diff options
Diffstat (limited to 'kernel')
141 files changed, 17716 insertions, 11278 deletions
diff --git a/kernel/Kconfig.locks b/kernel/Kconfig.locks new file mode 100644 index 000000000000..88c92fb44618 --- /dev/null +++ b/kernel/Kconfig.locks | |||
| @@ -0,0 +1,202 @@ | |||
| 1 | # | ||
| 2 | # The ARCH_INLINE foo is necessary because select ignores "depends on" | ||
| 3 | # | ||
| 4 | config ARCH_INLINE_SPIN_TRYLOCK | ||
| 5 | bool | ||
| 6 | |||
| 7 | config ARCH_INLINE_SPIN_TRYLOCK_BH | ||
| 8 | bool | ||
| 9 | |||
| 10 | config ARCH_INLINE_SPIN_LOCK | ||
| 11 | bool | ||
| 12 | |||
| 13 | config ARCH_INLINE_SPIN_LOCK_BH | ||
| 14 | bool | ||
| 15 | |||
| 16 | config ARCH_INLINE_SPIN_LOCK_IRQ | ||
| 17 | bool | ||
| 18 | |||
| 19 | config ARCH_INLINE_SPIN_LOCK_IRQSAVE | ||
| 20 | bool | ||
| 21 | |||
| 22 | config ARCH_INLINE_SPIN_UNLOCK | ||
| 23 | bool | ||
| 24 | |||
| 25 | config ARCH_INLINE_SPIN_UNLOCK_BH | ||
| 26 | bool | ||
| 27 | |||
| 28 | config ARCH_INLINE_SPIN_UNLOCK_IRQ | ||
| 29 | bool | ||
| 30 | |||
| 31 | config ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE | ||
| 32 | bool | ||
| 33 | |||
| 34 | |||
| 35 | config ARCH_INLINE_READ_TRYLOCK | ||
| 36 | bool | ||
| 37 | |||
| 38 | config ARCH_INLINE_READ_LOCK | ||
| 39 | bool | ||
| 40 | |||
| 41 | config ARCH_INLINE_READ_LOCK_BH | ||
| 42 | bool | ||
| 43 | |||
| 44 | config ARCH_INLINE_READ_LOCK_IRQ | ||
| 45 | bool | ||
| 46 | |||
| 47 | config ARCH_INLINE_READ_LOCK_IRQSAVE | ||
| 48 | bool | ||
| 49 | |||
| 50 | config ARCH_INLINE_READ_UNLOCK | ||
| 51 | bool | ||
| 52 | |||
| 53 | config ARCH_INLINE_READ_UNLOCK_BH | ||
| 54 | bool | ||
| 55 | |||
| 56 | config ARCH_INLINE_READ_UNLOCK_IRQ | ||
| 57 | bool | ||
| 58 | |||
| 59 | config ARCH_INLINE_READ_UNLOCK_IRQRESTORE | ||
| 60 | bool | ||
| 61 | |||
| 62 | |||
| 63 | config ARCH_INLINE_WRITE_TRYLOCK | ||
| 64 | bool | ||
| 65 | |||
| 66 | config ARCH_INLINE_WRITE_LOCK | ||
| 67 | bool | ||
| 68 | |||
| 69 | config ARCH_INLINE_WRITE_LOCK_BH | ||
| 70 | bool | ||
| 71 | |||
| 72 | config ARCH_INLINE_WRITE_LOCK_IRQ | ||
| 73 | bool | ||
| 74 | |||
| 75 | config ARCH_INLINE_WRITE_LOCK_IRQSAVE | ||
| 76 | bool | ||
| 77 | |||
| 78 | config ARCH_INLINE_WRITE_UNLOCK | ||
| 79 | bool | ||
| 80 | |||
| 81 | config ARCH_INLINE_WRITE_UNLOCK_BH | ||
| 82 | bool | ||
| 83 | |||
| 84 | config ARCH_INLINE_WRITE_UNLOCK_IRQ | ||
| 85 | bool | ||
| 86 | |||
| 87 | config ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE | ||
| 88 | bool | ||
| 89 | |||
| 90 | # | ||
| 91 | # lock_* functions are inlined when: | ||
| 92 | # - DEBUG_SPINLOCK=n and GENERIC_LOCKBREAK=n and ARCH_INLINE_*LOCK=y | ||
| 93 | # | ||
| 94 | # trylock_* functions are inlined when: | ||
| 95 | # - DEBUG_SPINLOCK=n and ARCH_INLINE_*LOCK=y | ||
| 96 | # | ||
| 97 | # unlock and unlock_irq functions are inlined when: | ||
| 98 | # - DEBUG_SPINLOCK=n and ARCH_INLINE_*LOCK=y | ||
| 99 | # or | ||
| 100 | # - DEBUG_SPINLOCK=n and PREEMPT=n | ||
| 101 | # | ||
| 102 | # unlock_bh and unlock_irqrestore functions are inlined when: | ||
| 103 | # - DEBUG_SPINLOCK=n and ARCH_INLINE_*LOCK=y | ||
| 104 | # | ||
| 105 | |||
| 106 | config INLINE_SPIN_TRYLOCK | ||
| 107 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_SPIN_TRYLOCK | ||
| 108 | |||
| 109 | config INLINE_SPIN_TRYLOCK_BH | ||
| 110 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_SPIN_TRYLOCK_BH | ||
| 111 | |||
| 112 | config INLINE_SPIN_LOCK | ||
| 113 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && ARCH_INLINE_SPIN_LOCK | ||
| 114 | |||
| 115 | config INLINE_SPIN_LOCK_BH | ||
| 116 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 117 | ARCH_INLINE_SPIN_LOCK_BH | ||
| 118 | |||
| 119 | config INLINE_SPIN_LOCK_IRQ | ||
| 120 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 121 | ARCH_INLINE_SPIN_LOCK_IRQ | ||
| 122 | |||
| 123 | config INLINE_SPIN_LOCK_IRQSAVE | ||
| 124 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 125 | ARCH_INLINE_SPIN_LOCK_IRQSAVE | ||
| 126 | |||
| 127 | config INLINE_SPIN_UNLOCK | ||
| 128 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_SPIN_UNLOCK) | ||
| 129 | |||
| 130 | config INLINE_SPIN_UNLOCK_BH | ||
| 131 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_SPIN_UNLOCK_BH | ||
| 132 | |||
| 133 | config INLINE_SPIN_UNLOCK_IRQ | ||
| 134 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_SPIN_UNLOCK_BH) | ||
| 135 | |||
| 136 | config INLINE_SPIN_UNLOCK_IRQRESTORE | ||
| 137 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE | ||
| 138 | |||
| 139 | |||
| 140 | config INLINE_READ_TRYLOCK | ||
| 141 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_READ_TRYLOCK | ||
| 142 | |||
| 143 | config INLINE_READ_LOCK | ||
| 144 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && ARCH_INLINE_READ_LOCK | ||
| 145 | |||
| 146 | config INLINE_READ_LOCK_BH | ||
| 147 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 148 | ARCH_INLINE_READ_LOCK_BH | ||
| 149 | |||
| 150 | config INLINE_READ_LOCK_IRQ | ||
| 151 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 152 | ARCH_INLINE_READ_LOCK_IRQ | ||
| 153 | |||
| 154 | config INLINE_READ_LOCK_IRQSAVE | ||
| 155 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 156 | ARCH_INLINE_READ_LOCK_IRQSAVE | ||
| 157 | |||
| 158 | config INLINE_READ_UNLOCK | ||
| 159 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_READ_UNLOCK) | ||
| 160 | |||
| 161 | config INLINE_READ_UNLOCK_BH | ||
| 162 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_READ_UNLOCK_BH | ||
| 163 | |||
| 164 | config INLINE_READ_UNLOCK_IRQ | ||
| 165 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_READ_UNLOCK_BH) | ||
| 166 | |||
| 167 | config INLINE_READ_UNLOCK_IRQRESTORE | ||
| 168 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_READ_UNLOCK_IRQRESTORE | ||
| 169 | |||
| 170 | |||
| 171 | config INLINE_WRITE_TRYLOCK | ||
| 172 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_WRITE_TRYLOCK | ||
| 173 | |||
| 174 | config INLINE_WRITE_LOCK | ||
| 175 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && ARCH_INLINE_WRITE_LOCK | ||
| 176 | |||
| 177 | config INLINE_WRITE_LOCK_BH | ||
| 178 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 179 | ARCH_INLINE_WRITE_LOCK_BH | ||
| 180 | |||
| 181 | config INLINE_WRITE_LOCK_IRQ | ||
| 182 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 183 | ARCH_INLINE_WRITE_LOCK_IRQ | ||
| 184 | |||
| 185 | config INLINE_WRITE_LOCK_IRQSAVE | ||
| 186 | def_bool !DEBUG_SPINLOCK && !GENERIC_LOCKBREAK && \ | ||
| 187 | ARCH_INLINE_WRITE_LOCK_IRQSAVE | ||
| 188 | |||
| 189 | config INLINE_WRITE_UNLOCK | ||
| 190 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_WRITE_UNLOCK) | ||
| 191 | |||
| 192 | config INLINE_WRITE_UNLOCK_BH | ||
| 193 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_WRITE_UNLOCK_BH | ||
| 194 | |||
| 195 | config INLINE_WRITE_UNLOCK_IRQ | ||
| 196 | def_bool !DEBUG_SPINLOCK && (!PREEMPT || ARCH_INLINE_WRITE_UNLOCK_BH) | ||
| 197 | |||
| 198 | config INLINE_WRITE_UNLOCK_IRQRESTORE | ||
| 199 | def_bool !DEBUG_SPINLOCK && ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE | ||
| 200 | |||
| 201 | config MUTEX_SPIN_ON_OWNER | ||
| 202 | def_bool SMP && !DEBUG_MUTEXES && !HAVE_DEFAULT_NO_SPIN_MUTEXES | ||
diff --git a/kernel/Makefile b/kernel/Makefile index b833bd5cc127..982c50e2ce53 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -21,6 +21,7 @@ CFLAGS_REMOVE_mutex-debug.o = -pg | |||
| 21 | CFLAGS_REMOVE_rtmutex-debug.o = -pg | 21 | CFLAGS_REMOVE_rtmutex-debug.o = -pg |
| 22 | CFLAGS_REMOVE_cgroup-debug.o = -pg | 22 | CFLAGS_REMOVE_cgroup-debug.o = -pg |
| 23 | CFLAGS_REMOVE_sched_clock.o = -pg | 23 | CFLAGS_REMOVE_sched_clock.o = -pg |
| 24 | CFLAGS_REMOVE_perf_event.o = -pg | ||
| 24 | endif | 25 | endif |
| 25 | 26 | ||
| 26 | obj-$(CONFIG_FREEZER) += freezer.o | 27 | obj-$(CONFIG_FREEZER) += freezer.o |
| @@ -58,7 +59,6 @@ obj-$(CONFIG_KEXEC) += kexec.o | |||
| 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o | 59 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o |
| 59 | obj-$(CONFIG_COMPAT) += compat.o | 60 | obj-$(CONFIG_COMPAT) += compat.o |
| 60 | obj-$(CONFIG_CGROUPS) += cgroup.o | 61 | obj-$(CONFIG_CGROUPS) += cgroup.o |
| 61 | obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o | ||
| 62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o | 62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o |
| 63 | obj-$(CONFIG_CPUSETS) += cpuset.o | 63 | obj-$(CONFIG_CPUSETS) += cpuset.o |
| 64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o | 64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o |
| @@ -83,21 +83,22 @@ obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o | |||
| 83 | obj-$(CONFIG_TREE_RCU) += rcutree.o | 83 | obj-$(CONFIG_TREE_RCU) += rcutree.o |
| 84 | obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o | 84 | obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o |
| 85 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o | 85 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o |
| 86 | obj-$(CONFIG_TINY_RCU) += rcutiny.o | ||
| 86 | obj-$(CONFIG_RELAY) += relay.o | 87 | obj-$(CONFIG_RELAY) += relay.o |
| 87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 88 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
| 88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 89 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
| 89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 90 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
| 90 | obj-$(CONFIG_MARKERS) += marker.o | ||
| 91 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 91 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
| 92 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 92 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
| 93 | obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o | ||
| 94 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
| 95 | obj-$(CONFIG_TRACING) += trace/ | 94 | obj-$(CONFIG_TRACING) += trace/ |
| 96 | obj-$(CONFIG_X86_DS) += trace/ | 95 | obj-$(CONFIG_X86_DS) += trace/ |
| 97 | obj-$(CONFIG_RING_BUFFER) += trace/ | 96 | obj-$(CONFIG_RING_BUFFER) += trace/ |
| 98 | obj-$(CONFIG_SMP) += sched_cpupri.o | 97 | obj-$(CONFIG_SMP) += sched_cpupri.o |
| 99 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
| 100 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 99 | obj-$(CONFIG_SLOW_WORK_DEBUG) += slow-work-debugfs.o |
| 100 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o | ||
| 101 | obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o | ||
| 101 | 102 | ||
| 102 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 103 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
| 103 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 104 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
| @@ -117,7 +118,7 @@ $(obj)/config_data.gz: .config FORCE | |||
| 117 | $(call if_changed,gzip) | 118 | $(call if_changed,gzip) |
| 118 | 119 | ||
| 119 | quiet_cmd_ikconfiggz = IKCFG $@ | 120 | quiet_cmd_ikconfiggz = IKCFG $@ |
| 120 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ | 121 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ |
| 121 | targets += config_data.h | 122 | targets += config_data.h |
| 122 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE | 123 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE |
| 123 | $(call if_changed,ikconfiggz) | 124 | $(call if_changed,ikconfiggz) |
diff --git a/kernel/audit.c b/kernel/audit.c index defc2e6f1e3b..5feed232be9d 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
| @@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
| 855 | break; | 855 | break; |
| 856 | } | 856 | } |
| 857 | case AUDIT_SIGNAL_INFO: | 857 | case AUDIT_SIGNAL_INFO: |
| 858 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 858 | len = 0; |
| 859 | if (err) | 859 | if (audit_sig_sid) { |
| 860 | return err; | 860 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
| 861 | if (err) | ||
| 862 | return err; | ||
| 863 | } | ||
| 861 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 864 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
| 862 | if (!sig_data) { | 865 | if (!sig_data) { |
| 863 | security_release_secctx(ctx, len); | 866 | if (audit_sig_sid) |
| 867 | security_release_secctx(ctx, len); | ||
| 864 | return -ENOMEM; | 868 | return -ENOMEM; |
| 865 | } | 869 | } |
| 866 | sig_data->uid = audit_sig_uid; | 870 | sig_data->uid = audit_sig_uid; |
| 867 | sig_data->pid = audit_sig_pid; | 871 | sig_data->pid = audit_sig_pid; |
| 868 | memcpy(sig_data->ctx, ctx, len); | 872 | if (audit_sig_sid) { |
| 869 | security_release_secctx(ctx, len); | 873 | memcpy(sig_data->ctx, ctx, len); |
| 874 | security_release_secctx(ctx, len); | ||
| 875 | } | ||
| 870 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 876 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
| 871 | 0, 0, sig_data, sizeof(*sig_data) + len); | 877 | 0, 0, sig_data, sizeof(*sig_data) + len); |
| 872 | kfree(sig_data); | 878 | kfree(sig_data); |
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c index 0e96dbc60ea9..cc7e87936cbc 100644 --- a/kernel/audit_watch.c +++ b/kernel/audit_watch.c | |||
| @@ -45,8 +45,8 @@ | |||
| 45 | 45 | ||
| 46 | struct audit_watch { | 46 | struct audit_watch { |
| 47 | atomic_t count; /* reference count */ | 47 | atomic_t count; /* reference count */ |
| 48 | char *path; /* insertion path */ | ||
| 49 | dev_t dev; /* associated superblock device */ | 48 | dev_t dev; /* associated superblock device */ |
| 49 | char *path; /* insertion path */ | ||
| 50 | unsigned long ino; /* associated inode number */ | 50 | unsigned long ino; /* associated inode number */ |
| 51 | struct audit_parent *parent; /* associated parent */ | 51 | struct audit_parent *parent; /* associated parent */ |
| 52 | struct list_head wlist; /* entry in parent->watches list */ | 52 | struct list_head wlist; /* entry in parent->watches list */ |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 68d3c6a0ecd6..267e484f0198 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
| @@ -168,12 +168,12 @@ struct audit_context { | |||
| 168 | int in_syscall; /* 1 if task is in a syscall */ | 168 | int in_syscall; /* 1 if task is in a syscall */ |
| 169 | enum audit_state state, current_state; | 169 | enum audit_state state, current_state; |
| 170 | unsigned int serial; /* serial number for record */ | 170 | unsigned int serial; /* serial number for record */ |
| 171 | struct timespec ctime; /* time of syscall entry */ | ||
| 172 | int major; /* syscall number */ | 171 | int major; /* syscall number */ |
| 172 | struct timespec ctime; /* time of syscall entry */ | ||
| 173 | unsigned long argv[4]; /* syscall arguments */ | 173 | unsigned long argv[4]; /* syscall arguments */ |
| 174 | int return_valid; /* return code is valid */ | ||
| 175 | long return_code;/* syscall return code */ | 174 | long return_code;/* syscall return code */ |
| 176 | u64 prio; | 175 | u64 prio; |
| 176 | int return_valid; /* return code is valid */ | ||
| 177 | int name_count; | 177 | int name_count; |
| 178 | struct audit_names names[AUDIT_NAMES]; | 178 | struct audit_names names[AUDIT_NAMES]; |
| 179 | char * filterkey; /* key for rule that triggered record */ | 179 | char * filterkey; /* key for rule that triggered record */ |
| @@ -198,8 +198,8 @@ struct audit_context { | |||
| 198 | char target_comm[TASK_COMM_LEN]; | 198 | char target_comm[TASK_COMM_LEN]; |
| 199 | 199 | ||
| 200 | struct audit_tree_refs *trees, *first_trees; | 200 | struct audit_tree_refs *trees, *first_trees; |
| 201 | int tree_count; | ||
| 202 | struct list_head killed_trees; | 201 | struct list_head killed_trees; |
| 202 | int tree_count; | ||
| 203 | 203 | ||
| 204 | int type; | 204 | int type; |
| 205 | union { | 205 | union { |
diff --git a/kernel/capability.c b/kernel/capability.c index 4e17041963f5..7f876e60521f 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
| @@ -29,7 +29,6 @@ EXPORT_SYMBOL(__cap_empty_set); | |||
| 29 | EXPORT_SYMBOL(__cap_full_set); | 29 | EXPORT_SYMBOL(__cap_full_set); |
| 30 | EXPORT_SYMBOL(__cap_init_eff_set); | 30 | EXPORT_SYMBOL(__cap_init_eff_set); |
| 31 | 31 | ||
| 32 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | ||
| 33 | int file_caps_enabled = 1; | 32 | int file_caps_enabled = 1; |
| 34 | 33 | ||
| 35 | static int __init file_caps_disable(char *str) | 34 | static int __init file_caps_disable(char *str) |
| @@ -38,7 +37,6 @@ static int __init file_caps_disable(char *str) | |||
| 38 | return 1; | 37 | return 1; |
| 39 | } | 38 | } |
| 40 | __setup("no_file_caps", file_caps_disable); | 39 | __setup("no_file_caps", file_caps_disable); |
| 41 | #endif | ||
| 42 | 40 | ||
| 43 | /* | 41 | /* |
| 44 | * More recent versions of libcap are available from: | 42 | * More recent versions of libcap are available from: |
| @@ -169,8 +167,8 @@ SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) | |||
| 169 | kernel_cap_t pE, pI, pP; | 167 | kernel_cap_t pE, pI, pP; |
| 170 | 168 | ||
| 171 | ret = cap_validate_magic(header, &tocopy); | 169 | ret = cap_validate_magic(header, &tocopy); |
| 172 | if (ret != 0) | 170 | if ((dataptr == NULL) || (ret != 0)) |
| 173 | return ret; | 171 | return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; |
| 174 | 172 | ||
| 175 | if (get_user(pid, &header->pid)) | 173 | if (get_user(pid, &header->pid)) |
| 176 | return -EFAULT; | 174 | return -EFAULT; |
| @@ -238,7 +236,7 @@ SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) | |||
| 238 | SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) | 236 | SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) |
| 239 | { | 237 | { |
| 240 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; | 238 | struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; |
| 241 | unsigned i, tocopy; | 239 | unsigned i, tocopy, copybytes; |
| 242 | kernel_cap_t inheritable, permitted, effective; | 240 | kernel_cap_t inheritable, permitted, effective; |
| 243 | struct cred *new; | 241 | struct cred *new; |
| 244 | int ret; | 242 | int ret; |
| @@ -255,8 +253,11 @@ SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) | |||
| 255 | if (pid != 0 && pid != task_pid_vnr(current)) | 253 | if (pid != 0 && pid != task_pid_vnr(current)) |
| 256 | return -EPERM; | 254 | return -EPERM; |
| 257 | 255 | ||
| 258 | if (copy_from_user(&kdata, data, | 256 | copybytes = tocopy * sizeof(struct __user_cap_data_struct); |
| 259 | tocopy * sizeof(struct __user_cap_data_struct))) | 257 | if (copybytes > sizeof(kdata)) |
| 258 | return -EFAULT; | ||
| 259 | |||
| 260 | if (copy_from_user(&kdata, data, copybytes)) | ||
| 260 | return -EFAULT; | 261 | return -EFAULT; |
| 261 | 262 | ||
| 262 | for (i = 0; i < tocopy; i++) { | 263 | for (i = 0; i < tocopy; i++) { |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index c7ece8f027f2..0249f4be9b5c 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
| @@ -23,6 +23,7 @@ | |||
| 23 | */ | 23 | */ |
| 24 | 24 | ||
| 25 | #include <linux/cgroup.h> | 25 | #include <linux/cgroup.h> |
| 26 | #include <linux/ctype.h> | ||
| 26 | #include <linux/errno.h> | 27 | #include <linux/errno.h> |
| 27 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
| 28 | #include <linux/kernel.h> | 29 | #include <linux/kernel.h> |
| @@ -48,6 +49,8 @@ | |||
| 48 | #include <linux/namei.h> | 49 | #include <linux/namei.h> |
| 49 | #include <linux/smp_lock.h> | 50 | #include <linux/smp_lock.h> |
| 50 | #include <linux/pid_namespace.h> | 51 | #include <linux/pid_namespace.h> |
| 52 | #include <linux/idr.h> | ||
| 53 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | ||
| 51 | 54 | ||
| 52 | #include <asm/atomic.h> | 55 | #include <asm/atomic.h> |
| 53 | 56 | ||
| @@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = { | |||
| 60 | #include <linux/cgroup_subsys.h> | 63 | #include <linux/cgroup_subsys.h> |
| 61 | }; | 64 | }; |
| 62 | 65 | ||
| 66 | #define MAX_CGROUP_ROOT_NAMELEN 64 | ||
| 67 | |||
| 63 | /* | 68 | /* |
| 64 | * A cgroupfs_root represents the root of a cgroup hierarchy, | 69 | * A cgroupfs_root represents the root of a cgroup hierarchy, |
| 65 | * and may be associated with a superblock to form an active | 70 | * and may be associated with a superblock to form an active |
| @@ -74,6 +79,9 @@ struct cgroupfs_root { | |||
| 74 | */ | 79 | */ |
| 75 | unsigned long subsys_bits; | 80 | unsigned long subsys_bits; |
| 76 | 81 | ||
| 82 | /* Unique id for this hierarchy. */ | ||
| 83 | int hierarchy_id; | ||
| 84 | |||
| 77 | /* The bitmask of subsystems currently attached to this hierarchy */ | 85 | /* The bitmask of subsystems currently attached to this hierarchy */ |
| 78 | unsigned long actual_subsys_bits; | 86 | unsigned long actual_subsys_bits; |
| 79 | 87 | ||
| @@ -94,6 +102,9 @@ struct cgroupfs_root { | |||
| 94 | 102 | ||
| 95 | /* The path to use for release notifications. */ | 103 | /* The path to use for release notifications. */ |
| 96 | char release_agent_path[PATH_MAX]; | 104 | char release_agent_path[PATH_MAX]; |
| 105 | |||
| 106 | /* The name for this hierarchy - may be empty */ | ||
| 107 | char name[MAX_CGROUP_ROOT_NAMELEN]; | ||
| 97 | }; | 108 | }; |
| 98 | 109 | ||
| 99 | /* | 110 | /* |
| @@ -141,6 +152,10 @@ struct css_id { | |||
| 141 | static LIST_HEAD(roots); | 152 | static LIST_HEAD(roots); |
| 142 | static int root_count; | 153 | static int root_count; |
| 143 | 154 | ||
| 155 | static DEFINE_IDA(hierarchy_ida); | ||
| 156 | static int next_hierarchy_id; | ||
| 157 | static DEFINE_SPINLOCK(hierarchy_id_lock); | ||
| 158 | |||
| 144 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 159 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
| 145 | #define dummytop (&rootnode.top_cgroup) | 160 | #define dummytop (&rootnode.top_cgroup) |
| 146 | 161 | ||
| @@ -201,6 +216,7 @@ struct cg_cgroup_link { | |||
| 201 | * cgroup, anchored on cgroup->css_sets | 216 | * cgroup, anchored on cgroup->css_sets |
| 202 | */ | 217 | */ |
| 203 | struct list_head cgrp_link_list; | 218 | struct list_head cgrp_link_list; |
| 219 | struct cgroup *cgrp; | ||
| 204 | /* | 220 | /* |
| 205 | * List running through cg_cgroup_links pointing at a | 221 | * List running through cg_cgroup_links pointing at a |
| 206 | * single css_set object, anchored on css_set->cg_links | 222 | * single css_set object, anchored on css_set->cg_links |
| @@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | |||
| 227 | static DEFINE_RWLOCK(css_set_lock); | 243 | static DEFINE_RWLOCK(css_set_lock); |
| 228 | static int css_set_count; | 244 | static int css_set_count; |
| 229 | 245 | ||
| 230 | /* hash table for cgroup groups. This improves the performance to | 246 | /* |
| 231 | * find an existing css_set */ | 247 | * hash table for cgroup groups. This improves the performance to find |
| 248 | * an existing css_set. This hash doesn't (currently) take into | ||
| 249 | * account cgroups in empty hierarchies. | ||
| 250 | */ | ||
| 232 | #define CSS_SET_HASH_BITS 7 | 251 | #define CSS_SET_HASH_BITS 7 |
| 233 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | 252 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
| 234 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 253 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
| @@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |||
| 248 | return &css_set_table[index]; | 267 | return &css_set_table[index]; |
| 249 | } | 268 | } |
| 250 | 269 | ||
| 270 | static void free_css_set_rcu(struct rcu_head *obj) | ||
| 271 | { | ||
| 272 | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | ||
| 273 | kfree(cg); | ||
| 274 | } | ||
| 275 | |||
| 251 | /* We don't maintain the lists running through each css_set to its | 276 | /* We don't maintain the lists running through each css_set to its |
| 252 | * task until after the first call to cgroup_iter_start(). This | 277 | * task until after the first call to cgroup_iter_start(). This |
| 253 | * reduces the fork()/exit() overhead for people who have cgroups | 278 | * reduces the fork()/exit() overhead for people who have cgroups |
| 254 | * compiled into their kernel but not actually in use */ | 279 | * compiled into their kernel but not actually in use */ |
| 255 | static int use_task_css_set_links __read_mostly; | 280 | static int use_task_css_set_links __read_mostly; |
| 256 | 281 | ||
| 257 | /* When we create or destroy a css_set, the operation simply | 282 | static void __put_css_set(struct css_set *cg, int taskexit) |
| 258 | * takes/releases a reference count on all the cgroups referenced | ||
| 259 | * by subsystems in this css_set. This can end up multiple-counting | ||
| 260 | * some cgroups, but that's OK - the ref-count is just a | ||
| 261 | * busy/not-busy indicator; ensuring that we only count each cgroup | ||
| 262 | * once would require taking a global lock to ensure that no | ||
| 263 | * subsystems moved between hierarchies while we were doing so. | ||
| 264 | * | ||
| 265 | * Possible TODO: decide at boot time based on the number of | ||
| 266 | * registered subsystems and the number of CPUs or NUMA nodes whether | ||
| 267 | * it's better for performance to ref-count every subsystem, or to | ||
| 268 | * take a global lock and only add one ref count to each hierarchy. | ||
| 269 | */ | ||
| 270 | |||
| 271 | /* | ||
| 272 | * unlink a css_set from the list and free it | ||
| 273 | */ | ||
| 274 | static void unlink_css_set(struct css_set *cg) | ||
| 275 | { | 283 | { |
| 276 | struct cg_cgroup_link *link; | 284 | struct cg_cgroup_link *link; |
| 277 | struct cg_cgroup_link *saved_link; | 285 | struct cg_cgroup_link *saved_link; |
| 278 | |||
| 279 | hlist_del(&cg->hlist); | ||
| 280 | css_set_count--; | ||
| 281 | |||
| 282 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
| 283 | cg_link_list) { | ||
| 284 | list_del(&link->cg_link_list); | ||
| 285 | list_del(&link->cgrp_link_list); | ||
| 286 | kfree(link); | ||
| 287 | } | ||
| 288 | } | ||
| 289 | |||
| 290 | static void __put_css_set(struct css_set *cg, int taskexit) | ||
| 291 | { | ||
| 292 | int i; | ||
| 293 | /* | 286 | /* |
| 294 | * Ensure that the refcount doesn't hit zero while any readers | 287 | * Ensure that the refcount doesn't hit zero while any readers |
| 295 | * can see it. Similar to atomic_dec_and_lock(), but for an | 288 | * can see it. Similar to atomic_dec_and_lock(), but for an |
| @@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit) | |||
| 302 | write_unlock(&css_set_lock); | 295 | write_unlock(&css_set_lock); |
| 303 | return; | 296 | return; |
| 304 | } | 297 | } |
| 305 | unlink_css_set(cg); | ||
| 306 | write_unlock(&css_set_lock); | ||
| 307 | 298 | ||
| 308 | rcu_read_lock(); | 299 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
| 309 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 300 | hlist_del(&cg->hlist); |
| 310 | struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); | 301 | css_set_count--; |
| 302 | |||
| 303 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
| 304 | cg_link_list) { | ||
| 305 | struct cgroup *cgrp = link->cgrp; | ||
| 306 | list_del(&link->cg_link_list); | ||
| 307 | list_del(&link->cgrp_link_list); | ||
| 311 | if (atomic_dec_and_test(&cgrp->count) && | 308 | if (atomic_dec_and_test(&cgrp->count) && |
| 312 | notify_on_release(cgrp)) { | 309 | notify_on_release(cgrp)) { |
| 313 | if (taskexit) | 310 | if (taskexit) |
| 314 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 311 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| 315 | check_for_release(cgrp); | 312 | check_for_release(cgrp); |
| 316 | } | 313 | } |
| 314 | |||
| 315 | kfree(link); | ||
| 317 | } | 316 | } |
| 318 | rcu_read_unlock(); | 317 | |
| 319 | kfree(cg); | 318 | write_unlock(&css_set_lock); |
| 319 | call_rcu(&cg->rcu_head, free_css_set_rcu); | ||
| 320 | } | 320 | } |
| 321 | 321 | ||
| 322 | /* | 322 | /* |
| @@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg) | |||
| 338 | } | 338 | } |
| 339 | 339 | ||
| 340 | /* | 340 | /* |
| 341 | * compare_css_sets - helper function for find_existing_css_set(). | ||
| 342 | * @cg: candidate css_set being tested | ||
| 343 | * @old_cg: existing css_set for a task | ||
| 344 | * @new_cgrp: cgroup that's being entered by the task | ||
| 345 | * @template: desired set of css pointers in css_set (pre-calculated) | ||
| 346 | * | ||
| 347 | * Returns true if "cg" matches "old_cg" except for the hierarchy | ||
| 348 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | ||
| 349 | */ | ||
| 350 | static bool compare_css_sets(struct css_set *cg, | ||
| 351 | struct css_set *old_cg, | ||
| 352 | struct cgroup *new_cgrp, | ||
| 353 | struct cgroup_subsys_state *template[]) | ||
| 354 | { | ||
| 355 | struct list_head *l1, *l2; | ||
| 356 | |||
| 357 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | ||
| 358 | /* Not all subsystems matched */ | ||
| 359 | return false; | ||
| 360 | } | ||
| 361 | |||
| 362 | /* | ||
| 363 | * Compare cgroup pointers in order to distinguish between | ||
| 364 | * different cgroups in heirarchies with no subsystems. We | ||
| 365 | * could get by with just this check alone (and skip the | ||
| 366 | * memcmp above) but on most setups the memcmp check will | ||
| 367 | * avoid the need for this more expensive check on almost all | ||
| 368 | * candidates. | ||
| 369 | */ | ||
| 370 | |||
| 371 | l1 = &cg->cg_links; | ||
| 372 | l2 = &old_cg->cg_links; | ||
| 373 | while (1) { | ||
| 374 | struct cg_cgroup_link *cgl1, *cgl2; | ||
| 375 | struct cgroup *cg1, *cg2; | ||
| 376 | |||
| 377 | l1 = l1->next; | ||
| 378 | l2 = l2->next; | ||
| 379 | /* See if we reached the end - both lists are equal length. */ | ||
| 380 | if (l1 == &cg->cg_links) { | ||
| 381 | BUG_ON(l2 != &old_cg->cg_links); | ||
| 382 | break; | ||
| 383 | } else { | ||
| 384 | BUG_ON(l2 == &old_cg->cg_links); | ||
| 385 | } | ||
| 386 | /* Locate the cgroups associated with these links. */ | ||
| 387 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | ||
| 388 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | ||
| 389 | cg1 = cgl1->cgrp; | ||
| 390 | cg2 = cgl2->cgrp; | ||
| 391 | /* Hierarchies should be linked in the same order. */ | ||
| 392 | BUG_ON(cg1->root != cg2->root); | ||
| 393 | |||
| 394 | /* | ||
| 395 | * If this hierarchy is the hierarchy of the cgroup | ||
| 396 | * that's changing, then we need to check that this | ||
| 397 | * css_set points to the new cgroup; if it's any other | ||
| 398 | * hierarchy, then this css_set should point to the | ||
| 399 | * same cgroup as the old css_set. | ||
| 400 | */ | ||
| 401 | if (cg1->root == new_cgrp->root) { | ||
| 402 | if (cg1 != new_cgrp) | ||
| 403 | return false; | ||
| 404 | } else { | ||
| 405 | if (cg1 != cg2) | ||
| 406 | return false; | ||
| 407 | } | ||
| 408 | } | ||
| 409 | return true; | ||
| 410 | } | ||
| 411 | |||
| 412 | /* | ||
| 341 | * find_existing_css_set() is a helper for | 413 | * find_existing_css_set() is a helper for |
| 342 | * find_css_set(), and checks to see whether an existing | 414 | * find_css_set(), and checks to see whether an existing |
| 343 | * css_set is suitable. | 415 | * css_set is suitable. |
| @@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set( | |||
| 378 | 450 | ||
| 379 | hhead = css_set_hash(template); | 451 | hhead = css_set_hash(template); |
| 380 | hlist_for_each_entry(cg, node, hhead, hlist) { | 452 | hlist_for_each_entry(cg, node, hhead, hlist) { |
| 381 | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 453 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
| 382 | /* All subsystems matched */ | 454 | continue; |
| 383 | return cg; | 455 | |
| 384 | } | 456 | /* This css_set matches what we need */ |
| 457 | return cg; | ||
| 385 | } | 458 | } |
| 386 | 459 | ||
| 387 | /* No existing cgroup group matched */ | 460 | /* No existing cgroup group matched */ |
| @@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links, | |||
| 435 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 508 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
| 436 | cgrp_link_list); | 509 | cgrp_link_list); |
| 437 | link->cg = cg; | 510 | link->cg = cg; |
| 511 | link->cgrp = cgrp; | ||
| 512 | atomic_inc(&cgrp->count); | ||
| 438 | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 513 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
| 439 | list_add(&link->cg_link_list, &cg->cg_links); | 514 | /* |
| 515 | * Always add links to the tail of the list so that the list | ||
| 516 | * is sorted by order of hierarchy creation | ||
| 517 | */ | ||
| 518 | list_add_tail(&link->cg_link_list, &cg->cg_links); | ||
| 440 | } | 519 | } |
| 441 | 520 | ||
| 442 | /* | 521 | /* |
| @@ -451,11 +530,11 @@ static struct css_set *find_css_set( | |||
| 451 | { | 530 | { |
| 452 | struct css_set *res; | 531 | struct css_set *res; |
| 453 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 532 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
| 454 | int i; | ||
| 455 | 533 | ||
| 456 | struct list_head tmp_cg_links; | 534 | struct list_head tmp_cg_links; |
| 457 | 535 | ||
| 458 | struct hlist_head *hhead; | 536 | struct hlist_head *hhead; |
| 537 | struct cg_cgroup_link *link; | ||
| 459 | 538 | ||
| 460 | /* First see if we already have a cgroup group that matches | 539 | /* First see if we already have a cgroup group that matches |
| 461 | * the desired set */ | 540 | * the desired set */ |
| @@ -489,20 +568,12 @@ static struct css_set *find_css_set( | |||
| 489 | 568 | ||
| 490 | write_lock(&css_set_lock); | 569 | write_lock(&css_set_lock); |
| 491 | /* Add reference counts and links from the new css_set. */ | 570 | /* Add reference counts and links from the new css_set. */ |
| 492 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 571 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
| 493 | struct cgroup *cgrp = res->subsys[i]->cgroup; | 572 | struct cgroup *c = link->cgrp; |
| 494 | struct cgroup_subsys *ss = subsys[i]; | 573 | if (c->root == cgrp->root) |
| 495 | atomic_inc(&cgrp->count); | 574 | c = cgrp; |
| 496 | /* | 575 | link_css_set(&tmp_cg_links, res, c); |
| 497 | * We want to add a link once per cgroup, so we | ||
| 498 | * only do it for the first subsystem in each | ||
| 499 | * hierarchy | ||
| 500 | */ | ||
| 501 | if (ss->root->subsys_list.next == &ss->sibling) | ||
| 502 | link_css_set(&tmp_cg_links, res, cgrp); | ||
| 503 | } | 576 | } |
| 504 | if (list_empty(&rootnode.subsys_list)) | ||
| 505 | link_css_set(&tmp_cg_links, res, dummytop); | ||
| 506 | 577 | ||
| 507 | BUG_ON(!list_empty(&tmp_cg_links)); | 578 | BUG_ON(!list_empty(&tmp_cg_links)); |
| 508 | 579 | ||
| @@ -518,6 +589,41 @@ static struct css_set *find_css_set( | |||
| 518 | } | 589 | } |
| 519 | 590 | ||
| 520 | /* | 591 | /* |
| 592 | * Return the cgroup for "task" from the given hierarchy. Must be | ||
| 593 | * called with cgroup_mutex held. | ||
| 594 | */ | ||
| 595 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | ||
| 596 | struct cgroupfs_root *root) | ||
| 597 | { | ||
| 598 | struct css_set *css; | ||
| 599 | struct cgroup *res = NULL; | ||
| 600 | |||
| 601 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | ||
| 602 | read_lock(&css_set_lock); | ||
| 603 | /* | ||
| 604 | * No need to lock the task - since we hold cgroup_mutex the | ||
| 605 | * task can't change groups, so the only thing that can happen | ||
| 606 | * is that it exits and its css is set back to init_css_set. | ||
| 607 | */ | ||
| 608 | css = task->cgroups; | ||
| 609 | if (css == &init_css_set) { | ||
| 610 | res = &root->top_cgroup; | ||
| 611 | } else { | ||
| 612 | struct cg_cgroup_link *link; | ||
| 613 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | ||
| 614 | struct cgroup *c = link->cgrp; | ||
| 615 | if (c->root == root) { | ||
| 616 | res = c; | ||
| 617 | break; | ||
| 618 | } | ||
| 619 | } | ||
| 620 | } | ||
| 621 | read_unlock(&css_set_lock); | ||
| 622 | BUG_ON(!res); | ||
| 623 | return res; | ||
| 624 | } | ||
| 625 | |||
| 626 | /* | ||
| 521 | * There is one global cgroup mutex. We also require taking | 627 | * There is one global cgroup mutex. We also require taking |
| 522 | * task_lock() when dereferencing a task's cgroup subsys pointers. | 628 | * task_lock() when dereferencing a task's cgroup subsys pointers. |
| 523 | * See "The task_lock() exception", at the end of this comment. | 629 | * See "The task_lock() exception", at the end of this comment. |
| @@ -596,8 +702,8 @@ void cgroup_unlock(void) | |||
| 596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 702 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
| 597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 703 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
| 598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 704 | static int cgroup_populate_dir(struct cgroup *cgrp); |
| 599 | static struct inode_operations cgroup_dir_inode_operations; | 705 | static const struct inode_operations cgroup_dir_inode_operations; |
| 600 | static struct file_operations proc_cgroupstats_operations; | 706 | static const struct file_operations proc_cgroupstats_operations; |
| 601 | 707 | ||
| 602 | static struct backing_dev_info cgroup_backing_dev_info = { | 708 | static struct backing_dev_info cgroup_backing_dev_info = { |
| 603 | .name = "cgroup", | 709 | .name = "cgroup", |
| @@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode) | |||
| 677 | */ | 783 | */ |
| 678 | deactivate_super(cgrp->root->sb); | 784 | deactivate_super(cgrp->root->sb); |
| 679 | 785 | ||
| 786 | /* | ||
| 787 | * if we're getting rid of the cgroup, refcount should ensure | ||
| 788 | * that there are no pidlists left. | ||
| 789 | */ | ||
| 790 | BUG_ON(!list_empty(&cgrp->pidlists)); | ||
| 791 | |||
| 680 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); | 792 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
| 681 | } | 793 | } |
| 682 | iput(inode); | 794 | iput(inode); |
| @@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
| 841 | seq_puts(seq, ",noprefix"); | 953 | seq_puts(seq, ",noprefix"); |
| 842 | if (strlen(root->release_agent_path)) | 954 | if (strlen(root->release_agent_path)) |
| 843 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 955 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
| 956 | if (strlen(root->name)) | ||
| 957 | seq_printf(seq, ",name=%s", root->name); | ||
| 844 | mutex_unlock(&cgroup_mutex); | 958 | mutex_unlock(&cgroup_mutex); |
| 845 | return 0; | 959 | return 0; |
| 846 | } | 960 | } |
| @@ -849,6 +963,12 @@ struct cgroup_sb_opts { | |||
| 849 | unsigned long subsys_bits; | 963 | unsigned long subsys_bits; |
| 850 | unsigned long flags; | 964 | unsigned long flags; |
| 851 | char *release_agent; | 965 | char *release_agent; |
| 966 | char *name; | ||
| 967 | /* User explicitly requested empty subsystem */ | ||
| 968 | bool none; | ||
| 969 | |||
| 970 | struct cgroupfs_root *new_root; | ||
| 971 | |||
| 852 | }; | 972 | }; |
| 853 | 973 | ||
| 854 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 974 | /* Convert a hierarchy specifier into a bitmask of subsystems and |
| @@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data, | |||
| 863 | mask = ~(1UL << cpuset_subsys_id); | 983 | mask = ~(1UL << cpuset_subsys_id); |
| 864 | #endif | 984 | #endif |
| 865 | 985 | ||
| 866 | opts->subsys_bits = 0; | 986 | memset(opts, 0, sizeof(*opts)); |
| 867 | opts->flags = 0; | ||
| 868 | opts->release_agent = NULL; | ||
| 869 | 987 | ||
| 870 | while ((token = strsep(&o, ",")) != NULL) { | 988 | while ((token = strsep(&o, ",")) != NULL) { |
| 871 | if (!*token) | 989 | if (!*token) |
| @@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data, | |||
| 879 | if (!ss->disabled) | 997 | if (!ss->disabled) |
| 880 | opts->subsys_bits |= 1ul << i; | 998 | opts->subsys_bits |= 1ul << i; |
| 881 | } | 999 | } |
| 1000 | } else if (!strcmp(token, "none")) { | ||
| 1001 | /* Explicitly have no subsystems */ | ||
| 1002 | opts->none = true; | ||
| 882 | } else if (!strcmp(token, "noprefix")) { | 1003 | } else if (!strcmp(token, "noprefix")) { |
| 883 | set_bit(ROOT_NOPREFIX, &opts->flags); | 1004 | set_bit(ROOT_NOPREFIX, &opts->flags); |
| 884 | } else if (!strncmp(token, "release_agent=", 14)) { | 1005 | } else if (!strncmp(token, "release_agent=", 14)) { |
| 885 | /* Specifying two release agents is forbidden */ | 1006 | /* Specifying two release agents is forbidden */ |
| 886 | if (opts->release_agent) | 1007 | if (opts->release_agent) |
| 887 | return -EINVAL; | 1008 | return -EINVAL; |
| 888 | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 1009 | opts->release_agent = |
| 1010 | kstrndup(token + 14, PATH_MAX, GFP_KERNEL); | ||
| 889 | if (!opts->release_agent) | 1011 | if (!opts->release_agent) |
| 890 | return -ENOMEM; | 1012 | return -ENOMEM; |
| 891 | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 1013 | } else if (!strncmp(token, "name=", 5)) { |
| 892 | opts->release_agent[PATH_MAX - 1] = 0; | 1014 | int i; |
| 1015 | const char *name = token + 5; | ||
| 1016 | /* Can't specify an empty name */ | ||
| 1017 | if (!strlen(name)) | ||
| 1018 | return -EINVAL; | ||
| 1019 | /* Must match [\w.-]+ */ | ||
| 1020 | for (i = 0; i < strlen(name); i++) { | ||
| 1021 | char c = name[i]; | ||
| 1022 | if (isalnum(c)) | ||
| 1023 | continue; | ||
| 1024 | if ((c == '.') || (c == '-') || (c == '_')) | ||
| 1025 | continue; | ||
| 1026 | return -EINVAL; | ||
| 1027 | } | ||
| 1028 | /* Specifying two names is forbidden */ | ||
| 1029 | if (opts->name) | ||
| 1030 | return -EINVAL; | ||
| 1031 | opts->name = kstrndup(name, | ||
| 1032 | MAX_CGROUP_ROOT_NAMELEN, | ||
| 1033 | GFP_KERNEL); | ||
| 1034 | if (!opts->name) | ||
| 1035 | return -ENOMEM; | ||
| 893 | } else { | 1036 | } else { |
| 894 | struct cgroup_subsys *ss; | 1037 | struct cgroup_subsys *ss; |
| 895 | int i; | 1038 | int i; |
| @@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data, | |||
| 906 | } | 1049 | } |
| 907 | } | 1050 | } |
| 908 | 1051 | ||
| 1052 | /* Consistency checks */ | ||
| 1053 | |||
| 909 | /* | 1054 | /* |
| 910 | * Option noprefix was introduced just for backward compatibility | 1055 | * Option noprefix was introduced just for backward compatibility |
| 911 | * with the old cpuset, so we allow noprefix only if mounting just | 1056 | * with the old cpuset, so we allow noprefix only if mounting just |
| @@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data, | |||
| 915 | (opts->subsys_bits & mask)) | 1060 | (opts->subsys_bits & mask)) |
| 916 | return -EINVAL; | 1061 | return -EINVAL; |
| 917 | 1062 | ||
| 918 | /* We can't have an empty hierarchy */ | 1063 | |
| 919 | if (!opts->subsys_bits) | 1064 | /* Can't specify "none" and some subsystems */ |
| 1065 | if (opts->subsys_bits && opts->none) | ||
| 1066 | return -EINVAL; | ||
| 1067 | |||
| 1068 | /* | ||
| 1069 | * We either have to specify by name or by subsystems. (So all | ||
| 1070 | * empty hierarchies must have a name). | ||
| 1071 | */ | ||
| 1072 | if (!opts->subsys_bits && !opts->name) | ||
| 920 | return -EINVAL; | 1073 | return -EINVAL; |
| 921 | 1074 | ||
| 922 | return 0; | 1075 | return 0; |
| @@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
| 944 | goto out_unlock; | 1097 | goto out_unlock; |
| 945 | } | 1098 | } |
| 946 | 1099 | ||
| 1100 | /* Don't allow name to change at remount */ | ||
| 1101 | if (opts.name && strcmp(opts.name, root->name)) { | ||
| 1102 | ret = -EINVAL; | ||
| 1103 | goto out_unlock; | ||
| 1104 | } | ||
| 1105 | |||
| 947 | ret = rebind_subsystems(root, opts.subsys_bits); | 1106 | ret = rebind_subsystems(root, opts.subsys_bits); |
| 948 | if (ret) | 1107 | if (ret) |
| 949 | goto out_unlock; | 1108 | goto out_unlock; |
| @@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
| 955 | strcpy(root->release_agent_path, opts.release_agent); | 1114 | strcpy(root->release_agent_path, opts.release_agent); |
| 956 | out_unlock: | 1115 | out_unlock: |
| 957 | kfree(opts.release_agent); | 1116 | kfree(opts.release_agent); |
| 1117 | kfree(opts.name); | ||
| 958 | mutex_unlock(&cgroup_mutex); | 1118 | mutex_unlock(&cgroup_mutex); |
| 959 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 1119 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
| 960 | unlock_kernel(); | 1120 | unlock_kernel(); |
| 961 | return ret; | 1121 | return ret; |
| 962 | } | 1122 | } |
| 963 | 1123 | ||
| 964 | static struct super_operations cgroup_ops = { | 1124 | static const struct super_operations cgroup_ops = { |
| 965 | .statfs = simple_statfs, | 1125 | .statfs = simple_statfs, |
| 966 | .drop_inode = generic_delete_inode, | 1126 | .drop_inode = generic_delete_inode, |
| 967 | .show_options = cgroup_show_options, | 1127 | .show_options = cgroup_show_options, |
| @@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
| 974 | INIT_LIST_HEAD(&cgrp->children); | 1134 | INIT_LIST_HEAD(&cgrp->children); |
| 975 | INIT_LIST_HEAD(&cgrp->css_sets); | 1135 | INIT_LIST_HEAD(&cgrp->css_sets); |
| 976 | INIT_LIST_HEAD(&cgrp->release_list); | 1136 | INIT_LIST_HEAD(&cgrp->release_list); |
| 977 | INIT_LIST_HEAD(&cgrp->pids_list); | 1137 | INIT_LIST_HEAD(&cgrp->pidlists); |
| 978 | init_rwsem(&cgrp->pids_mutex); | 1138 | mutex_init(&cgrp->pidlist_mutex); |
| 979 | } | 1139 | } |
| 1140 | |||
| 980 | static void init_cgroup_root(struct cgroupfs_root *root) | 1141 | static void init_cgroup_root(struct cgroupfs_root *root) |
| 981 | { | 1142 | { |
| 982 | struct cgroup *cgrp = &root->top_cgroup; | 1143 | struct cgroup *cgrp = &root->top_cgroup; |
| @@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root) | |||
| 988 | init_cgroup_housekeeping(cgrp); | 1149 | init_cgroup_housekeeping(cgrp); |
| 989 | } | 1150 | } |
| 990 | 1151 | ||
| 1152 | static bool init_root_id(struct cgroupfs_root *root) | ||
| 1153 | { | ||
| 1154 | int ret = 0; | ||
| 1155 | |||
| 1156 | do { | ||
| 1157 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | ||
| 1158 | return false; | ||
| 1159 | spin_lock(&hierarchy_id_lock); | ||
| 1160 | /* Try to allocate the next unused ID */ | ||
| 1161 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | ||
| 1162 | &root->hierarchy_id); | ||
| 1163 | if (ret == -ENOSPC) | ||
| 1164 | /* Try again starting from 0 */ | ||
| 1165 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | ||
| 1166 | if (!ret) { | ||
| 1167 | next_hierarchy_id = root->hierarchy_id + 1; | ||
| 1168 | } else if (ret != -EAGAIN) { | ||
| 1169 | /* Can only get here if the 31-bit IDR is full ... */ | ||
| 1170 | BUG_ON(ret); | ||
| 1171 | } | ||
| 1172 | spin_unlock(&hierarchy_id_lock); | ||
| 1173 | } while (ret); | ||
| 1174 | return true; | ||
| 1175 | } | ||
| 1176 | |||
| 991 | static int cgroup_test_super(struct super_block *sb, void *data) | 1177 | static int cgroup_test_super(struct super_block *sb, void *data) |
| 992 | { | 1178 | { |
| 993 | struct cgroupfs_root *new = data; | 1179 | struct cgroup_sb_opts *opts = data; |
| 994 | struct cgroupfs_root *root = sb->s_fs_info; | 1180 | struct cgroupfs_root *root = sb->s_fs_info; |
| 995 | 1181 | ||
| 996 | /* First check subsystems */ | 1182 | /* If we asked for a name then it must match */ |
| 997 | if (new->subsys_bits != root->subsys_bits) | 1183 | if (opts->name && strcmp(opts->name, root->name)) |
| 998 | return 0; | 1184 | return 0; |
| 999 | 1185 | ||
| 1000 | /* Next check flags */ | 1186 | /* |
| 1001 | if (new->flags != root->flags) | 1187 | * If we asked for subsystems (or explicitly for no |
| 1188 | * subsystems) then they must match | ||
| 1189 | */ | ||
| 1190 | if ((opts->subsys_bits || opts->none) | ||
| 1191 | && (opts->subsys_bits != root->subsys_bits)) | ||
| 1002 | return 0; | 1192 | return 0; |
| 1003 | 1193 | ||
| 1004 | return 1; | 1194 | return 1; |
| 1005 | } | 1195 | } |
| 1006 | 1196 | ||
| 1197 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | ||
| 1198 | { | ||
| 1199 | struct cgroupfs_root *root; | ||
| 1200 | |||
| 1201 | if (!opts->subsys_bits && !opts->none) | ||
| 1202 | return NULL; | ||
| 1203 | |||
| 1204 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
| 1205 | if (!root) | ||
| 1206 | return ERR_PTR(-ENOMEM); | ||
| 1207 | |||
| 1208 | if (!init_root_id(root)) { | ||
| 1209 | kfree(root); | ||
| 1210 | return ERR_PTR(-ENOMEM); | ||
| 1211 | } | ||
| 1212 | init_cgroup_root(root); | ||
| 1213 | |||
| 1214 | root->subsys_bits = opts->subsys_bits; | ||
| 1215 | root->flags = opts->flags; | ||
| 1216 | if (opts->release_agent) | ||
| 1217 | strcpy(root->release_agent_path, opts->release_agent); | ||
| 1218 | if (opts->name) | ||
| 1219 | strcpy(root->name, opts->name); | ||
| 1220 | return root; | ||
| 1221 | } | ||
| 1222 | |||
| 1223 | static void cgroup_drop_root(struct cgroupfs_root *root) | ||
| 1224 | { | ||
| 1225 | if (!root) | ||
| 1226 | return; | ||
| 1227 | |||
| 1228 | BUG_ON(!root->hierarchy_id); | ||
| 1229 | spin_lock(&hierarchy_id_lock); | ||
| 1230 | ida_remove(&hierarchy_ida, root->hierarchy_id); | ||
| 1231 | spin_unlock(&hierarchy_id_lock); | ||
| 1232 | kfree(root); | ||
| 1233 | } | ||
| 1234 | |||
| 1007 | static int cgroup_set_super(struct super_block *sb, void *data) | 1235 | static int cgroup_set_super(struct super_block *sb, void *data) |
| 1008 | { | 1236 | { |
| 1009 | int ret; | 1237 | int ret; |
| 1010 | struct cgroupfs_root *root = data; | 1238 | struct cgroup_sb_opts *opts = data; |
| 1239 | |||
| 1240 | /* If we don't have a new root, we can't set up a new sb */ | ||
| 1241 | if (!opts->new_root) | ||
| 1242 | return -EINVAL; | ||
| 1243 | |||
| 1244 | BUG_ON(!opts->subsys_bits && !opts->none); | ||
| 1011 | 1245 | ||
| 1012 | ret = set_anon_super(sb, NULL); | 1246 | ret = set_anon_super(sb, NULL); |
| 1013 | if (ret) | 1247 | if (ret) |
| 1014 | return ret; | 1248 | return ret; |
| 1015 | 1249 | ||
| 1016 | sb->s_fs_info = root; | 1250 | sb->s_fs_info = opts->new_root; |
| 1017 | root->sb = sb; | 1251 | opts->new_root->sb = sb; |
| 1018 | 1252 | ||
| 1019 | sb->s_blocksize = PAGE_CACHE_SIZE; | 1253 | sb->s_blocksize = PAGE_CACHE_SIZE; |
| 1020 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 1254 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
| @@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1051 | void *data, struct vfsmount *mnt) | 1285 | void *data, struct vfsmount *mnt) |
| 1052 | { | 1286 | { |
| 1053 | struct cgroup_sb_opts opts; | 1287 | struct cgroup_sb_opts opts; |
| 1288 | struct cgroupfs_root *root; | ||
| 1054 | int ret = 0; | 1289 | int ret = 0; |
| 1055 | struct super_block *sb; | 1290 | struct super_block *sb; |
| 1056 | struct cgroupfs_root *root; | 1291 | struct cgroupfs_root *new_root; |
| 1057 | struct list_head tmp_cg_links; | ||
| 1058 | 1292 | ||
| 1059 | /* First find the desired set of subsystems */ | 1293 | /* First find the desired set of subsystems */ |
| 1060 | ret = parse_cgroupfs_options(data, &opts); | 1294 | ret = parse_cgroupfs_options(data, &opts); |
| 1061 | if (ret) { | 1295 | if (ret) |
| 1062 | kfree(opts.release_agent); | 1296 | goto out_err; |
| 1063 | return ret; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
| 1067 | if (!root) { | ||
| 1068 | kfree(opts.release_agent); | ||
| 1069 | return -ENOMEM; | ||
| 1070 | } | ||
| 1071 | 1297 | ||
| 1072 | init_cgroup_root(root); | 1298 | /* |
| 1073 | root->subsys_bits = opts.subsys_bits; | 1299 | * Allocate a new cgroup root. We may not need it if we're |
| 1074 | root->flags = opts.flags; | 1300 | * reusing an existing hierarchy. |
| 1075 | if (opts.release_agent) { | 1301 | */ |
| 1076 | strcpy(root->release_agent_path, opts.release_agent); | 1302 | new_root = cgroup_root_from_opts(&opts); |
| 1077 | kfree(opts.release_agent); | 1303 | if (IS_ERR(new_root)) { |
| 1304 | ret = PTR_ERR(new_root); | ||
| 1305 | goto out_err; | ||
| 1078 | } | 1306 | } |
| 1307 | opts.new_root = new_root; | ||
| 1079 | 1308 | ||
| 1080 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 1309 | /* Locate an existing or new sb for this hierarchy */ |
| 1081 | 1310 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
| 1082 | if (IS_ERR(sb)) { | 1311 | if (IS_ERR(sb)) { |
| 1083 | kfree(root); | 1312 | ret = PTR_ERR(sb); |
| 1084 | return PTR_ERR(sb); | 1313 | cgroup_drop_root(opts.new_root); |
| 1314 | goto out_err; | ||
| 1085 | } | 1315 | } |
| 1086 | 1316 | ||
| 1087 | if (sb->s_fs_info != root) { | 1317 | root = sb->s_fs_info; |
| 1088 | /* Reusing an existing superblock */ | 1318 | BUG_ON(!root); |
| 1089 | BUG_ON(sb->s_root == NULL); | 1319 | if (root == opts.new_root) { |
| 1090 | kfree(root); | 1320 | /* We used the new root structure, so this is a new hierarchy */ |
| 1091 | root = NULL; | 1321 | struct list_head tmp_cg_links; |
| 1092 | } else { | ||
| 1093 | /* New superblock */ | ||
| 1094 | struct cgroup *root_cgrp = &root->top_cgroup; | 1322 | struct cgroup *root_cgrp = &root->top_cgroup; |
| 1095 | struct inode *inode; | 1323 | struct inode *inode; |
| 1324 | struct cgroupfs_root *existing_root; | ||
| 1096 | int i; | 1325 | int i; |
| 1097 | 1326 | ||
| 1098 | BUG_ON(sb->s_root != NULL); | 1327 | BUG_ON(sb->s_root != NULL); |
| @@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1105 | mutex_lock(&inode->i_mutex); | 1334 | mutex_lock(&inode->i_mutex); |
| 1106 | mutex_lock(&cgroup_mutex); | 1335 | mutex_lock(&cgroup_mutex); |
| 1107 | 1336 | ||
| 1337 | if (strlen(root->name)) { | ||
| 1338 | /* Check for name clashes with existing mounts */ | ||
| 1339 | for_each_active_root(existing_root) { | ||
| 1340 | if (!strcmp(existing_root->name, root->name)) { | ||
| 1341 | ret = -EBUSY; | ||
| 1342 | mutex_unlock(&cgroup_mutex); | ||
| 1343 | mutex_unlock(&inode->i_mutex); | ||
| 1344 | goto drop_new_super; | ||
| 1345 | } | ||
| 1346 | } | ||
| 1347 | } | ||
| 1348 | |||
| 1108 | /* | 1349 | /* |
| 1109 | * We're accessing css_set_count without locking | 1350 | * We're accessing css_set_count without locking |
| 1110 | * css_set_lock here, but that's OK - it can only be | 1351 | * css_set_lock here, but that's OK - it can only be |
| @@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1123 | if (ret == -EBUSY) { | 1364 | if (ret == -EBUSY) { |
| 1124 | mutex_unlock(&cgroup_mutex); | 1365 | mutex_unlock(&cgroup_mutex); |
| 1125 | mutex_unlock(&inode->i_mutex); | 1366 | mutex_unlock(&inode->i_mutex); |
| 1126 | goto free_cg_links; | 1367 | free_cg_links(&tmp_cg_links); |
| 1368 | goto drop_new_super; | ||
| 1127 | } | 1369 | } |
| 1128 | 1370 | ||
| 1129 | /* EBUSY should be the only error here */ | 1371 | /* EBUSY should be the only error here */ |
| @@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1155 | BUG_ON(root->number_of_cgroups != 1); | 1397 | BUG_ON(root->number_of_cgroups != 1); |
| 1156 | 1398 | ||
| 1157 | cgroup_populate_dir(root_cgrp); | 1399 | cgroup_populate_dir(root_cgrp); |
| 1158 | mutex_unlock(&inode->i_mutex); | ||
| 1159 | mutex_unlock(&cgroup_mutex); | 1400 | mutex_unlock(&cgroup_mutex); |
| 1401 | mutex_unlock(&inode->i_mutex); | ||
| 1402 | } else { | ||
| 1403 | /* | ||
| 1404 | * We re-used an existing hierarchy - the new root (if | ||
| 1405 | * any) is not needed | ||
| 1406 | */ | ||
| 1407 | cgroup_drop_root(opts.new_root); | ||
| 1160 | } | 1408 | } |
| 1161 | 1409 | ||
| 1162 | simple_set_mnt(mnt, sb); | 1410 | simple_set_mnt(mnt, sb); |
| 1411 | kfree(opts.release_agent); | ||
| 1412 | kfree(opts.name); | ||
| 1163 | return 0; | 1413 | return 0; |
| 1164 | 1414 | ||
| 1165 | free_cg_links: | ||
| 1166 | free_cg_links(&tmp_cg_links); | ||
| 1167 | drop_new_super: | 1415 | drop_new_super: |
| 1168 | deactivate_locked_super(sb); | 1416 | deactivate_locked_super(sb); |
| 1417 | out_err: | ||
| 1418 | kfree(opts.release_agent); | ||
| 1419 | kfree(opts.name); | ||
| 1420 | |||
| 1169 | return ret; | 1421 | return ret; |
| 1170 | } | 1422 | } |
| 1171 | 1423 | ||
| @@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) { | |||
| 1211 | mutex_unlock(&cgroup_mutex); | 1463 | mutex_unlock(&cgroup_mutex); |
| 1212 | 1464 | ||
| 1213 | kill_litter_super(sb); | 1465 | kill_litter_super(sb); |
| 1214 | kfree(root); | 1466 | cgroup_drop_root(root); |
| 1215 | } | 1467 | } |
| 1216 | 1468 | ||
| 1217 | static struct file_system_type cgroup_fs_type = { | 1469 | static struct file_system_type cgroup_fs_type = { |
| @@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | |||
| 1276 | return 0; | 1528 | return 0; |
| 1277 | } | 1529 | } |
| 1278 | 1530 | ||
| 1279 | /* | ||
| 1280 | * Return the first subsystem attached to a cgroup's hierarchy, and | ||
| 1281 | * its subsystem id. | ||
| 1282 | */ | ||
| 1283 | |||
| 1284 | static void get_first_subsys(const struct cgroup *cgrp, | ||
| 1285 | struct cgroup_subsys_state **css, int *subsys_id) | ||
| 1286 | { | ||
| 1287 | const struct cgroupfs_root *root = cgrp->root; | ||
| 1288 | const struct cgroup_subsys *test_ss; | ||
| 1289 | BUG_ON(list_empty(&root->subsys_list)); | ||
| 1290 | test_ss = list_entry(root->subsys_list.next, | ||
| 1291 | struct cgroup_subsys, sibling); | ||
| 1292 | if (css) { | ||
| 1293 | *css = cgrp->subsys[test_ss->subsys_id]; | ||
| 1294 | BUG_ON(!*css); | ||
| 1295 | } | ||
| 1296 | if (subsys_id) | ||
| 1297 | *subsys_id = test_ss->subsys_id; | ||
| 1298 | } | ||
| 1299 | |||
| 1300 | /** | 1531 | /** |
| 1301 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 1532 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
| 1302 | * @cgrp: the cgroup the task is attaching to | 1533 | * @cgrp: the cgroup the task is attaching to |
| @@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
| 1313 | struct css_set *cg; | 1544 | struct css_set *cg; |
| 1314 | struct css_set *newcg; | 1545 | struct css_set *newcg; |
| 1315 | struct cgroupfs_root *root = cgrp->root; | 1546 | struct cgroupfs_root *root = cgrp->root; |
| 1316 | int subsys_id; | ||
| 1317 | |||
| 1318 | get_first_subsys(cgrp, NULL, &subsys_id); | ||
| 1319 | 1547 | ||
| 1320 | /* Nothing to do if the task is already in that cgroup */ | 1548 | /* Nothing to do if the task is already in that cgroup */ |
| 1321 | oldcgrp = task_cgroup(tsk, subsys_id); | 1549 | oldcgrp = task_cgroup_from_root(tsk, root); |
| 1322 | if (cgrp == oldcgrp) | 1550 | if (cgrp == oldcgrp) |
| 1323 | return 0; | 1551 | return 0; |
| 1324 | 1552 | ||
| 1325 | for_each_subsys(root, ss) { | 1553 | for_each_subsys(root, ss) { |
| 1326 | if (ss->can_attach) { | 1554 | if (ss->can_attach) { |
| 1327 | retval = ss->can_attach(ss, cgrp, tsk); | 1555 | retval = ss->can_attach(ss, cgrp, tsk, false); |
| 1328 | if (retval) | 1556 | if (retval) |
| 1329 | return retval; | 1557 | return retval; |
| 1330 | } | 1558 | } |
| @@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
| 1362 | 1590 | ||
| 1363 | for_each_subsys(root, ss) { | 1591 | for_each_subsys(root, ss) { |
| 1364 | if (ss->attach) | 1592 | if (ss->attach) |
| 1365 | ss->attach(ss, cgrp, oldcgrp, tsk); | 1593 | ss->attach(ss, cgrp, oldcgrp, tsk, false); |
| 1366 | } | 1594 | } |
| 1367 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1595 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
| 1368 | synchronize_rcu(); | 1596 | synchronize_rcu(); |
| @@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | |||
| 1423 | return ret; | 1651 | return ret; |
| 1424 | } | 1652 | } |
| 1425 | 1653 | ||
| 1426 | /* The various types of files and directories in a cgroup file system */ | ||
| 1427 | enum cgroup_filetype { | ||
| 1428 | FILE_ROOT, | ||
| 1429 | FILE_DIR, | ||
| 1430 | FILE_TASKLIST, | ||
| 1431 | FILE_NOTIFY_ON_RELEASE, | ||
| 1432 | FILE_RELEASE_AGENT, | ||
| 1433 | }; | ||
| 1434 | |||
| 1435 | /** | 1654 | /** |
| 1436 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 1655 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
| 1437 | * @cgrp: the cgroup to be checked for liveness | 1656 | * @cgrp: the cgroup to be checked for liveness |
| @@ -1491,14 +1710,13 @@ static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, | |||
| 1491 | return -EFAULT; | 1710 | return -EFAULT; |
| 1492 | 1711 | ||
| 1493 | buffer[nbytes] = 0; /* nul-terminate */ | 1712 | buffer[nbytes] = 0; /* nul-terminate */ |
| 1494 | strstrip(buffer); | ||
| 1495 | if (cft->write_u64) { | 1713 | if (cft->write_u64) { |
| 1496 | u64 val = simple_strtoull(buffer, &end, 0); | 1714 | u64 val = simple_strtoull(strstrip(buffer), &end, 0); |
| 1497 | if (*end) | 1715 | if (*end) |
| 1498 | return -EINVAL; | 1716 | return -EINVAL; |
| 1499 | retval = cft->write_u64(cgrp, cft, val); | 1717 | retval = cft->write_u64(cgrp, cft, val); |
| 1500 | } else { | 1718 | } else { |
| 1501 | s64 val = simple_strtoll(buffer, &end, 0); | 1719 | s64 val = simple_strtoll(strstrip(buffer), &end, 0); |
| 1502 | if (*end) | 1720 | if (*end) |
| 1503 | return -EINVAL; | 1721 | return -EINVAL; |
| 1504 | retval = cft->write_s64(cgrp, cft, val); | 1722 | retval = cft->write_s64(cgrp, cft, val); |
| @@ -1534,8 +1752,7 @@ static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, | |||
| 1534 | } | 1752 | } |
| 1535 | 1753 | ||
| 1536 | buffer[nbytes] = 0; /* nul-terminate */ | 1754 | buffer[nbytes] = 0; /* nul-terminate */ |
| 1537 | strstrip(buffer); | 1755 | retval = cft->write_string(cgrp, cft, strstrip(buffer)); |
| 1538 | retval = cft->write_string(cgrp, cft, buffer); | ||
| 1539 | if (!retval) | 1756 | if (!retval) |
| 1540 | retval = nbytes; | 1757 | retval = nbytes; |
| 1541 | out: | 1758 | out: |
| @@ -1644,7 +1861,7 @@ static int cgroup_seqfile_release(struct inode *inode, struct file *file) | |||
| 1644 | return single_release(inode, file); | 1861 | return single_release(inode, file); |
| 1645 | } | 1862 | } |
| 1646 | 1863 | ||
| 1647 | static struct file_operations cgroup_seqfile_operations = { | 1864 | static const struct file_operations cgroup_seqfile_operations = { |
| 1648 | .read = seq_read, | 1865 | .read = seq_read, |
| 1649 | .write = cgroup_file_write, | 1866 | .write = cgroup_file_write, |
| 1650 | .llseek = seq_lseek, | 1867 | .llseek = seq_lseek, |
| @@ -1703,7 +1920,7 @@ static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | |||
| 1703 | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 1920 | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); |
| 1704 | } | 1921 | } |
| 1705 | 1922 | ||
| 1706 | static struct file_operations cgroup_file_operations = { | 1923 | static const struct file_operations cgroup_file_operations = { |
| 1707 | .read = cgroup_file_read, | 1924 | .read = cgroup_file_read, |
| 1708 | .write = cgroup_file_write, | 1925 | .write = cgroup_file_write, |
| 1709 | .llseek = generic_file_llseek, | 1926 | .llseek = generic_file_llseek, |
| @@ -1711,7 +1928,7 @@ static struct file_operations cgroup_file_operations = { | |||
| 1711 | .release = cgroup_file_release, | 1928 | .release = cgroup_file_release, |
| 1712 | }; | 1929 | }; |
| 1713 | 1930 | ||
| 1714 | static struct inode_operations cgroup_dir_inode_operations = { | 1931 | static const struct inode_operations cgroup_dir_inode_operations = { |
| 1715 | .lookup = simple_lookup, | 1932 | .lookup = simple_lookup, |
| 1716 | .mkdir = cgroup_mkdir, | 1933 | .mkdir = cgroup_mkdir, |
| 1717 | .rmdir = cgroup_rmdir, | 1934 | .rmdir = cgroup_rmdir, |
| @@ -1876,7 +2093,7 @@ int cgroup_task_count(const struct cgroup *cgrp) | |||
| 1876 | * the start of a css_set | 2093 | * the start of a css_set |
| 1877 | */ | 2094 | */ |
| 1878 | static void cgroup_advance_iter(struct cgroup *cgrp, | 2095 | static void cgroup_advance_iter(struct cgroup *cgrp, |
| 1879 | struct cgroup_iter *it) | 2096 | struct cgroup_iter *it) |
| 1880 | { | 2097 | { |
| 1881 | struct list_head *l = it->cg_link; | 2098 | struct list_head *l = it->cg_link; |
| 1882 | struct cg_cgroup_link *link; | 2099 | struct cg_cgroup_link *link; |
| @@ -2129,7 +2346,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
| 2129 | } | 2346 | } |
| 2130 | 2347 | ||
| 2131 | /* | 2348 | /* |
| 2132 | * Stuff for reading the 'tasks' file. | 2349 | * Stuff for reading the 'tasks'/'procs' files. |
| 2133 | * | 2350 | * |
| 2134 | * Reading this file can return large amounts of data if a cgroup has | 2351 | * Reading this file can return large amounts of data if a cgroup has |
| 2135 | * *lots* of attached tasks. So it may need several calls to read(), | 2352 | * *lots* of attached tasks. So it may need several calls to read(), |
| @@ -2139,27 +2356,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
| 2139 | */ | 2356 | */ |
| 2140 | 2357 | ||
| 2141 | /* | 2358 | /* |
| 2142 | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 2359 | * The following two functions "fix" the issue where there are more pids |
| 2143 | * 'cgrp'. Return actual number of pids loaded. No need to | 2360 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
| 2144 | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 2361 | * TODO: replace with a kernel-wide solution to this problem |
| 2145 | * read section, so the css_set can't go away, and is | 2362 | */ |
| 2146 | * immutable after creation. | 2363 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
| 2364 | static void *pidlist_allocate(int count) | ||
| 2365 | { | ||
| 2366 | if (PIDLIST_TOO_LARGE(count)) | ||
| 2367 | return vmalloc(count * sizeof(pid_t)); | ||
| 2368 | else | ||
| 2369 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | ||
| 2370 | } | ||
| 2371 | static void pidlist_free(void *p) | ||
| 2372 | { | ||
| 2373 | if (is_vmalloc_addr(p)) | ||
| 2374 | vfree(p); | ||
| 2375 | else | ||
| 2376 | kfree(p); | ||
| 2377 | } | ||
| 2378 | static void *pidlist_resize(void *p, int newcount) | ||
| 2379 | { | ||
| 2380 | void *newlist; | ||
| 2381 | /* note: if new alloc fails, old p will still be valid either way */ | ||
| 2382 | if (is_vmalloc_addr(p)) { | ||
| 2383 | newlist = vmalloc(newcount * sizeof(pid_t)); | ||
| 2384 | if (!newlist) | ||
| 2385 | return NULL; | ||
| 2386 | memcpy(newlist, p, newcount * sizeof(pid_t)); | ||
| 2387 | vfree(p); | ||
| 2388 | } else { | ||
| 2389 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | ||
| 2390 | } | ||
| 2391 | return newlist; | ||
| 2392 | } | ||
| 2393 | |||
| 2394 | /* | ||
| 2395 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | ||
| 2396 | * If the new stripped list is sufficiently smaller and there's enough memory | ||
| 2397 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | ||
| 2398 | * number of unique elements. | ||
| 2399 | */ | ||
| 2400 | /* is the size difference enough that we should re-allocate the array? */ | ||
| 2401 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | ||
| 2402 | static int pidlist_uniq(pid_t **p, int length) | ||
| 2403 | { | ||
| 2404 | int src, dest = 1; | ||
| 2405 | pid_t *list = *p; | ||
| 2406 | pid_t *newlist; | ||
| 2407 | |||
| 2408 | /* | ||
| 2409 | * we presume the 0th element is unique, so i starts at 1. trivial | ||
| 2410 | * edge cases first; no work needs to be done for either | ||
| 2411 | */ | ||
| 2412 | if (length == 0 || length == 1) | ||
| 2413 | return length; | ||
| 2414 | /* src and dest walk down the list; dest counts unique elements */ | ||
| 2415 | for (src = 1; src < length; src++) { | ||
| 2416 | /* find next unique element */ | ||
| 2417 | while (list[src] == list[src-1]) { | ||
| 2418 | src++; | ||
| 2419 | if (src == length) | ||
| 2420 | goto after; | ||
| 2421 | } | ||
| 2422 | /* dest always points to where the next unique element goes */ | ||
| 2423 | list[dest] = list[src]; | ||
| 2424 | dest++; | ||
| 2425 | } | ||
| 2426 | after: | ||
| 2427 | /* | ||
| 2428 | * if the length difference is large enough, we want to allocate a | ||
| 2429 | * smaller buffer to save memory. if this fails due to out of memory, | ||
| 2430 | * we'll just stay with what we've got. | ||
| 2431 | */ | ||
| 2432 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | ||
| 2433 | newlist = pidlist_resize(list, dest); | ||
| 2434 | if (newlist) | ||
| 2435 | *p = newlist; | ||
| 2436 | } | ||
| 2437 | return dest; | ||
| 2438 | } | ||
| 2439 | |||
| 2440 | static int cmppid(const void *a, const void *b) | ||
| 2441 | { | ||
| 2442 | return *(pid_t *)a - *(pid_t *)b; | ||
| 2443 | } | ||
| 2444 | |||
| 2445 | /* | ||
| 2446 | * find the appropriate pidlist for our purpose (given procs vs tasks) | ||
| 2447 | * returns with the lock on that pidlist already held, and takes care | ||
| 2448 | * of the use count, or returns NULL with no locks held if we're out of | ||
| 2449 | * memory. | ||
| 2147 | */ | 2450 | */ |
| 2148 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 2451 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| 2452 | enum cgroup_filetype type) | ||
| 2149 | { | 2453 | { |
| 2150 | int n = 0, pid; | 2454 | struct cgroup_pidlist *l; |
| 2455 | /* don't need task_nsproxy() if we're looking at ourself */ | ||
| 2456 | struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 2457 | /* | ||
| 2458 | * We can't drop the pidlist_mutex before taking the l->mutex in case | ||
| 2459 | * the last ref-holder is trying to remove l from the list at the same | ||
| 2460 | * time. Holding the pidlist_mutex precludes somebody taking whichever | ||
| 2461 | * list we find out from under us - compare release_pid_array(). | ||
| 2462 | */ | ||
| 2463 | mutex_lock(&cgrp->pidlist_mutex); | ||
| 2464 | list_for_each_entry(l, &cgrp->pidlists, links) { | ||
| 2465 | if (l->key.type == type && l->key.ns == ns) { | ||
| 2466 | /* found a matching list - drop the extra refcount */ | ||
| 2467 | put_pid_ns(ns); | ||
| 2468 | /* make sure l doesn't vanish out from under us */ | ||
| 2469 | down_write(&l->mutex); | ||
| 2470 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2471 | l->use_count++; | ||
| 2472 | return l; | ||
| 2473 | } | ||
| 2474 | } | ||
| 2475 | /* entry not found; create a new one */ | ||
| 2476 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | ||
| 2477 | if (!l) { | ||
| 2478 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2479 | put_pid_ns(ns); | ||
| 2480 | return l; | ||
| 2481 | } | ||
| 2482 | init_rwsem(&l->mutex); | ||
| 2483 | down_write(&l->mutex); | ||
| 2484 | l->key.type = type; | ||
| 2485 | l->key.ns = ns; | ||
| 2486 | l->use_count = 0; /* don't increment here */ | ||
| 2487 | l->list = NULL; | ||
| 2488 | l->owner = cgrp; | ||
| 2489 | list_add(&l->links, &cgrp->pidlists); | ||
| 2490 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2491 | return l; | ||
| 2492 | } | ||
| 2493 | |||
| 2494 | /* | ||
| 2495 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | ||
| 2496 | */ | ||
| 2497 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | ||
| 2498 | struct cgroup_pidlist **lp) | ||
| 2499 | { | ||
| 2500 | pid_t *array; | ||
| 2501 | int length; | ||
| 2502 | int pid, n = 0; /* used for populating the array */ | ||
| 2151 | struct cgroup_iter it; | 2503 | struct cgroup_iter it; |
| 2152 | struct task_struct *tsk; | 2504 | struct task_struct *tsk; |
| 2505 | struct cgroup_pidlist *l; | ||
| 2506 | |||
| 2507 | /* | ||
| 2508 | * If cgroup gets more users after we read count, we won't have | ||
| 2509 | * enough space - tough. This race is indistinguishable to the | ||
| 2510 | * caller from the case that the additional cgroup users didn't | ||
| 2511 | * show up until sometime later on. | ||
| 2512 | */ | ||
| 2513 | length = cgroup_task_count(cgrp); | ||
| 2514 | array = pidlist_allocate(length); | ||
| 2515 | if (!array) | ||
| 2516 | return -ENOMEM; | ||
| 2517 | /* now, populate the array */ | ||
| 2153 | cgroup_iter_start(cgrp, &it); | 2518 | cgroup_iter_start(cgrp, &it); |
| 2154 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 2519 | while ((tsk = cgroup_iter_next(cgrp, &it))) { |
| 2155 | if (unlikely(n == npids)) | 2520 | if (unlikely(n == length)) |
| 2156 | break; | 2521 | break; |
| 2157 | pid = task_pid_vnr(tsk); | 2522 | /* get tgid or pid for procs or tasks file respectively */ |
| 2158 | if (pid > 0) | 2523 | if (type == CGROUP_FILE_PROCS) |
| 2159 | pidarray[n++] = pid; | 2524 | pid = task_tgid_vnr(tsk); |
| 2525 | else | ||
| 2526 | pid = task_pid_vnr(tsk); | ||
| 2527 | if (pid > 0) /* make sure to only use valid results */ | ||
| 2528 | array[n++] = pid; | ||
| 2160 | } | 2529 | } |
| 2161 | cgroup_iter_end(cgrp, &it); | 2530 | cgroup_iter_end(cgrp, &it); |
| 2162 | return n; | 2531 | length = n; |
| 2532 | /* now sort & (if procs) strip out duplicates */ | ||
| 2533 | sort(array, length, sizeof(pid_t), cmppid, NULL); | ||
| 2534 | if (type == CGROUP_FILE_PROCS) | ||
| 2535 | length = pidlist_uniq(&array, length); | ||
| 2536 | l = cgroup_pidlist_find(cgrp, type); | ||
| 2537 | if (!l) { | ||
| 2538 | pidlist_free(array); | ||
| 2539 | return -ENOMEM; | ||
| 2540 | } | ||
| 2541 | /* store array, freeing old if necessary - lock already held */ | ||
| 2542 | pidlist_free(l->list); | ||
| 2543 | l->list = array; | ||
| 2544 | l->length = length; | ||
| 2545 | l->use_count++; | ||
| 2546 | up_write(&l->mutex); | ||
| 2547 | *lp = l; | ||
| 2548 | return 0; | ||
| 2163 | } | 2549 | } |
| 2164 | 2550 | ||
| 2165 | /** | 2551 | /** |
| @@ -2216,37 +2602,14 @@ err: | |||
| 2216 | return ret; | 2602 | return ret; |
| 2217 | } | 2603 | } |
| 2218 | 2604 | ||
| 2219 | /* | ||
| 2220 | * Cache pids for all threads in the same pid namespace that are | ||
| 2221 | * opening the same "tasks" file. | ||
| 2222 | */ | ||
| 2223 | struct cgroup_pids { | ||
| 2224 | /* The node in cgrp->pids_list */ | ||
| 2225 | struct list_head list; | ||
| 2226 | /* The cgroup those pids belong to */ | ||
| 2227 | struct cgroup *cgrp; | ||
| 2228 | /* The namepsace those pids belong to */ | ||
| 2229 | struct pid_namespace *ns; | ||
| 2230 | /* Array of process ids in the cgroup */ | ||
| 2231 | pid_t *tasks_pids; | ||
| 2232 | /* How many files are using the this tasks_pids array */ | ||
| 2233 | int use_count; | ||
| 2234 | /* Length of the current tasks_pids array */ | ||
| 2235 | int length; | ||
| 2236 | }; | ||
| 2237 | |||
| 2238 | static int cmppid(const void *a, const void *b) | ||
| 2239 | { | ||
| 2240 | return *(pid_t *)a - *(pid_t *)b; | ||
| 2241 | } | ||
| 2242 | 2605 | ||
| 2243 | /* | 2606 | /* |
| 2244 | * seq_file methods for the "tasks" file. The seq_file position is the | 2607 | * seq_file methods for the tasks/procs files. The seq_file position is the |
| 2245 | * next pid to display; the seq_file iterator is a pointer to the pid | 2608 | * next pid to display; the seq_file iterator is a pointer to the pid |
| 2246 | * in the cgroup->tasks_pids array. | 2609 | * in the cgroup->l->list array. |
| 2247 | */ | 2610 | */ |
| 2248 | 2611 | ||
| 2249 | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 2612 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| 2250 | { | 2613 | { |
| 2251 | /* | 2614 | /* |
| 2252 | * Initially we receive a position value that corresponds to | 2615 | * Initially we receive a position value that corresponds to |
| @@ -2254,48 +2617,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
| 2254 | * after a seek to the start). Use a binary-search to find the | 2617 | * after a seek to the start). Use a binary-search to find the |
| 2255 | * next pid to display, if any | 2618 | * next pid to display, if any |
| 2256 | */ | 2619 | */ |
| 2257 | struct cgroup_pids *cp = s->private; | 2620 | struct cgroup_pidlist *l = s->private; |
| 2258 | struct cgroup *cgrp = cp->cgrp; | ||
| 2259 | int index = 0, pid = *pos; | 2621 | int index = 0, pid = *pos; |
| 2260 | int *iter; | 2622 | int *iter; |
| 2261 | 2623 | ||
| 2262 | down_read(&cgrp->pids_mutex); | 2624 | down_read(&l->mutex); |
| 2263 | if (pid) { | 2625 | if (pid) { |
| 2264 | int end = cp->length; | 2626 | int end = l->length; |
| 2265 | 2627 | ||
| 2266 | while (index < end) { | 2628 | while (index < end) { |
| 2267 | int mid = (index + end) / 2; | 2629 | int mid = (index + end) / 2; |
| 2268 | if (cp->tasks_pids[mid] == pid) { | 2630 | if (l->list[mid] == pid) { |
| 2269 | index = mid; | 2631 | index = mid; |
| 2270 | break; | 2632 | break; |
| 2271 | } else if (cp->tasks_pids[mid] <= pid) | 2633 | } else if (l->list[mid] <= pid) |
| 2272 | index = mid + 1; | 2634 | index = mid + 1; |
| 2273 | else | 2635 | else |
| 2274 | end = mid; | 2636 | end = mid; |
| 2275 | } | 2637 | } |
| 2276 | } | 2638 | } |
| 2277 | /* If we're off the end of the array, we're done */ | 2639 | /* If we're off the end of the array, we're done */ |
| 2278 | if (index >= cp->length) | 2640 | if (index >= l->length) |
| 2279 | return NULL; | 2641 | return NULL; |
| 2280 | /* Update the abstract position to be the actual pid that we found */ | 2642 | /* Update the abstract position to be the actual pid that we found */ |
| 2281 | iter = cp->tasks_pids + index; | 2643 | iter = l->list + index; |
| 2282 | *pos = *iter; | 2644 | *pos = *iter; |
| 2283 | return iter; | 2645 | return iter; |
| 2284 | } | 2646 | } |
| 2285 | 2647 | ||
| 2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2648 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| 2287 | { | 2649 | { |
| 2288 | struct cgroup_pids *cp = s->private; | 2650 | struct cgroup_pidlist *l = s->private; |
| 2289 | struct cgroup *cgrp = cp->cgrp; | 2651 | up_read(&l->mutex); |
| 2290 | up_read(&cgrp->pids_mutex); | ||
| 2291 | } | 2652 | } |
| 2292 | 2653 | ||
| 2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2654 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| 2294 | { | 2655 | { |
| 2295 | struct cgroup_pids *cp = s->private; | 2656 | struct cgroup_pidlist *l = s->private; |
| 2296 | int *p = v; | 2657 | pid_t *p = v; |
| 2297 | int *end = cp->tasks_pids + cp->length; | 2658 | pid_t *end = l->list + l->length; |
| 2298 | |||
| 2299 | /* | 2659 | /* |
| 2300 | * Advance to the next pid in the array. If this goes off the | 2660 | * Advance to the next pid in the array. If this goes off the |
| 2301 | * end, we're done | 2661 | * end, we're done |
| @@ -2309,124 +2669,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | |||
| 2309 | } | 2669 | } |
| 2310 | } | 2670 | } |
| 2311 | 2671 | ||
| 2312 | static int cgroup_tasks_show(struct seq_file *s, void *v) | 2672 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| 2313 | { | 2673 | { |
| 2314 | return seq_printf(s, "%d\n", *(int *)v); | 2674 | return seq_printf(s, "%d\n", *(int *)v); |
| 2315 | } | 2675 | } |
| 2316 | 2676 | ||
| 2317 | static struct seq_operations cgroup_tasks_seq_operations = { | 2677 | /* |
| 2318 | .start = cgroup_tasks_start, | 2678 | * seq_operations functions for iterating on pidlists through seq_file - |
| 2319 | .stop = cgroup_tasks_stop, | 2679 | * independent of whether it's tasks or procs |
| 2320 | .next = cgroup_tasks_next, | 2680 | */ |
| 2321 | .show = cgroup_tasks_show, | 2681 | static const struct seq_operations cgroup_pidlist_seq_operations = { |
| 2682 | .start = cgroup_pidlist_start, | ||
| 2683 | .stop = cgroup_pidlist_stop, | ||
| 2684 | .next = cgroup_pidlist_next, | ||
| 2685 | .show = cgroup_pidlist_show, | ||
| 2322 | }; | 2686 | }; |
| 2323 | 2687 | ||
| 2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) | 2688 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
| 2325 | { | 2689 | { |
| 2326 | struct cgroup *cgrp = cp->cgrp; | 2690 | /* |
| 2327 | 2691 | * the case where we're the last user of this particular pidlist will | |
| 2328 | down_write(&cgrp->pids_mutex); | 2692 | * have us remove it from the cgroup's list, which entails taking the |
| 2329 | BUG_ON(!cp->use_count); | 2693 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
| 2330 | if (!--cp->use_count) { | 2694 | * pidlist_mutex, we have to take pidlist_mutex first. |
| 2331 | list_del(&cp->list); | 2695 | */ |
| 2332 | put_pid_ns(cp->ns); | 2696 | mutex_lock(&l->owner->pidlist_mutex); |
| 2333 | kfree(cp->tasks_pids); | 2697 | down_write(&l->mutex); |
| 2334 | kfree(cp); | 2698 | BUG_ON(!l->use_count); |
| 2699 | if (!--l->use_count) { | ||
| 2700 | /* we're the last user if refcount is 0; remove and free */ | ||
| 2701 | list_del(&l->links); | ||
| 2702 | mutex_unlock(&l->owner->pidlist_mutex); | ||
| 2703 | pidlist_free(l->list); | ||
| 2704 | put_pid_ns(l->key.ns); | ||
| 2705 | up_write(&l->mutex); | ||
| 2706 | kfree(l); | ||
| 2707 | return; | ||
| 2335 | } | 2708 | } |
| 2336 | up_write(&cgrp->pids_mutex); | 2709 | mutex_unlock(&l->owner->pidlist_mutex); |
| 2710 | up_write(&l->mutex); | ||
| 2337 | } | 2711 | } |
| 2338 | 2712 | ||
| 2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2713 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
| 2340 | { | 2714 | { |
| 2341 | struct seq_file *seq; | 2715 | struct cgroup_pidlist *l; |
| 2342 | struct cgroup_pids *cp; | ||
| 2343 | |||
| 2344 | if (!(file->f_mode & FMODE_READ)) | 2716 | if (!(file->f_mode & FMODE_READ)) |
| 2345 | return 0; | 2717 | return 0; |
| 2346 | 2718 | /* | |
| 2347 | seq = file->private_data; | 2719 | * the seq_file will only be initialized if the file was opened for |
| 2348 | cp = seq->private; | 2720 | * reading; hence we check if it's not null only in that case. |
| 2349 | 2721 | */ | |
| 2350 | release_cgroup_pid_array(cp); | 2722 | l = ((struct seq_file *)file->private_data)->private; |
| 2723 | cgroup_release_pid_array(l); | ||
| 2351 | return seq_release(inode, file); | 2724 | return seq_release(inode, file); |
| 2352 | } | 2725 | } |
| 2353 | 2726 | ||
| 2354 | static struct file_operations cgroup_tasks_operations = { | 2727 | static const struct file_operations cgroup_pidlist_operations = { |
| 2355 | .read = seq_read, | 2728 | .read = seq_read, |
| 2356 | .llseek = seq_lseek, | 2729 | .llseek = seq_lseek, |
| 2357 | .write = cgroup_file_write, | 2730 | .write = cgroup_file_write, |
| 2358 | .release = cgroup_tasks_release, | 2731 | .release = cgroup_pidlist_release, |
| 2359 | }; | 2732 | }; |
| 2360 | 2733 | ||
| 2361 | /* | 2734 | /* |
| 2362 | * Handle an open on 'tasks' file. Prepare an array containing the | 2735 | * The following functions handle opens on a file that displays a pidlist |
| 2363 | * process id's of tasks currently attached to the cgroup being opened. | 2736 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
| 2737 | * in the cgroup. | ||
| 2364 | */ | 2738 | */ |
| 2365 | 2739 | /* helper function for the two below it */ | |
| 2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2740 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
| 2367 | { | 2741 | { |
| 2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2742 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| 2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | 2743 | struct cgroup_pidlist *l; |
| 2370 | struct cgroup_pids *cp; | ||
| 2371 | pid_t *pidarray; | ||
| 2372 | int npids; | ||
| 2373 | int retval; | 2744 | int retval; |
| 2374 | 2745 | ||
| 2375 | /* Nothing to do for write-only files */ | 2746 | /* Nothing to do for write-only files */ |
| 2376 | if (!(file->f_mode & FMODE_READ)) | 2747 | if (!(file->f_mode & FMODE_READ)) |
| 2377 | return 0; | 2748 | return 0; |
| 2378 | 2749 | ||
| 2379 | /* | 2750 | /* have the array populated */ |
| 2380 | * If cgroup gets more users after we read count, we won't have | 2751 | retval = pidlist_array_load(cgrp, type, &l); |
| 2381 | * enough space - tough. This race is indistinguishable to the | 2752 | if (retval) |
| 2382 | * caller from the case that the additional cgroup users didn't | 2753 | return retval; |
| 2383 | * show up until sometime later on. | 2754 | /* configure file information */ |
| 2384 | */ | 2755 | file->f_op = &cgroup_pidlist_operations; |
| 2385 | npids = cgroup_task_count(cgrp); | ||
| 2386 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
| 2387 | if (!pidarray) | ||
| 2388 | return -ENOMEM; | ||
| 2389 | npids = pid_array_load(pidarray, npids, cgrp); | ||
| 2390 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
| 2391 | |||
| 2392 | /* | ||
| 2393 | * Store the array in the cgroup, freeing the old | ||
| 2394 | * array if necessary | ||
| 2395 | */ | ||
| 2396 | down_write(&cgrp->pids_mutex); | ||
| 2397 | |||
| 2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { | ||
| 2399 | if (ns == cp->ns) | ||
| 2400 | goto found; | ||
| 2401 | } | ||
| 2402 | |||
| 2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
| 2404 | if (!cp) { | ||
| 2405 | up_write(&cgrp->pids_mutex); | ||
| 2406 | kfree(pidarray); | ||
| 2407 | return -ENOMEM; | ||
| 2408 | } | ||
| 2409 | cp->cgrp = cgrp; | ||
| 2410 | cp->ns = ns; | ||
| 2411 | get_pid_ns(ns); | ||
| 2412 | list_add(&cp->list, &cgrp->pids_list); | ||
| 2413 | found: | ||
| 2414 | kfree(cp->tasks_pids); | ||
| 2415 | cp->tasks_pids = pidarray; | ||
| 2416 | cp->length = npids; | ||
| 2417 | cp->use_count++; | ||
| 2418 | up_write(&cgrp->pids_mutex); | ||
| 2419 | |||
| 2420 | file->f_op = &cgroup_tasks_operations; | ||
| 2421 | 2756 | ||
| 2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2757 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
| 2423 | if (retval) { | 2758 | if (retval) { |
| 2424 | release_cgroup_pid_array(cp); | 2759 | cgroup_release_pid_array(l); |
| 2425 | return retval; | 2760 | return retval; |
| 2426 | } | 2761 | } |
| 2427 | ((struct seq_file *)file->private_data)->private = cp; | 2762 | ((struct seq_file *)file->private_data)->private = l; |
| 2428 | return 0; | 2763 | return 0; |
| 2429 | } | 2764 | } |
| 2765 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | ||
| 2766 | { | ||
| 2767 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | ||
| 2768 | } | ||
| 2769 | static int cgroup_procs_open(struct inode *unused, struct file *file) | ||
| 2770 | { | ||
| 2771 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | ||
| 2772 | } | ||
| 2430 | 2773 | ||
| 2431 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 2774 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
| 2432 | struct cftype *cft) | 2775 | struct cftype *cft) |
| @@ -2449,21 +2792,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp, | |||
| 2449 | /* | 2792 | /* |
| 2450 | * for the common functions, 'private' gives the type of file | 2793 | * for the common functions, 'private' gives the type of file |
| 2451 | */ | 2794 | */ |
| 2795 | /* for hysterical raisins, we can't put this on the older files */ | ||
| 2796 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | ||
| 2452 | static struct cftype files[] = { | 2797 | static struct cftype files[] = { |
| 2453 | { | 2798 | { |
| 2454 | .name = "tasks", | 2799 | .name = "tasks", |
| 2455 | .open = cgroup_tasks_open, | 2800 | .open = cgroup_tasks_open, |
| 2456 | .write_u64 = cgroup_tasks_write, | 2801 | .write_u64 = cgroup_tasks_write, |
| 2457 | .release = cgroup_tasks_release, | 2802 | .release = cgroup_pidlist_release, |
| 2458 | .private = FILE_TASKLIST, | ||
| 2459 | .mode = S_IRUGO | S_IWUSR, | 2803 | .mode = S_IRUGO | S_IWUSR, |
| 2460 | }, | 2804 | }, |
| 2461 | 2805 | { | |
| 2806 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | ||
| 2807 | .open = cgroup_procs_open, | ||
| 2808 | /* .write_u64 = cgroup_procs_write, TODO */ | ||
| 2809 | .release = cgroup_pidlist_release, | ||
| 2810 | .mode = S_IRUGO, | ||
| 2811 | }, | ||
| 2462 | { | 2812 | { |
| 2463 | .name = "notify_on_release", | 2813 | .name = "notify_on_release", |
| 2464 | .read_u64 = cgroup_read_notify_on_release, | 2814 | .read_u64 = cgroup_read_notify_on_release, |
| 2465 | .write_u64 = cgroup_write_notify_on_release, | 2815 | .write_u64 = cgroup_write_notify_on_release, |
| 2466 | .private = FILE_NOTIFY_ON_RELEASE, | ||
| 2467 | }, | 2816 | }, |
| 2468 | }; | 2817 | }; |
| 2469 | 2818 | ||
| @@ -2472,7 +2821,6 @@ static struct cftype cft_release_agent = { | |||
| 2472 | .read_seq_string = cgroup_release_agent_show, | 2821 | .read_seq_string = cgroup_release_agent_show, |
| 2473 | .write_string = cgroup_release_agent_write, | 2822 | .write_string = cgroup_release_agent_write, |
| 2474 | .max_write_len = PATH_MAX, | 2823 | .max_write_len = PATH_MAX, |
| 2475 | .private = FILE_RELEASE_AGENT, | ||
| 2476 | }; | 2824 | }; |
| 2477 | 2825 | ||
| 2478 | static int cgroup_populate_dir(struct cgroup *cgrp) | 2826 | static int cgroup_populate_dir(struct cgroup *cgrp) |
| @@ -2879,6 +3227,7 @@ int __init cgroup_init_early(void) | |||
| 2879 | init_task.cgroups = &init_css_set; | 3227 | init_task.cgroups = &init_css_set; |
| 2880 | 3228 | ||
| 2881 | init_css_set_link.cg = &init_css_set; | 3229 | init_css_set_link.cg = &init_css_set; |
| 3230 | init_css_set_link.cgrp = dummytop; | ||
| 2882 | list_add(&init_css_set_link.cgrp_link_list, | 3231 | list_add(&init_css_set_link.cgrp_link_list, |
| 2883 | &rootnode.top_cgroup.css_sets); | 3232 | &rootnode.top_cgroup.css_sets); |
| 2884 | list_add(&init_css_set_link.cg_link_list, | 3233 | list_add(&init_css_set_link.cg_link_list, |
| @@ -2933,7 +3282,7 @@ int __init cgroup_init(void) | |||
| 2933 | /* Add init_css_set to the hash table */ | 3282 | /* Add init_css_set to the hash table */ |
| 2934 | hhead = css_set_hash(init_css_set.subsys); | 3283 | hhead = css_set_hash(init_css_set.subsys); |
| 2935 | hlist_add_head(&init_css_set.hlist, hhead); | 3284 | hlist_add_head(&init_css_set.hlist, hhead); |
| 2936 | 3285 | BUG_ON(!init_root_id(&rootnode)); | |
| 2937 | err = register_filesystem(&cgroup_fs_type); | 3286 | err = register_filesystem(&cgroup_fs_type); |
| 2938 | if (err < 0) | 3287 | if (err < 0) |
| 2939 | goto out; | 3288 | goto out; |
| @@ -2986,15 +3335,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v) | |||
| 2986 | for_each_active_root(root) { | 3335 | for_each_active_root(root) { |
| 2987 | struct cgroup_subsys *ss; | 3336 | struct cgroup_subsys *ss; |
| 2988 | struct cgroup *cgrp; | 3337 | struct cgroup *cgrp; |
| 2989 | int subsys_id; | ||
| 2990 | int count = 0; | 3338 | int count = 0; |
| 2991 | 3339 | ||
| 2992 | seq_printf(m, "%lu:", root->subsys_bits); | 3340 | seq_printf(m, "%d:", root->hierarchy_id); |
| 2993 | for_each_subsys(root, ss) | 3341 | for_each_subsys(root, ss) |
| 2994 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 3342 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
| 3343 | if (strlen(root->name)) | ||
| 3344 | seq_printf(m, "%sname=%s", count ? "," : "", | ||
| 3345 | root->name); | ||
| 2995 | seq_putc(m, ':'); | 3346 | seq_putc(m, ':'); |
| 2996 | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 3347 | cgrp = task_cgroup_from_root(tsk, root); |
| 2997 | cgrp = task_cgroup(tsk, subsys_id); | ||
| 2998 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 3348 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
| 2999 | if (retval < 0) | 3349 | if (retval < 0) |
| 3000 | goto out_unlock; | 3350 | goto out_unlock; |
| @@ -3017,7 +3367,7 @@ static int cgroup_open(struct inode *inode, struct file *file) | |||
| 3017 | return single_open(file, proc_cgroup_show, pid); | 3367 | return single_open(file, proc_cgroup_show, pid); |
| 3018 | } | 3368 | } |
| 3019 | 3369 | ||
| 3020 | struct file_operations proc_cgroup_operations = { | 3370 | const struct file_operations proc_cgroup_operations = { |
| 3021 | .open = cgroup_open, | 3371 | .open = cgroup_open, |
| 3022 | .read = seq_read, | 3372 | .read = seq_read, |
| 3023 | .llseek = seq_lseek, | 3373 | .llseek = seq_lseek, |
| @@ -3033,8 +3383,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) | |||
| 3033 | mutex_lock(&cgroup_mutex); | 3383 | mutex_lock(&cgroup_mutex); |
| 3034 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 3384 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| 3035 | struct cgroup_subsys *ss = subsys[i]; | 3385 | struct cgroup_subsys *ss = subsys[i]; |
| 3036 | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 3386 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
| 3037 | ss->name, ss->root->subsys_bits, | 3387 | ss->name, ss->root->hierarchy_id, |
| 3038 | ss->root->number_of_cgroups, !ss->disabled); | 3388 | ss->root->number_of_cgroups, !ss->disabled); |
| 3039 | } | 3389 | } |
| 3040 | mutex_unlock(&cgroup_mutex); | 3390 | mutex_unlock(&cgroup_mutex); |
| @@ -3046,7 +3396,7 @@ static int cgroupstats_open(struct inode *inode, struct file *file) | |||
| 3046 | return single_open(file, proc_cgroupstats_show, NULL); | 3396 | return single_open(file, proc_cgroupstats_show, NULL); |
| 3047 | } | 3397 | } |
| 3048 | 3398 | ||
| 3049 | static struct file_operations proc_cgroupstats_operations = { | 3399 | static const struct file_operations proc_cgroupstats_operations = { |
| 3050 | .open = cgroupstats_open, | 3400 | .open = cgroupstats_open, |
| 3051 | .read = seq_read, | 3401 | .read = seq_read, |
| 3052 | .llseek = seq_lseek, | 3402 | .llseek = seq_lseek, |
| @@ -3320,13 +3670,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | |||
| 3320 | { | 3670 | { |
| 3321 | int ret; | 3671 | int ret; |
| 3322 | struct cgroup *target; | 3672 | struct cgroup *target; |
| 3323 | int subsys_id; | ||
| 3324 | 3673 | ||
| 3325 | if (cgrp == dummytop) | 3674 | if (cgrp == dummytop) |
| 3326 | return 1; | 3675 | return 1; |
| 3327 | 3676 | ||
| 3328 | get_first_subsys(cgrp, NULL, &subsys_id); | 3677 | target = task_cgroup_from_root(task, cgrp->root); |
| 3329 | target = task_cgroup(task, subsys_id); | ||
| 3330 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3678 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
| 3331 | cgrp = cgrp->parent; | 3679 | cgrp = cgrp->parent; |
| 3332 | ret = (cgrp == target); | 3680 | ret = (cgrp == target); |
| @@ -3358,8 +3706,10 @@ static void check_for_release(struct cgroup *cgrp) | |||
| 3358 | void __css_put(struct cgroup_subsys_state *css) | 3706 | void __css_put(struct cgroup_subsys_state *css) |
| 3359 | { | 3707 | { |
| 3360 | struct cgroup *cgrp = css->cgroup; | 3708 | struct cgroup *cgrp = css->cgroup; |
| 3709 | int val; | ||
| 3361 | rcu_read_lock(); | 3710 | rcu_read_lock(); |
| 3362 | if (atomic_dec_return(&css->refcnt) == 1) { | 3711 | val = atomic_dec_return(&css->refcnt); |
| 3712 | if (val == 1) { | ||
| 3363 | if (notify_on_release(cgrp)) { | 3713 | if (notify_on_release(cgrp)) { |
| 3364 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 3714 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| 3365 | check_for_release(cgrp); | 3715 | check_for_release(cgrp); |
| @@ -3367,6 +3717,7 @@ void __css_put(struct cgroup_subsys_state *css) | |||
| 3367 | cgroup_wakeup_rmdir_waiter(cgrp); | 3717 | cgroup_wakeup_rmdir_waiter(cgrp); |
| 3368 | } | 3718 | } |
| 3369 | rcu_read_unlock(); | 3719 | rcu_read_unlock(); |
| 3720 | WARN_ON_ONCE(val < 1); | ||
| 3370 | } | 3721 | } |
| 3371 | 3722 | ||
| 3372 | /* | 3723 | /* |
| @@ -3693,3 +4044,154 @@ css_get_next(struct cgroup_subsys *ss, int id, | |||
| 3693 | return ret; | 4044 | return ret; |
| 3694 | } | 4045 | } |
| 3695 | 4046 | ||
| 4047 | #ifdef CONFIG_CGROUP_DEBUG | ||
| 4048 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
| 4049 | struct cgroup *cont) | ||
| 4050 | { | ||
| 4051 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
| 4052 | |||
| 4053 | if (!css) | ||
| 4054 | return ERR_PTR(-ENOMEM); | ||
| 4055 | |||
| 4056 | return css; | ||
| 4057 | } | ||
| 4058 | |||
| 4059 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 4060 | { | ||
| 4061 | kfree(cont->subsys[debug_subsys_id]); | ||
| 4062 | } | ||
| 4063 | |||
| 4064 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 4065 | { | ||
| 4066 | return atomic_read(&cont->count); | ||
| 4067 | } | ||
| 4068 | |||
| 4069 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 4070 | { | ||
| 4071 | return cgroup_task_count(cont); | ||
| 4072 | } | ||
| 4073 | |||
| 4074 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
| 4075 | { | ||
| 4076 | return (u64)(unsigned long)current->cgroups; | ||
| 4077 | } | ||
| 4078 | |||
| 4079 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
| 4080 | struct cftype *cft) | ||
| 4081 | { | ||
| 4082 | u64 count; | ||
| 4083 | |||
| 4084 | rcu_read_lock(); | ||
| 4085 | count = atomic_read(¤t->cgroups->refcount); | ||
| 4086 | rcu_read_unlock(); | ||
| 4087 | return count; | ||
| 4088 | } | ||
| 4089 | |||
| 4090 | static int current_css_set_cg_links_read(struct cgroup *cont, | ||
| 4091 | struct cftype *cft, | ||
| 4092 | struct seq_file *seq) | ||
| 4093 | { | ||
| 4094 | struct cg_cgroup_link *link; | ||
| 4095 | struct css_set *cg; | ||
| 4096 | |||
| 4097 | read_lock(&css_set_lock); | ||
| 4098 | rcu_read_lock(); | ||
| 4099 | cg = rcu_dereference(current->cgroups); | ||
| 4100 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | ||
| 4101 | struct cgroup *c = link->cgrp; | ||
| 4102 | const char *name; | ||
| 4103 | |||
| 4104 | if (c->dentry) | ||
| 4105 | name = c->dentry->d_name.name; | ||
| 4106 | else | ||
| 4107 | name = "?"; | ||
| 4108 | seq_printf(seq, "Root %d group %s\n", | ||
| 4109 | c->root->hierarchy_id, name); | ||
| 4110 | } | ||
| 4111 | rcu_read_unlock(); | ||
| 4112 | read_unlock(&css_set_lock); | ||
| 4113 | return 0; | ||
| 4114 | } | ||
| 4115 | |||
| 4116 | #define MAX_TASKS_SHOWN_PER_CSS 25 | ||
| 4117 | static int cgroup_css_links_read(struct cgroup *cont, | ||
| 4118 | struct cftype *cft, | ||
| 4119 | struct seq_file *seq) | ||
| 4120 | { | ||
| 4121 | struct cg_cgroup_link *link; | ||
| 4122 | |||
| 4123 | read_lock(&css_set_lock); | ||
| 4124 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | ||
| 4125 | struct css_set *cg = link->cg; | ||
| 4126 | struct task_struct *task; | ||
| 4127 | int count = 0; | ||
| 4128 | seq_printf(seq, "css_set %p\n", cg); | ||
| 4129 | list_for_each_entry(task, &cg->tasks, cg_list) { | ||
| 4130 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | ||
| 4131 | seq_puts(seq, " ...\n"); | ||
| 4132 | break; | ||
| 4133 | } else { | ||
| 4134 | seq_printf(seq, " task %d\n", | ||
| 4135 | task_pid_vnr(task)); | ||
| 4136 | } | ||
| 4137 | } | ||
| 4138 | } | ||
| 4139 | read_unlock(&css_set_lock); | ||
| 4140 | return 0; | ||
| 4141 | } | ||
| 4142 | |||
| 4143 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
| 4144 | { | ||
| 4145 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
| 4146 | } | ||
| 4147 | |||
| 4148 | static struct cftype debug_files[] = { | ||
| 4149 | { | ||
| 4150 | .name = "cgroup_refcount", | ||
| 4151 | .read_u64 = cgroup_refcount_read, | ||
| 4152 | }, | ||
| 4153 | { | ||
| 4154 | .name = "taskcount", | ||
| 4155 | .read_u64 = debug_taskcount_read, | ||
| 4156 | }, | ||
| 4157 | |||
| 4158 | { | ||
| 4159 | .name = "current_css_set", | ||
| 4160 | .read_u64 = current_css_set_read, | ||
| 4161 | }, | ||
| 4162 | |||
| 4163 | { | ||
| 4164 | .name = "current_css_set_refcount", | ||
| 4165 | .read_u64 = current_css_set_refcount_read, | ||
| 4166 | }, | ||
| 4167 | |||
| 4168 | { | ||
| 4169 | .name = "current_css_set_cg_links", | ||
| 4170 | .read_seq_string = current_css_set_cg_links_read, | ||
| 4171 | }, | ||
| 4172 | |||
| 4173 | { | ||
| 4174 | .name = "cgroup_css_links", | ||
| 4175 | .read_seq_string = cgroup_css_links_read, | ||
| 4176 | }, | ||
| 4177 | |||
| 4178 | { | ||
| 4179 | .name = "releasable", | ||
| 4180 | .read_u64 = releasable_read, | ||
| 4181 | }, | ||
| 4182 | }; | ||
| 4183 | |||
| 4184 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 4185 | { | ||
| 4186 | return cgroup_add_files(cont, ss, debug_files, | ||
| 4187 | ARRAY_SIZE(debug_files)); | ||
| 4188 | } | ||
| 4189 | |||
| 4190 | struct cgroup_subsys debug_subsys = { | ||
| 4191 | .name = "debug", | ||
| 4192 | .create = debug_create, | ||
| 4193 | .destroy = debug_destroy, | ||
| 4194 | .populate = debug_populate, | ||
| 4195 | .subsys_id = debug_subsys_id, | ||
| 4196 | }; | ||
| 4197 | #endif /* CONFIG_CGROUP_DEBUG */ | ||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c deleted file mode 100644 index 0c92d797baa6..000000000000 --- a/kernel/cgroup_debug.c +++ /dev/null | |||
| @@ -1,105 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * kernel/cgroup_debug.c - Example cgroup subsystem that | ||
| 3 | * exposes debug info | ||
| 4 | * | ||
| 5 | * Copyright (C) Google Inc, 2007 | ||
| 6 | * | ||
| 7 | * Developed by Paul Menage (menage@google.com) | ||
| 8 | * | ||
| 9 | */ | ||
| 10 | |||
| 11 | #include <linux/cgroup.h> | ||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/slab.h> | ||
| 14 | #include <linux/rcupdate.h> | ||
| 15 | |||
| 16 | #include <asm/atomic.h> | ||
| 17 | |||
| 18 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
| 19 | struct cgroup *cont) | ||
| 20 | { | ||
| 21 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
| 22 | |||
| 23 | if (!css) | ||
| 24 | return ERR_PTR(-ENOMEM); | ||
| 25 | |||
| 26 | return css; | ||
| 27 | } | ||
| 28 | |||
| 29 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 30 | { | ||
| 31 | kfree(cont->subsys[debug_subsys_id]); | ||
| 32 | } | ||
| 33 | |||
| 34 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 35 | { | ||
| 36 | return atomic_read(&cont->count); | ||
| 37 | } | ||
| 38 | |||
| 39 | static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 40 | { | ||
| 41 | u64 count; | ||
| 42 | |||
| 43 | count = cgroup_task_count(cont); | ||
| 44 | return count; | ||
| 45 | } | ||
| 46 | |||
| 47 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
| 48 | { | ||
| 49 | return (u64)(long)current->cgroups; | ||
| 50 | } | ||
| 51 | |||
| 52 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
| 53 | struct cftype *cft) | ||
| 54 | { | ||
| 55 | u64 count; | ||
| 56 | |||
| 57 | rcu_read_lock(); | ||
| 58 | count = atomic_read(¤t->cgroups->refcount); | ||
| 59 | rcu_read_unlock(); | ||
| 60 | return count; | ||
| 61 | } | ||
| 62 | |||
| 63 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
| 64 | { | ||
| 65 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
| 66 | } | ||
| 67 | |||
| 68 | static struct cftype files[] = { | ||
| 69 | { | ||
| 70 | .name = "cgroup_refcount", | ||
| 71 | .read_u64 = cgroup_refcount_read, | ||
| 72 | }, | ||
| 73 | { | ||
| 74 | .name = "taskcount", | ||
| 75 | .read_u64 = taskcount_read, | ||
| 76 | }, | ||
| 77 | |||
| 78 | { | ||
| 79 | .name = "current_css_set", | ||
| 80 | .read_u64 = current_css_set_read, | ||
| 81 | }, | ||
| 82 | |||
| 83 | { | ||
| 84 | .name = "current_css_set_refcount", | ||
| 85 | .read_u64 = current_css_set_refcount_read, | ||
| 86 | }, | ||
| 87 | |||
| 88 | { | ||
| 89 | .name = "releasable", | ||
| 90 | .read_u64 = releasable_read, | ||
| 91 | }, | ||
| 92 | }; | ||
| 93 | |||
| 94 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 95 | { | ||
| 96 | return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | ||
| 97 | } | ||
| 98 | |||
| 99 | struct cgroup_subsys debug_subsys = { | ||
| 100 | .name = "debug", | ||
| 101 | .create = debug_create, | ||
| 102 | .destroy = debug_destroy, | ||
| 103 | .populate = debug_populate, | ||
| 104 | .subsys_id = debug_subsys_id, | ||
| 105 | }; | ||
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index fb249e2bcada..59e9ef6aab40 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
| @@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task) | |||
| 159 | */ | 159 | */ |
| 160 | static int freezer_can_attach(struct cgroup_subsys *ss, | 160 | static int freezer_can_attach(struct cgroup_subsys *ss, |
| 161 | struct cgroup *new_cgroup, | 161 | struct cgroup *new_cgroup, |
| 162 | struct task_struct *task) | 162 | struct task_struct *task, bool threadgroup) |
| 163 | { | 163 | { |
| 164 | struct freezer *freezer; | 164 | struct freezer *freezer; |
| 165 | 165 | ||
| @@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss, | |||
| 177 | if (freezer->state == CGROUP_FROZEN) | 177 | if (freezer->state == CGROUP_FROZEN) |
| 178 | return -EBUSY; | 178 | return -EBUSY; |
| 179 | 179 | ||
| 180 | if (threadgroup) { | ||
| 181 | struct task_struct *c; | ||
| 182 | |||
| 183 | rcu_read_lock(); | ||
| 184 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
| 185 | if (is_task_frozen_enough(c)) { | ||
| 186 | rcu_read_unlock(); | ||
| 187 | return -EBUSY; | ||
| 188 | } | ||
| 189 | } | ||
| 190 | rcu_read_unlock(); | ||
| 191 | } | ||
| 192 | |||
| 180 | return 0; | 193 | return 0; |
| 181 | } | 194 | } |
| 182 | 195 | ||
diff --git a/kernel/cpu.c b/kernel/cpu.c index 8ce10043e4ac..6ba0f1ecb212 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
| @@ -401,6 +401,7 @@ int disable_nonboot_cpus(void) | |||
| 401 | break; | 401 | break; |
| 402 | } | 402 | } |
| 403 | } | 403 | } |
| 404 | |||
| 404 | if (!error) { | 405 | if (!error) { |
| 405 | BUG_ON(num_online_cpus() > 1); | 406 | BUG_ON(num_online_cpus() > 1); |
| 406 | /* Make sure the CPUs won't be enabled by someone else */ | 407 | /* Make sure the CPUs won't be enabled by someone else */ |
| @@ -413,6 +414,14 @@ int disable_nonboot_cpus(void) | |||
| 413 | return error; | 414 | return error; |
| 414 | } | 415 | } |
| 415 | 416 | ||
| 417 | void __weak arch_enable_nonboot_cpus_begin(void) | ||
| 418 | { | ||
| 419 | } | ||
| 420 | |||
| 421 | void __weak arch_enable_nonboot_cpus_end(void) | ||
| 422 | { | ||
| 423 | } | ||
| 424 | |||
| 416 | void __ref enable_nonboot_cpus(void) | 425 | void __ref enable_nonboot_cpus(void) |
| 417 | { | 426 | { |
| 418 | int cpu, error; | 427 | int cpu, error; |
| @@ -424,6 +433,9 @@ void __ref enable_nonboot_cpus(void) | |||
| 424 | goto out; | 433 | goto out; |
| 425 | 434 | ||
| 426 | printk("Enabling non-boot CPUs ...\n"); | 435 | printk("Enabling non-boot CPUs ...\n"); |
| 436 | |||
| 437 | arch_enable_nonboot_cpus_begin(); | ||
| 438 | |||
| 427 | for_each_cpu(cpu, frozen_cpus) { | 439 | for_each_cpu(cpu, frozen_cpus) { |
| 428 | error = _cpu_up(cpu, 1); | 440 | error = _cpu_up(cpu, 1); |
| 429 | if (!error) { | 441 | if (!error) { |
| @@ -432,6 +444,9 @@ void __ref enable_nonboot_cpus(void) | |||
| 432 | } | 444 | } |
| 433 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); | 445 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); |
| 434 | } | 446 | } |
| 447 | |||
| 448 | arch_enable_nonboot_cpus_end(); | ||
| 449 | |||
| 435 | cpumask_clear(frozen_cpus); | 450 | cpumask_clear(frozen_cpus); |
| 436 | out: | 451 | out: |
| 437 | cpu_maps_update_done(); | 452 | cpu_maps_update_done(); |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 7e75a41bd508..3cf2183b472d 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
| @@ -537,8 +537,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |||
| 537 | * element of the partition (one sched domain) to be passed to | 537 | * element of the partition (one sched domain) to be passed to |
| 538 | * partition_sched_domains(). | 538 | * partition_sched_domains(). |
| 539 | */ | 539 | */ |
| 540 | /* FIXME: see the FIXME in partition_sched_domains() */ | 540 | static int generate_sched_domains(cpumask_var_t **domains, |
| 541 | static int generate_sched_domains(struct cpumask **domains, | ||
| 542 | struct sched_domain_attr **attributes) | 541 | struct sched_domain_attr **attributes) |
| 543 | { | 542 | { |
| 544 | LIST_HEAD(q); /* queue of cpusets to be scanned */ | 543 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
| @@ -546,7 +545,7 @@ static int generate_sched_domains(struct cpumask **domains, | |||
| 546 | struct cpuset **csa; /* array of all cpuset ptrs */ | 545 | struct cpuset **csa; /* array of all cpuset ptrs */ |
| 547 | int csn; /* how many cpuset ptrs in csa so far */ | 546 | int csn; /* how many cpuset ptrs in csa so far */ |
| 548 | int i, j, k; /* indices for partition finding loops */ | 547 | int i, j, k; /* indices for partition finding loops */ |
| 549 | struct cpumask *doms; /* resulting partition; i.e. sched domains */ | 548 | cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
| 550 | struct sched_domain_attr *dattr; /* attributes for custom domains */ | 549 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
| 551 | int ndoms = 0; /* number of sched domains in result */ | 550 | int ndoms = 0; /* number of sched domains in result */ |
| 552 | int nslot; /* next empty doms[] struct cpumask slot */ | 551 | int nslot; /* next empty doms[] struct cpumask slot */ |
| @@ -557,7 +556,8 @@ static int generate_sched_domains(struct cpumask **domains, | |||
| 557 | 556 | ||
| 558 | /* Special case for the 99% of systems with one, full, sched domain */ | 557 | /* Special case for the 99% of systems with one, full, sched domain */ |
| 559 | if (is_sched_load_balance(&top_cpuset)) { | 558 | if (is_sched_load_balance(&top_cpuset)) { |
| 560 | doms = kmalloc(cpumask_size(), GFP_KERNEL); | 559 | ndoms = 1; |
| 560 | doms = alloc_sched_domains(ndoms); | ||
| 561 | if (!doms) | 561 | if (!doms) |
| 562 | goto done; | 562 | goto done; |
| 563 | 563 | ||
| @@ -566,9 +566,8 @@ static int generate_sched_domains(struct cpumask **domains, | |||
| 566 | *dattr = SD_ATTR_INIT; | 566 | *dattr = SD_ATTR_INIT; |
| 567 | update_domain_attr_tree(dattr, &top_cpuset); | 567 | update_domain_attr_tree(dattr, &top_cpuset); |
| 568 | } | 568 | } |
| 569 | cpumask_copy(doms, top_cpuset.cpus_allowed); | 569 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); |
| 570 | 570 | ||
| 571 | ndoms = 1; | ||
| 572 | goto done; | 571 | goto done; |
| 573 | } | 572 | } |
| 574 | 573 | ||
| @@ -636,7 +635,7 @@ restart: | |||
| 636 | * Now we know how many domains to create. | 635 | * Now we know how many domains to create. |
| 637 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 636 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. |
| 638 | */ | 637 | */ |
| 639 | doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL); | 638 | doms = alloc_sched_domains(ndoms); |
| 640 | if (!doms) | 639 | if (!doms) |
| 641 | goto done; | 640 | goto done; |
| 642 | 641 | ||
| @@ -656,7 +655,7 @@ restart: | |||
| 656 | continue; | 655 | continue; |
| 657 | } | 656 | } |
| 658 | 657 | ||
| 659 | dp = doms + nslot; | 658 | dp = doms[nslot]; |
| 660 | 659 | ||
| 661 | if (nslot == ndoms) { | 660 | if (nslot == ndoms) { |
| 662 | static int warnings = 10; | 661 | static int warnings = 10; |
| @@ -718,7 +717,7 @@ done: | |||
| 718 | static void do_rebuild_sched_domains(struct work_struct *unused) | 717 | static void do_rebuild_sched_domains(struct work_struct *unused) |
| 719 | { | 718 | { |
| 720 | struct sched_domain_attr *attr; | 719 | struct sched_domain_attr *attr; |
| 721 | struct cpumask *doms; | 720 | cpumask_var_t *doms; |
| 722 | int ndoms; | 721 | int ndoms; |
| 723 | 722 | ||
| 724 | get_online_cpus(); | 723 | get_online_cpus(); |
| @@ -1324,9 +1323,10 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
| 1324 | static cpumask_var_t cpus_attach; | 1323 | static cpumask_var_t cpus_attach; |
| 1325 | 1324 | ||
| 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1325 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
| 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1326 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
| 1328 | struct cgroup *cont, struct task_struct *tsk) | 1327 | struct task_struct *tsk, bool threadgroup) |
| 1329 | { | 1328 | { |
| 1329 | int ret; | ||
| 1330 | struct cpuset *cs = cgroup_cs(cont); | 1330 | struct cpuset *cs = cgroup_cs(cont); |
| 1331 | 1331 | ||
| 1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
| @@ -1343,18 +1343,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
| 1343 | if (tsk->flags & PF_THREAD_BOUND) | 1343 | if (tsk->flags & PF_THREAD_BOUND) |
| 1344 | return -EINVAL; | 1344 | return -EINVAL; |
| 1345 | 1345 | ||
| 1346 | return security_task_setscheduler(tsk, 0, NULL); | 1346 | ret = security_task_setscheduler(tsk, 0, NULL); |
| 1347 | if (ret) | ||
| 1348 | return ret; | ||
| 1349 | if (threadgroup) { | ||
| 1350 | struct task_struct *c; | ||
| 1351 | |||
| 1352 | rcu_read_lock(); | ||
| 1353 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 1354 | ret = security_task_setscheduler(c, 0, NULL); | ||
| 1355 | if (ret) { | ||
| 1356 | rcu_read_unlock(); | ||
| 1357 | return ret; | ||
| 1358 | } | ||
| 1359 | } | ||
| 1360 | rcu_read_unlock(); | ||
| 1361 | } | ||
| 1362 | return 0; | ||
| 1347 | } | 1363 | } |
| 1348 | 1364 | ||
| 1349 | static void cpuset_attach(struct cgroup_subsys *ss, | 1365 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, |
| 1350 | struct cgroup *cont, struct cgroup *oldcont, | 1366 | struct cpuset *cs) |
| 1351 | struct task_struct *tsk) | 1367 | { |
| 1368 | int err; | ||
| 1369 | /* | ||
| 1370 | * can_attach beforehand should guarantee that this doesn't fail. | ||
| 1371 | * TODO: have a better way to handle failure here | ||
| 1372 | */ | ||
| 1373 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
| 1374 | WARN_ON_ONCE(err); | ||
| 1375 | |||
| 1376 | task_lock(tsk); | ||
| 1377 | cpuset_change_task_nodemask(tsk, to); | ||
| 1378 | task_unlock(tsk); | ||
| 1379 | cpuset_update_task_spread_flag(cs, tsk); | ||
| 1380 | |||
| 1381 | } | ||
| 1382 | |||
| 1383 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, | ||
| 1384 | struct cgroup *oldcont, struct task_struct *tsk, | ||
| 1385 | bool threadgroup) | ||
| 1352 | { | 1386 | { |
| 1353 | nodemask_t from, to; | 1387 | nodemask_t from, to; |
| 1354 | struct mm_struct *mm; | 1388 | struct mm_struct *mm; |
| 1355 | struct cpuset *cs = cgroup_cs(cont); | 1389 | struct cpuset *cs = cgroup_cs(cont); |
| 1356 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1390 | struct cpuset *oldcs = cgroup_cs(oldcont); |
| 1357 | int err; | ||
| 1358 | 1391 | ||
| 1359 | if (cs == &top_cpuset) { | 1392 | if (cs == &top_cpuset) { |
| 1360 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1393 | cpumask_copy(cpus_attach, cpu_possible_mask); |
| @@ -1363,15 +1396,19 @@ static void cpuset_attach(struct cgroup_subsys *ss, | |||
| 1363 | guarantee_online_cpus(cs, cpus_attach); | 1396 | guarantee_online_cpus(cs, cpus_attach); |
| 1364 | guarantee_online_mems(cs, &to); | 1397 | guarantee_online_mems(cs, &to); |
| 1365 | } | 1398 | } |
| 1366 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
| 1367 | if (err) | ||
| 1368 | return; | ||
| 1369 | 1399 | ||
| 1370 | task_lock(tsk); | 1400 | /* do per-task migration stuff possibly for each in the threadgroup */ |
| 1371 | cpuset_change_task_nodemask(tsk, &to); | 1401 | cpuset_attach_task(tsk, &to, cs); |
| 1372 | task_unlock(tsk); | 1402 | if (threadgroup) { |
| 1373 | cpuset_update_task_spread_flag(cs, tsk); | 1403 | struct task_struct *c; |
| 1404 | rcu_read_lock(); | ||
| 1405 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 1406 | cpuset_attach_task(c, &to, cs); | ||
| 1407 | } | ||
| 1408 | rcu_read_unlock(); | ||
| 1409 | } | ||
| 1374 | 1410 | ||
| 1411 | /* change mm; only needs to be done once even if threadgroup */ | ||
| 1375 | from = oldcs->mems_allowed; | 1412 | from = oldcs->mems_allowed; |
| 1376 | to = cs->mems_allowed; | 1413 | to = cs->mems_allowed; |
| 1377 | mm = get_task_mm(tsk); | 1414 | mm = get_task_mm(tsk); |
| @@ -2014,7 +2051,7 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb, | |||
| 2014 | unsigned long phase, void *unused_cpu) | 2051 | unsigned long phase, void *unused_cpu) |
| 2015 | { | 2052 | { |
| 2016 | struct sched_domain_attr *attr; | 2053 | struct sched_domain_attr *attr; |
| 2017 | struct cpumask *doms; | 2054 | cpumask_var_t *doms; |
| 2018 | int ndoms; | 2055 | int ndoms; |
| 2019 | 2056 | ||
| 2020 | switch (phase) { | 2057 | switch (phase) { |
| @@ -2499,15 +2536,9 @@ const struct file_operations proc_cpuset_operations = { | |||
| 2499 | }; | 2536 | }; |
| 2500 | #endif /* CONFIG_PROC_PID_CPUSET */ | 2537 | #endif /* CONFIG_PROC_PID_CPUSET */ |
| 2501 | 2538 | ||
| 2502 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | 2539 | /* Display task mems_allowed in /proc/<pid>/status file. */ |
| 2503 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 2540 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
| 2504 | { | 2541 | { |
| 2505 | seq_printf(m, "Cpus_allowed:\t"); | ||
| 2506 | seq_cpumask(m, &task->cpus_allowed); | ||
| 2507 | seq_printf(m, "\n"); | ||
| 2508 | seq_printf(m, "Cpus_allowed_list:\t"); | ||
| 2509 | seq_cpumask_list(m, &task->cpus_allowed); | ||
| 2510 | seq_printf(m, "\n"); | ||
| 2511 | seq_printf(m, "Mems_allowed:\t"); | 2542 | seq_printf(m, "Mems_allowed:\t"); |
| 2512 | seq_nodemask(m, &task->mems_allowed); | 2543 | seq_nodemask(m, &task->mems_allowed); |
| 2513 | seq_printf(m, "\n"); | 2544 | seq_printf(m, "\n"); |
diff --git a/kernel/cred.c b/kernel/cred.c index 006fcab009d5..dd76cfe5f5b0 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
| @@ -147,7 +147,8 @@ static void put_cred_rcu(struct rcu_head *rcu) | |||
| 147 | key_put(cred->thread_keyring); | 147 | key_put(cred->thread_keyring); |
| 148 | key_put(cred->request_key_auth); | 148 | key_put(cred->request_key_auth); |
| 149 | release_tgcred(cred); | 149 | release_tgcred(cred); |
| 150 | put_group_info(cred->group_info); | 150 | if (cred->group_info) |
| 151 | put_group_info(cred->group_info); | ||
| 151 | free_uid(cred->user); | 152 | free_uid(cred->user); |
| 152 | kmem_cache_free(cred_jar, cred); | 153 | kmem_cache_free(cred_jar, cred); |
| 153 | } | 154 | } |
| @@ -781,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as); | |||
| 781 | 782 | ||
| 782 | #ifdef CONFIG_DEBUG_CREDENTIALS | 783 | #ifdef CONFIG_DEBUG_CREDENTIALS |
| 783 | 784 | ||
| 785 | bool creds_are_invalid(const struct cred *cred) | ||
| 786 | { | ||
| 787 | if (cred->magic != CRED_MAGIC) | ||
| 788 | return true; | ||
| 789 | if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) | ||
| 790 | return true; | ||
| 791 | #ifdef CONFIG_SECURITY_SELINUX | ||
| 792 | if (selinux_is_enabled()) { | ||
| 793 | if ((unsigned long) cred->security < PAGE_SIZE) | ||
| 794 | return true; | ||
| 795 | if ((*(u32 *)cred->security & 0xffffff00) == | ||
| 796 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)) | ||
| 797 | return true; | ||
| 798 | } | ||
| 799 | #endif | ||
| 800 | return false; | ||
| 801 | } | ||
| 802 | EXPORT_SYMBOL(creds_are_invalid); | ||
| 803 | |||
| 784 | /* | 804 | /* |
| 785 | * dump invalid credentials | 805 | * dump invalid credentials |
| 786 | */ | 806 | */ |
diff --git a/kernel/delayacct.c b/kernel/delayacct.c index abb6e17505e2..ead9b610aa71 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c | |||
| @@ -15,6 +15,7 @@ | |||
| 15 | 15 | ||
| 16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
| 17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
| 18 | #include <linux/taskstats.h> | ||
| 18 | #include <linux/time.h> | 19 | #include <linux/time.h> |
| 19 | #include <linux/sysctl.h> | 20 | #include <linux/sysctl.h> |
| 20 | #include <linux/delayacct.h> | 21 | #include <linux/delayacct.h> |
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c deleted file mode 100644 index 962a3b574f21..000000000000 --- a/kernel/dma-coherent.c +++ /dev/null | |||
| @@ -1,176 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Coherent per-device memory handling. | ||
| 3 | * Borrowed from i386 | ||
| 4 | */ | ||
| 5 | #include <linux/kernel.h> | ||
| 6 | #include <linux/dma-mapping.h> | ||
| 7 | |||
| 8 | struct dma_coherent_mem { | ||
| 9 | void *virt_base; | ||
| 10 | u32 device_base; | ||
| 11 | int size; | ||
| 12 | int flags; | ||
| 13 | unsigned long *bitmap; | ||
| 14 | }; | ||
| 15 | |||
| 16 | int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, | ||
| 17 | dma_addr_t device_addr, size_t size, int flags) | ||
| 18 | { | ||
| 19 | void __iomem *mem_base = NULL; | ||
| 20 | int pages = size >> PAGE_SHIFT; | ||
| 21 | int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); | ||
| 22 | |||
| 23 | if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) | ||
| 24 | goto out; | ||
| 25 | if (!size) | ||
| 26 | goto out; | ||
| 27 | if (dev->dma_mem) | ||
| 28 | goto out; | ||
| 29 | |||
| 30 | /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ | ||
| 31 | |||
| 32 | mem_base = ioremap(bus_addr, size); | ||
| 33 | if (!mem_base) | ||
| 34 | goto out; | ||
| 35 | |||
| 36 | dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); | ||
| 37 | if (!dev->dma_mem) | ||
| 38 | goto out; | ||
| 39 | dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 40 | if (!dev->dma_mem->bitmap) | ||
| 41 | goto free1_out; | ||
| 42 | |||
| 43 | dev->dma_mem->virt_base = mem_base; | ||
| 44 | dev->dma_mem->device_base = device_addr; | ||
| 45 | dev->dma_mem->size = pages; | ||
| 46 | dev->dma_mem->flags = flags; | ||
| 47 | |||
| 48 | if (flags & DMA_MEMORY_MAP) | ||
| 49 | return DMA_MEMORY_MAP; | ||
| 50 | |||
| 51 | return DMA_MEMORY_IO; | ||
| 52 | |||
| 53 | free1_out: | ||
| 54 | kfree(dev->dma_mem); | ||
| 55 | out: | ||
| 56 | if (mem_base) | ||
| 57 | iounmap(mem_base); | ||
| 58 | return 0; | ||
| 59 | } | ||
| 60 | EXPORT_SYMBOL(dma_declare_coherent_memory); | ||
| 61 | |||
| 62 | void dma_release_declared_memory(struct device *dev) | ||
| 63 | { | ||
| 64 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
| 65 | |||
| 66 | if (!mem) | ||
| 67 | return; | ||
| 68 | dev->dma_mem = NULL; | ||
| 69 | iounmap(mem->virt_base); | ||
| 70 | kfree(mem->bitmap); | ||
| 71 | kfree(mem); | ||
| 72 | } | ||
| 73 | EXPORT_SYMBOL(dma_release_declared_memory); | ||
| 74 | |||
| 75 | void *dma_mark_declared_memory_occupied(struct device *dev, | ||
| 76 | dma_addr_t device_addr, size_t size) | ||
| 77 | { | ||
| 78 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
| 79 | int pos, err; | ||
| 80 | |||
| 81 | size += device_addr & ~PAGE_MASK; | ||
| 82 | |||
| 83 | if (!mem) | ||
| 84 | return ERR_PTR(-EINVAL); | ||
| 85 | |||
| 86 | pos = (device_addr - mem->device_base) >> PAGE_SHIFT; | ||
| 87 | err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); | ||
| 88 | if (err != 0) | ||
| 89 | return ERR_PTR(err); | ||
| 90 | return mem->virt_base + (pos << PAGE_SHIFT); | ||
| 91 | } | ||
| 92 | EXPORT_SYMBOL(dma_mark_declared_memory_occupied); | ||
| 93 | |||
| 94 | /** | ||
| 95 | * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area | ||
| 96 | * | ||
| 97 | * @dev: device from which we allocate memory | ||
| 98 | * @size: size of requested memory area | ||
| 99 | * @dma_handle: This will be filled with the correct dma handle | ||
| 100 | * @ret: This pointer will be filled with the virtual address | ||
| 101 | * to allocated area. | ||
| 102 | * | ||
| 103 | * This function should be only called from per-arch dma_alloc_coherent() | ||
| 104 | * to support allocation from per-device coherent memory pools. | ||
| 105 | * | ||
| 106 | * Returns 0 if dma_alloc_coherent should continue with allocating from | ||
| 107 | * generic memory areas, or !0 if dma_alloc_coherent should return @ret. | ||
| 108 | */ | ||
| 109 | int dma_alloc_from_coherent(struct device *dev, ssize_t size, | ||
| 110 | dma_addr_t *dma_handle, void **ret) | ||
| 111 | { | ||
| 112 | struct dma_coherent_mem *mem; | ||
| 113 | int order = get_order(size); | ||
| 114 | int pageno; | ||
| 115 | |||
| 116 | if (!dev) | ||
| 117 | return 0; | ||
| 118 | mem = dev->dma_mem; | ||
| 119 | if (!mem) | ||
| 120 | return 0; | ||
| 121 | |||
| 122 | *ret = NULL; | ||
| 123 | |||
| 124 | if (unlikely(size > (mem->size << PAGE_SHIFT))) | ||
| 125 | goto err; | ||
| 126 | |||
| 127 | pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); | ||
| 128 | if (unlikely(pageno < 0)) | ||
| 129 | goto err; | ||
| 130 | |||
| 131 | /* | ||
| 132 | * Memory was found in the per-device area. | ||
| 133 | */ | ||
| 134 | *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); | ||
| 135 | *ret = mem->virt_base + (pageno << PAGE_SHIFT); | ||
| 136 | memset(*ret, 0, size); | ||
| 137 | |||
| 138 | return 1; | ||
| 139 | |||
| 140 | err: | ||
| 141 | /* | ||
| 142 | * In the case where the allocation can not be satisfied from the | ||
| 143 | * per-device area, try to fall back to generic memory if the | ||
| 144 | * constraints allow it. | ||
| 145 | */ | ||
| 146 | return mem->flags & DMA_MEMORY_EXCLUSIVE; | ||
| 147 | } | ||
| 148 | EXPORT_SYMBOL(dma_alloc_from_coherent); | ||
| 149 | |||
| 150 | /** | ||
| 151 | * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool | ||
| 152 | * @dev: device from which the memory was allocated | ||
| 153 | * @order: the order of pages allocated | ||
| 154 | * @vaddr: virtual address of allocated pages | ||
| 155 | * | ||
| 156 | * This checks whether the memory was allocated from the per-device | ||
| 157 | * coherent memory pool and if so, releases that memory. | ||
| 158 | * | ||
| 159 | * Returns 1 if we correctly released the memory, or 0 if | ||
| 160 | * dma_release_coherent() should proceed with releasing memory from | ||
| 161 | * generic pools. | ||
| 162 | */ | ||
| 163 | int dma_release_from_coherent(struct device *dev, int order, void *vaddr) | ||
| 164 | { | ||
| 165 | struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; | ||
| 166 | |||
| 167 | if (mem && vaddr >= mem->virt_base && vaddr < | ||
| 168 | (mem->virt_base + (mem->size << PAGE_SHIFT))) { | ||
| 169 | int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; | ||
| 170 | |||
| 171 | bitmap_release_region(mem->bitmap, page, order); | ||
| 172 | return 1; | ||
| 173 | } | ||
| 174 | return 0; | ||
| 175 | } | ||
| 176 | EXPORT_SYMBOL(dma_release_from_coherent); | ||
diff --git a/kernel/exit.c b/kernel/exit.c index ae5d8660ddff..80ae941cfd2e 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
| @@ -47,8 +47,9 @@ | |||
| 47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
| 48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
| 49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
| 50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
| 51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
| 52 | #include <linux/hw_breakpoint.h> | ||
| 52 | 53 | ||
| 53 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
| 54 | #include <asm/unistd.h> | 55 | #include <asm/unistd.h> |
| @@ -110,9 +111,9 @@ static void __exit_signal(struct task_struct *tsk) | |||
| 110 | * We won't ever get here for the group leader, since it | 111 | * We won't ever get here for the group leader, since it |
| 111 | * will have been the last reference on the signal_struct. | 112 | * will have been the last reference on the signal_struct. |
| 112 | */ | 113 | */ |
| 113 | sig->utime = cputime_add(sig->utime, task_utime(tsk)); | 114 | sig->utime = cputime_add(sig->utime, tsk->utime); |
| 114 | sig->stime = cputime_add(sig->stime, task_stime(tsk)); | 115 | sig->stime = cputime_add(sig->stime, tsk->stime); |
| 115 | sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); | 116 | sig->gtime = cputime_add(sig->gtime, tsk->gtime); |
| 116 | sig->min_flt += tsk->min_flt; | 117 | sig->min_flt += tsk->min_flt; |
| 117 | sig->maj_flt += tsk->maj_flt; | 118 | sig->maj_flt += tsk->maj_flt; |
| 118 | sig->nvcsw += tsk->nvcsw; | 119 | sig->nvcsw += tsk->nvcsw; |
| @@ -154,8 +155,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
| 154 | { | 155 | { |
| 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 156 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
| 156 | 157 | ||
| 157 | #ifdef CONFIG_PERF_COUNTERS | 158 | #ifdef CONFIG_PERF_EVENTS |
| 158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 159 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
| 159 | #endif | 160 | #endif |
| 160 | trace_sched_process_free(tsk); | 161 | trace_sched_process_free(tsk); |
| 161 | put_task_struct(tsk); | 162 | put_task_struct(tsk); |
| @@ -945,6 +946,8 @@ NORET_TYPE void do_exit(long code) | |||
| 945 | if (group_dead) { | 946 | if (group_dead) { |
| 946 | hrtimer_cancel(&tsk->signal->real_timer); | 947 | hrtimer_cancel(&tsk->signal->real_timer); |
| 947 | exit_itimers(tsk->signal); | 948 | exit_itimers(tsk->signal); |
| 949 | if (tsk->mm) | ||
| 950 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
| 948 | } | 951 | } |
| 949 | acct_collect(code, group_dead); | 952 | acct_collect(code, group_dead); |
| 950 | if (group_dead) | 953 | if (group_dead) |
| @@ -972,16 +975,18 @@ NORET_TYPE void do_exit(long code) | |||
| 972 | disassociate_ctty(1); | 975 | disassociate_ctty(1); |
| 973 | 976 | ||
| 974 | module_put(task_thread_info(tsk)->exec_domain->module); | 977 | module_put(task_thread_info(tsk)->exec_domain->module); |
| 975 | if (tsk->binfmt) | ||
| 976 | module_put(tsk->binfmt->module); | ||
| 977 | 978 | ||
| 978 | proc_exit_connector(tsk); | 979 | proc_exit_connector(tsk); |
| 979 | 980 | ||
| 980 | /* | 981 | /* |
| 982 | * FIXME: do that only when needed, using sched_exit tracepoint | ||
| 983 | */ | ||
| 984 | flush_ptrace_hw_breakpoint(tsk); | ||
| 985 | /* | ||
| 981 | * Flush inherited counters to the parent - before the parent | 986 | * Flush inherited counters to the parent - before the parent |
| 982 | * gets woken up by child-exit notifications. | 987 | * gets woken up by child-exit notifications. |
| 983 | */ | 988 | */ |
| 984 | perf_counter_exit_task(tsk); | 989 | perf_event_exit_task(tsk); |
| 985 | 990 | ||
| 986 | exit_notify(tsk, group_dead); | 991 | exit_notify(tsk, group_dead); |
| 987 | #ifdef CONFIG_NUMA | 992 | #ifdef CONFIG_NUMA |
| @@ -989,8 +994,6 @@ NORET_TYPE void do_exit(long code) | |||
| 989 | tsk->mempolicy = NULL; | 994 | tsk->mempolicy = NULL; |
| 990 | #endif | 995 | #endif |
| 991 | #ifdef CONFIG_FUTEX | 996 | #ifdef CONFIG_FUTEX |
| 992 | if (unlikely(!list_empty(&tsk->pi_state_list))) | ||
| 993 | exit_pi_state_list(tsk); | ||
| 994 | if (unlikely(current->pi_state_cache)) | 997 | if (unlikely(current->pi_state_cache)) |
| 995 | kfree(current->pi_state_cache); | 998 | kfree(current->pi_state_cache); |
| 996 | #endif | 999 | #endif |
| @@ -1093,28 +1096,28 @@ struct wait_opts { | |||
| 1093 | int __user *wo_stat; | 1096 | int __user *wo_stat; |
| 1094 | struct rusage __user *wo_rusage; | 1097 | struct rusage __user *wo_rusage; |
| 1095 | 1098 | ||
| 1099 | wait_queue_t child_wait; | ||
| 1096 | int notask_error; | 1100 | int notask_error; |
| 1097 | }; | 1101 | }; |
| 1098 | 1102 | ||
| 1099 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1103 | static inline |
| 1104 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | ||
| 1100 | { | 1105 | { |
| 1101 | struct pid *pid = NULL; | 1106 | if (type != PIDTYPE_PID) |
| 1102 | if (type == PIDTYPE_PID) | 1107 | task = task->group_leader; |
| 1103 | pid = task->pids[type].pid; | 1108 | return task->pids[type].pid; |
| 1104 | else if (type < PIDTYPE_MAX) | ||
| 1105 | pid = task->group_leader->pids[type].pid; | ||
| 1106 | return pid; | ||
| 1107 | } | 1109 | } |
| 1108 | 1110 | ||
| 1109 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1111 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
| 1110 | { | 1112 | { |
| 1111 | int err; | 1113 | return wo->wo_type == PIDTYPE_MAX || |
| 1112 | 1114 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
| 1113 | if (wo->wo_type < PIDTYPE_MAX) { | 1115 | } |
| 1114 | if (task_pid_type(p, wo->wo_type) != wo->wo_pid) | ||
| 1115 | return 0; | ||
| 1116 | } | ||
| 1117 | 1116 | ||
| 1117 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | ||
| 1118 | { | ||
| 1119 | if (!eligible_pid(wo, p)) | ||
| 1120 | return 0; | ||
| 1118 | /* Wait for all children (clone and not) if __WALL is set; | 1121 | /* Wait for all children (clone and not) if __WALL is set; |
| 1119 | * otherwise, wait for clone children *only* if __WCLONE is | 1122 | * otherwise, wait for clone children *only* if __WCLONE is |
| 1120 | * set; otherwise, wait for non-clone children *only*. (Note: | 1123 | * set; otherwise, wait for non-clone children *only*. (Note: |
| @@ -1124,10 +1127,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p) | |||
| 1124 | && !(wo->wo_flags & __WALL)) | 1127 | && !(wo->wo_flags & __WALL)) |
| 1125 | return 0; | 1128 | return 0; |
| 1126 | 1129 | ||
| 1127 | err = security_task_wait(p); | ||
| 1128 | if (err) | ||
| 1129 | return err; | ||
| 1130 | |||
| 1131 | return 1; | 1130 | return 1; |
| 1132 | } | 1131 | } |
| 1133 | 1132 | ||
| @@ -1140,18 +1139,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | |||
| 1140 | 1139 | ||
| 1141 | put_task_struct(p); | 1140 | put_task_struct(p); |
| 1142 | infop = wo->wo_info; | 1141 | infop = wo->wo_info; |
| 1143 | if (!retval) | 1142 | if (infop) { |
| 1144 | retval = put_user(SIGCHLD, &infop->si_signo); | 1143 | if (!retval) |
| 1145 | if (!retval) | 1144 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1146 | retval = put_user(0, &infop->si_errno); | 1145 | if (!retval) |
| 1147 | if (!retval) | 1146 | retval = put_user(0, &infop->si_errno); |
| 1148 | retval = put_user((short)why, &infop->si_code); | 1147 | if (!retval) |
| 1149 | if (!retval) | 1148 | retval = put_user((short)why, &infop->si_code); |
| 1150 | retval = put_user(pid, &infop->si_pid); | 1149 | if (!retval) |
| 1151 | if (!retval) | 1150 | retval = put_user(pid, &infop->si_pid); |
| 1152 | retval = put_user(uid, &infop->si_uid); | 1151 | if (!retval) |
| 1153 | if (!retval) | 1152 | retval = put_user(uid, &infop->si_uid); |
| 1154 | retval = put_user(status, &infop->si_status); | 1153 | if (!retval) |
| 1154 | retval = put_user(status, &infop->si_status); | ||
| 1155 | } | ||
| 1155 | if (!retval) | 1156 | if (!retval) |
| 1156 | retval = pid; | 1157 | retval = pid; |
| 1157 | return retval; | 1158 | return retval; |
| @@ -1208,6 +1209,8 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
| 1208 | if (likely(!traced) && likely(!task_detached(p))) { | 1209 | if (likely(!traced) && likely(!task_detached(p))) { |
| 1209 | struct signal_struct *psig; | 1210 | struct signal_struct *psig; |
| 1210 | struct signal_struct *sig; | 1211 | struct signal_struct *sig; |
| 1212 | unsigned long maxrss; | ||
| 1213 | cputime_t tgutime, tgstime; | ||
| 1211 | 1214 | ||
| 1212 | /* | 1215 | /* |
| 1213 | * The resource counters for the group leader are in its | 1216 | * The resource counters for the group leader are in its |
| @@ -1223,20 +1226,23 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
| 1223 | * need to protect the access to parent->signal fields, | 1226 | * need to protect the access to parent->signal fields, |
| 1224 | * as other threads in the parent group can be right | 1227 | * as other threads in the parent group can be right |
| 1225 | * here reaping other children at the same time. | 1228 | * here reaping other children at the same time. |
| 1229 | * | ||
| 1230 | * We use thread_group_times() to get times for the thread | ||
| 1231 | * group, which consolidates times for all threads in the | ||
| 1232 | * group including the group leader. | ||
| 1226 | */ | 1233 | */ |
| 1234 | thread_group_times(p, &tgutime, &tgstime); | ||
| 1227 | spin_lock_irq(&p->real_parent->sighand->siglock); | 1235 | spin_lock_irq(&p->real_parent->sighand->siglock); |
| 1228 | psig = p->real_parent->signal; | 1236 | psig = p->real_parent->signal; |
| 1229 | sig = p->signal; | 1237 | sig = p->signal; |
| 1230 | psig->cutime = | 1238 | psig->cutime = |
| 1231 | cputime_add(psig->cutime, | 1239 | cputime_add(psig->cutime, |
| 1232 | cputime_add(p->utime, | 1240 | cputime_add(tgutime, |
| 1233 | cputime_add(sig->utime, | 1241 | sig->cutime)); |
| 1234 | sig->cutime))); | ||
| 1235 | psig->cstime = | 1242 | psig->cstime = |
| 1236 | cputime_add(psig->cstime, | 1243 | cputime_add(psig->cstime, |
| 1237 | cputime_add(p->stime, | 1244 | cputime_add(tgstime, |
| 1238 | cputime_add(sig->stime, | 1245 | sig->cstime)); |
| 1239 | sig->cstime))); | ||
| 1240 | psig->cgtime = | 1246 | psig->cgtime = |
| 1241 | cputime_add(psig->cgtime, | 1247 | cputime_add(psig->cgtime, |
| 1242 | cputime_add(p->gtime, | 1248 | cputime_add(p->gtime, |
| @@ -1256,6 +1262,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
| 1256 | psig->coublock += | 1262 | psig->coublock += |
| 1257 | task_io_get_oublock(p) + | 1263 | task_io_get_oublock(p) + |
| 1258 | sig->oublock + sig->coublock; | 1264 | sig->oublock + sig->coublock; |
| 1265 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
| 1266 | if (psig->cmaxrss < maxrss) | ||
| 1267 | psig->cmaxrss = maxrss; | ||
| 1259 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1268 | task_io_accounting_add(&psig->ioac, &p->ioac); |
| 1260 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1269 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
| 1261 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1270 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
| @@ -1477,13 +1486,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | |||
| 1477 | * then ->notask_error is 0 if @p is an eligible child, | 1486 | * then ->notask_error is 0 if @p is an eligible child, |
| 1478 | * or another error from security_task_wait(), or still -ECHILD. | 1487 | * or another error from security_task_wait(), or still -ECHILD. |
| 1479 | */ | 1488 | */ |
| 1480 | static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, | 1489 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
| 1481 | int ptrace, struct task_struct *p) | 1490 | struct task_struct *p) |
| 1482 | { | 1491 | { |
| 1483 | int ret = eligible_child(wo, p); | 1492 | int ret = eligible_child(wo, p); |
| 1484 | if (!ret) | 1493 | if (!ret) |
| 1485 | return ret; | 1494 | return ret; |
| 1486 | 1495 | ||
| 1496 | ret = security_task_wait(p); | ||
| 1487 | if (unlikely(ret < 0)) { | 1497 | if (unlikely(ret < 0)) { |
| 1488 | /* | 1498 | /* |
| 1489 | * If we have not yet seen any eligible child, | 1499 | * If we have not yet seen any eligible child, |
| @@ -1545,7 +1555,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1545 | * Do not consider detached threads. | 1555 | * Do not consider detached threads. |
| 1546 | */ | 1556 | */ |
| 1547 | if (!task_detached(p)) { | 1557 | if (!task_detached(p)) { |
| 1548 | int ret = wait_consider_task(wo, tsk, 0, p); | 1558 | int ret = wait_consider_task(wo, 0, p); |
| 1549 | if (ret) | 1559 | if (ret) |
| 1550 | return ret; | 1560 | return ret; |
| 1551 | } | 1561 | } |
| @@ -1559,7 +1569,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1559 | struct task_struct *p; | 1569 | struct task_struct *p; |
| 1560 | 1570 | ||
| 1561 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1571 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
| 1562 | int ret = wait_consider_task(wo, tsk, 1, p); | 1572 | int ret = wait_consider_task(wo, 1, p); |
| 1563 | if (ret) | 1573 | if (ret) |
| 1564 | return ret; | 1574 | return ret; |
| 1565 | } | 1575 | } |
| @@ -1567,15 +1577,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1567 | return 0; | 1577 | return 0; |
| 1568 | } | 1578 | } |
| 1569 | 1579 | ||
| 1580 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | ||
| 1581 | int sync, void *key) | ||
| 1582 | { | ||
| 1583 | struct wait_opts *wo = container_of(wait, struct wait_opts, | ||
| 1584 | child_wait); | ||
| 1585 | struct task_struct *p = key; | ||
| 1586 | |||
| 1587 | if (!eligible_pid(wo, p)) | ||
| 1588 | return 0; | ||
| 1589 | |||
| 1590 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | ||
| 1591 | return 0; | ||
| 1592 | |||
| 1593 | return default_wake_function(wait, mode, sync, key); | ||
| 1594 | } | ||
| 1595 | |||
| 1596 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | ||
| 1597 | { | ||
| 1598 | __wake_up_sync_key(&parent->signal->wait_chldexit, | ||
| 1599 | TASK_INTERRUPTIBLE, 1, p); | ||
| 1600 | } | ||
| 1601 | |||
| 1570 | static long do_wait(struct wait_opts *wo) | 1602 | static long do_wait(struct wait_opts *wo) |
| 1571 | { | 1603 | { |
| 1572 | DECLARE_WAITQUEUE(wait, current); | ||
| 1573 | struct task_struct *tsk; | 1604 | struct task_struct *tsk; |
| 1574 | int retval; | 1605 | int retval; |
| 1575 | 1606 | ||
| 1576 | trace_sched_process_wait(wo->wo_pid); | 1607 | trace_sched_process_wait(wo->wo_pid); |
| 1577 | 1608 | ||
| 1578 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 1609 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
| 1610 | wo->child_wait.private = current; | ||
| 1611 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | ||
| 1579 | repeat: | 1612 | repeat: |
| 1580 | /* | 1613 | /* |
| 1581 | * If there is nothing that can match our critiera just get out. | 1614 | * If there is nothing that can match our critiera just get out. |
| @@ -1616,32 +1649,7 @@ notask: | |||
| 1616 | } | 1649 | } |
| 1617 | end: | 1650 | end: |
| 1618 | __set_current_state(TASK_RUNNING); | 1651 | __set_current_state(TASK_RUNNING); |
| 1619 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 1652 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
| 1620 | if (wo->wo_info) { | ||
| 1621 | struct siginfo __user *infop = wo->wo_info; | ||
| 1622 | |||
| 1623 | if (retval > 0) | ||
| 1624 | retval = 0; | ||
| 1625 | else { | ||
| 1626 | /* | ||
| 1627 | * For a WNOHANG return, clear out all the fields | ||
| 1628 | * we would set so the user can easily tell the | ||
| 1629 | * difference. | ||
| 1630 | */ | ||
| 1631 | if (!retval) | ||
| 1632 | retval = put_user(0, &infop->si_signo); | ||
| 1633 | if (!retval) | ||
| 1634 | retval = put_user(0, &infop->si_errno); | ||
| 1635 | if (!retval) | ||
| 1636 | retval = put_user(0, &infop->si_code); | ||
| 1637 | if (!retval) | ||
| 1638 | retval = put_user(0, &infop->si_pid); | ||
| 1639 | if (!retval) | ||
| 1640 | retval = put_user(0, &infop->si_uid); | ||
| 1641 | if (!retval) | ||
| 1642 | retval = put_user(0, &infop->si_status); | ||
| 1643 | } | ||
| 1644 | } | ||
| 1645 | return retval; | 1653 | return retval; |
| 1646 | } | 1654 | } |
| 1647 | 1655 | ||
| @@ -1686,6 +1694,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | |||
| 1686 | wo.wo_stat = NULL; | 1694 | wo.wo_stat = NULL; |
| 1687 | wo.wo_rusage = ru; | 1695 | wo.wo_rusage = ru; |
| 1688 | ret = do_wait(&wo); | 1696 | ret = do_wait(&wo); |
| 1697 | |||
| 1698 | if (ret > 0) { | ||
| 1699 | ret = 0; | ||
| 1700 | } else if (infop) { | ||
| 1701 | /* | ||
| 1702 | * For a WNOHANG return, clear out all the fields | ||
| 1703 | * we would set so the user can easily tell the | ||
| 1704 | * difference. | ||
| 1705 | */ | ||
| 1706 | if (!ret) | ||
| 1707 | ret = put_user(0, &infop->si_signo); | ||
| 1708 | if (!ret) | ||
| 1709 | ret = put_user(0, &infop->si_errno); | ||
| 1710 | if (!ret) | ||
| 1711 | ret = put_user(0, &infop->si_code); | ||
| 1712 | if (!ret) | ||
| 1713 | ret = put_user(0, &infop->si_pid); | ||
| 1714 | if (!ret) | ||
| 1715 | ret = put_user(0, &infop->si_uid); | ||
| 1716 | if (!ret) | ||
| 1717 | ret = put_user(0, &infop->si_status); | ||
| 1718 | } | ||
| 1719 | |||
| 1689 | put_pid(pid); | 1720 | put_pid(pid); |
| 1690 | 1721 | ||
| 1691 | /* avoid REGPARM breakage on x86: */ | 1722 | /* avoid REGPARM breakage on x86: */ |
diff --git a/kernel/fork.c b/kernel/fork.c index bfee931ee3fb..3d6f121bbe8a 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -49,6 +49,7 @@ | |||
| 49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
| 50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
| 51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
| 52 | #include <linux/ksm.h> | ||
| 52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
| 53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
| 54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
| @@ -61,7 +62,8 @@ | |||
| 61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
| 62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
| 63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
| 64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
| 66 | #include <linux/posix-timers.h> | ||
| 65 | 67 | ||
| 66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
| 67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
| @@ -89,7 +91,7 @@ int nr_processes(void) | |||
| 89 | int cpu; | 91 | int cpu; |
| 90 | int total = 0; | 92 | int total = 0; |
| 91 | 93 | ||
| 92 | for_each_online_cpu(cpu) | 94 | for_each_possible_cpu(cpu) |
| 93 | total += per_cpu(process_counts, cpu); | 95 | total += per_cpu(process_counts, cpu); |
| 94 | 96 | ||
| 95 | return total; | 97 | return total; |
| @@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
| 136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
| 137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
| 138 | 140 | ||
| 141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
| 142 | { | ||
| 143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
| 144 | |||
| 145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
| 146 | } | ||
| 147 | |||
| 139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
| 140 | { | 149 | { |
| 141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
| 151 | account_kernel_stack(tsk->stack, -1); | ||
| 142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
| 143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
| 144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
| @@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 253 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
| 254 | #endif | 264 | #endif |
| 255 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
| 266 | |||
| 267 | account_kernel_stack(ti, 1); | ||
| 268 | |||
| 256 | return tsk; | 269 | return tsk; |
| 257 | 270 | ||
| 258 | out: | 271 | out: |
| @@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
| 288 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
| 289 | rb_parent = NULL; | 302 | rb_parent = NULL; |
| 290 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
| 304 | retval = ksm_fork(mm, oldmm); | ||
| 305 | if (retval) | ||
| 306 | goto out; | ||
| 291 | 307 | ||
| 292 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
| 293 | struct file *file; | 309 | struct file *file; |
| @@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup); | |||
| 418 | 434 | ||
| 419 | #include <linux/init_task.h> | 435 | #include <linux/init_task.h> |
| 420 | 436 | ||
| 437 | static void mm_init_aio(struct mm_struct *mm) | ||
| 438 | { | ||
| 439 | #ifdef CONFIG_AIO | ||
| 440 | spin_lock_init(&mm->ioctx_lock); | ||
| 441 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
| 442 | #endif | ||
| 443 | } | ||
| 444 | |||
| 421 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 445 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
| 422 | { | 446 | { |
| 423 | atomic_set(&mm->mm_users, 1); | 447 | atomic_set(&mm->mm_users, 1); |
| 424 | atomic_set(&mm->mm_count, 1); | 448 | atomic_set(&mm->mm_count, 1); |
| 425 | init_rwsem(&mm->mmap_sem); | 449 | init_rwsem(&mm->mmap_sem); |
| 426 | INIT_LIST_HEAD(&mm->mmlist); | 450 | INIT_LIST_HEAD(&mm->mmlist); |
| 427 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 451 | mm->flags = (current->mm) ? |
| 452 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
| 428 | mm->core_state = NULL; | 453 | mm->core_state = NULL; |
| 429 | mm->nr_ptes = 0; | 454 | mm->nr_ptes = 0; |
| 430 | set_mm_counter(mm, file_rss, 0); | 455 | set_mm_counter(mm, file_rss, 0); |
| 431 | set_mm_counter(mm, anon_rss, 0); | 456 | set_mm_counter(mm, anon_rss, 0); |
| 432 | spin_lock_init(&mm->page_table_lock); | 457 | spin_lock_init(&mm->page_table_lock); |
| 433 | spin_lock_init(&mm->ioctx_lock); | ||
| 434 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
| 435 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 458 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
| 436 | mm->cached_hole_size = ~0UL; | 459 | mm->cached_hole_size = ~0UL; |
| 460 | mm_init_aio(mm); | ||
| 437 | mm_init_owner(mm, p); | 461 | mm_init_owner(mm, p); |
| 438 | 462 | ||
| 439 | if (likely(!mm_alloc_pgd(mm))) { | 463 | if (likely(!mm_alloc_pgd(mm))) { |
| @@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm) | |||
| 485 | 509 | ||
| 486 | if (atomic_dec_and_test(&mm->mm_users)) { | 510 | if (atomic_dec_and_test(&mm->mm_users)) { |
| 487 | exit_aio(mm); | 511 | exit_aio(mm); |
| 512 | ksm_exit(mm); | ||
| 488 | exit_mmap(mm); | 513 | exit_mmap(mm); |
| 489 | set_mm_exe_file(mm, NULL); | 514 | set_mm_exe_file(mm, NULL); |
| 490 | if (!list_empty(&mm->mmlist)) { | 515 | if (!list_empty(&mm->mmlist)) { |
| @@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm) | |||
| 493 | spin_unlock(&mmlist_lock); | 518 | spin_unlock(&mmlist_lock); |
| 494 | } | 519 | } |
| 495 | put_swap_token(mm); | 520 | put_swap_token(mm); |
| 521 | if (mm->binfmt) | ||
| 522 | module_put(mm->binfmt->module); | ||
| 496 | mmdrop(mm); | 523 | mmdrop(mm); |
| 497 | } | 524 | } |
| 498 | } | 525 | } |
| @@ -543,12 +570,18 @@ void mm_release(struct task_struct *tsk, struct mm_struct *mm) | |||
| 543 | 570 | ||
| 544 | /* Get rid of any futexes when releasing the mm */ | 571 | /* Get rid of any futexes when releasing the mm */ |
| 545 | #ifdef CONFIG_FUTEX | 572 | #ifdef CONFIG_FUTEX |
| 546 | if (unlikely(tsk->robust_list)) | 573 | if (unlikely(tsk->robust_list)) { |
| 547 | exit_robust_list(tsk); | 574 | exit_robust_list(tsk); |
| 575 | tsk->robust_list = NULL; | ||
| 576 | } | ||
| 548 | #ifdef CONFIG_COMPAT | 577 | #ifdef CONFIG_COMPAT |
| 549 | if (unlikely(tsk->compat_robust_list)) | 578 | if (unlikely(tsk->compat_robust_list)) { |
| 550 | compat_exit_robust_list(tsk); | 579 | compat_exit_robust_list(tsk); |
| 580 | tsk->compat_robust_list = NULL; | ||
| 581 | } | ||
| 551 | #endif | 582 | #endif |
| 583 | if (unlikely(!list_empty(&tsk->pi_state_list))) | ||
| 584 | exit_pi_state_list(tsk); | ||
| 552 | #endif | 585 | #endif |
| 553 | 586 | ||
| 554 | /* Get rid of any cached register state */ | 587 | /* Get rid of any cached register state */ |
| @@ -618,9 +651,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk) | |||
| 618 | mm->hiwater_rss = get_mm_rss(mm); | 651 | mm->hiwater_rss = get_mm_rss(mm); |
| 619 | mm->hiwater_vm = mm->total_vm; | 652 | mm->hiwater_vm = mm->total_vm; |
| 620 | 653 | ||
| 654 | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | ||
| 655 | goto free_pt; | ||
| 656 | |||
| 621 | return mm; | 657 | return mm; |
| 622 | 658 | ||
| 623 | free_pt: | 659 | free_pt: |
| 660 | /* don't put binfmt in mmput, we haven't got module yet */ | ||
| 661 | mm->binfmt = NULL; | ||
| 624 | mmput(mm); | 662 | mmput(mm); |
| 625 | 663 | ||
| 626 | fail_nomem: | 664 | fail_nomem: |
| @@ -788,10 +826,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
| 788 | thread_group_cputime_init(sig); | 826 | thread_group_cputime_init(sig); |
| 789 | 827 | ||
| 790 | /* Expiration times and increments. */ | 828 | /* Expiration times and increments. */ |
| 791 | sig->it_virt_expires = cputime_zero; | 829 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
| 792 | sig->it_virt_incr = cputime_zero; | 830 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
| 793 | sig->it_prof_expires = cputime_zero; | 831 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
| 794 | sig->it_prof_incr = cputime_zero; | 832 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
| 795 | 833 | ||
| 796 | /* Cached expiration times. */ | 834 | /* Cached expiration times. */ |
| 797 | sig->cputime_expires.prof_exp = cputime_zero; | 835 | sig->cputime_expires.prof_exp = cputime_zero; |
| @@ -846,9 +884,13 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 846 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; | 884 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; |
| 847 | sig->gtime = cputime_zero; | 885 | sig->gtime = cputime_zero; |
| 848 | sig->cgtime = cputime_zero; | 886 | sig->cgtime = cputime_zero; |
| 887 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | ||
| 888 | sig->prev_utime = sig->prev_stime = cputime_zero; | ||
| 889 | #endif | ||
| 849 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 890 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
| 850 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 891 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
| 851 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 892 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
| 893 | sig->maxrss = sig->cmaxrss = 0; | ||
| 852 | task_io_accounting_init(&sig->ioac); | 894 | task_io_accounting_init(&sig->ioac); |
| 853 | sig->sum_sched_runtime = 0; | 895 | sig->sum_sched_runtime = 0; |
| 854 | taskstats_tgid_init(sig); | 896 | taskstats_tgid_init(sig); |
| @@ -863,6 +905,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 863 | 905 | ||
| 864 | tty_audit_fork(sig); | 906 | tty_audit_fork(sig); |
| 865 | 907 | ||
| 908 | sig->oom_adj = current->signal->oom_adj; | ||
| 909 | |||
| 866 | return 0; | 910 | return 0; |
| 867 | } | 911 | } |
| 868 | 912 | ||
| @@ -958,6 +1002,16 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 958 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 1002 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
| 959 | return ERR_PTR(-EINVAL); | 1003 | return ERR_PTR(-EINVAL); |
| 960 | 1004 | ||
| 1005 | /* | ||
| 1006 | * Siblings of global init remain as zombies on exit since they are | ||
| 1007 | * not reaped by their parent (swapper). To solve this and to avoid | ||
| 1008 | * multi-rooted process trees, prevent global and container-inits | ||
| 1009 | * from creating siblings. | ||
| 1010 | */ | ||
| 1011 | if ((clone_flags & CLONE_PARENT) && | ||
| 1012 | current->signal->flags & SIGNAL_UNKILLABLE) | ||
| 1013 | return ERR_PTR(-EINVAL); | ||
| 1014 | |||
| 961 | retval = security_task_create(clone_flags); | 1015 | retval = security_task_create(clone_flags); |
| 962 | if (retval) | 1016 | if (retval) |
| 963 | goto fork_out; | 1017 | goto fork_out; |
| @@ -999,9 +1053,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 999 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 1053 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
| 1000 | goto bad_fork_cleanup_count; | 1054 | goto bad_fork_cleanup_count; |
| 1001 | 1055 | ||
| 1002 | if (p->binfmt && !try_module_get(p->binfmt->module)) | ||
| 1003 | goto bad_fork_cleanup_put_domain; | ||
| 1004 | |||
| 1005 | p->did_exec = 0; | 1056 | p->did_exec = 0; |
| 1006 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 1057 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
| 1007 | copy_flags(clone_flags, p); | 1058 | copy_flags(clone_flags, p); |
| @@ -1018,8 +1069,10 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1018 | p->gtime = cputime_zero; | 1069 | p->gtime = cputime_zero; |
| 1019 | p->utimescaled = cputime_zero; | 1070 | p->utimescaled = cputime_zero; |
| 1020 | p->stimescaled = cputime_zero; | 1071 | p->stimescaled = cputime_zero; |
| 1072 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | ||
| 1021 | p->prev_utime = cputime_zero; | 1073 | p->prev_utime = cputime_zero; |
| 1022 | p->prev_stime = cputime_zero; | 1074 | p->prev_stime = cputime_zero; |
| 1075 | #endif | ||
| 1023 | 1076 | ||
| 1024 | p->default_timer_slack_ns = current->timer_slack_ns; | 1077 | p->default_timer_slack_ns = current->timer_slack_ns; |
| 1025 | 1078 | ||
| @@ -1075,10 +1128,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1075 | 1128 | ||
| 1076 | p->bts = NULL; | 1129 | p->bts = NULL; |
| 1077 | 1130 | ||
| 1131 | p->stack_start = stack_start; | ||
| 1132 | |||
| 1078 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1133 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
| 1079 | sched_fork(p, clone_flags); | 1134 | sched_fork(p, clone_flags); |
| 1080 | 1135 | ||
| 1081 | retval = perf_counter_init_task(p); | 1136 | retval = perf_event_init_task(p); |
| 1082 | if (retval) | 1137 | if (retval) |
| 1083 | goto bad_fork_cleanup_policy; | 1138 | goto bad_fork_cleanup_policy; |
| 1084 | 1139 | ||
| @@ -1253,7 +1308,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1253 | write_unlock_irq(&tasklist_lock); | 1308 | write_unlock_irq(&tasklist_lock); |
| 1254 | proc_fork_connector(p); | 1309 | proc_fork_connector(p); |
| 1255 | cgroup_post_fork(p); | 1310 | cgroup_post_fork(p); |
| 1256 | perf_counter_fork(p); | 1311 | perf_event_fork(p); |
| 1257 | return p; | 1312 | return p; |
| 1258 | 1313 | ||
| 1259 | bad_fork_free_pid: | 1314 | bad_fork_free_pid: |
| @@ -1280,16 +1335,13 @@ bad_fork_cleanup_semundo: | |||
| 1280 | bad_fork_cleanup_audit: | 1335 | bad_fork_cleanup_audit: |
| 1281 | audit_free(p); | 1336 | audit_free(p); |
| 1282 | bad_fork_cleanup_policy: | 1337 | bad_fork_cleanup_policy: |
| 1283 | perf_counter_free_task(p); | 1338 | perf_event_free_task(p); |
| 1284 | #ifdef CONFIG_NUMA | 1339 | #ifdef CONFIG_NUMA |
| 1285 | mpol_put(p->mempolicy); | 1340 | mpol_put(p->mempolicy); |
| 1286 | bad_fork_cleanup_cgroup: | 1341 | bad_fork_cleanup_cgroup: |
| 1287 | #endif | 1342 | #endif |
| 1288 | cgroup_exit(p, cgroup_callbacks_done); | 1343 | cgroup_exit(p, cgroup_callbacks_done); |
| 1289 | delayacct_tsk_free(p); | 1344 | delayacct_tsk_free(p); |
| 1290 | if (p->binfmt) | ||
| 1291 | module_put(p->binfmt->module); | ||
| 1292 | bad_fork_cleanup_put_domain: | ||
| 1293 | module_put(task_thread_info(p)->exec_domain->module); | 1345 | module_put(task_thread_info(p)->exec_domain->module); |
| 1294 | bad_fork_cleanup_count: | 1346 | bad_fork_cleanup_count: |
| 1295 | atomic_dec(&p->cred->user->processes); | 1347 | atomic_dec(&p->cred->user->processes); |
diff --git a/kernel/futex.c b/kernel/futex.c index 248dd119a86e..fb65e822fc41 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
| @@ -89,36 +89,36 @@ struct futex_pi_state { | |||
| 89 | union futex_key key; | 89 | union futex_key key; |
| 90 | }; | 90 | }; |
| 91 | 91 | ||
| 92 | /* | 92 | /** |
| 93 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | 93 | * struct futex_q - The hashed futex queue entry, one per waiting task |
| 94 | * @task: the task waiting on the futex | ||
| 95 | * @lock_ptr: the hash bucket lock | ||
| 96 | * @key: the key the futex is hashed on | ||
| 97 | * @pi_state: optional priority inheritance state | ||
| 98 | * @rt_waiter: rt_waiter storage for use with requeue_pi | ||
| 99 | * @requeue_pi_key: the requeue_pi target futex key | ||
| 100 | * @bitset: bitset for the optional bitmasked wakeup | ||
| 101 | * | ||
| 102 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | ||
| 94 | * we can wake only the relevant ones (hashed queues may be shared). | 103 | * we can wake only the relevant ones (hashed queues may be shared). |
| 95 | * | 104 | * |
| 96 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | 105 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
| 97 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. | 106 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
| 98 | * The order of wakup is always to make the first condition true, then | 107 | * The order of wakup is always to make the first condition true, then |
| 99 | * wake up q->waiter, then make the second condition true. | 108 | * the second. |
| 109 | * | ||
| 110 | * PI futexes are typically woken before they are removed from the hash list via | ||
| 111 | * the rt_mutex code. See unqueue_me_pi(). | ||
| 100 | */ | 112 | */ |
| 101 | struct futex_q { | 113 | struct futex_q { |
| 102 | struct plist_node list; | 114 | struct plist_node list; |
| 103 | /* Waiter reference */ | ||
| 104 | struct task_struct *task; | ||
| 105 | 115 | ||
| 106 | /* Which hash list lock to use: */ | 116 | struct task_struct *task; |
| 107 | spinlock_t *lock_ptr; | 117 | spinlock_t *lock_ptr; |
| 108 | |||
| 109 | /* Key which the futex is hashed on: */ | ||
| 110 | union futex_key key; | 118 | union futex_key key; |
| 111 | |||
| 112 | /* Optional priority inheritance state: */ | ||
| 113 | struct futex_pi_state *pi_state; | 119 | struct futex_pi_state *pi_state; |
| 114 | |||
| 115 | /* rt_waiter storage for requeue_pi: */ | ||
| 116 | struct rt_mutex_waiter *rt_waiter; | 120 | struct rt_mutex_waiter *rt_waiter; |
| 117 | |||
| 118 | /* The expected requeue pi target futex key: */ | ||
| 119 | union futex_key *requeue_pi_key; | 121 | union futex_key *requeue_pi_key; |
| 120 | |||
| 121 | /* Bitset for the optional bitmasked wakeup */ | ||
| 122 | u32 bitset; | 122 | u32 bitset; |
| 123 | }; | 123 | }; |
| 124 | 124 | ||
| @@ -150,7 +150,8 @@ static struct futex_hash_bucket *hash_futex(union futex_key *key) | |||
| 150 | */ | 150 | */ |
| 151 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | 151 | static inline int match_futex(union futex_key *key1, union futex_key *key2) |
| 152 | { | 152 | { |
| 153 | return (key1->both.word == key2->both.word | 153 | return (key1 && key2 |
| 154 | && key1->both.word == key2->both.word | ||
| 154 | && key1->both.ptr == key2->both.ptr | 155 | && key1->both.ptr == key2->both.ptr |
| 155 | && key1->both.offset == key2->both.offset); | 156 | && key1->both.offset == key2->both.offset); |
| 156 | } | 157 | } |
| @@ -198,11 +199,12 @@ static void drop_futex_key_refs(union futex_key *key) | |||
| 198 | } | 199 | } |
| 199 | 200 | ||
| 200 | /** | 201 | /** |
| 201 | * get_futex_key - Get parameters which are the keys for a futex. | 202 | * get_futex_key() - Get parameters which are the keys for a futex |
| 202 | * @uaddr: virtual address of the futex | 203 | * @uaddr: virtual address of the futex |
| 203 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | 204 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
| 204 | * @key: address where result is stored. | 205 | * @key: address where result is stored. |
| 205 | * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE) | 206 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
| 207 | * VERIFY_WRITE) | ||
| 206 | * | 208 | * |
| 207 | * Returns a negative error code or 0 | 209 | * Returns a negative error code or 0 |
| 208 | * The key words are stored in *key on success. | 210 | * The key words are stored in *key on success. |
| @@ -288,8 +290,8 @@ void put_futex_key(int fshared, union futex_key *key) | |||
| 288 | drop_futex_key_refs(key); | 290 | drop_futex_key_refs(key); |
| 289 | } | 291 | } |
| 290 | 292 | ||
| 291 | /* | 293 | /** |
| 292 | * fault_in_user_writeable - fault in user address and verify RW access | 294 | * fault_in_user_writeable() - Fault in user address and verify RW access |
| 293 | * @uaddr: pointer to faulting user space address | 295 | * @uaddr: pointer to faulting user space address |
| 294 | * | 296 | * |
| 295 | * Slow path to fixup the fault we just took in the atomic write | 297 | * Slow path to fixup the fault we just took in the atomic write |
| @@ -309,8 +311,8 @@ static int fault_in_user_writeable(u32 __user *uaddr) | |||
| 309 | 311 | ||
| 310 | /** | 312 | /** |
| 311 | * futex_top_waiter() - Return the highest priority waiter on a futex | 313 | * futex_top_waiter() - Return the highest priority waiter on a futex |
| 312 | * @hb: the hash bucket the futex_q's reside in | 314 | * @hb: the hash bucket the futex_q's reside in |
| 313 | * @key: the futex key (to distinguish it from other futex futex_q's) | 315 | * @key: the futex key (to distinguish it from other futex futex_q's) |
| 314 | * | 316 | * |
| 315 | * Must be called with the hb lock held. | 317 | * Must be called with the hb lock held. |
| 316 | */ | 318 | */ |
| @@ -588,7 +590,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, | |||
| 588 | } | 590 | } |
| 589 | 591 | ||
| 590 | /** | 592 | /** |
| 591 | * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex | 593 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
| 592 | * @uaddr: the pi futex user address | 594 | * @uaddr: the pi futex user address |
| 593 | * @hb: the pi futex hash bucket | 595 | * @hb: the pi futex hash bucket |
| 594 | * @key: the futex key associated with uaddr and hb | 596 | * @key: the futex key associated with uaddr and hb |
| @@ -915,8 +917,8 @@ retry: | |||
| 915 | hb1 = hash_futex(&key1); | 917 | hb1 = hash_futex(&key1); |
| 916 | hb2 = hash_futex(&key2); | 918 | hb2 = hash_futex(&key2); |
| 917 | 919 | ||
| 918 | double_lock_hb(hb1, hb2); | ||
| 919 | retry_private: | 920 | retry_private: |
| 921 | double_lock_hb(hb1, hb2); | ||
| 920 | op_ret = futex_atomic_op_inuser(op, uaddr2); | 922 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
| 921 | if (unlikely(op_ret < 0)) { | 923 | if (unlikely(op_ret < 0)) { |
| 922 | 924 | ||
| @@ -1011,9 +1013,9 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |||
| 1011 | 1013 | ||
| 1012 | /** | 1014 | /** |
| 1013 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | 1015 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
| 1014 | * q: the futex_q | 1016 | * @q: the futex_q |
| 1015 | * key: the key of the requeue target futex | 1017 | * @key: the key of the requeue target futex |
| 1016 | * hb: the hash_bucket of the requeue target futex | 1018 | * @hb: the hash_bucket of the requeue target futex |
| 1017 | * | 1019 | * |
| 1018 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | 1020 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
| 1019 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | 1021 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
| @@ -1027,7 +1029,6 @@ static inline | |||
| 1027 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, | 1029 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
| 1028 | struct futex_hash_bucket *hb) | 1030 | struct futex_hash_bucket *hb) |
| 1029 | { | 1031 | { |
| 1030 | drop_futex_key_refs(&q->key); | ||
| 1031 | get_futex_key_refs(key); | 1032 | get_futex_key_refs(key); |
| 1032 | q->key = *key; | 1033 | q->key = *key; |
| 1033 | 1034 | ||
| @@ -1225,6 +1226,7 @@ retry_private: | |||
| 1225 | */ | 1226 | */ |
| 1226 | if (ret == 1) { | 1227 | if (ret == 1) { |
| 1227 | WARN_ON(pi_state); | 1228 | WARN_ON(pi_state); |
| 1229 | drop_count++; | ||
| 1228 | task_count++; | 1230 | task_count++; |
| 1229 | ret = get_futex_value_locked(&curval2, uaddr2); | 1231 | ret = get_futex_value_locked(&curval2, uaddr2); |
| 1230 | if (!ret) | 1232 | if (!ret) |
| @@ -1303,6 +1305,7 @@ retry_private: | |||
| 1303 | if (ret == 1) { | 1305 | if (ret == 1) { |
| 1304 | /* We got the lock. */ | 1306 | /* We got the lock. */ |
| 1305 | requeue_pi_wake_futex(this, &key2, hb2); | 1307 | requeue_pi_wake_futex(this, &key2, hb2); |
| 1308 | drop_count++; | ||
| 1306 | continue; | 1309 | continue; |
| 1307 | } else if (ret) { | 1310 | } else if (ret) { |
| 1308 | /* -EDEADLK */ | 1311 | /* -EDEADLK */ |
| @@ -1350,6 +1353,25 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) | |||
| 1350 | return hb; | 1353 | return hb; |
| 1351 | } | 1354 | } |
| 1352 | 1355 | ||
| 1356 | static inline void | ||
| 1357 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | ||
| 1358 | { | ||
| 1359 | spin_unlock(&hb->lock); | ||
| 1360 | drop_futex_key_refs(&q->key); | ||
| 1361 | } | ||
| 1362 | |||
| 1363 | /** | ||
| 1364 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | ||
| 1365 | * @q: The futex_q to enqueue | ||
| 1366 | * @hb: The destination hash bucket | ||
| 1367 | * | ||
| 1368 | * The hb->lock must be held by the caller, and is released here. A call to | ||
| 1369 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | ||
| 1370 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | ||
| 1371 | * or nothing if the unqueue is done as part of the wake process and the unqueue | ||
| 1372 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | ||
| 1373 | * an example). | ||
| 1374 | */ | ||
| 1353 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | 1375 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
| 1354 | { | 1376 | { |
| 1355 | int prio; | 1377 | int prio; |
| @@ -1373,19 +1395,17 @@ static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | |||
| 1373 | spin_unlock(&hb->lock); | 1395 | spin_unlock(&hb->lock); |
| 1374 | } | 1396 | } |
| 1375 | 1397 | ||
| 1376 | static inline void | 1398 | /** |
| 1377 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | 1399 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket |
| 1378 | { | 1400 | * @q: The futex_q to unqueue |
| 1379 | spin_unlock(&hb->lock); | 1401 | * |
| 1380 | drop_futex_key_refs(&q->key); | 1402 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must |
| 1381 | } | 1403 | * be paired with exactly one earlier call to queue_me(). |
| 1382 | 1404 | * | |
| 1383 | /* | 1405 | * Returns: |
| 1384 | * queue_me and unqueue_me must be called as a pair, each | 1406 | * 1 - if the futex_q was still queued (and we removed unqueued it) |
| 1385 | * exactly once. They are called with the hashed spinlock held. | 1407 | * 0 - if the futex_q was already removed by the waking thread |
| 1386 | */ | 1408 | */ |
| 1387 | |||
| 1388 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | ||
| 1389 | static int unqueue_me(struct futex_q *q) | 1409 | static int unqueue_me(struct futex_q *q) |
| 1390 | { | 1410 | { |
| 1391 | spinlock_t *lock_ptr; | 1411 | spinlock_t *lock_ptr; |
| @@ -1638,17 +1658,14 @@ out: | |||
| 1638 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | 1658 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
| 1639 | struct hrtimer_sleeper *timeout) | 1659 | struct hrtimer_sleeper *timeout) |
| 1640 | { | 1660 | { |
| 1641 | queue_me(q, hb); | ||
| 1642 | |||
| 1643 | /* | 1661 | /* |
| 1644 | * There might have been scheduling since the queue_me(), as we | 1662 | * The task state is guaranteed to be set before another task can |
| 1645 | * cannot hold a spinlock across the get_user() in case it | 1663 | * wake it. set_current_state() is implemented using set_mb() and |
| 1646 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | 1664 | * queue_me() calls spin_unlock() upon completion, both serializing |
| 1647 | * queueing ourselves into the futex hash. This code thus has to | 1665 | * access to the hash list and forcing another memory barrier. |
| 1648 | * rely on the futex_wake() code removing us from hash when it | ||
| 1649 | * wakes us up. | ||
| 1650 | */ | 1666 | */ |
| 1651 | set_current_state(TASK_INTERRUPTIBLE); | 1667 | set_current_state(TASK_INTERRUPTIBLE); |
| 1668 | queue_me(q, hb); | ||
| 1652 | 1669 | ||
| 1653 | /* Arm the timer */ | 1670 | /* Arm the timer */ |
| 1654 | if (timeout) { | 1671 | if (timeout) { |
| @@ -1658,8 +1675,8 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |||
| 1658 | } | 1675 | } |
| 1659 | 1676 | ||
| 1660 | /* | 1677 | /* |
| 1661 | * !plist_node_empty() is safe here without any lock. | 1678 | * If we have been removed from the hash list, then another task |
| 1662 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. | 1679 | * has tried to wake us, and we can skip the call to schedule(). |
| 1663 | */ | 1680 | */ |
| 1664 | if (likely(!plist_node_empty(&q->list))) { | 1681 | if (likely(!plist_node_empty(&q->list))) { |
| 1665 | /* | 1682 | /* |
| @@ -1776,6 +1793,7 @@ static int futex_wait(u32 __user *uaddr, int fshared, | |||
| 1776 | current->timer_slack_ns); | 1793 | current->timer_slack_ns); |
| 1777 | } | 1794 | } |
| 1778 | 1795 | ||
| 1796 | retry: | ||
| 1779 | /* Prepare to wait on uaddr. */ | 1797 | /* Prepare to wait on uaddr. */ |
| 1780 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); | 1798 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); |
| 1781 | if (ret) | 1799 | if (ret) |
| @@ -1793,9 +1811,14 @@ static int futex_wait(u32 __user *uaddr, int fshared, | |||
| 1793 | goto out_put_key; | 1811 | goto out_put_key; |
| 1794 | 1812 | ||
| 1795 | /* | 1813 | /* |
| 1796 | * We expect signal_pending(current), but another thread may | 1814 | * We expect signal_pending(current), but we might be the |
| 1797 | * have handled it for us already. | 1815 | * victim of a spurious wakeup as well. |
| 1798 | */ | 1816 | */ |
| 1817 | if (!signal_pending(current)) { | ||
| 1818 | put_futex_key(fshared, &q.key); | ||
| 1819 | goto retry; | ||
| 1820 | } | ||
| 1821 | |||
| 1799 | ret = -ERESTARTSYS; | 1822 | ret = -ERESTARTSYS; |
| 1800 | if (!abs_time) | 1823 | if (!abs_time) |
| 1801 | goto out_put_key; | 1824 | goto out_put_key; |
| @@ -2102,11 +2125,12 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
| 2102 | * Unqueue the futex_q and determine which it was. | 2125 | * Unqueue the futex_q and determine which it was. |
