_size); | ||
| 2544 | |||
| 2545 | perf_output_end(&handle); | ||
| 2546 | } | ||
| 2547 | |||
| 2548 | /* | ||
| 2549 | * fork tracking | ||
| 2550 | */ | ||
| 2551 | |||
| 2552 | struct perf_fork_event { | ||
| 2553 | struct task_struct *task; | ||
| 2554 | |||
| 2555 | struct { | ||
| 2556 | struct perf_event_header header; | ||
| 2557 | |||
| 2558 | u32 pid; | ||
| 2559 | u32 ppid; | ||
| 2560 | } event; | ||
| 2561 | }; | ||
| 2562 | |||
| 2563 | static void perf_counter_fork_output(struct perf_counter *counter, | ||
| 2564 | struct perf_fork_event *fork_event) | ||
| 2565 | { | ||
| 2566 | struct perf_output_handle handle; | ||
| 2567 | int size = fork_event->event.header.size; | ||
| 2568 | struct task_struct *task = fork_event->task; | ||
| 2569 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2570 | |||
| 2571 | if (ret) | ||
| 2572 | return; | ||
| 2573 | |||
| 2574 | fork_event->event.pid = perf_counter_pid(counter, task); | ||
| 2575 | fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); | ||
| 2576 | |||
| 2577 | perf_output_put(&handle, fork_event->event); | ||
| 2578 | perf_output_end(&handle); | ||
| 2579 | } | ||
| 2580 | |||
| 2581 | static int perf_counter_fork_match(struct perf_counter *counter) | ||
| 2582 | { | ||
| 2583 | if (counter->attr.comm || counter->attr.mmap) | ||
| 2584 | return 1; | ||
| 2585 | |||
| 2586 | return 0; | ||
| 2587 | } | ||
| 2588 | |||
| 2589 | static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | ||
| 2590 | struct perf_fork_event *fork_event) | ||
| 2591 | { | ||
| 2592 | struct perf_counter *counter; | ||
| 2593 | |||
| 2594 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2595 | return; | ||
| 2596 | |||
| 2597 | rcu_read_lock(); | ||
| 2598 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2599 | if (perf_counter_fork_match(counter)) | ||
| 2600 | perf_counter_fork_output(counter, fork_event); | ||
| 2601 | } | ||
| 2602 | rcu_read_unlock(); | ||
| 2603 | } | ||
| 2604 | |||
| 2605 | static void perf_counter_fork_event(struct perf_fork_event *fork_event) | ||
| 2606 | { | ||
| 2607 | struct perf_cpu_context *cpuctx; | ||
| 2608 | struct perf_counter_context *ctx; | ||
| 2609 | |||
| 2610 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2611 | perf_counter_fork_ctx(&cpuctx->ctx, fork_event); | ||
| 2612 | put_cpu_var(perf_cpu_context); | ||
| 2613 | |||
| 2614 | rcu_read_lock(); | ||
| 2615 | /* | ||
| 2616 | * doesn't really matter which of the child contexts the | ||
| 2617 | * events ends up in. | ||
| 2618 | */ | ||
| 2619 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2620 | if (ctx) | ||
| 2621 | perf_counter_fork_ctx(ctx, fork_event); | ||
| 2622 | rcu_read_unlock(); | ||
| 2623 | } | ||
| 2624 | |||
| 2625 | void perf_counter_fork(struct task_struct *task) | ||
| 2626 | { | ||
| 2627 | struct perf_fork_event fork_event; | ||
| 2628 | |||
| 2629 | if (!atomic_read(&nr_comm_counters) && | ||
| 2630 | !atomic_read(&nr_mmap_counters)) | ||
| 2631 | return; | ||
| 2632 | |||
| 2633 | fork_event = (struct perf_fork_event){ | ||
| 2634 | .task = task, | ||
| 2635 | .event = { | ||
| 2636 | .header = { | ||
| 2637 | .type = PERF_EVENT_FORK, | ||
| 2638 | .size = sizeof(fork_event.event), | ||
| 2639 | }, | ||
| 2640 | }, | ||
| 2641 | }; | ||
| 2642 | |||
| 2643 | perf_counter_fork_event(&fork_event); | ||
| 2644 | } | ||
| 2645 | |||
| 2646 | /* | ||
| 2647 | * comm tracking | ||
| 2648 | */ | ||
| 2649 | |||
| 2650 | struct perf_comm_event { | ||
| 2651 | struct task_struct *task; | ||
| 2652 | char *comm; | ||
| 2653 | int comm_size; | ||
| 2654 | |||
| 2655 | struct { | ||
| 2656 | struct perf_event_header header; | ||
| 2657 | |||
| 2658 | u32 pid; | ||
| 2659 | u32 tid; | ||
| 2660 | } event; | ||
| 2661 | }; | ||
| 2662 | |||
| 2663 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
| 2664 | struct perf_comm_event *comm_event) | ||
| 2665 | { | ||
| 2666 | struct perf_output_handle handle; | ||
| 2667 | int size = comm_event->event.header.size; | ||
| 2668 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2669 | |||
| 2670 | if (ret) | ||
| 2671 | return; | ||
| 2672 | |||
| 2673 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
| 2674 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
| 2675 | |||
| 2676 | perf_output_put(&handle, comm_event->event); | ||
| 2677 | perf_output_copy(&handle, comm_event->comm, | ||
| 2678 | comm_event->comm_size); | ||
| 2679 | perf_output_end(&handle); | ||
| 2680 | } | ||
| 2681 | |||
| 2682 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
| 2683 | { | ||
| 2684 | if (counter->attr.comm) | ||
| 2685 | return 1; | ||
| 2686 | |||
| 2687 | return 0; | ||
| 2688 | } | ||
| 2689 | |||
| 2690 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
| 2691 | struct perf_comm_event *comm_event) | ||
| 2692 | { | ||
| 2693 | struct perf_counter *counter; | ||
| 2694 | |||
| 2695 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2696 | return; | ||
| 2697 | |||
| 2698 | rcu_read_lock(); | ||
| 2699 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2700 | if (perf_counter_comm_match(counter)) | ||
| 2701 | perf_counter_comm_output(counter, comm_event); | ||
| 2702 | } | ||
| 2703 | rcu_read_unlock(); | ||
| 2704 | } | ||
| 2705 | |||
| 2706 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
| 2707 | { | ||
| 2708 | struct perf_cpu_context *cpuctx; | ||
| 2709 | struct perf_counter_context *ctx; | ||
| 2710 | unsigned int size; | ||
| 2711 | char *comm = comm_event->task->comm; | ||
| 2712 | |||
| 2713 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 2714 | |||
| 2715 | comm_event->comm = comm; | ||
| 2716 | comm_event->comm_size = size; | ||
| 2717 | |||
| 2718 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
| 2719 | |||
| 2720 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2721 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 2722 | put_cpu_var(perf_cpu_context); | ||
| 2723 | |||
| 2724 | rcu_read_lock(); | ||
| 2725 | /* | ||
| 2726 | * doesn't really matter which of the child contexts the | ||
| 2727 | * events ends up in. | ||
| 2728 | */ | ||
| 2729 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2730 | if (ctx) | ||
| 2731 | perf_counter_comm_ctx(ctx, comm_event); | ||
| 2732 | rcu_read_unlock(); | ||
| 2733 | } | ||
| 2734 | |||
| 2735 | void perf_counter_comm(struct task_struct *task) | ||
| 2736 | { | ||
| 2737 | struct perf_comm_event comm_event; | ||
| 2738 | |||
| 2739 | if (!atomic_read(&nr_comm_counters)) | ||
| 2740 | return; | ||
| 2741 | |||
| 2742 | comm_event = (struct perf_comm_event){ | ||
| 2743 | .task = task, | ||
| 2744 | .event = { | ||
| 2745 | .header = { .type = PERF_EVENT_COMM, }, | ||
| 2746 | }, | ||
| 2747 | }; | ||
| 2748 | |||
| 2749 | perf_counter_comm_event(&comm_event); | ||
| 2750 | } | ||
| 2751 | |||
| 2752 | /* | ||
| 2753 | * mmap tracking | ||
| 2754 | */ | ||
| 2755 | |||
| 2756 | struct perf_mmap_event { | ||
| 2757 | struct vm_area_struct *vma; | ||
| 2758 | |||
| 2759 | const char *file_name; | ||
| 2760 | int file_size; | ||
| 2761 | |||
| 2762 | struct { | ||
| 2763 | struct perf_event_header header; | ||
| 2764 | |||
| 2765 | u32 pid; | ||
| 2766 | u32 tid; | ||
| 2767 | u64 start; | ||
| 2768 | u64 len; | ||
| 2769 | u64 pgoff; | ||
| 2770 | } event; | ||
| 2771 | }; | ||
| 2772 | |||
| 2773 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
| 2774 | struct perf_mmap_event *mmap_event) | ||
| 2775 | { | ||
| 2776 | struct perf_output_handle handle; | ||
| 2777 | int size = mmap_event->event.header.size; | ||
| 2778 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2779 | |||
| 2780 | if (ret) | ||
| 2781 | return; | ||
| 2782 | |||
| 2783 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
| 2784 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
| 2785 | |||
| 2786 | perf_output_put(&handle, mmap_event->event); | ||
| 2787 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 2788 | mmap_event->file_size); | ||
| 2789 | perf_output_end(&handle); | ||
| 2790 | } | ||
| 2791 | |||
| 2792 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
| 2793 | struct perf_mmap_event *mmap_event) | ||
| 2794 | { | ||
| 2795 | if (counter->attr.mmap) | ||
| 2796 | return 1; | ||
| 2797 | |||
| 2798 | return 0; | ||
| 2799 | } | ||
| 2800 | |||
| 2801 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
| 2802 | struct perf_mmap_event *mmap_event) | ||
| 2803 | { | ||
| 2804 | struct perf_counter *counter; | ||
| 2805 | |||
| 2806 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2807 | return; | ||
| 2808 | |||
| 2809 | rcu_read_lock(); | ||
| 2810 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2811 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
| 2812 | perf_counter_mmap_output(counter, mmap_event); | ||
| 2813 | } | ||
| 2814 | rcu_read_unlock(); | ||
| 2815 | } | ||
| 2816 | |||
| 2817 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 2818 | { | ||
| 2819 | struct perf_cpu_context *cpuctx; | ||
| 2820 | struct perf_counter_context *ctx; | ||
| 2821 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 2822 | struct file *file = vma->vm_file; | ||