| 2103 | */ | 2126 | */ |
| 2104 | plist_del(&q->list, &q->list.plist); | 2127 | plist_del(&q->list, &q->list.plist); |
| 2105 | drop_futex_key_refs(&q->key); | ||
| 2106 | 2128 | ||
| 2129 | /* Handle spurious wakeups gracefully */ | ||
| 2130 | ret = -EWOULDBLOCK; | ||
| 2107 | if (timeout && !timeout->task) | 2131 | if (timeout && !timeout->task) |
| 2108 | ret = -ETIMEDOUT; | 2132 | ret = -ETIMEDOUT; |
| 2109 | else | 2133 | else if (signal_pending(current)) |
| 2110 | ret = -ERESTARTNOINTR; | 2134 | ret = -ERESTARTNOINTR; |
| 2111 | } | 2135 | } |
| 2112 | return ret; | 2136 | return ret; |
| @@ -2114,12 +2138,12 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
| 2114 | 2138 | ||
| 2115 | /** | 2139 | /** |
| 2116 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | 2140 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
| 2117 | * @uaddr: the futex we initialyl wait on (non-pi) | 2141 | * @uaddr: the futex we initially wait on (non-pi) |
| 2118 | * @fshared: whether the futexes are shared (1) or not (0). They must be | 2142 | * @fshared: whether the futexes are shared (1) or not (0). They must be |
| 2119 | * the same type, no requeueing from private to shared, etc. | 2143 | * the same type, no requeueing from private to shared, etc. |
| 2120 | * @val: the expected value of uaddr | 2144 | * @val: the expected value of uaddr |
| 2121 | * @abs_time: absolute timeout | 2145 | * @abs_time: absolute timeout |
| 2122 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all. | 2146 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
| 2123 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) | 2147 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
| 2124 | * @uaddr2: the pi futex we will take prior to returning to user-space | 2148 | * @uaddr2: the pi futex we will take prior to returning to user-space |
| 2125 | * | 2149 | * |
| @@ -2246,7 +2270,7 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
| 2246 | res = fixup_owner(uaddr2, fshared, &q, !ret); | 2270 | res = fixup_owner(uaddr2, fshared, &q, !ret); |
| 2247 | /* | 2271 | /* |
| 2248 | * If fixup_owner() returned an error, proprogate that. If it | 2272 | * If fixup_owner() returned an error, proprogate that. If it |
| 2249 | * acquired the lock, clear our -ETIMEDOUT or -EINTR. | 2273 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
| 2250 | */ | 2274 | */ |
| 2251 | if (res) | 2275 | if (res) |
| 2252 | ret = (res < 0) ? res : 0; | 2276 | ret = (res < 0) ? res : 0; |
| @@ -2302,9 +2326,9 @@ out: | |||
| 2302 | */ | 2326 | */ |
| 2303 | 2327 | ||
| 2304 | /** | 2328 | /** |
| 2305 | * sys_set_robust_list - set the robust-futex list head of a task | 2329 | * sys_set_robust_list() - Set the robust-futex list head of a task |
| 2306 | * @head: pointer to the list-head | 2330 | * @head: pointer to the list-head |
| 2307 | * @len: length of the list-head, as userspace expects | 2331 | * @len: length of the list-head, as userspace expects |
| 2308 | */ | 2332 | */ |
| 2309 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | 2333 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
| 2310 | size_t, len) | 2334 | size_t, len) |
| @@ -2323,10 +2347,10 @@ SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | |||
| 2323 | } | 2347 | } |
| 2324 | 2348 | ||
| 2325 | /** | 2349 | /** |
| 2326 | * sys_get_robust_list - get the robust-futex list head of a task | 2350 | * sys_get_robust_list() - Get the robust-futex list head of a task |
| 2327 | * @pid: pid of the process [zero for current task] | 2351 | * @pid: pid of the process [zero for current task] |
| 2328 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | 2352 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in |
| 2329 | * @len_ptr: pointer to a length field, the kernel fills in the header size | 2353 | * @len_ptr: pointer to a length field, the kernel fills in the header size |
| 2330 | */ | 2354 | */ |
| 2331 | SYSCALL_DEFINE3(get_robust_list, int, pid, | 2355 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
| 2332 | struct robust_list_head __user * __user *, head_ptr, | 2356 | struct robust_list_head __user * __user *, head_ptr, |
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 22e9dcfaa3d3..70a298d6da71 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
| @@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
| 34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
| 35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
| 36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
| 37 | depends on S390 || X86 | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) || MICROBLAZE |
| 38 | default n | 38 | default n |
| 39 | ---help--- | 39 | ---help--- |
| 40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 49da79ab8486..3e1c36e7998f 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
| @@ -48,36 +48,7 @@ | |||
| 48 | 48 | ||
| 49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
| 50 | 50 | ||
| 51 | /** | 51 | #include <trace/events/timer.h> |
| 52 | * ktime_get - get the monotonic time in ktime_t format | ||
| 53 | * | ||
| 54 | * returns the time in ktime_t format | ||
| 55 | */ | ||
| 56 | ktime_t ktime_get(void) | ||
| 57 | { | ||
| 58 | struct timespec now; | ||
| 59 | |||
| 60 | ktime_get_ts(&now); | ||
| 61 | |||
| 62 | return timespec_to_ktime(now); | ||
| 63 | } | ||
| 64 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 65 | |||
| 66 | /** | ||
| 67 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 68 | * | ||
| 69 | * returns the time in ktime_t format | ||
| 70 | */ | ||
| 71 | ktime_t ktime_get_real(void) | ||
| 72 | { | ||
| 73 | struct timespec now; | ||
| 74 | |||
| 75 | getnstimeofday(&now); | ||
| 76 | |||
| 77 | return timespec_to_ktime(now); | ||
| 78 | } | ||
| 79 | |||
| 80 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 81 | 52 | ||
| 82 | /* | 53 | /* |
| 83 | * The timer bases: | 54 | * The timer bases: |
| @@ -106,31 +77,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
| 106 | } | 77 | } |
| 107 | }; | 78 | }; |
| 108 | 79 | ||
| 109 | /** | ||
| 110 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 111 | * @ts: pointer to timespec variable | ||
| 112 | * | ||
| 113 | * The function calculates the monotonic clock from the realtime | ||
| 114 | * clock and the wall_to_monotonic offset and stores the result | ||
| 115 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 116 | */ | ||
| 117 | void ktime_get_ts(struct timespec *ts) | ||
| 118 | { | ||
| 119 | struct timespec tomono; | ||
| 120 | unsigned long seq; | ||
| 121 | |||
| 122 | do { | ||
| 123 | seq = read_seqbegin(&xtime_lock); | ||
| 124 | getnstimeofday(ts); | ||
| 125 | tomono = wall_to_monotonic; | ||
| 126 | |||
| 127 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 128 | |||
| 129 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 130 | ts->tv_nsec + tomono.tv_nsec); | ||
| 131 | } | ||
| 132 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 133 | |||
| 134 | /* | 80 | /* |
| 135 | * Get the coarse grained time at the softirq based on xtime and | 81 | * Get the coarse grained time at the softirq based on xtime and |
| 136 | * wall_to_monotonic. | 82 | * wall_to_monotonic. |
| @@ -485,6 +431,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |||
| 485 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 431 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
| 486 | __hrtimer_init(timer, clock_id, mode); | 432 | __hrtimer_init(timer, clock_id, mode); |
| 487 | } | 433 | } |
| 434 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); | ||
| 488 | 435 | ||
| 489 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 436 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
| 490 | { | 437 | { |
| @@ -497,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
| 497 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
| 498 | #endif | 445 | #endif |
| 499 | 446 | ||
| 447 | static inline void | ||
| 448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
| 449 | enum hrtimer_mode mode) | ||
| 450 | { | ||
| 451 | debug_hrtimer_init(timer); | ||
| 452 | trace_hrtimer_init(timer, clockid, mode); | ||
| 453 | } | ||
| 454 | |||
| 455 | static inline void debug_activate(struct hrtimer *timer) | ||
| 456 | { | ||
| 457 | debug_hrtimer_activate(timer); | ||
| 458 | trace_hrtimer_start(timer); | ||
| 459 | } | ||
| 460 | |||
| 461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
| 462 | { | ||
| 463 | debug_hrtimer_deactivate(timer); | ||
| 464 | trace_hrtimer_cancel(timer); | ||
| 465 | } | ||
| 466 | |||
| 500 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
| 501 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 502 | 469 | ||
| @@ -542,13 +509,14 @@ static inline int hrtimer_hres_active(void) | |||
| 542 | * next event | 509 | * next event |
| 543 | * Called with interrupts disabled and base->lock held | 510 | * Called with interrupts disabled and base->lock held |
| 544 | */ | 511 | */ |
| 545 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 512 | static void |
| 513 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | ||
| 546 | { | 514 | { |
| 547 | int i; | 515 | int i; |
| 548 | struct hrtimer_clock_base *base = cpu_base->clock_base; | 516 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
| 549 | ktime_t expires; | 517 | ktime_t expires, expires_next; |
| 550 | 518 | ||
| 551 | cpu_base->expires_next.tv64 = KTIME_MAX; | 519 | expires_next.tv64 = KTIME_MAX; |
| 552 | 520 | ||
| 553 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 521 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
| 554 | struct hrtimer *timer; | 522 | struct hrtimer *timer; |
| @@ -564,10 +532,15 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |||
| 564 | */ | 532 | */ |
| 565 | if (expires.tv64 < 0) | 533 | if (expires.tv64 < 0) |
| 566 | expires.tv64 = 0; | 534 | expires.tv64 = 0; |
| 567 | if (expires.tv64 < cpu_base->expires_next.tv64) | 535 | if (expires.tv64 < expires_next.tv64) |
| 568 | cpu_base->expires_next = expires; | 536 | expires_next = expires; |
| 569 | } | 537 | } |
| 570 | 538 | ||
| 539 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) | ||
| 540 | return; | ||
| 541 | |||
| 542 | cpu_base->expires_next.tv64 = expires_next.tv64; | ||
| 543 | |||
| 571 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 544 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
| 572 | tick_program_event(cpu_base->expires_next, 1); | 545 | tick_program_event(cpu_base->expires_next, 1); |
| 573 | } | 546 | } |
| @@ -650,7 +623,7 @@ static void retrigger_next_event(void *arg) | |||
| 650 | base->clock_base[CLOCK_REALTIME].offset = | 623 | base->clock_base[CLOCK_REALTIME].offset = |
| 651 | timespec_to_ktime(realtime_offset); | 624 | timespec_to_ktime(realtime_offset); |
| 652 | 625 | ||
| 653 | hrtimer_force_reprogram(base); | 626 | hrtimer_force_reprogram(base, 0); |
| 654 | spin_unlock(&base->lock); | 627 | spin_unlock(&base->lock); |
| 655 | } | 628 | } |
| 656 | 629 | ||
| @@ -753,8 +726,6 @@ static int hrtimer_switch_to_hres(void) | |||
| 753 | /* "Retrigger" the interrupt to get things going */ | 726 | /* "Retrigger" the interrupt to get things going */ |
| 754 | retrigger_next_event(NULL); | 727 | retrigger_next_event(NULL); |
| 755 | local_irq_restore(flags); | 728 | local_irq_restore(flags); |
| 756 | printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", | ||
| 757 | smp_processor_id()); | ||
| 758 | return 1; | 729 | return 1; |
| 759 | } | 730 | } |
| 760 | 731 | ||
| @@ -763,7 +734,8 @@ static int hrtimer_switch_to_hres(void) | |||
| 763 | static inline int hrtimer_hres_active(void) { return 0; } | 734 | static inline int hrtimer_hres_active(void) { return 0; } |
| 764 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 735 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
| 765 | static inline int hrtimer_switch_to_hres(void) { return 0; } | 736 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
| 766 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 737 | static inline void |
| 738 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | ||
| 767 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 739 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
| 768 | struct hrtimer_clock_base *base, | 740 | struct hrtimer_clock_base *base, |
| 769 | int wakeup) | 741 | int wakeup) |
| @@ -853,7 +825,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
| 853 | struct hrtimer *entry; | 825 | struct hrtimer *entry; |
| 854 | int leftmost = 1; | 826 | int leftmost = 1; |
| 855 | 827 | ||
| 856 | debug_hrtimer_activate(timer); | 828 | debug_activate(timer); |
| 857 | 829 | ||
| 858 | /* | 830 | /* |
| 859 | * Find the right place in the rbtree: | 831 | * Find the right place in the rbtree: |
| @@ -906,19 +878,29 @@ static void __remove_hrtimer(struct hrtimer *timer, | |||
| 906 | struct hrtimer_clock_base *base, | 878 | struct hrtimer_clock_base *base, |
| 907 | unsigned long newstate, int reprogram) | 879 | unsigned long newstate, int reprogram) |
| 908 | { | 880 | { |
| 909 | if (timer->state & HRTIMER_STATE_ENQUEUED) { | 881 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 910 | /* | 882 | goto out; |
| 911 | * Remove the timer from the rbtree and replace the | 883 | |
| 912 | * first entry pointer if necessary. | 884 | /* |
| 913 | */ | 885 | * Remove the timer from the rbtree and replace the first |
| 914 | if (base->first == &timer->node) { | 886 | * entry pointer if necessary. |
| 915 | base->first = rb_next(&timer->node); | 887 | */ |
| 916 | /* Reprogram the clock event device. if enabled */ | 888 | if (base->first == &timer->node) { |
| 917 | if (reprogram && hrtimer_hres_active()) | 889 | base->first = rb_next(&timer->node); |
| 918 | hrtimer_force_reprogram(base->cpu_base); | 890 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 891 | /* Reprogram the clock event device. if enabled */ | ||
| 892 | if (reprogram && hrtimer_hres_active()) { | ||
| 893 | ktime_t expires; | ||
| 894 | |||
| 895 | expires = ktime_sub(hrtimer_get_expires(timer), | ||
| 896 | base->offset); | ||
| 897 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | ||
| 898 | hrtimer_force_reprogram(base->cpu_base, 1); | ||
| 919 | } | 899 | } |
| 920 | rb_erase(&timer->node, &base->active); | 900 | #endif |
| 921 | } | 901 | } |
| 902 | rb_erase(&timer->node, &base->active); | ||
| 903 | out: | ||
| 922 | timer->state = newstate; | 904 | timer->state = newstate; |
| 923 | } | 905 | } |
| 924 | 906 | ||
| @@ -939,7 +921,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
| 939 | * reprogramming happens in the interrupt handler. This is a | 921 | * reprogramming happens in the interrupt handler. This is a |
| 940 | * rare case and less expensive than a smp call. | 922 | * rare case and less expensive than a smp call. |
| 941 | */ | 923 | */ |
| 942 | debug_hrtimer_deactivate(timer); | 924 | debug_deactivate(timer); |
| 943 | timer_stats_hrtimer_clear_start_info(timer); | 925 | timer_stats_hrtimer_clear_start_info(timer); |
| 944 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 926 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
| 945 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 927 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
| @@ -1154,7 +1136,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
| 1154 | clock_id = CLOCK_MONOTONIC; | 1136 | clock_id = CLOCK_MONOTONIC; |
| 1155 | 1137 | ||
| 1156 | timer->base = &cpu_base->clock_base[clock_id]; | 1138 | timer->base = &cpu_base->clock_base[clock_id]; |
| 1157 | INIT_LIST_HEAD(&timer->cb_entry); | ||
| 1158 | hrtimer_init_timer_hres(timer); | 1139 | hrtimer_init_timer_hres(timer); |
| 1159 | 1140 | ||
| 1160 | #ifdef CONFIG_TIMER_STATS | 1141 | #ifdef CONFIG_TIMER_STATS |
| @@ -1173,7 +1154,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
| 1173 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1154 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1174 | enum hrtimer_mode mode) | 1155 | enum hrtimer_mode mode) |
| 1175 | { | 1156 | { |
| 1176 | debug_hrtimer_init(timer); | 1157 | debug_init(timer, clock_id, mode); |
| 1177 | __hrtimer_init(timer, clock_id, mode); | 1158 | __hrtimer_init(timer, clock_id, mode); |
| 1178 | } | 1159 | } |
| 1179 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1160 | EXPORT_SYMBOL_GPL(hrtimer_init); |
| @@ -1197,7 +1178,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
| 1197 | } | 1178 | } |
| 1198 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1179 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
| 1199 | 1180 | ||
| 1200 | static void __run_hrtimer(struct hrtimer *timer) | 1181 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
| 1201 | { | 1182 | { |
| 1202 | struct hrtimer_clock_base *base = timer->base; | 1183 | struct hrtimer_clock_base *base = timer->base; |
| 1203 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1184 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
| @@ -1206,7 +1187,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
| 1206 | 1187 | ||
| 1207 | WARN_ON(!irqs_disabled()); | 1188 | WARN_ON(!irqs_disabled()); |
| 1208 | 1189 | ||
| 1209 | debug_hrtimer_deactivate(timer); | 1190 | debug_deactivate(timer); |
| 1210 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1191 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
| 1211 | timer_stats_account_hrtimer(timer); | 1192 | timer_stats_account_hrtimer(timer); |
| 1212 | fn = timer->function; | 1193 | fn = timer->function; |
| @@ -1217,7 +1198,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
| 1217 | * the timer base. | 1198 | * the timer base. |
| 1218 | */ | 1199 | */ |
| 1219 | spin_unlock(&cpu_base->lock); | 1200 | spin_unlock(&cpu_base->lock); |
| 1201 | trace_hrtimer_expire_entry(timer, now); | ||
| 1220 | restart = fn(timer); | 1202 | restart = fn(timer); |
| 1203 | trace_hrtimer_expire_exit(timer); | ||
| 1221 | spin_lock(&cpu_base->lock); | 1204 | spin_lock(&cpu_base->lock); |
| 1222 | 1205 | ||
| 1223 | /* | 1206 | /* |
| @@ -1328,7 +1311,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
| 1328 | break; | 1311 | break; |
| 1329 | } | 1312 | } |
| 1330 | 1313 | ||
| 1331 | __run_hrtimer(timer); | 1314 | __run_hrtimer(timer, &basenow); |
| 1332 | } | 1315 | } |
| 1333 | base++; | 1316 | base++; |
| 1334 | } | 1317 | } |
| @@ -1450,7 +1433,7 @@ void hrtimer_run_queues(void) | |||
| 1450 | hrtimer_get_expires_tv64(timer)) | 1433 | hrtimer_get_expires_tv64(timer)) |
| 1451 | break; | 1434 | break; |
| 1452 | 1435 | ||
| 1453 | __run_hrtimer(timer); | 1436 | __run_hrtimer(timer, &base->softirq_time); |
| 1454 | } | 1437 | } |
| 1455 | spin_unlock(&cpu_base->lock); | 1438 | spin_unlock(&cpu_base->lock); |
| 1456 | } | 1439 | } |
| @@ -1477,6 +1460,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | |||
| 1477 | sl->timer.function = hrtimer_wakeup; | 1460 | sl->timer.function = hrtimer_wakeup; |
| 1478 | sl->task = task; | 1461 | sl->task = task; |
| 1479 | } | 1462 | } |
| 1463 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); | ||
| 1480 | 1464 | ||
| 1481 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 1465 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| 1482 | { | 1466 | { |
| @@ -1626,7 +1610,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
| 1626 | while ((node = rb_first(&old_base->active))) { | 1610 | while ((node = rb_first(&old_base->active))) { |
| 1627 | timer = rb_entry(node, struct hrtimer, node); | 1611 | timer = rb_entry(node, struct hrtimer, node); |
| 1628 | BUG_ON(hrtimer_callback_running(timer)); | 1612 | BUG_ON(hrtimer_callback_running(timer)); |
| 1629 | debug_hrtimer_deactivate(timer); | 1613 | debug_deactivate(timer); |
| 1630 | 1614 | ||
| 1631 | /* | 1615 | /* |
| 1632 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1616 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/hung_task.c b/kernel/hung_task.c index 022a4927b785..0c642d51aac2 100644 --- a/kernel/hung_task.c +++ b/kernel/hung_task.c | |||
| @@ -144,7 +144,7 @@ static void check_hung_uninterruptible_tasks(unsigned long timeout) | |||
| 144 | 144 | ||
| 145 | rcu_read_lock(); | 145 | rcu_read_lock(); |
| 146 | do_each_thread(g, t) { | 146 | do_each_thread(g, t) { |
| 147 | if (!--max_count) | 147 | if (!max_count--) |
| 148 | goto unlock; | 148 | goto unlock; |
| 149 | if (!--batch_count) { | 149 | if (!--batch_count) { |
| 150 | batch_count = HUNG_TASK_BATCHING; | 150 | batch_count = HUNG_TASK_BATCHING; |
| @@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout) | |||
| 171 | * Process updating of timeout sysctl | 171 | * Process updating of timeout sysctl |
| 172 | */ | 172 | */ |
| 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, | 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, |
| 174 | struct file *filp, void __user *buffer, | 174 | void __user *buffer, |
| 175 | size_t *lenp, loff_t *ppos) | 175 | size_t *lenp, loff_t *ppos) |
| 176 | { | 176 | { |
| 177 | int ret; | 177 | int ret; |
| 178 | 178 | ||
| 179 | ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); | 179 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
| 180 | 180 | ||
| 181 | if (ret || !write) | 181 | if (ret || !write) |
| 182 | goto out; | 182 | goto out; |
diff --git a/kernel/hw_breakpoint.c b/kernel/hw_breakpoint.c new file mode 100644 index 000000000000..cf5ee1628411 --- /dev/null +++ b/kernel/hw_breakpoint.c | |||
| @@ -0,0 +1,423 @@ | |||
| 1 | /* | ||
| 2 | * This program is free software; you can redistribute it and/or modify | ||
| 3 | * it under the terms of the GNU General Public License as published by | ||
| 4 | * the Free Software Foundation; either version 2 of the License, or | ||
| 5 | * (at your option) any later version. | ||
| 6 | * | ||
| 7 | * This program is distributed in the hope that it will be useful, | ||
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 10 | * GNU General Public License for more details. | ||
| 11 | * | ||
| 12 | * You should have received a copy of the GNU General Public License | ||
| 13 | * along with this program; if not, write to the Free Software | ||
| 14 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 15 | * | ||
| 16 | * Copyright (C) 2007 Alan Stern | ||
| 17 | * Copyright (C) IBM Corporation, 2009 | ||
| 18 | * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com> | ||
| 19 | * | ||
| 20 | * Thanks to Ingo Molnar for his many suggestions. | ||
| 21 | * | ||
| 22 | * Authors: Alan Stern <stern@rowland.harvard.edu> | ||
| 23 | * K.Prasad <prasad@linux.vnet.ibm.com> | ||
| 24 | * Frederic Weisbecker <fweisbec@gmail.com> | ||
| 25 | */ | ||
| 26 | |||
| 27 | /* | ||
| 28 | * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, | ||
| 29 | * using the CPU's debug registers. | ||
| 30 | * This file contains the arch-independent routines. | ||
| 31 | */ | ||
| 32 | |||
| 33 | #include <linux/irqflags.h> | ||
| 34 | #include <linux/kallsyms.h> | ||
| 35 | #include <linux/notifier.h> | ||
| 36 | #include <linux/kprobes.h> | ||
| 37 | #include <linux/kdebug.h> | ||
| 38 | #include <linux/kernel.h> | ||
| 39 | #include <linux/module.h> | ||
| 40 | #include <linux/percpu.h> | ||
| 41 | #include <linux/sched.h> | ||
| 42 | #include <linux/init.h> | ||
| 43 | #include <linux/smp.h> | ||
| 44 | |||
| 45 | #include <linux/hw_breakpoint.h> | ||
| 46 | |||
| 47 | /* | ||
| 48 | * Constraints data | ||
| 49 | */ | ||
| 50 | |||
| 51 | /* Number of pinned cpu breakpoints in a cpu */ | ||
| 52 | static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned); | ||
| 53 | |||
| 54 | /* Number of pinned task breakpoints in a cpu */ | ||
| 55 | static DEFINE_PER_CPU(unsigned int, task_bp_pinned[HBP_NUM]); | ||
| 56 | |||
| 57 | /* Number of non-pinned cpu/task breakpoints in a cpu */ | ||
| 58 | static DEFINE_PER_CPU(unsigned int, nr_bp_flexible); | ||
| 59 | |||
| 60 | /* Gather the number of total pinned and un-pinned bp in a cpuset */ | ||
| 61 | struct bp_busy_slots { | ||
| 62 | unsigned int pinned; | ||
| 63 | unsigned int flexible; | ||
| 64 | }; | ||
| 65 | |||
| 66 | /* Serialize accesses to the above constraints */ | ||
| 67 | static DEFINE_MUTEX(nr_bp_mutex); | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Report the maximum number of pinned breakpoints a task | ||
| 71 | * have in this cpu | ||
| 72 | */ | ||
| 73 | static unsigned int max_task_bp_pinned(int cpu) | ||
| 74 | { | ||
| 75 | int i; | ||
| 76 | unsigned int *tsk_pinned = per_cpu(task_bp_pinned, cpu); | ||
| 77 | |||
| 78 | for (i = HBP_NUM -1; i >= 0; i--) { | ||
| 79 | if (tsk_pinned[i] > 0) | ||
| 80 | return i + 1; | ||
| 81 | } | ||
| 82 | |||
| 83 | return 0; | ||
| 84 | } | ||
| 85 | |||
| 86 | /* | ||
| 87 | * Report the number of pinned/un-pinned breakpoints we have in | ||
| 88 | * a given cpu (cpu > -1) or in all of them (cpu = -1). | ||
| 89 | */ | ||
| 90 | static void fetch_bp_busy_slots(struct bp_busy_slots *slots, int cpu) | ||
| 91 | { | ||
| 92 | if (cpu >= 0) { | ||
| 93 | slots->pinned = per_cpu(nr_cpu_bp_pinned, cpu); | ||
| 94 | slots->pinned += max_task_bp_pinned(cpu); | ||
| 95 | slots->flexible = per_cpu(nr_bp_flexible, cpu); | ||
| 96 | |||
| 97 | return; | ||
| 98 | } | ||
| 99 | |||
| 100 | for_each_online_cpu(cpu) { | ||
| 101 | unsigned int nr; | ||
| 102 | |||
| 103 | nr = per_cpu(nr_cpu_bp_pinned, cpu); | ||
| 104 | nr += max_task_bp_pinned(cpu); | ||
| 105 | |||
| 106 | if (nr > slots->pinned) | ||
| 107 | slots->pinned = nr; | ||
| 108 | |||
| 109 | nr = per_cpu(nr_bp_flexible, cpu); | ||
| 110 | |||
| 111 | if (nr > slots->flexible) | ||
| 112 | slots->flexible = nr; | ||
| 113 | } | ||
| 114 | } | ||
| 115 | |||
| 116 | /* | ||
| 117 | * Add a pinned breakpoint for the given task in our constraint table | ||
| 118 | */ | ||
| 119 | static void toggle_bp_task_slot(struct task_struct *tsk, int cpu, bool enable) | ||
| 120 | { | ||
| 121 | int count = 0; | ||
| 122 | struct perf_event *bp; | ||
| 123 | struct perf_event_context *ctx = tsk->perf_event_ctxp; | ||
| 124 | unsigned int *tsk_pinned; | ||
| 125 | struct list_head *list; | ||
| 126 | unsigned long flags; | ||
| 127 | |||
| 128 | if (WARN_ONCE(!ctx, "No perf context for this task")) | ||
| 129 | return; | ||
| 130 | |||
| 131 | list = &ctx->event_list; | ||
| 132 | |||
| 133 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 134 | |||
| 135 | /* | ||
| 136 | * The current breakpoint counter is not included in the list | ||
| 137 | * at the open() callback time | ||
| 138 | */ | ||
| 139 | list_for_each_entry(bp, list, event_entry) { | ||
| 140 | if (bp->attr.type == PERF_TYPE_BREAKPOINT) | ||
| 141 | count++; | ||
| 142 | } | ||
| 143 | |||
| 144 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 145 | |||
| 146 | if (WARN_ONCE(count < 0, "No breakpoint counter found in the counter list")) | ||
| 147 | return; | ||
| 148 | |||
| 149 | tsk_pinned = per_cpu(task_bp_pinned, cpu); | ||
| 150 | if (enable) { | ||
| 151 | tsk_pinned[count]++; | ||
| 152 | if (count > 0) | ||
| 153 | tsk_pinned[count-1]--; | ||
| 154 | } else { | ||
| 155 | tsk_pinned[count]--; | ||
| 156 | if (count > 0) | ||
| 157 | tsk_pinned[count-1]++; | ||
| 158 | } | ||
| 159 | } | ||
| 160 | |||
| 161 | /* | ||
| 162 | * Add/remove the given breakpoint in our constraint table | ||
| 163 | */ | ||
| 164 | static void toggle_bp_slot(struct perf_event *bp, bool enable) | ||
| 165 | { | ||
| 166 | int cpu = bp->cpu; | ||
| 167 | struct task_struct *tsk = bp->ctx->task; | ||
| 168 | |||
| 169 | /* Pinned counter task profiling */ | ||
| 170 | if (tsk) { | ||
| 171 | if (cpu >= 0) { | ||
| 172 | toggle_bp_task_slot(tsk, cpu, enable); | ||
| 173 | return; | ||
| 174 | } | ||
| 175 | |||
| 176 | for_each_online_cpu(cpu) | ||
| 177 | toggle_bp_task_slot(tsk, cpu, enable); | ||
| 178 | return; | ||
| 179 | } | ||
| 180 | |||
| 181 | /* Pinned counter cpu profiling */ | ||
| 182 | if (enable) | ||
| 183 | per_cpu(nr_cpu_bp_pinned, bp->cpu)++; | ||
| 184 | else | ||
| 185 | per_cpu(nr_cpu_bp_pinned, bp->cpu)--; | ||
| 186 | } | ||
| 187 | |||
| 188 | /* | ||
| 189 | * Contraints to check before allowing this new breakpoint counter: | ||
| 190 | * | ||
| 191 | * == Non-pinned counter == (Considered as pinned for now) | ||
| 192 | * | ||
| 193 | * - If attached to a single cpu, check: | ||
| 194 | * | ||
| 195 | * (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu) | ||
| 196 | * + max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM | ||
| 197 | * | ||
| 198 | * -> If there are already non-pinned counters in this cpu, it means | ||
| 199 | * there is already a free slot for them. | ||
| 200 | * Otherwise, we check that the maximum number of per task | ||
| 201 | * breakpoints (for this cpu) plus the number of per cpu breakpoint | ||
| 202 | * (for this cpu) doesn't cover every registers. | ||
| 203 | * | ||
| 204 | * - If attached to every cpus, check: | ||
| 205 | * | ||
| 206 | * (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *)) | ||
| 207 | * + max(per_cpu(task_bp_pinned, *)))) < HBP_NUM | ||
| 208 | * | ||
| 209 | * -> This is roughly the same, except we check the number of per cpu | ||
| 210 | * bp for every cpu and we keep the max one. Same for the per tasks | ||
| 211 | * breakpoints. | ||
| 212 | * | ||
| 213 | * | ||
| 214 | * == Pinned counter == | ||
| 215 | * | ||
| 216 | * - If attached to a single cpu, check: | ||
| 217 | * | ||
| 218 | * ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu) | ||
| 219 | * + max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM | ||
| 220 | * | ||
| 221 | * -> Same checks as before. But now the nr_bp_flexible, if any, must keep | ||
| 222 | * one register at least (or they will never be fed). | ||
| 223 | * | ||
| 224 | * - If attached to every cpus, check: | ||
| 225 | * | ||
| 226 | * ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *)) | ||
| 227 | * + max(per_cpu(task_bp_pinned, *))) < HBP_NUM | ||
| 228 | */ | ||
| 229 | int reserve_bp_slot(struct perf_event *bp) | ||
| 230 | { | ||
| 231 | struct bp_busy_slots slots = {0}; | ||
| 232 | int ret = 0; | ||
| 233 | |||
| 234 | mutex_lock(&nr_bp_mutex); | ||
| 235 | |||
| 236 | fetch_bp_busy_slots(&slots, bp->cpu); | ||
| 237 | |||
| 238 | /* Flexible counters need to keep at least one slot */ | ||
| 239 | if (slots.pinned + (!!slots.flexible) == HBP_NUM) { | ||
| 240 | ret = -ENOSPC; | ||
| 241 | goto end; | ||
| 242 | } | ||
| 243 | |||
| 244 | toggle_bp_slot(bp, true); | ||
| 245 | |||
| 246 | end: | ||
| 247 | mutex_unlock(&nr_bp_mutex); | ||
| 248 | |||
| 249 | return ret; | ||
| 250 | } | ||
| 251 | |||
| 252 | void release_bp_slot(struct perf_event *bp) | ||
| 253 | { | ||
| 254 | mutex_lock(&nr_bp_mutex); | ||
| 255 | |||
| 256 | toggle_bp_slot(bp, false); | ||
| 257 | |||
| 258 | mutex_unlock(&nr_bp_mutex); | ||
| 259 | } | ||
| 260 | |||
| 261 | |||
| 262 | int __register_perf_hw_breakpoint(struct perf_event *bp) | ||
| 263 | { | ||
| 264 | int ret; | ||
| 265 | |||
| 266 | ret = reserve_bp_slot(bp); | ||
| 267 | if (ret) | ||
| 268 | return ret; | ||
| 269 | |||
| 270 | /* | ||
| 271 | * Ptrace breakpoints can be temporary perf events only | ||
| 272 | * meant to reserve a slot. In this case, it is created disabled and | ||
| 273 | * we don't want to check the params right now (as we put a null addr) | ||
| 274 | * But perf tools create events as disabled and we want to check | ||
| 275 | * the params for them. | ||
| 276 | * This is a quick hack that will be removed soon, once we remove | ||
| 277 | * the tmp breakpoints from ptrace | ||
| 278 | */ | ||
| 279 | if (!bp->attr.disabled || bp->callback == perf_bp_event) | ||
| 280 | ret = arch_validate_hwbkpt_settings(bp, bp->ctx->task); | ||
| 281 | |||
| 282 | return ret; | ||
| 283 | } | ||
| 284 | |||
| 285 | int register_perf_hw_breakpoint(struct perf_event *bp) | ||
| 286 | { | ||
| 287 | bp->callback = perf_bp_event; | ||
| 288 | |||
| 289 | return __register_perf_hw_breakpoint(bp); | ||
| 290 | } | ||
| 291 | |||
| 292 | /** | ||
| 293 | * register_user_hw_breakpoint - register a hardware breakpoint for user space | ||
| 294 | * @attr: breakpoint attributes | ||
| 295 | * @triggered: callback to trigger when we hit the breakpoint | ||
| 296 | * @tsk: pointer to 'task_struct' of the process to which the address belongs | ||
| 297 | */ | ||
| 298 | struct perf_event * | ||
| 299 | register_user_hw_breakpoint(struct perf_event_attr *attr, | ||
| 300 | perf_callback_t triggered, | ||
| 301 | struct task_struct *tsk) | ||
| 302 | { | ||
| 303 | return perf_event_create_kernel_counter(attr, -1, tsk->pid, triggered); | ||
| 304 | } | ||
| 305 | EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); | ||
| 306 | |||
| 307 | /** | ||
| 308 | * modify_user_hw_breakpoint - modify a user-space hardware breakpoint | ||
| 309 | * @bp: the breakpoint structure to modify | ||
| 310 | * @attr: new breakpoint attributes | ||
| 311 | * @triggered: callback to trigger when we hit the breakpoint | ||
| 312 | * @tsk: pointer to 'task_struct' of the process to which the address belongs | ||
| 313 | */ | ||
| 314 | struct perf_event * | ||
| 315 | modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr, | ||
| 316 | perf_callback_t triggered, | ||
| 317 | struct task_struct *tsk) | ||
| 318 | { | ||
| 319 | /* | ||
| 320 | * FIXME: do it without unregistering | ||
| 321 | * - We don't want to lose our slot | ||
| 322 | * - If the new bp is incorrect, don't lose the older one | ||
| 323 | */ | ||
| 324 | unregister_hw_breakpoint(bp); | ||
| 325 | |||
| 326 | return perf_event_create_kernel_counter(attr, -1, tsk->pid, triggered); | ||
| 327 | } | ||
| 328 | EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); | ||
| 329 | |||
| 330 | /** | ||
| 331 | * unregister_hw_breakpoint - unregister a user-space hardware breakpoint | ||
| 332 | * @bp: the breakpoint structure to unregister | ||
| 333 | */ | ||
| 334 | void unregister_hw_breakpoint(struct perf_event *bp) | ||
| 335 | { | ||
| 336 | if (!bp) | ||
| 337 | return; | ||
| 338 | perf_event_release_kernel(bp); | ||
| 339 | } | ||
| 340 | EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); | ||
| 341 | |||
| 342 | /** | ||
| 343 | * register_wide_hw_breakpoint - register a wide breakpoint in the kernel | ||
| 344 | * @attr: breakpoint attributes | ||
| 345 | * @triggered: callback to trigger when we hit the breakpoint | ||
| 346 | * | ||
| 347 | * @return a set of per_cpu pointers to perf events | ||
| 348 | */ | ||
| 349 | struct perf_event ** | ||
| 350 | register_wide_hw_breakpoint(struct perf_event_attr *attr, | ||
| 351 | perf_callback_t triggered) | ||
| 352 | { | ||
| 353 | struct perf_event **cpu_events, **pevent, *bp; | ||
| 354 | long err; | ||
| 355 | int cpu; | ||
| 356 | |||
| 357 | cpu_events = alloc_percpu(typeof(*cpu_events)); | ||
| 358 | if (!cpu_events) | ||
| 359 | return ERR_PTR(-ENOMEM); | ||
| 360 | |||
| 361 | for_each_possible_cpu(cpu) { | ||
| 362 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
| 363 | bp = perf_event_create_kernel_counter(attr, cpu, -1, triggered); | ||
| 364 | |||
| 365 | *pevent = bp; | ||
| 366 | |||
| 367 | if (IS_ERR(bp)) { | ||
| 368 | err = PTR_ERR(bp); | ||
| 369 | goto fail; | ||
| 370 | } | ||
| 371 | } | ||
| 372 | |||
| 373 | return cpu_events; | ||
| 374 | |||
| 375 | fail: | ||
| 376 | for_each_possible_cpu(cpu) { | ||
| 377 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
| 378 | if (IS_ERR(*pevent)) | ||
| 379 | break; | ||
| 380 | unregister_hw_breakpoint(*pevent); | ||
| 381 | } | ||
| 382 | free_percpu(cpu_events); | ||
| 383 | /* return the error if any */ | ||
| 384 | return ERR_PTR(err); | ||
| 385 | } | ||
| 386 | EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); | ||
| 387 | |||
| 388 | /** | ||
| 389 | * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel | ||
| 390 | * @cpu_events: the per cpu set of events to unregister | ||
| 391 | */ | ||
| 392 | void unregister_wide_hw_breakpoint(struct perf_event **cpu_events) | ||
| 393 | { | ||
| 394 | int cpu; | ||
| 395 | struct perf_event **pevent; | ||
| 396 | |||
| 397 | for_each_possible_cpu(cpu) { | ||
| 398 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
| 399 | unregister_hw_breakpoint(*pevent); | ||
| 400 | } | ||
| 401 | free_percpu(cpu_events); | ||
| 402 | } | ||
| 403 | EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); | ||
| 404 | |||
| 405 | static struct notifier_block hw_breakpoint_exceptions_nb = { | ||
| 406 | .notifier_call = hw_breakpoint_exceptions_notify, | ||
| 407 | /* we need to be notified first */ | ||
| 408 | .priority = 0x7fffffff | ||
| 409 | }; | ||
| 410 | |||
| 411 | static int __init init_hw_breakpoint(void) | ||
| 412 | { | ||
| 413 | return register_die_notifier(&hw_breakpoint_exceptions_nb); | ||
| 414 | } | ||
| 415 | core_initcall(init_hw_breakpoint); | ||
| 416 | |||
| 417 | |||
| 418 | struct pmu perf_ops_bp = { | ||
| 419 | .enable = arch_install_hw_breakpoint, | ||
| 420 | .disable = arch_uninstall_hw_breakpoint, | ||
| 421 | .read = hw_breakpoint_pmu_read, | ||
| 422 | .unthrottle = hw_breakpoint_pmu_unthrottle | ||
| 423 | }; | ||
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index c1660194d115..ba566c261adc 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c | |||
| @@ -166,11 +166,11 @@ int set_irq_data(unsigned int irq, void *data) | |||
| 166 | EXPORT_SYMBOL(set_irq_data); | 166 | EXPORT_SYMBOL(set_irq_data); |
| 167 | 167 | ||
| 168 | /** | 168 | /** |
| 169 | * set_irq_data - set irq type data for an irq | 169 | * set_irq_msi - set MSI descriptor data for an irq |
| 170 | * @irq: Interrupt number | 170 | * @irq: Interrupt number |
| 171 | * @entry: Pointer to MSI descriptor data | 171 | * @entry: Pointer to MSI descriptor data |
| 172 | * | 172 | * |
| 173 | * Set the hardware irq controller data for an irq | 173 | * Set the MSI descriptor entry for an irq |
| 174 | */ | 174 | */ |
| 175 | int set_irq_msi(unsigned int irq, struct msi_desc *entry) | 175 | int set_irq_msi(unsigned int irq, struct msi_desc *entry) |
| 176 | { | 176 | { |
| @@ -590,7 +590,7 @@ out_unlock: | |||
| 590 | } | 590 | } |
| 591 | 591 | ||
| 592 | /** | 592 | /** |
| 593 | * handle_percpu_IRQ - Per CPU local irq handler | 593 | * handle_percpu_irq - Per CPU local irq handler |
| 594 | * @irq: the interrupt number | 594 | * @irq: the interrupt number |
| 595 | * @desc: the interrupt description structure for this irq | 595 | * @desc: the interrupt description structure for this irq |
| 596 | * | 596 | * |
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index a81cf80554db..17c71bb565c6 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
| @@ -11,6 +11,7 @@ | |||
| 11 | */ | 11 | */ |
| 12 | 12 | ||
| 13 | #include <linux/irq.h> | 13 | #include <linux/irq.h> |
| 14 | #include <linux/sched.h> | ||
| 14 | #include <linux/slab.h> | 15 | #include <linux/slab.h> |
| 15 | #include <linux/module.h> | 16 | #include <linux/module.h> |
| 16 | #include <linux/random.h> | 17 | #include <linux/random.h> |
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c index 692363dd591f..0832145fea97 100644 --- a/kernel/irq/proc.c +++ b/kernel/irq/proc.c | |||
| @@ -136,7 +136,7 @@ out: | |||
| 136 | 136 | ||
| 137 | static int default_affinity_open(struct inode *inode, struct file *file) | 137 | static int default_affinity_open(struct inode *inode, struct file *file) |
| 138 | { | 138 | { |
| 139 | return single_open(file, default_affinity_show, NULL); | 139 | return single_open(file, default_affinity_show, PDE(inode)->data); |
| 140 | } | 140 | } |
| 141 | 141 | ||
| 142 | static const struct file_operations default_affinity_proc_fops = { | 142 | static const struct file_operations default_affinity_proc_fops = { |
| @@ -148,18 +148,28 @@ static const struct file_operations default_affinity_proc_fops = { | |||
| 148 | }; | 148 | }; |
| 149 | #endif | 149 | #endif |
| 150 | 150 | ||
| 151 | static int irq_spurious_read(char *page, char **start, off_t off, | 151 | static int irq_spurious_proc_show(struct seq_file *m, void *v) |
| 152 | int count, int *eof, void *data) | ||
| 153 | { | 152 | { |
| 154 | struct irq_desc *desc = irq_to_desc((long) data); | 153 | struct irq_desc *desc = irq_to_desc((long) m->private); |
| 155 | return sprintf(page, "count %u\n" | 154 | |
| 156 | "unhandled %u\n" | 155 | seq_printf(m, "count %u\n" "unhandled %u\n" "last_unhandled %u ms\n", |
| 157 | "last_unhandled %u ms\n", | 156 | desc->irq_count, desc->irqs_unhandled, |
| 158 | desc->irq_count, | 157 | jiffies_to_msecs(desc->last_unhandled)); |
| 159 | desc->irqs_unhandled, | 158 | return 0; |
| 160 | jiffies_to_msecs(desc->last_unhandled)); | 159 | } |
| 160 | |||
| 161 | static int irq_spurious_proc_open(struct inode *inode, struct file *file) | ||
| 162 | { | ||
| 163 | return single_open(file, irq_spurious_proc_show, NULL); | ||
| 161 | } | 164 | } |
| 162 | 165 | ||
| 166 | static const struct file_operations irq_spurious_proc_fops = { | ||
| 167 | .open = irq_spurious_proc_open, | ||
| 168 | .read = seq_read, | ||
| 169 | .llseek = seq_lseek, | ||
| 170 | .release = single_release, | ||
| 171 | }; | ||
| 172 | |||
| 163 | #define MAX_NAMELEN 128 | 173 | #define MAX_NAMELEN 128 |
| 164 | 174 | ||
| 165 | static int name_unique(unsigned int irq, struct irqaction *new_action) | 175 | static int name_unique(unsigned int irq, struct irqaction *new_action) |
| @@ -204,7 +214,6 @@ void register_handler_proc(unsigned int irq, struct irqaction *action) | |||
| 204 | void register_irq_proc(unsigned int irq, struct irq_desc *desc) | 214 | void register_irq_proc(unsigned int irq, struct irq_desc *desc) |
| 205 | { | 215 | { |
| 206 | char name [MAX_NAMELEN]; | 216 | char name [MAX_NAMELEN]; |
| 207 | struct proc_dir_entry *entry; | ||
| 208 | 217 | ||
| 209 | if (!root_irq_dir || (desc->chip == &no_irq_chip) || desc->dir) | 218 | if (!root_irq_dir || (desc->chip == &no_irq_chip) || desc->dir) |
| 210 | return; | 219 | return; |
| @@ -214,6 +223,8 @@ void register_irq_proc(unsigned int irq, struct irq_desc *desc) | |||
| 214 | 223 | ||
| 215 | /* create /proc/irq/1234 */ | 224 | /* create /proc/irq/1234 */ |
| 216 | desc->dir = proc_mkdir(name, root_irq_dir); | 225 | desc->dir = proc_mkdir(name, root_irq_dir); |
| 226 | if (!desc->dir) | ||
| 227 | return; | ||
| 217 | 228 | ||
| 218 | #ifdef CONFIG_SMP | 229 | #ifdef CONFIG_SMP |
| 219 | /* create /proc/irq/<irq>/smp_affinity */ | 230 | /* create /proc/irq/<irq>/smp_affinity */ |
| @@ -221,11 +232,8 @@ void register_irq_proc(unsigned int irq, struct irq_desc *desc) | |||
| 221 | &irq_affinity_proc_fops, (void *)(long)irq); | 232 | &irq_affinity_proc_fops, (void *)(long)irq); |
| 222 | #endif | 233 | #endif |
| 223 | 234 | ||
| 224 | entry = create_proc_entry("spurious", 0444, desc->dir); | 235 | proc_create_data("spurious", 0444, desc->dir, |
| 225 | if (entry) { | 236 | &irq_spurious_proc_fops, (void *)(long)irq); |
| 226 | entry->data = (void *)(long)irq; | ||
| 227 | entry->read_proc = irq_spurious_read; | ||
| 228 | } | ||
| 229 | } | 237 | } |
| 230 | 238 | ||
| 231 | #undef MAX_NAMELEN | 239 | #undef MAX_NAMELEN |
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c index 114e704760fe..22b0a6eedf24 100644 --- a/kernel/irq/spurious.c +++ b/kernel/irq/spurious.c | |||
| @@ -104,7 +104,7 @@ static int misrouted_irq(int irq) | |||
| 104 | return ok; | 104 | return ok; |
| 105 | } | 105 | } |
| 106 | 106 | ||
| 107 | static void poll_all_shared_irqs(void) | 107 | static void poll_spurious_irqs(unsigned long dummy) |
| 108 | { | 108 | { |
| 109 | struct irq_desc *desc; | 109 | struct irq_desc *desc; |
| 110 | int i; | 110 | int i; |
| @@ -121,25 +121,15 @@ static void poll_all_shared_irqs(void) | |||
| 121 | if (!(status & IRQ_SPURIOUS_DISABLED)) | 121 | if (!(status & IRQ_SPURIOUS_DISABLED)) |
| 122 | continue; | 122 | continue; |
| 123 | 123 | ||
| 124 | local_irq_disable(); | ||
| 124 | try_one_irq(i, desc); | 125 | try_one_irq(i, desc); |
| 126 | local_irq_enable(); | ||
| 125 | } | 127 | } |
| 126 | } | ||
| 127 | |||
| 128 | static void poll_spurious_irqs(unsigned long dummy) | ||
| 129 | { | ||
| 130 | poll_all_shared_irqs(); | ||
| 131 | 128 | ||
| 132 | mod_timer(&poll_spurious_irq_timer, | 129 | mod_timer(&poll_spurious_irq_timer, |
| 133 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); | 130 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); |
| 134 | } | 131 | } |
| 135 | 132 | ||
| 136 | #ifdef CONFIG_DEBUG_SHIRQ | ||
| 137 | void debug_poll_all_shared_irqs(void) | ||
| 138 | { | ||
| 139 | poll_all_shared_irqs(); | ||
| 140 | } | ||
| 141 | #endif | ||
| 142 | |||
| 143 | /* | 133 | /* |
| 144 | * If 99,900 of the previous 100,000 interrupts have not been handled | 134 | * If 99,900 of the previous 100,000 interrupts have not been handled |
| 145 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic | 135 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
| @@ -12,6 +12,7 @@ | |||
| 12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
| 13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
| 14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
| 15 | #include <trace/events/timer.h> | ||
| 15 | 16 | ||
| 16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
| 17 | 18 | ||
| @@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
| 41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
| 42 | } | 43 | } |
| 43 | 44 | ||
| 45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
| 46 | struct itimerval *const value) | ||
| 47 | { | ||
| 48 | cputime_t cval, cinterval; | ||
| 49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
| 50 | |||
| 51 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 52 | |||
| 53 | cval = it->expires; | ||
| 54 | cinterval = it->incr; | ||
| 55 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 56 | struct task_cputime cputime; | ||
| 57 | cputime_t t; | ||
| 58 | |||
| 59 | thread_group_cputimer(tsk, &cputime); | ||
| 60 | if (clock_id == CPUCLOCK_PROF) | ||
| 61 | t = cputime_add(cputime.utime, cputime.stime); | ||
| 62 | else | ||
| 63 | /* CPUCLOCK_VIRT */ | ||
| 64 | t = cputime.utime; | ||
| 65 | |||
| 66 | if (cputime_le(cval, t)) | ||
| 67 | /* about to fire */ | ||
| 68 | cval = cputime_one_jiffy; | ||
| 69 | else | ||
| 70 | cval = cputime_sub(cval, t); | ||
| 71 | } | ||
| 72 | |||
| 73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 74 | |||
| 75 | cputime_to_timeval(cval, &value->it_value); | ||
| 76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 77 | } | ||
| 78 | |||
| 44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
| 45 | { | 80 | { |
| 46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
| 47 | cputime_t cinterval, cval; | ||
| 48 | 82 | ||
| 49 | switch (which) { | 83 | switch (which) { |
| 50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
| @@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
| 55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
| 56 | break; | 90 | break; |
| 57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
| 58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
| 59 | cval = tsk->signal->it_virt_expires; | ||
| 60 | cinterval = tsk->signal->it_virt_incr; | ||
| 61 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 62 | struct task_cputime cputime; | ||
| 63 | cputime_t utime; | ||
| 64 | |||
| 65 | thread_group_cputimer(tsk, &cputime); | ||
| 66 | utime = cputime.utime; | ||
| 67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
| 68 | cval = jiffies_to_cputime(1); | ||
| 69 | } else { | ||
| 70 | cval = cputime_sub(cval, utime); | ||
| 71 | } | ||
| 72 | } | ||
| 73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 74 | cputime_to_timeval(cval, &value->it_value); | ||
| 75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 76 | break; | 93 | break; |
| 77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
| 78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
| 79 | cval = tsk->signal->it_prof_expires; | ||
| 80 | cinterval = tsk->signal->it_prof_incr; | ||
| 81 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 82 | struct task_cputime times; | ||
| 83 | cputime_t ptime; | ||
| 84 | |||
| 85 | thread_group_cputimer(tsk, ×); | ||
| 86 | ptime = cputime_add(times.utime, times.stime); | ||
| 87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
| 88 | cval = jiffies_to_cputime(1); | ||
| 89 | } else { | ||
| 90 | cval = cputime_sub(cval, ptime); | ||
| 91 | } | ||
| 92 | } | ||
| 93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 94 | cputime_to_timeval(cval, &value->it_value); | ||
| 95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 96 | break; | 96 | break; |
| 97 | default: | 97 | default: |
| 98 | return(-EINVAL); | 98 | return(-EINVAL); |
| @@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
| 123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
| 124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
| 125 | 125 | ||
| 126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
| 126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
| 127 | 128 | ||
| 128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
| 129 | } | 130 | } |
| 130 | 131 | ||
| 132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
| 133 | { | ||
| 134 | struct timespec ts; | ||
| 135 | s64 cpu_ns; | ||
| 136 | |||
| 137 | cputime_to_timespec(ct, &ts); | ||
| 138 | cpu_ns = timespec_to_ns(&ts); | ||
| 139 | |||
| 140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
| 141 | } | ||
| 142 | |||
| 143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
| 144 | const struct itimerval *const value, | ||
| 145 | struct itimerval *const ovalue) | ||
| 146 | { | ||
| 147 | cputime_t cval, nval, cinterval, ninterval; | ||
| 148 | s64 ns_ninterval, ns_nval; | ||
| 149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
| 150 | |||
| 151 | nval = timeval_to_cputime(&value->it_value); | ||
| 152 | ns_nval = timeval_to_ns(&value->it_value); | ||
| 153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
| 155 | |||
| 156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
| 157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
| 158 | |||
| 159 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 160 | |||
| 161 | cval = it->expires; | ||
| 162 | cinterval = it->incr; | ||
| 163 | if (!cputime_eq(cval, cputime_zero) || | ||
| 164 | !cputime_eq(nval, cputime_zero)) { | ||
| 165 | if (cputime_gt(nval, cputime_zero)) | ||
| 166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
| 167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
| 168 | } | ||
| 169 | it->expires = nval; | ||
| 170 | it->incr = ninterval; | ||
| 171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
| 172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
| 173 | |||
| 174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 175 | |||
| 176 | if (ovalue) { | ||
| 177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 179 | } | ||
| 180 | } | ||
| 181 | |||
| 131 | /* | 182 | /* |
| 132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
| 133 | */ | 184 | */ |
| @@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
| 139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
| 140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
| 141 | ktime_t expires; | 192 | ktime_t expires; |
| 142 | cputime_t cval, cinterval, nval, ninterval; | ||
| 143 | 193 | ||
| 144 | /* | 194 | /* |
| 145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
| @@ -171,51 +221,14 @@ again: | |||
| 171 | } else | 221 | } else |
| 172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
| 173 | 223 | ||
| 224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
| 174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
| 175 | break; | 226 | break; |
| 176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
| 177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
| 178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 179 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 180 | cval = tsk->signal->it_virt_expires; | ||
| 181 | cinterval = tsk->signal->it_virt_incr; | ||
| 182 | if (!cputime_eq(cval, cputime_zero) || | ||
| 183 | !cputime_eq(nval, cputime_zero)) { | ||
| 184 | if (cputime_gt(nval, cputime_zero)) | ||
| 185 | nval = cputime_add(nval, | ||
| 186 | jiffies_to_cputime(1)); | ||
| 187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
| 188 | &nval, &cval); | ||
| 189 | } | ||
| 190 | tsk->signal->it_virt_expires = nval; | ||
| 191 | tsk->signal->it_virt_incr = ninterval; | ||
| 192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 193 | if (ovalue) { | ||
| 194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 196 | } | ||
| 197 | break; | 229 | break; |
| 198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
| 199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
| 200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 201 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 202 | cval = tsk->signal->it_prof_expires; | ||
| 203 | cinterval = tsk->signal->it_prof_incr; | ||
| 204 | if (!cputime_eq(cval, cputime_zero) || | ||
| 205 | !cputime_eq(nval, cputime_zero)) { | ||
| 206 | if (cputime_gt(nval, cputime_zero)) | ||
| 207 | nval = cputime_add(nval, | ||
| 208 | jiffies_to_cputime(1)); | ||
| 209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
| 210 | &nval, &cval); | ||
| 211 | } | ||
| 212 | tsk->signal->it_prof_expires = nval; | ||
| 213 | tsk->signal->it_prof_incr = ninterval; | ||
| 214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 215 | if (ovalue) { | ||
| 216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 218 | } | ||
| 219 | break; | 232 | break; |
| 220 | default: | 233 | default: |
| 221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8e5288a8a355 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
| @@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
| 59 | 59 | ||
| 60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
| 61 | { | 61 | { |
| 62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
| 63 | arch_is_kernel_text(addr)) | ||
| 63 | return 1; | 64 | return 1; |
| 64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
| 65 | } | 66 | } |
| @@ -180,6 +181,7 @@ unsigned long kallsyms_lookup_name(const char *name) | |||
| 180 | } | 181 | } |
| 181 | return module_kallsyms_lookup_name(name); | 182 | return module_kallsyms_lookup_name(name); |
| 182 | } | 183 | } |
| 184 | EXPORT_SYMBOL_GPL(kallsyms_lookup_name); | ||
| 183 | 185 | ||
| 184 | int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, | 186 | int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, |
| 185 | unsigned long), | 187 | unsigned long), |
diff --git a/kernel/kfifo.c b/kernel/kfifo.c index 26539e3228e5..3765ff3c1bbe 100644 --- a/kernel/kfifo.c +++ b/kernel/kfifo.c | |||
| @@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free); | |||
| 117 | * writer, you don't need extra locking to use these functions. | 117 | * writer, you don't need extra locking to use these functions. |
| 118 | */ | 118 | */ |
| 119 | unsigned int __kfifo_put(struct kfifo *fifo, | 119 | unsigned int __kfifo_put(struct kfifo *fifo, |
| 120 | unsigned char *buffer, unsigned int len) | 120 | const unsigned char *buffer, unsigned int len) |
| 121 | { | 121 | { |
| 122 | unsigned int l; | 122 | unsigned int l; |
| 123 | 123 | ||
diff --git a/kernel/kgdb.c b/kernel/kgdb.c index 9147a3190c9d..7d7014634022 100644 --- a/kernel/kgdb.c +++ b/kernel/kgdb.c | |||
| @@ -870,7 +870,7 @@ static void gdb_cmd_getregs(struct kgdb_state *ks) | |||
| 870 | 870 | ||
| 871 | /* | 871 | /* |
| 872 | * All threads that don't have debuggerinfo should be | 872 | * All threads that don't have debuggerinfo should be |
| 873 | * in __schedule() sleeping, since all other CPUs | 873 | * in schedule() sleeping, since all other CPUs |
| 874 | * are in kgdb_wait, and thus have debuggerinfo. | 874 | * are in kgdb_wait, and thus have debuggerinfo. |
| 875 | */ | 875 | */ |
| 876 | if (local_debuggerinfo) { | 876 | if (local_debuggerinfo) { |
diff --git a/kernel/kmod.c b/kernel/kmod.c index 9fcb53a11f87..25b103190364 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
| @@ -80,16 +80,16 @@ int __request_module(bool wait, const char *fmt, ...) | |||
| 80 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ | 80 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ |
| 81 | static int kmod_loop_msg; | 81 | static int kmod_loop_msg; |
| 82 | 82 | ||
| 83 | ret = security_kernel_module_request(); | ||
| 84 | if (ret) | ||
| 85 | return ret; | ||
| 86 | |||
| 87 | va_start(args, fmt); | 83 | va_start(args, fmt); |
| 88 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 84 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); |
| 89 | va_end(args); | 85 | va_end(args); |
| 90 | if (ret >= MODULE_NAME_LEN) | 86 | if (ret >= MODULE_NAME_LEN) |
| 91 | return -ENAMETOOLONG; | 87 | return -ENAMETOOLONG; |
| 92 | 88 | ||
| 89 | ret = security_kernel_module_request(module_name); | ||
| 90 | if (ret) | ||
| 91 | return ret; | ||
| 92 | |||
| 93 | /* If modprobe needs a service that is in a module, we get a recursive | 93 | /* If modprobe needs a service that is in a module, we get a recursive |
| 94 | * loop. Limit the number of running kmod threads to max_threads/2 or | 94 | * loop. Limit the number of running kmod threads to max_threads/2 or |
| 95 | * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method | 95 | * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ef177d653b2c..e5342a344c43 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
| @@ -90,6 +90,9 @@ static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) | |||
| 90 | */ | 90 | */ |
| 91 | static struct kprobe_blackpoint kprobe_blacklist[] = { | 91 | static struct kprobe_blackpoint kprobe_blacklist[] = { |
| 92 | {"preempt_schedule",}, | 92 | {"preempt_schedule",}, |
| 93 | {"native_get_debugreg",}, | ||
| 94 | {"irq_entries_start",}, | ||
| 95 | {"common_interrupt",}, | ||
| 93 | {NULL} /* Terminator */ | 96 | {NULL} /* Terminator */ |
| 94 | }; | 97 | }; |
| 95 | 98 | ||
| @@ -673,6 +676,40 @@ static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) | |||
| 673 | return (kprobe_opcode_t *)(((char *)addr) + p->offset); | 676 | return (kprobe_opcode_t *)(((char *)addr) + p->offset); |
| 674 | } | 677 | } |
| 675 | 678 | ||
| 679 | /* Check passed kprobe is valid and return kprobe in kprobe_table. */ | ||
| 680 | static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) | ||
| 681 | { | ||
| 682 | struct kprobe *old_p, *list_p; | ||
| 683 | |||
| 684 | old_p = get_kprobe(p->addr); | ||
| 685 | if (unlikely(!old_p)) | ||
| 686 | return NULL; | ||
| 687 | |||
| 688 | if (p != old_p) { | ||
| 689 | list_for_each_entry_rcu(list_p, &old_p->list, list) | ||
| 690 | if (list_p == p) | ||
| 691 | /* kprobe p is a valid probe */ | ||
| 692 | goto valid; | ||
| 693 | return NULL; | ||
| 694 | } | ||
| 695 | valid: | ||
| 696 | return old_p; | ||
| 697 | } | ||
| 698 | |||
| 699 | /* Return error if the kprobe is being re-registered */ | ||
| 700 | static inline int check_kprobe_rereg(struct kprobe *p) | ||
| 701 | { | ||
| 702 | int ret = 0; | ||
| 703 | struct kprobe *old_p; | ||
| 704 | |||
| 705 | mutex_lock(&kprobe_mutex); | ||
| 706 | old_p = __get_valid_kprobe(p); | ||
| 707 | if (old_p) | ||
| 708 | ret = -EINVAL; | ||
| 709 | mutex_unlock(&kprobe_mutex); | ||
| 710 | return ret; | ||
| 711 | } | ||
| 712 | |||
| 676 | int __kprobes register_kprobe(struct kprobe *p) | 713 | int __kprobes register_kprobe(struct kprobe *p) |
| 677 | { | 714 | { |
| 678 | int ret = 0; | 715 | int ret = 0; |
| @@ -685,6 +722,10 @@ int __kprobes register_kprobe(struct kprobe *p) | |||
| 685 | return -EINVAL; | 722 | return -EINVAL; |
| 686 | p->addr = addr; | 723 | p->addr = addr; |
| 687 | 724 | ||
| 725 | ret = check_kprobe_rereg(p); | ||
| 726 | if (ret) | ||
| 727 | return ret; | ||
| 728 | |||
| 688 | preempt_disable(); | 729 | preempt_disable(); |
| 689 | if (!kernel_text_address((unsigned long) p->addr) || | 730 | if (!kernel_text_address((unsigned long) p->addr) || |
| 690 | in_kprobes_functions((unsigned long) p->addr)) { | 731 | in_kprobes_functions((unsigned long) p->addr)) { |
| @@ -754,26 +795,6 @@ out: | |||
| 754 | } | 795 | } |
| 755 | EXPORT_SYMBOL_GPL(register_kprobe); | 796 | EXPORT_SYMBOL_GPL(register_kprobe); |
| 756 | 797 | ||
| 757 | /* Check passed kprobe is valid and return kprobe in kprobe_table. */ | ||
| 758 | static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) | ||
| 759 | { | ||
| 760 | struct kprobe *old_p, *list_p; | ||
| 761 | |||
| 762 | old_p = get_kprobe(p->addr); | ||
| 763 | if (unlikely(!old_p)) | ||
| 764 | return NULL; | ||
| 765 | |||
| 766 | if (p != old_p) { | ||
| 767 | list_for_each_entry_rcu(list_p, &old_p->list, list) | ||
| 768 | if (list_p == p) | ||
| 769 | /* kprobe p is a valid probe */ | ||
| 770 | goto valid; | ||
| 771 | return NULL; | ||
| 772 | } | ||
| 773 | valid: | ||
| 774 | return old_p; | ||
| 775 | } | ||
| 776 | |||
| 777 | /* | 798 | /* |
| 778 | * Unregister a kprobe without a scheduler synchronization. | 799 | * Unregister a kprobe without a scheduler synchronization. |
| 779 | */ | 800 | */ |
| @@ -1014,9 +1035,9 @@ int __kprobes register_kretprobe(struct kretprobe *rp) | |||
| 1014 | /* Pre-allocate memory for max kretprobe instances */ | 1035 | /* Pre-allocate memory for max kretprobe instances */ |
| 1015 | if (rp->maxactive <= 0) { | 1036 | if (rp->maxactive <= 0) { |
| 1016 | #ifdef CONFIG_PREEMPT | 1037 | #ifdef CONFIG_PREEMPT |
| 1017 | rp->maxactive = max(10, 2 * NR_CPUS); | 1038 | rp->maxactive = max(10, 2 * num_possible_cpus()); |
| 1018 | #else | 1039 | #else |
| 1019 | rp->maxactive = NR_CPUS; | 1040 | rp->maxactive = num_possible_cpus(); |
| 1020 | #endif | 1041 | #endif |
| 1021 | } | 1042 | } |
| 1022 | spin_lock_init(&rp->lock); | 1043 | spin_lock_init(&rp->lock); |
| @@ -1141,6 +1162,13 @@ static void __kprobes kill_kprobe(struct kprobe *p) | |||
| 1141 | arch_remove_kprobe(p); | 1162 | arch_remove_kprobe(p); |
| 1142 | } | 1163 | } |
| 1143 | 1164 | ||
| 1165 | void __kprobes dump_kprobe(struct kprobe *kp) | ||
| 1166 | { | ||
| 1167 | printk(KERN_WARNING "Dumping kprobe:\n"); | ||
| 1168 | printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", | ||
| 1169 | kp->symbol_name, kp->addr, kp->offset); | ||
| 1170 | } | ||
| 1171 | |||
| 1144 | /* Module notifier call back, checking kprobes on the module */ | 1172 | /* Module notifier call back, checking kprobes on the module */ |
| 1145 | static int __kprobes kprobes_module_callback(struct notifier_block *nb, | 1173 | static int __kprobes kprobes_module_callback(struct notifier_block *nb, |
| 1146 | unsigned long val, void *data) | 1174 | unsigned long val, void *data) |
| @@ -1321,7 +1349,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
| 1321 | return 0; | 1349 | return 0; |
| 1322 | } | 1350 | } |
| 1323 | 1351 | ||
| 1324 | static struct seq_operations kprobes_seq_ops = { | 1352 | static const struct seq_operations kprobes_seq_ops = { |
| 1325 | .start = kprobe_seq_start, | 1353 | .start = kprobe_seq_start, |
| 1326 | .next = kprobe_seq_next, | 1354 | .next = kprobe_seq_next, |
| 1327 | .stop = kprobe_seq_stop, | 1355 | .stop = kprobe_seq_stop, |
| @@ -1333,7 +1361,7 @@ static int __kprobes kprobes_open(struct inode *inode, struct file *filp) | |||
| 1333 | return seq_open(filp, &kprobes_seq_ops); | 1361 | return seq_open(filp, &kprobes_seq_ops); |
| 1334 | } | 1362 | } |
| 1335 | 1363 | ||
| 1336 | static struct file_operations debugfs_kprobes_operations = { | 1364 | static const struct file_operations debugfs_kprobes_operations = { |
| 1337 | .open = kprobes_open, | 1365 | .open = kprobes_open, |
| 1338 | .read = seq_read, | 1366 | .read = seq_read, |
| 1339 | .llseek = seq_lseek, | 1367 | .llseek = seq_lseek, |
| @@ -1515,7 +1543,7 @@ static ssize_t write_enabled_file_bool(struct file *file, | |||
| 1515 | return count; | 1543 | return count; |
| 1516 | } | 1544 | } |
| 1517 | 1545 | ||
| 1518 | static struct file_operations fops_kp = { | 1546 | static const struct file_operations fops_kp = { |
| 1519 | .read = read_enabled_file_bool, | 1547 | .read = read_enabled_file_bool, |
| 1520 | .write = write_enabled_file_bool, | 1548 | .write = write_enabled_file_bool, |
| 1521 | }; | 1549 | }; |
diff --git a/kernel/kthread.c b/kernel/kthread.c index 5fe709982caa..ab7ae57773e1 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c | |||
| @@ -150,29 +150,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data), | |||
| 150 | EXPORT_SYMBOL(kthread_create); | 150 | EXPORT_SYMBOL(kthread_create); |
| 151 | 151 | ||
| 152 | /** | 152 | /** |
| 153 | * kthread_bind - bind a just-created kthread to a cpu. | ||
| 154 | * @k: thread created by kthread_create(). | ||
| 155 | * @cpu: cpu (might not be online, must be possible) for @k to run on. | ||
| 156 | * | ||
| 157 | * Description: This function is equivalent to set_cpus_allowed(), | ||
| 158 | * except that @cpu doesn't need to be online, and the thread must be | ||
| 159 | * stopped (i.e., just returned from kthread_create()). | ||
| 160 | */ | ||
| 161 | void kthread_bind(struct task_struct *k, unsigned int cpu) | ||
| 162 | { | ||
| 163 | /* Must have done schedule() in kthread() before we set_task_cpu */ | ||
| 164 | if (!wait_task_inactive(k, TASK_UNINTERRUPTIBLE)) { | ||
| 165 | WARN_ON(1); | ||
| 166 | return; | ||
| 167 | } | ||
| 168 | set_task_cpu(k, cpu); | ||
| 169 | k->cpus_allowed = cpumask_of_cpu(cpu); | ||
| 170 | k->rt.nr_cpus_allowed = 1; | ||
| 171 | k->flags |= PF_THREAD_BOUND; | ||
| 172 | } | ||
| 173 | EXPORT_SYMBOL(kthread_bind); | ||
| 174 | |||
| 175 | /** | ||
| 176 | * kthread_stop - stop a thread created by kthread_create(). | 153 | * kthread_stop - stop a thread created by kthread_create(). |
| 177 | * @k: thread created by kthread_create(). | 154 | * @k: thread created by kthread_create(). |
| 178 | * | 155 | * |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index f74d2d7aa605..f5dcd36d3151 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
| @@ -49,7 +49,7 @@ | |||
| 49 | #include "lockdep_internals.h" | 49 | #include "lockdep_internals.h" |
| 50 | 50 | ||
| 51 | #define CREATE_TRACE_POINTS | 51 | #define CREATE_TRACE_POINTS |
| 52 | #include <trace/events/lockdep.h> | 52 | #include <trace/events/lock.h> |
| 53 | 53 | ||
| 54 | #ifdef CONFIG_PROVE_LOCKING | 54 | #ifdef CONFIG_PROVE_LOCKING |
| 55 | int prove_locking = 1; | 55 | int prove_locking = 1; |
| @@ -142,6 +142,11 @@ static inline struct lock_class *hlock_class(struct held_lock *hlock) | |||
| 142 | #ifdef CONFIG_LOCK_STAT | 142 | #ifdef CONFIG_LOCK_STAT |
| 143 | static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats); | 143 | static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats); |
| 144 | 144 | ||
| 145 | static inline u64 lockstat_clock(void) | ||
| 146 | { | ||
| 147 | return cpu_clock(smp_processor_id()); | ||
| 148 | } | ||
| 149 | |||
| 145 | static int lock_point(unsigned long points[], unsigned long ip) | 150 | static int lock_point(unsigned long points[], unsigned long ip) |
| 146 | { | 151 | { |
| 147 | int i; | 152 | int i; |
| @@ -158,7 +163,7 @@ static int lock_point(unsigned long points[], unsigned long ip) | |||
| 158 | return i; | 163 | return i; |
| 159 | } | 164 | } |
| 160 | 165 | ||
| 161 | static void lock_time_inc(struct lock_time *lt, s64 time) | 166 | static void lock_time_inc(struct lock_time *lt, u64 time) |
| 162 | { | 167 | { |
| 163 | if (time > lt->max) | 168 | if (time > lt->max) |
| 164 | lt->max = time; | 169 | lt->max = time; |
| @@ -234,12 +239,12 @@ static void put_lock_stats(struct lock_class_stats *stats) | |||
| 234 | static void lock_release_holdtime(struct held_lock *hlock) | 239 | static void lock_release_holdtime(struct held_lock *hlock) |
| 235 | { | 240 | { |
| 236 | struct lock_class_stats *stats; | 241 | struct lock_class_stats *stats; |
| 237 | s64 holdtime; | 242 | u64 holdtime; |
| 238 | 243 | ||
| 239 | if (!lock_stat) | 244 | if (!lock_stat) |
| 240 | return; | 245 | return; |
| 241 | 246 | ||
| 242 | holdtime = sched_clock() - hlock->holdtime_stamp; | 247 | holdtime = lockstat_clock() - hlock->holdtime_stamp; |
| 243 | 248 | ||
| 244 | stats = get_lock_stats(hlock_class(hlock)); | 249 | stats = get_lock_stats(hlock_class(hlock)); |
| 245 | if (hlock->read) | 250 | if (hlock->read) |
| @@ -578,6 +583,9 @@ static int static_obj(void *obj) | |||
| 578 | if ((addr >= start) && (addr < end)) | 583 | if ((addr >= start) && (addr < end)) |
| 579 | return 1; | 584 | return 1; |
| 580 | 585 | ||
| 586 | if (arch_is_kernel_data(addr)) | ||
| 587 | return 1; | ||
| 588 | |||
| 581 | #ifdef CONFIG_SMP | 589 | #ifdef CONFIG_SMP |
| 582 | /* | 590 | /* |
| 583 | * percpu var? | 591 | * percpu var? |
| @@ -2789,7 +2797,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
| 2789 | hlock->references = references; | 2797 | hlock->references = references; |
| 2790 | #ifdef CONFIG_LOCK_STAT | 2798 | #ifdef CONFIG_LOCK_STAT |
| 2791 | hlock->waittime_stamp = 0; | 2799 | hlock->waittime_stamp = 0; |
| 2792 | hlock->holdtime_stamp = sched_clock(); | 2800 | hlock->holdtime_stamp = lockstat_clock(); |
| 2793 | #endif | 2801 | #endif |
| 2794 | 2802 | ||
| 2795 | if (check == 2 && !mark_irqflags(curr, hlock)) | 2803 | if (check == 2 && !mark_irqflags(curr, hlock)) |
| @@ -3319,7 +3327,7 @@ found_it: | |||
| 3319 | if (hlock->instance != lock) | 3327 | if (hlock->instance != lock) |
| 3320 | return; | 3328 | return; |
| 3321 | 3329 | ||
| 3322 | hlock->waittime_stamp = sched_clock(); | 3330 | hlock->waittime_stamp = lockstat_clock(); |
| 3323 | 3331 | ||
| 3324 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); | 3332 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); |
| 3325 | contending_point = lock_point(hlock_class(hlock)->contending_point, | 3333 | contending_point = lock_point(hlock_class(hlock)->contending_point, |
| @@ -3342,8 +3350,7 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip) | |||
| 3342 | struct held_lock *hlock, *prev_hlock; | 3350 | struct held_lock *hlock, *prev_hlock; |
| 3343 | struct lock_class_stats *stats; | 3351 | struct lock_class_stats *stats; |
| 3344 | unsigned int depth; | 3352 | unsigned int depth; |
| 3345 | u64 now; | 3353 | u64 now, waittime = 0; |
| 3346 | s64 waittime = 0; | ||
| 3347 | int i, cpu; | 3354 | int i, cpu; |
| 3348 | 3355 | ||
| 3349 | depth = curr->lockdep_depth; | 3356 | depth = curr->lockdep_depth; |
| @@ -3371,7 +3378,7 @@ found_it: | |||
| 3371 | 3378 | ||
| 3372 | cpu = smp_processor_id(); | 3379 | cpu = smp_processor_id(); |
| 3373 | if (hlock->waittime_stamp) { | 3380 | if (hlock->waittime_stamp) { |
| 3374 | now = sched_clock(); | 3381 | now = lockstat_clock(); |
| 3375 | waittime = now - hlock->waittime_stamp; | 3382 | waittime = now - hlock->waittime_stamp; |
| 3376 | hlock->holdtime_stamp = now; | 3383 | hlock->holdtime_stamp = now; |
| 3377 | } | 3384 | } |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4b3dbc79fdb..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
| @@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
| 594 | return 0; | 594 | return 0; |
| 595 | } | 595 | } |
| 596 | 596 | ||
| 597 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
| 598 | .start = ls_start, | 598 | .start = ls_start, |
| 599 | .next = ls_next, | 599 | .next = ls_next, |
| 600 | .stop = ls_stop, | 600 | .stop = ls_stop, |
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
| @@ -1,930 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | */ | ||
| 18 | #include <linux/module.h> | ||
| 19 | #include <linux/mutex.h> | ||
| 20 | #include <linux/types.h> | ||
| 21 | #include <linux/jhash.h> | ||
| 22 | #include <linux/list.h> | ||
| 23 | #include <linux/rcupdate.h> | ||
| 24 | #include <linux/marker.h> | ||
| 25 | #include <linux/err.h> | ||
| 26 | #include <linux/slab.h> | ||
| 27 | |||
| 28 | extern struct marker __start___markers[]; | ||
| 29 | extern struct marker __stop___markers[]; | ||
| 30 | |||
| 31 | /* Set to 1 to enable marker debug output */ | ||
| 32 | static const int marker_debug; | ||
| 33 | |||
| 34 | /* | ||
| 35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
| 36 | * and module markers and the hash table. | ||
| 37 | */ | ||
| 38 | static DEFINE_MUTEX(markers_mutex); | ||
| 39 | |||
| 40 | /* | ||
| 41 | * Marker hash table, containing the active markers. | ||
| 42 | * Protected by module_mutex. | ||
| 43 | */ | ||
| 44 | #define MARKER_HASH_BITS 6 | ||
| 45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
| 46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
| 47 | |||
| 48 | /* | ||
| 49 | * Note about RCU : | ||
| 50 | * It is used to make sure every handler has finished using its private data | ||
| 51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
| 52 | * also used to delay the free of multiple probes array until a quiescent state | ||
| 53 | * is reached. | ||
| 54 | * marker entries modifications are protected by the markers_mutex. | ||
| 55 | */ | ||
| 56 | struct marker_entry { | ||
| 57 | struct hlist_node hlist; | ||
| 58 | char *format; | ||
| 59 | /* Probe wrapper */ | ||
| 60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
| 61 | struct marker_probe_closure single; | ||
| 62 | struct marker_probe_closure *multi; | ||
| 63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
| 64 | struct rcu_head rcu; | ||
| 65 | void *oldptr; | ||
| 66 | int rcu_pending; | ||
| 67 | unsigned char ptype:1; | ||
| 68 | unsigned char format_allocated:1; | ||
| 69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
| 70 | }; | ||
| 71 | |||
| 72 | /** | ||
| 73 | * __mark_empty_function - Empty probe callback | ||
| 74 | * @probe_private: probe private data | ||
| 75 | * @call_private: call site private data | ||
| 76 | * @fmt: format string | ||
| 77 | * @...: variable argument list | ||
| 78 | * | ||
| 79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
| 80 | * disabled marker, we make sure the execution flow is always valid even | ||
| 81 | * though the function pointer change and the marker enabling are two distinct | ||
| 82 | * operations that modifies the execution flow of preemptible code. | ||
| 83 | */ | ||
| 84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
| 85 | const char *fmt, va_list *args) | ||
| 86 | { | ||
| 87 | } | ||
| 88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
| 89 | |||
| 90 | /* | ||
| 91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
| 92 | * @mdata: pointer of type struct marker | ||
| 93 | * @call_private: caller site private data | ||
| 94 | * @...: Variable argument list. | ||
| 95 | * | ||
| 96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
| 97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
| 98 | * rcu_dereference() for the pointer read. | ||
| 99 | */ | ||
| 100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
| 101 | void *call_private, ...) | ||
| 102 | { | ||
| 103 | va_list args; | ||
| 104 | char ptype; | ||
| 105 | |||
| 106 | /* | ||
| 107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
| 108 | * sure the teardown of the callbacks can be done correctly when they | ||
| 109 | * are in modules and they insure RCU read coherency. | ||
| 110 | */ | ||
| 111 | rcu_read_lock_sched_notrace(); | ||
| 112 | ptype = mdata->ptype; | ||
| 113 | if (likely(!ptype)) { | ||
| 114 | marker_probe_func *func; | ||
| 115 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 116 | * so we put an explicit smp_rmb() here. */ | ||
| 117 | smp_rmb(); | ||
| 118 | func = mdata->single.func; | ||
| 119 | /* Must read the ptr before private data. They are not data | ||
| 120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 121 | smp_rmb(); | ||
| 122 | va_start(args, call_private); | ||
| 123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 124 | &args); | ||
| 125 | va_end(args); | ||
| 126 | } else { | ||
| 127 | struct marker_probe_closure *multi; | ||
| 128 | int i; | ||
| 129 | /* | ||
| 130 | * Read mdata->ptype before mdata->multi. | ||
| 131 | */ | ||
| 132 | smp_rmb(); | ||
| 133 | multi = mdata->multi; | ||
| 134 | /* | ||
| 135 | * multi points to an array, therefore accessing the array | ||
| 136 | * depends on reading multi. However, even in this case, | ||
| 137 | * we must insure that the pointer is read _before_ the array | ||
| 138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 139 | * in the fast path, so put the explicit barrier here. | ||
| 140 | */ | ||
| 141 | smp_read_barrier_depends(); | ||
| 142 | for (i = 0; multi[i].func; i++) { | ||
| 143 | va_start(args, call_private); | ||
| 144 | multi[i].func(multi[i].probe_private, call_private, | ||
| 145 | mdata->format, &args); | ||
| 146 | va_end(args); | ||
| 147 | } | ||
| 148 | } | ||
| 149 | rcu_read_unlock_sched_notrace(); | ||
| 150 | } | ||
| 151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
| 155 | * @mdata: pointer of type struct marker | ||
| 156 | * @call_private: caller site private data | ||
| 157 | * @...: Variable argument list. | ||
| 158 | * | ||
| 159 | * Should be connected to markers "MARK_NOARGS". | ||
| 160 | */ | ||
| 161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
| 162 | void *call_private, ...) | ||
| 163 | { | ||
| 164 | va_list args; /* not initialized */ | ||
| 165 | char ptype; | ||
| 166 | |||
| 167 | rcu_read_lock_sched_notrace(); | ||
| 168 | ptype = mdata->ptype; | ||
| 169 | if (likely(!ptype)) { | ||
| 170 | marker_probe_func *func; | ||
| 171 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 172 | * so we put an explicit smp_rmb() here. */ | ||
| 173 | smp_rmb(); | ||
| 174 | func = mdata->single.func; | ||
| 175 | /* Must read the ptr before private data. They are not data | ||
| 176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 177 | smp_rmb(); | ||
| 178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 179 | &args); | ||
| 180 | } else { | ||
| 181 | struct marker_probe_closure *multi; | ||
| 182 | int i; | ||
| 183 | /* | ||
| 184 | * Read mdata->ptype before mdata->multi. | ||
| 185 | */ | ||
| 186 | smp_rmb(); | ||
| 187 | multi = mdata->multi; | ||
| 188 | /* | ||
| 189 | * multi points to an array, therefore accessing the array | ||
| 190 | * depends on reading multi. However, even in this case, | ||
| 191 | * we must insure that the pointer is read _before_ the array | ||
| 192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 193 | * in the fast path, so put the explicit barrier here. | ||
| 194 | */ | ||
| 195 | smp_read_barrier_depends(); | ||
| 196 | for (i = 0; multi[i].func; i++) | ||
| 197 | multi[i].func(multi[i].probe_private, call_private, | ||
| 198 | mdata->format, &args); | ||
| 199 | } | ||
| 200 | rcu_read_unlock_sched_notrace(); | ||
| 201 | } | ||
| 202 | |||
| 203 | static void free_old_closure(struct rcu_head *head) | ||
| 204 | { | ||
| 205 | struct marker_entry *entry = container_of(head, | ||
| 206 | struct marker_entry, rcu); | ||
| 207 | kfree(entry->oldptr); | ||
| 208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
| 209 | smp_wmb(); | ||
| 210 | entry->rcu_pending = 0; | ||
| 211 | } | ||
| 212 | |||
| 213 | static void debug_print_probes(struct marker_entry *entry) | ||
| 214 | { | ||
| 215 | int i; | ||
| 216 | |||
| 217 | if (!marker_debug) | ||
| 218 | return; | ||
| 219 | |||
| 220 | if (!entry->ptype) { | ||
| 221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
| 222 | entry->single.func, | ||
| 223 | entry->single.probe_private); | ||
| 224 | } else { | ||
| 225 | for (i = 0; entry->multi[i].func; i++) | ||
| 226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
| 227 | entry->multi[i].func, | ||
| 228 | entry->multi[i].probe_private); | ||
| 229 | } | ||
| 230 | } | ||
| 231 | |||
| 232 | static struct marker_probe_closure * | ||
| 233 | marker_entry_add_probe(struct marker_entry *entry, | ||
| 234 | marker_probe_func *probe, void *probe_private) | ||
| 235 | { | ||
| 236 | int nr_probes = 0; | ||
| 237 | struct marker_probe_closure *old, *new; | ||
| 238 | |||
| 239 | WARN_ON(!probe); | ||
| 240 | |||
| 241 | debug_print_probes(entry); | ||
| 242 | old = entry->multi; | ||
| 243 | if (!entry->ptype) { | ||
| 244 | if (entry->single.func == probe && | ||
| 245 | entry->single.probe_private == probe_private) | ||
| 246 | return ERR_PTR(-EBUSY); | ||
| 247 | if (entry->single.func == __mark_empty_function) { | ||
| 248 | /* 0 -> 1 probes */ | ||
| 249 | entry->single.func = probe; | ||
| 250 | entry->single.probe_private = probe_private; | ||
| 251 | entry->refcount = 1; | ||
| 252 | entry->ptype = 0; | ||
| 253 | debug_print_probes(entry); | ||
| 254 | return NULL; | ||
| 255 | } else { | ||
| 256 | /* 1 -> 2 probes */ | ||
| 257 | nr_probes = 1; | ||
| 258 | old = NULL; | ||
| 259 | } | ||
| 260 | } else { | ||
| 261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
| 262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
| 263 | if (old[nr_probes].func == probe | ||
| 264 | && old[nr_probes].probe_private | ||
| 265 | == probe_private) | ||
| 266 | return ERR_PTR(-EBUSY); | ||
| 267 | } | ||
| 268 | /* + 2 : one for new probe, one for NULL func */ | ||
| 269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
| 270 | GFP_KERNEL); | ||
| 271 | if (new == NULL) | ||
| 272 | return ERR_PTR(-ENOMEM); | ||
| 273 | if (!old) | ||
| 274 | new[0] = entry->single; | ||
| 275 | else | ||
| 276 | memcpy(new, old, | ||
| 277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
| 278 | new[nr_probes].func = probe; | ||
| 279 | new[nr_probes].probe_private = probe_private; | ||
| 280 | entry->refcount = nr_probes + 1; | ||
| 281 | entry->multi = new; | ||
| 282 | entry->ptype = 1; | ||
| 283 | debug_print_probes(entry); | ||
| 284 | return old; | ||
| 285 | } | ||
| 286 | |||
| 287 | static struct marker_probe_closure * | ||
| 288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
| 289 | marker_probe_func *probe, void *probe_private) | ||
| 290 | { | ||
| 291 | int nr_probes = 0, nr_del = 0, i; | ||
| 292 | struct marker_probe_closure *old, *new; | ||
| 293 | |||
| 294 | old = entry->multi; | ||
| 295 | |||
| 296 | debug_print_probes(entry); | ||
| 297 | if (!entry->ptype) { | ||
| 298 | /* 0 -> N is an error */ | ||
| 299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
| 300 | /* 1 -> 0 probes */ | ||
| 301 | WARN_ON(probe && entry->single.func != probe); | ||
| 302 | WARN_ON(entry->single.probe_private != probe_private); | ||
| 303 | entry->single.func = __mark_empty_function; | ||
| 304 | entry->refcount = 0; | ||
| 305 | entry->ptype = 0; | ||
| 306 | debug_print_probes(entry); | ||
| 307 | return NULL; | ||
| 308 | } else { | ||
| 309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
| 310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
| 311 | if ((!probe || old[nr_probes].func == probe) | ||
| 312 | && old[nr_probes].probe_private | ||
| 313 | == probe_private) | ||
| 314 | nr_del++; | ||
| 315 | } | ||
| 316 | } | ||
| 317 | |||
| 318 | if (nr_probes - nr_del == 0) { | ||
| 319 | /* N -> 0, (N > 1) */ | ||
| 320 | entry->single.func = __mark_empty_function; | ||
| 321 | entry->refcount = 0; | ||
| 322 | entry->ptype = 0; | ||
| 323 | } else if (nr_probes - nr_del == 1) { | ||
| 324 | /* N -> 1, (N > 1) */ | ||
| 325 | for (i = 0; old[i].func; i++) | ||
| 326 | if ((probe && old[i].func != probe) || | ||
| 327 | old[i].probe_private != probe_private) | ||
| 328 | entry->single = old[i]; | ||
| 329 | entry->refcount = 1; | ||
| 330 | entry->ptype = 0; | ||
| 331 | } else { | ||
| 332 | int j = 0; | ||
| 333 | /* N -> M, (N > 1, M > 1) */ | ||
| 334 | /* + 1 for NULL */ | ||
| 335 | new = kzalloc((nr_probes - nr_del + 1) | ||
| 336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
| 337 | if (new == NULL) | ||
| 338 | return ERR_PTR(-ENOMEM); | ||
| 339 | for (i = 0; old[i].func; i++) | ||
| 340 | if ((probe && old[i].func != probe) || | ||
| 341 | old[i].probe_private != probe_private) | ||
| 342 | new[j++] = old[i]; | ||
| 343 | entry->refcount = nr_probes - nr_del; | ||
| 344 | entry->ptype = 1; | ||
| 345 | entry->multi = new; | ||
| 346 | } | ||
| 347 | debug_print_probes(entry); | ||
| 348 | return old; | ||
| 349 | } | ||
| 350 | |||
| 351 | /* | ||
| 352 | * Get marker if the marker is present in the marker hash table. | ||
| 353 | * Must be called with markers_mutex held. | ||
| 354 | * Returns NULL if not present. | ||
| 355 | */ | ||
| 356 | static struct marker_entry *get_marker(const char *name) | ||
| 357 | { | ||
| 358 | struct hlist_head *head; | ||
| 359 | struct hlist_node *node; | ||
| 360 | struct marker_entry *e; | ||
| 361 | u32 hash = jhash(name, strlen(name), 0); | ||
| 362 | |||
| 363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 364 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 365 | if (!strcmp(name, e->name)) | ||
| 366 | return e; | ||
| 367 | } | ||
| 368 | return NULL; | ||
| 369 | } | ||
| 370 | |||
| 371 | /* | ||
| 372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
| 373 | * held. | ||
| 374 | */ | ||
| 375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
| 376 | { | ||
| 377 | struct hlist_head *head; | ||
| 378 | struct hlist_node *node; | ||
| 379 | struct marker_entry *e; | ||
| 380 | size_t name_len = strlen(name) + 1; | ||
| 381 | size_t format_len = 0; | ||
| 382 | u32 hash = jhash(name, name_len-1, 0); | ||
| 383 | |||
| 384 | if (format) | ||
| 385 | format_len = strlen(format) + 1; | ||
| 386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 387 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 388 | if (!strcmp(name, e->name)) { | ||
| 389 | printk(KERN_NOTICE | ||
| 390 | "Marker %s busy\n", name); | ||
| 391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
| 392 | } | ||
| 393 | } | ||
| 394 | /* | ||
| 395 | * Using kmalloc here to allocate a variable length element. Could | ||
| 396 | * cause some memory fragmentation if overused. | ||
| 397 | */ | ||
| 398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
| 399 | GFP_KERNEL); | ||
| 400 | if (!e) | ||
| 401 | return ERR_PTR(-ENOMEM); | ||
| 402 | memcpy(&e->name[0], name, name_len); | ||
| 403 | if (format) { | ||
| 404 | e->format = &e->name[name_len]; | ||
| 405 | memcpy(e->format, format, format_len); | ||
| 406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
| 407 | e->call = marker_probe_cb_noarg; | ||
| 408 | else | ||
| 409 | e->call = marker_probe_cb; | ||
| 410 | trace_mark(core_marker_format, "name %s format %s", | ||
| 411 | e->name, e->format); | ||
| 412 | } else { | ||
| 413 | e->format = NULL; | ||
| 414 | e->call = marker_probe_cb; | ||
| 415 | } | ||
| 416 | e->single.func = __mark_empty_function; | ||
| 417 | e->single.probe_private = NULL; | ||
| 418 | e->multi = NULL; | ||
| 419 | e->ptype = 0; | ||
| 420 | e->format_allocated = 0; | ||
| 421 | e->refcount = 0; | ||
| 422 | e->rcu_pending = 0; | ||
| 423 | hlist_add_head(&e->hlist, head); | ||
| 424 | return e; | ||
| 425 | } | ||
| 426 | |||
| 427 | /* | ||
| 428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
| 429 | * held. | ||
| 430 | */ | ||
| 431 | static int remove_marker(const char *name) | ||
| 432 | { | ||
| 433 | struct hlist_head *head; | ||
| 434 | struct hlist_node *node; | ||
| 435 | struct marker_entry *e; | ||
| 436 | int found = 0; | ||
| 437 | size_t len = strlen(name) + 1; | ||
| 438 | u32 hash = jhash(name, len-1, 0); | ||
| 439 | |||
| 440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 441 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 442 | if (!strcmp(name, e->name)) { | ||
| 443 | found = 1; | ||
| 444 | break; | ||
| 445 | } | ||
| 446 | } | ||
| 447 | if (!found) | ||
| 448 | return -ENOENT; | ||
| 449 | if (e->single.func != __mark_empty_function) | ||
| 450 | return -EBUSY; | ||
| 451 | hlist_del(&e->hlist); | ||
| 452 | if (e->format_allocated) | ||
| 453 | kfree(e->format); | ||
| 454 | /* Make sure the call_rcu has been executed */ | ||
| 455 | if (e->rcu_pending) | ||
| 456 | rcu_barrier_sched(); | ||
| 457 | kfree(e); | ||
| 458 | return 0; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * Set the mark_entry format to the format found in the element. | ||
| 463 | */ | ||
| 464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
| 465 | { | ||
| 466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
| 467 | if (!entry->format) | ||
| 468 | return -ENOMEM; | ||
| 469 | entry->format_allocated = 1; | ||
| 470 | |||
| 471 | trace_mark(core_marker_format, "name %s format %s", | ||
| 472 | entry->name, entry->format); | ||
| 473 | return 0; | ||
| 474 | } | ||
| 475 | |||
| 476 | /* | ||
| 477 | * Sets the probe callback corresponding to one marker. | ||
| 478 | */ | ||
| 479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
| 480 | int active) | ||
| 481 | { | ||
| 482 | int ret = 0; | ||
| 483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
| 484 | |||
| 485 | if (entry->format) { | ||
| 486 | if (strcmp(entry->format, elem->format) != 0) { | ||
| 487 | printk(KERN_NOTICE | ||
| 488 | "Format mismatch for probe %s " | ||
| 489 | "(%s), marker (%s)\n", | ||
| 490 | entry->name, | ||
| 491 | entry->format, | ||
| 492 | elem->format); | ||
| 493 | return -EPERM; | ||
| 494 | } | ||
| 495 | } else { | ||
| 496 | ret = marker_set_format(entry, elem->format); | ||
| 497 | if (ret) | ||
| 498 | return ret; | ||
| 499 | } | ||
| 500 | |||
| 501 | /* | ||
| 502 | * probe_cb setup (statically known) is done here. It is | ||
| 503 | * asynchronous with the rest of execution, therefore we only | ||
| 504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
| 505 | * callback (does not set arguments). | ||
| 506 | */ | ||
| 507 | elem->call = entry->call; | ||
| 508 | /* | ||
| 509 | * Sanity check : | ||
| 510 | * We only update the single probe private data when the ptr is | ||
| 511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
| 512 | */ | ||
| 513 | WARN_ON(elem->single.func != __mark_empty_function | ||
| 514 | && elem->single.probe_private != entry->single.probe_private | ||
| 515 | && !elem->ptype); | ||
| 516 | elem->single.probe_private = entry->single.probe_private; | ||
| 517 | /* | ||
| 518 | * Make sure the private data is valid when we update the | ||
| 519 | * single probe ptr. | ||
| 520 | */ | ||
| 521 | smp_wmb(); | ||
| 522 | elem->single.func = entry->single.func; | ||
| 523 | /* | ||
| 524 | * We also make sure that the new probe callbacks array is consistent | ||
| 525 | * before setting a pointer to it. | ||
| 526 | */ | ||
| 527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
| 528 | /* | ||
| 529 | * Update the function or multi probe array pointer before setting the | ||
| 530 | * ptype. | ||
| 531 | */ | ||
| 532 | smp_wmb(); | ||
| 533 | elem->ptype = entry->ptype; | ||
| 534 | |||
| 535 | if (elem->tp_name && (active ^ elem->state)) { | ||
| 536 | WARN_ON(!elem->tp_cb); | ||
| 537 | /* | ||
| 538 | * It is ok to directly call the probe registration because type | ||
| 539 | * checking has been done in the __trace_mark_tp() macro. | ||
| 540 | */ | ||
| 541 | |||
| 542 | if (active) { | ||
| 543 | /* | ||
| 544 | * try_module_get should always succeed because we hold | ||
| 545 | * lock_module() to get the tp_cb address. | ||
| 546 | */ | ||
| 547 | ret = try_module_get(__module_text_address( | ||
| 548 | (unsigned long)elem->tp_cb)); | ||
| 549 | BUG_ON(!ret); | ||
| 550 | ret = tracepoint_probe_register_noupdate( | ||
| 551 | elem->tp_name, | ||
| 552 | elem->tp_cb); | ||
| 553 | } else { | ||
| 554 | ret = tracepoint_probe_unregister_noupdate( | ||
| 555 | elem->tp_name, | ||
| 556 | elem->tp_cb); | ||
| 557 | /* | ||
| 558 | * tracepoint_probe_update_all() must be called | ||
| 559 | * before the module containing tp_cb is unloaded. | ||
| 560 | */ | ||
| 561 | module_put(__module_text_address( | ||
| 562 | (unsigned long)elem->tp_cb)); | ||
| 563 | } | ||
| 564 | } | ||
| 565 | elem->state = active; | ||
| 566 | |||
| 567 | return ret; | ||
| 568 | } | ||
| 569 | |||
| 570 | /* | ||
| 571 | * Disable a marker and its probe callback. | ||
| 572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
| 573 | * function insures that the original callback is not used anymore. This insured | ||
| 574 | * by rcu_read_lock_sched around the call site. | ||
| 575 | */ | ||
| 576 | static void disable_marker(struct marker *elem) | ||
| 577 | { | ||
| 578 | int ret; | ||
| 579 | |||
| 580 | /* leave "call" as is. It is known statically. */ | ||
| 581 | if (elem->tp_name && elem->state) { | ||
| 582 | WARN_ON(!elem->tp_cb); | ||
| 583 | /* | ||
| 584 | * It is ok to directly call the probe registration because type | ||
| 585 | * checking has been done in the __trace_mark_tp() macro. | ||
| 586 | */ | ||
| 587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
| 588 | elem->tp_cb); | ||
| 589 | WARN_ON(ret); | ||
| 590 | /* | ||
| 591 | * tracepoint_probe_update_all() must be called | ||
| 592 | * before the module containing tp_cb is unloaded. | ||
| 593 | */ | ||
| 594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
| 595 | } | ||
| 596 | elem->state = 0; | ||
| 597 | elem->single.func = __mark_empty_function; | ||
| 598 | /* Update the function before setting the ptype */ | ||
| 599 | smp_wmb(); | ||
| 600 | elem->ptype = 0; /* single probe */ | ||
| 601 | /* | ||
| 602 | * Leave the private data and id there, because removal is racy and | ||
| 603 | * should be done only after an RCU period. These are never used until | ||
| 604 | * the next initialization anyway. | ||
| 605 | */ | ||
| 606 | } | ||
| 607 | |||
| 608 | /** | ||
| 609 | * marker_update_probe_range - Update a probe range | ||
| 610 | * @begin: beginning of the range | ||
| 611 | * @end: end of the range | ||
| 612 | * | ||
| 613 | * Updates the probe callback corresponding to a range of markers. | ||
| 614 | */ | ||
| 615 | void marker_update_probe_range(struct marker *begin, | ||
| 616 | struct marker *end) | ||
| 617 | { | ||
| 618 | struct marker *iter; | ||
| 619 | struct marker_entry *mark_entry; | ||
| 620 | |||
| 621 | mutex_lock(&markers_mutex); | ||
| 622 | for (iter = begin; iter < end; iter++) { | ||
| 623 | mark_entry = get_marker(iter->name); | ||
| 624 | if (mark_entry) { | ||
| 625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
| 626 | /* | ||
| 627 | * ignore error, continue | ||
| 628 | */ | ||
| 629 | } else { | ||
| 630 | disable_marker(iter); | ||
| 631 | } | ||
| 632 | } | ||
| 633 | mutex_unlock(&markers_mutex); | ||
| 634 | } | ||
| 635 | |||
| 636 | /* | ||
| 637 | * Update probes, removing the faulty probes. | ||
| 638 | * | ||
| 639 | * Internal callback only changed before the first probe is connected to it. | ||
| 640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
| 641 | * transitions. All other transitions will leave the old private data valid. | ||
| 642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
| 643 | * | ||
| 644 | * "special case" updates : | ||
| 645 | * 0 -> 1 callback | ||
| 646 | * 1 -> 0 callback | ||
| 647 | * 1 -> 2 callbacks | ||
| 648 | * 2 -> 1 callbacks | ||
| 649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
| 650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
| 651 | * replacement). | ||
| 652 | */ | ||
| 653 | static void marker_update_probes(void) | ||
| 654 | { | ||
| 655 | /* Core kernel markers */ | ||
| 656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
| 657 | /* Markers in modules. */ | ||
| 658 | module_update_markers(); | ||
| 659 | tracepoint_probe_update_all(); | ||
| 660 | } | ||
| 661 | |||
| 662 | /** | ||
| 663 | * marker_probe_register - Connect a probe to a marker | ||
| 664 | * @name: marker name | ||
| 665 | * @format: format string | ||
| 666 | * @probe: probe handler | ||
| 667 | * @probe_private: probe private data | ||
| 668 | * | ||
| 669 | * private data must be a valid allocated memory address, or NULL. | ||
| 670 | * Returns 0 if ok, error value on error. | ||
| 671 | * The probe address must at least be aligned on the architecture pointer size. | ||
| 672 | */ | ||
| 673 | int marker_probe_register(const char *name, const char *format, | ||
| 674 | marker_probe_func *probe, void *probe_private) | ||
| 675 | { | ||
| 676 | struct marker_entry *entry; | ||
| 677 | int ret = 0; | ||
| 678 | struct marker_probe_closure *old; | ||
| 679 | |||
| 680 | mutex_lock(&markers_mutex); | ||
| 681 | entry = get_marker(name); | ||
| 682 | if (!entry) { | ||
| 683 | entry = add_marker(name, format); | ||
| 684 | if (IS_ERR(entry)) | ||
| 685 | ret = PTR_ERR(entry); | ||
| 686 | } else if (format) { | ||
| 687 | if (!entry->format) | ||
| 688 | ret = marker_set_format(entry, format); | ||
| 689 | else if (strcmp(entry->format, format)) | ||
| 690 | ret = -EPERM; | ||
| 691 | } | ||
| 692 | if (ret) | ||
| 693 | goto end; | ||
| 694 | |||
| 695 | /* | ||
| 696 | * If we detect that a call_rcu is pending for this marker, | ||
| 697 | * make sure it's executed now. | ||
| 698 | */ | ||
| 699 | if (entry->rcu_pending) | ||
| 700 | rcu_barrier_sched(); | ||
| 701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
| 702 | if (IS_ERR(old)) { | ||
| 703 | ret = PTR_ERR(old); | ||
| 704 | goto end; | ||
| 705 | } | ||
| 706 | mutex_unlock(&markers_mutex); | ||
| 707 | marker_update_probes(); | ||
| 708 | mutex_lock(&markers_mutex); | ||
| 709 | entry = get_marker(name); | ||
| 710 | if (!entry) | ||
| 711 | goto end; | ||
| 712 | if (entry->rcu_pending) | ||
| 713 | rcu_barrier_sched(); | ||
| 714 | entry->oldptr = old; | ||
| 715 | entry->rcu_pending = 1; | ||
| 716 | /* write rcu_pending before calling the RCU callback */ | ||
| 717 | smp_wmb(); | ||
| 718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 719 | end: | ||
| 720 | mutex_unlock(&markers_mutex); | ||
| 721 | return ret; | ||
| 722 | } | ||
| 723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
| 724 | |||
| 725 | /** | ||
| 726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
| 727 | * @name: marker name | ||
| 728 | * @probe: probe function pointer | ||
| 729 | * @probe_private: probe private data | ||
| 730 | * | ||
| 731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
| 732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 733 | * finished running before doing a module unload, because the module unload | ||
| 734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 735 | * have finished. | ||
| 736 | */ | ||
| 737 | int marker_probe_unregister(const char *name, | ||
| 738 | marker_probe_func *probe, void *probe_private) | ||
| 739 | { | ||
| 740 | struct marker_entry *entry; | ||
| 741 | struct marker_probe_closure *old; | ||
| 742 | int ret = -ENOENT; | ||
| 743 | |||
| 744 | mutex_lock(&markers_mutex); | ||
| 745 | entry = get_marker(name); | ||
| 746 | if (!entry) | ||
| 747 | goto end; | ||
| 748 | if (entry->rcu_pending) | ||
| 749 | rcu_barrier_sched(); | ||
| 750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
| 751 | mutex_unlock(&markers_mutex); | ||
| 752 | marker_update_probes(); | ||
| 753 | mutex_lock(&markers_mutex); | ||
| 754 | entry = get_marker(name); | ||
| 755 | if (!entry) | ||
| 756 | goto end; | ||
| 757 | if (entry->rcu_pending) | ||
| 758 | rcu_barrier_sched(); | ||
| 759 | entry->oldptr = old; | ||
| 760 | entry->rcu_pending = 1; | ||
| 761 | /* write rcu_pending before calling the RCU callback */ | ||
| 762 | smp_wmb(); | ||
| 763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 764 | remove_marker(name); /* Ignore busy error message */ | ||
| 765 | ret = 0; | ||
| 766 | end: | ||
| 767 | mutex_unlock(&markers_mutex); | ||
| 768 | return ret; | ||
| 769 | } | ||
| 770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
| 771 | |||
| 772 | static struct marker_entry * | ||
| 773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
| 774 | { | ||
| 775 | struct marker_entry *entry; | ||
| 776 | unsigned int i; | ||
| 777 | struct hlist_head *head; | ||
| 778 | struct hlist_node *node; | ||
| 779 | |||
| 780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
| 781 | head = &marker_table[i]; | ||
| 782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
| 783 | if (!entry->ptype) { | ||
| 784 | if (entry->single.func == probe | ||
| 785 | && entry->single.probe_private | ||
| 786 | == probe_private) | ||
| 787 | return entry; | ||
| 788 | } else { | ||
| 789 | struct marker_probe_closure *closure; | ||
| 790 | closure = entry->multi; | ||
| 791 | for (i = 0; closure[i].func; i++) { | ||
| 792 | if (closure[i].func == probe && | ||
| 793 | closure[i].probe_private | ||
| 794 | == probe_private) | ||
| 795 | return entry; | ||
| 796 | } | ||
| 797 | } | ||
| 798 | } | ||
| 799 | } | ||
| 800 | return NULL; | ||
| 801 | } | ||
| 802 | |||
| 803 | /** | ||
| 804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
| 805 | * @probe: probe function | ||
| 806 | * @probe_private: probe private data | ||
| 807 | * | ||
| 808 | * Unregister a probe by providing the registered private data. | ||
| 809 | * Only removes the first marker found in hash table. | ||
| 810 | * Return 0 on success or error value. | ||
| 811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 812 | * finished running before doing a module unload, because the module unload | ||
| 813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 814 | * have finished. | ||
| 815 | */ | ||
| 816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
| 817 | void *probe_private) | ||
| 818 | { | ||
| 819 | struct marker_entry *entry; | ||
| 820 | int ret = 0; | ||
| 821 | struct marker_probe_closure *old; | ||
| 822 | |||
| 823 | mutex_lock(&markers_mutex); | ||
| 824 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 825 | if (!entry) { | ||
| 826 | ret = -ENOENT; | ||
| 827 | goto end; | ||
| 828 | } | ||
| 829 | if (entry->rcu_pending) | ||
| 830 | rcu_barrier_sched(); | ||
| 831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
| 832 | mutex_unlock(&markers_mutex); | ||
| 833 | marker_update_probes(); | ||
| 834 | mutex_lock(&markers_mutex); | ||
| 835 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 836 | if (!entry) | ||
| 837 | goto end; | ||
| 838 | if (entry->rcu_pending) | ||
| 839 | rcu_barrier_sched(); | ||
| 840 | entry->oldptr = old; | ||
| 841 | entry->rcu_pending = 1; | ||
| 842 | /* write rcu_pending before calling the RCU callback */ | ||
| 843 | smp_wmb(); | ||
| 844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
| 846 | end: | ||
| 847 | mutex_unlock(&markers_mutex); | ||
| 848 | return ret; | ||
| 849 | } | ||
| 850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
| 851 | |||
| 852 | /** | ||
| 853 | * marker_get_private_data - Get a marker's probe private data | ||
| 854 | * @name: marker name | ||
| 855 | * @probe: probe to match | ||
| 856 | * @num: get the nth matching probe's private data | ||
| 857 | * | ||
| 858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
| 859 | * ERR_PTR. | ||
| 860 | * Returns the private data pointer, or an ERR_PTR. | ||
| 861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
| 862 | * owner of the data, or its content could vanish. This is mostly used to | ||
| 863 | * confirm that a caller is the owner of a registered probe. | ||
| 864 | */ | ||
| 865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
| 866 | int num) | ||
| 867 | { | ||
| 868 | struct hlist_head *head; | ||
| 869 | struct hlist_node *node; | ||
| 870 | struct marker_entry *e; | ||
| 871 | size_t name_len = strlen(name) + 1; | ||
| 872 | u32 hash = jhash(name, name_len-1, 0); | ||
| 873 | int i; | ||
| 874 | |||
| 875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 876 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 877 | if (!strcmp(name, e->name)) { | ||
| 878 | if (!e->ptype) { | ||
| 879 | if (num == 0 && e->single.func == probe) | ||
| 880 | return e->single.probe_private; | ||
| 881 | } else { | ||
| 882 | struct marker_probe_closure *closure; | ||
| 883 | int match = 0; | ||
| 884 | closure = e->multi; | ||
| 885 | for (i = 0; closure[i].func; i++) { | ||
| 886 | if (closure[i].func != probe) | ||
| 887 | continue; | ||
| 888 | if (match++ == num) | ||
| 889 | return closure[i].probe_private; | ||
| 890 | } | ||
| 891 | } | ||
| 892 | break; | ||
| 893 | } | ||
| 894 | } | ||
| 895 | return ERR_PTR(-ENOENT); | ||
| 896 | } | ||
| 897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
| 898 | |||
| 899 | #ifdef CONFIG_MODULES | ||
| 900 | |||
| 901 | int marker_module_notify(struct notifier_block *self, | ||
| 902 | unsigned long val, void *data) | ||
| 903 | { | ||
| 904 | struct module *mod = data; | ||
| 905 | |||
| 906 | switch (val) { | ||
| 907 | case MODULE_STATE_COMING: | ||
| 908 | marker_update_probe_range(mod->markers, | ||
| 909 | mod->markers + mod->num_markers); | ||
| 910 | break; | ||
| 911 | case MODULE_STATE_GOING: | ||
| 912 | marker_update_probe_range(mod->markers, | ||
| 913 | mod->markers + mod->num_markers); | ||
| 914 | break; | ||
| 915 | } | ||
| 916 | return 0; | ||
| 917 | } | ||
| 918 | |||
| 919 | struct notifier_block marker_module_nb = { | ||
| 920 | .notifier_call = marker_module_notify, | ||
| 921 | .priority = 0, | ||
| 922 | }; | ||
| 923 | |||
| 924 | static int init_markers(void) | ||
| 925 | { | ||
| 926 | return register_module_notifier(&marker_module_nb); | ||
| 927 | } | ||
| 928 | __initcall(init_markers); | ||
| 929 | |||
| 930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 46580edff0cb..5842a71cf052 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
| @@ -47,6 +47,7 @@ | |||
| 47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
| 48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
| 49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
| 50 | #include <asm/mmu_context.h> | ||
| 50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
| 51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
| 52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
| @@ -369,7 +370,7 @@ EXPORT_SYMBOL_GPL(find_module); | |||
| 369 | 370 | ||
| 370 | #ifdef CONFIG_SMP | 371 | #ifdef CONFIG_SMP |
| 371 | 372 | ||
| 372 | #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 373 | #ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA |
| 373 | 374 | ||
| 374 | static void *percpu_modalloc(unsigned long size, unsigned long align, | 375 | static void *percpu_modalloc(unsigned long size, unsigned long align, |
| 375 | const char *name) | 376 | const char *name) |
| @@ -394,7 +395,7 @@ static void percpu_modfree(void *freeme) | |||
| 394 | free_percpu(freeme); | 395 | free_percpu(freeme); |
| 395 | } | 396 | } |
| 396 | 397 | ||
| 397 | #else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 398 | #else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
| 398 | 399 | ||
| 399 | /* Number of blocks used and allocated. */ | 400 | /* Number of blocks used and allocated. */ |
| 400 | static unsigned int pcpu_num_used, pcpu_num_allocated; | 401 | static unsigned int pcpu_num_used, pcpu_num_allocated; |
| @@ -540,7 +541,7 @@ static int percpu_modinit(void) | |||
| 540 | } | 541 | } |
| 541 | __initcall(percpu_modinit); | 542 | __initcall(percpu_modinit); |
| 542 | 543 | ||
| 543 | #endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 544 | #endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
| 544 | 545 | ||
| 545 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | 546 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, |
| 546 | Elf_Shdr *sechdrs, | 547 | Elf_Shdr *sechdrs, |
| @@ -1186,7 +1187,8 @@ static void add_sect_attrs(struct module *mod, unsigned int nsect, | |||
| 1186 | 1187 | ||
| 1187 | /* Count loaded sections and allocate structures */ | 1188 | /* Count loaded sections and allocate structures */ |
| 1188 | for (i = 0; i < nsect; i++) | 1189 | for (i = 0; i < nsect; i++) |
| 1189 | if (sechdrs[i].sh_flags & SHF_ALLOC) | 1190 | if (sechdrs[i].sh_flags & SHF_ALLOC |
| 1191 | && sechdrs[i].sh_size) | ||
| 1190 | nloaded++; | 1192 | nloaded++; |
| 1191 | size[0] = ALIGN(sizeof(*sect_attrs) | 1193 | size[0] = ALIGN(sizeof(*sect_attrs) |
| 1192 | + nloaded * sizeof(sect_attrs->attrs[0]), | 1194 | + nloaded * sizeof(sect_attrs->attrs[0]), |
| @@ -1206,6 +1208,8 @@ static void add_sect_attrs(struct module *mod, unsigned int nsect, | |||
| 1206 | for (i = 0; i < nsect; i++) { | 1208 | for (i = 0; i < nsect; i++) { |
| 1207 | if (! (sechdrs[i].sh_flags & SHF_ALLOC)) | 1209 | if (! (sechdrs[i].sh_flags & SHF_ALLOC)) |
| 1208 | continue; | 1210 | continue; |
| 1211 | if (!sechdrs[i].sh_size) | ||
| 1212 | continue; | ||
| 1209 | sattr->address = sechdrs[i].sh_addr; | 1213 | sattr->address = sechdrs[i].sh_addr; |
| 1210 | sattr->name = kstrdup(secstrings + sechdrs[i].sh_name, | 1214 | sattr->name = kstrdup(secstrings + sechdrs[i].sh_name, |
| 1211 | GFP_KERNEL); | 1215 | GFP_KERNEL); |
| @@ -1535,6 +1539,10 @@ static void free_module(struct module *mod) | |||
| 1535 | 1539 | ||
| 1536 | /* Finally, free the core (containing the module structure) */ | 1540 | /* Finally, free the core (containing the module structure) */ |
| 1537 | module_free(mod, mod->module_core); | 1541 | module_free(mod, mod->module_core); |
| 1542 | |||
| 1543 | #ifdef CONFIG_MPU | ||
| 1544 | update_protections(current->mm); | ||
| 1545 | #endif | ||
| 1538 | } | 1546 | } |
| 1539 | 1547 | ||
| 1540 | void *__symbol_get(const char *symbol) | 1548 | void *__symbol_get(const char *symbol) |
| @@ -1792,6 +1800,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, | |||
| 1792 | } | 1800 | } |
| 1793 | } | 1801 | } |
| 1794 | 1802 | ||
| 1803 | static void free_modinfo(struct module *mod) | ||
| 1804 | { | ||
| 1805 | struct module_attribute *attr; | ||
| 1806 | int i; | ||
| 1807 | |||
| 1808 | for (i = 0; (attr = modinfo_attrs[i]); i++) { | ||
| 1809 | if (attr->free) | ||
| 1810 | attr->free(mod); | ||
| 1811 | } | ||
| 1812 | } | ||
| 1813 | |||
| 1795 | #ifdef CONFIG_KALLSYMS | 1814 | #ifdef CONFIG_KALLSYMS |
| 1796 | 1815 | ||
| 1797 | /* lookup symbol in given range of kernel_symbols */ | 1816 | /* lookup symbol in given range of kernel_symbols */ |
| @@ -1857,13 +1876,93 @@ static char elf_type(const Elf_Sym *sym, | |||
| 1857 | return '?'; | 1876 | return '?'; |
| 1858 | } | 1877 | } |
| 1859 | 1878 | ||
| 1879 | static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, | ||
| 1880 | unsigned int shnum) | ||
| 1881 | { | ||
| 1882 | const Elf_Shdr *sec; | ||
| 1883 | |||
| 1884 | if (src->st_shndx == SHN_UNDEF | ||
| 1885 | || src->st_shndx >= shnum | ||
| 1886 | || !src->st_name) | ||
| 1887 | return false; | ||
| 1888 | |||
| 1889 | sec = sechdrs + src->st_shndx; | ||
| 1890 | if (!(sec->sh_flags & SHF_ALLOC) | ||
| 1891 | #ifndef CONFIG_KALLSYMS_ALL | ||
| 1892 | || !(sec->sh_flags & SHF_EXECINSTR) | ||
| 1893 | #endif | ||
| 1894 | || (sec->sh_entsize & INIT_OFFSET_MASK)) | ||
| 1895 | return false; | ||
| 1896 | |||
| 1897 | return true; | ||
| 1898 | } | ||
| 1899 | |||
| 1900 | static unsigned long layout_symtab(struct module *mod, | ||
| 1901 | Elf_Shdr *sechdrs, | ||
| 1902 | unsigned int symindex, | ||
| 1903 | unsigned int strindex, | ||
| 1904 | const Elf_Ehdr *hdr, | ||
| 1905 | const char *secstrings, | ||
| 1906 | unsigned long *pstroffs, | ||
| 1907 | unsigned long *strmap) | ||
| 1908 | { | ||
| 1909 | unsigned long symoffs; | ||
| 1910 | Elf_Shdr *symsect = sechdrs + symindex; | ||
| 1911 | Elf_Shdr *strsect = sechdrs + strindex; | ||
| 1912 | const Elf_Sym *src; | ||
| 1913 | const char *strtab; | ||
| 1914 | unsigned int i, nsrc, ndst; | ||
| 1915 | |||
| 1916 | /* Put symbol section at end of init part of module. */ | ||
| 1917 | symsect->sh_flags |= SHF_ALLOC; | ||
| 1918 | symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect, | ||
| 1919 | symindex) | INIT_OFFSET_MASK; | ||
| 1920 | DEBUGP("\t%s\n", secstrings + symsect->sh_name); | ||
| 1921 | |||
| 1922 | src = (void *)hdr + symsect->sh_offset; | ||
| 1923 | nsrc = symsect->sh_size / sizeof(*src); | ||
| 1924 | strtab = (void *)hdr + strsect->sh_offset; | ||
| 1925 | for (ndst = i = 1; i < nsrc; ++i, ++src) | ||
| 1926 | if (is_core_symbol(src, sechdrs, hdr->e_shnum)) { | ||
| 1927 | unsigned int j = src->st_name; | ||
| 1928 | |||
| 1929 | while(!__test_and_set_bit(j, strmap) && strtab[j]) | ||
| 1930 | ++j; | ||
| 1931 | ++ndst; | ||
| 1932 | } | ||
| 1933 | |||
| 1934 | /* Append room for core symbols at end of core part. */ | ||
| 1935 | symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1); | ||
| 1936 | mod->core_size = symoffs + ndst * sizeof(Elf_Sym); | ||
| 1937 | |||
| 1938 | /* Put string table section at end of init part of module. */ | ||
| 1939 | strsect->sh_flags |= SHF_ALLOC; | ||
| 1940 | strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect, | ||
| 1941 | strindex) | INIT_OFFSET_MASK; | ||
| 1942 | DEBUGP("\t%s\n", secstrings + strsect->sh_name); | ||
| 1943 | |||
| 1944 | /* Append room for core symbols' strings at end of core part. */ | ||
| 1945 | *pstroffs = mod->core_size; | ||
| 1946 | __set_bit(0, strmap); | ||
| 1947 | mod->core_size += bitmap_weight(strmap, strsect->sh_size); | ||
| 1948 | |||
| 1949 | return symoffs; | ||
| 1950 | } | ||
| 1951 | |||
| 1860 | static void add_kallsyms(struct module *mod, | 1952 | static void add_kallsyms(struct module *mod, |
| 1861 | Elf_Shdr *sechdrs, | 1953 | Elf_Shdr *sechdrs, |
| 1954 | unsigned int shnum, | ||
| 1862 | unsigned int symindex, | 1955 | unsigned int symindex, |
| 1863 | unsigned int strindex, | 1956 | unsigned int strindex, |
| 1864 | const char *secstrings) | 1957 | unsigned long symoffs, |
| 1958 | unsigned long stroffs, | ||
| 1959 | const char *secstrings, | ||
| 1960 | unsigned long *strmap) | ||
| 1865 | { | 1961 | { |
| 1866 | unsigned int i; | 1962 | unsigned int i, ndst; |
| 1963 | const Elf_Sym *src; | ||
| 1964 | Elf_Sym *dst; | ||
| 1965 | char *s; | ||
| 1867 | 1966 | ||
| 1868 | mod->symtab = (void *)sechdrs[symindex].sh_addr; | 1967 | mod->symtab = (void *)sechdrs[symindex].sh_addr; |
| 1869 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); | 1968 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
| @@ -1873,13 +1972,46 @@ static void add_kallsyms(struct module *mod, | |||
| 1873 | for (i = 0; i < mod->num_symtab; i++) | 1972 | for (i = 0; i < mod->num_symtab; i++) |
| 1874 | mod->symtab[i].st_info | 1973 | mod->symtab[i].st_info |
| 1875 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); | 1974 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); |
| 1975 | |||
| 1976 | mod->core_symtab = dst = mod->module_core + symoffs; | ||
| 1977 | src = mod->symtab; | ||
| 1978 | *dst = *src; | ||
| 1979 | for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) { | ||
| 1980 | if (!is_core_symbol(src, sechdrs, shnum)) | ||
| 1981 | continue; | ||
| 1982 | dst[ndst] = *src; | ||
| 1983 | dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name); | ||
| 1984 | ++ndst; | ||
| 1985 | } | ||
| 1986 | mod->core_num_syms = ndst; | ||
| 1987 | |||
| 1988 | mod->core_strtab = s = mod->module_core + stroffs; | ||
| 1989 | for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i) | ||
| 1990 | if (test_bit(i, strmap)) | ||
| 1991 | *++s = mod->strtab[i]; | ||
| 1876 | } | 1992 | } |
| 1877 | #else | 1993 | #else |
| 1994 | static inline unsigned long layout_symtab(struct module *mod, | ||
| 1995 | Elf_Shdr *sechdrs, | ||
| 1996 | unsigned int symindex, | ||
| 1997 | unsigned int strindex, | ||
| 1998 | const Elf_Ehdr *hdr, | ||
| 1999 | const char *secstrings, | ||
| 2000 | unsigned long *pstroffs, | ||
| 2001 | unsigned long *strmap) | ||
| 2002 | { | ||
| 2003 | return 0; | ||
| 2004 | } | ||
| 2005 | |||
| 1878 | static inline void add_kallsyms(struct module *mod, | 2006 | static inline void add_kallsyms(struct module *mod, |
| 1879 | Elf_Shdr *sechdrs, | 2007 | Elf_Shdr *sechdrs, |
| 2008 | unsigned int shnum, | ||
| 1880 | unsigned int symindex, | 2009 | unsigned int symindex, |
| 1881 | unsigned int strindex, | 2010 | unsigned int strindex, |
| 1882 | const char *secstrings) | 2011 | unsigned long symoffs, |
| 2012 | unsigned long stroffs, | ||
| 2013 | const char *secstrings, | ||
| 2014 | const unsigned long *strmap) | ||
| 1883 | { | 2015 | { |
| 1884 | } | 2016 | } |
| 1885 | #endif /* CONFIG_KALLSYMS */ | 2017 | #endif /* CONFIG_KALLSYMS */ |
| @@ -1954,6 +2086,8 @@ static noinline struct module *load_module(void __user *umod, | |||
| 1954 | struct module *mod; | 2086 | struct module *mod; |
| 1955 | long err = 0; | 2087 | long err = 0; |
| 1956 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 2088 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
| 2089 | unsigned long symoffs, stroffs, *strmap; | ||
| 2090 | |||
| 1957 | mm_segment_t old_fs; | 2091 | mm_segment_t old_fs; |
| 1958 | 2092 | ||
| 1959 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", | 2093 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", |
| @@ -2035,11 +2169,6 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2035 | /* Don't keep modinfo and version sections. */ | 2169 | /* Don't keep modinfo and version sections. */ |
| 2036 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2170 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
| 2037 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2171 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
| 2038 | #ifdef CONFIG_KALLSYMS | ||
| 2039 | /* Keep symbol and string tables for decoding later. */ | ||
| 2040 | sechdrs[symindex].sh_flags |= SHF_ALLOC; | ||
| 2041 | sechdrs[strindex].sh_flags |= SHF_ALLOC; | ||
| 2042 | #endif | ||
| 2043 | 2172 | ||
| 2044 | /* Check module struct version now, before we try to use module. */ | 2173 | /* Check module struct version now, before we try to use module. */ |
| 2045 | if (!check_modstruct_version(sechdrs, versindex, mod)) { | 2174 | if (!check_modstruct_version(sechdrs, versindex, mod)) { |
| @@ -2075,6 +2204,13 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2075 | goto free_hdr; | 2204 | goto free_hdr; |
| 2076 | } | 2205 | } |
| 2077 | 2206 | ||
| 2207 | strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size) | ||
| 2208 | * sizeof(long), GFP_KERNEL); | ||
| 2209 | if (!strmap) { | ||
| 2210 | err = -ENOMEM; | ||
| 2211 | goto free_mod; | ||
| 2212 | } | ||
| 2213 | |||
| 2078 | if (find_module(mod->name)) { | 2214 | if (find_module(mod->name)) { |
| 2079 | err = -EEXIST; | 2215 | err = -EEXIST; |
| 2080 | goto free_mod; | 2216 | goto free_mod; |
| @@ -2104,6 +2240,8 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2104 | this is done generically; there doesn't appear to be any | 2240 | this is done generically; there doesn't appear to be any |
| 2105 | special cases for the architectures. */ | 2241 | special cases for the architectures. */ |
| 2106 | layout_sections(mod, hdr, sechdrs, secstrings); | 2242 | layout_sections(mod, hdr, sechdrs, secstrings); |
| 2243 | symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr, | ||
| 2244 | secstrings, &stroffs, strmap); | ||
| 2107 | 2245 | ||
| 2108 | /* Do the allocs. */ | 2246 | /* Do the allocs. */ |
| 2109 | ptr = module_alloc_update_bounds(mod->core_size); | 2247 | ptr = module_alloc_update_bounds(mod->core_size); |
| @@ -2237,10 +2375,6 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2237 | sizeof(*mod->ctors), &mod->num_ctors); | 2375 | sizeof(*mod->ctors), &mod->num_ctors); |
| 2238 | #endif | 2376 | #endif |
| 2239 | 2377 | ||
| 2240 | #ifdef CONFIG_MARKERS | ||
| 2241 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
| 2242 | sizeof(*mod->markers), &mod->num_markers); | ||
| 2243 | #endif | ||
| 2244 | #ifdef CONFIG_TRACEPOINTS | 2378 | #ifdef CONFIG_TRACEPOINTS |
| 2245 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2379 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
| 2246 | "__tracepoints", | 2380 | "__tracepoints", |
| @@ -2312,7 +2446,10 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2312 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, | 2446 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, |
| 2313 | sechdrs[pcpuindex].sh_size); | 2447 | sechdrs[pcpuindex].sh_size); |
| 2314 | 2448 | ||
| 2315 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2449 | add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex, |
| 2450 | symoffs, stroffs, secstrings, strmap); | ||
| 2451 | kfree(strmap); | ||
| 2452 | strmap = NULL; | ||
| 2316 | 2453 | ||
| 2317 | if (!mod->taints) { | 2454 | if (!mod->taints) { |
| 2318 | struct _ddebug *debug; | 2455 | struct _ddebug *debug; |
| @@ -2384,13 +2521,14 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2384 | synchronize_sched(); | 2521 | synchronize_sched(); |
| 2385 | module_arch_cleanup(mod); | 2522 | module_arch_cleanup(mod); |
| 2386 | cleanup: | 2523 | cleanup: |
| 2524 | free_modinfo(mod); | ||
| 2387 | kobject_del(&mod->mkobj.kobj); | 2525 | kobject_del(&mod->mkobj.kobj); |
| 2388 | kobject_put(&mod->mkobj.kobj); | 2526 | kobject_put(&mod->mkobj.kobj); |
| 2389 | free_unload: | 2527 | free_unload: |
| 2390 | module_unload_free(mod); | 2528 | module_unload_free(mod); |
| 2391 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) | 2529 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) |
| 2392 | free_init: | ||
| 2393 | percpu_modfree(mod->refptr); | 2530 | percpu_modfree(mod->refptr); |
| 2531 | free_init: | ||
| 2394 | #endif | 2532 | #endif |
| 2395 | module_free(mod, mod->module_init); | 2533 | module_free(mod, mod->module_init); |
| 2396 | free_core: | 2534 | free_core: |
| @@ -2401,6 +2539,7 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2401 | percpu_modfree(percpu); | 2539 | percpu_modfree(percpu); |
| 2402 | free_mod: | 2540 | free_mod: |
| 2403 | kfree(args); | 2541 | kfree(args); |
| 2542 | kfree(strmap); | ||
| 2404 | free_hdr: | 2543 | free_hdr: |
| 2405 | vfree(hdr); | 2544 | vfree(hdr); |
| 2406 | return ERR_PTR(err); | 2545 | return ERR_PTR(err); |
| @@ -2490,6 +2629,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
| 2490 | /* Drop initial reference. */ | 2629 | /* Drop initial reference. */ |
| 2491 | module_put(mod); | 2630 | module_put(mod); |
| 2492 | trim_init_extable(mod); | 2631 | trim_init_extable(mod); |
| 2632 | #ifdef CONFIG_KALLSYMS | ||
| 2633 | mod->num_symtab = mod->core_num_syms; | ||
| 2634 | mod->symtab = mod->core_symtab; | ||
| 2635 | mod->strtab = mod->core_strtab; | ||
| 2636 | #endif | ||
| 2493 | module_free(mod, mod->module_init); | 2637 | module_free(mod, mod->module_init); |
| 2494 | mod->module_init = NULL; | 2638 | mod->module_init = NULL; |
| 2495 | mod->init_size = 0; | 2639 | mod->init_size = 0; |
| @@ -2951,27 +3095,12 @@ void module_layout(struct module *mod, | |||
| 2951 | struct modversion_info *ver, | 3095 | struct modversion_info *ver, |
| 2952 | struct kernel_param *kp, | 3096 | struct kernel_param *kp, |
| 2953 | struct kernel_symbol *ks, | 3097 | struct kernel_symbol *ks, |
| 2954 | struct marker *marker, | ||
| 2955 | struct tracepoint *tp) | 3098 | struct tracepoint *tp) |
| 2956 | { | 3099 | { |
| 2957 | } | 3100 | } |
| 2958 | EXPORT_SYMBOL(module_layout); | 3101 | EXPORT_SYMBOL(module_layout); |
| 2959 | #endif | 3102 | #endif |
| 2960 | 3103 | ||
| 2961 | #ifdef CONFIG_MARKERS | ||
| 2962 | void module_update_markers(void) | ||
| 2963 | { | ||
| 2964 | struct module *mod; | ||
| 2965 | |||
| 2966 | mutex_lock(&module_mutex); | ||
| 2967 | list_for_each_entry(mod, &modules, list) | ||
| 2968 | if (!mod->taints) | ||
| 2969 | marker_update_probe_range(mod->markers, | ||
| 2970 | mod->markers + mod->num_markers); | ||
| 2971 | mutex_unlock(&module_mutex); | ||
| 2972 | } | ||
| 2973 | #endif | ||
| 2974 | |||
| 2975 | #ifdef CONFIG_TRACEPOINTS | 3104 | #ifdef CONFIG_TRACEPOINTS |
| 2976 | void module_update_tracepoints(void) | 3105 | void module_update_tracepoints(void) |
| 2977 | { | 3106 | { |
diff --git a/kernel/mutex-debug.c b/kernel/mutex-debug.c index 50d022e5a560..ec815a960b5d 100644 --- a/kernel/mutex-debug.c +++ b/kernel/mutex-debug.c | |||
| @@ -16,6 +16,7 @@ | |||
| 16 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
| 17 | #include <linux/module.h> | 17 | #include <linux/module.h> |
| 18 | #include <linux/poison.h> | 18 | #include <linux/poison.h> |
| 19 | #include <linux/sched.h> | ||
| 19 | #include <linux/spinlock.h> | 20 | #include <linux/spinlock.h> |
| 20 | #include <linux/kallsyms.h> | 21 | #include <linux/kallsyms.h> |
| 21 | #include <linux/interrupt.h> | 22 | #include <linux/interrupt.h> |
diff --git a/kernel/mutex.c b/kernel/mutex.c index 947b3ad551f8..632f04c57d82 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
| @@ -148,8 +148,8 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, | |||
| 148 | 148 | ||
| 149 | preempt_disable(); | 149 | preempt_disable(); |
| 150 | mutex_acquire(&lock->dep_map, subclass, 0, ip); | 150 | mutex_acquire(&lock->dep_map, subclass, 0, ip); |
| 151 | #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) && \ | 151 | |
| 152 | !defined(CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES) | 152 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
| 153 | /* | 153 | /* |
| 154 | * Optimistic spinning. | 154 | * Optimistic spinning. |
| 155 | * | 155 | * |
diff --git a/kernel/notifier.c b/kernel/notifier.c index 61d5aa5eced3..acd24e7643eb 100644 --- a/kernel/notifier.c +++ b/kernel/notifier.c | |||
| @@ -558,7 +558,7 @@ EXPORT_SYMBOL(unregister_reboot_notifier); | |||
| 558 | 558 | ||
| 559 | static ATOMIC_NOTIFIER_HEAD(die_chain); | 559 | static ATOMIC_NOTIFIER_HEAD(die_chain); |
| 560 | 560 | ||
| 561 | int notrace notify_die(enum die_val val, const char *str, | 561 | int notrace __kprobes notify_die(enum die_val val, const char *str, |
| 562 | struct pt_regs *regs, long err, int trap, int sig) | 562 | struct pt_regs *regs, long err, int trap, int sig) |
| 563 | { | 563 | { |
| 564 | struct die_args args = { | 564 | struct die_args args = { |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 5aa854f9e5ae..2a5dfec8efe0 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
| @@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
| 42 | * (hence either you are in the same cgroup as task, or in an | 42 | * (hence either you are in the same cgroup as task, or in an |
| 43 | * ancestor cgroup thereof) | 43 | * ancestor cgroup thereof) |
| 44 | */ | 44 | */ |
| 45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup, |
| 46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct task_struct *task, bool threadgroup) |
| 47 | { | 47 | { |
| 48 | if (current != task) { | 48 | if (current != task) { |
| 49 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
| @@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss, | |||
| 56 | if (!cgroup_is_descendant(new_cgroup, task)) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
| 57 | return -EPERM; | 57 | return -EPERM; |
| 58 | 58 | ||
| 59 | if (threadgroup) { | ||
| 60 | struct task_struct *c; | ||
| 61 | rcu_read_lock(); | ||
| 62 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
| 63 | if (!cgroup_is_descendant(new_cgroup, c)) { | ||
| 64 | rcu_read_unlock(); | ||
| 65 | return -EPERM; | ||
| 66 | } | ||
| 67 | } | ||
| 68 | rcu_read_unlock(); | ||
| 69 | } | ||
| 70 | |||
| 59 | return 0; | 71 | return 0; |
| 60 | } | 72 | } |
| 61 | 73 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index 512ab73b0ca3..96b45d0b4ba5 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
| @@ -90,6 +90,8 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 90 | 90 | ||
| 91 | atomic_notifier_call_chain(&panic_notifier_list, 0, buf); | 91 | atomic_notifier_call_chain(&panic_notifier_list, 0, buf); |
| 92 | 92 | ||
| 93 | bust_spinlocks(0); | ||
| 94 | |||
| 93 | if (!panic_blink) | 95 | if (!panic_blink) |
| 94 | panic_blink = no_blink; | 96 | panic_blink = no_blink; |
| 95 | 97 | ||
| @@ -136,7 +138,6 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 136 | mdelay(1); | 138 | mdelay(1); |
| 137 | i++; | 139 | i++; |
| 138 | } | 140 | } |
| 139 | bust_spinlocks(0); | ||
| 140 | } | 141 | } |
| 141 | 142 | ||
| 142 | EXPORT_SYMBOL(panic); | 143 | EXPORT_SYMBOL(panic); |
| @@ -177,7 +178,7 @@ static const struct tnt tnts[] = { | |||
| 177 | * 'W' - Taint on warning. | 178 | * 'W' - Taint on warning. |
| 178 | * 'C' - modules from drivers/staging are loaded. | 179 | * 'C' - modules from drivers/staging are loaded. |
| 179 | * | 180 | * |
| 180 | * The string is overwritten by the next call to print_taint(). | 181 | * The string is overwritten by the next call to print_tainted(). |
| 181 | */ | 182 | */ |
| 182 | const char *print_tainted(void) | 183 | const char *print_tainted(void) |
| 183 | { | 184 | { |
diff --git a/kernel/params.c b/kernel/params.c index 7f6912ced2ba..d656c276508d 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
| @@ -23,6 +23,7 @@ | |||
| 23 | #include <linux/device.h> | 23 | #include <linux/device.h> |
| 24 | #include <linux/err.h> | 24 | #include <linux/err.h> |
| 25 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
| 26 | #include <linux/ctype.h> | ||
| 26 | 27 | ||
| 27 | #if 0 | 28 | #if 0 |
| 28 | #define DEBUGP printk | 29 | #define DEBUGP printk |
| @@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
| 87 | } | 88 | } |
| 88 | 89 | ||
| 89 | for (i = 0; args[i]; i++) { | 90 | for (i = 0; args[i]; i++) { |
| 90 | if (args[i] == ' ' && !in_quote) | 91 | if (isspace(args[i]) && !in_quote) |
| 91 | break; | 92 | break; |
| 92 | if (equals == 0) { | 93 | if (equals == 0) { |
| 93 | if (args[i] == '=') | 94 | if (args[i] == '=') |
| @@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
| 121 | next = args + i; | 122 | next = args + i; |
| 122 | 123 | ||
| 123 | /* Chew up trailing spaces. */ | 124 | /* Chew up trailing spaces. */ |
| 124 | while (*next == ' ') | 125 | while (isspace(*next)) |
| 125 | next++; | 126 | next++; |
| 126 | return next; | 127 | return next; |
| 127 | } | 128 | } |
| @@ -138,7 +139,7 @@ int parse_args(const char *name, | |||
| 138 | DEBUGP("Parsing ARGS: %s\n", args); | 139 | DEBUGP("Parsing ARGS: %s\n", args); |
| 139 | 140 | ||
| 140 | /* Chew leading spaces */ | 141 | /* Chew leading spaces */ |
| 141 | while (*args == ' ') | 142 | while (isspace(*args)) |
| 142 | args++; | 143 | args++; |
| 143 | 144 | ||
| 144 | while (*args) { | 145 | while (*args) { |
| @@ -217,15 +218,11 @@ int param_set_charp(const char *val, struct kernel_param *kp) | |||
| 217 | return -ENOSPC; | 218 | return -ENOSPC; |
| 218 | } | 219 | } |
| 219 | 220 | ||
| 220 | if (kp->flags & KPARAM_KMALLOCED) | ||
| 221 | kfree(*(char **)kp->arg); | ||
| 222 | |||
| 223 | /* This is a hack. We can't need to strdup in early boot, and we | 221 | /* This is a hack. We can't need to strdup in early boot, and we |
| 224 | * don't need to; this mangled commandline is preserved. */ | 222 | * don't need to; this mangled commandline is preserved. */ |
| 225 | if (slab_is_available()) { | 223 | if (slab_is_available()) { |
| 226 | kp->flags |= KPARAM_KMALLOCED; | ||
| 227 | *(char **)kp->arg = kstrdup(val, GFP_KERNEL); | 224 | *(char **)kp->arg = kstrdup(val, GFP_KERNEL); |
| 228 | if (!kp->arg) | 225 | if (!*(char **)kp->arg) |
| 229 | return -ENOMEM; | 226 | return -ENOMEM; |
| 230 | } else | 227 | } else |
| 231 | *(const char **)kp->arg = val; | 228 | *(const char **)kp->arg = val; |
| @@ -303,6 +300,7 @@ static int param_array(const char *name, | |||
| 303 | unsigned int min, unsigned int max, | 300 | unsigned int min, unsigned int max, |
| 304 | void *elem, int elemsize, | 301 | void *elem, int elemsize, |
| 305 | int (*set)(const char *, struct kernel_param *kp), | 302 | int (*set)(const char *, struct kernel_param *kp), |
| 303 | u16 flags, | ||
| 306 | unsigned int *num) | 304 | unsigned int *num) |
| 307 | { | 305 | { |
| 308 | int ret; | 306 | int ret; |
| @@ -312,6 +310,7 @@ static int param_array(const char *name, | |||
| 312 | /* Get the name right for errors. */ | 310 | /* Get the name right for errors. */ |
| 313 | kp.name = name; | 311 | kp.name = name; |
| 314 | kp.arg = elem; | 312 | kp.arg = elem; |
| 313 | kp.flags = flags; | ||
| 315 | 314 | ||
| 316 | /* No equals sign? */ | 315 | /* No equals sign? */ |
| 317 | if (!val) { | 316 | if (!val) { |
| @@ -357,7 +356,8 @@ int param_array_set(const char *val, struct kernel_param *kp) | |||
| 357 | unsigned int temp_num; | 356 | unsigned int temp_num; |
| 358 | 357 | ||
| 359 | return param_array(kp->name, val, 1, arr->max, arr->elem, | 358 | return param_array(kp->name, val, 1, arr->max, arr->elem, |
| 360 | arr->elemsize, arr->set, arr->num ?: &temp_num); | 359 | arr->elemsize, arr->set, kp->flags, |
| 360 | arr->num ?: &temp_num); | ||
| 361 | } | 361 | } |
| 362 | 362 | ||
| 363 | int param_array_get(char *buffer, struct kernel_param *kp) | 363 | int param_array_get(char *buffer, struct kernel_param *kp) |
| @@ -604,11 +604,7 @@ void module_param_sysfs_remove(struct module *mod) | |||
| 604 | 604 | ||
| 605 | void destroy_params(const struct kernel_param *params, unsigned num) | 605 | void destroy_params(const struct kernel_param *params, unsigned num) |
| 606 | { | 606 | { |
| 607 | unsigned int i; | 607 | /* FIXME: This should free kmalloced charp parameters. It doesn't. */ |
| 608 | |||
| 609 | for (i = 0; i < num; i++) | ||
| 610 | if (params[i].flags & KPARAM_KMALLOCED) | ||
| 611 | kfree(*(char **)params[i].arg); | ||
| 612 | } | 608 | } |
| 613 | 609 | ||
| 614 | static void __init kernel_add_sysfs_param(const char *name, | 610 | static void __init kernel_add_sysfs_param(const char *name, |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c deleted file mode 100644 index e0d91fdf0c3c..000000000000 --- a/kernel/perf_counter.c +++ /dev/null | |||
| @@ -1,4962 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Performance counter core code | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_counter.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU counters: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_counters __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_counters __read_mostly; | ||
| 43 | static atomic_t nr_mmap_counters __read_mostly; | ||
| 44 | static atomic_t nr_comm_counters __read_mostly; | ||
| 45 | static atomic_t nr_task_counters __read_mostly; | ||
| 46 | |||
| 47 | /* | ||
| 48 | * perf counter paranoia level: | ||
| 49 | * -1 - not paranoid at all | ||
| 50 | * 0 - disallow raw tracepoint access for unpriv | ||
| 51 | * 1 - disallow cpu counters for unpriv | ||
| 52 | * 2 - disallow kernel profiling for unpriv | ||
| 53 | */ | ||
| 54 | int sysctl_perf_counter_paranoid __read_mostly = 1; | ||
| 55 | |||
| 56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 57 | { | ||
| 58 | return sysctl_perf_counter_paranoid > -1; | ||
| 59 | } | ||
| 60 | |||
| 61 | static inline bool perf_paranoid_cpu(void) | ||
| 62 | { | ||
| 63 | return sysctl_perf_counter_paranoid > 0; | ||
| 64 | } | ||
| 65 | |||
| 66 | static inline bool perf_paranoid_kernel(void) | ||
| 67 | { | ||
| 68 | return sysctl_perf_counter_paranoid > 1; | ||
| 69 | } | ||
| 70 | |||
| 71 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 72 | |||
| 73 | /* | ||
| 74 | * max perf counter sample rate | ||
| 75 | */ | ||
| 76 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
| 77 | |||
| 78 | static atomic64_t perf_counter_id; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Lock for (sysadmin-configurable) counter reservations: | ||
| 82 | */ | ||
| 83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Architecture provided APIs - weak aliases: | ||
| 87 | */ | ||
| 88 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
| 89 | { | ||
| 90 | return NULL; | ||
| 91 | } | ||
| 92 | |||
| 93 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 94 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 95 | |||
| 96 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
| 97 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | ||
| 98 | |||
| 99 | int __weak | ||
| 100 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
| 101 | struct perf_cpu_context *cpuctx, | ||
| 102 | struct perf_counter_context *ctx, int cpu) | ||
| 103 | { | ||
| 104 | return 0; | ||
| 105 | } | ||
| 106 | |||
| 107 | void __weak perf_counter_print_debug(void) { } | ||
| 108 | |||
| 109 | static DEFINE_PER_CPU(int, disable_count); | ||
| 110 | |||
| 111 | void __perf_disable(void) | ||
| 112 | { | ||
| 113 | __get_cpu_var(disable_count)++; | ||
| 114 | } | ||
| 115 | |||
| 116 | bool __perf_enable(void) | ||
| 117 | { | ||
| 118 | return !--__get_cpu_var(disable_count); | ||
| 119 | } | ||
| 120 | |||
| 121 | void perf_disable(void) | ||
| 122 | { | ||
| 123 | __perf_disable(); | ||
| 124 | hw_perf_disable(); | ||
| 125 | } | ||
| 126 | |||
| 127 | void perf_enable(void) | ||
| 128 | { | ||
| 129 | if (__perf_enable()) | ||
| 130 | hw_perf_enable(); | ||
| 131 | } | ||
| 132 | |||
| 133 | static void get_ctx(struct perf_counter_context *ctx) | ||
| 134 | { | ||
| 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void free_ctx(struct rcu_head *head) | ||
| 139 | { | ||
| 140 | struct perf_counter_context *ctx; | ||
| 141 | |||
| 142 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
| 143 | kfree(ctx); | ||
| 144 | } | ||
| 145 | |||
| 146 | static void put_ctx(struct perf_counter_context *ctx) | ||
| 147 | { | ||
| 148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 149 | if (ctx->parent_ctx) | ||
| 150 | put_ctx(ctx->parent_ctx); | ||
| 151 | if (ctx->task) | ||
| 152 | put_task_struct(ctx->task); | ||
| 153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | |||
| 157 | static void unclone_ctx(struct perf_counter_context *ctx) | ||
| 158 | { | ||
| 159 | if (ctx->parent_ctx) { | ||
| 160 | put_ctx(ctx->parent_ctx); | ||
| 161 | ctx->parent_ctx = NULL; | ||
| 162 | } | ||
| 163 | } | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If we inherit counters we want to return the parent counter id | ||
| 167 | * to userspace. | ||
| 168 | */ | ||
| 169 | static u64 primary_counter_id(struct perf_counter *counter) | ||
| 170 | { | ||
| 171 | u64 id = counter->id; | ||
| 172 | |||
| 173 | if (counter->parent) | ||
| 174 | id = counter->parent->id; | ||
| 175 | |||
| 176 | return id; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Get the perf_counter_context for a task and lock it. | ||
| 181 | * This has to cope with with the fact that until it is locked, | ||
| 182 | * the context could get moved to another task. | ||
| 183 | */ | ||
| 184 | static struct perf_counter_context * | ||
| 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 186 | { | ||
| 187 | struct perf_counter_context *ctx; | ||
| 188 | |||
| 189 | rcu_read_lock(); | ||
| 190 | retry: | ||
| 191 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
| 192 | if (ctx) { | ||
| 193 | /* | ||
| 194 | * If this context is a clone of another, it might | ||
| 195 | * get swapped for another underneath us by | ||
| 196 | * perf_counter_task_sched_out, though the | ||
| 197 | * rcu_read_lock() protects us from any context | ||
| 198 | * getting freed. Lock the context and check if it | ||
| 199 | * got swapped before we could get the lock, and retry | ||
| 200 | * if so. If we locked the right context, then it | ||
| 201 | * can't get swapped on us any more. | ||
| 202 | */ | ||
| 203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 204 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
| 205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 206 | goto retry; | ||
| 207 | } | ||
| 208 | |||
| 209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 211 | ctx = NULL; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | rcu_read_unlock(); | ||
| 215 | return ctx; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Get the context for a task and increment its pin_count so it | ||
| 220 | * can't get swapped to another task. This also increments its | ||
| 221 | * reference count so that the context can't get freed. | ||
| 222 | */ | ||
| 223 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
| 224 | { | ||
| 225 | struct perf_counter_context *ctx; | ||
| 226 | unsigned long flags; | ||
| 227 | |||
| 228 | ctx = perf_lock_task_context(task, &flags); | ||
| 229 | if (ctx) { | ||
| 230 | ++ctx->pin_count; | ||
| 231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 232 | } | ||
| 233 | return ctx; | ||
| 234 | } | ||
| 235 | |||
| 236 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
| 237 | { | ||
| 238 | unsigned long flags; | ||
| 239 | |||
| 240 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 241 | --ctx->pin_count; | ||
| 242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 243 | put_ctx(ctx); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Add a counter from the lists for its context. | ||
| 248 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 249 | */ | ||
| 250 | static void | ||
| 251 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 252 | { | ||
| 253 | struct perf_counter *group_leader = counter->group_leader; | ||
| 254 | |||
| 255 | /* | ||
| 256 | * Depending on whether it is a standalone or sibling counter, | ||
| 257 | * add it straight to the context's counter list, or to the group | ||
| 258 | * leader's sibling list: | ||
| 259 | */ | ||
| 260 | if (group_leader == counter) | ||
| 261 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
| 262 | else { | ||
| 263 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
| 264 | group_leader->nr_siblings++; | ||
| 265 | } | ||
| 266 | |||
| 267 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
| 268 | ctx->nr_counters++; | ||
| 269 | if (counter->attr.inherit_stat) | ||
| 270 | ctx->nr_stat++; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Remove a counter from the lists for its context. | ||
| 275 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 276 | */ | ||
| 277 | static void | ||
| 278 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 279 | { | ||
| 280 | struct perf_counter *sibling, *tmp; | ||
| 281 | |||
| 282 | if (list_empty(&counter->list_entry)) | ||
| 283 | return; | ||
| 284 | ctx->nr_counters--; | ||
| 285 | if (counter->attr.inherit_stat) | ||
| 286 | ctx->nr_stat--; | ||
| 287 | |||
| 288 | list_del_init(&counter->list_entry); | ||
| 289 | list_del_rcu(&counter->event_entry); | ||
| 290 | |||
| 291 | if (counter->group_leader != counter) | ||
| 292 | counter->group_leader->nr_siblings--; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * If this was a group counter with sibling counters then | ||
| 296 | * upgrade the siblings to singleton counters by adding them | ||
| 297 | * to the context list directly: | ||
| 298 | */ | ||
| 299 | list_for_each_entry_safe(sibling, tmp, | ||
| 300 | &counter->sibling_list, list_entry) { | ||
| 301 | |||
| 302 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
| 303 | sibling->group_leader = sibling; | ||
| 304 | } | ||
| 305 | } | ||
| 306 | |||
| 307 | static void | ||
| 308 | counter_sched_out(struct perf_counter *counter, | ||
| 309 | struct perf_cpu_context *cpuctx, | ||
| 310 | struct perf_counter_context *ctx) | ||
| 311 | { | ||
| 312 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 313 | return; | ||
| 314 | |||
| 315 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 316 | if (counter->pending_disable) { | ||
| 317 | counter->pending_disable = 0; | ||
| 318 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 319 | } | ||
| 320 | counter->tstamp_stopped = ctx->time; | ||
| 321 | counter->pmu->disable(counter); | ||
| 322 | counter->oncpu = -1; | ||
| 323 | |||
| 324 | if (!is_software_counter(counter)) | ||
| 325 | cpuctx->active_oncpu--; | ||
| 326 | ctx->nr_active--; | ||
| 327 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
| 328 | cpuctx->exclusive = 0; | ||
| 329 | } | ||
| 330 | |||
| 331 | static void | ||
| 332 | group_sched_out(struct perf_counter *group_counter, | ||
| 333 | struct perf_cpu_context *cpuctx, | ||
| 334 | struct perf_counter_context *ctx) | ||
| 335 | { | ||
| 336 | struct perf_counter *counter; | ||
| 337 | |||
| 338 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 339 | return; | ||
| 340 | |||
| 341 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 342 | |||
| 343 | /* | ||
| 344 | * Schedule out siblings (if any): | ||
| 345 | */ | ||
| 346 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
| 347 | counter_sched_out(counter, cpuctx, ctx); | ||
| 348 | |||
| 349 | if (group_counter->attr.exclusive) | ||
| 350 | cpuctx->exclusive = 0; | ||
| 351 | } | ||
| 352 | |||
| 353 | /* | ||
| 354 | * Cross CPU call to remove a performance counter | ||
| 355 | * | ||
| 356 | * We disable the counter on the hardware level first. After that we | ||
| 357 | * remove it from the context list. | ||
| 358 | */ | ||
| 359 | static void __perf_counter_remove_from_context(void *info) | ||
| 360 | { | ||
| 361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 362 | struct perf_counter *counter = info; | ||
| 363 | struct perf_counter_context *ctx = counter->ctx; | ||
| 364 | |||
| 365 | /* | ||
| 366 | * If this is a task context, we need to check whether it is | ||
| 367 | * the current task context of this cpu. If not it has been | ||
| 368 | * scheduled out before the smp call arrived. | ||
| 369 | */ | ||
| 370 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 371 | return; | ||
| 372 | |||
| 373 | spin_lock(&ctx->lock); | ||
| 374 | /* | ||
| 375 | * Protect the list operation against NMI by disabling the | ||
| 376 | * counters on a global level. | ||
| 377 | */ | ||
| 378 | perf_disable(); | ||
| 379 | |||
| 380 | counter_sched_out(counter, cpuctx, ctx); | ||
| 381 | |||
| 382 | list_del_counter(counter, ctx); | ||
| 383 | |||
| 384 | if (!ctx->task) { | ||
| 385 | /* | ||
| 386 | * Allow more per task counters with respect to the | ||
| 387 | * reservation: | ||
| 388 | */ | ||
| 389 | cpuctx->max_pertask = | ||
| 390 | min(perf_max_counters - ctx->nr_counters, | ||
| 391 | perf_max_counters - perf_reserved_percpu); | ||
| 392 | } | ||
| 393 | |||
| 394 | perf_enable(); | ||
| 395 | spin_unlock(&ctx->lock); | ||
| 396 | } | ||
| 397 | |||
| 398 | |||
| 399 | /* | ||
| 400 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
| 401 | * | ||
| 402 | * Must be called with ctx->mutex held. | ||
| 403 | * | ||
| 404 | * CPU counters are removed with a smp call. For task counters we only | ||
| 405 | * call when the task is on a CPU. | ||
| 406 | * | ||
| 407 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 408 | * every task struct that counter->ctx->task could possibly point to | ||
| 409 | * remains valid. This is OK when called from perf_release since | ||
| 410 | * that only calls us on the top-level context, which can't be a clone. | ||
| 411 | * When called from perf_counter_exit_task, it's OK because the | ||
| 412 | * context has been detached from its task. | ||
| 413 | */ | ||
| 414 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
| 415 | { | ||
| 416 | struct perf_counter_context *ctx = counter->ctx; | ||
| 417 | struct task_struct *task = ctx->task; | ||
| 418 | |||
| 419 | if (!task) { | ||
| 420 | /* | ||
| 421 | * Per cpu counters are removed via an smp call and | ||
| 422 | * the removal is always sucessful. | ||
| 423 | */ | ||
| 424 | smp_call_function_single(counter->cpu, | ||
| 425 | __perf_counter_remove_from_context, | ||
| 426 | counter, 1); | ||
| 427 | return; | ||
| 428 | } | ||
| 429 | |||
| 430 | retry: | ||
| 431 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
| 432 | counter); | ||
| 433 | |||
| 434 | spin_lock_irq(&ctx->lock); | ||
| 435 | /* | ||
| 436 | * If the context is active we need to retry the smp call. | ||
| 437 | */ | ||
| 438 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
| 439 | spin_unlock_irq(&ctx->lock); | ||
| 440 | goto retry; | ||
| 441 | } | ||
| 442 | |||
| 443 | /* | ||
| 444 | * The lock prevents that this context is scheduled in so we | ||
| 445 | * can remove the counter safely, if the call above did not | ||
| 446 | * succeed. | ||
| 447 | */ | ||
| 448 | if (!list_empty(&counter->list_entry)) { | ||
| 449 | list_del_counter(counter, ctx); | ||
| 450 | } | ||
| 451 | spin_unlock_irq(&ctx->lock); | ||
| 452 | } | ||
| 453 | |||
| 454 | static inline u64 perf_clock(void) | ||
| 455 | { | ||
| 456 | return cpu_clock(smp_processor_id()); | ||
| 457 | } | ||
| 458 | |||
| 459 | /* | ||
| 460 | * Update the record of the current time in a context. | ||
| 461 | */ | ||
| 462 | static void update_context_time(struct perf_counter_context *ctx) | ||
| 463 | { | ||
| 464 | u64 now = perf_clock(); | ||
| 465 | |||
| 466 | ctx->time += now - ctx->timestamp; | ||
| 467 | ctx->timestamp = now; | ||
| 468 | } | ||
| 469 | |||
| 470 | /* | ||
| 471 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
| 472 | */ | ||
| 473 | static void update_counter_times(struct perf_counter *counter) | ||
| 474 | { | ||
| 475 | struct perf_counter_context *ctx = counter->ctx; | ||
| 476 | u64 run_end; | ||
| 477 | |||
| 478 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
| 479 | counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE) | ||
| 480 | return; | ||
| 481 | |||
| 482 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
| 483 | |||
| 484 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
| 485 | run_end = counter->tstamp_stopped; | ||
| 486 | else | ||
| 487 | run_end = ctx->time; | ||
| 488 | |||
| 489 | counter->total_time_running = run_end - counter->tstamp_running; | ||
| 490 | } | ||
| 491 | |||
| 492 | /* | ||
| 493 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
| 494 | */ | ||
| 495 | static void update_group_times(struct perf_counter *leader) | ||
| 496 | { | ||
| 497 | struct perf_counter *counter; | ||
| 498 | |||
| 499 | update_counter_times(leader); | ||
| 500 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 501 | update_counter_times(counter); | ||
| 502 | } | ||
| 503 | |||
| 504 | /* | ||
| 505 | * Cross CPU call to disable a performance counter | ||
| 506 | */ | ||
| 507 | static void __perf_counter_disable(void *info) | ||
| 508 | { | ||
| 509 | struct perf_counter *counter = info; | ||
| 510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 511 | struct perf_counter_context *ctx = counter->ctx; | ||
| 512 | |||
| 513 | /* | ||
| 514 | * If this is a per-task counter, need to check whether this | ||
| 515 | * counter's task is the current task on this cpu. | ||
| 516 | */ | ||
| 517 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 518 | return; | ||
| 519 | |||
| 520 | spin_lock(&ctx->lock); | ||
| 521 | |||
| 522 | /* | ||
| 523 | * If the counter is on, turn it off. | ||
| 524 | * If it is in error state, leave it in error state. | ||
| 525 | */ | ||
| 526 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
| 527 | update_context_time(ctx); | ||
| 528 | update_group_times(counter); | ||
| 529 | if (counter == counter->group_leader) | ||
| 530 | group_sched_out(counter, cpuctx, ctx); | ||
| 531 | else | ||
| 532 | counter_sched_out(counter, cpuctx, ctx); | ||
| 533 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 534 | } | ||
| 535 | |||
| 536 | spin_unlock(&ctx->lock); | ||
| 537 | } | ||
| 538 | |||
| 539 | /* | ||
| 540 | * Disable a counter. | ||
| 541 | * | ||
| 542 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 543 | * every task struct that counter->ctx->task could possibly point to | ||
| 544 | * remains valid. This condition is satisifed when called through | ||
| 545 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
| 546 | * hold the top-level counter's child_mutex, so any descendant that | ||
| 547 | * goes to exit will block in sync_child_counter. | ||
| 548 | * When called from perf_pending_counter it's OK because counter->ctx | ||
| 549 | * is the current context on this CPU and preemption is disabled, | ||
| 550 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
| 551 | */ | ||
| 552 | static void perf_counter_disable(struct perf_counter *counter) | ||
| 553 | { | ||
| 554 | struct perf_counter_context *ctx = counter->ctx; | ||
| 555 | struct task_struct *task = ctx->task; | ||
| 556 | |||
| 557 | if (!task) { | ||
| 558 | /* | ||
| 559 | * Disable the counter on the cpu that it's on | ||
| 560 | */ | ||
| 561 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
| 562 | counter, 1); | ||
| 563 | return; | ||
| 564 | } | ||
| 565 | |||
| 566 | retry: | ||
| 567 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
| 568 | |||
| 569 | spin_lock_irq(&ctx->lock); | ||
| 570 | /* | ||
| 571 | * If the counter is still active, we need to retry the cross-call. | ||
| 572 | */ | ||
| 573 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 574 | spin_unlock_irq(&ctx->lock); | ||
| 575 | goto retry; | ||
| 576 | } | ||
| 577 | |||
| 578 | /* | ||
| 579 | * Since we have the lock this context can't be scheduled | ||
| 580 | * in, so we can change the state safely. | ||
| 581 | */ | ||
| 582 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 583 | update_group_times(counter); | ||
| 584 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 585 | } | ||
| 586 | |||
| 587 | spin_unlock_irq(&ctx->lock); | ||
| 588 | } | ||
| 589 | |||
| 590 | static int | ||
| 591 | counter_sched_in(struct perf_counter *counter, | ||
| 592 | struct perf_cpu_context *cpuctx, | ||
| 593 | struct perf_counter_context *ctx, | ||
| 594 | int cpu) | ||
| 595 | { | ||
| 596 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
| 597 | return 0; | ||
| 598 | |||
| 599 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
| 600 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 601 | /* | ||
| 602 | * The new state must be visible before we turn it on in the hardware: | ||
| 603 | */ | ||
| 604 | smp_wmb(); | ||
| 605 | |||
| 606 | if (counter->pmu->enable(counter)) { | ||
| 607 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 608 | counter->oncpu = -1; | ||
| 609 | return -EAGAIN; | ||
| 610 | } | ||
| 611 | |||
| 612 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
| 613 | |||
| 614 | if (!is_software_counter(counter)) | ||
| 615 | cpuctx->active_oncpu++; | ||
| 616 | ctx->nr_active++; | ||
| 617 | |||
| 618 | if (counter->attr.exclusive) | ||
| 619 | cpuctx->exclusive = 1; | ||
| 620 | |||
| 621 | return 0; | ||
| 622 | } | ||
| 623 | |||
| 624 | static int | ||
| 625 | group_sched_in(struct perf_counter *group_counter, | ||
| 626 | struct perf_cpu_context *cpuctx, | ||
| 627 | struct perf_counter_context *ctx, | ||
| 628 | int cpu) | ||
| 629 | { | ||
| 630 | struct perf_counter *counter, *partial_group; | ||
| 631 | int ret; | ||
| 632 | |||
| 633 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
| 634 | return 0; | ||
| 635 | |||
| 636 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
| 637 | if (ret) | ||
| 638 | return ret < 0 ? ret : 0; | ||
| 639 | |||
| 640 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
| 641 | return -EAGAIN; | ||
| 642 | |||
| 643 | /* | ||
| 644 | * Schedule in siblings as one group (if any): | ||
| 645 | */ | ||
| 646 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 647 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
| 648 | partial_group = counter; | ||
| 649 | goto group_error; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | |||
| 653 | return 0; | ||
| 654 | |||
| 655 | group_error: | ||
| 656 | /* | ||
| 657 | * Groups can be scheduled in as one unit only, so undo any | ||
| 658 | * partial group before returning: | ||
| 659 | */ | ||
| 660 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 661 | if (counter == partial_group) | ||
| 662 | break; | ||
| 663 | counter_sched_out(counter, cpuctx, ctx); | ||
| 664 | } | ||
| 665 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 666 | |||
| 667 | return -EAGAIN; | ||
| 668 | } | ||
| 669 | |||
| 670 | /* | ||
| 671 | * Return 1 for a group consisting entirely of software counters, | ||
| 672 | * 0 if the group contains any hardware counters. | ||
| 673 | */ | ||
| 674 | static int is_software_only_group(struct perf_counter *leader) | ||
| 675 | { | ||
| 676 | struct perf_counter *counter; | ||
| 677 | |||
| 678 | if (!is_software_counter(leader)) | ||
| 679 | return 0; | ||
| 680 | |||
| 681 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 682 | if (!is_software_counter(counter)) | ||
| 683 | return 0; | ||
| 684 | |||
| 685 | return 1; | ||
| 686 | } | ||
| 687 | |||
| 688 | /* | ||
| 689 | * Work out whether we can put this counter group on the CPU now. | ||
| 690 | */ | ||
| 691 | static int group_can_go_on(struct perf_counter *counter, | ||
| 692 | struct perf_cpu_context *cpuctx, | ||
| 693 | int can_add_hw) | ||
| 694 | { | ||
| 695 | /* | ||
| 696 | * Groups consisting entirely of software counters can always go on. | ||
| 697 | */ | ||
| 698 | if (is_software_only_group(counter)) | ||
| 699 | return 1; | ||
| 700 | /* | ||
| 701 | * If an exclusive group is already on, no other hardware | ||
| 702 | * counters can go on. | ||
| 703 | */ | ||
| 704 | if (cpuctx->exclusive) | ||
| 705 | return 0; | ||
| 706 | /* | ||
| 707 | * If this group is exclusive and there are already | ||
| 708 | * counters on the CPU, it can't go on. | ||
| 709 | */ | ||
| 710 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
| 711 | return 0; | ||
| 712 | /* | ||
| 713 | * Otherwise, try to add it if all previous groups were able | ||
| 714 | * to go on. | ||
| 715 | */ | ||
| 716 | return can_add_hw; | ||
| 717 | } | ||
| 718 | |||
| 719 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
| 720 | struct perf_counter_context *ctx) | ||
| 721 | { | ||
| 722 | list_add_counter(counter, ctx); | ||
| 723 | counter->tstamp_enabled = ctx->time; | ||
| 724 | counter->tstamp_running = ctx->time; | ||
| 725 | counter->tstamp_stopped = ctx->time; | ||
| 726 | } | ||
| 727 | |||
| 728 | /* | ||
| 729 | * Cross CPU call to install and enable a performance counter | ||
| 730 | * | ||
| 731 | * Must be called with ctx->mutex held | ||
| 732 | */ | ||
| 733 | static void __perf_install_in_context(void *info) | ||
| 734 | { | ||
| 735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 736 | struct perf_counter *counter = info; | ||
| 737 | struct perf_counter_context *ctx = counter->ctx; | ||
| 738 | struct perf_counter *leader = counter->group_leader; | ||
| 739 | int cpu = smp_processor_id(); | ||
| 740 | int err; | ||
| 741 | |||
| 742 | /* | ||
| 743 | * If this is a task context, we need to check whether it is | ||
| 744 | * the current task context of this cpu. If not it has been | ||
| 745 | * scheduled out before the smp call arrived. | ||
| 746 | * Or possibly this is the right context but it isn't | ||
| 747 | * on this cpu because it had no counters. | ||
| 748 | */ | ||
| 749 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 750 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 751 | return; | ||
| 752 | cpuctx->task_ctx = ctx; | ||
| 753 | } | ||
| 754 | |||
| 755 | spin_lock(&ctx->lock); | ||
| 756 | ctx->is_active = 1; | ||
| 757 | update_context_time(ctx); | ||
| 758 | |||
| 759 | /* | ||
| 760 | * Protect the list operation against NMI by disabling the | ||
| 761 | * counters on a global level. NOP for non NMI based counters. | ||
| 762 | */ | ||
| 763 | perf_disable(); | ||
| 764 | |||
| 765 | add_counter_to_ctx(counter, ctx); | ||
| 766 | |||
| 767 | /* | ||
| 768 | * Don't put the counter on if it is disabled or if | ||
| 769 | * it is in a group and the group isn't on. | ||
| 770 | */ | ||
| 771 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
| 772 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
| 773 | goto unlock; | ||
| 774 | |||
| 775 | /* | ||
| 776 | * An exclusive counter can't go on if there are already active | ||
| 777 | * hardware counters, and no hardware counter can go on if there | ||
| 778 | * is already an exclusive counter on. | ||
| 779 | */ | ||
| 780 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
| 781 | err = -EEXIST; | ||
| 782 | else | ||
| 783 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 784 | |||
| 785 | if (err) { | ||
| 786 | /* | ||
| 787 | * This counter couldn't go on. If it is in a group | ||
| 788 | * then we have to pull the whole group off. | ||
| 789 | * If the counter group is pinned then put it in error state. | ||
| 790 | */ | ||
| 791 | if (leader != counter) | ||
| 792 | group_sched_out(leader, cpuctx, ctx); | ||
| 793 | if (leader->attr.pinned) { | ||
| 794 | update_group_times(leader); | ||
| 795 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 796 | } | ||
| 797 | } | ||
| 798 | |||
| 799 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 800 | cpuctx->max_pertask--; | ||
| 801 | |||
| 802 | unlock: | ||
| 803 | perf_enable(); | ||
| 804 | |||
| 805 | spin_unlock(&ctx->lock); | ||
| 806 | } | ||
| 807 | |||
| 808 | /* | ||
| 809 | * Attach a performance counter to a context | ||
| 810 | * | ||
| 811 | * First we add the counter to the list with the hardware enable bit | ||
| 812 | * in counter->hw_config cleared. | ||
| 813 | * | ||
| 814 | * If the counter is attached to a task which is on a CPU we use a smp | ||
| 815 | * call to enable it in the task context. The task might have been | ||
| 816 | * scheduled away, but we check this in the smp call again. | ||
| 817 | * | ||
| 818 | * Must be called with ctx->mutex held. | ||
| 819 | */ | ||
| 820 | static void | ||
| 821 | perf_install_in_context(struct perf_counter_context *ctx, | ||
| 822 | struct perf_counter *counter, | ||
| 823 | int cpu) | ||
| 824 | { | ||
| 825 | struct task_struct *task = ctx->task; | ||
| 826 | |||
| 827 | if (!task) { | ||
| 828 | /* | ||
| 829 | * Per cpu counters are installed via an smp call and | ||
| 830 | * the install is always sucessful. | ||
| 831 | */ | ||
| 832 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 833 | counter, 1); | ||
| 834 | return; | ||
| 835 | } | ||
| 836 | |||
| 837 | retry: | ||
| 838 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 839 | counter); | ||
| 840 | |||
| 841 | spin_lock_irq(&ctx->lock); | ||
| 842 | /* | ||
| 843 | * we need to retry the smp call. | ||
| 844 | */ | ||
| 845 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
| 846 | spin_unlock_irq(&ctx->lock); | ||
| 847 | goto retry; | ||
| 848 | } | ||
| 849 | |||
| 850 | /* | ||
| 851 | * The lock prevents that this context is scheduled in so we | ||
| 852 | * can add the counter safely, if it the call above did not | ||
| 853 | * succeed. | ||
| 854 | */ | ||
| 855 | if (list_empty(&counter->list_entry)) | ||
| 856 | add_counter_to_ctx(counter, ctx); | ||
| 857 | spin_unlock_irq(&ctx->lock); | ||
| 858 | } | ||
| 859 | |||
| 860 | /* | ||
| 861 | * Put a counter into inactive state and update time fields. | ||
| 862 | * Enabling the leader of a group effectively enables all | ||
| 863 | * the group members that aren't explicitly disabled, so we | ||
| 864 | * have to update their ->tstamp_enabled also. | ||
| 865 | * Note: this works for group members as well as group leaders | ||
| 866 | * since the non-leader members' sibling_lists will be empty. | ||
| 867 | */ | ||
| 868 | static void __perf_counter_mark_enabled(struct perf_counter *counter, | ||
| 869 | struct perf_counter_context *ctx) | ||
| 870 | { | ||
| 871 | struct perf_counter *sub; | ||
| 872 | |||
| 873 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 874 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
| 875 | list_for_each_entry(sub, &counter->sibling_list, list_entry) | ||
| 876 | if (sub->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 877 | sub->tstamp_enabled = | ||
| 878 | ctx->time - sub->total_time_enabled; | ||
| 879 | } | ||
| 880 | |||
| 881 | /* | ||
| 882 | * Cross CPU call to enable a performance counter | ||
| 883 | */ | ||
| 884 | static void __perf_counter_enable(void *info) | ||
| 885 | { | ||
| 886 | struct perf_counter *counter = info; | ||
| 887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 888 | struct perf_counter_context *ctx = counter->ctx; | ||
| 889 | struct perf_counter *leader = counter->group_leader; | ||
| 890 | int err; | ||
| 891 | |||
| 892 | /* | ||
| 893 | * If this is a per-task counter, need to check whether this | ||
| 894 | * counter's task is the current task on this cpu. | ||
| 895 | */ | ||
| 896 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 897 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 898 | return; | ||
| 899 | cpuctx->task_ctx = ctx; | ||
| 900 | } | ||
| 901 | |||
| 902 | spin_lock(&ctx->lock); | ||
| 903 | ctx->is_active = 1; | ||
| 904 | update_context_time(ctx); | ||
| 905 | |||
| 906 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 907 | goto unlock; | ||
| 908 | __perf_counter_mark_enabled(counter, ctx); | ||
| 909 | |||
| 910 | /* | ||
| 911 | * If the counter is in a group and isn't the group leader, | ||
| 912 | * then don't put it on unless the group is on. | ||
| 913 | */ | ||
| 914 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 915 | goto unlock; | ||
| 916 | |||
| 917 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
| 918 | err = -EEXIST; | ||
| 919 | } else { | ||
| 920 | perf_disable(); | ||
| 921 | if (counter == leader) | ||
| 922 | err = group_sched_in(counter, cpuctx, ctx, | ||
| 923 | smp_processor_id()); | ||
| 924 | else | ||
| 925 | err = counter_sched_in(counter, cpuctx, ctx, | ||
| 926 | smp_processor_id()); | ||
| 927 | perf_enable(); | ||
| 928 | } | ||
| 929 | |||
| 930 | if (err) { | ||
| 931 | /* | ||
| 932 | * If this counter can't go on and it's part of a | ||
| 933 | * group, then the whole group has to come off. | ||
| 934 | */ | ||
| 935 | if (leader != counter) | ||
| 936 | group_sched_out(leader, cpuctx, ctx); | ||
| 937 | if (leader->attr.pinned) { | ||
| 938 | update_group_times(leader); | ||
| 939 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 940 | } | ||
| 941 | } | ||
| 942 | |||
| 943 | unlock: | ||
| 944 | spin_unlock(&ctx->lock); | ||
| 945 | } | ||
| 946 | |||
| 947 | /* | ||
| 948 | * Enable a counter. | ||
| 949 | * | ||
| 950 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 951 | * every task struct that counter->ctx->task could possibly point to | ||
| 952 | * remains valid. This condition is satisfied when called through | ||
| 953 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
| 954 | * for perf_counter_disable. | ||
| 955 | */ | ||
| 956 | static void perf_counter_enable(struct perf_counter *counter) | ||
| 957 | { | ||
| 958 | struct perf_counter_context *ctx = counter->ctx; | ||
| 959 | struct task_struct *task = ctx->task; | ||
| 960 | |||
| 961 | if (!task) { | ||
| 962 | /* | ||
| 963 | * Enable the counter on the cpu that it's on | ||
| 964 | */ | ||
| 965 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
| 966 | counter, 1); | ||
| 967 | return; | ||
| 968 | } | ||
| 969 | |||
| 970 | spin_lock_irq(&ctx->lock); | ||
| 971 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 972 | goto out; | ||
| 973 | |||
| 974 | /* | ||
| 975 | * If the counter is in error state, clear that first. | ||
| 976 | * That way, if we see the counter in error state below, we | ||
| 977 | * know that it has gone back into error state, as distinct | ||
| 978 | * from the task having been scheduled away before the | ||
| 979 | * cross-call arrived. | ||
| 980 | */ | ||
| 981 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 982 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 983 | |||
| 984 | retry: | ||
| 985 | spin_unlock_irq(&ctx->lock); | ||
| 986 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
| 987 | |||
| 988 | spin_lock_irq(&ctx->lock); | ||
| 989 | |||
| 990 | /* | ||
| 991 | * If the context is active and the counter is still off, | ||
| 992 | * we need to retry the cross-call. | ||
| 993 | */ | ||
| 994 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
| 995 | goto retry; | ||
| 996 | |||
| 997 | /* | ||
| 998 | * Since we have the lock this context can't be scheduled | ||
| 999 | * in, so we can change the state safely. | ||
| 1000 | */ | ||
| 1001 | if (counter->state == PERF_COUNTER_STATE_OFF) | ||
| 1002 | __perf_counter_mark_enabled(counter, ctx); | ||
| 1003 | |||
| 1004 | out: | ||
| 1005 | spin_unlock_irq(&ctx->lock); | ||
| 1006 | } | ||
| 1007 | |||
| 1008 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
| 1009 | { | ||
| 1010 | /* | ||
| 1011 | * not supported on inherited counters | ||
| 1012 | */ | ||
| 1013 | if (counter->attr.inherit) | ||
| 1014 | return -EINVAL; | ||
| 1015 | |||
| 1016 | atomic_add(refresh, &counter->event_limit); | ||
| 1017 | perf_counter_enable(counter); | ||
| 1018 | |||
| 1019 | return 0; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
| 1023 | struct perf_cpu_context *cpuctx) | ||
| 1024 | { | ||
| 1025 | struct perf_counter *counter; | ||
| 1026 | |||
| 1027 | spin_lock(&ctx->lock); | ||
| 1028 | ctx->is_active = 0; | ||
| 1029 | if (likely(!ctx->nr_counters)) | ||
| 1030 | goto out; | ||
| 1031 | update_context_time(ctx); | ||
| 1032 | |||
| 1033 | perf_disable(); | ||
| 1034 | if (ctx->nr_active) { | ||
| 1035 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1036 | if (counter != counter->group_leader) | ||
| 1037 | counter_sched_out(counter, cpuctx, ctx); | ||
| 1038 | else | ||
| 1039 | group_sched_out(counter, cpuctx, ctx); | ||
| 1040 | } | ||
| 1041 | } | ||
| 1042 | perf_enable(); | ||
| 1043 | out: | ||
| 1044 | spin_unlock(&ctx->lock); | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | /* | ||
| 1048 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1049 | * have both been cloned from the same version of the same context | ||
| 1050 | * and they both have the same number of enabled counters. | ||
| 1051 | * If the number of enabled counters is the same, then the set | ||
| 1052 | * of enabled counters should be the same, because these are both | ||
| 1053 | * inherited contexts, therefore we can't access individual counters | ||
| 1054 | * in them directly with an fd; we can only enable/disable all | ||
| 1055 | * counters via prctl, or enable/disable all counters in a family | ||
| 1056 | * via ioctl, which will have the same effect on both contexts. | ||
| 1057 | */ | ||
| 1058 | static int context_equiv(struct perf_counter_context *ctx1, | ||
| 1059 | struct perf_counter_context *ctx2) | ||
| 1060 | { | ||
| 1061 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1062 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1063 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | static void __perf_counter_read(void *counter); | ||
| 1067 | |||
| 1068 | static void __perf_counter_sync_stat(struct perf_counter *counter, | ||
| 1069 | struct perf_counter *next_counter) | ||
| 1070 | { | ||
| 1071 | u64 value; | ||
| 1072 | |||
| 1073 | if (!counter->attr.inherit_stat) | ||
| 1074 | return; | ||
| 1075 | |||
| 1076 | /* | ||
| 1077 | * Update the counter value, we cannot use perf_counter_read() | ||
| 1078 | * because we're in the middle of a context switch and have IRQs | ||
| 1079 | * disabled, which upsets smp_call_function_single(), however | ||
| 1080 | * we know the counter must be on the current CPU, therefore we | ||
| 1081 | * don't need to use it. | ||
| 1082 | */ | ||
| 1083 | switch (counter->state) { | ||
| 1084 | case PERF_COUNTER_STATE_ACTIVE: | ||
| 1085 | __perf_counter_read(counter); | ||
| 1086 | break; | ||
| 1087 | |||
| 1088 | case PERF_COUNTER_STATE_INACTIVE: | ||
| 1089 | update_counter_times(counter); | ||