| 2823 | unsigned int size; | ||
| 2824 | char tmp[16]; | ||
| 2825 | char *buf = NULL; | ||
| 2826 | const char *name; | ||
| 2827 | |||
| 2828 | if (file) { | ||
| 2829 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
| 2830 | if (!buf) { | ||
| 2831 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 2832 | goto got_name; | ||
| 2833 | } | ||
| 2834 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 2835 | if (IS_ERR(name)) { | ||
| 2836 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 2837 | goto got_name; | ||
| 2838 | } | ||
| 2839 | } else { | ||
| 2840 | name = arch_vma_name(mmap_event->vma); | ||
| 2841 | if (name) | ||
| 2842 | goto got_name; | ||
| 2843 | |||
| 2844 | if (!vma->vm_mm) { | ||
| 2845 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 2846 | goto got_name; | ||
| 2847 | } | ||
| 2848 | |||
| 2849 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 2850 | goto got_name; | ||
| 2851 | } | ||
| 2852 | |||
| 2853 | got_name: | ||
| 2854 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 2855 | |||
| 2856 | mmap_event->file_name = name; | ||
| 2857 | mmap_event->file_size = size; | ||
| 2858 | |||
| 2859 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
| 2860 | |||
| 2861 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2862 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 2863 | put_cpu_var(perf_cpu_context); | ||
| 2864 | |||
| 2865 | rcu_read_lock(); | ||
| 2866 | /* | ||
| 2867 | * doesn't really matter which of the child contexts the | ||
| 2868 | * events ends up in. | ||
| 2869 | */ | ||
| 2870 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2871 | if (ctx) | ||
| 2872 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
| 2873 | rcu_read_unlock(); | ||
| 2874 | |||
| 2875 | kfree(buf); | ||
| 2876 | } | ||
| 2877 | |||
| 2878 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
| 2879 | { | ||
| 2880 | struct perf_mmap_event mmap_event; | ||
| 2881 | |||
| 2882 | if (!atomic_read(&nr_mmap_counters)) | ||
| 2883 | return; | ||
| 2884 | |||
| 2885 | mmap_event = (struct perf_mmap_event){ | ||
| 2886 | .vma = vma, | ||
| 2887 | .event = { | ||
| 2888 | .header = { .type = PERF_EVENT_MMAP, }, | ||
| 2889 | .start = vma->vm_start, | ||
| 2890 | .len = vma->vm_end - vma->vm_start, | ||
| 2891 | .pgoff = vma->vm_pgoff, | ||
| 2892 | }, | ||
| 2893 | }; | ||
| 2894 | |||
| 2895 | perf_counter_mmap_event(&mmap_event); | ||
| 2896 | } | ||
| 2897 | |||
| 2898 | /* | ||
| 2899 | * Log sample_period changes so that analyzing tools can re-normalize the | ||
| 2900 | * event flow. | ||
| 2901 | */ | ||
| 2902 | |||
| 2903 | struct freq_event { | ||
| 2904 | struct perf_event_header header; | ||
| 2905 | u64 time; | ||
| 2906 | u64 id; | ||
| 2907 | u64 period; | ||
| 2908 | }; | ||
| 2909 | |||
| 2910 | static void perf_log_period(struct perf_counter *counter, u64 period) | ||
| 2911 | { | ||
| 2912 | struct perf_output_handle handle; | ||
| 2913 | struct freq_event event; | ||
| 2914 | int ret; | ||
| 2915 | |||
| 2916 | if (counter->hw.sample_period == period) | ||
| 2917 | return; | ||
| 2918 | |||
| 2919 | if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) | ||
| 2920 | return; | ||
| 2921 | |||
| 2922 | event = (struct freq_event) { | ||
| 2923 | .header = { | ||
| 2924 | .type = PERF_EVENT_PERIOD, | ||
| 2925 | .misc = 0, | ||
| 2926 | .size = sizeof(event), | ||
| 2927 | }, | ||
| 2928 | .time = sched_clock(), | ||
| 2929 | .id = counter->id, | ||
| 2930 | .period = period, | ||
| 2931 | }; | ||
| 2932 | |||
| 2933 | ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); | ||
| 2934 | if (ret) | ||
| 2935 | return; | ||
| 2936 | |||
| 2937 | perf_output_put(&handle, event); | ||
| 2938 | perf_output_end(&handle); | ||
| 2939 | } | ||
| 2940 | |||
| 2941 | /* | ||
| 2942 | * IRQ throttle logging | ||
| 2943 | */ | ||
| 2944 | |||
| 2945 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
| 2946 | { | ||
| 2947 | struct perf_output_handle handle; | ||
| 2948 | int ret; | ||
| 2949 | |||
| 2950 | struct { | ||
| 2951 | struct perf_event_header header; | ||
| 2952 | u64 time; | ||
| 2953 | u64 id; | ||
| 2954 | } throttle_event = { | ||
| 2955 | .header = { | ||
| 2956 | .type = PERF_EVENT_THROTTLE + 1, | ||
| 2957 | .misc = 0, | ||
| 2958 | .size = sizeof(throttle_event), | ||
| 2959 | }, | ||
| 2960 | .time = sched_clock(), | ||
| 2961 | .id = counter->id, | ||
| 2962 | }; | ||
| 2963 | |||
| 2964 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
| 2965 | if (ret) | ||
| 2966 | return; | ||
| 2967 | |||
| 2968 | perf_output_put(&handle, throttle_event); | ||
| 2969 | perf_output_end(&handle); | ||
| 2970 | } | ||
| 2971 | |||
| 2972 | /* | ||
| 2973 | * Generic counter overflow handling. | ||
| 2974 | */ | ||
| 2975 | |||
| 2976 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
| 2977 | struct perf_sample_data *data) | ||
| 2978 | { | ||
| 2979 | int events = atomic_read(&counter->event_limit); | ||
| 2980 | int throttle = counter->pmu->unthrottle != NULL; | ||
| 2981 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 2982 | int ret = 0; | ||
| 2983 | |||
| 2984 | if (!throttle) { | ||
| 2985 | hwc->interrupts++; | ||
| 2986 | } else { | ||
| 2987 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 2988 | hwc->interrupts++; | ||
| 2989 | if (HZ * hwc->interrupts > | ||
| 2990 | (u64)sysctl_perf_counter_sample_rate) { | ||
| 2991 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 2992 | perf_log_throttle(counter, 0); | ||
| 2993 | ret = 1; | ||
| 2994 | } | ||
| 2995 | } else { | ||
| 2996 | /* | ||
| 2997 | * Keep re-disabling counters even though on the previous | ||
| 2998 | * pass we disabled it - just in case we raced with a | ||
| 2999 | * sched-in and the counter got enabled again: | ||
| 3000 | */ | ||
| 3001 | ret = 1; | ||
| 3002 | } | ||
| 3003 | } | ||
| 3004 | |||
| 3005 | if (counter->attr.freq) { | ||
| 3006 | u64 now = sched_clock(); | ||
| 3007 | s64 delta = now - hwc->freq_stamp; | ||
| 3008 | |||
| 3009 | hwc->freq_stamp = now; | ||
| 3010 | |||
| 3011 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3012 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
| 3013 | } | ||
| 3014 | |||
| 3015 | /* | ||
| 3016 | * XXX event_limit might not quite work as expected on inherited | ||
| 3017 | * counters | ||
| 3018 | */ | ||
| 3019 | |||
| 3020 | counter->pending_kill = POLL_IN; | ||
| 3021 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
| 3022 | ret = 1; | ||
| 3023 | counter->pending_kill = POLL_HUP; | ||
| 3024 | if (nmi) { | ||
| 3025 | counter->pending_disable = 1; | ||
| 3026 | perf_pending_queue(&counter->pending, | ||
| 3027 | perf_pending_counter); | ||
| 3028 | } else | ||
| 3029 | perf_counter_disable(counter); | ||
| 3030 | } | ||
| 3031 | |||
| 3032 | perf_counter_output(counter, nmi, data); | ||
| 3033 | return ret; | ||
| 3034 | } | ||
| 3035 | |||
| 3036 | /* | ||
| 3037 | * Generic software counter infrastructure | ||
| 3038 | */ | ||
| 3039 | |||
| 3040 | static void perf_swcounter_update(struct perf_counter *counter) | ||
| 3041 | { | ||
| 3042 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3043 | u64 prev, now; | ||
| 3044 | s64 delta; | ||
| 3045 | |||
| 3046 | again: | ||
| 3047 | prev = atomic64_read(&hwc->prev_count); | ||
| 3048 | now = atomic64_read(&hwc->count); | ||
| 3049 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
| 3050 | goto again; | ||
| 3051 | |||
| 3052 | delta = now - prev; | ||
| 3053 | |||
| 3054 | atomic64_add(delta, &counter->count); | ||
| 3055 | atomic64_sub(delta, &hwc->period_left); | ||
| 3056 | } | ||
| 3057 | |||
| 3058 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
| 3059 | { | ||
| 3060 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3061 | s64 left = atomic64_read(&hwc->period_left); | ||
| 3062 | s64 period = hwc->sample_period; | ||
| 3063 | |||
| 3064 | if (unlikely(left <= -period)) { | ||
| 3065 | left = period; | ||
| 3066 | atomic64_set(&hwc->period_left, left); | ||
| 3067 | hwc->last_period = period; | ||
| 3068 | } | ||
| 3069 | |||
| 3070 | if (unlikely(left <= 0)) { | ||
| 3071 | left += period; | ||
| 3072 | atomic64_add(period, &hwc->period_left); | ||
| 3073 | hwc->last_period = period; | ||
| 3074 | } | ||
| 3075 | |||
| 3076 | atomic64_set(&hwc->prev_count, -left); | ||
| 3077 | atomic64_set(&hwc->count, -left); | ||
| 3078 | } | ||
| 3079 | |||
| 3080 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
| 3081 | { | ||
| 3082 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3083 | struct perf_sample_data data; | ||
| 3084 | struct perf_counter *counter; | ||
| 3085 | u64 period; | ||
| 3086 | |||
| 3087 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
| 3088 | counter->pmu->read(counter); | ||
| 3089 | |||
| 3090 | data.addr = 0; | ||
| 3091 | data.regs = get_irq_regs(); | ||
| 3092 | /* | ||
| 3093 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3094 | * context, provide the next best thing, the user IP. | ||
| 3095 | */ | ||
| 3096 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
| 3097 | !counter->attr.exclude_user) | ||