| 1090 | break; | ||
| 1091 | |||
| 1092 | default: | ||
| 1093 | break; | ||
| 1094 | } | ||
| 1095 | |||
| 1096 | /* | ||
| 1097 | * In order to keep per-task stats reliable we need to flip the counter | ||
| 1098 | * values when we flip the contexts. | ||
| 1099 | */ | ||
| 1100 | value = atomic64_read(&next_counter->count); | ||
| 1101 | value = atomic64_xchg(&counter->count, value); | ||
| 1102 | atomic64_set(&next_counter->count, value); | ||
| 1103 | |||
| 1104 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | ||
| 1105 | swap(counter->total_time_running, next_counter->total_time_running); | ||
| 1106 | |||
| 1107 | /* | ||
| 1108 | * Since we swizzled the values, update the user visible data too. | ||
| 1109 | */ | ||
| 1110 | perf_counter_update_userpage(counter); | ||
| 1111 | perf_counter_update_userpage(next_counter); | ||
| 1112 | } | ||
| 1113 | |||
| 1114 | #define list_next_entry(pos, member) \ | ||
| 1115 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1116 | |||
| 1117 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | ||
| 1118 | struct perf_counter_context *next_ctx) | ||
| 1119 | { | ||
| 1120 | struct perf_counter *counter, *next_counter; | ||
| 1121 | |||
| 1122 | if (!ctx->nr_stat) | ||
| 1123 | return; | ||
| 1124 | |||
| 1125 | counter = list_first_entry(&ctx->event_list, | ||
| 1126 | struct perf_counter, event_entry); | ||
| 1127 | |||
| 1128 | next_counter = list_first_entry(&next_ctx->event_list, | ||
| 1129 | struct perf_counter, event_entry); | ||
| 1130 | |||
| 1131 | while (&counter->event_entry != &ctx->event_list && | ||
| 1132 | &next_counter->event_entry != &next_ctx->event_list) { | ||
| 1133 | |||
| 1134 | __perf_counter_sync_stat(counter, next_counter); | ||
| 1135 | |||
| 1136 | counter = list_next_entry(counter, event_entry); | ||
| 1137 | next_counter = list_next_entry(next_counter, event_entry); | ||
| 1138 | } | ||
| 1139 | } | ||
| 1140 | |||
| 1141 | /* | ||
| 1142 | * Called from scheduler to remove the counters of the current task, | ||
| 1143 | * with interrupts disabled. | ||
| 1144 | * | ||
| 1145 | * We stop each counter and update the counter value in counter->count. | ||
| 1146 | * | ||
| 1147 | * This does not protect us against NMI, but disable() | ||
| 1148 | * sets the disabled bit in the control field of counter _before_ | ||
| 1149 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1150 | * not restart the counter. | ||
| 1151 | */ | ||
| 1152 | void perf_counter_task_sched_out(struct task_struct *task, | ||
| 1153 | struct task_struct *next, int cpu) | ||
| 1154 | { | ||
| 1155 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1156 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1157 | struct perf_counter_context *next_ctx; | ||
| 1158 | struct perf_counter_context *parent; | ||
| 1159 | struct pt_regs *regs; | ||
| 1160 | int do_switch = 1; | ||
| 1161 | |||
| 1162 | regs = task_pt_regs(task); | ||
| 1163 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1164 | |||
| 1165 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1166 | return; | ||
| 1167 | |||
| 1168 | update_context_time(ctx); | ||
| 1169 | |||
| 1170 | rcu_read_lock(); | ||
| 1171 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1172 | next_ctx = next->perf_counter_ctxp; | ||
| 1173 | if (parent && next_ctx && | ||
| 1174 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1175 | /* | ||
| 1176 | * Looks like the two contexts are clones, so we might be | ||
| 1177 | * able to optimize the context switch. We lock both | ||
| 1178 | * contexts and check that they are clones under the | ||
| 1179 | * lock (including re-checking that neither has been | ||
| 1180 | * uncloned in the meantime). It doesn't matter which | ||
| 1181 | * order we take the locks because no other cpu could | ||
| 1182 | * be trying to lock both of these tasks. | ||
| 1183 | */ | ||
| 1184 | spin_lock(&ctx->lock); | ||
| 1185 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1186 | if (context_equiv(ctx, next_ctx)) { | ||
| 1187 | /* | ||
| 1188 | * XXX do we need a memory barrier of sorts | ||
| 1189 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
| 1190 | */ | ||
| 1191 | task->perf_counter_ctxp = next_ctx; | ||
| 1192 | next->perf_counter_ctxp = ctx; | ||
| 1193 | ctx->task = next; | ||
| 1194 | next_ctx->task = task; | ||
| 1195 | do_switch = 0; | ||
| 1196 | |||
| 1197 | perf_counter_sync_stat(ctx, next_ctx); | ||
| 1198 | } | ||
| 1199 | spin_unlock(&next_ctx->lock); | ||
| 1200 | spin_unlock(&ctx->lock); | ||
| 1201 | } | ||
| 1202 | rcu_read_unlock(); | ||
| 1203 | |||
| 1204 | if (do_switch) { | ||
| 1205 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1206 | cpuctx->task_ctx = NULL; | ||
| 1207 | } | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | /* | ||
| 1211 | * Called with IRQs disabled | ||
| 1212 | */ | ||
| 1213 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
| 1214 | { | ||
| 1215 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1216 | |||
| 1217 | if (!cpuctx->task_ctx) | ||
| 1218 | return; | ||
| 1219 | |||
| 1220 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1221 | return; | ||
| 1222 | |||
| 1223 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1224 | cpuctx->task_ctx = NULL; | ||
| 1225 | } | ||
| 1226 | |||
| 1227 | /* | ||
| 1228 | * Called with IRQs disabled | ||
| 1229 | */ | ||
| 1230 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1231 | { | ||
| 1232 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | static void | ||
| 1236 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
| 1237 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1238 | { | ||
| 1239 | struct perf_counter *counter; | ||
| 1240 | int can_add_hw = 1; | ||
| 1241 | |||
| 1242 | spin_lock(&ctx->lock); | ||
| 1243 | ctx->is_active = 1; | ||
| 1244 | if (likely(!ctx->nr_counters)) | ||
| 1245 | goto out; | ||
| 1246 | |||
| 1247 | ctx->timestamp = perf_clock(); | ||
| 1248 | |||
| 1249 | perf_disable(); | ||
| 1250 | |||
| 1251 | /* | ||
| 1252 | * First go through the list and put on any pinned groups | ||
| 1253 | * in order to give them the best chance of going on. | ||
| 1254 | */ | ||
| 1255 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1256 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1257 | !counter->attr.pinned) | ||
| 1258 | continue; | ||
| 1259 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1260 | continue; | ||
| 1261 | |||
| 1262 | if (counter != counter->group_leader) | ||
| 1263 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1264 | else { | ||
| 1265 | if (group_can_go_on(counter, cpuctx, 1)) | ||
| 1266 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1267 | } | ||
| 1268 | |||
| 1269 | /* | ||
| 1270 | * If this pinned group hasn't been scheduled, | ||
| 1271 | * put it in error state. | ||
| 1272 | */ | ||
| 1273 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1274 | update_group_times(counter); | ||
| 1275 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
| 1276 | } | ||
| 1277 | } | ||
| 1278 | |||
| 1279 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1280 | /* | ||
| 1281 | * Ignore counters in OFF or ERROR state, and | ||
| 1282 | * ignore pinned counters since we did them already. | ||
| 1283 | */ | ||
| 1284 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1285 | counter->attr.pinned) | ||
| 1286 | continue; | ||
| 1287 | |||
| 1288 | /* | ||
| 1289 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1290 | * of counters: | ||
| 1291 | */ | ||
| 1292 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1293 | continue; | ||
| 1294 | |||
| 1295 | if (counter != counter->group_leader) { | ||
| 1296 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1297 | can_add_hw = 0; | ||
| 1298 | } else { | ||
| 1299 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
| 1300 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1301 | can_add_hw = 0; | ||
| 1302 | } | ||
| 1303 | } | ||
| 1304 | } | ||
| 1305 | perf_enable(); | ||
| 1306 | out: | ||
| 1307 | spin_unlock(&ctx->lock); | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | /* | ||
| 1311 | * Called from scheduler to add the counters of the current task | ||
| 1312 | * with interrupts disabled. | ||
| 1313 | * | ||
| 1314 | * We restore the counter value and then enable it. | ||
| 1315 | * | ||
| 1316 | * This does not protect us against NMI, but enable() | ||
| 1317 | * sets the enabled bit in the control field of counter _before_ | ||
| 1318 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1319 | * keep the counter running. | ||
| 1320 | */ | ||
| 1321 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
| 1322 | { | ||
| 1323 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1324 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1325 | |||
| 1326 | if (likely(!ctx)) | ||
| 1327 | return; | ||
| 1328 | if (cpuctx->task_ctx == ctx) | ||
| 1329 | return; | ||
| 1330 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1331 | cpuctx->task_ctx = ctx; | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1335 | { | ||
| 1336 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 1337 | |||
| 1338 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1339 | } | ||
| 1340 | |||
| 1341 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1342 | |||
| 1343 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
| 1344 | |||
| 1345 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
| 1346 | { | ||
| 1347 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 1348 | u64 period, sample_period; | ||
| 1349 | s64 delta; | ||
| 1350 | |||
| 1351 | events *= hwc->sample_period; | ||
| 1352 | period = div64_u64(events, counter->attr.sample_freq); | ||
| 1353 | |||
| 1354 | delta = (s64)(period - hwc->sample_period); | ||
| 1355 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1356 | |||
| 1357 | sample_period = hwc->sample_period + delta; | ||
| 1358 | |||
| 1359 | if (!sample_period) | ||
| 1360 | sample_period = 1; | ||
| 1361 | |||
| 1362 | hwc->sample_period = sample_period; | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
| 1366 | { | ||
| 1367 | struct perf_counter *counter; | ||
| 1368 | struct hw_perf_counter *hwc; | ||
| 1369 | u64 interrupts, freq; | ||
| 1370 | |||
| 1371 | spin_lock(&ctx->lock); | ||
| 1372 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1373 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 1374 | continue; | ||
| 1375 | |||
| 1376 | hwc = &counter->hw; | ||
| 1377 | |||
| 1378 | interrupts = hwc->interrupts; | ||
| 1379 | hwc->interrupts = 0; | ||
| 1380 | |||
| 1381 | /* | ||
| 1382 | * unthrottle counters on the tick | ||
| 1383 | */ | ||
| 1384 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1385 | perf_log_throttle(counter, 1); | ||
| 1386 | counter->pmu->unthrottle(counter); | ||
| 1387 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
| 1388 | } | ||
| 1389 | |||
| 1390 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
| 1391 | continue; | ||
| 1392 | |||
| 1393 | /* | ||
| 1394 | * if the specified freq < HZ then we need to skip ticks | ||
| 1395 | */ | ||
| 1396 | if (counter->attr.sample_freq < HZ) { | ||
| 1397 | freq = counter->attr.sample_freq; | ||
| 1398 | |||
| 1399 | hwc->freq_count += freq; | ||
| 1400 | hwc->freq_interrupts += interrupts; | ||
| 1401 | |||
| 1402 | if (hwc->freq_count < HZ) | ||
| 1403 | continue; | ||
| 1404 | |||
| 1405 | interrupts = hwc->freq_interrupts; | ||
| 1406 | hwc->freq_interrupts = 0; | ||
| 1407 | hwc->freq_count -= HZ; | ||
| 1408 | } else | ||
| 1409 | freq = HZ; | ||
| 1410 | |||
| 1411 | perf_adjust_period(counter, freq * interrupts); | ||
| 1412 | |||
| 1413 | /* | ||
| 1414 | * In order to avoid being stalled by an (accidental) huge | ||
| 1415 | * sample period, force reset the sample period if we didn't | ||
| 1416 | * get any events in this freq period. | ||
| 1417 | */ | ||
| 1418 | if (!interrupts) { | ||
| 1419 | perf_disable(); | ||
| 1420 | counter->pmu->disable(counter); | ||
| 1421 | atomic64_set(&hwc->period_left, 0); | ||
| 1422 | counter->pmu->enable(counter); | ||
| 1423 | perf_enable(); | ||
| 1424 | } | ||
| 1425 | } | ||
| 1426 | spin_unlock(&ctx->lock); | ||
| 1427 | } | ||
| 1428 | |||
| 1429 | /* | ||
| 1430 | * Round-robin a context's counters: | ||
| 1431 | */ | ||
| 1432 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
| 1433 | { | ||
| 1434 | struct perf_counter *counter; | ||
| 1435 | |||
| 1436 | if (!ctx->nr_counters) | ||
| 1437 | return; | ||
| 1438 | |||
| 1439 | spin_lock(&ctx->lock); | ||
| 1440 | /* | ||
| 1441 | * Rotate the first entry last (works just fine for group counters too): | ||
| 1442 | */ | ||
| 1443 | perf_disable(); | ||
| 1444 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1445 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
| 1446 | break; | ||
| 1447 | } | ||
| 1448 | perf_enable(); | ||
| 1449 | |||
| 1450 | spin_unlock(&ctx->lock); | ||
| 1451 | } | ||
| 1452 | |||
| 1453 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
| 1454 | { | ||
| 1455 | struct perf_cpu_context *cpuctx; | ||
| 1456 | struct perf_counter_context *ctx; | ||
| 1457 | |||
| 1458 | if (!atomic_read(&nr_counters)) | ||
| 1459 | return; | ||
| 1460 | |||
| 1461 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1462 | ctx = curr->perf_counter_ctxp; | ||
| 1463 | |||
| 1464 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1465 | if (ctx) | ||
| 1466 | perf_ctx_adjust_freq(ctx); | ||
| 1467 | |||
| 1468 | perf_counter_cpu_sched_out(cpuctx); | ||
| 1469 | if (ctx) | ||
| 1470 | __perf_counter_task_sched_out(ctx); | ||
| 1471 | |||
| 1472 | rotate_ctx(&cpuctx->ctx); | ||
| 1473 | if (ctx) | ||
| 1474 | rotate_ctx(ctx); | ||
| 1475 | |||
| 1476 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
| 1477 | if (ctx) | ||
| 1478 | perf_counter_task_sched_in(curr, cpu); | ||
| 1479 | } | ||
| 1480 | |||
| 1481 | /* | ||
| 1482 | * Enable all of a task's counters that have been marked enable-on-exec. | ||
| 1483 | * This expects task == current. | ||
| 1484 | */ | ||
| 1485 | static void perf_counter_enable_on_exec(struct task_struct *task) | ||
| 1486 | { | ||
| 1487 | struct perf_counter_context *ctx; | ||
| 1488 | struct perf_counter *counter; | ||
| 1489 | unsigned long flags; | ||
| 1490 | int enabled = 0; | ||
| 1491 | |||
| 1492 | local_irq_save(flags); | ||
| 1493 | ctx = task->perf_counter_ctxp; | ||
| 1494 | if (!ctx || !ctx->nr_counters) | ||
| 1495 | goto out; | ||
| 1496 | |||
| 1497 | __perf_counter_task_sched_out(ctx); | ||
| 1498 | |||
| 1499 | spin_lock(&ctx->lock); | ||
| 1500 | |||
| 1501 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1502 | if (!counter->attr.enable_on_exec) | ||
| 1503 | continue; | ||
| 1504 | counter->attr.enable_on_exec = 0; | ||
| 1505 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 1506 | continue; | ||
| 1507 | __perf_counter_mark_enabled(counter, ctx); | ||
| 1508 | enabled = 1; | ||
| 1509 | } | ||
| 1510 | |||
| 1511 | /* | ||
| 1512 | * Unclone this context if we enabled any counter. | ||
| 1513 | */ | ||
| 1514 | if (enabled) | ||
| 1515 | unclone_ctx(ctx); | ||
| 1516 | |||
| 1517 | spin_unlock(&ctx->lock); | ||
| 1518 | |||
| 1519 | perf_counter_task_sched_in(task, smp_processor_id()); | ||
| 1520 | out: | ||
| 1521 | local_irq_restore(flags); | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | /* | ||
| 1525 | * Cross CPU call to read the hardware counter | ||
| 1526 | */ | ||
| 1527 | static void __perf_counter_read(void *info) | ||
| 1528 | { | ||
| 1529 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1530 | struct perf_counter *counter = info; | ||
| 1531 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1532 | unsigned long flags; | ||
| 1533 | |||
| 1534 | /* | ||
| 1535 | * If this is a task context, we need to check whether it is | ||
| 1536 | * the current task context of this cpu. If not it has been | ||
| 1537 | * scheduled out before the smp call arrived. In that case | ||
| 1538 | * counter->count would have been updated to a recent sample | ||
| 1539 | * when the counter was scheduled out. | ||
| 1540 | */ | ||
| 1541 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1542 | return; | ||
| 1543 | |||
| 1544 | local_irq_save(flags); | ||
| 1545 | if (ctx->is_active) | ||
| 1546 | update_context_time(ctx); | ||
| 1547 | counter->pmu->read(counter); | ||
| 1548 | update_counter_times(counter); | ||
| 1549 | local_irq_restore(flags); | ||
| 1550 | } | ||
| 1551 | |||
| 1552 | static u64 perf_counter_read(struct perf_counter *counter) | ||
| 1553 | { | ||
| 1554 | /* | ||
| 1555 | * If counter is enabled and currently active on a CPU, update the | ||
| 1556 | * value in the counter structure: | ||
| 1557 | */ | ||
| 1558 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 1559 | smp_call_function_single(counter->oncpu, | ||
| 1560 | __perf_counter_read, counter, 1); | ||
| 1561 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1562 | update_counter_times(counter); | ||
| 1563 | } | ||
| 1564 | |||
| 1565 | return atomic64_read(&counter->count); | ||
| 1566 | } | ||
| 1567 | |||
| 1568 | /* | ||
| 1569 | * Initialize the perf_counter context in a task_struct: | ||
| 1570 | */ | ||
| 1571 | static void | ||
| 1572 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
| 1573 | struct task_struct *task) | ||
| 1574 | { | ||
| 1575 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1576 | spin_lock_init(&ctx->lock); | ||
| 1577 | mutex_init(&ctx->mutex); | ||
| 1578 | INIT_LIST_HEAD(&ctx->counter_list); | ||
| 1579 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1580 | atomic_set(&ctx->refcount, 1); | ||
| 1581 | ctx->task = task; | ||
| 1582 | } | ||
| 1583 | |||
| 1584 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
| 1585 | { | ||
| 1586 | struct perf_counter_context *ctx; | ||
| 1587 | struct perf_cpu_context *cpuctx; | ||
| 1588 | struct task_struct *task; | ||
| 1589 | unsigned long flags; | ||
| 1590 | int err; | ||
| 1591 | |||
| 1592 | /* | ||
| 1593 | * If cpu is not a wildcard then this is a percpu counter: | ||
| 1594 | */ | ||
| 1595 | if (cpu != -1) { | ||
| 1596 | /* Must be root to operate on a CPU counter: */ | ||
| 1597 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1598 | return ERR_PTR(-EACCES); | ||
| 1599 | |||
| 1600 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1601 | return ERR_PTR(-EINVAL); | ||
| 1602 | |||
| 1603 | /* | ||
| 1604 | * We could be clever and allow to attach a counter to an | ||
| 1605 | * offline CPU and activate it when the CPU comes up, but | ||
| 1606 | * that's for later. | ||
| 1607 | */ | ||
| 1608 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1609 | return ERR_PTR(-ENODEV); | ||
| 1610 | |||
| 1611 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1612 | ctx = &cpuctx->ctx; | ||
| 1613 | get_ctx(ctx); | ||
| 1614 | |||
| 1615 | return ctx; | ||
| 1616 | } | ||
| 1617 | |||
| 1618 | rcu_read_lock(); | ||
| 1619 | if (!pid) | ||
| 1620 | task = current; | ||
| 1621 | else | ||
| 1622 | task = find_task_by_vpid(pid); | ||
| 1623 | if (task) | ||
| 1624 | get_task_struct(task); | ||
| 1625 | rcu_read_unlock(); | ||
| 1626 | |||
| 1627 | if (!task) | ||
| 1628 | return ERR_PTR(-ESRCH); | ||
| 1629 | |||
| 1630 | /* | ||
| 1631 | * Can't attach counters to a dying task. | ||
| 1632 | */ | ||
| 1633 | err = -ESRCH; | ||
| 1634 | if (task->flags & PF_EXITING) | ||
| 1635 | goto errout; | ||
| 1636 | |||
| 1637 | /* Reuse ptrace permission checks for now. */ | ||
| 1638 | err = -EACCES; | ||
| 1639 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1640 | goto errout; | ||
| 1641 | |||
| 1642 | retry: | ||
| 1643 | ctx = perf_lock_task_context(task, &flags); | ||
| 1644 | if (ctx) { | ||
| 1645 | unclone_ctx(ctx); | ||
| 1646 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1647 | } | ||
| 1648 | |||
| 1649 | if (!ctx) { | ||
| 1650 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 1651 | err = -ENOMEM; | ||
| 1652 | if (!ctx) | ||
| 1653 | goto errout; | ||
| 1654 | __perf_counter_init_context(ctx, task); | ||
| 1655 | get_ctx(ctx); | ||
| 1656 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
| 1657 | /* | ||
| 1658 | * We raced with some other task; use | ||
| 1659 | * the context they set. | ||
| 1660 | */ | ||
| 1661 | kfree(ctx); | ||
| 1662 | goto retry; | ||
| 1663 | } | ||
| 1664 | get_task_struct(task); | ||
| 1665 | } | ||
| 1666 | |||
| 1667 | put_task_struct(task); | ||
| 1668 | return ctx; | ||
| 1669 | |||
| 1670 | errout: | ||
| 1671 | put_task_struct(task); | ||
| 1672 | return ERR_PTR(err); | ||
| 1673 | } | ||
| 1674 | |||
| 1675 | static void free_counter_rcu(struct rcu_head *head) | ||
| 1676 | { | ||
| 1677 | struct perf_counter *counter; | ||
| 1678 | |||
| 1679 | counter = container_of(head, struct perf_counter, rcu_head); | ||
| 1680 | if (counter->ns) | ||
| 1681 | put_pid_ns(counter->ns); | ||
| 1682 | kfree(counter); | ||
| 1683 | } | ||
| 1684 | |||
| 1685 | static void perf_pending_sync(struct perf_counter *counter); | ||
| 1686 | |||
| 1687 | static void free_counter(struct perf_counter *counter) | ||
| 1688 | { | ||
| 1689 | perf_pending_sync(counter); | ||
| 1690 | |||
| 1691 | if (!counter->parent) { | ||
| 1692 | atomic_dec(&nr_counters); | ||
| 1693 | if (counter->attr.mmap) | ||
| 1694 | atomic_dec(&nr_mmap_counters); | ||
| 1695 | if (counter->attr.comm) | ||
| 1696 | atomic_dec(&nr_comm_counters); | ||
| 1697 | if (counter->attr.task) | ||
| 1698 | atomic_dec(&nr_task_counters); | ||
| 1699 | } | ||
| 1700 | |||
| 1701 | if (counter->output) { | ||
| 1702 | fput(counter->output->filp); | ||
| 1703 | counter->output = NULL; | ||
| 1704 | } | ||
| 1705 | |||
| 1706 | if (counter->destroy) | ||
| 1707 | counter->destroy(counter); | ||
| 1708 | |||
| 1709 | put_ctx(counter->ctx); | ||
| 1710 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | /* | ||
| 1714 | * Called when the last reference to the file is gone. | ||
| 1715 | */ | ||
| 1716 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1717 | { | ||
| 1718 | struct perf_counter *counter = file->private_data; | ||
| 1719 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1720 | |||
| 1721 | file->private_data = NULL; | ||
| 1722 | |||
| 1723 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1724 | mutex_lock(&ctx->mutex); | ||
| 1725 | perf_counter_remove_from_context(counter); | ||
| 1726 | mutex_unlock(&ctx->mutex); | ||
| 1727 | |||
| 1728 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
| 1729 | list_del_init(&counter->owner_entry); | ||
| 1730 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
| 1731 | put_task_struct(counter->owner); | ||
| 1732 | |||
| 1733 | free_counter(counter); | ||
| 1734 | |||
| 1735 | return 0; | ||
| 1736 | } | ||
| 1737 | |||
| 1738 | static int perf_counter_read_size(struct perf_counter *counter) | ||
| 1739 | { | ||
| 1740 | int entry = sizeof(u64); /* value */ | ||
| 1741 | int size = 0; | ||
| 1742 | int nr = 1; | ||
| 1743 | |||
| 1744 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1745 | size += sizeof(u64); | ||
| 1746 | |||
| 1747 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1748 | size += sizeof(u64); | ||
| 1749 | |||
| 1750 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
| 1751 | entry += sizeof(u64); | ||
| 1752 | |||
| 1753 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1754 | nr += counter->group_leader->nr_siblings; | ||
| 1755 | size += sizeof(u64); | ||
| 1756 | } | ||
| 1757 | |||
| 1758 | size += entry * nr; | ||
| 1759 | |||
| 1760 | return size; | ||
| 1761 | } | ||
| 1762 | |||
| 1763 | static u64 perf_counter_read_value(struct perf_counter *counter) | ||
| 1764 | { | ||
| 1765 | struct perf_counter *child; | ||
| 1766 | u64 total = 0; | ||
| 1767 | |||
| 1768 | total += perf_counter_read(counter); | ||
| 1769 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1770 | total += perf_counter_read(child); | ||
| 1771 | |||
| 1772 | return total; | ||
| 1773 | } | ||
| 1774 | |||
| 1775 | static int perf_counter_read_entry(struct perf_counter *counter, | ||
| 1776 | u64 read_format, char __user *buf) | ||
| 1777 | { | ||
| 1778 | int n = 0, count = 0; | ||
| 1779 | u64 values[2]; | ||
| 1780 | |||
| 1781 | values[n++] = perf_counter_read_value(counter); | ||
| 1782 | if (read_format & PERF_FORMAT_ID) | ||
| 1783 | values[n++] = primary_counter_id(counter); | ||
| 1784 | |||
| 1785 | count = n * sizeof(u64); | ||
| 1786 | |||
| 1787 | if (copy_to_user(buf, values, count)) | ||
| 1788 | return -EFAULT; | ||
| 1789 | |||
| 1790 | return count; | ||
| 1791 | } | ||
| 1792 | |||
| 1793 | static int perf_counter_read_group(struct perf_counter *counter, | ||
| 1794 | u64 read_format, char __user *buf) | ||
| 1795 | { | ||
| 1796 | struct perf_counter *leader = counter->group_leader, *sub; | ||
| 1797 | int n = 0, size = 0, err = -EFAULT; | ||
| 1798 | u64 values[3]; | ||
| 1799 | |||
| 1800 | values[n++] = 1 + leader->nr_siblings; | ||
| 1801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1802 | values[n++] = leader->total_time_enabled + | ||
| 1803 | atomic64_read(&leader->child_total_time_enabled); | ||
| 1804 | } | ||
| 1805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1806 | values[n++] = leader->total_time_running + | ||
| 1807 | atomic64_read(&leader->child_total_time_running); | ||
| 1808 | } | ||
| 1809 | |||
| 1810 | size = n * sizeof(u64); | ||
| 1811 | |||
| 1812 | if (copy_to_user(buf, values, size)) | ||
| 1813 | return -EFAULT; | ||
| 1814 | |||
| 1815 | err = perf_counter_read_entry(leader, read_format, buf + size); | ||
| 1816 | if (err < 0) | ||
| 1817 | return err; | ||
| 1818 | |||
| 1819 | size += err; | ||
| 1820 | |||
| 1821 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 1822 | err = perf_counter_read_entry(sub, read_format, | ||
| 1823 | buf + size); | ||
| 1824 | if (err < 0) | ||
| 1825 | return err; | ||
| 1826 | |||
| 1827 | size += err; | ||
| 1828 | } | ||
| 1829 | |||
| 1830 | return size; | ||
| 1831 | } | ||
| 1832 | |||
| 1833 | static int perf_counter_read_one(struct perf_counter *counter, | ||
| 1834 | u64 read_format, char __user *buf) | ||
| 1835 | { | ||
| 1836 | u64 values[4]; | ||
| 1837 | int n = 0; | ||
| 1838 | |||
| 1839 | values[n++] = perf_counter_read_value(counter); | ||
| 1840 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1841 | values[n++] = counter->total_time_enabled + | ||
| 1842 | atomic64_read(&counter->child_total_time_enabled); | ||
| 1843 | } | ||
| 1844 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1845 | values[n++] = counter->total_time_running + | ||
| 1846 | atomic64_read(&counter->child_total_time_running); | ||
| 1847 | } | ||
| 1848 | if (read_format & PERF_FORMAT_ID) | ||
| 1849 | values[n++] = primary_counter_id(counter); | ||
| 1850 | |||
| 1851 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1852 | return -EFAULT; | ||
| 1853 | |||
| 1854 | return n * sizeof(u64); | ||
| 1855 | } | ||
| 1856 | |||
| 1857 | /* | ||
| 1858 | * Read the performance counter - simple non blocking version for now | ||
| 1859 | */ | ||
| 1860 | static ssize_t | ||
| 1861 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
| 1862 | { | ||
| 1863 | u64 read_format = counter->attr.read_format; | ||
| 1864 | int ret; | ||
| 1865 | |||
| 1866 | /* | ||
| 1867 | * Return end-of-file for a read on a counter that is in | ||
| 1868 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1869 | * scheduled on to the CPU at some point). | ||
| 1870 | */ | ||
| 1871 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 1872 | return 0; | ||
| 1873 | |||
| 1874 | if (count < perf_counter_read_size(counter)) | ||
| 1875 | return -ENOSPC; | ||
| 1876 | |||
| 1877 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1878 | mutex_lock(&counter->child_mutex); | ||
| 1879 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1880 | ret = perf_counter_read_group(counter, read_format, buf); | ||
| 1881 | else | ||
| 1882 | ret = perf_counter_read_one(counter, read_format, buf); | ||
| 1883 | mutex_unlock(&counter->child_mutex); | ||
| 1884 | |||
| 1885 | return ret; | ||
| 1886 | } | ||
| 1887 | |||
| 1888 | static ssize_t | ||
| 1889 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1890 | { | ||
| 1891 | struct perf_counter *counter = file->private_data; | ||
| 1892 | |||
| 1893 | return perf_read_hw(counter, buf, count); | ||
| 1894 | } | ||
| 1895 | |||
| 1896 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1897 | { | ||
| 1898 | struct perf_counter *counter = file->private_data; | ||
| 1899 | struct perf_mmap_data *data; | ||
| 1900 | unsigned int events = POLL_HUP; | ||
| 1901 | |||
| 1902 | rcu_read_lock(); | ||
| 1903 | data = rcu_dereference(counter->data); | ||
| 1904 | if (data) | ||
| 1905 | events = atomic_xchg(&data->poll, 0); | ||
| 1906 | rcu_read_unlock(); | ||
| 1907 | |||
| 1908 | poll_wait(file, &counter->waitq, wait); | ||
| 1909 | |||
| 1910 | return events; | ||
| 1911 | } | ||
| 1912 | |||
| 1913 | static void perf_counter_reset(struct perf_counter *counter) | ||
| 1914 | { | ||
| 1915 | (void)perf_counter_read(counter); | ||
| 1916 | atomic64_set(&counter->count, 0); | ||
| 1917 | perf_counter_update_userpage(counter); | ||
| 1918 | } | ||
| 1919 | |||
| 1920 | /* | ||
| 1921 | * Holding the top-level counter's child_mutex means that any | ||
| 1922 | * descendant process that has inherited this counter will block | ||
| 1923 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
| 1924 | * task existence requirements of perf_counter_enable/disable. | ||
| 1925 | */ | ||
| 1926 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
| 1927 | void (*func)(struct perf_counter *)) | ||
| 1928 | { | ||
| 1929 | struct perf_counter *child; | ||
| 1930 | |||
| 1931 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1932 | mutex_lock(&counter->child_mutex); | ||
| 1933 | func(counter); | ||
| 1934 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1935 | func(child); | ||
| 1936 | mutex_unlock(&counter->child_mutex); | ||
| 1937 | } | ||
| 1938 | |||
| 1939 | static void perf_counter_for_each(struct perf_counter *counter, | ||
| 1940 | void (*func)(struct perf_counter *)) | ||
| 1941 | { | ||
| 1942 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1943 | struct perf_counter *sibling; | ||
| 1944 | |||
| 1945 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1946 | mutex_lock(&ctx->mutex); | ||
| 1947 | counter = counter->group_leader; | ||
| 1948 | |||
| 1949 | perf_counter_for_each_child(counter, func); | ||
| 1950 | func(counter); | ||
| 1951 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
| 1952 | perf_counter_for_each_child(counter, func); | ||
| 1953 | mutex_unlock(&ctx->mutex); | ||
| 1954 | } | ||
| 1955 | |||
| 1956 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
| 1957 | { | ||
| 1958 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1959 | unsigned long size; | ||
| 1960 | int ret = 0; | ||
| 1961 | u64 value; | ||
| 1962 | |||
| 1963 | if (!counter->attr.sample_period) | ||
| 1964 | return -EINVAL; | ||
| 1965 | |||
| 1966 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1967 | if (size != sizeof(value)) | ||
| 1968 | return -EFAULT; | ||
| 1969 | |||
| 1970 | if (!value) | ||
| 1971 | return -EINVAL; | ||
| 1972 | |||
| 1973 | spin_lock_irq(&ctx->lock); | ||
| 1974 | if (counter->attr.freq) { | ||
| 1975 | if (value > sysctl_perf_counter_sample_rate) { | ||
| 1976 | ret = -EINVAL; | ||
| 1977 | goto unlock; | ||
| 1978 | } | ||
| 1979 | |||
| 1980 | counter->attr.sample_freq = value; | ||
| 1981 | } else { | ||
| 1982 | counter->attr.sample_period = value; | ||
| 1983 | counter->hw.sample_period = value; | ||
| 1984 | } | ||
| 1985 | unlock: | ||
| 1986 | spin_unlock_irq(&ctx->lock); | ||
| 1987 | |||
| 1988 | return ret; | ||
| 1989 | } | ||
| 1990 | |||
| 1991 | int perf_counter_set_output(struct perf_counter *counter, int output_fd); | ||
| 1992 | |||
| 1993 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1994 | { | ||
| 1995 | struct perf_counter *counter = file->private_data; | ||
| 1996 | void (*func)(struct perf_counter *); | ||
| 1997 | u32 flags = arg; | ||
| 1998 | |||
| 1999 | switch (cmd) { | ||
| 2000 | case PERF_COUNTER_IOC_ENABLE: | ||
| 2001 | func = perf_counter_enable; | ||
| 2002 | break; | ||
| 2003 | case PERF_COUNTER_IOC_DISABLE: | ||
| 2004 | func = perf_counter_disable; | ||
| 2005 | break; | ||
| 2006 | case PERF_COUNTER_IOC_RESET: | ||
| 2007 | func = perf_counter_reset; | ||
| 2008 | break; | ||
| 2009 | |||
| 2010 | case PERF_COUNTER_IOC_REFRESH: | ||
| 2011 | return perf_counter_refresh(counter, arg); | ||
| 2012 | |||
| 2013 | case PERF_COUNTER_IOC_PERIOD: | ||
| 2014 | return perf_counter_period(counter, (u64 __user *)arg); | ||
| 2015 | |||
| 2016 | case PERF_COUNTER_IOC_SET_OUTPUT: | ||
| 2017 | return perf_counter_set_output(counter, arg); | ||
| 2018 | |||
| 2019 | default: | ||
| 2020 | return -ENOTTY; | ||
| 2021 | } | ||
| 2022 | |||
| 2023 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2024 | perf_counter_for_each(counter, func); | ||
| 2025 | else | ||
| 2026 | perf_counter_for_each_child(counter, func); | ||
| 2027 | |||
| 2028 | return 0; | ||
| 2029 | } | ||
| 2030 | |||
| 2031 | int perf_counter_task_enable(void) | ||
| 2032 | { | ||
| 2033 | struct perf_counter *counter; | ||
| 2034 | |||
| 2035 | mutex_lock(¤t->perf_counter_mutex); | ||
| 2036 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 2037 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
| 2038 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 2039 | |||
| 2040 | return 0; | ||
| 2041 | } | ||
| 2042 | |||
| 2043 | int perf_counter_task_disable(void) | ||
| 2044 | { | ||
| 2045 | struct perf_counter *counter; | ||
| 2046 | |||
| 2047 | mutex_lock(¤t->perf_counter_mutex); | ||
| 2048 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 2049 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
| 2050 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 2051 | |||
| 2052 | return 0; | ||
| 2053 | } | ||
| 2054 | |||
| 2055 | #ifndef PERF_COUNTER_INDEX_OFFSET | ||
| 2056 | # define PERF_COUNTER_INDEX_OFFSET 0 | ||
| 2057 | #endif | ||
| 2058 | |||
| 2059 | static int perf_counter_index(struct perf_counter *counter) | ||
| 2060 | { | ||
| 2061 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 2062 | return 0; | ||
| 2063 | |||
| 2064 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | ||
| 2065 | } | ||
| 2066 | |||
| 2067 | /* | ||
| 2068 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2069 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2070 | * code calls this from NMI context. | ||
| 2071 | */ | ||
| 2072 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
| 2073 | { | ||
| 2074 | struct perf_counter_mmap_page *userpg; | ||
| 2075 | struct perf_mmap_data *data; | ||
| 2076 | |||
| 2077 | rcu_read_lock(); | ||
| 2078 | data = rcu_dereference(counter->data); | ||
| 2079 | if (!data) | ||
| 2080 | goto unlock; | ||
| 2081 | |||
| 2082 | userpg = data->user_page; | ||
| 2083 | |||
| 2084 | /* | ||
| 2085 | * Disable preemption so as to not let the corresponding user-space | ||
| 2086 | * spin too long if we get preempted. | ||
| 2087 | */ | ||
| 2088 | preempt_disable(); | ||
| 2089 | ++userpg->lock; | ||
| 2090 | barrier(); | ||
| 2091 | userpg->index = perf_counter_index(counter); | ||
| 2092 | userpg->offset = atomic64_read(&counter->count); | ||
| 2093 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 2094 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
| 2095 | |||
| 2096 | userpg->time_enabled = counter->total_time_enabled + | ||
| 2097 | atomic64_read(&counter->child_total_time_enabled); | ||
| 2098 | |||
| 2099 | userpg->time_running = counter->total_time_running + | ||
| 2100 | atomic64_read(&counter->child_total_time_running); | ||
| 2101 | |||
| 2102 | barrier(); | ||
| 2103 | ++userpg->lock; | ||
| 2104 | preempt_enable(); | ||
| 2105 | unlock: | ||
| 2106 | rcu_read_unlock(); | ||
| 2107 | } | ||
| 2108 | |||
| 2109 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2110 | { | ||
| 2111 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2112 | struct perf_mmap_data *data; | ||
| 2113 | int ret = VM_FAULT_SIGBUS; | ||
| 2114 | |||
| 2115 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2116 | if (vmf->pgoff == 0) | ||
| 2117 | ret = 0; | ||
| 2118 | return ret; | ||
| 2119 | } | ||
| 2120 | |||
| 2121 | rcu_read_lock(); | ||
| 2122 | data = rcu_dereference(counter->data); | ||
| 2123 | if (!data) | ||
| 2124 | goto unlock; | ||
| 2125 | |||
| 2126 | if (vmf->pgoff == 0) { | ||
| 2127 | vmf->page = virt_to_page(data->user_page); | ||
| 2128 | } else { | ||
| 2129 | int nr = vmf->pgoff - 1; | ||
| 2130 | |||
| 2131 | if ((unsigned)nr > data->nr_pages) | ||
| 2132 | goto unlock; | ||
| 2133 | |||
| 2134 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 2135 | goto unlock; | ||
| 2136 | |||
| 2137 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 2138 | } | ||
| 2139 | |||
| 2140 | get_page(vmf->page); | ||
| 2141 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2142 | vmf->page->index = vmf->pgoff; | ||
| 2143 | |||
| 2144 | ret = 0; | ||
| 2145 | unlock: | ||
| 2146 | rcu_read_unlock(); | ||
| 2147 | |||
| 2148 | return ret; | ||
| 2149 | } | ||
| 2150 | |||
| 2151 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
| 2152 | { | ||
| 2153 | struct perf_mmap_data *data; | ||
| 2154 | unsigned long size; | ||
| 2155 | int i; | ||
| 2156 | |||
| 2157 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 2158 | |||
| 2159 | size = sizeof(struct perf_mmap_data); | ||
| 2160 | size += nr_pages * sizeof(void *); | ||
| 2161 | |||
| 2162 | data = kzalloc(size, GFP_KERNEL); | ||
| 2163 | if (!data) | ||
| 2164 | goto fail; | ||
| 2165 | |||
| 2166 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2167 | if (!data->user_page) | ||
| 2168 | goto fail_user_page; | ||
| 2169 | |||
| 2170 | for (i = 0; i < nr_pages; i++) { | ||
| 2171 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2172 | if (!data->data_pages[i]) | ||
| 2173 | goto fail_data_pages; | ||
| 2174 | } | ||
| 2175 | |||
| 2176 | data->nr_pages = nr_pages; | ||
| 2177 | atomic_set(&data->lock, -1); | ||
| 2178 | |||
| 2179 | rcu_assign_pointer(counter->data, data); | ||
| 2180 | |||
| 2181 | return 0; | ||
| 2182 | |||
| 2183 | fail_data_pages: | ||
| 2184 | for (i--; i >= 0; i--) | ||
| 2185 | free_page((unsigned long)data->data_pages[i]); | ||
| 2186 | |||
| 2187 | free_page((unsigned long)data->user_page); | ||
| 2188 | |||
| 2189 | fail_user_page: | ||
| 2190 | kfree(data); | ||
| 2191 | |||
| 2192 | fail: | ||
| 2193 | return -ENOMEM; | ||
| 2194 | } | ||
| 2195 | |||
| 2196 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2197 | { | ||
| 2198 | struct page *page = virt_to_page((void *)addr); | ||
| 2199 | |||
| 2200 | page->mapping = NULL; | ||
| 2201 | __free_page(page); | ||
| 2202 | } | ||
| 2203 | |||
| 2204 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 2205 | { | ||
| 2206 | struct perf_mmap_data *data; | ||
| 2207 | int i; | ||
| 2208 | |||
| 2209 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2210 | |||
| 2211 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2212 | for (i = 0; i < data->nr_pages; i++) | ||
| 2213 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2214 | |||
| 2215 | kfree(data); | ||
| 2216 | } | ||
| 2217 | |||
| 2218 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
| 2219 | { | ||
| 2220 | struct perf_mmap_data *data = counter->data; | ||
| 2221 | |||
| 2222 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 2223 | |||
| 2224 | rcu_assign_pointer(counter->data, NULL); | ||
| 2225 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 2226 | } | ||
| 2227 | |||
| 2228 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2229 | { | ||
| 2230 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2231 | |||
| 2232 | atomic_inc(&counter->mmap_count); | ||
| 2233 | } | ||
| 2234 | |||
| 2235 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2236 | { | ||
| 2237 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2238 | |||
| 2239 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 2240 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
| 2241 | struct user_struct *user = current_user(); | ||
| 2242 | |||
| 2243 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
| 2244 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
| 2245 | perf_mmap_data_free(counter); | ||
| 2246 | mutex_unlock(&counter->mmap_mutex); | ||
| 2247 | } | ||
| 2248 | } | ||
| 2249 | |||
| 2250 | static struct vm_operations_struct perf_mmap_vmops = { | ||
| 2251 | .open = perf_mmap_open, | ||
| 2252 | .close = perf_mmap_close, | ||
| 2253 | .fault = perf_mmap_fault, | ||
| 2254 | .page_mkwrite = perf_mmap_fault, | ||
| 2255 | }; | ||
| 2256 | |||
| 2257 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2258 | { | ||
| 2259 | struct perf_counter *counter = file->private_data; | ||
| 2260 | unsigned long user_locked, user_lock_limit; | ||
| 2261 | struct user_struct *user = current_user(); | ||
| 2262 | unsigned long locked, lock_limit; | ||
| 2263 | unsigned long vma_size; | ||
| 2264 | unsigned long nr_pages; | ||
| 2265 | long user_extra, extra; | ||
| 2266 | int ret = 0; | ||
| 2267 | |||
| 2268 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2269 | return -EINVAL; | ||
| 2270 | |||
| 2271 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2272 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2273 | |||
| 2274 | /* | ||
| 2275 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2276 | * can do bitmasks instead of modulo. | ||
| 2277 | */ | ||
| 2278 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2279 | return -EINVAL; | ||
| 2280 | |||
| 2281 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2282 | return -EINVAL; | ||
| 2283 | |||
| 2284 | if (vma->vm_pgoff != 0) | ||
| 2285 | return -EINVAL; | ||
| 2286 | |||
| 2287 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 2288 | mutex_lock(&counter->mmap_mutex); | ||
| 2289 | if (counter->output) { | ||
| 2290 | ret = -EINVAL; | ||
| 2291 | goto unlock; | ||
| 2292 | } | ||
| 2293 | |||
| 2294 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
| 2295 | if (nr_pages != counter->data->nr_pages) | ||
| 2296 | ret = -EINVAL; | ||
| 2297 | goto unlock; | ||
| 2298 | } | ||
| 2299 | |||
| 2300 | user_extra = nr_pages + 1; | ||
| 2301 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
| 2302 | |||
| 2303 | /* | ||
| 2304 | * Increase the limit linearly with more CPUs: | ||
| 2305 | */ | ||
| 2306 | user_lock_limit *= num_online_cpus(); | ||
| 2307 | |||
| 2308 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2309 | |||
| 2310 | extra = 0; | ||
| 2311 | if (user_locked > user_lock_limit) | ||
| 2312 | extra = user_locked - user_lock_limit; | ||
| 2313 | |||
| 2314 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2315 | lock_limit >>= PAGE_SHIFT; | ||
| 2316 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2317 | |||
| 2318 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
| 2319 | ret = -EPERM; | ||
| 2320 | goto unlock; | ||
| 2321 | } | ||
| 2322 | |||
| 2323 | WARN_ON(counter->data); | ||
| 2324 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
| 2325 | if (ret) | ||
| 2326 | goto unlock; | ||
| 2327 | |||
| 2328 | atomic_set(&counter->mmap_count, 1); | ||
| 2329 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2330 | vma->vm_mm->locked_vm += extra; | ||
| 2331 | counter->data->nr_locked = extra; | ||
| 2332 | if (vma->vm_flags & VM_WRITE) | ||
| 2333 | counter->data->writable = 1; | ||
| 2334 | |||
| 2335 | unlock: | ||
| 2336 | mutex_unlock(&counter->mmap_mutex); | ||
| 2337 | |||
| 2338 | vma->vm_flags |= VM_RESERVED; | ||
| 2339 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2340 | |||
| 2341 | return ret; | ||
| 2342 | } | ||
| 2343 | |||
| 2344 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2345 | { | ||
| 2346 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2347 | struct perf_counter *counter = filp->private_data; | ||
| 2348 | int retval; | ||
| 2349 | |||
| 2350 | mutex_lock(&inode->i_mutex); | ||
| 2351 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
| 2352 | mutex_unlock(&inode->i_mutex); | ||
| 2353 | |||
| 2354 | if (retval < 0) | ||
| 2355 | return retval; | ||
| 2356 | |||
| 2357 | return 0; | ||
| 2358 | } | ||
| 2359 | |||
| 2360 | static const struct file_operations perf_fops = { | ||
| 2361 | .release = perf_release, | ||
| 2362 | .read = perf_read, | ||
| 2363 | .poll = perf_poll, | ||
| 2364 | .unlocked_ioctl = perf_ioctl, | ||
| 2365 | .compat_ioctl = perf_ioctl, | ||
| 2366 | .mmap = perf_mmap, | ||
| 2367 | .fasync = perf_fasync, | ||
| 2368 | }; | ||
| 2369 | |||
| 2370 | /* | ||
| 2371 | * Perf counter wakeup | ||
| 2372 | * | ||
| 2373 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2374 | * to user-space before waking everybody up. | ||
| 2375 | */ | ||
| 2376 | |||
| 2377 | void perf_counter_wakeup(struct perf_counter *counter) | ||
| 2378 | { | ||
| 2379 | wake_up_all(&counter->waitq); | ||
| 2380 | |||
| 2381 | if (counter->pending_kill) { | ||
| 2382 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
| 2383 | counter->pending_kill = 0; | ||
| 2384 | } | ||
| 2385 | } | ||
| 2386 | |||
| 2387 | /* | ||
| 2388 | * Pending wakeups | ||
| 2389 | * | ||
| 2390 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2391 | * | ||
| 2392 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2393 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2394 | */ | ||
| 2395 | |||
| 2396 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
| 2397 | { | ||
| 2398 | struct perf_counter *counter = container_of(entry, | ||
| 2399 | struct perf_counter, pending); | ||
| 2400 | |||
| 2401 | if (counter->pending_disable) { | ||
| 2402 | counter->pending_disable = 0; | ||
| 2403 | __perf_counter_disable(counter); | ||
| 2404 | } | ||
| 2405 | |||
| 2406 | if (counter->pending_wakeup) { | ||
| 2407 | counter->pending_wakeup = 0; | ||
| 2408 | perf_counter_wakeup(counter); | ||
| 2409 | } | ||
| 2410 | } | ||
| 2411 | |||
| 2412 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2413 | |||
| 2414 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2415 | PENDING_TAIL, | ||
| 2416 | }; | ||
| 2417 | |||
| 2418 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2419 | void (*func)(struct perf_pending_entry *)) | ||
| 2420 | { | ||
| 2421 | struct perf_pending_entry **head; | ||
| 2422 | |||
| 2423 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2424 | return; | ||
| 2425 | |||
| 2426 | entry->func = func; | ||
| 2427 | |||
| 2428 | head = &get_cpu_var(perf_pending_head); | ||
| 2429 | |||
| 2430 | do { | ||
| 2431 | entry->next = *head; | ||
| 2432 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2433 | |||
| 2434 | set_perf_counter_pending(); | ||
| 2435 | |||
| 2436 | put_cpu_var(perf_pending_head); | ||
| 2437 | } | ||
| 2438 | |||
| 2439 | static int __perf_pending_run(void) | ||
| 2440 | { | ||
| 2441 | struct perf_pending_entry *list; | ||
| 2442 | int nr = 0; | ||
| 2443 | |||
| 2444 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2445 | while (list != PENDING_TAIL) { | ||
| 2446 | void (*func)(struct perf_pending_entry *); | ||
| 2447 | struct perf_pending_entry *entry = list; | ||
| 2448 | |||
| 2449 | list = list->next; | ||
| 2450 | |||
| 2451 | func = entry->func; | ||
| 2452 | entry->next = NULL; | ||
| 2453 | /* | ||
| 2454 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2455 | * so that we won't be waiting forever. | ||
| 2456 | * -- see perf_not_pending(). | ||
| 2457 | */ | ||
| 2458 | smp_wmb(); | ||
| 2459 | |||
| 2460 | func(entry); | ||
| 2461 | nr++; | ||
| 2462 | } | ||
| 2463 | |||
| 2464 | return nr; | ||
| 2465 | } | ||
| 2466 | |||
| 2467 | static inline int perf_not_pending(struct perf_counter *counter) | ||
| 2468 | { | ||
| 2469 | /* | ||
| 2470 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2471 | * need to wait. | ||
| 2472 | */ | ||
| 2473 | get_cpu(); | ||
| 2474 | __perf_pending_run(); | ||
| 2475 | put_cpu(); | ||
| 2476 | |||
| 2477 | /* | ||
| 2478 | * Ensure we see the proper queue state before going to sleep | ||
| 2479 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2480 | */ | ||
| 2481 | smp_rmb(); | ||
| 2482 | return counter->pending.next == NULL; | ||
| 2483 | } | ||
| 2484 | |||
| 2485 | static void perf_pending_sync(struct perf_counter *counter) | ||
| 2486 | { | ||
| 2487 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
| 2488 | } | ||
| 2489 | |||
| 2490 | void perf_counter_do_pending(void) | ||
| 2491 | { | ||
| 2492 | __perf_pending_run(); | ||
| 2493 | } | ||
| 2494 | |||
| 2495 | /* | ||
| 2496 | * Callchain support -- arch specific | ||
| 2497 | */ | ||
| 2498 | |||
| 2499 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2500 | { | ||
| 2501 | return NULL; | ||
| 2502 | } | ||
| 2503 | |||
| 2504 | /* | ||
| 2505 | * Output | ||
| 2506 | */ | ||
| 2507 | |||
| 2508 | struct perf_output_handle { | ||
| 2509 | struct perf_counter *counter; | ||
| 2510 | struct perf_mmap_data *data; | ||
| 2511 | unsigned long head; | ||
| 2512 | unsigned long offset; | ||
| 2513 | int nmi; | ||
| 2514 | int sample; | ||
| 2515 | int locked; | ||
| 2516 | unsigned long flags; | ||
| 2517 | }; | ||
| 2518 | |||
| 2519 | static bool perf_output_space(struct perf_mmap_data *data, | ||
| 2520 | unsigned int offset, unsigned int head) | ||
| 2521 | { | ||
| 2522 | unsigned long tail; | ||
| 2523 | unsigned long mask; | ||
| 2524 | |||
| 2525 | if (!data->writable) | ||
| 2526 | return true; | ||
| 2527 | |||
| 2528 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2529 | /* | ||
| 2530 | * Userspace could choose to issue a mb() before updating the tail | ||
| 2531 | * pointer. So that all reads will be completed before the write is | ||
| 2532 | * issued. | ||
| 2533 | */ | ||
| 2534 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2535 | smp_rmb(); | ||
| 2536 | |||
| 2537 | offset = (offset - tail) & mask; | ||
| 2538 | head = (head - tail) & mask; | ||
| 2539 | |||
| 2540 | if ((int)(head - offset) < 0) | ||
| 2541 | return false; | ||
| 2542 | |||
| 2543 | return true; | ||
| 2544 | } | ||
| 2545 | |||
| 2546 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2547 | { | ||
| 2548 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2549 | |||
| 2550 | if (handle->nmi) { | ||
| 2551 | handle->counter->pending_wakeup = 1; | ||
| 2552 | perf_pending_queue(&handle->counter->pending, | ||
| 2553 | perf_pending_counter); | ||
| 2554 | } else | ||
| 2555 | perf_counter_wakeup(handle->counter); | ||
| 2556 | } | ||
| 2557 | |||
| 2558 | /* | ||
| 2559 | * Curious locking construct. | ||
| 2560 | * | ||
| 2561 | * We need to ensure a later event doesn't publish a head when a former | ||
| 2562 | * event isn't done writing. However since we need to deal with NMIs we | ||
| 2563 | * cannot fully serialize things. | ||
| 2564 | * | ||
| 2565 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2566 | * nesting on a single CPU. | ||
| 2567 | * | ||
| 2568 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2569 | * event completes. | ||
| 2570 | */ | ||
| 2571 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2572 | { | ||
| 2573 | struct perf_mmap_data *data = handle->data; | ||
| 2574 | int cpu; | ||
| 2575 | |||
| 2576 | handle->locked = 0; | ||
| 2577 | |||
| 2578 | local_irq_save(handle->flags); | ||
| 2579 | cpu = smp_processor_id(); | ||
| 2580 | |||
| 2581 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2582 | return; | ||
| 2583 | |||
| 2584 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2585 | cpu_relax(); | ||
| 2586 | |||
| 2587 | handle->locked = 1; | ||
| 2588 | } | ||
| 2589 | |||
| 2590 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2591 | { | ||
| 2592 | struct perf_mmap_data *data = handle->data; | ||
| 2593 | unsigned long head; | ||
| 2594 | int cpu; | ||
| 2595 | |||
| 2596 | data->done_head = data->head; | ||
| 2597 | |||
| 2598 | if (!handle->locked) | ||
| 2599 | goto out; | ||
| 2600 | |||
| 2601 | again: | ||
| 2602 | /* | ||
| 2603 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2604 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2605 | * reading this position. | ||
| 2606 | */ | ||
| 2607 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2608 | data->user_page->data_head = head; | ||
| 2609 | |||
| 2610 | /* | ||
| 2611 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2612 | */ | ||
| 2613 | |||
| 2614 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2615 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2616 | |||
| 2617 | /* | ||
| 2618 | * Therefore we have to validate we did not indeed do so. | ||
| 2619 | */ | ||
| 2620 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2621 | /* | ||
| 2622 | * Since we had it locked, we can lock it again. | ||
| 2623 | */ | ||
| 2624 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2625 | cpu_relax(); | ||
| 2626 | |||
| 2627 | goto again; | ||
| 2628 | } | ||
| 2629 | |||
| 2630 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2631 | perf_output_wakeup(handle); | ||
| 2632 | out: | ||
| 2633 | local_irq_restore(handle->flags); | ||
| 2634 | } | ||
| 2635 | |||
| 2636 | static void perf_output_copy(struct perf_output_handle *handle, | ||
| 2637 | const void *buf, unsigned int len) | ||
| 2638 | { | ||
| 2639 | unsigned int pages_mask; | ||
| 2640 | unsigned int offset; | ||
| 2641 | unsigned int size; | ||
| 2642 | void **pages; | ||
| 2643 | |||
| 2644 | offset = handle->offset; | ||
| 2645 | pages_mask = handle->data->nr_pages - 1; | ||
| 2646 | pages = handle->data->data_pages; | ||
| 2647 | |||
| 2648 | do { | ||
| 2649 | unsigned int page_offset; | ||
| 2650 | int nr; | ||
| 2651 | |||
| 2652 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2653 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2654 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2655 | |||
| 2656 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2657 | |||
| 2658 | len -= size; | ||
| 2659 | buf += size; | ||
| 2660 | offset += size; | ||
| 2661 | } while (len); | ||
| 2662 | |||
| 2663 | handle->offset = offset; | ||
| 2664 | |||
| 2665 | /* | ||
| 2666 | * Check we didn't copy past our reservation window, taking the | ||
| 2667 | * possible unsigned int wrap into account. | ||
| 2668 | */ | ||
| 2669 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2670 | } | ||
| 2671 | |||
| 2672 | #define perf_output_put(handle, x) \ | ||
| 2673 | perf_output_copy((handle), &(x), sizeof(x)) | ||
| 2674 | |||
| 2675 | static int perf_output_begin(struct perf_output_handle *handle, | ||
| 2676 | struct perf_counter *counter, unsigned int size, | ||
| 2677 | int nmi, int sample) | ||
| 2678 | { | ||
| 2679 | struct perf_counter *output_counter; | ||
| 2680 | struct perf_mmap_data *data; | ||
| 2681 | unsigned int offset, head; | ||
| 2682 | int have_lost; | ||
| 2683 | struct { | ||
| 2684 | struct perf_event_header header; | ||
| 2685 | u64 id; | ||
| 2686 | u64 lost; | ||
| 2687 | } lost_event; | ||
| 2688 | |||
| 2689 | rcu_read_lock(); | ||
| 2690 | /* | ||
| 2691 | * For inherited counters we send all the output towards the parent. | ||
| 2692 | */ | ||
| 2693 | if (counter->parent) | ||
| 2694 | counter = counter->parent; | ||
| 2695 | |||
| 2696 | output_counter = rcu_dereference(counter->output); | ||
| 2697 | if (output_counter) | ||
| 2698 | counter = output_counter; | ||
| 2699 | |||
| 2700 | data = rcu_dereference(counter->data); | ||
| 2701 | if (!data) | ||
| 2702 | goto out; | ||
| 2703 | |||
| 2704 | handle->data = data; | ||
| 2705 | handle->counter = counter; | ||
| 2706 | handle->nmi = nmi; | ||
| 2707 | handle->sample = sample; | ||
| 2708 | |||
| 2709 | if (!data->nr_pages) | ||
| 2710 | goto fail; | ||
| 2711 | |||
| 2712 | have_lost = atomic_read(&data->lost); | ||
| 2713 | if (have_lost) | ||
| 2714 | size += sizeof(lost_event); | ||
| 2715 | |||
| 2716 | perf_output_lock(handle); | ||
| 2717 | |||
| 2718 | do { | ||
| 2719 | offset = head = atomic_long_read(&data->head); | ||
| 2720 | head += size; | ||
| 2721 | if (unlikely(!perf_output_space(data, offset, head))) | ||
| 2722 | goto fail; | ||
| 2723 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2724 | |||
| 2725 | handle->offset = offset; | ||
| 2726 | handle->head = head; | ||
| 2727 | |||
| 2728 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
| 2729 | atomic_set(&data->wakeup, 1); | ||
| 2730 | |||
| 2731 | if (have_lost) { | ||
| 2732 | lost_event.header.type = PERF_EVENT_LOST; | ||
| 2733 | lost_event.header.misc = 0; | ||
| 2734 | lost_event.header.size = sizeof(lost_event); | ||
| 2735 | lost_event.id = counter->id; | ||
| 2736 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2737 | |||
| 2738 | perf_output_put(handle, lost_event); | ||
| 2739 | } | ||
| 2740 | |||
| 2741 | return 0; | ||
| 2742 | |||
| 2743 | fail: | ||
| 2744 | atomic_inc(&data->lost); | ||
| 2745 | perf_output_unlock(handle); | ||
| 2746 | out: | ||
| 2747 | rcu_read_unlock(); | ||
| 2748 | |||
| 2749 | return -ENOSPC; | ||
| 2750 | } | ||
| 2751 | |||
| 2752 | static void perf_output_end(struct perf_output_handle *handle) | ||
| 2753 | { | ||
| 2754 | struct perf_counter *counter = handle->counter; | ||
| 2755 | struct perf_mmap_data *data = handle->data; | ||
| 2756 | |||
| 2757 | int wakeup_events = counter->attr.wakeup_events; | ||
| 2758 | |||
| 2759 | if (handle->sample && wakeup_events) { | ||
| 2760 | int events = atomic_inc_return(&data->events); | ||
| 2761 | if (events >= wakeup_events) { | ||
| 2762 | atomic_sub(wakeup_events, &data->events); | ||
| 2763 | atomic_set(&data->wakeup, 1); | ||
| 2764 | } | ||
| 2765 | } | ||
| 2766 | |||
| 2767 | perf_output_unlock(handle); | ||
| 2768 | rcu_read_unlock(); | ||
| 2769 | } | ||
| 2770 | |||
| 2771 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
| 2772 | { | ||
| 2773 | /* | ||
| 2774 | * only top level counters have the pid namespace they were created in | ||
| 2775 | */ | ||
| 2776 | if (counter->parent) | ||
| 2777 | counter = counter->parent; | ||
| 2778 | |||
| 2779 | return task_tgid_nr_ns(p, counter->ns); | ||
| 2780 | } | ||
| 2781 | |||
| 2782 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
| 2783 | { | ||
| 2784 | /* | ||
| 2785 | * only top level counters have the pid namespace they were created in | ||
| 2786 | */ | ||
| 2787 | if (counter->parent) | ||
| 2788 | counter = counter->parent; | ||
| 2789 | |||
| 2790 | return task_pid_nr_ns(p, counter->ns); | ||
| 2791 | } | ||
| 2792 | |||
| 2793 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2794 | struct perf_counter *counter) | ||
| 2795 | { | ||
| 2796 | u64 read_format = counter->attr.read_format; | ||
| 2797 | u64 values[4]; | ||
| 2798 | int n = 0; | ||
| 2799 | |||
| 2800 | values[n++] = atomic64_read(&counter->count); | ||
| 2801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2802 | values[n++] = counter->total_time_enabled + | ||
| 2803 | atomic64_read(&counter->child_total_time_enabled); | ||
| 2804 | } | ||
| 2805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2806 | values[n++] = counter->total_time_running + | ||
| 2807 | atomic64_read(&counter->child_total_time_running); | ||
| 2808 | } | ||
| 2809 | if (read_format & PERF_FORMAT_ID) | ||
| 2810 | values[n++] = primary_counter_id(counter); | ||
| 2811 | |||
| 2812 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2813 | } | ||
| 2814 | |||
| 2815 | /* | ||
| 2816 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | ||
| 2817 | */ | ||
| 2818 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2819 | struct perf_counter *counter) | ||
| 2820 | { | ||
| 2821 | struct perf_counter *leader = counter->group_leader, *sub; | ||
| 2822 | u64 read_format = counter->attr.read_format; | ||
| 2823 | u64 values[5]; | ||
| 2824 | int n = 0; | ||
| 2825 | |||
| 2826 | values[n++] = 1 + leader->nr_siblings; | ||
| 2827 | |||
| 2828 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2829 | values[n++] = leader->total_time_enabled; | ||
| 2830 | |||
| 2831 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2832 | values[n++] = leader->total_time_running; | ||
| 2833 | |||
| 2834 | if (leader != counter) | ||
| 2835 | leader->pmu->read(leader); | ||
| 2836 | |||
| 2837 | values[n++] = atomic64_read(&leader->count); | ||
| 2838 | if (read_format & PERF_FORMAT_ID) | ||
| 2839 | values[n++] = primary_counter_id(leader); | ||
| 2840 | |||
| 2841 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2842 | |||
| 2843 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 2844 | n = 0; | ||
| 2845 | |||
| 2846 | if (sub != counter) | ||
| 2847 | sub->pmu->read(sub); | ||
| 2848 | |||
| 2849 | values[n++] = atomic64_read(&sub->count); | ||
| 2850 | if (read_format & PERF_FORMAT_ID) | ||
| 2851 | values[n++] = primary_counter_id(sub); | ||
| 2852 | |||
| 2853 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2854 | } | ||
| 2855 | } | ||
| 2856 | |||
| 2857 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2858 | struct perf_counter *counter) | ||
| 2859 | { | ||
| 2860 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | ||
| 2861 | perf_output_read_group(handle, counter); | ||
| 2862 | else | ||
| 2863 | perf_output_read_one(handle, counter); | ||
| 2864 | } | ||
| 2865 | |||
| 2866 | void perf_counter_output(struct perf_counter *counter, int nmi, | ||
| 2867 | struct perf_sample_data *data) | ||
| 2868 | { | ||
| 2869 | int ret; | ||
| 2870 | u64 sample_type = counter->attr.sample_type; | ||
| 2871 | struct perf_output_handle handle; | ||
| 2872 | struct perf_event_header header; | ||
| 2873 | u64 ip; | ||
| 2874 | struct { | ||
| 2875 | u32 pid, tid; | ||
| 2876 | } tid_entry; | ||
| 2877 | struct perf_callchain_entry *callchain = NULL; | ||
| 2878 | int callchain_size = 0; | ||
| 2879 | u64 time; | ||
| 2880 | struct { | ||
| 2881 | u32 cpu, reserved; | ||
| 2882 | } cpu_entry; | ||
| 2883 | |||
| 2884 | header.type = PERF_EVENT_SAMPLE; | ||
| 2885 | header.size = sizeof(header); | ||
| 2886 | |||
| 2887 | header.misc = 0; | ||
| 2888 | header.misc |= perf_misc_flags(data->regs); | ||
| 2889 | |||
| 2890 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2891 | ip = perf_instruction_pointer(data->regs); | ||
| 2892 | header.size += sizeof(ip); | ||
| 2893 | } | ||
| 2894 | |||
| 2895 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2896 | /* namespace issues */ | ||
| 2897 | tid_entry.pid = perf_counter_pid(counter, current); | ||
| 2898 | tid_entry.tid = perf_counter_tid(counter, current); | ||
| 2899 | |||
| 2900 | header.size += sizeof(tid_entry); | ||
| 2901 | } | ||
| 2902 | |||
| 2903 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2904 | /* | ||
| 2905 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
| 2906 | */ | ||
| 2907 | time = sched_clock(); | ||
| 2908 | |||
| 2909 | header.size += sizeof(u64); | ||
| 2910 | } | ||
| 2911 | |||
| 2912 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2913 | header.size += sizeof(u64); | ||
| 2914 | |||
| 2915 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2916 | header.size += sizeof(u64); | ||
| 2917 | |||
| 2918 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2919 | header.size += sizeof(u64); | ||
| 2920 | |||
| 2921 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2922 | header.size += sizeof(cpu_entry); | ||
| 2923 | |||
| 2924 | cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2925 | cpu_entry.reserved = 0; | ||
| 2926 | } | ||
| 2927 | |||
| 2928 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2929 | header.size += sizeof(u64); | ||
| 2930 | |||
| 2931 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2932 | header.size += perf_counter_read_size(counter); | ||
| 2933 | |||
| 2934 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2935 | callchain = perf_callchain(data->regs); | ||
| 2936 | |||
| 2937 | if (callchain) { | ||
| 2938 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
| 2939 | header.size += callchain_size; | ||
| 2940 | } else | ||
| 2941 | header.size += sizeof(u64); | ||
| 2942 | } | ||
| 2943 | |||
| 2944 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 2945 | int size = sizeof(u32); | ||
| 2946 | |||
| 2947 | if (data->raw) | ||
| 2948 | size += data->raw->size; | ||
| 2949 | else | ||
| 2950 | size += sizeof(u32); | ||
| 2951 | |||
| 2952 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 2953 | header.size += size; | ||
| 2954 | } | ||
| 2955 | |||
| 2956 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
| 2957 | if (ret) | ||
| 2958 | return; | ||
| 2959 | |||
| 2960 | perf_output_put(&handle, header); | ||
| 2961 | |||
| 2962 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2963 | perf_output_put(&handle, ip); | ||
| 2964 | |||
| 2965 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2966 | perf_output_put(&handle, tid_entry); | ||
| 2967 | |||
| 2968 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2969 | perf_output_put(&handle, time); | ||
| 2970 | |||
| 2971 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2972 | perf_output_put(&handle, data->addr); | ||
| 2973 | |||
| 2974 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2975 | u64 id = primary_counter_id(counter); | ||
| 2976 | |||
| 2977 | perf_output_put(&handle, id); | ||
| 2978 | } | ||
| 2979 | |||
| 2980 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2981 | perf_output_put(&handle, counter->id); | ||
| 2982 | |||
| 2983 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2984 | perf_output_put(&handle, cpu_entry); | ||
| 2985 | |||
| 2986 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2987 | perf_output_put(&handle, data->period); | ||
| 2988 | |||
| 2989 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2990 | perf_output_read(&handle, counter); | ||
| 2991 | |||
| 2992 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2993 | if (callchain) | ||
| 2994 | perf_output_copy(&handle, callchain, callchain_size); | ||
| 2995 | else { | ||
| 2996 | u64 nr = 0; | ||
| 2997 | perf_output_put(&handle, nr); | ||
| 2998 | } | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3002 | if (data->raw) { | ||
| 3003 | perf_output_put(&handle, data->raw->size); | ||
| 3004 | perf_output_copy(&handle, data->raw->data, data->raw->size); | ||
| 3005 | } else { | ||
| 3006 | struct { | ||
| 3007 | u32 size; | ||
| 3008 | u32 data; | ||
| 3009 | } raw = { | ||
| 3010 | .size = sizeof(u32), | ||
| 3011 | .data = 0, | ||
| 3012 | }; | ||
| 3013 | perf_output_put(&handle, raw); | ||
| 3014 | } | ||
| 3015 | } | ||
| 3016 | |||
| 3017 | perf_output_end(&handle); | ||
| 3018 | } | ||
| 3019 | |||
| 3020 | /* | ||
| 3021 | * read event | ||
| 3022 | */ | ||
| 3023 | |||
| 3024 | struct perf_read_event { | ||
| 3025 | struct perf_event_header header; | ||
| 3026 | |||
| 3027 | u32 pid; | ||
| 3028 | u32 tid; | ||
| 3029 | }; | ||
| 3030 | |||
| 3031 | static void | ||
| 3032 | perf_counter_read_event(struct perf_counter *counter, | ||
| 3033 | struct task_struct *task) | ||
| 3034 | { | ||
| 3035 | struct perf_output_handle handle; | ||
| 3036 | struct perf_read_event event = { | ||
| 3037 | .header = { | ||
| 3038 | .type = PERF_EVENT_READ, | ||
| 3039 | .misc = 0, | ||
| 3040 | .size = sizeof(event) + perf_counter_read_size(counter), | ||
| 3041 | }, | ||
| 3042 | .pid = perf_counter_pid(counter, task), | ||
| 3043 | .tid = perf_counter_tid(counter, task), | ||
| 3044 | }; | ||
| 3045 | int ret; | ||
| 3046 | |||
| 3047 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | ||
| 3048 | if (ret) | ||
| 3049 | return; | ||
| 3050 | |||
| 3051 | perf_output_put(&handle, event); | ||
| 3052 | perf_output_read(&handle, counter); | ||
| 3053 | |||
| 3054 | perf_output_end(&handle); | ||
| 3055 | } | ||
| 3056 | |||
| 3057 | /* | ||
| 3058 | * task tracking -- fork/exit | ||
| 3059 | * | ||
| 3060 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3061 | */ | ||
| 3062 | |||
| 3063 | struct perf_task_event { | ||
| 3064 | struct task_struct *task; | ||
| 3065 | struct perf_counter_context *task_ctx; | ||
| 3066 | |||
| 3067 | struct { | ||
| 3068 | struct perf_event_header header; | ||
| 3069 | |||
| 3070 | u32 pid; | ||
| 3071 | u32 ppid; | ||
| 3072 | u32 tid; | ||
| 3073 | u32 ptid; | ||
| 3074 | } event; | ||
| 3075 | }; | ||
| 3076 | |||
| 3077 | static void perf_counter_task_output(struct perf_counter *counter, | ||
| 3078 | struct perf_task_event *task_event) | ||
| 3079 | { | ||
| 3080 | struct perf_output_handle handle; | ||
| 3081 | int size = task_event->event.header.size; | ||
| 3082 | struct task_struct *task = task_event->task; | ||
| 3083 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3084 | |||
| 3085 | if (ret) | ||
| 3086 | return; | ||
| 3087 | |||
| 3088 | task_event->event.pid = perf_counter_pid(counter, task); | ||
| 3089 | task_event->event.ppid = perf_counter_pid(counter, current); | ||
| 3090 | |||
| 3091 | task_event->event.tid = perf_counter_tid(counter, task); | ||
| 3092 | task_event->event.ptid = perf_counter_tid(counter, current); | ||
| 3093 | |||
| 3094 | perf_output_put(&handle, task_event->event); | ||
| 3095 | perf_output_end(&handle); | ||
| 3096 | } | ||
| 3097 | |||
| 3098 | static int perf_counter_task_match(struct perf_counter *counter) | ||
| 3099 | { | ||
| 3100 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | ||
| 3101 | return 1; | ||
| 3102 | |||
| 3103 | return 0; | ||
| 3104 | } | ||
| 3105 | |||
| 3106 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | ||
| 3107 | struct perf_task_event *task_event) | ||
| 3108 | { | ||
| 3109 | struct perf_counter *counter; | ||
| 3110 | |||
| 3111 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3112 | return; | ||
| 3113 | |||
| 3114 | rcu_read_lock(); | ||
| 3115 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3116 | if (perf_counter_task_match(counter)) | ||
| 3117 | perf_counter_task_output(counter, task_event); | ||
| 3118 | } | ||
| 3119 | rcu_read_unlock(); | ||
| 3120 | } | ||
| 3121 | |||
| 3122 | static void perf_counter_task_event(struct perf_task_event *task_event) | ||
| 3123 | { | ||
| 3124 | struct perf_cpu_context *cpuctx; | ||
| 3125 | struct perf_counter_context *ctx = task_event->task_ctx; | ||
| 3126 | |||
| 3127 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3128 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | ||
| 3129 | put_cpu_var(perf_cpu_context); | ||
| 3130 | |||
| 3131 | rcu_read_lock(); | ||
| 3132 | if (!ctx) | ||
| 3133 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | ||
| 3134 | if (ctx) | ||
| 3135 | perf_counter_task_ctx(ctx, task_event); | ||
| 3136 | rcu_read_unlock(); | ||
| 3137 | } | ||
| 3138 | |||
| 3139 | static void perf_counter_task(struct task_struct *task, | ||
| 3140 | struct perf_counter_context *task_ctx, | ||
| 3141 | int new) | ||
| 3142 | { | ||
| 3143 | struct perf_task_event task_event; | ||
| 3144 | |||
| 3145 | if (!atomic_read(&nr_comm_counters) && | ||
| 3146 | !atomic_read(&nr_mmap_counters) && | ||
| 3147 | !atomic_read(&nr_task_counters)) | ||
| 3148 | return; | ||
| 3149 | |||
| 3150 | task_event = (struct perf_task_event){ | ||
| 3151 | .task = task, | ||
| 3152 | .task_ctx = task_ctx, | ||
| 3153 | .event = { | ||
| 3154 | .header = { | ||
| 3155 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | ||
| 3156 | .misc = 0, | ||
| 3157 | .size = sizeof(task_event.event), | ||
| 3158 | }, | ||
| 3159 | /* .pid */ | ||
| 3160 | /* .ppid */ | ||
| 3161 | /* .tid */ | ||
| 3162 | /* .ptid */ | ||
| 3163 | }, | ||
| 3164 | }; | ||
| 3165 | |||
| 3166 | perf_counter_task_event(&task_event); | ||
| 3167 | } | ||
| 3168 | |||
| 3169 | void perf_counter_fork(struct task_struct *task) | ||
| 3170 | { | ||
| 3171 | perf_counter_task(task, NULL, 1); | ||
| 3172 | } | ||
| 3173 | |||
| 3174 | /* | ||
| 3175 | * comm tracking | ||
| 3176 | */ | ||
| 3177 | |||
| 3178 | struct perf_comm_event { | ||
| 3179 | struct task_struct *task; | ||
| 3180 | char *comm; | ||
| 3181 | int comm_size; | ||
| 3182 | |||
| 3183 | struct { | ||
| 3184 | struct perf_event_header header; | ||
| 3185 | |||
| 3186 | u32 pid; | ||
| 3187 | u32 tid; | ||
| 3188 | } event; | ||
| 3189 | }; | ||
| 3190 | |||
| 3191 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
| 3192 | struct perf_comm_event *comm_event) | ||
| 3193 | { | ||
| 3194 | struct perf_output_handle handle; | ||
| 3195 | int size = comm_event->event.header.size; | ||
| 3196 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3197 | |||
| 3198 | if (ret) | ||
| 3199 | return; | ||
| 3200 | |||
| 3201 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
| 3202 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
| 3203 | |||
| 3204 | perf_output_put(&handle, comm_event->event); | ||
| 3205 | perf_output_copy(&handle, comm_event->comm, | ||
| 3206 | comm_event->comm_size); | ||
| 3207 | perf_output_end(&handle); | ||
| 3208 | } | ||
| 3209 | |||
| 3210 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
| 3211 | { | ||
| 3212 | if (counter->attr.comm) | ||
| 3213 | return 1; | ||
| 3214 | |||
| 3215 | return 0; | ||
| 3216 | } | ||
| 3217 | |||
| 3218 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
| 3219 | struct perf_comm_event *comm_event) | ||
| 3220 | { | ||
| 3221 | struct perf_counter *counter; | ||
| 3222 | |||
| 3223 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3224 | return; | ||
| 3225 | |||
| 3226 | rcu_read_lock(); | ||
| 3227 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3228 | if (perf_counter_comm_match(counter)) | ||
| 3229 | perf_counter_comm_output(counter, comm_event); | ||
| 3230 | } | ||
| 3231 | rcu_read_unlock(); | ||
| 3232 | } | ||
| 3233 | |||
| 3234 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
| 3235 | { | ||
| 3236 | struct perf_cpu_context *cpuctx; | ||
| 3237 | struct perf_counter_context *ctx; | ||
| 3238 | unsigned int size; | ||
| 3239 | char comm[TASK_COMM_LEN]; | ||
| 3240 | |||
| 3241 | memset(comm, 0, sizeof(comm)); | ||
| 3242 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3243 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3244 | |||
| 3245 | comm_event->comm = comm; | ||
| 3246 | comm_event->comm_size = size; | ||
| 3247 | |||
| 3248 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
| 3249 | |||
| 3250 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3251 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3252 | put_cpu_var(perf_cpu_context); | ||
| 3253 | |||
| 3254 | rcu_read_lock(); | ||
| 3255 | /* | ||
| 3256 | * doesn't really matter which of the child contexts the | ||
| 3257 | * events ends up in. | ||
| 3258 | */ | ||
| 3259 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3260 | if (ctx) | ||
| 3261 | perf_counter_comm_ctx(ctx, comm_event); | ||
| 3262 | rcu_read_unlock(); | ||
| 3263 | } | ||
| 3264 | |||
| 3265 | void perf_counter_comm(struct task_struct *task) | ||
| 3266 | { | ||
| 3267 | struct perf_comm_event comm_event; | ||
| 3268 | |||
| 3269 | if (task->perf_counter_ctxp) | ||
| 3270 | perf_counter_enable_on_exec(task); | ||
| 3271 | |||
| 3272 | if (!atomic_read(&nr_comm_counters)) | ||
| 3273 | return; | ||
| 3274 | |||
| 3275 | comm_event = (struct perf_comm_event){ | ||
| 3276 | .task = task, | ||
| 3277 | /* .comm */ | ||
| 3278 | /* .comm_size */ | ||
| 3279 | .event = { | ||
| 3280 | .header = { | ||
| 3281 | .type = PERF_EVENT_COMM, | ||
| 3282 | .misc = 0, | ||
| 3283 | /* .size */ | ||
| 3284 | }, | ||
| 3285 | /* .pid */ | ||
| 3286 | /* .tid */ | ||
| 3287 | }, | ||
| 3288 | }; | ||
| 3289 | |||
| 3290 | perf_counter_comm_event(&comm_event); | ||
| 3291 | } | ||
| 3292 | |||
| 3293 | /* | ||
| 3294 | * mmap tracking | ||
| 3295 | */ | ||
| 3296 | |||
| 3297 | struct perf_mmap_event { | ||
| 3298 | struct vm_area_struct *vma; | ||
| 3299 | |||
| 3300 | const char *file_name; | ||
| 3301 | int file_size; | ||
| 3302 | |||
| 3303 | struct { | ||
| 3304 | struct perf_event_header header; | ||
| 3305 | |||
| 3306 | u32 pid; | ||
| 3307 | u32 tid; | ||
| 3308 | u64 start; | ||
| 3309 | u64 len; | ||
| 3310 | u64 pgoff; | ||
| 3311 | } event; | ||
| 3312 | }; | ||
| 3313 | |||
| 3314 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
| 3315 | struct perf_mmap_event *mmap_event) | ||
| 3316 | { | ||
| 3317 | struct perf_output_handle handle; | ||
| 3318 | int size = mmap_event->event.header.size; | ||
| 3319 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3320 | |||
| 3321 | if (ret) | ||
| 3322 | return; | ||
| 3323 | |||
| 3324 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
| 3325 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
| 3326 | |||
| 3327 | perf_output_put(&handle, mmap_event->event); | ||
| 3328 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3329 | mmap_event->file_size); | ||
| 3330 | perf_output_end(&handle); | ||
| 3331 | } | ||
| 3332 | |||
| 3333 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
| 3334 | struct perf_mmap_event *mmap_event) | ||
| 3335 | { | ||
| 3336 | if (counter->attr.mmap) | ||
| 3337 | return 1; | ||
| 3338 | |||
| 3339 | return 0; | ||
| 3340 | } | ||
| 3341 | |||
| 3342 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
| 3343 | struct perf_mmap_event *mmap_event) | ||
| 3344 | { | ||
| 3345 | struct perf_counter *counter; | ||
| 3346 | |||
| 3347 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3348 | return; | ||
| 3349 | |||
| 3350 | rcu_read_lock(); | ||
| 3351 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3352 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
| 3353 | perf_counter_mmap_output(counter, mmap_event); | ||
| 3354 | } | ||
| 3355 | rcu_read_unlock(); | ||
| 3356 | } | ||
| 3357 | |||
| 3358 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3359 | { | ||
| 3360 | struct perf_cpu_context *cpuctx; | ||
| 3361 | struct perf_counter_context *ctx; | ||
| 3362 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3363 | struct file *file = vma->vm_file; | ||
| 3364 | unsigned int size; | ||
| 3365 | char tmp[16]; | ||
| 3366 | char *buf = NULL; | ||
| 3367 | const char *name; | ||
| 3368 | |||
| 3369 | memset(tmp, 0, sizeof(tmp)); | ||
| 3370 | |||
| 3371 | if (file) { | ||
| 3372 | /* | ||
| 3373 | * d_path works from the end of the buffer backwards, so we | ||
| 3374 | * need to add enough zero bytes after the string to handle | ||
| 3375 | * the 64bit alignment we do later. | ||
| 3376 | */ | ||
| 3377 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3378 | if (!buf) { | ||
| 3379 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3380 | goto got_name; | ||
| 3381 | } | ||
| 3382 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3383 | if (IS_ERR(name)) { | ||
| 3384 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3385 | goto got_name; | ||
| 3386 | } | ||
| 3387 | } else { | ||
| 3388 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3389 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3390 | sizeof(tmp)); | ||
| 3391 | goto got_name; | ||
| 3392 | } | ||
| 3393 | |||
| 3394 | if (!vma->vm_mm) { | ||
| 3395 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3396 | goto got_name; | ||
| 3397 | } | ||
| 3398 | |||
| 3399 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3400 | goto got_name; | ||
| 3401 | } | ||
| 3402 | |||
| 3403 | got_name: | ||
| 3404 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3405 | |||
| 3406 | mmap_event->file_name = name; | ||
| 3407 | mmap_event->file_size = size; | ||
| 3408 | |||
| 3409 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
| 3410 | |||
| 3411 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3412 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3413 | put_cpu_var(perf_cpu_context); | ||
| 3414 | |||
| 3415 | rcu_read_lock(); | ||
| 3416 | /* | ||
| 3417 | * doesn't really matter which of the child contexts the | ||
| 3418 | * events ends up in. | ||
| 3419 | */ | ||
| 3420 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3421 | if (ctx) | ||
| 3422 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
| 3423 | rcu_read_unlock(); | ||
| 3424 | |||
| 3425 | kfree(buf); | ||
| 3426 | } | ||
| 3427 | |||
| 3428 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
| 3429 | { | ||
| 3430 | struct perf_mmap_event mmap_event; | ||
| 3431 | |||
| 3432 | if (!atomic_read(&nr_mmap_counters)) | ||
| 3433 | return; | ||
| 3434 | |||
| 3435 | mmap_event = (struct perf_mmap_event){ | ||
| 3436 | .vma = vma, | ||
| 3437 | /* .file_name */ | ||
| 3438 | /* .file_size */ | ||
| 3439 | .event = { | ||
| 3440 | .header = { | ||
| 3441 | .type = PERF_EVENT_MMAP, | ||
| 3442 | .misc = 0, | ||
| 3443 | /* .size */ | ||
| 3444 | }, | ||
| 3445 | /* .pid */ | ||
| 3446 | /* .tid */ | ||
| 3447 | .start = vma->vm_start, | ||
| 3448 | .len = vma->vm_end - vma->vm_start, | ||
| 3449 | .pgoff = vma->vm_pgoff, | ||
| 3450 | }, | ||
| 3451 | }; | ||
| 3452 | |||
| 3453 | perf_counter_mmap_event(&mmap_event); | ||
| 3454 | } | ||
| 3455 | |||
| 3456 | /* | ||
| 3457 | * IRQ throttle logging | ||
| 3458 | */ | ||
| 3459 | |||
| 3460 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
| 3461 | { | ||
| 3462 | struct perf_output_handle handle; | ||
| 3463 | int ret; | ||
| 3464 | |||
| 3465 | struct { | ||
| 3466 | struct perf_event_header header; | ||
| 3467 | u64 time; | ||
| 3468 | u64 id; | ||
| 3469 | u64 stream_id; | ||
| 3470 | } throttle_event = { | ||
| 3471 | .header = { | ||
| 3472 | .type = PERF_EVENT_THROTTLE, | ||
| 3473 | .misc = 0, | ||
| 3474 | .size = sizeof(throttle_event), | ||
| 3475 | }, | ||
| 3476 | .time = sched_clock(), | ||
| 3477 | .id = primary_counter_id(counter), | ||
| 3478 | .stream_id = counter->id, | ||
| 3479 | }; | ||
| 3480 | |||
| 3481 | if (enable) | ||
| 3482 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | ||
| 3483 | |||
| 3484 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
| 3485 | if (ret) | ||
| 3486 | return; | ||
| 3487 | |||
| 3488 | perf_output_put(&handle, throttle_event); | ||
| 3489 | perf_output_end(&handle); | ||
| 3490 | } | ||
| 3491 | |||
| 3492 | /* | ||
| 3493 | * Generic counter overflow handling, sampling. | ||
| 3494 | */ | ||
| 3495 | |||
| 3496 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
| 3497 | struct perf_sample_data *data) | ||
| 3498 | { | ||
| 3499 | int events = atomic_read(&counter->event_limit); | ||
| 3500 | int throttle = counter->pmu->unthrottle != NULL; | ||
| 3501 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3502 | int ret = 0; | ||
| 3503 | |||
| 3504 | if (!throttle) { | ||
| 3505 | hwc->interrupts++; | ||
| 3506 | } else { | ||
| 3507 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3508 | hwc->interrupts++; | ||
| 3509 | if (HZ * hwc->interrupts > | ||
| 3510 | (u64)sysctl_perf_counter_sample_rate) { | ||
| 3511 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3512 | perf_log_throttle(counter, 0); | ||
| 3513 | ret = 1; | ||
| 3514 | } | ||
| 3515 | } else { | ||
| 3516 | /* | ||
| 3517 | * Keep re-disabling counters even though on the previous | ||
| 3518 | * pass we disabled it - just in case we raced with a | ||
| 3519 | * sched-in and the counter got enabled again: | ||
| 3520 | */ | ||
| 3521 | ret = 1; | ||
| 3522 | } | ||
| 3523 | } | ||
| 3524 | |||
| 3525 | if (counter->attr.freq) { | ||
| 3526 | u64 now = sched_clock(); | ||
| 3527 | s64 delta = now - hwc->freq_stamp; | ||
| 3528 | |||
| 3529 | hwc->freq_stamp = now; | ||
| 3530 | |||
| 3531 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3532 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
| 3533 | } | ||
| 3534 | |||
| 3535 | /* | ||
| 3536 | * XXX event_limit might not quite work as expected on inherited | ||
| 3537 | * counters | ||
| 3538 | */ | ||
| 3539 | |||
| 3540 | counter->pending_kill = POLL_IN; | ||
| 3541 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
| 3542 | ret = 1; | ||
| 3543 | counter->pending_kill = POLL_HUP; | ||
| 3544 | if (nmi) { | ||
| 3545 | counter->pending_disable = 1; | ||
| 3546 | perf_pending_queue(&counter->pending, | ||
| 3547 | perf_pending_counter); | ||
| 3548 | } else | ||
| 3549 | perf_counter_disable(counter); | ||
| 3550 | } | ||
| 3551 | |||
| 3552 | perf_counter_output(counter, nmi, data); | ||
| 3553 | return ret; | ||
| 3554 | } | ||
| 3555 | |||
| 3556 | /* | ||
| 3557 | * Generic software counter infrastructure | ||
| 3558 | */ | ||
| 3559 | |||
| 3560 | /* | ||
| 3561 | * We directly increment counter->count and keep a second value in | ||
| 3562 | * counter->hw.period_left to count intervals. This period counter | ||
| 3563 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3564 | * sign as trigger. | ||
| 3565 | */ | ||
| 3566 | |||
| 3567 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | ||
| 3568 | { | ||
| 3569 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3570 | u64 period = hwc->last_period; | ||
| 3571 | u64 nr, offset; | ||
| 3572 | s64 old, val; | ||
| 3573 | |||
| 3574 | hwc->last_period = hwc->sample_period; | ||
| 3575 | |||
| 3576 | again: | ||
| 3577 | old = val = atomic64_read(&hwc->period_left); | ||
| 3578 | if (val < 0) | ||
| 3579 | return 0; | ||
| 3580 | |||
| 3581 | nr = div64_u64(period + val, period); | ||
| 3582 | offset = nr * period; | ||
| 3583 | val -= offset; | ||
| 3584 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3585 | goto again; | ||
| 3586 | |||
| 3587 | return nr; | ||
| 3588 | } | ||
| 3589 | |||
| 3590 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
| 3591 | int nmi, struct perf_sample_data *data) | ||
| 3592 | { | ||
| 3593 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3594 | u64 overflow; | ||
| 3595 | |||
| 3596 | data->period = counter->hw.last_period; | ||
| 3597 | overflow = perf_swcounter_set_period(counter); | ||
| 3598 | |||
| 3599 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3600 | return; | ||
| 3601 | |||
| 3602 | for (; overflow; overflow--) { | ||
| 3603 | if (perf_counter_overflow(counter, nmi, data)) { | ||
| 3604 | /* | ||
| 3605 | * We inhibit the overflow from happening when | ||
| 3606 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3607 | */ | ||
| 3608 | break; | ||
| 3609 | } | ||
| 3610 | } | ||
| 3611 | } | ||
| 3612 | |||
| 3613 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | ||
| 3614 | { | ||
| 3615 | /* | ||
| 3616 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3617 | */ | ||
| 3618 | } | ||
| 3619 | |||
| 3620 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
| 3621 | int nmi, struct perf_sample_data *data) | ||
| 3622 | { | ||
| 3623 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3624 | |||
| 3625 | atomic64_add(nr, &counter->count); | ||
| 3626 | |||
| 3627 | if (!hwc->sample_period) | ||
| 3628 | return; | ||
| 3629 | |||
| 3630 | if (!data->regs) | ||
| 3631 | return; | ||
| 3632 | |||
| 3633 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3634 | perf_swcounter_overflow(counter, nmi, data); | ||
| 3635 | } | ||
| 3636 | |||
| 3637 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
| 3638 | { | ||
| 3639 | /* | ||
| 3640 | * The counter is active, we're good! | ||
| 3641 | */ | ||
| 3642 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 3643 | return 1; | ||
| 3644 | |||
| 3645 | /* | ||
| 3646 | * The counter is off/error, not counting. | ||
| 3647 | */ | ||
| 3648 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
| 3649 | return 0; | ||
| 3650 | |||
| 3651 | /* | ||
| 3652 | * The counter is inactive, if the context is active | ||
| 3653 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3654 | * not counting. | ||
| 3655 | */ | ||
| 3656 | if (counter->ctx->is_active) | ||
| 3657 | return 0; | ||
| 3658 | |||
| 3659 | /* | ||
| 3660 | * We're inactive and the context is too, this means the | ||
| 3661 | * task is scheduled out, we're counting events that happen | ||
| 3662 | * to us, like migration events. | ||
| 3663 | */ | ||
| 3664 | return 1; | ||
| 3665 | } | ||
| 3666 | |||
| 3667 | static int perf_swcounter_match(struct perf_counter *counter, | ||
| 3668 | enum perf_type_id type, | ||
| 3669 | u32 event, struct pt_regs *regs) | ||
| 3670 | { | ||
| 3671 | if (!perf_swcounter_is_counting(counter)) | ||
| 3672 | return 0; | ||
| 3673 | |||
| 3674 | if (counter->attr.type != type) | ||
| 3675 | return 0; | ||
| 3676 | if (counter->attr.config != event) | ||
| 3677 | return 0; | ||
| 3678 | |||
| 3679 | if (regs) { | ||
| 3680 | if (counter->attr.exclude_user && user_mode(regs)) | ||
| 3681 | return 0; | ||
| 3682 | |||
| 3683 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
| 3684 | return 0; | ||
| 3685 | } | ||
| 3686 | |||
| 3687 | return 1; | ||
| 3688 | } | ||
| 3689 | |||
| 3690 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
| 3691 | enum perf_type_id type, | ||
| 3692 | u32 event, u64 nr, int nmi, | ||
| 3693 | struct perf_sample_data *data) | ||
| 3694 | { | ||
| 3695 | struct perf_counter *counter; | ||
| 3696 | |||
| 3697 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3698 | return; | ||
| 3699 | |||
| 3700 | rcu_read_lock(); | ||
| 3701 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3702 | if (perf_swcounter_match(counter, type, event, data->regs)) | ||
| 3703 | perf_swcounter_add(counter, nr, nmi, data); | ||
| 3704 | } | ||
| 3705 | rcu_read_unlock(); | ||
| 3706 | } | ||
| 3707 | |||
| 3708 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3709 | { | ||
| 3710 | if (in_nmi()) | ||
| 3711 | return &cpuctx->recursion[3]; | ||
| 3712 | |||
| 3713 | if (in_irq()) | ||
| 3714 | return &cpuctx->recursion[2]; | ||
| 3715 | |||
| 3716 | if (in_softirq()) | ||
| 3717 | return &cpuctx->recursion[1]; | ||
| 3718 | |||
| 3719 | return &cpuctx->recursion[0]; | ||
| 3720 | } | ||
| 3721 | |||
| 3722 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | ||
| 3723 | u64 nr, int nmi, | ||
| 3724 | struct perf_sample_data *data) | ||
| 3725 | { | ||
| 3726 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3727 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
| 3728 | struct perf_counter_context *ctx; | ||
| 3729 | |||
| 3730 | if (*recursion) | ||
| 3731 | goto out; | ||
| 3732 | |||
| 3733 | (*recursion)++; | ||
| 3734 | barrier(); | ||
| 3735 | |||
| 3736 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
| 3737 | nr, nmi, data); | ||
| 3738 | rcu_read_lock(); | ||
| 3739 | /* | ||
| 3740 | * doesn't really matter which of the child contexts the | ||
| 3741 | * events ends up in. | ||
| 3742 | */ | ||
| 3743 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3744 | if (ctx) | ||
| 3745 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | ||
| 3746 | rcu_read_unlock(); | ||
| 3747 | |||
| 3748 | barrier(); | ||
| 3749 | (*recursion)--; | ||
| 3750 | |||
| 3751 | out: | ||
| 3752 | put_cpu_var(perf_cpu_context); | ||
| 3753 | } | ||
| 3754 | |||
| 3755 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | ||
| 3756 | struct pt_regs *regs, u64 addr) | ||
| 3757 | { | ||
| 3758 | struct perf_sample_data data = { | ||
| 3759 | .regs = regs, | ||
| 3760 | .addr = addr, | ||
| 3761 | }; | ||
| 3762 | |||
| 3763 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | ||
| 3764 | } | ||
| 3765 | |||
| 3766 | static void perf_swcounter_read(struct perf_counter *counter) | ||
| 3767 | { | ||
| 3768 | } | ||
| 3769 | |||
| 3770 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
| 3771 | { | ||
| 3772 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3773 | |||
| 3774 | if (hwc->sample_period) { | ||
| 3775 | hwc->last_period = hwc->sample_period; | ||
| 3776 | perf_swcounter_set_period(counter); | ||
| 3777 | } | ||
| 3778 | return 0; | ||
| 3779 | } | ||
| 3780 | |||
| 3781 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
| 3782 | { | ||
| 3783 | } | ||
| 3784 | |||
| 3785 | static const struct pmu perf_ops_generic = { | ||
| 3786 | .enable = perf_swcounter_enable, | ||
| 3787 | .disable = perf_swcounter_disable, | ||
| 3788 | .read = perf_swcounter_read, | ||
| 3789 | .unthrottle = perf_swcounter_unthrottle, | ||
| 3790 | }; | ||
| 3791 | |||
| 3792 | /* | ||
| 3793 | * hrtimer based swcounter callback | ||
| 3794 | */ | ||
| 3795 | |||
| 3796 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
| 3797 | { | ||
| 3798 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3799 | struct perf_sample_data data; | ||
| 3800 | struct perf_counter *counter; | ||
| 3801 | u64 period; | ||
| 3802 | |||
| 3803 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
| 3804 | counter->pmu->read(counter); | ||
| 3805 | |||
| 3806 | data.addr = 0; | ||
| 3807 | data.regs = get_irq_regs(); | ||
| 3808 | /* | ||
| 3809 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3810 | * context, provide the next best thing, the user IP. | ||
| 3811 | */ | ||
| 3812 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
| 3813 | !counter->attr.exclude_user) | ||
| 3814 | data.regs = task_pt_regs(current); | ||
| 3815 | |||
| 3816 | if (data.regs) { | ||
| 3817 | if (perf_counter_overflow(counter, 0, &data)) | ||
| 3818 | ret = HRTIMER_NORESTART; | ||
| 3819 | } | ||
| 3820 | |||
| 3821 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
| 3822 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3823 | |||
| 3824 | return ret; | ||
| 3825 | } | ||
| 3826 | |||
| 3827 | /* | ||
| 3828 | * Software counter: cpu wall time clock | ||
| 3829 | */ | ||
| 3830 | |||
| 3831 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
| 3832 | { | ||
| 3833 | int cpu = raw_smp_processor_id(); | ||
| 3834 | s64 prev; | ||
| 3835 | u64 now; | ||
| 3836 | |||
| 3837 | now = cpu_clock(cpu); | ||
| 3838 | prev = atomic64_read(&counter->hw.prev_count); | ||
| 3839 | atomic64_set(&counter->hw.prev_count, now); | ||
| 3840 | atomic64_add(now - prev, &counter->count); | ||
| 3841 | } | ||
| 3842 | |||
| 3843 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3844 | { | ||
| 3845 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3846 | int cpu = raw_smp_processor_id(); | ||
| 3847 | |||
| 3848 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3849 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3850 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3851 | if (hwc->sample_period) { | ||
| 3852 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3853 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3854 | ns_to_ktime(period), 0, | ||
| 3855 | HRTIMER_MODE_REL, 0); | ||
| 3856 | } | ||
| 3857 | |||
| 3858 | return 0; | ||
| 3859 | } | ||
| 3860 | |||
| 3861 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3862 | { | ||
| 3863 | if (counter->hw.sample_period) | ||
| 3864 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3865 | cpu_clock_perf_counter_update(counter); | ||
| 3866 | } | ||
| 3867 | |||
| 3868 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3869 | { | ||
| 3870 | cpu_clock_perf_counter_update(counter); | ||
| 3871 | } | ||
| 3872 | |||
| 3873 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3874 | .enable = cpu_clock_perf_counter_enable, | ||
| 3875 | .disable = cpu_clock_perf_counter_disable, | ||
| 3876 | .read = cpu_clock_perf_counter_read, | ||
| 3877 | }; | ||
| 3878 | |||
| 3879 | /* | ||
| 3880 | * Software counter: task time clock | ||
| 3881 | */ | ||
| 3882 | |||
| 3883 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
| 3884 | { | ||
| 3885 | u64 prev; | ||
| 3886 | s64 delta; | ||
| 3887 | |||
| 3888 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
| 3889 | delta = now - prev; | ||
| 3890 | atomic64_add(delta, &counter->count); | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3894 | { | ||
| 3895 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3896 | u64 now; | ||
| 3897 | |||
| 3898 | now = counter->ctx->time; | ||
| 3899 | |||
| 3900 | atomic64_set(&hwc->prev_count, now); | ||
| 3901 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3902 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3903 | if (hwc->sample_period) { | ||
| 3904 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3905 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3906 | ns_to_ktime(period), 0, | ||
| 3907 | HRTIMER_MODE_REL, 0); | ||
| 3908 | } | ||
| 3909 | |||
| 3910 | return 0; | ||
| 3911 | } | ||
| 3912 | |||
| 3913 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3914 | { | ||
| 3915 | if (counter->hw.sample_period) | ||
| 3916 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3917 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
| 3918 | |||
| 3919 | } | ||
| 3920 | |||
| 3921 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3922 | { | ||
| 3923 | u64 time; | ||
| 3924 | |||
| 3925 | if (!in_nmi()) { | ||
| 3926 | update_context_time(counter->ctx); | ||
| 3927 | time = counter->ctx->time; | ||
| 3928 | } else { | ||
| 3929 | u64 now = perf_clock(); | ||
| 3930 | u64 delta = now - counter->ctx->timestamp; | ||
| 3931 | time = counter->ctx->time + delta; | ||
| 3932 | } | ||
| 3933 | |||
| 3934 | task_clock_perf_counter_update(counter, time); | ||
| 3935 | } | ||
| 3936 | |||
| 3937 | static const struct pmu perf_ops_task_clock = { | ||
| 3938 | .enable = task_clock_perf_counter_enable, | ||
| 3939 | .disable = task_clock_perf_counter_disable, | ||
| 3940 | .read = task_clock_perf_counter_read, | ||
| 3941 | }; | ||
| 3942 | |||
| 3943 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3944 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | ||
| 3945 | int entry_size) | ||
| 3946 | { | ||
| 3947 | struct perf_raw_record raw = { | ||
| 3948 | .size = entry_size, | ||
| 3949 | .data = record, | ||
| 3950 | }; | ||
| 3951 | |||
| 3952 | struct perf_sample_data data = { | ||
| 3953 | .regs = get_irq_regs(), | ||
| 3954 | .addr = addr, | ||
| 3955 | .raw = &raw, | ||
| 3956 | }; | ||
| 3957 | |||
| 3958 | if (!data.regs) | ||
| 3959 | data.regs = task_pt_regs(current); | ||
| 3960 | |||
| 3961 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data); | ||
| 3962 | } | ||
| 3963 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
| 3964 | |||
| 3965 | extern int ftrace_profile_enable(int); | ||
| 3966 | extern void ftrace_profile_disable(int); | ||
| 3967 | |||
| 3968 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
| 3969 | { | ||
| 3970 | ftrace_profile_disable(counter->attr.config); | ||
| 3971 | } | ||
| 3972 | |||
| 3973 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3974 | { | ||
| 3975 | /* | ||
| 3976 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 3977 | * have these. | ||
| 3978 | */ | ||
| 3979 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 3980 | perf_paranoid_tracepoint_raw() && | ||
| 3981 | !capable(CAP_SYS_ADMIN)) | ||
| 3982 | return ERR_PTR(-EPERM); | ||
| 3983 | |||
| 3984 | if (ftrace_profile_enable(counter->attr.config)) | ||
| 3985 | return NULL; | ||
| 3986 | |||
| 3987 | counter->destroy = tp_perf_counter_destroy; | ||
| 3988 | |||
| 3989 | return &perf_ops_generic; | ||
| 3990 | } | ||
| 3991 | #else | ||
| 3992 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3993 | { | ||
| 3994 | return NULL; | ||
| 3995 | } | ||
| 3996 | #endif | ||
| 3997 | |||
| 3998 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | ||
| 3999 | |||
| 4000 | static void sw_perf_counter_destroy(struct perf_counter *counter) | ||
| 4001 | { | ||
| 4002 | u64 event = counter->attr.config; | ||
| 4003 | |||
| 4004 | WARN_ON(counter->parent); | ||
| 4005 | |||
| 4006 | atomic_dec(&perf_swcounter_enabled[event]); | ||
| 4007 | } | ||
| 4008 | |||
| 4009 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
| 4010 | { | ||
| 4011 | const struct pmu *pmu = NULL; | ||
| 4012 | u64 event = counter->attr.config; | ||
| 4013 | |||
| 4014 | /* | ||
| 4015 | * Software counters (currently) can't in general distinguish | ||
| 4016 | * between user, kernel and hypervisor events. | ||
| 4017 | * However, context switches and cpu migrations are considered | ||
| 4018 | * to be kernel events, and page faults are never hypervisor | ||
| 4019 | * events. | ||
| 4020 | */ | ||
| 4021 | switch (event) { | ||
| 4022 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4023 | pmu = &perf_ops_cpu_clock; | ||
| 4024 | |||
| 4025 | break; | ||
| 4026 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4027 | /* | ||
| 4028 | * If the user instantiates this as a per-cpu counter, | ||
| 4029 | * use the cpu_clock counter instead. | ||
| 4030 | */ | ||
| 4031 | if (counter->ctx->task) | ||
| 4032 | pmu = &perf_ops_task_clock; | ||
| 4033 | else | ||
| 4034 | pmu = &perf_ops_cpu_clock; | ||
| 4035 | |||
| 4036 | break; | ||
| 4037 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4038 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4039 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4040 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4041 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4042 | if (!counter->parent) { | ||
| 4043 | atomic_inc(&perf_swcounter_enabled[event]); | ||
| 4044 | counter->destroy = sw_perf_counter_destroy; | ||
| 4045 | } | ||
| 4046 | pmu = &perf_ops_generic; | ||
| 4047 | break; | ||
| 4048 | } | ||
| 4049 | |||
| 4050 | return pmu; | ||
| 4051 | } | ||
| 4052 | |||
| 4053 | /* | ||
| 4054 | * Allocate and initialize a counter structure | ||
| 4055 | */ | ||
| 4056 | static struct perf_counter * | ||
| 4057 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
| 4058 | int cpu, | ||
| 4059 | struct perf_counter_context *ctx, | ||
| 4060 | struct perf_counter *group_leader, | ||
| 4061 | struct perf_counter *parent_counter, | ||
| 4062 | gfp_t gfpflags) | ||
| 4063 | { | ||
| 4064 | const struct pmu *pmu; | ||
| 4065 | struct perf_counter *counter; | ||
| 4066 | struct hw_perf_counter *hwc; | ||
| 4067 | long err; | ||
| 4068 | |||
| 4069 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
| 4070 | if (!counter) | ||
| 4071 | return ERR_PTR(-ENOMEM); | ||
| 4072 | |||
| 4073 | /* | ||
| 4074 | * Single counters are their own group leaders, with an | ||
| 4075 | * empty sibling list: | ||
| 4076 | */ | ||
| 4077 | if (!group_leader) | ||
| 4078 | group_leader = counter; | ||
| 4079 | |||
| 4080 | mutex_init(&counter->child_mutex); | ||
| 4081 | INIT_LIST_HEAD(&counter->child_list); | ||
| 4082 | |||
| 4083 | INIT_LIST_HEAD(&counter->list_entry); | ||
| 4084 | INIT_LIST_HEAD(&counter->event_entry); | ||
| 4085 | INIT_LIST_HEAD(&counter->sibling_list); | ||
| 4086 | init_waitqueue_head(&counter->waitq); | ||
| 4087 | |||
| 4088 | mutex_init(&counter->mmap_mutex); | ||
| 4089 | |||
| 4090 | counter->cpu = cpu; | ||
| 4091 | counter->attr = *attr; | ||
| 4092 | counter->group_leader = group_leader; | ||
| 4093 | counter->pmu = NULL; | ||
| 4094 | counter->ctx = ctx; | ||
| 4095 | counter->oncpu = -1; | ||
| 4096 | |||
| 4097 | counter->parent = parent_counter; | ||
| 4098 | |||
| 4099 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4100 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
| 4101 | |||
| 4102 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 4103 | |||
| 4104 | if (attr->disabled) | ||
| 4105 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 4106 | |||
| 4107 | pmu = NULL; | ||
| 4108 | |||
| 4109 | hwc = &counter->hw; | ||
| 4110 | hwc->sample_period = attr->sample_period; | ||
| 4111 | if (attr->freq && attr->sample_freq) | ||
| 4112 | hwc->sample_period = 1; | ||
| 4113 | hwc->last_period = hwc->sample_period; | ||
| 4114 | |||
| 4115 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4116 | |||
| 4117 | /* | ||
| 4118 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | ||
| 4119 | */ | ||
| 4120 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4121 | goto done; | ||
| 4122 | |||
| 4123 | switch (attr->type) { | ||
| 4124 | case PERF_TYPE_RAW: | ||
| 4125 | case PERF_TYPE_HARDWARE: | ||
| 4126 | case PERF_TYPE_HW_CACHE: | ||
| 4127 | pmu = hw_perf_counter_init(counter); | ||
| 4128 | break; | ||
| 4129 | |||
| 4130 | case PERF_TYPE_SOFTWARE: | ||
| 4131 | pmu = sw_perf_counter_init(counter); | ||
| 4132 | break; | ||
| 4133 | |||
| 4134 | case PERF_TYPE_TRACEPOINT: | ||
| 4135 | pmu = tp_perf_counter_init(counter); | ||
| 4136 | break; | ||
| 4137 | |||
| 4138 | default: | ||
| 4139 | break; | ||
| 4140 | } | ||
| 4141 | done: | ||
| 4142 | err = 0; | ||
| 4143 | if (!pmu) | ||
| 4144 | err = -EINVAL; | ||
| 4145 | else if (IS_ERR(pmu)) | ||
| 4146 | err = PTR_ERR(pmu); | ||
| 4147 | |||
| 4148 | if (err) { | ||
| 4149 | if (counter->ns) | ||
| 4150 | put_pid_ns(counter->ns); | ||
| 4151 | kfree(counter); | ||
| 4152 | return ERR_PTR(err); | ||
| 4153 | } | ||
| 4154 | |||
| 4155 | counter->pmu = pmu; | ||
| 4156 | |||
| 4157 | if (!counter->parent) { | ||
| 4158 | atomic_inc(&nr_counters); | ||
| 4159 | if (counter->attr.mmap) | ||
| 4160 | atomic_inc(&nr_mmap_counters); | ||
| 4161 | if (counter->attr.comm) | ||
| 4162 | atomic_inc(&nr_comm_counters); | ||
| 4163 | if (counter->attr.task) | ||
| 4164 | atomic_inc(&nr_task_counters); | ||
| 4165 | } | ||
| 4166 | |||
| 4167 | return counter; | ||
| 4168 | } | ||
| 4169 | |||
| 4170 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | ||
| 4171 | struct perf_counter_attr *attr) | ||
| 4172 | { | ||
| 4173 | int ret; | ||
| 4174 | u32 size; | ||
| 4175 | |||
| 4176 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4177 | return -EFAULT; | ||
| 4178 | |||
| 4179 | /* | ||
| 4180 | * zero the full structure, so that a short copy will be nice. | ||
| 4181 | */ | ||
| 4182 | memset(attr, 0, sizeof(*attr)); | ||
| 4183 | |||
| 4184 | ret = get_user(size, &uattr->size); | ||
| 4185 | if (ret) | ||
| 4186 | return ret; | ||
| 4187 | |||
| 4188 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4189 | goto err_size; | ||
| 4190 | |||
| 4191 | if (!size) /* abi compat */ | ||
| 4192 | size = PERF_ATTR_SIZE_VER0; | ||
| 4193 | |||
| 4194 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4195 | goto err_size; | ||
| 4196 | |||
| 4197 | /* | ||
| 4198 | * If we're handed a bigger struct than we know of, | ||
| 4199 | * ensure all the unknown bits are 0. | ||
| 4200 | */ | ||
| 4201 | if (size > sizeof(*attr)) { | ||
| 4202 | unsigned long val; | ||
| 4203 | unsigned long __user *addr; | ||
| 4204 | unsigned long __user *end; | ||
| 4205 | |||
| 4206 | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | ||
| 4207 | sizeof(unsigned long)); | ||
| 4208 | end = PTR_ALIGN((void __user *)uattr + size, | ||
| 4209 | sizeof(unsigned long)); | ||
| 4210 | |||
| 4211 | for (; addr < end; addr += sizeof(unsigned long)) { | ||
| 4212 | ret = get_user(val, addr); | ||
| 4213 | if (ret) | ||
| 4214 | return ret; | ||
| 4215 | if (val) | ||
| 4216 | goto err_size; | ||
| 4217 | } | ||
| 4218 | } | ||
| 4219 | |||
| 4220 | ret = copy_from_user(attr, uattr, size); | ||
| 4221 | if (ret) | ||
| 4222 | return -EFAULT; | ||
| 4223 | |||
| 4224 | /* | ||
| 4225 | * If the type exists, the corresponding creation will verify | ||
| 4226 | * the attr->config. | ||
| 4227 | */ | ||
| 4228 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4229 | return -EINVAL; | ||
| 4230 | |||
| 4231 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4232 | return -EINVAL; | ||
| 4233 | |||
| 4234 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4235 | return -EINVAL; | ||
| 4236 | |||
| 4237 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4238 | return -EINVAL; | ||
| 4239 | |||
| 4240 | out: | ||
| 4241 | return ret; | ||
| 4242 | |||
| 4243 | err_size: | ||
| 4244 | put_user(sizeof(*attr), &uattr->size); | ||
| 4245 | ret = -E2BIG; | ||
| 4246 | goto out; | ||
| 4247 | } | ||
| 4248 | |||
| 4249 | int perf_counter_set_output(struct perf_counter *counter, int output_fd) | ||
| 4250 | { | ||
| 4251 | struct perf_counter *output_counter = NULL; | ||
| 4252 | struct file *output_file = NULL; | ||
| 4253 | struct perf_counter *old_output; | ||
| 4254 | int fput_needed = 0; | ||
| 4255 | int ret = -EINVAL; | ||
| 4256 | |||
| 4257 | if (!output_fd) | ||
| 4258 | goto set; | ||
| 4259 | |||
| 4260 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4261 | if (!output_file) | ||
| 4262 | return -EBADF; | ||
| 4263 | |||
| 4264 | if (output_file->f_op != &perf_fops) | ||
| 4265 | goto out; | ||
| 4266 | |||
| 4267 | output_counter = output_file->private_data; | ||
| 4268 | |||
| 4269 | /* Don't chain output fds */ | ||
| 4270 | if (output_counter->output) | ||
| 4271 | goto out; | ||
| 4272 | |||
| 4273 | /* Don't set an output fd when we already have an output channel */ | ||
| 4274 | if (counter->data) | ||
| 4275 | goto out; | ||
| 4276 | |||
| 4277 | atomic_long_inc(&output_file->f_count); | ||
| 4278 | |||
| 4279 | set: | ||
| 4280 | mutex_lock(&counter->mmap_mutex); | ||
| 4281 | old_output = counter->output; | ||
| 4282 | rcu_assign_pointer(counter->output, output_counter); | ||
| 4283 | mutex_unlock(&counter->mmap_mutex); | ||
| 4284 | |||
| 4285 | if (old_output) { | ||
| 4286 | /* | ||
| 4287 | * we need to make sure no existing perf_output_*() | ||
| 4288 | * is still referencing this counter. | ||
| 4289 | */ | ||
| 4290 | synchronize_rcu(); | ||
| 4291 | fput(old_output->filp); | ||
| 4292 | } | ||
| 4293 | |||
| 4294 | ret = 0; | ||
| 4295 | out: | ||
| 4296 | fput_light(output_file, fput_needed); | ||
| 4297 | return ret; | ||
| 4298 | } | ||
| 4299 | |||
| 4300 | /** | ||
| 4301 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
| 4302 | * | ||
| 4303 | * @attr_uptr: event type attributes for monitoring/sampling | ||
| 4304 | * @pid: target pid | ||
| 4305 | * @cpu: target cpu | ||
| 4306 | * @group_fd: group leader counter fd | ||
| 4307 | */ | ||
| 4308 | SYSCALL_DEFINE5(perf_counter_open, | ||
| 4309 | struct perf_counter_attr __user *, attr_uptr, | ||
| 4310 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4311 | { | ||
| 4312 | struct perf_counter *counter, *group_leader; | ||
| 4313 | struct perf_counter_attr attr; | ||
| 4314 | struct perf_counter_context *ctx; | ||
| 4315 | struct file *counter_file = NULL; | ||
| 4316 | struct file *group_file = NULL; | ||
| 4317 | int fput_needed = 0; | ||
| 4318 | int fput_needed2 = 0; | ||
| 4319 | int err; | ||
| 4320 | |||
| 4321 | /* for future expandability... */ | ||
| 4322 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4323 | return -EINVAL; | ||
| 4324 | |||
| 4325 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4326 | if (err) | ||
| 4327 | return err; | ||
| 4328 | |||
| 4329 | if (!attr.exclude_kernel) { | ||
| 4330 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4331 | return -EACCES; | ||
| 4332 | } | ||
| 4333 | |||
| 4334 | if (attr.freq) { | ||
| 4335 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
| 4336 | return -EINVAL; | ||
| 4337 | } | ||
| 4338 | |||
| 4339 | /* | ||
| 4340 | * Get the target context (task or percpu): | ||
| 4341 | */ | ||
| 4342 | ctx = find_get_context(pid, cpu); | ||
| 4343 | if (IS_ERR(ctx)) | ||
| 4344 | return PTR_ERR(ctx); | ||
| 4345 | |||
| 4346 | /* | ||
| 4347 | * Look up the group leader (we will attach this counter to it): | ||
| 4348 | */ | ||
| 4349 | group_leader = NULL; | ||
| 4350 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4351 | err = -EINVAL; | ||
| 4352 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4353 | if (!group_file) | ||
| 4354 | goto err_put_context; | ||
| 4355 | if (group_file->f_op != &perf_fops) | ||
| 4356 | goto err_put_context; | ||
| 4357 | |||
| 4358 | group_leader = group_file->private_data; | ||
| 4359 | /* | ||
| 4360 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4361 | * becoming part of another group-sibling): | ||
| 4362 | */ | ||
| 4363 | if (group_leader->group_leader != group_leader) | ||
| 4364 | goto err_put_context; | ||
| 4365 | /* | ||
| 4366 | * Do not allow to attach to a group in a different | ||
| 4367 | * task or CPU context: | ||
| 4368 | */ | ||
| 4369 | if (group_leader->ctx != ctx) | ||
| 4370 | goto err_put_context; | ||
| 4371 | /* | ||
| 4372 | * Only a group leader can be exclusive or pinned | ||
| 4373 | */ | ||
| 4374 | if (attr.exclusive || attr.pinned) | ||
| 4375 | goto err_put_context; | ||
| 4376 | } | ||
| 4377 | |||
| 4378 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
| 4379 | NULL, GFP_KERNEL); | ||
| 4380 | err = PTR_ERR(counter); | ||
| 4381 | if (IS_ERR(counter)) | ||
| 4382 | goto err_put_context; | ||
| 4383 | |||
| 4384 | err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
| 4385 | if (err < 0) | ||
| 4386 | goto err_free_put_context; | ||
| 4387 | |||
| 4388 | counter_file = fget_light(err, &fput_needed2); | ||
| 4389 | if (!counter_file) | ||
| 4390 | goto err_free_put_context; | ||
| 4391 | |||
| 4392 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4393 | err = perf_counter_set_output(counter, group_fd); | ||
| 4394 | if (err) | ||
| 4395 | goto err_fput_free_put_context; | ||
| 4396 | } | ||
| 4397 | |||
| 4398 | counter->filp = counter_file; | ||
| 4399 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4400 | mutex_lock(&ctx->mutex); | ||
| 4401 | perf_install_in_context(ctx, counter, cpu); | ||
| 4402 | ++ctx->generation; | ||
| 4403 | mutex_unlock(&ctx->mutex); | ||
| 4404 | |||
| 4405 | counter->owner = current; | ||
| 4406 | get_task_struct(current); | ||
| 4407 | mutex_lock(¤t->perf_counter_mutex); | ||
| 4408 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
| 4409 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 4410 | |||
| 4411 | err_fput_free_put_context: | ||
| 4412 | fput_light(counter_file, fput_needed2); | ||
| 4413 | |||
| 4414 | err_free_put_context: | ||
| 4415 | if (err < 0) | ||
| 4416 | kfree(counter); | ||
| 4417 | |||
| 4418 | err_put_context: | ||
| 4419 | if (err < 0) | ||
| 4420 | put_ctx(ctx); | ||
| 4421 | |||
| 4422 | fput_light(group_file, fput_needed); | ||
| 4423 | |||
| 4424 | return err; | ||
| 4425 | } | ||
| 4426 | |||
| 4427 | /* | ||
| 4428 | * inherit a counter from parent task to child task: | ||
| 4429 | */ | ||
| 4430 | static struct perf_counter * | ||
| 4431 | inherit_counter(struct perf_counter *parent_counter, | ||
| 4432 | struct task_struct *parent, | ||
| 4433 | struct perf_counter_context *parent_ctx, | ||
| 4434 | struct task_struct *child, | ||
| 4435 | struct perf_counter *group_leader, | ||
| 4436 | struct perf_counter_context *child_ctx) | ||
| 4437 | { | ||
| 4438 | struct perf_counter *child_counter; | ||
| 4439 | |||
| 4440 | /* | ||
| 4441 | * Instead of creating recursive hierarchies of counters, | ||
| 4442 | * we link inherited counters back to the original parent, | ||
| 4443 | * which has a filp for sure, which we use as the reference | ||
| 4444 | * count: | ||
| 4445 | */ | ||
| 4446 | if (parent_counter->parent) | ||
| 4447 | parent_counter = parent_counter->parent; | ||
| 4448 | |||
| 4449 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
| 4450 | parent_counter->cpu, child_ctx, | ||
| 4451 | group_leader, parent_counter, | ||
| 4452 | GFP_KERNEL); | ||
| 4453 | if (IS_ERR(child_counter)) | ||
| 4454 | return child_counter; | ||
| 4455 | get_ctx(child_ctx); | ||
| 4456 | |||
| 4457 | /* | ||
| 4458 | * Make the child state follow the state of the parent counter, | ||
| 4459 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4460 | * so we won't race with perf_counter_{en, dis}able_family. | ||
| 4461 | */ | ||
| 4462 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 4463 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 4464 | else | ||
| 4465 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
| 4466 | |||
| 4467 | if (parent_counter->attr.freq) | ||
| 4468 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
| 4469 | |||
| 4470 | /* | ||
| 4471 | * Link it up in the child's context: | ||
| 4472 | */ | ||
| 4473 | add_counter_to_ctx(child_counter, child_ctx); | ||
| 4474 | |||
| 4475 | /* | ||
| 4476 | * Get a reference to the parent filp - we will fput it | ||
| 4477 | * when the child counter exits. This is safe to do because | ||
| 4478 | * we are in the parent and we know that the filp still | ||
| 4479 | * exists and has a nonzero count: | ||
| 4480 | */ | ||
| 4481 | atomic_long_inc(&parent_counter->filp->f_count); | ||
| 4482 | |||
| 4483 | /* | ||
| 4484 | * Link this into the parent counter's child list | ||
| 4485 | */ | ||
| 4486 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 4487 | mutex_lock(&parent_counter->child_mutex); | ||
| 4488 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
| 4489 | mutex_unlock(&parent_counter->child_mutex); | ||
| 4490 | |||
| 4491 | return child_counter; | ||
| 4492 | } | ||
| 4493 | |||
| 4494 | static int inherit_group(struct perf_counter *parent_counter, | ||
| 4495 | struct task_struct *parent, | ||
| 4496 | struct perf_counter_context *parent_ctx, | ||
| 4497 | struct task_struct *child, | ||
| 4498 | struct perf_counter_context *child_ctx) | ||
| 4499 | { | ||
| 4500 | struct perf_counter *leader; | ||
| 4501 | struct perf_counter *sub; | ||
| 4502 | struct perf_counter *child_ctr; | ||
| 4503 | |||
| 4504 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
| 4505 | child, NULL, child_ctx); | ||
| 4506 | if (IS_ERR(leader)) | ||
| 4507 | return PTR_ERR(leader); | ||
| 4508 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
| 4509 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
| 4510 | child, leader, child_ctx); | ||
| 4511 | if (IS_ERR(child_ctr)) | ||
| 4512 | return PTR_ERR(child_ctr); | ||
| 4513 | } | ||
| 4514 | return 0; | ||
| 4515 | } | ||
| 4516 | |||
| 4517 | static void sync_child_counter(struct perf_counter *child_counter, | ||
| 4518 | struct task_struct *child) | ||
| 4519 | { | ||
| 4520 | struct perf_counter *parent_counter = child_counter->parent; | ||
| 4521 | u64 child_val; | ||
| 4522 | |||
| 4523 | if (child_counter->attr.inherit_stat) | ||
| 4524 | perf_counter_read_event(child_counter, child); | ||
| 4525 | |||
| 4526 | child_val = atomic64_read(&child_counter->count); | ||
| 4527 | |||
| 4528 | /* | ||
| 4529 | * Add back the child's count to the parent's count: | ||
| 4530 | */ | ||
| 4531 | atomic64_add(child_val, &parent_counter->count); | ||
| 4532 | atomic64_add(child_counter->total_time_enabled, | ||
| 4533 | &parent_counter->child_total_time_enabled); | ||
| 4534 | atomic64_add(child_counter->total_time_running, | ||
| 4535 | &parent_counter->child_total_time_running); | ||
| 4536 | |||
| 4537 | /* | ||
| 4538 | * Remove this counter from the parent's list | ||
| 4539 | */ | ||
| 4540 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 4541 | mutex_lock(&parent_counter->child_mutex); | ||
| 4542 | list_del_init(&child_counter->child_list); | ||
| 4543 | mutex_unlock(&parent_counter->child_mutex); | ||
| 4544 | |||
| 4545 | /* | ||
| 4546 | * Release the parent counter, if this was the last | ||
| 4547 | * reference to it. | ||
| 4548 | */ | ||
| 4549 | fput(parent_counter->filp); | ||
| 4550 | } | ||
| 4551 | |||
| 4552 | static void | ||
| 4553 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
| 4554 | struct perf_counter_context *child_ctx, | ||
| 4555 | struct task_struct *child) | ||
| 4556 | { | ||
| 4557 | struct perf_counter *parent_counter; | ||
| 4558 | |||
| 4559 | update_counter_times(child_counter); | ||
| 4560 | perf_counter_remove_from_context(child_counter); | ||
| 4561 | |||
| 4562 | parent_counter = child_counter->parent; | ||
| 4563 | /* | ||
| 4564 | * It can happen that parent exits first, and has counters | ||
| 4565 | * that are still around due to the child reference. These | ||
| 4566 | * counters need to be zapped - but otherwise linger. | ||
| 4567 | */ | ||
| 4568 | if (parent_counter) { | ||
| 4569 | sync_child_counter(child_counter, child); | ||
| 4570 | free_counter(child_counter); | ||
| 4571 | } | ||
| 4572 | } | ||
| 4573 | |||
| 4574 | /* | ||
| 4575 | * When a child task exits, feed back counter values to parent counters. | ||
| 4576 | */ | ||
| 4577 | void perf_counter_exit_task(struct task_struct *child) | ||
| 4578 | { | ||
| 4579 | struct perf_counter *child_counter, *tmp; | ||
| 4580 | struct perf_counter_context *child_ctx; | ||
| 4581 | unsigned long flags; | ||
| 4582 | |||
| 4583 | if (likely(!child->perf_counter_ctxp)) { | ||
| 4584 | perf_counter_task(child, NULL, 0); | ||
| 4585 | return; | ||
| 4586 | } | ||
| 4587 | |||
| 4588 | local_irq_save(flags); | ||
| 4589 | /* | ||
| 4590 | * We can't reschedule here because interrupts are disabled, | ||
| 4591 | * and either child is current or it is a task that can't be | ||
| 4592 | * scheduled, so we are now safe from rescheduling changing | ||
| 4593 | * our context. | ||
| 4594 | */ | ||
| 4595 | child_ctx = child->perf_counter_ctxp; | ||
| 4596 | __perf_counter_task_sched_out(child_ctx); | ||
| 4597 | |||
| 4598 | /* | ||
| 4599 | * Take the context lock here so that if find_get_context is | ||
| 4600 | * reading child->perf_counter_ctxp, we wait until it has | ||
| 4601 | * incremented the context's refcount before we do put_ctx below. | ||
| 4602 | */ | ||
| 4603 | spin_lock(&child_ctx->lock); | ||
| 4604 | child->perf_counter_ctxp = NULL; | ||
| 4605 | /* | ||
| 4606 | * If this context is a clone; unclone it so it can't get | ||
| 4607 | * swapped to another process while we're removing all | ||
| 4608 | * the counters from it. | ||
| 4609 | */ | ||
| 4610 | unclone_ctx(child_ctx); | ||
| 4611 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 4612 | |||
| 4613 | /* | ||
| 4614 | * Report the task dead after unscheduling the counters so that we | ||
| 4615 | * won't get any samples after PERF_EVENT_EXIT. We can however still | ||
| 4616 | * get a few PERF_EVENT_READ events. | ||
| 4617 | */ | ||
| 4618 | perf_counter_task(child, child_ctx, 0); | ||
| 4619 | |||
| 4620 | /* | ||
| 4621 | * We can recurse on the same lock type through: | ||
| 4622 | * | ||
| 4623 | * __perf_counter_exit_task() | ||
| 4624 | * sync_child_counter() | ||
| 4625 | * fput(parent_counter->filp) | ||
| 4626 | * perf_release() | ||
| 4627 | * mutex_lock(&ctx->mutex) | ||
| 4628 | * | ||
| 4629 | * But since its the parent context it won't be the same instance. | ||
| 4630 | */ | ||
| 4631 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4632 | |||
| 4633 | again: | ||
| 4634 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
| 4635 | list_entry) | ||
| 4636 | __perf_counter_exit_task(child_counter, child_ctx, child); | ||
| 4637 | |||
| 4638 | /* | ||
| 4639 | * If the last counter was a group counter, it will have appended all | ||
| 4640 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4641 | * will still point to the list head terminating the iteration. | ||
| 4642 | */ | ||
| 4643 | if (!list_empty(&child_ctx->counter_list)) | ||
| 4644 | goto again; | ||
| 4645 | |||
| 4646 | mutex_unlock(&child_ctx->mutex); | ||
| 4647 | |||
| 4648 | put_ctx(child_ctx); | ||
| 4649 | } | ||
| 4650 | |||
| 4651 | /* | ||
| 4652 | * free an unexposed, unused context as created by inheritance by | ||
| 4653 | * init_task below, used by fork() in case of fail. | ||
| 4654 | */ | ||
| 4655 | void perf_counter_free_task(struct task_struct *task) | ||
| 4656 | { | ||
| 4657 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 4658 | struct perf_counter *counter, *tmp; | ||
| 4659 | |||
| 4660 | if (!ctx) | ||
| 4661 | return; | ||
| 4662 | |||
| 4663 | mutex_lock(&ctx->mutex); | ||
| 4664 | again: | ||
| 4665 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
| 4666 | struct perf_counter *parent = counter->parent; | ||
| 4667 | |||
| 4668 | if (WARN_ON_ONCE(!parent)) | ||
| 4669 | continue; | ||
| 4670 | |||
| 4671 | mutex_lock(&parent->child_mutex); | ||
| 4672 | list_del_init(&counter->child_list); | ||
| 4673 | mutex_unlock(&parent->child_mutex); | ||
| 4674 | |||
| 4675 | fput(parent->filp); | ||
| 4676 | |||
| 4677 | list_del_counter(counter, ctx); | ||
| 4678 | free_counter(counter); | ||
| 4679 | } | ||
| 4680 | |||
| 4681 | if (!list_empty(&ctx->counter_list)) | ||
| 4682 | goto again; | ||
| 4683 | |||
| 4684 | mutex_unlock(&ctx->mutex); | ||
| 4685 | |||
| 4686 | put_ctx(ctx); | ||
| 4687 | } | ||
| 4688 | |||
| 4689 | /* | ||
| 4690 | * Initialize the perf_counter context in task_struct | ||
| 4691 | */ | ||
| 4692 | int perf_counter_init_task(struct task_struct *child) | ||
| 4693 | { | ||
| 4694 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
| 4695 | struct perf_counter_context *cloned_ctx; | ||
| 4696 | struct perf_counter *counter; | ||
| 4697 | struct task_struct *parent = current; | ||
| 4698 | int inherited_all = 1; | ||
| 4699 | int ret = 0; | ||
| 4700 | |||
| 4701 | child->perf_counter_ctxp = NULL; | ||
| 4702 | |||
| 4703 | mutex_init(&child->perf_counter_mutex); | ||
| 4704 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
| 4705 | |||
| 4706 | if (likely(!parent->perf_counter_ctxp)) | ||
| 4707 | return 0; | ||
| 4708 | |||
| 4709 | /* | ||
| 4710 | * This is executed from the parent task context, so inherit | ||
| 4711 | * counters that have been marked for cloning. | ||
| 4712 | * First allocate and initialize a context for the child. | ||
| 4713 | */ | ||
| 4714 | |||
| 4715 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 4716 | if (!child_ctx) | ||
| 4717 | return -ENOMEM; | ||
| 4718 | |||
| 4719 | __perf_counter_init_context(child_ctx, child); | ||
| 4720 | child->perf_counter_ctxp = child_ctx; | ||
| 4721 | get_task_struct(child); | ||
| 4722 | |||
| 4723 | /* | ||
| 4724 | * If the parent's context is a clone, pin it so it won't get | ||
| 4725 | * swapped under us. | ||
| 4726 | */ | ||
| 4727 | parent_ctx = perf_pin_task_context(parent); | ||
| 4728 | |||
| 4729 | /* | ||
| 4730 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4731 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4732 | * is if we exit, and since we're currently in the middle of | ||
| 4733 | * a fork we can't be exiting at the same time. | ||
| 4734 | */ | ||
| 4735 | |||
| 4736 | /* | ||
| 4737 | * Lock the parent list. No need to lock the child - not PID | ||
| 4738 | * hashed yet and not running, so nobody can access it. | ||
| 4739 | */ | ||
| 4740 | mutex_lock(&parent_ctx->mutex); | ||
| 4741 | |||
| 4742 | /* | ||
| 4743 | * We dont have to disable NMIs - we are only looking at | ||
| 4744 | * the list, not manipulating it: | ||
| 4745 | */ | ||
| 4746 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
| 4747 | if (counter != counter->group_leader) | ||
| 4748 | continue; | ||
| 4749 | |||
| 4750 | if (!counter->attr.inherit) { | ||
| 4751 | inherited_all = 0; | ||
| 4752 | continue; | ||
| 4753 | } | ||
| 4754 | |||
| 4755 | ret = inherit_group(counter, parent, parent_ctx, | ||
| 4756 | child, child_ctx); | ||
| 4757 | if (ret) { | ||
| 4758 | inherited_all = 0; | ||
| 4759 | break; | ||
| 4760 | } | ||
| 4761 | } | ||
| 4762 | |||
| 4763 | if (inherited_all) { | ||
| 4764 | /* | ||
| 4765 | * Mark the child context as a clone of the parent | ||
| 4766 | * context, or of whatever the parent is a clone of. | ||
| 4767 | * Note that if the parent is a clone, it could get | ||
| 4768 | * uncloned at any point, but that doesn't matter | ||
| 4769 | * because the list of counters and the generation | ||
| 4770 | * count can't have changed since we took the mutex. | ||
| 4771 | */ | ||
| 4772 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4773 | if (cloned_ctx) { | ||
| 4774 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4775 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4776 | } else { | ||
| 4777 | child_ctx->parent_ctx = parent_ctx; | ||
| 4778 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4779 | } | ||
| 4780 | get_ctx(child_ctx->parent_ctx); | ||
| 4781 | } | ||
| 4782 | |||
| 4783 | mutex_unlock(&parent_ctx->mutex); | ||
| 4784 | |||
| 4785 | perf_unpin_context(parent_ctx); | ||
| 4786 | |||
| 4787 | return ret; | ||
| 4788 | } | ||
| 4789 | |||
| 4790 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
| 4791 | { | ||
| 4792 | struct perf_cpu_context *cpuctx; | ||
| 4793 | |||
| 4794 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4795 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
| 4796 | |||
| 4797 | spin_lock(&perf_resource_lock); | ||
| 4798 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
| 4799 | spin_unlock(&perf_resource_lock); | ||
| 4800 | |||
| 4801 | hw_perf_counter_setup(cpu); | ||
| 4802 | } | ||
| 4803 | |||
| 4804 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4805 | static void __perf_counter_exit_cpu(void *info) | ||
| 4806 | { | ||
| 4807 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4808 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4809 | struct perf_counter *counter, *tmp; | ||
| 4810 | |||
| 4811 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
| 4812 | __perf_counter_remove_from_context(counter); | ||
| 4813 | } | ||
| 4814 | static void perf_counter_exit_cpu(int cpu) | ||
| 4815 | { | ||
| 4816 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4817 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4818 | |||
| 4819 | mutex_lock(&ctx->mutex); | ||
| 4820 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
| 4821 | mutex_unlock(&ctx->mutex); | ||
| 4822 | } | ||
| 4823 | #else | ||
| 4824 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
| 4825 | #endif | ||
| 4826 | |||
| 4827 | static int __cpuinit | ||
| 4828 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4829 | { | ||
| 4830 | unsigned int cpu = (long)hcpu; | ||
| 4831 | |||
| 4832 | switch (action) { | ||
| 4833 | |||
| 4834 | case CPU_UP_PREPARE: | ||
| 4835 | case CPU_UP_PREPARE_FROZEN: | ||
| 4836 | perf_counter_init_cpu(cpu); | ||
| 4837 | break; | ||
| 4838 | |||
| 4839 | case CPU_ONLINE: | ||
| 4840 | case CPU_ONLINE_FROZEN: | ||
| 4841 | hw_perf_counter_setup_online(cpu); | ||
| 4842 | break; | ||
| 4843 | |||
| 4844 | case CPU_DOWN_PREPARE: | ||
| 4845 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4846 | perf_counter_exit_cpu(cpu); | ||
| 4847 | break; | ||
| 4848 | |||
| 4849 | default: | ||
| 4850 | break; | ||
| 4851 | } | ||
| 4852 | |||
| 4853 | return NOTIFY_OK; | ||
| 4854 | } | ||
| 4855 | |||
| 4856 | /* | ||
| 4857 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4858 | */ | ||
| 4859 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4860 | .notifier_call = perf_cpu_notify, | ||
| 4861 | .priority = 20, | ||
| 4862 | }; | ||
| 4863 | |||
| 4864 | void __init perf_counter_init(void) | ||
| 4865 | { | ||
| 4866 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4867 | (void *)(long)smp_processor_id()); | ||
| 4868 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 4869 | (void *)(long)smp_processor_id()); | ||
| 4870 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4871 | } | ||
| 4872 | |||
| 4873 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4874 | { | ||
| 4875 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4876 | } | ||
| 4877 | |||
| 4878 | static ssize_t | ||
| 4879 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4880 | const char *buf, | ||
| 4881 | size_t count) | ||
| 4882 | { | ||
| 4883 | struct perf_cpu_context *cpuctx; | ||
| 4884 | unsigned long val; | ||
| 4885 | int err, cpu, mpt; | ||
| 4886 | |||
| 4887 | err = strict_strtoul(buf, 10, &val); | ||
| 4888 | if (err) | ||
| 4889 | return err; | ||
| 4890 | if (val > perf_max_counters) | ||
| 4891 | return -EINVAL; | ||
| 4892 | |||
| 4893 | spin_lock(&perf_resource_lock); | ||
| 4894 | perf_reserved_percpu = val; | ||
| 4895 | for_each_online_cpu(cpu) { | ||
| 4896 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4897 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4898 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
| 4899 | perf_max_counters - perf_reserved_percpu); | ||
| 4900 | cpuctx->max_pertask = mpt; | ||
| 4901 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4902 | } | ||
| 4903 | spin_unlock(&perf_resource_lock); | ||
| 4904 | |||
| 4905 | return count; | ||
| 4906 | } | ||
| 4907 | |||
| 4908 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4909 | { | ||
| 4910 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4911 | } | ||
| 4912 | |||
| 4913 | static ssize_t | ||
| 4914 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4915 | { | ||
| 4916 | unsigned long val; | ||
| 4917 | int err; | ||
| 4918 | |||
| 4919 | err = strict_strtoul(buf, 10, &val); | ||
| 4920 | if (err) | ||
| 4921 | return err; | ||
| 4922 | if (val > 1) | ||
| 4923 | return -EINVAL; | ||
| 4924 | |||
| 4925 | spin_lock(&perf_resource_lock); | ||
| 4926 | perf_overcommit = val; | ||
| 4927 | spin_unlock(&perf_resource_lock); | ||
| 4928 | |||
| 4929 | return count; | ||
| 4930 | } | ||
| 4931 | |||
| 4932 | static SYSDEV_CLASS_ATTR( | ||
| 4933 | reserve_percpu, | ||
| 4934 | 0644, | ||
| 4935 | perf_show_reserve_percpu, | ||
| 4936 | perf_set_reserve_percpu | ||
| 4937 | ); | ||
| 4938 | |||
| 4939 | static SYSDEV_CLASS_ATTR( | ||
| 4940 | overcommit, | ||
| 4941 | 0644, | ||
| 4942 | perf_show_overcommit, | ||
| 4943 | perf_set_overcommit | ||
| 4944 | ); | ||
| 4945 | |||
| 4946 | static struct attribute *perfclass_attrs[] = { | ||
| 4947 | &attr_reserve_percpu.attr, | ||
| 4948 | &attr_overcommit.attr, | ||
| 4949 | NULL | ||
| 4950 | }; | ||
| 4951 | |||
| 4952 | static struct attribute_group perfclass_attr_group = { | ||
| 4953 | .attrs = perfclass_attrs, | ||
| 4954 | .name = "perf_counters", | ||
| 4955 | }; | ||
| 4956 | |||
| 4957 | static int __init perf_counter_sysfs_init(void) | ||
| 4958 | { | ||
| 4959 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4960 | &perfclass_attr_group); | ||
| 4961 | } | ||
| 4962 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..6b7ddba1dd64 --- /dev/null +++ b/kernel/perf_event.c | |||
| @@ -0,0 +1,5359 @@ | |||
| 1 | /* | ||
| 2 | * Performance events core code: | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/vmalloc.h> | ||
| 24 | #include <linux/hardirq.h> | ||
| 25 | #include <linux/rculist.h> | ||
| 26 | #include <linux/uaccess.h> | ||
| 27 | #include <linux/syscalls.h> | ||
| 28 | #include <linux/anon_inodes.h> | ||
| 29 | #include <linux/kernel_stat.h> | ||
| 30 | #include <linux/perf_event.h> | ||
| 31 | #include <linux/ftrace_event.h> | ||
| 32 | #include <linux/hw_breakpoint.h> | ||
| 33 | |||
| 34 | #include <asm/irq_regs.h> | ||
| 35 | |||
| 36 | /* | ||
| 37 | * Each CPU has a list of per CPU events: | ||
| 38 | */ | ||
| 39 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 40 | |||
| 41 | int perf_max_events __read_mostly = 1; | ||
| 42 | static int perf_reserved_percpu __read_mostly; | ||
| 43 | static int perf_overcommit __read_mostly = 1; | ||
| 44 | |||
| 45 | static atomic_t nr_events __read_mostly; | ||
| 46 | static atomic_t nr_mmap_events __read_mostly; | ||
| 47 | static atomic_t nr_comm_events __read_mostly; | ||
| 48 | static atomic_t nr_task_events __read_mostly; | ||
| 49 | |||
| 50 | /* | ||
| 51 | * perf event paranoia level: | ||
| 52 | * -1 - not paranoid at all | ||
| 53 | * 0 - disallow raw tracepoint access for unpriv | ||
| 54 | * 1 - disallow cpu events for unpriv | ||
| 55 | * 2 - disallow kernel profiling for unpriv | ||
| 56 | */ | ||
| 57 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
| 58 | |||
| 59 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 60 | { | ||
| 61 | return sysctl_perf_event_paranoid > -1; | ||
| 62 | } | ||
| 63 | |||
| 64 | static inline bool perf_paranoid_cpu(void) | ||
| 65 | { | ||
| 66 | return sysctl_perf_event_paranoid > 0; | ||
| 67 | } | ||
| 68 | |||
| 69 | static inline bool perf_paranoid_kernel(void) | ||
| 70 | { | ||
| 71 | return sysctl_perf_event_paranoid > 1; | ||
| 72 | } | ||
| 73 | |||
| 74 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 75 | |||
| 76 | /* | ||
| 77 | * max perf event sample rate | ||
| 78 | */ | ||
| 79 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
| 80 | |||
| 81 | static atomic64_t perf_event_id; | ||
| 82 | |||
| 83 | /* | ||
| 84 | * Lock for (sysadmin-configurable) event reservations: | ||
| 85 | */ | ||
| 86 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 87 | |||
| 88 | /* | ||
| 89 | * Architecture provided APIs - weak aliases: | ||
| 90 | */ | ||
| 91 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
| 92 | { | ||
| 93 | return NULL; | ||
| 94 | } | ||
| 95 | |||
| 96 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 97 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 98 | |||
| 99 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
| 100 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
| 101 | |||
| 102 | int __weak | ||
| 103 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
| 104 | struct perf_cpu_context *cpuctx, | ||
| 105 | struct perf_event_context *ctx, int cpu) | ||
| 106 | { | ||
| 107 | return 0; | ||
| 108 | } | ||
| 109 | |||
| 110 | void __weak perf_event_print_debug(void) { } | ||
| 111 | |||
| 112 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
| 113 | |||
| 114 | void __perf_disable(void) | ||
| 115 | { | ||
| 116 | __get_cpu_var(perf_disable_count)++; | ||
| 117 | } | ||
| 118 | |||
| 119 | bool __perf_enable(void) | ||
| 120 | { | ||
| 121 | return !--__get_cpu_var(perf_disable_count); | ||
| 122 | } | ||
| 123 | |||
| 124 | void perf_disable(void) | ||
| 125 | { | ||
| 126 | __perf_disable(); | ||
| 127 | hw_perf_disable(); | ||
| 128 | } | ||
| 129 | |||
| 130 | void perf_enable(void) | ||
| 131 | { | ||
| 132 | if (__perf_enable()) | ||
| 133 | hw_perf_enable(); | ||
| 134 | } | ||
| 135 | |||
| 136 | static void get_ctx(struct perf_event_context *ctx) | ||
| 137 | { | ||
| 138 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 139 | } | ||
| 140 | |||
| 141 | static void free_ctx(struct rcu_head *head) | ||
| 142 | { | ||
| 143 | struct perf_event_context *ctx; | ||
| 144 | |||
| 145 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
| 146 | kfree(ctx); | ||
| 147 | } | ||
| 148 | |||
| 149 | static void put_ctx(struct perf_event_context *ctx) | ||
| 150 | { | ||
| 151 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 152 | if (ctx->parent_ctx) | ||
| 153 | put_ctx(ctx->parent_ctx); | ||
| 154 | if (ctx->task) | ||
| 155 | put_task_struct(ctx->task); | ||
| 156 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 157 | } | ||
| 158 | } | ||
| 159 | |||
| 160 | static void unclone_ctx(struct perf_event_context *ctx) | ||
| 161 | { | ||
| 162 | if (ctx->parent_ctx) { | ||
| 163 | put_ctx(ctx->parent_ctx); | ||
| 164 | ctx->parent_ctx = NULL; | ||
| 165 | } | ||
| 166 | } | ||
| 167 | |||
| 168 | /* | ||
| 169 | * If we inherit events we want to return the parent event id | ||
| 170 | * to userspace. | ||
| 171 | */ | ||
| 172 | static u64 primary_event_id(struct perf_event *event) | ||
| 173 | { | ||
| 174 | u64 id = event->id; | ||
| 175 | |||
| 176 | if (event->parent) | ||
| 177 | id = event->parent->id; | ||
| 178 | |||
| 179 | return id; | ||
| 180 | } | ||
| 181 | |||
| 182 | /* | ||
| 183 | * Get the perf_event_context for a task and lock it. | ||
| 184 | * This has to cope with with the fact that until it is locked, | ||
| 185 | * the context could get moved to another task. | ||
| 186 | */ | ||
| 187 | static struct perf_event_context * | ||
| 188 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 189 | { | ||
| 190 | struct perf_event_context *ctx; | ||
| 191 | |||
| 192 | rcu_read_lock(); | ||
| 193 | retry: | ||
| 194 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
| 195 | if (ctx) { | ||
| 196 | /* | ||
| 197 | * If this context is a clone of another, it might | ||
| 198 | * get swapped for another underneath us by | ||
| 199 | * perf_event_task_sched_out, though the | ||
| 200 | * rcu_read_lock() protects us from any context | ||
| 201 | * getting freed. Lock the context and check if it | ||
| 202 | * got swapped before we could get the lock, and retry | ||
| 203 | * if so. If we locked the right context, then it | ||
| 204 | * can't get swapped on us any more. | ||
| 205 | */ | ||
| 206 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 207 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
| 208 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 209 | goto retry; | ||
| 210 | } | ||
| 211 | |||
| 212 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 213 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 214 | ctx = NULL; | ||
| 215 | } | ||
| 216 | } | ||
| 217 | rcu_read_unlock(); | ||
| 218 | return ctx; | ||
| 219 | } | ||
| 220 | |||
| 221 | /* | ||
| 222 | * Get the context for a task and increment its pin_count so it | ||
| 223 | * can't get swapped to another task. This also increments its | ||
| 224 | * reference count so that the context can't get freed. | ||
| 225 | */ | ||
| 226 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
| 227 | { | ||
| 228 | struct perf_event_context *ctx; | ||
| 229 | unsigned long flags; | ||
| 230 | |||
| 231 | ctx = perf_lock_task_context(task, &flags); | ||
| 232 | if (ctx) { | ||
| 233 | ++ctx->pin_count; | ||
| 234 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 235 | } | ||
| 236 | return ctx; | ||
| 237 | } | ||
| 238 | |||
| 239 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
| 240 | { | ||
| 241 | unsigned long flags; | ||
| 242 | |||
| 243 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 244 | --ctx->pin_count; | ||
| 245 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 246 | put_ctx(ctx); | ||
| 247 | } | ||
| 248 | |||
| 249 | static inline u64 perf_clock(void) | ||
| 250 | { | ||
| 251 | return cpu_clock(smp_processor_id()); | ||
| 252 | } | ||
| 253 | |||
| 254 | /* | ||
| 255 | * Update the record of the current time in a context. | ||
| 256 | */ | ||
| 257 | static void update_context_time(struct perf_event_context *ctx) | ||
| 258 | { | ||
| 259 | u64 now = perf_clock(); | ||
| 260 | |||
| 261 | ctx->time += now - ctx->timestamp; | ||
| 262 | ctx->timestamp = now; | ||
| 263 | } | ||
| 264 | |||
| 265 | /* | ||
| 266 | * Update the total_time_enabled and total_time_running fields for a event. | ||
| 267 | */ | ||
| 268 | static void update_event_times(struct perf_event *event) | ||
| 269 | { | ||
| 270 | struct perf_event_context *ctx = event->ctx; | ||
| 271 | u64 run_end; | ||
| 272 | |||
| 273 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
| 274 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
| 275 | return; | ||
| 276 | |||
| 277 | if (ctx->is_active) | ||
| 278 | run_end = ctx->time; | ||
| 279 | else | ||
| 280 | run_end = event->tstamp_stopped; | ||
| 281 | |||
| 282 | event->total_time_enabled = run_end - event->tstamp_enabled; | ||
| 283 | |||
| 284 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
| 285 | run_end = event->tstamp_stopped; | ||
| 286 | else | ||
| 287 | run_end = ctx->time; | ||
| 288 | |||
| 289 | event->total_time_running = run_end - event->tstamp_running; | ||
| 290 | } | ||
| 291 | |||
| 292 | /* | ||
| 293 | * Add a event from the lists for its context. | ||
| 294 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 295 | */ | ||
| 296 | static void | ||
| 297 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 298 | { | ||
| 299 | struct perf_event *group_leader = event->group_leader; | ||
| 300 | |||
| 301 | /* | ||
| 302 | * Depending on whether it is a standalone or sibling event, | ||
| 303 | * add it straight to the context's event list, or to the group | ||
| 304 | * leader's sibling list: | ||
| 305 | */ | ||
| 306 | if (group_leader == event) | ||
| 307 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
| 308 | else { | ||
| 309 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
| 310 | group_leader->nr_siblings++; | ||
| 311 | } | ||
| 312 | |||
| 313 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
| 314 | ctx->nr_events++; | ||
| 315 | if (event->attr.inherit_stat) | ||
| 316 | ctx->nr_stat++; | ||
| 317 | } | ||
| 318 | |||
| 319 | /* | ||
| 320 | * Remove a event from the lists for its context. | ||
| 321 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 322 | */ | ||
| 323 | static void | ||
| 324 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 325 | { | ||
| 326 | struct perf_event *sibling, *tmp; | ||
| 327 | |||
| 328 | if (list_empty(&event->group_entry)) | ||
| 329 | return; | ||
| 330 | ctx->nr_events--; | ||
| 331 | if (event->attr.inherit_stat) | ||
| 332 | ctx->nr_stat--; | ||
| 333 | |||
| 334 | list_del_init(&event->group_entry); | ||
| 335 | list_del_rcu(&event->event_entry); | ||
| 336 | |||
| 337 | if (event->group_leader != event) | ||
| 338 | event->group_leader->nr_siblings--; | ||
| 339 | |||
| 340 | update_event_times(event); | ||
| 341 | |||
| 342 | /* | ||
| 343 | * If event was in error state, then keep it | ||
| 344 | * that way, otherwise bogus counts will be | ||
| 345 | * returned on read(). The only way to get out | ||
| 346 | * of error state is by explicit re-enabling | ||
| 347 | * of the event | ||
| 348 | */ | ||
| 349 | if (event->state > PERF_EVENT_STATE_OFF) | ||
| 350 | event->state = PERF_EVENT_STATE_OFF; | ||
| 351 | |||
| 352 | /* | ||
| 353 | * If this was a group event with sibling events then | ||
| 354 | * upgrade the siblings to singleton events by adding them | ||
| 355 | * to the context list directly: | ||
| 356 | */ | ||
| 357 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
| 358 | |||
| 359 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
| 360 | sibling->group_leader = sibling; | ||
| 361 | } | ||
| 362 | } | ||
| 363 | |||
| 364 | static void | ||
| 365 | event_sched_out(struct perf_event *event, | ||
| 366 | struct perf_cpu_context *cpuctx, | ||
| 367 | struct perf_event_context *ctx) | ||
| 368 | { | ||
| 369 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 370 | return; | ||
| 371 | |||
| 372 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 373 | if (event->pending_disable) { | ||
| 374 | event->pending_disable = 0; | ||
| 375 | event->state = PERF_EVENT_STATE_OFF; | ||
| 376 | } | ||
| 377 | event->tstamp_stopped = ctx->time; | ||
| 378 | event->pmu->disable(event); | ||
| 379 | event->oncpu = -1; | ||
| 380 | |||
| 381 | if (!is_software_event(event)) | ||
| 382 | cpuctx->active_oncpu--; | ||
| 383 | ctx->nr_active--; | ||
| 384 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
| 385 | cpuctx->exclusive = 0; | ||
| 386 | } | ||
| 387 | |||
| 388 | static void | ||
| 389 | group_sched_out(struct perf_event *group_event, | ||
| 390 | struct perf_cpu_context *cpuctx, | ||
| 391 | struct perf_event_context *ctx) | ||
| 392 | { | ||
| 393 | struct perf_event *event; | ||
| 394 | |||
| 395 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 396 | return; | ||
| 397 | |||
| 398 | event_sched_out(group_event, cpuctx, ctx); | ||
| 399 | |||
| 400 | /* | ||
| 401 | * Schedule out siblings (if any): | ||
| 402 | */ | ||
| 403 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
| 404 | event_sched_out(event, cpuctx, ctx); | ||
| 405 | |||
| 406 | if (group_event->attr.exclusive) | ||
| 407 | cpuctx->exclusive = 0; | ||
| 408 | } | ||
| 409 | |||
| 410 | /* | ||
| 411 | * Cross CPU call to remove a performance event | ||
| 412 | * | ||
| 413 | * We disable the event on the hardware level first. After that we | ||
| 414 | * remove it from the context list. | ||
| 415 | */ | ||
| 416 | static void __perf_event_remove_from_context(void *info) | ||
| 417 | { | ||
| 418 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 419 | struct perf_event *event = info; | ||
| 420 | struct perf_event_context *ctx = event->ctx; | ||
| 421 | |||
| 422 | /* | ||
| 423 | * If this is a task context, we need to check whether it is | ||
| 424 | * the current task context of this cpu. If not it has been | ||
| 425 | * scheduled out before the smp call arrived. | ||
| 426 | */ | ||
| 427 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 428 | return; | ||
| 429 | |||
| 430 | spin_lock(&ctx->lock); | ||
| 431 | /* | ||
| 432 | * Protect the list operation against NMI by disabling the | ||
| 433 | * events on a global level. | ||
| 434 | */ | ||
| 435 | perf_disable(); | ||
| 436 | |||
| 437 | event_sched_out(event, cpuctx, ctx); | ||
| 438 | |||
| 439 | list_del_event(event, ctx); | ||
| 440 | |||
| 441 | if (!ctx->task) { | ||
| 442 | /* | ||
| 443 | * Allow more per task events with respect to the | ||
| 444 | * reservation: | ||
| 445 | */ | ||
| 446 | cpuctx->max_pertask = | ||
| 447 | min(perf_max_events - ctx->nr_events, | ||
| 448 | perf_max_events - perf_reserved_percpu); | ||
| 449 | } | ||
| 450 | |||
| 451 | perf_enable(); | ||
| 452 | spin_unlock(&ctx->lock); | ||
| 453 | } | ||
| 454 | |||
| 455 | |||
| 456 | /* | ||
| 457 | * Remove the event from a task's (or a CPU's) list of events. | ||
| 458 | * | ||
| 459 | * Must be called with ctx->mutex held. | ||
| 460 | * | ||
| 461 | * CPU events are removed with a smp call. For task events we only | ||
| 462 | * call when the task is on a CPU. | ||
| 463 | * | ||
| 464 | * If event->ctx is a cloned context, callers must make sure that | ||
| 465 | * every task struct that event->ctx->task could possibly point to | ||
| 466 | * remains valid. This is OK when called from perf_release since | ||
| 467 | * that only calls us on the top-level context, which can't be a clone. | ||
| 468 | * When called from perf_event_exit_task, it's OK because the | ||
| 469 | * context has been detached from its task. | ||
| 470 | */ | ||
| 471 | static void perf_event_remove_from_context(struct perf_event *event) | ||
| 472 | { | ||
| 473 | struct perf_event_context *ctx = event->ctx; | ||
| 474 | struct task_struct *task = ctx->task; | ||
| 475 | |||
| 476 | if (!task) { | ||
| 477 | /* | ||
| 478 | * Per cpu events are removed via an smp call and | ||
| 479 | * the removal is always sucessful. | ||
| 480 | */ | ||
| 481 | smp_call_function_single(event->cpu, | ||
| 482 | __perf_event_remove_from_context, | ||
| 483 | event, 1); | ||
| 484 | return; | ||
| 485 | } | ||
| 486 | |||
| 487 | retry: | ||
| 488 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
| 489 | event); | ||
| 490 | |||
| 491 | spin_lock_irq(&ctx->lock); | ||
| 492 | /* | ||
| 493 | * If the context is active we need to retry the smp call. | ||
| 494 | */ | ||
| 495 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
| 496 | spin_unlock_irq(&ctx->lock); | ||
| 497 | goto retry; | ||
| 498 | } | ||
| 499 | |||
| 500 | /* | ||
| 501 | * The lock prevents that this context is scheduled in so we | ||
| 502 | * can remove the event safely, if the call above did not | ||
| 503 | * succeed. | ||
| 504 | */ | ||
| 505 | if (!list_empty(&event->group_entry)) | ||
| 506 | list_del_event(event, ctx); | ||
| 507 | spin_unlock_irq(&ctx->lock); | ||
| 508 | } | ||
| 509 | |||
| 510 | /* | ||
| 511 | * Update total_time_enabled and total_time_running for all events in a group. | ||
| 512 | */ | ||
| 513 | static void update_group_times(struct perf_event *leader) | ||
| 514 | { | ||
| 515 | struct perf_event *event; | ||
| 516 | |||
| 517 | update_event_times(leader); | ||
| 518 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 519 | update_event_times(event); | ||
| 520 | } | ||
| 521 | |||
| 522 | /* | ||
| 523 | * Cross CPU call to disable a performance event | ||
| 524 | */ | ||
| 525 | static void __perf_event_disable(void *info) | ||
| 526 | { | ||
| 527 | struct perf_event *event = info; | ||
| 528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 529 | struct perf_event_context *ctx = event->ctx; | ||
| 530 | |||
| 531 | /* | ||
| 532 | * If this is a per-task event, need to check whether this | ||
| 533 | * event's task is the current task on this cpu. | ||
| 534 | */ | ||
| 535 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 536 | return; | ||
| 537 | |||
| 538 | spin_lock(&ctx->lock); | ||
| 539 | |||
| 540 | /* | ||
| 541 | * If the event is on, turn it off. | ||
| 542 | * If it is in error state, leave it in error state. | ||
| 543 | */ | ||
| 544 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
| 545 | update_context_time(ctx); | ||
| 546 | update_group_times(event); | ||
| 547 | if (event == event->group_leader) | ||
| 548 | group_sched_out(event, cpuctx, ctx); | ||
| 549 | else | ||
| 550 | event_sched_out(event, cpuctx, ctx); | ||
| 551 | event->state = PERF_EVENT_STATE_OFF; | ||
| 552 | } | ||
| 553 | |||
| 554 | spin_unlock(&ctx->lock); | ||
| 555 | } | ||
| 556 | |||
| 557 | /* | ||
| 558 | * Disable a event. | ||
| 559 | * | ||
| 560 | * If event->ctx is a cloned context, callers must make sure that | ||
| 561 | * every task struct that event->ctx->task could possibly point to | ||
| 562 | * remains valid. This condition is satisifed when called through | ||
| 563 | * perf_event_for_each_child or perf_event_for_each because they | ||
| 564 | * hold the top-level event's child_mutex, so any descendant that | ||
| 565 | * goes to exit will block in sync_child_event. | ||
| 566 | * When called from perf_pending_event it's OK because event->ctx | ||
| 567 | * is the current context on this CPU and preemption is disabled, | ||
| 568 | * hence we can't get into perf_event_task_sched_out for this context. | ||
| 569 | */ | ||
| 570 | static void perf_event_disable(struct perf_event *event) | ||
| 571 | { | ||
| 572 | struct perf_event_context *ctx = event->ctx; | ||
| 573 | struct task_struct *task = ctx->task; | ||
| 574 | |||
| 575 | if (!task) { | ||
| 576 | /* | ||
| 577 | * Disable the event on the cpu that it's on | ||
| 578 | */ | ||
| 579 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
| 580 | event, 1); | ||
| 581 | return; | ||
| 582 | } | ||
| 583 | |||
| 584 | retry: | ||
| 585 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
| 586 | |||
| 587 | spin_lock_irq(&ctx->lock); | ||
| 588 | /* | ||
| 589 | * If the event is still active, we need to retry the cross-call. | ||
| 590 | */ | ||
| 591 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 592 | spin_unlock_irq(&ctx->lock); | ||
| 593 | goto retry; | ||
| 594 | } | ||
| 595 | |||
| 596 | /* | ||
| 597 | * Since we have the lock this context can't be scheduled | ||
| 598 | * in, so we can change the state safely. | ||
| 599 | */ | ||
| 600 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 601 | update_group_times(event); | ||
| 602 | event->state = PERF_EVENT_STATE_OFF; | ||
| 603 | } | ||
| 604 | |||
| 605 | spin_unlock_irq(&ctx->lock); | ||
| 606 | } | ||
| 607 | |||
| 608 | static int | ||
| 609 | event_sched_in(struct perf_event *event, | ||
| 610 | struct perf_cpu_context *cpuctx, | ||
| 611 | struct perf_event_context *ctx, | ||
| 612 | int cpu) | ||
| 613 | { | ||
| 614 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
| 615 | return 0; | ||
| 616 | |||
| 617 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
| 618 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 619 | /* | ||
| 620 | * The new state must be visible before we turn it on in the hardware: | ||
| 621 | */ | ||
| 622 | smp_wmb(); | ||
| 623 | |||
| 624 | if (event->pmu->enable(event)) { | ||
| 625 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 626 | event->oncpu = -1; | ||
| 627 | return -EAGAIN; | ||
| 628 | } | ||
| 629 | |||
| 630 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
| 631 | |||
| 632 | if (!is_software_event(event)) | ||
| 633 | cpuctx->active_oncpu++; | ||
| 634 | ctx->nr_active++; | ||
| 635 | |||
| 636 | if (event->attr.exclusive) | ||
| 637 | cpuctx->exclusive = 1; | ||
| 638 | |||
| 639 | return 0; | ||
| 640 | } | ||
| 641 | |||
| 642 | static int | ||
| 643 | group_sched_in(struct perf_event *group_event, | ||
| 644 | struct perf_cpu_context *cpuctx, | ||
| 645 | struct perf_event_context *ctx, | ||
| 646 | int cpu) | ||
| 647 | { | ||
| 648 | struct perf_event *event, *partial_group; | ||
| 649 | int ret; | ||
| 650 | |||
| 651 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
| 652 | return 0; | ||
| 653 | |||
| 654 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
| 655 | if (ret) | ||
| 656 | return ret < 0 ? ret : 0; | ||
| 657 | |||
| 658 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
| 659 | return -EAGAIN; | ||
| 660 | |||
| 661 | /* | ||
| 662 | * Schedule in siblings as one group (if any): | ||
| 663 | */ | ||
| 664 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 665 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
| 666 | partial_group = event; | ||
| 667 | goto group_error; | ||
| 668 | } | ||
| 669 | } | ||
| 670 | |||
| 671 | return 0; | ||
| 672 | |||
| 673 | group_error: | ||
| 674 | /* | ||
| 675 | * Groups can be scheduled in as one unit only, so undo any | ||
| 676 | * partial group before returning: | ||
| 677 | */ | ||
| 678 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 679 | if (event == partial_group) | ||
| 680 | break; | ||
| 681 | event_sched_out(event, cpuctx, ctx); | ||
| 682 | } | ||
| 683 | event_sched_out(group_event, cpuctx, ctx); | ||
| 684 | |||
| 685 | return -EAGAIN; | ||
| 686 | } | ||
| 687 | |||
| 688 | /* | ||
| 689 | * Return 1 for a group consisting entirely of software events, | ||
| 690 | * 0 if the group contains any hardware events. | ||
| 691 | */ | ||
| 692 | static int is_software_only_group(struct perf_event *leader) | ||
| 693 | { | ||
| 694 | struct perf_event *event; | ||
| 695 | |||
| 696 | if (!is_software_event(leader)) | ||
| 697 | return 0; | ||
| 698 | |||
| 699 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 700 | if (!is_software_event(event)) | ||
| 701 | return 0; | ||
| 702 | |||
| 703 | return 1; | ||
| 704 | } | ||
| 705 | |||
| 706 | /* | ||
| 707 | * Work out whether we can put this event group on the CPU now. | ||
| 708 | */ | ||
| 709 | static int group_can_go_on(struct perf_event *event, | ||
| 710 | struct perf_cpu_context *cpuctx, | ||
| 711 | int can_add_hw) | ||
| 712 | { | ||
| 713 | /* | ||
| 714 | * Groups consisting entirely of software events can always go on. | ||
| 715 | */ | ||
| 716 | if (is_software_only_group(event)) | ||
| 717 | return 1; | ||
| 718 | /* | ||
| 719 | * If an exclusive group is already on, no other hardware | ||
| 720 | * events can go on. | ||
| 721 | */ | ||
| 722 | if (cpuctx->exclusive) | ||
| 723 | return 0; | ||
| 724 | /* | ||
| 725 | * If this group is exclusive and there are already | ||
| 726 | * events on the CPU, it can't go on. | ||
| 727 | */ | ||
| 728 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
| 729 | return 0; | ||
| 730 | /* | ||
| 731 | * Otherwise, try to add it if all previous groups were able | ||
| 732 | * to go on. | ||
| 733 | */ | ||
| 734 | return can_add_hw; | ||
| 735 | } | ||
| 736 | |||
| 737 | static void add_event_to_ctx(struct perf_event *event, | ||
| 738 | struct perf_event_context *ctx) | ||
| 739 | { | ||
| 740 | list_add_event(event, ctx); | ||
| 741 | event->tstamp_enabled = ctx->time; | ||
| 742 | event->tstamp_running = ctx->time; | ||
| 743 | event->tstamp_stopped = ctx->time; | ||
| 744 | } | ||
| 745 | |||
| 746 | /* | ||
| 747 | * Cross CPU call to install and enable a performance event | ||
| 748 | * | ||
| 749 | * Must be called with ctx->mutex held | ||
| 750 | */ | ||
| 751 | static void __perf_install_in_context(void *info) | ||
| 752 | { | ||
| 753 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 754 | struct perf_event *event = info; | ||
| 755 | struct perf_event_context *ctx = event->ctx; | ||
| 756 | struct perf_event *leader = event->group_leader; | ||
| 757 | int cpu = smp_processor_id(); | ||
| 758 | int err; | ||
| 759 | |||
| 760 | /* | ||
| 761 | * If this is a task context, we need to check whether it is | ||
| 762 | * the current task context of this cpu. If not it has been | ||
| 763 | * scheduled out before the smp call arrived. | ||
| 764 | * Or possibly this is the right context but it isn't | ||
| 765 | * on this cpu because it had no events. | ||
| 766 | */ | ||
| 767 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 768 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 769 | return; | ||
| 770 | cpuctx->task_ctx = ctx; | ||
| 771 | } | ||
| 772 | |||
| 773 | spin_lock(&ctx->lock); | ||
| 774 | ctx->is_active = 1; | ||
| 775 | update_context_time(ctx); | ||
| 776 | |||
| 777 | /* | ||
| 778 | * Protect the list operation against NMI by disabling the | ||
| 779 | * events on a global level. NOP for non NMI based events. | ||
| 780 | */ | ||
| 781 | perf_disable(); | ||
| 782 | |||
| 783 | add_event_to_ctx(event, ctx); | ||
| 784 | |||
| 785 | /* | ||
| 786 | * Don't put the event on if it is disabled or if | ||
| 787 | * it is in a group and the group isn't on. | ||
| 788 | */ | ||
| 789 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
| 790 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
| 791 | goto unlock; | ||
| 792 | |||
| 793 | /* | ||
| 794 | * An exclusive event can't go on if there are already active | ||
| 795 | * hardware events, and no hardware event can go on if there | ||
| 796 | * is already an exclusive event on. | ||
| 797 | */ | ||
| 798 | if (!group_can_go_on(event, cpuctx, 1)) | ||
| 799 | err = -EEXIST; | ||
| 800 | else | ||
| 801 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
| 802 | |||
| 803 | if (err) { | ||
| 804 | /* | ||
| 805 | * This event couldn't go on. If it is in a group | ||
| 806 | * then we have to pull the whole group off. | ||
| 807 | * If the event group is pinned then put it in error state. | ||
| 808 | */ | ||
| 809 | if (leader != event) | ||
| 810 | group_sched_out(leader, cpuctx, ctx); | ||
| 811 | if (leader->attr.pinned) { | ||
| 812 | update_group_times(leader); | ||
| 813 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 814 | } | ||
| 815 | } | ||
| 816 | |||
| 817 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 818 | cpuctx->max_pertask--; | ||
| 819 | |||
| 820 | unlock: | ||
| 821 | perf_enable(); | ||
| 822 | |||
| 823 | spin_unlock(&ctx->lock); | ||
| 824 | } | ||
| 825 | |||
| 826 | /* | ||
| 827 | * Attach a performance event to a context | ||
| 828 | * | ||
| 829 | * First we add the event to the list with the hardware enable bit | ||
| 830 | * in event->hw_config cleared. | ||
| 831 | * | ||
| 832 | * If the event is attached to a task which is on a CPU we use a smp | ||
| 833 | * call to enable it in the task context. The task might have been | ||
| 834 | * scheduled away, but we check this in the smp call again. | ||
| 835 | * | ||
| 836 | * Must be called with ctx->mutex held. | ||
| 837 | */ | ||
| 838 | static void | ||
| 839 | perf_install_in_context(struct perf_event_context *ctx, | ||
| 840 | struct perf_event *event, | ||
| 841 | int cpu) | ||
| 842 | { | ||
| 843 | struct task_struct *task = ctx->task; | ||
| 844 | |||
| 845 | if (!task) { | ||
| 846 | /* | ||
| 847 | * Per cpu events are installed via an smp call and | ||
| 848 | * the install is always sucessful. | ||
| 849 | */ | ||
| 850 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 851 | event, 1); | ||
| 852 | return; | ||
| 853 | } | ||
| 854 | |||
| 855 | retry: | ||
| 856 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 857 | event); | ||
| 858 | |||
| 859 | spin_lock_irq(&ctx->lock); | ||
| 860 | /* | ||
| 861 | * we need to retry the smp call. | ||
| 862 | */ | ||
| 863 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
| 864 | spin_unlock_irq(&ctx->lock); | ||
| 865 | goto retry; | ||
| 866 | } | ||
| 867 | |||
| 868 | /* | ||
| 869 | * The lock prevents that this context is scheduled in so we | ||
| 870 | * can add the event safely, if it the call above did not | ||
| 871 | * succeed. | ||
| 872 | */ | ||
| 873 | if (list_empty(&event->group_entry)) | ||
| 874 | add_event_to_ctx(event, ctx); | ||
| 875 | spin_unlock_irq(&ctx->lock); | ||
| 876 | } | ||
| 877 | |||
| 878 | /* | ||
| 879 | * Put a event into inactive state and update time fields. | ||
| 880 | * Enabling the leader of a group effectively enables all | ||
| 881 | * the group members that aren't explicitly disabled, so we | ||
| 882 | * have to update their ->tstamp_enabled also. | ||
| 883 | * Note: this works for group members as well as group leaders | ||
| 884 | * since the non-leader members' sibling_lists will be empty. | ||
| 885 | */ | ||
| 886 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
| 887 | struct perf_event_context *ctx) | ||
| 888 | { | ||
| 889 | struct perf_event *sub; | ||
| 890 | |||
| 891 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 892 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
| 893 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
| 894 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 895 | sub->tstamp_enabled = | ||
| 896 | ctx->time - sub->total_time_enabled; | ||
| 897 | } | ||
| 898 | |||
| 899 | /* | ||
| 900 | * Cross CPU call to enable a performance event | ||
| 901 | */ | ||
| 902 | static void __perf_event_enable(void *info) | ||
| 903 | { | ||
| 904 | struct perf_event *event = info; | ||
| 905 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 906 | struct perf_event_context *ctx = event->ctx; | ||
| 907 | struct perf_event *leader = event->group_leader; | ||
| 908 | int err; | ||
| 909 | |||
| 910 | /* | ||
| 911 | * If this is a per-task event, need to check whether this | ||
| 912 | * event's task is the current task on this cpu. | ||
| 913 | */ | ||
| 914 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 915 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 916 | return; | ||
| 917 | cpuctx->task_ctx = ctx; | ||
| 918 | } | ||
| 919 | |||
| 920 | spin_lock(&ctx->lock); | ||
| 921 | ctx->is_active = 1; | ||
| 922 | update_context_time(ctx); | ||
| 923 | |||
| 924 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 925 | goto unlock; | ||
| 926 | __perf_event_mark_enabled(event, ctx); | ||
| 927 | |||
| 928 | /* | ||
| 929 | * If the event is in a group and isn't the group leader, | ||
| 930 | * then don't put it on unless the group is on. | ||
| 931 | */ | ||
| 932 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
| 933 | goto unlock; | ||
| 934 | |||
| 935 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
| 936 | err = -EEXIST; | ||
| 937 | } else { | ||
| 938 | perf_disable(); | ||
| 939 | if (event == leader) | ||
| 940 | err = group_sched_in(event, cpuctx, ctx, | ||
| 941 | smp_processor_id()); | ||
| 942 | else | ||
| 943 | err = event_sched_in(event, cpuctx, ctx, | ||
| 944 | smp_processor_id()); | ||
| 945 | perf_enable(); | ||
| 946 | } | ||
| 947 | |||
| 948 | if (err) { | ||
| 949 | /* | ||
| 950 | * If this event can't go on and it's part of a | ||
| 951 | * group, then the whole group has to come off. | ||
| 952 | */ | ||
| 953 | if (leader != event) | ||
| 954 | group_sched_out(leader, cpuctx, ctx); | ||
| 955 | if (leader->attr.pinned) { | ||
| 956 | update_group_times(leader); | ||
| 957 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 958 | } | ||
| 959 | } | ||
| 960 | |||
| 961 | unlock: | ||
| 962 | spin_unlock(&ctx->lock); | ||
| 963 | } | ||
| 964 | |||
| 965 | /* | ||
| 966 | * Enable a event. | ||
| 967 | * | ||
| 968 | * If event->ctx is a cloned context, callers must make sure that | ||
| 969 | * every task struct that event->ctx->task could possibly point to | ||
| 970 | * remains valid. This condition is satisfied when called through | ||
| 971 | * perf_event_for_each_child or perf_event_for_each as described | ||
| 972 | * for perf_event_disable. | ||
| 973 | */ | ||
| 974 | static void perf_event_enable(struct perf_event *event) | ||
| 975 | { | ||
| 976 | struct perf_event_context *ctx = event->ctx; | ||
| 977 | struct task_struct *task = ctx->task; | ||
| 978 | |||
| 979 | if (!task) { | ||
| 980 | /* | ||
| 981 | * Enable the event on the cpu that it's on | ||
| 982 | */ | ||
| 983 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
| 984 | event, 1); | ||
| 985 | return; | ||
| 986 | } | ||
| 987 | |||
| 988 | spin_lock_irq(&ctx->lock); | ||
| 989 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 990 | goto out; | ||
| 991 | |||
| 992 | /* | ||
| 993 | * If the event is in error state, clear that first. | ||
| 994 | * That way, if we see the event in error state below, we | ||
| 995 | * know that it has gone back into error state, as distinct | ||
| 996 | * from the task having been scheduled away before the | ||
| 997 | * cross-call arrived. | ||
| 998 | */ | ||
| 999 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 1000 | event->state = PERF_EVENT_STATE_OFF; | ||
| 1001 | |||
| 1002 | retry: | ||
| 1003 | spin_unlock_irq(&ctx->lock); | ||
| 1004 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
| 1005 | |||
| 1006 | spin_lock_irq(&ctx->lock); | ||
| 1007 | |||
| 1008 | /* | ||
| 1009 | * If the context is active and the event is still off, | ||
| 1010 | * we need to retry the cross-call. | ||
| 1011 | */ | ||
| 1012 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
| 1013 | goto retry; | ||
| 1014 | |||
| 1015 | /* | ||
| 1016 | * Since we have the lock this context can't be scheduled | ||
| 1017 | * in, so we can change the state safely. | ||
| 1018 | */ | ||
| 1019 | if (event->state == PERF_EVENT_STATE_OFF) | ||
| 1020 | __perf_event_mark_enabled(event, ctx); | ||
| 1021 | |||
| 1022 | out: | ||
| 1023 | spin_unlock_irq(&ctx->lock); | ||
| 1024 | } | ||
| 1025 | |||
| 1026 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
| 1027 | { | ||
| 1028 | /* | ||
| 1029 | * not supported on inherited events | ||
| 1030 | */ | ||
| 1031 | if (event->attr.inherit) | ||
| 1032 | return -EINVAL; | ||
| 1033 | |||
| 1034 | atomic_add(refresh, &event->event_limit); | ||
| 1035 | perf_event_enable(event); | ||
| 1036 | |||
| 1037 | return 0; | ||
| 1038 | } | ||
| 1039 | |||
| 1040 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
| 1041 | struct perf_cpu_context *cpuctx) | ||
| 1042 | { | ||
| 1043 | struct perf_event *event; | ||
| 1044 | |||
| 1045 | spin_lock(&ctx->lock); | ||
| 1046 | ctx->is_active = 0; | ||
| 1047 | if (likely(!ctx->nr_events)) | ||
| 1048 | goto out; | ||
| 1049 | update_context_time(ctx); | ||
| 1050 | |||
| 1051 | perf_disable(); | ||
| 1052 | if (ctx->nr_active) { | ||
| 1053 | list_for_each_entry(event, &ctx->group_list, group_entry) | ||
| 1054 | group_sched_out(event, cpuctx, ctx); | ||
| 1055 | } | ||
| 1056 | perf_enable(); | ||
| 1057 | out: | ||
| 1058 | spin_unlock(&ctx->lock); | ||
| 1059 | } | ||
| 1060 | |||
| 1061 | /* | ||
| 1062 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1063 | * have both been cloned from the same version of the same context | ||
| 1064 | * and they both have the same number of enabled events. | ||
| 1065 | * If the number of enabled events is the same, then the set | ||
| 1066 | * of enabled events should be the same, because these are both | ||
| 1067 | * inherited contexts, therefore we can't access individual events | ||
| 1068 | * in them directly with an fd; we can only enable/disable all | ||
| 1069 | * events via prctl, or enable/disable all events in a family | ||
| 1070 | * via ioctl, which will have the same effect on both contexts. | ||
| 1071 | */ | ||
| 1072 | static int context_equiv(struct perf_event_context *ctx1, | ||
| 1073 | struct perf_event_context *ctx2) | ||
| 1074 | { | ||
| 1075 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1076 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1077 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | static void __perf_event_sync_stat(struct perf_event *event, | ||