| 3098 | data.regs = task_pt_regs(current); | ||
| 3099 | |||
| 3100 | if (data.regs) { | ||
| 3101 | if (perf_counter_overflow(counter, 0, &data)) | ||
| 3102 | ret = HRTIMER_NORESTART; | ||
| 3103 | } | ||
| 3104 | |||
| 3105 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
| 3106 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3107 | |||
| 3108 | return ret; | ||
| 3109 | } | ||
| 3110 | |||
| 3111 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
| 3112 | int nmi, struct pt_regs *regs, u64 addr) | ||
| 3113 | { | ||
| 3114 | struct perf_sample_data data = { | ||
| 3115 | .regs = regs, | ||
| 3116 | .addr = addr, | ||
| 3117 | .period = counter->hw.last_period, | ||
| 3118 | }; | ||
| 3119 | |||
| 3120 | perf_swcounter_update(counter); | ||
| 3121 | perf_swcounter_set_period(counter); | ||
| 3122 | if (perf_counter_overflow(counter, nmi, &data)) | ||
| 3123 | /* soft-disable the counter */ | ||
| 3124 | ; | ||
| 3125 | |||
| 3126 | } | ||
| 3127 | |||
| 3128 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
| 3129 | { | ||
| 3130 | struct perf_counter_context *ctx; | ||
| 3131 | unsigned long flags; | ||
| 3132 | int count; | ||
| 3133 | |||
| 3134 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 3135 | return 1; | ||
| 3136 | |||
| 3137 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
| 3138 | return 0; | ||
| 3139 | |||
| 3140 | /* | ||
| 3141 | * If the counter is inactive, it could be just because | ||
| 3142 | * its task is scheduled out, or because it's in a group | ||
| 3143 | * which could not go on the PMU. We want to count in | ||
| 3144 | * the first case but not the second. If the context is | ||
| 3145 | * currently active then an inactive software counter must | ||
| 3146 | * be the second case. If it's not currently active then | ||
| 3147 | * we need to know whether the counter was active when the | ||
| 3148 | * context was last active, which we can determine by | ||
| 3149 | * comparing counter->tstamp_stopped with ctx->time. | ||
| 3150 | * | ||
| 3151 | * We are within an RCU read-side critical section, | ||
| 3152 | * which protects the existence of *ctx. | ||
| 3153 | */ | ||
| 3154 | ctx = counter->ctx; | ||
| 3155 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 3156 | count = 1; | ||
| 3157 | /* Re-check state now we have the lock */ | ||
| 3158 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
| 3159 | counter->ctx->is_active || | ||
| 3160 | counter->tstamp_stopped < ctx->time) | ||
| 3161 | count = 0; | ||
| 3162 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 3163 | return count; | ||
| 3164 | } | ||
| 3165 | |||
| 3166 | static int perf_swcounter_match(struct perf_counter *counter, | ||
| 3167 | enum perf_type_id type, | ||
| 3168 | u32 event, struct pt_regs *regs) | ||
| 3169 | { | ||
| 3170 | if (!perf_swcounter_is_counting(counter)) | ||
| 3171 | return 0; | ||
| 3172 | |||
| 3173 | if (counter->attr.type != type) | ||
| 3174 | return 0; | ||
| 3175 | if (counter->attr.config != event) | ||
| 3176 | return 0; | ||
| 3177 | |||
| 3178 | if (regs) { | ||
| 3179 | if (counter->attr.exclude_user && user_mode(regs)) | ||
| 3180 | return 0; | ||
| 3181 | |||
| 3182 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
| 3183 | return 0; | ||
| 3184 | } | ||
| 3185 | |||
| 3186 | return 1; | ||
| 3187 | } | ||
| 3188 | |||
| 3189 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
| 3190 | int nmi, struct pt_regs *regs, u64 addr) | ||
| 3191 | { | ||
| 3192 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
| 3193 | |||
| 3194 | if (counter->hw.sample_period && !neg && regs) | ||
| 3195 | perf_swcounter_overflow(counter, nmi, regs, addr); | ||
| 3196 | } | ||
| 3197 | |||
| 3198 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
| 3199 | enum perf_type_id type, u32 event, | ||
| 3200 | u64 nr, int nmi, struct pt_regs *regs, | ||
| 3201 | u64 addr) | ||
| 3202 | { | ||
| 3203 | struct perf_counter *counter; | ||
| 3204 | |||
| 3205 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3206 | return; | ||
| 3207 | |||
| 3208 | rcu_read_lock(); | ||
| 3209 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3210 | if (perf_swcounter_match(counter, type, event, regs)) | ||
| 3211 | perf_swcounter_add(counter, nr, nmi, regs, addr); | ||
| 3212 | } | ||
| 3213 | rcu_read_unlock(); | ||
| 3214 | } | ||
| 3215 | |||
| 3216 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3217 | { | ||
| 3218 | if (in_nmi()) | ||
| 3219 | return &cpuctx->recursion[3]; | ||
| 3220 | |||
| 3221 | if (in_irq()) | ||
| 3222 | return &cpuctx->recursion[2]; | ||
| 3223 | |||
| 3224 | if (in_softirq()) | ||
| 3225 | return &cpuctx->recursion[1]; | ||
| 3226 | |||
| 3227 | return &cpuctx->recursion[0]; | ||
| 3228 | } | ||
| 3229 | |||
| 3230 | static void __perf_swcounter_event(enum perf_type_id type, u32 event, | ||
| 3231 | u64 nr, int nmi, struct pt_regs *regs, | ||
| 3232 | u64 addr) | ||
| 3233 | { | ||
| 3234 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3235 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
| 3236 | struct perf_counter_context *ctx; | ||
| 3237 | |||
| 3238 | if (*recursion) | ||
| 3239 | goto out; | ||
| 3240 | |||
| 3241 | (*recursion)++; | ||
| 3242 | barrier(); | ||
| 3243 | |||
| 3244 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
| 3245 | nr, nmi, regs, addr); | ||
| 3246 | rcu_read_lock(); | ||
| 3247 | /* | ||
| 3248 | * doesn't really matter which of the child contexts the | ||
| 3249 | * events ends up in. | ||
| 3250 | */ | ||
| 3251 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3252 | if (ctx) | ||
| 3253 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr); | ||
| 3254 | rcu_read_unlock(); | ||
| 3255 | |||
| 3256 | barrier(); | ||
| 3257 | (*recursion)--; | ||
| 3258 | |||
| 3259 | out: | ||
| 3260 | put_cpu_var(perf_cpu_context); | ||
| 3261 | } | ||
| 3262 | |||
| 3263 | void | ||
| 3264 | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | ||
| 3265 | { | ||
| 3266 | __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr); | ||
| 3267 | } | ||
| 3268 | |||
| 3269 | static void perf_swcounter_read(struct perf_counter *counter) | ||
| 3270 | { | ||
| 3271 | perf_swcounter_update(counter); | ||
| 3272 | } | ||
| 3273 | |||
| 3274 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
| 3275 | { | ||
| 3276 | perf_swcounter_set_period(counter); | ||
| 3277 | return 0; | ||
| 3278 | } | ||
| 3279 | |||
| 3280 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
| 3281 | { | ||
| 3282 | perf_swcounter_update(counter); | ||
| 3283 | } | ||
| 3284 | |||
| 3285 | static const struct pmu perf_ops_generic = { | ||
| 3286 | .enable = perf_swcounter_enable, | ||
| 3287 | .disable = perf_swcounter_disable, | ||
| 3288 | .read = perf_swcounter_read, | ||
| 3289 | }; | ||
| 3290 | |||
| 3291 | /* | ||
| 3292 | * Software counter: cpu wall time clock | ||
| 3293 | */ | ||
| 3294 | |||
| 3295 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
| 3296 | { | ||
| 3297 | int cpu = raw_smp_processor_id(); | ||
| 3298 | s64 prev; | ||
| 3299 | u64 now; | ||
| 3300 | |||
| 3301 | now = cpu_clock(cpu); | ||
| 3302 | prev = atomic64_read(&counter->hw.prev_count); | ||
| 3303 | atomic64_set(&counter->hw.prev_count, now); | ||
| 3304 | atomic64_add(now - prev, &counter->count); | ||
| 3305 | } | ||
| 3306 | |||
| 3307 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3308 | { | ||
| 3309 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3310 | int cpu = raw_smp_processor_id(); | ||
| 3311 | |||
| 3312 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3313 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3314 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3315 | if (hwc->sample_period) { | ||
| 3316 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3317 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3318 | ns_to_ktime(period), 0, | ||
| 3319 | HRTIMER_MODE_REL, 0); | ||
| 3320 | } | ||
| 3321 | |||
| 3322 | return 0; | ||
| 3323 | } | ||
| 3324 | |||
| 3325 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3326 | { | ||
| 3327 | if (counter->hw.sample_period) | ||
| 3328 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3329 | cpu_clock_perf_counter_update(counter); | ||
| 3330 | } | ||
| 3331 | |||
| 3332 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3333 | { | ||
| 3334 | cpu_clock_perf_counter_update(counter); | ||
| 3335 | } | ||
| 3336 | |||
| 3337 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3338 | .enable = cpu_clock_perf_counter_enable, | ||
| 3339 | .disable = cpu_clock_perf_counter_disable, | ||
| 3340 | .read = cpu_clock_perf_counter_read, | ||
| 3341 | }; | ||
| 3342 | |||
| 3343 | /* | ||
| 3344 | * Software counter: task time clock | ||
| 3345 | */ | ||
| 3346 | |||
| 3347 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
| 3348 | { | ||
| 3349 | u64 prev; | ||
| 3350 | s64 delta; | ||
| 3351 | |||
| 3352 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
| 3353 | delta = now - prev; | ||
| 3354 | atomic64_add(delta, &counter->count); | ||
| 3355 | } | ||
| 3356 | |||