| 1081 | struct perf_event *next_event) | ||
| 1082 | { | ||
| 1083 | u64 value; | ||
| 1084 | |||
| 1085 | if (!event->attr.inherit_stat) | ||
| 1086 | return; | ||
| 1087 | |||
| 1088 | /* | ||
| 1089 | * Update the event value, we cannot use perf_event_read() | ||
| 1090 | * because we're in the middle of a context switch and have IRQs | ||
| 1091 | * disabled, which upsets smp_call_function_single(), however | ||
| 1092 | * we know the event must be on the current CPU, therefore we | ||
| 1093 | * don't need to use it. | ||
| 1094 | */ | ||
| 1095 | switch (event->state) { | ||
| 1096 | case PERF_EVENT_STATE_ACTIVE: | ||
| 1097 | event->pmu->read(event); | ||
| 1098 | /* fall-through */ | ||
| 1099 | |||
| 1100 | case PERF_EVENT_STATE_INACTIVE: | ||
| 1101 | update_event_times(event); | ||
| 1102 | break; | ||
| 1103 | |||
| 1104 | default: | ||
| 1105 | break; | ||
| 1106 | } | ||
| 1107 | |||
| 1108 | /* | ||
| 1109 | * In order to keep per-task stats reliable we need to flip the event | ||
| 1110 | * values when we flip the contexts. | ||
| 1111 | */ | ||
| 1112 | value = atomic64_read(&next_event->count); | ||
| 1113 | value = atomic64_xchg(&event->count, value); | ||
| 1114 | atomic64_set(&next_event->count, value); | ||
| 1115 | |||
| 1116 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
| 1117 | swap(event->total_time_running, next_event->total_time_running); | ||
| 1118 | |||
| 1119 | /* | ||
| 1120 | * Since we swizzled the values, update the user visible data too. | ||
| 1121 | */ | ||
| 1122 | perf_event_update_userpage(event); | ||
| 1123 | perf_event_update_userpage(next_event); | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | #define list_next_entry(pos, member) \ | ||
| 1127 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1128 | |||
| 1129 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
| 1130 | struct perf_event_context *next_ctx) | ||
| 1131 | { | ||
| 1132 | struct perf_event *event, *next_event; | ||
| 1133 | |||
| 1134 | if (!ctx->nr_stat) | ||
| 1135 | return; | ||
| 1136 | |||
| 1137 | update_context_time(ctx); | ||
| 1138 | |||
| 1139 | event = list_first_entry(&ctx->event_list, | ||
| 1140 | struct perf_event, event_entry); | ||
| 1141 | |||
| 1142 | next_event = list_first_entry(&next_ctx->event_list, | ||
| 1143 | struct perf_event, event_entry); | ||
| 1144 | |||
| 1145 | while (&event->event_entry != &ctx->event_list && | ||
| 1146 | &next_event->event_entry != &next_ctx->event_list) { | ||
| 1147 | |||
| 1148 | __perf_event_sync_stat(event, next_event); | ||
| 1149 | |||
| 1150 | event = list_next_entry(event, event_entry); | ||
| 1151 | next_event = list_next_entry(next_event, event_entry); | ||
| 1152 | } | ||
| 1153 | } | ||
| 1154 | |||
| 1155 | /* | ||
| 1156 | * Called from scheduler to remove the events of the current task, | ||
| 1157 | * with interrupts disabled. | ||
| 1158 | * | ||
| 1159 | * We stop each event and update the event value in event->count. | ||
| 1160 | * | ||
| 1161 | * This does not protect us against NMI, but disable() | ||
| 1162 | * sets the disabled bit in the control field of event _before_ | ||
| 1163 | * accessing the event control register. If a NMI hits, then it will | ||
| 1164 | * not restart the event. | ||
| 1165 | */ | ||
| 1166 | void perf_event_task_sched_out(struct task_struct *task, | ||
| 1167 | struct task_struct *next, int cpu) | ||
| 1168 | { | ||
| 1169 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1170 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1171 | struct perf_event_context *next_ctx; | ||
| 1172 | struct perf_event_context *parent; | ||
| 1173 | struct pt_regs *regs; | ||
| 1174 | int do_switch = 1; | ||
| 1175 | |||
| 1176 | regs = task_pt_regs(task); | ||
| 1177 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1178 | |||
| 1179 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1180 | return; | ||
| 1181 | |||
| 1182 | rcu_read_lock(); | ||
| 1183 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1184 | next_ctx = next->perf_event_ctxp; | ||
| 1185 | if (parent && next_ctx && | ||
| 1186 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1187 | /* | ||
| 1188 | * Looks like the two contexts are clones, so we might be | ||
| 1189 | * able to optimize the context switch. We lock both | ||
| 1190 | * contexts and check that they are clones under the | ||
| 1191 | * lock (including re-checking that neither has been | ||
| 1192 | * uncloned in the meantime). It doesn't matter which | ||
| 1193 | * order we take the locks because no other cpu could | ||
| 1194 | * be trying to lock both of these tasks. | ||
| 1195 | */ | ||
| 1196 | spin_lock(&ctx->lock); | ||
| 1197 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1198 | if (context_equiv(ctx, next_ctx)) { | ||
| 1199 | /* | ||
| 1200 | * XXX do we need a memory barrier of sorts | ||
| 1201 | * wrt to rcu_dereference() of perf_event_ctxp | ||
| 1202 | */ | ||
| 1203 | task->perf_event_ctxp = next_ctx; | ||
| 1204 | next->perf_event_ctxp = ctx; | ||
| 1205 | ctx->task = next; | ||
| 1206 | next_ctx->task = task; | ||
| 1207 | do_switch = 0; | ||
| 1208 | |||
| 1209 | perf_event_sync_stat(ctx, next_ctx); | ||
| 1210 | } | ||
| 1211 | spin_unlock(&next_ctx->lock); | ||
| 1212 | spin_unlock(&ctx->lock); | ||
| 1213 | } | ||
| 1214 | rcu_read_unlock(); | ||
| 1215 | |||
| 1216 | if (do_switch) { | ||
| 1217 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1218 | cpuctx->task_ctx = NULL; | ||
| 1219 | } | ||
| 1220 | } | ||
| 1221 | |||
| 1222 | /* | ||
| 1223 | * Called with IRQs disabled | ||
| 1224 | */ | ||
| 1225 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
| 1226 | { | ||
| 1227 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1228 | |||
| 1229 | if (!cpuctx->task_ctx) | ||
| 1230 | return; | ||
| 1231 | |||
| 1232 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1233 | return; | ||
| 1234 | |||
| 1235 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1236 | cpuctx->task_ctx = NULL; | ||
| 1237 | } | ||
| 1238 | |||
| 1239 | /* | ||
| 1240 | * Called with IRQs disabled | ||
| 1241 | */ | ||
| 1242 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1243 | { | ||
| 1244 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1245 | } | ||
| 1246 | |||
| 1247 | static void | ||
| 1248 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
| 1249 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1250 | { | ||
| 1251 | struct perf_event *event; | ||
| 1252 | int can_add_hw = 1; | ||
| 1253 | |||
| 1254 | spin_lock(&ctx->lock); | ||
| 1255 | ctx->is_active = 1; | ||
| 1256 | if (likely(!ctx->nr_events)) | ||
| 1257 | goto out; | ||
| 1258 | |||
| 1259 | ctx->timestamp = perf_clock(); | ||
| 1260 | |||
| 1261 | perf_disable(); | ||
| 1262 | |||
| 1263 | /* | ||
| 1264 | * First go through the list and put on any pinned groups | ||
| 1265 | * in order to give them the best chance of going on. | ||
| 1266 | */ | ||
| 1267 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1268 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1269 | !event->attr.pinned) | ||
| 1270 | continue; | ||
| 1271 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1272 | continue; | ||
| 1273 | |||
| 1274 | if (group_can_go_on(event, cpuctx, 1)) | ||
| 1275 | group_sched_in(event, cpuctx, ctx, cpu); | ||
| 1276 | |||
| 1277 | /* | ||
| 1278 | * If this pinned group hasn't been scheduled, | ||
| 1279 | * put it in error state. | ||
| 1280 | */ | ||
| 1281 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1282 | update_group_times(event); | ||
| 1283 | event->state = PERF_EVENT_STATE_ERROR; | ||
| 1284 | } | ||
| 1285 | } | ||
| 1286 | |||
| 1287 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1288 | /* | ||
| 1289 | * Ignore events in OFF or ERROR state, and | ||
| 1290 | * ignore pinned events since we did them already. | ||
| 1291 | */ | ||
| 1292 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1293 | event->attr.pinned) | ||
| 1294 | continue; | ||
| 1295 | |||
| 1296 | /* | ||
| 1297 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1298 | * of events: | ||
| 1299 | */ | ||
| 1300 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1301 | continue; | ||
| 1302 | |||
| 1303 | if (group_can_go_on(event, cpuctx, can_add_hw)) | ||
| 1304 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1305 | can_add_hw = 0; | ||
| 1306 | } | ||
| 1307 | perf_enable(); | ||
| 1308 | out: | ||
| 1309 | spin_unlock(&ctx->lock); | ||
| 1310 | } | ||
| 1311 | |||
| 1312 | /* | ||
| 1313 | * Called from scheduler to add the events of the current task | ||
| 1314 | * with interrupts disabled. | ||
| 1315 | * | ||
| 1316 | * We restore the event value and then enable it. | ||
| 1317 | * | ||
| 1318 | * This does not protect us against NMI, but enable() | ||
| 1319 | * sets the enabled bit in the control field of event _before_ | ||
| 1320 | * accessing the event control register. If a NMI hits, then it will | ||
| 1321 | * keep the event running. | ||
| 1322 | */ | ||
| 1323 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
| 1324 | { | ||
| 1325 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1326 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1327 | |||
| 1328 | if (likely(!ctx)) | ||
| 1329 | return; | ||
| 1330 | if (cpuctx->task_ctx == ctx) | ||
| 1331 | return; | ||
| 1332 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1333 | cpuctx->task_ctx = ctx; | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1337 | { | ||
| 1338 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 1339 | |||
| 1340 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1341 | } | ||
| 1342 | |||
| 1343 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1344 | |||
| 1345 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
| 1346 | |||
| 1347 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
| 1348 | { | ||
| 1349 | struct hw_perf_event *hwc = &event->hw; | ||
| 1350 | u64 period, sample_period; | ||
| 1351 | s64 delta; | ||
| 1352 | |||
| 1353 | events *= hwc->sample_period; | ||
| 1354 | period = div64_u64(events, event->attr.sample_freq); | ||
| 1355 | |||
| 1356 | delta = (s64)(period - hwc->sample_period); | ||
| 1357 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1358 | |||
| 1359 | sample_period = hwc->sample_period + delta; | ||
| 1360 | |||
| 1361 | if (!sample_period) | ||
| 1362 | sample_period = 1; | ||
| 1363 | |||
| 1364 | hwc->sample_period = sample_period; | ||
| 1365 | } | ||
| 1366 | |||
| 1367 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
| 1368 | { | ||
| 1369 | struct perf_event *event; | ||
| 1370 | struct hw_perf_event *hwc; | ||
| 1371 | u64 interrupts, freq; | ||
| 1372 | |||
| 1373 | spin_lock(&ctx->lock); | ||
| 1374 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 1375 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 1376 | continue; | ||
| 1377 | |||
| 1378 | hwc = &event->hw; | ||
| 1379 | |||
| 1380 | interrupts = hwc->interrupts; | ||
| 1381 | hwc->interrupts = 0; | ||
| 1382 | |||
| 1383 | /* | ||
| 1384 | * unthrottle events on the tick | ||
| 1385 | */ | ||
| 1386 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1387 | perf_log_throttle(event, 1); | ||
| 1388 | event->pmu->unthrottle(event); | ||
| 1389 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
| 1390 | } | ||
| 1391 | |||
| 1392 | if (!event->attr.freq || !event->attr.sample_freq) | ||
| 1393 | continue; | ||
| 1394 | |||
| 1395 | /* | ||
| 1396 | * if the specified freq < HZ then we need to skip ticks | ||
| 1397 | */ | ||
| 1398 | if (event->attr.sample_freq < HZ) { | ||
| 1399 | freq = event->attr.sample_freq; | ||
| 1400 | |||
| 1401 | hwc->freq_count += freq; | ||
| 1402 | hwc->freq_interrupts += interrupts; | ||
| 1403 | |||
| 1404 | if (hwc->freq_count < HZ) | ||
| 1405 | continue; | ||
| 1406 | |||
| 1407 | interrupts = hwc->freq_interrupts; | ||
| 1408 | hwc->freq_interrupts = 0; | ||
| 1409 | hwc->freq_count -= HZ; | ||
| 1410 | } else | ||
| 1411 | freq = HZ; | ||
| 1412 | |||
| 1413 | perf_adjust_period(event, freq * interrupts); | ||
| 1414 | |||
| 1415 | /* | ||
| 1416 | * In order to avoid being stalled by an (accidental) huge | ||
| 1417 | * sample period, force reset the sample period if we didn't | ||
| 1418 | * get any events in this freq period. | ||
| 1419 | */ | ||
| 1420 | if (!interrupts) { | ||
| 1421 | perf_disable(); | ||
| 1422 | event->pmu->disable(event); | ||
| 1423 | atomic64_set(&hwc->period_left, 0); | ||
| 1424 | event->pmu->enable(event); | ||
| 1425 | perf_enable(); | ||
| 1426 | } | ||
| 1427 | } | ||
| 1428 | spin_unlock(&ctx->lock); | ||
| 1429 | } | ||
| 1430 | |||
| 1431 | /* | ||
| 1432 | * Round-robin a context's events: | ||
| 1433 | */ | ||
| 1434 | static void rotate_ctx(struct perf_event_context *ctx) | ||
| 1435 | { | ||
| 1436 | struct perf_event *event; | ||
| 1437 | |||
| 1438 | if (!ctx->nr_events) | ||
| 1439 | return; | ||
| 1440 | |||
| 1441 | spin_lock(&ctx->lock); | ||
| 1442 | /* | ||
| 1443 | * Rotate the first entry last (works just fine for group events too): | ||
| 1444 | */ | ||
| 1445 | perf_disable(); | ||
| 1446 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1447 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
| 1448 | break; | ||
| 1449 | } | ||
| 1450 | perf_enable(); | ||
| 1451 | |||
| 1452 | spin_unlock(&ctx->lock); | ||
| 1453 | } | ||
| 1454 | |||
| 1455 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
| 1456 | { | ||
| 1457 | struct perf_cpu_context *cpuctx; | ||
| 1458 | struct perf_event_context *ctx; | ||
| 1459 | |||
| 1460 | if (!atomic_read(&nr_events)) | ||
| 1461 | return; | ||
| 1462 | |||
| 1463 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1464 | ctx = curr->perf_event_ctxp; | ||
| 1465 | |||
| 1466 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1467 | if (ctx) | ||
| 1468 | perf_ctx_adjust_freq(ctx); | ||
| 1469 | |||
| 1470 | perf_event_cpu_sched_out(cpuctx); | ||
| 1471 | if (ctx) | ||
| 1472 | __perf_event_task_sched_out(ctx); | ||
| 1473 | |||
| 1474 | rotate_ctx(&cpuctx->ctx); | ||
| 1475 | if (ctx) | ||
| 1476 | rotate_ctx(ctx); | ||
| 1477 | |||
| 1478 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
| 1479 | if (ctx) | ||
| 1480 | perf_event_task_sched_in(curr, cpu); | ||
| 1481 | } | ||
| 1482 | |||
| 1483 | /* | ||
| 1484 | * Enable all of a task's events that have been marked enable-on-exec. | ||
| 1485 | * This expects task == current. | ||
| 1486 | */ | ||
| 1487 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
| 1488 | { | ||
| 1489 | struct perf_event_context *ctx; | ||
| 1490 | struct perf_event *event; | ||
| 1491 | unsigned long flags; | ||
| 1492 | int enabled = 0; | ||
| 1493 | |||
| 1494 | local_irq_save(flags); | ||
| 1495 | ctx = task->perf_event_ctxp; | ||
| 1496 | if (!ctx || !ctx->nr_events) | ||
| 1497 | goto out; | ||
| 1498 | |||
| 1499 | __perf_event_task_sched_out(ctx); | ||
| 1500 | |||
| 1501 | spin_lock(&ctx->lock); | ||
| 1502 | |||
| 1503 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1504 | if (!event->attr.enable_on_exec) | ||
| 1505 | continue; | ||
| 1506 | event->attr.enable_on_exec = 0; | ||
| 1507 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 1508 | continue; | ||
| 1509 | __perf_event_mark_enabled(event, ctx); | ||
| 1510 | enabled = 1; | ||
| 1511 | } | ||
| 1512 | |||
| 1513 | /* | ||
| 1514 | * Unclone this context if we enabled any event. | ||
| 1515 | */ | ||
| 1516 | if (enabled) | ||
| 1517 | unclone_ctx(ctx); | ||
| 1518 | |||
| 1519 | spin_unlock(&ctx->lock); | ||
| 1520 | |||
| 1521 | perf_event_task_sched_in(task, smp_processor_id()); | ||
| 1522 | out: | ||
| 1523 | local_irq_restore(flags); | ||
| 1524 | } | ||
| 1525 | |||
| 1526 | /* | ||
| 1527 | * Cross CPU call to read the hardware event | ||
| 1528 | */ | ||
| 1529 | static void __perf_event_read(void *info) | ||
| 1530 | { | ||
| 1531 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1532 | struct perf_event *event = info; | ||
| 1533 | struct perf_event_context *ctx = event->ctx; | ||
| 1534 | |||
| 1535 | /* | ||
| 1536 | * If this is a task context, we need to check whether it is | ||
| 1537 | * the current task context of this cpu. If not it has been | ||
| 1538 | * scheduled out before the smp call arrived. In that case | ||
| 1539 | * event->count would have been updated to a recent sample | ||
| 1540 | * when the event was scheduled out. | ||
| 1541 | */ | ||
| 1542 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1543 | return; | ||
| 1544 | |||
| 1545 | spin_lock(&ctx->lock); | ||
| 1546 | update_context_time(ctx); | ||
| 1547 | update_event_times(event); | ||
| 1548 | spin_unlock(&ctx->lock); | ||
| 1549 | |||
| 1550 | event->pmu->read(event); | ||
| 1551 | } | ||
| 1552 | |||
| 1553 | static u64 perf_event_read(struct perf_event *event) | ||
| 1554 | { | ||
| 1555 | /* | ||
| 1556 | * If event is enabled and currently active on a CPU, update the | ||
| 1557 | * value in the event structure: | ||
| 1558 | */ | ||
| 1559 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 1560 | smp_call_function_single(event->oncpu, | ||
| 1561 | __perf_event_read, event, 1); | ||
| 1562 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1563 | struct perf_event_context *ctx = event->ctx; | ||
| 1564 | unsigned long flags; | ||
| 1565 | |||
| 1566 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 1567 | update_context_time(ctx); | ||
| 1568 | update_event_times(event); | ||
| 1569 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1570 | } | ||
| 1571 | |||
| 1572 | return atomic64_read(&event->count); | ||
| 1573 | } | ||
| 1574 | |||
| 1575 | /* | ||
| 1576 | * Initialize the perf_event context in a task_struct: | ||
| 1577 | */ | ||
| 1578 | static void | ||
| 1579 | __perf_event_init_context(struct perf_event_context *ctx, | ||
| 1580 | struct task_struct *task) | ||
| 1581 | { | ||
| 1582 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1583 | spin_lock_init(&ctx->lock); | ||
| 1584 | mutex_init(&ctx->mutex); | ||
| 1585 | INIT_LIST_HEAD(&ctx->group_list); | ||
| 1586 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1587 | atomic_set(&ctx->refcount, 1); | ||
| 1588 | ctx->task = task; | ||
| 1589 | } | ||
| 1590 | |||
| 1591 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
| 1592 | { | ||
| 1593 | struct perf_event_context *ctx; | ||
| 1594 | struct perf_cpu_context *cpuctx; | ||
| 1595 | struct task_struct *task; | ||
| 1596 | unsigned long flags; | ||
| 1597 | int err; | ||
| 1598 | |||
| 1599 | /* | ||
| 1600 | * If cpu is not a wildcard then this is a percpu event: | ||
| 1601 | */ | ||
| 1602 | if (cpu != -1) { | ||
| 1603 | /* Must be root to operate on a CPU event: */ | ||
| 1604 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1605 | return ERR_PTR(-EACCES); | ||
| 1606 | |||
| 1607 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1608 | return ERR_PTR(-EINVAL); | ||
| 1609 | |||
| 1610 | /* | ||
| 1611 | * We could be clever and allow to attach a event to an | ||
| 1612 | * offline CPU and activate it when the CPU comes up, but | ||
| 1613 | * that's for later. | ||
| 1614 | */ | ||
| 1615 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1616 | return ERR_PTR(-ENODEV); | ||
| 1617 | |||
| 1618 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1619 | ctx = &cpuctx->ctx; | ||
| 1620 | get_ctx(ctx); | ||
| 1621 | |||
| 1622 | return ctx; | ||
| 1623 | } | ||
| 1624 | |||
| 1625 | rcu_read_lock(); | ||
| 1626 | if (!pid) | ||
| 1627 | task = current; | ||
| 1628 | else | ||
| 1629 | task = find_task_by_vpid(pid); | ||
| 1630 | if (task) | ||
| 1631 | get_task_struct(task); | ||
| 1632 | rcu_read_unlock(); | ||
| 1633 | |||
| 1634 | if (!task) | ||
| 1635 | return ERR_PTR(-ESRCH); | ||
| 1636 | |||
| 1637 | /* | ||
| 1638 | * Can't attach events to a dying task. | ||
| 1639 | */ | ||
| 1640 | err = -ESRCH; | ||
| 1641 | if (task->flags & PF_EXITING) | ||
| 1642 | goto errout; | ||
| 1643 | |||
| 1644 | /* Reuse ptrace permission checks for now. */ | ||
| 1645 | err = -EACCES; | ||
| 1646 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1647 | goto errout; | ||
| 1648 | |||
| 1649 | retry: | ||
| 1650 | ctx = perf_lock_task_context(task, &flags); | ||
| 1651 | if (ctx) { | ||
| 1652 | unclone_ctx(ctx); | ||
| 1653 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1654 | } | ||
| 1655 | |||
| 1656 | if (!ctx) { | ||
| 1657 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 1658 | err = -ENOMEM; | ||
| 1659 | if (!ctx) | ||
| 1660 | goto errout; | ||
| 1661 | __perf_event_init_context(ctx, task); | ||
| 1662 | get_ctx(ctx); | ||
| 1663 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
| 1664 | /* | ||
| 1665 | * We raced with some other task; use | ||
| 1666 | * the context they set. | ||
| 1667 | */ | ||
| 1668 | kfree(ctx); | ||
| 1669 | goto retry; | ||
| 1670 | } | ||
| 1671 | get_task_struct(task); | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | put_task_struct(task); | ||
| 1675 | return ctx; | ||
| 1676 | |||
| 1677 | errout: | ||
| 1678 | put_task_struct(task); | ||
| 1679 | return ERR_PTR(err); | ||
| 1680 | } | ||
| 1681 | |||
| 1682 | static void perf_event_free_filter(struct perf_event *event); | ||
| 1683 | |||
| 1684 | static void free_event_rcu(struct rcu_head *head) | ||
| 1685 | { | ||
| 1686 | struct perf_event *event; | ||
| 1687 | |||
| 1688 | event = container_of(head, struct perf_event, rcu_head); | ||
| 1689 | if (event->ns) | ||
| 1690 | put_pid_ns(event->ns); | ||
| 1691 | perf_event_free_filter(event); | ||
| 1692 | kfree(event); | ||
| 1693 | } | ||
| 1694 | |||
| 1695 | static void perf_pending_sync(struct perf_event *event); | ||
| 1696 | |||
| 1697 | static void free_event(struct perf_event *event) | ||
| 1698 | { | ||
| 1699 | perf_pending_sync(event); | ||
| 1700 | |||
| 1701 | if (!event->parent) { | ||
| 1702 | atomic_dec(&nr_events); | ||
| 1703 | if (event->attr.mmap) | ||
| 1704 | atomic_dec(&nr_mmap_events); | ||
| 1705 | if (event->attr.comm) | ||
| 1706 | atomic_dec(&nr_comm_events); | ||
| 1707 | if (event->attr.task) | ||
| 1708 | atomic_dec(&nr_task_events); | ||
| 1709 | } | ||
| 1710 | |||
| 1711 | if (event->output) { | ||
| 1712 | fput(event->output->filp); | ||
| 1713 | event->output = NULL; | ||
| 1714 | } | ||
| 1715 | |||
| 1716 | if (event->destroy) | ||
| 1717 | event->destroy(event); | ||
| 1718 | |||
| 1719 | put_ctx(event->ctx); | ||
| 1720 | call_rcu(&event->rcu_head, free_event_rcu); | ||
| 1721 | } | ||
| 1722 | |||
| 1723 | int perf_event_release_kernel(struct perf_event *event) | ||
| 1724 | { | ||
| 1725 | struct perf_event_context *ctx = event->ctx; | ||
| 1726 | |||
| 1727 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1728 | mutex_lock(&ctx->mutex); | ||
| 1729 | perf_event_remove_from_context(event); | ||
| 1730 | mutex_unlock(&ctx->mutex); | ||
| 1731 | |||
| 1732 | mutex_lock(&event->owner->perf_event_mutex); | ||
| 1733 | list_del_init(&event->owner_entry); | ||
| 1734 | mutex_unlock(&event->owner->perf_event_mutex); | ||
| 1735 | put_task_struct(event->owner); | ||
| 1736 | |||
| 1737 | free_event(event); | ||
| 1738 | |||
| 1739 | return 0; | ||
| 1740 | } | ||
| 1741 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | ||
| 1742 | |||
| 1743 | /* | ||
| 1744 | * Called when the last reference to the file is gone. | ||
| 1745 | */ | ||
| 1746 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1747 | { | ||
| 1748 | struct perf_event *event = file->private_data; | ||
| 1749 | |||
| 1750 | file->private_data = NULL; | ||
| 1751 | |||
| 1752 | return perf_event_release_kernel(event); | ||
| 1753 | } | ||
| 1754 | |||
| 1755 | static int perf_event_read_size(struct perf_event *event) | ||
| 1756 | { | ||
| 1757 | int entry = sizeof(u64); /* value */ | ||
| 1758 | int size = 0; | ||
| 1759 | int nr = 1; | ||
| 1760 | |||
| 1761 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1762 | size += sizeof(u64); | ||
| 1763 | |||
| 1764 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1765 | size += sizeof(u64); | ||
| 1766 | |||
| 1767 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
| 1768 | entry += sizeof(u64); | ||
| 1769 | |||
| 1770 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1771 | nr += event->group_leader->nr_siblings; | ||
| 1772 | size += sizeof(u64); | ||
| 1773 | } | ||
| 1774 | |||
| 1775 | size += entry * nr; | ||
| 1776 | |||
| 1777 | return size; | ||
| 1778 | } | ||
| 1779 | |||
| 1780 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | ||
| 1781 | { | ||
| 1782 | struct perf_event *child; | ||
| 1783 | u64 total = 0; | ||
| 1784 | |||
| 1785 | *enabled = 0; | ||
| 1786 | *running = 0; | ||
| 1787 | |||
| 1788 | mutex_lock(&event->child_mutex); | ||
| 1789 | total += perf_event_read(event); | ||
| 1790 | *enabled += event->total_time_enabled + | ||
| 1791 | atomic64_read(&event->child_total_time_enabled); | ||
| 1792 | *running += event->total_time_running + | ||
| 1793 | atomic64_read(&event->child_total_time_running); | ||
| 1794 | |||
| 1795 | list_for_each_entry(child, &event->child_list, child_list) { | ||
| 1796 | total += perf_event_read(child); | ||
| 1797 | *enabled += child->total_time_enabled; | ||
| 1798 | *running += child->total_time_running; | ||
| 1799 | } | ||
| 1800 | mutex_unlock(&event->child_mutex); | ||
| 1801 | |||
| 1802 | return total; | ||
| 1803 | } | ||
| 1804 | EXPORT_SYMBOL_GPL(perf_event_read_value); | ||
| 1805 | |||
| 1806 | static int perf_event_read_group(struct perf_event *event, | ||
| 1807 | u64 read_format, char __user *buf) | ||
| 1808 | { | ||
| 1809 | struct perf_event *leader = event->group_leader, *sub; | ||
| 1810 | int n = 0, size = 0, ret = -EFAULT; | ||
| 1811 | struct perf_event_context *ctx = leader->ctx; | ||
| 1812 | u64 values[5]; | ||
| 1813 | u64 count, enabled, running; | ||
| 1814 | |||
| 1815 | mutex_lock(&ctx->mutex); | ||
| 1816 | count = perf_event_read_value(leader, &enabled, &running); | ||
| 1817 | |||
| 1818 | values[n++] = 1 + leader->nr_siblings; | ||
| 1819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1820 | values[n++] = enabled; | ||
| 1821 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1822 | values[n++] = running; | ||
| 1823 | values[n++] = count; | ||
| 1824 | if (read_format & PERF_FORMAT_ID) | ||
| 1825 | values[n++] = primary_event_id(leader); | ||
| 1826 | |||
| 1827 | size = n * sizeof(u64); | ||
| 1828 | |||
| 1829 | if (copy_to_user(buf, values, size)) | ||
| 1830 | goto unlock; | ||
| 1831 | |||
| 1832 | ret = size; | ||
| 1833 | |||
| 1834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 1835 | n = 0; | ||
| 1836 | |||
| 1837 | values[n++] = perf_event_read_value(sub, &enabled, &running); | ||
| 1838 | if (read_format & PERF_FORMAT_ID) | ||
| 1839 | values[n++] = primary_event_id(sub); | ||
| 1840 | |||
| 1841 | size = n * sizeof(u64); | ||
| 1842 | |||
| 1843 | if (copy_to_user(buf + ret, values, size)) { | ||
| 1844 | ret = -EFAULT; | ||
| 1845 | goto unlock; | ||
| 1846 | } | ||
| 1847 | |||
| 1848 | ret += size; | ||
| 1849 | } | ||
| 1850 | unlock: | ||
| 1851 | mutex_unlock(&ctx->mutex); | ||
| 1852 | |||
| 1853 | return ret; | ||
| 1854 | } | ||
| 1855 | |||
| 1856 | static int perf_event_read_one(struct perf_event *event, | ||
| 1857 | u64 read_format, char __user *buf) | ||
| 1858 | { | ||
| 1859 | u64 enabled, running; | ||
| 1860 | u64 values[4]; | ||
| 1861 | int n = 0; | ||
| 1862 | |||
| 1863 | values[n++] = perf_event_read_value(event, &enabled, &running); | ||
| 1864 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1865 | values[n++] = enabled; | ||
| 1866 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1867 | values[n++] = running; | ||
| 1868 | if (read_format & PERF_FORMAT_ID) | ||
| 1869 | values[n++] = primary_event_id(event); | ||
| 1870 | |||
| 1871 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1872 | return -EFAULT; | ||
| 1873 | |||
| 1874 | return n * sizeof(u64); | ||
| 1875 | } | ||
| 1876 | |||
| 1877 | /* | ||
| 1878 | * Read the performance event - simple non blocking version for now | ||
| 1879 | */ | ||
| 1880 | static ssize_t | ||
| 1881 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
| 1882 | { | ||
| 1883 | u64 read_format = event->attr.read_format; | ||
| 1884 | int ret; | ||
| 1885 | |||
| 1886 | /* | ||
| 1887 | * Return end-of-file for a read on a event that is in | ||
| 1888 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1889 | * scheduled on to the CPU at some point). | ||
| 1890 | */ | ||
| 1891 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 1892 | return 0; | ||
| 1893 | |||
| 1894 | if (count < perf_event_read_size(event)) | ||
| 1895 | return -ENOSPC; | ||
| 1896 | |||
| 1897 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1898 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1899 | ret = perf_event_read_group(event, read_format, buf); | ||
| 1900 | else | ||
| 1901 | ret = perf_event_read_one(event, read_format, buf); | ||
| 1902 | |||
| 1903 | return ret; | ||
| 1904 | } | ||
| 1905 | |||
| 1906 | static ssize_t | ||
| 1907 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1908 | { | ||
| 1909 | struct perf_event *event = file->private_data; | ||
| 1910 | |||
| 1911 | return perf_read_hw(event, buf, count); | ||
| 1912 | } | ||
| 1913 | |||
| 1914 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1915 | { | ||
| 1916 | struct perf_event *event = file->private_data; | ||
| 1917 | struct perf_mmap_data *data; | ||
| 1918 | unsigned int events = POLL_HUP; | ||
| 1919 | |||
| 1920 | rcu_read_lock(); | ||
| 1921 | data = rcu_dereference(event->data); | ||
| 1922 | if (data) | ||
| 1923 | events = atomic_xchg(&data->poll, 0); | ||
| 1924 | rcu_read_unlock(); | ||
| 1925 | |||
| 1926 | poll_wait(file, &event->waitq, wait); | ||
| 1927 | |||
| 1928 | return events; | ||
| 1929 | } | ||
| 1930 | |||
| 1931 | static void perf_event_reset(struct perf_event *event) | ||
| 1932 | { | ||
| 1933 | (void)perf_event_read(event); | ||
| 1934 | atomic64_set(&event->count, 0); | ||
| 1935 | perf_event_update_userpage(event); | ||
| 1936 | } | ||
| 1937 | |||
| 1938 | /* | ||
| 1939 | * Holding the top-level event's child_mutex means that any | ||
| 1940 | * descendant process that has inherited this event will block | ||
| 1941 | * in sync_child_event if it goes to exit, thus satisfying the | ||
| 1942 | * task existence requirements of perf_event_enable/disable. | ||
| 1943 | */ | ||
| 1944 | static void perf_event_for_each_child(struct perf_event *event, | ||
| 1945 | void (*func)(struct perf_event *)) | ||
| 1946 | { | ||
| 1947 | struct perf_event *child; | ||
| 1948 | |||
| 1949 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1950 | mutex_lock(&event->child_mutex); | ||
| 1951 | func(event); | ||
| 1952 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1953 | func(child); | ||
| 1954 | mutex_unlock(&event->child_mutex); | ||
| 1955 | } | ||
| 1956 | |||
| 1957 | static void perf_event_for_each(struct perf_event *event, | ||
| 1958 | void (*func)(struct perf_event *)) | ||
| 1959 | { | ||
| 1960 | struct perf_event_context *ctx = event->ctx; | ||
| 1961 | struct perf_event *sibling; | ||
| 1962 | |||
| 1963 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1964 | mutex_lock(&ctx->mutex); | ||
| 1965 | event = event->group_leader; | ||
| 1966 | |||
| 1967 | perf_event_for_each_child(event, func); | ||
| 1968 | func(event); | ||
| 1969 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
| 1970 | perf_event_for_each_child(event, func); | ||
| 1971 | mutex_unlock(&ctx->mutex); | ||
| 1972 | } | ||
| 1973 | |||
| 1974 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
| 1975 | { | ||
| 1976 | struct perf_event_context *ctx = event->ctx; | ||
| 1977 | unsigned long size; | ||
| 1978 | int ret = 0; | ||
| 1979 | u64 value; | ||
| 1980 | |||
| 1981 | if (!event->attr.sample_period) | ||
| 1982 | return -EINVAL; | ||
| 1983 | |||
| 1984 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1985 | if (size != sizeof(value)) | ||
| 1986 | return -EFAULT; | ||
| 1987 | |||
| 1988 | if (!value) | ||
| 1989 | return -EINVAL; | ||
| 1990 | |||
| 1991 | spin_lock_irq(&ctx->lock); | ||
| 1992 | if (event->attr.freq) { | ||
| 1993 | if (value > sysctl_perf_event_sample_rate) { | ||
| 1994 | ret = -EINVAL; | ||
| 1995 | goto unlock; | ||
| 1996 | } | ||
| 1997 | |||
| 1998 | event->attr.sample_freq = value; | ||
| 1999 | } else { | ||
| 2000 | event->attr.sample_period = value; | ||
| 2001 | event->hw.sample_period = value; | ||
| 2002 | } | ||
| 2003 | unlock: | ||
| 2004 | spin_unlock_irq(&ctx->lock); | ||
| 2005 | |||
| 2006 | return ret; | ||
| 2007 | } | ||
| 2008 | |||
| 2009 | static int perf_event_set_output(struct perf_event *event, int output_fd); | ||
| 2010 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | ||
| 2011 | |||
| 2012 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 2013 | { | ||
| 2014 | struct perf_event *event = file->private_data; | ||
| 2015 | void (*func)(struct perf_event *); | ||
| 2016 | u32 flags = arg; | ||
| 2017 | |||
| 2018 | switch (cmd) { | ||
| 2019 | case PERF_EVENT_IOC_ENABLE: | ||
| 2020 | func = perf_event_enable; | ||
| 2021 | break; | ||
| 2022 | case PERF_EVENT_IOC_DISABLE: | ||
| 2023 | func = perf_event_disable; | ||
| 2024 | break; | ||
| 2025 | case PERF_EVENT_IOC_RESET: | ||
| 2026 | func = perf_event_reset; | ||
| 2027 | break; | ||
| 2028 | |||
| 2029 | case PERF_EVENT_IOC_REFRESH: | ||
| 2030 | return perf_event_refresh(event, arg); | ||
| 2031 | |||
| 2032 | case PERF_EVENT_IOC_PERIOD: | ||
| 2033 | return perf_event_period(event, (u64 __user *)arg); | ||
| 2034 | |||
| 2035 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
| 2036 | return perf_event_set_output(event, arg); | ||
| 2037 | |||
| 2038 | case PERF_EVENT_IOC_SET_FILTER: | ||
| 2039 | return perf_event_set_filter(event, (void __user *)arg); | ||
| 2040 | |||
| 2041 | default: | ||
| 2042 | return -ENOTTY; | ||
| 2043 | } | ||
| 2044 | |||
| 2045 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2046 | perf_event_for_each(event, func); | ||
| 2047 | else | ||
| 2048 | perf_event_for_each_child(event, func); | ||
| 2049 | |||
| 2050 | return 0; | ||
| 2051 | } | ||
| 2052 | |||
| 2053 | int perf_event_task_enable(void) | ||
| 2054 | { | ||
| 2055 | struct perf_event *event; | ||
| 2056 | |||
| 2057 | mutex_lock(¤t->perf_event_mutex); | ||
| 2058 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2059 | perf_event_for_each_child(event, perf_event_enable); | ||
| 2060 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2061 | |||
| 2062 | return 0; | ||
| 2063 | } | ||
| 2064 | |||
| 2065 | int perf_event_task_disable(void) | ||
| 2066 | { | ||
| 2067 | struct perf_event *event; | ||
| 2068 | |||
| 2069 | mutex_lock(¤t->perf_event_mutex); | ||
| 2070 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2071 | perf_event_for_each_child(event, perf_event_disable); | ||
| 2072 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2073 | |||
| 2074 | return 0; | ||
| 2075 | } | ||
| 2076 | |||
| 2077 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
| 2078 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
| 2079 | #endif | ||
| 2080 | |||
| 2081 | static int perf_event_index(struct perf_event *event) | ||
| 2082 | { | ||
| 2083 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 2084 | return 0; | ||
| 2085 | |||
| 2086 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
| 2087 | } | ||
| 2088 | |||
| 2089 | /* | ||
| 2090 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2091 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2092 | * code calls this from NMI context. | ||
| 2093 | */ | ||
| 2094 | void perf_event_update_userpage(struct perf_event *event) | ||
| 2095 | { | ||
| 2096 | struct perf_event_mmap_page *userpg; | ||
| 2097 | struct perf_mmap_data *data; | ||
| 2098 | |||
| 2099 | rcu_read_lock(); | ||
| 2100 | data = rcu_dereference(event->data); | ||
| 2101 | if (!data) | ||
| 2102 | goto unlock; | ||
| 2103 | |||
| 2104 | userpg = data->user_page; | ||
| 2105 | |||
| 2106 | /* | ||
| 2107 | * Disable preemption so as to not let the corresponding user-space | ||
| 2108 | * spin too long if we get preempted. | ||
| 2109 | */ | ||
| 2110 | preempt_disable(); | ||
| 2111 | ++userpg->lock; | ||
| 2112 | barrier(); | ||
| 2113 | userpg->index = perf_event_index(event); | ||
| 2114 | userpg->offset = atomic64_read(&event->count); | ||
| 2115 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 2116 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
| 2117 | |||
| 2118 | userpg->time_enabled = event->total_time_enabled + | ||
| 2119 | atomic64_read(&event->child_total_time_enabled); | ||
| 2120 | |||
| 2121 | userpg->time_running = event->total_time_running + | ||
| 2122 | atomic64_read(&event->child_total_time_running); | ||
| 2123 | |||
| 2124 | barrier(); | ||
| 2125 | ++userpg->lock; | ||
| 2126 | preempt_enable(); | ||
| 2127 | unlock: | ||
| 2128 | rcu_read_unlock(); | ||
| 2129 | } | ||
| 2130 | |||
| 2131 | static unsigned long perf_data_size(struct perf_mmap_data *data) | ||
| 2132 | { | ||
| 2133 | return data->nr_pages << (PAGE_SHIFT + data->data_order); | ||
| 2134 | } | ||
| 2135 | |||
| 2136 | #ifndef CONFIG_PERF_USE_VMALLOC | ||
| 2137 | |||
| 2138 | /* | ||
| 2139 | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | ||
| 2140 | */ | ||
| 2141 | |||
| 2142 | static struct page * | ||
| 2143 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
| 2144 | { | ||
| 2145 | if (pgoff > data->nr_pages) | ||
| 2146 | return NULL; | ||
| 2147 | |||
| 2148 | if (pgoff == 0) | ||
| 2149 | return virt_to_page(data->user_page); | ||
| 2150 | |||
| 2151 | return virt_to_page(data->data_pages[pgoff - 1]); | ||
| 2152 | } | ||
| 2153 | |||
| 2154 | static struct perf_mmap_data * | ||
| 2155 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
| 2156 | { | ||
| 2157 | struct perf_mmap_data *data; | ||
| 2158 | unsigned long size; | ||
| 2159 | int i; | ||
| 2160 | |||
| 2161 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2162 | |||
| 2163 | size = sizeof(struct perf_mmap_data); | ||
| 2164 | size += nr_pages * sizeof(void *); | ||
| 2165 | |||
| 2166 | data = kzalloc(size, GFP_KERNEL); | ||
| 2167 | if (!data) | ||
| 2168 | goto fail; | ||
| 2169 | |||
| 2170 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2171 | if (!data->user_page) | ||
| 2172 | goto fail_user_page; | ||
| 2173 | |||
| 2174 | for (i = 0; i < nr_pages; i++) { | ||
| 2175 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2176 | if (!data->data_pages[i]) | ||
| 2177 | goto fail_data_pages; | ||
| 2178 | } | ||
| 2179 | |||
| 2180 | data->data_order = 0; | ||
| 2181 | data->nr_pages = nr_pages; | ||
| 2182 | |||
| 2183 | return data; | ||
| 2184 | |||
| 2185 | fail_data_pages: | ||
| 2186 | for (i--; i >= 0; i--) | ||
| 2187 | free_page((unsigned long)data->data_pages[i]); | ||
| 2188 | |||
| 2189 | free_page((unsigned long)data->user_page); | ||
| 2190 | |||
| 2191 | fail_user_page: | ||
| 2192 | kfree(data); | ||
| 2193 | |||
| 2194 | fail: | ||
| 2195 | return NULL; | ||
| 2196 | } | ||
| 2197 | |||
| 2198 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2199 | { | ||
| 2200 | struct page *page = virt_to_page((void *)addr); | ||
| 2201 | |||
| 2202 | page->mapping = NULL; | ||
| 2203 | __free_page(page); | ||
| 2204 | } | ||
| 2205 | |||
| 2206 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
| 2207 | { | ||
| 2208 | int i; | ||
| 2209 | |||
| 2210 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2211 | for (i = 0; i < data->nr_pages; i++) | ||
| 2212 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2213 | kfree(data); | ||
| 2214 | } | ||
| 2215 | |||
| 2216 | #else | ||
| 2217 | |||
| 2218 | /* | ||
| 2219 | * Back perf_mmap() with vmalloc memory. | ||
| 2220 | * | ||
| 2221 | * Required for architectures that have d-cache aliasing issues. | ||
| 2222 | */ | ||
| 2223 | |||
| 2224 | static struct page * | ||
| 2225 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
| 2226 | { | ||
| 2227 | if (pgoff > (1UL << data->data_order)) | ||
| 2228 | return NULL; | ||
| 2229 | |||
| 2230 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | ||
| 2231 | } | ||
| 2232 | |||
| 2233 | static void perf_mmap_unmark_page(void *addr) | ||
| 2234 | { | ||
| 2235 | struct page *page = vmalloc_to_page(addr); | ||
| 2236 | |||
| 2237 | page->mapping = NULL; | ||
| 2238 | } | ||
| 2239 | |||
| 2240 | static void perf_mmap_data_free_work(struct work_struct *work) | ||
| 2241 | { | ||
| 2242 | struct perf_mmap_data *data; | ||
| 2243 | void *base; | ||
| 2244 | int i, nr; | ||
| 2245 | |||
| 2246 | data = container_of(work, struct perf_mmap_data, work); | ||
| 2247 | nr = 1 << data->data_order; | ||
| 2248 | |||
| 2249 | base = data->user_page; | ||
| 2250 | for (i = 0; i < nr + 1; i++) | ||
| 2251 | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | ||
| 2252 | |||
| 2253 | vfree(base); | ||
| 2254 | kfree(data); | ||
| 2255 | } | ||
| 2256 | |||
| 2257 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
| 2258 | { | ||
| 2259 | schedule_work(&data->work); | ||
| 2260 | } | ||
| 2261 | |||
| 2262 | static struct perf_mmap_data * | ||
| 2263 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
| 2264 | { | ||
| 2265 | struct perf_mmap_data *data; | ||
| 2266 | unsigned long size; | ||
| 2267 | void *all_buf; | ||
| 2268 | |||
| 2269 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2270 | |||
| 2271 | size = sizeof(struct perf_mmap_data); | ||
| 2272 | size += sizeof(void *); | ||
| 2273 | |||
| 2274 | data = kzalloc(size, GFP_KERNEL); | ||
| 2275 | if (!data) | ||
| 2276 | goto fail; | ||
| 2277 | |||
| 2278 | INIT_WORK(&data->work, perf_mmap_data_free_work); | ||
| 2279 | |||
| 2280 | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | ||
| 2281 | if (!all_buf) | ||
| 2282 | goto fail_all_buf; | ||
| 2283 | |||
| 2284 | data->user_page = all_buf; | ||
| 2285 | data->data_pages[0] = all_buf + PAGE_SIZE; | ||
| 2286 | data->data_order = ilog2(nr_pages); | ||
| 2287 | data->nr_pages = 1; | ||
| 2288 | |||
| 2289 | return data; | ||
| 2290 | |||
| 2291 | fail_all_buf: | ||
| 2292 | kfree(data); | ||
| 2293 | |||
| 2294 | fail: | ||
| 2295 | return NULL; | ||
| 2296 | } | ||
| 2297 | |||
| 2298 | #endif | ||
| 2299 | |||
| 2300 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2301 | { | ||
| 2302 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2303 | struct perf_mmap_data *data; | ||
| 2304 | int ret = VM_FAULT_SIGBUS; | ||
| 2305 | |||
| 2306 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2307 | if (vmf->pgoff == 0) | ||
| 2308 | ret = 0; | ||
| 2309 | return ret; | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | rcu_read_lock(); | ||
| 2313 | data = rcu_dereference(event->data); | ||
| 2314 | if (!data) | ||
| 2315 | goto unlock; | ||
| 2316 | |||
| 2317 | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | ||
| 2318 | goto unlock; | ||
| 2319 | |||
| 2320 | vmf->page = perf_mmap_to_page(data, vmf->pgoff); | ||
| 2321 | if (!vmf->page) | ||
| 2322 | goto unlock; | ||
| 2323 | |||
| 2324 | get_page(vmf->page); | ||
| 2325 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2326 | vmf->page->index = vmf->pgoff; | ||
| 2327 | |||
| 2328 | ret = 0; | ||
| 2329 | unlock: | ||
| 2330 | rcu_read_unlock(); | ||
| 2331 | |||
| 2332 | return ret; | ||
| 2333 | } | ||
| 2334 | |||
| 2335 | static void | ||
| 2336 | perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | ||
| 2337 | { | ||
| 2338 | long max_size = perf_data_size(data); | ||
| 2339 | |||
| 2340 | atomic_set(&data->lock, -1); | ||
| 2341 | |||
| 2342 | if (event->attr.watermark) { | ||
| 2343 | data->watermark = min_t(long, max_size, | ||
| 2344 | event->attr.wakeup_watermark); | ||
| 2345 | } | ||
| 2346 | |||
| 2347 | if (!data->watermark) | ||
| 2348 | data->watermark = max_size / 2; | ||
| 2349 | |||
| 2350 | |||
| 2351 | rcu_assign_pointer(event->data, data); | ||
| 2352 | } | ||
| 2353 | |||
| 2354 | static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) | ||
| 2355 | { | ||
| 2356 | struct perf_mmap_data *data; | ||
| 2357 | |||
| 2358 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2359 | perf_mmap_data_free(data); | ||
| 2360 | } | ||
| 2361 | |||
| 2362 | static void perf_mmap_data_release(struct perf_event *event) | ||
| 2363 | { | ||
| 2364 | struct perf_mmap_data *data = event->data; | ||
| 2365 | |||
| 2366 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2367 | |||
| 2368 | rcu_assign_pointer(event->data, NULL); | ||
| 2369 | call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); | ||
| 2370 | } | ||
| 2371 | |||
| 2372 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2373 | { | ||
| 2374 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2375 | |||
| 2376 | atomic_inc(&event->mmap_count); | ||
| 2377 | } | ||
| 2378 | |||
| 2379 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2380 | { | ||
| 2381 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2382 | |||
| 2383 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2384 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
| 2385 | unsigned long size = perf_data_size(event->data); | ||
| 2386 | struct user_struct *user = current_user(); | ||
| 2387 | |||
| 2388 | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | ||
| 2389 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
| 2390 | perf_mmap_data_release(event); | ||
| 2391 | mutex_unlock(&event->mmap_mutex); | ||
| 2392 | } | ||
| 2393 | } | ||
| 2394 | |||
| 2395 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
| 2396 | .open = perf_mmap_open, | ||
| 2397 | .close = perf_mmap_close, | ||
| 2398 | .fault = perf_mmap_fault, | ||
| 2399 | .page_mkwrite = perf_mmap_fault, | ||
| 2400 | }; | ||
| 2401 | |||
| 2402 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2403 | { | ||
| 2404 | struct perf_event *event = file->private_data; | ||
| 2405 | unsigned long user_locked, user_lock_limit; | ||
| 2406 | struct user_struct *user = current_user(); | ||
| 2407 | unsigned long locked, lock_limit; | ||
| 2408 | struct perf_mmap_data *data; | ||
| 2409 | unsigned long vma_size; | ||
| 2410 | unsigned long nr_pages; | ||
| 2411 | long user_extra, extra; | ||
| 2412 | int ret = 0; | ||
| 2413 | |||
| 2414 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2415 | return -EINVAL; | ||
| 2416 | |||
| 2417 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2418 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2419 | |||
| 2420 | /* | ||
| 2421 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2422 | * can do bitmasks instead of modulo. | ||
| 2423 | */ | ||
| 2424 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2425 | return -EINVAL; | ||
| 2426 | |||
| 2427 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2428 | return -EINVAL; | ||
| 2429 | |||
| 2430 | if (vma->vm_pgoff != 0) | ||
| 2431 | return -EINVAL; | ||
| 2432 | |||
| 2433 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2434 | mutex_lock(&event->mmap_mutex); | ||
| 2435 | if (event->output) { | ||
| 2436 | ret = -EINVAL; | ||
| 2437 | goto unlock; | ||
| 2438 | } | ||
| 2439 | |||
| 2440 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
| 2441 | if (nr_pages != event->data->nr_pages) | ||
| 2442 | ret = -EINVAL; | ||
| 2443 | goto unlock; | ||
| 2444 | } | ||
| 2445 | |||
| 2446 | user_extra = nr_pages + 1; | ||
| 2447 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
| 2448 | |||
| 2449 | /* | ||
| 2450 | * Increase the limit linearly with more CPUs: | ||
| 2451 | */ | ||
| 2452 | user_lock_limit *= num_online_cpus(); | ||
| 2453 | |||
| 2454 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2455 | |||
| 2456 | extra = 0; | ||
| 2457 | if (user_locked > user_lock_limit) | ||
| 2458 | extra = user_locked - user_lock_limit; | ||
| 2459 | |||
| 2460 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2461 | lock_limit >>= PAGE_SHIFT; | ||
| 2462 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2463 | |||
| 2464 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
| 2465 | !capable(CAP_IPC_LOCK)) { | ||
| 2466 | ret = -EPERM; | ||
| 2467 | goto unlock; | ||
| 2468 | } | ||
| 2469 | |||
| 2470 | WARN_ON(event->data); | ||
| 2471 | |||
| 2472 | data = perf_mmap_data_alloc(event, nr_pages); | ||
| 2473 | ret = -ENOMEM; | ||
| 2474 | if (!data) | ||
| 2475 | goto unlock; | ||
| 2476 | |||
| 2477 | ret = 0; | ||
| 2478 | perf_mmap_data_init(event, data); | ||
| 2479 | |||
| 2480 | atomic_set(&event->mmap_count, 1); | ||
| 2481 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2482 | vma->vm_mm->locked_vm += extra; | ||
| 2483 | event->data->nr_locked = extra; | ||
| 2484 | if (vma->vm_flags & VM_WRITE) | ||
| 2485 | event->data->writable = 1; | ||
| 2486 | |||
| 2487 | unlock: | ||
| 2488 | mutex_unlock(&event->mmap_mutex); | ||
| 2489 | |||
| 2490 | vma->vm_flags |= VM_RESERVED; | ||
| 2491 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2492 | |||
| 2493 | return ret; | ||
| 2494 | } | ||
| 2495 | |||
| 2496 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2497 | { | ||
| 2498 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2499 | struct perf_event *event = filp->private_data; | ||
| 2500 | int retval; | ||
| 2501 | |||
| 2502 | mutex_lock(&inode->i_mutex); | ||
| 2503 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
| 2504 | mutex_unlock(&inode->i_mutex); | ||
| 2505 | |||
| 2506 | if (retval < 0) | ||
| 2507 | return retval; | ||
| 2508 | |||
| 2509 | return 0; | ||
| 2510 | } | ||
| 2511 | |||
| 2512 | static const struct file_operations perf_fops = { | ||
| 2513 | .release = perf_release, | ||
| 2514 | .read = perf_read, | ||
| 2515 | .poll = perf_poll, | ||
| 2516 | .unlocked_ioctl = perf_ioctl, | ||
| 2517 | .compat_ioctl = perf_ioctl, | ||
| 2518 | .mmap = perf_mmap, | ||
| 2519 | .fasync = perf_fasync, | ||
| 2520 | }; | ||
| 2521 | |||
| 2522 | /* | ||
| 2523 | * Perf event wakeup | ||
| 2524 | * | ||
| 2525 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2526 | * to user-space before waking everybody up. | ||
| 2527 | */ | ||
| 2528 | |||
| 2529 | void perf_event_wakeup(struct perf_event *event) | ||
| 2530 | { | ||
| 2531 | wake_up_all(&event->waitq); | ||
| 2532 | |||
| 2533 | if (event->pending_kill) { | ||
| 2534 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
| 2535 | event->pending_kill = 0; | ||
| 2536 | } | ||
| 2537 | } | ||
| 2538 | |||
| 2539 | /* | ||
| 2540 | * Pending wakeups | ||
| 2541 | * | ||
| 2542 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2543 | * | ||
| 2544 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2545 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2546 | */ | ||
| 2547 | |||
| 2548 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
| 2549 | { | ||
| 2550 | struct perf_event *event = container_of(entry, | ||
| 2551 | struct perf_event, pending); | ||
| 2552 | |||
| 2553 | if (event->pending_disable) { | ||
| 2554 | event->pending_disable = 0; | ||
| 2555 | __perf_event_disable(event); | ||
| 2556 | } | ||
| 2557 | |||
| 2558 | if (event->pending_wakeup) { | ||
| 2559 | event->pending_wakeup = 0; | ||
| 2560 | perf_event_wakeup(event); | ||
| 2561 | } | ||
| 2562 | } | ||
| 2563 | |||
| 2564 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2565 | |||
| 2566 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2567 | PENDING_TAIL, | ||
| 2568 | }; | ||
| 2569 | |||
| 2570 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2571 | void (*func)(struct perf_pending_entry *)) | ||
| 2572 | { | ||
| 2573 | struct perf_pending_entry **head; | ||
| 2574 | |||
| 2575 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2576 | return; | ||
| 2577 | |||
| 2578 | entry->func = func; | ||
| 2579 | |||
| 2580 | head = &get_cpu_var(perf_pending_head); | ||
| 2581 | |||
| 2582 | do { | ||
| 2583 | entry->next = *head; | ||
| 2584 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2585 | |||
| 2586 | set_perf_event_pending(); | ||
| 2587 | |||
| 2588 | put_cpu_var(perf_pending_head); | ||
| 2589 | } | ||
| 2590 | |||
| 2591 | static int __perf_pending_run(void) | ||
| 2592 | { | ||
| 2593 | struct perf_pending_entry *list; | ||
| 2594 | int nr = 0; | ||
| 2595 | |||
| 2596 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2597 | while (list != PENDING_TAIL) { | ||
| 2598 | void (*func)(struct perf_pending_entry *); | ||
| 2599 | struct perf_pending_entry *entry = list; | ||
| 2600 | |||
| 2601 | list = list->next; | ||
| 2602 | |||
| 2603 | func = entry->func; | ||
| 2604 | entry->next = NULL; | ||
| 2605 | /* | ||
| 2606 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2607 | * so that we won't be waiting forever. | ||
| 2608 | * -- see perf_not_pending(). | ||
| 2609 | */ | ||
| 2610 | smp_wmb(); | ||
| 2611 | |||
| 2612 | func(entry); | ||
| 2613 | nr++; | ||
| 2614 | } | ||
| 2615 | |||
| 2616 | return nr; | ||
| 2617 | } | ||
| 2618 | |||
| 2619 | static inline int perf_not_pending(struct perf_event *event) | ||
| 2620 | { | ||
| 2621 | /* | ||
| 2622 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2623 | * need to wait. | ||
| 2624 | */ | ||
| 2625 | get_cpu(); | ||
| 2626 | __perf_pending_run(); | ||
| 2627 | put_cpu(); | ||
| 2628 | |||
| 2629 | /* | ||
| 2630 | * Ensure we see the proper queue state before going to sleep | ||
| 2631 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2632 | */ | ||
| 2633 | smp_rmb(); | ||
| 2634 | return event->pending.next == NULL; | ||
| 2635 | } | ||
| 2636 | |||
| 2637 | static void perf_pending_sync(struct perf_event *event) | ||
| 2638 | { | ||
| 2639 | wait_event(event->waitq, perf_not_pending(event)); | ||
| 2640 | } | ||
| 2641 | |||
| 2642 | void perf_event_do_pending(void) | ||
| 2643 | { | ||
| 2644 | __perf_pending_run(); | ||
| 2645 | } | ||
| 2646 | |||
| 2647 | /* | ||
| 2648 | * Callchain support -- arch specific | ||
| 2649 | */ | ||
| 2650 | |||
| 2651 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2652 | { | ||
| 2653 | return NULL; | ||
| 2654 | } | ||
| 2655 | |||
| 2656 | /* | ||
| 2657 | * Output | ||
| 2658 | */ | ||
| 2659 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
| 2660 | unsigned long offset, unsigned long head) | ||
| 2661 | { | ||
| 2662 | unsigned long mask; | ||
| 2663 | |||
| 2664 | if (!data->writable) | ||
| 2665 | return true; | ||
| 2666 | |||
| 2667 | mask = perf_data_size(data) - 1; | ||
| 2668 | |||
| 2669 | offset = (offset - tail) & mask; | ||
| 2670 | head = (head - tail) & mask; | ||
| 2671 | |||
| 2672 | if ((int)(head - offset) < 0) | ||
| 2673 | return false; | ||
| 2674 | |||
| 2675 | return true; | ||
| 2676 | } | ||
| 2677 | |||
| 2678 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2679 | { | ||
| 2680 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2681 | |||
| 2682 | if (handle->nmi) { | ||
| 2683 | handle->event->pending_wakeup = 1; | ||
| 2684 | perf_pending_queue(&handle->event->pending, | ||
| 2685 | perf_pending_event); | ||
| 2686 | } else | ||
| 2687 | perf_event_wakeup(handle->event); | ||
| 2688 | } | ||
| 2689 | |||
| 2690 | /* | ||
| 2691 | * Curious locking construct. | ||
| 2692 | * | ||
| 2693 | * We need to ensure a later event_id doesn't publish a head when a former | ||
| 2694 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
| 2695 | * cannot fully serialize things. | ||
| 2696 | * | ||
| 2697 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2698 | * nesting on a single CPU. | ||
| 2699 | * | ||
| 2700 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2701 | * event_id completes. | ||
| 2702 | */ | ||
| 2703 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2704 | { | ||
| 2705 | struct perf_mmap_data *data = handle->data; | ||
| 2706 | int cur, cpu = get_cpu(); | ||
| 2707 | |||
| 2708 | handle->locked = 0; | ||
| 2709 | |||
| 2710 | for (;;) { | ||
| 2711 | cur = atomic_cmpxchg(&data->lock, -1, cpu); | ||
| 2712 | if (cur == -1) { | ||
| 2713 | handle->locked = 1; | ||
| 2714 | break; | ||
| 2715 | } | ||
| 2716 | if (cur == cpu) | ||
| 2717 | break; | ||
| 2718 | |||
| 2719 | cpu_relax(); | ||
| 2720 | } | ||
| 2721 | } | ||
| 2722 | |||
| 2723 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2724 | { | ||
| 2725 | struct perf_mmap_data *data = handle->data; | ||
| 2726 | unsigned long head; | ||
| 2727 | int cpu; | ||
| 2728 | |||
| 2729 | data->done_head = data->head; | ||
| 2730 | |||
| 2731 | if (!handle->locked) | ||
| 2732 | goto out; | ||
| 2733 | |||
| 2734 | again: | ||
| 2735 | /* | ||
| 2736 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2737 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2738 | * reading this position. | ||
| 2739 | */ | ||
| 2740 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2741 | data->user_page->data_head = head; | ||
| 2742 | |||
| 2743 | /* | ||
| 2744 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2745 | */ | ||
| 2746 | |||
| 2747 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2748 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2749 | |||
| 2750 | /* | ||
| 2751 | * Therefore we have to validate we did not indeed do so. | ||
| 2752 | */ | ||
| 2753 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2754 | /* | ||
| 2755 | * Since we had it locked, we can lock it again. | ||
| 2756 | */ | ||
| 2757 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2758 | cpu_relax(); | ||
| 2759 | |||
| 2760 | goto again; | ||
| 2761 | } | ||
| 2762 | |||
| 2763 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2764 | perf_output_wakeup(handle); | ||
| 2765 | out: | ||
| 2766 | put_cpu(); | ||
| 2767 | } | ||
| 2768 | |||
| 2769 | void perf_output_copy(struct perf_output_handle *handle, | ||
| 2770 | const void *buf, unsigned int len) | ||
| 2771 | { | ||
| 2772 | unsigned int pages_mask; | ||
| 2773 | unsigned long offset; | ||
| 2774 | unsigned int size; | ||
| 2775 | void **pages; | ||
| 2776 | |||
| 2777 | offset = handle->offset; | ||
| 2778 | pages_mask = handle->data->nr_pages - 1; | ||
| 2779 | pages = handle->data->data_pages; | ||
| 2780 | |||
| 2781 | do { | ||
| 2782 | unsigned long page_offset; | ||
| 2783 | unsigned long page_size; | ||
| 2784 | int nr; | ||
| 2785 | |||
| 2786 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2787 | page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); | ||
| 2788 | page_offset = offset & (page_size - 1); | ||
| 2789 | size = min_t(unsigned int, page_size - page_offset, len); | ||
| 2790 | |||
| 2791 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2792 | |||
| 2793 | len -= size; | ||
| 2794 | buf += size; | ||
| 2795 | offset += size; | ||
| 2796 | } while (len); | ||
| 2797 | |||
| 2798 | handle->offset = offset; | ||
| 2799 | |||
| 2800 | /* | ||
| 2801 | * Check we didn't copy past our reservation window, taking the | ||
| 2802 | * possible unsigned int wrap into account. | ||
| 2803 | */ | ||
| 2804 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2805 | } | ||
| 2806 | |||
| 2807 | int perf_output_begin(struct perf_output_handle *handle, | ||
| 2808 | struct perf_event *event, unsigned int size, | ||
| 2809 | int nmi, int sample) | ||
| 2810 | { | ||
| 2811 | struct perf_event *output_event; | ||
| 2812 | struct perf_mmap_data *data; | ||
| 2813 | unsigned long tail, offset, head; | ||
| 2814 | int have_lost; | ||
| 2815 | struct { | ||
| 2816 | struct perf_event_header header; | ||
| 2817 | u64 id; | ||
| 2818 | u64 lost; | ||
| 2819 | } lost_event; | ||
| 2820 | |||
| 2821 | rcu_read_lock(); | ||
| 2822 | /* | ||
| 2823 | * For inherited events we send all the output towards the parent. | ||
| 2824 | */ | ||
| 2825 | if (event->parent) | ||
| 2826 | event = event->parent; | ||
| 2827 | |||
| 2828 | output_event = rcu_dereference(event->output); | ||
| 2829 | if (output_event) | ||
| 2830 | event = output_event; | ||
| 2831 | |||
| 2832 | data = rcu_dereference(event->data); | ||
| 2833 | if (!data) | ||
| 2834 | goto out; | ||
| 2835 | |||
| 2836 | handle->data = data; | ||
| 2837 | handle->event = event; | ||
| 2838 | handle->nmi = nmi; | ||
| 2839 | handle->sample = sample; | ||
| 2840 | |||
| 2841 | if (!data->nr_pages) | ||
| 2842 | goto fail; | ||
| 2843 | |||
| 2844 | have_lost = atomic_read(&data->lost); | ||
| 2845 | if (have_lost) | ||
| 2846 | size += sizeof(lost_event); | ||
| 2847 | |||
| 2848 | perf_output_lock(handle); | ||
| 2849 | |||
| 2850 | do { | ||
| 2851 | /* | ||
| 2852 | * Userspace could choose to issue a mb() before updating the | ||
| 2853 | * tail pointer. So that all reads will be completed before the | ||
| 2854 | * write is issued. | ||
| 2855 | */ | ||
| 2856 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2857 | smp_rmb(); | ||
| 2858 | offset = head = atomic_long_read(&data->head); | ||
| 2859 | head += size; | ||
| 2860 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
| 2861 | goto fail; | ||
| 2862 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2863 | |||
| 2864 | handle->offset = offset; | ||
| 2865 | handle->head = head; | ||
| 2866 | |||
| 2867 | if (head - tail > data->watermark) | ||
| 2868 | atomic_set(&data->wakeup, 1); | ||
| 2869 | |||
| 2870 | if (have_lost) { | ||
| 2871 | lost_event.header.type = PERF_RECORD_LOST; | ||
| 2872 | lost_event.header.misc = 0; | ||
| 2873 | lost_event.header.size = sizeof(lost_event); | ||
| 2874 | lost_event.id = event->id; | ||
| 2875 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2876 | |||
| 2877 | perf_output_put(handle, lost_event); | ||
| 2878 | } | ||
| 2879 | |||
| 2880 | return 0; | ||
| 2881 | |||
| 2882 | fail: | ||
| 2883 | atomic_inc(&data->lost); | ||
| 2884 | perf_output_unlock(handle); | ||
| 2885 | out: | ||
| 2886 | rcu_read_unlock(); | ||
| 2887 | |||
| 2888 | return -ENOSPC; | ||
| 2889 | } | ||
| 2890 | |||
| 2891 | void perf_output_end(struct perf_output_handle *handle) | ||
| 2892 | { | ||
| 2893 | struct perf_event *event = handle->event; | ||
| 2894 | struct perf_mmap_data *data = handle->data; | ||
| 2895 | |||
| 2896 | int wakeup_events = event->attr.wakeup_events; | ||
| 2897 | |||
| 2898 | if (handle->sample && wakeup_events) { | ||
| 2899 | int events = atomic_inc_return(&data->events); | ||
| 2900 | if (events >= wakeup_events) { | ||
| 2901 | atomic_sub(wakeup_events, &data->events); | ||
| 2902 | atomic_set(&data->wakeup, 1); | ||
| 2903 | } | ||
| 2904 | } | ||
| 2905 | |||
| 2906 | perf_output_unlock(handle); | ||
| 2907 | rcu_read_unlock(); | ||
| 2908 | } | ||
| 2909 | |||
| 2910 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
| 2911 | { | ||
| 2912 | /* | ||
| 2913 | * only top level events have the pid namespace they were created in | ||
| 2914 | */ | ||
| 2915 | if (event->parent) | ||
| 2916 | event = event->parent; | ||
| 2917 | |||
| 2918 | return task_tgid_nr_ns(p, event->ns); | ||
| 2919 | } | ||
| 2920 | |||
| 2921 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
| 2922 | { | ||
| 2923 | /* | ||
| 2924 | * only top level events have the pid namespace they were created in | ||
| 2925 | */ | ||
| 2926 | if (event->parent) | ||
| 2927 | event = event->parent; | ||
| 2928 | |||
| 2929 | return task_pid_nr_ns(p, event->ns); | ||
| 2930 | } | ||
| 2931 | |||
| 2932 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2933 | struct perf_event *event) | ||
| 2934 | { | ||
| 2935 | u64 read_format = event->attr.read_format; | ||
| 2936 | u64 values[4]; | ||
| 2937 | int n = 0; | ||
| 2938 | |||
| 2939 | values[n++] = atomic64_read(&event->count); | ||
| 2940 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2941 | values[n++] = event->total_time_enabled + | ||
| 2942 | atomic64_read(&event->child_total_time_enabled); | ||
| 2943 | } | ||
| 2944 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2945 | values[n++] = event->total_time_running + | ||
| 2946 | atomic64_read(&event->child_total_time_running); | ||
| 2947 | } | ||
| 2948 | if (read_format & PERF_FORMAT_ID) | ||
| 2949 | values[n++] = primary_event_id(event); | ||
| 2950 | |||
| 2951 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2952 | } | ||
| 2953 | |||
| 2954 | /* | ||
| 2955 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
| 2956 | */ | ||
| 2957 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2958 | struct perf_event *event) | ||
| 2959 | { | ||
| 2960 | struct perf_event *leader = event->group_leader, *sub; | ||
| 2961 | u64 read_format = event->attr.read_format; | ||
| 2962 | u64 values[5]; | ||
| 2963 | int n = 0; | ||
| 2964 | |||
| 2965 | values[n++] = 1 + leader->nr_siblings; | ||
| 2966 | |||
| 2967 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2968 | values[n++] = leader->total_time_enabled; | ||
| 2969 | |||
| 2970 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2971 | values[n++] = leader->total_time_running; | ||
| 2972 | |||
| 2973 | if (leader != event) | ||
| 2974 | leader->pmu->read(leader); | ||
| 2975 | |||
| 2976 | values[n++] = atomic64_read(&leader->count); | ||
| 2977 | if (read_format & PERF_FORMAT_ID) | ||
| 2978 | values[n++] = primary_event_id(leader); | ||
| 2979 | |||
| 2980 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2981 | |||
| 2982 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 2983 | n = 0; | ||
| 2984 | |||
| 2985 | if (sub != event) | ||
| 2986 | sub->pmu->read(sub); | ||
| 2987 | |||
| 2988 | values[n++] = atomic64_read(&sub->count); | ||
| 2989 | if (read_format & PERF_FORMAT_ID) | ||
| 2990 | values[n++] = primary_event_id(sub); | ||
| 2991 | |||
| 2992 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2993 | } | ||
| 2994 | } | ||
| 2995 | |||
| 2996 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2997 | struct perf_event *event) | ||
| 2998 | { | ||
| 2999 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
| 3000 | perf_output_read_group(handle, event); | ||
| 3001 | else | ||
| 3002 | perf_output_read_one(handle, event); | ||
| 3003 | } | ||
| 3004 | |||
| 3005 | void perf_output_sample(struct perf_output_handle *handle, | ||
| 3006 | struct perf_event_header *header, | ||
| 3007 | struct perf_sample_data *data, | ||
| 3008 | struct perf_event *event) | ||
| 3009 | { | ||
| 3010 | u64 sample_type = data->type; | ||
| 3011 | |||
| 3012 | perf_output_put(handle, *header); | ||
| 3013 | |||
| 3014 | if (sample_type & PERF_SAMPLE_IP) | ||
| 3015 | perf_output_put(handle, data->ip); | ||
| 3016 | |||
| 3017 | if (sample_type & PERF_SAMPLE_TID) | ||
| 3018 | perf_output_put(handle, data->tid_entry); | ||
| 3019 | |||
| 3020 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 3021 | perf_output_put(handle, data->time); | ||
| 3022 | |||
| 3023 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 3024 | perf_output_put(handle, data->addr); | ||
| 3025 | |||
| 3026 | if (sample_type & PERF_SAMPLE_ID) | ||
| 3027 | perf_output_put(handle, data->id); | ||
| 3028 | |||
| 3029 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 3030 | perf_output_put(handle, data->stream_id); | ||
| 3031 | |||
| 3032 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 3033 | perf_output_put(handle, data->cpu_entry); | ||
| 3034 | |||
| 3035 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 3036 | perf_output_put(handle, data->period); | ||
| 3037 | |||
| 3038 | if (sample_type & PERF_SAMPLE_READ) | ||
| 3039 | perf_output_read(handle, event); | ||
| 3040 | |||
| 3041 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 3042 | if (data->callchain) { | ||
| 3043 | int size = 1; | ||
| 3044 | |||
| 3045 | if (data->callchain) | ||
| 3046 | size += data->callchain->nr; | ||
| 3047 | |||
| 3048 | size *= sizeof(u64); | ||
| 3049 | |||
| 3050 | perf_output_copy(handle, data->callchain, size); | ||
| 3051 | } else { | ||
| 3052 | u64 nr = 0; | ||
| 3053 | perf_output_put(handle, nr); | ||
| 3054 | } | ||
| 3055 | } | ||
| 3056 | |||
| 3057 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3058 | if (data->raw) { | ||
| 3059 | perf_output_put(handle, data->raw->size); | ||
| 3060 | perf_output_copy(handle, data->raw->data, | ||
| 3061 | data->raw->size); | ||
| 3062 | } else { | ||
| 3063 | struct { | ||
| 3064 | u32 size; | ||
| 3065 | u32 data; | ||
| 3066 | } raw = { | ||
| 3067 | .size = sizeof(u32), | ||
| 3068 | .data = 0, | ||
| 3069 | }; | ||
| 3070 | perf_output_put(handle, raw); | ||
| 3071 | } | ||
| 3072 | } | ||
| 3073 | } | ||
| 3074 | |||
| 3075 | void perf_prepare_sample(struct perf_event_header *header, | ||
| 3076 | struct perf_sample_data *data, | ||
| 3077 | struct perf_event *event, | ||
| 3078 | struct pt_regs *regs) | ||
| 3079 | { | ||
| 3080 | u64 sample_type = event->attr.sample_type; | ||
| 3081 | |||
| 3082 | data->type = sample_type; | ||
| 3083 | |||
| 3084 | header->type = PERF_RECORD_SAMPLE; | ||
| 3085 | header->size = sizeof(*header); | ||
| 3086 | |||
| 3087 | header->misc = 0; | ||
| 3088 | header->misc |= perf_misc_flags(regs); | ||
| 3089 | |||
| 3090 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 3091 | data->ip = perf_instruction_pointer(regs); | ||
| 3092 | |||
| 3093 | header->size += sizeof(data->ip); | ||
| 3094 | } | ||
| 3095 | |||
| 3096 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 3097 | /* namespace issues */ | ||
| 3098 | data->tid_entry.pid = perf_event_pid(event, current); | ||
| 3099 | data->tid_entry.tid = perf_event_tid(event, current); | ||
| 3100 | |||
| 3101 | header->size += sizeof(data->tid_entry); | ||
| 3102 | } | ||
| 3103 | |||
| 3104 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 3105 | data->time = perf_clock(); | ||
| 3106 | |||
| 3107 | header->size += sizeof(data->time); | ||
| 3108 | } | ||
| 3109 | |||
| 3110 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 3111 | header->size += sizeof(data->addr); | ||
| 3112 | |||
| 3113 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 3114 | data->id = primary_event_id(event); | ||
| 3115 | |||
| 3116 | header->size += sizeof(data->id); | ||
| 3117 | } | ||
| 3118 | |||
| 3119 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
| 3120 | data->stream_id = event->id; | ||
| 3121 | |||
| 3122 | header->size += sizeof(data->stream_id); | ||
| 3123 | } | ||
| 3124 | |||
| 3125 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 3126 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
| 3127 | data->cpu_entry.reserved = 0; | ||
| 3128 | |||
| 3129 | header->size += sizeof(data->cpu_entry); | ||
| 3130 | } | ||
| 3131 | |||
| 3132 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 3133 | header->size += sizeof(data->period); | ||
| 3134 | |||
| 3135 | if (sample_type & PERF_SAMPLE_READ) | ||
| 3136 | header->size += perf_event_read_size(event); | ||
| 3137 | |||
| 3138 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 3139 | int size = 1; | ||
| 3140 | |||
| 3141 | data->callchain = perf_callchain(regs); | ||
| 3142 | |||
| 3143 | if (data->callchain) | ||
| 3144 | size += data->callchain->nr; | ||
| 3145 | |||
| 3146 | header->size += size * sizeof(u64); | ||
| 3147 | } | ||
| 3148 | |||
| 3149 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3150 | int size = sizeof(u32); | ||
| 3151 | |||
| 3152 | if (data->raw) | ||
| 3153 | size += data->raw->size; | ||
| 3154 | else | ||
| 3155 | size += sizeof(u32); | ||
| 3156 | |||
| 3157 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 3158 | header->size += size; | ||
| 3159 | } | ||
| 3160 | } | ||
| 3161 | |||
| 3162 | static void perf_event_output(struct perf_event *event, int nmi, | ||
| 3163 | struct perf_sample_data *data, | ||
| 3164 | struct pt_regs *regs) | ||
| 3165 | { | ||
| 3166 | struct perf_output_handle handle; | ||
| 3167 | struct perf_event_header header; | ||
| 3168 | |||
| 3169 | perf_prepare_sample(&header, data, event, regs); | ||
| 3170 | |||
| 3171 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
| 3172 | return; | ||
| 3173 | |||
| 3174 | perf_output_sample(&handle, &header, data, event); | ||
| 3175 | |||
| 3176 | perf_output_end(&handle); | ||
| 3177 | } | ||
| 3178 | |||
| 3179 | /* | ||
| 3180 | * read event_id | ||
| 3181 | */ | ||
| 3182 | |||
| 3183 | struct perf_read_event { | ||
| 3184 | struct perf_event_header header; | ||
| 3185 | |||
| 3186 | u32 pid; | ||
| 3187 | u32 tid; | ||
| 3188 | }; | ||
| 3189 | |||
| 3190 | static void | ||
| 3191 | perf_event_read_event(struct perf_event *event, | ||
| 3192 | struct task_struct *task) | ||
| 3193 | { | ||
| 3194 | struct perf_output_handle handle; | ||
| 3195 | struct perf_read_event read_event = { | ||
| 3196 | .header = { | ||
| 3197 | .type = PERF_RECORD_READ, | ||
| 3198 | .misc = 0, | ||
| 3199 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
| 3200 | }, | ||
| 3201 | .pid = perf_event_pid(event, task), | ||
| 3202 | .tid = perf_event_tid(event, task), | ||
| 3203 | }; | ||
| 3204 | int ret; | ||
| 3205 | |||
| 3206 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
| 3207 | if (ret) | ||
| 3208 | return; | ||
| 3209 | |||
| 3210 | perf_output_put(&handle, read_event); | ||
| 3211 | perf_output_read(&handle, event); | ||
| 3212 | |||
| 3213 | perf_output_end(&handle); | ||
| 3214 | } | ||
| 3215 | |||
| 3216 | /* | ||
| 3217 | * task tracking -- fork/exit | ||
| 3218 | * | ||
| 3219 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3220 | */ | ||
| 3221 | |||
| 3222 | struct perf_task_event { | ||
| 3223 | struct task_struct *task; | ||
| 3224 | struct perf_event_context *task_ctx; | ||
| 3225 | |||
| 3226 | struct { | ||
| 3227 | struct perf_event_header header; | ||
| 3228 | |||
| 3229 | u32 pid; | ||
| 3230 | u32 ppid; | ||
| 3231 | u32 tid; | ||
| 3232 | u32 ptid; | ||
| 3233 | u64 time; | ||
| 3234 | } event_id; | ||
| 3235 | }; | ||
| 3236 | |||
| 3237 | static void perf_event_task_output(struct perf_event *event, | ||
| 3238 | struct perf_task_event *task_event) | ||
| 3239 | { | ||
| 3240 | struct perf_output_handle handle; | ||
| 3241 | int size; | ||
| 3242 | struct task_struct *task = task_event->task; | ||
| 3243 | int ret; | ||
| 3244 | |||
| 3245 | size = task_event->event_id.header.size; | ||
| 3246 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3247 | |||
| 3248 | if (ret) | ||
| 3249 | return; | ||
| 3250 | |||
| 3251 | task_event->event_id.pid = perf_event_pid(event, task); | ||
| 3252 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
| 3253 | |||
| 3254 | task_event->event_id.tid = perf_event_tid(event, task); | ||
| 3255 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
| 3256 | |||
| 3257 | task_event->event_id.time = perf_clock(); | ||
| 3258 | |||
| 3259 | perf_output_put(&handle, task_event->event_id); | ||
| 3260 | |||
| 3261 | perf_output_end(&handle); | ||
| 3262 | } | ||
| 3263 | |||
| 3264 | static int perf_event_task_match(struct perf_event *event) | ||
| 3265 | { | ||
| 3266 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
| 3267 | return 1; | ||
| 3268 | |||
| 3269 | return 0; | ||
| 3270 | } | ||
| 3271 | |||
| 3272 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
| 3273 | struct perf_task_event *task_event) | ||
| 3274 | { | ||
| 3275 | struct perf_event *event; | ||
| 3276 | |||
| 3277 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3278 | if (perf_event_task_match(event)) | ||
| 3279 | perf_event_task_output(event, task_event); | ||
| 3280 | } | ||
| 3281 | } | ||
| 3282 | |||
| 3283 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
| 3284 | { | ||
| 3285 | struct perf_cpu_context *cpuctx; | ||
| 3286 | struct perf_event_context *ctx = task_event->task_ctx; | ||
| 3287 | |||
| 3288 | rcu_read_lock(); | ||
| 3289 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3290 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
| 3291 | put_cpu_var(perf_cpu_context); | ||
| 3292 | |||
| 3293 | if (!ctx) | ||
| 3294 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
| 3295 | if (ctx) | ||
| 3296 | perf_event_task_ctx(ctx, task_event); | ||
| 3297 | rcu_read_unlock(); | ||
| 3298 | } | ||
| 3299 | |||
| 3300 | static void perf_event_task(struct task_struct *task, | ||
| 3301 | struct perf_event_context *task_ctx, | ||
| 3302 | int new) | ||
| 3303 | { | ||
| 3304 | struct perf_task_event task_event; | ||
| 3305 | |||
| 3306 | if (!atomic_read(&nr_comm_events) && | ||
| 3307 | !atomic_read(&nr_mmap_events) && | ||
| 3308 | !atomic_read(&nr_task_events)) | ||
| 3309 | return; | ||
| 3310 | |||
| 3311 | task_event = (struct perf_task_event){ | ||
| 3312 | .task = task, | ||
| 3313 | .task_ctx = task_ctx, | ||
| 3314 | .event_id = { | ||
| 3315 | .header = { | ||
| 3316 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
| 3317 | .misc = 0, | ||
| 3318 | .size = sizeof(task_event.event_id), | ||
| 3319 | }, | ||
| 3320 | /* .pid */ | ||
| 3321 | /* .ppid */ | ||
| 3322 | /* .tid */ | ||
| 3323 | /* .ptid */ | ||
| 3324 | }, | ||
| 3325 | }; | ||
| 3326 | |||
| 3327 | perf_event_task_event(&task_event); | ||
| 3328 | } | ||
| 3329 | |||
| 3330 | void perf_event_fork(struct task_struct *task) | ||
| 3331 | { | ||
| 3332 | perf_event_task(task, NULL, 1); | ||
| 3333 | } | ||
| 3334 | |||
| 3335 | /* | ||
| 3336 | * comm tracking | ||
| 3337 | */ | ||
| 3338 | |||
| 3339 | struct perf_comm_event { | ||
| 3340 | struct task_struct *task; | ||
| 3341 | char *comm; | ||
| 3342 | int comm_size; | ||
| 3343 | |||
| 3344 | struct { | ||
| 3345 | struct perf_event_header header; | ||
| 3346 | |||
| 3347 | u32 pid; | ||
| 3348 | u32 tid; | ||
| 3349 | } event_id; | ||
| 3350 | }; | ||
| 3351 | |||
| 3352 | static void perf_event_comm_output(struct perf_event *event, | ||
| 3353 | struct perf_comm_event *comm_event) | ||
| 3354 | { | ||
| 3355 | struct perf_output_handle handle; | ||
| 3356 | int size = comm_event->event_id.header.size; | ||
| 3357 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3358 | |||
| 3359 | if (ret) | ||
| 3360 | return; | ||
| 3361 | |||
| 3362 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
| 3363 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
| 3364 | |||
| 3365 | perf_output_put(&handle, comm_event->event_id); | ||
| 3366 | perf_output_copy(&handle, comm_event->comm, | ||
| 3367 | comm_event->comm_size); | ||
| 3368 | perf_output_end(&handle); | ||
| 3369 | } | ||
| 3370 | |||
| 3371 | static int perf_event_comm_match(struct perf_event *event) | ||
| 3372 | { | ||
| 3373 | if (event->attr.comm) | ||
| 3374 | return 1; | ||
| 3375 | |||
| 3376 | return 0; | ||
| 3377 | } | ||
| 3378 | |||
| 3379 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
| 3380 | struct perf_comm_event *comm_event) | ||
| 3381 | { | ||
| 3382 | struct perf_event *event; | ||
| 3383 | |||
| 3384 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3385 | if (perf_event_comm_match(event)) | ||
| 3386 | perf_event_comm_output(event, comm_event); | ||
| 3387 | } | ||
| 3388 | } | ||
| 3389 | |||
| 3390 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
| 3391 | { | ||
| 3392 | struct perf_cpu_context *cpuctx; | ||
| 3393 | struct perf_event_context *ctx; | ||
| 3394 | unsigned int size; | ||
| 3395 | char comm[TASK_COMM_LEN]; | ||
| 3396 | |||
| 3397 | memset(comm, 0, sizeof(comm)); | ||
| 3398 | strlcpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3399 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3400 | |||
| 3401 | comm_event->comm = comm; | ||
| 3402 | comm_event->comm_size = size; | ||
| 3403 | |||
| 3404 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
| 3405 | |||
| 3406 | rcu_read_lock(); | ||
| 3407 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3408 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3409 | put_cpu_var(perf_cpu_context); | ||
| 3410 | |||
| 3411 | /* | ||
| 3412 | * doesn't really matter which of the child contexts the | ||
| 3413 | * events ends up in. | ||
| 3414 | */ | ||
| 3415 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3416 | if (ctx) | ||
| 3417 | perf_event_comm_ctx(ctx, comm_event); | ||
| 3418 | rcu_read_unlock(); | ||
| 3419 | } | ||
| 3420 | |||
| 3421 | void perf_event_comm(struct task_struct *task) | ||
| 3422 | { | ||
| 3423 | struct perf_comm_event comm_event; | ||
| 3424 | |||
| 3425 | if (task->perf_event_ctxp) | ||
| 3426 | perf_event_enable_on_exec(task); | ||
| 3427 | |||
| 3428 | if (!atomic_read(&nr_comm_events)) | ||
| 3429 | return; | ||
| 3430 | |||
| 3431 | comm_event = (struct perf_comm_event){ | ||
| 3432 | .task = task, | ||
| 3433 | /* .comm */ | ||
| 3434 | /* .comm_size */ | ||
| 3435 | .event_id = { | ||
| 3436 | .header = { | ||
| 3437 | .type = PERF_RECORD_COMM, | ||
| 3438 | .misc = 0, | ||
| 3439 | /* .size */ | ||
| 3440 | }, | ||
| 3441 | /* .pid */ | ||
| 3442 | /* .tid */ | ||
| 3443 | }, | ||
| 3444 | }; | ||
| 3445 | |||
| 3446 | perf_event_comm_event(&comm_event); | ||
| 3447 | } | ||
| 3448 | |||
| 3449 | /* | ||
| 3450 | * mmap tracking | ||
| 3451 | */ | ||
| 3452 | |||
| 3453 | struct perf_mmap_event { | ||
| 3454 | struct vm_area_struct *vma; | ||
| 3455 | |||
| 3456 | const char *file_name; | ||
| 3457 | int file_size; | ||
| 3458 | |||
| 3459 | struct { | ||
| 3460 | struct perf_event_header header; | ||
| 3461 | |||
| 3462 | u32 pid; | ||
| 3463 | u32 tid; | ||
| 3464 | u64 start; | ||
| 3465 | u64 len; | ||
| 3466 | u64 pgoff; | ||
| 3467 | } event_id; | ||
| 3468 | }; | ||
| 3469 | |||
| 3470 | static void perf_event_mmap_output(struct perf_event *event, | ||
| 3471 | struct perf_mmap_event *mmap_event) | ||
| 3472 | { | ||
| 3473 | struct perf_output_handle handle; | ||
| 3474 | int size = mmap_event->event_id.header.size; | ||
| 3475 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3476 | |||
| 3477 | if (ret) | ||
| 3478 | return; | ||
| 3479 | |||
| 3480 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
| 3481 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
| 3482 | |||
| 3483 | perf_output_put(&handle, mmap_event->event_id); | ||
| 3484 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3485 | mmap_event->file_size); | ||
| 3486 | perf_output_end(&handle); | ||
| 3487 | } | ||
| 3488 | |||
| 3489 | static int perf_event_mmap_match(struct perf_event *event, | ||
| 3490 | struct perf_mmap_event *mmap_event) | ||
| 3491 | { | ||
| 3492 | if (event->attr.mmap) | ||
| 3493 | return 1; | ||
| 3494 | |||
| 3495 | return 0; | ||
| 3496 | } | ||
| 3497 | |||
| 3498 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
| 3499 | struct perf_mmap_event *mmap_event) | ||
| 3500 | { | ||
| 3501 | struct perf_event *event; | ||
| 3502 | |||
| 3503 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3504 | if (perf_event_mmap_match(event, mmap_event)) | ||
| 3505 | perf_event_mmap_output(event, mmap_event); | ||
| 3506 | } | ||
| 3507 | } | ||
| 3508 | |||
| 3509 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3510 | { | ||
| 3511 | struct perf_cpu_context *cpuctx; | ||
| 3512 | struct perf_event_context *ctx; | ||
| 3513 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3514 | struct file *file = vma->vm_file; | ||
| 3515 | unsigned int size; | ||
| 3516 | char tmp[16]; | ||
| 3517 | char *buf = NULL; | ||
| 3518 | const char *name; | ||
| 3519 | |||
| 3520 | memset(tmp, 0, sizeof(tmp)); | ||
| 3521 | |||
| 3522 | if (file) { | ||
| 3523 | /* | ||
| 3524 | * d_path works from the end of the buffer backwards, so we | ||
| 3525 | * need to add enough zero bytes after the string to handle | ||
| 3526 | * the 64bit alignment we do later. | ||
| 3527 | */ | ||
| 3528 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3529 | if (!buf) { | ||
| 3530 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3531 | goto got_name; | ||
| 3532 | } | ||
| 3533 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3534 | if (IS_ERR(name)) { | ||
| 3535 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3536 | goto got_name; | ||
| 3537 | } | ||
| 3538 | } else { | ||
| 3539 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3540 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3541 | sizeof(tmp)); | ||
| 3542 | goto got_name; | ||
| 3543 | } | ||
| 3544 | |||
| 3545 | if (!vma->vm_mm) { | ||
| 3546 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3547 | goto got_name; | ||
| 3548 | } | ||
| 3549 | |||
| 3550 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3551 | goto got_name; | ||
| 3552 | } | ||
| 3553 | |||
| 3554 | got_name: | ||
| 3555 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3556 | |||
| 3557 | mmap_event->file_name = name; | ||
| 3558 | mmap_event->file_size = size; | ||
| 3559 | |||
| 3560 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
| 3561 | |||
| 3562 | rcu_read_lock(); | ||
| 3563 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3564 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3565 | put_cpu_var(perf_cpu_context); | ||
| 3566 | |||
| 3567 | /* | ||
| 3568 | * doesn't really matter which of the child contexts the | ||
| 3569 | * events ends up in. | ||
| 3570 | */ | ||
| 3571 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3572 | if (ctx) | ||
| 3573 | perf_event_mmap_ctx(ctx, mmap_event); | ||
| 3574 | rcu_read_unlock(); | ||
| 3575 | |||
| 3576 | kfree(buf); | ||
| 3577 | } | ||
| 3578 | |||
| 3579 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
| 3580 | { | ||
| 3581 | struct perf_mmap_event mmap_event; | ||
| 3582 | |||
| 3583 | if (!atomic_read(&nr_mmap_events)) | ||
| 3584 | return; | ||
| 3585 | |||
| 3586 | mmap_event = (struct perf_mmap_event){ | ||
| 3587 | .vma = vma, | ||
| 3588 | /* .file_name */ | ||
| 3589 | /* .file_size */ | ||
| 3590 | .event_id = { | ||
| 3591 | .header = { | ||
| 3592 | .type = PERF_RECORD_MMAP, | ||
| 3593 | .misc = 0, | ||
| 3594 | /* .size */ | ||
| 3595 | }, | ||
| 3596 | /* .pid */ | ||
| 3597 | /* .tid */ | ||
| 3598 | .start = vma->vm_start, | ||
| 3599 | .len = vma->vm_end - vma->vm_start, | ||
| 3600 | .pgoff = vma->vm_pgoff, | ||
| 3601 | }, | ||
| 3602 | }; | ||
| 3603 | |||
| 3604 | perf_event_mmap_event(&mmap_event); | ||
| 3605 | } | ||
| 3606 | |||
| 3607 | /* | ||
| 3608 | * IRQ throttle logging | ||
| 3609 | */ | ||
| 3610 | |||
| 3611 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
| 3612 | { | ||
| 3613 | struct perf_output_handle handle; | ||
| 3614 | int ret; | ||
| 3615 | |||
| 3616 | struct { | ||
| 3617 | struct perf_event_header header; | ||
| 3618 | u64 time; | ||
| 3619 | u64 id; | ||
| 3620 | u64 stream_id; | ||
| 3621 | } throttle_event = { | ||
| 3622 | .header = { | ||
| 3623 | .type = PERF_RECORD_THROTTLE, | ||
| 3624 | .misc = 0, | ||
| 3625 | .size = sizeof(throttle_event), | ||
| 3626 | }, | ||
| 3627 | .time = perf_clock(), | ||
| 3628 | .id = primary_event_id(event), | ||
| 3629 | .stream_id = event->id, | ||
| 3630 | }; | ||
| 3631 | |||
| 3632 | if (enable) | ||
| 3633 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
| 3634 | |||
| 3635 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
| 3636 | if (ret) | ||
| 3637 | return; | ||
| 3638 | |||
| 3639 | perf_output_put(&handle, throttle_event); | ||
| 3640 | perf_output_end(&handle); | ||
| 3641 | } | ||
| 3642 | |||
| 3643 | /* | ||
| 3644 | * Generic event overflow handling, sampling. | ||
| 3645 | */ | ||
| 3646 | |||
| 3647 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3648 | int throttle, struct perf_sample_data *data, | ||
| 3649 | struct pt_regs *regs) | ||
| 3650 | { | ||
| 3651 | int events = atomic_read(&event->event_limit); | ||
| 3652 | struct hw_perf_event *hwc = &event->hw; | ||
| 3653 | int ret = 0; | ||
| 3654 | |||
| 3655 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
| 3656 | |||
| 3657 | if (!throttle) { | ||
| 3658 | hwc->interrupts++; | ||
| 3659 | } else { | ||
| 3660 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3661 | hwc->interrupts++; | ||
| 3662 | if (HZ * hwc->interrupts > | ||
| 3663 | (u64)sysctl_perf_event_sample_rate) { | ||
| 3664 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3665 | perf_log_throttle(event, 0); | ||
| 3666 | ret = 1; | ||
| 3667 | } | ||
| 3668 | } else { | ||
| 3669 | /* | ||
| 3670 | * Keep re-disabling events even though on the previous | ||
| 3671 | * pass we disabled it - just in case we raced with a | ||
| 3672 | * sched-in and the event got enabled again: | ||
| 3673 | */ | ||
| 3674 | ret = 1; | ||
| 3675 | } | ||
| 3676 | } | ||
| 3677 | |||
| 3678 | if (event->attr.freq) { | ||
| 3679 | u64 now = perf_clock(); | ||
| 3680 | s64 delta = now - hwc->freq_stamp; | ||
| 3681 | |||
| 3682 | hwc->freq_stamp = now; | ||
| 3683 | |||
| 3684 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3685 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
| 3686 | } | ||
| 3687 | |||
| 3688 | /* | ||
| 3689 | * XXX event_limit might not quite work as expected on inherited | ||
| 3690 | * events | ||
| 3691 | */ | ||
| 3692 | |||
| 3693 | event->pending_kill = POLL_IN; | ||
| 3694 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
| 3695 | ret = 1; | ||
| 3696 | event->pending_kill = POLL_HUP; | ||
| 3697 | if (nmi) { | ||
| 3698 | event->pending_disable = 1; | ||
| 3699 | perf_pending_queue(&event->pending, | ||
| 3700 | perf_pending_event); | ||
| 3701 | } else | ||
| 3702 | perf_event_disable(event); | ||
| 3703 | } | ||
| 3704 | |||
| 3705 | if (event->overflow_handler) | ||
| 3706 | event->overflow_handler(event, nmi, data, regs); | ||
| 3707 | else | ||
| 3708 | perf_event_output(event, nmi, data, regs); | ||
| 3709 | |||
| 3710 | return ret; | ||
| 3711 | } | ||
| 3712 | |||
| 3713 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3714 | struct perf_sample_data *data, | ||
| 3715 | struct pt_regs *regs) | ||
| 3716 | { | ||
| 3717 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
| 3718 | } | ||
| 3719 | |||
| 3720 | /* | ||
| 3721 | * Generic software event infrastructure | ||
| 3722 | */ | ||
| 3723 | |||
| 3724 | /* | ||
| 3725 | * We directly increment event->count and keep a second value in | ||
| 3726 | * event->hw.period_left to count intervals. This period event | ||
| 3727 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3728 | * sign as trigger. | ||
| 3729 | */ | ||
| 3730 | |||
| 3731 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
| 3732 | { | ||
| 3733 | struct hw_perf_event *hwc = &event->hw; | ||
| 3734 | u64 period = hwc->last_period; | ||
| 3735 | u64 nr, offset; | ||
| 3736 | s64 old, val; | ||
| 3737 | |||
| 3738 | hwc->last_period = hwc->sample_period; | ||
| 3739 | |||
| 3740 | again: | ||
| 3741 | old = val = atomic64_read(&hwc->period_left); | ||
| 3742 | if (val < 0) | ||
| 3743 | return 0; | ||
| 3744 | |||
| 3745 | nr = div64_u64(period + val, period); | ||
| 3746 | offset = nr * period; | ||
| 3747 | val -= offset; | ||
| 3748 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3749 | goto again; | ||
| 3750 | |||
| 3751 | return nr; | ||
| 3752 | } | ||
| 3753 | |||
| 3754 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | ||
| 3755 | int nmi, struct perf_sample_data *data, | ||
| 3756 | struct pt_regs *regs) | ||
| 3757 | { | ||
| 3758 | struct hw_perf_event *hwc = &event->hw; | ||
| 3759 | int throttle = 0; | ||
| 3760 | |||
| 3761 | data->period = event->hw.last_period; | ||
| 3762 | if (!overflow) | ||
| 3763 | overflow = perf_swevent_set_period(event); | ||
| 3764 | |||
| 3765 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3766 | return; | ||
| 3767 | |||
| 3768 | for (; overflow; overflow--) { | ||
| 3769 | if (__perf_event_overflow(event, nmi, throttle, | ||
| 3770 | data, regs)) { | ||
| 3771 | /* | ||
| 3772 | * We inhibit the overflow from happening when | ||
| 3773 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3774 | */ | ||
| 3775 | break; | ||
| 3776 | } | ||
| 3777 | throttle = 1; | ||
| 3778 | } | ||
| 3779 | } | ||
| 3780 | |||
| 3781 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
| 3782 | { | ||
| 3783 | /* | ||
| 3784 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3785 | */ | ||
| 3786 | } | ||
| 3787 | |||
| 3788 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
| 3789 | int nmi, struct perf_sample_data *data, | ||
| 3790 | struct pt_regs *regs) | ||
| 3791 | { | ||
| 3792 | struct hw_perf_event *hwc = &event->hw; | ||
| 3793 | |||
| 3794 | atomic64_add(nr, &event->count); | ||
| 3795 | |||
| 3796 | if (!regs) | ||
| 3797 | return; | ||
| 3798 | |||
| 3799 | if (!hwc->sample_period) | ||
| 3800 | return; | ||
| 3801 | |||
| 3802 | if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | ||
| 3803 | return perf_swevent_overflow(event, 1, nmi, data, regs); | ||
| 3804 | |||
| 3805 | if (atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3806 | return; | ||
| 3807 | |||
| 3808 | perf_swevent_overflow(event, 0, nmi, data, regs); | ||
| 3809 | } | ||
| 3810 | |||
| 3811 | static int perf_swevent_is_counting(struct perf_event *event) | ||
| 3812 | { | ||
| 3813 | /* | ||
| 3814 | * The event is active, we're good! | ||
| 3815 | */ | ||
| 3816 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 3817 | return 1; | ||
| 3818 | |||
| 3819 | /* | ||
| 3820 | * The event is off/error, not counting. | ||
| 3821 | */ | ||
| 3822 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
| 3823 | return 0; | ||
| 3824 | |||
| 3825 | /* | ||
| 3826 | * The event is inactive, if the context is active | ||
| 3827 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3828 | * not counting. | ||
| 3829 | */ | ||
| 3830 | if (event->ctx->is_active) | ||
| 3831 | return 0; | ||
| 3832 | |||
| 3833 | /* | ||
| 3834 | * We're inactive and the context is too, this means the | ||
| 3835 | * task is scheduled out, we're counting events that happen | ||
| 3836 | * to us, like migration events. | ||
| 3837 | */ | ||
| 3838 | return 1; | ||
| 3839 | } | ||
| 3840 | |||
| 3841 | static int perf_tp_event_match(struct perf_event *event, | ||
| 3842 | struct perf_sample_data *data); | ||
| 3843 | |||
| 3844 | static int perf_exclude_event(struct perf_event *event, | ||
| 3845 | struct pt_regs *regs) | ||
| 3846 | { | ||
| 3847 | if (regs) { | ||
| 3848 | if (event->attr.exclude_user && user_mode(regs)) | ||
| 3849 | return 1; | ||
| 3850 | |||
| 3851 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
| 3852 | return 1; | ||
| 3853 | } | ||
| 3854 | |||
| 3855 | return 0; | ||
| 3856 | } | ||
| 3857 | |||
| 3858 | static int perf_swevent_match(struct perf_event *event, | ||
| 3859 | enum perf_type_id type, | ||
| 3860 | u32 event_id, | ||
| 3861 | struct perf_sample_data *data, | ||
| 3862 | struct pt_regs *regs) | ||
| 3863 | { | ||
| 3864 | if (!perf_swevent_is_counting(event)) | ||
| 3865 | return 0; | ||
| 3866 | |||
| 3867 | if (event->attr.type != type) | ||
| 3868 | return 0; | ||
| 3869 | |||
| 3870 | if (event->attr.config != event_id) | ||
| 3871 | return 0; | ||
| 3872 | |||
| 3873 | if (perf_exclude_event(event, regs)) | ||
| 3874 | return 0; | ||
| 3875 | |||
| 3876 | if (event->attr.type == PERF_TYPE_TRACEPOINT && | ||
| 3877 | !perf_tp_event_match(event, data)) | ||
| 3878 | return 0; | ||
| 3879 | |||
| 3880 | return 1; | ||
| 3881 | } | ||
| 3882 | |||
| 3883 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
| 3884 | enum perf_type_id type, | ||
| 3885 | u32 event_id, u64 nr, int nmi, | ||
| 3886 | struct perf_sample_data *data, | ||
| 3887 | struct pt_regs *regs) | ||
| 3888 | { | ||
| 3889 | struct perf_event *event; | ||
| 3890 | |||
| 3891 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3892 | if (perf_swevent_match(event, type, event_id, data, regs)) | ||
| 3893 | perf_swevent_add(event, nr, nmi, data, regs); | ||
| 3894 | } | ||
| 3895 | } | ||
| 3896 | |||
| 3897 | int perf_swevent_get_recursion_context(void) | ||
| 3898 | { | ||
| 3899 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3900 | int rctx; | ||
| 3901 | |||
| 3902 | if (in_nmi()) | ||
| 3903 | rctx = 3; | ||
| 3904 | else if (in_irq()) | ||
| 3905 | rctx = 2; | ||
| 3906 | else if (in_softirq()) | ||
| 3907 | rctx = 1; | ||
| 3908 | else | ||
| 3909 | rctx = 0; | ||
| 3910 | |||
| 3911 | if (cpuctx->recursion[rctx]) { | ||
| 3912 | put_cpu_var(perf_cpu_context); | ||
| 3913 | return -1; | ||
| 3914 | } | ||
| 3915 | |||
| 3916 | cpuctx->recursion[rctx]++; | ||
| 3917 | barrier(); | ||
| 3918 | |||
| 3919 | return rctx; | ||
| 3920 | } | ||
| 3921 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | ||
| 3922 | |||
| 3923 | void perf_swevent_put_recursion_context(int rctx) | ||
| 3924 | { | ||
| 3925 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 3926 | barrier(); | ||
| 3927 | cpuctx->recursion[rctx]--; | ||
| 3928 | put_cpu_var(perf_cpu_context); | ||
| 3929 | } | ||
| 3930 | EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context); | ||
| 3931 | |||
| 3932 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
| 3933 | u64 nr, int nmi, | ||
| 3934 | struct perf_sample_data *data, | ||
| 3935 | struct pt_regs *regs) | ||
| 3936 | { | ||
| 3937 | struct perf_cpu_context *cpuctx; | ||
| 3938 | struct perf_event_context *ctx; | ||
| 3939 | |||
| 3940 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 3941 | rcu_read_lock(); | ||
| 3942 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
| 3943 | nr, nmi, data, regs); | ||
| 3944 | /* | ||
| 3945 | * doesn't really matter which of the child contexts the | ||
| 3946 | * events ends up in. | ||
| 3947 | */ | ||
| 3948 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3949 | if (ctx) | ||
| 3950 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
| 3951 | rcu_read_unlock(); | ||
| 3952 | } | ||
| 3953 | |||
| 3954 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
| 3955 | struct pt_regs *regs, u64 addr) | ||
| 3956 | { | ||
| 3957 | struct perf_sample_data data; | ||
| 3958 | int rctx; | ||
| 3959 | |||
| 3960 | rctx = perf_swevent_get_recursion_context(); | ||
| 3961 | if (rctx < 0) | ||
| 3962 | return; | ||
| 3963 | |||
| 3964 | data.addr = addr; | ||
| 3965 | data.raw = NULL; | ||
| 3966 | |||
| 3967 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); | ||
| 3968 | |||
| 3969 | perf_swevent_put_recursion_context(rctx); | ||
| 3970 | } | ||
| 3971 | |||
| 3972 | static void perf_swevent_read(struct perf_event *event) | ||
| 3973 | { | ||
| 3974 | } | ||
| 3975 | |||
| 3976 | static int perf_swevent_enable(struct perf_event *event) | ||
| 3977 | { | ||
| 3978 | struct hw_perf_event *hwc = &event->hw; | ||
| 3979 | |||
| 3980 | if (hwc->sample_period) { | ||
| 3981 | hwc->last_period = hwc->sample_period; | ||
| 3982 | perf_swevent_set_period(event); | ||
| 3983 | } | ||
| 3984 | return 0; | ||
| 3985 | } | ||
| 3986 | |||
| 3987 | static void perf_swevent_disable(struct perf_event *event) | ||
| 3988 | { | ||
| 3989 | } | ||
| 3990 | |||
| 3991 | static const struct pmu perf_ops_generic = { | ||
| 3992 | .enable = perf_swevent_enable, | ||
| 3993 | .disable = perf_swevent_disable, | ||
| 3994 | .read = perf_swevent_read, | ||
| 3995 | .unthrottle = perf_swevent_unthrottle, | ||
| 3996 | }; | ||
| 3997 | |||
| 3998 | /* | ||
| 3999 | * hrtimer based swevent callback | ||
| 4000 | */ | ||
| 4001 | |||
| 4002 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
| 4003 | { | ||
| 4004 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 4005 | struct perf_sample_data data; | ||
| 4006 | struct pt_regs *regs; | ||
| 4007 | struct perf_event *event; | ||
| 4008 | u64 period; | ||
| 4009 | |||
| 4010 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
| 4011 | event->pmu->read(event); | ||
| 4012 | |||
| 4013 | data.addr = 0; | ||
| 4014 | data.period = event->hw.last_period; | ||
| 4015 | regs = get_irq_regs(); | ||
| 4016 | /* | ||
| 4017 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 4018 | * context, provide the next best thing, the user IP. | ||
| 4019 | */ | ||
| 4020 | if ((event->attr.exclude_kernel || !regs) && | ||
| 4021 | !event->attr.exclude_user) | ||
| 4022 | regs = task_pt_regs(current); | ||
| 4023 | |||
| 4024 | if (regs) { | ||
| 4025 | if (!(event->attr.exclude_idle && current->pid == 0)) | ||
| 4026 | if (perf_event_overflow(event, 0, &data, regs)) | ||
| 4027 | ret = HRTIMER_NORESTART; | ||
| 4028 | } | ||
| 4029 | |||
| 4030 | period = max_t(u64, 10000, event->hw.sample_period); | ||
| 4031 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 4032 | |||
| 4033 | return ret; | ||
| 4034 | } | ||
| 4035 | |||
| 4036 | static void perf_swevent_start_hrtimer(struct perf_event *event) | ||
| 4037 | { | ||
| 4038 | struct hw_perf_event *hwc = &event->hw; | ||
| 4039 | |||
| 4040 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 4041 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 4042 | if (hwc->sample_period) { | ||
| 4043 | u64 period; | ||
| 4044 | |||
| 4045 | if (hwc->remaining) { | ||
| 4046 | if (hwc->remaining < 0) | ||
| 4047 | period = 10000; | ||
| 4048 | else | ||
| 4049 | period = hwc->remaining; | ||
| 4050 | hwc->remaining = 0; | ||
| 4051 | } else { | ||
| 4052 | period = max_t(u64, 10000, hwc->sample_period); | ||
| 4053 | } | ||
| 4054 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 4055 | ns_to_ktime(period), 0, | ||
| 4056 | HRTIMER_MODE_REL, 0); | ||
| 4057 | } | ||
| 4058 | } | ||
| 4059 | |||
| 4060 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | ||
| 4061 | { | ||
| 4062 | struct hw_perf_event *hwc = &event->hw; | ||
| 4063 | |||
| 4064 | if (hwc->sample_period) { | ||
| 4065 | ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | ||
| 4066 | hwc->remaining = ktime_to_ns(remaining); | ||
| 4067 | |||
| 4068 | hrtimer_cancel(&hwc->hrtimer); | ||
| 4069 | } | ||
| 4070 | } | ||
| 4071 | |||
| 4072 | /* | ||
| 4073 | * Software event: cpu wall time clock | ||
| 4074 | */ | ||
| 4075 | |||
| 4076 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
| 4077 | { | ||
| 4078 | int cpu = raw_smp_processor_id(); | ||
| 4079 | s64 prev; | ||
| 4080 | u64 now; | ||
| 4081 | |||
| 4082 | now = cpu_clock(cpu); | ||
| 4083 | prev = atomic64_read(&event->hw.prev_count); | ||
| 4084 | atomic64_set(&event->hw.prev_count, now); | ||
| 4085 | atomic64_add(now - prev, &event->count); | ||
| 4086 | } | ||
| 4087 | |||
| 4088 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
| 4089 | { | ||
| 4090 | struct hw_perf_event *hwc = &event->hw; | ||
| 4091 | int cpu = raw_smp_processor_id(); | ||
| 4092 | |||
| 4093 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 4094 | perf_swevent_start_hrtimer(event); | ||
| 4095 | |||
| 4096 | return 0; | ||
| 4097 | } | ||
| 4098 | |||
| 4099 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
| 4100 | { | ||
| 4101 | perf_swevent_cancel_hrtimer(event); | ||
| 4102 | cpu_clock_perf_event_update(event); | ||
| 4103 | } | ||
| 4104 | |||
| 4105 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
| 4106 | { | ||
| 4107 | cpu_clock_perf_event_update(event); | ||
| 4108 | } | ||
| 4109 | |||
| 4110 | static const struct pmu perf_ops_cpu_clock = { | ||
| 4111 | .enable = cpu_clock_perf_event_enable, | ||
| 4112 | .disable = cpu_clock_perf_event_disable, | ||
| 4113 | .read = cpu_clock_perf_event_read, | ||
| 4114 | }; | ||
| 4115 | |||
| 4116 | /* | ||
| 4117 | * Software event: task time clock | ||
| 4118 | */ | ||
| 4119 | |||
| 4120 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
| 4121 | { | ||
| 4122 | u64 prev; | ||
| 4123 | s64 delta; | ||
| 4124 | |||
| 4125 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
| 4126 | delta = now - prev; | ||
| 4127 | atomic64_add(delta, &event->count); | ||
| 4128 | } | ||
| 4129 | |||
| 4130 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
| 4131 | { | ||
| 4132 | struct hw_perf_event *hwc = &event->hw; | ||
| 4133 | u64 now; | ||
| 4134 | |||
| 4135 | now = event->ctx->time; | ||
| 4136 | |||
| 4137 | atomic64_set(&hwc->prev_count, now); | ||
| 4138 | |||
| 4139 | perf_swevent_start_hrtimer(event); | ||
| 4140 | |||
| 4141 | return 0; | ||
| 4142 | } | ||
| 4143 | |||
| 4144 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
| 4145 | { | ||
| 4146 | perf_swevent_cancel_hrtimer(event); | ||
| 4147 | task_clock_perf_event_update(event, event->ctx->time); | ||
| 4148 | |||
| 4149 | } | ||
| 4150 | |||
| 4151 | static void task_clock_perf_event_read(struct perf_event *event) | ||
| 4152 | { | ||
| 4153 | u64 time; | ||
| 4154 | |||
| 4155 | if (!in_nmi()) { | ||
| 4156 | update_context_time(event->ctx); | ||
| 4157 | time = event->ctx->time; | ||
| 4158 | } else { | ||
| 4159 | u64 now = perf_clock(); | ||
| 4160 | u64 delta = now - event->ctx->timestamp; | ||
| 4161 | time = event->ctx->time + delta; | ||
| 4162 | } | ||
| 4163 | |||
| 4164 | task_clock_perf_event_update(event, time); | ||
| 4165 | } | ||
| 4166 | |||
| 4167 | static const struct pmu perf_ops_task_clock = { | ||
| 4168 | .enable = task_clock_perf_event_enable, | ||
| 4169 | .disable = task_clock_perf_event_disable, | ||
| 4170 | .read = task_clock_perf_event_read, | ||
| 4171 | }; | ||
| 4172 | |||
| 4173 | #ifdef CONFIG_EVENT_PROFILE | ||
| 4174 | |||
| 4175 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
| 4176 | int entry_size) | ||
| 4177 | { | ||
| 4178 | struct perf_raw_record raw = { | ||
| 4179 | .size = entry_size, | ||
| 4180 | .data = record, | ||
| 4181 | }; | ||
| 4182 | |||
| 4183 | struct perf_sample_data data = { | ||
| 4184 | .addr = addr, | ||
| 4185 | .raw = &raw, | ||
| 4186 | }; | ||
| 4187 | |||
| 4188 | struct pt_regs *regs = get_irq_regs(); | ||
| 4189 | |||
| 4190 | if (!regs) | ||
| 4191 | regs = task_pt_regs(current); | ||
| 4192 | |||
| 4193 | /* Trace events already protected against recursion */ | ||
| 4194 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
| 4195 | &data, regs); | ||
| 4196 | } | ||
| 4197 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
| 4198 | |||
| 4199 | static int perf_tp_event_match(struct perf_event *event, | ||
| 4200 | struct perf_sample_data *data) | ||
| 4201 | { | ||
| 4202 | void *record = data->raw->data; | ||
| 4203 | |||
| 4204 | if (likely(!event->filter) || filter_match_preds(event->filter, record)) | ||
| 4205 | return 1; | ||
| 4206 | return 0; | ||
| 4207 | } | ||
| 4208 | |||
| 4209 | static void tp_perf_event_destroy(struct perf_event *event) | ||
| 4210 | { | ||
| 4211 | ftrace_profile_disable(event->attr.config); | ||
| 4212 | } | ||
| 4213 | |||
| 4214 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4215 | { | ||
| 4216 | /* | ||
| 4217 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 4218 | * have these. | ||
| 4219 | */ | ||
| 4220 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 4221 | perf_paranoid_tracepoint_raw() && | ||
| 4222 | !capable(CAP_SYS_ADMIN)) | ||
| 4223 | return ERR_PTR(-EPERM); | ||
| 4224 | |||
| 4225 | if (ftrace_profile_enable(event->attr.config)) | ||
| 4226 | return NULL; | ||
| 4227 | |||
| 4228 | event->destroy = tp_perf_event_destroy; | ||
| 4229 | |||
| 4230 | return &perf_ops_generic; | ||
| 4231 | } | ||
| 4232 | |||
| 4233 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
| 4234 | { | ||
| 4235 | char *filter_str; | ||
| 4236 | int ret; | ||
| 4237 | |||
| 4238 | if (event->attr.type != PERF_TYPE_TRACEPOINT) | ||
| 4239 | return -EINVAL; | ||
| 4240 | |||
| 4241 | filter_str = strndup_user(arg, PAGE_SIZE); | ||
| 4242 | if (IS_ERR(filter_str)) | ||
| 4243 | return PTR_ERR(filter_str); | ||
| 4244 | |||
| 4245 | ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | ||
| 4246 | |||
| 4247 | kfree(filter_str); | ||
| 4248 | return ret; | ||
| 4249 | } | ||
| 4250 | |||
| 4251 | static void perf_event_free_filter(struct perf_event *event) | ||
| 4252 | { | ||
| 4253 | ftrace_profile_free_filter(event); | ||
| 4254 | } | ||
| 4255 | |||
| 4256 | #else | ||
| 4257 | |||
| 4258 | static int perf_tp_event_match(struct perf_event *event, | ||
| 4259 | struct perf_sample_data *data) | ||
| 4260 | { | ||
| 4261 | return 1; | ||
| 4262 | } | ||
| 4263 | |||
| 4264 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4265 | { | ||
| 4266 | return NULL; | ||
| 4267 | } | ||
| 4268 | |||
| 4269 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
| 4270 | { | ||
| 4271 | return -ENOENT; | ||
| 4272 | } | ||
| 4273 | |||
| 4274 | static void perf_event_free_filter(struct perf_event *event) | ||
| 4275 | { | ||
| 4276 | } | ||
| 4277 | |||
| 4278 | #endif /* CONFIG_EVENT_PROFILE */ | ||
| 4279 | |||
| 4280 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | ||
| 4281 | static void bp_perf_event_destroy(struct perf_event *event) | ||
| 4282 | { | ||
| 4283 | release_bp_slot(event); | ||
| 4284 | } | ||
| 4285 | |||
| 4286 | static const struct pmu *bp_perf_event_init(struct perf_event *bp) | ||
| 4287 | { | ||
| 4288 | int err; | ||
| 4289 | /* | ||
| 4290 | * The breakpoint is already filled if we haven't created the counter | ||
| 4291 | * through perf syscall | ||
| 4292 | * FIXME: manage to get trigerred to NULL if it comes from syscalls | ||
| 4293 | */ | ||
| 4294 | if (!bp->callback) | ||
| 4295 | err = register_perf_hw_breakpoint(bp); | ||
| 4296 | else | ||
| 4297 | err = __register_perf_hw_breakpoint(bp); | ||
| 4298 | if (err) | ||
| 4299 | return ERR_PTR(err); | ||
| 4300 | |||
| 4301 | bp->destroy = bp_perf_event_destroy; | ||
| 4302 | |||
| 4303 | return &perf_ops_bp; | ||
| 4304 | } | ||
| 4305 | |||
| 4306 | void perf_bp_event(struct perf_event *bp, void *data) | ||
| 4307 | { | ||
| 4308 | struct perf_sample_data sample; | ||
| 4309 | struct pt_regs *regs = data; | ||
| 4310 | |||
| 4311 | sample.addr = bp->attr.bp_addr; | ||
| 4312 | |||
| 4313 | if (!perf_exclude_event(bp, regs)) | ||
| 4314 | perf_swevent_add(bp, 1, 1, &sample, regs); | ||
| 4315 | } | ||
| 4316 | #else | ||
| 4317 | static const struct pmu *bp_perf_event_init(struct perf_event *bp) | ||
| 4318 | { | ||
| 4319 | return NULL; | ||
| 4320 | } | ||
| 4321 | |||
| 4322 | void perf_bp_event(struct perf_event *bp, void *regs) | ||
| 4323 | { | ||
| 4324 | } | ||
| 4325 | #endif | ||
| 4326 | |||
| 4327 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
| 4328 | |||
| 4329 | static void sw_perf_event_destroy(struct perf_event *event) | ||
| 4330 | { | ||
| 4331 | u64 event_id = event->attr.config; | ||
| 4332 | |||
| 4333 | WARN_ON(event->parent); | ||
| 4334 | |||
| 4335 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
| 4336 | } | ||
| 4337 | |||
| 4338 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
| 4339 | { | ||
| 4340 | const struct pmu *pmu = NULL; | ||
| 4341 | u64 event_id = event->attr.config; | ||
| 4342 | |||
| 4343 | /* | ||
| 4344 | * Software events (currently) can't in general distinguish | ||
| 4345 | * between user, kernel and hypervisor events. | ||
| 4346 | * However, context switches and cpu migrations are considered | ||
| 4347 | * to be kernel events, and page faults are never hypervisor | ||
| 4348 | * events. | ||
| 4349 | */ | ||
| 4350 | switch (event_id) { | ||
| 4351 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4352 | pmu = &perf_ops_cpu_clock; | ||
| 4353 | |||
| 4354 | break; | ||
| 4355 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4356 | /* | ||
| 4357 | * If the user instantiates this as a per-cpu event, | ||
| 4358 | * use the cpu_clock event instead. | ||
| 4359 | */ | ||
| 4360 | if (event->ctx->task) | ||
| 4361 | pmu = &perf_ops_task_clock; | ||
| 4362 | else | ||
| 4363 | pmu = &perf_ops_cpu_clock; | ||
| 4364 | |||
| 4365 | break; | ||
| 4366 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4367 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4368 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4369 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4370 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4371 | case PERF_COUNT_SW_ALIGNMENT_FAULTS: | ||
| 4372 | case PERF_COUNT_SW_EMULATION_FAULTS: | ||
| 4373 | if (!event->parent) { | ||
| 4374 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
| 4375 | event->destroy = sw_perf_event_destroy; | ||
| 4376 | } | ||
| 4377 | pmu = &perf_ops_generic; | ||
| 4378 | break; | ||
| 4379 | } | ||
| 4380 | |||
| 4381 | return pmu; | ||
| 4382 | } | ||
| 4383 | |||
| 4384 | /* | ||
| 4385 | * Allocate and initialize a event structure | ||
| 4386 | */ | ||
| 4387 | static struct perf_event * | ||
| 4388 | perf_event_alloc(struct perf_event_attr *attr, | ||
| 4389 | int cpu, | ||
| 4390 | struct perf_event_context *ctx, | ||
| 4391 | struct perf_event *group_leader, | ||
| 4392 | struct perf_event *parent_event, | ||
| 4393 | perf_callback_t callback, | ||
| 4394 | gfp_t gfpflags) | ||
| 4395 | { | ||
| 4396 | const struct pmu *pmu; | ||
| 4397 | struct perf_event *event; | ||
| 4398 | struct hw_perf_event *hwc; | ||
| 4399 | long err; | ||
| 4400 | |||
| 4401 | event = kzalloc(sizeof(*event), gfpflags); | ||
| 4402 | if (!event) | ||
| 4403 | return ERR_PTR(-ENOMEM); | ||
| 4404 | |||
| 4405 | /* | ||
| 4406 | * Single events are their own group leaders, with an | ||
| 4407 | * empty sibling list: | ||
| 4408 | */ | ||
| 4409 | if (!group_leader) | ||
| 4410 | group_leader = event; | ||
| 4411 | |||
| 4412 | mutex_init(&event->child_mutex); | ||
| 4413 | INIT_LIST_HEAD(&event->child_list); | ||
| 4414 | |||
| 4415 | INIT_LIST_HEAD(&event->group_entry); | ||
| 4416 | INIT_LIST_HEAD(&event->event_entry); | ||
| 4417 | INIT_LIST_HEAD(&event->sibling_list); | ||
| 4418 | init_waitqueue_head(&event->waitq); | ||
| 4419 | |||
| 4420 | mutex_init(&event->mmap_mutex); | ||
| 4421 | |||
| 4422 | event->cpu = cpu; | ||
| 4423 | event->attr = *attr; | ||
| 4424 | event->group_leader = group_leader; | ||
| 4425 | event->pmu = NULL; | ||
| 4426 | event->ctx = ctx; | ||
| 4427 | event->oncpu = -1; | ||
| 4428 | |||
| 4429 | event->parent = parent_event; | ||
| 4430 | |||
| 4431 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4432 | event->id = atomic64_inc_return(&perf_event_id); | ||
| 4433 | |||
| 4434 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4435 | |||
| 4436 | if (!callback && parent_event) | ||
| 4437 | callback = parent_event->callback; | ||
| 4438 | |||
| 4439 | event->callback = callback; | ||
| 4440 | |||
| 4441 | if (attr->disabled) | ||
| 4442 | event->state = PERF_EVENT_STATE_OFF; | ||
| 4443 | |||
| 4444 | pmu = NULL; | ||
| 4445 | |||
| 4446 | hwc = &event->hw; | ||
| 4447 | hwc->sample_period = attr->sample_period; | ||
| 4448 | if (attr->freq && attr->sample_freq) | ||
| 4449 | hwc->sample_period = 1; | ||
| 4450 | hwc->last_period = hwc->sample_period; | ||
| 4451 | |||
| 4452 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4453 | |||
| 4454 | /* | ||
| 4455 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
| 4456 | */ | ||
| 4457 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4458 | goto done; | ||
| 4459 | |||
| 4460 | switch (attr->type) { | ||
| 4461 | case PERF_TYPE_RAW: | ||
| 4462 | case PERF_TYPE_HARDWARE: | ||
| 4463 | case PERF_TYPE_HW_CACHE: | ||
| 4464 | pmu = hw_perf_event_init(event); | ||
| 4465 | break; | ||
| 4466 | |||
| 4467 | case PERF_TYPE_SOFTWARE: | ||
| 4468 | pmu = sw_perf_event_init(event); | ||
| 4469 | break; | ||
| 4470 | |||
| 4471 | case PERF_TYPE_TRACEPOINT: | ||
| 4472 | pmu = tp_perf_event_init(event); | ||
| 4473 | break; | ||
| 4474 | |||
| 4475 | case PERF_TYPE_BREAKPOINT: | ||
| 4476 | pmu = bp_perf_event_init(event); | ||
| 4477 | break; | ||
| 4478 | |||
| 4479 | |||
| 4480 | default: | ||
| 4481 | break; | ||
| 4482 | } | ||
| 4483 | done: | ||
| 4484 | err = 0; | ||
| 4485 | if (!pmu) | ||
| 4486 | err = -EINVAL; | ||
| 4487 | else if (IS_ERR(pmu)) | ||
| 4488 | err = PTR_ERR(pmu); | ||
| 4489 | |||
| 4490 | if (err) { | ||
| 4491 | if (event->ns) | ||
| 4492 | put_pid_ns(event->ns); | ||
| 4493 | kfree(event); | ||
| 4494 | return ERR_PTR(err); | ||
| 4495 | } | ||
| 4496 | |||
| 4497 | event->pmu = pmu; | ||
| 4498 | |||
| 4499 | if (!event->parent) { | ||
| 4500 | atomic_inc(&nr_events); | ||
| 4501 | if (event->attr.mmap) | ||
| 4502 | atomic_inc(&nr_mmap_events); | ||
| 4503 | if (event->attr.comm) | ||
| 4504 | atomic_inc(&nr_comm_events); | ||
| 4505 | if (event->attr.task) | ||
| 4506 | atomic_inc(&nr_task_events); | ||
| 4507 | } | ||
| 4508 | |||
| 4509 | return event; | ||
| 4510 | } | ||
| 4511 | |||
| 4512 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
| 4513 | struct perf_event_attr *attr) | ||
| 4514 | { | ||
| 4515 | u32 size; | ||
| 4516 | int ret; | ||
| 4517 | |||
| 4518 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4519 | return -EFAULT; | ||
| 4520 | |||
| 4521 | /* | ||
| 4522 | * zero the full structure, so that a short copy will be nice. | ||
| 4523 | */ | ||
| 4524 | memset(attr, 0, sizeof(*attr)); | ||
| 4525 | |||
| 4526 | ret = get_user(size, &uattr->size); | ||
| 4527 | if (ret) | ||
| 4528 | return ret; | ||
| 4529 | |||
| 4530 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4531 | goto err_size; | ||
| 4532 | |||
| 4533 | if (!size) /* abi compat */ | ||
| 4534 | size = PERF_ATTR_SIZE_VER0; | ||
| 4535 | |||
| 4536 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4537 | goto err_size; | ||
| 4538 | |||
| 4539 | /* | ||
| 4540 | * If we're handed a bigger struct than we know of, | ||
| 4541 | * ensure all the unknown bits are 0 - i.e. new | ||
| 4542 | * user-space does not rely on any kernel feature | ||
| 4543 | * extensions we dont know about yet. | ||
| 4544 | */ | ||
| 4545 | if (size > sizeof(*attr)) { | ||
| 4546 | unsigned char __user *addr; | ||
| 4547 | unsigned char __user *end; | ||
| 4548 | unsigned char val; | ||
| 4549 | |||
| 4550 | addr = (void __user *)uattr + sizeof(*attr); | ||
| 4551 | end = (void __user *)uattr + size; | ||
| 4552 | |||
| 4553 | for (; addr < end; addr++) { | ||
| 4554 | ret = get_user(val, addr); | ||
| 4555 | if (ret) | ||
| 4556 | return ret; | ||
| 4557 | if (val) | ||
| 4558 | goto err_size; | ||
| 4559 | } | ||
| 4560 | size = sizeof(*attr); | ||
| 4561 | } | ||
| 4562 | |||
| 4563 | ret = copy_from_user(attr, uattr, size); | ||
| 4564 | if (ret) | ||
| 4565 | return -EFAULT; | ||
| 4566 | |||
| 4567 | /* | ||
| 4568 | * If the type exists, the corresponding creation will verify | ||
| 4569 | * the attr->config. | ||
| 4570 | */ | ||
| 4571 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4572 | return -EINVAL; | ||
| 4573 | |||
| 4574 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4575 | return -EINVAL; | ||
| 4576 | |||
| 4577 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4578 | return -EINVAL; | ||
| 4579 | |||
| 4580 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4581 | return -EINVAL; | ||
| 4582 | |||
| 4583 | out: | ||
| 4584 | return ret; | ||
| 4585 | |||
| 4586 | err_size: | ||
| 4587 | put_user(sizeof(*attr), &uattr->size); | ||
| 4588 | ret = -E2BIG; | ||
| 4589 | goto out; | ||
| 4590 | } | ||
| 4591 | |||
| 4592 | static int perf_event_set_output(struct perf_event *event, int output_fd) | ||
| 4593 | { | ||
| 4594 | struct perf_event *output_event = NULL; | ||
| 4595 | struct file *output_file = NULL; | ||
| 4596 | struct perf_event *old_output; | ||
| 4597 | int fput_needed = 0; | ||
| 4598 | int ret = -EINVAL; | ||
| 4599 | |||
| 4600 | if (!output_fd) | ||
| 4601 | goto set; | ||
| 4602 | |||
| 4603 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4604 | if (!output_file) | ||
| 4605 | return -EBADF; | ||
| 4606 | |||
| 4607 | if (output_file->f_op != &perf_fops) | ||
| 4608 | goto out; | ||
| 4609 | |||
| 4610 | output_event = output_file->private_data; | ||
| 4611 | |||
| 4612 | /* Don't chain output fds */ | ||
| 4613 | if (output_event->output) | ||
| 4614 | goto out; | ||
| 4615 | |||
| 4616 | /* Don't set an output fd when we already have an output channel */ | ||
| 4617 | if (event->data) | ||
| 4618 | goto out; | ||
| 4619 | |||
| 4620 | atomic_long_inc(&output_file->f_count); | ||
| 4621 | |||
| 4622 | set: | ||
| 4623 | mutex_lock(&event->mmap_mutex); | ||
| 4624 | old_output = event->output; | ||
| 4625 | rcu_assign_pointer(event->output, output_event); | ||
| 4626 | mutex_unlock(&event->mmap_mutex); | ||
| 4627 | |||
| 4628 | if (old_output) { | ||
| 4629 | /* | ||
| 4630 | * we need to make sure no existing perf_output_*() | ||
| 4631 | * is still referencing this event. | ||
| 4632 | */ | ||
| 4633 | synchronize_rcu(); | ||
| 4634 | fput(old_output->filp); | ||
| 4635 | } | ||
| 4636 | |||
| 4637 | ret = 0; | ||
| 4638 | out: | ||
| 4639 | fput_light(output_file, fput_needed); | ||
| 4640 | return ret; | ||
| 4641 | } | ||
| 4642 | |||
| 4643 | /** | ||
| 4644 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
| 4645 | * | ||
| 4646 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
| 4647 | * @pid: target pid | ||
| 4648 | * @cpu: target cpu | ||
| 4649 | * @group_fd: group leader event fd | ||
| 4650 | */ | ||
| 4651 | SYSCALL_DEFINE5(perf_event_open, | ||
| 4652 | struct perf_event_attr __user *, attr_uptr, | ||
| 4653 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4654 | { | ||
| 4655 | struct perf_event *event, *group_leader; | ||
| 4656 | struct perf_event_attr attr; | ||
| 4657 | struct perf_event_context *ctx; | ||
| 4658 | struct file *event_file = NULL; | ||
| 4659 | struct file *group_file = NULL; | ||
| 4660 | int fput_needed = 0; | ||
| 4661 | int fput_needed2 = 0; | ||
| 4662 | int err; | ||
| 4663 | |||
| 4664 | /* for future expandability... */ | ||
| 4665 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4666 | return -EINVAL; | ||
| 4667 | |||
| 4668 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4669 | if (err) | ||
| 4670 | return err; | ||
| 4671 | |||
| 4672 | if (!attr.exclude_kernel) { | ||
| 4673 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4674 | return -EACCES; | ||
| 4675 | } | ||
| 4676 | |||
| 4677 | if (attr.freq) { | ||
| 4678 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
| 4679 | return -EINVAL; | ||
| 4680 | } | ||
| 4681 | |||
| 4682 | /* | ||
| 4683 | * Get the target context (task or percpu): | ||
| 4684 | */ | ||
| 4685 | ctx = find_get_context(pid, cpu); | ||
| 4686 | if (IS_ERR(ctx)) | ||
| 4687 | return PTR_ERR(ctx); | ||
| 4688 | |||
| 4689 | /* | ||
| 4690 | * Look up the group leader (we will attach this event to it): | ||
| 4691 | */ | ||
| 4692 | group_leader = NULL; | ||
| 4693 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4694 | err = -EINVAL; | ||
| 4695 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4696 | if (!group_file) | ||
| 4697 | goto err_put_context; | ||
| 4698 | if (group_file->f_op != &perf_fops) | ||
| 4699 | goto err_put_context; | ||
| 4700 | |||
| 4701 | group_leader = group_file->private_data; | ||
| 4702 | /* | ||
| 4703 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4704 | * becoming part of another group-sibling): | ||
| 4705 | */ | ||
| 4706 | if (group_leader->group_leader != group_leader) | ||
| 4707 | goto err_put_context; | ||
| 4708 | /* | ||
| 4709 | * Do not allow to attach to a group in a different | ||
| 4710 | * task or CPU context: | ||
| 4711 | */ | ||
| 4712 | if (group_leader->ctx != ctx) | ||
| 4713 | goto err_put_context; | ||
| 4714 | /* | ||
| 4715 | * Only a group leader can be exclusive or pinned | ||
| 4716 | */ | ||
| 4717 | if (attr.exclusive || attr.pinned) | ||
| 4718 | goto err_put_context; | ||
| 4719 | } | ||
| 4720 | |||
| 4721 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
| 4722 | NULL, NULL, GFP_KERNEL); | ||
| 4723 | err = PTR_ERR(event); | ||
| 4724 | if (IS_ERR(event)) | ||
| 4725 | goto err_put_context; | ||
| 4726 | |||
| 4727 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
| 4728 | if (err < 0) | ||
| 4729 | goto err_free_put_context; | ||
| 4730 | |||
| 4731 | event_file = fget_light(err, &fput_needed2); | ||
| 4732 | if (!event_file) | ||
| 4733 | goto err_free_put_context; | ||
| 4734 | |||
| 4735 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4736 | err = perf_event_set_output(event, group_fd); | ||
| 4737 | if (err) | ||
| 4738 | goto err_fput_free_put_context; | ||
| 4739 | } | ||
| 4740 | |||
| 4741 | event->filp = event_file; | ||
| 4742 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4743 | mutex_lock(&ctx->mutex); | ||
| 4744 | perf_install_in_context(ctx, event, cpu); | ||
| 4745 | ++ctx->generation; | ||
| 4746 | mutex_unlock(&ctx->mutex); | ||
| 4747 | |||
| 4748 | event->owner = current; | ||
| 4749 | get_task_struct(current); | ||
| 4750 | mutex_lock(¤t->perf_event_mutex); | ||
| 4751 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
| 4752 | mutex_unlock(¤t->perf_event_mutex); | ||
| 4753 | |||
| 4754 | err_fput_free_put_context: | ||
| 4755 | fput_light(event_file, fput_needed2); | ||
| 4756 | |||
| 4757 | err_free_put_context: | ||
| 4758 | if (err < 0) | ||
| 4759 | kfree(event); | ||
| 4760 | |||
| 4761 | err_put_context: | ||
| 4762 | if (err < 0) | ||
| 4763 | put_ctx(ctx); | ||
| 4764 | |||
| 4765 | fput_light(group_file, fput_needed); | ||
| 4766 | |||
| 4767 | return err; | ||
| 4768 | } | ||
| 4769 | |||
| 4770 | /** | ||
| 4771 | * perf_event_create_kernel_counter | ||
| 4772 | * | ||
| 4773 | * @attr: attributes of the counter to create | ||
| 4774 | * @cpu: cpu in which the counter is bound | ||
| 4775 | * @pid: task to profile | ||
| 4776 | */ | ||
| 4777 | struct perf_event * | ||
| 4778 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | ||
| 4779 | pid_t pid, perf_callback_t callback) | ||
| 4780 | { | ||
| 4781 | struct perf_event *event; | ||
| 4782 | struct perf_event_context *ctx; | ||
| 4783 | int err; | ||
| 4784 | |||
| 4785 | /* | ||
| 4786 | * Get the target context (task or percpu): | ||
| 4787 | */ | ||
| 4788 | |||
| 4789 | ctx = find_get_context(pid, cpu); | ||
| 4790 | if (IS_ERR(ctx)) { | ||
| 4791 | err = PTR_ERR(ctx); | ||
| 4792 | goto err_exit; | ||
| 4793 | } | ||
| 4794 | |||
| 4795 | event = perf_event_alloc(attr, cpu, ctx, NULL, | ||
| 4796 | NULL, callback, GFP_KERNEL); | ||
| 4797 | if (IS_ERR(event)) { | ||
| 4798 | err = PTR_ERR(event); | ||
| 4799 | goto err_put_context; | ||
| 4800 | } | ||
| 4801 | |||
| 4802 | event->filp = NULL; | ||
| 4803 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4804 | mutex_lock(&ctx->mutex); | ||
| 4805 | perf_install_in_context(ctx, event, cpu); | ||
| 4806 | ++ctx->generation; | ||
| 4807 | mutex_unlock(&ctx->mutex); | ||
| 4808 | |||
| 4809 | event->owner = current; | ||
| 4810 | get_task_struct(current); | ||
| 4811 | mutex_lock(¤t->perf_event_mutex); | ||
| 4812 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
| 4813 | mutex_unlock(¤t->perf_event_mutex); | ||
| 4814 | |||
| 4815 | return event; | ||
| 4816 | |||
| 4817 | err_put_context: | ||
| 4818 | put_ctx(ctx); | ||
| 4819 | err_exit: | ||
| 4820 | return ERR_PTR(err); | ||
| 4821 | } | ||
| 4822 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | ||
| 4823 | |||
| 4824 | /* | ||
| 4825 | * inherit a event from parent task to child task: | ||
| 4826 | */ | ||
| 4827 | static struct perf_event * | ||
| 4828 | inherit_event(struct perf_event *parent_event, | ||
| 4829 | struct task_struct *parent, | ||
| 4830 | struct perf_event_context *parent_ctx, | ||
| 4831 | struct task_struct *child, | ||
| 4832 | struct perf_event *group_leader, | ||
| 4833 | struct perf_event_context *child_ctx) | ||
| 4834 | { | ||
| 4835 | struct perf_event *child_event; | ||
| 4836 | |||
| 4837 | /* | ||
| 4838 | * Instead of creating recursive hierarchies of events, | ||
| 4839 | * we link inherited events back to the original parent, | ||
| 4840 | * which has a filp for sure, which we use as the reference | ||
| 4841 | * count: | ||
| 4842 | */ | ||
| 4843 | if (parent_event->parent) | ||
| 4844 | parent_event = parent_event->parent; | ||
| 4845 | |||
| 4846 | child_event = perf_event_alloc(&parent_event->attr, | ||
| 4847 | parent_event->cpu, child_ctx, | ||
| 4848 | group_leader, parent_event, | ||
| 4849 | NULL, GFP_KERNEL); | ||
| 4850 | if (IS_ERR(child_event)) | ||
| 4851 | return child_event; | ||
| 4852 | get_ctx(child_ctx); | ||
| 4853 | |||
| 4854 | /* | ||
| 4855 | * Make the child state follow the state of the parent event, | ||
| 4856 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4857 | * so we won't race with perf_event_{en, dis}able_family. | ||
| 4858 | */ | ||
| 4859 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 4860 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4861 | else | ||
| 4862 | child_event->state = PERF_EVENT_STATE_OFF; | ||
| 4863 | |||
| 4864 | if (parent_event->attr.freq) | ||
| 4865 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
| 4866 | |||
| 4867 | child_event->overflow_handler = parent_event->overflow_handler; | ||
| 4868 | |||
| 4869 | /* | ||
| 4870 | * Link it up in the child's context: | ||
| 4871 | */ | ||
| 4872 | add_event_to_ctx(child_event, child_ctx); | ||
| 4873 | |||
| 4874 | /* | ||
| 4875 | * Get a reference to the parent filp - we will fput it | ||
| 4876 | * when the child event exits. This is safe to do because | ||
| 4877 | * we are in the parent and we know that the filp still | ||
| 4878 | * exists and has a nonzero count: | ||
| 4879 | */ | ||
| 4880 | atomic_long_inc(&parent_event->filp->f_count); | ||
| 4881 | |||
| 4882 | /* | ||
| 4883 | * Link this into the parent event's child list | ||
| 4884 | */ | ||
| 4885 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4886 | mutex_lock(&parent_event->child_mutex); | ||
| 4887 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
| 4888 | mutex_unlock(&parent_event->child_mutex); | ||
| 4889 | |||
| 4890 | return child_event; | ||
| 4891 | } | ||
| 4892 | |||
| 4893 | static int inherit_group(struct perf_event *parent_event, | ||
| 4894 | struct task_struct *parent, | ||
| 4895 | struct perf_event_context *parent_ctx, | ||
| 4896 | struct task_struct *child, | ||
| 4897 | struct perf_event_context *child_ctx) | ||
| 4898 | { | ||
| 4899 | struct perf_event *leader; | ||
| 4900 | struct perf_event *sub; | ||
| 4901 | struct perf_event *child_ctr; | ||
| 4902 | |||
| 4903 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
| 4904 | child, NULL, child_ctx); | ||
| 4905 | if (IS_ERR(leader)) | ||
| 4906 | return PTR_ERR(leader); | ||
| 4907 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
| 4908 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
| 4909 | child, leader, child_ctx); | ||
| 4910 | if (IS_ERR(child_ctr)) | ||
| 4911 | return PTR_ERR(child_ctr); | ||
| 4912 | } | ||
| 4913 | return 0; | ||
| 4914 | } | ||
| 4915 | |||
| 4916 | static void sync_child_event(struct perf_event *child_event, | ||
| 4917 | struct task_struct *child) | ||
| 4918 | { | ||
| 4919 | struct perf_event *parent_event = child_event->parent; | ||
| 4920 | u64 child_val; | ||
| 4921 | |||
| 4922 | if (child_event->attr.inherit_stat) | ||
| 4923 | perf_event_read_event(child_event, child); | ||
| 4924 | |||
| 4925 | child_val = atomic64_read(&child_event->count); | ||
| 4926 | |||
| 4927 | /* | ||
| 4928 | * Add back the child's count to the parent's count: | ||
| 4929 | */ | ||
| 4930 | atomic64_add(child_val, &parent_event->count); | ||
| 4931 | atomic64_add(child_event->total_time_enabled, | ||
| 4932 | &parent_event->child_total_time_enabled); | ||
| 4933 | atomic64_add(child_event->total_time_running, | ||
| 4934 | &parent_event->child_total_time_running); | ||
| 4935 | |||
| 4936 | /* | ||
| 4937 | * Remove this event from the parent's list | ||
| 4938 | */ | ||
| 4939 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4940 | mutex_lock(&parent_event->child_mutex); | ||
| 4941 | list_del_init(&child_event->child_list); | ||
| 4942 | mutex_unlock(&parent_event->child_mutex); | ||
| 4943 | |||
| 4944 | /* | ||
| 4945 | * Release the parent event, if this was the last | ||
| 4946 | * reference to it. | ||
| 4947 | */ | ||
| 4948 | fput(parent_event->filp); | ||
| 4949 | } | ||
| 4950 | |||
| 4951 | static void | ||
| 4952 | __perf_event_exit_task(struct perf_event *child_event, | ||
| 4953 | struct perf_event_context *child_ctx, | ||
| 4954 | struct task_struct *child) | ||
| 4955 | { | ||
| 4956 | struct perf_event *parent_event; | ||
| 4957 | |||
| 4958 | perf_event_remove_from_context(child_event); | ||
| 4959 | |||
| 4960 | parent_event = child_event->parent; | ||
| 4961 | /* | ||
| 4962 | * It can happen that parent exits first, and has events | ||
| 4963 | * that are still around due to the child reference. These | ||
| 4964 | * events need to be zapped - but otherwise linger. | ||
| 4965 | */ | ||
| 4966 | if (parent_event) { | ||
| 4967 | sync_child_event(child_event, child); | ||
| 4968 | free_event(child_event); | ||
| 4969 | } | ||
| 4970 | } | ||
| 4971 | |||
| 4972 | /* | ||
| 4973 | * When a child task exits, feed back event values to parent events. | ||
| 4974 | */ | ||
| 4975 | void perf_event_exit_task(struct task_struct *child) | ||
| 4976 | { | ||
| 4977 | struct perf_event *child_event, *tmp; | ||
| 4978 | struct perf_event_context *child_ctx; | ||
| 4979 | unsigned long flags; | ||
| 4980 | |||
| 4981 | if (likely(!child->perf_event_ctxp)) { | ||
| 4982 | perf_event_task(child, NULL, 0); | ||
| 4983 | return; | ||
| 4984 | } | ||
| 4985 | |||
| 4986 | local_irq_save(flags); | ||
| 4987 | /* | ||
| 4988 | * We can't reschedule here because interrupts are disabled, | ||
| 4989 | * and either child is current or it is a task that can't be | ||
| 4990 | * scheduled, so we are now safe from rescheduling changing | ||
| 4991 | * our context. | ||
| 4992 | */ | ||
| 4993 | child_ctx = child->perf_event_ctxp; | ||
| 4994 | __perf_event_task_sched_out(child_ctx); | ||
| 4995 | |||
| 4996 | /* | ||
| 4997 | * Take the context lock here so that if find_get_context is | ||
| 4998 | * reading child->perf_event_ctxp, we wait until it has | ||
| 4999 | * incremented the context's refcount before we do put_ctx below. | ||
| 5000 | */ | ||
| 5001 | spin_lock(&child_ctx->lock); | ||
| 5002 | child->perf_event_ctxp = NULL; | ||
| 5003 | /* | ||
| 5004 | * If this context is a clone; unclone it so it can't get | ||
| 5005 | * swapped to another process while we're removing all | ||
| 5006 | * the events from it. | ||
| 5007 | */ | ||
| 5008 | unclone_ctx(child_ctx); | ||
| 5009 | update_context_time(child_ctx); | ||
| 5010 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 5011 | |||
| 5012 | /* | ||
| 5013 | * Report the task dead after unscheduling the events so that we | ||
| 5014 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
| 5015 | * get a few PERF_RECORD_READ events. | ||
| 5016 | */ | ||
| 5017 | perf_event_task(child, child_ctx, 0); | ||
| 5018 | |||
| 5019 | /* | ||
| 5020 | * We can recurse on the same lock type through: | ||
| 5021 | * | ||
| 5022 | * __perf_event_exit_task() | ||
| 5023 | * sync_child_event() | ||
| 5024 | * fput(parent_event->filp) | ||
| 5025 | * perf_release() | ||
| 5026 | * mutex_lock(&ctx->mutex) | ||
| 5027 | * | ||
| 5028 | * But since its the parent context it won't be the same instance. | ||
| 5029 | */ | ||
| 5030 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 5031 | |||
| 5032 | again: | ||
| 5033 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
| 5034 | group_entry) | ||
| 5035 | __perf_event_exit_task(child_event, child_ctx, child); | ||
| 5036 | |||
| 5037 | /* | ||
| 5038 | * If the last event was a group event, it will have appended all | ||
| 5039 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 5040 | * will still point to the list head terminating the iteration. | ||
| 5041 | */ | ||
| 5042 | if (!list_empty(&child_ctx->group_list)) | ||
| 5043 | goto again; | ||
| 5044 | |||
| 5045 | mutex_unlock(&child_ctx->mutex); | ||
| 5046 | |||
| 5047 | put_ctx(child_ctx); | ||
| 5048 | } | ||
| 5049 | |||
| 5050 | /* | ||
| 5051 | * free an unexposed, unused context as created by inheritance by | ||
| 5052 | * init_task below, used by fork() in case of fail. | ||
| 5053 | */ | ||
| 5054 | void perf_event_free_task(struct task_struct *task) | ||
| 5055 | { | ||
| 5056 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 5057 | struct perf_event *event, *tmp; | ||
| 5058 | |||
| 5059 | if (!ctx) | ||
| 5060 | return; | ||
| 5061 | |||
| 5062 | mutex_lock(&ctx->mutex); | ||
| 5063 | again: | ||
| 5064 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
| 5065 | struct perf_event *parent = event->parent; | ||
| 5066 | |||
| 5067 | if (WARN_ON_ONCE(!parent)) | ||
| 5068 | continue; | ||
| 5069 | |||
| 5070 | mutex_lock(&parent->child_mutex); | ||
| 5071 | list_del_init(&event->child_list); | ||
| 5072 | mutex_unlock(&parent->child_mutex); | ||
| 5073 | |||
| 5074 | fput(parent->filp); | ||
| 5075 | |||
| 5076 | list_del_event(event, ctx); | ||
| 5077 | free_event(event); | ||
| 5078 | } | ||
| 5079 | |||
| 5080 | if (!list_empty(&ctx->group_list)) | ||
| 5081 | goto again; | ||
| 5082 | |||
| 5083 | mutex_unlock(&ctx->mutex); | ||
| 5084 | |||
| 5085 | put_ctx(ctx); | ||
| 5086 | } | ||
| 5087 | |||
| 5088 | /* | ||
| 5089 | * Initialize the perf_event context in task_struct | ||
| 5090 | */ | ||
| 5091 | int perf_event_init_task(struct task_struct *child) | ||
| 5092 | { | ||
| 5093 | struct perf_event_context *child_ctx, *parent_ctx; | ||
| 5094 | struct perf_event_context *cloned_ctx; | ||
| 5095 | struct perf_event *event; | ||
| 5096 | struct task_struct *parent = current; | ||
| 5097 | int inherited_all = 1; | ||
| 5098 | int ret = 0; | ||
| 5099 | |||
| 5100 | child->perf_event_ctxp = NULL; | ||
| 5101 | |||
| 5102 | mutex_init(&child->perf_event_mutex); | ||
| 5103 | INIT_LIST_HEAD(&child->perf_event_list); | ||
| 5104 | |||
| 5105 | if (likely(!parent->perf_event_ctxp)) | ||
| 5106 | return 0; | ||
| 5107 | |||
| 5108 | /* | ||
| 5109 | * This is executed from the parent task context, so inherit | ||
| 5110 | * events that have been marked for cloning. | ||
| 5111 | * First allocate and initialize a context for the child. | ||
| 5112 | */ | ||
| 5113 | |||
| 5114 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 5115 | if (!child_ctx) | ||
| 5116 | return -ENOMEM; | ||
| 5117 | |||
| 5118 | __perf_event_init_context(child_ctx, child); | ||
| 5119 | child->perf_event_ctxp = child_ctx; | ||
| 5120 | get_task_struct(child); | ||
| 5121 | |||
| 5122 | /* | ||
| 5123 | * If the parent's context is a clone, pin it so it won't get | ||
| 5124 | * swapped under us. | ||
| 5125 | */ | ||
| 5126 | parent_ctx = perf_pin_task_context(parent); | ||
| 5127 | |||
| 5128 | /* | ||
| 5129 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 5130 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 5131 | * is if we exit, and since we're currently in the middle of | ||
| 5132 | * a fork we can't be exiting at the same time. | ||
| 5133 | */ | ||
| 5134 | |||
| 5135 | /* | ||
| 5136 | * Lock the parent list. No need to lock the child - not PID | ||
| 5137 | * hashed yet and not running, so nobody can access it. | ||
| 5138 | */ | ||
| 5139 | mutex_lock(&parent_ctx->mutex); | ||
| 5140 | |||
| 5141 | /* | ||
| 5142 | * We dont have to disable NMIs - we are only looking at | ||
| 5143 | * the list, not manipulating it: | ||
| 5144 | */ | ||
| 5145 | list_for_each_entry(event, &parent_ctx->group_list, group_entry) { | ||
| 5146 | |||
| 5147 | if (!event->attr.inherit) { | ||
| 5148 | inherited_all = 0; | ||
| 5149 | continue; | ||
| 5150 | } | ||
| 5151 | |||
| 5152 | ret = inherit_group(event, parent, parent_ctx, | ||
| 5153 | child, child_ctx); | ||
| 5154 | if (ret) { | ||
| 5155 | inherited_all = 0; | ||
| 5156 | break; | ||
| 5157 | } | ||
| 5158 | } | ||
| 5159 | |||
| 5160 | if (inherited_all) { | ||
| 5161 | /* | ||
| 5162 | * Mark the child context as a clone of the parent | ||
| 5163 | * context, or of whatever the parent is a clone of. | ||
| 5164 | * Note that if the parent is a clone, it could get | ||
| 5165 | * uncloned at any point, but that doesn't matter | ||
| 5166 | * because the list of events and the generation | ||
| 5167 | * count can't have changed since we took the mutex. | ||
| 5168 | */ | ||
| 5169 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 5170 | if (cloned_ctx) { | ||
| 5171 | child_ctx->parent_ctx = cloned_ctx; | ||
| 5172 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 5173 | } else { | ||
| 5174 | child_ctx->parent_ctx = parent_ctx; | ||
| 5175 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 5176 | } | ||
| 5177 | get_ctx(child_ctx->parent_ctx); | ||
| 5178 | } | ||
| 5179 | |||
| 5180 | mutex_unlock(&parent_ctx->mutex); | ||
| 5181 | |||
| 5182 | perf_unpin_context(parent_ctx); | ||
| 5183 | |||
| 5184 | return ret; | ||
| 5185 | } | ||
| 5186 | |||
| 5187 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
| 5188 | { | ||
| 5189 | struct perf_cpu_context *cpuctx; | ||
| 5190 | |||
| 5191 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 5192 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
| 5193 | |||
| 5194 | spin_lock(&perf_resource_lock); | ||
| 5195 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
| 5196 | spin_unlock(&perf_resource_lock); | ||
| 5197 | |||
| 5198 | hw_perf_event_setup(cpu); | ||
| 5199 | } | ||
| 5200 | |||
| 5201 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 5202 | static void __perf_event_exit_cpu(void *info) | ||
| 5203 | { | ||
| 5204 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 5205 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 5206 | struct perf_event *event, *tmp; | ||
| 5207 | |||
| 5208 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
| 5209 | __perf_event_remove_from_context(event); | ||
| 5210 | } | ||
| 5211 | static void perf_event_exit_cpu(int cpu) | ||
| 5212 | { | ||
| 5213 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 5214 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 5215 | |||
| 5216 | mutex_lock(&ctx->mutex); | ||
| 5217 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
| 5218 | mutex_unlock(&ctx->mutex); | ||
| 5219 | } | ||
| 5220 | #else | ||
| 5221 | static inline void perf_event_exit_cpu(int cpu) { } | ||
| 5222 | #endif | ||
| 5223 | |||
| 5224 | static int __cpuinit | ||
| 5225 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 5226 | { | ||
| 5227 | unsigned int cpu = (long)hcpu; | ||
| 5228 | |||
| 5229 | switch (action) { | ||
| 5230 | |||
| 5231 | case CPU_UP_PREPARE: | ||
| 5232 | case CPU_UP_PREPARE_FROZEN: | ||
| 5233 | perf_event_init_cpu(cpu); | ||
| 5234 | break; | ||
| 5235 | |||
| 5236 | case CPU_ONLINE: | ||
| 5237 | case CPU_ONLINE_FROZEN: | ||
| 5238 | hw_perf_event_setup_online(cpu); | ||
| 5239 | break; | ||
| 5240 | |||
| 5241 | case CPU_DOWN_PREPARE: | ||
| 5242 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 5243 | perf_event_exit_cpu(cpu); | ||
| 5244 | break; | ||
| 5245 | |||
| 5246 | default: | ||
| 5247 | break; | ||
| 5248 | } | ||
| 5249 | |||
| 5250 | return NOTIFY_OK; | ||
| 5251 | } | ||
| 5252 | |||
| 5253 | /* | ||
| 5254 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 5255 | */ | ||
| 5256 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 5257 | .notifier_call = perf_cpu_notify, | ||
| 5258 | .priority = 20, | ||
| 5259 | }; | ||
| 5260 | |||
| 5261 | void __init perf_event_init(void) | ||
| 5262 | { | ||
| 5263 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 5264 | (void *)(long)smp_processor_id()); | ||
| 5265 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 5266 | (void *)(long)smp_processor_id()); | ||
| 5267 | register_cpu_notifier(&perf_cpu_nb); | ||
| 5268 | } | ||
| 5269 | |||
| 5270 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 5271 | { | ||
| 5272 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 5273 | } | ||
| 5274 | |||
| 5275 | static ssize_t | ||
| 5276 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 5277 | const char *buf, | ||
| 5278 | size_t count) | ||
| 5279 | { | ||
| 5280 | struct perf_cpu_context *cpuctx; | ||
| 5281 | unsigned long val; | ||
| 5282 | int err, cpu, mpt; | ||
| 5283 | |||
| 5284 | err = strict_strtoul(buf, 10, &val); | ||
| 5285 | if (err) | ||
| 5286 | return err; | ||
| 5287 | if (val > perf_max_events) | ||
| 5288 | return -EINVAL; | ||
| 5289 | |||
| 5290 | spin_lock(&perf_resource_lock); | ||
| 5291 | perf_reserved_percpu = val; | ||
| 5292 | for_each_online_cpu(cpu) { | ||
| 5293 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 5294 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 5295 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
| 5296 | perf_max_events - perf_reserved_percpu); | ||
| 5297 | cpuctx->max_pertask = mpt; | ||
| 5298 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 5299 | } | ||
| 5300 | spin_unlock(&perf_resource_lock); | ||
| 5301 | |||
| 5302 | return count; | ||
| 5303 | } | ||
| 5304 | |||
| 5305 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 5306 | { | ||
| 5307 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 5308 | } | ||
| 5309 | |||
| 5310 | static ssize_t | ||
| 5311 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 5312 | { | ||
| 5313 | unsigned long val; | ||
| 5314 | int err; | ||
| 5315 | |||
| 5316 | err = strict_strtoul(buf, 10, &val); | ||
| 5317 | if (err) | ||
| 5318 | return err; | ||
| 5319 | if (val > 1) | ||
| 5320 | return -EINVAL; | ||
| 5321 | |||
| 5322 | spin_lock(&perf_resource_lock); | ||
| 5323 | perf_overcommit = val; | ||
| 5324 | spin_unlock(&perf_resource_lock); | ||
| 5325 | |||
| 5326 | return count; | ||
| 5327 | } | ||
| 5328 | |||
| 5329 | static SYSDEV_CLASS_ATTR( | ||
| 5330 | reserve_percpu, | ||
| 5331 | 0644, | ||
| 5332 | perf_show_reserve_percpu, | ||
| 5333 | perf_set_reserve_percpu | ||
| 5334 | ); | ||
| 5335 | |||
| 5336 | static SYSDEV_CLASS_ATTR( | ||
| 5337 | overcommit, | ||
| 5338 | 0644, | ||
| 5339 | perf_show_overcommit, | ||
| 5340 | perf_set_overcommit | ||
| 5341 | ); | ||
| 5342 | |||
| 5343 | static struct attribute *perfclass_attrs[] = { | ||
| 5344 | &attr_reserve_percpu.attr, | ||
| 5345 | &attr_overcommit.attr, | ||
| 5346 | NULL | ||
| 5347 | }; | ||
| 5348 | |||
| 5349 | static struct attribute_group perfclass_attr_group = { | ||
| 5350 | .attrs = perfclass_attrs, | ||
| 5351 | .name = "perf_events", | ||
| 5352 | }; | ||
| 5353 | |||
| 5354 | static int __init perf_event_sysfs_init(void) | ||
| 5355 | { | ||
| 5356 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 5357 | &perfclass_attr_group); | ||
| 5358 | } | ||
| 5359 | device_initcall(perf_event_sysfs_init); | ||
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
| @@ -40,7 +40,7 @@ | |||
| 40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
| 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
| 42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
| 43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
| 44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
| 45 | 45 | ||
| 46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
| @@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
| 499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
| 500 | { | 500 | { |
| 501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
| 502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
| 503 | 502 | ||
| 504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
| 505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
| 505 | &pidhash_shift, NULL, 4096); | ||
| 506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
| 507 | 507 | ||
| 508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
| 509 | pidhash_size, pidhash_shift, | ||
| 510 | pidhash_size * sizeof(struct hlist_head)); | ||
| 511 | |||
| 512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
| 513 | if (!pid_hash) | ||
| 514 | panic("Could not alloc pidhash!\n"); | ||
| 515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
| 516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
| 517 | } | 510 | } |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 821722ae58a7..86b3796b0436 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
| @@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old | |||
| 118 | { | 118 | { |
| 119 | if (!(flags & CLONE_NEWPID)) | 119 | if (!(flags & CLONE_NEWPID)) |
| 120 | return get_pid_ns(old_ns); | 120 | return get_pid_ns(old_ns); |
| 121 | if (flags & CLONE_THREAD) | 121 | if (flags & (CLONE_THREAD|CLONE_PARENT)) |
| 122 | return ERR_PTR(-EINVAL); | 122 | return ERR_PTR(-EINVAL); |
| 123 | return create_pid_namespace(old_ns); | 123 | return create_pid_namespace(old_ns); |
| 124 | } | 124 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -8,17 +8,18 @@ | |||
| 8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
| 9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
| 10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
| 11 | #include <trace/events/timer.h> | ||
| 11 | 12 | ||
| 12 | /* | 13 | /* |
| 13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
| 14 | */ | 15 | */ |
| 15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
| 16 | { | 17 | { |
| 17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
| 19 | struct signal_struct *const sig = current->signal; | ||
| 18 | 20 | ||
| 19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
| 20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
| 21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
| 22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
| 23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
| 24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
| @@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
| 542 | now); | 543 | now); |
| 543 | } | 544 | } |
| 544 | 545 | ||
| 546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
| 547 | { | ||
| 548 | return cputime_eq(expires, cputime_zero) || | ||
| 549 | cputime_gt(expires, new_exp); | ||
| 550 | } | ||
| 551 | |||
| 552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
| 553 | { | ||
| 554 | return !cputime_eq(expires, cputime_zero) && | ||
| 555 | cputime_le(expires, new_exp); | ||
| 556 | } | ||
| 545 | /* | 557 | /* |
| 546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
| 547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
| @@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
| 586 | */ | 598 | */ |
| 587 | 599 | ||
| 588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 601 | union cpu_time_count *exp = &nt->expires; | ||
| 602 | |||
| 589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| 590 | default: | 604 | default: |
| 591 | BUG(); | 605 | BUG(); |
| 592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
| 593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
| 594 | cputime_zero) || | 608 | exp->cpu)) |
| 595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
| 596 | nt->expires.cpu)) | ||
| 597 | p->cputime_expires.prof_exp = | ||
| 598 | nt->expires.cpu; | ||
| 599 | break; | 610 | break; |
| 600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
| 601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
| 602 | cputime_zero) || | 613 | exp->cpu)) |
| 603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
| 604 | nt->expires.cpu)) | ||
| 605 | p->cputime_expires.virt_exp = | ||
| 606 | nt->expires.cpu; | ||
| 607 | break; | 615 | break; |
| 608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
| 609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
| 610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
| 611 | nt->expires.sched) | ||
| 612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
| 613 | nt->expires.sched; | 620 | exp->sched; |
| 614 | break; | 621 | break; |
| 615 | } | 622 | } |
| 616 | } else { | 623 | } else { |
| 624 | struct signal_struct *const sig = p->signal; | ||
| 625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
| 626 | |||
| 617 | /* | 627 | /* |
| 618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
| 619 | */ | 629 | */ |
| @@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
| 621 | default: | 631 | default: |
| 622 | BUG(); | 632 | BUG(); |
| 623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
| 624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
| 625 | cputime_zero) && | 635 | exp->cpu)) |
| 626 | cputime_lt(p->signal->it_virt_expires, | ||
| 627 | timer->it.cpu.expires.cpu)) | ||
| 628 | break; | 636 | break; |
| 629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
| 630 | timer->it.cpu.expires.cpu; | ||
| 631 | break; | 638 | break; |
| 632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
| 633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
| 634 | cputime_zero) && | 641 | exp->cpu)) |
| 635 | cputime_lt(p->signal->it_prof_expires, | ||
| 636 | timer->it.cpu.expires.cpu)) | ||
| 637 | break; | 642 | break; |
| 638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
| 639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
| 640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
| 641 | break; | 646 | break; |
| 642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
| 643 | timer->it.cpu.expires.cpu; | ||
| 644 | break; | 648 | break; |
| 645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
| 646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
| 647 | timer->it.cpu.expires.sched; | ||
| 648 | break; | 651 | break; |
| 649 | } | 652 | } |
| 650 | } | 653 | } |
| @@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
| 1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
| 1072 | } | 1075 | } |
| 1073 | 1076 | ||
| 1077 | static u32 onecputick; | ||
| 1078 | |||
| 1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
| 1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
| 1081 | { | ||
| 1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
| 1083 | return; | ||
| 1084 | |||
| 1085 | if (cputime_ge(cur_time, it->expires)) { | ||
| 1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
| 1087 | it->expires = cputime_add(it->expires, it->incr); | ||
| 1088 | it->error += it->incr_error; | ||
| 1089 | if (it->error >= onecputick) { | ||
| 1090 | it->expires = cputime_sub(it->expires, | ||
| 1091 | cputime_one_jiffy); | ||
| 1092 | it->error -= onecputick; | ||
| 1093 | } | ||
| 1094 | } else { | ||
| 1095 | it->expires = cputime_zero; | ||
| 1096 | } | ||
| 1097 | |||
| 1098 | trace_itimer_expire(signo == SIGPROF ? | ||
| 1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
| 1100 | tsk->signal->leader_pid, cur_time); | ||
| 1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
| 1105 | (cputime_eq(*expires, cputime_zero) || | ||
| 1106 | cputime_lt(it->expires, *expires))) { | ||
| 1107 | *expires = it->expires; | ||
| 1108 | } | ||
| 1109 | } | ||
| 1110 | |||
| 1074 | /* | 1111 | /* |
| 1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
| 1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
| @@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
| 1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
| 1091 | */ | 1128 | */ |
| 1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
| 1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
| 1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
| 1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
| 1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
| 1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
| 1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
| 1099 | return; | 1136 | return; |
| @@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
| 1153 | /* | 1190 | /* |
| 1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
| 1155 | */ | 1192 | */ |
| 1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
| 1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
| 1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
| 1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
| 1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
| 1161 | sig->it_prof_expires = cputime_add( | ||
| 1162 | sig->it_prof_expires, ptime); | ||
| 1163 | } | ||
| 1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
| 1165 | } | ||
| 1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
| 1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
| 1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
| 1169 | prof_expires = sig->it_prof_expires; | ||
| 1170 | } | ||
| 1171 | } | ||
| 1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
| 1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
| 1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
| 1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
| 1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
| 1177 | sig->it_virt_expires = cputime_add( | ||
| 1178 | sig->it_virt_expires, utime); | ||
| 1179 | } | ||
| 1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
| 1181 | } | ||
| 1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
| 1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
| 1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
| 1185 | virt_expires = sig->it_virt_expires; | ||
| 1186 | } | ||
| 1187 | } | ||
| 1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| 1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
| 1190 | cputime_t x; | 1200 | cputime_t x; |
| @@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
| 1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
| 1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
| 1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
| 1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
| 1461 | } else { | 1471 | } else { |
| 1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
| 1463 | } | 1473 | } |
| @@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
| 1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
| 1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
| 1705 | }; | 1715 | }; |
| 1716 | struct timespec ts; | ||
| 1706 | 1717 | ||
| 1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
| 1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
| 1709 | 1720 | ||
| 1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
| 1722 | onecputick = ts.tv_nsec; | ||
| 1723 | WARN_ON(ts.tv_sec != 0); | ||
| 1724 | |||
| 1710 | return 0; | 1725 | return 0; |
| 1711 | } | 1726 | } |
| 1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index d089d052c4a9..495440779ce3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
| @@ -242,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |||
| 242 | return 0; | 242 | return 0; |
| 243 | } | 243 | } |
| 244 | 244 | ||
| 245 | |||
| 246 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | ||
| 247 | { | ||
| 248 | *tp = current_kernel_time(); | ||
| 249 | return 0; | ||
| 250 | } | ||
| 251 | |||
| 252 | static int posix_get_monotonic_coarse(clockid_t which_clock, | ||
| 253 | struct timespec *tp) | ||
| 254 | { | ||
| 255 | *tp = get_monotonic_coarse(); | ||
| 256 | return 0; | ||
| 257 | } | ||
| 258 | |||
| 259 | int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | ||
| 260 | { | ||
| 261 | *tp = ktime_to_timespec(KTIME_LOW_RES); | ||
| 262 | return 0; | ||
| 263 | } | ||
| 245 | /* | 264 | /* |
| 246 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 265 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 247 | */ | 266 | */ |
| @@ -262,10 +281,26 @@ static __init int init_posix_timers(void) | |||
| 262 | .timer_create = no_timer_create, | 281 | .timer_create = no_timer_create, |
| 263 | .nsleep = no_nsleep, | 282 | .nsleep = no_nsleep, |
| 264 | }; | 283 | }; |
| 284 | struct k_clock clock_realtime_coarse = { | ||
| 285 | .clock_getres = posix_get_coarse_res, | ||
| 286 | .clock_get = posix_get_realtime_coarse, | ||
| 287 | .clock_set = do_posix_clock_nosettime, | ||
| 288 | .timer_create = no_timer_create, | ||
| 289 | .nsleep = no_nsleep, | ||
| 290 | }; | ||
| 291 | struct k_clock clock_monotonic_coarse = { | ||
| 292 | .clock_getres = posix_get_coarse_res, | ||
| 293 | .clock_get = posix_get_monotonic_coarse, | ||
| 294 | .clock_set = do_posix_clock_nosettime, | ||
| 295 | .timer_create = no_timer_create, | ||
| 296 | .nsleep = no_nsleep, | ||
| 297 | }; | ||
| 265 | 298 | ||
| 266 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 299 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
| 267 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 300 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
| 268 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 301 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
| 302 | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
| 303 | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
| 269 | 304 | ||
| 270 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 305 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 271 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 306 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig index 72067cbdb37f..91e09d3b2eb2 100644 --- a/kernel/power/Kconfig +++ b/kernel/power/Kconfig | |||
| @@ -208,3 +208,17 @@ config APM_EMULATION | |||
| 208 | random kernel OOPSes or reboots that don't seem to be related to | 208 | random kernel OOPSes or reboots that don't seem to be related to |
| 209 | anything, try disabling/enabling this option (or disabling/enabling | 209 | anything, try disabling/enabling this option (or disabling/enabling |
| 210 | APM in your BIOS). | 210 | APM in your BIOS). |
| 211 | |||
| 212 | config PM_RUNTIME | ||
| 213 | bool "Run-time PM core functionality" | ||
| 214 | depends on PM | ||
| 215 | ---help--- | ||
| 216 | Enable functionality allowing I/O devices to be put into energy-saving | ||
| 217 | (low power) states at run time (or autosuspended) after a specified | ||
| 218 | period of inactivity and woken up in response to a hardware-generated | ||
| 219 | wake-up event or a driver's request. | ||
| 220 | |||
| 221 | Hardware support is generally required for this functionality to work | ||
| 222 | and the bus type drivers of the buses the devices are on are | ||
| 223 | responsible for the actual handling of the autosuspend requests and | ||
| 224 | wake-up events. | ||
diff --git a/kernel/power/console.c b/kernel/power/console.c index a3961b205de7..5187136fe1de 100644 --- a/kernel/power/console.c +++ b/kernel/power/console.c | |||
| @@ -14,56 +14,13 @@ | |||
| 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) | 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) |
| 15 | 15 | ||
| 16 | static int orig_fgconsole, orig_kmsg; | 16 | static int orig_fgconsole, orig_kmsg; |
| 17 | static int disable_vt_switch; | ||
| 18 | |||
| 19 | /* | ||
| 20 | * Normally during a suspend, we allocate a new console and switch to it. | ||
| 21 | * When we resume, we switch back to the original console. This switch | ||
| 22 | * can be slow, so on systems where the framebuffer can handle restoration | ||
| 23 | * of video registers anyways, there's little point in doing the console | ||
| 24 | * switch. This function allows you to disable it by passing it '0'. | ||
| 25 | */ | ||
| 26 | void pm_set_vt_switch(int do_switch) | ||
| 27 | { | ||
| 28 | acquire_console_sem(); | ||
| 29 | disable_vt_switch = !do_switch; | ||
| 30 | release_console_sem(); | ||
| 31 | } | ||
| 32 | EXPORT_SYMBOL(pm_set_vt_switch); | ||
| 33 | 17 | ||
| 34 | int pm_prepare_console(void) | 18 | int pm_prepare_console(void) |
| 35 | { | 19 | { |
| 36 | acquire_console_sem(); | 20 | orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1); |
| 37 | 21 | if (orig_fgconsole < 0) | |
| 38 | if (disable_vt_switch) { | ||
| 39 | release_console_sem(); | ||
| 40 | return 0; | ||
| 41 | } | ||
| 42 | |||
| 43 | orig_fgconsole = fg_console; | ||
| 44 | |||
| 45 | if (vc_allocate(SUSPEND_CONSOLE)) { | ||
| 46 | /* we can't have a free VC for now. Too bad, | ||
| 47 | * we don't want to mess the screen for now. */ | ||
| 48 | release_console_sem(); | ||
| 49 | return 1; | 22 | return 1; |
| 50 | } | ||
| 51 | 23 | ||
| 52 | if (set_console(SUSPEND_CONSOLE)) { | ||
| 53 | /* | ||
| 54 | * We're unable to switch to the SUSPEND_CONSOLE. | ||
| 55 | * Let the calling function know so it can decide | ||
| 56 | * what to do. | ||
| 57 | */ | ||
| 58 | release_console_sem(); | ||
| 59 | return 1; | ||
| 60 | } | ||
| 61 | release_console_sem(); | ||
| 62 | |||
| 63 | if (vt_waitactive(SUSPEND_CONSOLE)) { | ||
| 64 | pr_debug("Suspend: Can't switch VCs."); | ||
| 65 | return 1; | ||
| 66 | } | ||
| 67 | orig_kmsg = kmsg_redirect; | 24 | orig_kmsg = kmsg_redirect; |
| 68 | kmsg_redirect = SUSPEND_CONSOLE; | 25 | kmsg_redirect = SUSPEND_CONSOLE; |
| 69 | return 0; | 26 | return 0; |
| @@ -71,19 +28,9 @@ int pm_prepare_console(void) | |||
| 71 | 28 | ||
| 72 | void pm_restore_console(void) | 29 | void pm_restore_console(void) |
| 73 | { | 30 | { |
| 74 | acquire_console_sem(); | 31 | if (orig_fgconsole >= 0) { |
| 75 | if (disable_vt_switch) { | 32 | vt_move_to_console(orig_fgconsole, 0); |
| 76 | release_console_sem(); | 33 | kmsg_redirect = orig_kmsg; |
| 77 | return; | ||
| 78 | } | ||
| 79 | set_console(orig_fgconsole); | ||
| 80 | release_console_sem(); | ||
| 81 | |||
| 82 | if (vt_waitactive(orig_fgconsole)) { | ||
| 83 | pr_debug("Resume: Can't switch VCs."); | ||
| 84 | return; | ||
| 85 | } | 34 | } |
| 86 | |||
| 87 | kmsg_redirect = orig_kmsg; | ||
| 88 | } | 35 | } |
| 89 | #endif | 36 | #endif |
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c index 81d2e7464893..04a9e90d248f 100644 --- a/kernel/power/hibernate.c +++ b/kernel/power/hibernate.c | |||
| @@ -298,8 +298,8 @@ int hibernation_snapshot(int platform_mode) | |||
| 298 | if (error) | 298 | if (error) |
| 299 | return error; | 299 | return error; |
| 300 | 300 | ||
| 301 | /* Free memory before shutting down devices. */ | 301 | /* Preallocate image memory before shutting down devices. */ |
| 302 | error = swsusp_shrink_memory(); | 302 | error = hibernate_preallocate_memory(); |
| 303 | if (error) | 303 | if (error) |
| 304 | goto Close; | 304 | goto Close; |
| 305 | 305 | ||
| @@ -315,6 +315,10 @@ int hibernation_snapshot(int platform_mode) | |||
| 315 | /* Control returns here after successful restore */ | 315 | /* Control returns here after successful restore */ |
| 316 | 316 | ||
| 317 | Resume_devices: | 317 | Resume_devices: |
| 318 | /* We may need to release the preallocated image pages here. */ | ||
| 319 | if (error || !in_suspend) | ||
| 320 | swsusp_free(); | ||
| 321 | |||
| 318 | dpm_resume_end(in_suspend ? | 322 | dpm_resume_end(in_suspend ? |
| 319 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | 323 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); |
| 320 | resume_console(); | 324 | resume_console(); |
| @@ -460,11 +464,11 @@ int hibernation_platform_enter(void) | |||
| 460 | 464 | ||
| 461 | error = hibernation_ops->prepare(); | 465 | error = hibernation_ops->prepare(); |
| 462 | if (error) | 466 | if (error) |
| 463 | goto Platofrm_finish; | 467 | goto Platform_finish; |
| 464 | 468 | ||
| 465 | error = disable_nonboot_cpus(); | 469 | error = disable_nonboot_cpus(); |
| 466 | if (error) | 470 | if (error) |
| 467 | goto Platofrm_finish; | 471 | goto Platform_finish; |
| 468 | 472 | ||
| 469 | local_irq_disable(); | 473 | local_irq_disable(); |
| 470 | sysdev_suspend(PMSG_HIBERNATE); | 474 | sysdev_suspend(PMSG_HIBERNATE); |
| @@ -476,7 +480,7 @@ int hibernation_platform_enter(void) | |||
| 476 | * We don't need to reenable the nonboot CPUs or resume consoles, since | 480 | * We don't need to reenable the nonboot CPUs or resume consoles, since |
| 477 | * the system is going to be halted anyway. | 481 | * the system is going to be halted anyway. |
| 478 | */ | 482 | */ |
| 479 | Platofrm_finish: | 483 | Platform_finish: |
| 480 | hibernation_ops->finish(); | 484 | hibernation_ops->finish(); |
| 481 | 485 | ||
| 482 | dpm_suspend_noirq(PMSG_RESTORE); | 486 | dpm_suspend_noirq(PMSG_RESTORE); |
| @@ -578,7 +582,10 @@ int hibernate(void) | |||
| 578 | goto Thaw; | 582 | goto Thaw; |
| 579 | 583 | ||
| 580 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); | 584 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); |
| 581 | if (in_suspend && !error) { | 585 | if (error) |
| 586 | goto Thaw; | ||
| 587 | |||
| 588 | if (in_suspend) { | ||
| 582 | unsigned int flags = 0; | 589 | unsigned int flags = 0; |
| 583 | 590 | ||
| 584 | if (hibernation_mode == HIBERNATION_PLATFORM) | 591 | if (hibernation_mode == HIBERNATION_PLATFORM) |
| @@ -590,8 +597,8 @@ int hibernate(void) | |||
| 590 | power_down(); | 597 | power_down(); |
| 591 | } else { | 598 | } else { |
| 592 | pr_debug("PM: Image restored successfully.\n"); | 599 | pr_debug("PM: Image restored successfully.\n"); |
| 593 | swsusp_free(); | ||
| 594 | } | 600 | } |
| 601 | |||
| 595 | Thaw: | 602 | Thaw: |
| 596 | thaw_processes(); | 603 | thaw_processes(); |
| 597 | Finish: | 604 | Finish: |
| @@ -686,21 +693,22 @@ static int software_resume(void) | |||
| 686 | /* The snapshot device should not be opened while we're running */ | 693 | /* The snapshot device should not be opened while we're running */ |
| 687 | if (!atomic_add_unless(&snapshot_device_available, -1, 0)) { | 694 | if (!atomic_add_unless(&snapshot_device_available, -1, 0)) { |
| 688 | error = -EBUSY; | 695 | error = -EBUSY; |
| 696 | swsusp_close(FMODE_READ); | ||
| 689 | goto Unlock; | 697 | goto Unlock; |
| 690 | } | 698 | } |
| 691 | 699 | ||
| 692 | pm_prepare_console(); | 700 | pm_prepare_console(); |
| 693 | error = pm_notifier_call_chain(PM_RESTORE_PREPARE); | 701 | error = pm_notifier_call_chain(PM_RESTORE_PREPARE); |
| 694 | if (error) | 702 | if (error) |
| 695 | goto Finish; | 703 | goto close_finish; |
| 696 | 704 | ||
| 697 | error = usermodehelper_disable(); | 705 | error = usermodehelper_disable(); |
| 698 | if (error) | 706 | if (error) |
| 699 | goto Finish; | 707 | goto close_finish; |
| 700 | 708 | ||
| 701 | error = create_basic_memory_bitmaps(); | 709 | error = create_basic_memory_bitmaps(); |
| 702 | if (error) | 710 | if (error) |
| 703 | goto Finish; | 711 | goto close_finish; |
| 704 | 712 | ||
| 705 | pr_debug("PM: Preparing processes for restore.\n"); | 713 | pr_debug("PM: Preparing processes for restore.\n"); |
| 706 | error = prepare_processes(); | 714 | error = prepare_processes(); |
| @@ -712,6 +720,7 @@ static int software_resume(void) | |||
| 712 | pr_debug("PM: Reading hibernation image.\n"); | 720 | pr_debug("PM: Reading hibernation image.\n"); |
| 713 | 721 | ||
| 714 | error = swsusp_read(&flags); | 722 | error = swsusp_read(&flags); |
| 723 | swsusp_close(FMODE_READ); | ||
| 715 | if (!error) | 724 | if (!error) |
| 716 | hibernation_restore(flags & SF_PLATFORM_MODE); | 725 | hibernation_restore(flags & SF_PLATFORM_MODE); |
| 717 | 726 | ||
| @@ -730,6 +739,9 @@ static int software_resume(void) | |||
| 730 | mutex_unlock(&pm_mutex); | 739 | mutex_unlock(&pm_mutex); |
| 731 | pr_debug("PM: Resume from disk failed.\n"); | 740 | pr_debug("PM: Resume from disk failed.\n"); |
| 732 | return error; | 741 | return error; |
| 742 | close_finish: | ||
| 743 | swsusp_close(FMODE_READ); | ||
| 744 | goto Finish; | ||
| 733 | } | 745 | } |
| 734 | 746 | ||
| 735 | late_initcall(software_resume); | 747 | late_initcall(software_resume); |
diff --git a/kernel/power/main.c b/kernel/power/main.c index f710e36930cc..347d2cc88cd0 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
| @@ -11,6 +11,7 @@ | |||
| 11 | #include <linux/kobject.h> | 11 | #include <linux/kobject.h> |
| 12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
| 13 | #include <linux/resume-trace.h> | 13 | #include <linux/resume-trace.h> |
| 14 | #include <linux/workqueue.h> | ||
| 14 | 15 | ||
| 15 | #include "power.h" | 16 | #include "power.h" |
| 16 | 17 | ||
| @@ -217,8 +218,24 @@ static struct attribute_group attr_group = { | |||
| 217 | .attrs = g, | 218 | .attrs = g, |
| 218 | }; | 219 | }; |
| 219 | 220 | ||