| 3357 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3358 | { | ||
| 3359 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3360 | u64 now; | ||
| 3361 | |||
| 3362 | now = counter->ctx->time; | ||
| 3363 | |||
| 3364 | atomic64_set(&hwc->prev_count, now); | ||
| 3365 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3366 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3367 | if (hwc->sample_period) { | ||
| 3368 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3369 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3370 | ns_to_ktime(period), 0, | ||
| 3371 | HRTIMER_MODE_REL, 0); | ||
| 3372 | } | ||
| 3373 | |||
| 3374 | return 0; | ||
| 3375 | } | ||
| 3376 | |||
| 3377 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3378 | { | ||
| 3379 | if (counter->hw.sample_period) | ||
| 3380 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3381 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
| 3382 | |||
| 3383 | } | ||
| 3384 | |||
| 3385 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3386 | { | ||
| 3387 | u64 time; | ||
| 3388 | |||
| 3389 | if (!in_nmi()) { | ||
| 3390 | update_context_time(counter->ctx); | ||
| 3391 | time = counter->ctx->time; | ||
| 3392 | } else { | ||
| 3393 | u64 now = perf_clock(); | ||
| 3394 | u64 delta = now - counter->ctx->timestamp; | ||
| 3395 | time = counter->ctx->time + delta; | ||
| 3396 | } | ||
| 3397 | |||
| 3398 | task_clock_perf_counter_update(counter, time); | ||
| 3399 | } | ||
| 3400 | |||
| 3401 | static const struct pmu perf_ops_task_clock = { | ||
| 3402 | .enable = task_clock_perf_counter_enable, | ||
| 3403 | .disable = task_clock_perf_counter_disable, | ||
| 3404 | .read = task_clock_perf_counter_read, | ||
| 3405 | }; | ||
| 3406 | |||
| 3407 | /* | ||
| 3408 | * Software counter: cpu migrations | ||
| 3409 | */ | ||
| 3410 | void perf_counter_task_migration(struct task_struct *task, int cpu) | ||
| 3411 | { | ||
| 3412 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 3413 | struct perf_counter_context *ctx; | ||
| 3414 | |||
| 3415 | perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE, | ||
| 3416 | PERF_COUNT_SW_CPU_MIGRATIONS, | ||
| 3417 | 1, 1, NULL, 0); | ||
| 3418 | |||
| 3419 | ctx = perf_pin_task_context(task); | ||
| 3420 | if (ctx) { | ||
| 3421 | perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE, | ||
| 3422 | PERF_COUNT_SW_CPU_MIGRATIONS, | ||
| 3423 | 1, 1, NULL, 0); | ||
| 3424 | perf_unpin_context(ctx); | ||
| 3425 | } | ||
| 3426 | } | ||
| 3427 | |||
| 3428 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3429 | void perf_tpcounter_event(int event_id) | ||
| 3430 | { | ||
| 3431 | struct pt_regs *regs = get_irq_regs(); | ||
| 3432 | |||
| 3433 | if (!regs) | ||
| 3434 | regs = task_pt_regs(current); | ||
| 3435 | |||
| 3436 | __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0); | ||
| 3437 | } | ||
| 3438 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
| 3439 | |||
| 3440 | extern int ftrace_profile_enable(int); | ||
| 3441 | extern void ftrace_profile_disable(int); | ||
| 3442 | |||
| 3443 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
| 3444 | { | ||
| 3445 | ftrace_profile_disable(perf_event_id(&counter->attr)); | ||
| 3446 | } | ||
| 3447 | |||
| 3448 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3449 | { | ||
| 3450 | int event_id = perf_event_id(&counter->attr); | ||
| 3451 | int ret; | ||
| 3452 | |||
| 3453 | ret = ftrace_profile_enable(event_id); | ||
| 3454 | if (ret) | ||
| 3455 | return NULL; | ||
| 3456 | |||
| 3457 | counter->destroy = tp_perf_counter_destroy; | ||
| 3458 | |||
| 3459 | return &perf_ops_generic; | ||
| 3460 | } | ||
| 3461 | #else | ||
| 3462 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3463 | { | ||
| 3464 | return NULL; | ||
| 3465 | } | ||
| 3466 | #endif | ||
| 3467 | |||
| 3468 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
| 3469 | { | ||
| 3470 | const struct pmu *pmu = NULL; | ||
| 3471 | |||
| 3472 | /* | ||
| 3473 | * Software counters (currently) can't in general distinguish | ||
| 3474 | * between user, kernel and hypervisor events. | ||
| 3475 | * However, context switches and cpu migrations are considered | ||
| 3476 | * to be kernel events, and page faults are never hypervisor | ||
| 3477 | * events. | ||
| 3478 | */ | ||
| 3479 | switch (counter->attr.config) { | ||
| 3480 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 3481 | pmu = &perf_ops_cpu_clock; | ||
| 3482 | |||
| 3483 | break; | ||
| 3484 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 3485 | /* | ||
| 3486 | * If the user instantiates this as a per-cpu counter, | ||
| 3487 | * use the cpu_clock counter instead. | ||
| 3488 | */ | ||
| 3489 | if (counter->ctx->task) | ||
| 3490 | pmu = &perf_ops_task_clock; | ||
| 3491 | else | ||
| 3492 | pmu = &perf_ops_cpu_clock; | ||
| 3493 | |||
| 3494 | break; | ||
| 3495 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 3496 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 3497 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 3498 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 3499 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 3500 | pmu = &perf_ops_generic; | ||
| 3501 | break; | ||
| 3502 | } | ||
| 3503 | |||
| 3504 | return pmu; | ||
| 3505 | } | ||
| 3506 | |||
| 3507 | /* | ||
| 3508 | * Allocate and initialize a counter structure | ||
| 3509 | */ | ||
| 3510 | static struct perf_counter * | ||
| 3511 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
| 3512 | int cpu, | ||
| 3513 | struct perf_counter_context *ctx, | ||
| 3514 | struct perf_counter *group_leader, | ||
| 3515 | gfp_t gfpflags) | ||
| 3516 | { | ||
| 3517 | const struct pmu *pmu; | ||
| 3518 | struct perf_counter *counter; | ||
| 3519 | struct hw_perf_counter *hwc; | ||
| 3520 | long err; | ||
| 3521 | |||
| 3522 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
| 3523 | if (!counter) | ||
| 3524 | return ERR_PTR(-ENOMEM); | ||
| 3525 | |||
| 3526 | /* | ||
| 3527 | * Single counters are their own group leaders, with an | ||
| 3528 | * empty sibling list: | ||
| 3529 | */ | ||
| 3530 | if (!group_leader) | ||
| 3531 | group_leader = counter; | ||
| 3532 | |||
| 3533 | mutex_init(&counter->child_mutex); | ||
| 3534 | INIT_LIST_HEAD(&counter->child_list); | ||
| 3535 | |||
| 3536 | INIT_LIST_HEAD(&counter->list_entry); | ||
| 3537 | INIT_LIST_HEAD(&counter->event_entry); | ||
| 3538 | INIT_LIST_HEAD(&counter->sibling_list); | ||
| 3539 | init_waitqueue_head(&counter->waitq); | ||
| 3540 | |||
| 3541 | mutex_init(&counter->mmap_mutex); | ||
| 3542 | |||
| 3543 | counter->cpu = cpu; | ||
| 3544 | counter->attr = *attr; | ||
| 3545 | counter->group_leader = group_leader; | ||
| 3546 | counter->pmu = NULL; | ||
| 3547 | counter->ctx = ctx; | ||
| 3548 | counter->oncpu = -1; | ||
| 3549 | |||
| 3550 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 3551 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
| 3552 | |||
| 3553 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 3554 | |||
| 3555 | if (attr->disabled) | ||
| 3556 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 3557 | |||
| 3558 | pmu = NULL; | ||
| 3559 | |||
| 3560 | hwc = &counter->hw; | ||
| 3561 | hwc->sample_period = attr->sample_period; | ||
| 3562 | if (attr->freq && attr->sample_freq) | ||
| 3563 | hwc->sample_period = 1; | ||
| 3564 | |||
| 3565 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 3566 | |||
| 3567 | /* | ||
| 3568 | * we currently do not support PERF_SAMPLE_GROUP on inherited counters | ||
| 3569 | */ | ||
| 3570 | if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) | ||
| 3571 | goto done; | ||
| 3572 | |||
| 3573 | if (attr->type == PERF_TYPE_RAW) { | ||
| 3574 | pmu = hw_perf_counter_init(counter); | ||
| 3575 | goto done; | ||
| 3576 | } | ||
| 3577 | |||
| 3578 | switch (attr->type) { | ||
| 3579 | case PERF_TYPE_HARDWARE: | ||
| 3580 | case PERF_TYPE_HW_CACHE: | ||
| 3581 | pmu = hw_perf_counter_init(counter); | ||
| 3582 | break; | ||
| 3583 | |||
| 3584 | case PERF_TYPE_SOFTWARE: | ||
| 3585 | pmu = sw_perf_counter_init(counter); | ||
| 3586 | break; | ||
| 3587 | |||
| 3588 | case PERF_TYPE_TRACEPOINT: | ||
| 3589 | pmu = tp_perf_counter_init(counter); | ||
| 3590 | break; | ||
| 3591 | } | ||
| 3592 | done: | ||
| 3593 | err = 0; | ||
| 3594 | if (!pmu) | ||
| 3595 | err = -EINVAL; | ||
| 3596 | else if (IS_ERR(pmu)) | ||
| 3597 | err = PTR_ERR(pmu); | ||
| 3598 | |||
| 3599 | if (err) { | ||
| 3600 | if (counter->ns) | ||
| 3601 | put_pid_ns(counter->ns); | ||
| 3602 | kfree(counter); | ||
| 3603 | return ERR_PTR(err); | ||
| 3604 | } | ||
| 3605 | |||
| 3606 | counter->pmu = pmu; | ||
| 3607 | |||
| 3608 | atomic_inc(&nr_counters); | ||
| 3609 | if (counter->attr.mmap) | ||
| 3610 | atomic_inc(&nr_mmap_counters); | ||
| 3611 | if (counter->attr.comm) | ||
| 3612 | atomic_inc(&nr_comm_counters); | ||
| 3613 | |||
| 3614 | return counter; | ||
| 3615 | } | ||
| 3616 | |||
| 3617 | /** | ||
| 3618 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
| 3619 | * | ||
| 3620 | * @attr_uptr: event type attributes for monitoring/sampling | ||
| 3621 | * @pid: target pid | ||
| 3622 | * @cpu: target cpu | ||
| 3623 | * @group_fd: group leader counter fd | ||
| 3624 | */ | ||
| 3625 | SYSCALL_DEFINE5(perf_counter_open, | ||
| 3626 | const struct perf_counter_attr __user *, attr_uptr, | ||
| 3627 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 3628 | { | ||
| 3629 | struct perf_counter *counter, *group_leader; | ||
| 3630 | struct perf_counter_attr attr; | ||
| 3631 | struct perf_counter_context *ctx; | ||
| 3632 | struct file *counter_file = NULL; | ||
| 3633 | struct file *group_file = NULL; | ||
| 3634 | int fput_needed = 0; | ||
| 3635 | int fput_needed2 = 0; | ||
| 3636 | int ret; | ||
| 3637 | |||
| 3638 | /* for future expandability... */ | ||
| 3639 | if (flags) | ||
| 3640 | return -EINVAL; | ||
| 3641 | |||
| 3642 | if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0) | ||
| 3643 | return -EFAULT; | ||
| 3644 | |||
| 3645 | if (!attr.exclude_kernel) { | ||
| 3646 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 3647 | return -EACCES; | ||
| 3648 | } | ||
| 3649 | |||
| 3650 | if (attr.freq) { | ||
| 3651 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
| 3652 | return -EINVAL; | ||
| 3653 | } | ||
| 3654 | |||
| 3655 | /* | ||
| 3656 | * Get the target context (task or percpu): | ||
| 3657 | */ | ||
| 3658 | ctx = find_get_context(pid, cpu); | ||
| 3659 | if (IS_ERR(ctx)) | ||
| 3660 | return PTR_ERR(ctx); | ||
| 3661 | |||
| 3662 | /* | ||
| 3663 | * Look up the group leader (we will attach this counter to it): | ||
| 3664 | */ | ||
| 3665 | group_leader = NULL; | ||
| 3666 | if (group_fd != -1) { | ||
| 3667 | ret = -EINVAL; | ||
| 3668 | group_file = fget_light(group_fd, &fput_needed); | ||
| 3669 | if (!group_file) | ||
| 3670 | goto err_put_context; | ||
| 3671 | if (group_file->f_op != &perf_fops) | ||
| 3672 | goto err_put_context; | ||
| 3673 | |||
| 3674 | group_leader = group_file->private_data; | ||
| 3675 | /* | ||
| 3676 | * Do not allow a recursive hierarchy (this new sibling | ||
| 3677 | * becoming part of another group-sibling): | ||
| 3678 | */ | ||
| 3679 | if (group_leader->group_leader != group_leader) | ||
| 3680 | goto err_put_context; | ||
| 3681 | /* | ||
| 3682 | * Do not allow to attach to a group in a different | ||
| 3683 | * task or CPU context: | ||
| 3684 | */ | ||
| 3685 | if (group_leader->ctx != ctx) | ||
| 3686 | goto err_put_context; | ||
| 3687 | /* | ||
| 3688 | * Only a group leader can be exclusive or pinned | ||
| 3689 | */ | ||
| 3690 | if (attr.exclusive || attr.pinned) | ||
| 3691 | goto err_put_context; | ||
| 3692 | } | ||
| 3693 | |||
| 3694 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
| 3695 | GFP_KERNEL); | ||
| 3696 | ret = PTR_ERR(counter); | ||
| 3697 | if (IS_ERR(counter)) | ||
| 3698 | goto err_put_context; | ||
| 3699 | |||
| 3700 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
| 3701 | if (ret < 0) | ||
| 3702 | goto err_free_put_context; | ||
| 3703 | |||
| 3704 | counter_file = fget_light(ret, &fput_needed2); | ||
| 3705 | if (!counter_file) | ||
| 3706 | goto err_free_put_context; | ||
| 3707 | |||
| 3708 | counter->filp = counter_file; | ||
| 3709 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 3710 | mutex_lock(&ctx->mutex); | ||
| 3711 | perf_install_in_context(ctx, counter, cpu); | ||
| 3712 | ++ctx->generation; | ||
| 3713 | mutex_unlock(&ctx->mutex); | ||
| 3714 | |||
| 3715 | counter->owner = current; | ||
| 3716 | get_task_struct(current); | ||
| 3717 | mutex_lock(¤t->perf_counter_mutex); | ||
| 3718 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
| 3719 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 3720 | |||
| 3721 | fput_light(counter_file, fput_needed2); | ||
| 3722 | |||
| 3723 | out_fput: | ||
| 3724 | fput_light(group_file, fput_needed); | ||
| 3725 | |||
| 3726 | return ret; | ||
| 3727 | |||
| 3728 | err_free_put_context: | ||
| 3729 | kfree(counter); | ||
| 3730 | |||
| 3731 | err_put_context: | ||
| 3732 | put_ctx(ctx); | ||
| 3733 | |||
| 3734 | goto out_fput; | ||
| 3735 | } | ||
| 3736 | |||
| 3737 | /* | ||
| 3738 | * inherit a counter from parent task to child task: | ||
| 3739 | */ | ||
| 3740 | static struct perf_counter * | ||
| 3741 | inherit_counter(struct perf_counter *parent_counter, | ||
| 3742 | struct task_struct *parent, | ||
| 3743 | struct perf_counter_context *parent_ctx, | ||
| 3744 | struct task_struct *child, | ||
| 3745 | struct perf_counter *group_leader, | ||
| 3746 | struct perf_counter_context *child_ctx) | ||
| 3747 | { | ||
| 3748 | struct perf_counter *child_counter; | ||
| 3749 | |||
| 3750 | /* | ||
| 3751 | * Instead of creating recursive hierarchies of counters, | ||
| 3752 | * we link inherited counters back to the original parent, | ||
| 3753 | * which has a filp for sure, which we use as the reference | ||
| 3754 | * count: | ||
| 3755 | */ | ||
| 3756 | if (parent_counter->parent) | ||
| 3757 | parent_counter = parent_counter->parent; | ||
| 3758 | |||
| 3759 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
| 3760 | parent_counter->cpu, child_ctx, | ||
| 3761 | group_leader, GFP_KERNEL); | ||
| 3762 | if (IS_ERR(child_counter)) | ||
| 3763 | return child_counter; | ||
| 3764 | get_ctx(child_ctx); | ||
| 3765 | |||
| 3766 | /* | ||
| 3767 | * Make the child state follow the state of the parent counter, | ||
| 3768 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 3769 | * so we won't race with perf_counter_{en, dis}able_family. | ||
| 3770 | */ | ||
| 3771 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 3772 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 3773 | else | ||
| 3774 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
| 3775 | |||
| 3776 | if (parent_counter->attr.freq) | ||
| 3777 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
| 3778 | |||
| 3779 | /* | ||
| 3780 | * Link it up in the child's context: | ||
| 3781 | */ | ||
| 3782 | add_counter_to_ctx(child_counter, child_ctx); | ||
| 3783 | |||
| 3784 | child_counter->parent = parent_counter; | ||
| 3785 | /* | ||
| 3786 | * inherit into child's child as well: | ||
| 3787 | */ | ||
| 3788 | child_counter->attr.inherit = 1; | ||
| 3789 | |||
| 3790 | /* | ||
| 3791 | * Get a reference to the parent filp - we will fput it | ||
| 3792 | * when the child counter exits. This is safe to do because | ||
| 3793 | * we are in the parent and we know that the filp still | ||
| 3794 | * exists and has a nonzero count: | ||
| 3795 | */ | ||
| 3796 | atomic_long_inc(&parent_counter->filp->f_count); | ||
| 3797 | |||
| 3798 | /* | ||
| 3799 | * Link this into the parent counter's child list | ||
| 3800 | */ | ||
| 3801 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 3802 | mutex_lock(&parent_counter->child_mutex); | ||
| 3803 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
| 3804 | mutex_unlock(&parent_counter->child_mutex); | ||
| 3805 | |||
| 3806 | return child_counter; | ||
| 3807 | } | ||
| 3808 | |||
| 3809 | static int inherit_group(struct perf_counter *parent_counter, | ||
| 3810 | struct task_struct *parent, | ||
| 3811 | struct perf_counter_context *parent_ctx, | ||
| 3812 | struct task_struct *child, | ||
| 3813 | struct perf_counter_context *child_ctx) | ||
| 3814 | { | ||
| 3815 | struct perf_counter *leader; | ||
| 3816 | struct perf_counter *sub; | ||
| 3817 | struct perf_counter *child_ctr; | ||
| 3818 | |||
| 3819 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
| 3820 | child, NULL, child_ctx); | ||
| 3821 | if (IS_ERR(leader)) | ||
| 3822 | return PTR_ERR(leader); | ||
| 3823 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
| 3824 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
| 3825 | child, leader, child_ctx); | ||
| 3826 | if (IS_ERR(child_ctr)) | ||
| 3827 | return PTR_ERR(child_ctr); | ||
| 3828 | } | ||
| 3829 | return 0; | ||
| 3830 | } | ||
| 3831 | |||
| 3832 | static void sync_child_counter(struct perf_counter *child_counter, | ||
| 3833 | struct perf_counter *parent_counter) | ||
| 3834 | { | ||
| 3835 | u64 child_val; | ||
| 3836 | |||
| 3837 | child_val = atomic64_read(&child_counter->count); | ||
| 3838 | |||
| 3839 | /* | ||
| 3840 | * Add back the child's count to the parent's count: | ||
| 3841 | */ | ||
| 3842 | atomic64_add(child_val, &parent_counter->count); | ||
| 3843 | atomic64_add(child_counter->total_time_enabled, | ||
| 3844 | &parent_counter->child_total_time_enabled); | ||
| 3845 | atomic64_add(child_counter->total_time_running, | ||
| 3846 | &parent_counter->child_total_time_running); | ||
| 3847 | |||
| 3848 | /* | ||
| 3849 | * Remove this counter from the parent's list | ||
| 3850 | */ | ||
| 3851 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 3852 | mutex_lock(&parent_counter->child_mutex); | ||
| 3853 | list_del_init(&child_counter->child_list); | ||
| 3854 | mutex_unlock(&parent_counter->child_mutex); | ||
| 3855 | |||
| 3856 | /* | ||
| 3857 | * Release the parent counter, if this was the last | ||
| 3858 | * reference to it. | ||
| 3859 | */ | ||
| 3860 | fput(parent_counter->filp); | ||
| 3861 | } | ||
| 3862 | |||
| 3863 | static void | ||