| 221 | #ifdef CONFIG_PM_RUNTIME | ||
| 222 | struct workqueue_struct *pm_wq; | ||
| 223 | |||
| 224 | static int __init pm_start_workqueue(void) | ||
| 225 | { | ||
| 226 | pm_wq = create_freezeable_workqueue("pm"); | ||
| 227 | |||
| 228 | return pm_wq ? 0 : -ENOMEM; | ||
| 229 | } | ||
| 230 | #else | ||
| 231 | static inline int pm_start_workqueue(void) { return 0; } | ||
| 232 | #endif | ||
| 233 | |||
| 220 | static int __init pm_init(void) | 234 | static int __init pm_init(void) |
| 221 | { | 235 | { |
| 236 | int error = pm_start_workqueue(); | ||
| 237 | if (error) | ||
| 238 | return error; | ||
| 222 | power_kobj = kobject_create_and_add("power", NULL); | 239 | power_kobj = kobject_create_and_add("power", NULL); |
| 223 | if (!power_kobj) | 240 | if (!power_kobj) |
| 224 | return -ENOMEM; | 241 | return -ENOMEM; |
diff --git a/kernel/power/power.h b/kernel/power/power.h index 26d5a26f82e3..46c5a26630a3 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
| @@ -74,7 +74,7 @@ extern asmlinkage int swsusp_arch_resume(void); | |||
| 74 | 74 | ||
| 75 | extern int create_basic_memory_bitmaps(void); | 75 | extern int create_basic_memory_bitmaps(void); |
| 76 | extern void free_basic_memory_bitmaps(void); | 76 | extern void free_basic_memory_bitmaps(void); |
| 77 | extern int swsusp_shrink_memory(void); | 77 | extern int hibernate_preallocate_memory(void); |
| 78 | 78 | ||
| 79 | /** | 79 | /** |
| 80 | * Auxiliary structure used for reading the snapshot image data and | 80 | * Auxiliary structure used for reading the snapshot image data and |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
| @@ -9,6 +9,7 @@ | |||
| 9 | #undef DEBUG | 9 | #undef DEBUG |
| 10 | 10 | ||
| 11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/oom.h> | ||
| 12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
| 13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
| 14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 523a451b45d3..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
| @@ -233,7 +233,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size) | |||
| 233 | 233 | ||
| 234 | #define BM_END_OF_MAP (~0UL) | 234 | #define BM_END_OF_MAP (~0UL) |
| 235 | 235 | ||
| 236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) | 236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) |
| 237 | 237 | ||
| 238 | struct bm_block { | 238 | struct bm_block { |
| 239 | struct list_head hook; /* hook into a list of bitmap blocks */ | 239 | struct list_head hook; /* hook into a list of bitmap blocks */ |
| @@ -275,7 +275,7 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); | |||
| 275 | 275 | ||
| 276 | /** | 276 | /** |
| 277 | * create_bm_block_list - create a list of block bitmap objects | 277 | * create_bm_block_list - create a list of block bitmap objects |
| 278 | * @nr_blocks - number of blocks to allocate | 278 | * @pages - number of pages to track |
| 279 | * @list - list to put the allocated blocks into | 279 | * @list - list to put the allocated blocks into |
| 280 | * @ca - chain allocator to be used for allocating memory | 280 | * @ca - chain allocator to be used for allocating memory |
| 281 | */ | 281 | */ |
| @@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
| 619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
| 620 | } else | 620 | } else |
| 621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
| 622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
| 623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
| 624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
| 625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
| @@ -853,7 +853,7 @@ static unsigned int count_highmem_pages(void) | |||
| 853 | struct zone *zone; | 853 | struct zone *zone; |
| 854 | unsigned int n = 0; | 854 | unsigned int n = 0; |
| 855 | 855 | ||
| 856 | for_each_zone(zone) { | 856 | for_each_populated_zone(zone) { |
| 857 | unsigned long pfn, max_zone_pfn; | 857 | unsigned long pfn, max_zone_pfn; |
| 858 | 858 | ||
| 859 | if (!is_highmem(zone)) | 859 | if (!is_highmem(zone)) |
| @@ -916,7 +916,7 @@ static unsigned int count_data_pages(void) | |||
| 916 | unsigned long pfn, max_zone_pfn; | 916 | unsigned long pfn, max_zone_pfn; |
| 917 | unsigned int n = 0; | 917 | unsigned int n = 0; |
| 918 | 918 | ||
| 919 | for_each_zone(zone) { | 919 | for_each_populated_zone(zone) { |
| 920 | if (is_highmem(zone)) | 920 | if (is_highmem(zone)) |
| 921 | continue; | 921 | continue; |
| 922 | 922 | ||
| @@ -1010,7 +1010,7 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
| 1010 | struct zone *zone; | 1010 | struct zone *zone; |
| 1011 | unsigned long pfn; | 1011 | unsigned long pfn; |
| 1012 | 1012 | ||
| 1013 | for_each_zone(zone) { | 1013 | for_each_populated_zone(zone) { |
| 1014 | unsigned long max_zone_pfn; | 1014 | unsigned long max_zone_pfn; |
| 1015 | 1015 | ||
| 1016 | mark_free_pages(zone); | 1016 | mark_free_pages(zone); |
| @@ -1033,6 +1033,25 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
| 1033 | static unsigned int nr_copy_pages; | 1033 | static unsigned int nr_copy_pages; |
| 1034 | /* Number of pages needed for saving the original pfns of the image pages */ | 1034 | /* Number of pages needed for saving the original pfns of the image pages */ |
| 1035 | static unsigned int nr_meta_pages; | 1035 | static unsigned int nr_meta_pages; |
| 1036 | /* | ||
| 1037 | * Numbers of normal and highmem page frames allocated for hibernation image | ||
| 1038 | * before suspending devices. | ||
| 1039 | */ | ||
| 1040 | unsigned int alloc_normal, alloc_highmem; | ||
| 1041 | /* | ||
| 1042 | * Memory bitmap used for marking saveable pages (during hibernation) or | ||
| 1043 | * hibernation image pages (during restore) | ||
| 1044 | */ | ||
| 1045 | static struct memory_bitmap orig_bm; | ||
| 1046 | /* | ||
| 1047 | * Memory bitmap used during hibernation for marking allocated page frames that | ||
| 1048 | * will contain copies of saveable pages. During restore it is initially used | ||
| 1049 | * for marking hibernation image pages, but then the set bits from it are | ||
| 1050 | * duplicated in @orig_bm and it is released. On highmem systems it is next | ||
| 1051 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
| 1052 | * this purpose. | ||
| 1053 | */ | ||
| 1054 | static struct memory_bitmap copy_bm; | ||
| 1036 | 1055 | ||
| 1037 | /** | 1056 | /** |
| 1038 | * swsusp_free - free pages allocated for the suspend. | 1057 | * swsusp_free - free pages allocated for the suspend. |
| @@ -1046,7 +1065,7 @@ void swsusp_free(void) | |||
| 1046 | struct zone *zone; | 1065 | struct zone *zone; |
| 1047 | unsigned long pfn, max_zone_pfn; | 1066 | unsigned long pfn, max_zone_pfn; |
| 1048 | 1067 | ||
| 1049 | for_each_zone(zone) { | 1068 | for_each_populated_zone(zone) { |
| 1050 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1069 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1051 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1070 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1052 | if (pfn_valid(pfn)) { | 1071 | if (pfn_valid(pfn)) { |
| @@ -1064,74 +1083,286 @@ void swsusp_free(void) | |||
| 1064 | nr_meta_pages = 0; | 1083 | nr_meta_pages = 0; |
| 1065 | restore_pblist = NULL; | 1084 | restore_pblist = NULL; |
| 1066 | buffer = NULL; | 1085 | buffer = NULL; |
| 1086 | alloc_normal = 0; | ||
| 1087 | alloc_highmem = 0; | ||
| 1067 | } | 1088 | } |
| 1068 | 1089 | ||
| 1090 | /* Helper functions used for the shrinking of memory. */ | ||
| 1091 | |||
| 1092 | #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) | ||
| 1093 | |||
| 1069 | /** | 1094 | /** |
| 1070 | * swsusp_shrink_memory - Try to free as much memory as needed | 1095 | * preallocate_image_pages - Allocate a number of pages for hibernation image |
| 1071 | * | 1096 | * @nr_pages: Number of page frames to allocate. |
| 1072 | * ... but do not OOM-kill anyone | 1097 | * @mask: GFP flags to use for the allocation. |
| 1073 | * | 1098 | * |
| 1074 | * Notice: all userland should be stopped before it is called, or | 1099 | * Return value: Number of page frames actually allocated |
| 1075 | * livelock is possible. | 1100 | */ |
| 1101 | static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) | ||
| 1102 | { | ||
| 1103 | unsigned long nr_alloc = 0; | ||
| 1104 | |||
| 1105 | while (nr_pages > 0) { | ||
| 1106 | struct page *page; | ||
| 1107 | |||
| 1108 | page = alloc_image_page(mask); | ||
| 1109 | if (!page) | ||
| 1110 | break; | ||
| 1111 | memory_bm_set_bit(©_bm, page_to_pfn(page)); | ||
| 1112 | if (PageHighMem(page)) | ||
| 1113 | alloc_highmem++; | ||
| 1114 | else | ||
| 1115 | alloc_normal++; | ||
| 1116 | nr_pages--; | ||
| 1117 | nr_alloc++; | ||
| 1118 | } | ||
| 1119 | |||
| 1120 | return nr_alloc; | ||
| 1121 | } | ||
| 1122 | |||
| 1123 | static unsigned long preallocate_image_memory(unsigned long nr_pages) | ||
| 1124 | { | ||
| 1125 | return preallocate_image_pages(nr_pages, GFP_IMAGE); | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | #ifdef CONFIG_HIGHMEM | ||
| 1129 | static unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
| 1130 | { | ||
| 1131 | return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); | ||
| 1132 | } | ||
| 1133 | |||
| 1134 | /** | ||
| 1135 | * __fraction - Compute (an approximation of) x * (multiplier / base) | ||
| 1076 | */ | 1136 | */ |
| 1137 | static unsigned long __fraction(u64 x, u64 multiplier, u64 base) | ||
| 1138 | { | ||
| 1139 | x *= multiplier; | ||
| 1140 | do_div(x, base); | ||
| 1141 | return (unsigned long)x; | ||
| 1142 | } | ||
| 1143 | |||
| 1144 | static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, | ||
| 1145 | unsigned long highmem, | ||
| 1146 | unsigned long total) | ||
| 1147 | { | ||
| 1148 | unsigned long alloc = __fraction(nr_pages, highmem, total); | ||
| 1077 | 1149 | ||
| 1078 | #define SHRINK_BITE 10000 | 1150 | return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); |
| 1079 | static inline unsigned long __shrink_memory(long tmp) | 1151 | } |
| 1152 | #else /* CONFIG_HIGHMEM */ | ||
| 1153 | static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
| 1080 | { | 1154 | { |
| 1081 | if (tmp > SHRINK_BITE) | 1155 | return 0; |
| 1082 | tmp = SHRINK_BITE; | ||
| 1083 | return shrink_all_memory(tmp); | ||
| 1084 | } | 1156 | } |
| 1085 | 1157 | ||
| 1086 | int swsusp_shrink_memory(void) | 1158 | static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
| 1159 | unsigned long highmem, | ||
| 1160 | unsigned long total) | ||
| 1161 | { | ||
| 1162 | return 0; | ||
| 1163 | } | ||
| 1164 | #endif /* CONFIG_HIGHMEM */ | ||
| 1165 | |||
| 1166 | /** | ||
| 1167 | * free_unnecessary_pages - Release preallocated pages not needed for the image | ||
| 1168 | */ | ||
| 1169 | static void free_unnecessary_pages(void) | ||
| 1170 | { | ||
| 1171 | unsigned long save_highmem, to_free_normal, to_free_highmem; | ||
| 1172 | |||
| 1173 | to_free_normal = alloc_normal - count_data_pages(); | ||
| 1174 | save_highmem = count_highmem_pages(); | ||
| 1175 | if (alloc_highmem > save_highmem) { | ||
| 1176 | to_free_highmem = alloc_highmem - save_highmem; | ||
| 1177 | } else { | ||
| 1178 | to_free_highmem = 0; | ||
| 1179 | to_free_normal -= save_highmem - alloc_highmem; | ||
| 1180 | } | ||
| 1181 | |||
| 1182 | memory_bm_position_reset(©_bm); | ||
| 1183 | |||
| 1184 | while (to_free_normal > 0 && to_free_highmem > 0) { | ||
| 1185 | unsigned long pfn = memory_bm_next_pfn(©_bm); | ||
| 1186 | struct page *page = pfn_to_page(pfn); | ||
| 1187 | |||
| 1188 | if (PageHighMem(page)) { | ||
| 1189 | if (!to_free_highmem) | ||
| 1190 | continue; | ||
| 1191 | to_free_highmem--; | ||
| 1192 | alloc_highmem--; | ||
| 1193 | } else { | ||
| 1194 | if (!to_free_normal) | ||
| 1195 | continue; | ||
| 1196 | to_free_normal--; | ||
| 1197 | alloc_normal--; | ||
| 1198 | } | ||
| 1199 | memory_bm_clear_bit(©_bm, pfn); | ||
| 1200 | swsusp_unset_page_forbidden(page); | ||
| 1201 | swsusp_unset_page_free(page); | ||
| 1202 | __free_page(page); | ||
| 1203 | } | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | /** | ||
| 1207 | * minimum_image_size - Estimate the minimum acceptable size of an image | ||
| 1208 | * @saveable: Number of saveable pages in the system. | ||
| 1209 | * | ||
| 1210 | * We want to avoid attempting to free too much memory too hard, so estimate the | ||
| 1211 | * minimum acceptable size of a hibernation image to use as the lower limit for | ||
| 1212 | * preallocating memory. | ||
| 1213 | * | ||
| 1214 | * We assume that the minimum image size should be proportional to | ||
| 1215 | * | ||
| 1216 | * [number of saveable pages] - [number of pages that can be freed in theory] | ||
| 1217 | * | ||
| 1218 | * where the second term is the sum of (1) reclaimable slab pages, (2) active | ||
| 1219 | * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, | ||
| 1220 | * minus mapped file pages. | ||
| 1221 | */ | ||
| 1222 | static unsigned long minimum_image_size(unsigned long saveable) | ||
| 1223 | { | ||
| 1224 | unsigned long size; | ||
| 1225 | |||
| 1226 | size = global_page_state(NR_SLAB_RECLAIMABLE) | ||
| 1227 | + global_page_state(NR_ACTIVE_ANON) | ||
| 1228 | + global_page_state(NR_INACTIVE_ANON) | ||
| 1229 | + global_page_state(NR_ACTIVE_FILE) | ||
| 1230 | + global_page_state(NR_INACTIVE_FILE) | ||
| 1231 | - global_page_state(NR_FILE_MAPPED); | ||
| 1232 | |||
| 1233 | return saveable <= size ? 0 : saveable - size; | ||
| 1234 | } | ||
| 1235 | |||
| 1236 | /** | ||
| 1237 | * hibernate_preallocate_memory - Preallocate memory for hibernation image | ||
| 1238 | * | ||
| 1239 | * To create a hibernation image it is necessary to make a copy of every page | ||
| 1240 | * frame in use. We also need a number of page frames to be free during | ||
| 1241 | * hibernation for allocations made while saving the image and for device | ||
| 1242 | * drivers, in case they need to allocate memory from their hibernation | ||
| 1243 | * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, | ||
| 1244 | * respectively, both of which are rough estimates). To make this happen, we | ||
| 1245 | * compute the total number of available page frames and allocate at least | ||
| 1246 | * | ||
| 1247 | * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES | ||
| 1248 | * | ||
| 1249 | * of them, which corresponds to the maximum size of a hibernation image. | ||
| 1250 | * | ||
| 1251 | * If image_size is set below the number following from the above formula, | ||
| 1252 | * the preallocation of memory is continued until the total number of saveable | ||
| 1253 | * pages in the system is below the requested image size or the minimum | ||
| 1254 | * acceptable image size returned by minimum_image_size(), whichever is greater. | ||
| 1255 | */ | ||
| 1256 | int hibernate_preallocate_memory(void) | ||
| 1087 | { | 1257 | { |
| 1088 | long tmp; | ||
| 1089 | struct zone *zone; | 1258 | struct zone *zone; |
| 1090 | unsigned long pages = 0; | 1259 | unsigned long saveable, size, max_size, count, highmem, pages = 0; |
| 1091 | unsigned int i = 0; | 1260 | unsigned long alloc, save_highmem, pages_highmem; |
| 1092 | char *p = "-\\|/"; | ||
| 1093 | struct timeval start, stop; | 1261 | struct timeval start, stop; |
| 1262 | int error; | ||
| 1094 | 1263 | ||
| 1095 | printk(KERN_INFO "PM: Shrinking memory... "); | 1264 | printk(KERN_INFO "PM: Preallocating image memory... "); |
| 1096 | do_gettimeofday(&start); | 1265 | do_gettimeofday(&start); |
| 1097 | do { | ||
| 1098 | long size, highmem_size; | ||
| 1099 | |||
| 1100 | highmem_size = count_highmem_pages(); | ||
| 1101 | size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; | ||
| 1102 | tmp = size; | ||
| 1103 | size += highmem_size; | ||
| 1104 | for_each_populated_zone(zone) { | ||
| 1105 | tmp += snapshot_additional_pages(zone); | ||
| 1106 | if (is_highmem(zone)) { | ||
| 1107 | highmem_size -= | ||
| 1108 | zone_page_state(zone, NR_FREE_PAGES); | ||
| 1109 | } else { | ||
| 1110 | tmp -= zone_page_state(zone, NR_FREE_PAGES); | ||
| 1111 | tmp += zone->lowmem_reserve[ZONE_NORMAL]; | ||
| 1112 | } | ||
| 1113 | } | ||
| 1114 | 1266 | ||
| 1115 | if (highmem_size < 0) | 1267 | error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); |
| 1116 | highmem_size = 0; | 1268 | if (error) |
| 1269 | goto err_out; | ||
| 1117 | 1270 | ||
| 1118 | tmp += highmem_size; | 1271 | error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); |
| 1119 | if (tmp > 0) { | 1272 | if (error) |
| 1120 | tmp = __shrink_memory(tmp); | 1273 | goto err_out; |
| 1121 | if (!tmp) | 1274 | |
| 1122 | return -ENOMEM; | 1275 | alloc_normal = 0; |
| 1123 | pages += tmp; | 1276 | alloc_highmem = 0; |
| 1124 | } else if (size > image_size / PAGE_SIZE) { | 1277 | |
| 1125 | tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); | 1278 | /* Count the number of saveable data pages. */ |
| 1126 | pages += tmp; | 1279 | save_highmem = count_highmem_pages(); |
| 1127 | } | 1280 | saveable = count_data_pages(); |
| 1128 | printk("\b%c", p[i++%4]); | 1281 | |
| 1129 | } while (tmp > 0); | 1282 | /* |
| 1283 | * Compute the total number of page frames we can use (count) and the | ||
| 1284 | * number of pages needed for image metadata (size). | ||
| 1285 | */ | ||
| 1286 | count = saveable; | ||
| 1287 | saveable += save_highmem; | ||
| 1288 | highmem = save_highmem; | ||
| 1289 | size = 0; | ||
| 1290 | for_each_populated_zone(zone) { | ||
| 1291 | size += snapshot_additional_pages(zone); | ||
| 1292 | if (is_highmem(zone)) | ||
| 1293 | highmem += zone_page_state(zone, NR_FREE_PAGES); | ||
| 1294 | else | ||
| 1295 | count += zone_page_state(zone, NR_FREE_PAGES); | ||
| 1296 | } | ||
| 1297 | count += highmem; | ||
| 1298 | count -= totalreserve_pages; | ||
| 1299 | |||
| 1300 | /* Compute the maximum number of saveable pages to leave in memory. */ | ||
| 1301 | max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; | ||
| 1302 | size = DIV_ROUND_UP(image_size, PAGE_SIZE); | ||
| 1303 | if (size > max_size) | ||
| 1304 | size = max_size; | ||
| 1305 | /* | ||
| 1306 | * If the maximum is not less than the current number of saveable pages | ||
| 1307 | * in memory, allocate page frames for the image and we're done. | ||
| 1308 | */ | ||
| 1309 | if (size >= saveable) { | ||
| 1310 | pages = preallocate_image_highmem(save_highmem); | ||
| 1311 | pages += preallocate_image_memory(saveable - pages); | ||
| 1312 | goto out; | ||
| 1313 | } | ||
| 1314 | |||
| 1315 | /* Estimate the minimum size of the image. */ | ||
| 1316 | pages = minimum_image_size(saveable); | ||
| 1317 | if (size < pages) | ||
| 1318 | size = min_t(unsigned long, pages, max_size); | ||
| 1319 | |||
| 1320 | /* | ||
| 1321 | * Let the memory management subsystem know that we're going to need a | ||
| 1322 | * large number of page frames to allocate and make it free some memory. | ||
| 1323 | * NOTE: If this is not done, performance will be hurt badly in some | ||
| 1324 | * test cases. | ||
| 1325 | */ | ||
| 1326 | shrink_all_memory(saveable - size); | ||
| 1327 | |||
| 1328 | /* | ||
| 1329 | * The number of saveable pages in memory was too high, so apply some | ||
| 1330 | * pressure to decrease it. First, make room for the largest possible | ||
| 1331 | * image and fail if that doesn't work. Next, try to decrease the size | ||
| 1332 | * of the image as much as indicated by 'size' using allocations from | ||
| 1333 | * highmem and non-highmem zones separately. | ||
| 1334 | */ | ||
| 1335 | pages_highmem = preallocate_image_highmem(highmem / 2); | ||
| 1336 | alloc = (count - max_size) - pages_highmem; | ||
| 1337 | pages = preallocate_image_memory(alloc); | ||
| 1338 | if (pages < alloc) | ||
| 1339 | goto err_out; | ||
| 1340 | size = max_size - size; | ||
| 1341 | alloc = size; | ||
| 1342 | size = preallocate_highmem_fraction(size, highmem, count); | ||
| 1343 | pages_highmem += size; | ||
| 1344 | alloc -= size; | ||
| 1345 | pages += preallocate_image_memory(alloc); | ||
| 1346 | pages += pages_highmem; | ||
| 1347 | |||
| 1348 | /* | ||
| 1349 | * We only need as many page frames for the image as there are saveable | ||
| 1350 | * pages in memory, but we have allocated more. Release the excessive | ||
| 1351 | * ones now. | ||
| 1352 | */ | ||
| 1353 | free_unnecessary_pages(); | ||
| 1354 | |||
| 1355 | out: | ||
| 1130 | do_gettimeofday(&stop); | 1356 | do_gettimeofday(&stop); |
| 1131 | printk("\bdone (%lu pages freed)\n", pages); | 1357 | printk(KERN_CONT "done (allocated %lu pages)\n", pages); |
| 1132 | swsusp_show_speed(&start, &stop, pages, "Freed"); | 1358 | swsusp_show_speed(&start, &stop, pages, "Allocated"); |
| 1133 | 1359 | ||
| 1134 | return 0; | 1360 | return 0; |
| 1361 | |||
| 1362 | err_out: | ||
| 1363 | printk(KERN_CONT "\n"); | ||
| 1364 | swsusp_free(); | ||
| 1365 | return -ENOMEM; | ||
| 1135 | } | 1366 | } |
| 1136 | 1367 | ||
| 1137 | #ifdef CONFIG_HIGHMEM | 1368 | #ifdef CONFIG_HIGHMEM |
| @@ -1142,7 +1373,7 @@ int swsusp_shrink_memory(void) | |||
| 1142 | 1373 | ||
| 1143 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) | 1374 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) |
| 1144 | { | 1375 | { |
| 1145 | unsigned int free_highmem = count_free_highmem_pages(); | 1376 | unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; |
| 1146 | 1377 | ||
| 1147 | if (free_highmem >= nr_highmem) | 1378 | if (free_highmem >= nr_highmem) |
| 1148 | nr_highmem = 0; | 1379 | nr_highmem = 0; |
| @@ -1164,19 +1395,17 @@ count_pages_for_highmem(unsigned int nr_highmem) { return 0; } | |||
| 1164 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) | 1395 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) |
| 1165 | { | 1396 | { |
| 1166 | struct zone *zone; | 1397 | struct zone *zone; |
| 1167 | unsigned int free = 0, meta = 0; | 1398 | unsigned int free = alloc_normal; |
| 1168 | 1399 | ||
| 1169 | for_each_zone(zone) { | 1400 | for_each_populated_zone(zone) |
| 1170 | meta += snapshot_additional_pages(zone); | ||
| 1171 | if (!is_highmem(zone)) | 1401 | if (!is_highmem(zone)) |
| 1172 | free += zone_page_state(zone, NR_FREE_PAGES); | 1402 | free += zone_page_state(zone, NR_FREE_PAGES); |
| 1173 | } | ||
| 1174 | 1403 | ||
| 1175 | nr_pages += count_pages_for_highmem(nr_highmem); | 1404 | nr_pages += count_pages_for_highmem(nr_highmem); |
| 1176 | pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", | 1405 | pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", |
| 1177 | nr_pages, PAGES_FOR_IO, meta, free); | 1406 | nr_pages, PAGES_FOR_IO, free); |
| 1178 | 1407 | ||
| 1179 | return free > nr_pages + PAGES_FOR_IO + meta; | 1408 | return free > nr_pages + PAGES_FOR_IO; |
| 1180 | } | 1409 | } |
| 1181 | 1410 | ||
| 1182 | #ifdef CONFIG_HIGHMEM | 1411 | #ifdef CONFIG_HIGHMEM |
| @@ -1198,7 +1427,7 @@ static inline int get_highmem_buffer(int safe_needed) | |||
| 1198 | */ | 1427 | */ |
| 1199 | 1428 | ||
| 1200 | static inline unsigned int | 1429 | static inline unsigned int |
| 1201 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | 1430 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) |
| 1202 | { | 1431 | { |
| 1203 | unsigned int to_alloc = count_free_highmem_pages(); | 1432 | unsigned int to_alloc = count_free_highmem_pages(); |
| 1204 | 1433 | ||
| @@ -1218,7 +1447,7 @@ alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | |||
| 1218 | static inline int get_highmem_buffer(int safe_needed) { return 0; } | 1447 | static inline int get_highmem_buffer(int safe_needed) { return 0; } |
| 1219 | 1448 | ||
| 1220 | static inline unsigned int | 1449 | static inline unsigned int |
| 1221 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } | 1450 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } |
| 1222 | #endif /* CONFIG_HIGHMEM */ | 1451 | #endif /* CONFIG_HIGHMEM */ |
| 1223 | 1452 | ||
| 1224 | /** | 1453 | /** |
| @@ -1237,51 +1466,36 @@ static int | |||
| 1237 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, | 1466 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, |
| 1238 | unsigned int nr_pages, unsigned int nr_highmem) | 1467 | unsigned int nr_pages, unsigned int nr_highmem) |
| 1239 | { | 1468 | { |
| 1240 | int error; | 1469 | int error = 0; |
| 1241 | |||
| 1242 | error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
| 1243 | if (error) | ||
| 1244 | goto Free; | ||
| 1245 | |||
| 1246 | error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
| 1247 | if (error) | ||
| 1248 | goto Free; | ||
| 1249 | 1470 | ||
| 1250 | if (nr_highmem > 0) { | 1471 | if (nr_highmem > 0) { |
| 1251 | error = get_highmem_buffer(PG_ANY); | 1472 | error = get_highmem_buffer(PG_ANY); |
| 1252 | if (error) | 1473 | if (error) |
| 1253 | goto Free; | 1474 | goto err_out; |
| 1254 | 1475 | if (nr_highmem > alloc_highmem) { | |
| 1255 | nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); | 1476 | nr_highmem -= alloc_highmem; |
| 1477 | nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); | ||
| 1478 | } | ||
| 1256 | } | 1479 | } |
| 1257 | while (nr_pages-- > 0) { | 1480 | if (nr_pages > alloc_normal) { |
| 1258 | struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); | 1481 | nr_pages -= alloc_normal; |
| 1259 | 1482 | while (nr_pages-- > 0) { | |
| 1260 | if (!page) | 1483 | struct page *page; |
| 1261 | goto Free; | ||
| 1262 | 1484 | ||
| 1263 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | 1485 | page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); |
| 1486 | if (!page) | ||
| 1487 | goto err_out; | ||
| 1488 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | ||
| 1489 | } | ||
| 1264 | } | 1490 | } |
| 1491 | |||
| 1265 | return 0; | 1492 | return 0; |
| 1266 | 1493 | ||
| 1267 | Free: | 1494 | err_out: |
| 1268 | swsusp_free(); | 1495 | swsusp_free(); |
| 1269 | return -ENOMEM; | 1496 | return error; |
| 1270 | } | 1497 | } |
| 1271 | 1498 | ||
| 1272 | /* Memory bitmap used for marking saveable pages (during suspend) or the | ||
| 1273 | * suspend image pages (during resume) | ||
| 1274 | */ | ||
| 1275 | static struct memory_bitmap orig_bm; | ||
| 1276 | /* Memory bitmap used on suspend for marking allocated pages that will contain | ||
| 1277 | * the copies of saveable pages. During resume it is initially used for | ||
| 1278 | * marking the suspend image pages, but then its set bits are duplicated in | ||
| 1279 | * @orig_bm and it is released. Next, on systems with high memory, it may be | ||
| 1280 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
| 1281 | * this purpose. | ||
| 1282 | */ | ||
| 1283 | static struct memory_bitmap copy_bm; | ||
| 1284 | |||
| 1285 | asmlinkage int swsusp_save(void) | 1499 | asmlinkage int swsusp_save(void) |
| 1286 | { | 1500 | { |
| 1287 | unsigned int nr_pages, nr_highmem; | 1501 | unsigned int nr_pages, nr_highmem; |
| @@ -1474,7 +1688,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm) | |||
| 1474 | unsigned long pfn, max_zone_pfn; | 1688 | unsigned long pfn, max_zone_pfn; |
| 1475 | 1689 | ||
| 1476 | /* Clear page flags */ | 1690 | /* Clear page flags */ |
| 1477 | for_each_zone(zone) { | 1691 | for_each_populated_zone(zone) { |
| 1478 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1692 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1479 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1693 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1480 | if (pfn_valid(pfn)) | 1694 | if (pfn_valid(pfn)) |
diff --git a/kernel/power/suspend_test.c b/kernel/power/suspend_test.c index 17d8bb1acf9c..25596e450ac7 100644 --- a/kernel/power/suspend_test.c +++ b/kernel/power/suspend_test.c | |||
| @@ -19,7 +19,7 @@ | |||
| 19 | * The time it takes is system-specific though, so when we test this | 19 | * The time it takes is system-specific though, so when we test this |
| 20 | * during system bootup we allow a LOT of time. | 20 | * during system bootup we allow a LOT of time. |
| 21 | */ | 21 | */ |
| 22 | #define TEST_SUSPEND_SECONDS 5 | 22 | #define TEST_SUSPEND_SECONDS 10 |
| 23 | 23 | ||
| 24 | static unsigned long suspend_test_start_time; | 24 | static unsigned long suspend_test_start_time; |
| 25 | 25 | ||
| @@ -49,7 +49,8 @@ void suspend_test_finish(const char *label) | |||
| 49 | * has some performance issues. The stack dump of a WARN_ON | 49 | * has some performance issues. The stack dump of a WARN_ON |
| 50 | * is more likely to get the right attention than a printk... | 50 | * is more likely to get the right attention than a printk... |
| 51 | */ | 51 | */ |
| 52 | WARN(msec > (TEST_SUSPEND_SECONDS * 1000), "Component: %s\n", label); | 52 | WARN(msec > (TEST_SUSPEND_SECONDS * 1000), |
| 53 | "Component: %s, time: %u\n", label, msec); | ||
| 53 | } | 54 | } |
| 54 | 55 | ||
| 55 | /* | 56 | /* |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 8ba052c86d48..890f6b11b1d3 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
| @@ -13,7 +13,6 @@ | |||
| 13 | 13 | ||
| 14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
| 15 | #include <linux/file.h> | 15 | #include <linux/file.h> |
| 16 | #include <linux/utsname.h> | ||
| 17 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
| 18 | #include <linux/bitops.h> | 17 | #include <linux/bitops.h> |
| 19 | #include <linux/genhd.h> | 18 | #include <linux/genhd.h> |
| @@ -315,7 +314,6 @@ static int save_image(struct swap_map_handle *handle, | |||
| 315 | { | 314 | { |
| 316 | unsigned int m; | 315 | unsigned int m; |
| 317 | int ret; | 316 | int ret; |
| 318 | int error = 0; | ||
| 319 | int nr_pages; | 317 | int nr_pages; |
| 320 | int err2; | 318 | int err2; |
| 321 | struct bio *bio; | 319 | struct bio *bio; |
| @@ -330,26 +328,27 @@ static int save_image(struct swap_map_handle *handle, | |||
| 330 | nr_pages = 0; | 328 | nr_pages = 0; |
| 331 | bio = NULL; | 329 | bio = NULL; |
| 332 | do_gettimeofday(&start); | 330 | do_gettimeofday(&start); |
| 333 | do { | 331 | while (1) { |
| 334 | ret = snapshot_read_next(snapshot, PAGE_SIZE); | 332 | ret = snapshot_read_next(snapshot, PAGE_SIZE); |
| 335 | if (ret > 0) { | 333 | if (ret <= 0) |
| 336 | error = swap_write_page(handle, data_of(*snapshot), | 334 | break; |
| 337 | &bio); | 335 | ret = swap_write_page(handle, data_of(*snapshot), &bio); |
| 338 | if (error) | 336 | if (ret) |
| 339 | break; | 337 | break; |
| 340 | if (!(nr_pages % m)) | 338 | if (!(nr_pages % m)) |
| 341 | printk("\b\b\b\b%3d%%", nr_pages / m); | 339 | printk("\b\b\b\b%3d%%", nr_pages / m); |
| 342 | nr_pages++; | 340 | nr_pages++; |
| 343 | } | 341 | } |
| 344 | } while (ret > 0); | ||
| 345 | err2 = wait_on_bio_chain(&bio); | 342 | err2 = wait_on_bio_chain(&bio); |
| 346 | do_gettimeofday(&stop); | 343 | do_gettimeofday(&stop); |
| 347 | if (!error) | 344 | if (!ret) |
| 348 | error = err2; | 345 | ret = err2; |
| 349 | if (!error) | 346 | if (!ret) |
| 350 | printk("\b\b\b\bdone\n"); | 347 | printk("\b\b\b\bdone\n"); |
| 348 | else | ||
| 349 | printk("\n"); | ||
| 351 | swsusp_show_speed(&start, &stop, nr_to_write, "Wrote"); | 350 | swsusp_show_speed(&start, &stop, nr_to_write, "Wrote"); |
| 352 | return error; | 351 | return ret; |
| 353 | } | 352 | } |
| 354 | 353 | ||
| 355 | /** | 354 | /** |
| @@ -537,7 +536,8 @@ static int load_image(struct swap_map_handle *handle, | |||
| 537 | snapshot_write_finalize(snapshot); | 536 | snapshot_write_finalize(snapshot); |
| 538 | if (!snapshot_image_loaded(snapshot)) | 537 | if (!snapshot_image_loaded(snapshot)) |
| 539 | error = -ENODATA; | 538 | error = -ENODATA; |
| 540 | } | 539 | } else |
| 540 | printk("\n"); | ||
| 541 | swsusp_show_speed(&start, &stop, nr_to_read, "Read"); | 541 | swsusp_show_speed(&start, &stop, nr_to_read, "Read"); |
| 542 | return error; | 542 | return error; |
| 543 | } | 543 | } |
| @@ -573,8 +573,6 @@ int swsusp_read(unsigned int *flags_p) | |||
| 573 | error = load_image(&handle, &snapshot, header->pages - 1); | 573 | error = load_image(&handle, &snapshot, header->pages - 1); |
| 574 | release_swap_reader(&handle); | 574 | release_swap_reader(&handle); |
| 575 | 575 | ||
| 576 | blkdev_put(resume_bdev, FMODE_READ); | ||
| 577 | |||
| 578 | if (!error) | 576 | if (!error) |
| 579 | pr_debug("PM: Image successfully loaded\n"); | 577 | pr_debug("PM: Image successfully loaded\n"); |
| 580 | else | 578 | else |
| @@ -597,7 +595,7 @@ int swsusp_check(void) | |||
| 597 | error = bio_read_page(swsusp_resume_block, | 595 | error = bio_read_page(swsusp_resume_block, |
| 598 | swsusp_header, NULL); | 596 | swsusp_header, NULL); |
| 599 | if (error) | 597 | if (error) |
| 600 | return error; | 598 | goto put; |
| 601 | 599 | ||
| 602 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { | 600 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { |
| 603 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); | 601 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); |
| @@ -605,8 +603,10 @@ int swsusp_check(void) | |||
| 605 | error = bio_write_page(swsusp_resume_block, | 603 | error = bio_write_page(swsusp_resume_block, |
| 606 | swsusp_header, NULL); | 604 | swsusp_header, NULL); |
| 607 | } else { | 605 | } else { |
| 608 | return -EINVAL; | 606 | error = -EINVAL; |
| 609 | } | 607 | } |
| 608 | |||
| 609 | put: | ||
| 610 | if (error) | 610 | if (error) |
| 611 | blkdev_put(resume_bdev, FMODE_READ); | 611 | blkdev_put(resume_bdev, FMODE_READ); |
| 612 | else | 612 | else |
diff --git a/kernel/printk.c b/kernel/printk.c index e10d193a833a..b5ac4d99c667 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
| @@ -33,6 +33,7 @@ | |||
| 33 | #include <linux/bootmem.h> | 33 | #include <linux/bootmem.h> |
| 34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
| 35 | #include <linux/kexec.h> | 35 | #include <linux/kexec.h> |
| 36 | #include <linux/ratelimit.h> | ||
| 36 | 37 | ||
| 37 | #include <asm/uaccess.h> | 38 | #include <asm/uaccess.h> |
| 38 | 39 | ||
| @@ -206,12 +207,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
| 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 207 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
| 207 | 208 | ||
| 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 209 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
| 209 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 210 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
| 210 | 211 | ||
| 211 | static int __init boot_delay_setup(char *str) | 212 | static int __init boot_delay_setup(char *str) |
| 212 | { | 213 | { |
| 213 | unsigned long lpj; | 214 | unsigned long lpj; |
| 214 | unsigned long long loops_per_msec; | ||
| 215 | 215 | ||
| 216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
| 217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
| @@ -220,10 +220,9 @@ static int __init boot_delay_setup(char *str) | |||
| 220 | if (boot_delay > 10 * 1000) | 220 | if (boot_delay > 10 * 1000) |
| 221 | boot_delay = 0; | 221 | boot_delay = 0; |
| 222 | 222 | ||
| 223 | printk_delay_msec = loops_per_msec; | 223 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
| 224 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 224 | "HZ: %d, loops_per_msec: %llu\n", |
| 225 | "HZ: %d, printk_delay_msec: %llu\n", | 225 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
| 226 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
| 227 | return 1; | 226 | return 1; |
| 228 | } | 227 | } |
| 229 | __setup("boot_delay=", boot_delay_setup); | 228 | __setup("boot_delay=", boot_delay_setup); |
| @@ -236,7 +235,7 @@ static void boot_delay_msec(void) | |||
| 236 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 235 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
| 237 | return; | 236 | return; |
| 238 | 237 | ||
| 239 | k = (unsigned long long)printk_delay_msec * boot_delay; | 238 | k = (unsigned long long)loops_per_msec * boot_delay; |
| 240 | 239 | ||
| 241 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 240 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
| 242 | while (k) { | 241 | while (k) { |
| @@ -655,6 +654,20 @@ static int recursion_bug; | |||
| 655 | static int new_text_line = 1; | 654 | static int new_text_line = 1; |
| 656 | static char printk_buf[1024]; | 655 | static char printk_buf[1024]; |
| 657 | 656 | ||
| 657 | int printk_delay_msec __read_mostly; | ||
| 658 | |||
| 659 | static inline void printk_delay(void) | ||
| 660 | { | ||
| 661 | if (unlikely(printk_delay_msec)) { | ||
| 662 | int m = printk_delay_msec; | ||
| 663 | |||
| 664 | while (m--) { | ||
| 665 | mdelay(1); | ||
| 666 | touch_nmi_watchdog(); | ||
| 667 | } | ||
| 668 | } | ||
| 669 | } | ||
| 670 | |||
| 658 | asmlinkage int vprintk(const char *fmt, va_list args) | 671 | asmlinkage int vprintk(const char *fmt, va_list args) |
| 659 | { | 672 | { |
| 660 | int printed_len = 0; | 673 | int printed_len = 0; |
| @@ -664,6 +677,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
| 664 | char *p; | 677 | char *p; |
| 665 | 678 | ||
| 666 | boot_delay_msec(); | 679 | boot_delay_msec(); |
| 680 | printk_delay(); | ||
| 667 | 681 | ||
| 668 | preempt_disable(); | 682 | preempt_disable(); |
| 669 | /* This stops the holder of console_sem just where we want him */ | 683 | /* This stops the holder of console_sem just where we want him */ |
| @@ -1075,12 +1089,6 @@ void __sched console_conditional_schedule(void) | |||
| 1075 | } | 1089 | } |
| 1076 | EXPORT_SYMBOL(console_conditional_schedule); | 1090 | EXPORT_SYMBOL(console_conditional_schedule); |
| 1077 | 1091 | ||
| 1078 | void console_print(const char *s) | ||
| 1079 | { | ||
| 1080 | printk(KERN_EMERG "%s", s); | ||
| 1081 | } | ||
| 1082 | EXPORT_SYMBOL(console_print); | ||
| 1083 | |||
| 1084 | void console_unblank(void) | 1092 | void console_unblank(void) |
| 1085 | { | 1093 | { |
| 1086 | struct console *c; | 1094 | struct console *c; |
| @@ -1369,11 +1377,11 @@ late_initcall(disable_boot_consoles); | |||
| 1369 | */ | 1377 | */ |
| 1370 | DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); | 1378 | DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); |
| 1371 | 1379 | ||
| 1372 | int printk_ratelimit(void) | 1380 | int __printk_ratelimit(const char *func) |
| 1373 | { | 1381 | { |
| 1374 | return __ratelimit(&printk_ratelimit_state); | 1382 | return ___ratelimit(&printk_ratelimit_state, func); |
| 1375 | } | 1383 | } |
| 1376 | EXPORT_SYMBOL(printk_ratelimit); | 1384 | EXPORT_SYMBOL(__printk_ratelimit); |
| 1377 | 1385 | ||
| 1378 | /** | 1386 | /** |
| 1379 | * printk_timed_ratelimit - caller-controlled printk ratelimiting | 1387 | * printk_timed_ratelimit - caller-controlled printk ratelimiting |
diff --git a/kernel/profile.c b/kernel/profile.c index 419250ebec4d..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
| @@ -442,48 +442,51 @@ void profile_tick(int type) | |||
| 442 | 442 | ||
| 443 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
| 444 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
| 445 | #include <linux/seq_file.h> | ||
| 445 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
| 446 | 447 | ||
| 447 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
| 448 | int count, int *eof, void *data) | ||
| 449 | { | 449 | { |
| 450 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
| 451 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
| 452 | return -EINVAL; | 452 | return 0; |
| 453 | len += sprintf(page + len, "\n"); | ||
| 454 | return len; | ||
| 455 | } | 453 | } |
| 456 | 454 | ||
| 457 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
| 458 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
| 457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
| 458 | } | ||
| 459 | |||
| 460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
| 461 | const char __user *buffer, size_t count, loff_t *pos) | ||
| 459 | { | 462 | { |
| 460 | struct cpumask *mask = data; | ||
| 461 | unsigned long full_count = count, err; | ||
| 462 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
| 464 | int err; | ||
| 463 | 465 | ||
| 464 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
| 465 | return -ENOMEM; | 467 | return -ENOMEM; |
| 466 | 468 | ||
| 467 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
| 468 | if (!err) { | 470 | if (!err) { |
| 469 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
| 470 | err = full_count; | 472 | err = count; |
| 471 | } | 473 | } |
| 472 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
| 473 | return err; | 475 | return err; |
| 474 | } | 476 | } |
| 475 | 477 | ||
| 478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
| 479 | .open = prof_cpu_mask_proc_open, | ||
| 480 | .read = seq_read, | ||
| 481 | .llseek = seq_lseek, | ||
| 482 | .release = single_release, | ||
| 483 | .write = prof_cpu_mask_proc_write, | ||
| 484 | }; | ||
| 485 | |||
| 476 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
| 477 | { | 487 | { |
| 478 | struct proc_dir_entry *entry; | ||
| 479 | |||
| 480 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
| 481 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
| 482 | if (!entry) | ||
| 483 | return; | ||
| 484 | entry->data = prof_cpu_mask; | ||
| 485 | entry->read_proc = prof_cpu_mask_read_proc; | ||
| 486 | entry->write_proc = prof_cpu_mask_write_proc; | ||
| 487 | } | 490 | } |
| 488 | 491 | ||
| 489 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 307c285af59e..23bd09cd042e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
| @@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh) | |||
| 266 | * or self-reaping. Do notification now if it would have happened earlier. | 266 | * or self-reaping. Do notification now if it would have happened earlier. |
| 267 | * If it should reap itself, return true. | 267 | * If it should reap itself, return true. |
| 268 | * | 268 | * |
| 269 | * If it's our own child, there is no notification to do. | 269 | * If it's our own child, there is no notification to do. But if our normal |
| 270 | * But if our normal children self-reap, then this child | 270 | * children self-reap, then this child was prevented by ptrace and we must |
| 271 | * was prevented by ptrace and we must reap it now. | 271 | * reap it now, in that case we must also wake up sub-threads sleeping in |
| 272 | * do_wait(). | ||
| 272 | */ | 273 | */ |
| 273 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | 274 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
| 274 | { | 275 | { |
| @@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | |||
| 278 | if (!task_detached(p) && thread_group_empty(p)) { | 279 | if (!task_detached(p) && thread_group_empty(p)) { |
| 279 | if (!same_thread_group(p->real_parent, tracer)) | 280 | if (!same_thread_group(p->real_parent, tracer)) |
| 280 | do_notify_parent(p, p->exit_signal); | 281 | do_notify_parent(p, p->exit_signal); |
| 281 | else if (ignoring_children(tracer->sighand)) | 282 | else if (ignoring_children(tracer->sighand)) { |
| 283 | __wake_up_parent(p, tracer); | ||
| 282 | p->exit_signal = -1; | 284 | p->exit_signal = -1; |
| 285 | } | ||
| 283 | } | 286 | } |
| 284 | if (task_detached(p)) { | 287 | if (task_detached(p)) { |
| 285 | /* Mark it as in the process of being reaped. */ | 288 | /* Mark it as in the process of being reaped. */ |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index bd5d5c8e5140..9b7fd4723878 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
| @@ -19,7 +19,7 @@ | |||
| 19 | * | 19 | * |
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
| 22 | * | 22 | * |
| 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 25 | * Papers: | 25 | * Papers: |
| @@ -27,7 +27,7 @@ | |||
| 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| 28 | * | 28 | * |
| 29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
| 30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
| 31 | * | 31 | * |
| 32 | */ | 32 | */ |
| 33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
| @@ -44,23 +44,13 @@ | |||
| 44 | #include <linux/cpu.h> | 44 | #include <linux/cpu.h> |
| 45 | #include <linux/mutex.h> | 45 | #include <linux/mutex.h> |
| 46 | #include <linux/module.h> | 46 | #include <linux/module.h> |
| 47 | #include <linux/kernel_stat.h> | ||
| 48 | |||
| 49 | enum rcu_barrier { | ||
| 50 | RCU_BARRIER_STD, | ||
| 51 | RCU_BARRIER_BH, | ||
| 52 | RCU_BARRIER_SCHED, | ||
| 53 | }; | ||
| 54 | 47 | ||
| 55 | static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; | 48 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 56 | static atomic_t rcu_barrier_cpu_count; | 49 | static struct lock_class_key rcu_lock_key; |
| 57 | static DEFINE_MUTEX(rcu_barrier_mutex); | 50 | struct lockdep_map rcu_lock_map = |
| 58 | static struct completion rcu_barrier_completion; | 51 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); |
| 59 | int rcu_scheduler_active __read_mostly; | 52 | EXPORT_SYMBOL_GPL(rcu_lock_map); |
| 60 | 53 | #endif | |
| 61 | static atomic_t rcu_migrate_type_count = ATOMIC_INIT(0); | ||
| 62 | static struct rcu_head rcu_migrate_head[3]; | ||
| 63 | static DECLARE_WAIT_QUEUE_HEAD(rcu_migrate_wq); | ||
| 64 | 54 | ||
| 65 | /* | 55 | /* |
| 66 | * Awaken the corresponding synchronize_rcu() instance now that a | 56 | * Awaken the corresponding synchronize_rcu() instance now that a |
| @@ -73,199 +63,3 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
| 73 | rcu = container_of(head, struct rcu_synchronize, head); | 63 | rcu = container_of(head, struct rcu_synchronize, head); |
| 74 | complete(&rcu->completion); | 64 | complete(&rcu->completion); |
| 75 | } | 65 | } |
| 76 | |||
| 77 | /** | ||
| 78 | * synchronize_rcu - wait until a grace period has elapsed. | ||
| 79 | * | ||
| 80 | * Control will return to the caller some time after a full grace | ||
| 81 | * period has elapsed, in other words after all currently executing RCU | ||
| 82 | * read-side critical sections have completed. RCU read-side critical | ||
| 83 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), | ||
| 84 | * and may be nested. | ||
| 85 | */ | ||
| 86 | void synchronize_rcu(void) | ||
| 87 | { | ||
| 88 | struct rcu_synchronize rcu; | ||
| 89 | |||
| 90 | if (rcu_blocking_is_gp()) | ||
| 91 | return; | ||
| 92 | |||
| 93 | init_completion(&rcu.completion); | ||
| 94 | /* Will wake me after RCU finished. */ | ||
| 95 | call_rcu(&rcu.head, wakeme_after_rcu); | ||
| 96 | /* Wait for it. */ | ||
| 97 | wait_for_completion(&rcu.completion); | ||
| 98 | } | ||
| 99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | ||
| 100 | |||
| 101 | /** | ||
| 102 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | ||
| 103 | * | ||
| 104 | * Control will return to the caller some time after a full rcu_bh grace | ||
| 105 | * period has elapsed, in other words after all currently executing rcu_bh | ||
| 106 | * read-side critical sections have completed. RCU read-side critical | ||
| 107 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | ||
| 108 | * and may be nested. | ||
| 109 | */ | ||
| 110 | void synchronize_rcu_bh(void) | ||
| 111 | { | ||
| 112 | struct rcu_synchronize rcu; | ||
| 113 | |||
| 114 | if (rcu_blocking_is_gp()) | ||
| 115 | return; | ||
| 116 | |||
| 117 | init_completion(&rcu.completion); | ||
| 118 | /* Will wake me after RCU finished. */ | ||
| 119 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | ||
| 120 | /* Wait for it. */ | ||
| 121 | wait_for_completion(&rcu.completion); | ||
| 122 | } | ||
| 123 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
| 124 | |||
| 125 | static void rcu_barrier_callback(struct rcu_head *notused) | ||
| 126 | { | ||
| 127 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | ||
| 128 | complete(&rcu_barrier_completion); | ||
| 129 | } | ||
| 130 | |||
| 131 | /* | ||
| 132 | * Called with preemption disabled, and from cross-cpu IRQ context. | ||
| 133 | */ | ||
| 134 | static void rcu_barrier_func(void *type) | ||
| 135 | { | ||
| 136 | int cpu = smp_processor_id(); | ||
| 137 | struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); | ||
| 138 | |||
| 139 | atomic_inc(&rcu_barrier_cpu_count); | ||
| 140 | switch ((enum rcu_barrier)type) { | ||
| 141 | case RCU_BARRIER_STD: | ||
| 142 | call_rcu(head, rcu_barrier_callback); | ||
| 143 | break; | ||
| 144 | case RCU_BARRIER_BH: | ||
| 145 | call_rcu_bh(head, rcu_barrier_callback); | ||
| 146 | break; | ||
| 147 | case RCU_BARRIER_SCHED: | ||
| 148 | call_rcu_sched(head, rcu_barrier_callback); | ||
| 149 | break; | ||
| 150 | } | ||
| 151 | } | ||
| 152 | |||
| 153 | static inline void wait_migrated_callbacks(void) | ||
| 154 | { | ||
| 155 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); | ||
| 156 | smp_mb(); /* In case we didn't sleep. */ | ||
| 157 | } | ||
| 158 | |||
| 159 | /* | ||
| 160 | * Orchestrate the specified type of RCU barrier, waiting for all | ||
| 161 | * RCU callbacks of the specified type to complete. | ||
| 162 | */ | ||
| 163 | static void _rcu_barrier(enum rcu_barrier type) | ||
| 164 | { | ||
| 165 | BUG_ON(in_interrupt()); | ||
| 166 | /* Take cpucontrol mutex to protect against CPU hotplug */ | ||
| 167 | mutex_lock(&rcu_barrier_mutex); | ||
| 168 | init_completion(&rcu_barrier_completion); | ||
| 169 | /* | ||
| 170 | * Initialize rcu_barrier_cpu_count to 1, then invoke | ||
| 171 | * rcu_barrier_func() on each CPU, so that each CPU also has | ||
| 172 | * incremented rcu_barrier_cpu_count. Only then is it safe to | ||
| 173 | * decrement rcu_barrier_cpu_count -- otherwise the first CPU | ||
| 174 | * might complete its grace period before all of the other CPUs | ||
| 175 | * did their increment, causing this function to return too | ||
| 176 | * early. | ||
| 177 | */ | ||
| 178 | atomic_set(&rcu_barrier_cpu_count, 1); | ||
| 179 | on_each_cpu(rcu_barrier_func, (void *)type, 1); | ||
| 180 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | ||
| 181 | complete(&rcu_barrier_completion); | ||
| 182 | wait_for_completion(&rcu_barrier_completion); | ||
| 183 | mutex_unlock(&rcu_barrier_mutex); | ||
| 184 | wait_migrated_callbacks(); | ||
| 185 | } | ||
| 186 | |||
| 187 | /** | ||
| 188 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | ||
| 189 | */ | ||
| 190 | void rcu_barrier(void) | ||
| 191 | { | ||
| 192 | _rcu_barrier(RCU_BARRIER_STD); | ||
| 193 | } | ||
| 194 | EXPORT_SYMBOL_GPL(rcu_barrier); | ||
| 195 | |||
| 196 | /** | ||
| 197 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. | ||
| 198 | */ | ||
| 199 | void rcu_barrier_bh(void) | ||
| 200 | { | ||
| 201 | _rcu_barrier(RCU_BARRIER_BH); | ||
| 202 | } | ||
| 203 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | ||
| 204 | |||
| 205 | /** | ||
| 206 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. | ||
| 207 | */ | ||
| 208 | void rcu_barrier_sched(void) | ||
| 209 | { | ||
| 210 | _rcu_barrier(RCU_BARRIER_SCHED); | ||
| 211 | } | ||
| 212 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | ||
| 213 | |||
| 214 | static void rcu_migrate_callback(struct rcu_head *notused) | ||
| 215 | { | ||
| 216 | if (atomic_dec_and_test(&rcu_migrate_type_count)) | ||
| 217 | wake_up(&rcu_migrate_wq); | ||
| 218 | } | ||
| 219 | |||
| 220 | extern int rcu_cpu_notify(struct notifier_block *self, | ||
| 221 | unsigned long action, void *hcpu); | ||
| 222 | |||
| 223 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | ||
| 224 | unsigned long action, void *hcpu) | ||
| 225 | { | ||
| 226 | rcu_cpu_notify(self, action, hcpu); | ||
| 227 | if (action == CPU_DYING) { | ||
| 228 | /* | ||
| 229 | * preempt_disable() in on_each_cpu() prevents stop_machine(), | ||
| 230 | * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" | ||
| 231 | * returns, all online cpus have queued rcu_barrier_func(), | ||
| 232 | * and the dead cpu(if it exist) queues rcu_migrate_callback()s. | ||
| 233 | * | ||
| 234 | * These callbacks ensure _rcu_barrier() waits for all | ||
| 235 | * RCU callbacks of the specified type to complete. | ||
| 236 | */ | ||
| 237 | atomic_set(&rcu_migrate_type_count, 3); | ||
| 238 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); | ||
| 239 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); | ||
| 240 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); | ||
| 241 | } else if (action == CPU_DOWN_PREPARE) { | ||
| 242 | /* Don't need to wait until next removal operation. */ | ||
| 243 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ | ||
| 244 | wait_migrated_callbacks(); | ||
| 245 | } | ||
| 246 | |||
| 247 | return NOTIFY_OK; | ||
| 248 | } | ||
| 249 | |||
| 250 | void __init rcu_init(void) | ||
| 251 | { | ||
| 252 | int i; | ||
| 253 | |||
| 254 | __rcu_init(); | ||
| 255 | cpu_notifier(rcu_barrier_cpu_hotplug, 0); | ||
| 256 | |||
| 257 | /* | ||
| 258 | * We don't need protection against CPU-hotplug here because | ||
| 259 | * this is called early in boot, before either interrupts | ||
| 260 | * or the scheduler are operational. | ||
| 261 | */ | ||
| 262 | for_each_online_cpu(i) | ||
| 263 | rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i); | ||
| 264 | } | ||
| 265 | |||
| 266 | void rcu_scheduler_starting(void) | ||
| 267 | { | ||
| 268 | WARN_ON(num_online_cpus() != 1); | ||
| 269 | WARN_ON(nr_context_switches() > 0); | ||
| 270 | rcu_scheduler_active = 1; | ||
| 271 | } | ||
diff --git a/kernel/rcutiny.c b/kernel/rcutiny.c new file mode 100644 index 000000000000..9f6d9ff2572c --- /dev/null +++ b/kernel/rcutiny.c | |||
| @@ -0,0 +1,282 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright IBM Corporation, 2008 | ||
| 19 | * | ||
| 20 | * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
| 21 | * | ||
| 22 | * For detailed explanation of Read-Copy Update mechanism see - | ||
| 23 | * Documentation/RCU | ||
| 24 | */ | ||
| 25 | #include <linux/moduleparam.h> | ||
| 26 | #include <linux/completion.h> | ||
| 27 | #include <linux/interrupt.h> | ||
| 28 | #include <linux/notifier.h> | ||
| 29 | #include <linux/rcupdate.h> | ||
| 30 | #include <linux/kernel.h> | ||
| 31 | #include <linux/module.h> | ||
| 32 | #include <linux/mutex.h> | ||
| 33 | #include <linux/sched.h> | ||
| 34 | #include <linux/types.h> | ||
| 35 | #include <linux/init.h> | ||
| 36 | #include <linux/time.h> | ||
| 37 | #include <linux/cpu.h> | ||
| 38 | |||
| 39 | /* Global control variables for rcupdate callback mechanism. */ | ||
| 40 | struct rcu_ctrlblk { | ||
| 41 | struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */ | ||
| 42 | struct rcu_head **donetail; /* ->next pointer of last "done" CB. */ | ||
| 43 | struct rcu_head **curtail; /* ->next pointer of last CB. */ | ||
| 44 | }; | ||
| 45 | |||
| 46 | /* Definition for rcupdate control block. */ | ||
| 47 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
| 48 | .donetail = &rcu_ctrlblk.rcucblist, | ||
| 49 | .curtail = &rcu_ctrlblk.rcucblist, | ||
| 50 | }; | ||
| 51 | |||
| 52 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { | ||
| 53 | .donetail = &rcu_bh_ctrlblk.rcucblist, | ||
| 54 | .curtail = &rcu_bh_ctrlblk.rcucblist, | ||
| 55 | }; | ||
| 56 | |||
| 57 | #ifdef CONFIG_NO_HZ | ||
| 58 | |||
| 59 | static long rcu_dynticks_nesting = 1; | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Enter dynticks-idle mode, which is an extended quiescent state | ||
| 63 | * if we have fully entered that mode (i.e., if the new value of | ||
| 64 | * dynticks_nesting is zero). | ||
| 65 | */ | ||
| 66 | void rcu_enter_nohz(void) | ||
| 67 | { | ||
| 68 | if (--rcu_dynticks_nesting == 0) | ||
| 69 | rcu_sched_qs(0); /* implies rcu_bh_qsctr_inc(0) */ | ||
| 70 | } | ||
| 71 | |||
| 72 | /* | ||
| 73 | * Exit dynticks-idle mode, so that we are no longer in an extended | ||
| 74 | * quiescent state. | ||
| 75 | */ | ||
| 76 | void rcu_exit_nohz(void) | ||
| 77 | { | ||
| 78 | rcu_dynticks_nesting++; | ||
| 79 | } | ||
| 80 | |||
| 81 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 82 | |||
| 83 | /* | ||
| 84 | * Helper function for rcu_qsctr_inc() and rcu_bh_qsctr_inc(). | ||
| 85 | * Also disable irqs to avoid confusion due to interrupt handlers | ||
| 86 | * invoking call_rcu(). | ||
| 87 | */ | ||
| 88 | static int rcu_qsctr_help(struct rcu_ctrlblk *rcp) | ||
| 89 | { | ||
| 90 | unsigned long flags; | ||
| 91 | |||
| 92 | local_irq_save(flags); | ||
| 93 | if (rcp->rcucblist != NULL && | ||
| 94 | rcp->donetail != rcp->curtail) { | ||
| 95 | rcp->donetail = rcp->curtail; | ||
| 96 | local_irq_restore(flags); | ||
| 97 | return 1; | ||
| 98 | } | ||
| 99 | local_irq_restore(flags); | ||
| 100 | |||
| 101 | return 0; | ||
| 102 | } | ||
| 103 | |||
| 104 | /* | ||
| 105 | * Record an rcu quiescent state. And an rcu_bh quiescent state while we | ||
| 106 | * are at it, given that any rcu quiescent state is also an rcu_bh | ||
| 107 | * quiescent state. Use "+" instead of "||" to defeat short circuiting. | ||
| 108 | */ | ||
| 109 | void rcu_sched_qs(int cpu) | ||
| 110 | { | ||
| 111 | if (rcu_qsctr_help(&rcu_ctrlblk) + rcu_qsctr_help(&rcu_bh_ctrlblk)) | ||
| 112 | raise_softirq(RCU_SOFTIRQ); | ||
| 113 | } | ||
| 114 | |||
| 115 | /* | ||
| 116 | * Record an rcu_bh quiescent state. | ||
| 117 | */ | ||
| 118 | void rcu_bh_qs(int cpu) | ||
| 119 | { | ||
| 120 | if (rcu_qsctr_help(&rcu_bh_ctrlblk)) | ||
| 121 | raise_softirq(RCU_SOFTIRQ); | ||
| 122 | } | ||
| 123 | |||
| 124 | /* | ||
| 125 | * Check to see if the scheduling-clock interrupt came from an extended | ||
| 126 | * quiescent state, and, if so, tell RCU about it. | ||
| 127 | */ | ||
| 128 | void rcu_check_callbacks(int cpu, int user) | ||
| 129 | { | ||
| 130 | if (user || | ||
| 131 | (idle_cpu(cpu) && | ||
| 132 | !in_softirq() && | ||
| 133 | hardirq_count() <= (1 << HARDIRQ_SHIFT))) | ||
| 134 | rcu_sched_qs(cpu); | ||
| 135 | else if (!in_softirq()) | ||
| 136 | rcu_bh_qs(cpu); | ||
| 137 | } | ||
| 138 | |||
| 139 | /* | ||
| 140 | * Helper function for rcu_process_callbacks() that operates on the | ||
| 141 | * specified rcu_ctrlkblk structure. | ||
| 142 | */ | ||
| 143 | static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp) | ||
| 144 | { | ||
| 145 | struct rcu_head *next, *list; | ||
| 146 | unsigned long flags; | ||
| 147 | |||
| 148 | /* If no RCU callbacks ready to invoke, just return. */ | ||
| 149 | if (&rcp->rcucblist == rcp->donetail) | ||
| 150 | return; | ||
| 151 | |||
| 152 | /* Move the ready-to-invoke callbacks to a local list. */ | ||
| 153 | local_irq_save(flags); | ||
| 154 | list = rcp->rcucblist; | ||
| 155 | rcp->rcucblist = *rcp->donetail; | ||
| 156 | *rcp->donetail = NULL; | ||
| 157 | if (rcp->curtail == rcp->donetail) | ||
| 158 | rcp->curtail = &rcp->rcucblist; | ||
| 159 | rcp->donetail = &rcp->rcucblist; | ||
| 160 | local_irq_restore(flags); | ||
| 161 | |||
| 162 | /* Invoke the callbacks on the local list. */ | ||
| 163 | while (list) { | ||
| 164 | next = list->next; | ||
| 165 | prefetch(next); | ||
| 166 | list->func(list); | ||
| 167 | list = next; | ||
| 168 | } | ||
| 169 | } | ||
| 170 | |||
| 171 | /* | ||
| 172 | * Invoke any callbacks whose grace period has completed. | ||
| 173 | */ | ||
| 174 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
| 175 | { | ||
| 176 | __rcu_process_callbacks(&rcu_ctrlblk); | ||
| 177 | __rcu_process_callbacks(&rcu_bh_ctrlblk); | ||
| 178 | } | ||
| 179 | |||
| 180 | /* | ||
| 181 | * Wait for a grace period to elapse. But it is illegal to invoke | ||
| 182 | * synchronize_sched() from within an RCU read-side critical section. | ||
| 183 | * Therefore, any legal call to synchronize_sched() is a quiescent | ||
| 184 | * state, and so on a UP system, synchronize_sched() need do nothing. | ||
| 185 | * Ditto for synchronize_rcu_bh(). (But Lai Jiangshan points out the | ||
| 186 | * benefits of doing might_sleep() to reduce latency.) | ||
| 187 | * | ||
| 188 | * Cool, huh? (Due to Josh Triplett.) | ||
| 189 | * | ||
| 190 | * But we want to make this a static inline later. | ||
| 191 | */ | ||
| 192 | void synchronize_sched(void) | ||
| 193 | { | ||
| 194 | cond_resched(); | ||
| 195 | } | ||
| 196 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
| 197 | |||
| 198 | void synchronize_rcu_bh(void) | ||
| 199 | { | ||
| 200 | synchronize_sched(); | ||
| 201 | } | ||
| 202 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
| 203 | |||
| 204 | /* | ||
| 205 | * Helper function for call_rcu() and call_rcu_bh(). | ||
| 206 | */ | ||
| 207 | static void __call_rcu(struct rcu_head *head, | ||
| 208 | void (*func)(struct rcu_head *rcu), | ||
| 209 | struct rcu_ctrlblk *rcp) | ||
| 210 | { | ||
| 211 | unsigned long flags; | ||
| 212 | |||
| 213 | head->func = func; | ||
| 214 | head->next = NULL; | ||
| 215 | |||
| 216 | local_irq_save(flags); | ||
| 217 | *rcp->curtail = head; | ||
| 218 | rcp->curtail = &head->next; | ||
| 219 | local_irq_restore(flags); | ||
| 220 | } | ||
| 221 | |||
| 222 | /* | ||
| 223 | * Post an RCU callback to be invoked after the end of an RCU grace | ||
| 224 | * period. But since we have but one CPU, that would be after any | ||
| 225 | * quiescent state. | ||
| 226 | */ | ||
| 227 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 228 | { | ||
| 229 | __call_rcu(head, func, &rcu_ctrlblk); | ||
| 230 | } | ||
| 231 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 232 | |||
| 233 | /* | ||
| 234 | * Post an RCU bottom-half callback to be invoked after any subsequent | ||
| 235 | * quiescent state. | ||
| 236 | */ | ||
| 237 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 238 | { | ||
| 239 | __call_rcu(head, func, &rcu_bh_ctrlblk); | ||
| 240 | } | ||
| 241 | EXPORT_SYMBOL_GPL(call_rcu_bh); | ||
| 242 | |||
| 243 | void rcu_barrier(void) | ||
| 244 | { | ||
| 245 | struct rcu_synchronize rcu; | ||
| 246 | |||
| 247 | init_completion(&rcu.completion); | ||
| 248 | /* Will wake me after RCU finished. */ | ||
| 249 | call_rcu(&rcu.head, wakeme_after_rcu); | ||
| 250 | /* Wait for it. */ | ||
| 251 | wait_for_completion(&rcu.completion); | ||
| 252 | } | ||
| 253 | EXPORT_SYMBOL_GPL(rcu_barrier); | ||
| 254 | |||
| 255 | void rcu_barrier_bh(void) | ||
| 256 | { | ||
| 257 | struct rcu_synchronize rcu; | ||
| 258 | |||
| 259 | init_completion(&rcu.completion); | ||
| 260 | /* Will wake me after RCU finished. */ | ||
| 261 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | ||
| 262 | /* Wait for it. */ | ||
| 263 | wait_for_completion(&rcu.completion); | ||
| 264 | } | ||
| 265 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | ||
| 266 | |||
| 267 | void rcu_barrier_sched(void) | ||
| 268 | { | ||
| 269 | struct rcu_synchronize rcu; | ||
| 270 | |||
| 271 | init_completion(&rcu.completion); | ||
| 272 | /* Will wake me after RCU finished. */ | ||
| 273 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 274 | /* Wait for it. */ | ||
| 275 | wait_for_completion(&rcu.completion); | ||
| 276 | } | ||
| 277 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | ||
| 278 | |||
| 279 | void __init rcu_init(void) | ||
| 280 | { | ||
| 281 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
| 282 | } | ||
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index b33db539a8ad..a621a67ef4e3 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
| @@ -18,7 +18,7 @@ | |||
| 18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
| 19 | * | 19 | * |
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
| 21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
| 22 | * | 22 | * |
| 23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
| 24 | */ | 24 | */ |
| @@ -50,7 +50,7 @@ | |||
| 50 | 50 | ||
| 51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
| 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
| 53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
| 54 | 54 | ||
| 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
| 56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
| @@ -110,8 +110,8 @@ struct rcu_torture { | |||
| 110 | }; | 110 | }; |
| 111 | 111 | ||
| 112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
| 113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
| 114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
| 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
| 116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
| 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
| @@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
| 124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
| 125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
| 126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
| 127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
| 128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
| 129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
| 130 | 130 | ||
| 131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
| 132 | 132 | ||
| 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
| 134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
| @@ -267,7 +267,8 @@ struct rcu_torture_ops { | |||
| 267 | int irq_capable; | 267 | int irq_capable; |
| 268 | char *name; | 268 | char *name; |
| 269 | }; | 269 | }; |
| 270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
| 271 | static struct rcu_torture_ops *cur_ops; | ||
| 271 | 272 | ||
| 272 | /* | 273 | /* |
| 273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
| @@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
| 281 | 282 | ||
| 282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
| 283 | { | 284 | { |
| 284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
| 285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
| 286 | 287 | ||
| 287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
| 289 | * period, and we want a long delay occasionally to trigger | ||
| 290 | * force_quiescent_state. */ | ||
| 288 | 291 | ||
| 289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
| 290 | if (!delay) | 293 | mdelay(longdelay_ms); |
| 291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
| 295 | udelay(shortdelay_us); | ||
| 292 | } | 296 | } |
| 293 | 297 | ||
| 294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
| @@ -323,6 +327,11 @@ rcu_torture_cb(struct rcu_head *p) | |||
| 323 | cur_ops->deferred_free(rp); | 327 | cur_ops->deferred_free(rp); |
| 324 | } | 328 | } |
| 325 | 329 | ||
| 330 | static int rcu_no_completed(void) | ||
| 331 | { | ||
| 332 | return 0; | ||
| 333 | } | ||
| 334 | |||
| 326 | static void rcu_torture_deferred_free(struct rcu_torture *p) | 335 | static void rcu_torture_deferred_free(struct rcu_torture *p) |
| 327 | { | 336 | { |
| 328 | call_rcu(&p->rtort_rcu, rcu_torture_cb); | 337 | call_rcu(&p->rtort_rcu, rcu_torture_cb); |
| @@ -339,8 +348,8 @@ static struct rcu_torture_ops rcu_ops = { | |||
| 339 | .sync = synchronize_rcu, | 348 | .sync = synchronize_rcu, |
| 340 | .cb_barrier = rcu_barrier, | 349 | .cb_barrier = rcu_barrier, |
| 341 | .stats = NULL, | 350 | .stats = NULL, |
| 342 | .irq_capable = 1, | 351 | .irq_capable = 1, |
| 343 | .name = "rcu" | 352 | .name = "rcu" |
| 344 | }; | 353 | }; |
| 345 | 354 | ||
| 346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 355 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
| @@ -384,6 +393,21 @@ static struct rcu_torture_ops rcu_sync_ops = { | |||
| 384 | .name = "rcu_sync" | 393 | .name = "rcu_sync" |
| 385 | }; | 394 | }; |
| 386 | 395 | ||
| 396 | static struct rcu_torture_ops rcu_expedited_ops = { | ||
| 397 | .init = rcu_sync_torture_init, | ||
| 398 | .cleanup = NULL, | ||
| 399 | .readlock = rcu_torture_read_lock, | ||
| 400 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | ||
| 401 | .readunlock = rcu_torture_read_unlock, | ||
| 402 | .completed = rcu_no_completed, | ||
| 403 | .deferred_free = rcu_sync_torture_deferred_free, | ||
| 404 | .sync = synchronize_rcu_expedited, | ||
| 405 | .cb_barrier = NULL, | ||
| 406 | .stats = NULL, | ||
| 407 | .irq_capable = 1, | ||
| 408 | .name = "rcu_expedited" | ||
| 409 | }; | ||
| 410 | |||
| 387 | /* | 411 | /* |
| 388 | * Definitions for rcu_bh torture testing. | 412 | * Definitions for rcu_bh torture testing. |
| 389 | */ | 413 | */ |
| @@ -543,6 +567,25 @@ static struct rcu_torture_ops srcu_ops = { | |||
| 543 | .name = "srcu" | 567 | .name = "srcu" |
| 544 | }; | 568 | }; |
| 545 | 569 | ||
| 570 | static void srcu_torture_synchronize_expedited(void) | ||
| 571 | { | ||
| 572 | synchronize_srcu_expedited(&srcu_ctl); | ||
| 573 | } | ||
| 574 | |||
| 575 | static struct rcu_torture_ops srcu_expedited_ops = { | ||
| 576 | .init = srcu_torture_init, | ||
| 577 | .cleanup = srcu_torture_cleanup, | ||
| 578 | .readlock = srcu_torture_read_lock, | ||
| 579 | .read_delay = srcu_read_delay, | ||
| 580 | .readunlock = srcu_torture_read_unlock, | ||
| 581 | .completed = srcu_torture_completed, | ||
| 582 | .deferred_free = rcu_sync_torture_deferred_free, | ||
| 583 | .sync = srcu_torture_synchronize_expedited, | ||
| 584 | .cb_barrier = NULL, | ||
| 585 | .stats = srcu_torture_stats, | ||
| 586 | .name = "srcu_expedited" | ||
| 587 | }; | ||
| 588 | |||
| 546 | /* | 589 | /* |
| 547 | * Definitions for sched torture testing. | 590 | * Definitions for sched torture testing. |
| 548 | */ | 591 | */ |
| @@ -558,11 +601,6 @@ static void sched_torture_read_unlock(int idx) | |||
| 558 | preempt_enable(); | 601 | preempt_enable(); |
| 559 | } | 602 | } |
| 560 | 603 | ||
| 561 | static int sched_torture_completed(void) | ||
| 562 | { | ||
| 563 | return 0; | ||
| 564 | } | ||
| 565 | |||
| 566 | static void rcu_sched_torture_deferred_free(struct rcu_torture *p) | 604 | static void rcu_sched_torture_deferred_free(struct rcu_torture *p) |
| 567 | { | 605 | { |
| 568 | call_rcu_sched(&p->rtort_rcu, rcu_torture_cb); | 606 | call_rcu_sched(&p->rtort_rcu, rcu_torture_cb); |
| @@ -579,7 +617,7 @@ static struct rcu_torture_ops sched_ops = { | |||
| 579 | .readlock = sched_torture_read_lock, | 617 | .readlock = sched_torture_read_lock, |
| 580 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | 618 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 581 | .readunlock = sched_torture_read_unlock, | 619 | .readunlock = sched_torture_read_unlock, |
| 582 | .completed = sched_torture_completed, | 620 | .completed = rcu_no_completed, |
| 583 | .deferred_free = rcu_sched_torture_deferred_free, | 621 | .deferred_free = rcu_sched_torture_deferred_free, |
| 584 | .sync = sched_torture_synchronize, | 622 | .sync = sched_torture_synchronize, |
| 585 | .cb_barrier = rcu_barrier_sched, | 623 | .cb_barrier = rcu_barrier_sched, |
| @@ -588,13 +626,13 @@ static struct rcu_torture_ops sched_ops = { | |||
| 588 | .name = "sched" | 626 | .name = "sched" |
| 589 | }; | 627 | }; |
| 590 | 628 | ||
| 591 | static struct rcu_torture_ops sched_ops_sync = { | 629 | static struct rcu_torture_ops sched_sync_ops = { |
| 592 | .init = rcu_sync_torture_init, | 630 | .init = rcu_sync_torture_init, |
| 593 | .cleanup = NULL, | 631 | .cleanup = NULL, |
| 594 | .readlock = sched_torture_read_lock, | 632 | .readlock = sched_torture_read_lock, |
| 595 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | 633 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 596 | .readunlock = sched_torture_read_unlock, | 634 | .readunlock = sched_torture_read_unlock, |
| 597 | .completed = sched_torture_completed, | 635 | .completed = rcu_no_completed, |
| 598 | .deferred_free = rcu_sync_torture_deferred_free, | 636 | .deferred_free = rcu_sync_torture_deferred_free, |
| 599 | .sync = sched_torture_synchronize, | 637 | .sync = sched_torture_synchronize, |
| 600 | .cb_barrier = NULL, | 638 | .cb_barrier = NULL, |
| @@ -602,15 +640,13 @@ static struct rcu_torture_ops sched_ops_sync = { | |||
| 602 | .name = "sched_sync" | 640 | .name = "sched_sync" |
| 603 | }; | 641 | }; |
| 604 | 642 | ||
| 605 | extern int rcu_expedited_torture_stats(char *page); | ||
| 606 | |||
| 607 | static struct rcu_torture_ops sched_expedited_ops = { | 643 | static struct rcu_torture_ops sched_expedited_ops = { |
| 608 | .init = rcu_sync_torture_init, | 644 | .init = rcu_sync_torture_init, |
| 609 | .cleanup = NULL, | 645 | .cleanup = NULL, |
| 610 | .readlock = sched_torture_read_lock, | 646 | .readlock = sched_torture_read_lock, |
| 611 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | 647 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 612 | .readunlock = sched_torture_read_unlock, | 648 | .readunlock = sched_torture_read_unlock, |
| 613 | .completed = sched_torture_completed, | 649 | .completed = rcu_no_completed, |
| 614 | .deferred_free = rcu_sync_torture_deferred_free, | 650 | .deferred_free = rcu_sync_torture_deferred_free, |
| 615 | .sync = synchronize_sched_expedited, | 651 | .sync = synchronize_sched_expedited, |
| 616 | .cb_barrier = NULL, | 652 | .cb_barrier = NULL, |
| @@ -638,14 +674,15 @@ rcu_torture_writer(void *arg) | |||
| 638 | 674 | ||
| 639 | do { | 675 | do { |
| 640 | schedule_timeout_uninterruptible(1); | 676 | schedule_timeout_uninterruptible(1); |
| 641 | if ((rp = rcu_torture_alloc()) == NULL) | 677 | rp = rcu_torture_alloc(); |
| 678 | if (rp == NULL) | ||
| 642 | continue; | 679 | continue; |
| 643 | rp->rtort_pipe_count = 0; | 680 | rp->rtort_pipe_count = 0; |
| 644 | udelay(rcu_random(&rand) & 0x3ff); | 681 | udelay(rcu_random(&rand) & 0x3ff); |
| 645 | old_rp = rcu_torture_current; | 682 | old_rp = rcu_torture_current; |
| 646 | rp->rtort_mbtest = 1; | 683 | rp->rtort_mbtest = 1; |
| 647 | rcu_assign_pointer(rcu_torture_current, rp); | 684 | rcu_assign_pointer(rcu_torture_current, rp); |
| 648 | smp_wmb(); | 685 | smp_wmb(); /* Mods to old_rp must follow rcu_assign_pointer() */ |
| 649 | if (old_rp) { | 686 | if (old_rp) { |
| 650 | i = old_rp->rtort_pipe_count; | 687 | i = old_rp->rtort_pipe_count; |
| 651 | if (i > RCU_TORTURE_PIPE_LEN) | 688 | if (i > RCU_TORTURE_PIPE_LEN) |
| @@ -1094,9 +1131,10 @@ rcu_torture_init(void) | |||
| 1094 | int cpu; | 1131 | int cpu; |
| 1095 | int firsterr = 0; | 1132 | int firsterr = 0; |
| 1096 | static struct rcu_torture_ops *torture_ops[] = | 1133 | static struct rcu_torture_ops *torture_ops[] = |
| 1097 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, | 1134 | { &rcu_ops, &rcu_sync_ops, &rcu_expedited_ops, |
| 1098 | &sched_expedited_ops, | 1135 | &rcu_bh_ops, &rcu_bh_sync_ops, |
| 1099 | &srcu_ops, &sched_ops, &sched_ops_sync, }; | 1136 | &srcu_ops, &srcu_expedited_ops, |
| 1137 | &sched_ops, &sched_sync_ops, &sched_expedited_ops, }; | ||
| 1100 | 1138 | ||
| 1101 | mutex_lock(&fullstop_mutex); | 1139 | mutex_lock(&fullstop_mutex); |
| 1102 | 1140 | ||
| @@ -1107,10 +1145,14 @@ rcu_torture_init(void) | |||
| 1107 | break; | 1145 | break; |
| 1108 | } | 1146 | } |
| 1109 | if (i == ARRAY_SIZE(torture_ops)) { | 1147 | if (i == ARRAY_SIZE(torture_ops)) { |
| 1110 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1148 | printk(KERN_ALERT "rcu-torture: invalid torture type: \"%s\"\n", |
| 1111 | torture_type); | 1149 | torture_type); |
| 1150 | printk(KERN_ALERT "rcu-torture types:"); | ||
| 1151 | for (i = 0; i < ARRAY_SIZE(torture_ops); i++) | ||
| 1152 | printk(KERN_ALERT " %s", torture_ops[i]->name); | ||
| 1153 | printk(KERN_ALERT "\n"); | ||
| 1112 | mutex_unlock(&fullstop_mutex); | 1154 | mutex_unlock(&fullstop_mutex); |
| 1113 | return (-EINVAL); | 1155 | return -EINVAL; |
| 1114 | } | 1156 | } |
| 1115 | if (cur_ops->init) | 1157 | if (cur_ops->init) |
| 1116 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1158 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
| @@ -1161,7 +1203,7 @@ rcu_torture_init(void) | |||
| 1161 | goto unwind; | 1203 | goto unwind; |
| 1162 | } | 1204 | } |
| 1163 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1205 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
| 1164 | GFP_KERNEL); | 1206 | GFP_KERNEL); |
| 1165 | if (fakewriter_tasks == NULL) { | 1207 | if (fakewriter_tasks == NULL) { |
| 1166 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1208 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
| 1167 | firsterr = -ENOMEM; | 1209 | firsterr = -ENOMEM; |
| @@ -1170,7 +1212,7 @@ rcu_torture_init(void) | |||
| 1170 | for (i = 0; i < nfakewriters; i++) { | 1212 | for (i = 0; i < nfakewriters; i++) { |
| 1171 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1213 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
| 1172 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1214 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
| 1173 | "rcu_torture_fakewriter"); | 1215 | "rcu_torture_fakewriter"); |
| 1174 | if (IS_ERR(fakewriter_tasks[i])) { | 1216 | if (IS_ERR(fakewriter_tasks[i])) { |
| 1175 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1217 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
| 1176 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1218 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 6b11b07cfe7f..53ae9598f798 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
| @@ -25,7 +25,7 @@ | |||
| 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 26 | * | 26 | * |
| 27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
| 28 | * Documentation/RCU | 28 | * Documentation/RCU |
| 29 | */ | 29 | */ |
| 30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
| 31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
| @@ -46,30 +46,30 @@ | |||
| 46 | #include <linux/cpu.h> | 46 | #include <linux/cpu.h> |
| 47 | #include <linux/mutex.h> | 47 | #include <linux/mutex.h> |
| 48 | #include <linux/time.h> | 48 | #include <linux/time.h> |
| 49 | #include <linux/kernel_stat.h> | ||
| 49 | 50 | ||
| 50 | #include "rcutree.h" | 51 | #include "rcutree.h" |
| 51 | 52 | ||
| 52 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
| 53 | static struct lock_class_key rcu_lock_key; | ||
| 54 | struct lockdep_map rcu_lock_map = | ||
| 55 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | ||
| 56 | EXPORT_SYMBOL_GPL(rcu_lock_map); | ||
| 57 | #endif | ||
| 58 | |||
| 59 | /* Data structures. */ | 53 | /* Data structures. */ |
| 60 | 54 | ||
| 55 | static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; | ||
| 56 | |||
| 61 | #define RCU_STATE_INITIALIZER(name) { \ | 57 | #define RCU_STATE_INITIALIZER(name) { \ |
| 62 | .level = { &name.node[0] }, \ | 58 | .level = { &name.node[0] }, \ |
| 63 | .levelcnt = { \ | 59 | .levelcnt = { \ |
| 64 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ | 60 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ |
| 65 | NUM_RCU_LVL_1, \ | 61 | NUM_RCU_LVL_1, \ |
| 66 | NUM_RCU_LVL_2, \ | 62 | NUM_RCU_LVL_2, \ |
| 67 | NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ | 63 | NUM_RCU_LVL_3, \ |
| 64 | NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \ | ||
| 68 | }, \ | 65 | }, \ |
| 69 | .signaled = RCU_SIGNAL_INIT, \ | 66 | .signaled = RCU_GP_IDLE, \ |
| 70 | .gpnum = -300, \ | 67 | .gpnum = -300, \ |
| 71 | .completed = -300, \ | 68 | .completed = -300, \ |
| 72 | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ | 69 | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ |
| 70 | .orphan_cbs_list = NULL, \ | ||
| 71 | .orphan_cbs_tail = &name.orphan_cbs_list, \ | ||
| 72 | .orphan_qlen = 0, \ | ||
| 73 | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ | 73 | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ |
| 74 | .n_force_qs = 0, \ | 74 | .n_force_qs = 0, \ |
| 75 | .n_force_qs_ngp = 0, \ | 75 | .n_force_qs_ngp = 0, \ |
| @@ -81,24 +81,18 @@ DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); | |||
| 81 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | 81 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
| 82 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 82 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); |
| 83 | 83 | ||
| 84 | extern long rcu_batches_completed_sched(void); | 84 | static int rcu_scheduler_active __read_mostly; |
| 85 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp); | ||
| 86 | static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, | ||
| 87 | struct rcu_node *rnp, unsigned long flags); | ||
| 88 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags); | ||
| 89 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 90 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp); | ||
| 91 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 92 | static void __rcu_process_callbacks(struct rcu_state *rsp, | ||
| 93 | struct rcu_data *rdp); | ||
| 94 | static void __call_rcu(struct rcu_head *head, | ||
| 95 | void (*func)(struct rcu_head *rcu), | ||
| 96 | struct rcu_state *rsp); | ||
| 97 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp); | ||
| 98 | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | ||
| 99 | int preemptable); | ||
| 100 | 85 | ||
| 101 | #include "rcutree_plugin.h" | 86 | |
| 87 | /* | ||
| 88 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s | ||
| 89 | * permit this function to be invoked without holding the root rcu_node | ||
| 90 | * structure's ->lock, but of course results can be subject to change. | ||
| 91 | */ | ||
| 92 | static int rcu_gp_in_progress(struct rcu_state *rsp) | ||
| 93 | { | ||
| 94 | return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); | ||
| 95 | } | ||
| 102 | 96 | ||
| 103 | /* | 97 | /* |
| 104 | * Note a quiescent state. Because we do not need to know | 98 | * Note a quiescent state. Because we do not need to know |
| @@ -107,27 +101,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | |||
| 107 | */ | 101 | */ |
| 108 | void rcu_sched_qs(int cpu) | 102 | void rcu_sched_qs(int cpu) |
| 109 | { | 103 | { |
| 110 | unsigned long flags; | ||
| 111 | struct rcu_data *rdp; | 104 | struct rcu_data *rdp; |
| 112 | 105 | ||
| 113 | local_irq_save(flags); | ||
| 114 | rdp = &per_cpu(rcu_sched_data, cpu); | 106 | rdp = &per_cpu(rcu_sched_data, cpu); |
| 107 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | ||
| 108 | barrier(); | ||
| 115 | rdp->passed_quiesc = 1; | 109 | rdp->passed_quiesc = 1; |
| 116 | rdp->passed_quiesc_completed = rdp->completed; | 110 | rcu_preempt_note_context_switch(cpu); |
| 117 | rcu_preempt_qs(cpu); | ||
| 118 | local_irq_restore(flags); | ||
| 119 | } | 111 | } |
| 120 | 112 | ||
| 121 | void rcu_bh_qs(int cpu) | 113 | void rcu_bh_qs(int cpu) |
| 122 | { | 114 | { |
| 123 | unsigned long flags; | ||
| 124 | struct rcu_data *rdp; | 115 | struct rcu_data *rdp; |
| 125 | 116 | ||
| 126 | local_irq_save(flags); | ||
| 127 | rdp = &per_cpu(rcu_bh_data, cpu); | 117 | rdp = &per_cpu(rcu_bh_data, cpu); |
| 118 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | ||
| 119 | barrier(); | ||
| 128 | rdp->passed_quiesc = 1; | 120 | rdp->passed_quiesc = 1; |
| 129 | rdp->passed_quiesc_completed = rdp->completed; | ||
| 130 | local_irq_restore(flags); | ||
| 131 | } | 121 | } |
| 132 | 122 | ||
| 133 | #ifdef CONFIG_NO_HZ | 123 | #ifdef CONFIG_NO_HZ |
| @@ -141,6 +131,10 @@ static int blimit = 10; /* Maximum callbacks per softirq. */ | |||
| 141 | static int qhimark = 10000; /* If this many pending, ignore blimit. */ | 131 | static int qhimark = 10000; /* If this many pending, ignore blimit. */ |
| 142 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ | 132 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ |
| 143 | 133 | ||
| 134 | module_param(blimit, int, 0); | ||
| 135 | module_param(qhimark, int, 0); | ||
| 136 | module_param(qlowmark, int, 0); | ||
| 137 | |||
| 144 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | 138 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); |
| 145 | static int rcu_pending(int cpu); | 139 | static int rcu_pending(int cpu); |
| 146 | 140 | ||
| @@ -177,9 +171,7 @@ cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | |||
| 177 | static int | 171 | static int |
| 178 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | 172 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) |
| 179 | { | 173 | { |
| 180 | /* ACCESS_ONCE() because we are accessing outside of lock. */ | 174 | return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp); |
| 181 | return *rdp->nxttail[RCU_DONE_TAIL] && | ||
| 182 | ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum); | ||
| 183 | } | 175 | } |
| 184 | 176 | ||
| 185 | /* | 177 | /* |
| @@ -349,31 +341,12 @@ void rcu_irq_exit(void) | |||
| 349 | set_need_resched(); | 341 | set_need_resched(); |
| 350 | } | 342 | } |
| 351 | 343 | ||
| 352 | /* | ||
| 353 | * Record the specified "completed" value, which is later used to validate | ||
| 354 | * dynticks counter manipulations. Specify "rsp->completed - 1" to | ||
| 355 | * unconditionally invalidate any future dynticks manipulations (which is | ||
| 356 | * useful at the beginning of a grace period). | ||
| 357 | */ | ||
| 358 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | ||
| 359 | { | ||
| 360 | rsp->dynticks_completed = comp; | ||
| 361 | } | ||
| 362 | |||
| 363 | #ifdef CONFIG_SMP | 344 | #ifdef CONFIG_SMP |
| 364 | 345 | ||
| 365 | /* | 346 | /* |
| 366 | * Recall the previously recorded value of the completion for dynticks. | ||
| 367 | */ | ||
| 368 | static long dyntick_recall_completed(struct rcu_state *rsp) | ||
| 369 | { | ||
| 370 | return rsp->dynticks_completed; | ||
| 371 | } | ||
| 372 | |||
| 373 | /* | ||
| 374 | * Snapshot the specified CPU's dynticks counter so that we can later | 347 | * Snapshot the specified CPU's dynticks counter so that we can later |
| 375 | * credit them with an implicit quiescent state. Return 1 if this CPU | 348 | * credit them with an implicit quiescent state. Return 1 if this CPU |
| 376 | * is already in a quiescent state courtesy of dynticks idle mode. | 349 | * is in dynticks idle mode, which is an extended quiescent state. |
| 377 | */ | 350 | */ |
| 378 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 351 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
| 379 | { | 352 | { |
| @@ -433,24 +406,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | |||
| 433 | 406 | ||
| 434 | #else /* #ifdef CONFIG_NO_HZ */ | 407 | #else /* #ifdef CONFIG_NO_HZ */ |
| 435 | 408 | ||
| 436 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | ||
| 437 | { | ||
| 438 | } | ||
| 439 | |||
| 440 | #ifdef CONFIG_SMP | 409 | #ifdef CONFIG_SMP |
| 441 | 410 | ||
| 442 | /* | ||
| 443 | * If there are no dynticks, then the only way that a CPU can passively | ||
| 444 | * be in a quiescent state is to be offline. Unlike dynticks idle, which | ||
| 445 | * is a point in time during the prior (already finished) grace period, | ||
| 446 | * an offline CPU is always in a quiescent state, and thus can be | ||
| 447 | * unconditionally applied. So just return the current value of completed. | ||
| 448 | */ | ||
| 449 | static long dyntick_recall_completed(struct rcu_state *rsp) | ||
| 450 | { | ||
| 451 | return rsp->completed; | ||
| 452 | } | ||
| 453 | |||
| 454 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 411 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
| 455 | { | 412 | { |
| 456 | return 0; | 413 | return 0; |
| @@ -479,30 +436,34 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
| 479 | long delta; | 436 | long delta; |
| 480 | unsigned long flags; | 437 | unsigned long flags; |
| 481 | struct rcu_node *rnp = rcu_get_root(rsp); | 438 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 482 | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | ||
| 483 | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | ||
| 484 | 439 | ||
| 485 | /* Only let one CPU complain about others per time interval. */ | 440 | /* Only let one CPU complain about others per time interval. */ |
| 486 | 441 | ||
| 487 | spin_lock_irqsave(&rnp->lock, flags); | 442 | spin_lock_irqsave(&rnp->lock, flags); |
| 488 | delta = jiffies - rsp->jiffies_stall; | 443 | delta = jiffies - rsp->jiffies_stall; |
| 489 | if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) { | 444 | if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { |
| 490 | spin_unlock_irqrestore(&rnp->lock, flags); | 445 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 491 | return; | 446 | return; |
| 492 | } | 447 | } |
| 493 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | 448 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| 449 | |||
| 450 | /* | ||
| 451 | * Now rat on any tasks that got kicked up to the root rcu_node | ||
| 452 | * due to CPU offlining. | ||
| 453 | */ | ||
| 454 | rcu_print_task_stall(rnp); | ||
| 494 | spin_unlock_irqrestore(&rnp->lock, flags); | 455 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 495 | 456 | ||
| 496 | /* OK, time to rat on our buddy... */ | 457 | /* OK, time to rat on our buddy... */ |
| 497 | 458 | ||
| 498 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | 459 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
| 499 | for (; rnp_cur < rnp_end; rnp_cur++) { | 460 | rcu_for_each_leaf_node(rsp, rnp) { |
| 500 | rcu_print_task_stall(rnp); | 461 | rcu_print_task_stall(rnp); |
| 501 | if (rnp_cur->qsmask == 0) | 462 | if (rnp->qsmask == 0) |
| 502 | continue; | 463 | continue; |
| 503 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) | 464 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) |
| 504 | if (rnp_cur->qsmask & (1UL << cpu)) | 465 | if (rnp->qsmask & (1UL << cpu)) |
| 505 | printk(" %d", rnp_cur->grplo + cpu); | 466 | printk(" %d", rnp->grplo + cpu); |
| 506 | } | 467 | } |
| 507 | printk(" (detected by %d, t=%ld jiffies)\n", | 468 | printk(" (detected by %d, t=%ld jiffies)\n", |
| 508 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 469 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); |
| @@ -541,8 +502,7 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 541 | /* We haven't checked in, so go dump stack. */ | 502 | /* We haven't checked in, so go dump stack. */ |
| 542 | print_cpu_stall(rsp); | 503 | print_cpu_stall(rsp); |
| 543 | 504 | ||
| 544 | } else if (rsp->gpnum != rsp->completed && | 505 | } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) { |
| 545 | delta >= RCU_STALL_RAT_DELAY) { | ||
| 546 | 506 | ||
| 547 | /* They had two time units to dump stack, so complain. */ | 507 | /* They had two time units to dump stack, so complain. */ |
| 548 | print_other_cpu_stall(rsp); | 508 | print_other_cpu_stall(rsp); |
| @@ -564,13 +524,33 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 564 | /* | 524 | /* |
| 565 | * Update CPU-local rcu_data state to record the newly noticed grace period. | 525 | * Update CPU-local rcu_data state to record the newly noticed grace period. |
| 566 | * This is used both when we started the grace period and when we notice | 526 | * This is used both when we started the grace period and when we notice |
| 567 | * that someone else started the grace period. | 527 | * that someone else started the grace period. The caller must hold the |
| 528 | * ->lock of the leaf rcu_node structure corresponding to the current CPU, | ||
| 529 | * and must have irqs disabled. | ||
| 568 | */ | 530 | */ |
| 531 | static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | ||
| 532 | { | ||
| 533 | if (rdp->gpnum != rnp->gpnum) { | ||
| 534 | rdp->qs_pending = 1; | ||
| 535 | rdp->passed_quiesc = 0; | ||
| 536 | rdp->gpnum = rnp->gpnum; | ||
| 537 | } | ||
| 538 | } | ||
| 539 | |||
| 569 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) | 540 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) |
| 570 | { | 541 | { |
| 571 | rdp->qs_pending = 1; | 542 | unsigned long flags; |
| 572 | rdp->passed_quiesc = 0; | 543 | struct rcu_node *rnp; |
| 573 | rdp->gpnum = rsp->gpnum; | 544 | |
| 545 | local_irq_save(flags); | ||
| 546 | rnp = rdp->mynode; | ||
| 547 | if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ | ||
| 548 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ | ||
| 549 | local_irq_restore(flags); | ||
| 550 | return; | ||
| 551 | } | ||
| 552 | __note_new_gpnum(rsp, rnp, rdp); | ||
| 553 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 574 | } | 554 | } |
| 575 | 555 | ||
| 576 | /* | 556 | /* |
| @@ -594,6 +574,79 @@ check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 594 | } | 574 | } |
| 595 | 575 | ||
| 596 | /* | 576 | /* |
| 577 | * Advance this CPU's callbacks, but only if the current grace period | ||
| 578 | * has ended. This may be called only from the CPU to whom the rdp | ||
| 579 | * belongs. In addition, the corresponding leaf rcu_node structure's | ||
| 580 | * ->lock must be held by the caller, with irqs disabled. | ||
| 581 | */ | ||
| 582 | static void | ||
| 583 | __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | ||
| 584 | { | ||
| 585 | /* Did another grace period end? */ | ||
| 586 | if (rdp->completed != rnp->completed) { | ||
| 587 | |||
| 588 | /* Advance callbacks. No harm if list empty. */ | ||
| 589 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | ||
| 590 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | ||
| 591 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 592 | |||
| 593 | /* Remember that we saw this grace-period completion. */ | ||
| 594 | rdp->completed = rnp->completed; | ||
| 595 | } | ||
| 596 | } | ||
| 597 | |||
| 598 | /* | ||
| 599 | * Advance this CPU's callbacks, but only if the current grace period | ||
| 600 | * has ended. This may be called only from the CPU to whom the rdp | ||
| 601 | * belongs. | ||
| 602 | */ | ||
| 603 | static void | ||
| 604 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | ||
| 605 | { | ||
| 606 | unsigned long flags; | ||
| 607 | struct rcu_node *rnp; | ||
| 608 | |||
| 609 | local_irq_save(flags); | ||
| 610 | rnp = rdp->mynode; | ||
| 611 | if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ | ||
| 612 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ | ||
| 613 | local_irq_restore(flags); | ||
| 614 | return; | ||
| 615 | } | ||
| 616 | __rcu_process_gp_end(rsp, rnp, rdp); | ||
| 617 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 618 | } | ||
| 619 | |||
| 620 | /* | ||
| 621 | * Do per-CPU grace-period initialization for running CPU. The caller | ||
| 622 | * must hold the lock of the leaf rcu_node structure corresponding to | ||
| 623 | * this CPU. | ||
| 624 | */ | ||
| 625 | static void | ||
| 626 | rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | ||
| 627 | { | ||
| 628 | /* Prior grace period ended, so advance callbacks for current CPU. */ | ||
| 629 | __rcu_process_gp_end(rsp, rnp, rdp); | ||
| 630 | |||
| 631 | /* | ||
| 632 | * Because this CPU just now started the new grace period, we know | ||
| 633 | * that all of its callbacks will be covered by this upcoming grace | ||
| 634 | * period, even the ones that were registered arbitrarily recently. | ||
| 635 | * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. | ||
| 636 | * | ||
| 637 | * Other CPUs cannot be sure exactly when the grace period started. | ||
| 638 | * Therefore, their recently registered callbacks must pass through | ||
| 639 | * an additional RCU_NEXT_READY stage, so that they will be handled | ||
| 640 | * by the next RCU grace period. | ||
| 641 | */ | ||
| 642 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 643 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 644 | |||
| 645 | /* Set state so that this CPU will detect the next quiescent state. */ | ||
| 646 | __note_new_gpnum(rsp, rnp, rdp); | ||
| 647 | } | ||
| 648 | |||
| 649 | /* | ||
| 597 | * Start a new RCU grace period if warranted, re-initializing the hierarchy | 650 | * Start a new RCU grace period if warranted, re-initializing the hierarchy |
| 598 | * in preparation for detecting the next grace period. The caller must hold | 651 | * in preparation for detecting the next grace period. The caller must hold |
| 599 | * the root node's ->lock, which is released before return. Hard irqs must | 652 | * the root node's ->lock, which is released before return. Hard irqs must |
| @@ -605,34 +658,43 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 605 | { | 658 | { |
| 606 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 659 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
| 607 | struct rcu_node *rnp = rcu_get_root(rsp); | 660 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 608 | struct rcu_node *rnp_cur; | ||
| 609 | struct rcu_node *rnp_end; | ||
| 610 | 661 | ||
| 611 | if (!cpu_needs_another_gp(rsp, rdp)) { | 662 | if (!cpu_needs_another_gp(rsp, rdp)) { |
| 612 | spin_unlock_irqrestore(&rnp->lock, flags); | 663 | if (rnp->completed == rsp->completed) { |
| 664 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 665 | return; | ||
| 666 | } | ||
| 667 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 668 | |||
| 669 | /* | ||
| 670 | * Propagate new ->completed value to rcu_node structures | ||
| 671 | * so that other CPUs don't have to wait until the start | ||
| 672 | * of the next grace period to process their callbacks. | ||
| 673 | */ | ||
| 674 | rcu_for_each_node_breadth_first(rsp, rnp) { | ||
| 675 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
| 676 | rnp->completed = rsp->completed; | ||
| 677 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 678 | } | ||
| 679 | local_irq_restore(flags); | ||
| 613 | return; | 680 | return; |
| 614 | } | 681 | } |
| 615 | 682 | ||
| 616 | /* Advance to a new grace period and initialize state. */ | 683 | /* Advance to a new grace period and initialize state. */ |
| 617 | rsp->gpnum++; | 684 | rsp->gpnum++; |
| 685 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
| 618 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 686 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
| 619 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 687 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 620 | record_gp_stall_check_time(rsp); | 688 | record_gp_stall_check_time(rsp); |
| 621 | dyntick_record_completed(rsp, rsp->completed - 1); | ||
| 622 | note_new_gpnum(rsp, rdp); | ||
| 623 | |||
| 624 | /* | ||
| 625 | * Because we are first, we know that all our callbacks will | ||
| 626 | * be covered by this upcoming grace period, even the ones | ||
| 627 | * that were registered arbitrarily recently. | ||
| 628 | */ | ||
| 629 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 630 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 631 | 689 | ||
| 632 | /* Special-case the common single-level case. */ | 690 | /* Special-case the common single-level case. */ |
| 633 | if (NUM_RCU_NODES == 1) { | 691 | if (NUM_RCU_NODES == 1) { |
| 692 | rcu_preempt_check_blocked_tasks(rnp); | ||
| 634 | rnp->qsmask = rnp->qsmaskinit; | 693 | rnp->qsmask = rnp->qsmaskinit; |
| 694 | rnp->gpnum = rsp->gpnum; | ||
| 695 | rnp->completed = rsp->completed; | ||
| 635 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 696 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
| 697 | rcu_start_gp_per_cpu(rsp, rnp, rdp); | ||
| 636 | spin_unlock_irqrestore(&rnp->lock, flags); | 698 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 637 | return; | 699 | return; |
| 638 | } | 700 | } |
| @@ -644,101 +706,71 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 644 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 706 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 645 | 707 | ||
| 646 | /* | 708 | /* |
| 647 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 709 | * Set the quiescent-state-needed bits in all the rcu_node |
| 648 | * nodes for all currently online CPUs. This operation relies | 710 | * structures for all currently online CPUs in breadth-first |
| 649 | * on the layout of the hierarchy within the rsp->node[] array. | 711 | * order, starting from the root rcu_node structure. This |
| 650 | * Note that other CPUs will access only the leaves of the | 712 | * operation relies on the layout of the hierarchy within the |
| 651 | * hierarchy, which still indicate that no grace period is in | 713 | * rsp->node[] array. Note that other CPUs will access only |
| 652 | * progress. In addition, we have excluded CPU-hotplug operations. | 714 | * the leaves of the hierarchy, which still indicate that no |
| 653 | * | 715 | * grace period is in progress, at least until the corresponding |
| 654 | * We therefore do not need to hold any locks. Any required | 716 | * leaf node has been initialized. In addition, we have excluded |
| 655 | * memory barriers will be supplied by the locks guarding the | 717 | * CPU-hotplug operations. |
| 656 | * leaf rcu_nodes in the hierarchy. | ||
| 657 | */ | ||
| 658 | |||
| 659 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
| 660 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
| 661 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
| 662 | |||
| 663 | /* | ||
| 664 | * Now set up the leaf nodes. Here we must be careful. First, | ||
| 665 | * we need to hold the lock in order to exclude other CPUs, which | ||
| 666 | * might be contending for the leaf nodes' locks. Second, as | ||
| 667 | * soon as we initialize a given leaf node, its CPUs might run | ||
| 668 | * up the rest of the hierarchy. We must therefore acquire locks | ||
| 669 | * for each node that we touch during this stage. (But we still | ||
| 670 | * are excluding CPU-hotplug operations.) | ||
| 671 | * | 718 | * |
| 672 | * Note that the grace period cannot complete until we finish | 719 | * Note that the grace period cannot complete until we finish |
| 673 | * the initialization process, as there will be at least one | 720 | * the initialization process, as there will be at least one |
| 674 | * qsmask bit set in the root node until that time, namely the | 721 | * qsmask bit set in the root node until that time, namely the |
| 675 | * one corresponding to this CPU. | 722 | * one corresponding to this CPU, due to the fact that we have |
| 723 | * irqs disabled. | ||
| 676 | */ | 724 | */ |
| 677 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 725 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 678 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 726 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 679 | for (; rnp_cur < rnp_end; rnp_cur++) { | 727 | rcu_preempt_check_blocked_tasks(rnp); |
| 680 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 728 | rnp->qsmask = rnp->qsmaskinit; |
| 681 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 729 | rnp->gpnum = rsp->gpnum; |
| 682 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 730 | rnp->completed = rsp->completed; |
| 731 | if (rnp == rdp->mynode) | ||
| 732 | rcu_start_gp_per_cpu(rsp, rnp, rdp); | ||
| 733 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 683 | } | 734 | } |
| 684 | 735 | ||
| 736 | rnp = rcu_get_root(rsp); | ||
| 737 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
| 685 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 738 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
| 739 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 686 | spin_unlock_irqrestore(&rsp->onofflock, flags); | 740 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 687 | } | 741 | } |
| 688 | 742 | ||
| 689 | /* | 743 | /* |
| 690 | * Advance this CPU's callbacks, but only if the current grace period | 744 | * Report a full set of quiescent states to the specified rcu_state |
| 691 | * has ended. This may be called only from the CPU to whom the rdp | 745 | * data structure. This involves cleaning up after the prior grace |
| 692 | * belongs. | 746 | * period and letting rcu_start_gp() start up the next grace period |
| 693 | */ | 747 | * if one is needed. Note that the caller must hold rnp->lock, as |
| 694 | static void | 748 | * required by rcu_start_gp(), which will release it. |
| 695 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | ||
| 696 | { | ||
| 697 | long completed_snap; | ||
| 698 | unsigned long flags; | ||
| 699 | |||
| 700 | local_irq_save(flags); | ||
| 701 | completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */ | ||
| 702 | |||
| 703 | /* Did another grace period end? */ | ||
| 704 | if (rdp->completed != completed_snap) { | ||
| 705 | |||
| 706 | /* Advance callbacks. No harm if list empty. */ | ||
| 707 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | ||
| 708 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | ||
| 709 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 710 | |||
| 711 | /* Remember that we saw this grace-period completion. */ | ||
| 712 | rdp->completed = completed_snap; | ||
| 713 | } | ||
| 714 | local_irq_restore(flags); | ||
| 715 | } | ||
| 716 | |||
| 717 | /* | ||
| 718 | * Clean up after the prior grace period and let rcu_start_gp() start up | ||
| 719 | * the next grace period if one is needed. Note that the caller must | ||
| 720 | * hold rnp->lock, as required by rcu_start_gp(), which will release it. | ||
| 721 | */ | 749 | */ |
| 722 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | 750 | static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) |
| 723 | __releases(rnp->lock) | 751 | __releases(rcu_get_root(rsp)->lock) |
| 724 | { | 752 | { |
| 753 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); | ||
| 725 | rsp->completed = rsp->gpnum; | 754 | rsp->completed = rsp->gpnum; |
| 726 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | 755 | rsp->signaled = RCU_GP_IDLE; |
| 727 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | 756 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
| 728 | } | 757 | } |
| 729 | 758 | ||
| 730 | /* | 759 | /* |
| 731 | * Similar to cpu_quiet(), for which it is a helper function. Allows | 760 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. |
| 732 | * a group of CPUs to be quieted at one go, though all the CPUs in the | 761 | * Allows quiescent states for a group of CPUs to be reported at one go |
| 733 | * group must be represented by the same leaf rcu_node structure. | 762 | * to the specified rcu_node structure, though all the CPUs in the group |
| 734 | * That structure's lock must be held upon entry, and it is released | 763 | * must be represented by the same rcu_node structure (which need not be |
| 735 | * before return. | 764 | * a leaf rcu_node structure, though it often will be). That structure's |
| 765 | * lock must be held upon entry, and it is released before return. | ||
| 736 | */ | 766 | */ |
| 737 | static void | 767 | static void |
| 738 | cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | 768 | rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, |
| 739 | unsigned long flags) | 769 | struct rcu_node *rnp, unsigned long flags) |
| 740 | __releases(rnp->lock) | 770 | __releases(rnp->lock) |
| 741 | { | 771 | { |
| 772 | struct rcu_node *rnp_c; | ||
| 773 | |||
| 742 | /* Walk up the rcu_node hierarchy. */ | 774 | /* Walk up the rcu_node hierarchy. */ |
| 743 | for (;;) { | 775 | for (;;) { |
| 744 | if (!(rnp->qsmask & mask)) { | 776 | if (!(rnp->qsmask & mask)) { |
| @@ -762,27 +794,31 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 762 | break; | 794 | break; |
| 763 | } | 795 | } |
| 764 | spin_unlock_irqrestore(&rnp->lock, flags); | 796 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 797 | rnp_c = rnp; | ||
| 765 | rnp = rnp->parent; | 798 | rnp = rnp->parent; |
| 766 | spin_lock_irqsave(&rnp->lock, flags); | 799 | spin_lock_irqsave(&rnp->lock, flags); |
| 800 | WARN_ON_ONCE(rnp_c->qsmask); | ||
| 767 | } | 801 | } |
| 768 | 802 | ||
| 769 | /* | 803 | /* |
| 770 | * Get here if we are the last CPU to pass through a quiescent | 804 | * Get here if we are the last CPU to pass through a quiescent |
| 771 | * state for this grace period. Invoke cpu_quiet_msk_finish() | 805 | * state for this grace period. Invoke rcu_report_qs_rsp() |
| 772 | * to clean up and start the next grace period if one is needed. | 806 | * to clean up and start the next grace period if one is needed. |
| 773 | */ | 807 | */ |
| 774 | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ | 808 | rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ |
| 775 | } | 809 | } |
| 776 | 810 | ||
| 777 | /* | 811 | /* |
| 778 | * Record a quiescent state for the specified CPU, which must either be | 812 | * Record a quiescent state for the specified CPU to that CPU's rcu_data |
| 779 | * the current CPU or an offline CPU. The lastcomp argument is used to | 813 | * structure. This must be either called from the specified CPU, or |
| 780 | * make sure we are still in the grace period of interest. We don't want | 814 | * called when the specified CPU is known to be offline (and when it is |
| 781 | * to end the current grace period based on quiescent states detected in | 815 | * also known that no other CPU is concurrently trying to help the offline |
| 782 | * an earlier grace period! | 816 | * CPU). The lastcomp argument is used to make sure we are still in the |
| 817 | * grace period of interest. We don't want to end the current grace period | ||
| 818 | * based on quiescent states detected in an earlier grace period! | ||
| 783 | */ | 819 | */ |
| 784 | static void | 820 | static void |
| 785 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 821 | rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
| 786 | { | 822 | { |
| 787 | unsigned long flags; | 823 | unsigned long flags; |
| 788 | unsigned long mask; | 824 | unsigned long mask; |
| @@ -790,15 +826,15 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
| 790 | 826 | ||
| 791 | rnp = rdp->mynode; | 827 | rnp = rdp->mynode; |
| 792 | spin_lock_irqsave(&rnp->lock, flags); | 828 | spin_lock_irqsave(&rnp->lock, flags); |
| 793 | if (lastcomp != ACCESS_ONCE(rsp->completed)) { | 829 | if (lastcomp != rnp->completed) { |
| 794 | 830 | ||
| 795 | /* | 831 | /* |
| 796 | * Someone beat us to it for this grace period, so leave. | 832 | * Someone beat us to it for this grace period, so leave. |
| 797 | * The race with GP start is resolved by the fact that we | 833 | * The race with GP start is resolved by the fact that we |
| 798 | * hold the leaf rcu_node lock, so that the per-CPU bits | 834 | * hold the leaf rcu_node lock, so that the per-CPU bits |
| 799 | * cannot yet be initialized -- so we would simply find our | 835 | * cannot yet be initialized -- so we would simply find our |
| 800 | * CPU's bit already cleared in cpu_quiet_msk() if this race | 836 | * CPU's bit already cleared in rcu_report_qs_rnp() if this |
| 801 | * occurred. | 837 | * race occurred. |
| 802 | */ | 838 | */ |
| 803 | rdp->passed_quiesc = 0; /* try again later! */ | 839 | rdp->passed_quiesc = 0; /* try again later! */ |
| 804 | spin_unlock_irqrestore(&rnp->lock, flags); | 840 | spin_unlock_irqrestore(&rnp->lock, flags); |
| @@ -814,10 +850,9 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
| 814 | * This GP can't end until cpu checks in, so all of our | 850 | * This GP can't end until cpu checks in, so all of our |
| 815 | * callbacks can be processed during the next GP. | 851 | * callbacks can be processed during the next GP. |
| 816 | */ | 852 | */ |
| 817 | rdp = rsp->rda[smp_processor_id()]; | ||
| 818 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 853 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 819 | 854 | ||
| 820 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 855 | rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ |
| 821 | } | 856 | } |
| 822 | } | 857 | } |
| 823 | 858 | ||
| @@ -848,75 +883,113 @@ rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 848 | if (!rdp->passed_quiesc) | 883 | if (!rdp->passed_quiesc) |
| 849 | return; | 884 | return; |
| 850 | 885 | ||
| 851 | /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ | 886 | /* |
| 852 | cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); | 887 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the |
| 888 | * judge of that). | ||
| 889 | */ | ||
| 890 | rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); | ||
| 853 | } | 891 | } |
| 854 | 892 | ||
| 855 | #ifdef CONFIG_HOTPLUG_CPU | 893 | #ifdef CONFIG_HOTPLUG_CPU |
| 856 | 894 | ||
| 857 | /* | 895 | /* |
| 896 | * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the | ||
| 897 | * specified flavor of RCU. The callbacks will be adopted by the next | ||
| 898 | * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever | ||
| 899 | * comes first. Because this is invoked from the CPU_DYING notifier, | ||
| 900 | * irqs are already disabled. | ||
| 901 | */ | ||
| 902 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) | ||
| 903 | { | ||
| 904 | int i; | ||
| 905 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | ||
| 906 | |||
| 907 | if (rdp->nxtlist == NULL) | ||
| 908 | return; /* irqs disabled, so comparison is stable. */ | ||
| 909 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | ||
| 910 | *rsp->orphan_cbs_tail = rdp->nxtlist; | ||
| 911 | rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; | ||
| 912 | rdp->nxtlist = NULL; | ||
| 913 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
| 914 | rdp->nxttail[i] = &rdp->nxtlist; | ||
| 915 | rsp->orphan_qlen += rdp->qlen; | ||
| 916 | rdp->qlen = 0; | ||
| 917 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | ||
| 918 | } | ||
| 919 | |||
| 920 | /* | ||
| 921 | * Adopt previously orphaned RCU callbacks. | ||
| 922 | */ | ||
| 923 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) | ||
| 924 | { | ||
| 925 | unsigned long flags; | ||
| 926 | struct rcu_data *rdp; | ||
| 927 | |||
| 928 | spin_lock_irqsave(&rsp->onofflock, flags); | ||
| 929 | rdp = rsp->rda[smp_processor_id()]; | ||
| 930 | if (rsp->orphan_cbs_list == NULL) { | ||
| 931 | spin_unlock_irqrestore(&rsp->onofflock, flags); | ||
| 932 | return; | ||
| 933 | } | ||
| 934 | *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; | ||
| 935 | rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail; | ||
| 936 | rdp->qlen += rsp->orphan_qlen; | ||
| 937 | rsp->orphan_cbs_list = NULL; | ||
| 938 | rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; | ||
| 939 | rsp->orphan_qlen = 0; | ||
| 940 | spin_unlock_irqrestore(&rsp->onofflock, flags); | ||
| 941 | } | ||
| 942 | |||
| 943 | /* | ||
| 858 | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy | 944 | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy |
| 859 | * and move all callbacks from the outgoing CPU to the current one. | 945 | * and move all callbacks from the outgoing CPU to the current one. |
| 860 | */ | 946 | */ |
| 861 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | 947 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) |
| 862 | { | 948 | { |
| 863 | int i; | ||
| 864 | unsigned long flags; | 949 | unsigned long flags; |
| 865 | long lastcomp; | ||
| 866 | unsigned long mask; | 950 | unsigned long mask; |
| 951 | int need_report = 0; | ||
| 867 | struct rcu_data *rdp = rsp->rda[cpu]; | 952 | struct rcu_data *rdp = rsp->rda[cpu]; |
| 868 | struct rcu_data *rdp_me; | ||
| 869 | struct rcu_node *rnp; | 953 | struct rcu_node *rnp; |
| 870 | 954 | ||
| 871 | /* Exclude any attempts to start a new grace period. */ | 955 | /* Exclude any attempts to start a new grace period. */ |
| 872 | spin_lock_irqsave(&rsp->onofflock, flags); | 956 | spin_lock_irqsave(&rsp->onofflock, flags); |
| 873 | 957 | ||
| 874 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 958 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
| 875 | rnp = rdp->mynode; | 959 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
| 876 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 960 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
| 877 | do { | 961 | do { |
| 878 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 962 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 879 | rnp->qsmaskinit &= ~mask; | 963 | rnp->qsmaskinit &= ~mask; |
| 880 | if (rnp->qsmaskinit != 0) { | 964 | if (rnp->qsmaskinit != 0) { |
| 881 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 965 | if (rnp != rdp->mynode) |
| 966 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 882 | break; | 967 | break; |
| 883 | } | 968 | } |
| 884 | rcu_preempt_offline_tasks(rsp, rnp); | 969 | if (rnp == rdp->mynode) |
| 970 | need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); | ||
| 971 | else | ||
| 972 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 885 | mask = rnp->grpmask; | 973 | mask = rnp->grpmask; |
| 886 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 887 | rnp = rnp->parent; | 974 | rnp = rnp->parent; |
| 888 | } while (rnp != NULL); | 975 | } while (rnp != NULL); |
| 889 | lastcomp = rsp->completed; | ||
| 890 | |||
| 891 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | ||
| 892 | |||
| 893 | /* Being offline is a quiescent state, so go record it. */ | ||
| 894 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 895 | 976 | ||
| 896 | /* | 977 | /* |
| 897 | * Move callbacks from the outgoing CPU to the running CPU. | 978 | * We still hold the leaf rcu_node structure lock here, and |
| 898 | * Note that the outgoing CPU is now quiscent, so it is now | 979 | * irqs are still disabled. The reason for this subterfuge is |
| 899 | * (uncharacteristically) safe to access its rcu_data structure. | 980 | * because invoking rcu_report_unblock_qs_rnp() with ->onofflock |
| 900 | * Note also that we must carefully retain the order of the | 981 | * held leads to deadlock. |
| 901 | * outgoing CPU's callbacks in order for rcu_barrier() to work | ||
| 902 | * correctly. Finally, note that we start all the callbacks | ||
| 903 | * afresh, even those that have passed through a grace period | ||
| 904 | * and are therefore ready to invoke. The theory is that hotplug | ||
| 905 | * events are rare, and that if they are frequent enough to | ||
| 906 | * indefinitely delay callbacks, you have far worse things to | ||
| 907 | * be worrying about. | ||
| 908 | */ | 982 | */ |
| 909 | rdp_me = rsp->rda[smp_processor_id()]; | 983 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
| 910 | if (rdp->nxtlist != NULL) { | 984 | rnp = rdp->mynode; |
| 911 | *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; | 985 | if (need_report & RCU_OFL_TASKS_NORM_GP) |
| 912 | rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 986 | rcu_report_unblock_qs_rnp(rnp, flags); |
| 913 | rdp->nxtlist = NULL; | 987 | else |
| 914 | for (i = 0; i < RCU_NEXT_SIZE; i++) | 988 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 915 | rdp->nxttail[i] = &rdp->nxtlist; | 989 | if (need_report & RCU_OFL_TASKS_EXP_GP) |
| 916 | rdp_me->qlen += rdp->qlen; | 990 | rcu_report_exp_rnp(rsp, rnp); |
| 917 | rdp->qlen = 0; | 991 | |
| 918 | } | 992 | rcu_adopt_orphan_cbs(rsp); |
| 919 | local_irq_restore(flags); | ||
| 920 | } | 993 | } |
| 921 | 994 | ||
| 922 | /* | 995 | /* |
| @@ -934,6 +1007,14 @@ static void rcu_offline_cpu(int cpu) | |||
| 934 | 1007 | ||
| 935 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | 1008 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ |
| 936 | 1009 | ||
| 1010 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) | ||
| 1011 | { | ||
| 1012 | } | ||
| 1013 | |||
| 1014 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) | ||
| 1015 | { | ||
| 1016 | } | ||
| 1017 | |||
| 937 | static void rcu_offline_cpu(int cpu) | 1018 | static void rcu_offline_cpu(int cpu) |
| 938 | { | 1019 | { |
| 939 | } | 1020 | } |
| @@ -944,7 +1025,7 @@ static void rcu_offline_cpu(int cpu) | |||
| 944 | * Invoke any RCU callbacks that have made it to the end of their grace | 1025 | * Invoke any RCU callbacks that have made it to the end of their grace |
| 945 | * period. Thottle as specified by rdp->blimit. | 1026 | * period. Thottle as specified by rdp->blimit. |
| 946 | */ | 1027 | */ |
| 947 | static void rcu_do_batch(struct rcu_data *rdp) | 1028 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) |
| 948 | { | 1029 | { |
| 949 | unsigned long flags; | 1030 | unsigned long flags; |
| 950 | struct rcu_head *next, *list, **tail; | 1031 | struct rcu_head *next, *list, **tail; |
| @@ -997,6 +1078,13 @@ static void rcu_do_batch(struct rcu_data *rdp) | |||
| 997 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | 1078 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) |
| 998 | rdp->blimit = blimit; | 1079 | rdp->blimit = blimit; |
| 999 | 1080 | ||
| 1081 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ | ||
| 1082 | if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { | ||
| 1083 | rdp->qlen_last_fqs_check = 0; | ||
| 1084 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
| 1085 | } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) | ||
| 1086 | rdp->qlen_last_fqs_check = rdp->qlen; | ||
| 1087 | |||
| 1000 | local_irq_restore(flags); | 1088 | local_irq_restore(flags); |
| 1001 | 1089 | ||
| 1002 | /* Re-raise the RCU softirq if there are callbacks remaining. */ | 1090 | /* Re-raise the RCU softirq if there are callbacks remaining. */ |
| @@ -1066,33 +1154,32 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, | |||
| 1066 | int cpu; | 1154 | int cpu; |
| 1067 | unsigned long flags; | 1155 | unsigned long flags; |
| 1068 | unsigned long mask; | 1156 | unsigned long mask; |
| 1069 | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 1157 | struct rcu_node *rnp; |
| 1070 | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | ||
| 1071 | 1158 | ||
| 1072 | for (; rnp_cur < rnp_end; rnp_cur++) { | 1159 | rcu_for_each_leaf_node(rsp, rnp) { |
| 1073 | mask = 0; | 1160 | mask = 0; |
| 1074 | spin_lock_irqsave(&rnp_cur->lock, flags); | 1161 | spin_lock_irqsave(&rnp->lock, flags); |
| 1075 | if (rsp->completed != lastcomp) { | 1162 | if (rnp->completed != lastcomp) { |
| 1076 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 1163 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1077 | return 1; | 1164 | return 1; |
| 1078 | } | 1165 | } |
| 1079 | if (rnp_cur->qsmask == 0) { | 1166 | if (rnp->qsmask == 0) { |
| 1080 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 1167 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1081 | continue; | 1168 | continue; |
| 1082 | } | 1169 | } |
| 1083 | cpu = rnp_cur->grplo; | 1170 | cpu = rnp->grplo; |
| 1084 | bit = 1; | 1171 | bit = 1; |
| 1085 | for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) { | 1172 | for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { |
| 1086 | if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu])) | 1173 | if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) |
| 1087 | mask |= bit; | 1174 | mask |= bit; |
| 1088 | } | 1175 | } |
| 1089 | if (mask != 0 && rsp->completed == lastcomp) { | 1176 | if (mask != 0 && rnp->completed == lastcomp) { |
| 1090 | 1177 | ||
| 1091 | /* cpu_quiet_msk() releases rnp_cur->lock. */ | 1178 | /* rcu_report_qs_rnp() releases rnp->lock. */ |
| 1092 | cpu_quiet_msk(mask, rsp, rnp_cur, flags); | 1179 | rcu_report_qs_rnp(mask, rsp, rnp, flags); |
| 1093 | continue; | 1180 | continue; |
| 1094 | } | 1181 | } |
| 1095 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | 1182 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1096 | } | 1183 | } |
| 1097 | return 0; | 1184 | return 0; |
| 1098 | } | 1185 | } |
| @@ -1107,8 +1194,9 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |||
| 1107 | long lastcomp; | 1194 | long lastcomp; |
| 1108 | struct rcu_node *rnp = rcu_get_root(rsp); | 1195 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1109 | u8 signaled; | 1196 | u8 signaled; |
| 1197 | u8 forcenow; | ||
| 1110 | 1198 | ||
| 1111 | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) | 1199 | if (!rcu_gp_in_progress(rsp)) |
| 1112 | return; /* No grace period in progress, nothing to force. */ | 1200 | return; /* No grace period in progress, nothing to force. */ |
| 1113 | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { | 1201 | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { |
| 1114 | rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ | 1202 | rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ |
| @@ -1119,19 +1207,20 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |||
| 1119 | goto unlock_ret; /* no emergency and done recently. */ | 1207 | goto unlock_ret; /* no emergency and done recently. */ |
| 1120 | rsp->n_force_qs++; | 1208 | rsp->n_force_qs++; |
| 1121 | spin_lock(&rnp->lock); | 1209 | spin_lock(&rnp->lock); |
| 1122 | lastcomp = rsp->completed; | 1210 | lastcomp = rsp->gpnum - 1; |
| 1123 | signaled = rsp->signaled; | 1211 | signaled = rsp->signaled; |
| 1124 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 1212 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 1125 | if (lastcomp == rsp->gpnum) { | 1213 | if(!rcu_gp_in_progress(rsp)) { |
| 1126 | rsp->n_force_qs_ngp++; | 1214 | rsp->n_force_qs_ngp++; |
| 1127 | spin_unlock(&rnp->lock); | 1215 | spin_unlock(&rnp->lock); |
| 1128 | goto unlock_ret; /* no GP in progress, time updated. */ | 1216 | goto unlock_ret; /* no GP in progress, time updated. */ |
| 1129 | } | 1217 | } |
| 1130 | spin_unlock(&rnp->lock); | 1218 | spin_unlock(&rnp->lock); |
| 1131 | switch (signaled) { | 1219 | switch (signaled) { |
| 1220 | case RCU_GP_IDLE: | ||
| 1132 | case RCU_GP_INIT: | 1221 | case RCU_GP_INIT: |
| 1133 | 1222 | ||
| 1134 | break; /* grace period still initializing, ignore. */ | 1223 | break; /* grace period idle or initializing, ignore. */ |
| 1135 | 1224 | ||
| 1136 | case RCU_SAVE_DYNTICK: | 1225 | case RCU_SAVE_DYNTICK: |
| 1137 | 1226 | ||
| @@ -1142,20 +1231,29 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | |||
| 1142 | if (rcu_process_dyntick(rsp, lastcomp, | 1231 | if (rcu_process_dyntick(rsp, lastcomp, |
| 1143 | dyntick_save_progress_counter)) | 1232 | dyntick_save_progress_counter)) |
| 1144 | goto unlock_ret; | 1233 | goto unlock_ret; |
| 1234 | /* fall into next case. */ | ||
| 1235 | |||
| 1236 | case RCU_SAVE_COMPLETED: | ||
| 1145 | 1237 | ||
| 1146 | /* Update state, record completion counter. */ | 1238 | /* Update state, record completion counter. */ |
| 1239 | forcenow = 0; | ||
| 1147 | spin_lock(&rnp->lock); | 1240 | spin_lock(&rnp->lock); |
| 1148 | if (lastcomp == rsp->completed) { | 1241 | if (lastcomp + 1 == rsp->gpnum && |
| 1242 | lastcomp == rsp->completed && | ||
| 1243 | rsp->signaled == signaled) { | ||
| 1149 | rsp->signaled = RCU_FORCE_QS; | 1244 | rsp->signaled = RCU_FORCE_QS; |
| 1150 | dyntick_record_completed(rsp, lastcomp); | 1245 | rsp->completed_fqs = lastcomp; |
| 1246 | forcenow = signaled == RCU_SAVE_COMPLETED; | ||
| 1151 | } | 1247 | } |
| 1152 | spin_unlock(&rnp->lock); | 1248 | spin_unlock(&rnp->lock); |
| 1153 | break; | 1249 | if (!forcenow) |
| 1250 | break; | ||
| 1251 | /* fall into next case. */ | ||
| 1154 | 1252 | ||
| 1155 | case RCU_FORCE_QS: | 1253 | case RCU_FORCE_QS: |
| 1156 | 1254 | ||
| 1157 | /* Check dyntick-idle state, send IPI to laggarts. */ | 1255 | /* Check dyntick-idle state, send IPI to laggarts. */ |
| 1158 | if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), | 1256 | if (rcu_process_dyntick(rsp, rsp->completed_fqs, |
| 1159 | rcu_implicit_dynticks_qs)) | 1257 | rcu_implicit_dynticks_qs)) |
| 1160 | goto unlock_ret; | 1258 | goto unlock_ret; |
| 1161 | 1259 | ||
| @@ -1211,7 +1309,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 1211 | } | 1309 | } |
| 1212 | 1310 | ||
| 1213 | /* If there are callbacks ready, invoke them. */ | 1311 | /* If there are callbacks ready, invoke them. */ |
| 1214 | rcu_do_batch(rdp); | 1312 | rcu_do_batch(rsp, rdp); |
| 1215 | } | 1313 | } |
| 1216 | 1314 | ||
| 1217 | /* | 1315 | /* |
| @@ -1267,7 +1365,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | |||
| 1267 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | 1365 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; |
| 1268 | 1366 | ||
| 1269 | /* Start a new grace period if one not already started. */ | 1367 | /* Start a new grace period if one not already started. */ |
| 1270 | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) { | 1368 | if (!rcu_gp_in_progress(rsp)) { |
| 1271 | unsigned long nestflag; | 1369 | unsigned long nestflag; |
| 1272 | struct rcu_node *rnp_root = rcu_get_root(rsp); | 1370 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
| 1273 | 1371 | ||
| @@ -1275,10 +1373,20 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | |||
| 1275 | rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ | 1373 | rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ |
| 1276 | } | 1374 | } |
| 1277 | 1375 | ||
| 1278 | /* Force the grace period if too many callbacks or too long waiting. */ | 1376 | /* |
| 1279 | if (unlikely(++rdp->qlen > qhimark)) { | 1377 | * Force the grace period if too many callbacks or too long waiting. |
| 1378 | * Enforce hysteresis, and don't invoke force_quiescent_state() | ||
| 1379 | * if some other CPU has recently done so. Also, don't bother | ||
| 1380 | * invoking force_quiescent_state() if the newly enqueued callback | ||
| 1381 | * is the only one waiting for a grace period to complete. | ||
| 1382 | */ | ||
| 1383 | if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { | ||
| 1280 | rdp->blimit = LONG_MAX; | 1384 | rdp->blimit = LONG_MAX; |
| 1281 | force_quiescent_state(rsp, 0); | 1385 | if (rsp->n_force_qs == rdp->n_force_qs_snap && |
| 1386 | *rdp->nxttail[RCU_DONE_TAIL] != head) | ||
| 1387 | force_quiescent_state(rsp, 0); | ||
| 1388 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
| 1389 | rdp->qlen_last_fqs_check = rdp->qlen; | ||
| 1282 | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) | 1390 | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) |
| 1283 | force_quiescent_state(rsp, 1); | 1391 | force_quiescent_state(rsp, 1); |
| 1284 | local_irq_restore(flags); | 1392 | local_irq_restore(flags); |
| @@ -1302,6 +1410,68 @@ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |||
| 1302 | } | 1410 | } |
| 1303 | EXPORT_SYMBOL_GPL(call_rcu_bh); | 1411 | EXPORT_SYMBOL_GPL(call_rcu_bh); |
| 1304 | 1412 | ||
| 1413 | /** | ||
| 1414 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
| 1415 | * | ||
| 1416 | * Control will return to the caller some time after a full rcu-sched | ||
| 1417 | * grace period has elapsed, in other words after all currently executing | ||
| 1418 | * rcu-sched read-side critical sections have completed. These read-side | ||
| 1419 | * critical sections are delimited by rcu_read_lock_sched() and | ||
| 1420 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
| 1421 | * local_irq_disable(), and so on may be used in place of | ||
| 1422 | * rcu_read_lock_sched(). | ||
| 1423 | * | ||
| 1424 | * This means that all preempt_disable code sequences, including NMI and | ||
| 1425 | * hardware-interrupt handlers, in progress on entry will have completed | ||
| 1426 | * before this primitive returns. However, this does not guarantee that | ||
| 1427 | * softirq handlers will have completed, since in some kernels, these | ||
| 1428 | * handlers can run in process context, and can block. | ||
| 1429 | * | ||
| 1430 | * This primitive provides the guarantees made by the (now removed) | ||
| 1431 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
| 1432 | * guarantees that rcu_read_lock() sections will have completed. | ||
| 1433 | * In "classic RCU", these two guarantees happen to be one and | ||
| 1434 | * the same, but can differ in realtime RCU implementations. | ||
| 1435 | */ | ||
| 1436 | void synchronize_sched(void) | ||
| 1437 | { | ||
| 1438 | struct rcu_synchronize rcu; | ||
| 1439 | |||
| 1440 | if (rcu_blocking_is_gp()) | ||
| 1441 | return; | ||
| 1442 | |||
| 1443 | init_completion(&rcu.completion); | ||
| 1444 | /* Will wake me after RCU finished. */ | ||
| 1445 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 1446 | /* Wait for it. */ | ||
| 1447 | wait_for_completion(&rcu.completion); | ||
| 1448 | } | ||
| 1449 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
| 1450 | |||
| 1451 | /** | ||
| 1452 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | ||
| 1453 | * | ||
| 1454 | * Control will return to the caller some time after a full rcu_bh grace | ||
| 1455 | * period has elapsed, in other words after all currently executing rcu_bh | ||
| 1456 | * read-side critical sections have completed. RCU read-side critical | ||
| 1457 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | ||
| 1458 | * and may be nested. | ||
| 1459 | */ | ||
| 1460 | void synchronize_rcu_bh(void) | ||
| 1461 | { | ||
| 1462 | struct rcu_synchronize rcu; | ||
| 1463 | |||
| 1464 | if (rcu_blocking_is_gp()) | ||
| 1465 | return; | ||
| 1466 | |||
| 1467 | init_completion(&rcu.completion); | ||
| 1468 | /* Will wake me after RCU finished. */ | ||
| 1469 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | ||
| 1470 | /* Wait for it. */ | ||
| 1471 | wait_for_completion(&rcu.completion); | ||
| 1472 | } | ||
| 1473 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
| 1474 | |||
| 1305 | /* | 1475 | /* |
| 1306 | * Check to see if there is any immediate RCU-related work to be done | 1476 | * Check to see if there is any immediate RCU-related work to be done |
| 1307 | * by the current CPU, for the specified type of RCU, returning 1 if so. | 1477 | * by the current CPU, for the specified type of RCU, returning 1 if so. |
| @@ -1311,6 +1481,8 @@ EXPORT_SYMBOL_GPL(call_rcu_bh); | |||
| 1311 | */ | 1481 | */ |
| 1312 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | 1482 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1313 | { | 1483 | { |
| 1484 | struct rcu_node *rnp = rdp->mynode; | ||
| 1485 | |||
| 1314 | rdp->n_rcu_pending++; | 1486 | rdp->n_rcu_pending++; |
| 1315 | 1487 | ||
| 1316 | /* Check for CPU stalls, if enabled. */ | 1488 | /* Check for CPU stalls, if enabled. */ |
| @@ -1335,19 +1507,19 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 1335 | } | 1507 | } |
| 1336 | 1508 | ||
| 1337 | /* Has another RCU grace period completed? */ | 1509 | /* Has another RCU grace period completed? */ |
| 1338 | if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */ | 1510 | if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ |
| 1339 | rdp->n_rp_gp_completed++; | 1511 | rdp->n_rp_gp_completed++; |
| 1340 | return 1; | 1512 | return 1; |
| 1341 | } | 1513 | } |
| 1342 | 1514 | ||
| 1343 | /* Has a new RCU grace period started? */ | 1515 | /* Has a new RCU grace period started? */ |
| 1344 | if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */ | 1516 | if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ |
| 1345 | rdp->n_rp_gp_started++; | 1517 | rdp->n_rp_gp_started++; |
| 1346 | return 1; | 1518 | return 1; |
| 1347 | } | 1519 | } |
| 1348 | 1520 | ||
| 1349 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ | 1521 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ |
| 1350 | if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) && | 1522 | if (rcu_gp_in_progress(rsp) && |
| 1351 | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { | 1523 | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { |
| 1352 | rdp->n_rp_need_fqs++; | 1524 | rdp->n_rp_need_fqs++; |
| 1353 | return 1; | 1525 | return 1; |
| @@ -1385,6 +1557,97 @@ int rcu_needs_cpu(int cpu) | |||
| 1385 | } | 1557 | } |
| 1386 | 1558 | ||
| 1387 | /* | 1559 | /* |
| 1560 | * This function is invoked towards the end of the scheduler's initialization | ||
| 1561 | * process. Before this is called, the idle task might contain | ||
| 1562 | * RCU read-side critical sections (during which time, this idle | ||
| 1563 | * task is booting the system). After this function is called, the | ||
| 1564 | * idle tasks are prohibited from containing RCU read-side critical | ||
| 1565 | * sections. | ||
| 1566 | */ | ||
| 1567 | void rcu_scheduler_starting(void) | ||
| 1568 | { | ||
| 1569 | WARN_ON(num_online_cpus() != 1); | ||
| 1570 | WARN_ON(nr_context_switches() > 0); | ||
| 1571 | rcu_scheduler_active = 1; | ||
| 1572 | } | ||
| 1573 | |||
| 1574 | static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; | ||
| 1575 | static atomic_t rcu_barrier_cpu_count; | ||
| 1576 | static DEFINE_MUTEX(rcu_barrier_mutex); | ||
| 1577 | static struct completion rcu_barrier_completion; | ||
| 1578 | |||
| 1579 | static void rcu_barrier_callback(struct rcu_head *notused) | ||
| 1580 | { | ||
| 1581 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | ||
| 1582 | complete(&rcu_barrier_completion); | ||
| 1583 | } | ||
| 1584 | |||
| 1585 | /* | ||
| 1586 | * Called with preemption disabled, and from cross-cpu IRQ context. | ||
| 1587 | */ | ||
| 1588 | static void rcu_barrier_func(void *type) | ||
| 1589 | { | ||
| 1590 | int cpu = smp_processor_id(); | ||
| 1591 | struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); | ||
| 1592 | void (*call_rcu_func)(struct rcu_head *head, | ||
| 1593 | void (*func)(struct rcu_head *head)); | ||
| 1594 | |||
| 1595 | atomic_inc(&rcu_barrier_cpu_count); | ||
| 1596 | call_rcu_func = type; | ||
| 1597 | call_rcu_func(head, rcu_barrier_callback); | ||
| 1598 | } | ||
| 1599 | |||
| 1600 | /* | ||
| 1601 | * Orchestrate the specified type of RCU barrier, waiting for all | ||
| 1602 | * RCU callbacks of the specified type to complete. | ||
| 1603 | */ | ||
| 1604 | static void _rcu_barrier(struct rcu_state *rsp, | ||
| 1605 | void (*call_rcu_func)(struct rcu_head *head, | ||
| 1606 | void (*func)(struct rcu_head *head))) | ||
| 1607 | { | ||
| 1608 | BUG_ON(in_interrupt()); | ||
| 1609 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ | ||
| 1610 | mutex_lock(&rcu_barrier_mutex); | ||
| 1611 | init_completion(&rcu_barrier_completion); | ||
| 1612 | /* | ||
| 1613 | * Initialize rcu_barrier_cpu_count to 1, then invoke | ||
| 1614 | * rcu_barrier_func() on each CPU, so that each CPU also has | ||
| 1615 | * incremented rcu_barrier_cpu_count. Only then is it safe to | ||
| 1616 | * decrement rcu_barrier_cpu_count -- otherwise the first CPU | ||
| 1617 | * might complete its grace period before all of the other CPUs | ||
| 1618 | * did their increment, causing this function to return too | ||
| 1619 | * early. | ||
| 1620 | */ | ||
| 1621 | atomic_set(&rcu_barrier_cpu_count, 1); | ||
| 1622 | preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */ | ||
| 1623 | rcu_adopt_orphan_cbs(rsp); | ||
| 1624 | on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); | ||
| 1625 | preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */ | ||
| 1626 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | ||
| 1627 | complete(&rcu_barrier_completion); | ||
| 1628 | wait_for_completion(&rcu_barrier_completion); | ||
| 1629 | mutex_unlock(&rcu_barrier_mutex); | ||
| 1630 | } | ||
| 1631 | |||
| 1632 | /** | ||
| 1633 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. | ||
| 1634 | */ | ||
| 1635 | void rcu_barrier_bh(void) | ||
| 1636 | { | ||
| 1637 | _rcu_barrier(&rcu_bh_state, call_rcu_bh); | ||
| 1638 | } | ||
| 1639 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | ||
| 1640 | |||
| 1641 | /** | ||
| 1642 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. | ||
| 1643 | */ | ||
| 1644 | void rcu_barrier_sched(void) | ||
| 1645 | { | ||
| 1646 | _rcu_barrier(&rcu_sched_state, call_rcu_sched); | ||
| 1647 | } | ||
| 1648 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | ||
| 1649 | |||
| 1650 | /* | ||
| 1388 | * Do boot-time initialization of a CPU's per-CPU RCU data. | 1651 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
| 1389 | */ | 1652 | */ |
| 1390 | static void __init | 1653 | static void __init |
| @@ -1419,21 +1682,18 @@ static void __cpuinit | |||
| 1419 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | 1682 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) |
| 1420 | { | 1683 | { |
| 1421 | unsigned long flags; | 1684 | unsigned long flags; |
| 1422 | long lastcomp; | ||
| 1423 | unsigned long mask; | 1685 | unsigned long mask; |
| 1424 | struct rcu_data *rdp = rsp->rda[cpu]; | 1686 | struct rcu_data *rdp = rsp->rda[cpu]; |
| 1425 | struct rcu_node *rnp = rcu_get_root(rsp); | 1687 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1426 | 1688 | ||
| 1427 | /* Set up local state, ensuring consistent view of global state. */ | 1689 | /* Set up local state, ensuring consistent view of global state. */ |
| 1428 | spin_lock_irqsave(&rnp->lock, flags); | 1690 | spin_lock_irqsave(&rnp->lock, flags); |
| 1429 | lastcomp = rsp->completed; | ||
| 1430 | rdp->completed = lastcomp; | ||
| 1431 | rdp->gpnum = lastcomp; | ||
| 1432 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ | 1691 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ |
| 1433 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ | 1692 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ |
| 1434 | rdp->beenonline = 1; /* We have now been online. */ | 1693 | rdp->beenonline = 1; /* We have now been online. */ |
| 1435 | rdp->preemptable = preemptable; | 1694 | rdp->preemptable = preemptable; |
| 1436 | rdp->passed_quiesc_completed = lastcomp - 1; | 1695 | rdp->qlen_last_fqs_check = 0; |
| 1696 | rdp->n_force_qs_snap = rsp->n_force_qs; | ||
| 1437 | rdp->blimit = blimit; | 1697 | rdp->blimit = blimit; |
| 1438 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 1698 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 1439 | 1699 | ||
| @@ -1453,24 +1713,16 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | |||
| 1453 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 1713 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 1454 | rnp->qsmaskinit |= mask; | 1714 | rnp->qsmaskinit |= mask; |
| 1455 | mask = rnp->grpmask; | 1715 | mask = rnp->grpmask; |
| 1716 | if (rnp == rdp->mynode) { | ||
| 1717 | rdp->gpnum = rnp->completed; /* if GP in progress... */ | ||
| 1718 | rdp->completed = rnp->completed; | ||
| 1719 | rdp->passed_quiesc_completed = rnp->completed - 1; | ||
| 1720 | } | ||
| 1456 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 1721 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
| 1457 | rnp = rnp->parent; | 1722 | rnp = rnp->parent; |
| 1458 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1723 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
| 1459 | 1724 | ||
| 1460 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1725 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 1461 | |||
| 1462 | /* | ||
| 1463 | * A new grace period might start here. If so, we will be part of | ||
| 1464 | * it, and its gpnum will be greater than ours, so we will | ||
| 1465 | * participate. It is also possible for the gpnum to have been | ||
| 1466 | * incremented before this function was called, and the bitmasks | ||
| 1467 | * to not be filled out until now, in which case we will also | ||
| 1468 | * participate due to our gpnum being behind. | ||
| 1469 | */ | ||
| 1470 | |||
| 1471 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
| 1472 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 1473 | local_irq_restore(flags); | ||
| 1474 | } | 1726 | } |
| 1475 | 1727 | ||
| 1476 | static void __cpuinit rcu_online_cpu(int cpu) | 1728 | static void __cpuinit rcu_online_cpu(int cpu) |
| @@ -1483,8 +1735,8 @@ static void __cpuinit rcu_online_cpu(int cpu) | |||
| 1483 | /* | 1735 | /* |
| 1484 | * Handle CPU online/offline notification events. | 1736 | * Handle CPU online/offline notification events. |
| 1485 | */ | 1737 | */ |
| 1486 | int __cpuinit rcu_cpu_notify(struct notifier_block *self, | 1738 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| 1487 | unsigned long action, void *hcpu) | 1739 | unsigned long action, void *hcpu) |
| 1488 | { | 1740 | { |
| 1489 | long cpu = (long)hcpu; | 1741 | long cpu = (long)hcpu; |
| 1490 | 1742 | ||
| @@ -1493,6 +1745,22 @@ int __cpuinit rcu_cpu_notify(struct notifier_block *self, | |||
| 1493 | case CPU_UP_PREPARE_FROZEN: | 1745 | case CPU_UP_PREPARE_FROZEN: |
| 1494 | rcu_online_cpu(cpu); | 1746 | rcu_online_cpu(cpu); |
| 1495 | break; | 1747 | break; |
| 1748 | case CPU_DYING: | ||
| 1749 | case CPU_DYING_FROZEN: | ||
| 1750 | /* | ||
| 1751 | * preempt_disable() in _rcu_barrier() prevents stop_machine(), | ||
| 1752 | * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" | ||
| 1753 | * returns, all online cpus have queued rcu_barrier_func(). | ||
| 1754 | * The dying CPU clears its cpu_online_mask bit and | ||
| 1755 | * moves all of its RCU callbacks to ->orphan_cbs_list | ||
| 1756 | * in the context of stop_machine(), so subsequent calls | ||
| 1757 | * to _rcu_barrier() will adopt these callbacks and only | ||
| 1758 | * then queue rcu_barrier_func() on all remaining CPUs. | ||
| 1759 | */ | ||
| 1760 | rcu_send_cbs_to_orphanage(&rcu_bh_state); | ||
| 1761 | rcu_send_cbs_to_orphanage(&rcu_sched_state); | ||
| 1762 | rcu_preempt_send_cbs_to_orphanage(); | ||
| 1763 | break; | ||
| 1496 | case CPU_DEAD: | 1764 | case CPU_DEAD: |
| 1497 | case CPU_DEAD_FROZEN: | 1765 | case CPU_DEAD_FROZEN: |
| 1498 | case CPU_UP_CANCELED: | 1766 | case CPU_UP_CANCELED: |
| @@ -1556,6 +1824,7 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
| 1556 | rnp = rsp->level[i]; | 1824 | rnp = rsp->level[i]; |
| 1557 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | 1825 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { |
| 1558 | spin_lock_init(&rnp->lock); | 1826 | spin_lock_init(&rnp->lock); |
| 1827 | lockdep_set_class(&rnp->lock, &rcu_node_class[i]); | ||
| 1559 | rnp->gpnum = 0; | 1828 | rnp->gpnum = 0; |
| 1560 | rnp->qsmask = 0; | 1829 | rnp->qsmask = 0; |
| 1561 | rnp->qsmaskinit = 0; | 1830 | rnp->qsmaskinit = 0; |
| @@ -1576,6 +1845,8 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
| 1576 | rnp->level = i; | 1845 | rnp->level = i; |
| 1577 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); | 1846 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); |
| 1578 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); | 1847 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); |
| 1848 | INIT_LIST_HEAD(&rnp->blocked_tasks[2]); | ||
| 1849 | INIT_LIST_HEAD(&rnp->blocked_tasks[3]); | ||
| 1579 | } | 1850 | } |
| 1580 | } | 1851 | } |
| 1581 | } | 1852 | } |
| @@ -1587,6 +1858,10 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
| 1587 | */ | 1858 | */ |
| 1588 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ | 1859 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
| 1589 | do { \ | 1860 | do { \ |
| 1861 | int i; \ | ||
| 1862 | int j; \ | ||
| 1863 | struct rcu_node *rnp; \ | ||
| 1864 | \ | ||
| 1590 | rcu_init_one(rsp); \ | 1865 | rcu_init_one(rsp); \ |
| 1591 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | 1866 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ |
| 1592 | j = 0; \ | 1867 | j = 0; \ |
| @@ -1599,41 +1874,30 @@ do { \ | |||
| 1599 | } \ | 1874 | } \ |
| 1600 | } while (0) | 1875 | } while (0) |
| 1601 | 1876 | ||
| 1602 | #ifdef CONFIG_TREE_PREEMPT_RCU | 1877 | void __init rcu_init(void) |
| 1603 | |||
| 1604 | void __init __rcu_init_preempt(void) | ||
| 1605 | { | ||
| 1606 | int i; /* All used by RCU_INIT_FLAVOR(). */ | ||
| 1607 | int j; | ||
| 1608 | struct rcu_node *rnp; | ||
| 1609 | |||
| 1610 | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | ||
| 1611 | } | ||
| 1612 | |||
| 1613 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 1614 | |||
| 1615 | void __init __rcu_init_preempt(void) | ||
| 1616 | { | 1878 | { |
| 1617 | } | 1879 | int i; |
| 1618 | |||
| 1619 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 1620 | |||
| 1621 | void __init __rcu_init(void) | ||
| 1622 | { | ||
| 1623 | int i; /* All used by RCU_INIT_FLAVOR(). */ | ||
| 1624 | int j; | ||
| 1625 | struct rcu_node *rnp; | ||
| 1626 | 1880 | ||
| 1627 | rcu_bootup_announce(); | 1881 | rcu_bootup_announce(); |
| 1628 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 1882 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| 1629 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | 1883 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); |
| 1630 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 1884 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 1885 | #if NUM_RCU_LVL_4 != 0 | ||
| 1886 | printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n"); | ||
| 1887 | #endif /* #if NUM_RCU_LVL_4 != 0 */ | ||
| 1631 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); | 1888 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
| 1632 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); | 1889 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); |
| 1633 | __rcu_init_preempt(); | 1890 | __rcu_init_preempt(); |
| 1634 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 1891 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
| 1892 | |||
| 1893 | /* | ||
| 1894 | * We don't need protection against CPU-hotplug here because | ||
| 1895 | * this is called early in boot, before either interrupts | ||
| 1896 | * or the scheduler are operational. | ||
| 1897 | */ | ||
| 1898 | cpu_notifier(rcu_cpu_notify, 0); | ||
| 1899 | for_each_online_cpu(i) | ||
| 1900 | rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i); | ||
| 1635 | } | 1901 | } |
| 1636 | 1902 | ||
| 1637 | module_param(blimit, int, 0); | 1903 | #include "rcutree_plugin.h" |
| 1638 | module_param(qhimark, int, 0); | ||
| 1639 | module_param(qlowmark, int, 0); | ||
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index bf8a6f9f134d..d2a0046f63b2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
| @@ -34,10 +34,11 @@ | |||
| 34 | * In practice, this has not been tested, so there is probably some | 34 | * In practice, this has not been tested, so there is probably some |
| 35 | * bug somewhere. | 35 | * bug somewhere. |
| 36 | */ | 36 | */ |
| 37 | #define MAX_RCU_LVLS 3 | 37 | #define MAX_RCU_LVLS 4 |
| 38 | #define RCU_FANOUT (CONFIG_RCU_FANOUT) | 38 | #define RCU_FANOUT (CONFIG_RCU_FANOUT) |
| 39 | #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT) | 39 | #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT) |
| 40 | #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT) | 40 | #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT) |
| 41 | #define RCU_FANOUT_FOURTH (RCU_FANOUT_CUBE * RCU_FANOUT) | ||
| 41 | 42 | ||
| 42 | #if NR_CPUS <= RCU_FANOUT | 43 | #if NR_CPUS <= RCU_FANOUT |
| 43 | # define NUM_RCU_LVLS 1 | 44 | # define NUM_RCU_LVLS 1 |
| @@ -45,23 +46,33 @@ | |||
| 45 | # define NUM_RCU_LVL_1 (NR_CPUS) | 46 | # define NUM_RCU_LVL_1 (NR_CPUS) |
| 46 | # define NUM_RCU_LVL_2 0 | 47 | # define NUM_RCU_LVL_2 0 |
| 47 | # define NUM_RCU_LVL_3 0 | 48 | # define NUM_RCU_LVL_3 0 |
| 49 | # define NUM_RCU_LVL_4 0 | ||
| 48 | #elif NR_CPUS <= RCU_FANOUT_SQ | 50 | #elif NR_CPUS <= RCU_FANOUT_SQ |
| 49 | # define NUM_RCU_LVLS 2 | 51 | # define NUM_RCU_LVLS 2 |
| 50 | # define NUM_RCU_LVL_0 1 | 52 | # define NUM_RCU_LVL_0 1 |
| 51 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT) | 53 | # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT) |
| 52 | # define NUM_RCU_LVL_2 (NR_CPUS) | 54 | # define NUM_RCU_LVL_2 (NR_CPUS) |
| 53 | # define NUM_RCU_LVL_3 0 | 55 | # define NUM_RCU_LVL_3 0 |
| 56 | # define NUM_RCU_LVL_4 0 | ||
| 54 | #elif NR_CPUS <= RCU_FANOUT_CUBE | 57 | #elif NR_CPUS <= RCU_FANOUT_CUBE |
| 55 | # define NUM_RCU_LVLS 3 | 58 | # define NUM_RCU_LVLS 3 |
| 56 | # define NUM_RCU_LVL_0 1 | 59 | # define NUM_RCU_LVL_0 1 |
| 57 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ) | 60 | # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_SQ) |
| 58 | # define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT)) | 61 | # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT) |
| 59 | # define NUM_RCU_LVL_3 NR_CPUS | 62 | # define NUM_RCU_LVL_3 NR_CPUS |
| 63 | # define NUM_RCU_LVL_4 0 | ||
| 64 | #elif NR_CPUS <= RCU_FANOUT_FOURTH | ||
| 65 | # define NUM_RCU_LVLS 4 | ||
| 66 | # define NUM_RCU_LVL_0 1 | ||
| 67 | # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_CUBE) | ||
| 68 | # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_SQ) | ||
| 69 | # define NUM_RCU_LVL_3 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT) | ||
| 70 | # define NUM_RCU_LVL_4 NR_CPUS | ||
| 60 | #else | 71 | #else |
| 61 | # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS" | 72 | # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS" |
| 62 | #endif /* #if (NR_CPUS) <= RCU_FANOUT */ | 73 | #endif /* #if (NR_CPUS) <= RCU_FANOUT */ |
| 63 | 74 | ||
| 64 | #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3) | 75 | #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3 + NUM_RCU_LVL_4) |
| 65 | #define NUM_RCU_NODES (RCU_SUM - NR_CPUS) | 76 | #define NUM_RCU_NODES (RCU_SUM - NR_CPUS) |
| 66 | 77 | ||
| 67 | /* | 78 | /* |
| @@ -79,24 +90,67 @@ struct rcu_dynticks { | |||
| 79 | * Definition for node within the RCU grace-period-detection hierarchy. | 90 | * Definition for node within the RCU grace-period-detection hierarchy. |
| 80 | */ | 91 | */ |
| 81 | struct rcu_node { | 92 | struct rcu_node { |
| 82 | spinlock_t lock; | 93 | spinlock_t lock; /* Root rcu_node's lock protects some */ |
| 94 | /* rcu_state fields as well as following. */ | ||
| 83 | long gpnum; /* Current grace period for this node. */ | 95 | long gpnum; /* Current grace period for this node. */ |
| 84 | /* This will either be equal to or one */ | 96 | /* This will either be equal to or one */ |
| 85 | /* behind the root rcu_node's gpnum. */ | 97 | /* behind the root rcu_node's gpnum. */ |
| 98 | long completed; /* Last grace period completed for this node. */ | ||
| 99 | /* This will either be equal to or one */ | ||
| 100 | /* behind the root rcu_node's gpnum. */ | ||
| 86 | unsigned long qsmask; /* CPUs or groups that need to switch in */ | 101 | unsigned long qsmask; /* CPUs or groups that need to switch in */ |
| 87 | /* order for current grace period to proceed.*/ | 102 | /* order for current grace period to proceed.*/ |
| 103 | /* In leaf rcu_node, each bit corresponds to */ | ||
| 104 | /* an rcu_data structure, otherwise, each */ | ||
| 105 | /* bit corresponds to a child rcu_node */ | ||
| 106 | /* structure. */ | ||
| 107 | unsigned long expmask; /* Groups that have ->blocked_tasks[] */ | ||
| 108 | /* elements that need to drain to allow the */ | ||
| 109 | /* current expedited grace period to */ | ||
| 110 | /* complete (only for TREE_PREEMPT_RCU). */ | ||
| 88 | unsigned long qsmaskinit; | 111 | unsigned long qsmaskinit; |
| 89 | /* Per-GP initialization for qsmask. */ | 112 | /* Per-GP initial value for qsmask & expmask. */ |
| 90 | unsigned long grpmask; /* Mask to apply to parent qsmask. */ | 113 | unsigned long grpmask; /* Mask to apply to parent qsmask. */ |
| 114 | /* Only one bit will be set in this mask. */ | ||
| 91 | int grplo; /* lowest-numbered CPU or group here. */ | 115 | int grplo; /* lowest-numbered CPU or group here. */ |
| 92 | int grphi; /* highest-numbered CPU or group here. */ | 116 | int grphi; /* highest-numbered CPU or group here. */ |
| 93 | u8 grpnum; /* CPU/group number for next level up. */ | 117 | u8 grpnum; /* CPU/group number for next level up. */ |
| 94 | u8 level; /* root is at level 0. */ | 118 | u8 level; /* root is at level 0. */ |
| 95 | struct rcu_node *parent; | 119 | struct rcu_node *parent; |
| 96 | struct list_head blocked_tasks[2]; | 120 | struct list_head blocked_tasks[4]; |
| 97 | /* Tasks blocked in RCU read-side critsect. */ | 121 | /* Tasks blocked in RCU read-side critsect. */ |
| 122 | /* Grace period number (->gpnum) x blocked */ | ||
| 123 | /* by tasks on the (x & 0x1) element of the */ | ||
| 124 | /* blocked_tasks[] array. */ | ||
| 98 | } ____cacheline_internodealigned_in_smp; | 125 | } ____cacheline_internodealigned_in_smp; |
| 99 | 126 | ||
| 127 | /* | ||
| 128 | * Do a full breadth-first scan of the rcu_node structures for the | ||
| 129 | * specified rcu_state structure. | ||
| 130 | */ | ||
| 131 | #define rcu_for_each_node_breadth_first(rsp, rnp) \ | ||
| 132 | for ((rnp) = &(rsp)->node[0]; \ | ||
| 133 | (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++) | ||
| 134 | |||
| 135 | /* | ||
| 136 | * Do a breadth-first scan of the non-leaf rcu_node structures for the | ||
| 137 | * specified rcu_state structure. Note that if there is a singleton | ||
| 138 | * rcu_node tree with but one rcu_node structure, this loop is a no-op. | ||
| 139 | */ | ||
| 140 | #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \ | ||
| 141 | for ((rnp) = &(rsp)->node[0]; \ | ||
| 142 | (rnp) < (rsp)->level[NUM_RCU_LVLS - 1]; (rnp)++) | ||
| 143 | |||
| 144 | /* | ||
| 145 | * Scan the leaves of the rcu_node hierarchy for the specified rcu_state | ||
| 146 | * structure. Note that if there is a singleton rcu_node tree with but | ||
| 147 | * one rcu_node structure, this loop -will- visit the rcu_node structure. | ||
| 148 | * It is still a leaf node, even if it is also the root node. | ||
| 149 | */ | ||
| 150 | #define rcu_for_each_leaf_node(rsp, rnp) \ | ||
| 151 | for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \ | ||
| 152 | (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++) | ||
| 153 | |||
| 100 | /* Index values for nxttail array in struct rcu_data. */ | 154 | /* Index values for nxttail array in struct rcu_data. */ |
| 101 | #define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */ | 155 | #define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */ |
| 102 | #define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */ | 156 | #define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */ |
| @@ -126,23 +180,30 @@ struct rcu_data { | |||
| 126 | * Any of the partitions might be empty, in which case the | 180 | * Any of the partitions might be empty, in which case the |
| 127 | * pointer to that partition will be equal to the pointer for | 181 | * pointer to that partition will be equal to the pointer for |
| 128 | * the following partition. When the list is empty, all of | 182 | * the following partition. When the list is empty, all of |
| 129 | * the nxttail elements point to nxtlist, which is NULL. | 183 | * the nxttail elements point to the ->nxtlist pointer itself, |
| 184 | * which in that case is NULL. | ||
| 130 | * | 185 | * |
| 131 | * [*nxttail[RCU_NEXT_READY_TAIL], NULL = *nxttail[RCU_NEXT_TAIL]): | ||
| 132 | * Entries that might have arrived after current GP ended | ||
| 133 | * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]): | ||
| 134 | * Entries known to have arrived before current GP ended | ||
| 135 | * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]): | ||
| 136 | * Entries that batch # <= ->completed - 1: waiting for current GP | ||
| 137 | * [nxtlist, *nxttail[RCU_DONE_TAIL]): | 186 | * [nxtlist, *nxttail[RCU_DONE_TAIL]): |
| 138 | * Entries that batch # <= ->completed | 187 | * Entries that batch # <= ->completed |
| 139 | * The grace period for these entries has completed, and | 188 | * The grace period for these entries has completed, and |
| 140 | * the other grace-period-completed entries may be moved | 189 | * the other grace-period-completed entries may be moved |
| 141 | * here temporarily in rcu_process_callbacks(). | 190 | * here temporarily in rcu_process_callbacks(). |
| 191 | * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]): | ||
| 192 | * Entries that batch # <= ->completed - 1: waiting for current GP | ||
| 193 | * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]): | ||
| 194 | * Entries known to have arrived before current GP ended | ||
| 195 | * [*nxttail[RCU_NEXT_READY_TAIL], *nxttail[RCU_NEXT_TAIL]): | ||
| 196 | * Entries that might have arrived after current GP ended | ||
| 197 | * Note that the value of *nxttail[RCU_NEXT_TAIL] will | ||
| 198 | * always be NULL, as this is the end of the list. | ||
| 142 | */ | 199 | */ |
| 143 | struct rcu_head *nxtlist; | 200 | struct rcu_head *nxtlist; |
| 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | 201 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; |
| 145 | long qlen; /* # of queued callbacks */ | 202 | long qlen; /* # of queued callbacks */ |
| 203 | long qlen_last_fqs_check; | ||
| 204 | /* qlen at last check for QS forcing */ | ||
| 205 | unsigned long n_force_qs_snap; | ||
| 206 | /* did other CPU force QS recently? */ | ||
| 146 | long blimit; /* Upper limit on a processed batch */ | 207 | long blimit; /* Upper limit on a processed batch */ |
| 147 | 208 | ||
| 148 | #ifdef CONFIG_NO_HZ | 209 | #ifdef CONFIG_NO_HZ |
| @@ -173,13 +234,15 @@ struct rcu_data { | |||
| 173 | }; | 234 | }; |
| 174 | 235 | ||
| 175 | /* Values for signaled field in struct rcu_state. */ | 236 | /* Values for signaled field in struct rcu_state. */ |
| 176 | #define RCU_GP_INIT 0 /* Grace period being initialized. */ | 237 | #define RCU_GP_IDLE 0 /* No grace period in progress. */ |
| 177 | #define RCU_SAVE_DYNTICK 1 /* Need to scan dyntick state. */ | 238 | #define RCU_GP_INIT 1 /* Grace period being initialized. */ |
| 178 | #define RCU_FORCE_QS 2 /* Need to force quiescent state. */ | 239 | #define RCU_SAVE_DYNTICK 2 /* Need to scan dyntick state. */ |
| 240 | #define RCU_SAVE_COMPLETED 3 /* Need to save rsp->completed. */ | ||
| 241 | #define RCU_FORCE_QS 4 /* Need to force quiescent state. */ | ||
| 179 | #ifdef CONFIG_NO_HZ | 242 | #ifdef CONFIG_NO_HZ |
| 180 | #define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK | 243 | #define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK |
| 181 | #else /* #ifdef CONFIG_NO_HZ */ | 244 | #else /* #ifdef CONFIG_NO_HZ */ |
| 182 | #define RCU_SIGNAL_INIT RCU_FORCE_QS | 245 | #define RCU_SIGNAL_INIT RCU_SAVE_COMPLETED |
| 183 | #endif /* #else #ifdef CONFIG_NO_HZ */ | 246 | #endif /* #else #ifdef CONFIG_NO_HZ */ |
| 184 | 247 | ||
| 185 | #define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ | 248 | #define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ |
| @@ -216,10 +279,23 @@ struct rcu_state { | |||
| 216 | /* Force QS state. */ | 279 | /* Force QS state. */ |
| 217 | long gpnum; /* Current gp number. */ | 280 | long gpnum; /* Current gp number. */ |
| 218 | long completed; /* # of last completed gp. */ | 281 | long completed; /* # of last completed gp. */ |
| 282 | |||
| 283 | /* End of fields guarded by root rcu_node's lock. */ | ||
| 284 | |||
| 219 | spinlock_t onofflock; /* exclude on/offline and */ | 285 | spinlock_t onofflock; /* exclude on/offline and */ |
| 220 | /* starting new GP. */ | 286 | /* starting new GP. Also */ |
| 287 | /* protects the following */ | ||
| 288 | /* orphan_cbs fields. */ | ||
| 289 | struct rcu_head *orphan_cbs_list; /* list of rcu_head structs */ | ||
| 290 | /* orphaned by all CPUs in */ | ||
| 291 | /* a given leaf rcu_node */ | ||
| 292 | /* going offline. */ | ||
| 293 | struct rcu_head **orphan_cbs_tail; /* And tail pointer. */ | ||
| 294 | long orphan_qlen; /* Number of orphaned cbs. */ | ||
| 221 | spinlock_t fqslock; /* Only one task forcing */ | 295 | spinlock_t fqslock; /* Only one task forcing */ |
| 222 | /* quiescent states. */ | 296 | /* quiescent states. */ |
| 297 | long completed_fqs; /* Value of completed @ snap. */ | ||
| 298 | /* Protected by fqslock. */ | ||
| 223 | unsigned long jiffies_force_qs; /* Time at which to invoke */ | 299 | unsigned long jiffies_force_qs; /* Time at which to invoke */ |
| 224 | /* force_quiescent_state(). */ | 300 | /* force_quiescent_state(). */ |
| 225 | unsigned long n_force_qs; /* Number of calls to */ | 301 | unsigned long n_force_qs; /* Number of calls to */ |
| @@ -234,11 +310,15 @@ struct rcu_state { | |||
| 234 | unsigned long jiffies_stall; /* Time at which to check */ | 310 | unsigned long jiffies_stall; /* Time at which to check */ |
| 235 | /* for CPU stalls. */ | 311 | /* for CPU stalls. */ |
| 236 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 312 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 237 | #ifdef CONFIG_NO_HZ | ||
| 238 | long dynticks_completed; /* Value of completed @ snap. */ | ||
| 239 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 240 | }; | 313 | }; |
| 241 | 314 | ||
| 315 | /* Return values for rcu_preempt_offline_tasks(). */ | ||
| 316 | |||
| 317 | #define RCU_OFL_TASKS_NORM_GP 0x1 /* Tasks blocking normal */ | ||
| 318 | /* GP were moved to root. */ | ||
| 319 | #define RCU_OFL_TASKS_EXP_GP 0x2 /* Tasks blocking expedited */ | ||
| 320 | /* GP were moved to root. */ | ||
| 321 | |||
| 242 | #ifdef RCU_TREE_NONCORE | 322 | #ifdef RCU_TREE_NONCORE |
| 243 | 323 | ||
| 244 | /* | 324 | /* |
| @@ -255,5 +335,37 @@ extern struct rcu_state rcu_preempt_state; | |||
| 255 | DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); | 335 | DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); |
| 256 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 336 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ |
| 257 | 337 | ||
| 258 | #endif /* #ifdef RCU_TREE_NONCORE */ | 338 | #else /* #ifdef RCU_TREE_NONCORE */ |
| 339 | |||
| 340 | /* Forward declarations for rcutree_plugin.h */ | ||
| 341 | static void rcu_bootup_announce(void); | ||
| 342 | long rcu_batches_completed(void); | ||
| 343 | static void rcu_preempt_note_context_switch(int cpu); | ||
| 344 | static int rcu_preempted_readers(struct rcu_node *rnp); | ||
| 345 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 346 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, | ||
| 347 | unsigned long flags); | ||
| 348 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 349 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 350 | static void rcu_print_task_stall(struct rcu_node *rnp); | ||
| 351 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 352 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp); | ||
| 353 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 354 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
| 355 | struct rcu_node *rnp, | ||
| 356 | struct rcu_data *rdp); | ||
| 357 | static void rcu_preempt_offline_cpu(int cpu); | ||
| 358 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 359 | static void rcu_preempt_check_callbacks(int cpu); | ||
| 360 | static void rcu_preempt_process_callbacks(void); | ||
| 361 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)); | ||
| 362 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU) | ||
| 363 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp); | ||
| 364 | #endif /* #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_TREE_PREEMPT_RCU) */ | ||
| 365 | static int rcu_preempt_pending(int cpu); | ||
| 366 | static int rcu_preempt_needs_cpu(int cpu); | ||
| 367 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu); | ||
| 368 | static void rcu_preempt_send_cbs_to_orphanage(void); | ||
| 369 | static void __init __rcu_init_preempt(void); | ||
| 259 | 370 | ||
| 371 | #endif /* #else #ifdef RCU_TREE_NONCORE */ | ||
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 47789369ea59..37fbccdf41d5 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
| @@ -24,16 +24,19 @@ | |||
| 24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> |
| 25 | */ | 25 | */ |
| 26 | 26 | ||
| 27 | #include <linux/delay.h> | ||
| 27 | 28 | ||
| 28 | #ifdef CONFIG_TREE_PREEMPT_RCU | 29 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 29 | 30 | ||
| 30 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | 31 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); |
| 31 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | 32 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); |
| 32 | 33 | ||
| 34 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); | ||
| 35 | |||
| 33 | /* | 36 | /* |
| 34 | * Tell them what RCU they are running. | 37 | * Tell them what RCU they are running. |
| 35 | */ | 38 | */ |
| 36 | static inline void rcu_bootup_announce(void) | 39 | static void __init rcu_bootup_announce(void) |
| 37 | { | 40 | { |
| 38 | printk(KERN_INFO | 41 | printk(KERN_INFO |
| 39 | "Experimental preemptable hierarchical RCU implementation.\n"); | 42 | "Experimental preemptable hierarchical RCU implementation.\n"); |
| @@ -64,22 +67,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
| 64 | * not in a quiescent state. There might be any number of tasks blocked | 67 | * not in a quiescent state. There might be any number of tasks blocked |
| 65 | * while in an RCU read-side critical section. | 68 | * while in an RCU read-side critical section. |
| 66 | */ | 69 | */ |
| 67 | static void rcu_preempt_qs_record(int cpu) | 70 | static void rcu_preempt_qs(int cpu) |
| 68 | { | 71 | { |
| 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 72 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); |
| 73 | rdp->passed_quiesc_completed = rdp->gpnum - 1; | ||
| 74 | barrier(); | ||
| 70 | rdp->passed_quiesc = 1; | 75 | rdp->passed_quiesc = 1; |
| 71 | rdp->passed_quiesc_completed = rdp->completed; | ||
| 72 | } | 76 | } |
| 73 | 77 | ||
| 74 | /* | 78 | /* |
| 75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | 79 | * We have entered the scheduler, and the current task might soon be |
| 76 | * If we are in an RCU read-side critical section, we need to reflect | 80 | * context-switched away from. If this task is in an RCU read-side |
| 77 | * that in the state of the rcu_node structure corresponding to this CPU. | 81 | * critical section, we will no longer be able to rely on the CPU to |
| 78 | * Caller must disable hardirqs. | 82 | * record that fact, so we enqueue the task on the appropriate entry |
| 83 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
| 84 | * it exits the outermost enclosing RCU read-side critical section. | ||
| 85 | * Therefore, the current grace period cannot be permitted to complete | ||
| 86 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
| 87 | * rnp->gpnum empties. | ||
| 88 | * | ||
| 89 | * Caller must disable preemption. | ||
| 79 | */ | 90 | */ |
| 80 | static void rcu_preempt_qs(int cpu) | 91 | static void rcu_preempt_note_context_switch(int cpu) |
| 81 | { | 92 | { |
| 82 | struct task_struct *t = current; | 93 | struct task_struct *t = current; |
| 94 | unsigned long flags; | ||
| 83 | int phase; | 95 | int phase; |
| 84 | struct rcu_data *rdp; | 96 | struct rcu_data *rdp; |
| 85 | struct rcu_node *rnp; | 97 | struct rcu_node *rnp; |
| @@ -90,7 +102,7 @@ static void rcu_preempt_qs(int cpu) | |||
| 90 | /* Possibly blocking in an RCU read-side critical section. */ | 102 | /* Possibly blocking in an RCU read-side critical section. */ |
| 91 | rdp = rcu_preempt_state.rda[cpu]; | 103 | rdp = rcu_preempt_state.rda[cpu]; |
| 92 | rnp = rdp->mynode; | 104 | rnp = rdp->mynode; |
| 93 | spin_lock(&rnp->lock); | 105 | spin_lock_irqsave(&rnp->lock, flags); |
| 94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 106 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
| 95 | t->rcu_blocked_node = rnp; | 107 | t->rcu_blocked_node = rnp; |
| 96 | 108 | ||
| @@ -103,11 +115,15 @@ static void rcu_preempt_qs(int cpu) | |||
| 103 | * state for the current grace period), then as long | 115 | * state for the current grace period), then as long |
| 104 | * as that task remains queued, the current grace period | 116 | * as that task remains queued, the current grace period |
| 105 | * cannot end. | 117 | * cannot end. |
| 118 | * | ||
| 119 | * But first, note that the current CPU must still be | ||
| 120 | * on line! | ||
| 106 | */ | 121 | */ |
| 107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | 122 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
| 123 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
| 124 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
| 108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | 125 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); |
| 109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | 126 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 110 | spin_unlock(&rnp->lock); | ||
| 111 | } | 127 | } |
| 112 | 128 | ||
| 113 | /* | 129 | /* |
| @@ -119,9 +135,10 @@ static void rcu_preempt_qs(int cpu) | |||
| 119 | * grace period, then the fact that the task has been enqueued | 135 | * grace period, then the fact that the task has been enqueued |
| 120 | * means that we continue to block the current grace period. | 136 | * means that we continue to block the current grace period. |
| 121 | */ | 137 | */ |
| 122 | rcu_preempt_qs_record(cpu); | 138 | rcu_preempt_qs(cpu); |
| 123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | 139 | local_irq_save(flags); |
| 124 | RCU_READ_UNLOCK_GOT_QS); | 140 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 141 | local_irq_restore(flags); | ||
| 125 | } | 142 | } |
| 126 | 143 | ||
| 127 | /* | 144 | /* |
| @@ -136,11 +153,65 @@ void __rcu_read_lock(void) | |||
| 136 | } | 153 | } |
| 137 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 154 | EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| 138 | 155 | ||
| 156 | /* | ||
| 157 | * Check for preempted RCU readers blocking the current grace period | ||
| 158 | * for the specified rcu_node structure. If the caller needs a reliable | ||
| 159 | * answer, it must hold the rcu_node's ->lock. | ||
| 160 | */ | ||
| 161 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 162 | { | ||
| 163 | int phase = rnp->gpnum & 0x1; | ||
| 164 | |||
| 165 | return !list_empty(&rnp->blocked_tasks[phase]) || | ||
| 166 | !list_empty(&rnp->blocked_tasks[phase + 2]); | ||
| 167 | } | ||
| 168 | |||
| 169 | /* | ||
| 170 | * Record a quiescent state for all tasks that were previously queued | ||
| 171 | * on the specified rcu_node structure and that were blocking the current | ||
| 172 | * RCU grace period. The caller must hold the specified rnp->lock with | ||
| 173 | * irqs disabled, and this lock is released upon return, but irqs remain | ||
| 174 | * disabled. | ||
| 175 | */ | ||
| 176 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | ||
| 177 | __releases(rnp->lock) | ||
| 178 | { | ||
| 179 | unsigned long mask; | ||
| 180 | struct rcu_node *rnp_p; | ||
| 181 | |||
| 182 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { | ||
| 183 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 184 | return; /* Still need more quiescent states! */ | ||
| 185 | } | ||
| 186 | |||
| 187 | rnp_p = rnp->parent; | ||
| 188 | if (rnp_p == NULL) { | ||
| 189 | /* | ||
| 190 | * Either there is only one rcu_node in the tree, | ||
| 191 | * or tasks were kicked up to root rcu_node due to | ||
| 192 | * CPUs going offline. | ||
| 193 | */ | ||
| 194 | rcu_report_qs_rsp(&rcu_preempt_state, flags); | ||
| 195 | return; | ||
| 196 | } | ||
| 197 | |||
| 198 | /* Report up the rest of the hierarchy. */ | ||
| 199 | mask = rnp->grpmask; | ||
| 200 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 201 | spin_lock(&rnp_p->lock); /* irqs already disabled. */ | ||
| 202 | rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); | ||
| 203 | } | ||
| 204 | |||
| 205 | /* | ||
| 206 | * Handle special cases during rcu_read_unlock(), such as needing to | ||
| 207 | * notify RCU core processing or task having blocked during the RCU | ||
| 208 | * read-side critical section. | ||
| 209 | */ | ||
| 139 | static void rcu_read_unlock_special(struct task_struct *t) | 210 | static void rcu_read_unlock_special(struct task_struct *t) |
| 140 | { | 211 | { |
| 141 | int empty; | 212 | int empty; |
| 213 | int empty_exp; | ||
| 142 | unsigned long flags; | 214 | unsigned long flags; |
| 143 | unsigned long mask; | ||
| 144 | struct rcu_node *rnp; | 215 | struct rcu_node *rnp; |
| 145 | int special; | 216 | int special; |
| 146 | 217 | ||
| @@ -157,7 +228,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 157 | special = t->rcu_read_unlock_special; | 228 | special = t->rcu_read_unlock_special; |
| 158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | 229 | if (special & RCU_READ_UNLOCK_NEED_QS) { |
| 159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 230 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | 231 | rcu_preempt_qs(smp_processor_id()); |
| 161 | } | 232 | } |
| 162 | 233 | ||
| 163 | /* Hardware IRQ handlers cannot block. */ | 234 | /* Hardware IRQ handlers cannot block. */ |
| @@ -177,42 +248,36 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 177 | */ | 248 | */ |
| 178 | for (;;) { | 249 | for (;;) { |
| 179 | rnp = t->rcu_blocked_node; | 250 | rnp = t->rcu_blocked_node; |
| 180 | spin_lock(&rnp->lock); | 251 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 181 | if (rnp == t->rcu_blocked_node) | 252 | if (rnp == t->rcu_blocked_node) |
| 182 | break; | 253 | break; |
| 183 | spin_unlock(&rnp->lock); | 254 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 184 | } | 255 | } |
| 185 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | 256 | empty = !rcu_preempted_readers(rnp); |
| 257 | empty_exp = !rcu_preempted_readers_exp(rnp); | ||
| 258 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | ||
| 186 | list_del_init(&t->rcu_node_entry); | 259 | list_del_init(&t->rcu_node_entry); |
| 187 | t->rcu_blocked_node = NULL; | 260 | t->rcu_blocked_node = NULL; |
| 188 | 261 | ||
| 189 | /* | 262 | /* |
| 190 | * If this was the last task on the current list, and if | 263 | * If this was the last task on the current list, and if |
| 191 | * we aren't waiting on any CPUs, report the quiescent state. | 264 | * we aren't waiting on any CPUs, report the quiescent state. |
| 192 | * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() | 265 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock. |
| 193 | * drop rnp->lock and restore irq. | ||
| 194 | */ | 266 | */ |
| 195 | if (!empty && rnp->qsmask == 0 && | 267 | if (empty) |
| 196 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | ||
| 197 | t->rcu_read_unlock_special &= | ||
| 198 | ~(RCU_READ_UNLOCK_NEED_QS | | ||
| 199 | RCU_READ_UNLOCK_GOT_QS); | ||
| 200 | if (rnp->parent == NULL) { | ||
| 201 | /* Only one rcu_node in the tree. */ | ||
| 202 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | ||
| 203 | return; | ||
| 204 | } | ||
| 205 | /* Report up the rest of the hierarchy. */ | ||
| 206 | mask = rnp->grpmask; | ||
| 207 | spin_unlock_irqrestore(&rnp->lock, flags); | 268 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 208 | rnp = rnp->parent; | 269 | else |
| 209 | spin_lock_irqsave(&rnp->lock, flags); | 270 | rcu_report_unblock_qs_rnp(rnp, flags); |
| 210 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | 271 | |
| 211 | return; | 272 | /* |
| 212 | } | 273 | * If this was the last task on the expedited lists, |
| 213 | spin_unlock(&rnp->lock); | 274 | * then we need to report up the rcu_node hierarchy. |
| 275 | */ | ||
| 276 | if (!empty_exp && !rcu_preempted_readers_exp(rnp)) | ||
| 277 | rcu_report_exp_rnp(&rcu_preempt_state, rnp); | ||
| 278 | } else { | ||
| 279 | local_irq_restore(flags); | ||
| 214 | } | 280 | } |
| 215 | local_irq_restore(flags); | ||
| 216 | } | 281 | } |
| 217 | 282 | ||
| 218 | /* | 283 | /* |
| @@ -243,12 +308,12 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
| 243 | { | 308 | { |
| 244 | unsigned long flags; | 309 | unsigned long flags; |
| 245 | struct list_head *lp; | 310 | struct list_head *lp; |
| 246 | int phase = rnp->gpnum & 0x1; | 311 | int phase; |
| 247 | struct task_struct *t; | 312 | struct task_struct *t; |
| 248 | 313 | ||
| 249 | if (!list_empty(&rnp->blocked_tasks[phase])) { | 314 | if (rcu_preempted_readers(rnp)) { |
| 250 | spin_lock_irqsave(&rnp->lock, flags); | 315 | spin_lock_irqsave(&rnp->lock, flags); |
| 251 | phase = rnp->gpnum & 0x1; /* re-read under lock. */ | 316 | phase = rnp->gpnum & 0x1; |
| 252 | lp = &rnp->blocked_tasks[phase]; | 317 | lp = &rnp->blocked_tasks[phase]; |
| 253 | list_for_each_entry(t, lp, rcu_node_entry) | 318 | list_for_each_entry(t, lp, rcu_node_entry) |
| 254 | printk(" P%d", t->pid); | 319 | printk(" P%d", t->pid); |
| @@ -259,13 +324,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
| 259 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 324 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 260 | 325 | ||
| 261 | /* | 326 | /* |
| 262 | * Check for preempted RCU readers for the specified rcu_node structure. | 327 | * Check that the list of blocked tasks for the newly completed grace |
| 263 | * If the caller needs a reliable answer, it must hold the rcu_node's | 328 | * period is in fact empty. It is a serious bug to complete a grace |
| 264 | * >lock. | 329 | * period that still has RCU readers blocked! This function must be |
| 330 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
| 331 | * must be held by the caller. | ||
| 265 | */ | 332 | */ |
| 266 | static int rcu_preempted_readers(struct rcu_node *rnp) | 333 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| 267 | { | 334 | { |
| 268 | return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | 335 | WARN_ON_ONCE(rcu_preempted_readers(rnp)); |
| 336 | WARN_ON_ONCE(rnp->qsmask); | ||
| 269 | } | 337 | } |
| 270 | 338 | ||
| 271 | #ifdef CONFIG_HOTPLUG_CPU | 339 | #ifdef CONFIG_HOTPLUG_CPU |
| @@ -276,22 +344,34 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
| 276 | * rcu_node. The reason for not just moving them to the immediate | 344 | * rcu_node. The reason for not just moving them to the immediate |
| 277 | * parent is to remove the need for rcu_read_unlock_special() to | 345 | * parent is to remove the need for rcu_read_unlock_special() to |
| 278 | * make more than two attempts to acquire the target rcu_node's lock. | 346 | * make more than two attempts to acquire the target rcu_node's lock. |
| 347 | * Returns true if there were tasks blocking the current RCU grace | ||
| 348 | * period. | ||
| 349 | * | ||
| 350 | * Returns 1 if there was previously a task blocking the current grace | ||
| 351 | * period on the specified rcu_node structure. | ||
| 279 | * | 352 | * |
| 280 | * The caller must hold rnp->lock with irqs disabled. | 353 | * The caller must hold rnp->lock with irqs disabled. |
| 281 | */ | 354 | */ |
| 282 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 355 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
| 283 | struct rcu_node *rnp) | 356 | struct rcu_node *rnp, |
| 357 | struct rcu_data *rdp) | ||
| 284 | { | 358 | { |
| 285 | int i; | 359 | int i; |
| 286 | struct list_head *lp; | 360 | struct list_head *lp; |
| 287 | struct list_head *lp_root; | 361 | struct list_head *lp_root; |
| 362 | int retval = 0; | ||
| 288 | struct rcu_node *rnp_root = rcu_get_root(rsp); | 363 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
| 289 | struct task_struct *tp; | 364 | struct task_struct *tp; |
| 290 | 365 | ||
| 291 | if (rnp == rnp_root) { | 366 | if (rnp == rnp_root) { |
| 292 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 367 | WARN_ONCE(1, "Last CPU thought to be offlined?"); |
| 293 | return; /* Shouldn't happen: at least one CPU online. */ | 368 | return 0; /* Shouldn't happen: at least one CPU online. */ |
| 294 | } | 369 | } |
| 370 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
| 371 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
| 372 | !list_empty(&rnp->blocked_tasks[1]) || | ||
| 373 | !list_empty(&rnp->blocked_tasks[2]) || | ||
| 374 | !list_empty(&rnp->blocked_tasks[3]))); | ||
| 295 | 375 | ||
| 296 | /* | 376 | /* |
| 297 | * Move tasks up to root rcu_node. Rely on the fact that the | 377 | * Move tasks up to root rcu_node. Rely on the fact that the |
| @@ -299,7 +379,11 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
| 299 | * rcu_nodes in terms of gp_num value. This fact allows us to | 379 | * rcu_nodes in terms of gp_num value. This fact allows us to |
| 300 | * move the blocked_tasks[] array directly, element by element. | 380 | * move the blocked_tasks[] array directly, element by element. |
| 301 | */ | 381 | */ |
| 302 | for (i = 0; i < 2; i++) { | 382 | if (rcu_preempted_readers(rnp)) |
| 383 | retval |= RCU_OFL_TASKS_NORM_GP; | ||
| 384 | if (rcu_preempted_readers_exp(rnp)) | ||
| 385 | retval |= RCU_OFL_TASKS_EXP_GP; | ||
| 386 | for (i = 0; i < 4; i++) { | ||
| 303 | lp = &rnp->blocked_tasks[i]; | 387 | lp = &rnp->blocked_tasks[i]; |
| 304 | lp_root = &rnp_root->blocked_tasks[i]; | 388 | lp_root = &rnp_root->blocked_tasks[i]; |
| 305 | while (!list_empty(lp)) { | 389 | while (!list_empty(lp)) { |
| @@ -311,6 +395,7 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
| 311 | spin_unlock(&rnp_root->lock); /* irqs remain disabled */ | 395 | spin_unlock(&rnp_root->lock); /* irqs remain disabled */ |
| 312 | } | 396 | } |
| 313 | } | 397 | } |
| 398 | return retval; | ||
| 314 | } | 399 | } |
| 315 | 400 | ||
| 316 | /* | 401 | /* |
| @@ -335,20 +420,12 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
| 335 | struct task_struct *t = current; | 420 | struct task_struct *t = current; |
| 336 | 421 | ||
| 337 | if (t->rcu_read_lock_nesting == 0) { | 422 | if (t->rcu_read_lock_nesting == 0) { |
| 338 | t->rcu_read_unlock_special &= | 423 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 339 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | 424 | rcu_preempt_qs(cpu); |
| 340 | rcu_preempt_qs_record(cpu); | ||
| 341 | return; | 425 | return; |
| 342 | } | 426 | } |
| 343 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | 427 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) |
| 344 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | 428 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
| 345 | rcu_preempt_qs_record(cpu); | ||
| 346 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | ||
| 347 | } else if (!(t->rcu_read_unlock_special & | ||
| 348 | RCU_READ_UNLOCK_NEED_QS)) { | ||
| 349 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
| 350 | } | ||
| 351 | } | ||
| 352 | } | 429 | } |
| 353 | 430 | ||
| 354 | /* | 431 | /* |
| @@ -369,6 +446,186 @@ void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |||
| 369 | } | 446 | } |
| 370 | EXPORT_SYMBOL_GPL(call_rcu); | 447 | EXPORT_SYMBOL_GPL(call_rcu); |
| 371 | 448 | ||
| 449 | /** | ||
| 450 | * synchronize_rcu - wait until a grace period has elapsed. | ||
| 451 | * | ||
| 452 | * Control will return to the caller some time after a full grace | ||
| 453 | * period has elapsed, in other words after all currently executing RCU | ||
| 454 | * read-side critical sections have completed. RCU read-side critical | ||
| 455 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), | ||
| 456 | * and may be nested. | ||
| 457 | */ | ||
| 458 | void synchronize_rcu(void) | ||
| 459 | { | ||
| 460 | struct rcu_synchronize rcu; | ||
| 461 | |||
| 462 | if (!rcu_scheduler_active) | ||
| 463 | return; | ||
| 464 | |||
| 465 | init_completion(&rcu.completion); | ||
| 466 | /* Will wake me after RCU finished. */ | ||
| 467 | call_rcu(&rcu.head, wakeme_after_rcu); | ||
| 468 | /* Wait for it. */ | ||
| 469 | wait_for_completion(&rcu.completion); | ||
| 470 | } | ||
| 471 | EXPORT_SYMBOL_GPL(synchronize_rcu); | ||
| 472 | |||
| 473 | static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); | ||
| 474 | static long sync_rcu_preempt_exp_count; | ||
| 475 | static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); | ||
| 476 | |||
| 477 | /* | ||
| 478 | * Return non-zero if there are any tasks in RCU read-side critical | ||
| 479 | * sections blocking the current preemptible-RCU expedited grace period. | ||
| 480 | * If there is no preemptible-RCU expedited grace period currently in | ||
| 481 | * progress, returns zero unconditionally. | ||
| 482 | */ | ||
| 483 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | ||
| 484 | { | ||
| 485 | return !list_empty(&rnp->blocked_tasks[2]) || | ||
| 486 | !list_empty(&rnp->blocked_tasks[3]); | ||
| 487 | } | ||
| 488 | |||
| 489 | /* | ||
| 490 | * return non-zero if there is no RCU expedited grace period in progress | ||
| 491 | * for the specified rcu_node structure, in other words, if all CPUs and | ||
| 492 | * tasks covered by the specified rcu_node structure have done their bit | ||
| 493 | * for the current expedited grace period. Works only for preemptible | ||
| 494 | * RCU -- other RCU implementation use other means. | ||
| 495 | * | ||
| 496 | * Caller must hold sync_rcu_preempt_exp_mutex. | ||
| 497 | */ | ||
| 498 | static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) | ||
| 499 | { | ||
| 500 | return !rcu_preempted_readers_exp(rnp) && | ||
| 501 | ACCESS_ONCE(rnp->expmask) == 0; | ||
| 502 | } | ||
| 503 | |||
| 504 | /* | ||
| 505 | * Report the exit from RCU read-side critical section for the last task | ||
| 506 | * that queued itself during or before the current expedited preemptible-RCU | ||
| 507 | * grace period. This event is reported either to the rcu_node structure on | ||
| 508 | * which the task was queued or to one of that rcu_node structure's ancestors, | ||
| 509 | * recursively up the tree. (Calm down, calm down, we do the recursion | ||
| 510 | * iteratively!) | ||
| 511 | * | ||
| 512 | * Caller must hold sync_rcu_preempt_exp_mutex. | ||
| 513 | */ | ||
| 514 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | ||
| 515 | { | ||
| 516 | unsigned long flags; | ||
| 517 | unsigned long mask; | ||
| 518 | |||
| 519 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 520 | for (;;) { | ||
| 521 | if (!sync_rcu_preempt_exp_done(rnp)) | ||
| 522 | break; | ||
| 523 | if (rnp->parent == NULL) { | ||
| 524 | wake_up(&sync_rcu_preempt_exp_wq); | ||
| 525 | break; | ||
| 526 | } | ||
| 527 | mask = rnp->grpmask; | ||
| 528 | spin_unlock(&rnp->lock); /* irqs remain disabled */ | ||
| 529 | rnp = rnp->parent; | ||
| 530 | spin_lock(&rnp->lock); /* irqs already disabled */ | ||
| 531 | rnp->expmask &= ~mask; | ||
| 532 | } | ||
| 533 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 534 | } | ||
| 535 | |||
| 536 | /* | ||
| 537 | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | ||
| 538 | * grace period for the specified rcu_node structure. If there are no such | ||
| 539 | * tasks, report it up the rcu_node hierarchy. | ||
| 540 | * | ||
| 541 | * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock. | ||
| 542 | */ | ||
| 543 | static void | ||
| 544 | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | ||
| 545 | { | ||
| 546 | int must_wait; | ||
| 547 | |||
| 548 | spin_lock(&rnp->lock); /* irqs already disabled */ | ||
| 549 | list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]); | ||
| 550 | list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]); | ||
| 551 | must_wait = rcu_preempted_readers_exp(rnp); | ||
| 552 | spin_unlock(&rnp->lock); /* irqs remain disabled */ | ||
| 553 | if (!must_wait) | ||
| 554 | rcu_report_exp_rnp(rsp, rnp); | ||
| 555 | } | ||
| 556 | |||
| 557 | /* | ||
| 558 | * Wait for an rcu-preempt grace period, but expedite it. The basic idea | ||
| 559 | * is to invoke synchronize_sched_expedited() to push all the tasks to | ||
| 560 | * the ->blocked_tasks[] lists, move all entries from the first set of | ||
| 561 | * ->blocked_tasks[] lists to the second set, and finally wait for this | ||
| 562 | * second set to drain. | ||
| 563 | */ | ||
| 564 | void synchronize_rcu_expedited(void) | ||
| 565 | { | ||
| 566 | unsigned long flags; | ||
| 567 | struct rcu_node *rnp; | ||
| 568 | struct rcu_state *rsp = &rcu_preempt_state; | ||
| 569 | long snap; | ||
| 570 | int trycount = 0; | ||
| 571 | |||
| 572 | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | ||
| 573 | snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; | ||
| 574 | smp_mb(); /* Above access cannot bleed into critical section. */ | ||
| 575 | |||
| 576 | /* | ||
| 577 | * Acquire lock, falling back to synchronize_rcu() if too many | ||
| 578 | * lock-acquisition failures. Of course, if someone does the | ||
| 579 | * expedited grace period for us, just leave. | ||
| 580 | */ | ||
| 581 | while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { | ||
| 582 | if (trycount++ < 10) | ||
| 583 | udelay(trycount * num_online_cpus()); | ||
| 584 | else { | ||
| 585 | synchronize_rcu(); | ||
| 586 | return; | ||
| 587 | } | ||
| 588 | if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0) | ||
| 589 | goto mb_ret; /* Others did our work for us. */ | ||
| 590 | } | ||
| 591 | if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0) | ||
| 592 | goto unlock_mb_ret; /* Others did our work for us. */ | ||
| 593 | |||
| 594 | /* force all RCU readers onto blocked_tasks[]. */ | ||
| 595 | synchronize_sched_expedited(); | ||
| 596 | |||
| 597 | spin_lock_irqsave(&rsp->onofflock, flags); | ||
| 598 | |||
| 599 | /* Initialize ->expmask for all non-leaf rcu_node structures. */ | ||
| 600 | rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { | ||
| 601 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
| 602 | rnp->expmask = rnp->qsmaskinit; | ||
| 603 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 604 | } | ||
| 605 | |||
| 606 | /* Snapshot current state of ->blocked_tasks[] lists. */ | ||
| 607 | rcu_for_each_leaf_node(rsp, rnp) | ||
| 608 | sync_rcu_preempt_exp_init(rsp, rnp); | ||
| 609 | if (NUM_RCU_NODES > 1) | ||
| 610 | sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); | ||
| 611 | |||
| 612 | spin_unlock_irqrestore(&rsp->onofflock, flags); | ||
| 613 | |||
| 614 | /* Wait for snapshotted ->blocked_tasks[] lists to drain. */ | ||
| 615 | rnp = rcu_get_root(rsp); | ||
| 616 | wait_event(sync_rcu_preempt_exp_wq, | ||
| 617 | sync_rcu_preempt_exp_done(rnp)); | ||
| 618 | |||
| 619 | /* Clean up and exit. */ | ||
| 620 | smp_mb(); /* ensure expedited GP seen before counter increment. */ | ||
| 621 | ACCESS_ONCE(sync_rcu_preempt_exp_count)++; | ||
| 622 | unlock_mb_ret: | ||
| 623 | mutex_unlock(&sync_rcu_preempt_exp_mutex); | ||
| 624 | mb_ret: | ||
| 625 | smp_mb(); /* ensure subsequent action seen after grace period. */ | ||
| 626 | } | ||
| 627 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | ||
| 628 | |||
| 372 | /* | 629 | /* |
| 373 | * Check to see if there is any immediate preemptable-RCU-related work | 630 | * Check to see if there is any immediate preemptable-RCU-related work |
| 374 | * to be done. | 631 | * to be done. |
| @@ -387,6 +644,15 @@ static int rcu_preempt_needs_cpu(int cpu) | |||
| 387 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; | 644 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; |
| 388 | } | 645 | } |
| 389 | 646 | ||
| 647 | /** | ||
| 648 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | ||
| 649 | */ | ||
| 650 | void rcu_barrier(void) | ||
| 651 | { | ||
| 652 | _rcu_barrier(&rcu_preempt_state, call_rcu); | ||
| 653 | } | ||
| 654 | EXPORT_SYMBOL_GPL(rcu_barrier); | ||
| 655 | |||
| 390 | /* | 656 | /* |
| 391 | * Initialize preemptable RCU's per-CPU data. | 657 | * Initialize preemptable RCU's per-CPU data. |
| 392 | */ | 658 | */ |
| @@ -396,6 +662,22 @@ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |||
| 396 | } | 662 | } |
| 397 | 663 | ||
| 398 | /* | 664 | /* |
| 665 | * Move preemptable RCU's callbacks to ->orphan_cbs_list. | ||
| 666 | */ | ||
| 667 | static void rcu_preempt_send_cbs_to_orphanage(void) | ||
| 668 | { | ||
| 669 | rcu_send_cbs_to_orphanage(&rcu_preempt_state); | ||
| 670 | } | ||
| 671 | |||
| 672 | /* | ||
| 673 | * Initialize preemptable RCU's state structures. | ||
| 674 | */ | ||
| 675 | static void __init __rcu_init_preempt(void) | ||
| 676 | { | ||
| 677 | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | ||
| 678 | } | ||
| 679 | |||
| 680 | /* | ||
| 399 | * Check for a task exiting while in a preemptable-RCU read-side | 681 | * Check for a task exiting while in a preemptable-RCU read-side |
| 400 | * critical section, clean up if so. No need to issue warnings, | 682 | * critical section, clean up if so. No need to issue warnings, |
| 401 | * as debug_check_no_locks_held() already does this if lockdep | 683 | * as debug_check_no_locks_held() already does this if lockdep |
| @@ -416,7 +698,7 @@ void exit_rcu(void) | |||
| 416 | /* | 698 | /* |
| 417 | * Tell them what RCU they are running. | 699 | * Tell them what RCU they are running. |
| 418 | */ | 700 | */ |
| 419 | static inline void rcu_bootup_announce(void) | 701 | static void __init rcu_bootup_announce(void) |
| 420 | { | 702 | { |
| 421 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | 703 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); |
| 422 | } | 704 | } |
| @@ -434,10 +716,29 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
| 434 | * Because preemptable RCU does not exist, we never have to check for | 716 | * Because preemptable RCU does not exist, we never have to check for |
| 435 | * CPUs being in quiescent states. | 717 | * CPUs being in quiescent states. |
| 436 | */ | 718 | */ |
| 437 | static void rcu_preempt_qs(int cpu) | 719 | static void rcu_preempt_note_context_switch(int cpu) |
| 720 | { | ||
| 721 | } | ||
| 722 | |||
| 723 | /* | ||
| 724 | * Because preemptable RCU does not exist, there are never any preempted | ||
| 725 | * RCU readers. | ||
| 726 | */ | ||
| 727 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 438 | { | 728 | { |
| 729 | return 0; | ||
| 730 | } | ||
| 731 | |||
| 732 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 733 | |||
| 734 | /* Because preemptible RCU does not exist, no quieting of tasks. */ | ||
| 735 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | ||
| 736 | { | ||
| 737 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 439 | } | 738 | } |
| 440 | 739 | ||
| 740 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 741 | |||
| 441 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 742 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| 442 | 743 | ||
| 443 | /* | 744 | /* |
| @@ -451,23 +752,28 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
| 451 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 752 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 452 | 753 | ||
| 453 | /* | 754 | /* |
| 454 | * Because preemptable RCU does not exist, there are never any preempted | 755 | * Because there is no preemptable RCU, there can be no readers blocked, |
| 455 | * RCU readers. | 756 | * so there is no need to check for blocked tasks. So check only for |
| 757 | * bogus qsmask values. | ||
| 456 | */ | 758 | */ |
| 457 | static int rcu_preempted_readers(struct rcu_node *rnp) | 759 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
| 458 | { | 760 | { |
| 459 | return 0; | 761 | WARN_ON_ONCE(rnp->qsmask); |
| 460 | } | 762 | } |
| 461 | 763 | ||
| 462 | #ifdef CONFIG_HOTPLUG_CPU | 764 | #ifdef CONFIG_HOTPLUG_CPU |
| 463 | 765 | ||
| 464 | /* | 766 | /* |
| 465 | * Because preemptable RCU does not exist, it never needs to migrate | 767 | * Because preemptable RCU does not exist, it never needs to migrate |
| 466 | * tasks that were blocked within RCU read-side critical sections. | 768 | * tasks that were blocked within RCU read-side critical sections, and |
| 769 | * such non-existent tasks cannot possibly have been blocking the current | ||
| 770 | * grace period. | ||
| 467 | */ | 771 | */ |
| 468 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 772 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
| 469 | struct rcu_node *rnp) | 773 | struct rcu_node *rnp, |
| 774 | struct rcu_data *rdp) | ||
| 470 | { | 775 | { |
| 776 | return 0; | ||
| 471 | } | 777 | } |
| 472 | 778 | ||
| 473 | /* | 779 | /* |
| @@ -484,7 +790,7 @@ static void rcu_preempt_offline_cpu(int cpu) | |||
| 484 | * Because preemptable RCU does not exist, it never has any callbacks | 790 | * Because preemptable RCU does not exist, it never has any callbacks |
| 485 | * to check. | 791 | * to check. |
| 486 | */ | 792 | */ |
| 487 | void rcu_preempt_check_callbacks(int cpu) | 793 | static void rcu_preempt_check_callbacks(int cpu) |
| 488 | { | 794 | { |
| 489 | } | 795 | } |
| 490 | 796 | ||
| @@ -492,7 +798,7 @@ void rcu_preempt_check_callbacks(int cpu) | |||
| 492 | * Because preemptable RCU does not exist, it never has any callbacks | 798 | * Because preemptable RCU does not exist, it never has any callbacks |
| 493 | * to process. | 799 | * to process. |
| 494 | */ | 800 | */ |
| 495 | void rcu_preempt_process_callbacks(void) | 801 | static void rcu_preempt_process_callbacks(void) |
| 496 | { | 802 | { |
| 497 | } | 803 | } |
| 498 | 804 | ||
| @@ -506,6 +812,30 @@ void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |||
| 506 | EXPORT_SYMBOL_GPL(call_rcu); | 812 | EXPORT_SYMBOL_GPL(call_rcu); |
| 507 | 813 | ||
| 508 | /* | 814 | /* |
| 815 | * Wait for an rcu-preempt grace period, but make it happen quickly. | ||
| 816 | * But because preemptable RCU does not exist, map to rcu-sched. | ||
| 817 | */ | ||
| 818 | void synchronize_rcu_expedited(void) | ||
| 819 | { | ||
| 820 | synchronize_sched_expedited(); | ||
| 821 | } | ||
| 822 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | ||
| 823 | |||
| 824 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 825 | |||
| 826 | /* | ||
| 827 | * Because preemptable RCU does not exist, there is never any need to | ||
| 828 | * report on tasks preempted in RCU read-side critical sections during | ||
| 829 | * expedited RCU grace periods. | ||
| 830 | */ | ||
| 831 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp) | ||
| 832 | { | ||
| 833 | return; | ||
| 834 | } | ||
| 835 | |||
| 836 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 837 | |||
| 838 | /* | ||
| 509 | * Because preemptable RCU does not exist, it never has any work to do. | 839 | * Because preemptable RCU does not exist, it never has any work to do. |
| 510 | */ | 840 | */ |
| 511 | static int rcu_preempt_pending(int cpu) | 841 | static int rcu_preempt_pending(int cpu) |
| @@ -522,6 +852,16 @@ static int rcu_preempt_needs_cpu(int cpu) | |||
| 522 | } | 852 | } |
| 523 | 853 | ||
| 524 | /* | 854 | /* |
| 855 | * Because preemptable RCU does not exist, rcu_barrier() is just | ||
| 856 | * another name for rcu_barrier_sched(). | ||
| 857 | */ | ||
| 858 | void rcu_barrier(void) | ||
| 859 | { | ||
| 860 | rcu_barrier_sched(); | ||
| 861 | } | ||
| 862 | EXPORT_SYMBOL_GPL(rcu_barrier); | ||
| 863 | |||
| 864 | /* | ||
| 525 | * Because preemptable RCU does not exist, there is no per-CPU | 865 | * Because preemptable RCU does not exist, there is no per-CPU |
| 526 | * data to initialize. | 866 | * data to initialize. |
| 527 | */ | 867 | */ |
| @@ -529,4 +869,18 @@ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |||
| 529 | { | 869 | { |
| 530 | } | 870 | } |
| 531 | 871 | ||
| 872 | /* | ||
| 873 | * Because there is no preemptable RCU, there are no callbacks to move. | ||
| 874 | */ | ||
| 875 | static void rcu_preempt_send_cbs_to_orphanage(void) | ||
| 876 | { | ||
| 877 | } | ||
| 878 | |||
| 879 | /* | ||
| 880 | * Because preemptable RCU does not exist, it need not be initialized. | ||
| 881 | */ | ||
| 882 | static void __init __rcu_init_preempt(void) | ||
| 883 | { | ||
| 884 | } | ||
| 885 | |||
| 532 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | 886 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ |
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index 0ea1bff69727..9d2c88423b31 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
| @@ -20,7 +20,7 @@ | |||
| 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
| 21 | * | 21 | * |
| 22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
| 23 | * Documentation/RCU | 23 | * Documentation/RCU |
| 24 | * | 24 | * |
| 25 | */ | 25 | */ |
| 26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
| @@ -93,7 +93,7 @@ static int rcudata_open(struct inode *inode, struct file *file) | |||
| 93 | return single_open(file, show_rcudata, NULL); | 93 | return single_open(file, show_rcudata, NULL); |
| 94 | } | 94 | } |
| 95 | 95 | ||
| 96 | static struct file_operations rcudata_fops = { | 96 | static const struct file_operations rcudata_fops = { |
| 97 | .owner = THIS_MODULE, | 97 | .owner = THIS_MODULE, |
| 98 | .open = rcudata_open, | 98 | .open = rcudata_open, |
| 99 | .read = seq_read, | 99 | .read = seq_read, |
| @@ -145,7 +145,7 @@ static int rcudata_csv_open(struct inode *inode, struct file *file) | |||
| 145 | return single_open(file, show_rcudata_csv, NULL); | 145 | return single_open(file, show_rcudata_csv, NULL); |
| 146 | } | 146 | } |
| 147 | 147 | ||
| 148 | static struct file_operations rcudata_csv_fops = { | 148 | static const struct file_operations rcudata_csv_fops = { |
| 149 | .owner = THIS_MODULE, | 149 | .owner = THIS_MODULE, |
| 150 | .open = rcudata_csv_open, | 150 | .open = rcudata_csv_open, |
| 151 | .read = seq_read, | 151 | .read = seq_read, |
| @@ -155,24 +155,32 @@ static struct file_operations rcudata_csv_fops = { | |||
| 155 | 155 | ||
| 156 | static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) | 156 | static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) |
| 157 | { | 157 | { |
| 158 | long gpnum; | ||
| 158 | int level = 0; | 159 | int level = 0; |
| 160 | int phase; | ||
| 159 | struct rcu_node *rnp; | 161 | struct rcu_node *rnp; |
| 160 | 162 | ||
| 163 | gpnum = rsp->gpnum; | ||
| 161 | seq_printf(m, "c=%ld g=%ld s=%d jfq=%ld j=%x " | 164 | seq_printf(m, "c=%ld g=%ld s=%d jfq=%ld j=%x " |
| 162 | "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu\n", | 165 | "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu oqlen=%ld\n", |
| 163 | rsp->completed, rsp->gpnum, rsp->signaled, | 166 | rsp->completed, gpnum, rsp->signaled, |
| 164 | (long)(rsp->jiffies_force_qs - jiffies), | 167 | (long)(rsp->jiffies_force_qs - jiffies), |
| 165 | (int)(jiffies & 0xffff), | 168 | (int)(jiffies & 0xffff), |
| 166 | rsp->n_force_qs, rsp->n_force_qs_ngp, | 169 | rsp->n_force_qs, rsp->n_force_qs_ngp, |
| 167 | rsp->n_force_qs - rsp->n_force_qs_ngp, | 170 | rsp->n_force_qs - rsp->n_force_qs_ngp, |
| 168 | rsp->n_force_qs_lh); | 171 | rsp->n_force_qs_lh, rsp->orphan_qlen); |
| 169 | for (rnp = &rsp->node[0]; rnp - &rsp->node[0] < NUM_RCU_NODES; rnp++) { | 172 | for (rnp = &rsp->node[0]; rnp - &rsp->node[0] < NUM_RCU_NODES; rnp++) { |
| 170 | if (rnp->level != level) { | 173 | if (rnp->level != level) { |
| 171 | seq_puts(m, "\n"); | 174 | seq_puts(m, "\n"); |
| 172 | level = rnp->level; | 175 | level = rnp->level; |
| 173 | } | 176 | } |
| 174 | seq_printf(m, "%lx/%lx %d:%d ^%d ", | 177 | phase = gpnum & 0x1; |
| 178 | seq_printf(m, "%lx/%lx %c%c>%c%c %d:%d ^%d ", | ||
| 175 | rnp->qsmask, rnp->qsmaskinit, | 179 | rnp->qsmask, rnp->qsmaskinit, |
| 180 | "T."[list_empty(&rnp->blocked_tasks[phase])], | ||
| 181 | "E."[list_empty(&rnp->blocked_tasks[phase + 2])], | ||
| 182 | "T."[list_empty(&rnp->blocked_tasks[!phase])], | ||
| 183 | "E."[list_empty(&rnp->blocked_tasks[!phase + 2])], | ||
| 176 | rnp->grplo, rnp->grphi, rnp->grpnum); | 184 | rnp->grplo, rnp->grphi, rnp->grpnum); |
| 177 | } | 185 | } |
| 178 | seq_puts(m, "\n"); | 186 | seq_puts(m, "\n"); |
| @@ -196,7 +204,7 @@ static int rcuhier_open(struct inode *inode, struct file *file) | |||
| 196 | return single_open(file, show_rcuhier, NULL); | 204 | return single_open(file, show_rcuhier, NULL); |
| 197 | } | 205 | } |
| 198 | 206 | ||
| 199 | static struct file_operations rcuhier_fops = { | 207 | static const struct file_operations rcuhier_fops = { |
| 200 | .owner = THIS_MODULE, | 208 | .owner = THIS_MODULE, |
| 201 | .open = rcuhier_open, | 209 | .open = rcuhier_open, |
| 202 | .read = seq_read, | 210 | .read = seq_read, |
| @@ -222,7 +230,7 @@ static int rcugp_open(struct inode *inode, struct file *file) | |||
| 222 | return single_open(file, show_rcugp, NULL); | 230 | return single_open(file, show_rcugp, NULL); |
| 223 | } | 231 | } |
| 224 | 232 | ||
| 225 | static struct file_operations rcugp_fops = { | 233 | static const struct file_operations rcugp_fops = { |
| 226 | .owner = THIS_MODULE, | 234 | .owner = THIS_MODULE, |
| 227 | .open = rcugp_open, | 235 | .open = rcugp_open, |
| 228 | .read = seq_read, | 236 | .read = seq_read, |
| @@ -276,7 +284,7 @@ static int rcu_pending_open(struct inode *inode, struct file *file) | |||
| 276 | return single_open(file, show_rcu_pending, NULL); | 284 | return single_open(file, show_rcu_pending, NULL); |
| 277 | } | 285 | } |
| 278 | 286 | ||
| 279 | static struct file_operations rcu_pending_fops = { | 287 | static const struct file_operations rcu_pending_fops = { |
| 280 | .owner = THIS_MODULE, | 288 | .owner = THIS_MODULE, |
| 281 | .open = rcu_pending_open, | 289 | .open = rcu_pending_open, |
| 282 | .read = seq_read, | 290 | .read = seq_read, |
diff --git a/kernel/relay.c b/kernel/relay.c index bc188549788f..760c26209a3c 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
| @@ -60,7 +60,7 @@ static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
| 60 | /* | 60 | /* |
| 61 | * vm_ops for relay file mappings. | 61 | * vm_ops for relay file mappings. |
| 62 | */ | 62 | */ |
| 63 | static struct vm_operations_struct relay_file_mmap_ops = { | 63 | static const struct vm_operations_struct relay_file_mmap_ops = { |
| 64 | .fault = relay_buf_fault, | 64 | .fault = relay_buf_fault, |
| 65 | .close = relay_file_mmap_close, | 65 | .close = relay_file_mmap_close, |
| 66 | }; | 66 | }; |
diff --git a/kernel/res_counter.c b/kernel/res_counter.c index e1338f074314..bcdabf37c40b 100644 --- a/kernel/res_counter.c +++ b/kernel/res_counter.c | |||
| @@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent) | |||
| 19 | { | 19 | { |
| 20 | spin_lock_init(&counter->lock); | 20 | spin_lock_init(&counter->lock); |
| 21 | counter->limit = RESOURCE_MAX; | 21 | counter->limit = RESOURCE_MAX; |
| 22 | counter->soft_limit = RESOURCE_MAX; | ||
| 22 | counter->parent = parent; | 23 | counter->parent = parent; |
| 23 | } | 24 | } |
| 24 | 25 | ||
| @@ -101,6 +102,8 @@ res_counter_member(struct res_counter *counter, int member) | |||
| 101 | return &counter->limit; | 102 | return &counter->limit; |
| 102 | case RES_FAILCNT: | 103 | case RES_FAILCNT: |
| 103 | return &counter->failcnt; | 104 | return &counter->failcnt; |
| 105 | case RES_SOFT_LIMIT: | ||
| 106 | return &counter->soft_limit; | ||
| 104 | }; | 107 | }; |
| 105 | 108 | ||
| 106 | BUG(); | 109 | BUG(); |
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
| @@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
| 223 | 223 | ||
| 224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
| 225 | 225 | ||
| 226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
| 227 | /* | 227 | /* |
| 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
| 229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
| 230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
| 231 | */ | 231 | */ |
| 232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
| 233 | { | 233 | { |
| 234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
| 235 | struct resource *p; | 235 | struct resource *p; |
| @@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
| 245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
| 246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
| 247 | continue; | 247 | continue; |
| 248 | if (name && strcmp(p->name, name)) | ||
| 249 | continue; | ||
| 248 | if (p->start > end) { | 250 | if (p->start > end) { |
| 249 | p = NULL; | 251 | p = NULL; |
| 250 | break; | 252 | break; |
| @@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
| 262 | res->end = p->end; | 264 | res->end = p->end; |
| 263 | return 0; | 265 | return 0; |
| 264 | } | 266 | } |
| 265 | int | 267 | |
| 266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
| 267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
| 270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
| 271 | * Now, this function is only for "System RAM". | ||
| 272 | */ | ||
| 273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
| 274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
| 268 | { | 275 | { |
| 269 | struct resource res; | 276 | struct resource res; |
| 270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
| 271 | u64 orig_end; | 278 | u64 orig_end; |
| 272 | int ret = -1; | 279 | int ret = -1; |
| 280 | |||
| 273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
| 274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
| 275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| 276 | orig_end = res.end; | 284 | orig_end = res.end; |
| 277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
| 286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
| 278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
| 279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
| 280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index e27a53685ed9..aa31244caa9f 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -39,7 +39,7 @@ | |||
| 39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
| 40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
| 41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
| 42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
| 43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
| 44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
| 45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
| @@ -119,8 +119,6 @@ | |||
| 119 | */ | 119 | */ |
| 120 | #define RUNTIME_INF ((u64)~0ULL) | 120 | #define RUNTIME_INF ((u64)~0ULL) |
| 121 | 121 | ||
| 122 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 123 | |||
| 124 | static inline int rt_policy(int policy) | 122 | static inline int rt_policy(int policy) |
| 125 | { | 123 | { |
| 126 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
| @@ -295,12 +293,12 @@ struct task_group root_task_group; | |||
| 295 | /* Default task group's sched entity on each cpu */ | 293 | /* Default task group's sched entity on each cpu */ |
| 296 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | 294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); |
| 297 | /* Default task group's cfs_rq on each cpu */ | 295 | /* Default task group's cfs_rq on each cpu */ |
| 298 | static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp; | 296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); |
| 299 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 300 | 298 | ||
| 301 | #ifdef CONFIG_RT_GROUP_SCHED | 299 | #ifdef CONFIG_RT_GROUP_SCHED |
| 302 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | 300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); |
| 303 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | 301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); |
| 304 | #endif /* CONFIG_RT_GROUP_SCHED */ | 302 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 305 | #else /* !CONFIG_USER_SCHED */ | 303 | #else /* !CONFIG_USER_SCHED */ |
| 306 | #define root_task_group init_task_group | 304 | #define root_task_group init_task_group |
| @@ -311,6 +309,8 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
| 311 | */ | 309 | */ |
| 312 | static DEFINE_SPINLOCK(task_group_lock); | 310 | static DEFINE_SPINLOCK(task_group_lock); |
| 313 | 311 | ||
| 312 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 313 | |||
| 314 | #ifdef CONFIG_SMP | 314 | #ifdef CONFIG_SMP |
| 315 | static int root_task_group_empty(void) | 315 | static int root_task_group_empty(void) |
| 316 | { | 316 | { |
| @@ -318,7 +318,6 @@ static int root_task_group_empty(void) | |||
| 318 | } | 318 | } |
| 319 | #endif | 319 | #endif |
| 320 | 320 | ||
| 321 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 322 | #ifdef CONFIG_USER_SCHED | 321 | #ifdef CONFIG_USER_SCHED |
| 323 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 322 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
| 324 | #else /* !CONFIG_USER_SCHED */ | 323 | #else /* !CONFIG_USER_SCHED */ |
| @@ -378,13 +377,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 378 | 377 | ||
| 379 | #else | 378 | #else |
| 380 | 379 | ||
| 381 | #ifdef CONFIG_SMP | ||
| 382 | static int root_task_group_empty(void) | ||
| 383 | { | ||
| 384 | return 1; | ||
| 385 | } | ||
| 386 | #endif | ||
| 387 | |||
| 388 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 380 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 389 | static inline struct task_group *task_group(struct task_struct *p) | 381 | static inline struct task_group *task_group(struct task_struct *p) |
| 390 | { | 382 | { |
| @@ -514,14 +506,6 @@ struct root_domain { | |||
| 514 | #ifdef CONFIG_SMP | 506 | #ifdef CONFIG_SMP |
| 515 | struct cpupri cpupri; | 507 | struct cpupri cpupri; |
| 516 | #endif | 508 | #endif |
| 517 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 518 | /* | ||
| 519 | * Preferred wake up cpu nominated by sched_mc balance that will be | ||
| 520 | * used when most cpus are idle in the system indicating overall very | ||
| 521 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | ||
| 522 | */ | ||
| 523 | unsigned int sched_mc_preferred_wakeup_cpu; | ||
| 524 | #endif | ||
| 525 | }; | 509 | }; |
| 526 | 510 | ||
| 527 | /* | 511 | /* |
| @@ -551,14 +535,12 @@ struct rq { | |||
| 551 | #define CPU_LOAD_IDX_MAX 5 | 535 | #define CPU_LOAD_IDX_MAX 5 |
| 552 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 536 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| 553 | #ifdef CONFIG_NO_HZ | 537 | #ifdef CONFIG_NO_HZ |
| 554 | unsigned long last_tick_seen; | ||
| 555 | unsigned char in_nohz_recently; | 538 | unsigned char in_nohz_recently; |
| 556 | #endif | 539 | #endif |
| 557 | /* capture load from *all* tasks on this cpu: */ | 540 | /* capture load from *all* tasks on this cpu: */ |
| 558 | struct load_weight load; | 541 | struct load_weight load; |
| 559 | unsigned long nr_load_updates; | 542 | unsigned long nr_load_updates; |
| 560 | u64 nr_switches; | 543 | u64 nr_switches; |
| 561 | u64 nr_migrations_in; | ||
| 562 | 544 | ||
| 563 | struct cfs_rq cfs; | 545 | struct cfs_rq cfs; |
| 564 | struct rt_rq rt; | 546 | struct rt_rq rt; |
| @@ -607,6 +589,8 @@ struct rq { | |||
| 607 | 589 | ||
| 608 | u64 rt_avg; | 590 | u64 rt_avg; |
| 609 | u64 age_stamp; | 591 | u64 age_stamp; |
| 592 | u64 idle_stamp; | ||
| 593 | u64 avg_idle; | ||
| 610 | #endif | 594 | #endif |
| 611 | 595 | ||
| 612 | /* calc_load related fields */ | 596 | /* calc_load related fields */ |
| @@ -646,9 +630,10 @@ struct rq { | |||
| 646 | 630 | ||
| 647 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 631 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 648 | 632 | ||
| 649 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 633 | static inline |
| 634 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
| 650 | { | 635 | { |
| 651 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 636 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
| 652 | } | 637 | } |
| 653 | 638 | ||
| 654 | static inline int cpu_of(struct rq *rq) | 639 | static inline int cpu_of(struct rq *rq) |
| @@ -692,20 +677,15 @@ inline void update_rq_clock(struct rq *rq) | |||
| 692 | 677 | ||
| 693 | /** | 678 | /** |
| 694 | * runqueue_is_locked | 679 | * runqueue_is_locked |
| 680 | * @cpu: the processor in question. | ||
| 695 | * | 681 | * |
| 696 | * Returns true if the current cpu runqueue is locked. | 682 | * Returns true if the current cpu runqueue is locked. |
| 697 | * This interface allows printk to be called with the runqueue lock | 683 | * This interface allows printk to be called with the runqueue lock |
| 698 | * held and know whether or not it is OK to wake up the klogd. | 684 | * held and know whether or not it is OK to wake up the klogd. |
| 699 | */ | 685 | */ |
| 700 | int runqueue_is_locked(void) | 686 | int runqueue_is_locked(int cpu) |
| 701 | { | 687 | { |
| 702 | int cpu = get_cpu(); | 688 | return spin_is_locked(&cpu_rq(cpu)->lock); |
| 703 | struct rq *rq = cpu_rq(cpu); | ||
| 704 | int ret; | ||
| 705 | |||
| 706 | ret = spin_is_locked(&rq->lock); | ||
| 707 | put_cpu(); | ||
| 708 | return ret; | ||
| 709 | } | 689 | } |
| 710 | 690 | ||
| 711 | /* | 691 | /* |
| @@ -792,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf, | |||
| 792 | if (!sched_feat_names[i]) | 772 | if (!sched_feat_names[i]) |
| 793 | return -EINVAL; | 773 | return -EINVAL; |
| 794 | 774 | ||
| 795 | filp->f_pos += cnt; | 775 | *ppos += cnt; |
| 796 | 776 | ||
| 797 | return cnt; | 777 | return cnt; |
| 798 | } | 778 | } |
| @@ -802,7 +782,7 @@ static int sched_feat_open(struct inode *inode, struct file *filp) | |||
| 802 | return single_open(filp, sched_feat_show, NULL); | 782 | return single_open(filp, sched_feat_show, NULL); |
| 803 | } | 783 | } |
| 804 | 784 | ||
| 805 | static struct file_operations sched_feat_fops = { | 785 | static const struct file_operations sched_feat_fops = { |
| 806 | .open = sched_feat_open, | 786 | .open = sched_feat_open, |
| 807 | .write = sched_feat_write, | 787 | .write = sched_feat_write, |
| 808 | .read = seq_read, | 788 | .read = seq_read, |
| @@ -1509,8 +1489,65 @@ static int tg_nop(struct task_group *tg, void *data) | |||
| 1509 | #endif | 1489 | #endif |
| 1510 | 1490 | ||
| 1511 | #ifdef CONFIG_SMP | 1491 | #ifdef CONFIG_SMP |
| 1512 | static unsigned long source_load(int cpu, int type); | 1492 | /* Used instead of source_load when we know the type == 0 */ |
| 1513 | static unsigned long target_load(int cpu, int type); | 1493 | static unsigned long weighted_cpuload(const int cpu) |
| 1494 | { | ||
| 1495 | return cpu_rq(cpu)->load.weight; | ||
| 1496 | } | ||
| 1497 | |||
| 1498 | /* | ||
| 1499 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 1500 | * according to the scheduling class and "nice" value. | ||
| 1501 | * | ||
| 1502 | * We want to under-estimate the load of migration sources, to | ||
| 1503 | * balance conservatively. | ||
| 1504 | */ | ||
| 1505 | static unsigned long source_load(int cpu, int type) | ||
| 1506 | { | ||
| 1507 | struct rq *rq = cpu_rq(cpu); | ||
| 1508 | unsigned long total = weighted_cpuload(cpu); | ||
| 1509 | |||
| 1510 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1511 | return total; | ||
| 1512 | |||
| 1513 | return min(rq->cpu_load[type-1], total); | ||
| 1514 | } | ||
| 1515 | |||
| 1516 | /* | ||
| 1517 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 1518 | * according to the scheduling class and "nice" value. | ||
| 1519 | */ | ||
| 1520 | static unsigned long target_load(int cpu, int type) | ||
| 1521 | { | ||
| 1522 | struct rq *rq = cpu_rq(cpu); | ||
| 1523 | unsigned long total = weighted_cpuload(cpu); | ||
| 1524 | |||
| 1525 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1526 | return total; | ||
| 1527 | |||
| 1528 | return max(rq->cpu_load[type-1], total); | ||
| 1529 | } | ||
| 1530 | |||
| 1531 | static struct sched_group *group_of(int cpu) | ||
| 1532 | { | ||
| 1533 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
| 1534 | |||
| 1535 | if (!sd) | ||
| 1536 | return NULL; | ||
| 1537 | |||
| 1538 | return sd->groups; | ||
| 1539 | } | ||
| 1540 | |||
| 1541 | static unsigned long power_of(int cpu) | ||
| 1542 | { | ||
| 1543 | struct sched_group *group = group_of(cpu); | ||
| 1544 | |||
| 1545 | if (!group) | ||
| 1546 | return SCHED_LOAD_SCALE; | ||
| 1547 | |||
| 1548 | return group->cpu_power; | ||
| 1549 | } | ||
| 1550 | |||
| 1514 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1551 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
| 1515 | 1552 | ||
| 1516 | static unsigned long cpu_avg_load_per_task(int cpu) | 1553 | static unsigned long cpu_avg_load_per_task(int cpu) |
| @@ -1528,11 +1565,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
| 1528 | 1565 | ||
| 1529 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1566 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1530 | 1567 | ||
| 1531 | struct update_shares_data { | 1568 | static __read_mostly unsigned long *update_shares_data; |
| 1532 | unsigned long rq_weight[NR_CPUS]; | ||
| 1533 | }; | ||
| 1534 | |||
| 1535 | static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); | ||
| 1536 | 1569 | ||
| 1537 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1570 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
| 1538 | 1571 | ||
| @@ -1542,12 +1575,12 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares); | |||
| 1542 | static void update_group_shares_cpu(struct task_group *tg, int cpu, | 1575 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
| 1543 | unsigned long sd_shares, | 1576 | unsigned long sd_shares, |
| 1544 | unsigned long sd_rq_weight, | 1577 | unsigned long sd_rq_weight, |
| 1545 | struct update_shares_data *usd) | 1578 | unsigned long *usd_rq_weight) |
| 1546 | { | 1579 | { |
| 1547 | unsigned long shares, rq_weight; | 1580 | unsigned long shares, rq_weight; |
| 1548 | int boost = 0; | 1581 | int boost = 0; |
| 1549 | 1582 | ||
| 1550 | rq_weight = usd->rq_weight[cpu]; | 1583 | rq_weight = usd_rq_weight[cpu]; |
| 1551 | if (!rq_weight) { | 1584 | if (!rq_weight) { |
| 1552 | boost = 1; | 1585 | boost = 1; |
| 1553 | rq_weight = NICE_0_LOAD; | 1586 | rq_weight = NICE_0_LOAD; |
| @@ -1582,7 +1615,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
| 1582 | static int tg_shares_up(struct task_group *tg, void *data) | 1615 | static int tg_shares_up(struct task_group *tg, void *data) |
| 1583 | { | 1616 | { |
| 1584 | unsigned long weight, rq_weight = 0, shares = 0; | 1617 | unsigned long weight, rq_weight = 0, shares = 0; |
| 1585 | struct update_shares_data *usd; | 1618 | unsigned long *usd_rq_weight; |
| 1586 | struct sched_domain *sd = data; | 1619 | struct sched_domain *sd = data; |
| 1587 | unsigned long flags; | 1620 | unsigned long flags; |
| 1588 | int i; | 1621 | int i; |
| @@ -1591,11 +1624,11 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
| 1591 | return 0; | 1624 | return 0; |
| 1592 | 1625 | ||
| 1593 | local_irq_save(flags); | 1626 | local_irq_save(flags); |
| 1594 | usd = &__get_cpu_var(update_shares_data); | 1627 | usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); |
| 1595 | 1628 | ||
| 1596 | for_each_cpu(i, sched_domain_span(sd)) { | 1629 | for_each_cpu(i, sched_domain_span(sd)) { |
| 1597 | weight = tg->cfs_rq[i]->load.weight; | 1630 | weight = tg->cfs_rq[i]->load.weight; |
| 1598 | usd->rq_weight[i] = weight; | 1631 | usd_rq_weight[i] = weight; |
| 1599 | 1632 | ||
| 1600 | /* | 1633 | /* |
| 1601 | * If there are currently no tasks on the cpu pretend there | 1634 | * If there are currently no tasks on the cpu pretend there |
| @@ -1616,7 +1649,7 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
| 1616 | shares = tg->shares; | 1649 | shares = tg->shares; |
| 1617 | 1650 | ||
| 1618 | for_each_cpu(i, sched_domain_span(sd)) | 1651 | for_each_cpu(i, sched_domain_span(sd)) |
| 1619 | update_group_shares_cpu(tg, i, shares, rq_weight, usd); | 1652 | update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); |
| 1620 | 1653 | ||
| 1621 | local_irq_restore(flags); | 1654 | local_irq_restore(flags); |
| 1622 | 1655 | ||
| @@ -1695,6 +1728,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1695 | 1728 | ||
| 1696 | #ifdef CONFIG_PREEMPT | 1729 | #ifdef CONFIG_PREEMPT |
| 1697 | 1730 | ||
| 1731 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 1732 | |||
| 1698 | /* | 1733 | /* |
| 1699 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 1734 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1700 | * way at the expense of forcing extra atomic operations in all | 1735 | * way at the expense of forcing extra atomic operations in all |
| @@ -1958,14 +1993,40 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
| 1958 | p->sched_class->prio_changed(rq, p, oldprio, running); | 1993 | p->sched_class->prio_changed(rq, p, oldprio, running); |
| 1959 | } | 1994 | } |
| 1960 | 1995 | ||
| 1961 | #ifdef CONFIG_SMP | 1996 | /** |
| 1962 | 1997 | * kthread_bind - bind a just-created kthread to a cpu. | |
| 1963 | /* Used instead of source_load when we know the type == 0 */ | 1998 | * @p: thread created by kthread_create(). |
| 1964 | static unsigned long weighted_cpuload(const int cpu) | 1999 | * @cpu: cpu (might not be online, must be possible) for @k to run on. |
| 2000 | * | ||
| 2001 | * Description: This function is equivalent to set_cpus_allowed(), | ||
| 2002 | * except that @cpu doesn't need to be online, and the thread must be | ||
| 2003 | * stopped (i.e., just returned from kthread_create()). | ||
| 2004 | * | ||
| 2005 | * Function lives here instead of kthread.c because it messes with | ||
| 2006 | * scheduler internals which require locking. | ||
| 2007 | */ | ||
| 2008 | void kthread_bind(struct task_struct *p, unsigned int cpu) | ||
| 1965 | { | 2009 | { |
| 1966 | return cpu_rq(cpu)->load.weight; | 2010 | struct rq *rq = cpu_rq(cpu); |
| 2011 | unsigned long flags; | ||
| 2012 | |||
| 2013 | /* Must have done schedule() in kthread() before we set_task_cpu */ | ||
| 2014 | if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) { | ||
| 2015 | WARN_ON(1); | ||
| 2016 | return; | ||
| 2017 | } | ||
| 2018 | |||
| 2019 | spin_lock_irqsave(&rq->lock, flags); | ||
| 2020 | update_rq_clock(rq); | ||
| 2021 | set_task_cpu(p, cpu); | ||
| 2022 | p->cpus_allowed = cpumask_of_cpu(cpu); | ||
| 2023 | p->rt.nr_cpus_allowed = 1; | ||
| 2024 | p->flags |= PF_THREAD_BOUND; | ||
| 2025 | spin_unlock_irqrestore(&rq->lock, flags); | ||
| 1967 | } | 2026 | } |
| 2027 | EXPORT_SYMBOL(kthread_bind); | ||
| 1968 | 2028 | ||
| 2029 | #ifdef CONFIG_SMP | ||
| 1969 | /* | 2030 | /* |
| 1970 | * Is this task likely cache-hot: | 2031 | * Is this task likely cache-hot: |
| 1971 | */ | 2032 | */ |
| @@ -1977,7 +2038,7 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
| 1977 | /* | 2038 | /* |
| 1978 | * Buddy candidates are cache hot: | 2039 | * Buddy candidates are cache hot: |
| 1979 | */ | 2040 | */ |
| 1980 | if (sched_feat(CACHE_HOT_BUDDY) && | 2041 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && |
| 1981 | (&p->se == cfs_rq_of(&p->se)->next || | 2042 | (&p->se == cfs_rq_of(&p->se)->next || |
| 1982 | &p->se == cfs_rq_of(&p->se)->last)) | 2043 | &p->se == cfs_rq_of(&p->se)->last)) |
| 1983 | return 1; | 2044 | return 1; |
| @@ -2018,12 +2079,11 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
| 2018 | #endif | 2079 | #endif |
| 2019 | if (old_cpu != new_cpu) { | 2080 | if (old_cpu != new_cpu) { |
| 2020 | p->se.nr_migrations++; | 2081 | p->se.nr_migrations++; |
| 2021 | new_rq->nr_migrations_in++; | ||
| 2022 | #ifdef CONFIG_SCHEDSTATS | 2082 | #ifdef CONFIG_SCHEDSTATS |
| 2023 | if (task_hot(p, old_rq->clock, NULL)) | 2083 | if (task_hot(p, old_rq->clock, NULL)) |
| 2024 | schedstat_inc(p, se.nr_forced2_migrations); | 2084 | schedstat_inc(p, se.nr_forced2_migrations); |
| 2025 | #endif | 2085 | #endif |
| 2026 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2086 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
| 2027 | 1, 1, NULL, 0); | 2087 | 1, 1, NULL, 0); |
| 2028 | } | 2088 | } |
| 2029 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2089 | p->se.vruntime -= old_cfsrq->min_vruntime - |
| @@ -2055,6 +2115,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
| 2055 | * it is sufficient to simply update the task's cpu field. | 2115 | * it is sufficient to simply update the task's cpu field. |
| 2056 | */ | 2116 | */ |
| 2057 | if (!p->se.on_rq && !task_running(rq, p)) { | 2117 | if (!p->se.on_rq && !task_running(rq, p)) { |
| 2118 | update_rq_clock(rq); | ||
| 2058 | set_task_cpu(p, dest_cpu); | 2119 | set_task_cpu(p, dest_cpu); |
| 2059 | return 0; | 2120 | return 0; |
| 2060 | } | 2121 | } |
| @@ -2239,185 +2300,6 @@ void kick_process(struct task_struct *p) | |||
| 2239 | preempt_enable(); | 2300 | preempt_enable(); |
| 2240 | } | 2301 | } |
| 2241 | EXPORT_SYMBOL_GPL(kick_process); | 2302 | EXPORT_SYMBOL_GPL(kick_process); |
| 2242 | |||
| 2243 | /* | ||
| 2244 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 2245 | * according to the scheduling class and "nice" value. | ||
| 2246 | * | ||
| 2247 | * We want to under-estimate the load of migration sources, to | ||
| 2248 | * balance conservatively. | ||
| 2249 | */ | ||
| 2250 | static unsigned long source_load(int cpu, int type) | ||
| 2251 | { | ||
| 2252 | struct rq *rq = cpu_rq(cpu); | ||
| 2253 | unsigned long total = weighted_cpuload(cpu); | ||
| 2254 | |||
| 2255 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2256 | return total; | ||
| 2257 | |||
| 2258 | return min(rq->cpu_load[type-1], total); | ||
| 2259 | } | ||
| 2260 | |||
| 2261 | /* | ||
| 2262 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 2263 | * according to the scheduling class and "nice" value. | ||
| 2264 | */ | ||
| 2265 | static unsigned long target_load(int cpu, int type) | ||
| 2266 | { | ||
| 2267 | struct rq *rq = cpu_rq(cpu); | ||
| 2268 | unsigned long total = weighted_cpuload(cpu); | ||
| 2269 | |||
| 2270 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2271 | return total; | ||
| 2272 | |||
| 2273 | return max(rq->cpu_load[type-1], total); | ||
| 2274 | } | ||
| 2275 | |||
| 2276 | /* | ||
| 2277 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 2278 | * domain. | ||
| 2279 | */ | ||
| 2280 | static struct sched_group * | ||
| 2281 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
| 2282 | { | ||
| 2283 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
| 2284 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
| 2285 | int load_idx = sd->forkexec_idx; | ||
| 2286 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
| 2287 | |||
| 2288 | do { | ||
| 2289 | unsigned long load, avg_load; | ||
| 2290 | int local_group; | ||
| 2291 | int i; | ||
| 2292 | |||
| 2293 | /* Skip over this group if it has no CPUs allowed */ | ||
| 2294 | if (!cpumask_intersects(sched_group_cpus(group), | ||
| 2295 | &p->cpus_allowed)) | ||
| 2296 | continue; | ||
| 2297 | |||
| 2298 | local_group = cpumask_test_cpu(this_cpu, | ||
| 2299 | sched_group_cpus(group)); | ||
| 2300 | |||
| 2301 | /* Tally up the load of all CPUs in the group */ | ||
| 2302 | avg_load = 0; | ||
| 2303 | |||
| 2304 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 2305 | /* Bias balancing toward cpus of our domain */ | ||
| 2306 | if (local_group) | ||
| 2307 | load = source_load(i, load_idx); | ||
| 2308 | else | ||
| 2309 | load = target_load(i, load_idx); | ||
| 2310 | |||
| 2311 | avg_load += load; | ||
| 2312 | } | ||
| 2313 | |||
| 2314 | /* Adjust by relative CPU power of the group */ | ||
| 2315 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 2316 | |||
| 2317 | if (local_group) { | ||
| 2318 | this_load = avg_load; | ||
| 2319 | this = group; | ||
| 2320 | } else if (avg_load < min_load) { | ||
| 2321 | min_load = avg_load; | ||
| 2322 | idlest = group; | ||
| 2323 | } | ||
| 2324 | } while (group = group->next, group != sd->groups); | ||
| 2325 | |||
| 2326 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 2327 | return NULL; | ||
| 2328 | return idlest; | ||
| 2329 | } | ||
| 2330 | |||
| 2331 | /* | ||
| 2332 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 2333 | */ | ||
| 2334 | static int | ||
| 2335 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 2336 | { | ||
| 2337 | unsigned long load, min_load = ULONG_MAX; | ||
| 2338 | int idlest = -1; | ||
| 2339 | int i; | ||
| 2340 | |||
| 2341 | /* Traverse only the allowed CPUs */ | ||
| 2342 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 2343 | load = weighted_cpuload(i); | ||
| 2344 | |||
| 2345 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 2346 | min_load = load; | ||
| 2347 | idlest = i; | ||
| 2348 | } | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | return idlest; | ||
| 2352 | } | ||
| 2353 | |||
| 2354 | /* | ||
| 2355 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
| 2356 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
| 2357 | * SD_BALANCE_EXEC. | ||
| 2358 | * | ||
| 2359 | * Balance, ie. select the least loaded group. | ||
| 2360 | * | ||
| 2361 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 2362 | * | ||
| 2363 | * preempt must be disabled. | ||
| 2364 | */ | ||
| 2365 | static int sched_balance_self(int cpu, int flag) | ||
| 2366 | { | ||
| 2367 | struct task_struct *t = current; | ||
| 2368 | struct sched_domain *tmp, *sd = NULL; | ||
| 2369 | |||
| 2370 | for_each_domain(cpu, tmp) { | ||
| 2371 | /* | ||
| 2372 | * If power savings logic is enabled for a domain, stop there. | ||
| 2373 | */ | ||
| 2374 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 2375 | break; | ||
| 2376 | if (tmp->flags & flag) | ||
| 2377 | sd = tmp; | ||
| 2378 | } | ||
| 2379 | |||
| 2380 | if (sd) | ||
| 2381 | update_shares(sd); | ||
| 2382 | |||
| 2383 | while (sd) { | ||
| 2384 | struct sched_group *group; | ||
| 2385 | int new_cpu, weight; | ||
| 2386 | |||
| 2387 | if (!(sd->flags & flag)) { | ||
| 2388 | sd = sd->child; | ||
| 2389 | continue; | ||
| 2390 | } | ||
| 2391 | |||
| 2392 | group = find_idlest_group(sd, t, cpu); | ||
| 2393 | if (!group) { | ||
| 2394 | sd = sd->child; | ||
| 2395 | continue; | ||
| 2396 | } | ||
| 2397 | |||
| 2398 | new_cpu = find_idlest_cpu(group, t, cpu); | ||
| 2399 | if (new_cpu == -1 || new_cpu == cpu) { | ||
| 2400 | /* Now try balancing at a lower domain level of cpu */ | ||
| 2401 | sd = sd->child; | ||
| 2402 | continue; | ||
| 2403 | } | ||
| 2404 | |||
| 2405 | /* Now try balancing at a lower domain level of new_cpu */ | ||
| 2406 | cpu = new_cpu; | ||
| 2407 | weight = cpumask_weight(sched_domain_span(sd)); | ||
| 2408 | sd = NULL; | ||
| 2409 | for_each_domain(cpu, tmp) { | ||
| 2410 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
| 2411 | break; | ||
| 2412 | if (tmp->flags & flag) | ||
| 2413 | sd = tmp; | ||
| 2414 | } | ||
| 2415 | /* while loop will break here if sd == NULL */ | ||
| 2416 | } | ||
| 2417 | |||
| 2418 | return cpu; | ||
| 2419 | } | ||
| 2420 | |||
| 2421 | #endif /* CONFIG_SMP */ | 2303 | #endif /* CONFIG_SMP */ |
| 2422 | 2304 | ||
| 2423 | /** | 2305 | /** |
| @@ -2455,37 +2337,22 @@ void task_oncpu_function_call(struct task_struct *p, | |||
| 2455 | * | 2337 | * |
| 2456 | * returns failure only if the task is already active. | 2338 | * returns failure only if the task is already active. |
| 2457 | */ | 2339 | */ |
| 2458 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2340 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
| 2341 | int wake_flags) | ||
| 2459 | { | 2342 | { |
| 2460 | int cpu, orig_cpu, this_cpu, success = 0; | 2343 | int cpu, orig_cpu, this_cpu, success = 0; |
| 2461 | unsigned long flags; | 2344 | unsigned long flags; |
| 2462 | long old_state; | 2345 | struct rq *rq, *orig_rq; |
| 2463 | struct rq *rq; | ||
| 2464 | 2346 | ||
| 2465 | if (!sched_feat(SYNC_WAKEUPS)) | 2347 | if (!sched_feat(SYNC_WAKEUPS)) |
| 2466 | sync = 0; | 2348 | wake_flags &= ~WF_SYNC; |
| 2467 | |||
| 2468 | #ifdef CONFIG_SMP | ||
| 2469 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | ||
| 2470 | struct sched_domain *sd; | ||
| 2471 | |||
| 2472 | this_cpu = raw_smp_processor_id(); | ||
| 2473 | cpu = task_cpu(p); | ||
| 2474 | 2349 | ||
| 2475 | for_each_domain(this_cpu, sd) { | 2350 | this_cpu = get_cpu(); |
| 2476 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
| 2477 | update_shares(sd); | ||
| 2478 | break; | ||
| 2479 | } | ||
| 2480 | } | ||
| 2481 | } | ||
| 2482 | #endif | ||
| 2483 | 2351 | ||
| 2484 | smp_wmb(); | 2352 | smp_wmb(); |
| 2485 | rq = task_rq_lock(p, &flags); | 2353 | rq = orig_rq = task_rq_lock(p, &flags); |
| 2486 | update_rq_clock(rq); | 2354 | update_rq_clock(rq); |
| 2487 | old_state = p->state; | 2355 | if (!(p->state & state)) |
| 2488 | if (!(old_state & state)) | ||
| 2489 | goto out; | 2356 | goto out; |
| 2490 | 2357 | ||
| 2491 | if (p->se.on_rq) | 2358 | if (p->se.on_rq) |
| @@ -2493,27 +2360,34 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2493 | 2360 | ||
| 2494 | cpu = task_cpu(p); | 2361 | cpu = task_cpu(p); |
| 2495 | orig_cpu = cpu; | 2362 | orig_cpu = cpu; |
| 2496 | this_cpu = smp_processor_id(); | ||
| 2497 | 2363 | ||
| 2498 | #ifdef CONFIG_SMP | 2364 | #ifdef CONFIG_SMP |
| 2499 | if (unlikely(task_running(rq, p))) | 2365 | if (unlikely(task_running(rq, p))) |
| 2500 | goto out_activate; | 2366 | goto out_activate; |
| 2501 | 2367 | ||
| 2502 | cpu = p->sched_class->select_task_rq(p, sync); | 2368 | /* |
| 2369 | * In order to handle concurrent wakeups and release the rq->lock | ||
| 2370 | * we put the task in TASK_WAKING state. | ||
| 2371 | * | ||
| 2372 | * First fix up the nr_uninterruptible count: | ||
| 2373 | */ | ||
| 2374 | if (task_contributes_to_load(p)) | ||
| 2375 | rq->nr_uninterruptible--; | ||
| 2376 | p->state = TASK_WAKING; | ||
| 2377 | task_rq_unlock(rq, &flags); | ||
| 2378 | |||
| 2379 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
| 2503 | if (cpu != orig_cpu) { | 2380 | if (cpu != orig_cpu) { |
| 2381 | local_irq_save(flags); | ||
| 2382 | rq = cpu_rq(cpu); | ||
| 2383 | update_rq_clock(rq); | ||
| 2504 | set_task_cpu(p, cpu); | 2384 | set_task_cpu(p, cpu); |
| 2505 | task_rq_unlock(rq, &flags); | 2385 | local_irq_restore(flags); |
| 2506 | /* might preempt at this point */ | ||
| 2507 | rq = task_rq_lock(p, &flags); | ||
| 2508 | old_state = p->state; | ||
| 2509 | if (!(old_state & state)) | ||
| 2510 | goto out; | ||
| 2511 | if (p->se.on_rq) | ||
| 2512 | goto out_running; | ||
| 2513 | |||
| 2514 | this_cpu = smp_processor_id(); | ||
| 2515 | cpu = task_cpu(p); | ||
| 2516 | } | 2386 | } |
| 2387 | rq = task_rq_lock(p, &flags); | ||
| 2388 | |||
| 2389 | WARN_ON(p->state != TASK_WAKING); | ||
| 2390 | cpu = task_cpu(p); | ||
| 2517 | 2391 | ||
| 2518 | #ifdef CONFIG_SCHEDSTATS | 2392 | #ifdef CONFIG_SCHEDSTATS |
| 2519 | schedstat_inc(rq, ttwu_count); | 2393 | schedstat_inc(rq, ttwu_count); |
| @@ -2533,7 +2407,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2533 | out_activate: | 2407 | out_activate: |
| 2534 | #endif /* CONFIG_SMP */ | 2408 | #endif /* CONFIG_SMP */ |
| 2535 | schedstat_inc(p, se.nr_wakeups); | 2409 | schedstat_inc(p, se.nr_wakeups); |
| 2536 | if (sync) | 2410 | if (wake_flags & WF_SYNC) |
| 2537 | schedstat_inc(p, se.nr_wakeups_sync); | 2411 | schedstat_inc(p, se.nr_wakeups_sync); |
| 2538 | if (orig_cpu != cpu) | 2412 | if (orig_cpu != cpu) |
| 2539 | schedstat_inc(p, se.nr_wakeups_migrate); | 2413 | schedstat_inc(p, se.nr_wakeups_migrate); |
| @@ -2562,15 +2436,27 @@ out_activate: | |||
| 2562 | 2436 | ||
| 2563 | out_running: | 2437 | out_running: |
| 2564 | trace_sched_wakeup(rq, p, success); | 2438 | trace_sched_wakeup(rq, p, success); |
| 2565 | check_preempt_curr(rq, p, sync); | 2439 | check_preempt_curr(rq, p, wake_flags); |
| 2566 | 2440 | ||
| 2567 | p->state = TASK_RUNNING; | 2441 | p->state = TASK_RUNNING; |
| 2568 | #ifdef CONFIG_SMP | 2442 | #ifdef CONFIG_SMP |
| 2569 | if (p->sched_class->task_wake_up) | 2443 | if (p->sched_class->task_wake_up) |
| 2570 | p->sched_class->task_wake_up(rq, p); | 2444 | p->sched_class->task_wake_up(rq, p); |
| 2445 | |||
| 2446 | if (unlikely(rq->idle_stamp)) { | ||
| 2447 | u64 delta = rq->clock - rq->idle_stamp; | ||
| 2448 | u64 max = 2*sysctl_sched_migration_cost; | ||
| 2449 | |||
| 2450 | if (delta > max) | ||
| 2451 | rq->avg_idle = max; | ||
| 2452 | else | ||
| 2453 | update_avg(&rq->avg_idle, delta); | ||
| 2454 | rq->idle_stamp = 0; | ||
| 2455 | } | ||
| 2571 | #endif | 2456 | #endif |
| 2572 | out: | 2457 | out: |
| 2573 | task_rq_unlock(rq, &flags); | 2458 | task_rq_unlock(rq, &flags); |
| 2459 | put_cpu(); | ||
| 2574 | 2460 | ||
| 2575 | return success; | 2461 | return success; |
| 2576 | } | 2462 | } |
| @@ -2613,6 +2499,7 @@ static void __sched_fork(struct task_struct *p) | |||
| 2613 | p->se.avg_overlap = 0; | 2499 | p->se.avg_overlap = 0; |
| 2614 | p->se.start_runtime = 0; | 2500 | p->se.start_runtime = 0; |
| 2615 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2501 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
| 2502 | p->se.avg_running = 0; | ||
| 2616 | 2503 | ||
| 2617 | #ifdef CONFIG_SCHEDSTATS | 2504 | #ifdef CONFIG_SCHEDSTATS |
| 2618 | p->se.wait_start = 0; | 2505 | p->se.wait_start = 0; |
| @@ -2671,31 +2558,22 @@ static void __sched_fork(struct task_struct *p) | |||
| 2671 | void sched_fork(struct task_struct *p, int clone_flags) | 2558 | void sched_fork(struct task_struct *p, int clone_flags) |
| 2672 | { | 2559 | { |
| 2673 | int cpu = get_cpu(); | 2560 | int cpu = get_cpu(); |
| 2561 | unsigned long flags; | ||
| 2674 | 2562 | ||
| 2675 | __sched_fork(p); | 2563 | __sched_fork(p); |
| 2676 | 2564 | ||
| 2677 | #ifdef CONFIG_SMP | ||
| 2678 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
| 2679 | #endif | ||
| 2680 | set_task_cpu(p, cpu); | ||
| 2681 | |||
| 2682 | /* | ||
| 2683 | * Make sure we do not leak PI boosting priority to the child. | ||
| 2684 | */ | ||
| 2685 | p->prio = current->normal_prio; | ||
| 2686 | |||
| 2687 | /* | 2565 | /* |
| 2688 | * Revert to default priority/policy on fork if requested. | 2566 | * Revert to default priority/policy on fork if requested. |
| 2689 | */ | 2567 | */ |
| 2690 | if (unlikely(p->sched_reset_on_fork)) { | 2568 | if (unlikely(p->sched_reset_on_fork)) { |
| 2691 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | 2569 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
| 2692 | p->policy = SCHED_NORMAL; | 2570 | p->policy = SCHED_NORMAL; |
| 2693 | 2571 | p->normal_prio = p->static_prio; | |
| 2694 | if (p->normal_prio < DEFAULT_PRIO) | 2572 | } |
| 2695 | p->prio = DEFAULT_PRIO; | ||
| 2696 | 2573 | ||
| 2697 | if (PRIO_TO_NICE(p->static_prio) < 0) { | 2574 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
| 2698 | p->static_prio = NICE_TO_PRIO(0); | 2575 | p->static_prio = NICE_TO_PRIO(0); |
| 2576 | p->normal_prio = p->static_prio; | ||
| 2699 | set_load_weight(p); | 2577 | set_load_weight(p); |
| 2700 | } | 2578 | } |
| 2701 | 2579 | ||
| @@ -2706,9 +2584,22 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2706 | p->sched_reset_on_fork = 0; | 2584 | p->sched_reset_on_fork = 0; |
| 2707 | } | 2585 | } |
| 2708 | 2586 | ||
| 2587 | /* | ||
| 2588 | * Make sure we do not leak PI boosting priority to the child. | ||
| 2589 | */ | ||
| 2590 | p->prio = current->normal_prio; | ||
| 2591 | |||
| 2709 | if (!rt_prio(p->prio)) | 2592 | if (!rt_prio(p->prio)) |
| 2710 | p->sched_class = &fair_sched_class; | 2593 | p->sched_class = &fair_sched_class; |
| 2711 | 2594 | ||
| 2595 | #ifdef CONFIG_SMP | ||
| 2596 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | ||
| 2597 | #endif | ||
| 2598 | local_irq_save(flags); | ||
| 2599 | update_rq_clock(cpu_rq(cpu)); | ||
| 2600 | set_task_cpu(p, cpu); | ||
| 2601 | local_irq_restore(flags); | ||
| 2602 | |||
| 2712 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2603 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| 2713 | if (likely(sched_info_on())) | 2604 | if (likely(sched_info_on())) |
| 2714 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2605 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| @@ -2741,8 +2632,6 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2741 | BUG_ON(p->state != TASK_RUNNING); | 2632 | BUG_ON(p->state != TASK_RUNNING); |
| 2742 | update_rq_clock(rq); | 2633 | update_rq_clock(rq); |
| 2743 | 2634 | ||
| 2744 | p->prio = effective_prio(p); | ||
| 2745 | |||
| 2746 | if (!p->sched_class->task_new || !current->se.on_rq) { | 2635 | if (!p->sched_class->task_new || !current->se.on_rq) { |
| 2747 | activate_task(rq, p, 0); | 2636 | activate_task(rq, p, 0); |
| 2748 | } else { | 2637 | } else { |
| @@ -2754,7 +2643,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2754 | inc_nr_running(rq); | 2643 | inc_nr_running(rq); |
| 2755 | } | 2644 | } |
| 2756 | trace_sched_wakeup_new(rq, p, 1); | 2645 | trace_sched_wakeup_new(rq, p, 1); |
| 2757 | check_preempt_curr(rq, p, 0); | 2646 | check_preempt_curr(rq, p, WF_FORK); |
| 2758 | #ifdef CONFIG_SMP | 2647 | #ifdef CONFIG_SMP |
| 2759 | if (p->sched_class->task_wake_up) | 2648 | if (p->sched_class->task_wake_up) |
| 2760 | p->sched_class->task_wake_up(rq, p); | 2649 | p->sched_class->task_wake_up(rq, p); |
| @@ -2878,7 +2767,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2878 | */ | 2767 | */ |
| 2879 | prev_state = prev->state; | 2768 | prev_state = prev->state; |
| 2880 | finish_arch_switch(prev); | 2769 | finish_arch_switch(prev); |
| 2881 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2770 | perf_event_task_sched_in(current, cpu_of(rq)); |
| 2882 | finish_lock_switch(rq, prev); | 2771 | finish_lock_switch(rq, prev); |
| 2883 | 2772 | ||
| 2884 | fire_sched_in_preempt_notifiers(current); | 2773 | fire_sched_in_preempt_notifiers(current); |
| @@ -2976,14 +2865,14 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
| 2976 | */ | 2865 | */ |
| 2977 | arch_start_context_switch(prev); | 2866 | arch_start_context_switch(prev); |
| 2978 | 2867 | ||
| 2979 | if (unlikely(!mm)) { | 2868 | if (likely(!mm)) { |
| 2980 | next->active_mm = oldmm; | 2869 | next->active_mm = oldmm; |
| 2981 | atomic_inc(&oldmm->mm_count); | 2870 | atomic_inc(&oldmm->mm_count); |
| 2982 | enter_lazy_tlb(oldmm, next); | 2871 | enter_lazy_tlb(oldmm, next); |
| 2983 | } else | 2872 | } else |
| 2984 | switch_mm(oldmm, mm, next); | 2873 | switch_mm(oldmm, mm, next); |
| 2985 | 2874 | ||
| 2986 | if (unlikely(!prev->mm)) { | 2875 | if (likely(!prev->mm)) { |
| 2987 | prev->active_mm = NULL; | 2876 | prev->active_mm = NULL; |
| 2988 | rq->prev_mm = oldmm; | 2877 | rq->prev_mm = oldmm; |
| 2989 | } | 2878 | } |
| @@ -3064,6 +2953,19 @@ unsigned long nr_iowait(void) | |||
| 3064 | return sum; | 2953 | return sum; |
| 3065 | } | 2954 | } |
| 3066 | 2955 | ||
| 2956 | unsigned long nr_iowait_cpu(void) | ||
| 2957 | { | ||
| 2958 | struct rq *this = this_rq(); | ||
| 2959 | return atomic_read(&this->nr_iowait); | ||
| 2960 | } | ||
| 2961 | |||
| 2962 | unsigned long this_cpu_load(void) | ||
| 2963 | { | ||
| 2964 | struct rq *this = this_rq(); | ||
| 2965 | return this->cpu_load[0]; | ||
| 2966 | } | ||
| 2967 | |||
| 2968 | |||
| 3067 | /* Variables and functions for calc_load */ | 2969 | /* Variables and functions for calc_load */ |
| 3068 | static atomic_long_t calc_load_tasks; | 2970 | static atomic_long_t calc_load_tasks; |
| 3069 | static unsigned long calc_load_update; | 2971 | static unsigned long calc_load_update; |
| @@ -3133,15 +3035,6 @@ static void calc_load_account_active(struct rq *this_rq) | |||
| 3133 | } | 3035 | } |
| 3134 | 3036 | ||
| 3135 | /* | 3037 | /* |
| 3136 | * Externally visible per-cpu scheduler statistics: | ||
| 3137 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
| 3138 | */ | ||
| 3139 | u64 cpu_nr_migrations(int cpu) | ||
| 3140 | { | ||
| 3141 | return cpu_rq(cpu)->nr_migrations_in; | ||
| 3142 | } | ||
| 3143 | |||
| 3144 | /* | ||
| 3145 | * Update rq->cpu_load[] statistics. This function is usually called every | 3038 | * Update rq->cpu_load[] statistics. This function is usually called every |
| 3146 | * scheduler tick (TICK_NSEC). | 3039 | * scheduler tick (TICK_NSEC). |
| 3147 | */ | 3040 | */ |
| @@ -3263,7 +3156,7 @@ out: | |||
| 3263 | void sched_exec(void) | 3156 | void sched_exec(void) |
| 3264 | { | 3157 | { |
| 3265 | int new_cpu, this_cpu = get_cpu(); | 3158 | int new_cpu, this_cpu = get_cpu(); |
| 3266 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 3159 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
| 3267 | put_cpu(); | 3160 | put_cpu(); |
| 3268 | if (new_cpu != this_cpu) | 3161 | if (new_cpu != this_cpu) |
| 3269 | sched_migrate_task(current, new_cpu); | 3162 | sched_migrate_task(current, new_cpu); |
| @@ -3683,11 +3576,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3683 | *imbalance = sds->min_load_per_task; | 3576 | *imbalance = sds->min_load_per_task; |
| 3684 | sds->busiest = sds->group_min; | 3577 | sds->busiest = sds->group_min; |
| 3685 | 3578 | ||
| 3686 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | ||
| 3687 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | ||
| 3688 | group_first_cpu(sds->group_leader); | ||
| 3689 | } | ||
| 3690 | |||
| 3691 | return 1; | 3579 | return 1; |
| 3692 | 3580 | ||
| 3693 | } | 3581 | } |
| @@ -3711,7 +3599,18 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3711 | } | 3599 | } |
| 3712 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 3600 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 3713 | 3601 | ||
| 3714 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | 3602 | |
| 3603 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3604 | { | ||
| 3605 | return SCHED_LOAD_SCALE; | ||
| 3606 | } | ||
| 3607 | |||
| 3608 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3609 | { | ||
| 3610 | return default_scale_freq_power(sd, cpu); | ||
| 3611 | } | ||
| 3612 | |||
| 3613 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3715 | { | 3614 | { |
| 3716 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 3615 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); |
| 3717 | unsigned long smt_gain = sd->smt_gain; | 3616 | unsigned long smt_gain = sd->smt_gain; |
| @@ -3721,6 +3620,11 @@ unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | |||
| 3721 | return smt_gain; | 3620 | return smt_gain; |
| 3722 | } | 3621 | } |
| 3723 | 3622 | ||
| 3623 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3624 | { | ||
| 3625 | return default_scale_smt_power(sd, cpu); | ||
| 3626 | } | ||
| 3627 | |||
| 3724 | unsigned long scale_rt_power(int cpu) | 3628 | unsigned long scale_rt_power(int cpu) |
| 3725 | { | 3629 | { |
| 3726 | struct rq *rq = cpu_rq(cpu); | 3630 | struct rq *rq = cpu_rq(cpu); |
| @@ -3745,10 +3649,19 @@ static void update_cpu_power(struct sched_domain *sd, int cpu) | |||
| 3745 | unsigned long power = SCHED_LOAD_SCALE; | 3649 | unsigned long power = SCHED_LOAD_SCALE; |
| 3746 | struct sched_group *sdg = sd->groups; | 3650 | struct sched_group *sdg = sd->groups; |
| 3747 | 3651 | ||
| 3748 | /* here we could scale based on cpufreq */ | 3652 | if (sched_feat(ARCH_POWER)) |
| 3653 | power *= arch_scale_freq_power(sd, cpu); | ||
| 3654 | else | ||
| 3655 | power *= default_scale_freq_power(sd, cpu); | ||
| 3656 | |||
| 3657 | power >>= SCHED_LOAD_SHIFT; | ||
| 3749 | 3658 | ||
| 3750 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 3659 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
| 3751 | power *= arch_scale_smt_power(sd, cpu); | 3660 | if (sched_feat(ARCH_POWER)) |
| 3661 | power *= arch_scale_smt_power(sd, cpu); | ||
| 3662 | else | ||
| 3663 | power *= default_scale_smt_power(sd, cpu); | ||
| 3664 | |||
| 3752 | power >>= SCHED_LOAD_SHIFT; | 3665 | power >>= SCHED_LOAD_SHIFT; |
| 3753 | } | 3666 | } |
| 3754 | 3667 | ||
| @@ -3785,6 +3698,7 @@ static void update_group_power(struct sched_domain *sd, int cpu) | |||
| 3785 | 3698 | ||
| 3786 | /** | 3699 | /** |
| 3787 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 3700 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
| 3701 | * @sd: The sched_domain whose statistics are to be updated. | ||
| 3788 | * @group: sched_group whose statistics are to be updated. | 3702 | * @group: sched_group whose statistics are to be updated. |
| 3789 | * @this_cpu: Cpu for which load balance is currently performed. | 3703 | * @this_cpu: Cpu for which load balance is currently performed. |
| 3790 | * @idle: Idle status of this_cpu | 3704 | * @idle: Idle status of this_cpu |
| @@ -4161,26 +4075,6 @@ ret: | |||
| 4161 | return NULL; | 4075 | return NULL; |
| 4162 | } | 4076 | } |
| 4163 | 4077 | ||
| 4164 | static struct sched_group *group_of(int cpu) | ||
| 4165 | { | ||
| 4166 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4167 | |||
| 4168 | if (!sd) | ||
| 4169 | return NULL; | ||
| 4170 | |||
| 4171 | return sd->groups; | ||
| 4172 | } | ||
| 4173 | |||
| 4174 | static unsigned long power_of(int cpu) | ||
| 4175 | { | ||
| 4176 | struct sched_group *group = group_of(cpu); | ||
| 4177 | |||
| 4178 | if (!group) | ||
| 4179 | return SCHED_LOAD_SCALE; | ||
| 4180 | |||
| 4181 | return group->cpu_power; | ||
| 4182 | } | ||
| 4183 | |||
| 4184 | /* | 4078 | /* |
| 4185 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 4079 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
| 4186 | */ | 4080 | */ |
| @@ -4240,7 +4134,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, | |||
| 4240 | unsigned long flags; | 4134 | unsigned long flags; |
| 4241 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 4135 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
| 4242 | 4136 | ||
| 4243 | cpumask_setall(cpus); | 4137 | cpumask_copy(cpus, cpu_online_mask); |
| 4244 | 4138 | ||
| 4245 | /* | 4139 | /* |
| 4246 | * When power savings policy is enabled for the parent domain, idle | 4140 | * When power savings policy is enabled for the parent domain, idle |
| @@ -4403,7 +4297,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | |||
| 4403 | int all_pinned = 0; | 4297 | int all_pinned = 0; |
| 4404 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 4298 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
| 4405 | 4299 | ||
| 4406 | cpumask_setall(cpus); | 4300 | cpumask_copy(cpus, cpu_online_mask); |
| 4407 | 4301 | ||
| 4408 | /* | 4302 | /* |
| 4409 | * When power savings policy is enabled for the parent domain, idle | 4303 | * When power savings policy is enabled for the parent domain, idle |
| @@ -4543,6 +4437,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
| 4543 | int pulled_task = 0; | 4437 | int pulled_task = 0; |
| 4544 | unsigned long next_balance = jiffies + HZ; | 4438 | unsigned long next_balance = jiffies + HZ; |
| 4545 | 4439 | ||
| 4440 | this_rq->idle_stamp = this_rq->clock; | ||
| 4441 | |||
| 4442 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
| 4443 | return; | ||
| 4444 | |||
| 4546 | for_each_domain(this_cpu, sd) { | 4445 | for_each_domain(this_cpu, sd) { |
| 4547 | unsigned long interval; | 4446 | unsigned long interval; |
| 4548 | 4447 | ||
| @@ -4557,8 +4456,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
| 4557 | interval = msecs_to_jiffies(sd->balance_interval); | 4456 | interval = msecs_to_jiffies(sd->balance_interval); |
| 4558 | if (time_after(next_balance, sd->last_balance + interval)) | 4457 | if (time_after(next_balance, sd->last_balance + interval)) |
| 4559 | next_balance = sd->last_balance + interval; | 4458 | next_balance = sd->last_balance + interval; |
| 4560 | if (pulled_task) | 4459 | if (pulled_task) { |
| 4460 | this_rq->idle_stamp = 0; | ||
| 4561 | break; | 4461 | break; |
| 4462 | } | ||
| 4562 | } | 4463 | } |
| 4563 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 4464 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
| 4564 | /* | 4465 | /* |
| @@ -5160,8 +5061,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, | |||
| 5160 | p->gtime = cputime_add(p->gtime, cputime); | 5061 | p->gtime = cputime_add(p->gtime, cputime); |
| 5161 | 5062 | ||
| 5162 | /* Add guest time to cpustat. */ | 5063 | /* Add guest time to cpustat. */ |
| 5163 | cpustat->user = cputime64_add(cpustat->user, tmp); | 5064 | if (TASK_NICE(p) > 0) { |
| 5164 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 5065 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
| 5066 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | ||
| 5067 | } else { | ||
| 5068 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
| 5069 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | ||
| 5070 | } | ||
| 5165 | } | 5071 | } |
| 5166 | 5072 | ||
| 5167 | /* | 5073 | /* |
| @@ -5239,17 +5145,16 @@ void account_idle_time(cputime_t cputime) | |||
| 5239 | */ | 5145 | */ |
| 5240 | void account_process_tick(struct task_struct *p, int user_tick) | 5146 | void account_process_tick(struct task_struct *p, int user_tick) |
| 5241 | { | 5147 | { |
| 5242 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5148 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
| 5243 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
| 5244 | struct rq *rq = this_rq(); | 5149 | struct rq *rq = this_rq(); |
| 5245 | 5150 | ||
| 5246 | if (user_tick) | 5151 | if (user_tick) |
| 5247 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5152 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| 5248 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5153 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
| 5249 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5154 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
| 5250 | one_jiffy_scaled); | 5155 | one_jiffy_scaled); |
| 5251 | else | 5156 | else |
| 5252 | account_idle_time(one_jiffy); | 5157 | account_idle_time(cputime_one_jiffy); |
| 5253 | } | 5158 | } |
| 5254 | 5159 | ||
| 5255 | /* | 5160 | /* |
| @@ -5277,60 +5182,86 @@ void account_idle_ticks(unsigned long ticks) | |||
| 5277 | * Use precise platform statistics if available: | 5182 | * Use precise platform statistics if available: |
| 5278 | */ | 5183 | */ |
| 5279 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 5184 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
| 5280 | cputime_t task_utime(struct task_struct *p) | 5185 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 5281 | { | 5186 | { |
| 5282 | return p->utime; | 5187 | *ut = p->utime; |
| 5188 | *st = p->stime; | ||
| 5283 | } | 5189 | } |
| 5284 | 5190 | ||
| 5285 | cputime_t task_stime(struct task_struct *p) | 5191 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 5286 | { | 5192 | { |
| 5287 | return p->stime; | 5193 | struct task_cputime cputime; |
| 5194 | |||
| 5195 | thread_group_cputime(p, &cputime); | ||
| 5196 | |||
| 5197 | *ut = cputime.utime; | ||
| 5198 | *st = cputime.stime; | ||
| 5288 | } | 5199 | } |
| 5289 | #else | 5200 | #else |
| 5290 | cputime_t task_utime(struct task_struct *p) | 5201 | |
| 5202 | #ifndef nsecs_to_cputime | ||
| 5203 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | ||
| 5204 | #endif | ||
| 5205 | |||
| 5206 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
| 5291 | { | 5207 | { |
| 5292 | clock_t utime = cputime_to_clock_t(p->utime), | 5208 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
| 5293 | total = utime + cputime_to_clock_t(p->stime); | ||
| 5294 | u64 temp; | ||
| 5295 | 5209 | ||
| 5296 | /* | 5210 | /* |
| 5297 | * Use CFS's precise accounting: | 5211 | * Use CFS's precise accounting: |
| 5298 | */ | 5212 | */ |
| 5299 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 5213 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
| 5300 | 5214 | ||
| 5301 | if (total) { | 5215 | if (total) { |
| 5302 | temp *= utime; | 5216 | u64 temp; |
| 5217 | |||
| 5218 | temp = (u64)(rtime * utime); | ||
| 5303 | do_div(temp, total); | 5219 | do_div(temp, total); |
| 5304 | } | 5220 | utime = (cputime_t)temp; |
| 5305 | utime = (clock_t)temp; | 5221 | } else |
| 5222 | utime = rtime; | ||
| 5223 | |||
| 5224 | /* | ||
| 5225 | * Compare with previous values, to keep monotonicity: | ||
| 5226 | */ | ||
| 5227 | p->prev_utime = max(p->prev_utime, utime); | ||
| 5228 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | ||
| 5306 | 5229 | ||
| 5307 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 5230 | *ut = p->prev_utime; |
| 5308 | return p->prev_utime; | 5231 | *st = p->prev_stime; |
| 5309 | } | 5232 | } |
| 5310 | 5233 | ||
| 5311 | cputime_t task_stime(struct task_struct *p) | 5234 | /* |
| 5235 | * Must be called with siglock held. | ||
| 5236 | */ | ||
| 5237 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
| 5312 | { | 5238 | { |
| 5313 | clock_t stime; | 5239 | struct signal_struct *sig = p->signal; |
| 5240 | struct task_cputime cputime; | ||
| 5241 | cputime_t rtime, utime, total; | ||
| 5314 | 5242 | ||
| 5315 | /* | 5243 | thread_group_cputime(p, &cputime); |
| 5316 | * Use CFS's precise accounting. (we subtract utime from | ||
| 5317 | * the total, to make sure the total observed by userspace | ||
| 5318 | * grows monotonically - apps rely on that): | ||
| 5319 | */ | ||
| 5320 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | ||
| 5321 | cputime_to_clock_t(task_utime(p)); | ||
| 5322 | 5244 | ||
| 5323 | if (stime >= 0) | 5245 | total = cputime_add(cputime.utime, cputime.stime); |
| 5324 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 5246 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
| 5325 | 5247 | ||
| 5326 | return p->prev_stime; | 5248 | if (total) { |
| 5327 | } | 5249 | u64 temp; |
| 5328 | #endif | ||
| 5329 | 5250 | ||
| 5330 | inline cputime_t task_gtime(struct task_struct *p) | 5251 | temp = (u64)(rtime * cputime.utime); |
| 5331 | { | 5252 | do_div(temp, total); |
| 5332 | return p->gtime; | 5253 | utime = (cputime_t)temp; |
| 5254 | } else | ||
| 5255 | utime = rtime; | ||
| 5256 | |||
| 5257 | sig->prev_utime = max(sig->prev_utime, utime); | ||
| 5258 | sig->prev_stime = max(sig->prev_stime, | ||
| 5259 | cputime_sub(rtime, sig->prev_utime)); | ||
| 5260 | |||
| 5261 | *ut = sig->prev_utime; | ||
| 5262 | *st = sig->prev_stime; | ||
| 5333 | } | 5263 | } |
| 5264 | #endif | ||
| 5334 | 5265 | ||
| 5335 | /* | 5266 | /* |
| 5336 | * This function gets called by the timer code, with HZ frequency. | 5267 | * This function gets called by the timer code, with HZ frequency. |
| @@ -5353,7 +5284,7 @@ void scheduler_tick(void) | |||
| 5353 | curr->sched_class->task_tick(rq, curr, 0); | 5284 | curr->sched_class->task_tick(rq, curr, 0); |
| 5354 | spin_unlock(&rq->lock); | 5285 | spin_unlock(&rq->lock); |
| 5355 | 5286 | ||
| 5356 | perf_counter_task_tick(curr, cpu); | 5287 | perf_event_task_tick(curr, cpu); |
| 5357 | 5288 | ||
| 5358 | #ifdef CONFIG_SMP | 5289 | #ifdef CONFIG_SMP |
| 5359 | rq->idle_at_tick = idle_cpu(cpu); | 5290 | rq->idle_at_tick = idle_cpu(cpu); |
| @@ -5465,14 +5396,13 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 5465 | #endif | 5396 | #endif |
| 5466 | } | 5397 | } |
| 5467 | 5398 | ||
| 5468 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 5399 | static void put_prev_task(struct rq *rq, struct task_struct *p) |
| 5469 | { | 5400 | { |
| 5470 | if (prev->state == TASK_RUNNING) { | 5401 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; |
| 5471 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 5472 | 5402 | ||
| 5473 | runtime -= prev->se.prev_sum_exec_runtime; | 5403 | update_avg(&p->se.avg_running, runtime); |
| 5474 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 5475 | 5404 | ||
| 5405 | if (p->state == TASK_RUNNING) { | ||
| 5476 | /* | 5406 | /* |
| 5477 | * In order to avoid avg_overlap growing stale when we are | 5407 | * In order to avoid avg_overlap growing stale when we are |
| 5478 | * indeed overlapping and hence not getting put to sleep, grow | 5408 | * indeed overlapping and hence not getting put to sleep, grow |
| @@ -5482,9 +5412,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
| 5482 | * correlates to the amount of cache footprint a task can | 5412 | * correlates to the amount of cache footprint a task can |
| 5483 | * build up. | 5413 | * build up. |
| 5484 | */ | 5414 | */ |
| 5485 | update_avg(&prev->se.avg_overlap, runtime); | 5415 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); |
| 5416 | update_avg(&p->se.avg_overlap, runtime); | ||
| 5417 | } else { | ||
| 5418 | update_avg(&p->se.avg_running, 0); | ||
| 5486 | } | 5419 | } |
| 5487 | prev->sched_class->put_prev_task(rq, prev); | 5420 | p->sched_class->put_prev_task(rq, p); |
| 5488 | } | 5421 | } |
| 5489 | 5422 | ||
| 5490 | /* | 5423 | /* |
| @@ -5567,7 +5500,7 @@ need_resched_nonpreemptible: | |||
| 5567 | 5500 | ||
| 5568 | if (likely(prev != next)) { | 5501 | if (likely(prev != next)) { |
| 5569 | sched_info_switch(prev, next); | 5502 | sched_info_switch(prev, next); |
| 5570 | perf_counter_task_sched_out(prev, next, cpu); | 5503 | perf_event_task_sched_out(prev, next, cpu); |
| 5571 | 5504 | ||
| 5572 | rq->nr_switches++; | 5505 | rq->nr_switches++; |
| 5573 | rq->curr = next; | 5506 | rq->curr = next; |
| @@ -5594,7 +5527,7 @@ need_resched_nonpreemptible: | |||
| 5594 | } | 5527 | } |
| 5595 | EXPORT_SYMBOL(schedule); | 5528 | EXPORT_SYMBOL(schedule); |
| 5596 | 5529 | ||
| 5597 | #ifdef CONFIG_SMP | 5530 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
| 5598 | /* | 5531 | /* |
| 5599 | * Look out! "owner" is an entirely speculative pointer | 5532 | * Look out! "owner" is an entirely speculative pointer |
| 5600 | * access and not reliable. | 5533 | * access and not reliable. |
| @@ -5716,10 +5649,10 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 5716 | 5649 | ||
| 5717 | #endif /* CONFIG_PREEMPT */ | 5650 | #endif /* CONFIG_PREEMPT */ |
| 5718 | 5651 | ||
| 5719 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 5652 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
| 5720 | void *key) | 5653 | void *key) |
| 5721 | { | 5654 | { |
| 5722 | return try_to_wake_up(curr->private, mode, sync); | 5655 | return try_to_wake_up(curr->private, mode, wake_flags); |
| 5723 | } | 5656 | } |
| 5724 | EXPORT_SYMBOL(default_wake_function); | 5657 | EXPORT_SYMBOL(default_wake_function); |
| 5725 | 5658 | ||
| @@ -5733,14 +5666,14 @@ EXPORT_SYMBOL(default_wake_function); | |||
| 5733 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 5666 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| 5734 | */ | 5667 | */ |
| 5735 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 5668 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| 5736 | int nr_exclusive, int sync, void *key) | 5669 | int nr_exclusive, int wake_flags, void *key) |
| 5737 | { | 5670 | { |
| 5738 | wait_queue_t *curr, *next; | 5671 | wait_queue_t *curr, *next; |
| 5739 | 5672 | ||
| 5740 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 5673 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
| 5741 | unsigned flags = curr->flags; | 5674 | unsigned flags = curr->flags; |
| 5742 | 5675 | ||
| 5743 | if (curr->func(curr, mode, sync, key) && | 5676 | if (curr->func(curr, mode, wake_flags, key) && |
| 5744 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 5677 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| 5745 | break; | 5678 | break; |
| 5746 | } | 5679 | } |
| @@ -5801,16 +5734,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |||
| 5801 | int nr_exclusive, void *key) | 5734 | int nr_exclusive, void *key) |
| 5802 | { | 5735 | { |
| 5803 | unsigned long flags; | 5736 | unsigned long flags; |
| 5804 | int sync = 1; | 5737 | int wake_flags = WF_SYNC; |
| 5805 | 5738 | ||
| 5806 | if (unlikely(!q)) | 5739 | if (unlikely(!q)) |
| 5807 | return; | 5740 | return; |
| 5808 | 5741 | ||
| 5809 | if (unlikely(!nr_exclusive)) | 5742 | if (unlikely(!nr_exclusive)) |
| 5810 | sync = 0; | 5743 | wake_flags = 0; |
| 5811 | 5744 | ||
| 5812 | spin_lock_irqsave(&q->lock, flags); | 5745 | spin_lock_irqsave(&q->lock, flags); |
| 5813 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 5746 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
| 5814 | spin_unlock_irqrestore(&q->lock, flags); | 5747 | spin_unlock_irqrestore(&q->lock, flags); |
| 5815 | } | 5748 | } |
| 5816 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 5749 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| @@ -6288,22 +6221,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |||
| 6288 | BUG_ON(p->se.on_rq); | 6221 | BUG_ON(p->se.on_rq); |
| 6289 | 6222 | ||
| 6290 | p->policy = policy; | 6223 | p->policy = policy; |
| 6291 | switch (p->policy) { | ||
| 6292 | case SCHED_NORMAL: | ||
| 6293 | case SCHED_BATCH: | ||
| 6294 | case SCHED_IDLE: | ||
| 6295 | p->sched_class = &fair_sched_class; | ||
| 6296 | break; | ||
| 6297 | case SCHED_FIFO: | ||
| 6298 | case SCHED_RR: | ||
| 6299 | p->sched_class = &rt_sched_class; | ||
| 6300 | break; | ||
| 6301 | } | ||
| 6302 | |||
| 6303 | p->rt_priority = prio; | 6224 | p->rt_priority = prio; |
| 6304 | p->normal_prio = normal_prio(p); | 6225 | p->normal_prio = normal_prio(p); |
| 6305 | /* we are holding p->pi_lock already */ | 6226 | /* we are holding p->pi_lock already */ |
| 6306 | p->prio = rt_mutex_getprio(p); | 6227 | p->prio = rt_mutex_getprio(p); |
| 6228 | if (rt_prio(p->prio)) | ||
| 6229 | p->sched_class = &rt_sched_class; | ||
| 6230 | else | ||
| 6231 | p->sched_class = &fair_sched_class; | ||
| 6307 | set_load_weight(p); | 6232 | set_load_weight(p); |
| 6308 | } | 6233 | } |
| 6309 | 6234 | ||
| @@ -6866,9 +6791,6 @@ EXPORT_SYMBOL(yield); | |||
| 6866 | /* | 6791 | /* |
| 6867 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 6792 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
| 6868 | * that process accounting knows that this is a task in IO wait state. | 6793 | * that process accounting knows that this is a task in IO wait state. |
| 6869 | * | ||
| 6870 | * But don't do that if it is a deliberate, throttling IO wait (this task | ||
| 6871 | * has set its backing_dev_info: the queue against which it should throttle) | ||
| 6872 | */ | 6794 | */ |
| 6873 | void __sched io_schedule(void) | 6795 | void __sched io_schedule(void) |
| 6874 | { | 6796 | { |
| @@ -6977,23 +6899,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
| 6977 | if (retval) | 6899 | if (retval) |
| 6978 | goto out_unlock; | 6900 | goto out_unlock; |
| 6979 | 6901 | ||
| 6980 | /* | 6902 | time_slice = p->sched_class->get_rr_interval(p); |
| 6981 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
| 6982 | * tasks that are on an otherwise idle runqueue: | ||
| 6983 | */ | ||
| 6984 | time_slice = 0; | ||
| 6985 | if (p->policy == SCHED_RR) { | ||
| 6986 | time_slice = DEF_TIMESLICE; | ||
| 6987 | } else if (p->policy != SCHED_FIFO) { | ||
| 6988 | struct sched_entity *se = &p->se; | ||
| 6989 | unsigned long flags; | ||
| 6990 | struct rq *rq; | ||
| 6991 | 6903 | ||
| 6992 | rq = task_rq_lock(p, &flags); | ||
| 6993 | if (rq->cfs.load.weight) | ||
| 6994 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 6995 | task_rq_unlock(rq, &flags); | ||
| 6996 | } | ||
| 6997 | read_unlock(&tasklist_lock); | 6904 | read_unlock(&tasklist_lock); |
| 6998 | jiffies_to_timespec(time_slice, &t); | 6905 | jiffies_to_timespec(time_slice, &t); |
| 6999 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6906 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| @@ -7066,7 +6973,7 @@ void show_state_filter(unsigned long state_filter) | |||
| 7066 | /* | 6973 | /* |
| 7067 | * Only show locks if all tasks are dumped: | 6974 | * Only show locks if all tasks are dumped: |
| 7068 | */ | 6975 | */ |
| 7069 | if (state_filter == -1) | 6976 | if (!state_filter) |
| 7070 | debug_show_all_locks(); | 6977 | debug_show_all_locks(); |
| 7071 | } | 6978 | } |
| 7072 | 6979 | ||
| @@ -7844,7 +7751,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7844 | /* | 7751 | /* |
| 7845 | * Register at high priority so that task migration (migrate_all_tasks) | 7752 | * Register at high priority so that task migration (migrate_all_tasks) |
| 7846 | * happens before everything else. This has to be lower priority than | 7753 | * happens before everything else. This has to be lower priority than |
| 7847 | * the notifier in the perf_counter subsystem, though. | 7754 | * the notifier in the perf_event subsystem, though. |
| 7848 | */ | 7755 | */ |
| 7849 | static struct notifier_block __cpuinitdata migration_notifier = { | 7756 | static struct notifier_block __cpuinitdata migration_notifier = { |
| 7850 | .notifier_call = migration_call, | 7757 | .notifier_call = migration_call, |
| @@ -7871,6 +7778,16 @@ early_initcall(migration_init); | |||
| 7871 | 7778 | ||
| 7872 | #ifdef CONFIG_SCHED_DEBUG | 7779 | #ifdef CONFIG_SCHED_DEBUG |
| 7873 | 7780 | ||
| 7781 | static __read_mostly int sched_domain_debug_enabled; | ||
| 7782 | |||
| 7783 | static int __init sched_domain_debug_setup(char *str) | ||
| 7784 | { | ||
| 7785 | sched_domain_debug_enabled = 1; | ||
| 7786 | |||
| 7787 | return 0; | ||
| 7788 | } | ||
| 7789 | early_param("sched_debug", sched_domain_debug_setup); | ||
| 7790 | |||
| 7874 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 7791 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
| 7875 | struct cpumask *groupmask) | 7792 | struct cpumask *groupmask) |
| 7876 | { | 7793 | { |
| @@ -7957,6 +7874,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) | |||
| 7957 | cpumask_var_t groupmask; | 7874 | cpumask_var_t groupmask; |
| 7958 | int level = 0; | 7875 | int level = 0; |
| 7959 | 7876 | ||
| 7877 | if (!sched_domain_debug_enabled) | ||
| 7878 | return; | ||
| 7879 | |||
| 7960 | if (!sd) { | 7880 | if (!sd) { |
| 7961 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 7881 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
| 7962 | return; | 7882 | return; |
| @@ -8000,9 +7920,7 @@ static int sd_degenerate(struct sched_domain *sd) | |||
| 8000 | } | 7920 | } |
| 8001 | 7921 | ||
| 8002 | /* Following flags don't use groups */ | 7922 | /* Following flags don't use groups */ |
| 8003 | if (sd->flags & (SD_WAKE_IDLE | | 7923 | if (sd->flags & (SD_WAKE_AFFINE)) |
| 8004 | SD_WAKE_AFFINE | | ||
| 8005 | SD_WAKE_BALANCE)) | ||
| 8006 | return 0; | 7924 | return 0; |
| 8007 | 7925 | ||
| 8008 | return 1; | 7926 | return 1; |
| @@ -8019,10 +7937,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
| 8019 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 7937 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| 8020 | return 0; | 7938 | return 0; |
| 8021 | 7939 | ||
| 8022 | /* Does parent contain flags not in child? */ | ||
| 8023 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
| 8024 | if (cflags & SD_WAKE_AFFINE) | ||
| 8025 | pflags &= ~SD_WAKE_BALANCE; | ||
| 8026 | /* Flags needing groups don't count if only 1 group in parent */ | 7940 | /* Flags needing groups don't count if only 1 group in parent */ |
| 8027 | if (parent->groups == parent->groups->next) { | 7941 | if (parent->groups == parent->groups->next) { |
| 8028 | pflags &= ~(SD_LOAD_BALANCE | | 7942 | pflags &= ~(SD_LOAD_BALANCE | |
| @@ -8042,6 +7956,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
| 8042 | 7956 | ||
| 8043 | static void free_rootdomain(struct root_domain *rd) | 7957 | static void free_rootdomain(struct root_domain *rd) |
| 8044 | { | 7958 | { |
| 7959 | synchronize_sched(); | ||
| 7960 | |||
| 8045 | cpupri_cleanup(&rd->cpupri); | 7961 | cpupri_cleanup(&rd->cpupri); |
| 8046 | 7962 | ||
| 8047 | free_cpumask_var(rd->rto_mask); | 7963 | free_cpumask_var(rd->rto_mask); |
| @@ -8182,6 +8098,7 @@ static cpumask_var_t cpu_isolated_map; | |||
| 8182 | /* Setup the mask of cpus configured for isolated domains */ | 8098 | /* Setup the mask of cpus configured for isolated domains */ |
| 8183 | static int __init isolated_cpu_setup(char *str) | 8099 | static int __init isolated_cpu_setup(char *str) |
| 8184 | { | 8100 | { |
| 8101 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | ||
| 8185 | cpulist_parse(str, cpu_isolated_map); | 8102 | cpulist_parse(str, cpu_isolated_map); |
| 8186 | return 1; | 8103 | return 1; |
| 8187 | } | 8104 | } |
| @@ -8708,10 +8625,10 @@ static void set_domain_attribute(struct sched_domain *sd, | |||
| 8708 | request = attr->relax_domain_level; | 8625 | request = attr->relax_domain_level; |
| 8709 | if (request < sd->level) { | 8626 | if (request < sd->level) { |
| 8710 | /* turn off idle balance on this domain */ | 8627 | /* turn off idle balance on this domain */ |
| 8711 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 8628 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8712 | } else { | 8629 | } else { |
| 8713 | /* turn on idle balance on this domain */ | 8630 | /* turn on idle balance on this domain */ |
| 8714 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 8631 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8715 | } | 8632 | } |
| 8716 | } | 8633 | } |
| 8717 | 8634 | ||
| @@ -9018,7 +8935,7 @@ static int build_sched_domains(const struct cpumask *cpu_map) | |||
| 9018 | return __build_sched_domains(cpu_map, NULL); | 8935 | return __build_sched_domains(cpu_map, NULL); |
| 9019 | } | 8936 | } |
| 9020 | 8937 | ||
| 9021 | static struct cpumask *doms_cur; /* current sched domains */ | 8938 | static cpumask_var_t *doms_cur; /* current sched domains */ |
| 9022 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 8939 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
| 9023 | static struct sched_domain_attr *dattr_cur; | 8940 | static struct sched_domain_attr *dattr_cur; |
| 9024 | /* attribues of custom domains in 'doms_cur' */ | 8941 | /* attribues of custom domains in 'doms_cur' */ |
| @@ -9040,6 +8957,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void) | |||
| 9040 | return 0; | 8957 | return 0; |
| 9041 | } | 8958 | } |
| 9042 | 8959 | ||
| 8960 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | ||
| 8961 | { | ||
| 8962 | int i; | ||
| 8963 | cpumask_var_t *doms; | ||
| 8964 | |||
| 8965 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | ||
| 8966 | if (!doms) | ||
| 8967 | return NULL; | ||
| 8968 | for (i = 0; i < ndoms; i++) { | ||
| 8969 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | ||
| 8970 | free_sched_domains(doms, i); | ||
| 8971 | return NULL; | ||
| 8972 | } | ||
| 8973 | } | ||
| 8974 | return doms; | ||
| 8975 | } | ||
| 8976 | |||
| 8977 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | ||
| 8978 | { | ||
| 8979 | unsigned int i; | ||
| 8980 | for (i = 0; i < ndoms; i++) | ||
| 8981 | free_cpumask_var(doms[i]); | ||
| 8982 | kfree(doms); | ||
| 8983 | } | ||
| 8984 | |||
| 9043 | /* | 8985 | /* |
| 9044 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 8986 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
| 9045 | * For now this just excludes isolated cpus, but could be used to | 8987 | * For now this just excludes isolated cpus, but could be used to |
| @@ -9051,12 +8993,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map) | |||
| 9051 | 8993 | ||
| 9052 | arch_update_cpu_topology(); | 8994 | arch_update_cpu_topology(); |
| 9053 | ndoms_cur = 1; | 8995 | ndoms_cur = 1; |
| 9054 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); | 8996 | doms_cur = alloc_sched_domains(ndoms_cur); |
| 9055 | if (!doms_cur) | 8997 | if (!doms_cur) |
| 9056 | doms_cur = fallback_doms; | 8998 | doms_cur = &fallback_doms; |
| 9057 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); | 8999 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
| 9058 | dattr_cur = NULL; | 9000 | dattr_cur = NULL; |
| 9059 | err = build_sched_domains(doms_cur); | 9001 | err = build_sched_domains(doms_cur[0]); |
| 9060 | register_sched_domain_sysctl(); | 9002 | register_sched_domain_sysctl(); |
| 9061 | 9003 | ||
| 9062 | return err; | 9004 | return err; |
| @@ -9106,19 +9048,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
| 9106 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 9048 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
| 9107 | * It destroys each deleted domain and builds each new domain. | 9049 | * It destroys each deleted domain and builds each new domain. |
| 9108 | * | 9050 | * |
| 9109 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. | 9051 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
| 9110 | * The masks don't intersect (don't overlap.) We should setup one | 9052 | * The masks don't intersect (don't overlap.) We should setup one |
| 9111 | * sched domain for each mask. CPUs not in any of the cpumasks will | 9053 | * sched domain for each mask. CPUs not in any of the cpumasks will |
| 9112 | * not be load balanced. If the same cpumask appears both in the | 9054 | * not be load balanced. If the same cpumask appears both in the |
| 9113 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 9055 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
| 9114 | * it as it is. | 9056 | * it as it is. |
| 9115 | * | 9057 | * |
| 9116 | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 9058 | * The passed in 'doms_new' should be allocated using |
| 9117 | * ownership of it and will kfree it when done with it. If the caller | 9059 | * alloc_sched_domains. This routine takes ownership of it and will |
| 9118 | * failed the kmalloc call, then it can pass in doms_new == NULL && | 9060 | * free_sched_domains it when done with it. If the caller failed the |
| 9119 | * ndoms_new == 1, and partition_sched_domains() will fallback to | 9061 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
| 9120 | * the single partition 'fallback_doms', it also forces the domains | 9062 | * and partition_sched_domains() will fallback to the single partition |
| 9121 | * to be rebuilt. | 9063 | * 'fallback_doms', it also forces the domains to be rebuilt. |
| 9122 | * | 9064 | * |
| 9123 | * If doms_new == NULL it will be replaced with cpu_online_mask. | 9065 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
| 9124 | * ndoms_new == 0 is a special case for destroying existing domains, | 9066 | * ndoms_new == 0 is a special case for destroying existing domains, |
| @@ -9126,8 +9068,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
| 9126 | * | 9068 | * |
| 9127 | * Call with hotplug lock held | 9069 | * Call with hotplug lock held |
| 9128 | */ | 9070 | */ |
| 9129 | /* FIXME: Change to struct cpumask *doms_new[] */ | 9071 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| 9130 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | ||
| 9131 | struct sched_domain_attr *dattr_new) | 9072 | struct sched_domain_attr *dattr_new) |
| 9132 | { | 9073 | { |
| 9133 | int i, j, n; | 9074 | int i, j, n; |
| @@ -9146,40 +9087,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |||
| 9146 | /* Destroy deleted domains */ | 9087 | /* Destroy deleted domains */ |
| 9147 | for (i = 0; i < ndoms_cur; i++) { | 9088 | for (i = 0; i < ndoms_cur; i++) { |
| 9148 | for (j = 0; j < n && !new_topology; j++) { | 9089 | for (j = 0; j < n && !new_topology; j++) { |
| 9149 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) | 9090 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
| 9150 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 9091 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
| 9151 | goto match1; | 9092 | goto match1; |
| 9152 | } | 9093 | } |
| 9153 | /* no match - a current sched domain not in new doms_new[] */ | 9094 | /* no match - a current sched domain not in new doms_new[] */ |
| 9154 | detach_destroy_domains(doms_cur + i); | 9095 | detach_destroy_domains(doms_cur[i]); |
| 9155 | match1: | 9096 | match1: |
| 9156 | ; | 9097 | ; |
| 9157 | } | 9098 | } |
| 9158 | 9099 | ||
| 9159 | if (doms_new == NULL) { | 9100 | if (doms_new == NULL) { |
| 9160 | ndoms_cur = 0; | 9101 | ndoms_cur = 0; |
| 9161 | doms_new = fallback_doms; | 9102 | doms_new = &fallback_doms; |
| 9162 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); | 9103 | cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map); |
| 9163 | WARN_ON_ONCE(dattr_new); | 9104 | WARN_ON_ONCE(dattr_new); |
| 9164 | } | 9105 | } |
| 9165 | 9106 | ||
| 9166 | /* Build new domains */ | 9107 | /* Build new domains */ |
| 9167 | for (i = 0; i < ndoms_new; i++) { | 9108 | for (i = 0; i < ndoms_new; i++) { |
| 9168 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | 9109 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
| 9169 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) | 9110 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
| 9170 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 9111 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
| 9171 | goto match2; | 9112 | goto match2; |
| 9172 | } | 9113 | } |
| 9173 | /* no match - add a new doms_new */ | 9114 | /* no match - add a new doms_new */ |
| 9174 | __build_sched_domains(doms_new + i, | 9115 | __build_sched_domains(doms_new[i], |
| 9175 | dattr_new ? dattr_new + i : NULL); | 9116 | dattr_new ? dattr_new + i : NULL); |
| 9176 | match2: | 9117 | match2: |
| 9177 | ; | 9118 | ; |
| 9178 | } | 9119 | } |
| 9179 | 9120 | ||
| 9180 | /* Remember the new sched domains */ | 9121 | /* Remember the new sched domains */ |
| 9181 | if (doms_cur != fallback_doms) | 9122 | if (doms_cur != &fallback_doms) |
| 9182 | kfree(doms_cur); | 9123 | free_sched_domains(doms_cur, ndoms_cur); |
| 9183 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 9124 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
| 9184 | doms_cur = doms_new; | 9125 | doms_cur = doms_new; |
| 9185 | dattr_cur = dattr_new; | 9126 | dattr_cur = dattr_new; |
| @@ -9329,6 +9270,7 @@ void __init sched_init_smp(void) | |||
| 9329 | cpumask_var_t non_isolated_cpus; | 9270 | cpumask_var_t non_isolated_cpus; |
| 9330 | 9271 | ||
| 9331 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9272 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
| 9273 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 9332 | 9274 | ||
| 9333 | #if defined(CONFIG_NUMA) | 9275 | #if defined(CONFIG_NUMA) |
| 9334 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9276 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
| @@ -9360,7 +9302,6 @@ void __init sched_init_smp(void) | |||
| 9360 | sched_init_granularity(); | 9302 | sched_init_granularity(); |
| 9361 | free_cpumask_var(non_isolated_cpus); | 9303 | free_cpumask_var(non_isolated_cpus); |
| 9362 | 9304 | ||
| 9363 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 9364 | init_sched_rt_class(); | 9305 | init_sched_rt_class(); |
| 9365 | } | 9306 | } |
| 9366 | #else | 9307 | #else |
| @@ -9501,10 +9442,6 @@ void __init sched_init(void) | |||
| 9501 | #ifdef CONFIG_CPUMASK_OFFSTACK | 9442 | #ifdef CONFIG_CPUMASK_OFFSTACK |
| 9502 | alloc_size += num_possible_cpus() * cpumask_size(); | 9443 | alloc_size += num_possible_cpus() * cpumask_size(); |
| 9503 | #endif | 9444 | #endif |
| 9504 | /* | ||
| 9505 | * As sched_init() is called before page_alloc is setup, | ||
| 9506 | * we use alloc_bootmem(). | ||
| 9507 | */ | ||
| 9508 | if (alloc_size) { | 9445 | if (alloc_size) { |
| 9509 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 9446 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
| 9510 | 9447 | ||
| @@ -9573,6 +9510,10 @@ void __init sched_init(void) | |||
| 9573 | #endif /* CONFIG_USER_SCHED */ | 9510 | #endif /* CONFIG_USER_SCHED */ |
| 9574 | #endif /* CONFIG_GROUP_SCHED */ | 9511 | #endif /* CONFIG_GROUP_SCHED */ |
| 9575 | 9512 | ||
| 9513 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | ||
| 9514 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | ||
| 9515 | __alignof__(unsigned long)); | ||
| 9516 | #endif | ||
| 9576 | for_each_possible_cpu(i) { | 9517 | for_each_possible_cpu(i) { |
| 9577 | struct rq *rq; | 9518 | struct rq *rq; |
| 9578 | 9519 | ||
| @@ -9655,6 +9596,8 @@ void __init sched_init(void) | |||
| 9655 | rq->cpu = i; | 9596 | rq->cpu = i; |
| 9656 | rq->online = 0; | 9597 | rq->online = 0; |
| 9657 | rq->migration_thread = NULL; | 9598 | rq->migration_thread = NULL; |
| 9599 | rq->idle_stamp = 0; | ||
| 9600 | rq->avg_idle = 2*sysctl_sched_migration_cost; | ||
| 9658 | INIT_LIST_HEAD(&rq->migration_queue); | 9601 | INIT_LIST_HEAD(&rq->migration_queue); |
| 9659 | rq_attach_root(rq, &def_root_domain); | 9602 | rq_attach_root(rq, &def_root_domain); |
| 9660 | #endif | 9603 | #endif |
| @@ -9698,16 +9641,18 @@ void __init sched_init(void) | |||
| 9698 | current->sched_class = &fair_sched_class; | 9641 | current->sched_class = &fair_sched_class; |
| 9699 | 9642 | ||
| 9700 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ | 9643 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
| 9701 | alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); | 9644 | zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
| 9702 | #ifdef CONFIG_SMP | 9645 | #ifdef CONFIG_SMP |
| 9703 | #ifdef CONFIG_NO_HZ | 9646 | #ifdef CONFIG_NO_HZ |
| 9704 | alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); | 9647 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
| 9705 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | 9648 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); |
| 9706 | #endif | 9649 | #endif |
| 9707 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9650 | /* May be allocated at isolcpus cmdline parse time */ |
| 9651 | if (cpu_isolated_map == NULL) | ||
| 9652 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | ||
| 9708 | #endif /* SMP */ | 9653 | #endif /* SMP */ |
| 9709 | 9654 | ||
| 9710 | perf_counter_init(); | 9655 | perf_event_init(); |
| 9711 | 9656 | ||
| 9712 | scheduler_running = 1; | 9657 | scheduler_running = 1; |
| 9713 | } | 9658 | } |
| @@ -10479,7 +10424,7 @@ static int sched_rt_global_constraints(void) | |||
| 10479 | #endif /* CONFIG_RT_GROUP_SCHED */ | 10424 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 10480 | 10425 | ||
| 10481 | int sched_rt_handler(struct ctl_table *table, int write, | 10426 | int sched_rt_handler(struct ctl_table *table, int write, |
| 10482 | struct file *filp, void __user *buffer, size_t *lenp, | 10427 | void __user *buffer, size_t *lenp, |
| 10483 | loff_t *ppos) | 10428 | loff_t *ppos) |
| 10484 | { | 10429 | { |
| 10485 | int ret; | 10430 | int ret; |
| @@ -10490,7 +10435,7 @@ int sched_rt_handler(struct ctl_table *table, int write, | |||
| 10490 | old_period = sysctl_sched_rt_period; | 10435 | old_period = sysctl_sched_rt_period; |
| 10491 | old_runtime = sysctl_sched_rt_runtime; | 10436 | old_runtime = sysctl_sched_rt_runtime; |
| 10492 | 10437 | ||
| 10493 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 10438 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 10494 | 10439 | ||
| 10495 | if (!ret && write) { | 10440 | if (!ret && write) { |
| 10496 | ret = sched_rt_global_constraints(); | 10441 | ret = sched_rt_global_constraints(); |
| @@ -10544,8 +10489,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
| 10544 | } | 10489 | } |
| 10545 | 10490 | ||
| 10546 | static int | 10491 | static int |
| 10547 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10492 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
| 10548 | struct task_struct *tsk) | ||
| 10549 | { | 10493 | { |
| 10550 | #ifdef CONFIG_RT_GROUP_SCHED | 10494 | #ifdef CONFIG_RT_GROUP_SCHED |
| 10551 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 10495 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
| @@ -10555,15 +10499,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
| 10555 | if (tsk->sched_class != &fair_sched_class) | 10499 | if (tsk->sched_class != &fair_sched_class) |
| 10556 | return -EINVAL; | 10500 | return -EINVAL; |
| 10557 | #endif | 10501 | #endif |
| 10502 | return 0; | ||
| 10503 | } | ||
| 10558 | 10504 | ||
| 10505 | static int | ||
| 10506 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
| 10507 | struct task_struct *tsk, bool threadgroup) | ||
| 10508 | { | ||
| 10509 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | ||
| 10510 | if (retval) | ||
| 10511 | return retval; | ||
| 10512 | if (threadgroup) { | ||
| 10513 | struct task_struct *c; | ||
| 10514 | rcu_read_lock(); | ||
| 10515 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 10516 | retval = cpu_cgroup_can_attach_task(cgrp, c); | ||
| 10517 | if (retval) { | ||
| 10518 | rcu_read_unlock(); | ||
| 10519 | return retval; | ||
| 10520 | } | ||
| 10521 | } | ||
| 10522 | rcu_read_unlock(); | ||
| 10523 | } | ||
| 10559 | return 0; | 10524 | return 0; |
| 10560 | } | 10525 | } |
| 10561 | 10526 | ||
| 10562 | static void | 10527 | static void |
| 10563 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10528 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
| 10564 | struct cgroup *old_cont, struct task_struct *tsk) | 10529 | struct cgroup *old_cont, struct task_struct *tsk, |
| 10530 | bool threadgroup) | ||
| 10565 | { | 10531 | { |
| 10566 | sched_move_task(tsk); | 10532 | sched_move_task(tsk); |
| 10533 | if (threadgroup) { | ||
| 10534 | struct task_struct *c; | ||
| 10535 | rcu_read_lock(); | ||
| 10536 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 10537 | sched_move_task(c); | ||
| 10538 | } | ||
| 10539 | rcu_read_unlock(); | ||
| 10540 | } | ||
| 10567 | } | 10541 | } |
| 10568 | 10542 | ||
| 10569 | #ifdef CONFIG_FAIR_GROUP_SCHED | 10543 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -11005,6 +10979,7 @@ void synchronize_sched_expedited(void) | |||
| 11005 | spin_unlock_irqrestore(&rq->lock, flags); | 10979 | spin_unlock_irqrestore(&rq->lock, flags); |
| 11006 | } | 10980 | } |
| 11007 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | 10981 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; |
| 10982 | synchronize_sched_expedited_count++; | ||
| 11008 | mutex_unlock(&rcu_sched_expedited_mutex); | 10983 | mutex_unlock(&rcu_sched_expedited_mutex); |
| 11009 | put_online_cpus(); | 10984 | put_online_cpus(); |
| 11010 | if (need_full_sync) | 10985 | if (need_full_sync) |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index e1d16c9a7680..479ce5682d7c 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
| @@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running; | |||
| 48 | __read_mostly int sched_clock_stable; | 48 | __read_mostly int sched_clock_stable; |
| 49 | 49 | ||
| 50 | struct sched_clock_data { | 50 | struct sched_clock_data { |
| 51 | /* | ||
| 52 | * Raw spinlock - this is a special case: this might be called | ||
| 53 | * from within instrumentation code so we dont want to do any | ||
| 54 | * instrumentation ourselves. | ||
| 55 | */ | ||
| 56 | raw_spinlock_t lock; | ||
| 57 | |||
| 58 | u64 tick_raw; | 51 | u64 tick_raw; |
| 59 | u64 tick_gtod; | 52 | u64 tick_gtod; |
| 60 | u64 clock; | 53 | u64 clock; |
| @@ -80,7 +73,6 @@ void sched_clock_init(void) | |||
| 80 | for_each_possible_cpu(cpu) { | 73 | for_each_possible_cpu(cpu) { |
| 81 | struct sched_clock_data *scd = cpu_sdc(cpu); | 74 | struct sched_clock_data *scd = cpu_sdc(cpu); |
| 82 | 75 | ||
| 83 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
| 84 | scd->tick_raw = 0; | 76 | scd->tick_raw = 0; |
| 85 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
| 86 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
| @@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y) | |||
| 109 | * - filter out backward motion | 101 | * - filter out backward motion |
| 110 | * - use the GTOD tick value to create a window to filter crazy TSC values | 102 | * - use the GTOD tick value to create a window to filter crazy TSC values |
| 111 | */ | 103 | */ |
| 112 | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 104 | static u64 sched_clock_local(struct sched_clock_data *scd) |
| 113 | { | 105 | { |
| 114 | s64 delta = now - scd->tick_raw; | 106 | u64 now, clock, old_clock, min_clock, max_clock; |
| 115 | u64 clock, min_clock, max_clock; | 107 | s64 delta; |
| 116 | 108 | ||
| 109 | again: | ||
| 110 | now = sched_clock(); | ||
| 111 | delta = now - scd->tick_raw; | ||
| 117 | if (unlikely(delta < 0)) | 112 | if (unlikely(delta < 0)) |
| 118 | delta = 0; | 113 | delta = 0; |
| 119 | 114 | ||
| 115 | old_clock = scd->clock; | ||
| 116 | |||
| 120 | /* | 117 | /* |
| 121 | * scd->clock = clamp(scd->tick_gtod + delta, | 118 | * scd->clock = clamp(scd->tick_gtod + delta, |
| 122 | * max(scd->tick_gtod, scd->clock), | 119 | * max(scd->tick_gtod, scd->clock), |
| @@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
| 124 | */ | 121 | */ |
| 125 | 122 | ||
| 126 | clock = scd->tick_gtod + delta; | 123 | clock = scd->tick_gtod + delta; |
| 127 | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 124 | min_clock = wrap_max(scd->tick_gtod, old_clock); |
| 128 | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 125 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
| 129 | 126 | ||
| 130 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
| 131 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
| 132 | 129 | ||
| 133 | scd->clock = clock; | 130 | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) |
| 131 | goto again; | ||
| 134 | 132 | ||
| 135 | return scd->clock; | 133 | return clock; |
| 136 | } | 134 | } |
| 137 | 135 | ||
| 138 | static void lock_double_clock(struct sched_clock_data *data1, | 136 | static u64 sched_clock_remote(struct sched_clock_data *scd) |
| 139 | struct sched_clock_data *data2) | ||
| 140 | { | 137 | { |
| 141 | if (data1 < data2) { | 138 | struct sched_clock_data *my_scd = this_scd(); |
| 142 | __raw_spin_lock(&data1->lock); | 139 | u64 this_clock, remote_clock; |
| 143 | __raw_spin_lock(&data2->lock); | 140 | u64 *ptr, old_val, val; |
| 141 | |||
| 142 | sched_clock_local(my_scd); | ||
| 143 | again: | ||
| 144 | this_clock = my_scd->clock; | ||
| 145 | remote_clock = scd->clock; | ||
| 146 | |||
| 147 | /* | ||
| 148 | * Use the opportunity that we have both locks | ||
| 149 | * taken to couple the two clocks: we take the | ||
| 150 | * larger time as the latest time for both | ||
| 151 | * runqueues. (this creates monotonic movement) | ||
| 152 | */ | ||
| 153 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 154 | ptr = &scd->clock; | ||
| 155 | old_val = remote_clock; | ||
| 156 | val = this_clock; | ||
| 144 | } else { | 157 | } else { |
| 145 | __raw_spin_lock(&data2->lock); | 158 | /* |
| 146 | __raw_spin_lock(&data1->lock); | 159 | * Should be rare, but possible: |
| 160 | */ | ||
| 161 | ptr = &my_scd->clock; | ||
| 162 | old_val = this_clock; | ||
| 163 | val = remote_clock; | ||
| 147 | } | 164 | } |
| 165 | |||
| 166 | if (cmpxchg64(ptr, old_val, val) != old_val) | ||
| 167 | goto again; | ||
| 168 | |||
| 169 | return val; | ||
| 148 | } | 170 | } |
| 149 | 171 | ||
| 150 | u64 sched_clock_cpu(int cpu) | 172 | u64 sched_clock_cpu(int cpu) |
| 151 | { | 173 | { |
| 152 | u64 now, clock, this_clock, remote_clock; | ||
| 153 | struct sched_clock_data *scd; | 174 | struct sched_clock_data *scd; |
| 175 | u64 clock; | ||
| 176 | |||
| 177 | WARN_ON_ONCE(!irqs_disabled()); | ||
| 154 | 178 | ||
| 155 | if (sched_clock_stable) | 179 | if (sched_clock_stable) |
| 156 | return sched_clock(); | 180 | return sched_clock(); |
| 157 | 181 | ||
| 158 | scd = cpu_sdc(cpu); | ||
| 159 | |||
| 160 | /* | ||
| 161 | * Normally this is not called in NMI context - but if it is, | ||
| 162 | * trying to do any locking here is totally lethal. | ||
| 163 | */ | ||
| 164 | if (unlikely(in_nmi())) | ||
| 165 | return scd->clock; | ||
| 166 | |||
| 167 | if (unlikely(!sched_clock_running)) | 182 | if (unlikely(!sched_clock_running)) |
| 168 | return 0ull; | 183 | return 0ull; |
| 169 | 184 | ||
| 170 | WARN_ON_ONCE(!irqs_disabled()); | 185 | scd = cpu_sdc(cpu); |
| 171 | now = sched_clock(); | ||
| 172 | |||
| 173 | if (cpu != raw_smp_processor_id()) { | ||
| 174 | struct sched_clock_data *my_scd = this_scd(); | ||
| 175 | |||
| 176 | lock_double_clock(scd, my_scd); | ||
| 177 | |||
| 178 | this_clock = __update_sched_clock(my_scd, now); | ||
| 179 | remote_clock = scd->clock; | ||
| 180 | |||
| 181 | /* | ||
| 182 | * Use the opportunity that we have both locks | ||
| 183 | * taken to couple the two clocks: we take the | ||
| 184 | * larger time as the latest time for both | ||
| 185 | * runqueues. (this creates monotonic movement) | ||
| 186 | */ | ||
| 187 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 188 | clock = this_clock; | ||
| 189 | scd->clock = clock; | ||
| 190 | } else { | ||
| 191 | /* | ||
| 192 | * Should be rare, but possible: | ||
| 193 | */ | ||
| 194 | clock = remote_clock; | ||
| 195 | my_scd->clock = remote_clock; | ||
| 196 | } | ||
| 197 | |||
| 198 | __raw_spin_unlock(&my_scd->lock); | ||
| 199 | } else { | ||
| 200 | __raw_spin_lock(&scd->lock); | ||
| 201 | clock = __update_sched_clock(scd, now); | ||
| 202 | } | ||
| 203 | 186 | ||
| 204 | __raw_spin_unlock(&scd->lock); | 187 | if (cpu != smp_processor_id()) |
| 188 | clock = sched_clock_remote(scd); | ||
| 189 | else | ||
| 190 | clock = sched_clock_local(scd); | ||
| 205 | 191 | ||
| 206 | return clock; | 192 | return clock; |
| 207 | } | 193 | } |
| @@ -223,11 +209,9 @@ void sched_clock_tick(void) | |||
| 223 | now_gtod = ktime_to_ns(ktime_get()); | 209 | now_gtod = ktime_to_ns(ktime_get()); |
| 224 | now = sched_clock(); | 210 | now = sched_clock(); |
| 225 | 211 | ||
| 226 | __raw_spin_lock(&scd->lock); | ||
| 227 | scd->tick_raw = now; | 212 | scd->tick_raw = now; |
| 228 | scd->tick_gtod = now_gtod; | 213 | scd->tick_gtod = now_gtod; |
| 229 | __update_sched_clock(scd, now); | 214 | sched_clock_local(scd); |
| 230 | __raw_spin_unlock(&scd->lock); | ||
| 231 | } | 215 | } |
| 232 | 216 | ||
| 233 | /* | 217 | /* |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 5ddbd0891267..6988cf08f705 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
| @@ -285,12 +285,16 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
| 285 | 285 | ||
| 286 | #ifdef CONFIG_SCHEDSTATS | 286 | #ifdef CONFIG_SCHEDSTATS |
| 287 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); | 287 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); |
| 288 | #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); | ||
| 288 | 289 | ||
| 289 | P(yld_count); | 290 | P(yld_count); |
| 290 | 291 | ||
| 291 | P(sched_switch); | 292 | P(sched_switch); |
| 292 | P(sched_count); | 293 | P(sched_count); |
| 293 | P(sched_goidle); | 294 | P(sched_goidle); |
| 295 | #ifdef CONFIG_SMP | ||
| 296 | P64(avg_idle); | ||
| 297 | #endif | ||
| 294 | 298 | ||
| 295 | P(ttwu_count); | 299 | P(ttwu_count); |
| 296 | P(ttwu_local); | 300 | P(ttwu_local); |
| @@ -395,6 +399,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 395 | PN(se.sum_exec_runtime); | 399 | PN(se.sum_exec_runtime); |
| 396 | PN(se.avg_overlap); | 400 | PN(se.avg_overlap); |
| 397 | PN(se.avg_wakeup); | 401 | PN(se.avg_wakeup); |
| 402 | PN(se.avg_running); | ||
| 398 | 403 | ||
| 399 | nr_switches = p->nvcsw + p->nivcsw; | 404 | nr_switches = p->nvcsw + p->nivcsw; |
| 400 | 405 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index aa7f84121016..f61837ad336d 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | |||
| 384 | 384 | ||
| 385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
| 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
| 387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | void __user *buffer, size_t *lenp, |
| 388 | loff_t *ppos) | 388 | loff_t *ppos) |
| 389 | { | 389 | { |
| 390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 391 | 391 | ||
| 392 | if (ret || !write) | 392 | if (ret || !write) |
| 393 | return ret; | 393 | return ret; |
| @@ -513,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
| 513 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
| 514 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
| 515 | 515 | ||
| 516 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
| 516 | cpuacct_charge(curtask, delta_exec); | 517 | cpuacct_charge(curtask, delta_exec); |
| 517 | account_group_exec_runtime(curtask, delta_exec); | 518 | account_group_exec_runtime(curtask, delta_exec); |
| 518 | } | 519 | } |
| @@ -709,24 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
| 709 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
| 710 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
| 711 | 712 | ||
| 712 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
| 713 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
| 714 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
| 715 | unsigned long thresh = sysctl_sched_latency; | ||
| 716 | 716 | ||
| 717 | /* | 717 | /* |
| 718 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
| 719 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
| 720 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
| 721 | * all of which have the same weight. | 721 | * all of which have the same weight. |
| 722 | */ | 722 | */ |
| 723 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
| 724 | (!entity_is_task(se) || | 724 | task_of(se)->policy != SCHED_IDLE)) |
| 725 | task_of(se)->policy != SCHED_IDLE)) | 725 | thresh = calc_delta_fair(thresh, se); |
| 726 | thresh = calc_delta_fair(thresh, se); | ||
| 727 | 726 | ||
| 728 | vruntime -= thresh; | 727 | /* |
| 729 | } | 728 | * Halve their sleep time's effect, to allow |
| 729 | * for a gentler effect of sleepers: | ||
| 730 | */ | ||
| 731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
| 732 | thresh >>= 1; | ||
| 733 | |||
| 734 | vruntime -= thresh; | ||
| 730 | } | 735 | } |
| 731 | 736 | ||
| 732 | /* ensure we never gain time by being placed backwards. */ | 737 | /* ensure we never gain time by being placed backwards. */ |
| @@ -757,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
| 757 | 762 | ||
| 758 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 763 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 759 | { | 764 | { |
| 760 | if (cfs_rq->last == se) | 765 | if (!se || cfs_rq->last == se) |
| 761 | cfs_rq->last = NULL; | 766 | cfs_rq->last = NULL; |
| 762 | 767 | ||
| 763 | if (cfs_rq->next == se) | 768 | if (!se || cfs_rq->next == se) |
| 764 | cfs_rq->next = NULL; | 769 | cfs_rq->next = NULL; |
| 765 | } | 770 | } |
| 766 | 771 | ||
| @@ -817,6 +822,26 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | |||
| 817 | * re-elected due to buddy favours. | 822 | * re-elected due to buddy favours. |
| 818 | */ | 823 | */ |
| 819 | clear_buddies(cfs_rq, curr); | 824 | clear_buddies(cfs_rq, curr); |
| 825 | return; | ||
| 826 | } | ||
| 827 | |||
| 828 | /* | ||
| 829 | * Ensure that a task that missed wakeup preemption by a | ||
| 830 | * narrow margin doesn't have to wait for a full slice. | ||
| 831 | * This also mitigates buddy induced latencies under load. | ||
| 832 | */ | ||
| 833 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 834 | return; | ||
| 835 | |||
| 836 | if (delta_exec < sysctl_sched_min_granularity) | ||
| 837 | return; | ||
| 838 | |||
| 839 | if (cfs_rq->nr_running > 1) { | ||
| 840 | struct sched_entity *se = __pick_next_entity(cfs_rq); | ||
| 841 | s64 delta = curr->vruntime - se->vruntime; | ||
| 842 | |||
| 843 | if (delta > ideal_runtime) | ||
| 844 | resched_task(rq_of(cfs_rq)->curr); | ||
| 820 | } | 845 | } |
| 821 | } | 846 | } |
| 822 | 847 | ||
| @@ -856,12 +881,18 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |||
| 856 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 881 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) |
| 857 | { | 882 | { |
| 858 | struct sched_entity *se = __pick_next_entity(cfs_rq); | 883 | struct sched_entity *se = __pick_next_entity(cfs_rq); |
| 884 | struct sched_entity *left = se; | ||
| 859 | 885 | ||
| 860 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1) | 886 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) |
| 861 | return cfs_rq->next; | 887 | se = cfs_rq->next; |
| 862 | 888 | ||
| 863 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1) | 889 | /* |
| 864 | return cfs_rq->last; | 890 | * Prefer last buddy, try to return the CPU to a preempted task. |
| 891 | */ | ||
| 892 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | ||
| 893 | se = cfs_rq->last; | ||
| 894 | |||
| 895 | clear_buddies(cfs_rq, se); | ||
| 865 | 896 | ||
| 866 | return se; | 897 | return se; |
| 867 | } | 898 | } |
| @@ -1062,83 +1093,6 @@ static void yield_task_fair(struct rq *rq) | |||
| 1062 | se->vruntime = rightmost->vruntime + 1; | 1093 | se->vruntime = rightmost->vruntime + 1; |
| 1063 | } | 1094 | } |
| 1064 | 1095 | ||
| 1065 | /* | ||
| 1066 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
| 1067 | * not idle and an idle cpu is available. The span of cpus to | ||
| 1068 | * search starts with cpus closest then further out as needed, | ||
| 1069 | * so we always favor a closer, idle cpu. | ||
| 1070 | * Domains may include CPUs that are not usable for migration, | ||
| 1071 | * hence we need to mask them out (rq->rd->online) | ||
| 1072 | * | ||
| 1073 | * Returns the CPU we should wake onto. | ||
| 1074 | */ | ||
| 1075 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
| 1076 | |||
| 1077 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) | ||
| 1078 | |||
| 1079 | static int wake_idle(int cpu, struct task_struct *p) | ||
| 1080 | { | ||
| 1081 | struct sched_domain *sd; | ||
| 1082 | int i; | ||
| 1083 | unsigned int chosen_wakeup_cpu; | ||
| 1084 | int this_cpu; | ||
| 1085 | struct rq *task_rq = task_rq(p); | ||
| 1086 | |||
| 1087 | /* | ||
| 1088 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
| 1089 | * are idle and this is not a kernel thread and this task's affinity | ||
| 1090 | * allows it to be moved to preferred cpu, then just move! | ||
| 1091 | */ | ||
| 1092 | |||
| 1093 | this_cpu = smp_processor_id(); | ||
| 1094 | chosen_wakeup_cpu = | ||
| 1095 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
| 1096 | |||
| 1097 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
| 1098 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
| 1099 | p->mm && !(p->flags & PF_KTHREAD) && | ||
| 1100 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
| 1101 | return chosen_wakeup_cpu; | ||
| 1102 | |||
| 1103 | /* | ||
| 1104 | * If it is idle, then it is the best cpu to run this task. | ||
| 1105 | * | ||
| 1106 | * This cpu is also the best, if it has more than one task already. | ||
| 1107 | * Siblings must be also busy(in most cases) as they didn't already | ||
| 1108 | * pickup the extra load from this cpu and hence we need not check | ||
| 1109 | * sibling runqueue info. This will avoid the checks and cache miss | ||
| 1110 | * penalities associated with that. | ||
| 1111 | */ | ||
| 1112 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
| 1113 | return cpu; | ||
| 1114 | |||
| 1115 | for_each_domain(cpu, sd) { | ||
| 1116 | if ((sd->flags & SD_WAKE_IDLE) | ||
| 1117 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
| 1118 | && !task_hot(p, task_rq->clock, sd))) { | ||
| 1119 | for_each_cpu_and(i, sched_domain_span(sd), | ||
| 1120 | &p->cpus_allowed) { | ||
| 1121 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { | ||
| 1122 | if (i != task_cpu(p)) { | ||
| 1123 | schedstat_inc(p, | ||
| 1124 | se.nr_wakeups_idle); | ||
| 1125 | } | ||
| 1126 | return i; | ||
| 1127 | } | ||
| 1128 | } | ||
| 1129 | } else { | ||
| 1130 | break; | ||
| 1131 | } | ||
| 1132 | } | ||
| 1133 | return cpu; | ||
| 1134 | } | ||
| 1135 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
| 1136 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
| 1137 | { | ||
| 1138 | return cpu; | ||
| 1139 | } | ||
| 1140 | #endif | ||
| 1141 | |||
| 1142 | #ifdef CONFIG_SMP | 1096 | #ifdef CONFIG_SMP |
| 1143 | 1097 | ||
| 1144 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1098 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -1225,25 +1179,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
| 1225 | 1179 | ||
| 1226 | #endif | 1180 | #endif |
| 1227 | 1181 | ||
| 1228 | static int | 1182 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
| 1229 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
| 1230 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
| 1231 | int idx, unsigned long load, unsigned long this_load, | ||
| 1232 | unsigned int imbalance) | ||
| 1233 | { | 1183 | { |
| 1234 | struct task_struct *curr = this_rq->curr; | 1184 | struct task_struct *curr = current; |
| 1235 | struct task_group *tg; | 1185 | unsigned long this_load, load; |
| 1236 | unsigned long tl = this_load; | 1186 | int idx, this_cpu, prev_cpu; |
| 1237 | unsigned long tl_per_task; | 1187 | unsigned long tl_per_task; |
| 1188 | unsigned int imbalance; | ||
| 1189 | struct task_group *tg; | ||
| 1238 | unsigned long weight; | 1190 | unsigned long weight; |
| 1239 | int balanced; | 1191 | int balanced; |
| 1240 | 1192 | ||
| 1241 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1193 | idx = sd->wake_idx; |
| 1242 | return 0; | 1194 | this_cpu = smp_processor_id(); |
| 1195 | prev_cpu = task_cpu(p); | ||
| 1196 | load = source_load(prev_cpu, idx); | ||
| 1197 | this_load = target_load(this_cpu, idx); | ||
| 1243 | 1198 | ||
| 1244 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1199 | if (sync) { |
| 1245 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1200 | if (sched_feat(SYNC_LESS) && |
| 1246 | sync = 0; | 1201 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
| 1202 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
| 1203 | sync = 0; | ||
| 1204 | } else { | ||
| 1205 | if (sched_feat(SYNC_MORE) && | ||
| 1206 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
| 1207 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
| 1208 | sync = 1; | ||
| 1209 | } | ||
| 1247 | 1210 | ||
| 1248 | /* | 1211 | /* |
| 1249 | * If sync wakeup then subtract the (maximum possible) | 1212 | * If sync wakeup then subtract the (maximum possible) |
| @@ -1254,24 +1217,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1254 | tg = task_group(current); | 1217 | tg = task_group(current); |
| 1255 | weight = current->se.load.weight; | 1218 | weight = current->se.load.weight; |
| 1256 | 1219 | ||
| 1257 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1220 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
| 1258 | load += effective_load(tg, prev_cpu, 0, -weight); | 1221 | load += effective_load(tg, prev_cpu, 0, -weight); |
| 1259 | } | 1222 | } |
| 1260 | 1223 | ||
| 1261 | tg = task_group(p); | 1224 | tg = task_group(p); |
| 1262 | weight = p->se.load.weight; | 1225 | weight = p->se.load.weight; |
| 1263 | 1226 | ||
| 1227 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; | ||
| 1228 | |||
| 1264 | /* | 1229 | /* |
| 1265 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 1230 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
| 1266 | * due to the sync cause above having dropped tl to 0, we'll always have | 1231 | * due to the sync cause above having dropped this_load to 0, we'll |
| 1267 | * an imbalance, but there's really nothing you can do about that, so | 1232 | * always have an imbalance, but there's really nothing you can do |
| 1268 | * that's good too. | 1233 | * about that, so that's good too. |
| 1269 | * | 1234 | * |
| 1270 | * Otherwise check if either cpus are near enough in load to allow this | 1235 | * Otherwise check if either cpus are near enough in load to allow this |
| 1271 | * task to be woken on this_cpu. | 1236 | * task to be woken on this_cpu. |
| 1272 | */ | 1237 | */ |
| 1273 | balanced = !tl || | 1238 | balanced = !this_load || |
| 1274 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1239 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= |
| 1275 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1240 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
| 1276 | 1241 | ||
| 1277 | /* | 1242 | /* |
| @@ -1285,14 +1250,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1285 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1250 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
| 1286 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1251 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
| 1287 | 1252 | ||
| 1288 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1253 | if (balanced || |
| 1289 | tl_per_task)) { | 1254 | (this_load <= load && |
| 1255 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
| 1290 | /* | 1256 | /* |
| 1291 | * This domain has SD_WAKE_AFFINE and | 1257 | * This domain has SD_WAKE_AFFINE and |
| 1292 | * p is cache cold in this domain, and | 1258 | * p is cache cold in this domain, and |
| 1293 | * there is no bad imbalance. | 1259 | * there is no bad imbalance. |
| 1294 | */ | 1260 | */ |
| 1295 | schedstat_inc(this_sd, ttwu_move_affine); | 1261 | schedstat_inc(sd, ttwu_move_affine); |
| 1296 | schedstat_inc(p, se.nr_wakeups_affine); | 1262 | schedstat_inc(p, se.nr_wakeups_affine); |
| 1297 | 1263 | ||
| 1298 | return 1; | 1264 | return 1; |
| @@ -1300,65 +1266,271 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1300 | return 0; | 1266 | return 0; |
| 1301 | } | 1267 | } |
| 1302 | 1268 | ||
| 1303 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1269 | /* |
| 1270 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 1271 | * domain. | ||
| 1272 | */ | ||
| 1273 | static struct sched_group * | ||
| 1274 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
| 1275 | int this_cpu, int load_idx) | ||
| 1304 | { | 1276 | { |
| 1305 | struct sched_domain *sd, *this_sd = NULL; | 1277 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
| 1306 | int prev_cpu, this_cpu, new_cpu; | 1278 | unsigned long min_load = ULONG_MAX, this_load = 0; |
| 1307 | unsigned long load, this_load; | 1279 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
| 1308 | struct rq *this_rq; | 1280 | |
| 1309 | unsigned int imbalance; | 1281 | do { |
| 1310 | int idx; | 1282 | unsigned long load, avg_load; |
| 1283 | int local_group; | ||
| 1284 | int i; | ||
| 1285 | |||
| 1286 | /* Skip over this group if it has no CPUs allowed */ | ||
| 1287 | if (!cpumask_intersects(sched_group_cpus(group), | ||
| 1288 | &p->cpus_allowed)) | ||
| 1289 | continue; | ||
| 1290 | |||
| 1291 | local_group = cpumask_test_cpu(this_cpu, | ||
| 1292 | sched_group_cpus(group)); | ||
| 1293 | |||
| 1294 | /* Tally up the load of all CPUs in the group */ | ||
| 1295 | avg_load = 0; | ||
| 1296 | |||
| 1297 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 1298 | /* Bias balancing toward cpus of our domain */ | ||
| 1299 | if (local_group) | ||
| 1300 | load = source_load(i, load_idx); | ||
| 1301 | else | ||
| 1302 | load = target_load(i, load_idx); | ||
| 1303 | |||
| 1304 | avg_load += load; | ||
| 1305 | } | ||
| 1306 | |||
| 1307 | /* Adjust by relative CPU power of the group */ | ||
| 1308 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 1309 | |||
| 1310 | if (local_group) { | ||
| 1311 | this_load = avg_load; | ||
| 1312 | this = group; | ||
| 1313 | } else if (avg_load < min_load) { | ||
| 1314 | min_load = avg_load; | ||
| 1315 | idlest = group; | ||
| 1316 | } | ||
| 1317 | } while (group = group->next, group != sd->groups); | ||
| 1318 | |||
| 1319 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 1320 | return NULL; | ||
| 1321 | return idlest; | ||
| 1322 | } | ||
| 1323 | |||
| 1324 | /* | ||
| 1325 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 1326 | */ | ||
| 1327 | static int | ||
| 1328 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 1329 | { | ||
| 1330 | unsigned long load, min_load = ULONG_MAX; | ||
| 1331 | int idlest = -1; | ||
| 1332 | int i; | ||
| 1333 | |||
| 1334 | /* Traverse only the allowed CPUs */ | ||
| 1335 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 1336 | load = weighted_cpuload(i); | ||
| 1337 | |||
| 1338 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 1339 | min_load = load; | ||
| 1340 | idlest = i; | ||
| 1341 | } | ||
| 1342 | } | ||
| 1343 | |||
| 1344 | return idlest; | ||
| 1345 | } | ||
| 1346 | |||
| 1347 | /* | ||
| 1348 | * Try and locate an idle CPU in the sched_domain. | ||
| 1349 | */ | ||
| 1350 | static int | ||
| 1351 | select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) | ||
| 1352 | { | ||
| 1353 | int cpu = smp_processor_id(); | ||
| 1354 | int prev_cpu = task_cpu(p); | ||
| 1355 | int i; | ||
| 1311 | 1356 | ||
| 1312 | prev_cpu = task_cpu(p); | 1357 | /* |
| 1313 | this_cpu = smp_processor_id(); | 1358 | * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE |
| 1314 | this_rq = cpu_rq(this_cpu); | 1359 | * test in select_task_rq_fair) and the prev_cpu is idle then that's |
| 1315 | new_cpu = prev_cpu; | 1360 | * always a better target than the current cpu. |
| 1361 | */ | ||
| 1362 | if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) | ||
| 1363 | return prev_cpu; | ||
| 1316 | 1364 | ||
| 1317 | /* | 1365 | /* |
| 1318 | * 'this_sd' is the first domain that both | 1366 | * Otherwise, iterate the domain and find an elegible idle cpu. |
| 1319 | * this_cpu and prev_cpu are present in: | ||
| 1320 | */ | 1367 | */ |
| 1321 | for_each_domain(this_cpu, sd) { | 1368 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { |
| 1322 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1369 | if (!cpu_rq(i)->cfs.nr_running) { |
| 1323 | this_sd = sd; | 1370 | target = i; |
| 1324 | break; | 1371 | break; |
| 1325 | } | 1372 | } |
| 1326 | } | 1373 | } |
| 1327 | 1374 | ||
| 1328 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1375 | return target; |
| 1329 | goto out; | 1376 | } |
| 1330 | 1377 | ||
| 1331 | /* | 1378 | /* |
| 1332 | * Check for affine wakeup and passive balancing possibilities. | 1379 | * sched_balance_self: balance the current task (running on cpu) in domains |
| 1333 | */ | 1380 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
| 1334 | if (!this_sd) | 1381 | * SD_BALANCE_EXEC. |
| 1382 | * | ||
| 1383 | * Balance, ie. select the least loaded group. | ||
| 1384 | * | ||
| 1385 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 1386 | * | ||
| 1387 | * preempt must be disabled. | ||
| 1388 | */ | ||
| 1389 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
| 1390 | { | ||
| 1391 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
| 1392 | int cpu = smp_processor_id(); | ||
| 1393 | int prev_cpu = task_cpu(p); | ||
| 1394 | int new_cpu = cpu; | ||
| 1395 | int want_affine = 0; | ||
| 1396 | int want_sd = 1; | ||
| 1397 | int sync = wake_flags & WF_SYNC; | ||
| 1398 | |||
| 1399 | if (sd_flag & SD_BALANCE_WAKE) { | ||
| 1400 | if (sched_feat(AFFINE_WAKEUPS) && | ||
| 1401 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
| 1402 | want_affine = 1; | ||
| 1403 | new_cpu = prev_cpu; | ||
| 1404 | } | ||
| 1405 | |||
| 1406 | rcu_read_lock(); | ||
| 1407 | for_each_domain(cpu, tmp) { | ||
| 1408 | /* | ||
| 1409 | * If power savings logic is enabled for a domain, see if we | ||
| 1410 | * are not overloaded, if so, don't balance wider. | ||
| 1411 | */ | ||
| 1412 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
| 1413 | unsigned long power = 0; | ||
| 1414 | unsigned long nr_running = 0; | ||
| 1415 | unsigned long capacity; | ||
| 1416 | int i; | ||
| 1417 | |||
| 1418 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
| 1419 | power += power_of(i); | ||
| 1420 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
| 1421 | } | ||
| 1422 | |||
| 1423 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 1424 | |||
| 1425 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 1426 | nr_running /= 2; | ||
| 1427 | |||
| 1428 | if (nr_running < capacity) | ||
| 1429 | want_sd = 0; | ||
| 1430 | } | ||
| 1431 | |||
| 1432 | /* | ||
| 1433 | * While iterating the domains looking for a spanning | ||
| 1434 | * WAKE_AFFINE domain, adjust the affine target to any idle cpu | ||
| 1435 | * in cache sharing domains along the way. | ||
| 1436 | */ | ||
| 1437 | if (want_affine) { | ||
| 1438 | int target = -1; | ||
| 1439 | |||
| 1440 | /* | ||
| 1441 | * If both cpu and prev_cpu are part of this domain, | ||
| 1442 | * cpu is a valid SD_WAKE_AFFINE target. | ||
| 1443 | */ | ||
| 1444 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) | ||
| 1445 | target = cpu; | ||
| 1446 | |||
| 1447 | /* | ||
| 1448 | * If there's an idle sibling in this domain, make that | ||
| 1449 | * the wake_affine target instead of the current cpu. | ||
| 1450 | */ | ||
| 1451 | if (tmp->flags & SD_PREFER_SIBLING) | ||
| 1452 | target = select_idle_sibling(p, tmp, target); | ||
| 1453 | |||
| 1454 | if (target >= 0) { | ||
| 1455 | if (tmp->flags & SD_WAKE_AFFINE) { | ||
| 1456 | affine_sd = tmp; | ||
| 1457 | want_affine = 0; | ||
| 1458 | } | ||
| 1459 | cpu = target; | ||
| 1460 | } | ||
| 1461 | } | ||
| 1462 | |||
| 1463 | if (!want_sd && !want_affine) | ||
| 1464 | break; | ||
| 1465 | |||
| 1466 | if (!(tmp->flags & sd_flag)) | ||
| 1467 | continue; | ||
| 1468 | |||
| 1469 | if (want_sd) | ||
| 1470 | sd = tmp; | ||
| 1471 | } | ||
| 1472 | |||
| 1473 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
| 1474 | /* | ||
| 1475 | * Pick the largest domain to update shares over | ||
| 1476 | */ | ||
| 1477 | tmp = sd; | ||
| 1478 | if (affine_sd && (!tmp || | ||
| 1479 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
| 1480 | cpumask_weight(sched_domain_span(sd)))) | ||
| 1481 | tmp = affine_sd; | ||
| 1482 | |||
| 1483 | if (tmp) | ||
| 1484 | update_shares(tmp); | ||
| 1485 | } | ||
| 1486 | |||
| 1487 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
| 1488 | new_cpu = cpu; | ||
| 1335 | goto out; | 1489 | goto out; |
| 1490 | } | ||
| 1336 | 1491 | ||
| 1337 | idx = this_sd->wake_idx; | 1492 | while (sd) { |
| 1493 | int load_idx = sd->forkexec_idx; | ||
| 1494 | struct sched_group *group; | ||
| 1495 | int weight; | ||
| 1338 | 1496 | ||
| 1339 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1497 | if (!(sd->flags & sd_flag)) { |
| 1498 | sd = sd->child; | ||
| 1499 | continue; | ||
| 1500 | } | ||
| 1340 | 1501 | ||
| 1341 | load = source_load(prev_cpu, idx); | 1502 | if (sd_flag & SD_BALANCE_WAKE) |
| 1342 | this_load = target_load(this_cpu, idx); | 1503 | load_idx = sd->wake_idx; |
| 1343 | 1504 | ||
| 1344 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1505 | group = find_idlest_group(sd, p, cpu, load_idx); |
| 1345 | load, this_load, imbalance)) | 1506 | if (!group) { |
| 1346 | return this_cpu; | 1507 | sd = sd->child; |
| 1508 | continue; | ||
| 1509 | } | ||
| 1347 | 1510 | ||
| 1348 | /* | 1511 | new_cpu = find_idlest_cpu(group, p, cpu); |
| 1349 | * Start passive balancing when half the imbalance_pct | 1512 | if (new_cpu == -1 || new_cpu == cpu) { |
| 1350 | * limit is reached. | 1513 | /* Now try balancing at a lower domain level of cpu */ |
| 1351 | */ | 1514 | sd = sd->child; |
| 1352 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1515 | continue; |
| 1353 | if (imbalance*this_load <= 100*load) { | 1516 | } |
| 1354 | schedstat_inc(this_sd, ttwu_move_balance); | 1517 | |
| 1355 | schedstat_inc(p, se.nr_wakeups_passive); | 1518 | /* Now try balancing at a lower domain level of new_cpu */ |
| 1356 | return this_cpu; | 1519 | cpu = new_cpu; |
| 1520 | weight = cpumask_weight(sched_domain_span(sd)); | ||
| 1521 | sd = NULL; | ||
| 1522 | for_each_domain(cpu, tmp) { | ||
| 1523 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
| 1524 | break; | ||
| 1525 | if (tmp->flags & sd_flag) | ||
| 1526 | sd = tmp; | ||
| 1357 | } | 1527 | } |
| 1528 | /* while loop will break here if sd == NULL */ | ||
| 1358 | } | 1529 | } |
| 1359 | 1530 | ||
| 1360 | out: | 1531 | out: |
| 1361 | return wake_idle(new_cpu, p); | 1532 | rcu_read_unlock(); |
| 1533 | return new_cpu; | ||
| 1362 | } | 1534 | } |
| 1363 | #endif /* CONFIG_SMP */ | 1535 | #endif /* CONFIG_SMP */ |
| 1364 | 1536 | ||
| @@ -1471,11 +1643,13 @@ static void set_next_buddy(struct sched_entity *se) | |||
| 1471 | /* | 1643 | /* |
| 1472 | * Preempt the current task with a newly woken task if needed: | 1644 | * Preempt the current task with a newly woken task if needed: |
| 1473 | */ | 1645 | */ |
| 1474 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1646 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
| 1475 | { | 1647 | { |
| 1476 | struct task_struct *curr = rq->curr; | 1648 | struct task_struct *curr = rq->curr; |
| 1477 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1649 | struct sched_entity *se = &curr->se, *pse = &p->se; |
| 1478 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1650 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 1651 | int sync = wake_flags & WF_SYNC; | ||
| 1652 | int scale = cfs_rq->nr_running >= sched_nr_latency; | ||
| 1479 | 1653 | ||
| 1480 | update_curr(cfs_rq); | 1654 | update_curr(cfs_rq); |
| 1481 | 1655 | ||
| @@ -1490,18 +1664,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1490 | if (unlikely(se == pse)) | 1664 | if (unlikely(se == pse)) |
| 1491 | return; | 1665 | return; |
| 1492 | 1666 | ||
| 1493 | /* | 1667 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) |
| 1494 | * Only set the backward buddy when the current task is still on the | 1668 | set_next_buddy(pse); |
| 1495 | * rq. This can happen when a wakeup gets interleaved with schedule on | ||
| 1496 | * the ->pre_schedule() or idle_balance() point, either of which can | ||
| 1497 | * drop the rq lock. | ||
| 1498 | * | ||
| 1499 | * Also, during early boot the idle thread is in the fair class, for | ||
| 1500 | * obvious reasons its a bad idea to schedule back to the idle thread. | ||
| 1501 | */ | ||
| 1502 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | ||
| 1503 | set_last_buddy(se); | ||
| 1504 | set_next_buddy(pse); | ||
| 1505 | 1669 | ||
| 1506 | /* | 1670 | /* |
| 1507 | * We can come here with TIF_NEED_RESCHED already set from new task | 1671 | * We can come here with TIF_NEED_RESCHED already set from new task |
| @@ -1523,22 +1687,45 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1523 | return; | 1687 | return; |
| 1524 | } | 1688 | } |
| 1525 | 1689 | ||
| 1526 | if (!sched_feat(WAKEUP_PREEMPT)) | 1690 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
| 1527 | return; | 1691 | (sched_feat(WAKEUP_OVERLAP) && |
| 1528 | 1692 | (se->avg_overlap < sysctl_sched_migration_cost && | |
| 1529 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1693 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
| 1530 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
| 1531 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
| 1532 | resched_task(curr); | 1694 | resched_task(curr); |
| 1533 | return; | 1695 | return; |
| 1534 | } | 1696 | } |
| 1535 | 1697 | ||
| 1698 | if (sched_feat(WAKEUP_RUNNING)) { | ||
| 1699 | if (pse->avg_running < se->avg_running) { | ||
| 1700 | set_next_buddy(pse); | ||
| 1701 | resched_task(curr); | ||
| 1702 | return; | ||
| 1703 | } | ||
| 1704 | } | ||
| 1705 | |||
| 1706 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 1707 | return; | ||
| 1708 | |||
| 1536 | find_matching_se(&se, &pse); | 1709 | find_matching_se(&se, &pse); |
| 1537 | 1710 | ||
| 1538 | BUG_ON(!pse); | 1711 | BUG_ON(!pse); |
| 1539 | 1712 | ||
| 1540 | if (wakeup_preempt_entity(se, pse) == 1) | 1713 | if (wakeup_preempt_entity(se, pse) == 1) { |
| 1541 | resched_task(curr); | 1714 | resched_task(curr); |
| 1715 | /* | ||
| 1716 | * Only set the backward buddy when the current task is still | ||
| 1717 | * on the rq. This can happen when a wakeup gets interleaved | ||
| 1718 | * with schedule on the ->pre_schedule() or idle_balance() | ||
| 1719 | * point, either of which can * drop the rq lock. | ||
| 1720 | * | ||
| 1721 | * Also, during early boot the idle thread is in the fair class, | ||
| 1722 | * for obvious reasons its a bad idea to schedule back to it. | ||
| 1723 | */ | ||
| 1724 | if (unlikely(!se->on_rq || curr == rq->idle)) | ||
| 1725 | return; | ||
| 1726 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | ||
| 1727 | set_last_buddy(se); | ||
| 1728 | } | ||
| 1542 | } | 1729 | } |
| 1543 | 1730 | ||
| 1544 | static struct task_struct *pick_next_task_fair(struct rq *rq) | 1731 | static struct task_struct *pick_next_task_fair(struct rq *rq) |
| @@ -1547,16 +1734,11 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
| 1547 | struct cfs_rq *cfs_rq = &rq->cfs; | 1734 | struct cfs_rq *cfs_rq = &rq->cfs; |
| 1548 | struct sched_entity *se; | 1735 | struct sched_entity *se; |
| 1549 | 1736 | ||
| 1550 | if (unlikely(!cfs_rq->nr_running)) | 1737 | if (!cfs_rq->nr_running) |
| 1551 | return NULL; | 1738 | return NULL; |
| 1552 | 1739 | ||
| 1553 | do { | 1740 | do { |
| 1554 | se = pick_next_entity(cfs_rq); | 1741 | se = pick_next_entity(cfs_rq); |
| 1555 | /* | ||
| 1556 | * If se was a buddy, clear it so that it will have to earn | ||
| 1557 | * the favour again. | ||
| 1558 | */ | ||
| 1559 | __clear_buddies(cfs_rq, se); | ||
| 1560 | set_next_entity(cfs_rq, se); | 1742 | set_next_entity(cfs_rq, se); |
| 1561 | cfs_rq = group_cfs_rq(se); | 1743 | cfs_rq = group_cfs_rq(se); |
| 1562 | } while (cfs_rq); | 1744 | } while (cfs_rq); |
| @@ -1832,6 +2014,25 @@ static void moved_group_fair(struct task_struct *p) | |||
| 1832 | } | 2014 | } |
| 1833 | #endif | 2015 | #endif |
| 1834 | 2016 | ||
| 2017 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
| 2018 | { | ||
| 2019 | struct sched_entity *se = &task->se; | ||
| 2020 | unsigned long flags; | ||
| 2021 | struct rq *rq; | ||
| 2022 | unsigned int rr_interval = 0; | ||
| 2023 | |||
| 2024 | /* | ||
| 2025 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
| 2026 | * idle runqueue: | ||
| 2027 | */ | ||
| 2028 | rq = task_rq_lock(task, &flags); | ||
| 2029 | if (rq->cfs.load.weight) | ||
| 2030 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 2031 | task_rq_unlock(rq, &flags); | ||
| 2032 | |||
| 2033 | return rr_interval; | ||
| 2034 | } | ||
| 2035 | |||
| 1835 | /* | 2036 | /* |
| 1836 | * All the scheduling class methods: | 2037 | * All the scheduling class methods: |
| 1837 | */ | 2038 | */ |
| @@ -1860,6 +2061,8 @@ static const struct sched_class fair_sched_class = { | |||
| 1860 | .prio_changed = prio_changed_fair, | 2061 | .prio_changed = prio_changed_fair, |
| 1861 | .switched_to = switched_to_fair, | 2062 | .switched_to = switched_to_fair, |
| 1862 | 2063 | ||
| 2064 | .get_rr_interval = get_rr_interval_fair, | ||
| 2065 | |||
| 1863 | #ifdef CONFIG_FAIR_GROUP_SCHED | 2066 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1864 | .moved_group = moved_group_fair, | 2067 | .moved_group = moved_group_fair, |
| 1865 | #endif | 2068 | #endif |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index e2dc63a5815d..0d94083582c7 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
| @@ -1,17 +1,123 @@ | |||
| 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 0) | 1 | /* |
| 2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
| 3 | * considers the task to be running during that period. This gives it | ||
| 4 | * a service deficit on wakeup, allowing it to run sooner. | ||
| 5 | */ | ||
| 6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
| 7 | |||
| 8 | /* | ||
| 9 | * Only give sleepers 50% of their service deficit. This allows | ||
| 10 | * them to run sooner, but does not allow tons of sleepers to | ||
| 11 | * rip the spread apart. | ||
| 12 | */ | ||
| 13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
| 14 | |||
| 15 | /* | ||
| 16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
| 17 | * longer period, and lighter task an effective shorter period they | ||
| 18 | * are considered running. | ||
| 19 | */ | ||
| 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | 20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
| 3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | 21 | |
| 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 22 | /* |
| 23 | * Place new tasks ahead so that they do not starve already running | ||
| 24 | * tasks | ||
| 25 | */ | ||
| 5 | SCHED_FEAT(START_DEBIT, 1) | 26 | SCHED_FEAT(START_DEBIT, 1) |
| 27 | |||
| 28 | /* | ||
| 29 | * Should wakeups try to preempt running tasks. | ||
| 30 | */ | ||
| 31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
| 35 | * [0, sched_wakeup_gran_ns] | ||
| 36 | */ | ||
| 37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
| 38 | |||
| 39 | /* | ||
| 40 | * When converting the wakeup granularity to virtual time, do it such | ||
| 41 | * that heavier tasks preempting a lighter task have an edge. | ||
| 42 | */ | ||
| 43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 44 | |||
| 45 | /* | ||
| 46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
| 47 | */ | ||
| 48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
| 49 | |||
| 50 | /* | ||
| 51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
| 52 | * don't get preempted. | ||
| 53 | */ | ||
| 54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
| 55 | |||
| 56 | /* | ||
| 57 | * Wakeup preemption towards tasks that run short | ||
| 58 | */ | ||
| 59 | SCHED_FEAT(WAKEUP_RUNNING, 0) | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
| 63 | * the remote end is likely to consume the data we just wrote, and | ||
| 64 | * therefore has cache benefit from being placed on the same cpu, see | ||
| 65 | * also AFFINE_WAKEUPS. | ||
| 66 | */ | ||
| 67 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Based on load and program behaviour, see if it makes sense to place | ||
| 71 | * a newly woken task on the same cpu as the task that woke it -- | ||
| 72 | * improve cache locality. Typically used with SYNC wakeups as | ||
| 73 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
| 74 | */ | ||
| 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 75 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
| 76 | |||
| 77 | /* | ||
| 78 | * Weaken SYNC hint based on overlap | ||
| 79 | */ | ||
| 80 | SCHED_FEAT(SYNC_LESS, 1) | ||
| 81 | |||
| 82 | /* | ||
| 83 | * Add SYNC hint based on overlap | ||
| 84 | */ | ||
| 85 | SCHED_FEAT(SYNC_MORE, 0) | ||
| 86 | |||
| 87 | /* | ||
| 88 | * Prefer to schedule the task we woke last (assuming it failed | ||
| 89 | * wakeup-preemption), since its likely going to consume data we | ||
| 90 | * touched, increases cache locality. | ||
| 91 | */ | ||
| 92 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
| 93 | |||
| 94 | /* | ||
| 95 | * Prefer to schedule the task that ran last (when we did | ||
| 96 | * wake-preempt) as that likely will touch the same data, increases | ||
| 97 | * cache locality. | ||
| 98 | */ | ||
| 99 | SCHED_FEAT(LAST_BUDDY, 1) | ||
| 100 | |||
| 101 | /* | ||
| 102 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
| 103 | * cache buddy being migrated away, increases cache locality. | ||
| 104 | */ | ||
| 7 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 105 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) |
| 8 | SCHED_FEAT(SYNC_WAKEUPS, 1) | 106 | |
| 107 | /* | ||
| 108 | * Use arch dependent cpu power functions | ||
| 109 | */ | ||
| 110 | SCHED_FEAT(ARCH_POWER, 0) | ||
| 111 | |||
| 9 | SCHED_FEAT(HRTICK, 0) | 112 | SCHED_FEAT(HRTICK, 0) |
| 10 | SCHED_FEAT(DOUBLE_TICK, 0) | 113 | SCHED_FEAT(DOUBLE_TICK, 0) |
| 11 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 12 | SCHED_FEAT(LB_BIAS, 1) | 114 | SCHED_FEAT(LB_BIAS, 1) |
| 13 | SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | 115 | SCHED_FEAT(LB_SHARES_UPDATE, 1) |
| 14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 116 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
| 15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 117 | |
| 16 | SCHED_FEAT(LAST_BUDDY, 1) | 118 | /* |
| 119 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
| 120 | * another cpu -- assumes that when the owner is running, it will soon | ||
| 121 | * release the lock. Decreases scheduling overhead. | ||
| 122 | */ | ||
| 17 | SCHED_FEAT(OWNER_SPIN, 1) | 123 | SCHED_FEAT(OWNER_SPIN, 1) |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 499672c10cbd..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
| @@ -6,7 +6,7 @@ | |||
| 6 | */ | 6 | */ |
| 7 | 7 | ||
| 8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
| 9 | static int select_task_rq_idle(struct task_struct *p, int sync) | 9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) |
| 10 | { | 10 | { |
| 11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 11 | return task_cpu(p); /* IDLE tasks as never migrated */ |
| 12 | } | 12 | } |
| @@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync) | |||
| 14 | /* | 14 | /* |
| 15 | * Idle tasks are unconditionally rescheduled: | 15 | * Idle tasks are unconditionally rescheduled: |
| 16 | */ | 16 | */ |
| 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) | 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
| 18 | { | 18 | { |
| 19 | resched_task(rq->idle); | 19 | resched_task(rq->idle); |
| 20 | } | 20 | } |
| @@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
| 97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