| 3864 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
| 3865 | struct perf_counter_context *child_ctx) | ||
| 3866 | { | ||
| 3867 | struct perf_counter *parent_counter; | ||
| 3868 | |||
| 3869 | update_counter_times(child_counter); | ||
| 3870 | perf_counter_remove_from_context(child_counter); | ||
| 3871 | |||
| 3872 | parent_counter = child_counter->parent; | ||
| 3873 | /* | ||
| 3874 | * It can happen that parent exits first, and has counters | ||
| 3875 | * that are still around due to the child reference. These | ||
| 3876 | * counters need to be zapped - but otherwise linger. | ||
| 3877 | */ | ||
| 3878 | if (parent_counter) { | ||
| 3879 | sync_child_counter(child_counter, parent_counter); | ||
| 3880 | free_counter(child_counter); | ||
| 3881 | } | ||
| 3882 | } | ||
| 3883 | |||
| 3884 | /* | ||
| 3885 | * When a child task exits, feed back counter values to parent counters. | ||
| 3886 | */ | ||
| 3887 | void perf_counter_exit_task(struct task_struct *child) | ||
| 3888 | { | ||
| 3889 | struct perf_counter *child_counter, *tmp; | ||
| 3890 | struct perf_counter_context *child_ctx; | ||
| 3891 | unsigned long flags; | ||
| 3892 | |||
| 3893 | if (likely(!child->perf_counter_ctxp)) | ||
| 3894 | return; | ||
| 3895 | |||
| 3896 | local_irq_save(flags); | ||
| 3897 | /* | ||
| 3898 | * We can't reschedule here because interrupts are disabled, | ||
| 3899 | * and either child is current or it is a task that can't be | ||
| 3900 | * scheduled, so we are now safe from rescheduling changing | ||
| 3901 | * our context. | ||
| 3902 | */ | ||
| 3903 | child_ctx = child->perf_counter_ctxp; | ||
| 3904 | __perf_counter_task_sched_out(child_ctx); | ||
| 3905 | |||
| 3906 | /* | ||
| 3907 | * Take the context lock here so that if find_get_context is | ||
| 3908 | * reading child->perf_counter_ctxp, we wait until it has | ||
| 3909 | * incremented the context's refcount before we do put_ctx below. | ||
| 3910 | */ | ||
| 3911 | spin_lock(&child_ctx->lock); | ||
| 3912 | child->perf_counter_ctxp = NULL; | ||
| 3913 | if (child_ctx->parent_ctx) { | ||
| 3914 | /* | ||
| 3915 | * This context is a clone; unclone it so it can't get | ||
| 3916 | * swapped to another process while we're removing all | ||
| 3917 | * the counters from it. | ||
| 3918 | */ | ||
| 3919 | put_ctx(child_ctx->parent_ctx); | ||
| 3920 | child_ctx->parent_ctx = NULL; | ||
| 3921 | } | ||
| 3922 | spin_unlock(&child_ctx->lock); | ||
| 3923 | local_irq_restore(flags); | ||
| 3924 | |||
| 3925 | /* | ||
| 3926 | * We can recurse on the same lock type through: | ||
| 3927 | * | ||
| 3928 | * __perf_counter_exit_task() | ||
| 3929 | * sync_child_counter() | ||
| 3930 | * fput(parent_counter->filp) | ||
| 3931 | * perf_release() | ||
| 3932 | * mutex_lock(&ctx->mutex) | ||
| 3933 | * | ||
| 3934 | * But since its the parent context it won't be the same instance. | ||
| 3935 | */ | ||
| 3936 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 3937 | |||
| 3938 | again: | ||
| 3939 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
| 3940 | list_entry) | ||
| 3941 | __perf_counter_exit_task(child_counter, child_ctx); | ||
| 3942 | |||
| 3943 | /* | ||
| 3944 | * If the last counter was a group counter, it will have appended all | ||
| 3945 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 3946 | * will still point to the list head terminating the iteration. | ||
| 3947 | */ | ||
| 3948 | if (!list_empty(&child_ctx->counter_list)) | ||
| 3949 | goto again; | ||
| 3950 | |||
| 3951 | mutex_unlock(&child_ctx->mutex); | ||
| 3952 | |||
| 3953 | put_ctx(child_ctx); | ||
| 3954 | } | ||
| 3955 | |||
| 3956 | /* | ||
| 3957 | * free an unexposed, unused context as created by inheritance by | ||
| 3958 | * init_task below, used by fork() in case of fail. | ||
| 3959 | */ | ||
| 3960 | void perf_counter_free_task(struct task_struct *task) | ||
| 3961 | { | ||
| 3962 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 3963 | struct perf_counter *counter, *tmp; | ||
| 3964 | |||
| 3965 | if (!ctx) | ||
| 3966 | return; | ||
| 3967 | |||
| 3968 | mutex_lock(&ctx->mutex); | ||
| 3969 | again: | ||
| 3970 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
| 3971 | struct perf_counter *parent = counter->parent; | ||
| 3972 | |||
| 3973 | if (WARN_ON_ONCE(!parent)) | ||
| 3974 | continue; | ||
| 3975 | |||
| 3976 | mutex_lock(&parent->child_mutex); | ||
| 3977 | list_del_init(&counter->child_list); | ||
| 3978 | mutex_unlock(&parent->child_mutex); | ||
| 3979 | |||
| 3980 | fput(parent->filp); | ||
| 3981 | |||
| 3982 | list_del_counter(counter, ctx); | ||
| 3983 | free_counter(counter); | ||
| 3984 | } | ||
| 3985 | |||
| 3986 | if (!list_empty(&ctx->counter_list)) | ||
| 3987 | goto again; | ||
| 3988 | |||
| 3989 | mutex_unlock(&ctx->mutex); | ||
| 3990 | |||
| 3991 | put_ctx(ctx); | ||
| 3992 | } | ||
| 3993 | |||
| 3994 | /* | ||
| 3995 | * Initialize the perf_counter context in task_struct | ||
| 3996 | */ | ||
| 3997 | int perf_counter_init_task(struct task_struct *child) | ||
| 3998 | { | ||
| 3999 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
| 4000 | struct perf_counter_context *cloned_ctx; | ||
| 4001 | struct perf_counter *counter; | ||
| 4002 | struct task_struct *parent = current; | ||
| 4003 | int inherited_all = 1; | ||
| 4004 | int ret = 0; | ||
| 4005 | |||
| 4006 | child->perf_counter_ctxp = NULL; | ||
| 4007 | |||
| 4008 | mutex_init(&child->perf_counter_mutex); | ||
| 4009 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
| 4010 | |||
| 4011 | if (likely(!parent->perf_counter_ctxp)) | ||
| 4012 | return 0; | ||
| 4013 | |||
| 4014 | /* | ||
| 4015 | * This is executed from the parent task context, so inherit | ||
| 4016 | * counters that have been marked for cloning. | ||
| 4017 | * First allocate and initialize a context for the child. | ||
| 4018 | */ | ||
| 4019 | |||
| 4020 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 4021 | if (!child_ctx) | ||
| 4022 | return -ENOMEM; | ||
| 4023 | |||
| 4024 | __perf_counter_init_context(child_ctx, child); | ||
| 4025 | child->perf_counter_ctxp = child_ctx; | ||
| 4026 | get_task_struct(child); | ||
| 4027 | |||
| 4028 | /* | ||
| 4029 | * If the parent's context is a clone, pin it so it won't get | ||
| 4030 | * swapped under us. | ||
| 4031 | */ | ||
| 4032 | parent_ctx = perf_pin_task_context(parent); | ||
| 4033 | |||
| 4034 | /* | ||
| 4035 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4036 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4037 | * is if we exit, and since we're currently in the middle of | ||
| 4038 | * a fork we can't be exiting at the same time. | ||
| 4039 | */ | ||
| 4040 | |||
| 4041 | /* | ||
| 4042 | * Lock the parent list. No need to lock the child - not PID | ||
| 4043 | * hashed yet and not running, so nobody can access it. | ||
| 4044 | */ | ||
| 4045 | mutex_lock(&parent_ctx->mutex); | ||
| 4046 | |||
| 4047 | /* | ||
| 4048 | * We dont have to disable NMIs - we are only looking at | ||
| 4049 | * the list, not manipulating it: | ||
| 4050 | */ | ||
| 4051 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
| 4052 | if (counter != counter->group_leader) | ||
| 4053 | continue; | ||
| 4054 | |||
| 4055 | if (!counter->attr.inherit) { | ||
| 4056 | inherited_all = 0; | ||
| 4057 | continue; | ||
| 4058 | } | ||
| 4059 | |||
| 4060 | ret = inherit_group(counter, parent, parent_ctx, | ||
| 4061 | child, child_ctx); | ||
| 4062 | if (ret) { | ||
| 4063 | inherited_all = 0; | ||
| 4064 | break; | ||
| 4065 | } | ||
| 4066 | } | ||
| 4067 | |||
| 4068 | if (inherited_all) { | ||
| 4069 | /* | ||
| 4070 | * Mark the child context as a clone of the parent | ||
| 4071 | * context, or of whatever the parent is a clone of. | ||
| 4072 | * Note that if the parent is a clone, it could get | ||
| 4073 | * uncloned at any point, but that doesn't matter | ||
| 4074 | * because the list of counters and the generation | ||
| 4075 | * count can't have changed since we took the mutex. | ||
| 4076 | */ | ||
| 4077 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4078 | if (cloned_ctx) { | ||
| 4079 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4080 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4081 | } else { | ||
| 4082 | child_ctx->parent_ctx = parent_ctx; | ||
| 4083 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4084 | } | ||
| 4085 | get_ctx(child_ctx->parent_ctx); | ||
| 4086 | } | ||
| 4087 | |||
| 4088 | mutex_unlock(&parent_ctx->mutex); | ||
| 4089 | |||
| 4090 | perf_unpin_context(parent_ctx); | ||
| 4091 | |||
| 4092 | return ret; | ||
| 4093 | } | ||
| 4094 | |||
| 4095 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
| 4096 | { | ||
| 4097 | struct perf_cpu_context *cpuctx; | ||
| 4098 | |||
| 4099 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4100 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
| 4101 | |||
| 4102 | spin_lock(&perf_resource_lock); | ||
| 4103 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
| 4104 | spin_unlock(&perf_resource_lock); | ||
| 4105 | |||
| 4106 | hw_perf_counter_setup(cpu); | ||
| 4107 | } | ||
| 4108 | |||