| 98 | } | 98 | } |
| 99 | 99 | ||
| 100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
| 101 | { | ||
| 102 | return 0; | ||
| 103 | } | ||
| 104 | |||
| 100 | /* | 105 | /* |
| 101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
| 102 | */ | 107 | */ |
| @@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
| 122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
| 123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
| 124 | 129 | ||
| 130 | .get_rr_interval = get_rr_interval_idle, | ||
| 131 | |||
| 125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
| 126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
| 127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 2eb4bd6a526c..5c5fef378415 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
| @@ -938,10 +938,13 @@ static void yield_task_rt(struct rq *rq) | |||
| 938 | #ifdef CONFIG_SMP | 938 | #ifdef CONFIG_SMP |
| 939 | static int find_lowest_rq(struct task_struct *task); | 939 | static int find_lowest_rq(struct task_struct *task); |
| 940 | 940 | ||
| 941 | static int select_task_rq_rt(struct task_struct *p, int sync) | 941 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
| 942 | { | 942 | { |
| 943 | struct rq *rq = task_rq(p); | 943 | struct rq *rq = task_rq(p); |
| 944 | 944 | ||
| 945 | if (sd_flag != SD_BALANCE_WAKE) | ||
| 946 | return smp_processor_id(); | ||
| 947 | |||
| 945 | /* | 948 | /* |
| 946 | * If the current task is an RT task, then | 949 | * If the current task is an RT task, then |
| 947 | * try to see if we can wake this RT task up on another | 950 | * try to see if we can wake this RT task up on another |
| @@ -999,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |||
| 999 | /* | 1002 | /* |
| 1000 | * Preempt the current task with a newly woken task if needed: | 1003 | * Preempt the current task with a newly woken task if needed: |
| 1001 | */ | 1004 | */ |
| 1002 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) | 1005 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
| 1003 | { | 1006 | { |
| 1004 | if (p->prio < rq->curr->prio) { | 1007 | if (p->prio < rq->curr->prio) { |
| 1005 | resched_task(rq->curr); | 1008 | resched_task(rq->curr); |
| @@ -1150,29 +1153,12 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |||
| 1150 | 1153 | ||
| 1151 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 1154 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
| 1152 | 1155 | ||
| 1153 | static inline int pick_optimal_cpu(int this_cpu, | ||
| 1154 | const struct cpumask *mask) | ||
| 1155 | { | ||
| 1156 | int first; | ||
| 1157 | |||
| 1158 | /* "this_cpu" is cheaper to preempt than a remote processor */ | ||
| 1159 | if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask)) | ||
| 1160 | return this_cpu; | ||
| 1161 | |||
| 1162 | first = cpumask_first(mask); | ||
| 1163 | if (first < nr_cpu_ids) | ||
| 1164 | return first; | ||
| 1165 | |||
| 1166 | return -1; | ||
| 1167 | } | ||
| 1168 | |||
| 1169 | static int find_lowest_rq(struct task_struct *task) | 1156 | static int find_lowest_rq(struct task_struct *task) |
| 1170 | { | 1157 | { |
| 1171 | struct sched_domain *sd; | 1158 | struct sched_domain *sd; |
| 1172 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 1159 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
| 1173 | int this_cpu = smp_processor_id(); | 1160 | int this_cpu = smp_processor_id(); |
| 1174 | int cpu = task_cpu(task); | 1161 | int cpu = task_cpu(task); |
| 1175 | cpumask_var_t domain_mask; | ||
| 1176 | 1162 | ||
| 1177 | if (task->rt.nr_cpus_allowed == 1) | 1163 | if (task->rt.nr_cpus_allowed == 1) |
| 1178 | return -1; /* No other targets possible */ | 1164 | return -1; /* No other targets possible */ |
| @@ -1195,28 +1181,26 @@ static int find_lowest_rq(struct task_struct *task) | |||
| 1195 | * Otherwise, we consult the sched_domains span maps to figure | 1181 | * Otherwise, we consult the sched_domains span maps to figure |
| 1196 | * out which cpu is logically closest to our hot cache data. | 1182 | * out which cpu is logically closest to our hot cache data. |
| 1197 | */ | 1183 | */ |
| 1198 | if (this_cpu == cpu) | 1184 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
| 1199 | this_cpu = -1; /* Skip this_cpu opt if the same */ | 1185 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ |
| 1200 | |||
| 1201 | if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) { | ||
| 1202 | for_each_domain(cpu, sd) { | ||
| 1203 | if (sd->flags & SD_WAKE_AFFINE) { | ||
| 1204 | int best_cpu; | ||
| 1205 | 1186 | ||
| 1206 | cpumask_and(domain_mask, | 1187 | for_each_domain(cpu, sd) { |
| 1207 | sched_domain_span(sd), | 1188 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1208 | lowest_mask); | 1189 | int best_cpu; |
| 1209 | 1190 | ||
| 1210 | best_cpu = pick_optimal_cpu(this_cpu, | 1191 | /* |
| 1211 | domain_mask); | 1192 | * "this_cpu" is cheaper to preempt than a |
| 1212 | 1193 | * remote processor. | |
| 1213 | if (best_cpu != -1) { | 1194 | */ |
| 1214 | free_cpumask_var(domain_mask); | 1195 | if (this_cpu != -1 && |
| 1215 | return best_cpu; | 1196 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) |
| 1216 | } | 1197 | return this_cpu; |
| 1217 | } | 1198 | |
| 1199 | best_cpu = cpumask_first_and(lowest_mask, | ||
| 1200 | sched_domain_span(sd)); | ||
| 1201 | if (best_cpu < nr_cpu_ids) | ||
| 1202 | return best_cpu; | ||
| 1218 | } | 1203 | } |
| 1219 | free_cpumask_var(domain_mask); | ||
| 1220 | } | 1204 | } |
| 1221 | 1205 | ||
| 1222 | /* | 1206 | /* |
| @@ -1224,7 +1208,13 @@ static int find_lowest_rq(struct task_struct *task) | |||
| 1224 | * just give the caller *something* to work with from the compatible | 1208 | * just give the caller *something* to work with from the compatible |
| 1225 | * locations. | 1209 | * locations. |
| 1226 | */ | 1210 | */ |
| 1227 | return pick_optimal_cpu(this_cpu, lowest_mask); | 1211 | if (this_cpu != -1) |
| 1212 | return this_cpu; | ||
| 1213 | |||
| 1214 | cpu = cpumask_any(lowest_mask); | ||
| 1215 | if (cpu < nr_cpu_ids) | ||
| 1216 | return cpu; | ||
| 1217 | return -1; | ||
| 1228 | } | 1218 | } |
| 1229 | 1219 | ||
| 1230 | /* Will lock the rq it finds */ | 1220 | /* Will lock the rq it finds */ |
| @@ -1731,6 +1721,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
| 1731 | dequeue_pushable_task(rq, p); | 1721 | dequeue_pushable_task(rq, p); |
| 1732 | } | 1722 | } |
| 1733 | 1723 | ||
| 1724 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
| 1725 | { | ||
| 1726 | /* | ||
| 1727 | * Time slice is 0 for SCHED_FIFO tasks | ||
| 1728 | */ | ||
| 1729 | if (task->policy == SCHED_RR) | ||
| 1730 | return DEF_TIMESLICE; | ||
| 1731 | else | ||
| 1732 | return 0; | ||
| 1733 | } | ||
| 1734 | |||
| 1734 | static const struct sched_class rt_sched_class = { | 1735 | static const struct sched_class rt_sched_class = { |
| 1735 | .next = &fair_sched_class, | 1736 | .next = &fair_sched_class, |
| 1736 | .enqueue_task = enqueue_task_rt, | 1737 | .enqueue_task = enqueue_task_rt, |
| @@ -1759,6 +1760,8 @@ static const struct sched_class rt_sched_class = { | |||
| 1759 | .set_curr_task = set_curr_task_rt, | 1760 | .set_curr_task = set_curr_task_rt, |
| 1760 | .task_tick = task_tick_rt, | 1761 | .task_tick = task_tick_rt, |
| 1761 | 1762 | ||
| 1763 | .get_rr_interval = get_rr_interval_rt, | ||
| 1764 | |||
| 1762 | .prio_changed = prio_changed_rt, | 1765 | .prio_changed = prio_changed_rt, |
| 1763 | .switched_to = switched_to_rt, | 1766 | .switched_to = switched_to_rt, |
| 1764 | }; | 1767 | }; |
diff --git a/kernel/signal.c b/kernel/signal.c index 64c5deeaca5d..6b982f2cf524 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
| @@ -22,12 +22,14 @@ | |||
| 22 | #include <linux/ptrace.h> | 22 | #include <linux/ptrace.h> |
| 23 | #include <linux/signal.h> | 23 | #include <linux/signal.h> |
| 24 | #include <linux/signalfd.h> | 24 | #include <linux/signalfd.h> |
| 25 | #include <linux/ratelimit.h> | ||
| 25 | #include <linux/tracehook.h> | 26 | #include <linux/tracehook.h> |
| 26 | #include <linux/capability.h> | 27 | #include <linux/capability.h> |
| 27 | #include <linux/freezer.h> | 28 | #include <linux/freezer.h> |
| 28 | #include <linux/pid_namespace.h> | 29 | #include <linux/pid_namespace.h> |
| 29 | #include <linux/nsproxy.h> | 30 | #include <linux/nsproxy.h> |
| 30 | #include <trace/events/sched.h> | 31 | #define CREATE_TRACE_POINTS |
| 32 | #include <trace/events/signal.h> | ||
| 31 | 33 | ||
| 32 | #include <asm/param.h> | 34 | #include <asm/param.h> |
| 33 | #include <asm/uaccess.h> | 35 | #include <asm/uaccess.h> |
| @@ -41,6 +43,8 @@ | |||
| 41 | 43 | ||
| 42 | static struct kmem_cache *sigqueue_cachep; | 44 | static struct kmem_cache *sigqueue_cachep; |
| 43 | 45 | ||
| 46 | int print_fatal_signals __read_mostly; | ||
| 47 | |||
| 44 | static void __user *sig_handler(struct task_struct *t, int sig) | 48 | static void __user *sig_handler(struct task_struct *t, int sig) |
| 45 | { | 49 | { |
| 46 | return t->sighand->action[sig - 1].sa.sa_handler; | 50 | return t->sighand->action[sig - 1].sa.sa_handler; |
| @@ -159,7 +163,7 @@ int next_signal(struct sigpending *pending, sigset_t *mask) | |||
| 159 | { | 163 | { |
| 160 | unsigned long i, *s, *m, x; | 164 | unsigned long i, *s, *m, x; |
| 161 | int sig = 0; | 165 | int sig = 0; |
| 162 | 166 | ||
| 163 | s = pending->signal.sig; | 167 | s = pending->signal.sig; |
| 164 | m = mask->sig; | 168 | m = mask->sig; |
| 165 | switch (_NSIG_WORDS) { | 169 | switch (_NSIG_WORDS) { |
| @@ -184,17 +188,31 @@ int next_signal(struct sigpending *pending, sigset_t *mask) | |||
| 184 | sig = ffz(~x) + 1; | 188 | sig = ffz(~x) + 1; |
| 185 | break; | 189 | break; |
| 186 | } | 190 | } |
| 187 | 191 | ||
| 188 | return sig; | 192 | return sig; |
| 189 | } | 193 | } |
| 190 | 194 | ||
| 195 | static inline void print_dropped_signal(int sig) | ||
| 196 | { | ||
| 197 | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); | ||
| 198 | |||
| 199 | if (!print_fatal_signals) | ||
| 200 | return; | ||
| 201 | |||
| 202 | if (!__ratelimit(&ratelimit_state)) | ||
| 203 | return; | ||
| 204 | |||
| 205 | printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", | ||
| 206 | current->comm, current->pid, sig); | ||
| 207 | } | ||
| 208 | |||
| 191 | /* | 209 | /* |
| 192 | * allocate a new signal queue record | 210 | * allocate a new signal queue record |
| 193 | * - this may be called without locks if and only if t == current, otherwise an | 211 | * - this may be called without locks if and only if t == current, otherwise an |
| 194 | * appopriate lock must be held to stop the target task from exiting | 212 | * appopriate lock must be held to stop the target task from exiting |
| 195 | */ | 213 | */ |
| 196 | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, | 214 | static struct sigqueue * |
| 197 | int override_rlimit) | 215 | __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) |
| 198 | { | 216 | { |
| 199 | struct sigqueue *q = NULL; | 217 | struct sigqueue *q = NULL; |
| 200 | struct user_struct *user; | 218 | struct user_struct *user; |
| @@ -207,10 +225,15 @@ static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, | |||
| 207 | */ | 225 | */ |
| 208 | user = get_uid(__task_cred(t)->user); | 226 | user = get_uid(__task_cred(t)->user); |
| 209 | atomic_inc(&user->sigpending); | 227 | atomic_inc(&user->sigpending); |
| 228 | |||
| 210 | if (override_rlimit || | 229 | if (override_rlimit || |
| 211 | atomic_read(&user->sigpending) <= | 230 | atomic_read(&user->sigpending) <= |
| 212 | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) | 231 | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) { |
| 213 | q = kmem_cache_alloc(sigqueue_cachep, flags); | 232 | q = kmem_cache_alloc(sigqueue_cachep, flags); |
| 233 | } else { | ||
| 234 | print_dropped_signal(sig); | ||
| 235 | } | ||
| 236 | |||
| 214 | if (unlikely(q == NULL)) { | 237 | if (unlikely(q == NULL)) { |
| 215 | atomic_dec(&user->sigpending); | 238 | atomic_dec(&user->sigpending); |
| 216 | free_uid(user); | 239 | free_uid(user); |
| @@ -705,7 +728,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | |||
| 705 | 728 | ||
| 706 | if (why) { | 729 | if (why) { |
| 707 | /* | 730 | /* |
| 708 | * The first thread which returns from finish_stop() | 731 | * The first thread which returns from do_signal_stop() |
| 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 732 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
| 710 | * notify its parent. See get_signal_to_deliver(). | 733 | * notify its parent. See get_signal_to_deliver(). |
| 711 | */ | 734 | */ |
| @@ -834,7 +857,7 @@ static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
| 834 | struct sigqueue *q; | 857 | struct sigqueue *q; |
| 835 | int override_rlimit; | 858 | int override_rlimit; |
| 836 | 859 | ||
| 837 | trace_sched_signal_send(sig, t); | 860 | trace_signal_generate(sig, info, t); |
| 838 | 861 | ||
| 839 | assert_spin_locked(&t->sighand->siglock); | 862 | assert_spin_locked(&t->sighand->siglock); |
| 840 | 863 | ||
| @@ -869,7 +892,7 @@ static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
| 869 | else | 892 | else |
| 870 | override_rlimit = 0; | 893 | override_rlimit = 0; |
| 871 | 894 | ||
| 872 | q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, | 895 | q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, |
| 873 | override_rlimit); | 896 | override_rlimit); |
| 874 | if (q) { | 897 | if (q) { |
| 875 | list_add_tail(&q->list, &pending->list); | 898 | list_add_tail(&q->list, &pending->list); |
| @@ -896,12 +919,21 @@ static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
| 896 | break; | 919 | break; |
| 897 | } | 920 | } |
| 898 | } else if (!is_si_special(info)) { | 921 | } else if (!is_si_special(info)) { |
| 899 | if (sig >= SIGRTMIN && info->si_code != SI_USER) | 922 | if (sig >= SIGRTMIN && info->si_code != SI_USER) { |
| 900 | /* | 923 | /* |
| 901 | * Queue overflow, abort. We may abort if the signal was rt | 924 | * Queue overflow, abort. We may abort if the |
| 902 | * and sent by user using something other than kill(). | 925 | * signal was rt and sent by user using something |
| 903 | */ | 926 | * other than kill(). |
| 927 | */ | ||
| 928 | trace_signal_overflow_fail(sig, group, info); | ||
| 904 | return -EAGAIN; | 929 | return -EAGAIN; |
| 930 | } else { | ||
| 931 | /* | ||
| 932 | * This is a silent loss of information. We still | ||
| 933 | * send the signal, but the *info bits are lost. | ||
| 934 | */ | ||
| 935 | trace_signal_lose_info(sig, group, info); | ||
| 936 | } | ||
| 905 | } | 937 | } |
| 906 | 938 | ||
| 907 | out_set: | 939 | out_set: |
| @@ -925,8 +957,6 @@ static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
| 925 | return __send_signal(sig, info, t, group, from_ancestor_ns); | 957 | return __send_signal(sig, info, t, group, from_ancestor_ns); |
| 926 | } | 958 | } |
| 927 | 959 | ||
| 928 | int print_fatal_signals; | ||
| 929 | |||
| 930 | static void print_fatal_signal(struct pt_regs *regs, int signr) | 960 | static void print_fatal_signal(struct pt_regs *regs, int signr) |
| 931 | { | 961 | { |
| 932 | printk("%s/%d: potentially unexpected fatal signal %d.\n", | 962 | printk("%s/%d: potentially unexpected fatal signal %d.\n", |
| @@ -971,6 +1001,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
| 971 | return send_signal(sig, info, t, 0); | 1001 | return send_signal(sig, info, t, 0); |
| 972 | } | 1002 | } |
| 973 | 1003 | ||
| 1004 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | ||
| 1005 | bool group) | ||
| 1006 | { | ||
| 1007 | unsigned long flags; | ||
| 1008 | int ret = -ESRCH; | ||
| 1009 | |||
| 1010 | if (lock_task_sighand(p, &flags)) { | ||
| 1011 | ret = send_signal(sig, info, p, group); | ||
| 1012 | unlock_task_sighand(p, &flags); | ||
| 1013 | } | ||
| 1014 | |||
| 1015 | return ret; | ||
| 1016 | } | ||
| 1017 | |||
| 974 | /* | 1018 | /* |
| 975 | * Force a signal that the process can't ignore: if necessary | 1019 | * Force a signal that the process can't ignore: if necessary |
| 976 | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 1020 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| @@ -1036,12 +1080,6 @@ void zap_other_threads(struct task_struct *p) | |||
| 1036 | } | 1080 | } |
| 1037 | } | 1081 | } |
| 1038 | 1082 | ||
| 1039 | int __fatal_signal_pending(struct task_struct *tsk) | ||
| 1040 | { | ||
| 1041 | return sigismember(&tsk->pending.signal, SIGKILL); | ||
| 1042 | } | ||
| 1043 | EXPORT_SYMBOL(__fatal_signal_pending); | ||
| 1044 | |||
| 1045 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1083 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
| 1046 | { | 1084 | { |
| 1047 | struct sighand_struct *sighand; | 1085 | struct sighand_struct *sighand; |
| @@ -1068,18 +1106,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long | |||
| 1068 | */ | 1106 | */ |
| 1069 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1107 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1070 | { | 1108 | { |
| 1071 | unsigned long flags; | 1109 | int ret = check_kill_permission(sig, info, p); |
| 1072 | int ret; | ||
| 1073 | |||
| 1074 | ret = check_kill_permission(sig, info, p); | ||
| 1075 | 1110 | ||
| 1076 | if (!ret && sig) { | 1111 | if (!ret && sig) |
| 1077 | ret = -ESRCH; | 1112 | ret = do_send_sig_info(sig, info, p, true); |
| 1078 | if (lock_task_sighand(p, &flags)) { | ||
| 1079 | ret = __group_send_sig_info(sig, info, p); | ||
| 1080 | unlock_task_sighand(p, &flags); | ||
| 1081 | } | ||
| 1082 | } | ||
| 1083 | 1113 | ||
| 1084 | return ret; | 1114 | return ret; |
| 1085 | } | 1115 | } |
| @@ -1224,15 +1254,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | |||
| 1224 | * These are for backward compatibility with the rest of the kernel source. | 1254 | * These are for backward compatibility with the rest of the kernel source. |
| 1225 | */ | 1255 | */ |
| 1226 | 1256 | ||
| 1227 | /* | ||
| 1228 | * The caller must ensure the task can't exit. | ||
| 1229 | */ | ||
| 1230 | int | 1257 | int |
| 1231 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1258 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1232 | { | 1259 | { |
| 1233 | int ret; | ||
| 1234 | unsigned long flags; | ||
| 1235 | |||
| 1236 | /* | 1260 | /* |
| 1237 | * Make sure legacy kernel users don't send in bad values | 1261 | * Make sure legacy kernel users don't send in bad values |
| 1238 | * (normal paths check this in check_kill_permission). | 1262 | * (normal paths check this in check_kill_permission). |
| @@ -1240,10 +1264,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | |||
| 1240 | if (!valid_signal(sig)) | 1264 | if (!valid_signal(sig)) |
| 1241 | return -EINVAL; | 1265 | return -EINVAL; |
| 1242 | 1266 | ||
| 1243 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1267 | return do_send_sig_info(sig, info, p, false); |
| 1244 | ret = specific_send_sig_info(sig, info, p); | ||
| 1245 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
| 1246 | return ret; | ||
| 1247 | } | 1268 | } |
| 1248 | 1269 | ||
| 1249 | #define __si_special(priv) \ | 1270 | #define __si_special(priv) \ |
| @@ -1302,19 +1323,19 @@ EXPORT_SYMBOL(kill_pid); | |||
| 1302 | * These functions support sending signals using preallocated sigqueue | 1323 | * These functions support sending signals using preallocated sigqueue |
| 1303 | * structures. This is needed "because realtime applications cannot | 1324 | * structures. This is needed "because realtime applications cannot |
| 1304 | * afford to lose notifications of asynchronous events, like timer | 1325 | * afford to lose notifications of asynchronous events, like timer |
| 1305 | * expirations or I/O completions". In the case of Posix Timers | 1326 | * expirations or I/O completions". In the case of Posix Timers |
| 1306 | * we allocate the sigqueue structure from the timer_create. If this | 1327 | * we allocate the sigqueue structure from the timer_create. If this |
| 1307 | * allocation fails we are able to report the failure to the application | 1328 | * allocation fails we are able to report the failure to the application |
| 1308 | * with an EAGAIN error. | 1329 | * with an EAGAIN error. |
| 1309 | */ | 1330 | */ |
| 1310 | |||
| 1311 | struct sigqueue *sigqueue_alloc(void) | 1331 | struct sigqueue *sigqueue_alloc(void) |
| 1312 | { | 1332 | { |
| 1313 | struct sigqueue *q; | 1333 | struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); |
| 1314 | 1334 | ||
| 1315 | if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) | 1335 | if (q) |
| 1316 | q->flags |= SIGQUEUE_PREALLOC; | 1336 | q->flags |= SIGQUEUE_PREALLOC; |
| 1317 | return(q); | 1337 | |
| 1338 | return q; | ||
| 1318 | } | 1339 | } |
| 1319 | 1340 | ||
| 1320 | void sigqueue_free(struct sigqueue *q) | 1341 | void sigqueue_free(struct sigqueue *q) |
| @@ -1383,15 +1404,6 @@ ret: | |||
| 1383 | } | 1404 | } |
| 1384 | 1405 | ||
| 1385 | /* | 1406 | /* |
| 1386 | * Wake up any threads in the parent blocked in wait* syscalls. | ||
| 1387 | */ | ||
| 1388 | static inline void __wake_up_parent(struct task_struct *p, | ||
| 1389 | struct task_struct *parent) | ||
| 1390 | { | ||
| 1391 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | ||
| 1392 | } | ||
| 1393 | |||
| 1394 | /* | ||
| 1395 | * Let a parent know about the death of a child. | 1407 | * Let a parent know about the death of a child. |
| 1396 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 1408 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| 1397 | * | 1409 | * |
| @@ -1673,29 +1685,6 @@ void ptrace_notify(int exit_code) | |||
| 1673 | spin_unlock_irq(¤t->sighand->siglock); | 1685 | spin_unlock_irq(¤t->sighand->siglock); |
| 1674 | } | 1686 | } |
| 1675 | 1687 | ||
| 1676 | static void | ||
| 1677 | finish_stop(int stop_count) | ||
| 1678 | { | ||
| 1679 | /* | ||
| 1680 | * If there are no other threads in the group, or if there is | ||
| 1681 | * a group stop in progress and we are the last to stop, | ||
| 1682 | * report to the parent. When ptraced, every thread reports itself. | ||
| 1683 | */ | ||
| 1684 | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | ||
| 1685 | read_lock(&tasklist_lock); | ||
| 1686 | do_notify_parent_cldstop(current, CLD_STOPPED); | ||
| 1687 | read_unlock(&tasklist_lock); | ||
| 1688 | } | ||
| 1689 | |||
| 1690 | do { | ||
| 1691 | schedule(); | ||
| 1692 | } while (try_to_freeze()); | ||
| 1693 | /* | ||
| 1694 | * Now we don't run again until continued. | ||
| 1695 | */ | ||
| 1696 | current->exit_code = 0; | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | /* | 1688 | /* |
| 1700 | * This performs the stopping for SIGSTOP and other stop signals. | 1689 | * This performs the stopping for SIGSTOP and other stop signals. |
| 1701 | * We have to stop all threads in the thread group. | 1690 | * We have to stop all threads in the thread group. |
| @@ -1705,15 +1694,9 @@ finish_stop(int stop_count) | |||
| 1705 | static int do_signal_stop(int signr) | 1694 | static int do_signal_stop(int signr) |
| 1706 | { | 1695 | { |
| 1707 | struct signal_struct *sig = current->signal; | 1696 | struct signal_struct *sig = current->signal; |
| 1708 | int stop_count; | 1697 | int notify; |
| 1709 | 1698 | ||
| 1710 | if (sig->group_stop_count > 0) { | 1699 | if (!sig->group_stop_count) { |
| 1711 | /* | ||
| 1712 | * There is a group stop in progress. We don't need to | ||
| 1713 | * start another one. | ||
| 1714 | */ | ||
| 1715 | stop_count = --sig->group_stop_count; | ||
| 1716 | } else { | ||
| 1717 | struct task_struct *t; | 1700 | struct task_struct *t; |
| 1718 | 1701 | ||
| 1719 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 1702 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
| @@ -1725,7 +1708,7 @@ static int do_signal_stop(int signr) | |||
| 1725 | */ | 1708 | */ |
| 1726 | sig->group_exit_code = signr; | 1709 | sig->group_exit_code = signr; |
| 1727 | 1710 | ||
| 1728 | stop_count = 0; | 1711 | sig->group_stop_count = 1; |
| 1729 | for (t = next_thread(current); t != current; t = next_thread(t)) | 1712 | for (t = next_thread(current); t != current; t = next_thread(t)) |
| 1730 | /* | 1713 | /* |
| 1731 | * Setting state to TASK_STOPPED for a group | 1714 | * Setting state to TASK_STOPPED for a group |
| @@ -1734,19 +1717,44 @@ static int do_signal_stop(int signr) | |||
| 1734 | */ | 1717 | */ |
| 1735 | if (!(t->flags & PF_EXITING) && | 1718 | if (!(t->flags & PF_EXITING) && |
| 1736 | !task_is_stopped_or_traced(t)) { | 1719 | !task_is_stopped_or_traced(t)) { |
| 1737 | stop_count++; | 1720 | sig->group_stop_count++; |
| 1738 | signal_wake_up(t, 0); | 1721 | signal_wake_up(t, 0); |
| 1739 | } | 1722 | } |
| 1740 | sig->group_stop_count = stop_count; | ||
| 1741 | } | 1723 | } |
| 1724 | /* | ||
| 1725 | * If there are no other threads in the group, or if there is | ||
| 1726 | * a group stop in progress and we are the last to stop, report | ||
| 1727 | * to the parent. When ptraced, every thread reports itself. | ||
| 1728 | */ | ||
| 1729 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; | ||
| 1730 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); | ||
| 1731 | /* | ||
| 1732 | * tracehook_notify_jctl() can drop and reacquire siglock, so | ||
| 1733 | * we keep ->group_stop_count != 0 before the call. If SIGCONT | ||
| 1734 | * or SIGKILL comes in between ->group_stop_count == 0. | ||
| 1735 | */ | ||
| 1736 | if (sig->group_stop_count) { | ||
| 1737 | if (!--sig->group_stop_count) | ||
| 1738 | sig->flags = SIGNAL_STOP_STOPPED; | ||
| 1739 | current->exit_code = sig->group_exit_code; | ||
| 1740 | __set_current_state(TASK_STOPPED); | ||
| 1741 | } | ||
| 1742 | spin_unlock_irq(¤t->sighand->siglock); | ||
| 1742 | 1743 | ||
| 1743 | if (stop_count == 0) | 1744 | if (notify) { |
| 1744 | sig->flags = SIGNAL_STOP_STOPPED; | 1745 | read_lock(&tasklist_lock); |
| 1745 | current->exit_code = sig->group_exit_code; | 1746 | do_notify_parent_cldstop(current, notify); |
| 1746 | __set_current_state(TASK_STOPPED); | 1747 | read_unlock(&tasklist_lock); |
| 1748 | } | ||
| 1749 | |||
| 1750 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | ||
| 1751 | do { | ||
| 1752 | schedule(); | ||
| 1753 | } while (try_to_freeze()); | ||
| 1754 | |||
| 1755 | tracehook_finish_jctl(); | ||
| 1756 | current->exit_code = 0; | ||
| 1747 | 1757 | ||
| 1748 | spin_unlock_irq(¤t->sighand->siglock); | ||
| 1749 | finish_stop(stop_count); | ||
| 1750 | return 1; | 1758 | return 1; |
| 1751 | } | 1759 | } |
| 1752 | 1760 | ||
| @@ -1815,14 +1823,15 @@ relock: | |||
| 1815 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 1823 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
| 1816 | ? CLD_CONTINUED : CLD_STOPPED; | 1824 | ? CLD_CONTINUED : CLD_STOPPED; |
| 1817 | signal->flags &= ~SIGNAL_CLD_MASK; | 1825 | signal->flags &= ~SIGNAL_CLD_MASK; |
| 1818 | spin_unlock_irq(&sighand->siglock); | ||
| 1819 | 1826 | ||
| 1820 | if (unlikely(!tracehook_notify_jctl(1, why))) | 1827 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
| 1821 | goto relock; | 1828 | spin_unlock_irq(&sighand->siglock); |
| 1822 | 1829 | ||
| 1823 | read_lock(&tasklist_lock); | 1830 | if (why) { |
| 1824 | do_notify_parent_cldstop(current->group_leader, why); | 1831 | read_lock(&tasklist_lock); |
| 1825 | read_unlock(&tasklist_lock); | 1832 | do_notify_parent_cldstop(current->group_leader, why); |
| 1833 | read_unlock(&tasklist_lock); | ||
| 1834 | } | ||
| 1826 | goto relock; | 1835 | goto relock; |
| 1827 | } | 1836 | } |
| 1828 | 1837 | ||
| @@ -1860,6 +1869,9 @@ relock: | |||
| 1860 | ka = &sighand->action[signr-1]; | 1869 | ka = &sighand->action[signr-1]; |
| 1861 | } | 1870 | } |
| 1862 | 1871 | ||
| 1872 | /* Trace actually delivered signals. */ | ||
| 1873 | trace_signal_deliver(signr, info, ka); | ||
| 1874 | |||
| 1863 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ | 1875 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
| 1864 | continue; | 1876 | continue; |
| 1865 | if (ka->sa.sa_handler != SIG_DFL) { | 1877 | if (ka->sa.sa_handler != SIG_DFL) { |
| @@ -1987,14 +1999,14 @@ void exit_signals(struct task_struct *tsk) | |||
| 1987 | if (unlikely(tsk->signal->group_stop_count) && | 1999 | if (unlikely(tsk->signal->group_stop_count) && |
| 1988 | !--tsk->signal->group_stop_count) { | 2000 | !--tsk->signal->group_stop_count) { |
| 1989 | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 2001 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
| 1990 | group_stop = 1; | 2002 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
| 1991 | } | 2003 | } |
| 1992 | out: | 2004 | out: |
| 1993 | spin_unlock_irq(&tsk->sighand->siglock); | 2005 | spin_unlock_irq(&tsk->sighand->siglock); |
| 1994 | 2006 | ||
| 1995 | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 2007 | if (unlikely(group_stop)) { |
| 1996 | read_lock(&tasklist_lock); | 2008 | read_lock(&tasklist_lock); |
| 1997 | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 2009 | do_notify_parent_cldstop(tsk, group_stop); |
| 1998 | read_unlock(&tasklist_lock); | 2010 | read_unlock(&tasklist_lock); |
| 1999 | } | 2011 | } |
| 2000 | } | 2012 | } |
| @@ -2290,7 +2302,6 @@ static int | |||
| 2290 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 2302 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
| 2291 | { | 2303 | { |
| 2292 | struct task_struct *p; | 2304 | struct task_struct *p; |
| 2293 | unsigned long flags; | ||
| 2294 | int error = -ESRCH; | 2305 | int error = -ESRCH; |
| 2295 | 2306 | ||
| 2296 | rcu_read_lock(); | 2307 | rcu_read_lock(); |
| @@ -2300,14 +2311,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | |||
| 2300 | /* | 2311 | /* |
| 2301 | * The null signal is a permissions and process existence | 2312 | * The null signal is a permissions and process existence |
| 2302 | * probe. No signal is actually delivered. | 2313 | * probe. No signal is actually delivered. |
| 2303 | * | ||
| 2304 | * If lock_task_sighand() fails we pretend the task dies | ||
| 2305 | * after receiving the signal. The window is tiny, and the | ||
| 2306 | * signal is private anyway. | ||
| 2307 | */ | 2314 | */ |
| 2308 | if (!error && sig && lock_task_sighand(p, &flags)) { | 2315 | if (!error && sig) { |
| 2309 | error = specific_send_sig_info(sig, info, p); | 2316 | error = do_send_sig_info(sig, info, p, false); |
| 2310 | unlock_task_sighand(p, &flags); | 2317 | /* |
| 2318 | * If lock_task_sighand() failed we pretend the task | ||
| 2319 | * dies after receiving the signal. The window is tiny, | ||
| 2320 | * and the signal is private anyway. | ||
| 2321 | */ | ||
| 2322 | if (unlikely(error == -ESRCH)) | ||
| 2323 | error = 0; | ||
| 2311 | } | 2324 | } |
| 2312 | } | 2325 | } |
| 2313 | rcu_read_unlock(); | 2326 | rcu_read_unlock(); |
diff --git a/kernel/slow-work-debugfs.c b/kernel/slow-work-debugfs.c new file mode 100644 index 000000000000..e45c43645298 --- /dev/null +++ b/kernel/slow-work-debugfs.c | |||
| @@ -0,0 +1,227 @@ | |||
| 1 | /* Slow work debugging | ||
| 2 | * | ||
| 3 | * Copyright (C) 2009 Red Hat, Inc. All Rights Reserved. | ||
| 4 | * Written by David Howells (dhowells@redhat.com) | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or | ||
| 7 | * modify it under the terms of the GNU General Public Licence | ||
| 8 | * as published by the Free Software Foundation; either version | ||
| 9 | * 2 of the Licence, or (at your option) any later version. | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/module.h> | ||
| 13 | #include <linux/slow-work.h> | ||
| 14 | #include <linux/fs.h> | ||
| 15 | #include <linux/time.h> | ||
| 16 | #include <linux/seq_file.h> | ||
| 17 | #include "slow-work.h" | ||
| 18 | |||
| 19 | #define ITERATOR_SHIFT (BITS_PER_LONG - 4) | ||
| 20 | #define ITERATOR_SELECTOR (0xfUL << ITERATOR_SHIFT) | ||
| 21 | #define ITERATOR_COUNTER (~ITERATOR_SELECTOR) | ||
| 22 | |||
| 23 | void slow_work_new_thread_desc(struct slow_work *work, struct seq_file *m) | ||
| 24 | { | ||
| 25 | seq_puts(m, "Slow-work: New thread"); | ||
| 26 | } | ||
| 27 | |||
| 28 | /* | ||
| 29 | * Render the time mark field on a work item into a 5-char time with units plus | ||
| 30 | * a space | ||
| 31 | */ | ||
| 32 | static void slow_work_print_mark(struct seq_file *m, struct slow_work *work) | ||
| 33 | { | ||
| 34 | struct timespec now, diff; | ||
| 35 | |||
| 36 | now = CURRENT_TIME; | ||
| 37 | diff = timespec_sub(now, work->mark); | ||
| 38 | |||
| 39 | if (diff.tv_sec < 0) | ||
| 40 | seq_puts(m, " -ve "); | ||
| 41 | else if (diff.tv_sec == 0 && diff.tv_nsec < 1000) | ||
| 42 | seq_printf(m, "%3luns ", diff.tv_nsec); | ||
| 43 | else if (diff.tv_sec == 0 && diff.tv_nsec < 1000000) | ||
| 44 | seq_printf(m, "%3luus ", diff.tv_nsec / 1000); | ||
| 45 | else if (diff.tv_sec == 0 && diff.tv_nsec < 1000000000) | ||
| 46 | seq_printf(m, "%3lums ", diff.tv_nsec / 1000000); | ||
| 47 | else if (diff.tv_sec <= 1) | ||
| 48 | seq_puts(m, " 1s "); | ||
| 49 | else if (diff.tv_sec < 60) | ||
| 50 | seq_printf(m, "%4lus ", diff.tv_sec); | ||
| 51 | else if (diff.tv_sec < 60 * 60) | ||
| 52 | seq_printf(m, "%4lum ", diff.tv_sec / 60); | ||
| 53 | else if (diff.tv_sec < 60 * 60 * 24) | ||
| 54 | seq_printf(m, "%4luh ", diff.tv_sec / 3600); | ||
| 55 | else | ||
| 56 | seq_puts(m, "exces "); | ||
| 57 | } | ||
| 58 | |||
| 59 | /* | ||
| 60 | * Describe a slow work item for debugfs | ||
| 61 | */ | ||
| 62 | static int slow_work_runqueue_show(struct seq_file *m, void *v) | ||
| 63 | { | ||
| 64 | struct slow_work *work; | ||
| 65 | struct list_head *p = v; | ||
| 66 | unsigned long id; | ||
| 67 | |||
| 68 | switch ((unsigned long) v) { | ||
| 69 | case 1: | ||
| 70 | seq_puts(m, "THR PID ITEM ADDR FL MARK DESC\n"); | ||
| 71 | return 0; | ||
| 72 | case 2: | ||
| 73 | seq_puts(m, "=== ===== ================ == ===== ==========\n"); | ||
| 74 | return 0; | ||
| 75 | |||
| 76 | case 3 ... 3 + SLOW_WORK_THREAD_LIMIT - 1: | ||
| 77 | id = (unsigned long) v - 3; | ||
| 78 | |||
| 79 | read_lock(&slow_work_execs_lock); | ||
| 80 | work = slow_work_execs[id]; | ||
| 81 | if (work) { | ||
| 82 | smp_read_barrier_depends(); | ||
| 83 | |||
| 84 | seq_printf(m, "%3lu %5d %16p %2lx ", | ||
| 85 | id, slow_work_pids[id], work, work->flags); | ||
| 86 | slow_work_print_mark(m, work); | ||
| 87 | |||
| 88 | if (work->ops->desc) | ||
| 89 | work->ops->desc(work, m); | ||
| 90 | seq_putc(m, '\n'); | ||
| 91 | } | ||
| 92 | read_unlock(&slow_work_execs_lock); | ||
| 93 | return 0; | ||
| 94 | |||
| 95 | default: | ||
| 96 | work = list_entry(p, struct slow_work, link); | ||
| 97 | seq_printf(m, "%3s - %16p %2lx ", | ||
| 98 | work->flags & SLOW_WORK_VERY_SLOW ? "vsq" : "sq", | ||
| 99 | work, work->flags); | ||
| 100 | slow_work_print_mark(m, work); | ||
| 101 | |||
| 102 | if (work->ops->desc) | ||
| 103 | work->ops->desc(work, m); | ||
| 104 | seq_putc(m, '\n'); | ||
| 105 | return 0; | ||
| 106 | } | ||
| 107 | } | ||
| 108 | |||
| 109 | /* | ||
| 110 | * map the iterator to a work item | ||
| 111 | */ | ||
| 112 | static void *slow_work_runqueue_index(struct seq_file *m, loff_t *_pos) | ||
| 113 | { | ||
| 114 | struct list_head *p; | ||
| 115 | unsigned long count, id; | ||
| 116 | |||
| 117 | switch (*_pos >> ITERATOR_SHIFT) { | ||
| 118 | case 0x0: | ||
| 119 | if (*_pos == 0) | ||
| 120 | *_pos = 1; | ||
| 121 | if (*_pos < 3) | ||
| 122 | return (void *)(unsigned long) *_pos; | ||
| 123 | if (*_pos < 3 + SLOW_WORK_THREAD_LIMIT) | ||
| 124 | for (id = *_pos - 3; | ||
| 125 | id < SLOW_WORK_THREAD_LIMIT; | ||
| 126 | id++, (*_pos)++) | ||
| 127 | if (slow_work_execs[id]) | ||
| 128 | return (void *)(unsigned long) *_pos; | ||
| 129 | *_pos = 0x1UL << ITERATOR_SHIFT; | ||
| 130 | |||
| 131 | case 0x1: | ||
| 132 | count = *_pos & ITERATOR_COUNTER; | ||
| 133 | list_for_each(p, &slow_work_queue) { | ||
| 134 | if (count == 0) | ||
| 135 | return p; | ||
| 136 | count--; | ||
| 137 | } | ||
| 138 | *_pos = 0x2UL << ITERATOR_SHIFT; | ||
| 139 | |||
| 140 | case 0x2: | ||
| 141 | count = *_pos & ITERATOR_COUNTER; | ||
| 142 | list_for_each(p, &vslow_work_queue) { | ||
| 143 | if (count == 0) | ||
| 144 | return p; | ||
| 145 | count--; | ||
| 146 | } | ||
| 147 | *_pos = 0x3UL << ITERATOR_SHIFT; | ||
| 148 | |||
| 149 | default: | ||
| 150 | return NULL; | ||
| 151 | } | ||
| 152 | } | ||
| 153 | |||
| 154 | /* | ||
| 155 | * set up the iterator to start reading from the first line | ||
| 156 | */ | ||
| 157 | static void *slow_work_runqueue_start(struct seq_file *m, loff_t *_pos) | ||
| 158 | { | ||
| 159 | spin_lock_irq(&slow_work_queue_lock); | ||
| 160 | return slow_work_runqueue_index(m, _pos); | ||
| 161 | } | ||
| 162 | |||
| 163 | /* | ||
| 164 | * move to the next line | ||
| 165 | */ | ||
| 166 | static void *slow_work_runqueue_next(struct seq_file *m, void *v, loff_t *_pos) | ||
| 167 | { | ||
| 168 | struct list_head *p = v; | ||
| 169 | unsigned long selector = *_pos >> ITERATOR_SHIFT; | ||
| 170 | |||
| 171 | (*_pos)++; | ||
| 172 | switch (selector) { | ||
| 173 | case 0x0: | ||
| 174 | return slow_work_runqueue_index(m, _pos); | ||
| 175 | |||
| 176 | case 0x1: | ||
| 177 | if (*_pos >> ITERATOR_SHIFT == 0x1) { | ||
| 178 | p = p->next; | ||
| 179 | if (p != &slow_work_queue) | ||
| 180 | return p; | ||
| 181 | } | ||
| 182 | *_pos = 0x2UL << ITERATOR_SHIFT; | ||
| 183 | p = &vslow_work_queue; | ||
| 184 | |||
| 185 | case 0x2: | ||
| 186 | if (*_pos >> ITERATOR_SHIFT == 0x2) { | ||
| 187 | p = p->next; | ||
| 188 | if (p != &vslow_work_queue) | ||
| 189 | return p; | ||
| 190 | } | ||
| 191 | *_pos = 0x3UL << ITERATOR_SHIFT; | ||
| 192 | |||
| 193 | default: | ||
| 194 | return NULL; | ||
| 195 | } | ||
| 196 | } | ||
| 197 | |||
| 198 | /* | ||
| 199 | * clean up after reading | ||
| 200 | */ | ||
| 201 | static void slow_work_runqueue_stop(struct seq_file *m, void *v) | ||
| 202 | { | ||
| 203 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 204 | } | ||
| 205 | |||
| 206 | static const struct seq_operations slow_work_runqueue_ops = { | ||
| 207 | .start = slow_work_runqueue_start, | ||
| 208 | .stop = slow_work_runqueue_stop, | ||
| 209 | .next = slow_work_runqueue_next, | ||
| 210 | .show = slow_work_runqueue_show, | ||
| 211 | }; | ||
| 212 | |||
| 213 | /* | ||
| 214 | * open "/sys/kernel/debug/slow_work/runqueue" to list queue contents | ||
| 215 | */ | ||
| 216 | static int slow_work_runqueue_open(struct inode *inode, struct file *file) | ||
| 217 | { | ||
| 218 | return seq_open(file, &slow_work_runqueue_ops); | ||
| 219 | } | ||
| 220 | |||
| 221 | const struct file_operations slow_work_runqueue_fops = { | ||
| 222 | .owner = THIS_MODULE, | ||
| 223 | .open = slow_work_runqueue_open, | ||
| 224 | .read = seq_read, | ||
| 225 | .llseek = seq_lseek, | ||
| 226 | .release = seq_release, | ||
| 227 | }; | ||
diff --git a/kernel/slow-work.c b/kernel/slow-work.c index 09d7519557d3..00889bd3c590 100644 --- a/kernel/slow-work.c +++ b/kernel/slow-work.c | |||
| @@ -16,20 +16,17 @@ | |||
| 16 | #include <linux/kthread.h> | 16 | #include <linux/kthread.h> |
| 17 | #include <linux/freezer.h> | 17 | #include <linux/freezer.h> |
| 18 | #include <linux/wait.h> | 18 | #include <linux/wait.h> |
| 19 | 19 | #include <linux/debugfs.h> | |
| 20 | #define SLOW_WORK_CULL_TIMEOUT (5 * HZ) /* cull threads 5s after running out of | 20 | #include "slow-work.h" |
| 21 | * things to do */ | ||
| 22 | #define SLOW_WORK_OOM_TIMEOUT (5 * HZ) /* can't start new threads for 5s after | ||
| 23 | * OOM */ | ||
| 24 | 21 | ||
| 25 | static void slow_work_cull_timeout(unsigned long); | 22 | static void slow_work_cull_timeout(unsigned long); |
| 26 | static void slow_work_oom_timeout(unsigned long); | 23 | static void slow_work_oom_timeout(unsigned long); |
| 27 | 24 | ||
| 28 | #ifdef CONFIG_SYSCTL | 25 | #ifdef CONFIG_SYSCTL |
| 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | 26 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
| 30 | void __user *, size_t *, loff_t *); | 27 | void __user *, size_t *, loff_t *); |
| 31 | 28 | ||
| 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | 29 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
| 33 | void __user *, size_t *, loff_t *); | 30 | void __user *, size_t *, loff_t *); |
| 34 | #endif | 31 | #endif |
| 35 | 32 | ||
| @@ -46,7 +43,7 @@ static unsigned vslow_work_proportion = 50; /* % of threads that may process | |||
| 46 | 43 | ||
| 47 | #ifdef CONFIG_SYSCTL | 44 | #ifdef CONFIG_SYSCTL |
| 48 | static const int slow_work_min_min_threads = 2; | 45 | static const int slow_work_min_min_threads = 2; |
| 49 | static int slow_work_max_max_threads = 255; | 46 | static int slow_work_max_max_threads = SLOW_WORK_THREAD_LIMIT; |
| 50 | static const int slow_work_min_vslow = 1; | 47 | static const int slow_work_min_vslow = 1; |
| 51 | static const int slow_work_max_vslow = 99; | 48 | static const int slow_work_max_vslow = 99; |
| 52 | 49 | ||
| @@ -98,6 +95,56 @@ static DEFINE_TIMER(slow_work_oom_timer, slow_work_oom_timeout, 0, 0); | |||
| 98 | static struct slow_work slow_work_new_thread; /* new thread starter */ | 95 | static struct slow_work slow_work_new_thread; /* new thread starter */ |
| 99 | 96 | ||
| 100 | /* | 97 | /* |
| 98 | * slow work ID allocation (use slow_work_queue_lock) | ||
| 99 | */ | ||
| 100 | static DECLARE_BITMAP(slow_work_ids, SLOW_WORK_THREAD_LIMIT); | ||
| 101 | |||
| 102 | /* | ||
| 103 | * Unregistration tracking to prevent put_ref() from disappearing during module | ||
| 104 | * unload | ||
| 105 | */ | ||
| 106 | #ifdef CONFIG_MODULES | ||
| 107 | static struct module *slow_work_thread_processing[SLOW_WORK_THREAD_LIMIT]; | ||
| 108 | static struct module *slow_work_unreg_module; | ||
| 109 | static struct slow_work *slow_work_unreg_work_item; | ||
| 110 | static DECLARE_WAIT_QUEUE_HEAD(slow_work_unreg_wq); | ||
| 111 | static DEFINE_MUTEX(slow_work_unreg_sync_lock); | ||
| 112 | |||
| 113 | static void slow_work_set_thread_processing(int id, struct slow_work *work) | ||
| 114 | { | ||
| 115 | if (work) | ||
| 116 | slow_work_thread_processing[id] = work->owner; | ||
| 117 | } | ||
| 118 | static void slow_work_done_thread_processing(int id, struct slow_work *work) | ||
| 119 | { | ||
| 120 | struct module *module = slow_work_thread_processing[id]; | ||
| 121 | |||
| 122 | slow_work_thread_processing[id] = NULL; | ||
| 123 | smp_mb(); | ||
| 124 | if (slow_work_unreg_work_item == work || | ||
| 125 | slow_work_unreg_module == module) | ||
| 126 | wake_up_all(&slow_work_unreg_wq); | ||
| 127 | } | ||
| 128 | static void slow_work_clear_thread_processing(int id) | ||
| 129 | { | ||
| 130 | slow_work_thread_processing[id] = NULL; | ||
| 131 | } | ||
| 132 | #else | ||
| 133 | static void slow_work_set_thread_processing(int id, struct slow_work *work) {} | ||
| 134 | static void slow_work_done_thread_processing(int id, struct slow_work *work) {} | ||
| 135 | static void slow_work_clear_thread_processing(int id) {} | ||
| 136 | #endif | ||
| 137 | |||
| 138 | /* | ||
| 139 | * Data for tracking currently executing items for indication through /proc | ||
| 140 | */ | ||
| 141 | #ifdef CONFIG_SLOW_WORK_DEBUG | ||
| 142 | struct slow_work *slow_work_execs[SLOW_WORK_THREAD_LIMIT]; | ||
| 143 | pid_t slow_work_pids[SLOW_WORK_THREAD_LIMIT]; | ||
| 144 | DEFINE_RWLOCK(slow_work_execs_lock); | ||
| 145 | #endif | ||
| 146 | |||
| 147 | /* | ||
| 101 | * The queues of work items and the lock governing access to them. These are | 148 | * The queues of work items and the lock governing access to them. These are |
| 102 | * shared between all the CPUs. It doesn't make sense to have per-CPU queues | 149 | * shared between all the CPUs. It doesn't make sense to have per-CPU queues |
| 103 | * as the number of threads bears no relation to the number of CPUs. | 150 | * as the number of threads bears no relation to the number of CPUs. |
| @@ -105,9 +152,18 @@ static struct slow_work slow_work_new_thread; /* new thread starter */ | |||
| 105 | * There are two queues of work items: one for slow work items, and one for | 152 | * There are two queues of work items: one for slow work items, and one for |
| 106 | * very slow work items. | 153 | * very slow work items. |
| 107 | */ | 154 | */ |
| 108 | static LIST_HEAD(slow_work_queue); | 155 | LIST_HEAD(slow_work_queue); |
| 109 | static LIST_HEAD(vslow_work_queue); | 156 | LIST_HEAD(vslow_work_queue); |
| 110 | static DEFINE_SPINLOCK(slow_work_queue_lock); | 157 | DEFINE_SPINLOCK(slow_work_queue_lock); |
| 158 | |||
| 159 | /* | ||
| 160 | * The following are two wait queues that get pinged when a work item is placed | ||
| 161 | * on an empty queue. These allow work items that are hogging a thread by | ||
| 162 | * sleeping in a way that could be deferred to yield their thread and enqueue | ||
| 163 | * themselves. | ||
| 164 | */ | ||
| 165 | static DECLARE_WAIT_QUEUE_HEAD(slow_work_queue_waits_for_occupation); | ||
| 166 | static DECLARE_WAIT_QUEUE_HEAD(vslow_work_queue_waits_for_occupation); | ||
| 111 | 167 | ||
| 112 | /* | 168 | /* |
| 113 | * The thread controls. A variable used to signal to the threads that they | 169 | * The thread controls. A variable used to signal to the threads that they |
| @@ -126,6 +182,20 @@ static DECLARE_COMPLETION(slow_work_last_thread_exited); | |||
| 126 | static int slow_work_user_count; | 182 | static int slow_work_user_count; |
| 127 | static DEFINE_MUTEX(slow_work_user_lock); | 183 | static DEFINE_MUTEX(slow_work_user_lock); |
| 128 | 184 | ||
| 185 | static inline int slow_work_get_ref(struct slow_work *work) | ||
| 186 | { | ||
| 187 | if (work->ops->get_ref) | ||
| 188 | return work->ops->get_ref(work); | ||
| 189 | |||
| 190 | return 0; | ||
| 191 | } | ||
| 192 | |||
| 193 | static inline void slow_work_put_ref(struct slow_work *work) | ||
| 194 | { | ||
| 195 | if (work->ops->put_ref) | ||
| 196 | work->ops->put_ref(work); | ||
| 197 | } | ||
| 198 | |||
| 129 | /* | 199 | /* |
| 130 | * Calculate the maximum number of active threads in the pool that are | 200 | * Calculate the maximum number of active threads in the pool that are |
| 131 | * permitted to process very slow work items. | 201 | * permitted to process very slow work items. |
| @@ -149,7 +219,7 @@ static unsigned slow_work_calc_vsmax(void) | |||
| 149 | * Attempt to execute stuff queued on a slow thread. Return true if we managed | 219 | * Attempt to execute stuff queued on a slow thread. Return true if we managed |
| 150 | * it, false if there was nothing to do. | 220 | * it, false if there was nothing to do. |
| 151 | */ | 221 | */ |
| 152 | static bool slow_work_execute(void) | 222 | static noinline bool slow_work_execute(int id) |
| 153 | { | 223 | { |
| 154 | struct slow_work *work = NULL; | 224 | struct slow_work *work = NULL; |
| 155 | unsigned vsmax; | 225 | unsigned vsmax; |
| @@ -186,6 +256,13 @@ static bool slow_work_execute(void) | |||
| 186 | } else { | 256 | } else { |
| 187 | very_slow = false; /* avoid the compiler warning */ | 257 | very_slow = false; /* avoid the compiler warning */ |
| 188 | } | 258 | } |
| 259 | |||
| 260 | slow_work_set_thread_processing(id, work); | ||
| 261 | if (work) { | ||
| 262 | slow_work_mark_time(work); | ||
| 263 | slow_work_begin_exec(id, work); | ||
| 264 | } | ||
| 265 | |||
| 189 | spin_unlock_irq(&slow_work_queue_lock); | 266 | spin_unlock_irq(&slow_work_queue_lock); |
| 190 | 267 | ||
| 191 | if (!work) | 268 | if (!work) |
| @@ -194,12 +271,19 @@ static bool slow_work_execute(void) | |||
| 194 | if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags)) | 271 | if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags)) |
| 195 | BUG(); | 272 | BUG(); |
| 196 | 273 | ||
| 197 | work->ops->execute(work); | 274 | /* don't execute if the work is in the process of being cancelled */ |
| 275 | if (!test_bit(SLOW_WORK_CANCELLING, &work->flags)) | ||
| 276 | work->ops->execute(work); | ||
| 198 | 277 | ||
| 199 | if (very_slow) | 278 | if (very_slow) |
| 200 | atomic_dec(&vslow_work_executing_count); | 279 | atomic_dec(&vslow_work_executing_count); |
| 201 | clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags); | 280 | clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags); |
| 202 | 281 | ||
| 282 | /* wake up anyone waiting for this work to be complete */ | ||
| 283 | wake_up_bit(&work->flags, SLOW_WORK_EXECUTING); | ||
| 284 | |||
| 285 | slow_work_end_exec(id, work); | ||
| 286 | |||
| 203 | /* if someone tried to enqueue the item whilst we were executing it, | 287 | /* if someone tried to enqueue the item whilst we were executing it, |
| 204 | * then it'll be left unenqueued to avoid multiple threads trying to | 288 | * then it'll be left unenqueued to avoid multiple threads trying to |
| 205 | * execute it simultaneously | 289 | * execute it simultaneously |
| @@ -219,7 +303,10 @@ static bool slow_work_execute(void) | |||
| 219 | spin_unlock_irq(&slow_work_queue_lock); | 303 | spin_unlock_irq(&slow_work_queue_lock); |
| 220 | } | 304 | } |
| 221 | 305 | ||
| 222 | work->ops->put_ref(work); | 306 | /* sort out the race between module unloading and put_ref() */ |
| 307 | slow_work_put_ref(work); | ||
| 308 | slow_work_done_thread_processing(id, work); | ||
| 309 | |||
| 223 | return true; | 310 | return true; |
| 224 | 311 | ||
| 225 | auto_requeue: | 312 | auto_requeue: |
| @@ -227,15 +314,61 @@ auto_requeue: | |||
| 227 | * - we transfer our ref on the item back to the appropriate queue | 314 | * - we transfer our ref on the item back to the appropriate queue |
| 228 | * - don't wake another thread up as we're awake already | 315 | * - don't wake another thread up as we're awake already |
| 229 | */ | 316 | */ |
| 317 | slow_work_mark_time(work); | ||
| 230 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | 318 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) |
| 231 | list_add_tail(&work->link, &vslow_work_queue); | 319 | list_add_tail(&work->link, &vslow_work_queue); |
| 232 | else | 320 | else |
| 233 | list_add_tail(&work->link, &slow_work_queue); | 321 | list_add_tail(&work->link, &slow_work_queue); |
| 234 | spin_unlock_irq(&slow_work_queue_lock); | 322 | spin_unlock_irq(&slow_work_queue_lock); |
| 323 | slow_work_clear_thread_processing(id); | ||
| 235 | return true; | 324 | return true; |
| 236 | } | 325 | } |
| 237 | 326 | ||
| 238 | /** | 327 | /** |
| 328 | * slow_work_sleep_till_thread_needed - Sleep till thread needed by other work | ||
| 329 | * work: The work item under execution that wants to sleep | ||
| 330 | * _timeout: Scheduler sleep timeout | ||
| 331 | * | ||
| 332 | * Allow a requeueable work item to sleep on a slow-work processor thread until | ||
| 333 | * that thread is needed to do some other work or the sleep is interrupted by | ||
| 334 | * some other event. | ||
| 335 | * | ||
| 336 | * The caller must set up a wake up event before calling this and must have set | ||
| 337 | * the appropriate sleep mode (such as TASK_UNINTERRUPTIBLE) and tested its own | ||
| 338 | * condition before calling this function as no test is made here. | ||
| 339 | * | ||
| 340 | * False is returned if there is nothing on the queue; true is returned if the | ||
| 341 | * work item should be requeued | ||
| 342 | */ | ||
| 343 | bool slow_work_sleep_till_thread_needed(struct slow_work *work, | ||
| 344 | signed long *_timeout) | ||
| 345 | { | ||
| 346 | wait_queue_head_t *wfo_wq; | ||
| 347 | struct list_head *queue; | ||
| 348 | |||
| 349 | DEFINE_WAIT(wait); | ||
| 350 | |||
| 351 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) { | ||
| 352 | wfo_wq = &vslow_work_queue_waits_for_occupation; | ||
| 353 | queue = &vslow_work_queue; | ||
| 354 | } else { | ||
| 355 | wfo_wq = &slow_work_queue_waits_for_occupation; | ||
| 356 | queue = &slow_work_queue; | ||
| 357 | } | ||
| 358 | |||
| 359 | if (!list_empty(queue)) | ||
| 360 | return true; | ||
| 361 | |||
| 362 | add_wait_queue_exclusive(wfo_wq, &wait); | ||
| 363 | if (list_empty(queue)) | ||
| 364 | *_timeout = schedule_timeout(*_timeout); | ||
| 365 | finish_wait(wfo_wq, &wait); | ||
| 366 | |||
| 367 | return !list_empty(queue); | ||
| 368 | } | ||
| 369 | EXPORT_SYMBOL(slow_work_sleep_till_thread_needed); | ||
| 370 | |||
| 371 | /** | ||
| 239 | * slow_work_enqueue - Schedule a slow work item for processing | 372 | * slow_work_enqueue - Schedule a slow work item for processing |
| 240 | * @work: The work item to queue | 373 | * @work: The work item to queue |
| 241 | * | 374 | * |
| @@ -260,16 +393,22 @@ auto_requeue: | |||
| 260 | * allowed to pick items to execute. This ensures that very slow items won't | 393 | * allowed to pick items to execute. This ensures that very slow items won't |
| 261 | * overly block ones that are just ordinarily slow. | 394 | * overly block ones that are just ordinarily slow. |
| 262 | * | 395 | * |
| 263 | * Returns 0 if successful, -EAGAIN if not. | 396 | * Returns 0 if successful, -EAGAIN if not (or -ECANCELED if cancelled work is |
| 397 | * attempted queued) | ||
| 264 | */ | 398 | */ |
| 265 | int slow_work_enqueue(struct slow_work *work) | 399 | int slow_work_enqueue(struct slow_work *work) |
| 266 | { | 400 | { |
| 401 | wait_queue_head_t *wfo_wq; | ||
| 402 | struct list_head *queue; | ||
| 267 | unsigned long flags; | 403 | unsigned long flags; |
| 404 | int ret; | ||
| 405 | |||
| 406 | if (test_bit(SLOW_WORK_CANCELLING, &work->flags)) | ||
| 407 | return -ECANCELED; | ||
| 268 | 408 | ||
| 269 | BUG_ON(slow_work_user_count <= 0); | 409 | BUG_ON(slow_work_user_count <= 0); |
| 270 | BUG_ON(!work); | 410 | BUG_ON(!work); |
| 271 | BUG_ON(!work->ops); | 411 | BUG_ON(!work->ops); |
| 272 | BUG_ON(!work->ops->get_ref); | ||
| 273 | 412 | ||
| 274 | /* when honouring an enqueue request, we only promise that we will run | 413 | /* when honouring an enqueue request, we only promise that we will run |
| 275 | * the work function in the future; we do not promise to run it once | 414 | * the work function in the future; we do not promise to run it once |
| @@ -280,8 +419,19 @@ int slow_work_enqueue(struct slow_work *work) | |||
| 280 | * maintaining our promise | 419 | * maintaining our promise |
| 281 | */ | 420 | */ |
| 282 | if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { | 421 | if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { |
| 422 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) { | ||
| 423 | wfo_wq = &vslow_work_queue_waits_for_occupation; | ||
| 424 | queue = &vslow_work_queue; | ||
| 425 | } else { | ||
| 426 | wfo_wq = &slow_work_queue_waits_for_occupation; | ||
| 427 | queue = &slow_work_queue; | ||
| 428 | } | ||
| 429 | |||
| 283 | spin_lock_irqsave(&slow_work_queue_lock, flags); | 430 | spin_lock_irqsave(&slow_work_queue_lock, flags); |
| 284 | 431 | ||
| 432 | if (unlikely(test_bit(SLOW_WORK_CANCELLING, &work->flags))) | ||
| 433 | goto cancelled; | ||
| 434 | |||
| 285 | /* we promise that we will not attempt to execute the work | 435 | /* we promise that we will not attempt to execute the work |
| 286 | * function in more than one thread simultaneously | 436 | * function in more than one thread simultaneously |
| 287 | * | 437 | * |
| @@ -299,25 +449,221 @@ int slow_work_enqueue(struct slow_work *work) | |||
| 299 | if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { | 449 | if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { |
| 300 | set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); | 450 | set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); |
| 301 | } else { | 451 | } else { |
| 302 | if (work->ops->get_ref(work) < 0) | 452 | ret = slow_work_get_ref(work); |
| 303 | goto cant_get_ref; | 453 | if (ret < 0) |
| 304 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | 454 | goto failed; |
| 305 | list_add_tail(&work->link, &vslow_work_queue); | 455 | slow_work_mark_time(work); |
| 306 | else | 456 | list_add_tail(&work->link, queue); |
| 307 | list_add_tail(&work->link, &slow_work_queue); | ||
| 308 | wake_up(&slow_work_thread_wq); | 457 | wake_up(&slow_work_thread_wq); |
| 458 | |||
| 459 | /* if someone who could be requeued is sleeping on a | ||
| 460 | * thread, then ask them to yield their thread */ | ||
| 461 | if (work->link.prev == queue) | ||
| 462 | wake_up(wfo_wq); | ||
| 309 | } | 463 | } |
| 310 | 464 | ||
| 311 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | 465 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); |
| 312 | } | 466 | } |
| 313 | return 0; | 467 | return 0; |
| 314 | 468 | ||
| 315 | cant_get_ref: | 469 | cancelled: |
| 470 | ret = -ECANCELED; | ||
| 471 | failed: | ||
| 316 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | 472 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); |
| 317 | return -EAGAIN; | 473 | return ret; |
| 318 | } | 474 | } |
| 319 | EXPORT_SYMBOL(slow_work_enqueue); | 475 | EXPORT_SYMBOL(slow_work_enqueue); |
| 320 | 476 | ||
| 477 | static int slow_work_wait(void *word) | ||
| 478 | { | ||
| 479 | schedule(); | ||
| 480 | return 0; | ||
| 481 | } | ||
| 482 | |||
| 483 | /** | ||
| 484 | * slow_work_cancel - Cancel a slow work item | ||
| 485 | * @work: The work item to cancel | ||
| 486 | * | ||
| 487 | * This function will cancel a previously enqueued work item. If we cannot | ||
| 488 | * cancel the work item, it is guarenteed to have run when this function | ||
| 489 | * returns. | ||
| 490 | */ | ||
| 491 | void slow_work_cancel(struct slow_work *work) | ||
| 492 | { | ||
| 493 | bool wait = true, put = false; | ||
| 494 | |||
| 495 | set_bit(SLOW_WORK_CANCELLING, &work->flags); | ||
| 496 | smp_mb(); | ||
| 497 | |||
| 498 | /* if the work item is a delayed work item with an active timer, we | ||
| 499 | * need to wait for the timer to finish _before_ getting the spinlock, | ||
| 500 | * lest we deadlock against the timer routine | ||
| 501 | * | ||
| 502 | * the timer routine will leave DELAYED set if it notices the | ||
| 503 | * CANCELLING flag in time | ||
| 504 | */ | ||
| 505 | if (test_bit(SLOW_WORK_DELAYED, &work->flags)) { | ||
| 506 | struct delayed_slow_work *dwork = | ||
| 507 | container_of(work, struct delayed_slow_work, work); | ||
| 508 | del_timer_sync(&dwork->timer); | ||
| 509 | } | ||
| 510 | |||
| 511 | spin_lock_irq(&slow_work_queue_lock); | ||
| 512 | |||
| 513 | if (test_bit(SLOW_WORK_DELAYED, &work->flags)) { | ||
| 514 | /* the timer routine aborted or never happened, so we are left | ||
| 515 | * holding the timer's reference on the item and should just | ||
| 516 | * drop the pending flag and wait for any ongoing execution to | ||
| 517 | * finish */ | ||
| 518 | struct delayed_slow_work *dwork = | ||
| 519 | container_of(work, struct delayed_slow_work, work); | ||
| 520 | |||
| 521 | BUG_ON(timer_pending(&dwork->timer)); | ||
| 522 | BUG_ON(!list_empty(&work->link)); | ||
| 523 | |||
| 524 | clear_bit(SLOW_WORK_DELAYED, &work->flags); | ||
| 525 | put = true; | ||
| 526 | clear_bit(SLOW_WORK_PENDING, &work->flags); | ||
| 527 | |||
| 528 | } else if (test_bit(SLOW_WORK_PENDING, &work->flags) && | ||
| 529 | !list_empty(&work->link)) { | ||
| 530 | /* the link in the pending queue holds a reference on the item | ||
| 531 | * that we will need to release */ | ||
| 532 | list_del_init(&work->link); | ||
| 533 | wait = false; | ||
| 534 | put = true; | ||
| 535 | clear_bit(SLOW_WORK_PENDING, &work->flags); | ||
| 536 | |||
| 537 | } else if (test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags)) { | ||
| 538 | /* the executor is holding our only reference on the item, so | ||
| 539 | * we merely need to wait for it to finish executing */ | ||
| 540 | clear_bit(SLOW_WORK_PENDING, &work->flags); | ||
| 541 | } | ||
| 542 | |||
| 543 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 544 | |||
| 545 | /* the EXECUTING flag is set by the executor whilst the spinlock is set | ||
| 546 | * and before the item is dequeued - so assuming the above doesn't | ||
| 547 | * actually dequeue it, simply waiting for the EXECUTING flag to be | ||
| 548 | * released here should be sufficient */ | ||
| 549 | if (wait) | ||
| 550 | wait_on_bit(&work->flags, SLOW_WORK_EXECUTING, slow_work_wait, | ||
| 551 | TASK_UNINTERRUPTIBLE); | ||
| 552 | |||
| 553 | clear_bit(SLOW_WORK_CANCELLING, &work->flags); | ||
| 554 | if (put) | ||
| 555 | slow_work_put_ref(work); | ||
| 556 | } | ||
| 557 | EXPORT_SYMBOL(slow_work_cancel); | ||
| 558 | |||
| 559 | /* | ||
| 560 | * Handle expiry of the delay timer, indicating that a delayed slow work item | ||
| 561 | * should now be queued if not cancelled | ||
| 562 | */ | ||
| 563 | static void delayed_slow_work_timer(unsigned long data) | ||
| 564 | { | ||
| 565 | wait_queue_head_t *wfo_wq; | ||
| 566 | struct list_head *queue; | ||
| 567 | struct slow_work *work = (struct slow_work *) data; | ||
| 568 | unsigned long flags; | ||
| 569 | bool queued = false, put = false, first = false; | ||
| 570 | |||
| 571 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) { | ||
| 572 | wfo_wq = &vslow_work_queue_waits_for_occupation; | ||
| 573 | queue = &vslow_work_queue; | ||
| 574 | } else { | ||
| 575 | wfo_wq = &slow_work_queue_waits_for_occupation; | ||
| 576 | queue = &slow_work_queue; | ||
| 577 | } | ||
| 578 | |||
| 579 | spin_lock_irqsave(&slow_work_queue_lock, flags); | ||
| 580 | if (likely(!test_bit(SLOW_WORK_CANCELLING, &work->flags))) { | ||
| 581 | clear_bit(SLOW_WORK_DELAYED, &work->flags); | ||
| 582 | |||
| 583 | if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { | ||
| 584 | /* we discard the reference the timer was holding in | ||
| 585 | * favour of the one the executor holds */ | ||
| 586 | set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); | ||
| 587 | put = true; | ||
| 588 | } else { | ||
| 589 | slow_work_mark_time(work); | ||
| 590 | list_add_tail(&work->link, queue); | ||
| 591 | queued = true; | ||
| 592 | if (work->link.prev == queue) | ||
| 593 | first = true; | ||
| 594 | } | ||
| 595 | } | ||
| 596 | |||
| 597 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
| 598 | if (put) | ||
| 599 | slow_work_put_ref(work); | ||
| 600 | if (first) | ||
| 601 | wake_up(wfo_wq); | ||
| 602 | if (queued) | ||
| 603 | wake_up(&slow_work_thread_wq); | ||
| 604 | } | ||
| 605 | |||
| 606 | /** | ||
| 607 | * delayed_slow_work_enqueue - Schedule a delayed slow work item for processing | ||
| 608 | * @dwork: The delayed work item to queue | ||
| 609 | * @delay: When to start executing the work, in jiffies from now | ||
| 610 | * | ||
| 611 | * This is similar to slow_work_enqueue(), but it adds a delay before the work | ||
| 612 | * is actually queued for processing. | ||
| 613 | * | ||
| 614 | * The item can have delayed processing requested on it whilst it is being | ||
| 615 | * executed. The delay will begin immediately, and if it expires before the | ||
| 616 | * item finishes executing, the item will be placed back on the queue when it | ||
| 617 | * has done executing. | ||
| 618 | */ | ||
| 619 | int delayed_slow_work_enqueue(struct delayed_slow_work *dwork, | ||
| 620 | unsigned long delay) | ||
| 621 | { | ||
| 622 | struct slow_work *work = &dwork->work; | ||
| 623 | unsigned long flags; | ||
| 624 | int ret; | ||
| 625 | |||
| 626 | if (delay == 0) | ||
| 627 | return slow_work_enqueue(&dwork->work); | ||
| 628 | |||
| 629 | BUG_ON(slow_work_user_count <= 0); | ||
| 630 | BUG_ON(!work); | ||
| 631 | BUG_ON(!work->ops); | ||
| 632 | |||
| 633 | if (test_bit(SLOW_WORK_CANCELLING, &work->flags)) | ||
| 634 | return -ECANCELED; | ||
| 635 | |||
| 636 | if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { | ||
| 637 | spin_lock_irqsave(&slow_work_queue_lock, flags); | ||
| 638 | |||
| 639 | if (test_bit(SLOW_WORK_CANCELLING, &work->flags)) | ||
| 640 | goto cancelled; | ||
| 641 | |||
| 642 | /* the timer holds a reference whilst it is pending */ | ||
| 643 | ret = work->ops->get_ref(work); | ||
| 644 | if (ret < 0) | ||
| 645 | goto cant_get_ref; | ||
| 646 | |||
| 647 | if (test_and_set_bit(SLOW_WORK_DELAYED, &work->flags)) | ||
| 648 | BUG(); | ||
| 649 | dwork->timer.expires = jiffies + delay; | ||
| 650 | dwork->timer.data = (unsigned long) work; | ||
| 651 | dwork->timer.function = delayed_slow_work_timer; | ||
| 652 | add_timer(&dwork->timer); | ||
| 653 | |||
| 654 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
| 655 | } | ||
| 656 | |||
| 657 | return 0; | ||
| 658 | |||
| 659 | cancelled: | ||
| 660 | ret = -ECANCELED; | ||
| 661 | cant_get_ref: | ||
| 662 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
| 663 | return ret; | ||
| 664 | } | ||
| 665 | EXPORT_SYMBOL(delayed_slow_work_enqueue); | ||
| 666 | |||
| 321 | /* | 667 | /* |
| 322 | * Schedule a cull of the thread pool at some time in the near future | 668 | * Schedule a cull of the thread pool at some time in the near future |
| 323 | */ | 669 | */ |
| @@ -368,13 +714,23 @@ static inline bool slow_work_available(int vsmax) | |||
| 368 | */ | 714 | */ |
| 369 | static int slow_work_thread(void *_data) | 715 | static int slow_work_thread(void *_data) |
| 370 | { | 716 | { |
| 371 | int vsmax; | 717 | int vsmax, id; |
| 372 | 718 | ||
| 373 | DEFINE_WAIT(wait); | 719 | DEFINE_WAIT(wait); |
| 374 | 720 | ||
| 375 | set_freezable(); | 721 | set_freezable(); |
| 376 | set_user_nice(current, -5); | 722 | set_user_nice(current, -5); |
| 377 | 723 | ||
| 724 | /* allocate ourselves an ID */ | ||
| 725 | spin_lock_irq(&slow_work_queue_lock); | ||
| 726 | id = find_first_zero_bit(slow_work_ids, SLOW_WORK_THREAD_LIMIT); | ||
| 727 | BUG_ON(id < 0 || id >= SLOW_WORK_THREAD_LIMIT); | ||
| 728 | __set_bit(id, slow_work_ids); | ||
| 729 | slow_work_set_thread_pid(id, current->pid); | ||
| 730 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 731 | |||
| 732 | sprintf(current->comm, "kslowd%03u", id); | ||
| 733 | |||
| 378 | for (;;) { | 734 | for (;;) { |
| 379 | vsmax = vslow_work_proportion; | 735 | vsmax = vslow_work_proportion; |
| 380 | vsmax *= atomic_read(&slow_work_thread_count); | 736 | vsmax *= atomic_read(&slow_work_thread_count); |
| @@ -395,7 +751,7 @@ static int slow_work_thread(void *_data) | |||
| 395 | vsmax *= atomic_read(&slow_work_thread_count); | 751 | vsmax *= atomic_read(&slow_work_thread_count); |
| 396 | vsmax /= 100; | 752 | vsmax /= 100; |
| 397 | 753 | ||
| 398 | if (slow_work_available(vsmax) && slow_work_execute()) { | 754 | if (slow_work_available(vsmax) && slow_work_execute(id)) { |
| 399 | cond_resched(); | 755 | cond_resched(); |
| 400 | if (list_empty(&slow_work_queue) && | 756 | if (list_empty(&slow_work_queue) && |
| 401 | list_empty(&vslow_work_queue) && | 757 | list_empty(&vslow_work_queue) && |
| @@ -412,6 +768,11 @@ static int slow_work_thread(void *_data) | |||
| 412 | break; | 768 | break; |
| 413 | } | 769 | } |
| 414 | 770 | ||
| 771 | spin_lock_irq(&slow_work_queue_lock); | ||
| 772 | slow_work_set_thread_pid(id, 0); | ||
| 773 | __clear_bit(id, slow_work_ids); | ||
| 774 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 775 | |||
| 415 | if (atomic_dec_and_test(&slow_work_thread_count)) | 776 | if (atomic_dec_and_test(&slow_work_thread_count)) |
| 416 | complete_and_exit(&slow_work_last_thread_exited, 0); | 777 | complete_and_exit(&slow_work_last_thread_exited, 0); |
| 417 | return 0; | 778 | return 0; |
| @@ -427,21 +788,6 @@ static void slow_work_cull_timeout(unsigned long data) | |||
| 427 | } | 788 | } |
| 428 | 789 | ||
| 429 | /* | 790 | /* |
| 430 | * Get a reference on slow work thread starter | ||
| 431 | */ | ||
| 432 | static int slow_work_new_thread_get_ref(struct slow_work *work) | ||
| 433 | { | ||
| 434 | return 0; | ||
| 435 | } | ||
| 436 | |||
| 437 | /* | ||
| 438 | * Drop a reference on slow work thread starter | ||
| 439 | */ | ||
| 440 | static void slow_work_new_thread_put_ref(struct slow_work *work) | ||
| 441 | { | ||
| 442 | } | ||
| 443 | |||
| 444 | /* | ||
| 445 | * Start a new slow work thread | 791 | * Start a new slow work thread |
| 446 | */ | 792 | */ |
| 447 | static void slow_work_new_thread_execute(struct slow_work *work) | 793 | static void slow_work_new_thread_execute(struct slow_work *work) |
| @@ -475,9 +821,11 @@ static void slow_work_new_thread_execute(struct slow_work *work) | |||
| 475 | } | 821 | } |
| 476 | 822 | ||
| 477 | static const struct slow_work_ops slow_work_new_thread_ops = { | 823 | static const struct slow_work_ops slow_work_new_thread_ops = { |
| 478 | .get_ref = slow_work_new_thread_get_ref, | 824 | .owner = THIS_MODULE, |
| 479 | .put_ref = slow_work_new_thread_put_ref, | ||
| 480 | .execute = slow_work_new_thread_execute, | 825 | .execute = slow_work_new_thread_execute, |
| 826 | #ifdef CONFIG_SLOW_WORK_DEBUG | ||
| 827 | .desc = slow_work_new_thread_desc, | ||
| 828 | #endif | ||
| 481 | }; | 829 | }; |
| 482 | 830 | ||
| 483 | /* | 831 | /* |
| @@ -493,10 +841,10 @@ static void slow_work_oom_timeout(unsigned long data) | |||
| 493 | * Handle adjustment of the minimum number of threads | 841 | * Handle adjustment of the minimum number of threads |
| 494 | */ | 842 | */ |
| 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | 843 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
| 496 | struct file *filp, void __user *buffer, | 844 | void __user *buffer, |
| 497 | size_t *lenp, loff_t *ppos) | 845 | size_t *lenp, loff_t *ppos) |
| 498 | { | 846 | { |
| 499 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 847 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 500 | int n; | 848 | int n; |
| 501 | 849 | ||
| 502 | if (ret == 0) { | 850 | if (ret == 0) { |
| @@ -521,10 +869,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | |||
| 521 | * Handle adjustment of the maximum number of threads | 869 | * Handle adjustment of the maximum number of threads |
| 522 | */ | 870 | */ |
| 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | 871 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
| 524 | struct file *filp, void __user *buffer, | 872 | void __user *buffer, |
| 525 | size_t *lenp, loff_t *ppos) | 873 | size_t *lenp, loff_t *ppos) |
| 526 | { | 874 | { |
| 527 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 875 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 528 | int n; | 876 | int n; |
| 529 | 877 | ||
| 530 | if (ret == 0) { | 878 | if (ret == 0) { |
| @@ -546,12 +894,13 @@ static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | |||
| 546 | 894 | ||
| 547 | /** | 895 | /** |
| 548 | * slow_work_register_user - Register a user of the facility | 896 | * slow_work_register_user - Register a user of the facility |
| 897 | * @module: The module about to make use of the facility | ||
| 549 | * | 898 | * |
| 550 | * Register a user of the facility, starting up the initial threads if there | 899 | * Register a user of the facility, starting up the initial threads if there |
| 551 | * aren't any other users at this point. This will return 0 if successful, or | 900 | * aren't any other users at this point. This will return 0 if successful, or |
| 552 | * an error if not. | 901 | * an error if not. |
| 553 | */ | 902 | */ |
| 554 | int slow_work_register_user(void) | 903 | int slow_work_register_user(struct module *module) |
| 555 | { | 904 | { |
| 556 | struct task_struct *p; | 905 | struct task_struct *p; |
| 557 | int loop; | 906 | int loop; |
| @@ -598,14 +947,81 @@ error: | |||
| 598 | } | 947 | } |
| 599 | EXPORT_SYMBOL(slow_work_register_user); | 948 | EXPORT_SYMBOL(slow_work_register_user); |
| 600 | 949 | ||
| 950 | /* | ||
| 951 | * wait for all outstanding items from the calling module to complete | ||
| 952 | * - note that more items may be queued whilst we're waiting | ||
| 953 | */ | ||
| 954 | static void slow_work_wait_for_items(struct module *module) | ||
| 955 | { | ||
| 956 | #ifdef CONFIG_MODULES | ||
| 957 | DECLARE_WAITQUEUE(myself, current); | ||
| 958 | struct slow_work *work; | ||
| 959 | int loop; | ||
| 960 | |||
| 961 | mutex_lock(&slow_work_unreg_sync_lock); | ||
| 962 | add_wait_queue(&slow_work_unreg_wq, &myself); | ||
| 963 | |||
| 964 | for (;;) { | ||
| 965 | spin_lock_irq(&slow_work_queue_lock); | ||
| 966 | |||
| 967 | /* first of all, we wait for the last queued item in each list | ||
| 968 | * to be processed */ | ||
| 969 | list_for_each_entry_reverse(work, &vslow_work_queue, link) { | ||
| 970 | if (work->owner == module) { | ||
| 971 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
| 972 | slow_work_unreg_work_item = work; | ||
| 973 | goto do_wait; | ||
| 974 | } | ||
| 975 | } | ||
| 976 | list_for_each_entry_reverse(work, &slow_work_queue, link) { | ||
| 977 | if (work->owner == module) { | ||
| 978 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
| 979 | slow_work_unreg_work_item = work; | ||
| 980 | goto do_wait; | ||
| 981 | } | ||
| 982 | } | ||
| 983 | |||
| 984 | /* then we wait for the items being processed to finish */ | ||
| 985 | slow_work_unreg_module = module; | ||
| 986 | smp_mb(); | ||
| 987 | for (loop = 0; loop < SLOW_WORK_THREAD_LIMIT; loop++) { | ||
| 988 | if (slow_work_thread_processing[loop] == module) | ||
| 989 | goto do_wait; | ||
| 990 | } | ||
| 991 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 992 | break; /* okay, we're done */ | ||
| 993 | |||
| 994 | do_wait: | ||
| 995 | spin_unlock_irq(&slow_work_queue_lock); | ||
| 996 | schedule(); | ||
| 997 | slow_work_unreg_work_item = NULL; | ||
| 998 | slow_work_unreg_module = NULL; | ||
| 999 | } | ||
| 1000 | |||
| 1001 | remove_wait_queue(&slow_work_unreg_wq, &myself); | ||
| 1002 | mutex_unlock(&slow_work_unreg_sync_lock); | ||
| 1003 | #endif /* CONFIG_MODULES */ | ||
| 1004 | } | ||
| 1005 | |||
| 601 | /** | 1006 | /** |
| 602 | * slow_work_unregister_user - Unregister a user of the facility | 1007 | * slow_work_unregister_user - Unregister a user of the facility |
| 1008 | * @module: The module whose items should be cleared | ||
| 603 | * | 1009 | * |
| 604 | * Unregister a user of the facility, killing all the threads if this was the | 1010 | * Unregister a user of the facility, killing all the threads if this was the |
| 605 | * last one. | 1011 | * last one. |
| 1012 | * | ||
| 1013 | * This waits for all the work items belonging to the nominated module to go | ||
| 1014 | * away before proceeding. | ||
| 606 | */ | 1015 | */ |
| 607 | void slow_work_unregister_user(void) | 1016 | void slow_work_unregister_user(struct module *module) |
| 608 | { | 1017 | { |
| 1018 | /* first of all, wait for all outstanding items from the calling module | ||
| 1019 | * to complete */ | ||
| 1020 | if (module) | ||
| 1021 | slow_work_wait_for_items(module); | ||
| 1022 | |||
| 1023 | /* then we can actually go about shutting down the facility if need | ||
| 1024 | * be */ | ||
| 609 | mutex_lock(&slow_work_user_lock); | 1025 | mutex_lock(&slow_work_user_lock); |
| 610 | 1026 | ||
| 611 | BUG_ON(slow_work_user_count <= 0); | 1027 | BUG_ON(slow_work_user_count <= 0); |
| @@ -639,6 +1055,16 @@ static int __init init_slow_work(void) | |||
| 639 | if (slow_work_max_max_threads < nr_cpus * 2) | 1055 | if (slow_work_max_max_threads < nr_cpus * 2) |
| 640 | slow_work_max_max_threads = nr_cpus * 2; | 1056 | slow_work_max_max_threads = nr_cpus * 2; |
| 641 | #endif | 1057 | #endif |
| 1058 | #ifdef CONFIG_SLOW_WORK_DEBUG | ||
| 1059 | { | ||
| 1060 | struct dentry *dbdir; | ||
| 1061 | |||
| 1062 | dbdir = debugfs_create_dir("slow_work", NULL); | ||
| 1063 | if (dbdir && !IS_ERR(dbdir)) | ||
| 1064 | debugfs_create_file("runqueue", S_IFREG | 0400, dbdir, | ||
| 1065 | NULL, &slow_work_runqueue_fops); | ||
| 1066 | } | ||
| 1067 | #endif | ||
| 642 | return 0; | 1068 | return 0; |
| 643 | } | 1069 | } |
| 644 | 1070 | ||
diff --git a/kernel/slow-work.h b/kernel/slow-work.h new file mode 100644 index 000000000000..321f3c59d732 --- /dev/null +++ b/kernel/slow-work.h | |||
| @@ -0,0 +1,72 @@ | |||
| 1 | /* Slow work private definitions | ||
| 2 | * | ||
| 3 | * Copyright (C) 2009 Red Hat, Inc. All Rights Reserved. | ||
| 4 | * Written by David Howells (dhowells@redhat.com) | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or | ||
| 7 | * modify it under the terms of the GNU General Public Licence | ||
| 8 | * as published by the Free Software Foundation; either version | ||
| 9 | * 2 of the Licence, or (at your option) any later version. | ||
| 10 | */ | ||
| 11 | |||
| 12 | #define SLOW_WORK_CULL_TIMEOUT (5 * HZ) /* cull threads 5s after running out of | ||
| 13 | * things to do */ | ||
| 14 | #define SLOW_WORK_OOM_TIMEOUT (5 * HZ) /* can't start new threads for 5s after | ||
| 15 | * OOM */ | ||
| 16 | |||
| 17 | #define SLOW_WORK_THREAD_LIMIT 255 /* abs maximum number of slow-work threads */ | ||
| 18 | |||
| 19 | /* | ||
| 20 | * slow-work.c | ||
| 21 | */ | ||
| 22 | #ifdef CONFIG_SLOW_WORK_DEBUG | ||
| 23 | extern struct slow_work *slow_work_execs[]; | ||
| 24 | extern pid_t slow_work_pids[]; | ||
| 25 | extern rwlock_t slow_work_execs_lock; | ||
| 26 | #endif | ||
| 27 | |||
| 28 | extern struct list_head slow_work_queue; | ||
| 29 | extern struct list_head vslow_work_queue; | ||
| 30 | extern spinlock_t slow_work_queue_lock; | ||
| 31 | |||
| 32 | /* | ||
| 33 | * slow-work-debugfs.c | ||
| 34 | */ | ||
| 35 | #ifdef CONFIG_SLOW_WORK_DEBUG | ||
| 36 | extern const struct file_operations slow_work_runqueue_fops; | ||
| 37 | |||
| 38 | extern void slow_work_new_thread_desc(struct slow_work *, struct seq_file *); | ||
| 39 | #endif | ||
| 40 | |||
| 41 | /* | ||
| 42 | * Helper functions | ||
| 43 | */ | ||
| 44 | static inline void slow_work_set_thread_pid(int id, pid_t pid) | ||
| 45 | { | ||
| 46 | #ifdef CONFIG_SLOW_WORK_PROC | ||
| 47 | slow_work_pids[id] = pid; | ||
| 48 | #endif | ||
| 49 | } | ||
| 50 | |||
| 51 | static inline void slow_work_mark_time(struct slow_work *work) | ||
| 52 | { | ||
| 53 | #ifdef CONFIG_SLOW_WORK_PROC | ||
| 54 | work->mark = CURRENT_TIME; | ||
| 55 | #endif | ||
| 56 | } | ||
| 57 | |||
| 58 | static inline void slow_work_begin_exec(int id, struct slow_work *work) | ||
| 59 | { | ||
| 60 | #ifdef CONFIG_SLOW_WORK_PROC | ||
| 61 | slow_work_execs[id] = work; | ||
| 62 | #endif | ||
| 63 | } | ||
| 64 | |||
| 65 | static inline void slow_work_end_exec(int id, struct slow_work *work) | ||
| 66 | { | ||
| 67 | #ifdef CONFIG_SLOW_WORK_PROC | ||
| 68 | write_lock(&slow_work_execs_lock); | ||
| 69 | slow_work_execs[id] = NULL; | ||
| 70 | write_unlock(&slow_work_execs_lock); | ||
| 71 | #endif | ||
| 72 | } | ||
diff --git a/kernel/smp.c b/kernel/smp.c index 94188b8ecc33..a8c76069cf50 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
| @@ -29,8 +29,7 @@ enum { | |||
| 29 | 29 | ||
| 30 | struct call_function_data { | 30 | struct call_function_data { |
| 31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
| 32 | spinlock_t lock; | 32 | atomic_t refs; |
| 33 | unsigned int refs; | ||
| 34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
| 35 | }; | 34 | }; |
| 36 | 35 | ||
| @@ -39,9 +38,7 @@ struct call_single_queue { | |||
| 39 | spinlock_t lock; | 38 | spinlock_t lock; |
| 40 | }; | 39 | }; |
| 41 | 40 | ||
| 42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
| 43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
| 44 | }; | ||
| 45 | 42 | ||
| 46 | static int | 43 | static int |
| 47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| @@ -177,6 +174,11 @@ void generic_smp_call_function_interrupt(void) | |||
| 177 | int cpu = get_cpu(); | 174 | int cpu = get_cpu(); |
| 178 | 175 | ||
| 179 | /* | 176 | /* |
| 177 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
| 178 | */ | ||
| 179 | WARN_ON_ONCE(!cpu_online(cpu)); | ||
| 180 | |||
| 181 | /* | ||
| 180 | * Ensure entry is visible on call_function_queue after we have | 182 | * Ensure entry is visible on call_function_queue after we have |
| 181 | * entered the IPI. See comment in smp_call_function_many. | 183 | * entered the IPI. See comment in smp_call_function_many. |
| 182 | * If we don't have this, then we may miss an entry on the list | 184 | * If we don't have this, then we may miss an entry on the list |
| @@ -191,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
| 191 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
| 192 | int refs; | 194 | int refs; |
| 193 | 195 | ||
| 194 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
| 195 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
| 196 | spin_unlock(&data->lock); | ||
| 197 | continue; | 197 | continue; |
| 198 | } | ||
| 199 | cpumask_clear_cpu(cpu, data->cpumask); | ||
| 200 | spin_unlock(&data->lock); | ||
| 201 | 198 | ||
| 202 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
| 203 | 200 | ||
| 204 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
| 205 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
| 206 | refs = --data->refs; | ||
| 207 | if (!refs) { | 203 | if (!refs) { |
| 208 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
| 209 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
| 210 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
| 211 | } | 207 | } |
| 212 | spin_unlock(&data->lock); | ||
| 213 | 208 | ||
| 214 | if (refs) | 209 | if (refs) |
| 215 | continue; | 210 | continue; |
| @@ -230,6 +225,11 @@ void generic_smp_call_function_single_interrupt(void) | |||
| 230 | unsigned int data_flags; | 225 | unsigned int data_flags; |
| 231 | LIST_HEAD(list); | 226 | LIST_HEAD(list); |
| 232 | 227 | ||
| 228 | /* | ||
| 229 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
| 230 | */ | ||
| 231 | WARN_ON_ONCE(!cpu_online(smp_processor_id())); | ||
| 232 | |||
| 233 | spin_lock(&q->lock); | 233 | spin_lock(&q->lock); |
| 234 | list_replace_init(&q->list, &list); | 234 | list_replace_init(&q->list, &list); |
| 235 | spin_unlock(&q->lock); | 235 | spin_unlock(&q->lock); |
| @@ -265,9 +265,7 @@ static DEFINE_PER_CPU(struct call_single_data, csd_data); | |||
| 265 | * @info: An arbitrary pointer to pass to the function. | 265 | * @info: An arbitrary pointer to pass to the function. |
| 266 | * @wait: If true, wait until function has completed on other CPUs. | 266 | * @wait: If true, wait until function has completed on other CPUs. |
| 267 | * | 267 | * |
| 268 | * Returns 0 on success, else a negative status code. Note that @wait | 268 | * Returns 0 on success, else a negative status code. |
| 269 | * will be implicitly turned on in case of allocation failures, since | ||
| 270 | * we fall back to on-stack allocation. | ||
| 271 | */ | 269 | */ |
| 272 | int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | 270 | int smp_call_function_single(int cpu, void (*func) (void *info), void *info, |
| 273 | int wait) | 271 | int wait) |
| @@ -285,8 +283,14 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | |||
| 285 | */ | 283 | */ |
| 286 | this_cpu = get_cpu(); | 284 | this_cpu = get_cpu(); |
| 287 | 285 | ||
| 288 | /* Can deadlock when called with interrupts disabled */ | 286 | /* |
| 289 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 287 | * Can deadlock when called with interrupts disabled. |
| 288 | * We allow cpu's that are not yet online though, as no one else can | ||
| 289 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 290 | * can't happen. | ||
| 291 | */ | ||
| 292 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
| 293 | && !oops_in_progress); | ||
| 290 | 294 | ||
| 291 | if (cpu == this_cpu) { | 295 | if (cpu == this_cpu) { |
| 292 | local_irq_save(flags); | 296 | local_irq_save(flags); |
| @@ -315,6 +319,51 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | |||
| 315 | } | 319 | } |
| 316 | EXPORT_SYMBOL(smp_call_function_single); | 320 | EXPORT_SYMBOL(smp_call_function_single); |
| 317 | 321 | ||
| 322 | /* | ||
| 323 | * smp_call_function_any - Run a function on any of the given cpus | ||
| 324 | * @mask: The mask of cpus it can run on. | ||
| 325 | * @func: The function to run. This must be fast and non-blocking. | ||
| 326 | * @info: An arbitrary pointer to pass to the function. | ||
| 327 | * @wait: If true, wait until function has completed. | ||
| 328 | * | ||
| 329 | * Returns 0 on success, else a negative status code (if no cpus were online). | ||
| 330 | * Note that @wait will be implicitly turned on in case of allocation failures, | ||
| 331 | * since we fall back to on-stack allocation. | ||
| 332 | * | ||
| 333 | * Selection preference: | ||
| 334 | * 1) current cpu if in @mask | ||
| 335 | * 2) any cpu of current node if in @mask | ||
| 336 | * 3) any other online cpu in @mask | ||
| 337 | */ | ||
| 338 | int smp_call_function_any(const struct cpumask *mask, | ||
| 339 | void (*func)(void *info), void *info, int wait) | ||
| 340 | { | ||
| 341 | unsigned int cpu; | ||
| 342 | const struct cpumask *nodemask; | ||
| 343 | int ret; | ||
| 344 | |||
| 345 | /* Try for same CPU (cheapest) */ | ||
| 346 | cpu = get_cpu(); | ||
| 347 | if (cpumask_test_cpu(cpu, mask)) | ||
| 348 | goto call; | ||
| 349 | |||
| 350 | /* Try for same node. */ | ||
| 351 | nodemask = cpumask_of_node(cpu); | ||
| 352 | for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; | ||
| 353 | cpu = cpumask_next_and(cpu, nodemask, mask)) { | ||
| 354 | if (cpu_online(cpu)) | ||
| 355 | goto call; | ||
| 356 | } | ||
| 357 | |||
| 358 | /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ | ||
| 359 | cpu = cpumask_any_and(mask, cpu_online_mask); | ||
| 360 | call: | ||
| 361 | ret = smp_call_function_single(cpu, func, info, wait); | ||
| 362 | put_cpu(); | ||
| 363 | return ret; | ||
| 364 | } | ||
| 365 | EXPORT_SYMBOL_GPL(smp_call_function_any); | ||
| 366 | |||
| 318 | /** | 367 | /** |
| 319 | * __smp_call_function_single(): Run a function on another CPU | 368 | * __smp_call_function_single(): Run a function on another CPU |
| 320 | * @cpu: The CPU to run on. | 369 | * @cpu: The CPU to run on. |
| @@ -329,19 +378,18 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
| 329 | { | 378 | { |
| 330 | csd_lock(data); | 379 | csd_lock(data); |
| 331 | 380 | ||
| 332 | /* Can deadlock when called with interrupts disabled */ | 381 | /* |
| 333 | WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); | 382 | * Can deadlock when called with interrupts disabled. |
| 383 | * We allow cpu's that are not yet online though, as no one else can | ||
| 384 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 385 | * can't happen. | ||
| 386 | */ | ||
| 387 | WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled() | ||
| 388 | && !oops_in_progress); | ||
| 334 | 389 | ||
| 335 | generic_exec_single(cpu, data, wait); | 390 | generic_exec_single(cpu, data, wait); |
| 336 | } | 391 | } |
| 337 | 392 | ||
| 338 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ | ||
| 339 | |||
| 340 | #ifndef arch_send_call_function_ipi_mask | ||
| 341 | # define arch_send_call_function_ipi_mask(maskp) \ | ||
| 342 | arch_send_call_function_ipi(*(maskp)) | ||
| 343 | #endif | ||
| 344 | |||
| 345 | /** | 393 | /** |
| 346 | * smp_call_function_many(): Run a function on a set of other CPUs. | 394 | * smp_call_function_many(): Run a function on a set of other CPUs. |
| 347 | * @mask: The set of cpus to run on (only runs on online subset). | 395 | * @mask: The set of cpus to run on (only runs on online subset). |
| @@ -350,9 +398,7 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
| 350 | * @wait: If true, wait (atomically) until function has completed | 398 | * @wait: If true, wait (atomically) until function has completed |
| 351 | * on other CPUs. | 399 | * on other CPUs. |
| 352 | * | 400 | * |
| 353 | * If @wait is true, then returns once @func has returned. Note that @wait | 401 | * If @wait is true, then returns once @func has returned. |
| 354 | * will be implicitly turned on in case of allocation failures, since | ||
| 355 | * we fall back to on-stack allocation. | ||
| 356 | * | 402 | * |
| 357 | * You must not call this function with disabled interrupts or from a | 403 | * You must not call this function with disabled interrupts or from a |
| 358 | * hardware interrupt handler or from a bottom half handler. Preemption | 404 | * hardware interrupt handler or from a bottom half handler. Preemption |
| @@ -365,8 +411,14 @@ void smp_call_function_many(const struct cpumask *mask, | |||
| 365 | unsigned long flags; | 411 | unsigned long flags; |
| 366 | int cpu, next_cpu, this_cpu = smp_processor_id(); | 412 | int cpu, next_cpu, this_cpu = smp_processor_id(); |
| 367 | 413 | ||
| 368 | /* Can deadlock when called with interrupts disabled */ | 414 | /* |
| 369 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 415 | * Can deadlock when called with interrupts disabled. |
| 416 | * We allow cpu's that are not yet online though, as no one else can | ||
| 417 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 418 | * can't happen. | ||
| 419 | */ | ||
| 420 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
| 421 | && !oops_in_progress); | ||
| 370 | 422 | ||
| 371 | /* So, what's a CPU they want? Ignoring this one. */ | 423 | /* So, what's a CPU they want? Ignoring this one. */ |
| 372 | cpu = cpumask_first_and(mask, cpu_online_mask); | 424 | cpu = cpumask_first_and(mask, cpu_online_mask); |
| @@ -391,23 +443,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
| 391 | data = &__get_cpu_var(cfd_data); | 443 | data = &__get_cpu_var(cfd_data); |
| 392 | csd_lock(&data->csd); | 444 | csd_lock(&data->csd); |
| 393 | 445 | ||
| 394 | spin_lock_irqsave(&data->lock, flags); | ||
| 395 | data->csd.func = func; | 446 | data->csd.func = func; |
| 396 | data->csd.info = info; | 447 | data->csd.info = info; |
| 397 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 448 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
| 398 | cpumask_clear_cpu(this_cpu, data->cpumask); | 449 | cpumask_clear_cpu(this_cpu, data->cpumask); |
| 399 | data->refs = cpumask_weight(data->cpumask); | 450 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
| 400 | 451 | ||
| 401 | spin_lock(&call_function.lock); | 452 | spin_lock_irqsave(&call_function.lock, flags); |
| 402 | /* | 453 | /* |
| 403 | * Place entry at the _HEAD_ of the list, so that any cpu still | 454 | * Place entry at the _HEAD_ of the list, so that any cpu still |
| 404 | * observing the entry in generic_smp_call_function_interrupt() | 455 | * observing the entry in generic_smp_call_function_interrupt() |
| 405 | * will not miss any other list entries: | 456 | * will not miss any other list entries: |
| 406 | */ | 457 | */ |
| 407 | list_add_rcu(&data->csd.list, &call_function.queue); | 458 | list_add_rcu(&data->csd.list, &call_function.queue); |
| 408 | spin_unlock(&call_function.lock); | 459 | spin_unlock_irqrestore(&call_function.lock, flags); |
| 409 | |||
| 410 | spin_unlock_irqrestore(&data->lock, flags); | ||
| 411 | 460 | ||
| 412 | /* | 461 | /* |
| 413 | * Make the list addition visible before sending the ipi. | 462 | * Make the list addition visible before sending the ipi. |
| @@ -435,8 +484,7 @@ EXPORT_SYMBOL(smp_call_function_many); | |||
| 435 | * Returns 0. | 484 | * Returns 0. |
| 436 | * | 485 | * |
| 437 | * If @wait is true, then returns once @func has returned; otherwise | 486 | * If @wait is true, then returns once @func has returned; otherwise |
| 438 | * it returns just before the target cpu calls @func. In case of allocation | 487 | * it returns just before the target cpu calls @func. |
| 439 | * failure, @wait will be implicitly turned on. | ||
| 440 | * | 488 | * |
| 441 | * You must not call this function with disabled interrupts or from a | 489 | * You must not call this function with disabled interrupts or from a |
| 442 | * hardware interrupt handler or from a bottom half handler. | 490 | * hardware interrupt handler or from a bottom half handler. |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 7db25067cd2d..21939d9e830e 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
| @@ -57,7 +57,7 @@ static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp | |||
| 57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); | 57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); |
| 58 | 58 | ||
| 59 | char *softirq_to_name[NR_SOFTIRQS] = { | 59 | char *softirq_to_name[NR_SOFTIRQS] = { |
| 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", | 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", |
| 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" | 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" |
| 62 | }; | 62 | }; |
| 63 | 63 | ||
| @@ -302,9 +302,9 @@ void irq_exit(void) | |||
| 302 | if (!in_interrupt() && local_softirq_pending()) | 302 | if (!in_interrupt() && local_softirq_pending()) |
| 303 | invoke_softirq(); | 303 | invoke_softirq(); |
| 304 | 304 | ||
| 305 | rcu_irq_exit(); | ||
| 305 | #ifdef CONFIG_NO_HZ | 306 | #ifdef CONFIG_NO_HZ |
| 306 | /* Make sure that timer wheel updates are propagated */ | 307 | /* Make sure that timer wheel updates are propagated */ |
| 307 | rcu_irq_exit(); | ||
| 308 | if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched()) | 308 | if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched()) |
| 309 | tick_nohz_stop_sched_tick(0); | 309 | tick_nohz_stop_sched_tick(0); |
| 310 | #endif | 310 | #endif |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 88796c330838..81324d12eb35 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
| @@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void) | |||
| 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); | 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); |
| 91 | 91 | ||
| 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, | 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, |
| 93 | struct file *filp, void __user *buffer, | 93 | void __user *buffer, |
| 94 | size_t *lenp, loff_t *ppos) | 94 | size_t *lenp, loff_t *ppos) |
| 95 | { | 95 | { |
| 96 | touch_all_softlockup_watchdogs(); | 96 | touch_all_softlockup_watchdogs(); |
| 97 | return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 97 | return proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 98 | } | 98 | } |
| 99 | 99 | ||
| 100 | /* | 100 | /* |
diff --git a/kernel/spinlock.c b/kernel/spinlock.c index 5ddab730cb2f..41e042219ff6 100644 --- a/kernel/spinlock.c +++ b/kernel/spinlock.c | |||
| @@ -21,145 +21,28 @@ | |||
| 21 | #include <linux/debug_locks.h> | 21 | #include <linux/debug_locks.h> |
| 22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
| 23 | 23 | ||
| 24 | #ifndef _spin_trylock | ||
| 25 | int __lockfunc _spin_trylock(spinlock_t *lock) | ||
| 26 | { | ||
| 27 | return __spin_trylock(lock); | ||
| 28 | } | ||
| 29 | EXPORT_SYMBOL(_spin_trylock); | ||
| 30 | #endif | ||
| 31 | |||
| 32 | #ifndef _read_trylock | ||
| 33 | int __lockfunc _read_trylock(rwlock_t *lock) | ||
| 34 | { | ||
| 35 | return __read_trylock(lock); | ||
| 36 | } | ||
| 37 | EXPORT_SYMBOL(_read_trylock); | ||
| 38 | #endif | ||
| 39 | |||
| 40 | #ifndef _write_trylock | ||
| 41 | int __lockfunc _write_trylock(rwlock_t *lock) | ||
| 42 | { | ||
| 43 | return __write_trylock(lock); | ||
| 44 | } | ||
| 45 | EXPORT_SYMBOL(_write_trylock); | ||
| 46 | #endif | ||
| 47 | |||
| 48 | /* | 24 | /* |
| 49 | * If lockdep is enabled then we use the non-preemption spin-ops | 25 | * If lockdep is enabled then we use the non-preemption spin-ops |
| 50 | * even on CONFIG_PREEMPT, because lockdep assumes that interrupts are | 26 | * even on CONFIG_PREEMPT, because lockdep assumes that interrupts are |
| 51 | * not re-enabled during lock-acquire (which the preempt-spin-ops do): | 27 | * not re-enabled during lock-acquire (which the preempt-spin-ops do): |
| 52 | */ | 28 | */ |
| 53 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) | 29 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) |
| 54 | |||
| 55 | #ifndef _read_lock | ||
| 56 | void __lockfunc _read_lock(rwlock_t *lock) | ||
| 57 | { | ||
| 58 | __read_lock(lock); | ||
| 59 | } | ||
| 60 | EXPORT_SYMBOL(_read_lock); | ||
| 61 | #endif | ||
| 62 | |||
| 63 | #ifndef _spin_lock_irqsave | ||
| 64 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) | ||
| 65 | { | ||
| 66 | return __spin_lock_irqsave(lock); | ||
| 67 | } | ||
| 68 | EXPORT_SYMBOL(_spin_lock_irqsave); | ||
| 69 | #endif | ||
| 70 | |||
| 71 | #ifndef _spin_lock_irq | ||
| 72 | void __lockfunc _spin_lock_irq(spinlock_t *lock) | ||
| 73 | { | ||
| 74 | __spin_lock_irq(lock); | ||
| 75 | } | ||
| 76 | EXPORT_SYMBOL(_spin_lock_irq); | ||
| 77 | #endif | ||
| 78 | |||
| 79 | #ifndef _spin_lock_bh | ||
| 80 | void __lockfunc _spin_lock_bh(spinlock_t *lock) | ||
| 81 | { | ||
| 82 | __spin_lock_bh(lock); | ||
| 83 | } | ||
| 84 | EXPORT_SYMBOL(_spin_lock_bh); | ||
| 85 | #endif | ||
| 86 | |||
| 87 | #ifndef _read_lock_irqsave | ||
| 88 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) | ||
| 89 | { | ||
| 90 | return __read_lock_irqsave(lock); | ||
| 91 | } | ||
| 92 | EXPORT_SYMBOL(_read_lock_irqsave); | ||
| 93 | #endif | ||
| 94 | |||
| 95 | #ifndef _read_lock_irq | ||
| 96 | void __lockfunc _read_lock_irq(rwlock_t *lock) | ||
| 97 | { | ||
| 98 | __read_lock_irq(lock); | ||
| 99 | } | ||
| 100 | EXPORT_SYMBOL(_read_lock_irq); | ||
| 101 | #endif | ||
| 102 | |||
| 103 | #ifndef _read_lock_bh | ||
| 104 | void __lockfunc _read_lock_bh(rwlock_t *lock) | ||
| 105 | { | ||
| 106 | __read_lock_bh(lock); | ||
| 107 | } | ||
| 108 | EXPORT_SYMBOL(_read_lock_bh); | ||
| 109 | #endif | ||
| 110 | |||
| 111 | #ifndef _write_lock_irqsave | ||
| 112 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) | ||
| 113 | { | ||
| 114 | return __write_lock_irqsave(lock); | ||
| 115 | } | ||
| 116 | EXPORT_SYMBOL(_write_lock_irqsave); | ||
| 117 | #endif | ||
| 118 | |||
| 119 | #ifndef _write_lock_irq | ||
| 120 | void __lockfunc _write_lock_irq(rwlock_t *lock) | ||
| 121 | { | ||
| 122 | __write_lock_irq(lock); | ||
| 123 | } | ||
| 124 | EXPORT_SYMBOL(_write_lock_irq); | ||
| 125 | #endif | ||
| 126 | |||
| 127 | #ifndef _write_lock_bh | ||
| 128 | void __lockfunc _write_lock_bh(rwlock_t *lock) | ||
| 129 | { | ||
| 130 | __write_lock_bh(lock); | ||
| 131 | } | ||
| 132 | EXPORT_SYMBOL(_write_lock_bh); | ||
| 133 | #endif | ||
| 134 | |||
| 135 | #ifndef _spin_lock | ||
| 136 | void __lockfunc _spin_lock(spinlock_t *lock) | ||
| 137 | { | ||
| 138 | __spin_lock(lock); | ||
| 139 | } | ||
| 140 | EXPORT_SYMBOL(_spin_lock); | ||
| 141 | #endif | ||
| 142 | |||
| 143 | #ifndef _write_lock | ||
| 144 | void __lockfunc _write_lock(rwlock_t *lock) | ||
| 145 | { | ||
| 146 | __write_lock(lock); | ||
| 147 | } | ||
| 148 | EXPORT_SYMBOL(_write_lock); | ||
| 149 | #endif | ||
| 150 | |||
| 151 | #else /* CONFIG_PREEMPT: */ | ||
| 152 | |||
| 153 | /* | 30 | /* |
| 31 | * The __lock_function inlines are taken from | ||
| 32 | * include/linux/spinlock_api_smp.h | ||
| 33 | */ | ||
| 34 | #else | ||
| 35 | /* | ||
| 36 | * We build the __lock_function inlines here. They are too large for | ||
| 37 | * inlining all over the place, but here is only one user per function | ||
| 38 | * which embedds them into the calling _lock_function below. | ||
| 39 | * | ||
| 154 | * This could be a long-held lock. We both prepare to spin for a long | 40 | * This could be a long-held lock. We both prepare to spin for a long |
| 155 | * time (making _this_ CPU preemptable if possible), and we also signal | 41 | * time (making _this_ CPU preemptable if possible), and we also signal |
| 156 | * towards that other CPU that it should break the lock ASAP. | 42 | * towards that other CPU that it should break the lock ASAP. |
| 157 | * | ||
| 158 | * (We do this in a function because inlining it would be excessive.) | ||
| 159 | */ | 43 | */ |
| 160 | |||
| 161 | #define BUILD_LOCK_OPS(op, locktype) \ | 44 | #define BUILD_LOCK_OPS(op, locktype) \ |
| 162 | void __lockfunc _##op##_lock(locktype##_t *lock) \ | 45 | void __lockfunc __##op##_lock(locktype##_t *lock) \ |
| 163 | { \ | 46 | { \ |
| 164 | for (;;) { \ | 47 | for (;;) { \ |
| 165 | preempt_disable(); \ | 48 | preempt_disable(); \ |
| @@ -175,9 +58,7 @@ void __lockfunc _##op##_lock(locktype##_t *lock) \ | |||
| 175 | (lock)->break_lock = 0; \ | 58 | (lock)->break_lock = 0; \ |
| 176 | } \ | 59 | } \ |
| 177 | \ | 60 | \ |
| 178 | EXPORT_SYMBOL(_##op##_lock); \ | 61 | unsigned long __lockfunc __##op##_lock_irqsave(locktype##_t *lock) \ |
| 179 | \ | ||
| 180 | unsigned long __lockfunc _##op##_lock_irqsave(locktype##_t *lock) \ | ||
| 181 | { \ | 62 | { \ |
| 182 | unsigned long flags; \ | 63 | unsigned long flags; \ |
| 183 | \ | 64 | \ |
| @@ -198,16 +79,12 @@ unsigned long __lockfunc _##op##_lock_irqsave(locktype##_t *lock) \ | |||
| 198 | return flags; \ | 79 | return flags; \ |
| 199 | } \ | 80 | } \ |
| 200 | \ | 81 | \ |
| 201 | EXPORT_SYMBOL(_##op##_lock_irqsave); \ | 82 | void __lockfunc __##op##_lock_irq(locktype##_t *lock) \ |
| 202 | \ | ||
| 203 | void __lockfunc _##op##_lock_irq(locktype##_t *lock) \ | ||
| 204 | { \ | 83 | { \ |
| 205 | _##op##_lock_irqsave(lock); \ | 84 | _##op##_lock_irqsave(lock); \ |
| 206 | } \ | 85 | } \ |
| 207 | \ | 86 | \ |
| 208 | EXPORT_SYMBOL(_##op##_lock_irq); \ | 87 | void __lockfunc __##op##_lock_bh(locktype##_t *lock) \ |
| 209 | \ | ||
| 210 | void __lockfunc _##op##_lock_bh(locktype##_t *lock) \ | ||
| 211 | { \ | 88 | { \ |
| 212 | unsigned long flags; \ | 89 | unsigned long flags; \ |
| 213 | \ | 90 | \ |
| @@ -220,23 +97,21 @@ void __lockfunc _##op##_lock_bh(locktype##_t *lock) \ | |||
| 220 | local_bh_disable(); \ | 97 | local_bh_disable(); \ |
| 221 | local_irq_restore(flags); \ | 98 | local_irq_restore(flags); \ |
| 222 | } \ | 99 | } \ |
| 223 | \ | ||
| 224 | EXPORT_SYMBOL(_##op##_lock_bh) | ||
| 225 | 100 | ||
| 226 | /* | 101 | /* |
| 227 | * Build preemption-friendly versions of the following | 102 | * Build preemption-friendly versions of the following |
| 228 | * lock-spinning functions: | 103 | * lock-spinning functions: |
| 229 | * | 104 | * |
| 230 | * _[spin|read|write]_lock() | 105 | * __[spin|read|write]_lock() |
| 231 | * _[spin|read|write]_lock_irq() | 106 | * __[spin|read|write]_lock_irq() |
| 232 | * _[spin|read|write]_lock_irqsave() | 107 | * __[spin|read|write]_lock_irqsave() |
| 233 | * _[spin|read|write]_lock_bh() | 108 | * __[spin|read|write]_lock_bh() |
| 234 | */ | 109 | */ |
| 235 | BUILD_LOCK_OPS(spin, spinlock); | 110 | BUILD_LOCK_OPS(spin, spinlock); |
| 236 | BUILD_LOCK_OPS(read, rwlock); | 111 | BUILD_LOCK_OPS(read, rwlock); |
| 237 | BUILD_LOCK_OPS(write, rwlock); | 112 | BUILD_LOCK_OPS(write, rwlock); |
| 238 | 113 | ||
| 239 | #endif /* CONFIG_PREEMPT */ | 114 | #endif |
| 240 | 115 | ||
| 241 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 116 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 242 | 117 | ||
| @@ -248,7 +123,8 @@ void __lockfunc _spin_lock_nested(spinlock_t *lock, int subclass) | |||
| 248 | } | 123 | } |
| 249 | EXPORT_SYMBOL(_spin_lock_nested); | 124 | EXPORT_SYMBOL(_spin_lock_nested); |
| 250 | 125 | ||
| 251 | unsigned long __lockfunc _spin_lock_irqsave_nested(spinlock_t *lock, int subclass) | 126 | unsigned long __lockfunc _spin_lock_irqsave_nested(spinlock_t *lock, |
| 127 | int subclass) | ||
| 252 | { | 128 | { |
| 253 | unsigned long flags; | 129 | unsigned long flags; |
| 254 | 130 | ||
| @@ -272,7 +148,127 @@ EXPORT_SYMBOL(_spin_lock_nest_lock); | |||
| 272 | 148 | ||
| 273 | #endif | 149 | #endif |
| 274 | 150 | ||
| 275 | #ifndef _spin_unlock | 151 | #ifndef CONFIG_INLINE_SPIN_TRYLOCK |
| 152 | int __lockfunc _spin_trylock(spinlock_t *lock) | ||
| 153 | { | ||
| 154 | return __spin_trylock(lock); | ||
| 155 | } | ||
| 156 | EXPORT_SYMBOL(_spin_trylock); | ||
| 157 | #endif | ||
| 158 | |||
| 159 | #ifndef CONFIG_INLINE_READ_TRYLOCK | ||
| 160 | int __lockfunc _read_trylock(rwlock_t *lock) | ||
| 161 | { | ||
| 162 | return __read_trylock(lock); | ||
| 163 | } | ||
| 164 | EXPORT_SYMBOL(_read_trylock); | ||
| 165 | #endif | ||
| 166 | |||
| 167 | #ifndef CONFIG_INLINE_WRITE_TRYLOCK | ||
| 168 | int __lockfunc _write_trylock(rwlock_t *lock) | ||
| 169 | { | ||
| 170 | return __write_trylock(lock); | ||
| 171 | } | ||
| 172 | EXPORT_SYMBOL(_write_trylock); | ||
| 173 | #endif | ||
| 174 | |||
| 175 | #ifndef CONFIG_INLINE_READ_LOCK | ||
| 176 | void __lockfunc _read_lock(rwlock_t *lock) | ||
| 177 | { | ||
| 178 | __read_lock(lock); | ||
| 179 | } | ||
| 180 | EXPORT_SYMBOL(_read_lock); | ||
| 181 | #endif | ||
| 182 | |||
| 183 | #ifndef CONFIG_INLINE_SPIN_LOCK_IRQSAVE | ||
| 184 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) | ||
| 185 | { | ||
| 186 | return __spin_lock_irqsave(lock); | ||
| 187 | } | ||
| 188 | EXPORT_SYMBOL(_spin_lock_irqsave); | ||
| 189 | #endif | ||
| 190 | |||
| 191 | #ifndef CONFIG_INLINE_SPIN_LOCK_IRQ | ||
| 192 | void __lockfunc _spin_lock_irq(spinlock_t *lock) | ||
| 193 | { | ||
| 194 | __spin_lock_irq(lock); | ||
| 195 | } | ||
| 196 | EXPORT_SYMBOL(_spin_lock_irq); | ||
| 197 | #endif | ||
| 198 | |||
| 199 | #ifndef CONFIG_INLINE_SPIN_LOCK_BH | ||
| 200 | void __lockfunc _spin_lock_bh(spinlock_t *lock) | ||
| 201 | { | ||
| 202 | __spin_lock_bh(lock); | ||
| 203 | } | ||
| 204 | EXPORT_SYMBOL(_spin_lock_bh); | ||
| 205 | #endif | ||
| 206 | |||
| 207 | #ifndef CONFIG_INLINE_READ_LOCK_IRQSAVE | ||
| 208 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) | ||
| 209 | { | ||
| 210 | return __read_lock_irqsave(lock); | ||
| 211 | } | ||
| 212 | EXPORT_SYMBOL(_read_lock_irqsave); | ||
| 213 | #endif | ||
| 214 | |||
| 215 | #ifndef CONFIG_INLINE_READ_LOCK_IRQ | ||
| 216 | void __lockfunc _read_lock_irq(rwlock_t *lock) | ||
| 217 | { | ||
| 218 | __read_lock_irq(lock); | ||
| 219 | } | ||
| 220 | EXPORT_SYMBOL(_read_lock_irq); | ||
| 221 | #endif | ||
| 222 | |||
| 223 | #ifndef CONFIG_INLINE_READ_LOCK_BH | ||
| 224 | void __lockfunc _read_lock_bh(rwlock_t *lock) | ||
| 225 | { | ||
| 226 | __read_lock_bh(lock); | ||
| 227 | } | ||
| 228 | EXPORT_SYMBOL(_read_lock_bh); | ||
| 229 | #endif | ||
| 230 | |||
| 231 | #ifndef CONFIG_INLINE_WRITE_LOCK_IRQSAVE | ||
| 232 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) | ||
| 233 | { | ||
| 234 | return __write_lock_irqsave(lock); | ||
| 235 | } | ||
| 236 | EXPORT_SYMBOL(_write_lock_irqsave); | ||
| 237 | #endif | ||
| 238 | |||
| 239 | #ifndef CONFIG_INLINE_WRITE_LOCK_IRQ | ||
| 240 | void __lockfunc _write_lock_irq(rwlock_t *lock) | ||
| 241 | { | ||
| 242 | __write_lock_irq(lock); | ||
| 243 | } | ||
| 244 | EXPORT_SYMBOL(_write_lock_irq); | ||
| 245 | #endif | ||
| 246 | |||
| 247 | #ifndef CONFIG_INLINE_WRITE_LOCK_BH | ||
| 248 | void __lockfunc _write_lock_bh(rwlock_t *lock) | ||
| 249 | { | ||
| 250 | __write_lock_bh(lock); | ||
| 251 | } | ||
| 252 | EXPORT_SYMBOL(_write_lock_bh); | ||
| 253 | #endif | ||
| 254 | |||
| 255 | #ifndef CONFIG_INLINE_SPIN_LOCK | ||
| 256 | void __lockfunc _spin_lock(spinlock_t *lock) | ||
| 257 | { | ||
| 258 | __spin_lock(lock); | ||
| 259 | } | ||
| 260 | EXPORT_SYMBOL(_spin_lock); | ||
| 261 | #endif | ||
| 262 | |||
| 263 | #ifndef CONFIG_INLINE_WRITE_LOCK | ||
| 264 | void __lockfunc _write_lock(rwlock_t *lock) | ||
| 265 | { | ||
| 266 | __write_lock(lock); | ||
| 267 | } | ||
| 268 | EXPORT_SYMBOL(_write_lock); | ||
| 269 | #endif | ||
| 270 | |||
| 271 | #ifndef CONFIG_INLINE_SPIN_UNLOCK | ||
| 276 | void __lockfunc _spin_unlock(spinlock_t *lock) | 272 | void __lockfunc _spin_unlock(spinlock_t *lock) |
| 277 | { | 273 | { |
| 278 | __spin_unlock(lock); | 274 | __spin_unlock(lock); |
| @@ -280,7 +276,7 @@ void __lockfunc _spin_unlock(spinlock_t *lock) | |||
| 280 | EXPORT_SYMBOL(_spin_unlock); | 276 | EXPORT_SYMBOL(_spin_unlock); |
| 281 | #endif | 277 | #endif |
| 282 | 278 | ||
| 283 | #ifndef _write_unlock | 279 | #ifndef CONFIG_INLINE_WRITE_UNLOCK |
| 284 | void __lockfunc _write_unlock(rwlock_t *lock) | 280 | void __lockfunc _write_unlock(rwlock_t *lock) |
| 285 | { | 281 | { |
| 286 | __write_unlock(lock); | 282 | __write_unlock(lock); |
| @@ -288,7 +284,7 @@ void __lockfunc _write_unlock(rwlock_t *lock) | |||
| 288 | EXPORT_SYMBOL(_write_unlock); | 284 | EXPORT_SYMBOL(_write_unlock); |
| 289 | #endif | 285 | #endif |
| 290 | 286 | ||
| 291 | #ifndef _read_unlock | 287 | #ifndef CONFIG_INLINE_READ_UNLOCK |
| 292 | void __lockfunc _read_unlock(rwlock_t *lock) | 288 | void __lockfunc _read_unlock(rwlock_t *lock) |
| 293 | { | 289 | { |
| 294 | __read_unlock(lock); | 290 | __read_unlock(lock); |
| @@ -296,7 +292,7 @@ void __lockfunc _read_unlock(rwlock_t *lock) | |||
| 296 | EXPORT_SYMBOL(_read_unlock); | 292 | EXPORT_SYMBOL(_read_unlock); |
| 297 | #endif | 293 | #endif |
| 298 | 294 | ||
| 299 | #ifndef _spin_unlock_irqrestore | 295 | #ifndef CONFIG_INLINE_SPIN_UNLOCK_IRQRESTORE |
| 300 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) | 296 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) |
| 301 | { | 297 | { |
| 302 | __spin_unlock_irqrestore(lock, flags); | 298 | __spin_unlock_irqrestore(lock, flags); |
| @@ -304,7 +300,7 @@ void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) | |||
| 304 | EXPORT_SYMBOL(_spin_unlock_irqrestore); | 300 | EXPORT_SYMBOL(_spin_unlock_irqrestore); |
| 305 | #endif | 301 | #endif |
| 306 | 302 | ||
| 307 | #ifndef _spin_unlock_irq | 303 | #ifndef CONFIG_INLINE_SPIN_UNLOCK_IRQ |
| 308 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) | 304 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) |
| 309 | { | 305 | { |
| 310 | __spin_unlock_irq(lock); | 306 | __spin_unlock_irq(lock); |
| @@ -312,7 +308,7 @@ void __lockfunc _spin_unlock_irq(spinlock_t *lock) | |||
| 312 | EXPORT_SYMBOL(_spin_unlock_irq); | 308 | EXPORT_SYMBOL(_spin_unlock_irq); |
| 313 | #endif | 309 | #endif |
| 314 | 310 | ||
| 315 | #ifndef _spin_unlock_bh | 311 | #ifndef CONFIG_INLINE_SPIN_UNLOCK_BH |
| 316 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) | 312 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) |
| 317 | { | 313 | { |
| 318 | __spin_unlock_bh(lock); | 314 | __spin_unlock_bh(lock); |
| @@ -320,7 +316,7 @@ void __lockfunc _spin_unlock_bh(spinlock_t *lock) | |||
| 320 | EXPORT_SYMBOL(_spin_unlock_bh); | 316 | EXPORT_SYMBOL(_spin_unlock_bh); |
| 321 | #endif | 317 | #endif |
| 322 | 318 | ||
| 323 | #ifndef _read_unlock_irqrestore | 319 | #ifndef CONFIG_INLINE_READ_UNLOCK_IRQRESTORE |
| 324 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 320 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
| 325 | { | 321 | { |
| 326 | __read_unlock_irqrestore(lock, flags); | 322 | __read_unlock_irqrestore(lock, flags); |
| @@ -328,7 +324,7 @@ void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | |||
| 328 | EXPORT_SYMBOL(_read_unlock_irqrestore); | 324 | EXPORT_SYMBOL(_read_unlock_irqrestore); |
| 329 | #endif | 325 | #endif |
| 330 | 326 | ||
| 331 | #ifndef _read_unlock_irq | 327 | #ifndef CONFIG_INLINE_READ_UNLOCK_IRQ |
| 332 | void __lockfunc _read_unlock_irq(rwlock_t *lock) | 328 | void __lockfunc _read_unlock_irq(rwlock_t *lock) |
| 333 | { | 329 | { |
| 334 | __read_unlock_irq(lock); | 330 | __read_unlock_irq(lock); |
| @@ -336,7 +332,7 @@ void __lockfunc _read_unlock_irq(rwlock_t *lock) | |||
| 336 | EXPORT_SYMBOL(_read_unlock_irq); | 332 | EXPORT_SYMBOL(_read_unlock_irq); |
| 337 | #endif | 333 | #endif |
| 338 | 334 | ||
| 339 | #ifndef _read_unlock_bh | 335 | #ifndef CONFIG_INLINE_READ_UNLOCK_BH |
| 340 | void __lockfunc _read_unlock_bh(rwlock_t *lock) | 336 | void __lockfunc _read_unlock_bh(rwlock_t *lock) |
| 341 | { | 337 | { |
| 342 | __read_unlock_bh(lock); | 338 | __read_unlock_bh(lock); |
| @@ -344,7 +340,7 @@ void __lockfunc _read_unlock_bh(rwlock_t *lock) | |||
| 344 | EXPORT_SYMBOL(_read_unlock_bh); | 340 | EXPORT_SYMBOL(_read_unlock_bh); |
| 345 | #endif | 341 | #endif |
| 346 | 342 | ||
| 347 | #ifndef _write_unlock_irqrestore | 343 | #ifndef CONFIG_INLINE_WRITE_UNLOCK_IRQRESTORE |
| 348 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 344 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
| 349 | { | 345 | { |
| 350 | __write_unlock_irqrestore(lock, flags); | 346 | __write_unlock_irqrestore(lock, flags); |
| @@ -352,7 +348,7 @@ void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | |||
| 352 | EXPORT_SYMBOL(_write_unlock_irqrestore); | 348 | EXPORT_SYMBOL(_write_unlock_irqrestore); |
| 353 | #endif | 349 | #endif |
| 354 | 350 | ||
| 355 | #ifndef _write_unlock_irq | 351 | #ifndef CONFIG_INLINE_WRITE_UNLOCK_IRQ |
| 356 | void __lockfunc _write_unlock_irq(rwlock_t *lock) | 352 | void __lockfunc _write_unlock_irq(rwlock_t *lock) |
| 357 | { | 353 | { |
| 358 | __write_unlock_irq(lock); | 354 | __write_unlock_irq(lock); |
| @@ -360,7 +356,7 @@ void __lockfunc _write_unlock_irq(rwlock_t *lock) | |||
| 360 | EXPORT_SYMBOL(_write_unlock_irq); | 356 | EXPORT_SYMBOL(_write_unlock_irq); |
| 361 | #endif | 357 | #endif |
| 362 | 358 | ||
| 363 | #ifndef _write_unlock_bh | 359 | #ifndef CONFIG_INLINE_WRITE_UNLOCK_BH |
| 364 | void __lockfunc _write_unlock_bh(rwlock_t *lock) | 360 | void __lockfunc _write_unlock_bh(rwlock_t *lock) |
| 365 | { | 361 | { |
| 366 | __write_unlock_bh(lock); | 362 | __write_unlock_bh(lock); |
| @@ -368,7 +364,7 @@ void __lockfunc _write_unlock_bh(rwlock_t *lock) | |||
| 368 | EXPORT_SYMBOL(_write_unlock_bh); | 364 | EXPORT_SYMBOL(_write_unlock_bh); |
| 369 | #endif | 365 | #endif |
| 370 | 366 | ||
| 371 | #ifndef _spin_trylock_bh | 367 | #ifndef CONFIG_INLINE_SPIN_TRYLOCK_BH |
| 372 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) | 368 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) |
| 373 | { | 369 | { |
| 374 | return __spin_trylock_bh(lock); | 370 | return __spin_trylock_bh(lock); |
diff --git a/kernel/srcu.c b/kernel/srcu.c index b0aeeaf22ce4..818d7d9aa03c 100644 --- a/kernel/srcu.c +++ b/kernel/srcu.c | |||
| @@ -49,6 +49,7 @@ int init_srcu_struct(struct srcu_struct *sp) | |||
| 49 | sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); | 49 | sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); |
| 50 | return (sp->per_cpu_ref ? 0 : -ENOMEM); | 50 | return (sp->per_cpu_ref ? 0 : -ENOMEM); |
| 51 | } | 51 | } |
| 52 | EXPORT_SYMBOL_GPL(init_srcu_struct); | ||
| 52 | 53 | ||
| 53 | /* | 54 | /* |
| 54 | * srcu_readers_active_idx -- returns approximate number of readers | 55 | * srcu_readers_active_idx -- returns approximate number of readers |
| @@ -97,6 +98,7 @@ void cleanup_srcu_struct(struct srcu_struct *sp) | |||
| 97 | free_percpu(sp->per_cpu_ref); | 98 | free_percpu(sp->per_cpu_ref); |
| 98 | sp->per_cpu_ref = NULL; | 99 | sp->per_cpu_ref = NULL; |
| 99 | } | 100 | } |
| 101 | EXPORT_SYMBOL_GPL(cleanup_srcu_struct); | ||
| 100 | 102 | ||
| 101 | /** | 103 | /** |
| 102 | * srcu_read_lock - register a new reader for an SRCU-protected structure. | 104 | * srcu_read_lock - register a new reader for an SRCU-protected structure. |
| @@ -118,6 +120,7 @@ int srcu_read_lock(struct srcu_struct *sp) | |||
| 118 | preempt_enable(); | 120 | preempt_enable(); |
| 119 | return idx; | 121 | return idx; |
| 120 | } | 122 | } |
| 123 | EXPORT_SYMBOL_GPL(srcu_read_lock); | ||
| 121 | 124 | ||
| 122 | /** | 125 | /** |
| 123 | * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. | 126 | * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. |
| @@ -136,22 +139,12 @@ void srcu_read_unlock(struct srcu_struct *sp, int idx) | |||
| 136 | per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; | 139 | per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; |
| 137 | preempt_enable(); | 140 | preempt_enable(); |
| 138 | } | 141 | } |
| 142 | EXPORT_SYMBOL_GPL(srcu_read_unlock); | ||
| 139 | 143 | ||
| 140 | /** | 144 | /* |
| 141 | * synchronize_srcu - wait for prior SRCU read-side critical-section completion | 145 | * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). |
| 142 | * @sp: srcu_struct with which to synchronize. | ||
| 143 | * | ||
| 144 | * Flip the completed counter, and wait for the old count to drain to zero. | ||
| 145 | * As with classic RCU, the updater must use some separate means of | ||
| 146 | * synchronizing concurrent updates. Can block; must be called from | ||
| 147 | * process context. | ||
| 148 | * | ||
| 149 | * Note that it is illegal to call synchornize_srcu() from the corresponding | ||
| 150 | * SRCU read-side critical section; doing so will result in deadlock. | ||
| 151 | * However, it is perfectly legal to call synchronize_srcu() on one | ||
| 152 | * srcu_struct from some other srcu_struct's read-side critical section. | ||
| 153 | */ | 146 | */ |
| 154 | void synchronize_srcu(struct srcu_struct *sp) | 147 | void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) |
| 155 | { | 148 | { |
| 156 | int idx; | 149 | int idx; |
| 157 | 150 | ||
| @@ -173,7 +166,7 @@ void synchronize_srcu(struct srcu_struct *sp) | |||
| 173 | return; | 166 | return; |
| 174 | } | 167 | } |
| 175 | 168 | ||
| 176 | synchronize_sched(); /* Force memory barrier on all CPUs. */ | 169 | sync_func(); /* Force memory barrier on all CPUs. */ |
| 177 | 170 | ||
| 178 | /* | 171 | /* |
| 179 | * The preceding synchronize_sched() ensures that any CPU that | 172 | * The preceding synchronize_sched() ensures that any CPU that |
| @@ -190,7 +183,7 @@ void synchronize_srcu(struct srcu_struct *sp) | |||
| 190 | idx = sp->completed & 0x1; | 183 | idx = sp->completed & 0x1; |
| 191 | sp->completed++; | 184 | sp->completed++; |
| 192 | 185 | ||
| 193 | synchronize_sched(); /* Force memory barrier on all CPUs. */ | 186 | sync_func(); /* Force memory barrier on all CPUs. */ |
| 194 | 187 | ||
| 195 | /* | 188 | /* |
| 196 | * At this point, because of the preceding synchronize_sched(), | 189 | * At this point, because of the preceding synchronize_sched(), |
| @@ -203,7 +196,7 @@ void synchronize_srcu(struct srcu_struct *sp) | |||
| 203 | while (srcu_readers_active_idx(sp, idx)) | 196 | while (srcu_readers_active_idx(sp, idx)) |
| 204 | schedule_timeout_interruptible(1); | 197 | schedule_timeout_interruptible(1); |
| 205 | 198 | ||
| 206 | synchronize_sched(); /* Force memory barrier on all CPUs. */ | 199 | sync_func(); /* Force memory barrier on all CPUs. */ |
| 207 | 200 | ||
| 208 | /* | 201 | /* |
| 209 | * The preceding synchronize_sched() forces all srcu_read_unlock() | 202 | * The preceding synchronize_sched() forces all srcu_read_unlock() |
| @@ -237,6 +230,47 @@ void synchronize_srcu(struct srcu_struct *sp) | |||
| 237 | } | 230 | } |
| 238 | 231 | ||
| 239 | /** | 232 | /** |
| 233 | * synchronize_srcu - wait for prior SRCU read-side critical-section completion | ||
| 234 | * @sp: srcu_struct with which to synchronize. | ||
| 235 | * | ||
| 236 | * Flip the completed counter, and wait for the old count to drain to zero. | ||
| 237 | * As with classic RCU, the updater must use some separate means of | ||
| 238 | * synchronizing concurrent updates. Can block; must be called from | ||
| 239 | * process context. | ||
| 240 | * | ||
| 241 | * Note that it is illegal to call synchronize_srcu() from the corresponding | ||
| 242 | * SRCU read-side critical section; doing so will result in deadlock. | ||
| 243 | * However, it is perfectly legal to call synchronize_srcu() on one | ||
| 244 | * srcu_struct from some other srcu_struct's read-side critical section. | ||
| 245 | */ | ||
| 246 | void synchronize_srcu(struct srcu_struct *sp) | ||
| 247 | { | ||
| 248 | __synchronize_srcu(sp, synchronize_sched); | ||
| 249 | } | ||
| 250 | EXPORT_SYMBOL_GPL(synchronize_srcu); | ||
| 251 | |||
| 252 | /** | ||
| 253 | * synchronize_srcu_expedited - like synchronize_srcu, but less patient | ||
| 254 | * @sp: srcu_struct with which to synchronize. | ||
| 255 | * | ||
| 256 | * Flip the completed counter, and wait for the old count to drain to zero. | ||
| 257 | * As with classic RCU, the updater must use some separate means of | ||
| 258 | * synchronizing concurrent updates. Can block; must be called from | ||
| 259 | * process context. | ||
| 260 | * | ||
| 261 | * Note that it is illegal to call synchronize_srcu_expedited() | ||
| 262 | * from the corresponding SRCU read-side critical section; doing so | ||
| 263 | * will result in deadlock. However, it is perfectly legal to call | ||
| 264 | * synchronize_srcu_expedited() on one srcu_struct from some other | ||
| 265 | * srcu_struct's read-side critical section. | ||
| 266 | */ | ||
| 267 | void synchronize_srcu_expedited(struct srcu_struct *sp) | ||
| 268 | { | ||
| 269 | __synchronize_srcu(sp, synchronize_sched_expedited); | ||
| 270 | } | ||
| 271 | EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); | ||
| 272 | |||
| 273 | /** | ||
| 240 | * srcu_batches_completed - return batches completed. | 274 | * srcu_batches_completed - return batches completed. |
| 241 | * @sp: srcu_struct on which to report batch completion. | 275 | * @sp: srcu_struct on which to report batch completion. |
| 242 | * | 276 | * |
| @@ -248,10 +282,4 @@ long srcu_batches_completed(struct srcu_struct *sp) | |||
| 248 | { | 282 | { |
| 249 | return sp->completed; | 283 | return sp->completed; |
| 250 | } | 284 | } |
| 251 | |||
| 252 | EXPORT_SYMBOL_GPL(init_srcu_struct); | ||
| 253 | EXPORT_SYMBOL_GPL(cleanup_srcu_struct); | ||
| 254 | EXPORT_SYMBOL_GPL(srcu_read_lock); | ||
| 255 | EXPORT_SYMBOL_GPL(srcu_read_unlock); | ||
| 256 | EXPORT_SYMBOL_GPL(synchronize_srcu); | ||
| 257 | EXPORT_SYMBOL_GPL(srcu_batches_completed); | 285 | EXPORT_SYMBOL_GPL(srcu_batches_completed); |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..9968c5fb55b9 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
| @@ -14,7 +14,7 @@ | |||
| 14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
| 15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
| 16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
| 17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
| 19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
| 20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
| @@ -911,16 +911,15 @@ change_okay: | |||
| 911 | 911 | ||
| 912 | void do_sys_times(struct tms *tms) | 912 | void do_sys_times(struct tms *tms) |
| 913 | { | 913 | { |
| 914 | struct task_cputime cputime; | 914 | cputime_t tgutime, tgstime, cutime, cstime; |
| 915 | cputime_t cutime, cstime; | ||
| 916 | 915 | ||
| 917 | thread_group_cputime(current, &cputime); | ||
| 918 | spin_lock_irq(¤t->sighand->siglock); | 916 | spin_lock_irq(¤t->sighand->siglock); |
| 917 | thread_group_times(current, &tgutime, &tgstime); | ||
| 919 | cutime = current->signal->cutime; | 918 | cutime = current->signal->cutime; |
| 920 | cstime = current->signal->cstime; | 919 | cstime = current->signal->cstime; |
| 921 | spin_unlock_irq(¤t->sighand->siglock); | 920 | spin_unlock_irq(¤t->sighand->siglock); |
| 922 | tms->tms_utime = cputime_to_clock_t(cputime.utime); | 921 | tms->tms_utime = cputime_to_clock_t(tgutime); |
| 923 | tms->tms_stime = cputime_to_clock_t(cputime.stime); | 922 | tms->tms_stime = cputime_to_clock_t(tgstime); |
| 924 | tms->tms_cutime = cputime_to_clock_t(cutime); | 923 | tms->tms_cutime = cputime_to_clock_t(cutime); |
| 925 | tms->tms_cstime = cputime_to_clock_t(cstime); | 924 | tms->tms_cstime = cputime_to_clock_t(cstime); |
| 926 | } | 925 | } |
| @@ -1110,6 +1109,8 @@ SYSCALL_DEFINE0(setsid) | |||
| 1110 | err = session; | 1109 | err = session; |
| 1111 | out: | 1110 | out: |
| 1112 | write_unlock_irq(&tasklist_lock); | 1111 | write_unlock_irq(&tasklist_lock); |
| 1112 | if (err > 0) | ||
| 1113 | proc_sid_connector(group_leader); | ||
| 1113 | return err; | 1114 | return err; |
| 1114 | } | 1115 | } |
| 1115 | 1116 | ||
| @@ -1336,16 +1337,16 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1336 | { | 1337 | { |
| 1337 | struct task_struct *t; | 1338 | struct task_struct *t; |
| 1338 | unsigned long flags; | 1339 | unsigned long flags; |
| 1339 | cputime_t utime, stime; | 1340 | cputime_t tgutime, tgstime, utime, stime; |
| 1340 | struct task_cputime cputime; | 1341 | unsigned long maxrss = 0; |
| 1341 | 1342 | ||
| 1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
| 1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
| 1344 | 1345 | ||
| 1345 | if (who == RUSAGE_THREAD) { | 1346 | if (who == RUSAGE_THREAD) { |
| 1346 | utime = task_utime(current); | 1347 | task_times(current, &utime, &stime); |
| 1347 | stime = task_stime(current); | ||
| 1348 | accumulate_thread_rusage(p, r); | 1348 | accumulate_thread_rusage(p, r); |
| 1349 | maxrss = p->signal->maxrss; | ||
| 1349 | goto out; | 1350 | goto out; |
| 1350 | } | 1351 | } |
| 1351 | 1352 | ||
| @@ -1363,20 +1364,23 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1363 | r->ru_majflt = p->signal->cmaj_flt; | 1364 | r->ru_majflt = p->signal->cmaj_flt; |
| 1364 | r->ru_inblock = p->signal->cinblock; | 1365 | r->ru_inblock = p->signal->cinblock; |
| 1365 | r->ru_oublock = p->signal->coublock; | 1366 | r->ru_oublock = p->signal->coublock; |
| 1367 | maxrss = p->signal->cmaxrss; | ||
| 1366 | 1368 | ||
| 1367 | if (who == RUSAGE_CHILDREN) | 1369 | if (who == RUSAGE_CHILDREN) |
| 1368 | break; | 1370 | break; |
| 1369 | 1371 | ||
| 1370 | case RUSAGE_SELF: | 1372 | case RUSAGE_SELF: |
| 1371 | thread_group_cputime(p, &cputime); | 1373 | thread_group_times(p, &tgutime, &tgstime); |
| 1372 | utime = cputime_add(utime, cputime.utime); | 1374 | utime = cputime_add(utime, tgutime); |
| 1373 | stime = cputime_add(stime, cputime.stime); | 1375 | stime = cputime_add(stime, tgstime); |
| 1374 | r->ru_nvcsw += p->signal->nvcsw; | 1376 | r->ru_nvcsw += p->signal->nvcsw; |
| 1375 | r->ru_nivcsw += p->signal->nivcsw; | 1377 | r->ru_nivcsw += p->signal->nivcsw; |
| 1376 | r->ru_minflt += p->signal->min_flt; | 1378 | r->ru_minflt += p->signal->min_flt; |
| 1377 | r->ru_majflt += p->signal->maj_flt; | 1379 | r->ru_majflt += p->signal->maj_flt; |
| 1378 | r->ru_inblock += p->signal->inblock; | 1380 | r->ru_inblock += p->signal->inblock; |
| 1379 | r->ru_oublock += p->signal->oublock; | 1381 | r->ru_oublock += p->signal->oublock; |
| 1382 | if (maxrss < p->signal->maxrss) | ||
| 1383 | maxrss = p->signal->maxrss; | ||
| 1380 | t = p; | 1384 | t = p; |
| 1381 | do { | 1385 | do { |
| 1382 | accumulate_thread_rusage(t, r); | 1386 | accumulate_thread_rusage(t, r); |
| @@ -1392,6 +1396,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1392 | out: | 1396 | out: |
| 1393 | cputime_to_timeval(utime, &r->ru_utime); | 1397 | cputime_to_timeval(utime, &r->ru_utime); |
| 1394 | cputime_to_timeval(stime, &r->ru_stime); | 1398 | cputime_to_timeval(stime, &r->ru_stime); |
| 1399 | |||
| 1400 | if (who != RUSAGE_CHILDREN) { | ||
| 1401 | struct mm_struct *mm = get_task_mm(p); | ||
| 1402 | if (mm) { | ||
| 1403 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
| 1404 | mmput(mm); | ||
| 1405 | } | ||
| 1406 | } | ||
| 1407 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
| 1395 | } | 1408 | } |
| 1396 | 1409 | ||
| 1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1410 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
| @@ -1511,11 +1524,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1511 | case PR_SET_TSC: | 1524 | case PR_SET_TSC: |
| 1512 | error = SET_TSC_CTL(arg2); | 1525 | error = SET_TSC_CTL(arg2); |
| 1513 | break; | 1526 | break; |
| 1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1527 | case PR_TASK_PERF_EVENTS_DISABLE: |
| 1515 | error = perf_counter_task_disable(); | 1528 | error = perf_event_task_disable(); |
| 1516 | break; | 1529 | break; |
| 1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1530 | case PR_TASK_PERF_EVENTS_ENABLE: |
| 1518 | error = perf_counter_task_enable(); | 1531 | error = perf_event_task_enable(); |
| 1519 | break; | 1532 | break; |
| 1520 | case PR_GET_TIMERSLACK: | 1533 | case PR_GET_TIMERSLACK: |
| 1521 | error = current->timer_slack_ns; | 1534 | error = current->timer_slack_ns; |
| @@ -1528,6 +1541,41 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1528 | current->timer_slack_ns = arg2; | 1541 | current->timer_slack_ns = arg2; |
| 1529 | error = 0; | 1542 | error = 0; |
| 1530 | break; | 1543 | break; |
| 1544 | case PR_MCE_KILL: | ||
| 1545 | if (arg4 | arg5) | ||
| 1546 | return -EINVAL; | ||
| 1547 | switch (arg2) { | ||
| 1548 | case PR_MCE_KILL_CLEAR: | ||
| 1549 | if (arg3 != 0) | ||
| 1550 | return -EINVAL; | ||
| 1551 | current->flags &= ~PF_MCE_PROCESS; | ||
| 1552 | break; | ||
| 1553 | case PR_MCE_KILL_SET: | ||
| 1554 | current->flags |= PF_MCE_PROCESS; | ||
| 1555 | if (arg3 == PR_MCE_KILL_EARLY) | ||
| 1556 | current->flags |= PF_MCE_EARLY; | ||
| 1557 | else if (arg3 == PR_MCE_KILL_LATE) | ||
| 1558 | current->flags &= ~PF_MCE_EARLY; | ||
| 1559 | else if (arg3 == PR_MCE_KILL_DEFAULT) | ||
| 1560 | current->flags &= | ||
| 1561 | ~(PF_MCE_EARLY|PF_MCE_PROCESS); | ||
| 1562 | else | ||
| 1563 | return -EINVAL; | ||
| 1564 | break; | ||
| 1565 | default: | ||
| 1566 | return -EINVAL; | ||
| 1567 | } | ||
| 1568 | error = 0; | ||
| 1569 | break; | ||
| 1570 | case PR_MCE_KILL_GET: | ||
| 1571 | if (arg2 | arg3 | arg4 | arg5) | ||
| 1572 | return -EINVAL; | ||
| 1573 | if (current->flags & PF_MCE_PROCESS) | ||
| 1574 | error = (current->flags & PF_MCE_EARLY) ? | ||
| 1575 | PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; | ||
| 1576 | else | ||
| 1577 | error = PR_MCE_KILL_DEFAULT; | ||
| 1578 | break; | ||
| 1531 | default: | 1579 | default: |
| 1532 | error = -EINVAL; | 1580 | error = -EINVAL; |
| 1533 | break; | 1581 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..e06d0b8d1951 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
| @@ -49,6 +49,7 @@ cond_syscall(sys_sendmsg); | |||
| 49 | cond_syscall(compat_sys_sendmsg); | 49 | cond_syscall(compat_sys_sendmsg); |
| 50 | cond_syscall(sys_recvmsg); | 50 | cond_syscall(sys_recvmsg); |
| 51 | cond_syscall(compat_sys_recvmsg); | 51 | cond_syscall(compat_sys_recvmsg); |
| 52 | cond_syscall(compat_sys_recvfrom); | ||
| 52 | cond_syscall(sys_socketcall); | 53 | cond_syscall(sys_socketcall); |
| 53 | cond_syscall(sys_futex); | 54 | cond_syscall(sys_futex); |
| 54 | cond_syscall(compat_sys_futex); | 55 | cond_syscall(compat_sys_futex); |
| @@ -177,4 +178,4 @@ cond_syscall(sys_eventfd); | |||
| 177 | cond_syscall(sys_eventfd2); | 178 | cond_syscall(sys_eventfd2); |
| 178 | 179 | ||
| 179 | /* performance counters: */ | 180 | /* performance counters: */ |
| 180 | cond_syscall(sys_perf_counter_open); | 181 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 3125cff1c570..4dbf93a52ee9 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
| @@ -26,7 +26,6 @@ | |||
| 26 | #include <linux/proc_fs.h> | 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/security.h> | 27 | #include <linux/security.h> |
| 28 | #include <linux/ctype.h> | 28 | #include <linux/ctype.h> |
| 29 | #include <linux/utsname.h> | ||
| 30 | #include <linux/kmemcheck.h> | 29 | #include <linux/kmemcheck.h> |
| 31 | #include <linux/smp_lock.h> | 30 | #include <linux/smp_lock.h> |
| 32 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
| @@ -37,6 +36,7 @@ | |||
| 37 | #include <linux/sysrq.h> | 36 | #include <linux/sysrq.h> |
| 38 | #include <linux/highuid.h> | 37 | #include <linux/highuid.h> |
| 39 | #include <linux/writeback.h> | 38 | #include <linux/writeback.h> |
| 39 | #include <linux/ratelimit.h> | ||
| 40 | #include <linux/hugetlb.h> | 40 | #include <linux/hugetlb.h> |
| 41 | #include <linux/initrd.h> | 41 | #include <linux/initrd.h> |
| 42 | #include <linux/key.h> | 42 | #include <linux/key.h> |
| @@ -50,7 +50,7 @@ | |||
| 50 | #include <linux/reboot.h> | 50 | #include <linux/reboot.h> |
| 51 | #include <linux/ftrace.h> | 51 | #include <linux/ftrace.h> |
| 52 | #include <linux/slow-work.h> | 52 | #include <linux/slow-work.h> |
| 53 | #include <linux/perf_counter.h> | 53 | #include <linux/perf_event.h> |
| 54 | 54 | ||
| 55 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
| 56 | #include <asm/processor.h> | 56 | #include <asm/processor.h> |
| @@ -77,6 +77,7 @@ extern int max_threads; | |||
| 77 | extern int core_uses_pid; | 77 | extern int core_uses_pid; |
| 78 | extern int suid_dumpable; | 78 | extern int suid_dumpable; |
| 79 | extern char core_pattern[]; | 79 | extern char core_pattern[]; |
| 80 | extern unsigned int core_pipe_limit; | ||
| 80 | extern int pid_max; | 81 | extern int pid_max; |
| 81 | extern int min_free_kbytes; | 82 | extern int min_free_kbytes; |
| 82 | extern int pid_max_min, pid_max_max; | 83 | extern int pid_max_min, pid_max_max; |
| @@ -91,6 +92,9 @@ extern int sysctl_nr_trim_pages; | |||
| 91 | #ifdef CONFIG_RCU_TORTURE_TEST | 92 | #ifdef CONFIG_RCU_TORTURE_TEST |
| 92 | extern int rcutorture_runnable; | 93 | extern int rcutorture_runnable; |
| 93 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ | 94 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ |
| 95 | #ifdef CONFIG_BLOCK | ||
| 96 | extern int blk_iopoll_enabled; | ||
| 97 | #endif | ||
| 94 | 98 | ||
| 95 | /* Constants used for minimum and maximum */ | 99 | /* Constants used for minimum and maximum */ |
| 96 | #ifdef CONFIG_DETECT_SOFTLOCKUP | 100 | #ifdef CONFIG_DETECT_SOFTLOCKUP |
| @@ -103,6 +107,9 @@ static int __maybe_unused one = 1; | |||
| 103 | static int __maybe_unused two = 2; | 107 | static int __maybe_unused two = 2; |
| 104 | static unsigned long one_ul = 1; | 108 | static unsigned long one_ul = 1; |
| 105 | static int one_hundred = 100; | 109 | static int one_hundred = 100; |
| 110 | #ifdef CONFIG_PRINTK | ||
| 111 | static int ten_thousand = 10000; | ||
| 112 | #endif | ||
| 106 | 113 | ||
| 107 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 114 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
| 108 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 115 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
| @@ -152,14 +159,16 @@ extern int no_unaligned_warning; | |||
| 152 | extern int unaligned_dump_stack; | 159 | extern int unaligned_dump_stack; |
| 153 | #endif | 160 | #endif |
| 154 | 161 | ||
| 162 | extern struct ratelimit_state printk_ratelimit_state; | ||
| 163 | |||
| 155 | #ifdef CONFIG_RT_MUTEXES | 164 | #ifdef CONFIG_RT_MUTEXES |
| 156 | extern int max_lock_depth; | 165 | extern int max_lock_depth; |
| 157 | #endif | 166 | #endif |
| 158 | 167 | ||
| 159 | #ifdef CONFIG_PROC_SYSCTL | 168 | #ifdef CONFIG_PROC_SYSCTL |
| 160 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 169 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
| 161 | void __user *buffer, size_t *lenp, loff_t *ppos); | 170 | void __user *buffer, size_t *lenp, loff_t *ppos); |
| 162 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 171 | static int proc_taint(struct ctl_table *table, int write, |
| 163 | void __user *buffer, size_t *lenp, loff_t *ppos); | 172 | void __user *buffer, size_t *lenp, loff_t *ppos); |
| 164 | #endif | 173 | #endif |
| 165 | 174 | ||
| @@ -418,6 +427,14 @@ static struct ctl_table kern_table[] = { | |||
| 418 | .proc_handler = &proc_dostring, | 427 | .proc_handler = &proc_dostring, |
| 419 | .strategy = &sysctl_string, | 428 | .strategy = &sysctl_string, |
| 420 | }, | 429 | }, |
| 430 | { | ||
| 431 | .ctl_name = CTL_UNNUMBERED, | ||
| 432 | .procname = "core_pipe_limit", | ||
| 433 | .data = &core_pipe_limit, | ||
| 434 | .maxlen = sizeof(unsigned int), | ||
| 435 | .mode = 0644, | ||
| 436 | .proc_handler = &proc_dointvec, | ||
| 437 | }, | ||
| 421 | #ifdef CONFIG_PROC_SYSCTL | 438 | #ifdef CONFIG_PROC_SYSCTL |
| 422 | { | 439 | { |
| 423 | .procname = "tainted", | 440 | .procname = "tainted", |
| @@ -719,6 +736,17 @@ static struct ctl_table kern_table[] = { | |||
| 719 | .mode = 0644, | 736 | .mode = 0644, |
| 720 | .proc_handler = &proc_dointvec, | 737 | .proc_handler = &proc_dointvec, |
| 721 | }, | 738 | }, |
| 739 | { | ||
| 740 | .ctl_name = CTL_UNNUMBERED, | ||
| 741 | .procname = "printk_delay", | ||
| 742 | .data = &printk_delay_msec, | ||
| 743 | .maxlen = sizeof(int), | ||
| 744 | .mode = 0644, | ||
| 745 | .proc_handler = &proc_dointvec_minmax, | ||
| 746 | .strategy = &sysctl_intvec, | ||
| 747 | .extra1 = &zero, | ||
| 748 | .extra2 = &ten_thousand, | ||
| 749 | }, | ||
| 722 | #endif | 750 | #endif |
| 723 | { | 751 | { |
| 724 | .ctl_name = KERN_NGROUPS_MAX, | 752 | .ctl_name = KERN_NGROUPS_MAX, |
| @@ -961,28 +989,28 @@ static struct ctl_table kern_table[] = { | |||
| 961 | .child = slow_work_sysctls, | 989 | .child = slow_work_sysctls, |
| 962 | }, | 990 | }, |
| 963 | #endif | 991 | #endif |
| 964 | #ifdef CONFIG_PERF_COUNTERS | 992 | #ifdef CONFIG_PERF_EVENTS |
| 965 | { | 993 | { |
| 966 | .ctl_name = CTL_UNNUMBERED, | 994 | .ctl_name = CTL_UNNUMBERED, |
| 967 | .procname = "perf_counter_paranoid", | 995 | .procname = "perf_event_paranoid", |
| 968 | .data = &sysctl_perf_counter_paranoid, | 996 | .data = &sysctl_perf_event_paranoid, |
| 969 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 997 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
| 970 | .mode = 0644, | 998 | .mode = 0644, |
| 971 | .proc_handler = &proc_dointvec, | 999 | .proc_handler = &proc_dointvec, |
| 972 | }, | 1000 | }, |
| 973 | { | 1001 | { |
| 974 | .ctl_name = CTL_UNNUMBERED, | 1002 | .ctl_name = CTL_UNNUMBERED, |
| 975 | .procname = "perf_counter_mlock_kb", | 1003 | .procname = "perf_event_mlock_kb", |
| 976 | .data = &sysctl_perf_counter_mlock, | 1004 | .data = &sysctl_perf_event_mlock, |
| 977 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 1005 | .maxlen = sizeof(sysctl_perf_event_mlock), |
| 978 | .mode = 0644, | 1006 | .mode = 0644, |
| 979 | .proc_handler = &proc_dointvec, | 1007 | .proc_handler = &proc_dointvec, |
| 980 | }, | 1008 | }, |
| 981 | { | 1009 | { |
| 982 | .ctl_name = CTL_UNNUMBERED, | 1010 | .ctl_name = CTL_UNNUMBERED, |
| 983 | .procname = "perf_counter_max_sample_rate", | 1011 | .procname = "perf_event_max_sample_rate", |
| 984 | .data = &sysctl_perf_counter_sample_rate, | 1012 | .data = &sysctl_perf_event_sample_rate, |
| 985 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1013 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
| 986 | .mode = 0644, | 1014 | .mode = 0644, |
| 987 | .proc_handler = &proc_dointvec, | 1015 | .proc_handler = &proc_dointvec, |
| 988 | }, | 1016 | }, |
| @@ -997,7 +1025,16 @@ static struct ctl_table kern_table[] = { | |||
| 997 | .proc_handler = &proc_dointvec, | 1025 | .proc_handler = &proc_dointvec, |
| 998 | }, | 1026 | }, |
| 999 | #endif | 1027 | #endif |
| 1000 | 1028 | #ifdef CONFIG_BLOCK | |
| 1029 | { | ||
| 1030 | .ctl_name = CTL_UNNUMBERED, | ||
| 1031 | .procname = "blk_iopoll", | ||
| 1032 | .data = &blk_iopoll_enabled, | ||
| 1033 | .maxlen = sizeof(int), | ||
| 1034 | .mode = 0644, | ||
| 1035 | .proc_handler = &proc_dointvec, | ||
| 1036 | }, | ||
| 1037 | #endif | ||
| 1001 | /* | 1038 | /* |
| 1002 | * NOTE: do not add new entries to this table unless you have read | 1039 | * NOTE: do not add new entries to this table unless you have read |
| 1003 | * Documentation/sysctl/ctl_unnumbered.txt | 1040 | * Documentation/sysctl/ctl_unnumbered.txt |
| @@ -1364,6 +1401,31 @@ static struct ctl_table vm_table[] = { | |||
| 1364 | .mode = 0644, | 1401 | .mode = 0644, |
| 1365 | .proc_handler = &scan_unevictable_handler, | 1402 | .proc_handler = &scan_unevictable_handler, |
| 1366 | }, | 1403 | }, |
| 1404 | #ifdef CONFIG_MEMORY_FAILURE | ||
| 1405 | { | ||
| 1406 | .ctl_name = CTL_UNNUMBERED, | ||
| 1407 | .procname = "memory_failure_early_kill", | ||
| 1408 | .data = &sysctl_memory_failure_early_kill, | ||
| 1409 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | ||
| 1410 | .mode = 0644, | ||
| 1411 | .proc_handler = &proc_dointvec_minmax, | ||
| 1412 | .strategy = &sysctl_intvec, | ||
| 1413 | .extra1 = &zero, | ||
| 1414 | .extra2 = &one, | ||
| 1415 | }, | ||
| 1416 | { | ||
| 1417 | .ctl_name = CTL_UNNUMBERED, | ||
| 1418 | .procname = "memory_failure_recovery", | ||
| 1419 | .data = &sysctl_memory_failure_recovery, | ||
| 1420 | .maxlen = sizeof(sysctl_memory_failure_recovery), | ||
| 1421 | .mode = 0644, | ||
| 1422 | .proc_handler = &proc_dointvec_minmax, | ||
| 1423 | .strategy = &sysctl_intvec, | ||
| 1424 | .extra1 = &zero, | ||
| 1425 | .extra2 = &one, | ||
| 1426 | }, | ||
| 1427 | #endif | ||
| 1428 | |||
| 1367 | /* | 1429 | /* |
| 1368 | * NOTE: do not add new entries to this table unless you have read | 1430 | * NOTE: do not add new entries to this table unless you have read |
| 1369 | * Documentation/sysctl/ctl_unnumbered.txt | 1431 | * Documentation/sysctl/ctl_unnumbered.txt |
| @@ -2192,7 +2254,7 @@ void sysctl_head_put(struct ctl_table_header *head) | |||
| 2192 | #ifdef CONFIG_PROC_SYSCTL | 2254 | #ifdef CONFIG_PROC_SYSCTL |
| 2193 | 2255 | ||
| 2194 | static int _proc_do_string(void* data, int maxlen, int write, | 2256 | static int _proc_do_string(void* data, int maxlen, int write, |
| 2195 | struct file *filp, void __user *buffer, | 2257 | void __user *buffer, |
| 2196 | size_t *lenp, loff_t *ppos) | 2258 | size_t *lenp, loff_t *ppos) |
| 2197 | { | 2259 | { |
| 2198 | size_t len; | 2260 | size_t len; |
| @@ -2253,7 +2315,6 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
| 2253 | * proc_dostring - read a string sysctl | 2315 | * proc_dostring - read a string sysctl |
| 2254 | * @table: the sysctl table | 2316 | * @table: the sysctl table |
| 2255 | * @write: %TRUE if this is a write to the sysctl file | 2317 | * @write: %TRUE if this is a write to the sysctl file |
| 2256 | * @filp: the file structure | ||
| 2257 | * @buffer: the user buffer | 2318 | * @buffer: the user buffer |
| 2258 | * @lenp: the size of the user buffer | 2319 | * @lenp: the size of the user buffer |
| 2259 | * @ppos: file position | 2320 | * @ppos: file position |
| @@ -2267,10 +2328,10 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
| 2267 | * | 2328 | * |
| 2268 | * Returns 0 on success. | 2329 | * Returns 0 on success. |
| 2269 | */ | 2330 | */ |
| 2270 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2331 | int proc_dostring(struct ctl_table *table, int write, |
| 2271 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2332 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2272 | { | 2333 | { |
| 2273 | return _proc_do_string(table->data, table->maxlen, write, filp, | 2334 | return _proc_do_string(table->data, table->maxlen, write, |
| 2274 | buffer, lenp, ppos); | 2335 | buffer, lenp, ppos); |
| 2275 | } | 2336 | } |
| 2276 | 2337 | ||
| @@ -2295,7 +2356,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
| 2295 | } | 2356 | } |
| 2296 | 2357 | ||
| 2297 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2358 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
| 2298 | int write, struct file *filp, void __user *buffer, | 2359 | int write, void __user *buffer, |
| 2299 | size_t *lenp, loff_t *ppos, | 2360 | size_t *lenp, loff_t *ppos, |
| 2300 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2361 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
| 2301 | int write, void *data), | 2362 | int write, void *data), |
| @@ -2402,13 +2463,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
| 2402 | #undef TMPBUFLEN | 2463 | #undef TMPBUFLEN |
| 2403 | } | 2464 | } |
| 2404 | 2465 | ||
| 2405 | static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2466 | static int do_proc_dointvec(struct ctl_table *table, int write, |
| 2406 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2467 | void __user *buffer, size_t *lenp, loff_t *ppos, |
| 2407 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2468 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
| 2408 | int write, void *data), | 2469 | int write, void *data), |
| 2409 | void *data) | 2470 | void *data) |
| 2410 | { | 2471 | { |
| 2411 | return __do_proc_dointvec(table->data, table, write, filp, | 2472 | return __do_proc_dointvec(table->data, table, write, |
| 2412 | buffer, lenp, ppos, conv, data); | 2473 | buffer, lenp, ppos, conv, data); |
| 2413 | } | 2474 | } |
| 2414 | 2475 | ||
| @@ -2416,7 +2477,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
| 2416 | * proc_dointvec - read a vector of integers | 2477 | * proc_dointvec - read a vector of integers |
| 2417 | * @table: the sysctl table | 2478 | * @table: the sysctl table |
| 2418 | * @write: %TRUE if this is a write to the sysctl file | 2479 | * @write: %TRUE if this is a write to the sysctl file |
| 2419 | * @filp: the file structure | ||
| 2420 | * @buffer: the user buffer | 2480 | * @buffer: the user buffer |
| 2421 | * @lenp: the size of the user buffer | 2481 | * @lenp: the size of the user buffer |
| 2422 | * @ppos: file position | 2482 | * @ppos: file position |
| @@ -2426,10 +2486,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
| 2426 | * | 2486 | * |
| 2427 | * Returns 0 on success. | 2487 | * Returns 0 on success. |
| 2428 | */ | 2488 | */ |
| 2429 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2489 | int proc_dointvec(struct ctl_table *table, int write, |
| 2430 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2490 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2431 | { | 2491 | { |
| 2432 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2492 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2433 | NULL,NULL); | 2493 | NULL,NULL); |
| 2434 | } | 2494 | } |
| 2435 | 2495 | ||
| @@ -2437,7 +2497,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | |||
| 2437 | * Taint values can only be increased | 2497 | * Taint values can only be increased |
| 2438 | * This means we can safely use a temporary. | 2498 | * This means we can safely use a temporary. |
| 2439 | */ | 2499 | */ |
| 2440 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 2500 | static int proc_taint(struct ctl_table *table, int write, |
| 2441 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2501 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2442 | { | 2502 | { |
| 2443 | struct ctl_table t; | 2503 | struct ctl_table t; |
| @@ -2449,7 +2509,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp, | |||
| 2449 | 2509 | ||
| 2450 | t = *table; | 2510 | t = *table; |
| 2451 | t.data = &tmptaint; | 2511 | t.data = &tmptaint; |
| 2452 | err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); | 2512 | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); |
| 2453 | if (err < 0) | 2513 | if (err < 0) |
| 2454 | return err; | 2514 | return err; |
| 2455 | 2515 | ||
| @@ -2501,7 +2561,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
| 2501 | * proc_dointvec_minmax - read a vector of integers with min/max values | 2561 | * proc_dointvec_minmax - read a vector of integers with min/max values |
| 2502 | * @table: the sysctl table | 2562 | * @table: the sysctl table |
| 2503 | * @write: %TRUE if this is a write to the sysctl file | 2563 | * @write: %TRUE if this is a write to the sysctl file |
| 2504 | * @filp: the file structure | ||
| 2505 | * @buffer: the user buffer | 2564 | * @buffer: the user buffer |
| 2506 | * @lenp: the size of the user buffer | 2565 | * @lenp: the size of the user buffer |
| 2507 | * @ppos: file position | 2566 | * @ppos: file position |
| @@ -2514,19 +2573,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
| 2514 | * | 2573 | * |
| 2515 | * Returns 0 on success. | 2574 | * Returns 0 on success. |
| 2516 | */ | 2575 | */ |
| 2517 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2576 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
| 2518 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2577 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2519 | { | 2578 | { |
| 2520 | struct do_proc_dointvec_minmax_conv_param param = { | 2579 | struct do_proc_dointvec_minmax_conv_param param = { |
| 2521 | .min = (int *) table->extra1, | 2580 | .min = (int *) table->extra1, |
| 2522 | .max = (int *) table->extra2, | 2581 | .max = (int *) table->extra2, |
| 2523 | }; | 2582 | }; |
| 2524 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2583 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
| 2525 | do_proc_dointvec_minmax_conv, ¶m); | 2584 | do_proc_dointvec_minmax_conv, ¶m); |
| 2526 | } | 2585 | } |
| 2527 | 2586 | ||
| 2528 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, | 2587 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, |
| 2529 | struct file *filp, | ||
| 2530 | void __user *buffer, | 2588 | void __user *buffer, |
| 2531 | size_t *lenp, loff_t *ppos, | 2589 | size_t *lenp, loff_t *ppos, |
| 2532 | unsigned long convmul, | 2590 | unsigned long convmul, |
| @@ -2631,21 +2689,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
| 2631 | } | 2689 | } |
| 2632 | 2690 | ||
| 2633 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2691 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2634 | struct file *filp, | ||
| 2635 | void __user *buffer, | 2692 | void __user *buffer, |
| 2636 | size_t *lenp, loff_t *ppos, | 2693 | size_t *lenp, loff_t *ppos, |
| 2637 | unsigned long convmul, | 2694 | unsigned long convmul, |
| 2638 | unsigned long convdiv) | 2695 | unsigned long convdiv) |
| 2639 | { | 2696 | { |
| 2640 | return __do_proc_doulongvec_minmax(table->data, table, write, | 2697 | return __do_proc_doulongvec_minmax(table->data, table, write, |
| 2641 | filp, buffer, lenp, ppos, convmul, convdiv); | 2698 | buffer, lenp, ppos, convmul, convdiv); |
| 2642 | } | 2699 | } |
| 2643 | 2700 | ||
| 2644 | /** | 2701 | /** |
| 2645 | * proc_doulongvec_minmax - read a vector of long integers with min/max values | 2702 | * proc_doulongvec_minmax - read a vector of long integers with min/max values |
| 2646 | * @table: the sysctl table | 2703 | * @table: the sysctl table |
| 2647 | * @write: %TRUE if this is a write to the sysctl file | 2704 | * @write: %TRUE if this is a write to the sysctl file |
| 2648 | * @filp: the file structure | ||
| 2649 | * @buffer: the user buffer | 2705 | * @buffer: the user buffer |
| 2650 | * @lenp: the size of the user buffer | 2706 | * @lenp: the size of the user buffer |
| 2651 | * @ppos: file position | 2707 | * @ppos: file position |
| @@ -2658,17 +2714,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | |||
| 2658 | * | 2714 | * |
| 2659 | * Returns 0 on success. | 2715 | * Returns 0 on success. |
| 2660 | */ | 2716 | */ |
| 2661 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2717 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2662 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2718 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2663 | { | 2719 | { |
| 2664 | return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); | 2720 | return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l); |
| 2665 | } | 2721 | } |
| 2666 | 2722 | ||
| 2667 | /** | 2723 | /** |
| 2668 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values | 2724 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values |
| 2669 | * @table: the sysctl table | 2725 | * @table: the sysctl table |
| 2670 | * @write: %TRUE if this is a write to the sysctl file | 2726 | * @write: %TRUE if this is a write to the sysctl file |
| 2671 | * @filp: the file structure | ||
| 2672 | * @buffer: the user buffer | 2727 | * @buffer: the user buffer |
| 2673 | * @lenp: the size of the user buffer | 2728 | * @lenp: the size of the user buffer |
| 2674 | * @ppos: file position | 2729 | * @ppos: file position |
| @@ -2683,11 +2738,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp | |||
| 2683 | * Returns 0 on success. | 2738 | * Returns 0 on success. |
| 2684 | */ | 2739 | */ |
| 2685 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2740 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
| 2686 | struct file *filp, | ||
| 2687 | void __user *buffer, | 2741 | void __user *buffer, |
| 2688 | size_t *lenp, loff_t *ppos) | 2742 | size_t *lenp, loff_t *ppos) |
| 2689 | { | 2743 | { |
| 2690 | return do_proc_doulongvec_minmax(table, write, filp, buffer, | 2744 | return do_proc_doulongvec_minmax(table, write, buffer, |
| 2691 | lenp, ppos, HZ, 1000l); | 2745 | lenp, ppos, HZ, 1000l); |
| 2692 | } | 2746 | } |
| 2693 | 2747 | ||
| @@ -2763,7 +2817,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
| 2763 | * proc_dointvec_jiffies - read a vector of integers as seconds | 2817 | * proc_dointvec_jiffies - read a vector of integers as seconds |
| 2764 | * @table: the sysctl table | 2818 | * @table: the sysctl table |
| 2765 | * @write: %TRUE if this is a write to the sysctl file | 2819 | * @write: %TRUE if this is a write to the sysctl file |
| 2766 | * @filp: the file structure | ||
| 2767 | * @buffer: the user buffer | 2820 | * @buffer: the user buffer |
| 2768 | * @lenp: the size of the user buffer | 2821 | * @lenp: the size of the user buffer |
| 2769 | * @ppos: file position | 2822 | * @ppos: file position |
| @@ -2775,10 +2828,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
| 2775 | * | 2828 | * |
| 2776 | * Returns 0 on success. | 2829 | * Returns 0 on success. |
| 2777 | */ | 2830 | */ |
| 2778 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2831 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
| 2779 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2832 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2780 | { | 2833 | { |
| 2781 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2834 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2782 | do_proc_dointvec_jiffies_conv,NULL); | 2835 | do_proc_dointvec_jiffies_conv,NULL); |
| 2783 | } | 2836 | } |
| 2784 | 2837 | ||
| @@ -2786,7 +2839,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
| 2786 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds | 2839 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds |
| 2787 | * @table: the sysctl table | 2840 | * @table: the sysctl table |
| 2788 | * @write: %TRUE if this is a write to the sysctl file | 2841 | * @write: %TRUE if this is a write to the sysctl file |
| 2789 | * @filp: the file structure | ||
| 2790 | * @buffer: the user buffer | 2842 | * @buffer: the user buffer |
| 2791 | * @lenp: the size of the user buffer | 2843 | * @lenp: the size of the user buffer |
| 2792 | * @ppos: pointer to the file position | 2844 | * @ppos: pointer to the file position |
| @@ -2798,10 +2850,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
| 2798 | * | 2850 | * |
| 2799 | * Returns 0 on success. | 2851 | * Returns 0 on success. |
| 2800 | */ | 2852 | */ |
| 2801 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2853 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
| 2802 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2854 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2803 | { | 2855 | { |
| 2804 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2856 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2805 | do_proc_dointvec_userhz_jiffies_conv,NULL); | 2857 | do_proc_dointvec_userhz_jiffies_conv,NULL); |
| 2806 | } | 2858 | } |
| 2807 | 2859 | ||
| @@ -2809,7 +2861,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
| 2809 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds | 2861 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds |
| 2810 | * @table: the sysctl table | 2862 | * @table: the sysctl table |
| 2811 | * @write: %TRUE if this is a write to the sysctl file | 2863 | * @write: %TRUE if this is a write to the sysctl file |
| 2812 | * @filp: the file structure | ||
| 2813 | * @buffer: the user buffer | 2864 | * @buffer: the user buffer |
| 2814 | * @lenp: the size of the user buffer | 2865 | * @lenp: the size of the user buffer |
| 2815 | * @ppos: file position | 2866 | * @ppos: file position |
| @@ -2822,14 +2873,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
| 2822 | * | 2873 | * |
| 2823 | * Returns 0 on success. | 2874 | * Returns 0 on success. |
| 2824 | */ | 2875 | */ |
| 2825 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2876 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
| 2826 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2877 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2827 | { | 2878 | { |
| 2828 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2879 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
| 2829 | do_proc_dointvec_ms_jiffies_conv, NULL); | 2880 | do_proc_dointvec_ms_jiffies_conv, NULL); |
| 2830 | } | 2881 | } |
| 2831 | 2882 | ||
| 2832 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 2883 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
| 2833 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2884 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2834 | { | 2885 | { |
| 2835 | struct pid *new_pid; | 2886 | struct pid *new_pid; |
| @@ -2838,7 +2889,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
| 2838 | 2889 | ||
| 2839 | tmp = pid_vnr(cad_pid); | 2890 | tmp = pid_vnr(cad_pid); |
| 2840 | 2891 | ||
| 2841 | r = __do_proc_dointvec(&tmp, table, write, filp, buffer, | 2892 | r = __do_proc_dointvec(&tmp, table, write, buffer, |
| 2842 | lenp, ppos, NULL, NULL); | 2893 | lenp, ppos, NULL, NULL); |
| 2843 | if (r || !write) | 2894 | if (r || !write) |
| 2844 | return r; | 2895 | return r; |
| @@ -2853,50 +2904,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
| 2853 | 2904 | ||
| 2854 | #else /* CONFIG_PROC_FS */ | 2905 | #else /* CONFIG_PROC_FS */ |
| 2855 | 2906 | ||
| 2856 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2907 | int proc_dostring(struct ctl_table *table, int write, |
| 2857 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2908 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2858 | { | 2909 | { |
| 2859 | return -ENOSYS; | 2910 | return -ENOSYS; |
| 2860 | } | 2911 | } |
| 2861 | 2912 | ||
| 2862 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2913 | int proc_dointvec(struct ctl_table *table, int write, |
| 2863 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2914 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2864 | { | 2915 | { |
| 2865 | return -ENOSYS; | 2916 | return -ENOSYS; |
| 2866 | } | 2917 | } |
| 2867 | 2918 | ||
| 2868 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2919 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
| 2869 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2920 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2870 | { | 2921 | { |
| 2871 | return -ENOSYS; | 2922 | return -ENOSYS; |
| 2872 | } | 2923 | } |
| 2873 | 2924 | ||
| 2874 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2925 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
| 2875 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2926 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2876 | { | 2927 | { |
| 2877 | return -ENOSYS; | 2928 | return -ENOSYS; |
| 2878 | } | 2929 | } |
| 2879 | 2930 | ||
| 2880 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2931 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
| 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2932 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2882 | { | 2933 | { |
| 2883 | return -ENOSYS; | 2934 | return -ENOSYS; |
| 2884 | } | 2935 | } |
| 2885 | 2936 | ||
| 2886 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2937 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
| 2887 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2938 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2888 | { | 2939 | { |
| 2889 | return -ENOSYS; | 2940 | return -ENOSYS; |
| 2890 | } | 2941 | } |
| 2891 | 2942 | ||
| 2892 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2943 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2893 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2944 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2894 | { | 2945 | { |
| 2895 | return -ENOSYS; | 2946 | return -ENOSYS; |
| 2896 | } | 2947 | } |
| 2897 | 2948 | ||
| 2898 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2949 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
| 2899 | struct file *filp, | ||
| 2900 | void __user *buffer, | 2950 | void __user *buffer, |
| 2901 | size_t *lenp, loff_t *ppos) | 2951 | size_t *lenp, loff_t *ppos) |
| 2902 | { | 2952 | { |
diff --git a/kernel/sysctl_check.c b/kernel/sysctl_check.c index b38423ca711a..b6e7aaea4604 100644 --- a/kernel/sysctl_check.c +++ b/kernel/sysctl_check.c | |||
| @@ -1521,7 +1521,7 @@ int sysctl_check_table(struct nsproxy *namespaces, struct ctl_table *table) | |||
| 1521 | if (!table->ctl_name && table->strategy) | 1521 | if (!table->ctl_name && table->strategy) |
| 1522 | set_fail(&fail, table, "Strategy without ctl_name"); | 1522 | set_fail(&fail, table, "Strategy without ctl_name"); |
| 1523 | #endif | 1523 | #endif |
| 1524 | #ifdef CONFIG_PROC_FS | 1524 | #ifdef CONFIG_PROC_SYSCTL |
| 1525 | if (table->procname && !table->proc_handler) | 1525 | if (table->procname && !table->proc_handler) |
| 1526 | set_fail(&fail, table, "No proc_handler"); | 1526 | set_fail(&fail, table, "No proc_handler"); |
| 1527 | #endif | 1527 | #endif |
diff --git a/kernel/taskstats.c b/kernel/taskstats.c index 888adbcca30c..ea8384d3caa7 100644 --- a/kernel/taskstats.c +++ b/kernel/taskstats.c | |||
| @@ -108,7 +108,7 @@ static int prepare_reply(struct genl_info *info, u8 cmd, struct sk_buff **skbp, | |||
| 108 | /* | 108 | /* |
| 109 | * Send taskstats data in @skb to listener with nl_pid @pid | 109 | * Send taskstats data in @skb to listener with nl_pid @pid |
| 110 | */ | 110 | */ |
| 111 | static int send_reply(struct sk_buff *skb, pid_t pid) | 111 | static int send_reply(struct sk_buff *skb, struct genl_info *info) |
| 112 | { | 112 | { |
| 113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); | 113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); |
| 114 | void *reply = genlmsg_data(genlhdr); | 114 | void *reply = genlmsg_data(genlhdr); |
| @@ -120,7 +120,7 @@ static int send_reply(struct sk_buff *skb, pid_t pid) | |||
| 120 | return rc; | 120 | return rc; |
| 121 | } | 121 | } |
| 122 | 122 | ||
| 123 | return genlmsg_unicast(skb, pid); | 123 | return genlmsg_reply(skb, info); |
| 124 | } | 124 | } |
| 125 | 125 | ||
| 126 | /* | 126 | /* |
| @@ -150,7 +150,7 @@ static void send_cpu_listeners(struct sk_buff *skb, | |||
| 150 | if (!skb_next) | 150 | if (!skb_next) |
| 151 | break; | 151 | break; |
| 152 | } | 152 | } |
| 153 | rc = genlmsg_unicast(skb_cur, s->pid); | 153 | rc = genlmsg_unicast(&init_net, skb_cur, s->pid); |
| 154 | if (rc == -ECONNREFUSED) { | 154 | if (rc == -ECONNREFUSED) { |
| 155 | s->valid = 0; | 155 | s->valid = 0; |
| 156 | delcount++; | 156 | delcount++; |
| @@ -418,7 +418,7 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info) | |||
| 418 | goto err; | 418 | goto err; |
| 419 | } | 419 | } |
| 420 | 420 | ||
| 421 | rc = send_reply(rep_skb, info->snd_pid); | 421 | rc = send_reply(rep_skb, info); |
| 422 | 422 | ||
| 423 | err: | 423 | err: |
| 424 | fput_light(file, fput_needed); | 424 | fput_light(file, fput_needed); |
| @@ -487,7 +487,7 @@ free_return_rc: | |||
| 487 | } else | 487 | } else |
| 488 | goto err; | 488 | goto err; |
| 489 | 489 | ||
| 490 | return send_reply(rep_skb, info->snd_pid); | 490 | return send_reply(rep_skb, info); |
| 491 | err: | 491 | err: |
| 492 | nlmsg_free(rep_skb); | 492 | nlmsg_free(rep_skb); |
| 493 | return rc; | 493 | return rc; |
diff --git a/kernel/time.c b/kernel/time.c index 29511943871a..804798005d19 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
| @@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime); | |||
| 370 | * 0 <= tv_nsec < NSEC_PER_SEC | 370 | * 0 <= tv_nsec < NSEC_PER_SEC |
| 371 | * For negative values only the tv_sec field is negative ! | 371 | * For negative values only the tv_sec field is negative ! |
| 372 | */ | 372 | */ |
| 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
| 374 | { | 374 | { |
| 375 | while (nsec >= NSEC_PER_SEC) { | 375 | while (nsec >= NSEC_PER_SEC) { |
| 376 | /* | ||
| 377 | * The following asm() prevents the compiler from | ||
| 378 | * optimising this loop into a modulo operation. See | ||
| 379 | * also __iter_div_u64_rem() in include/linux/time.h | ||
| 380 | */ | ||
| 381 | asm("" : "+rm"(nsec)); | ||
| 376 | nsec -= NSEC_PER_SEC; | 382 | nsec -= NSEC_PER_SEC; |
| 377 | ++sec; | 383 | ++sec; |
| 378 | } | 384 | } |
| 379 | while (nsec < 0) { | 385 | while (nsec < 0) { |
| 386 | asm("" : "+rm"(nsec)); | ||
| 380 | nsec += NSEC_PER_SEC; | 387 | nsec += NSEC_PER_SEC; |
| 381 | --sec; | 388 | --sec; |
| 382 | } | 389 | } |
| @@ -655,6 +662,36 @@ u64 nsec_to_clock_t(u64 x) | |||
| 655 | #endif | 662 | #endif |
| 656 | } | 663 | } |
| 657 | 664 | ||
| 665 | /** | ||
| 666 | * nsecs_to_jiffies - Convert nsecs in u64 to jiffies | ||
| 667 | * | ||
| 668 | * @n: nsecs in u64 | ||
| 669 | * | ||
| 670 | * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. | ||
| 671 | * And this doesn't return MAX_JIFFY_OFFSET since this function is designed | ||
| 672 | * for scheduler, not for use in device drivers to calculate timeout value. | ||
| 673 | * | ||
| 674 | * note: | ||
| 675 | * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) | ||
| 676 | * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years | ||
| 677 | */ | ||
| 678 | unsigned long nsecs_to_jiffies(u64 n) | ||
| 679 | { | ||
| 680 | #if (NSEC_PER_SEC % HZ) == 0 | ||
| 681 | /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ | ||
| 682 | return div_u64(n, NSEC_PER_SEC / HZ); | ||
| 683 | #elif (HZ % 512) == 0 | ||
| 684 | /* overflow after 292 years if HZ = 1024 */ | ||
| 685 | return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); | ||
| 686 | #else | ||
| 687 | /* | ||
| 688 | * Generic case - optimized for cases where HZ is a multiple of 3. | ||
| 689 | * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. | ||
| 690 | */ | ||
| 691 | return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); | ||
| 692 | #endif | ||
| 693 | } | ||
| 694 | |||
| 658 | #if (BITS_PER_LONG < 64) | 695 | #if (BITS_PER_LONG < 64) |
| 659 | u64 get_jiffies_64(void) | 696 | u64 get_jiffies_64(void) |
| 660 | { | 697 | { |
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 0b0a6366c9d4..ee266620b06c 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o |
| 2 | 2 | ||
| 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
| 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 7466cb811251..5e18c6ab2c6a 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -21,7 +21,6 @@ | |||
| 21 | * | 21 | * |
| 22 | * TODO WishList: | 22 | * TODO WishList: |
| 23 | * o Allow clocksource drivers to be unregistered | 23 | * o Allow clocksource drivers to be unregistered |
| 24 | * o get rid of clocksource_jiffies extern | ||
| 25 | */ | 24 | */ |
| 26 | 25 | ||
| 27 | #include <linux/clocksource.h> | 26 | #include <linux/clocksource.h> |
| @@ -30,6 +29,7 @@ | |||
| 30 | #include <linux/module.h> | 29 | #include <linux/module.h> |
| 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 30 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| 32 | #include <linux/tick.h> | 31 | #include <linux/tick.h> |
| 32 | #include <linux/kthread.h> | ||
| 33 | 33 | ||
| 34 | void timecounter_init(struct timecounter *tc, | 34 | void timecounter_init(struct timecounter *tc, |
| 35 | const struct cyclecounter *cc, | 35 | const struct cyclecounter *cc, |
| @@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc, | |||
| 107 | } | 107 | } |
| 108 | EXPORT_SYMBOL(timecounter_cyc2time); | 108 | EXPORT_SYMBOL(timecounter_cyc2time); |
| 109 | 109 | ||
| 110 | /* XXX - Would like a better way for initializing curr_clocksource */ | ||
| 111 | extern struct clocksource clocksource_jiffies; | ||
| 112 | |||
| 113 | /*[Clocksource internal variables]--------- | 110 | /*[Clocksource internal variables]--------- |
| 114 | * curr_clocksource: | 111 | * curr_clocksource: |
| 115 | * currently selected clocksource. Initialized to clocksource_jiffies. | 112 | * currently selected clocksource. |
| 116 | * next_clocksource: | ||
| 117 | * pending next selected clocksource. | ||
| 118 | * clocksource_list: | 113 | * clocksource_list: |
| 119 | * linked list with the registered clocksources | 114 | * linked list with the registered clocksources |
| 120 | * clocksource_lock: | 115 | * clocksource_mutex: |
| 121 | * protects manipulations to curr_clocksource and next_clocksource | 116 | * protects manipulations to curr_clocksource and the clocksource_list |
| 122 | * and the clocksource_list | ||
| 123 | * override_name: | 117 | * override_name: |
| 124 | * Name of the user-specified clocksource. | 118 | * Name of the user-specified clocksource. |
| 125 | */ | 119 | */ |
| 126 | static struct clocksource *curr_clocksource = &clocksource_jiffies; | 120 | static struct clocksource *curr_clocksource; |
| 127 | static struct clocksource *next_clocksource; | ||
| 128 | static struct clocksource *clocksource_override; | ||
| 129 | static LIST_HEAD(clocksource_list); | 121 | static LIST_HEAD(clocksource_list); |
| 130 | static DEFINE_SPINLOCK(clocksource_lock); | 122 | static DEFINE_MUTEX(clocksource_mutex); |
| 131 | static char override_name[32]; | 123 | static char override_name[32]; |
| 132 | static int finished_booting; | 124 | static int finished_booting; |
| 133 | 125 | ||
| 134 | /* clocksource_done_booting - Called near the end of core bootup | ||
| 135 | * | ||
| 136 | * Hack to avoid lots of clocksource churn at boot time. | ||
| 137 | * We use fs_initcall because we want this to start before | ||
| 138 | * device_initcall but after subsys_initcall. | ||
| 139 | */ | ||
| 140 | static int __init clocksource_done_booting(void) | ||
| 141 | { | ||
| 142 | finished_booting = 1; | ||
| 143 | return 0; | ||
| 144 | } | ||
| 145 | fs_initcall(clocksource_done_booting); | ||
| 146 | |||
| 147 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG | 126 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
| 127 | static void clocksource_watchdog_work(struct work_struct *work); | ||
| 128 | |||
| 148 | static LIST_HEAD(watchdog_list); | 129 | static LIST_HEAD(watchdog_list); |
| 149 | static struct clocksource *watchdog; | 130 | static struct clocksource *watchdog; |
| 150 | static struct timer_list watchdog_timer; | 131 | static struct timer_list watchdog_timer; |
| 132 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); | ||
| 151 | static DEFINE_SPINLOCK(watchdog_lock); | 133 | static DEFINE_SPINLOCK(watchdog_lock); |
| 152 | static cycle_t watchdog_last; | 134 | static cycle_t watchdog_last; |
| 153 | static unsigned long watchdog_resumed; | 135 | static int watchdog_running; |
| 136 | |||
| 137 | static int clocksource_watchdog_kthread(void *data); | ||
| 138 | static void __clocksource_change_rating(struct clocksource *cs, int rating); | ||
| 154 | 139 | ||
| 155 | /* | 140 | /* |
| 156 | * Interval: 0.5sec Threshold: 0.0625s | 141 | * Interval: 0.5sec Threshold: 0.0625s |
| @@ -158,135 +143,249 @@ static unsigned long watchdog_resumed; | |||
| 158 | #define WATCHDOG_INTERVAL (HZ >> 1) | 143 | #define WATCHDOG_INTERVAL (HZ >> 1) |
| 159 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) | 144 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) |
| 160 | 145 | ||
| 161 | static void clocksource_ratewd(struct clocksource *cs, int64_t delta) | 146 | static void clocksource_watchdog_work(struct work_struct *work) |
| 162 | { | 147 | { |
| 163 | if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) | 148 | /* |
| 164 | return; | 149 | * If kthread_run fails the next watchdog scan over the |
| 150 | * watchdog_list will find the unstable clock again. | ||
| 151 | */ | ||
| 152 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); | ||
| 153 | } | ||
| 154 | |||
| 155 | static void __clocksource_unstable(struct clocksource *cs) | ||