| 4109 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4110 | static void __perf_counter_exit_cpu(void *info) | ||
| 4111 | { | ||
| 4112 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4113 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4114 | struct perf_counter *counter, *tmp; | ||
| 4115 | |||
| 4116 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
| 4117 | __perf_counter_remove_from_context(counter); | ||
| 4118 | } | ||
| 4119 | static void perf_counter_exit_cpu(int cpu) | ||
| 4120 | { | ||
| 4121 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4122 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4123 | |||
| 4124 | mutex_lock(&ctx->mutex); | ||
| 4125 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
| 4126 | mutex_unlock(&ctx->mutex); | ||
| 4127 | } | ||
| 4128 | #else | ||
| 4129 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
| 4130 | #endif | ||
| 4131 | |||
| 4132 | static int __cpuinit | ||
| 4133 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4134 | { | ||
| 4135 | unsigned int cpu = (long)hcpu; | ||
| 4136 | |||
| 4137 | switch (action) { | ||
| 4138 | |||
| 4139 | case CPU_UP_PREPARE: | ||
| 4140 | case CPU_UP_PREPARE_FROZEN: | ||
| 4141 | perf_counter_init_cpu(cpu); | ||
| 4142 | break; | ||
| 4143 | |||
| 4144 | case CPU_DOWN_PREPARE: | ||
| 4145 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4146 | perf_counter_exit_cpu(cpu); | ||
| 4147 | break; | ||
| 4148 | |||
| 4149 | default: | ||
| 4150 | break; | ||
| 4151 | } | ||
| 4152 | |||
| 4153 | return NOTIFY_OK; | ||
| 4154 | } | ||
| 4155 | |||
| 4156 | /* | ||
| 4157 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4158 | */ | ||
| 4159 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4160 | .notifier_call = perf_cpu_notify, | ||
| 4161 | .priority = 20, | ||
| 4162 | }; | ||
| 4163 | |||
| 4164 | void __init perf_counter_init(void) | ||
| 4165 | { | ||
| 4166 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4167 | (void *)(long)smp_processor_id()); | ||
| 4168 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4169 | } | ||
| 4170 | |||
| 4171 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4172 | { | ||
| 4173 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4174 | } | ||
| 4175 | |||
| 4176 | static ssize_t | ||
| 4177 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4178 | const char *buf, | ||
| 4179 | size_t count) | ||
| 4180 | { | ||
| 4181 | struct perf_cpu_context *cpuctx; | ||
| 4182 | unsigned long val; | ||
| 4183 | int err, cpu, mpt; | ||
| 4184 | |||
| 4185 | err = strict_strtoul(buf, 10, &val); | ||
| 4186 | if (err) | ||
| 4187 | return err; | ||
| 4188 | if (val > perf_max_counters) | ||
| 4189 | return -EINVAL; | ||
| 4190 | |||
| 4191 | spin_lock(&perf_resource_lock); | ||
| 4192 | perf_reserved_percpu = val; | ||
| 4193 | for_each_online_cpu(cpu) { | ||
| 4194 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4195 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4196 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
| 4197 | perf_max_counters - perf_reserved_percpu); | ||
| 4198 | cpuctx->max_pertask = mpt; | ||
| 4199 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4200 | } | ||
| 4201 | spin_unlock(&perf_resource_lock); | ||
| 4202 | |||
| 4203 | return count; | ||
| 4204 | } | ||
| 4205 | |||
| 4206 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4207 | { | ||
| 4208 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4209 | } | ||
| 4210 | |||
| 4211 | static ssize_t | ||
| 4212 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4213 | { | ||
| 4214 | unsigned long val; | ||
| 4215 | int err; | ||
| 4216 | |||
| 4217 | err = strict_strtoul(buf, 10, &val); | ||
| 4218 | if (err) | ||
| 4219 | return err; | ||
| 4220 | if (val > 1) | ||
| 4221 | return -EINVAL; | ||
| 4222 | |||
| 4223 | spin_lock(&perf_resource_lock); | ||
| 4224 | perf_overcommit = val; | ||
| 4225 | spin_unlock(&perf_resource_lock); | ||
| 4226 | |||
| 4227 | return count; | ||
| 4228 | } | ||
| 4229 | |||
| 4230 | static SYSDEV_CLASS_ATTR( | ||
| 4231 | reserve_percpu, | ||
| 4232 | 0644, | ||
| 4233 | perf_show_reserve_percpu, | ||
| 4234 | perf_set_reserve_percpu | ||
| 4235 | ); | ||
| 4236 | |||
| 4237 | static SYSDEV_CLASS_ATTR( | ||
| 4238 | overcommit, | ||
| 4239 | 0644, | ||
| 4240 | perf_show_overcommit, | ||
| 4241 | perf_set_overcommit | ||
| 4242 | ); | ||
| 4243 | |||
| 4244 | static struct attribute *perfclass_attrs[] = { | ||
| 4245 | &attr_reserve_percpu.attr, | ||
| 4246 | &attr_overcommit.attr, | ||
| 4247 | NULL | ||
| 4248 | }; | ||
| 4249 | |||
| 4250 | static struct attribute_group perfclass_attr_group = { | ||
| 4251 | .attrs = perfclass_attrs, | ||
| 4252 | .name = "perf_counters", | ||
| 4253 | }; | ||
| 4254 | |||
| 4255 | static int __init perf_counter_sysfs_init(void) | ||
| 4256 | { | ||
| 4257 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4258 | &perfclass_attr_group); | ||
| 4259 | } | ||
| 4260 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/sched.c b/kernel/sched.c index 14c447ae5d53..5b3f6ec1b0b3 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -39,6 +39,7 @@ | |||
| 39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
| 40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
| 41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
| 42 | #include <linux/perf_counter.h> | ||
| 42 | #include <linux/security.h> | 43 | #include <linux/security.h> |
| 43 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
| 44 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
| @@ -580,6 +581,7 @@ struct rq { | |||
| 580 | struct load_weight load; | 581 | struct load_weight load; |
| 581 | unsigned long nr_load_updates; | 582 | unsigned long nr_load_updates; |
| 582 | u64 nr_switches; | 583 | u64 nr_switches; |
| 584 | u64 nr_migrations_in; | ||
| 583 | 585 | ||
| 584 | struct cfs_rq cfs; | 586 | struct cfs_rq cfs; |
| 585 | struct rt_rq rt; | 587 | struct rt_rq rt; |
| @@ -692,7 +694,7 @@ static inline int cpu_of(struct rq *rq) | |||
| 692 | #define task_rq(p) cpu_rq(task_cpu(p)) | 694 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 693 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 695 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 694 | 696 | ||
| 695 | static inline void update_rq_clock(struct rq *rq) | 697 | inline void update_rq_clock(struct rq *rq) |
| 696 | { | 698 | { |
| 697 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 699 | rq->clock = sched_clock_cpu(cpu_of(rq)); |
| 698 | } | 700 | } |
| @@ -1969,12 +1971,16 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
| 1969 | p->se.sleep_start -= clock_offset; | 1971 | p->se.sleep_start -= clock_offset; |
| 1970 | if (p->se.block_start) | 1972 | if (p->se.block_start) |
| 1971 | p->se.block_start -= clock_offset; | 1973 | p->se.block_start -= clock_offset; |
| 1974 | #endif | ||
| 1972 | if (old_cpu != new_cpu) { | 1975 | if (old_cpu != new_cpu) { |
| 1973 | schedstat_inc(p, se.nr_migrations); | 1976 | p->se.nr_migrations++; |
| 1977 | new_rq->nr_migrations_in++; | ||
| 1978 | #ifdef CONFIG_SCHEDSTATS | ||
| 1974 | if (task_hot(p, old_rq->clock, NULL)) | 1979 | if (task_hot(p, old_rq->clock, NULL)) |
| 1975 | schedstat_inc(p, se.nr_forced2_migrations); | 1980 | schedstat_inc(p, se.nr_forced2_migrations); |
| 1976 | } | ||
| 1977 | #endif | 1981 | #endif |
| 1982 | perf_counter_task_migration(p, new_cpu); | ||
| 1983 | } | ||
| 1978 | p->se.vruntime -= old_cfsrq->min_vruntime - | 1984 | p->se.vruntime -= old_cfsrq->min_vruntime - |
| 1979 | new_cfsrq->min_vruntime; | 1985 | new_cfsrq->min_vruntime; |
| 1980 | 1986 | ||
| @@ -2369,6 +2375,27 @@ static int sched_balance_self(int cpu, int flag) | |||
| 2369 | 2375 | ||
| 2370 | #endif /* CONFIG_SMP */ | 2376 | #endif /* CONFIG_SMP */ |
| 2371 | 2377 | ||
| 2378 | /** | ||
| 2379 | * task_oncpu_function_call - call a function on the cpu on which a task runs | ||
| 2380 | * @p: the task to evaluate | ||
| 2381 | * @func: the function to be called | ||
| 2382 | * @info: the function call argument | ||
| 2383 | * | ||
| 2384 | * Calls the function @func when the task is currently running. This might | ||
| 2385 | * be on the current CPU, which just calls the function directly | ||
| 2386 | */ | ||
| 2387 | void task_oncpu_function_call(struct task_struct *p, | ||
| 2388 | void (*func) (void *info), void *info) | ||
| 2389 | { | ||
| 2390 | int cpu; | ||
| 2391 | |||
| 2392 | preempt_disable(); | ||
| 2393 | cpu = task_cpu(p); | ||
| 2394 | if (task_curr(p)) | ||
| 2395 | smp_call_function_single(cpu, func, info, 1); | ||
| 2396 | preempt_enable(); | ||
| 2397 | } | ||
| 2398 | |||
| 2372 | /*** | 2399 | /*** |
| 2373 | * try_to_wake_up - wake up a thread | 2400 | * try_to_wake_up - wake up a thread |
| 2374 | * @p: the to-be-woken-up thread | 2401 | * @p: the to-be-woken-up thread |
| @@ -2536,6 +2563,7 @@ static void __sched_fork(struct task_struct *p) | |||
| 2536 | p->se.exec_start = 0; | 2563 | p->se.exec_start = 0; |
| 2537 | p->se.sum_exec_runtime = 0; | 2564 | p->se.sum_exec_runtime = 0; |
| 2538 | p->se.prev_sum_exec_runtime = 0; | 2565 | p->se.prev_sum_exec_runtime = 0; |
| 2566 | p->se.nr_migrations = 0; | ||
| 2539 | p->se.last_wakeup = 0; | 2567 | p->se.last_wakeup = 0; |
| 2540 | p->se.avg_overlap = 0; | 2568 | p->se.avg_overlap = 0; |
| 2541 | p->se.start_runtime = 0; | 2569 | p->se.start_runtime = 0; |
| @@ -2766,6 +2794,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2766 | */ | 2794 | */ |
| 2767 | prev_state = prev->state; | 2795 | prev_state = prev->state; |
| 2768 | finish_arch_switch(prev); | 2796 | finish_arch_switch(prev); |
| 2797 | perf_counter_task_sched_in(current, cpu_of(rq)); | ||
| 2769 | finish_lock_switch(rq, prev); | 2798 | finish_lock_switch(rq, prev); |
| 2770 | #ifdef CONFIG_SMP | 2799 | #ifdef CONFIG_SMP |
| 2771 | if (post_schedule) | 2800 | if (post_schedule) |
| @@ -2981,6 +3010,15 @@ static void calc_load_account_active(struct rq *this_rq) | |||
| 2981 | } | 3010 | } |
| 2982 | 3011 | ||
| 2983 | /* | 3012 | /* |
| 3013 | * Externally visible per-cpu scheduler statistics: | ||
| 3014 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
| 3015 | */ | ||
| 3016 | u64 cpu_nr_migrations(int cpu) | ||
| 3017 | { | ||
| 3018 | return cpu_rq(cpu)->nr_migrations_in; | ||
| 3019 | } | ||
| 3020 | |||
| 3021 | /* | ||
| 2984 | * Update rq->cpu_load[] statistics. This function is usually called every | 3022 | * Update rq->cpu_load[] statistics. This function is usually called every |
| 2985 | * scheduler tick (TICK_NSEC). | 3023 | * scheduler tick (TICK_NSEC). |
| 2986 | */ | 3024 | */ |
| @@ -5078,6 +5116,8 @@ void scheduler_tick(void) | |||
| 5078 | curr->sched_class->task_tick(rq, curr, 0); | 5116 | curr->sched_class->task_tick(rq, curr, 0); |
| 5079 | spin_unlock(&rq->lock); | 5117 | spin_unlock(&rq->lock); |
| 5080 | 5118 | ||
| 5119 | perf_counter_task_tick(curr, cpu); | ||
| 5120 | |||
| 5081 | #ifdef CONFIG_SMP | 5121 | #ifdef CONFIG_SMP |
| 5082 | rq->idle_at_tick = idle_cpu(cpu); | 5122 | rq->idle_at_tick = idle_cpu(cpu); |
| 5083 | trigger_load_balance(rq, cpu); | 5123 | trigger_load_balance(rq, cpu); |
| @@ -5293,6 +5333,7 @@ need_resched_nonpreemptible: | |||
| 5293 | 5333 | ||
| 5294 | if (likely(prev != next)) { | 5334 | if (likely(prev != next)) { |
| 5295 | sched_info_switch(prev, next); | 5335 | sched_info_switch(prev, next); |
| 5336 | perf_counter_task_sched_out(prev, next, cpu); | ||
| 5296 | 5337 | ||
| 5297 | rq->nr_switches++; | 5338 | rq->nr_switches++; |
| 5298 | rq->curr = next; | 5339 | rq->curr = next; |
| @@ -7536,8 +7577,10 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7536 | return NOTIFY_OK; | 7577 | return NOTIFY_OK; |
| 7537 | } | 7578 | } |
| 7538 | 7579 | ||
| 7539 | /* Register at highest priority so that task migration (migrate_all_tasks) | 7580 | /* |
| 7540 | * happens before everything else. | 7581 | * Register at high priority so that task migration (migrate_all_tasks) |
| 7582 | * happens before everything else. This has to be lower priority than | ||
| 7583 | * the notifier in the perf_counter subsystem, though. | ||
| 7541 | */ | 7584 | */ |
| 7542 | static struct notifier_block __cpuinitdata migration_notifier = { | 7585 | static struct notifier_block __cpuinitdata migration_notifier = { |
| 7543 | .notifier_call = migration_call, | 7586 | .notifier_call = migration_call, |
| @@ -9218,7 +9261,7 @@ void __init sched_init(void) | |||
| 9218 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 9261 | * 1024) and two child groups A0 and A1 (of weight 1024 each), |
| 9219 | * then A0's share of the cpu resource is: | 9262 | * then A0's share of the cpu resource is: |
| 9220 | * | 9263 | * |
| 9221 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 9264 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
| 9222 | * | 9265 | * |
| 9223 | * We achieve this by letting init_task_group's tasks sit | 9266 | * We achieve this by letting init_task_group's tasks sit |
| 9224 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 9267 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
| @@ -9323,6 +9366,8 @@ void __init sched_init(void) | |||
| 9323 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | 9366 | alloc_bootmem_cpumask_var(&cpu_isolated_map); |
| 9324 | #endif /* SMP */ | 9367 | #endif /* SMP */ |
| 9325 | 9368 | ||
| 9369 | perf_counter_init(); | ||
| 9370 | |||
| 9326 | scheduler_running = 1; | 9371 | scheduler_running = 1; |
| 9327 | } | 9372 | } |
| 9328 | 9373 | ||
diff --git a/kernel/sys.c b/kernel/sys.c index e7998cf31498..438d99a38c87 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
| @@ -14,6 +14,7 @@ | |||
| 14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
| 15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
| 16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
| 17 | #include <linux/perf_counter.h> | ||
| 17 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
| 18 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
| 19 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
| @@ -1793,6 +1794,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1793 | case PR_SET_TSC: | 1794 | case PR_SET_TSC: |
| 1794 | error = SET_TSC_CTL(arg2); | 1795 | error = SET_TSC_CTL(arg2); |
| 1795 | break; | 1796 | break; |
| 1797 | case PR_TASK_PERF_COUNTERS_DISABLE: | ||
| 1798 | error = perf_counter_task_disable(); | ||
| 1799 | break; | ||
| 1800 | case PR_TASK_PERF_COUNTERS_ENABLE: | ||
| 1801 | error = perf_counter_task_enable(); | ||
| 1802 | break; | ||
| 1796 | case PR_GET_TIMERSLACK: | 1803 | case PR_GET_TIMERSLACK: |
| 1797 | error = current->timer_slack_ns; | 1804 | error = current->timer_slack_ns; |
| 1798 | break; | 1805 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 27dad2967387..68320f6b07b5 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
| @@ -175,3 +175,6 @@ cond_syscall(compat_sys_timerfd_settime); | |||
| 175 | cond_syscall(compat_sys_timerfd_gettime); | 175 | cond_syscall(compat_sys_timerfd_gettime); |
| 176 | cond_syscall(sys_eventfd); | 176 | cond_syscall(sys_eventfd); |
| 177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
| 178 | |||
| 179 | /* performance counters: */ | ||
| 180 | cond_syscall(sys_perf_counter_open); | ||
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 6a463716ecbf..a7e4eb0525b1 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
| @@ -49,6 +49,7 @@ | |||
| 49 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
| 50 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
| 51 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
| 52 | #include <linux/perf_counter.h> | ||
| 52 | 53 | ||
| 53 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
| 54 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
| @@ -920,6 +921,32 @@ static struct ctl_table kern_table[] = { | |||
| 920 | .child = slow_work_sysctls, | 921 | .child = slow_work_sysctls, |
| 921 | }, | 922 | }, |
| 922 | #endif | 923 | #endif |
| 924 | #ifdef CONFIG_PERF_COUNTERS | ||
| 925 | { | ||
| 926 | .ctl_name = CTL_UNNUMBERED, | ||
| 927 | .procname = "perf_counter_paranoid", | ||
| 928 | .data = &sysctl_perf_counter_paranoid, | ||
| 929 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | ||
| 930 | .mode = 0644, | ||
| 931 | .proc_handler = &proc_dointvec, | ||
| 932 | }, | ||
| 933 | { | ||
| 934 | .ctl_name = CTL_UNNUMBERED, | ||
| 935 | .procname = "perf_counter_mlock_kb", | ||
| 936 | .data = &sysctl_perf_counter_mlock, | ||
| 937 | .maxlen = sizeof(sysctl_perf_counter_mlock), | ||
| 938 | .mode = 0644, | ||
| 939 | .proc_handler = &proc_dointvec, | ||
| 940 | }, | ||
| 941 | { | ||
| 942 | .ctl_name = CTL_UNNUMBERED, | ||
| 943 | .procname = "perf_counter_max_sample_rate", | ||
| 944 | .data = &sysctl_perf_counter_sample_rate, | ||
| 945 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | ||
| 946 | .mode = 0644, | ||
| 947 | .proc_handler = &proc_dointvec, | ||
| 948 | }, | ||
| 949 | #endif | ||
| 923 | /* | 950 | /* |
| 924 | * NOTE: do not add new entries to this table unless you have read | 951 | * NOTE: do not add new entries to this table unless you have read |
| 925 | * Documentation/sysctl/ctl_unnumbered.txt | 952 | * Documentation/sysctl/ctl_unnumbered.txt |
diff --git a/kernel/timer.c b/kernel/timer.c index a26ed294f938..c01e568935ea 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -37,6 +37,7 @@ | |||
| 37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
| 38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
| 39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
| 40 | #include <linux/perf_counter.h> | ||
| 40 | 41 | ||
| 41 | #include <asm/uaccess.h> | 42 | #include <asm/uaccess.h> |
| 42 | #include <asm/unistd.h> | 43 | #include <asm/unistd.h> |
| @@ -1129,6 +1130,8 @@ static void run_timer_softirq(struct softirq_action *h) | |||
| 1129 | { | 1130 | { |
| 1130 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1131 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
| 1131 | 1132 | ||
| 1133 | perf_counter_do_pending(); | ||
| 1134 | |||
| 1132 | hrtimer_run_pending(); | 1135 | hrtimer_run_pending(); |
| 1133 | 1136 | ||
| 1134 | if (time_after_eq(jiffies, base->timer_jiffies)) | 1137 | if (time_after_eq(jiffies, base->timer_jiffies)) |