| 156 | { | ||
| 157 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | ||
| 158 | cs->flags |= CLOCK_SOURCE_UNSTABLE; | ||
| 159 | if (finished_booting) | ||
| 160 | schedule_work(&watchdog_work); | ||
| 161 | } | ||
| 165 | 162 | ||
| 163 | static void clocksource_unstable(struct clocksource *cs, int64_t delta) | ||
| 164 | { | ||
| 166 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", | 165 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", |
| 167 | cs->name, delta); | 166 | cs->name, delta); |
| 168 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | 167 | __clocksource_unstable(cs); |
| 169 | clocksource_change_rating(cs, 0); | 168 | } |
| 170 | list_del(&cs->wd_list); | 169 | |
| 170 | /** | ||
| 171 | * clocksource_mark_unstable - mark clocksource unstable via watchdog | ||
| 172 | * @cs: clocksource to be marked unstable | ||
| 173 | * | ||
| 174 | * This function is called instead of clocksource_change_rating from | ||
| 175 | * cpu hotplug code to avoid a deadlock between the clocksource mutex | ||
| 176 | * and the cpu hotplug mutex. It defers the update of the clocksource | ||
| 177 | * to the watchdog thread. | ||
| 178 | */ | ||
| 179 | void clocksource_mark_unstable(struct clocksource *cs) | ||
| 180 | { | ||
| 181 | unsigned long flags; | ||
| 182 | |||
| 183 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 184 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { | ||
| 185 | if (list_empty(&cs->wd_list)) | ||
| 186 | list_add(&cs->wd_list, &watchdog_list); | ||
| 187 | __clocksource_unstable(cs); | ||
| 188 | } | ||
| 189 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 171 | } | 190 | } |
| 172 | 191 | ||
| 173 | static void clocksource_watchdog(unsigned long data) | 192 | static void clocksource_watchdog(unsigned long data) |
| 174 | { | 193 | { |
| 175 | struct clocksource *cs, *tmp; | 194 | struct clocksource *cs; |
| 176 | cycle_t csnow, wdnow; | 195 | cycle_t csnow, wdnow; |
| 177 | int64_t wd_nsec, cs_nsec; | 196 | int64_t wd_nsec, cs_nsec; |
| 178 | int resumed; | 197 | int next_cpu; |
| 179 | 198 | ||
| 180 | spin_lock(&watchdog_lock); | 199 | spin_lock(&watchdog_lock); |
| 181 | 200 | if (!watchdog_running) | |
| 182 | resumed = test_and_clear_bit(0, &watchdog_resumed); | 201 | goto out; |
| 183 | 202 | ||
| 184 | wdnow = watchdog->read(watchdog); | 203 | wdnow = watchdog->read(watchdog); |
| 185 | wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); | 204 | wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, |
| 205 | watchdog->mult, watchdog->shift); | ||
| 186 | watchdog_last = wdnow; | 206 | watchdog_last = wdnow; |
| 187 | 207 | ||
| 188 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { | 208 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
| 189 | csnow = cs->read(cs); | ||
| 190 | 209 | ||
| 191 | if (unlikely(resumed)) { | 210 | /* Clocksource already marked unstable? */ |
| 192 | cs->wd_last = csnow; | 211 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| 212 | if (finished_booting) | ||
| 213 | schedule_work(&watchdog_work); | ||
| 193 | continue; | 214 | continue; |
| 194 | } | 215 | } |
| 195 | 216 | ||
| 196 | /* Initialized ? */ | 217 | csnow = cs->read(cs); |
| 218 | |||
| 219 | /* Clocksource initialized ? */ | ||
| 197 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { | 220 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { |
| 198 | if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && | ||
| 199 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { | ||
| 200 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | ||
| 201 | /* | ||
| 202 | * We just marked the clocksource as | ||
| 203 | * highres-capable, notify the rest of the | ||
| 204 | * system as well so that we transition | ||
| 205 | * into high-res mode: | ||
| 206 | */ | ||
| 207 | tick_clock_notify(); | ||
| 208 | } | ||
| 209 | cs->flags |= CLOCK_SOURCE_WATCHDOG; | 221 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
| 210 | cs->wd_last = csnow; | 222 | cs->wd_last = csnow; |
| 211 | } else { | 223 | continue; |
| 212 | cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask); | ||
| 213 | cs->wd_last = csnow; | ||
| 214 | /* Check the delta. Might remove from the list ! */ | ||
| 215 | clocksource_ratewd(cs, cs_nsec - wd_nsec); | ||
| 216 | } | 224 | } |
| 217 | } | ||
| 218 | 225 | ||
| 219 | if (!list_empty(&watchdog_list)) { | 226 | /* Check the deviation from the watchdog clocksource. */ |
| 220 | /* | 227 | cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & |
| 221 | * Cycle through CPUs to check if the CPUs stay | 228 | cs->mask, cs->mult, cs->shift); |
| 222 | * synchronized to each other. | 229 | cs->wd_last = csnow; |
| 223 | */ | 230 | if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { |
| 224 | int next_cpu = cpumask_next(raw_smp_processor_id(), | 231 | clocksource_unstable(cs, cs_nsec - wd_nsec); |
| 225 | cpu_online_mask); | 232 | continue; |
| 233 | } | ||
| 226 | 234 | ||
| 227 | if (next_cpu >= nr_cpu_ids) | 235 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
| 228 | next_cpu = cpumask_first(cpu_online_mask); | 236 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
| 229 | watchdog_timer.expires += WATCHDOG_INTERVAL; | 237 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
| 230 | add_timer_on(&watchdog_timer, next_cpu); | 238 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 239 | /* | ||
| 240 | * We just marked the clocksource as highres-capable, | ||
| 241 | * notify the rest of the system as well so that we | ||
| 242 | * transition into high-res mode: | ||
| 243 | */ | ||
| 244 | tick_clock_notify(); | ||
| 245 | } | ||
| 231 | } | 246 | } |
| 247 | |||
| 248 | /* | ||
| 249 | * Cycle through CPUs to check if the CPUs stay synchronized | ||
| 250 | * to each other. | ||
| 251 | */ | ||
| 252 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); | ||
| 253 | if (next_cpu >= nr_cpu_ids) | ||
| 254 | next_cpu = cpumask_first(cpu_online_mask); | ||
| 255 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
| 256 | add_timer_on(&watchdog_timer, next_cpu); | ||
| 257 | out: | ||
| 232 | spin_unlock(&watchdog_lock); | 258 | spin_unlock(&watchdog_lock); |
| 233 | } | 259 | } |
| 260 | |||
| 261 | static inline void clocksource_start_watchdog(void) | ||
| 262 | { | ||
| 263 | if (watchdog_running || !watchdog || list_empty(&watchdog_list)) | ||
| 264 | return; | ||
| 265 | init_timer(&watchdog_timer); | ||
| 266 | watchdog_timer.function = clocksource_watchdog; | ||
| 267 | watchdog_last = watchdog->read(watchdog); | ||
| 268 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 269 | add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); | ||
| 270 | watchdog_running = 1; | ||
| 271 | } | ||
| 272 | |||
| 273 | static inline void clocksource_stop_watchdog(void) | ||
| 274 | { | ||
| 275 | if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) | ||
| 276 | return; | ||
| 277 | del_timer(&watchdog_timer); | ||
| 278 | watchdog_running = 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | static inline void clocksource_reset_watchdog(void) | ||
| 282 | { | ||
| 283 | struct clocksource *cs; | ||
| 284 | |||
| 285 | list_for_each_entry(cs, &watchdog_list, wd_list) | ||
| 286 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 287 | } | ||
| 288 | |||
| 234 | static void clocksource_resume_watchdog(void) | 289 | static void clocksource_resume_watchdog(void) |
| 235 | { | 290 | { |
| 236 | set_bit(0, &watchdog_resumed); | 291 | unsigned long flags; |
| 292 | |||
| 293 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 294 | clocksource_reset_watchdog(); | ||
| 295 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 237 | } | 296 | } |
| 238 | 297 | ||
| 239 | static void clocksource_check_watchdog(struct clocksource *cs) | 298 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
| 240 | { | 299 | { |
| 241 | struct clocksource *cse; | ||
| 242 | unsigned long flags; | 300 | unsigned long flags; |
| 243 | 301 | ||
| 244 | spin_lock_irqsave(&watchdog_lock, flags); | 302 | spin_lock_irqsave(&watchdog_lock, flags); |
| 245 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | 303 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
| 246 | int started = !list_empty(&watchdog_list); | 304 | /* cs is a clocksource to be watched. */ |
| 247 | |||
| 248 | list_add(&cs->wd_list, &watchdog_list); | 305 | list_add(&cs->wd_list, &watchdog_list); |
| 249 | if (!started && watchdog) { | 306 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
| 250 | watchdog_last = watchdog->read(watchdog); | ||
| 251 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 252 | add_timer_on(&watchdog_timer, | ||
| 253 | cpumask_first(cpu_online_mask)); | ||
| 254 | } | ||
| 255 | } else { | 307 | } else { |
| 308 | /* cs is a watchdog. */ | ||
| 256 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 309 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 257 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 310 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 258 | 311 | /* Pick the best watchdog. */ | |
| 259 | if (!watchdog || cs->rating > watchdog->rating) { | 312 | if (!watchdog || cs->rating > watchdog->rating) { |
| 260 | if (watchdog) | ||
| 261 | del_timer(&watchdog_timer); | ||
| 262 | watchdog = cs; | 313 | watchdog = cs; |
| 263 | init_timer(&watchdog_timer); | ||
| 264 | watchdog_timer.function = clocksource_watchdog; | ||
| 265 | |||
| 266 | /* Reset watchdog cycles */ | 314 | /* Reset watchdog cycles */ |
| 267 | list_for_each_entry(cse, &watchdog_list, wd_list) | 315 | clocksource_reset_watchdog(); |
| 268 | cse->flags &= ~CLOCK_SOURCE_WATCHDOG; | 316 | } |
| 269 | /* Start if list is not empty */ | 317 | } |
| 270 | if (!list_empty(&watchdog_list)) { | 318 | /* Check if the watchdog timer needs to be started. */ |
| 271 | watchdog_last = watchdog->read(watchdog); | 319 | clocksource_start_watchdog(); |
| 272 | watchdog_timer.expires = | 320 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 273 | jiffies + WATCHDOG_INTERVAL; | 321 | } |
| 274 | add_timer_on(&watchdog_timer, | 322 | |
| 275 | cpumask_first(cpu_online_mask)); | 323 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
| 276 | } | 324 | { |
| 325 | struct clocksource *tmp; | ||
| 326 | unsigned long flags; | ||
| 327 | |||
| 328 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 329 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | ||
| 330 | /* cs is a watched clocksource. */ | ||
| 331 | list_del_init(&cs->wd_list); | ||
| 332 | } else if (cs == watchdog) { | ||
| 333 | /* Reset watchdog cycles */ | ||
| 334 | clocksource_reset_watchdog(); | ||
| 335 | /* Current watchdog is removed. Find an alternative. */ | ||
| 336 | watchdog = NULL; | ||
| 337 | list_for_each_entry(tmp, &clocksource_list, list) { | ||
| 338 | if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) | ||
| 339 | continue; | ||
| 340 | if (!watchdog || tmp->rating > watchdog->rating) | ||
| 341 | watchdog = tmp; | ||
| 277 | } | 342 | } |
| 278 | } | 343 | } |
| 344 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 345 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 346 | clocksource_stop_watchdog(); | ||
| 279 | spin_unlock_irqrestore(&watchdog_lock, flags); | 347 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 280 | } | 348 | } |
| 281 | #else | 349 | |
| 282 | static void clocksource_check_watchdog(struct clocksource *cs) | 350 | static int clocksource_watchdog_kthread(void *data) |
| 351 | { | ||
| 352 | struct clocksource *cs, *tmp; | ||
| 353 | unsigned long flags; | ||
| 354 | LIST_HEAD(unstable); | ||
| 355 | |||
| 356 | mutex_lock(&clocksource_mutex); | ||
| 357 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 358 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) | ||
| 359 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { | ||
| 360 | list_del_init(&cs->wd_list); | ||
| 361 | list_add(&cs->wd_list, &unstable); | ||
| 362 | } | ||
| 363 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 364 | clocksource_stop_watchdog(); | ||
| 365 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 366 | |||
| 367 | /* Needs to be done outside of watchdog lock */ | ||
| 368 | list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { | ||
| 369 | list_del_init(&cs->wd_list); | ||
| 370 | __clocksource_change_rating(cs, 0); | ||
| 371 | } | ||
| 372 | mutex_unlock(&clocksource_mutex); | ||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 377 | |||
| 378 | static void clocksource_enqueue_watchdog(struct clocksource *cs) | ||
| 283 | { | 379 | { |
| 284 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 380 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 285 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 381 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 286 | } | 382 | } |
| 287 | 383 | ||
| 384 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } | ||
| 288 | static inline void clocksource_resume_watchdog(void) { } | 385 | static inline void clocksource_resume_watchdog(void) { } |
| 289 | #endif | 386 | static inline int clocksource_watchdog_kthread(void *data) { return 0; } |
| 387 | |||
| 388 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 290 | 389 | ||
| 291 | /** | 390 | /** |
| 292 | * clocksource_resume - resume the clocksource(s) | 391 | * clocksource_resume - resume the clocksource(s) |
| @@ -294,18 +393,12 @@ static inline void clocksource_resume_watchdog(void) { } | |||
| 294 | void clocksource_resume(void) | 393 | void clocksource_resume(void) |
| 295 | { | 394 | { |
| 296 | struct clocksource *cs; | 395 | struct clocksource *cs; |
| 297 | unsigned long flags; | ||
| 298 | 396 | ||
| 299 | spin_lock_irqsave(&clocksource_lock, flags); | 397 | list_for_each_entry(cs, &clocksource_list, list) |
| 300 | |||
| 301 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 302 | if (cs->resume) | 398 | if (cs->resume) |
| 303 | cs->resume(); | 399 | cs->resume(); |
| 304 | } | ||
| 305 | 400 | ||
| 306 | clocksource_resume_watchdog(); | 401 | clocksource_resume_watchdog(); |
| 307 | |||
| 308 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 309 | } | 402 | } |
| 310 | 403 | ||
| 311 | /** | 404 | /** |
| @@ -320,75 +413,94 @@ void clocksource_touch_watchdog(void) | |||
| 320 | clocksource_resume_watchdog(); | 413 | clocksource_resume_watchdog(); |
| 321 | } | 414 | } |
| 322 | 415 | ||
| 416 | #ifdef CONFIG_GENERIC_TIME | ||
| 417 | |||
| 323 | /** | 418 | /** |
| 324 | * clocksource_get_next - Returns the selected clocksource | 419 | * clocksource_select - Select the best clocksource available |
| 325 | * | 420 | * |
| 421 | * Private function. Must hold clocksource_mutex when called. | ||
| 422 | * | ||
| 423 | * Select the clocksource with the best rating, or the clocksource, | ||
| 424 | * which is selected by userspace override. | ||
| 326 | */ | 425 | */ |
| 327 | struct clocksource *clocksource_get_next(void) | 426 | static void clocksource_select(void) |
| 328 | { | 427 | { |
| 329 | unsigned long flags; | 428 | struct clocksource *best, *cs; |
| 330 | 429 | ||
| 331 | spin_lock_irqsave(&clocksource_lock, flags); | 430 | if (!finished_booting || list_empty(&clocksource_list)) |
| 332 | if (next_clocksource && finished_booting) { | 431 | return; |
| 333 | curr_clocksource = next_clocksource; | 432 | /* First clocksource on the list has the best rating. */ |
| 334 | next_clocksource = NULL; | 433 | best = list_first_entry(&clocksource_list, struct clocksource, list); |
| 434 | /* Check for the override clocksource. */ | ||
| 435 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 436 | if (strcmp(cs->name, override_name) != 0) | ||
| 437 | continue; | ||
| 438 | /* | ||
| 439 | * Check to make sure we don't switch to a non-highres | ||
| 440 | * capable clocksource if the tick code is in oneshot | ||
| 441 | * mode (highres or nohz) | ||
| 442 | */ | ||
| 443 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && | ||
| 444 | tick_oneshot_mode_active()) { | ||
| 445 | /* Override clocksource cannot be used. */ | ||
| 446 | printk(KERN_WARNING "Override clocksource %s is not " | ||
| 447 | "HRT compatible. Cannot switch while in " | ||
| 448 | "HRT/NOHZ mode\n", cs->name); | ||
| 449 | override_name[0] = 0; | ||
| 450 | } else | ||
| 451 | /* Override clocksource can be used. */ | ||
| 452 | best = cs; | ||
| 453 | break; | ||
| 454 | } | ||
| 455 | if (curr_clocksource != best) { | ||
| 456 | printk(KERN_INFO "Switching to clocksource %s\n", best->name); | ||
| 457 | curr_clocksource = best; | ||
| 458 | timekeeping_notify(curr_clocksource); | ||
| 335 | } | 459 | } |
| 336 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 337 | |||
| 338 | return curr_clocksource; | ||
| 339 | } | 460 | } |
| 340 | 461 | ||
| 341 | /** | 462 | #else /* CONFIG_GENERIC_TIME */ |
| 342 | * select_clocksource - Selects the best registered clocksource. | 463 | |
| 343 | * | 464 | static inline void clocksource_select(void) { } |
| 344 | * Private function. Must hold clocksource_lock when called. | 465 | |
| 466 | #endif | ||
| 467 | |||
| 468 | /* | ||
| 469 | * clocksource_done_booting - Called near the end of core bootup | ||
| 345 | * | 470 | * |
| 346 | * Select the clocksource with the best rating, or the clocksource, | 471 | * Hack to avoid lots of clocksource churn at boot time. |
| 347 | * which is selected by userspace override. | 472 | * We use fs_initcall because we want this to start before |
| 473 | * device_initcall but after subsys_initcall. | ||
| 348 | */ | 474 | */ |
| 349 | static struct clocksource *select_clocksource(void) | 475 | static int __init clocksource_done_booting(void) |
| 350 | { | 476 | { |
| 351 | struct clocksource *next; | 477 | finished_booting = 1; |
| 352 | |||
| 353 | if (list_empty(&clocksource_list)) | ||
| 354 | return NULL; | ||
| 355 | |||
| 356 | if (clocksource_override) | ||
| 357 | next = clocksource_override; | ||
| 358 | else | ||
| 359 | next = list_entry(clocksource_list.next, struct clocksource, | ||
| 360 | list); | ||
| 361 | 478 | ||
| 362 | if (next == curr_clocksource) | 479 | /* |
| 363 | return NULL; | 480 | * Run the watchdog first to eliminate unstable clock sources |
| 481 | */ | ||
| 482 | clocksource_watchdog_kthread(NULL); | ||
| 364 | 483 | ||
| 365 | return next; | 484 | mutex_lock(&clocksource_mutex); |
| 485 | clocksource_select(); | ||
| 486 | mutex_unlock(&clocksource_mutex); | ||
| 487 | return 0; | ||
| 366 | } | 488 | } |
| 489 | fs_initcall(clocksource_done_booting); | ||
| 367 | 490 | ||
| 368 | /* | 491 | /* |
| 369 | * Enqueue the clocksource sorted by rating | 492 | * Enqueue the clocksource sorted by rating |
| 370 | */ | 493 | */ |
| 371 | static int clocksource_enqueue(struct clocksource *c) | 494 | static void clocksource_enqueue(struct clocksource *cs) |
| 372 | { | 495 | { |
| 373 | struct list_head *tmp, *entry = &clocksource_list; | 496 | struct list_head *entry = &clocksource_list; |
| 497 | struct clocksource *tmp; | ||
| 374 | 498 | ||
| 375 | list_for_each(tmp, &clocksource_list) { | 499 | list_for_each_entry(tmp, &clocksource_list, list) |
| 376 | struct clocksource *cs; | ||
| 377 | |||
| 378 | cs = list_entry(tmp, struct clocksource, list); | ||
| 379 | if (cs == c) | ||
| 380 | return -EBUSY; | ||
| 381 | /* Keep track of the place, where to insert */ | 500 | /* Keep track of the place, where to insert */ |
| 382 | if (cs->rating >= c->rating) | 501 | if (tmp->rating >= cs->rating) |
| 383 | entry = tmp; | 502 | entry = &tmp->list; |
| 384 | } | 503 | list_add(&cs->list, entry); |
| 385 | list_add(&c->list, entry); | ||
| 386 | |||
| 387 | if (strlen(c->name) == strlen(override_name) && | ||
| 388 | !strcmp(c->name, override_name)) | ||
| 389 | clocksource_override = c; | ||
| 390 | |||
| 391 | return 0; | ||
| 392 | } | 504 | } |
| 393 | 505 | ||
| 394 | /** | 506 | /** |
| @@ -397,52 +509,48 @@ static int clocksource_enqueue(struct clocksource *c) | |||
| 397 | * | 509 | * |
| 398 | * Returns -EBUSY if registration fails, zero otherwise. | 510 | * Returns -EBUSY if registration fails, zero otherwise. |
| 399 | */ | 511 | */ |
| 400 | int clocksource_register(struct clocksource *c) | 512 | int clocksource_register(struct clocksource *cs) |
| 401 | { | 513 | { |
| 402 | unsigned long flags; | 514 | mutex_lock(&clocksource_mutex); |
| 403 | int ret; | 515 | clocksource_enqueue(cs); |
| 404 | 516 | clocksource_select(); | |
| 405 | spin_lock_irqsave(&clocksource_lock, flags); | 517 | clocksource_enqueue_watchdog(cs); |
| 406 | ret = clocksource_enqueue(c); | 518 | mutex_unlock(&clocksource_mutex); |
| 407 | if (!ret) | 519 | return 0; |
| 408 | next_clocksource = select_clocksource(); | ||
| 409 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 410 | if (!ret) | ||
| 411 | clocksource_check_watchdog(c); | ||
| 412 | return ret; | ||
| 413 | } | 520 | } |
| 414 | EXPORT_SYMBOL(clocksource_register); | 521 | EXPORT_SYMBOL(clocksource_register); |
| 415 | 522 | ||
| 523 | static void __clocksource_change_rating(struct clocksource *cs, int rating) | ||
| 524 | { | ||
| 525 | list_del(&cs->list); | ||
| 526 | cs->rating = rating; | ||
| 527 | clocksource_enqueue(cs); | ||
| 528 | clocksource_select(); | ||
| 529 | } | ||
| 530 | |||
| 416 | /** | 531 | /** |
| 417 | * clocksource_change_rating - Change the rating of a registered clocksource | 532 | * clocksource_change_rating - Change the rating of a registered clocksource |
| 418 | * | ||
| 419 | */ | 533 | */ |
| 420 | void clocksource_change_rating(struct clocksource *cs, int rating) | 534 | void clocksource_change_rating(struct clocksource *cs, int rating) |
| 421 | { | 535 | { |
| 422 | unsigned long flags; | 536 | mutex_lock(&clocksource_mutex); |
| 423 | 537 | __clocksource_change_rating(cs, rating); | |
| 424 | spin_lock_irqsave(&clocksource_lock, flags); | 538 | mutex_unlock(&clocksource_mutex); |
| 425 | list_del(&cs->list); | ||
| 426 | cs->rating = rating; | ||
| 427 | clocksource_enqueue(cs); | ||
| 428 | next_clocksource = select_clocksource(); | ||
| 429 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 430 | } | 539 | } |
| 540 | EXPORT_SYMBOL(clocksource_change_rating); | ||
| 431 | 541 | ||
| 432 | /** | 542 | /** |
| 433 | * clocksource_unregister - remove a registered clocksource | 543 | * clocksource_unregister - remove a registered clocksource |
| 434 | */ | 544 | */ |
| 435 | void clocksource_unregister(struct clocksource *cs) | 545 | void clocksource_unregister(struct clocksource *cs) |
| 436 | { | 546 | { |
| 437 | unsigned long flags; | 547 | mutex_lock(&clocksource_mutex); |
| 438 | 548 | clocksource_dequeue_watchdog(cs); | |
| 439 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 440 | list_del(&cs->list); | 549 | list_del(&cs->list); |
| 441 | if (clocksource_override == cs) | 550 | clocksource_select(); |
| 442 | clocksource_override = NULL; | 551 | mutex_unlock(&clocksource_mutex); |
| 443 | next_clocksource = select_clocksource(); | ||
| 444 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 445 | } | 552 | } |
| 553 | EXPORT_SYMBOL(clocksource_unregister); | ||
| 446 | 554 | ||
| 447 | #ifdef CONFIG_SYSFS | 555 | #ifdef CONFIG_SYSFS |
| 448 | /** | 556 | /** |
| @@ -458,9 +566,9 @@ sysfs_show_current_clocksources(struct sys_device *dev, | |||
| 458 | { | 566 | { |
| 459 | ssize_t count = 0; | 567 | ssize_t count = 0; |
| 460 | 568 | ||
| 461 | spin_lock_irq(&clocksource_lock); | 569 | mutex_lock(&clocksource_mutex); |
| 462 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); | 570 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); |
| 463 | spin_unlock_irq(&clocksource_lock); | 571 | mutex_unlock(&clocksource_mutex); |
| 464 | 572 | ||
| 465 | return count; | 573 | return count; |
| 466 | } | 574 | } |
| @@ -478,9 +586,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 478 | struct sysdev_attribute *attr, | 586 | struct sysdev_attribute *attr, |
| 479 | const char *buf, size_t count) | 587 | const char *buf, size_t count) |
| 480 | { | 588 | { |
| 481 | struct clocksource *ovr = NULL; | ||
| 482 | size_t ret = count; | 589 | size_t ret = count; |
| 483 | int len; | ||
| 484 | 590 | ||
| 485 | /* strings from sysfs write are not 0 terminated! */ | 591 | /* strings from sysfs write are not 0 terminated! */ |
| 486 | if (count >= sizeof(override_name)) | 592 | if (count >= sizeof(override_name)) |
| @@ -490,44 +596,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 490 | if (buf[count-1] == '\n') | 596 | if (buf[count-1] == '\n') |
| 491 | count--; | 597 | count--; |
| 492 | 598 | ||
| 493 | spin_lock_irq(&clocksource_lock); | 599 | mutex_lock(&clocksource_mutex); |
| 494 | 600 | ||
| 495 | if (count > 0) | 601 | if (count > 0) |
| 496 | memcpy(override_name, buf, count); | 602 | memcpy(override_name, buf, count); |
| 497 | override_name[count] = 0; | 603 | override_name[count] = 0; |
| 604 | clocksource_select(); | ||
| 498 | 605 | ||
| 499 | len = strlen(override_name); | 606 | mutex_unlock(&clocksource_mutex); |
| 500 | if (len) { | ||
| 501 | struct clocksource *cs; | ||
| 502 | |||
| 503 | ovr = clocksource_override; | ||
| 504 | /* try to select it: */ | ||
| 505 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 506 | if (strlen(cs->name) == len && | ||
| 507 | !strcmp(cs->name, override_name)) | ||
| 508 | ovr = cs; | ||
| 509 | } | ||
| 510 | } | ||
| 511 | |||
| 512 | /* | ||
| 513 | * Check to make sure we don't switch to a non-highres capable | ||
| 514 | * clocksource if the tick code is in oneshot mode (highres or nohz) | ||
| 515 | */ | ||
| 516 | if (tick_oneshot_mode_active() && ovr && | ||
| 517 | !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) { | ||
| 518 | printk(KERN_WARNING "%s clocksource is not HRT compatible. " | ||
| 519 | "Cannot switch while in HRT/NOHZ mode\n", ovr->name); | ||
| 520 | ovr = NULL; | ||
| 521 | override_name[0] = 0; | ||
| 522 | } | ||
| 523 | |||
| 524 | /* Reselect, when the override name has changed */ | ||
| 525 | if (ovr != clocksource_override) { | ||
| 526 | clocksource_override = ovr; | ||
| 527 | next_clocksource = select_clocksource(); | ||
| 528 | } | ||
| 529 | |||
| 530 | spin_unlock_irq(&clocksource_lock); | ||
| 531 | 607 | ||
| 532 | return ret; | 608 | return ret; |
| 533 | } | 609 | } |
| @@ -547,7 +623,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 547 | struct clocksource *src; | 623 | struct clocksource *src; |
| 548 | ssize_t count = 0; | 624 | ssize_t count = 0; |
| 549 | 625 | ||
| 550 | spin_lock_irq(&clocksource_lock); | 626 | mutex_lock(&clocksource_mutex); |
| 551 | list_for_each_entry(src, &clocksource_list, list) { | 627 | list_for_each_entry(src, &clocksource_list, list) { |
| 552 | /* | 628 | /* |
| 553 | * Don't show non-HRES clocksource if the tick code is | 629 | * Don't show non-HRES clocksource if the tick code is |
| @@ -559,7 +635,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 559 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), | 635 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
| 560 | "%s ", src->name); | 636 | "%s ", src->name); |
| 561 | } | 637 | } |
| 562 | spin_unlock_irq(&clocksource_lock); | 638 | mutex_unlock(&clocksource_mutex); |
| 563 | 639 | ||
| 564 | count += snprintf(buf + count, | 640 | count += snprintf(buf + count, |
| 565 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); | 641 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
| @@ -614,11 +690,10 @@ device_initcall(init_clocksource_sysfs); | |||
| 614 | */ | 690 | */ |
| 615 | static int __init boot_override_clocksource(char* str) | 691 | static int __init boot_override_clocksource(char* str) |
| 616 | { | 692 | { |
| 617 | unsigned long flags; | 693 | mutex_lock(&clocksource_mutex); |
| 618 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 619 | if (str) | 694 | if (str) |
| 620 | strlcpy(override_name, str, sizeof(override_name)); | 695 | strlcpy(override_name, str, sizeof(override_name)); |
| 621 | spin_unlock_irqrestore(&clocksource_lock, flags); | 696 | mutex_unlock(&clocksource_mutex); |
| 622 | return 1; | 697 | return 1; |
| 623 | } | 698 | } |
| 624 | 699 | ||
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index c3f6c30816e3..5404a8456909 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c | |||
| @@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = { | |||
| 61 | .read = jiffies_read, | 61 | .read = jiffies_read, |
| 62 | .mask = 0xffffffff, /*32bits*/ | 62 | .mask = 0xffffffff, /*32bits*/ |
| 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ | 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ |
| 64 | .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT, | ||
| 65 | .shift = JIFFIES_SHIFT, | 64 | .shift = JIFFIES_SHIFT, |
| 66 | }; | 65 | }; |
| 67 | 66 | ||
| @@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void) | |||
| 71 | } | 70 | } |
| 72 | 71 | ||
| 73 | core_initcall(init_jiffies_clocksource); | 72 | core_initcall(init_jiffies_clocksource); |
| 73 | |||
| 74 | struct clocksource * __init __weak clocksource_default_clock(void) | ||
| 75 | { | ||
| 76 | return &clocksource_jiffies; | ||
| 77 | } | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7fc64375ff43..4800f933910e 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
| @@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 194 | case TIME_OK: | 194 | case TIME_OK: |
| 195 | break; | 195 | break; |
| 196 | case TIME_INS: | 196 | case TIME_INS: |
| 197 | xtime.tv_sec--; | 197 | timekeeping_leap_insert(-1); |
| 198 | wall_to_monotonic.tv_sec++; | ||
| 199 | time_state = TIME_OOP; | 198 | time_state = TIME_OOP; |
| 200 | printk(KERN_NOTICE | 199 | printk(KERN_NOTICE |
| 201 | "Clock: inserting leap second 23:59:60 UTC\n"); | 200 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| @@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 203 | res = HRTIMER_RESTART; | 202 | res = HRTIMER_RESTART; |
| 204 | break; | 203 | break; |
| 205 | case TIME_DEL: | 204 | case TIME_DEL: |
| 206 | xtime.tv_sec++; | 205 | timekeeping_leap_insert(1); |
| 207 | time_tai--; | 206 | time_tai--; |
| 208 | wall_to_monotonic.tv_sec--; | ||
| 209 | time_state = TIME_WAIT; | 207 | time_state = TIME_WAIT; |
| 210 | printk(KERN_NOTICE | 208 | printk(KERN_NOTICE |
| 211 | "Clock: deleting leap second 23:59:59 UTC\n"); | 209 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| @@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 219 | time_state = TIME_OK; | 217 | time_state = TIME_OK; |
| 220 | break; | 218 | break; |
| 221 | } | 219 | } |
| 222 | update_vsyscall(&xtime, clock); | ||
| 223 | 220 | ||
| 224 | write_sequnlock(&xtime_lock); | 221 | write_sequnlock(&xtime_lock); |
| 225 | 222 | ||
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index e0f59a21c061..89aed5933ed4 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
| @@ -231,6 +231,13 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
| 231 | if (!inidle && !ts->inidle) | 231 | if (!inidle && !ts->inidle) |
| 232 | goto end; | 232 | goto end; |
| 233 | 233 | ||
| 234 | /* | ||
| 235 | * Set ts->inidle unconditionally. Even if the system did not | ||
| 236 | * switch to NOHZ mode the cpu frequency governers rely on the | ||
| 237 | * update of the idle time accounting in tick_nohz_start_idle(). | ||
| 238 | */ | ||
| 239 | ts->inidle = 1; | ||
| 240 | |||
| 234 | now = tick_nohz_start_idle(ts); | 241 | now = tick_nohz_start_idle(ts); |
| 235 | 242 | ||
| 236 | /* | 243 | /* |
| @@ -248,8 +255,6 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
| 248 | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) | 255 | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) |
| 249 | goto end; | 256 | goto end; |
| 250 | 257 | ||
| 251 | ts->inidle = 1; | ||
| 252 | |||
| 253 | if (need_resched()) | 258 | if (need_resched()) |
| 254 | goto end; | 259 | goto end; |
| 255 | 260 | ||
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c new file mode 100644 index 000000000000..86628e755f38 --- /dev/null +++ b/kernel/time/timeconv.c | |||
| @@ -0,0 +1,127 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. | ||
| 3 | * This file is part of the GNU C Library. | ||
| 4 | * Contributed by Paul Eggert (eggert@twinsun.com). | ||
| 5 | * | ||
| 6 | * The GNU C Library is free software; you can redistribute it and/or | ||
| 7 | * modify it under the terms of the GNU Library General Public License as | ||
| 8 | * published by the Free Software Foundation; either version 2 of the | ||
| 9 | * License, or (at your option) any later version. | ||
| 10 | * | ||
| 11 | * The GNU C Library is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 14 | * Library General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU Library General Public | ||
| 17 | * License along with the GNU C Library; see the file COPYING.LIB. If not, | ||
| 18 | * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
| 19 | * Boston, MA 02111-1307, USA. | ||
| 20 | */ | ||
| 21 | |||
| 22 | /* | ||
| 23 | * Converts the calendar time to broken-down time representation | ||
| 24 | * Based on code from glibc-2.6 | ||
| 25 | * | ||
| 26 | * 2009-7-14: | ||
| 27 | * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com> | ||
| 28 | */ | ||
| 29 | |||
| 30 | #include <linux/time.h> | ||
| 31 | #include <linux/module.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Nonzero if YEAR is a leap year (every 4 years, | ||
| 35 | * except every 100th isn't, and every 400th is). | ||
| 36 | */ | ||
| 37 | static int __isleap(long year) | ||
| 38 | { | ||
| 39 | return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0); | ||
| 40 | } | ||
| 41 | |||
| 42 | /* do a mathdiv for long type */ | ||
| 43 | static long math_div(long a, long b) | ||
| 44 | { | ||
| 45 | return a / b - (a % b < 0); | ||
| 46 | } | ||
| 47 | |||
| 48 | /* How many leap years between y1 and y2, y1 must less or equal to y2 */ | ||
| 49 | static long leaps_between(long y1, long y2) | ||
| 50 | { | ||
| 51 | long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100) | ||
| 52 | + math_div(y1 - 1, 400); | ||
| 53 | long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100) | ||
| 54 | + math_div(y2 - 1, 400); | ||
| 55 | return leaps2 - leaps1; | ||
| 56 | } | ||
| 57 | |||
| 58 | /* How many days come before each month (0-12). */ | ||
| 59 | static const unsigned short __mon_yday[2][13] = { | ||
| 60 | /* Normal years. */ | ||
| 61 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, | ||
| 62 | /* Leap years. */ | ||
| 63 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} | ||
| 64 | }; | ||
| 65 | |||
| 66 | #define SECS_PER_HOUR (60 * 60) | ||
| 67 | #define SECS_PER_DAY (SECS_PER_HOUR * 24) | ||
| 68 | |||
| 69 | /** | ||
| 70 | * time_to_tm - converts the calendar time to local broken-down time | ||
| 71 | * | ||
| 72 | * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970, | ||
| 73 | * Coordinated Universal Time (UTC). | ||
| 74 | * @offset offset seconds adding to totalsecs. | ||
| 75 | * @result pointer to struct tm variable to receive broken-down time | ||
| 76 | */ | ||
| 77 | void time_to_tm(time_t totalsecs, int offset, struct tm *result) | ||
| 78 | { | ||
| 79 | long days, rem, y; | ||
| 80 | const unsigned short *ip; | ||
| 81 | |||
| 82 | days = totalsecs / SECS_PER_DAY; | ||
| 83 | rem = totalsecs % SECS_PER_DAY; | ||
| 84 | rem += offset; | ||
| 85 | while (rem < 0) { | ||
| 86 | rem += SECS_PER_DAY; | ||
| 87 | --days; | ||
| 88 | } | ||
| 89 | while (rem >= SECS_PER_DAY) { | ||
| 90 | rem -= SECS_PER_DAY; | ||
| 91 | ++days; | ||
| 92 | } | ||
| 93 | |||
| 94 | result->tm_hour = rem / SECS_PER_HOUR; | ||
| 95 | rem %= SECS_PER_HOUR; | ||
| 96 | result->tm_min = rem / 60; | ||
| 97 | result->tm_sec = rem % 60; | ||
| 98 | |||
| 99 | /* January 1, 1970 was a Thursday. */ | ||
| 100 | result->tm_wday = (4 + days) % 7; | ||
| 101 | if (result->tm_wday < 0) | ||
| 102 | result->tm_wday += 7; | ||
| 103 | |||
| 104 | y = 1970; | ||
| 105 | |||
| 106 | while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { | ||
| 107 | /* Guess a corrected year, assuming 365 days per year. */ | ||
| 108 | long yg = y + math_div(days, 365); | ||
| 109 | |||
| 110 | /* Adjust DAYS and Y to match the guessed year. */ | ||
| 111 | days -= (yg - y) * 365 + leaps_between(y, yg); | ||
| 112 | y = yg; | ||
| 113 | } | ||
| 114 | |||
| 115 | result->tm_year = y - 1900; | ||
| 116 | |||
| 117 | result->tm_yday = days; | ||
| 118 | |||
| 119 | ip = __mon_yday[__isleap(y)]; | ||
| 120 | for (y = 11; days < ip[y]; y--) | ||
| 121 | continue; | ||
| 122 | days -= ip[y]; | ||
| 123 | |||
| 124 | result->tm_mon = y; | ||
| 125 | result->tm_mday = days + 1; | ||
| 126 | } | ||
| 127 | EXPORT_SYMBOL(time_to_tm); | ||
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e8c77d9c633a..c3a4e2907eaa 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
| @@ -13,12 +13,123 @@ | |||
| 13 | #include <linux/percpu.h> | 13 | #include <linux/percpu.h> |
| 14 | #include <linux/init.h> | 14 | #include <linux/init.h> |
| 15 | #include <linux/mm.h> | 15 | #include <linux/mm.h> |
| 16 | #include <linux/sched.h> | ||
| 16 | #include <linux/sysdev.h> | 17 | #include <linux/sysdev.h> |
| 17 | #include <linux/clocksource.h> | 18 | #include <linux/clocksource.h> |
| 18 | #include <linux/jiffies.h> | 19 | #include <linux/jiffies.h> |
| 19 | #include <linux/time.h> | 20 | #include <linux/time.h> |
| 20 | #include <linux/tick.h> | 21 | #include <linux/tick.h> |
| 22 | #include <linux/stop_machine.h> | ||
| 23 | |||
| 24 | /* Structure holding internal timekeeping values. */ | ||
| 25 | struct timekeeper { | ||
| 26 | /* Current clocksource used for timekeeping. */ | ||
| 27 | struct clocksource *clock; | ||
| 28 | /* The shift value of the current clocksource. */ | ||
| 29 | int shift; | ||
| 30 | |||
| 31 | /* Number of clock cycles in one NTP interval. */ | ||
| 32 | cycle_t cycle_interval; | ||
| 33 | /* Number of clock shifted nano seconds in one NTP interval. */ | ||
| 34 | u64 xtime_interval; | ||
| 35 | /* Raw nano seconds accumulated per NTP interval. */ | ||
| 36 | u32 raw_interval; | ||
| 37 | |||
| 38 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | ||
| 39 | u64 xtime_nsec; | ||
| 40 | /* Difference between accumulated time and NTP time in ntp | ||
| 41 | * shifted nano seconds. */ | ||
| 42 | s64 ntp_error; | ||
| 43 | /* Shift conversion between clock shifted nano seconds and | ||
| 44 | * ntp shifted nano seconds. */ | ||
| 45 | int ntp_error_shift; | ||
| 46 | /* NTP adjusted clock multiplier */ | ||
| 47 | u32 mult; | ||
| 48 | }; | ||
| 49 | |||
| 50 | struct timekeeper timekeeper; | ||
| 51 | |||
| 52 | /** | ||
| 53 | * timekeeper_setup_internals - Set up internals to use clocksource clock. | ||
| 54 | * | ||
| 55 | * @clock: Pointer to clocksource. | ||
| 56 | * | ||
| 57 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | ||
| 58 | * pair and interval request. | ||
| 59 | * | ||
| 60 | * Unless you're the timekeeping code, you should not be using this! | ||
| 61 | */ | ||
| 62 | static void timekeeper_setup_internals(struct clocksource *clock) | ||
| 63 | { | ||
| 64 | cycle_t interval; | ||
| 65 | u64 tmp; | ||
| 66 | |||
| 67 | timekeeper.clock = clock; | ||
| 68 | clock->cycle_last = clock->read(clock); | ||
| 21 | 69 | ||
| 70 | /* Do the ns -> cycle conversion first, using original mult */ | ||
| 71 | tmp = NTP_INTERVAL_LENGTH; | ||
| 72 | tmp <<= clock->shift; | ||
| 73 | tmp += clock->mult/2; | ||
| 74 | do_div(tmp, clock->mult); | ||
| 75 | if (tmp == 0) | ||
| 76 | tmp = 1; | ||
| 77 | |||
| 78 | interval = (cycle_t) tmp; | ||
| 79 | timekeeper.cycle_interval = interval; | ||
| 80 | |||
| 81 | /* Go back from cycles -> shifted ns */ | ||
| 82 | timekeeper.xtime_interval = (u64) interval * clock->mult; | ||
| 83 | timekeeper.raw_interval = | ||
| 84 | ((u64) interval * clock->mult) >> clock->shift; | ||
| 85 | |||
| 86 | timekeeper.xtime_nsec = 0; | ||
| 87 | timekeeper.shift = clock->shift; | ||
| 88 | |||
| 89 | timekeeper.ntp_error = 0; | ||
| 90 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | ||
| 91 | |||
| 92 | /* | ||
| 93 | * The timekeeper keeps its own mult values for the currently | ||
| 94 | * active clocksource. These value will be adjusted via NTP | ||
| 95 | * to counteract clock drifting. | ||
| 96 | */ | ||
| 97 | timekeeper.mult = clock->mult; | ||
| 98 | } | ||
| 99 | |||
| 100 | /* Timekeeper helper functions. */ | ||
| 101 | static inline s64 timekeeping_get_ns(void) | ||
| 102 | { | ||
| 103 | cycle_t cycle_now, cycle_delta; | ||
| 104 | struct clocksource *clock; | ||
| 105 | |||
| 106 | /* read clocksource: */ | ||
| 107 | clock = timekeeper.clock; | ||
| 108 | cycle_now = clock->read(clock); | ||
| 109 | |||
| 110 | /* calculate the delta since the last update_wall_time: */ | ||
| 111 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 112 | |||
| 113 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 114 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | ||
| 115 | timekeeper.shift); | ||
| 116 | } | ||
| 117 | |||
| 118 | static inline s64 timekeeping_get_ns_raw(void) | ||
| 119 | { | ||
| 120 | cycle_t cycle_now, cycle_delta; | ||
| 121 | struct clocksource *clock; | ||
| 122 | |||
| 123 | /* read clocksource: */ | ||
| 124 | clock = timekeeper.clock; | ||
| 125 | cycle_now = clock->read(clock); | ||
| 126 | |||
| 127 | /* calculate the delta since the last update_wall_time: */ | ||
| 128 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 129 | |||
| 130 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 131 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | ||
| 132 | } | ||
| 22 | 133 | ||
| 23 | /* | 134 | /* |
| 24 | * This read-write spinlock protects us from races in SMP while | 135 | * This read-write spinlock protects us from races in SMP while |
| @@ -44,7 +155,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); | |||
| 44 | */ | 155 | */ |
| 45 | struct timespec xtime __attribute__ ((aligned (16))); | 156 | struct timespec xtime __attribute__ ((aligned (16))); |
| 46 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 157 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
| 47 | static unsigned long total_sleep_time; /* seconds */ | 158 | static struct timespec total_sleep_time; |
| 159 | |||
| 160 | /* | ||
| 161 | * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. | ||
| 162 | */ | ||
| 163 | struct timespec raw_time; | ||
| 48 | 164 | ||
| 49 | /* flag for if timekeeping is suspended */ | 165 | /* flag for if timekeeping is suspended */ |
| 50 | int __read_mostly timekeeping_suspended; | 166 | int __read_mostly timekeeping_suspended; |
| @@ -56,35 +172,44 @@ void update_xtime_cache(u64 nsec) | |||
| 56 | timespec_add_ns(&xtime_cache, nsec); | 172 | timespec_add_ns(&xtime_cache, nsec); |
| 57 | } | 173 | } |
| 58 | 174 | ||
| 59 | struct clocksource *clock; | 175 | /* must hold xtime_lock */ |
| 60 | 176 | void timekeeping_leap_insert(int leapsecond) | |
| 177 | { | ||
| 178 | xtime.tv_sec += leapsecond; | ||
| 179 | wall_to_monotonic.tv_sec -= leapsecond; | ||
| 180 | update_vsyscall(&xtime, timekeeper.clock); | ||
| 181 | } | ||
| 61 | 182 | ||
| 62 | #ifdef CONFIG_GENERIC_TIME | 183 | #ifdef CONFIG_GENERIC_TIME |
| 184 | |||
| 63 | /** | 185 | /** |
| 64 | * clocksource_forward_now - update clock to the current time | 186 | * timekeeping_forward_now - update clock to the current time |
| 65 | * | 187 | * |
| 66 | * Forward the current clock to update its state since the last call to | 188 | * Forward the current clock to update its state since the last call to |
| 67 | * update_wall_time(). This is useful before significant clock changes, | 189 | * update_wall_time(). This is useful before significant clock changes, |
| 68 | * as it avoids having to deal with this time offset explicitly. | 190 | * as it avoids having to deal with this time offset explicitly. |
| 69 | */ | 191 | */ |
| 70 | static void clocksource_forward_now(void) | 192 | static void timekeeping_forward_now(void) |
| 71 | { | 193 | { |
| 72 | cycle_t cycle_now, cycle_delta; | 194 | cycle_t cycle_now, cycle_delta; |
| 195 | struct clocksource *clock; | ||
| 73 | s64 nsec; | 196 | s64 nsec; |
| 74 | 197 | ||
| 75 | cycle_now = clocksource_read(clock); | 198 | clock = timekeeper.clock; |
| 199 | cycle_now = clock->read(clock); | ||
| 76 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 200 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 77 | clock->cycle_last = cycle_now; | 201 | clock->cycle_last = cycle_now; |
| 78 | 202 | ||
| 79 | nsec = cyc2ns(clock, cycle_delta); | 203 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| 204 | timekeeper.shift); | ||
| 80 | 205 | ||
| 81 | /* If arch requires, add in gettimeoffset() */ | 206 | /* If arch requires, add in gettimeoffset() */ |
| 82 | nsec += arch_gettimeoffset(); | 207 | nsec += arch_gettimeoffset(); |
| 83 | 208 | ||
| 84 | timespec_add_ns(&xtime, nsec); | 209 | timespec_add_ns(&xtime, nsec); |
| 85 | 210 | ||
| 86 | nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | 211 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| 87 | clock->raw_time.tv_nsec += nsec; | 212 | timespec_add_ns(&raw_time, nsec); |
| 88 | } | 213 | } |
| 89 | 214 | ||
| 90 | /** | 215 | /** |
| @@ -95,7 +220,6 @@ static void clocksource_forward_now(void) | |||
| 95 | */ | 220 | */ |
| 96 | void getnstimeofday(struct timespec *ts) | 221 | void getnstimeofday(struct timespec *ts) |
| 97 | { | 222 | { |
| 98 | cycle_t cycle_now, cycle_delta; | ||
| 99 | unsigned long seq; | 223 | unsigned long seq; |
| 100 | s64 nsecs; | 224 | s64 nsecs; |
| 101 | 225 | ||
| @@ -105,15 +229,7 @@ void getnstimeofday(struct timespec *ts) | |||
| 105 | seq = read_seqbegin(&xtime_lock); | 229 | seq = read_seqbegin(&xtime_lock); |
| 106 | 230 | ||
| 107 | *ts = xtime; | 231 | *ts = xtime; |
| 108 | 232 | nsecs = timekeeping_get_ns(); | |
| 109 | /* read clocksource: */ | ||
| 110 | cycle_now = clocksource_read(clock); | ||
| 111 | |||
| 112 | /* calculate the delta since the last update_wall_time: */ | ||
| 113 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 114 | |||
| 115 | /* convert to nanoseconds: */ | ||
| 116 | nsecs = cyc2ns(clock, cycle_delta); | ||
| 117 | 233 | ||
| 118 | /* If arch requires, add in gettimeoffset() */ | 234 | /* If arch requires, add in gettimeoffset() */ |
| 119 | nsecs += arch_gettimeoffset(); | 235 | nsecs += arch_gettimeoffset(); |
| @@ -125,6 +241,57 @@ void getnstimeofday(struct timespec *ts) | |||
| 125 | 241 | ||
| 126 | EXPORT_SYMBOL(getnstimeofday); | 242 | EXPORT_SYMBOL(getnstimeofday); |
| 127 | 243 | ||
| 244 | ktime_t ktime_get(void) | ||
| 245 | { | ||
| 246 | unsigned int seq; | ||
| 247 | s64 secs, nsecs; | ||
| 248 | |||
| 249 | WARN_ON(timekeeping_suspended); | ||
| 250 | |||
| 251 | do { | ||
| 252 | seq = read_seqbegin(&xtime_lock); | ||
| 253 | secs = xtime.tv_sec + wall_to_monotonic.tv_sec; | ||
| 254 | nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; | ||
| 255 | nsecs += timekeeping_get_ns(); | ||
| 256 | |||
| 257 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 258 | /* | ||
| 259 | * Use ktime_set/ktime_add_ns to create a proper ktime on | ||
| 260 | * 32-bit architectures without CONFIG_KTIME_SCALAR. | ||
| 261 | */ | ||
| 262 | return ktime_add_ns(ktime_set(secs, 0), nsecs); | ||
| 263 | } | ||
| 264 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 265 | |||
| 266 | /** | ||
| 267 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 268 | * @ts: pointer to timespec variable | ||
| 269 | * | ||
| 270 | * The function calculates the monotonic clock from the realtime | ||
| 271 | * clock and the wall_to_monotonic offset and stores the result | ||
| 272 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 273 | */ | ||
| 274 | void ktime_get_ts(struct timespec *ts) | ||
| 275 | { | ||
| 276 | struct timespec tomono; | ||
| 277 | unsigned int seq; | ||
| 278 | s64 nsecs; | ||
| 279 | |||
| 280 | WARN_ON(timekeeping_suspended); | ||
| 281 | |||
| 282 | do { | ||
| 283 | seq = read_seqbegin(&xtime_lock); | ||
| 284 | *ts = xtime; | ||
| 285 | tomono = wall_to_monotonic; | ||
| 286 | nsecs = timekeeping_get_ns(); | ||
| 287 | |||
| 288 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 289 | |||
| 290 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 291 | ts->tv_nsec + tomono.tv_nsec + nsecs); | ||
| 292 | } | ||
| 293 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 294 | |||
| 128 | /** | 295 | /** |
| 129 | * do_gettimeofday - Returns the time of day in a timeval | 296 | * do_gettimeofday - Returns the time of day in a timeval |
| 130 | * @tv: pointer to the timeval to be set | 297 | * @tv: pointer to the timeval to be set |
| @@ -157,7 +324,7 @@ int do_settimeofday(struct timespec *tv) | |||
| 157 | 324 | ||
| 158 | write_seqlock_irqsave(&xtime_lock, flags); | 325 | write_seqlock_irqsave(&xtime_lock, flags); |
| 159 | 326 | ||
| 160 | clocksource_forward_now(); | 327 | timekeeping_forward_now(); |
| 161 | 328 | ||
| 162 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; | 329 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
| 163 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; | 330 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
| @@ -167,10 +334,10 @@ int do_settimeofday(struct timespec *tv) | |||
| 167 | 334 | ||
| 168 | update_xtime_cache(0); | 335 | update_xtime_cache(0); |
| 169 | 336 | ||
| 170 | clock->error = 0; | 337 | timekeeper.ntp_error = 0; |
| 171 | ntp_clear(); | 338 | ntp_clear(); |
| 172 | 339 | ||
| 173 | update_vsyscall(&xtime, clock); | 340 | update_vsyscall(&xtime, timekeeper.clock); |
| 174 | 341 | ||
| 175 | write_sequnlock_irqrestore(&xtime_lock, flags); | 342 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 176 | 343 | ||
| @@ -187,44 +354,97 @@ EXPORT_SYMBOL(do_settimeofday); | |||
| 187 | * | 354 | * |
| 188 | * Accumulates current time interval and initializes new clocksource | 355 | * Accumulates current time interval and initializes new clocksource |
| 189 | */ | 356 | */ |
| 190 | static void change_clocksource(void) | 357 | static int change_clocksource(void *data) |
| 191 | { | 358 | { |
| 192 | struct clocksource *new, *old; | 359 | struct clocksource *new, *old; |
| 193 | 360 | ||
| 194 | new = clocksource_get_next(); | 361 | new = (struct clocksource *) data; |
| 362 | |||
| 363 | timekeeping_forward_now(); | ||
| 364 | if (!new->enable || new->enable(new) == 0) { | ||
| 365 | old = timekeeper.clock; | ||
| 366 | timekeeper_setup_internals(new); | ||
| 367 | if (old->disable) | ||
| 368 | old->disable(old); | ||
| 369 | } | ||
| 370 | return 0; | ||
| 371 | } | ||
| 195 | 372 | ||
| 196 | if (clock == new) | 373 | /** |
| 374 | * timekeeping_notify - Install a new clock source | ||
| 375 | * @clock: pointer to the clock source | ||
| 376 | * | ||
| 377 | * This function is called from clocksource.c after a new, better clock | ||
| 378 | * source has been registered. The caller holds the clocksource_mutex. | ||
| 379 | */ | ||
| 380 | void timekeeping_notify(struct clocksource *clock) | ||
| 381 | { | ||
| 382 | if (timekeeper.clock == clock) | ||
| 197 | return; | 383 | return; |
| 384 | stop_machine(change_clocksource, clock, NULL); | ||
| 385 | tick_clock_notify(); | ||
| 386 | } | ||
| 198 | 387 | ||
| 199 | clocksource_forward_now(); | 388 | #else /* GENERIC_TIME */ |
| 200 | 389 | ||
| 201 | if (clocksource_enable(new)) | 390 | static inline void timekeeping_forward_now(void) { } |
| 202 | return; | ||
| 203 | 391 | ||
| 204 | new->raw_time = clock->raw_time; | 392 | /** |
| 205 | old = clock; | 393 | * ktime_get - get the monotonic time in ktime_t format |
| 206 | clock = new; | 394 | * |
| 207 | clocksource_disable(old); | 395 | * returns the time in ktime_t format |
| 396 | */ | ||
| 397 | ktime_t ktime_get(void) | ||
| 398 | { | ||
| 399 | struct timespec now; | ||
| 208 | 400 | ||
| 209 | clock->cycle_last = 0; | 401 | ktime_get_ts(&now); |
| 210 | clock->cycle_last = clocksource_read(clock); | ||
| 211 | clock->error = 0; | ||
| 212 | clock->xtime_nsec = 0; | ||
| 213 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | ||
| 214 | 402 | ||
| 215 | tick_clock_notify(); | 403 | return timespec_to_ktime(now); |
| 404 | } | ||
| 405 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 216 | 406 | ||
| 217 | /* | 407 | /** |
| 218 | * We're holding xtime lock and waking up klogd would deadlock | 408 | * ktime_get_ts - get the monotonic clock in timespec format |
| 219 | * us on enqueue. So no printing! | 409 | * @ts: pointer to timespec variable |
| 220 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 410 | * |
| 221 | clock->name); | 411 | * The function calculates the monotonic clock from the realtime |
| 222 | */ | 412 | * clock and the wall_to_monotonic offset and stores the result |
| 413 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 414 | */ | ||
| 415 | void ktime_get_ts(struct timespec *ts) | ||
| 416 | { | ||
| 417 | struct timespec tomono; | ||
| 418 | unsigned long seq; | ||
| 419 | |||
| 420 | do { | ||
| 421 | seq = read_seqbegin(&xtime_lock); | ||
| 422 | getnstimeofday(ts); | ||
| 423 | tomono = wall_to_monotonic; | ||
| 424 | |||
| 425 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 426 | |||
| 427 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 428 | ts->tv_nsec + tomono.tv_nsec); | ||
| 223 | } | 429 | } |
| 224 | #else | 430 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
| 225 | static inline void clocksource_forward_now(void) { } | 431 | |
| 226 | static inline void change_clocksource(void) { } | 432 | #endif /* !GENERIC_TIME */ |
| 227 | #endif | 433 | |
| 434 | /** | ||
| 435 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 436 | * | ||
| 437 | * returns the time in ktime_t format | ||
| 438 | */ | ||
| 439 | ktime_t ktime_get_real(void) | ||
| 440 | { | ||
| 441 | struct timespec now; | ||
| 442 | |||
| 443 | getnstimeofday(&now); | ||
| 444 | |||
| 445 | return timespec_to_ktime(now); | ||
| 446 | } | ||
| 447 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 228 | 448 | ||
| 229 | /** | 449 | /** |
| 230 | * getrawmonotonic - Returns the raw monotonic time in a timespec | 450 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
| @@ -236,21 +456,11 @@ void getrawmonotonic(struct timespec *ts) | |||
| 236 | { | 456 | { |
| 237 | unsigned long seq; | 457 | unsigned long seq; |
| 238 | s64 nsecs; | 458 | s64 nsecs; |
| 239 | cycle_t cycle_now, cycle_delta; | ||
| 240 | 459 | ||
| 241 | do { | 460 | do { |
| 242 | seq = read_seqbegin(&xtime_lock); | 461 | seq = read_seqbegin(&xtime_lock); |
| 243 | 462 | nsecs = timekeeping_get_ns_raw(); | |
| 244 | /* read clocksource: */ | 463 | *ts = raw_time; |
| 245 | cycle_now = clocksource_read(clock); | ||
| 246 | |||
| 247 | /* calculate the delta since the last update_wall_time: */ | ||
| 248 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 249 | |||
| 250 | /* convert to nanoseconds: */ | ||
| 251 | nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | ||
| 252 | |||
| 253 | *ts = clock->raw_time; | ||
| 254 | 464 | ||
| 255 | } while (read_seqretry(&xtime_lock, seq)); | 465 | } while (read_seqretry(&xtime_lock, seq)); |
| 256 | 466 | ||
| @@ -270,7 +480,7 @@ int timekeeping_valid_for_hres(void) | |||
| 270 | do { | 480 | do { |
| 271 | seq = read_seqbegin(&xtime_lock); | 481 | seq = read_seqbegin(&xtime_lock); |
| 272 | 482 | ||
| 273 | ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 483 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| 274 | 484 | ||
| 275 | } while (read_seqretry(&xtime_lock, seq)); | 485 | } while (read_seqretry(&xtime_lock, seq)); |
| 276 | 486 | ||
| @@ -278,17 +488,33 @@ int timekeeping_valid_for_hres(void) | |||
| 278 | } | 488 | } |
| 279 | 489 | ||
| 280 | /** | 490 | /** |
| 281 | * read_persistent_clock - Return time in seconds from the persistent clock. | 491 | * read_persistent_clock - Return time from the persistent clock. |
| 282 | * | 492 | * |
| 283 | * Weak dummy function for arches that do not yet support it. | 493 | * Weak dummy function for arches that do not yet support it. |
| 284 | * Returns seconds from epoch using the battery backed persistent clock. | 494 | * Reads the time from the battery backed persistent clock. |
| 285 | * Returns zero if unsupported. | 495 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 286 | * | 496 | * |
| 287 | * XXX - Do be sure to remove it once all arches implement it. | 497 | * XXX - Do be sure to remove it once all arches implement it. |
| 288 | */ | 498 | */ |
| 289 | unsigned long __attribute__((weak)) read_persistent_clock(void) | 499 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
| 290 | { | 500 | { |
| 291 | return 0; | 501 | ts->tv_sec = 0; |
| 502 | ts->tv_nsec = 0; | ||
| 503 | } | ||
| 504 | |||
| 505 | /** | ||
| 506 | * read_boot_clock - Return time of the system start. | ||
| 507 | * | ||
| 508 | * Weak dummy function for arches that do not yet support it. | ||
| 509 | * Function to read the exact time the system has been started. | ||
| 510 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | ||
| 511 | * | ||
| 512 | * XXX - Do be sure to remove it once all arches implement it. | ||
| 513 | */ | ||
| 514 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | ||
| 515 | { | ||
| 516 | ts->tv_sec = 0; | ||
| 517 | ts->tv_nsec = 0; | ||
| 292 | } | 518 | } |
| 293 | 519 | ||
| 294 | /* | 520 | /* |
| @@ -296,29 +522,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void) | |||
| 296 | */ | 522 | */ |
| 297 | void __init timekeeping_init(void) | 523 | void __init timekeeping_init(void) |
| 298 | { | 524 | { |
| 525 | struct clocksource *clock; | ||
| 299 | unsigned long flags; | 526 | unsigned long flags; |
| 300 | unsigned long sec = read_persistent_clock(); | 527 | struct timespec now, boot; |
| 528 | |||
| 529 | read_persistent_clock(&now); | ||
| 530 | read_boot_clock(&boot); | ||
| 301 | 531 | ||
| 302 | write_seqlock_irqsave(&xtime_lock, flags); | 532 | write_seqlock_irqsave(&xtime_lock, flags); |
| 303 | 533 | ||
| 304 | ntp_init(); | 534 | ntp_init(); |
| 305 | 535 | ||
| 306 | clock = clocksource_get_next(); | 536 | clock = clocksource_default_clock(); |
| 307 | clocksource_enable(clock); | 537 | if (clock->enable) |
| 308 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 538 | clock->enable(clock); |
| 309 | clock->cycle_last = clocksource_read(clock); | 539 | timekeeper_setup_internals(clock); |
| 310 | 540 | ||
| 311 | xtime.tv_sec = sec; | 541 | xtime.tv_sec = now.tv_sec; |
| 312 | xtime.tv_nsec = 0; | 542 | xtime.tv_nsec = now.tv_nsec; |
| 543 | raw_time.tv_sec = 0; | ||
| 544 | raw_time.tv_nsec = 0; | ||
| 545 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | ||
| 546 | boot.tv_sec = xtime.tv_sec; | ||
| 547 | boot.tv_nsec = xtime.tv_nsec; | ||
| 548 | } | ||
| 313 | set_normalized_timespec(&wall_to_monotonic, | 549 | set_normalized_timespec(&wall_to_monotonic, |
| 314 | -xtime.tv_sec, -xtime.tv_nsec); | 550 | -boot.tv_sec, -boot.tv_nsec); |
| 315 | update_xtime_cache(0); | 551 | update_xtime_cache(0); |
| 316 | total_sleep_time = 0; | 552 | total_sleep_time.tv_sec = 0; |
| 553 | total_sleep_time.tv_nsec = 0; | ||
| 317 | write_sequnlock_irqrestore(&xtime_lock, flags); | 554 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 318 | } | 555 | } |
| 319 | 556 | ||
| 320 | /* time in seconds when suspend began */ | 557 | /* time in seconds when suspend began */ |
| 321 | static unsigned long timekeeping_suspend_time; | 558 | static struct timespec timekeeping_suspend_time; |
| 322 | 559 | ||
| 323 | /** | 560 | /** |
| 324 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 561 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| @@ -331,24 +568,24 @@ static unsigned long timekeeping_suspend_time; | |||
| 331 | static int timekeeping_resume(struct sys_device *dev) | 568 | static int timekeeping_resume(struct sys_device *dev) |
| 332 | { | 569 | { |
| 333 | unsigned long flags; | 570 | unsigned long flags; |
| 334 | unsigned long now = read_persistent_clock(); | 571 | struct timespec ts; |
| 572 | |||
| 573 | read_persistent_clock(&ts); | ||
| 335 | 574 | ||
| 336 | clocksource_resume(); | 575 | clocksource_resume(); |
| 337 | 576 | ||
| 338 | write_seqlock_irqsave(&xtime_lock, flags); | 577 | write_seqlock_irqsave(&xtime_lock, flags); |
| 339 | 578 | ||
| 340 | if (now && (now > timekeeping_suspend_time)) { | 579 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
| 341 | unsigned long sleep_length = now - timekeeping_suspend_time; | 580 | ts = timespec_sub(ts, timekeeping_suspend_time); |
| 342 | 581 | xtime = timespec_add_safe(xtime, ts); | |
| 343 | xtime.tv_sec += sleep_length; | 582 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
| 344 | wall_to_monotonic.tv_sec -= sleep_length; | 583 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
| 345 | total_sleep_time += sleep_length; | ||
| 346 | } | 584 | } |
| 347 | update_xtime_cache(0); | 585 | update_xtime_cache(0); |
| 348 | /* re-base the last cycle value */ | 586 | /* re-base the last cycle value */ |
| 349 | clock->cycle_last = 0; | 587 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
| 350 | clock->cycle_last = clocksource_read(clock); | 588 | timekeeper.ntp_error = 0; |
| 351 | clock->error = 0; | ||
| 352 | timekeeping_suspended = 0; | 589 | timekeeping_suspended = 0; |
| 353 | write_sequnlock_irqrestore(&xtime_lock, flags); | 590 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 354 | 591 | ||
| @@ -366,10 +603,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |||
| 366 | { | 603 | { |
| 367 | unsigned long flags; | 604 | unsigned long flags; |
| 368 | 605 | ||
| 369 | timekeeping_suspend_time = read_persistent_clock(); | 606 | read_persistent_clock(&timekeeping_suspend_time); |
| 370 | 607 | ||
| 371 | write_seqlock_irqsave(&xtime_lock, flags); | 608 | write_seqlock_irqsave(&xtime_lock, flags); |
| 372 | clocksource_forward_now(); | 609 | timekeeping_forward_now(); |
| 373 | timekeeping_suspended = 1; | 610 | timekeeping_suspended = 1; |
| 374 | write_sequnlock_irqrestore(&xtime_lock, flags); | 611 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 375 | 612 | ||
| @@ -404,7 +641,7 @@ device_initcall(timekeeping_init_device); | |||
| 404 | * If the error is already larger, we look ahead even further | 641 | * If the error is already larger, we look ahead even further |
| 405 | * to compensate for late or lost adjustments. | 642 | * to compensate for late or lost adjustments. |
| 406 | */ | 643 | */ |
| 407 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | 644 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
| 408 | s64 *offset) | 645 | s64 *offset) |
| 409 | { | 646 | { |
| 410 | s64 tick_error, i; | 647 | s64 tick_error, i; |
| @@ -420,7 +657,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 420 | * here. This is tuned so that an error of about 1 msec is adjusted | 657 | * here. This is tuned so that an error of about 1 msec is adjusted |
| 421 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 658 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
| 422 | */ | 659 | */ |
| 423 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 660 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
| 424 | error2 = abs(error2); | 661 | error2 = abs(error2); |
| 425 | for (look_ahead = 0; error2 > 0; look_ahead++) | 662 | for (look_ahead = 0; error2 > 0; look_ahead++) |
| 426 | error2 >>= 2; | 663 | error2 >>= 2; |
| @@ -429,8 +666,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 429 | * Now calculate the error in (1 << look_ahead) ticks, but first | 666 | * Now calculate the error in (1 << look_ahead) ticks, but first |
| 430 | * remove the single look ahead already included in the error. | 667 | * remove the single look ahead already included in the error. |
| 431 | */ | 668 | */ |
| 432 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); | 669 | tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
| 433 | tick_error -= clock->xtime_interval >> 1; | 670 | tick_error -= timekeeper.xtime_interval >> 1; |
| 434 | error = ((error - tick_error) >> look_ahead) + tick_error; | 671 | error = ((error - tick_error) >> look_ahead) + tick_error; |
| 435 | 672 | ||
| 436 | /* Finally calculate the adjustment shift value. */ | 673 | /* Finally calculate the adjustment shift value. */ |
| @@ -455,18 +692,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 455 | * this is optimized for the most common adjustments of -1,0,1, | 692 | * this is optimized for the most common adjustments of -1,0,1, |
| 456 | * for other values we can do a bit more work. | 693 | * for other values we can do a bit more work. |
| 457 | */ | 694 | */ |
| 458 | static void clocksource_adjust(s64 offset) | 695 | static void timekeeping_adjust(s64 offset) |
| 459 | { | 696 | { |
| 460 | s64 error, interval = clock->cycle_interval; | 697 | s64 error, interval = timekeeper.cycle_interval; |
| 461 | int adj; | 698 | int adj; |
| 462 | 699 | ||
| 463 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); | 700 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
| 464 | if (error > interval) { | 701 | if (error > interval) { |
| 465 | error >>= 2; | 702 | error >>= 2; |
| 466 | if (likely(error <= interval)) | 703 | if (likely(error <= interval)) |
| 467 | adj = 1; | 704 | adj = 1; |
| 468 | else | 705 | else |
| 469 | adj = clocksource_bigadjust(error, &interval, &offset); | 706 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 470 | } else if (error < -interval) { | 707 | } else if (error < -interval) { |
| 471 | error >>= 2; | 708 | error >>= 2; |
| 472 | if (likely(error >= -interval)) { | 709 | if (likely(error >= -interval)) { |
| @@ -474,15 +711,15 @@ static void clocksource_adjust(s64 offset) | |||
| 474 | interval = -interval; | 711 | interval = -interval; |
| 475 | offset = -offset; | 712 | offset = -offset; |
| 476 | } else | 713 | } else |
| 477 | adj = clocksource_bigadjust(error, &interval, &offset); | 714 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 478 | } else | 715 | } else |
| 479 | return; | 716 | return; |
| 480 | 717 | ||
| 481 | clock->mult += adj; | 718 | timekeeper.mult += adj; |
| 482 | clock->xtime_interval += interval; | 719 | timekeeper.xtime_interval += interval; |
| 483 | clock->xtime_nsec -= offset; | 720 | timekeeper.xtime_nsec -= offset; |
| 484 | clock->error -= (interval - offset) << | 721 | timekeeper.ntp_error -= (interval - offset) << |
| 485 | (NTP_SCALE_SHIFT - clock->shift); | 722 | timekeeper.ntp_error_shift; |
| 486 | } | 723 | } |
| 487 | 724 | ||
| 488 | /** | 725 | /** |
| @@ -492,53 +729,59 @@ static void clocksource_adjust(s64 offset) | |||
| 492 | */ | 729 | */ |
| 493 | void update_wall_time(void) | 730 | void update_wall_time(void) |
| 494 | { | 731 | { |
| 732 | struct clocksource *clock; | ||
| 495 | cycle_t offset; | 733 | cycle_t offset; |
| 734 | u64 nsecs; | ||
| 496 | 735 | ||
| 497 | /* Make sure we're fully resumed: */ | 736 | /* Make sure we're fully resumed: */ |
| 498 | if (unlikely(timekeeping_suspended)) | 737 | if (unlikely(timekeeping_suspended)) |
| 499 | return; | 738 | return; |
| 500 | 739 | ||
| 740 | clock = timekeeper.clock; | ||
| 501 | #ifdef CONFIG_GENERIC_TIME | 741 | #ifdef CONFIG_GENERIC_TIME |
| 502 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 742 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
| 503 | #else | 743 | #else |
| 504 | offset = clock->cycle_interval; | 744 | offset = timekeeper.cycle_interval; |
| 505 | #endif | 745 | #endif |
| 506 | clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; | 746 | timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
| 507 | 747 | ||
| 508 | /* normally this loop will run just once, however in the | 748 | /* normally this loop will run just once, however in the |
| 509 | * case of lost or late ticks, it will accumulate correctly. | 749 | * case of lost or late ticks, it will accumulate correctly. |
| 510 | */ | 750 | */ |
| 511 | while (offset >= clock->cycle_interval) { | 751 | while (offset >= timekeeper.cycle_interval) { |
| 752 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | ||
| 753 | |||
| 512 | /* accumulate one interval */ | 754 | /* accumulate one interval */ |
| 513 | offset -= clock->cycle_interval; | 755 | offset -= timekeeper.cycle_interval; |
| 514 | clock->cycle_last += clock->cycle_interval; | 756 | clock->cycle_last += timekeeper.cycle_interval; |
| 515 | 757 | ||
| 516 | clock->xtime_nsec += clock->xtime_interval; | 758 | timekeeper.xtime_nsec += timekeeper.xtime_interval; |
| 517 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 759 | if (timekeeper.xtime_nsec >= nsecps) { |
| 518 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 760 | timekeeper.xtime_nsec -= nsecps; |
| 519 | xtime.tv_sec++; | 761 | xtime.tv_sec++; |
| 520 | second_overflow(); | 762 | second_overflow(); |
| 521 | } | 763 | } |
| 522 | 764 | ||
| 523 | clock->raw_time.tv_nsec += clock->raw_interval; | 765 | raw_time.tv_nsec += timekeeper.raw_interval; |
| 524 | if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { | 766 | if (raw_time.tv_nsec >= NSEC_PER_SEC) { |
| 525 | clock->raw_time.tv_nsec -= NSEC_PER_SEC; | 767 | raw_time.tv_nsec -= NSEC_PER_SEC; |
| 526 | clock->raw_time.tv_sec++; | 768 | raw_time.tv_sec++; |
| 527 | } | 769 | } |
| 528 | 770 | ||
| 529 | /* accumulate error between NTP and clock interval */ | 771 | /* accumulate error between NTP and clock interval */ |
| 530 | clock->error += tick_length; | 772 | timekeeper.ntp_error += tick_length; |
| 531 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); | 773 | timekeeper.ntp_error -= timekeeper.xtime_interval << |
| 774 | timekeeper.ntp_error_shift; | ||
| 532 | } | 775 | } |
| 533 | 776 | ||
| 534 | /* correct the clock when NTP error is too big */ | 777 | /* correct the clock when NTP error is too big */ |
| 535 | clocksource_adjust(offset); | 778 | timekeeping_adjust(offset); |
| 536 | 779 | ||
| 537 | /* | 780 | /* |
| 538 | * Since in the loop above, we accumulate any amount of time | 781 | * Since in the loop above, we accumulate any amount of time |
| 539 | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 782 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
| 540 | * xtime_nsec to be fairly small after the loop. Further, if we're | 783 | * xtime_nsec to be fairly small after the loop. Further, if we're |
| 541 | * slightly speeding the clocksource up in clocksource_adjust(), | 784 | * slightly speeding the clocksource up in timekeeping_adjust(), |
| 542 | * its possible the required corrective factor to xtime_nsec could | 785 | * its possible the required corrective factor to xtime_nsec could |
| 543 | * cause it to underflow. | 786 | * cause it to underflow. |
| 544 | * | 787 | * |
| @@ -550,24 +793,25 @@ void update_wall_time(void) | |||
| 550 | * We'll correct this error next time through this function, when | 793 | * We'll correct this error next time through this function, when |
| 551 | * xtime_nsec is not as small. | 794 | * xtime_nsec is not as small. |
| 552 | */ | 795 | */ |
| 553 | if (unlikely((s64)clock->xtime_nsec < 0)) { | 796 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
| 554 | s64 neg = -(s64)clock->xtime_nsec; | 797 | s64 neg = -(s64)timekeeper.xtime_nsec; |
| 555 | clock->xtime_nsec = 0; | 798 | timekeeper.xtime_nsec = 0; |
| 556 | clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); | 799 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
| 557 | } | 800 | } |
| 558 | 801 | ||
| 559 | /* store full nanoseconds into xtime after rounding it up and | 802 | /* store full nanoseconds into xtime after rounding it up and |
| 560 | * add the remainder to the error difference. | 803 | * add the remainder to the error difference. |
| 561 | */ | 804 | */ |
| 562 | xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; | 805 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
| 563 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 806 | timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
| 564 | clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); | 807 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
| 808 | timekeeper.ntp_error_shift; | ||
| 565 | 809 | ||
| 566 | update_xtime_cache(cyc2ns(clock, offset)); | 810 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); |
| 811 | update_xtime_cache(nsecs); | ||
| 567 | 812 | ||
| 568 | /* check to see if there is a new clocksource to use */ | 813 | /* check to see if there is a new clocksource to use */ |
| 569 | change_clocksource(); | 814 | update_vsyscall(&xtime, timekeeper.clock); |
| 570 | update_vsyscall(&xtime, clock); | ||
| 571 | } | 815 | } |
| 572 | 816 | ||
| 573 | /** | 817 | /** |
| @@ -583,9 +827,12 @@ void update_wall_time(void) | |||
| 583 | */ | 827 | */ |
| 584 | void getboottime(struct timespec *ts) | 828 | void getboottime(struct timespec *ts) |
| 585 | { | 829 | { |
| 586 | set_normalized_timespec(ts, | 830 | struct timespec boottime = { |
| 587 | - (wall_to_monotonic.tv_sec + total_sleep_time), | 831 | .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
| 588 | - wall_to_monotonic.tv_nsec); | 832 | .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
| 833 | }; | ||
| 834 | |||
| 835 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | ||
| 589 | } | 836 | } |
| 590 | 837 | ||
| 591 | /** | 838 | /** |
| @@ -594,7 +841,7 @@ void getboottime(struct timespec *ts) | |||
| 594 | */ | 841 | */ |
| 595 | void monotonic_to_bootbased(struct timespec *ts) | 842 | void monotonic_to_bootbased(struct timespec *ts) |
| 596 | { | 843 | { |
| 597 | ts->tv_sec += total_sleep_time; | 844 | *ts = timespec_add_safe(*ts, total_sleep_time); |
| 598 | } | 845 | } |
| 599 | 846 | ||
| 600 | unsigned long get_seconds(void) | 847 | unsigned long get_seconds(void) |
| @@ -603,6 +850,10 @@ unsigned long get_seconds(void) | |||
| 603 | } | 850 | } |
| 604 | EXPORT_SYMBOL(get_seconds); | 851 | EXPORT_SYMBOL(get_seconds); |
| 605 | 852 | ||
| 853 | struct timespec __current_kernel_time(void) | ||
| 854 | { | ||
| 855 | return xtime_cache; | ||
| 856 | } | ||
| 606 | 857 | ||
| 607 | struct timespec current_kernel_time(void) | 858 | struct timespec current_kernel_time(void) |
| 608 | { | 859 | { |
| @@ -618,3 +869,20 @@ struct timespec current_kernel_time(void) | |||
| 618 | return now; | 869 | return now; |
| 619 | } | 870 | } |
| 620 | EXPORT_SYMBOL(current_kernel_time); | 871 | EXPORT_SYMBOL(current_kernel_time); |
| 872 | |||
| 873 | struct timespec get_monotonic_coarse(void) | ||
| 874 | { | ||
| 875 | struct timespec now, mono; | ||
| 876 | unsigned long seq; | ||
| 877 | |||
| 878 | do { | ||
| 879 | seq = read_seqbegin(&xtime_lock); | ||
| 880 | |||
| 881 | now = xtime_cache; | ||
| 882 | mono = wall_to_monotonic; | ||
| 883 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 884 | |||
| 885 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | ||
| 886 | now.tv_nsec + mono.tv_nsec); | ||
| 887 | return now; | ||
| 888 | } | ||
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index fddd69d16e03..1b5b7aa2fdfd 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c | |||
| @@ -275,7 +275,7 @@ static int timer_list_open(struct inode *inode, struct file *filp) | |||
| 275 | return single_open(filp, timer_list_show, NULL); | 275 | return single_open(filp, timer_list_show, NULL); |
| 276 | } | 276 | } |
| 277 | 277 | ||
| 278 | static struct file_operations timer_list_fops = { | 278 | static const struct file_operations timer_list_fops = { |
| 279 | .open = timer_list_open, | 279 | .open = timer_list_open, |
| 280 | .read = seq_read, | 280 | .read = seq_read, |
| 281 | .llseek = seq_lseek, | 281 | .llseek = seq_lseek, |
diff --git a/kernel/time/timer_stats.c b/kernel/time/timer_stats.c index 4cde8b9c716f..ee5681f8d7ec 100644 --- a/kernel/time/timer_stats.c +++ b/kernel/time/timer_stats.c | |||
| @@ -395,7 +395,7 @@ static int tstats_open(struct inode *inode, struct file *filp) | |||
| 395 | return single_open(filp, tstats_show, NULL); | 395 | return single_open(filp, tstats_show, NULL); |
| 396 | } | 396 | } |
| 397 | 397 | ||
| 398 | static struct file_operations tstats_fops = { | 398 | static const struct file_operations tstats_fops = { |
| 399 | .open = tstats_open, | 399 | .open = tstats_open, |
| 400 | .read = seq_read, | 400 | .read = seq_read, |
| 401 | .write = tstats_write, | 401 | .write = tstats_write, |
diff --git a/kernel/timer.c b/kernel/timer.c index a3d25f415019..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -37,7 +37,7 @@ | |||
| 37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
| 38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
| 39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
| 40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
| 41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
| 42 | 42 | ||
| 43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
| @@ -46,6 +46,9 @@ | |||
| 46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
| 47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
| 48 | 48 | ||
| 49 | #define CREATE_TRACE_POINTS | ||
| 50 | #include <trace/events/timer.h> | ||
| 51 | |||
| 49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
| 50 | 53 | ||
| 51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
| @@ -72,6 +75,7 @@ struct tvec_base { | |||
| 72 | spinlock_t lock; | 75 | spinlock_t lock; |
| 73 | struct timer_list *running_timer; | 76 | struct timer_list *running_timer; |
| 74 | unsigned long timer_jiffies; | 77 | unsigned long timer_jiffies; |
| 78 | unsigned long next_timer; | ||
| 75 | struct tvec_root tv1; | 79 | struct tvec_root tv1; |
| 76 | struct tvec tv2; | 80 | struct tvec tv2; |
| 77 | struct tvec tv3; | 81 | struct tvec tv3; |
| @@ -520,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
| 520 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
| 521 | #endif | 525 | #endif |
| 522 | 526 | ||
| 527 | static inline void debug_init(struct timer_list *timer) | ||
| 528 | { | ||
| 529 | debug_timer_init(timer); | ||
| 530 | trace_timer_init(timer); | ||
| 531 | } | ||
| 532 | |||
| 533 | static inline void | ||
| 534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
| 535 | { | ||
| 536 | debug_timer_activate(timer); | ||
| 537 | trace_timer_start(timer, expires); | ||
| 538 | } | ||
| 539 | |||
| 540 | static inline void debug_deactivate(struct timer_list *timer) | ||
| 541 | { | ||
| 542 | debug_timer_deactivate(timer); | ||
| 543 | trace_timer_cancel(timer); | ||
| 544 | } | ||
| 545 | |||
| 523 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
| 524 | const char *name, | 547 | const char *name, |
| 525 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
| @@ -548,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
| 548 | const char *name, | 571 | const char *name, |
| 549 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
| 550 | { | 573 | { |
| 551 | debug_timer_init(timer); | 574 | debug_init(timer); |
| 552 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
| 553 | } | 576 | } |
| 554 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
| @@ -567,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
| 567 | { | 590 | { |
| 568 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
| 569 | 592 | ||
| 570 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
| 571 | 594 | ||
| 572 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
| 573 | if (clear_pending) | 596 | if (clear_pending) |
| @@ -622,13 +645,16 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 622 | 645 | ||
| 623 | if (timer_pending(timer)) { | 646 | if (timer_pending(timer)) { |
| 624 | detach_timer(timer, 0); | 647 | detach_timer(timer, 0); |
| 648 | if (timer->expires == base->next_timer && | ||
| 649 | !tbase_get_deferrable(timer->base)) | ||
| 650 | base->next_timer = base->timer_jiffies; | ||
| 625 | ret = 1; | 651 | ret = 1; |
| 626 | } else { | 652 | } else { |
| 627 | if (pending_only) | 653 | if (pending_only) |
| 628 | goto out_unlock; | 654 | goto out_unlock; |
| 629 | } | 655 | } |
| 630 | 656 | ||
| 631 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
| 632 | 658 | ||
| 633 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
| 634 | 660 | ||
| @@ -663,6 +689,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 663 | } | 689 | } |
| 664 | 690 | ||
| 665 | timer->expires = expires; | 691 | timer->expires = expires; |
| 692 | if (time_before(timer->expires, base->next_timer) && | ||
| 693 | !tbase_get_deferrable(timer->base)) | ||
| 694 | base->next_timer = timer->expires; | ||
| 666 | internal_add_timer(base, timer); | 695 | internal_add_timer(base, timer); |
| 667 | 696 | ||
| 668 | out_unlock: | 697 | out_unlock: |
| @@ -780,7 +809,10 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
| 780 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
| 781 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
| 782 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
| 783 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
| 813 | if (time_before(timer->expires, base->next_timer) && | ||
| 814 | !tbase_get_deferrable(timer->base)) | ||
| 815 | base->next_timer = timer->expires; | ||
| 784 | internal_add_timer(base, timer); | 816 | internal_add_timer(base, timer); |
| 785 | /* | 817 | /* |
| 786 | * Check whether the other CPU is idle and needs to be | 818 | * Check whether the other CPU is idle and needs to be |
| @@ -817,6 +849,9 @@ int del_timer(struct timer_list *timer) | |||
| 817 | base = lock_timer_base(timer, &flags); | 849 | base = lock_timer_base(timer, &flags); |
| 818 | if (timer_pending(timer)) { | 850 | if (timer_pending(timer)) { |
| 819 | detach_timer(timer, 1); | 851 | detach_timer(timer, 1); |
| 852 | if (timer->expires == base->next_timer && | ||
| 853 | !tbase_get_deferrable(timer->base)) | ||
| 854 | base->next_timer = base->timer_jiffies; | ||
| 820 | ret = 1; | 855 | ret = 1; |
| 821 | } | 856 | } |
| 822 | spin_unlock_irqrestore(&base->lock, flags); | 857 | spin_unlock_irqrestore(&base->lock, flags); |
| @@ -850,6 +885,9 @@ int try_to_del_timer_sync(struct timer_list *timer) | |||
| 850 | ret = 0; | 885 | ret = 0; |
| 851 | if (timer_pending(timer)) { | 886 | if (timer_pending(timer)) { |
| 852 | detach_timer(timer, 1); | 887 | detach_timer(timer, 1); |
| 888 | if (timer->expires == base->next_timer && | ||
| 889 | !tbase_get_deferrable(timer->base)) | ||
| 890 | base->next_timer = base->timer_jiffies; | ||
| 853 | ret = 1; | 891 | ret = 1; |
| 854 | } | 892 | } |
| 855 | out: | 893 | out: |
| @@ -984,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 984 | */ | 1022 | */ |
| 985 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
| 986 | 1024 | ||
| 1025 | trace_timer_expire_entry(timer); | ||
| 987 | fn(data); | 1026 | fn(data); |
| 1027 | trace_timer_expire_exit(timer); | ||
| 988 | 1028 | ||
| 989 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
| 990 | 1030 | ||
| @@ -1007,8 +1047,8 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 1007 | #ifdef CONFIG_NO_HZ | 1047 | #ifdef CONFIG_NO_HZ |
| 1008 | /* | 1048 | /* |
| 1009 | * Find out when the next timer event is due to happen. This | 1049 | * Find out when the next timer event is due to happen. This |
| 1010 | * is used on S/390 to stop all activity when a cpus is idle. | 1050 | * is used on S/390 to stop all activity when a CPU is idle. |
| 1011 | * This functions needs to be called disabled. | 1051 | * This function needs to be called with interrupts disabled. |
| 1012 | */ | 1052 | */ |
| 1013 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | 1053 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
| 1014 | { | 1054 | { |
| @@ -1134,7 +1174,9 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
| 1134 | unsigned long expires; | 1174 | unsigned long expires; |
| 1135 | 1175 | ||
| 1136 | spin_lock(&base->lock); | 1176 | spin_lock(&base->lock); |
| 1137 | expires = __next_timer_interrupt(base); | 1177 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
| 1178 | base->next_timer = __next_timer_interrupt(base); | ||
| 1179 | expires = base->next_timer; | ||
| 1138 | spin_unlock(&base->lock); | 1180 | spin_unlock(&base->lock); |
| 1139 | 1181 | ||
| 1140 | if (time_before_eq(expires, now)) | 1182 | if (time_before_eq(expires, now)) |
| @@ -1169,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
| 1169 | { | 1211 | { |
| 1170 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
| 1171 | 1213 | ||
| 1172 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
| 1173 | 1215 | ||
| 1174 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
| 1175 | 1217 | ||
| @@ -1522,6 +1564,7 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
| 1522 | INIT_LIST_HEAD(base->tv1.vec + j); | 1564 | INIT_LIST_HEAD(base->tv1.vec + j); |
| 1523 | 1565 | ||
| 1524 | base->timer_jiffies = jiffies; | 1566 | base->timer_jiffies = jiffies; |
| 1567 | base->next_timer = base->timer_jiffies; | ||
| 1525 | return 0; | 1568 | return 0; |
| 1526 | } | 1569 | } |
| 1527 | 1570 | ||
| @@ -1534,6 +1577,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea | |||
| 1534 | timer = list_first_entry(head, struct timer_list, entry); | 1577 | timer = list_first_entry(head, struct timer_list, entry); |
| 1535 | detach_timer(timer, 0); | 1578 | detach_timer(timer, 0); |
| 1536 | timer_set_base(timer, new_base); | 1579 | timer_set_base(timer, new_base); |
| 1580 | if (time_before(timer->expires, new_base->next_timer) && | ||
| 1581 | !tbase_get_deferrable(timer->base)) | ||
| 1582 | new_base->next_timer = timer->expires; | ||
| 1537 | internal_add_timer(new_base, timer); | 1583 | internal_add_timer(new_base, timer); |
| 1538 | } | 1584 | } |
| 1539 | } | 1585 | } |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 1ea0d1234f4a..d006554888dc 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
| @@ -11,12 +11,18 @@ config NOP_TRACER | |||
| 11 | 11 | ||
| 12 | config HAVE_FTRACE_NMI_ENTER | 12 | config HAVE_FTRACE_NMI_ENTER |
| 13 | bool | 13 | bool |
| 14 | help | ||
| 15 | See Documentation/trace/ftrace-implementation.txt | ||
| 14 | 16 | ||
| 15 | config HAVE_FUNCTION_TRACER | 17 | config HAVE_FUNCTION_TRACER |
| 16 | bool | 18 | bool |
| 19 | help | ||
| 20 | See Documentation/trace/ftrace-implementation.txt | ||
| 17 | 21 | ||
| 18 | config HAVE_FUNCTION_GRAPH_TRACER | 22 | config HAVE_FUNCTION_GRAPH_TRACER |
| 19 | bool | 23 | bool |
| 24 | help | ||
| 25 | See Documentation/trace/ftrace-implementation.txt | ||
| 20 | 26 | ||
| 21 | config HAVE_FUNCTION_GRAPH_FP_TEST | 27 | config HAVE_FUNCTION_GRAPH_FP_TEST |
| 22 | bool | 28 | bool |
| @@ -28,21 +34,25 @@ config HAVE_FUNCTION_GRAPH_FP_TEST | |||
| 28 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST | 34 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST |
| 29 | bool | 35 | bool |
| 30 | help | 36 | help |
| 31 | This gets selected when the arch tests the function_trace_stop | 37 | See Documentation/trace/ftrace-implementation.txt |
| 32 | variable at the mcount call site. Otherwise, this variable | ||
| 33 | is tested by the called function. | ||
| 34 | 38 | ||
| 35 | config HAVE_DYNAMIC_FTRACE | 39 | config HAVE_DYNAMIC_FTRACE |
| 36 | bool | 40 | bool |
| 41 | help | ||
| 42 | See Documentation/trace/ftrace-implementation.txt | ||
| 37 | 43 | ||
| 38 | config HAVE_FTRACE_MCOUNT_RECORD | 44 | config HAVE_FTRACE_MCOUNT_RECORD |
| 39 | bool | 45 | bool |
| 46 | help | ||
| 47 | See Documentation/trace/ftrace-implementation.txt | ||
| 40 | 48 | ||
| 41 | config HAVE_HW_BRANCH_TRACER | 49 | config HAVE_HW_BRANCH_TRACER |
| 42 | bool | 50 | bool |
| 43 | 51 | ||
| 44 | config HAVE_SYSCALL_TRACEPOINTS | 52 | config HAVE_SYSCALL_TRACEPOINTS |
| 45 | bool | 53 | bool |
| 54 | help | ||
| 55 | See Documentation/trace/ftrace-implementation.txt | ||
| 46 | 56 | ||
| 47 | config TRACER_MAX_TRACE | 57 | config TRACER_MAX_TRACE |
| 48 | bool | 58 | bool |
| @@ -73,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
| 73 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
| 74 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
| 75 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
| 76 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
| 77 | 87 | ||
| 78 | config TRACING | 88 | config TRACING |
| 79 | bool | 89 | bool |
| @@ -329,6 +339,27 @@ config POWER_TRACER | |||
| 329 | power management decisions, specifically the C-state and P-state | 339 | power management decisions, specifically the C-state and P-state |
| 330 | behavior. | 340 | behavior. |
| 331 | 341 | ||
| 342 | config KSYM_TRACER | ||
| 343 | bool "Trace read and write access on kernel memory locations" | ||
| 344 | depends on HAVE_HW_BREAKPOINT | ||
| 345 | select TRACING | ||
| 346 | help | ||
| 347 | This tracer helps find read and write operations on any given kernel | ||
| 348 | symbol i.e. /proc/kallsyms. | ||
| 349 | |||
| 350 | config PROFILE_KSYM_TRACER | ||
| 351 | bool "Profile all kernel memory accesses on 'watched' variables" | ||
| 352 | depends on KSYM_TRACER | ||
| 353 | help | ||
| 354 | This tracer profiles kernel accesses on variables watched through the | ||
| 355 | ksym tracer ftrace plugin. Depending upon the hardware, all read | ||
| 356 | and write operations on kernel variables can be monitored for | ||
| 357 | accesses. | ||
| 358 | |||
| 359 | The results will be displayed in: | ||
| 360 | /debugfs/tracing/profile_ksym | ||
| 361 | |||
| 362 | Say N if unsure. | ||
| 332 | 363 | ||
| 333 | config STACK_TRACER | 364 | config STACK_TRACER |
| 334 | bool "Trace max stack" | 365 | bool "Trace max stack" |
| @@ -418,6 +449,23 @@ config BLK_DEV_IO_TRACE | |||
| 418 | 449 | ||
| 419 | If unsure, say N. | 450 | If unsure, say N. |
| 420 | 451 | ||
| 452 | config KPROBE_EVENT | ||
| 453 | depends on KPROBES | ||
| 454 | depends on X86 | ||
| 455 | bool "Enable kprobes-based dynamic events" | ||
| 456 | select TRACING | ||
| 457 | default y | ||
| 458 | help | ||
| 459 | This allows the user to add tracing events (similar to tracepoints) on the fly | ||
| 460 | via the ftrace interface. See Documentation/trace/kprobetrace.txt | ||
| 461 | for more details. | ||
| 462 | |||
| 463 | Those events can be inserted wherever kprobes can probe, and record | ||
| 464 | various register and memory values. | ||
| 465 | |||
| 466 | This option is also required by perf-probe subcommand of perf tools. If | ||
| 467 | you want to use perf tools, this option is strongly recommended. | ||
| 468 | |||
| 421 | config DYNAMIC_FTRACE | 469 | config DYNAMIC_FTRACE |
| 422 | bool "enable/disable ftrace tracepoints dynamically" | 470 | bool "enable/disable ftrace tracepoints dynamically" |
| 423 | depends on FUNCTION_TRACER | 471 | depends on FUNCTION_TRACER |
| @@ -469,6 +517,18 @@ config FTRACE_STARTUP_TEST | |||
| 469 | functioning properly. It will do tests on all the configured | 517 | functioning properly. It will do tests on all the configured |
| 470 | tracers of ftrace. | 518 | tracers of ftrace. |
| 471 | 519 | ||
| 520 | config EVENT_TRACE_TEST_SYSCALLS | ||
| 521 | bool "Run selftest on syscall events" | ||
| 522 | depends on FTRACE_STARTUP_TEST | ||
| 523 | help | ||
| 524 | This option will also enable testing every syscall event. | ||
| 525 | It only enables the event and disables it and runs various loads | ||
| 526 | with the event enabled. This adds a bit more time for kernel boot | ||
| 527 | up since it runs this on every system call defined. | ||
| 528 | |||
| 529 | TBD - enable a way to actually call the syscalls as we test their | ||
| 530 | events | ||
| 531 | |||
| 472 | config MMIOTRACE | 532 | config MMIOTRACE |
| 473 | bool "Memory mapped IO tracing" | 533 | bool "Memory mapped IO tracing" |
| 474 | depends on HAVE_MMIOTRACE_SUPPORT && PCI | 534 | depends on HAVE_MMIOTRACE_SUPPORT && PCI |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 844164dca90a..cd9ecd89ec77 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
| @@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | |||
| 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
| 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
| 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o |
| 45 | obj-$(CONFIG_POWER_TRACER) += trace_power.o | ||
| 46 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
| 47 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
| 48 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
| @@ -54,5 +53,8 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o | |||
| 54 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o | 53 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o |
| 55 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o | 54 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o |
| 56 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o | 55 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o |
| 56 | obj-$(CONFIG_KPROBE_EVENT) += trace_kprobe.o | ||
| 57 | obj-$(CONFIG_KSYM_TRACER) += trace_ksym.o | ||
| 58 | obj-$(CONFIG_EVENT_TRACING) += power-traces.o | ||
| 57 | 59 | ||
| 58 | libftrace-y := ftrace.o | 60 | libftrace-y := ftrace.o |
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c index 3eb159c277c8..d9d6206e0b14 100644 --- a/kernel/trace/blktrace.c +++ b/kernel/trace/blktrace.c | |||
| @@ -856,6 +856,37 @@ static void blk_add_trace_remap(struct request_queue *q, struct bio *bio, | |||
| 856 | } | 856 | } |
| 857 | 857 | ||
| 858 | /** | 858 | /** |
| 859 | * blk_add_trace_rq_remap - Add a trace for a request-remap operation | ||
| 860 | * @q: queue the io is for | ||
| 861 | * @rq: the source request | ||
| 862 | * @dev: target device | ||
| 863 | * @from: source sector | ||
| 864 | * | ||
| 865 | * Description: | ||
| 866 | * Device mapper remaps request to other devices. | ||
| 867 | * Add a trace for that action. | ||
| 868 | * | ||
| 869 | **/ | ||
| 870 | static void blk_add_trace_rq_remap(struct request_queue *q, | ||
| 871 | struct request *rq, dev_t dev, | ||
| 872 | sector_t from) | ||
| 873 | { | ||
| 874 | struct blk_trace *bt = q->blk_trace; | ||
| 875 | struct blk_io_trace_remap r; | ||
| 876 | |||
| 877 | if (likely(!bt)) | ||
| 878 | return; | ||
| 879 | |||
| 880 | r.device_from = cpu_to_be32(dev); | ||
| 881 | r.device_to = cpu_to_be32(disk_devt(rq->rq_disk)); | ||
| 882 | r.sector_from = cpu_to_be64(from); | ||
| 883 | |||
| 884 | __blk_add_trace(bt, blk_rq_pos(rq), blk_rq_bytes(rq), | ||
| 885 | rq_data_dir(rq), BLK_TA_REMAP, !!rq->errors, | ||
| 886 | sizeof(r), &r); | ||
| 887 | } | ||
| 888 | |||
| 889 | /** | ||
| 859 | * blk_add_driver_data - Add binary message with driver-specific data | 890 | * blk_add_driver_data - Add binary message with driver-specific data |
| 860 | * @q: queue the io is for | 891 | * @q: queue the io is for |
| 861 | * @rq: io request | 892 | * @rq: io request |
| @@ -922,10 +953,13 @@ static void blk_register_tracepoints(void) | |||
| 922 | WARN_ON(ret); | 953 | WARN_ON(ret); |
| 923 | ret = register_trace_block_remap(blk_add_trace_remap); | 954 | ret = register_trace_block_remap(blk_add_trace_remap); |
| 924 | WARN_ON(ret); | 955 | WARN_ON(ret); |
| 956 | ret = register_trace_block_rq_remap(blk_add_trace_rq_remap); | ||
| 957 | WARN_ON(ret); | ||
| 925 | } | 958 | } |
| 926 | 959 | ||
| 927 | static void blk_unregister_tracepoints(void) | 960 | static void blk_unregister_tracepoints(void) |
| 928 | { | 961 | { |
| 962 | unregister_trace_block_rq_remap(blk_add_trace_rq_remap); | ||
| 929 | unregister_trace_block_remap(blk_add_trace_remap); | 963 | unregister_trace_block_remap(blk_add_trace_remap); |
| 930 | unregister_trace_block_split(blk_add_trace_split); | 964 | unregister_trace_block_split(blk_add_trace_split); |
| 931 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io); | 965 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io); |
| @@ -1657,6 +1691,11 @@ int blk_trace_init_sysfs(struct device *dev) | |||
| 1657 | return sysfs_create_group(&dev->kobj, &blk_trace_attr_group); | 1691 | return sysfs_create_group(&dev->kobj, &blk_trace_attr_group); |
| 1658 | } | 1692 | } |
| 1659 | 1693 | ||
| 1694 | void blk_trace_remove_sysfs(struct device *dev) | ||
| 1695 | { | ||
| 1696 | sysfs_remove_group(&dev->kobj, &blk_trace_attr_group); | ||
| 1697 | } | ||
| 1698 | |||
| 1660 | #endif /* CONFIG_BLK_DEV_IO_TRACE */ | 1699 | #endif /* CONFIG_BLK_DEV_IO_TRACE */ |
| 1661 | 1700 | ||
| 1662 | #ifdef CONFIG_EVENT_TRACING | 1701 | #ifdef CONFIG_EVENT_TRACING |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 8c804e24f96f..e51a1bcb7bed 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
| @@ -60,6 +60,13 @@ static int last_ftrace_enabled; | |||
| 60 | /* Quick disabling of function tracer. */ | 60 | /* Quick disabling of function tracer. */ |
| 61 | int function_trace_stop; | 61 | int function_trace_stop; |
| 62 | 62 | ||
| 63 | /* List for set_ftrace_pid's pids. */ | ||
| 64 | LIST_HEAD(ftrace_pids); | ||
| 65 | struct ftrace_pid { | ||
| 66 | struct list_head list; | ||
| 67 | struct pid *pid; | ||
| 68 | }; | ||
| 69 | |||
| 63 | /* | 70 | /* |
| 64 | * ftrace_disabled is set when an anomaly is discovered. | 71 | * ftrace_disabled is set when an anomaly is discovered. |
| 65 | * ftrace_disabled is much stronger than ftrace_enabled. | 72 | * ftrace_disabled is much stronger than ftrace_enabled. |
| @@ -78,6 +85,10 @@ ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; | |||
| 78 | ftrace_func_t __ftrace_trace_function __read_mostly = ftrace_stub; | 85 | ftrace_func_t __ftrace_trace_function __read_mostly = ftrace_stub; |
| 79 | ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub; | 86 | ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub; |
| 80 | 87 | ||
| 88 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
| 89 | static int ftrace_set_func(unsigned long *array, int *idx, char *buffer); | ||
| 90 | #endif | ||
| 91 | |||
| 81 | static void ftrace_list_func(unsigned long ip, unsigned long parent_ip) | 92 | static void ftrace_list_func(unsigned long ip, unsigned long parent_ip) |
| 82 | { | 93 | { |
| 83 | struct ftrace_ops *op = ftrace_list; | 94 | struct ftrace_ops *op = ftrace_list; |
| @@ -155,7 +166,7 @@ static int __register_ftrace_function(struct ftrace_ops *ops) | |||
| 155 | else | 166 | else |
| 156 | func = ftrace_list_func; | 167 | func = ftrace_list_func; |
| 157 | 168 | ||
| 158 | if (ftrace_pid_trace) { | 169 | if (!list_empty(&ftrace_pids)) { |
| 159 | set_ftrace_pid_function(func); | 170 | set_ftrace_pid_function(func); |
| 160 | func = ftrace_pid_func; | 171 | func = ftrace_pid_func; |
| 161 | } | 172 | } |
| @@ -203,7 +214,7 @@ static int __unregister_ftrace_function(struct ftrace_ops *ops) | |||
| 203 | if (ftrace_list->next == &ftrace_list_end) { | 214 | if (ftrace_list->next == &ftrace_list_end) { |
| 204 | ftrace_func_t func = ftrace_list->func; | 215 | ftrace_func_t func = ftrace_list->func; |
| 205 | 216 | ||
| 206 | if (ftrace_pid_trace) { | 217 | if (!list_empty(&ftrace_pids)) { |
| 207 | set_ftrace_pid_function(func); | 218 | set_ftrace_pid_function(func); |
| 208 | func = ftrace_pid_func; | 219 | func = ftrace_pid_func; |
| 209 | } | 220 | } |
| @@ -225,9 +236,13 @@ static void ftrace_update_pid_func(void) | |||
| 225 | if (ftrace_trace_function == ftrace_stub) | 236 | if (ftrace_trace_function == ftrace_stub) |
| 226 | return; | 237 | return; |
| 227 | 238 | ||
| 239 | #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST | ||
| 228 | func = ftrace_trace_function; | 240 | func = ftrace_trace_function; |
| 241 | #else | ||
| 242 | func = __ftrace_trace_function; | ||
| 243 | #endif | ||
| 229 | 244 | ||
| 230 | if (ftrace_pid_trace) { | 245 | if (!list_empty(&ftrace_pids)) { |
| 231 | set_ftrace_pid_function(func); | 246 | set_ftrace_pid_function(func); |
| 232 | func = ftrace_pid_func; | 247 | func = ftrace_pid_func; |
| 233 | } else { | 248 | } else { |
| @@ -736,7 +751,7 @@ ftrace_profile_write(struct file *filp, const char __user *ubuf, | |||
| 736 | out: | 751 | out: |
| 737 | mutex_unlock(&ftrace_profile_lock); | 752 | mutex_unlock(&ftrace_profile_lock); |
| 738 | 753 | ||
| 739 | filp->f_pos += cnt; | 754 | *ppos += cnt; |
| 740 | 755 | ||
| 741 | return cnt; | 756 | return cnt; |
| 742 | } | 757 | } |
| @@ -817,8 +832,6 @@ static __init void ftrace_profile_debugfs(struct dentry *d_tracer) | |||
| 817 | } | 832 | } |
| 818 | #endif /* CONFIG_FUNCTION_PROFILER */ | 833 | #endif /* CONFIG_FUNCTION_PROFILER */ |
| 819 | 834 | ||
| 820 | /* set when tracing only a pid */ | ||
| 821 | struct pid *ftrace_pid_trace; | ||
| 822 | static struct pid * const ftrace_swapper_pid = &init_struct_pid; | 835 | static struct pid * const ftrace_swapper_pid = &init_struct_pid; |
| 823 | 836 | ||
| 824 | #ifdef CONFIG_DYNAMIC_FTRACE | 837 | #ifdef CONFIG_DYNAMIC_FTRACE |
| @@ -1074,14 +1087,9 @@ static void ftrace_replace_code(int enable) | |||
| 1074 | failed = __ftrace_replace_code(rec, enable); | 1087 | failed = __ftrace_replace_code(rec, enable); |
| 1075 | if (failed) { | 1088 | if (failed) { |
| 1076 | rec->flags |= FTRACE_FL_FAILED; | 1089 | rec->flags |= FTRACE_FL_FAILED; |
| 1077 | if ((system_state == SYSTEM_BOOTING) || | 1090 | ftrace_bug(failed, rec->ip); |
| 1078 | !core_kernel_text(rec->ip)) { | 1091 | /* Stop processing */ |
| 1079 | ftrace_free_rec(rec); | 1092 | return; |
| 1080 | } else { | ||
| 1081 | ftrace_bug(failed, rec->ip); | ||
| 1082 | /* Stop processing */ | ||
| 1083 | return; | ||
| 1084 | } | ||
| 1085 | } | 1093 | } |
| 1086 | } while_for_each_ftrace_rec(); | 1094 | } while_for_each_ftrace_rec(); |
| 1087 | } | 1095 | } |
| @@ -1262,12 +1270,34 @@ static int ftrace_update_code(struct module *mod) | |||
| 1262 | ftrace_new_addrs = p->newlist; | 1270 | ftrace_new_addrs = p->newlist; |
| 1263 | p->flags = 0L; | 1271 | p->flags = 0L; |
| 1264 | 1272 | ||
| 1265 | /* convert record (i.e, patch mcount-call with NOP) */ | 1273 | /* |
| 1266 | if (ftrace_code_disable(mod, p)) { | 1274 | * Do the initial record convertion from mcount jump |
| 1267 | p->flags |= FTRACE_FL_CONVERTED; | 1275 | * to the NOP instructions. |
| 1268 | ftrace_update_cnt++; | 1276 | */ |
| 1269 | } else | 1277 | if (!ftrace_code_disable(mod, p)) { |
| 1270 | ftrace_free_rec(p); | 1278 | ftrace_free_rec(p); |
| 1279 | continue; | ||
| 1280 | } | ||
| 1281 | |||
| 1282 | p->flags |= FTRACE_FL_CONVERTED; | ||
| 1283 | ftrace_update_cnt++; | ||
| 1284 | |||
| 1285 | /* | ||
| 1286 | * If the tracing is enabled, go ahead and enable the record. | ||
| 1287 | * | ||
| 1288 | * The reason not to enable the record immediatelly is the | ||
| 1289 | * inherent check of ftrace_make_nop/ftrace_make_call for | ||
| 1290 | * correct previous instructions. Making first the NOP | ||
| 1291 | * conversion puts the module to the correct state, thus | ||
| 1292 | * passing the ftrace_make_call check. | ||
| 1293 | */ | ||
| 1294 | if (ftrace_start_up) { | ||
| 1295 | int failed = __ftrace_replace_code(p, 1); | ||
| 1296 | if (failed) { | ||
| 1297 | ftrace_bug(failed, p->ip); | ||
| 1298 | ftrace_free_rec(p); | ||
| 1299 | } | ||
| 1300 | } | ||
| 1271 | } | 1301 | } |
| 1272 | 1302 | ||
| 1273 | stop = ftrace_now(raw_smp_processor_id()); | 1303 | stop = ftrace_now(raw_smp_processor_id()); |
| @@ -1323,11 +1353,10 @@ static int __init ftrace_dyn_table_alloc(unsigned long num_to_init) | |||
| 1323 | 1353 | ||
| 1324 | enum { | 1354 | enum { |
| 1325 | FTRACE_ITER_FILTER = (1 << 0), | 1355 | FTRACE_ITER_FILTER = (1 << 0), |
| 1326 | FTRACE_ITER_CONT = (1 << 1), | 1356 | FTRACE_ITER_NOTRACE = (1 << 1), |
| 1327 | FTRACE_ITER_NOTRACE = (1 << 2), | 1357 | FTRACE_ITER_FAILURES = (1 << 2), |
| 1328 | FTRACE_ITER_FAILURES = (1 << 3), | 1358 | FTRACE_ITER_PRINTALL = (1 << 3), |
| 1329 | FTRACE_ITER_PRINTALL = (1 << 4), | 1359 | FTRACE_ITER_HASH = (1 << 4), |
| 1330 | FTRACE_ITER_HASH = (1 << 5), | ||
| 1331 | }; | 1360 | }; |
| 1332 | 1361 | ||
| 1333 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ | 1362 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ |
| @@ -1337,8 +1366,7 @@ struct ftrace_iterator { | |||
| 1337 | int hidx; | 1366 | int hidx; |
| 1338 | int idx; | 1367 | int idx; |
| 1339 | unsigned flags; | 1368 | unsigned flags; |
| 1340 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 1369 | struct trace_parser parser; |
| 1341 | unsigned buffer_idx; | ||
| 1342 | }; | 1370 | }; |
| 1343 | 1371 | ||
| 1344 | static void * | 1372 | static void * |
| @@ -1407,7 +1435,7 @@ static int t_hash_show(struct seq_file *m, void *v) | |||
| 1407 | if (rec->ops->print) | 1435 | if (rec->ops->print) |
| 1408 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); | 1436 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); |
| 1409 | 1437 | ||
| 1410 | seq_printf(m, "%pf:%pf", (void *)rec->ip, (void *)rec->ops->func); | 1438 | seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func); |
| 1411 | 1439 | ||
| 1412 | if (rec->data) | 1440 | if (rec->data) |
| 1413 | seq_printf(m, ":%p", rec->data); | 1441 | seq_printf(m, ":%p", rec->data); |
| @@ -1517,12 +1545,12 @@ static int t_show(struct seq_file *m, void *v) | |||
| 1517 | if (!rec) | 1545 | if (!rec) |
| 1518 | return 0; | 1546 | return 0; |
| 1519 | 1547 | ||
| 1520 | seq_printf(m, "%pf\n", (void *)rec->ip); | 1548 | seq_printf(m, "%ps\n", (void *)rec->ip); |
| 1521 | 1549 | ||
| 1522 | return 0; | 1550 | return 0; |
| 1523 | } | 1551 | } |
| 1524 | 1552 | ||
| 1525 | static struct seq_operations show_ftrace_seq_ops = { | 1553 | static const struct seq_operations show_ftrace_seq_ops = { |
| 1526 | .start = t_start, | 1554 | .start = t_start, |
| 1527 | .next = t_next, | 1555 | .next = t_next, |
| 1528 | .stop = t_stop, | 1556 | .stop = t_stop, |
| @@ -1604,6 +1632,11 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
| 1604 | if (!iter) | 1632 | if (!iter) |
| 1605 | return -ENOMEM; | 1633 | return -ENOMEM; |
| 1606 | 1634 | ||
| 1635 | if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) { | ||
| 1636 | kfree(iter); | ||
| 1637 | return -ENOMEM; | ||
| 1638 | } | ||
| 1639 | |||
| 1607 | mutex_lock(&ftrace_regex_lock); | 1640 | mutex_lock(&ftrace_regex_lock); |
| 1608 | if ((file->f_mode & FMODE_WRITE) && | 1641 | if ((file->f_mode & FMODE_WRITE) && |
| 1609 | (file->f_flags & O_TRUNC)) | 1642 | (file->f_flags & O_TRUNC)) |
| @@ -1618,8 +1651,10 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
| 1618 | if (!ret) { | 1651 | if (!ret) { |
| 1619 | struct seq_file *m = file->private_data; | 1652 | struct seq_file *m = file->private_data; |
| 1620 | m->private = iter; | 1653 | m->private = iter; |
| 1621 | } else | 1654 | } else { |
| 1655 | trace_parser_put(&iter->parser); | ||
| 1622 | kfree(iter); | 1656 | kfree(iter); |
| 1657 | } | ||
| 1623 | } else | 1658 | } else |
| 1624 | file->private_data = iter; | 1659 | file->private_data = iter; |
| 1625 | mutex_unlock(&ftrace_regex_lock); | 1660 | mutex_unlock(&ftrace_regex_lock); |
| @@ -1652,60 +1687,6 @@ ftrace_regex_lseek(struct file *file, loff_t offset, int origin) | |||
| 1652 | return ret; | 1687 | return ret; |
| 1653 | } | 1688 | } |
| 1654 | 1689 | ||
| 1655 | enum { | ||
| 1656 | MATCH_FULL, | ||
| 1657 | MATCH_FRONT_ONLY, | ||
| 1658 | MATCH_MIDDLE_ONLY, | ||
| 1659 | MATCH_END_ONLY, | ||
| 1660 | }; | ||
| 1661 | |||
| 1662 | /* | ||
| 1663 | * (static function - no need for kernel doc) | ||
| 1664 | * | ||
| 1665 | * Pass in a buffer containing a glob and this function will | ||
| 1666 | * set search to point to the search part of the buffer and | ||
| 1667 | * return the type of search it is (see enum above). | ||
| 1668 | * This does modify buff. | ||
| 1669 | * | ||
| 1670 | * Returns enum type. | ||
| 1671 | * search returns the pointer to use for comparison. | ||
| 1672 | * not returns 1 if buff started with a '!' | ||
| 1673 | * 0 otherwise. | ||
| 1674 | */ | ||
| 1675 | static int | ||
| 1676 | ftrace_setup_glob(char *buff, int len, char **search, int *not) | ||
| 1677 | { | ||
| 1678 | int type = MATCH_FULL; | ||
| 1679 | int i; | ||
| 1680 | |||
| 1681 | if (buff[0] == '!') { | ||
| 1682 | *not = 1; | ||
| 1683 | buff++; | ||
| 1684 | len--; | ||
| 1685 | } else | ||
| 1686 | *not = 0; | ||
| 1687 | |||
| 1688 | *search = buff; | ||
| 1689 | |||
| 1690 | for (i = 0; i < len; i++) { | ||
| 1691 | if (buff[i] == '*') { | ||
| 1692 | if (!i) { | ||
| 1693 | *search = buff + 1; | ||
| 1694 | type = MATCH_END_ONLY; | ||
| 1695 | } else { | ||
| 1696 | if (type == MATCH_END_ONLY) | ||
| 1697 | type = MATCH_MIDDLE_ONLY; | ||
| 1698 | else | ||
| 1699 | type = MATCH_FRONT_ONLY; | ||
| 1700 | buff[i] = 0; | ||
| 1701 | break; | ||
| 1702 | } | ||
| 1703 | } | ||
| 1704 | } | ||
| 1705 | |||
| 1706 | return type; | ||
| 1707 | } | ||
| 1708 | |||
| 1709 | static int ftrace_match(char *str, char *regex, int len, int type) | 1690 | static int ftrace_match(char *str, char *regex, int len, int type) |
| 1710 | { | 1691 | { |
| 1711 | int matched = 0; | 1692 | int matched = 0; |
| @@ -1754,7 +1735,7 @@ static void ftrace_match_records(char *buff, int len, int enable) | |||
| 1754 | int not; | 1735 | int not; |
| 1755 | 1736 | ||
| 1756 | flag = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE; | 1737 | flag = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE; |
| 1757 | type = ftrace_setup_glob(buff, len, &search, ¬); | 1738 | type = filter_parse_regex(buff, len, &search, ¬); |
| 1758 | 1739 | ||
| 1759 | search_len = strlen(search); | 1740 | search_len = strlen(search); |
| 1760 | 1741 | ||
| @@ -1822,7 +1803,7 @@ static void ftrace_match_module_records(char *buff, char *mod, int enable) | |||
| 1822 | } | 1803 | } |
| 1823 | 1804 | ||
| 1824 | if (strlen(buff)) { | 1805 | if (strlen(buff)) { |
| 1825 | type = ftrace_setup_glob(buff, strlen(buff), &search, ¬); | 1806 | type = filter_parse_regex(buff, strlen(buff), &search, ¬); |
| 1826 | search_len = strlen(search); | 1807 | search_len = strlen(search); |
| 1827 | } | 1808 | } |
| 1828 | 1809 | ||
| @@ -1987,7 +1968,7 @@ register_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops, | |||
| 1987 | int count = 0; | 1968 | int count = 0; |
| 1988 | char *search; | 1969 | char *search; |
| 1989 | 1970 | ||
| 1990 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); | 1971 | type = filter_parse_regex(glob, strlen(glob), &search, ¬); |
| 1991 | len = strlen(search); | 1972 | len = strlen(search); |
| 1992 | 1973 | ||
| 1993 | /* we do not support '!' for function probes */ | 1974 | /* we do not support '!' for function probes */ |
| @@ -2059,12 +2040,12 @@ __unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops, | |||
| 2059 | int i, len = 0; | 2040 | int i, len = 0; |
| 2060 | char *search; | 2041 | char *search; |
| 2061 | 2042 | ||
| 2062 | if (glob && (strcmp(glob, "*") || !strlen(glob))) | 2043 | if (glob && (strcmp(glob, "*") == 0 || !strlen(glob))) |
| 2063 | glob = NULL; | 2044 | glob = NULL; |
| 2064 | else { | 2045 | else if (glob) { |
| 2065 | int not; | 2046 | int not; |
| 2066 | 2047 | ||
| 2067 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); | 2048 | type = filter_parse_regex(glob, strlen(glob), &search, ¬); |
| 2068 | len = strlen(search); | 2049 | len = strlen(search); |
| 2069 | 2050 | ||
| 2070 | /* we do not support '!' for function probes */ | 2051 | /* we do not support '!' for function probes */ |
| @@ -2196,11 +2177,10 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2196 | size_t cnt, loff_t *ppos, int enable) | 2177 | size_t cnt, loff_t *ppos, int enable) |
| 2197 | { | 2178 | { |
| 2198 | struct ftrace_iterator *iter; | 2179 | struct ftrace_iterator *iter; |
| 2199 | char ch; | 2180 | struct trace_parser *parser; |
| 2200 | size_t read = 0; | 2181 | ssize_t ret, read; |
| 2201 | ssize_t ret; | ||
| 2202 | 2182 | ||
| 2203 | if (!cnt || cnt < 0) | 2183 | if (!cnt) |
| 2204 | return 0; | 2184 | return 0; |
| 2205 | 2185 | ||
| 2206 | mutex_lock(&ftrace_regex_lock); | 2186 | mutex_lock(&ftrace_regex_lock); |
| @@ -2211,70 +2191,21 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2211 | } else | 2191 | } else |
| 2212 | iter = file->private_data; | 2192 | iter = file->private_data; |
| 2213 | 2193 | ||
| 2214 | if (!*ppos) { | 2194 | parser = &iter->parser; |
| 2215 | iter->flags &= ~FTRACE_ITER_CONT; | 2195 | read = trace_get_user(parser, ubuf, cnt, ppos); |
| 2216 | iter->buffer_idx = 0; | ||
| 2217 | } | ||
| 2218 | |||
| 2219 | ret = get_user(ch, ubuf++); | ||
| 2220 | if (ret) | ||
| 2221 | goto out; | ||
| 2222 | read++; | ||
| 2223 | cnt--; | ||
| 2224 | 2196 | ||
| 2225 | /* | 2197 | if (read >= 0 && trace_parser_loaded(parser) && |
| 2226 | * If the parser haven't finished with the last write, | 2198 | !trace_parser_cont(parser)) { |
| 2227 | * continue reading the user input without skipping spaces. | 2199 | ret = ftrace_process_regex(parser->buffer, |
| 2228 | */ | 2200 | parser->idx, enable); |
| 2229 | if (!(iter->flags & FTRACE_ITER_CONT)) { | ||
| 2230 | /* skip white space */ | ||
| 2231 | while (cnt && isspace(ch)) { | ||
| 2232 | ret = get_user(ch, ubuf++); | ||
| 2233 | if (ret) | ||
| 2234 | goto out; | ||
| 2235 | read++; | ||
| 2236 | cnt--; | ||
| 2237 | } | ||
| 2238 | |||
| 2239 | /* only spaces were written */ | ||
| 2240 | if (isspace(ch)) { | ||
| 2241 | *ppos += read; | ||
| 2242 | ret = read; | ||
| 2243 | goto out; | ||
| 2244 | } | ||
| 2245 | |||
| 2246 | iter->buffer_idx = 0; | ||
| 2247 | } | ||
| 2248 | |||
| 2249 | while (cnt && !isspace(ch)) { | ||
| 2250 | if (iter->buffer_idx < FTRACE_BUFF_MAX) | ||
| 2251 | iter->buffer[iter->buffer_idx++] = ch; | ||
| 2252 | else { | ||
| 2253 | ret = -EINVAL; | ||
| 2254 | goto out; | ||
| 2255 | } | ||
| 2256 | ret = get_user(ch, ubuf++); | ||
| 2257 | if (ret) | 2201 | if (ret) |
| 2258 | goto out; | 2202 | goto out_unlock; |
| 2259 | read++; | ||
| 2260 | cnt--; | ||
| 2261 | } | ||
| 2262 | 2203 | ||
| 2263 | if (isspace(ch)) { | 2204 | trace_parser_clear(parser); |
| 2264 | iter->buffer[iter->buffer_idx] = 0; | ||
| 2265 | ret = ftrace_process_regex(iter->buffer, | ||
| 2266 | iter->buffer_idx, enable); | ||
| 2267 | if (ret) | ||
| 2268 | goto out; | ||
| 2269 | iter->buffer_idx = 0; | ||
| 2270 | } else { | ||
| 2271 | iter->flags |= FTRACE_ITER_CONT; | ||
| 2272 | iter->buffer[iter->buffer_idx++] = ch; | ||
| 2273 | } | 2205 | } |
| 2274 | 2206 | ||
| 2275 | *ppos += read; | ||
| 2276 | ret = read; | 2207 | ret = read; |
| 2277 | out: | 2208 | out_unlock: |
| 2278 | mutex_unlock(&ftrace_regex_lock); | 2209 | mutex_unlock(&ftrace_regex_lock); |
| 2279 | 2210 | ||
| 2280 | return ret; | 2211 | return ret; |
| @@ -2358,6 +2289,32 @@ static int __init set_ftrace_filter(char *str) | |||
| 2358 | } | 2289 | } |
| 2359 | __setup("ftrace_filter=", set_ftrace_filter); | 2290 | __setup("ftrace_filter=", set_ftrace_filter); |
| 2360 | 2291 | ||
| 2292 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
| 2293 | static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; | ||
| 2294 | static int __init set_graph_function(char *str) | ||
| 2295 | { | ||
| 2296 | strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); | ||
| 2297 | return 1; | ||
| 2298 | } | ||
| 2299 | __setup("ftrace_graph_filter=", set_graph_function); | ||
| 2300 | |||
| 2301 | static void __init set_ftrace_early_graph(char *buf) | ||
| 2302 | { | ||
| 2303 | int ret; | ||
| 2304 | char *func; | ||
| 2305 | |||
| 2306 | while (buf) { | ||
| 2307 | func = strsep(&buf, ","); | ||
| 2308 | /* we allow only one expression at a time */ | ||
| 2309 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, | ||
| 2310 | func); | ||
| 2311 | if (ret) | ||
| 2312 | printk(KERN_DEBUG "ftrace: function %s not " | ||
| 2313 | "traceable\n", func); | ||
| 2314 | } | ||
| 2315 | } | ||
| 2316 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | ||
| 2317 | |||
| 2361 | static void __init set_ftrace_early_filter(char *buf, int enable) | 2318 | static void __init set_ftrace_early_filter(char *buf, int enable) |
| 2362 | { | 2319 | { |
| 2363 | char *func; | 2320 | char *func; |
| @@ -2374,6 +2331,10 @@ static void __init set_ftrace_early_filters(void) | |||
| 2374 | set_ftrace_early_filter(ftrace_filter_buf, 1); | 2331 | set_ftrace_early_filter(ftrace_filter_buf, 1); |
| 2375 | if (ftrace_notrace_buf[0]) | 2332 | if (ftrace_notrace_buf[0]) |
| 2376 | set_ftrace_early_filter(ftrace_notrace_buf, 0); | 2333 | set_ftrace_early_filter(ftrace_notrace_buf, 0); |
| 2334 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
| 2335 | if (ftrace_graph_buf[0]) | ||
| 2336 | set_ftrace_early_graph(ftrace_graph_buf); | ||
| 2337 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | ||
| 2377 | } | 2338 | } |
| 2378 | 2339 | ||
| 2379 | static int | 2340 | static int |
| @@ -2381,6 +2342,7 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2381 | { | 2342 | { |
| 2382 | struct seq_file *m = (struct seq_file *)file->private_data; | 2343 | struct seq_file *m = (struct seq_file *)file->private_data; |
| 2383 | struct ftrace_iterator *iter; | 2344 | struct ftrace_iterator *iter; |
| 2345 | struct trace_parser *parser; | ||
| 2384 | 2346 | ||
| 2385 | mutex_lock(&ftrace_regex_lock); | 2347 | mutex_lock(&ftrace_regex_lock); |
| 2386 | if (file->f_mode & FMODE_READ) { | 2348 | if (file->f_mode & FMODE_READ) { |
| @@ -2390,9 +2352,10 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2390 | } else | 2352 | } else |
| 2391 | iter = file->private_data; | 2353 | iter = file->private_data; |
| 2392 | 2354 | ||
| 2393 | if (iter->buffer_idx) { | 2355 | parser = &iter->parser; |
| 2394 | iter->buffer[iter->buffer_idx] = 0; | 2356 | if (trace_parser_loaded(parser)) { |
| 2395 | ftrace_match_records(iter->buffer, iter->buffer_idx, enable); | 2357 | parser->buffer[parser->idx] = 0; |
| 2358 | ftrace_match_records(parser->buffer, parser->idx, enable); | ||
| 2396 | } | 2359 | } |
| 2397 | 2360 | ||
| 2398 | mutex_lock(&ftrace_lock); | 2361 | mutex_lock(&ftrace_lock); |
| @@ -2400,7 +2363,9 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2400 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); | 2363 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); |
| 2401 | mutex_unlock(&ftrace_lock); | 2364 | mutex_unlock(&ftrace_lock); |
| 2402 | 2365 | ||
| 2366 | trace_parser_put(parser); | ||
| 2403 | kfree(iter); | 2367 | kfree(iter); |
| 2368 | |||
| 2404 | mutex_unlock(&ftrace_regex_lock); | 2369 | mutex_unlock(&ftrace_regex_lock); |
| 2405 | return 0; | 2370 | return 0; |
| 2406 | } | 2371 | } |
| @@ -2457,11 +2422,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
| 2457 | static void * | 2422 | static void * |
| 2458 | __g_next(struct seq_file *m, loff_t *pos) | 2423 | __g_next(struct seq_file *m, loff_t *pos) |
| 2459 | { | 2424 | { |
| 2460 | unsigned long *array = m->private; | ||
| 2461 | |||
| 2462 | if (*pos >= ftrace_graph_count) | 2425 | if (*pos >= ftrace_graph_count) |
| 2463 | return NULL; | 2426 | return NULL; |
| 2464 | return &array[*pos]; | 2427 | return &ftrace_graph_funcs[*pos]; |
| 2465 | } | 2428 | } |
| 2466 | 2429 | ||
| 2467 | static void * | 2430 | static void * |
| @@ -2499,12 +2462,12 @@ static int g_show(struct seq_file *m, void *v) | |||
| 2499 | return 0; | 2462 | return 0; |
| 2500 | } | 2463 | } |
| 2501 | 2464 | ||
| 2502 | seq_printf(m, "%pf\n", v); | 2465 | seq_printf(m, "%ps\n", (void *)*ptr); |
| 2503 | 2466 | ||
| 2504 | return 0; | 2467 | return 0; |
| 2505 | } | 2468 | } |
| 2506 | 2469 | ||
| 2507 | static struct seq_operations ftrace_graph_seq_ops = { | 2470 | static const struct seq_operations ftrace_graph_seq_ops = { |
| 2508 | .start = g_start, | 2471 | .start = g_start, |
| 2509 | .next = g_next, | 2472 | .next = g_next, |
| 2510 | .stop = g_stop, | 2473 | .stop = g_stop, |
| @@ -2525,16 +2488,10 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
| 2525 | ftrace_graph_count = 0; | 2488 | ftrace_graph_count = 0; |
| 2526 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2489 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
| 2527 | } | 2490 | } |
| 2491 | mutex_unlock(&graph_lock); | ||
| 2528 | 2492 | ||
| 2529 | if (file->f_mode & FMODE_READ) { | 2493 | if (file->f_mode & FMODE_READ) |
| 2530 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2494 | ret = seq_open(file, &ftrace_graph_seq_ops); |
| 2531 | if (!ret) { | ||
| 2532 | struct seq_file *m = file->private_data; | ||
| 2533 | m->private = ftrace_graph_funcs; | ||
| 2534 | } | ||
| 2535 | } else | ||
| 2536 | file->private_data = ftrace_graph_funcs; | ||
| 2537 | mutex_unlock(&graph_lock); | ||
| 2538 | 2495 | ||
| 2539 | return ret; | 2496 | return ret; |
| 2540 | } | 2497 | } |
| @@ -2563,7 +2520,7 @@ ftrace_set_func(unsigned long *array, int *idx, char *buffer) | |||
| 2563 | return -ENODEV; | 2520 | return -ENODEV; |
| 2564 | 2521 | ||
| 2565 | /* decode regex */ | 2522 | /* decode regex */ |
| 2566 | type = ftrace_setup_glob(buffer, strlen(buffer), &search, ¬); | 2523 | type = filter_parse_regex(buffer, strlen(buffer), &search, ¬); |
| 2567 | if (not) | 2524 | if (not) |
| 2568 | return -EINVAL; | 2525 | return -EINVAL; |
| 2569 | 2526 | ||
| @@ -2602,12 +2559,8 @@ static ssize_t | |||
| 2602 | ftrace_graph_write(struct file *file, const char __user *ubuf, | 2559 | ftrace_graph_write(struct file *file, const char __user *ubuf, |
| 2603 | size_t cnt, loff_t *ppos) | 2560 | size_t cnt, loff_t *ppos) |
| 2604 | { | 2561 | { |
| 2605 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 2562 | struct trace_parser parser; |
| 2606 | unsigned long *array; | 2563 | ssize_t read, ret; |
| 2607 | size_t read = 0; | ||
| 2608 | ssize_t ret; | ||
| 2609 | int index = 0; | ||
| 2610 | char ch; | ||
| 2611 | 2564 | ||
| 2612 | if (!cnt || cnt < 0) | 2565 | if (!cnt || cnt < 0) |
| 2613 | return 0; | 2566 | return 0; |
| @@ -2616,60 +2569,31 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
| 2616 | 2569 | ||
| 2617 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { | 2570 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { |
| 2618 | ret = -EBUSY; | 2571 | ret = -EBUSY; |
| 2619 | goto out; | 2572 | goto out_unlock; |
| 2620 | } | 2573 | } |
| 2621 | 2574 | ||
| 2622 | if (file->f_mode & FMODE_READ) { | 2575 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
| 2623 | struct seq_file *m = file->private_data; | 2576 | ret = -ENOMEM; |
| 2624 | array = m->private; | 2577 | goto out_unlock; |
| 2625 | } else | ||
| 2626 | array = file->private_data; | ||
| 2627 | |||
| 2628 | ret = get_user(ch, ubuf++); | ||
| 2629 | if (ret) | ||
| 2630 | goto out; | ||
| 2631 | read++; | ||
| 2632 | cnt--; | ||
| 2633 | |||
| 2634 | /* skip white space */ | ||
| 2635 | while (cnt && isspace(ch)) { | ||
| 2636 | ret = get_user(ch, ubuf++); | ||
| 2637 | if (ret) | ||
| 2638 | goto out; | ||
| 2639 | read++; | ||
| 2640 | cnt--; | ||
| 2641 | } | 2578 | } |
| 2642 | 2579 | ||
| 2643 | if (isspace(ch)) { | 2580 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 2644 | *ppos += read; | ||
| 2645 | ret = read; | ||
| 2646 | goto out; | ||
| 2647 | } | ||
| 2648 | 2581 | ||
| 2649 | while (cnt && !isspace(ch)) { | 2582 | if (read >= 0 && trace_parser_loaded((&parser))) { |
| 2650 | if (index < FTRACE_BUFF_MAX) | 2583 | parser.buffer[parser.idx] = 0; |
| 2651 | buffer[index++] = ch; | 2584 | |
| 2652 | else { | 2585 | /* we allow only one expression at a time */ |
| 2653 | ret = -EINVAL; | 2586 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
| 2654 | goto out; | 2587 | parser.buffer); |
| 2655 | } | ||
| 2656 | ret = get_user(ch, ubuf++); | ||
| 2657 | if (ret) | 2588 | if (ret) |
| 2658 | goto out; | 2589 | goto out_free; |
| 2659 | read++; | ||
| 2660 | cnt--; | ||
| 2661 | } | 2590 | } |
| 2662 | buffer[index] = 0; | ||
| 2663 | |||
| 2664 | /* we allow only one expression at a time */ | ||
| 2665 | ret = ftrace_set_func(array, &ftrace_graph_count, buffer); | ||
| 2666 | if (ret) | ||
| 2667 | goto out; | ||
| 2668 | |||
| 2669 | file->f_pos += read; | ||
| 2670 | 2591 | ||
| 2671 | ret = read; | 2592 | ret = read; |
| 2672 | out: | 2593 | |
| 2594 | out_free: | ||
| 2595 | trace_parser_put(&parser); | ||
| 2596 | out_unlock: | ||
| 2673 | mutex_unlock(&graph_lock); | 2597 | mutex_unlock(&graph_lock); |
| 2674 | 2598 | ||
| 2675 | return ret; | 2599 | return ret; |
| @@ -2707,7 +2631,7 @@ static __init int ftrace_init_dyn_debugfs(struct dentry *d_tracer) | |||
| 2707 | return 0; | 2631 | return 0; |
| 2708 | } | 2632 | } |
| 2709 | 2633 | ||
| 2710 | static int ftrace_convert_nops(struct module *mod, | 2634 | static int ftrace_process_locs(struct module *mod, |
| 2711 | unsigned long *start, | 2635 | unsigned long *start, |
| 2712 | unsigned long *end) | 2636 | unsigned long *end) |
| 2713 | { | 2637 | { |
| @@ -2740,19 +2664,17 @@ static int ftrace_convert_nops(struct module *mod, | |||
| 2740 | } | 2664 | } |
| 2741 | 2665 | ||
| 2742 | #ifdef CONFIG_MODULES | 2666 | #ifdef CONFIG_MODULES |
| 2743 | void ftrace_release(void *start, void *end) | 2667 | void ftrace_release_mod(struct module *mod) |
| 2744 | { | 2668 | { |
| 2745 | struct dyn_ftrace *rec; | 2669 | struct dyn_ftrace *rec; |
| 2746 | struct ftrace_page *pg; | 2670 | struct ftrace_page *pg; |
| 2747 | unsigned long s = (unsigned long)start; | ||
| 2748 | unsigned long e = (unsigned long)end; | ||
| 2749 | 2671 | ||
| 2750 | if (ftrace_disabled || !start || start == end) | 2672 | if (ftrace_disabled) |
| 2751 | return; | 2673 | return; |
| 2752 | 2674 | ||
| 2753 | mutex_lock(&ftrace_lock); | 2675 | mutex_lock(&ftrace_lock); |
| 2754 | do_for_each_ftrace_rec(pg, rec) { | 2676 | do_for_each_ftrace_rec(pg, rec) { |
| 2755 | if ((rec->ip >= s) && (rec->ip < e)) { | 2677 | if (within_module_core(rec->ip, mod)) { |
| 2756 | /* | 2678 | /* |
| 2757 | * rec->ip is changed in ftrace_free_rec() | 2679 | * rec->ip is changed in ftrace_free_rec() |
| 2758 | * It should not between s and e if record was freed. | 2680 | * It should not between s and e if record was freed. |
| @@ -2769,7 +2691,7 @@ static void ftrace_init_module(struct module *mod, | |||
| 2769 | { | 2691 | { |
| 2770 | if (ftrace_disabled || start == end) | 2692 | if (ftrace_disabled || start == end) |
| 2771 | return; | 2693 | return; |
| 2772 | ftrace_convert_nops(mod, start, end); | 2694 | ftrace_process_locs(mod, start, end); |
| 2773 | } | 2695 | } |
| 2774 | 2696 | ||
| 2775 | static int ftrace_module_notify(struct notifier_block *self, | 2697 | static int ftrace_module_notify(struct notifier_block *self, |
| @@ -2784,9 +2706,7 @@ static int ftrace_module_notify(struct notifier_block *self, | |||
| 2784 | mod->num_ftrace_callsites); | 2706 | mod->num_ftrace_callsites); |
| 2785 | break; | 2707 | break; |
| 2786 | case MODULE_STATE_GOING: | 2708 | case MODULE_STATE_GOING: |
| 2787 | ftrace_release(mod->ftrace_callsites, | 2709 | ftrace_release_mod(mod); |
| 2788 | mod->ftrace_callsites + | ||
| 2789 | mod->num_ftrace_callsites); | ||
| 2790 | break; | 2710 | break; |
| 2791 | } | 2711 | } |
| 2792 | 2712 | ||
| @@ -2832,7 +2752,7 @@ void __init ftrace_init(void) | |||
| 2832 | 2752 | ||
| 2833 | last_ftrace_enabled = ftrace_enabled = 1; | 2753 | last_ftrace_enabled = ftrace_enabled = 1; |
| 2834 | 2754 | ||
| 2835 | ret = ftrace_convert_nops(NULL, | 2755 | ret = ftrace_process_locs(NULL, |
| 2836 | __start_mcount_loc, | 2756 | __start_mcount_loc, |
| 2837 | __stop_mcount_loc); | 2757 | __stop_mcount_loc); |
| 2838 | 2758 | ||
| @@ -2865,23 +2785,6 @@ static inline void ftrace_startup_enable(int command) { } | |||
| 2865 | # define ftrace_shutdown_sysctl() do { } while (0) | 2785 | # define ftrace_shutdown_sysctl() do { } while (0) |
| 2866 | #endif /* CONFIG_DYNAMIC_FTRACE */ | 2786 | #endif /* CONFIG_DYNAMIC_FTRACE */ |
| 2867 | 2787 | ||
| 2868 | static ssize_t | ||
| 2869 | ftrace_pid_read(struct file *file, char __user *ubuf, | ||
| 2870 | size_t cnt, loff_t *ppos) | ||
| 2871 | { | ||
| 2872 | char buf[64]; | ||
| 2873 | int r; | ||
| 2874 | |||
| 2875 | if (ftrace_pid_trace == ftrace_swapper_pid) | ||
| 2876 | r = sprintf(buf, "swapper tasks\n"); | ||
| 2877 | else if (ftrace_pid_trace) | ||
| 2878 | r = sprintf(buf, "%u\n", pid_vnr(ftrace_pid_trace)); | ||
| 2879 | else | ||
| 2880 | r = sprintf(buf, "no pid\n"); | ||
| 2881 | |||
| 2882 | return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); | ||
| 2883 | } | ||
| 2884 | |||
| 2885 | static void clear_ftrace_swapper(void) | 2788 | static void clear_ftrace_swapper(void) |
| 2886 | { | 2789 | { |
| 2887 | struct task_struct *p; | 2790 | struct task_struct *p; |
| @@ -2932,14 +2835,12 @@ static void set_ftrace_pid(struct pid *pid) | |||
| 2932 | rcu_read_unlock(); | 2835 | rcu_read_unlock(); |
| 2933 | } | 2836 | } |
| 2934 | 2837 | ||
| 2935 | static void clear_ftrace_pid_task(struct pid **pid) | 2838 | static void clear_ftrace_pid_task(struct pid *pid) |
| 2936 | { | 2839 | { |
| 2937 | if (*pid == ftrace_swapper_pid) | 2840 | if (pid == ftrace_swapper_pid) |
| 2938 | clear_ftrace_swapper(); | 2841 | clear_ftrace_swapper(); |
| 2939 | else | 2842 | else |
| 2940 | clear_ftrace_pid(*pid); | 2843 | clear_ftrace_pid(pid); |
| 2941 | |||
| 2942 | *pid = NULL; | ||
| 2943 | } | 2844 | } |
| 2944 | 2845 | ||
| 2945 | static void set_ftrace_pid_task(struct pid *pid) | 2846 | static void set_ftrace_pid_task(struct pid *pid) |
| @@ -2950,74 +2851,184 @@ static void set_ftrace_pid_task(struct pid *pid) | |||
| 2950 | set_ftrace_pid(pid); | 2851 | set_ftrace_pid(pid); |
| 2951 | } | 2852 | } |
| 2952 | 2853 | ||
| 2953 | static ssize_t | 2854 | static int ftrace_pid_add(int p) |
| 2954 | ftrace_pid_write(struct file *filp, const char __user *ubuf, | ||
| 2955 | size_t cnt, loff_t *ppos) | ||
| 2956 | { | 2855 | { |
| 2957 | struct pid *pid; | 2856 | struct pid *pid; |
| 2958 | char buf[64]; | 2857 | struct ftrace_pid *fpid; |
| 2959 | long val; | 2858 | int ret = -EINVAL; |
| 2960 | int ret; | ||
| 2961 | 2859 | ||
| 2962 | if (cnt >= sizeof(buf)) | 2860 | mutex_lock(&ftrace_lock); |
| 2963 | return -EINVAL; | ||
| 2964 | 2861 | ||
| 2965 | if (copy_from_user(&buf, ubuf, cnt)) | 2862 | if (!p) |
| 2966 | return -EFAULT; | 2863 | pid = ftrace_swapper_pid; |
| 2864 | else | ||
| 2865 | pid = find_get_pid(p); | ||
| 2967 | 2866 | ||
| 2968 | buf[cnt] = 0; | 2867 | if (!pid) |
| 2868 | goto out; | ||
| 2969 | 2869 | ||
| 2970 | ret = strict_strtol(buf, 10, &val); | 2870 | ret = 0; |
| 2971 | if (ret < 0) | ||
| 2972 | return ret; | ||
| 2973 | 2871 | ||
| 2974 | mutex_lock(&ftrace_lock); | 2872 | list_for_each_entry(fpid, &ftrace_pids, list) |
| 2975 | if (val < 0) { | 2873 | if (fpid->pid == pid) |
| 2976 | /* disable pid tracing */ | 2874 | goto out_put; |
| 2977 | if (!ftrace_pid_trace) | ||
| 2978 | goto out; | ||
| 2979 | 2875 | ||
| 2980 | clear_ftrace_pid_task(&ftrace_pid_trace); | 2876 | ret = -ENOMEM; |
| 2981 | 2877 | ||
| 2982 | } else { | 2878 | fpid = kmalloc(sizeof(*fpid), GFP_KERNEL); |
| 2983 | /* swapper task is special */ | 2879 | if (!fpid) |
| 2984 | if (!val) { | 2880 | goto out_put; |
| 2985 | pid = ftrace_swapper_pid; | ||
| 2986 | if (pid == ftrace_pid_trace) | ||
| 2987 | goto out; | ||
| 2988 | } else { | ||
| 2989 | pid = find_get_pid(val); | ||
| 2990 | 2881 | ||
| 2991 | if (pid == ftrace_pid_trace) { | 2882 | list_add(&fpid->list, &ftrace_pids); |
| 2992 | put_pid(pid); | 2883 | fpid->pid = pid; |
| 2993 | goto out; | ||
| 2994 | } | ||
| 2995 | } | ||
| 2996 | 2884 | ||
| 2997 | if (ftrace_pid_trace) | 2885 | set_ftrace_pid_task(pid); |
| 2998 | clear_ftrace_pid_task(&ftrace_pid_trace); | ||
| 2999 | 2886 | ||
| 3000 | if (!pid) | 2887 | ftrace_update_pid_func(); |
| 3001 | goto out; | 2888 | ftrace_startup_enable(0); |
| 2889 | |||
| 2890 | mutex_unlock(&ftrace_lock); | ||
| 2891 | return 0; | ||
| 3002 | 2892 | ||
| 3003 | ftrace_pid_trace = pid; | 2893 | out_put: |
| 2894 | if (pid != ftrace_swapper_pid) | ||
| 2895 | put_pid(pid); | ||
| 3004 | 2896 | ||
| 3005 | set_ftrace_pid_task(ftrace_pid_trace); | 2897 | out: |
| 2898 | mutex_unlock(&ftrace_lock); | ||
| 2899 | return ret; | ||
| 2900 | } | ||
| 2901 | |||
| 2902 | static void ftrace_pid_reset(void) | ||
| 2903 | { | ||
| 2904 | struct ftrace_pid *fpid, *safe; | ||
| 2905 | |||
| 2906 | mutex_lock(&ftrace_lock); | ||
| 2907 | list_for_each_entry_safe(fpid, safe, &ftrace_pids, list) { | ||
| 2908 | struct pid *pid = fpid->pid; | ||
| 2909 | |||
| 2910 | clear_ftrace_pid_task(pid); | ||
| 2911 | |||
| 2912 | list_del(&fpid->list); | ||
| 2913 | kfree(fpid); | ||
| 3006 | } | 2914 | } |
| 3007 | 2915 | ||
| 3008 | /* update the function call */ | ||
| 3009 | ftrace_update_pid_func(); | 2916 | ftrace_update_pid_func(); |
| 3010 | ftrace_startup_enable(0); | 2917 | ftrace_startup_enable(0); |
| 3011 | 2918 | ||
| 3012 | out: | ||
| 3013 | mutex_unlock(&ftrace_lock); | 2919 | mutex_unlock(&ftrace_lock); |
| 2920 | } | ||
| 3014 | 2921 | ||
| 3015 | return cnt; | 2922 | static void *fpid_start(struct seq_file *m, loff_t *pos) |
| 2923 | { | ||
| 2924 | mutex_lock(&ftrace_lock); | ||
| 2925 | |||
| 2926 | if (list_empty(&ftrace_pids) && (!*pos)) | ||
| 2927 | return (void *) 1; | ||
| 2928 | |||
| 2929 | return seq_list_start(&ftrace_pids, *pos); | ||
| 2930 | } | ||
| 2931 | |||
| 2932 | static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) | ||
| 2933 | { | ||
| 2934 | if (v == (void *)1) | ||
| 2935 | return NULL; | ||
| 2936 | |||
| 2937 | return seq_list_next(v, &ftrace_pids, pos); | ||
| 2938 | } | ||
| 2939 | |||
| 2940 | static void fpid_stop(struct seq_file *m, void *p) | ||
| 2941 | { | ||
| 2942 | mutex_unlock(&ftrace_lock); | ||
| 2943 | } | ||
| 2944 | |||
| 2945 | static int fpid_show(struct seq_file *m, void *v) | ||
| 2946 | { | ||
| 2947 | const struct ftrace_pid *fpid = list_entry(v, struct ftrace_pid, list); | ||
| 2948 | |||
| 2949 | if (v == (void *)1) { | ||
| 2950 | seq_printf(m, "no pid\n"); | ||
| 2951 | return 0; | ||
| 2952 | } | ||
| 2953 | |||
| 2954 | if (fpid->pid == ftrace_swapper_pid) | ||
| 2955 | seq_printf(m, "swapper tasks\n"); | ||
| 2956 | else | ||
| 2957 | seq_printf(m, "%u\n", pid_vnr(fpid->pid)); | ||
| 2958 | |||
| 2959 | return 0; | ||
| 2960 | } | ||
| 2961 | |||
| 2962 | static const struct seq_operations ftrace_pid_sops = { | ||
| 2963 | .start = fpid_start, | ||
| 2964 | .next = fpid_next, | ||
| 2965 | .stop = fpid_stop, | ||
| 2966 | .show = fpid_show, | ||
| 2967 | }; | ||
| 2968 | |||
| 2969 | static int | ||
| 2970 | ftrace_pid_open(struct inode *inode, struct file *file) | ||
| 2971 | { | ||
| 2972 | int ret = 0; | ||
| 2973 | |||
| 2974 | if ((file->f_mode & FMODE_WRITE) && | ||
| 2975 | (file->f_flags & O_TRUNC)) | ||
| 2976 | ftrace_pid_reset(); | ||
| 2977 | |||
| 2978 | if (file->f_mode & FMODE_READ) | ||
| 2979 | ret = seq_open(file, &ftrace_pid_sops); | ||
| 2980 | |||
| 2981 | return ret; | ||
| 2982 | } | ||
| 2983 | |||
| 2984 | static ssize_t | ||
| 2985 | ftrace_pid_write(struct file *filp, const char __user *ubuf, | ||
| 2986 | size_t cnt, loff_t *ppos) | ||
| 2987 | { | ||
| 2988 | char buf[64], *tmp; | ||
| 2989 | long val; | ||
| 2990 | int ret; | ||
| 2991 | |||
| 2992 | if (cnt >= sizeof(buf)) | ||
| 2993 | return -EINVAL; | ||
| 2994 | |||
| 2995 | if (copy_from_user(&buf, ubuf, cnt)) | ||
| 2996 | return -EFAULT; | ||
| 2997 | |||
| 2998 | buf[cnt] = 0; | ||
| 2999 | |||
| 3000 | /* | ||
| 3001 | * Allow "echo > set_ftrace_pid" or "echo -n '' > set_ftrace_pid" | ||
| 3002 | * to clean the filter quietly. | ||
| 3003 | */ | ||
| 3004 | tmp = strstrip(buf); | ||
| 3005 | if (strlen(tmp) == 0) | ||
| 3006 | return 1; | ||
| 3007 | |||
| 3008 | ret = strict_strtol(tmp, 10, &val); | ||
| 3009 | if (ret < 0) | ||
| 3010 | return ret; | ||
| 3011 | |||
| 3012 | ret = ftrace_pid_add(val); | ||
| 3013 | |||
| 3014 | return ret ? ret : cnt; | ||
| 3015 | } | ||
| 3016 | |||
| 3017 | static int | ||
| 3018 | ftrace_pid_release(struct inode *inode, struct file *file) | ||
| 3019 | { | ||
| 3020 | if (file->f_mode & FMODE_READ) | ||
| 3021 | seq_release(inode, file); | ||
| 3022 | |||
| 3023 | return 0; | ||
| 3016 | } | 3024 | } |
| 3017 | 3025 | ||
| 3018 | static const struct file_operations ftrace_pid_fops = { | 3026 | static const struct file_operations ftrace_pid_fops = { |
| 3019 | .read = ftrace_pid_read, | 3027 | .open = ftrace_pid_open, |
| 3020 | .write = ftrace_pid_write, | 3028 | .write = ftrace_pid_write, |
| 3029 | .read = seq_read, | ||
| 3030 | .llseek = seq_lseek, | ||
| 3031 | .release = ftrace_pid_release, | ||
| 3021 | }; | 3032 | }; |
| 3022 | 3033 | ||
| 3023 | static __init int ftrace_init_debugfs(void) | 3034 | static __init int ftrace_init_debugfs(void) |
| @@ -3100,7 +3111,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops) | |||
| 3100 | 3111 | ||
| 3101 | int | 3112 | int |
| 3102 | ftrace_enable_sysctl(struct ctl_table *table, int write, | 3113 | ftrace_enable_sysctl(struct ctl_table *table, int write, |
| 3103 | struct file *file, void __user *buffer, size_t *lenp, | 3114 | void __user *buffer, size_t *lenp, |
| 3104 | loff_t *ppos) | 3115 | loff_t *ppos) |
| 3105 | { | 3116 | { |
| 3106 | int ret; | 3117 | int ret; |
| @@ -3110,7 +3121,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
| 3110 | 3121 | ||
| 3111 | mutex_lock(&ftrace_lock); | 3122 | mutex_lock(&ftrace_lock); |
| 3112 | 3123 | ||
| 3113 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 3124 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 3114 | 3125 | ||
| 3115 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) | 3126 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
| 3116 | goto out; | 3127 | goto out; |
| @@ -3380,4 +3391,3 @@ void ftrace_graph_stop(void) | |||
| 3380 | ftrace_stop(); | 3391 | ftrace_stop(); |
| 3381 | } | 3392 | } |
| 3382 | #endif | 3393 | #endif |
| 3383 | |||
diff --git a/kernel/trace/kmemtrace.c b/kernel/trace/kmemtrace.c index 81b1645c8549..a91da69f153a 100644 --- a/kernel/trace/kmemtrace.c +++ b/kernel/trace/kmemtrace.c | |||
| @@ -501,7 +501,7 @@ static int __init init_kmem_tracer(void) | |||
| 501 | return 1; | 501 | return 1; |
| 502 | } | 502 | } |
| 503 | 503 | ||
| 504 | if (!register_tracer(&kmem_tracer)) { | 504 | if (register_tracer(&kmem_tracer) != 0) { |
| 505 | pr_warning("Warning: could not register the kmem tracer\n"); | 505 | pr_warning("Warning: could not register the kmem tracer\n"); |
| 506 | return 1; | 506 | return 1; |
| 507 | } | 507 | } |
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c new file mode 100644 index 000000000000..e06c6e3d56a3 --- /dev/null +++ b/kernel/trace/power-traces.c | |||
| @@ -0,0 +1,20 @@ | |||
| 1 | /* | ||
| 2 | * Power trace points | ||
| 3 | * | ||
| 4 | * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | */ | ||
| 6 | |||
| 7 | #include <linux/string.h> | ||
| 8 | #include <linux/types.h> | ||
| 9 | #include <linux/workqueue.h> | ||
| 10 | #include <linux/sched.h> | ||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/slab.h> | ||
| 13 | |||
| 14 | #define CREATE_TRACE_POINTS | ||
| 15 | #include <trace/events/power.h> | ||
| 16 | |||
| 17 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_start); | ||
| 18 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_end); | ||
| 19 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency); | ||
| 20 | |||
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 454e74e718cf..a1ca4956ab5e 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
| @@ -201,8 +201,6 @@ int tracing_is_on(void) | |||
| 201 | } | 201 | } |
| 202 | EXPORT_SYMBOL_GPL(tracing_is_on); | 202 | EXPORT_SYMBOL_GPL(tracing_is_on); |
| 203 | 203 | ||
| 204 | #include "trace.h" | ||
| 205 | |||
| 206 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) | 204 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) |
| 207 | #define RB_ALIGNMENT 4U | 205 | #define RB_ALIGNMENT 4U |
| 208 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) | 206 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
| @@ -399,18 +397,21 @@ int ring_buffer_print_page_header(struct trace_seq *s) | |||
| 399 | int ret; | 397 | int ret; |
| 400 | 398 | ||
| 401 | ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" | 399 | ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" |
| 402 | "offset:0;\tsize:%u;\n", | 400 | "offset:0;\tsize:%u;\tsigned:%u;\n", |
| 403 | (unsigned int)sizeof(field.time_stamp)); | 401 | (unsigned int)sizeof(field.time_stamp), |
| 402 | (unsigned int)is_signed_type(u64)); | ||
| 404 | 403 | ||
| 405 | ret = trace_seq_printf(s, "\tfield: local_t commit;\t" | 404 | ret = trace_seq_printf(s, "\tfield: local_t commit;\t" |
| 406 | "offset:%u;\tsize:%u;\n", | 405 | "offset:%u;\tsize:%u;\tsigned:%u;\n", |
| 407 | (unsigned int)offsetof(typeof(field), commit), | 406 | (unsigned int)offsetof(typeof(field), commit), |
| 408 | (unsigned int)sizeof(field.commit)); | 407 | (unsigned int)sizeof(field.commit), |
| 408 | (unsigned int)is_signed_type(long)); | ||
| 409 | 409 | ||
| 410 | ret = trace_seq_printf(s, "\tfield: char data;\t" | 410 | ret = trace_seq_printf(s, "\tfield: char data;\t" |
| 411 | "offset:%u;\tsize:%u;\n", | 411 | "offset:%u;\tsize:%u;\tsigned:%u;\n", |
| 412 | (unsigned int)offsetof(typeof(field), data), | 412 | (unsigned int)offsetof(typeof(field), data), |
| 413 | (unsigned int)BUF_PAGE_SIZE); | 413 | (unsigned int)BUF_PAGE_SIZE, |
| 414 | (unsigned int)is_signed_type(char)); | ||
| 414 | 415 | ||
| 415 | return ret; | 416 | return ret; |
| 416 | } | 417 | } |
| @@ -485,7 +486,7 @@ struct ring_buffer_iter { | |||
| 485 | /* Up this if you want to test the TIME_EXTENTS and normalization */ | 486 | /* Up this if you want to test the TIME_EXTENTS and normalization */ |
| 486 | #define DEBUG_SHIFT 0 | 487 | #define DEBUG_SHIFT 0 |
| 487 | 488 | ||
| 488 | static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu) | 489 | static inline u64 rb_time_stamp(struct ring_buffer *buffer) |
| 489 | { | 490 | { |
| 490 | /* shift to debug/test normalization and TIME_EXTENTS */ | 491 | /* shift to debug/test normalization and TIME_EXTENTS */ |
| 491 | return buffer->clock() << DEBUG_SHIFT; | 492 | return buffer->clock() << DEBUG_SHIFT; |
| @@ -496,7 +497,7 @@ u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) | |||
| 496 | u64 time; | 497 | u64 time; |
| 497 | 498 | ||
| 498 | preempt_disable_notrace(); | 499 | preempt_disable_notrace(); |
| 499 | time = rb_time_stamp(buffer, cpu); | 500 | time = rb_time_stamp(buffer); |
| 500 | preempt_enable_no_resched_notrace(); | 501 | preempt_enable_no_resched_notrace(); |
| 501 | 502 | ||
| 502 | return time; | 503 | return time; |
| @@ -601,7 +602,7 @@ static struct list_head *rb_list_head(struct list_head *list) | |||
| 601 | } | 602 | } |
| 602 | 603 | ||
| 603 | /* | 604 | /* |
| 604 | * rb_is_head_page - test if the give page is the head page | 605 | * rb_is_head_page - test if the given page is the head page |
| 605 | * | 606 | * |
| 606 | * Because the reader may move the head_page pointer, we can | 607 | * Because the reader may move the head_page pointer, we can |
| 607 | * not trust what the head page is (it may be pointing to | 608 | * not trust what the head page is (it may be pointing to |
| @@ -701,8 +702,8 @@ static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 701 | 702 | ||
| 702 | val &= ~RB_FLAG_MASK; | 703 | val &= ~RB_FLAG_MASK; |
| 703 | 704 | ||
| 704 | ret = (unsigned long)cmpxchg(&list->next, | 705 | ret = cmpxchg((unsigned long *)&list->next, |
| 705 | val | old_flag, val | new_flag); | 706 | val | old_flag, val | new_flag); |
| 706 | 707 | ||
| 707 | /* check if the reader took the page */ | 708 | /* check if the reader took the page */ |
| 708 | if ((ret & ~RB_FLAG_MASK) != val) | 709 | if ((ret & ~RB_FLAG_MASK) != val) |
| @@ -794,7 +795,7 @@ static int rb_head_page_replace(struct buffer_page *old, | |||
| 794 | val = *ptr & ~RB_FLAG_MASK; | 795 | val = *ptr & ~RB_FLAG_MASK; |
| 795 | val |= RB_PAGE_HEAD; | 796 | val |= RB_PAGE_HEAD; |
| 796 | 797 | ||
| 797 | ret = cmpxchg(ptr, val, &new->list); | 798 | ret = cmpxchg(ptr, val, (unsigned long)&new->list); |
| 798 | 799 | ||
| 799 | return ret == val; | 800 | return ret == val; |
| 800 | } | 801 | } |
| @@ -1195,6 +1196,7 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) | |||
| 1195 | atomic_inc(&cpu_buffer->record_disabled); | 1196 | atomic_inc(&cpu_buffer->record_disabled); |
| 1196 | synchronize_sched(); | 1197 | synchronize_sched(); |
| 1197 | 1198 | ||
| 1199 | spin_lock_irq(&cpu_buffer->reader_lock); | ||
| 1198 | rb_head_page_deactivate(cpu_buffer); | 1200 | rb_head_page_deactivate(cpu_buffer); |
| 1199 | 1201 | ||
| 1200 | for (i = 0; i < nr_pages; i++) { | 1202 | for (i = 0; i < nr_pages; i++) { |
| @@ -1209,6 +1211,7 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) | |||
| 1209 | return; | 1211 | return; |
| 1210 | 1212 | ||
| 1211 | rb_reset_cpu(cpu_buffer); | 1213 | rb_reset_cpu(cpu_buffer); |
| 1214 | spin_unlock_irq(&cpu_buffer->reader_lock); | ||
| 1212 | 1215 | ||
| 1213 | rb_check_pages(cpu_buffer); | 1216 | rb_check_pages(cpu_buffer); |
| 1214 | 1217 | ||
| @@ -1787,9 +1790,9 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1787 | static struct ring_buffer_event * | 1790 | static struct ring_buffer_event * |
| 1788 | rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, | 1791 | rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, |
| 1789 | unsigned long length, unsigned long tail, | 1792 | unsigned long length, unsigned long tail, |
| 1790 | struct buffer_page *commit_page, | ||
| 1791 | struct buffer_page *tail_page, u64 *ts) | 1793 | struct buffer_page *tail_page, u64 *ts) |
| 1792 | { | 1794 | { |
| 1795 | struct buffer_page *commit_page = cpu_buffer->commit_page; | ||
| 1793 | struct ring_buffer *buffer = cpu_buffer->buffer; | 1796 | struct ring_buffer *buffer = cpu_buffer->buffer; |
| 1794 | struct buffer_page *next_page; | 1797 | struct buffer_page *next_page; |
| 1795 | int ret; | 1798 | int ret; |
| @@ -1870,7 +1873,7 @@ rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1870 | * Nested commits always have zero deltas, so | 1873 | * Nested commits always have zero deltas, so |
| 1871 | * just reread the time stamp | 1874 | * just reread the time stamp |
| 1872 | */ | 1875 | */ |
| 1873 | *ts = rb_time_stamp(buffer, cpu_buffer->cpu); | 1876 | *ts = rb_time_stamp(buffer); |
| 1874 | next_page->page->time_stamp = *ts; | 1877 | next_page->page->time_stamp = *ts; |
| 1875 | } | 1878 | } |
| 1876 | 1879 | ||
| @@ -1892,13 +1895,10 @@ static struct ring_buffer_event * | |||
| 1892 | __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, | 1895 | __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, |
| 1893 | unsigned type, unsigned long length, u64 *ts) | 1896 | unsigned type, unsigned long length, u64 *ts) |
| 1894 | { | 1897 | { |
| 1895 | struct buffer_page *tail_page, *commit_page; | 1898 | struct buffer_page *tail_page; |
| 1896 | struct ring_buffer_event *event; | 1899 | struct ring_buffer_event *event; |
| 1897 | unsigned long tail, write; | 1900 | unsigned long tail, write; |
| 1898 | 1901 | ||
| 1899 | commit_page = cpu_buffer->commit_page; | ||
| 1900 | /* we just need to protect against interrupts */ | ||
| 1901 | barrier(); | ||
| 1902 | tail_page = cpu_buffer->tail_page; | 1902 | tail_page = cpu_buffer->tail_page; |
| 1903 | write = local_add_return(length, &tail_page->write); | 1903 | write = local_add_return(length, &tail_page->write); |
| 1904 | 1904 | ||
| @@ -1909,7 +1909,7 @@ __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1909 | /* See if we shot pass the end of this buffer page */ | 1909 | /* See if we shot pass the end of this buffer page */ |
| 1910 | if (write > BUF_PAGE_SIZE) | 1910 | if (write > BUF_PAGE_SIZE) |
| 1911 | return rb_move_tail(cpu_buffer, length, tail, | 1911 | return rb_move_tail(cpu_buffer, length, tail, |
| 1912 | commit_page, tail_page, ts); | 1912 | tail_page, ts); |
| 1913 | 1913 | ||
| 1914 | /* We reserved something on the buffer */ | 1914 | /* We reserved something on the buffer */ |
| 1915 | 1915 | ||
| @@ -2113,7 +2113,7 @@ rb_reserve_next_event(struct ring_buffer *buffer, | |||
| 2113 | if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) | 2113 | if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) |
| 2114 | goto out_fail; | 2114 | goto out_fail; |
| 2115 | 2115 | ||
| 2116 | ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu); | 2116 | ts = rb_time_stamp(cpu_buffer->buffer); |
| 2117 | 2117 | ||
| 2118 | /* | 2118 | /* |
| 2119 | * Only the first commit can update the timestamp. | 2119 | * Only the first commit can update the timestamp. |
| @@ -2683,7 +2683,7 @@ unsigned long ring_buffer_entries(struct ring_buffer *buffer) | |||
| 2683 | EXPORT_SYMBOL_GPL(ring_buffer_entries); | 2683 | EXPORT_SYMBOL_GPL(ring_buffer_entries); |
| 2684 | 2684 | ||
| 2685 | /** | 2685 | /** |
| 2686 | * ring_buffer_overrun_cpu - get the number of overruns in buffer | 2686 | * ring_buffer_overruns - get the number of overruns in buffer |
| 2687 | * @buffer: The ring buffer | 2687 | * @buffer: The ring buffer |
| 2688 | * | 2688 | * |
| 2689 | * Returns the total number of overruns in the ring buffer | 2689 | * Returns the total number of overruns in the ring buffer |
| @@ -2997,15 +2997,12 @@ static void rb_advance_iter(struct ring_buffer_iter *iter) | |||
| 2997 | } | 2997 | } |
| 2998 | 2998 | ||
| 2999 | static struct ring_buffer_event * | 2999 | static struct ring_buffer_event * |
| 3000 | rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | 3000 | rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) |
| 3001 | { | 3001 | { |
| 3002 | struct ring_buffer_per_cpu *cpu_buffer; | ||
| 3003 | struct ring_buffer_event *event; | 3002 | struct ring_buffer_event *event; |
| 3004 | struct buffer_page *reader; | 3003 | struct buffer_page *reader; |
| 3005 | int nr_loops = 0; | 3004 | int nr_loops = 0; |
| 3006 | 3005 | ||
| 3007 | cpu_buffer = buffer->buffers[cpu]; | ||
| 3008 | |||
| 3009 | again: | 3006 | again: |
| 3010 | /* | 3007 | /* |
| 3011 | * We repeat when a timestamp is encountered. It is possible | 3008 | * We repeat when a timestamp is encountered. It is possible |
| @@ -3049,7 +3046,7 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 3049 | case RINGBUF_TYPE_DATA: | 3046 | case RINGBUF_TYPE_DATA: |
| 3050 | if (ts) { | 3047 | if (ts) { |
| 3051 | *ts = cpu_buffer->read_stamp + event->time_delta; | 3048 | *ts = cpu_buffer->read_stamp + event->time_delta; |
| 3052 | ring_buffer_normalize_time_stamp(buffer, | 3049 | ring_buffer_normalize_time_stamp(cpu_buffer->buffer, |
| 3053 | cpu_buffer->cpu, ts); | 3050 | cpu_buffer->cpu, ts); |
| 3054 | } | 3051 | } |
| 3055 | return event; | 3052 | return event; |
| @@ -3168,7 +3165,7 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 3168 | local_irq_save(flags); | 3165 | local_irq_save(flags); |
| 3169 | if (dolock) | 3166 | if (dolock) |
| 3170 | spin_lock(&cpu_buffer->reader_lock); | 3167 | spin_lock(&cpu_buffer->reader_lock); |
| 3171 | event = rb_buffer_peek(buffer, cpu, ts); | 3168 | event = rb_buffer_peek(cpu_buffer, ts); |
| 3172 | if (event && event->type_len == RINGBUF_TYPE_PADDING) | 3169 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
| 3173 | rb_advance_reader(cpu_buffer); | 3170 | rb_advance_reader(cpu_buffer); |
| 3174 | if (dolock) | 3171 | if (dolock) |
| @@ -3237,7 +3234,7 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 3237 | if (dolock) | 3234 | if (dolock) |
| 3238 | spin_lock(&cpu_buffer->reader_lock); | 3235 | spin_lock(&cpu_buffer->reader_lock); |
| 3239 | 3236 | ||
| 3240 | event = rb_buffer_peek(buffer, cpu, ts); | 3237 | event = rb_buffer_peek(cpu_buffer, ts); |
| 3241 | if (event) | 3238 | if (event) |
| 3242 | rb_advance_reader(cpu_buffer); | 3239 | rb_advance_reader(cpu_buffer); |
| 3243 | 3240 | ||
diff --git a/kernel/trace/ring_buffer_benchmark.c b/kernel/trace/ring_buffer_benchmark.c index 573d3cc762c3..b2477caf09c2 100644 --- a/kernel/trace/ring_buffer_benchmark.c +++ b/kernel/trace/ring_buffer_benchmark.c | |||
| @@ -35,6 +35,28 @@ static int disable_reader; | |||
| 35 | module_param(disable_reader, uint, 0644); | 35 | module_param(disable_reader, uint, 0644); |
| 36 | MODULE_PARM_DESC(disable_reader, "only run producer"); | 36 | MODULE_PARM_DESC(disable_reader, "only run producer"); |
| 37 | 37 | ||
| 38 | static int write_iteration = 50; | ||
| 39 | module_param(write_iteration, uint, 0644); | ||
| 40 | MODULE_PARM_DESC(write_iteration, "# of writes between timestamp readings"); | ||
| 41 | |||
| 42 | static int producer_nice = 19; | ||
| 43 | static int consumer_nice = 19; | ||
| 44 | |||
| 45 | static int producer_fifo = -1; | ||
| 46 | static int consumer_fifo = -1; | ||
| 47 | |||
| 48 | module_param(producer_nice, uint, 0644); | ||
| 49 | MODULE_PARM_DESC(producer_nice, "nice prio for producer"); | ||
| 50 | |||
| 51 | module_param(consumer_nice, uint, 0644); | ||
| 52 | MODULE_PARM_DESC(consumer_nice, "nice prio for consumer"); | ||
| 53 | |||
| 54 | module_param(producer_fifo, uint, 0644); | ||
| 55 | MODULE_PARM_DESC(producer_fifo, "fifo prio for producer"); | ||
| 56 | |||
| 57 | module_param(consumer_fifo, uint, 0644); | ||
| 58 | MODULE_PARM_DESC(consumer_fifo, "fifo prio for consumer"); | ||
| 59 | |||
| 38 | static int read_events; | 60 | static int read_events; |
| 39 | 61 | ||
| 40 | static int kill_test; | 62 | static int kill_test; |
| @@ -208,15 +230,18 @@ static void ring_buffer_producer(void) | |||
| 208 | do { | 230 | do { |
| 209 | struct ring_buffer_event *event; | 231 | struct ring_buffer_event *event; |
| 210 | int *entry; | 232 | int *entry; |
| 211 | 233 | int i; | |
| 212 | event = ring_buffer_lock_reserve(buffer, 10); | 234 | |
| 213 | if (!event) { | 235 | for (i = 0; i < write_iteration; i++) { |
| 214 | missed++; | 236 | event = ring_buffer_lock_reserve(buffer, 10); |
| 215 | } else { | 237 | if (!event) { |
| 216 | hit++; | 238 | missed++; |
| 217 | entry = ring_buffer_event_data(event); | 239 | } else { |
| 218 | *entry = smp_processor_id(); | 240 | hit++; |
| 219 | ring_buffer_unlock_commit(buffer, event); | 241 | entry = ring_buffer_event_data(event); |
| 242 | *entry = smp_processor_id(); | ||
| 243 | ring_buffer_unlock_commit(buffer, event); | ||
| 244 | } | ||
| 220 | } | 245 | } |
| 221 | do_gettimeofday(&end_tv); | 246 | do_gettimeofday(&end_tv); |
| 222 | 247 | ||
| @@ -263,6 +288,27 @@ static void ring_buffer_producer(void) | |||
| 263 | 288 | ||
| 264 | if (kill_test) | 289 | if (kill_test) |
| 265 | trace_printk("ERROR!\n"); | 290 | trace_printk("ERROR!\n"); |
| 291 | |||
| 292 | if (!disable_reader) { | ||
| 293 | if (consumer_fifo < 0) | ||
| 294 | trace_printk("Running Consumer at nice: %d\n", | ||
| 295 | consumer_nice); | ||
| 296 | else | ||
| 297 | trace_printk("Running Consumer at SCHED_FIFO %d\n", | ||
| 298 | consumer_fifo); | ||
| 299 | } | ||
| 300 | if (producer_fifo < 0) | ||
| 301 | trace_printk("Running Producer at nice: %d\n", | ||
| 302 | producer_nice); | ||
| 303 | else | ||
| 304 | trace_printk("Running Producer at SCHED_FIFO %d\n", | ||
| 305 | producer_fifo); | ||
| 306 | |||
| 307 | /* Let the user know that the test is running at low priority */ | ||
| 308 | if (producer_fifo < 0 && consumer_fifo < 0 && | ||
| 309 | producer_nice == 19 && consumer_nice == 19) | ||
| 310 | trace_printk("WARNING!!! This test is running at lowest priority.\n"); | ||
| 311 | |||
| 266 | trace_printk("Time: %lld (usecs)\n", time); | 312 | trace_printk("Time: %lld (usecs)\n", time); |
| 267 | trace_printk("Overruns: %lld\n", overruns); | 313 | trace_printk("Overruns: %lld\n", overruns); |
| 268 | if (disable_reader) | 314 | if (disable_reader) |
| @@ -392,6 +438,27 @@ static int __init ring_buffer_benchmark_init(void) | |||
| 392 | if (IS_ERR(producer)) | 438 | if (IS_ERR(producer)) |
| 393 | goto out_kill; | 439 | goto out_kill; |
| 394 | 440 | ||
| 441 | /* | ||
| 442 | * Run them as low-prio background tasks by default: | ||
| 443 | */ | ||
| 444 | if (!disable_reader) { | ||
| 445 | if (consumer_fifo >= 0) { | ||
| 446 | struct sched_param param = { | ||
| 447 | .sched_priority = consumer_fifo | ||
| 448 | }; | ||
| 449 | sched_setscheduler(consumer, SCHED_FIFO, ¶m); | ||
| 450 | } else | ||
| 451 | set_user_nice(consumer, consumer_nice); | ||
| 452 | } | ||
| 453 | |||
| 454 | if (producer_fifo >= 0) { | ||
| 455 | struct sched_param param = { | ||
| 456 | .sched_priority = consumer_fifo | ||
| 457 | }; | ||
| 458 | sched_setscheduler(producer, SCHED_FIFO, ¶m); | ||
| 459 | } else | ||
| 460 | set_user_nice(producer, producer_nice); | ||
| 461 | |||
| 395 | return 0; | 462 | return 0; |
| 396 | 463 | ||
| 397 | out_kill: | 464 | out_kill: |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 5c75deeefe30..874f2893cff0 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
| @@ -125,19 +125,19 @@ int ftrace_dump_on_oops; | |||
| 125 | 125 | ||
| 126 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
| 127 | 127 | ||
| 128 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
| 129 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
| 130 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
| 131 | 131 | ||
| 132 | static int __init set_ftrace(char *str) | 132 | static int __init set_cmdline_ftrace(char *str) |
| 133 | { | 133 | { |
| 134 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
| 135 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
| 136 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
| 137 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
| 138 | return 1; | 138 | return 1; |
| 139 | } | 139 | } |
| 140 | __setup("ftrace=", set_ftrace); | 140 | __setup("ftrace=", set_cmdline_ftrace); |
| 141 | 141 | ||
| 142 | static int __init set_ftrace_dump_on_oops(char *str) | 142 | static int __init set_ftrace_dump_on_oops(char *str) |
| 143 | { | 143 | { |
| @@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
| 242 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
| 243 | 243 | ||
| 244 | /* | 244 | /* |
| 245 | * max_tracer_type_len is used to simplify the allocating of | ||
| 246 | * buffers to read userspace tracer names. We keep track of | ||
| 247 | * the longest tracer name registered. | ||
| 248 | */ | ||
| 249 | static int max_tracer_type_len; | ||
| 250 | |||
| 251 | /* | ||
| 252 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
| 253 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
| 254 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
| @@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock); | |||
| 275 | */ | 268 | */ |
| 276 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
| 277 | { | 270 | { |
| 271 | int cpu; | ||
| 272 | |||
| 273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
| 274 | return; | ||
| 278 | /* | 275 | /* |
| 279 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
| 280 | * have for now: | 277 | * have for now: |
| 281 | */ | 278 | */ |
| 282 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
| 280 | if (!runqueue_is_locked(cpu)) | ||
| 283 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
| 282 | put_cpu(); | ||
| 284 | } | 283 | } |
| 285 | 284 | ||
| 286 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
| @@ -339,6 +338,112 @@ static struct { | |||
| 339 | 338 | ||
| 340 | int trace_clock_id; | 339 | int trace_clock_id; |
| 341 | 340 | ||
| 341 | /* | ||
| 342 | * trace_parser_get_init - gets the buffer for trace parser | ||
| 343 | */ | ||
| 344 | int trace_parser_get_init(struct trace_parser *parser, int size) | ||
| 345 | { | ||
| 346 | memset(parser, 0, sizeof(*parser)); | ||
| 347 | |||
| 348 | parser->buffer = kmalloc(size, GFP_KERNEL); | ||
| 349 | if (!parser->buffer) | ||
| 350 | return 1; | ||
| 351 | |||
| 352 | parser->size = size; | ||
| 353 | return 0; | ||
| 354 | } | ||
| 355 | |||
| 356 | /* | ||
| 357 | * trace_parser_put - frees the buffer for trace parser | ||
| 358 | */ | ||
| 359 | void trace_parser_put(struct trace_parser *parser) | ||
| 360 | { | ||
| 361 | kfree(parser->buffer); | ||
| 362 | } | ||
| 363 | |||
| 364 | /* | ||
| 365 | * trace_get_user - reads the user input string separated by space | ||
| 366 | * (matched by isspace(ch)) | ||
| 367 | * | ||
| 368 | * For each string found the 'struct trace_parser' is updated, | ||
| 369 | * and the function returns. | ||
| 370 | * | ||
| 371 | * Returns number of bytes read. | ||
| 372 | * | ||
| 373 | * See kernel/trace/trace.h for 'struct trace_parser' details. | ||
| 374 | */ | ||
| 375 | int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
| 376 | size_t cnt, loff_t *ppos) | ||
| 377 | { | ||
| 378 | char ch; | ||
| 379 | size_t read = 0; | ||
| 380 | ssize_t ret; | ||
| 381 | |||
| 382 | if (!*ppos) | ||
| 383 | trace_parser_clear(parser); | ||
| 384 | |||
| 385 | ret = get_user(ch, ubuf++); | ||
| 386 | if (ret) | ||
| 387 | goto out; | ||
| 388 | |||
| 389 | read++; | ||
| 390 | cnt--; | ||
| 391 | |||
| 392 | /* | ||
| 393 | * The parser is not finished with the last write, | ||
| 394 | * continue reading the user input without skipping spaces. | ||
| 395 | */ | ||
| 396 | if (!parser->cont) { | ||
| 397 | /* skip white space */ | ||
| 398 | while (cnt && isspace(ch)) { | ||
| 399 | ret = get_user(ch, ubuf++); | ||
| 400 | if (ret) | ||
| 401 | goto out; | ||
| 402 | read++; | ||
| 403 | cnt--; | ||
| 404 | } | ||
| 405 | |||
| 406 | /* only spaces were written */ | ||
| 407 | if (isspace(ch)) { | ||
| 408 | *ppos += read; | ||
| 409 | ret = read; | ||
| 410 | goto out; | ||
| 411 | } | ||
| 412 | |||
| 413 | parser->idx = 0; | ||
| 414 | } | ||
| 415 | |||
| 416 | /* read the non-space input */ | ||
| 417 | while (cnt && !isspace(ch)) { | ||
| 418 | if (parser->idx < parser->size - 1) | ||
| 419 | parser->buffer[parser->idx++] = ch; | ||
| 420 | else { | ||
| 421 | ret = -EINVAL; | ||
| 422 | goto out; | ||
| 423 | } | ||
| 424 | ret = get_user(ch, ubuf++); | ||
| 425 | if (ret) | ||
| 426 | goto out; | ||
| 427 | read++; | ||
| 428 | cnt--; | ||
| 429 | } | ||
| 430 | |||
| 431 | /* We either got finished input or we have to wait for another call. */ | ||
| 432 | if (isspace(ch)) { | ||
| 433 | parser->buffer[parser->idx] = 0; | ||
| 434 | parser->cont = false; | ||
| 435 | } else { | ||
| 436 | parser->cont = true; | ||
| 437 | parser->buffer[parser->idx++] = ch; | ||
| 438 | } | ||
| 439 | |||
| 440 | *ppos += read; | ||
| 441 | ret = read; | ||
| 442 | |||
| 443 | out: | ||
| 444 | return ret; | ||
| 445 | } | ||
| 446 | |||
| 342 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) | 447 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) |
| 343 | { | 448 | { |
| 344 | int len; | 449 | int len; |
| @@ -513,7 +618,6 @@ __releases(kernel_lock) | |||
| 513 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
| 514 | { | 619 | { |
| 515 | struct tracer *t; | 620 | struct tracer *t; |
| 516 | int len; | ||
| 517 | int ret = 0; | 621 | int ret = 0; |
| 518 | 622 | ||
| 519 | if (!type->name) { | 623 | if (!type->name) { |
| @@ -521,6 +625,11 @@ __acquires(kernel_lock) | |||
| 521 | return -1; | 625 | return -1; |
| 522 | } | 626 | } |
| 523 | 627 | ||
| 628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
| 629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
| 630 | return -1; | ||
| 631 | } | ||
| 632 | |||
| 524 | /* | 633 | /* |
| 525 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
| 526 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
| @@ -535,7 +644,7 @@ __acquires(kernel_lock) | |||
| 535 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
| 536 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
| 537 | /* already found */ | 646 | /* already found */ |
| 538 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
| 539 | type->name); | 648 | type->name); |
| 540 | ret = -1; | 649 | ret = -1; |
| 541 | goto out; | 650 | goto out; |
| @@ -586,9 +695,6 @@ __acquires(kernel_lock) | |||
| 586 | 695 | ||
| 587 | type->next = trace_types; | 696 | type->next = trace_types; |
| 588 | trace_types = type; | 697 | trace_types = type; |
| 589 | len = strlen(type->name); | ||
| 590 | if (len > max_tracer_type_len) | ||
| 591 | max_tracer_type_len = len; | ||
| 592 | 698 | ||
| 593 | out: | 699 | out: |
| 594 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
| @@ -597,7 +703,7 @@ __acquires(kernel_lock) | |||
| 597 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
| 598 | goto out_unlock; | 704 | goto out_unlock; |
| 599 | 705 | ||
| 600 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
| 601 | goto out_unlock; | 707 | goto out_unlock; |
| 602 | 708 | ||
| 603 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
| @@ -619,14 +725,13 @@ __acquires(kernel_lock) | |||
| 619 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
| 620 | { | 726 | { |
| 621 | struct tracer **t; | 727 | struct tracer **t; |
| 622 | int len; | ||
| 623 | 728 | ||
| 624 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
| 625 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
| 626 | if (*t == type) | 731 | if (*t == type) |
| 627 | goto found; | 732 | goto found; |
| 628 | } | 733 | } |
| 629 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
| 630 | goto out; | 735 | goto out; |
| 631 | 736 | ||
| 632 | found: | 737 | found: |
| @@ -639,17 +744,7 @@ void unregister_tracer(struct tracer *type) | |||
| 639 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
| 640 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
| 641 | } | 746 | } |
| 642 | 747 | out: | |
| 643 | if (strlen(type->name) != max_tracer_type_len) | ||
| 644 | goto out; | ||
| 645 | |||
| 646 | max_tracer_type_len = 0; | ||
| 647 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
| 648 | len = strlen((*t)->name); | ||
| 649 | if (len > max_tracer_type_len) | ||
| 650 | max_tracer_type_len = len; | ||
| 651 | } | ||
| 652 | out: | ||
| 653 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
| 654 | } | 749 | } |
| 655 | 750 | ||
| @@ -719,6 +814,11 @@ static void trace_init_cmdlines(void) | |||
| 719 | cmdline_idx = 0; | 814 | cmdline_idx = 0; |
| 720 | } | 815 | } |
| 721 | 816 | ||
| 817 | int is_tracing_stopped(void) | ||
| 818 | { | ||
| 819 | return trace_stop_count; | ||
| 820 | } | ||
| 821 | |||
| 722 | /** | 822 | /** |
| 723 | * ftrace_off_permanent - disable all ftrace code permanently | 823 | * ftrace_off_permanent - disable all ftrace code permanently |
| 724 | * | 824 | * |
| @@ -886,7 +986,7 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags, | |||
| 886 | 986 | ||
| 887 | entry->preempt_count = pc & 0xff; | 987 | entry->preempt_count = pc & 0xff; |
| 888 | entry->pid = (tsk) ? tsk->pid : 0; | 988 | entry->pid = (tsk) ? tsk->pid : 0; |
| 889 | entry->tgid = (tsk) ? tsk->tgid : 0; | 989 | entry->lock_depth = (tsk) ? tsk->lock_depth : 0; |
| 890 | entry->flags = | 990 | entry->flags = |
| 891 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT | 991 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT |
| 892 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | | 992 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | |
| @@ -1068,6 +1168,7 @@ ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, int pc) | |||
| 1068 | return; | 1168 | return; |
| 1069 | entry = ring_buffer_event_data(event); | 1169 | entry = ring_buffer_event_data(event); |
| 1070 | 1170 | ||
| 1171 | entry->tgid = current->tgid; | ||
| 1071 | memset(&entry->caller, 0, sizeof(entry->caller)); | 1172 | memset(&entry->caller, 0, sizeof(entry->caller)); |
| 1072 | 1173 | ||
| 1073 | trace.nr_entries = 0; | 1174 | trace.nr_entries = 0; |
| @@ -1094,6 +1195,7 @@ ftrace_trace_special(void *__tr, | |||
| 1094 | unsigned long arg1, unsigned long arg2, unsigned long arg3, | 1195 | unsigned long arg1, unsigned long arg2, unsigned long arg3, |
| 1095 | int pc) | 1196 | int pc) |
| 1096 | { | 1197 | { |
| 1198 | struct ftrace_event_call *call = &event_special; | ||
| 1097 | struct ring_buffer_event *event; | 1199 | struct ring_buffer_event *event; |
| 1098 | struct trace_array *tr = __tr; | 1200 | struct trace_array *tr = __tr; |
| 1099 | struct ring_buffer *buffer = tr->buffer; | 1201 | struct ring_buffer *buffer = tr->buffer; |
| @@ -1107,7 +1209,9 @@ ftrace_trace_special(void *__tr, | |||
| 1107 | entry->arg1 = arg1; | 1209 | entry->arg1 = arg1; |
| 1108 | entry->arg2 = arg2; | 1210 | entry->arg2 = arg2; |
| 1109 | entry->arg3 = arg3; | 1211 | entry->arg3 = arg3; |
| 1110 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 1212 | |
| 1213 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 1214 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 1111 | } | 1215 | } |
| 1112 | 1216 | ||
| 1113 | void | 1217 | void |
| @@ -1257,10 +1361,11 @@ int trace_array_vprintk(struct trace_array *tr, | |||
| 1257 | pause_graph_tracing(); | 1361 | pause_graph_tracing(); |
| 1258 | raw_local_irq_save(irq_flags); | 1362 | raw_local_irq_save(irq_flags); |
| 1259 | __raw_spin_lock(&trace_buf_lock); | 1363 | __raw_spin_lock(&trace_buf_lock); |
| 1260 | len = vsnprintf(trace_buf, TRACE_BUF_SIZE, fmt, args); | 1364 | if (args == NULL) { |
| 1261 | 1365 | strncpy(trace_buf, fmt, TRACE_BUF_SIZE); | |
| 1262 | len = min(len, TRACE_BUF_SIZE-1); | 1366 | len = strlen(trace_buf); |
| 1263 | trace_buf[len] = 0; | 1367 | } else |
| 1368 | len = vsnprintf(trace_buf, TRACE_BUF_SIZE, fmt, args); | ||
| 1264 | 1369 | ||
| 1265 | size = sizeof(*entry) + len + 1; | 1370 | size = sizeof(*entry) + len + 1; |
| 1266 | buffer = tr->buffer; | 1371 | buffer = tr->buffer; |
| @@ -1269,10 +1374,10 @@ int trace_array_vprintk(struct trace_array *tr, | |||
| 1269 | if (!event) | 1374 | if (!event) |
| 1270 | goto out_unlock; | 1375 | goto out_unlock; |
| 1271 | entry = ring_buffer_event_data(event); | 1376 | entry = ring_buffer_event_data(event); |
| 1272 | entry->ip = ip; | 1377 | entry->ip = ip; |
| 1273 | 1378 | ||
| 1274 | memcpy(&entry->buf, trace_buf, len); | 1379 | memcpy(&entry->buf, trace_buf, len); |
| 1275 | entry->buf[len] = 0; | 1380 | entry->buf[len] = '\0'; |
| 1276 | if (!filter_check_discard(call, entry, buffer, event)) | 1381 | if (!filter_check_discard(call, entry, buffer, event)) |
| 1277 | ring_buffer_unlock_commit(buffer, event); | 1382 | ring_buffer_unlock_commit(buffer, event); |
| 1278 | 1383 | ||
| @@ -1289,7 +1394,7 @@ int trace_array_vprintk(struct trace_array *tr, | |||
| 1289 | 1394 | ||
| 1290 | int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | 1395 | int trace_vprintk(unsigned long ip, const char *fmt, va_list args) |
| 1291 | { | 1396 | { |
| 1292 | return trace_array_printk(&global_trace, ip, fmt, args); | 1397 | return trace_array_vprintk(&global_trace, ip, fmt, args); |
| 1293 | } | 1398 | } |
| 1294 | EXPORT_SYMBOL_GPL(trace_vprintk); | 1399 | EXPORT_SYMBOL_GPL(trace_vprintk); |
| 1295 | 1400 | ||
| @@ -1530,10 +1635,10 @@ static void print_lat_help_header(struct seq_file *m) | |||
| 1530 | seq_puts(m, "# | / _----=> need-resched \n"); | 1635 | seq_puts(m, "# | / _----=> need-resched \n"); |
| 1531 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); | 1636 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); |
| 1532 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); | 1637 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); |
| 1533 | seq_puts(m, "# |||| / \n"); | 1638 | seq_puts(m, "# |||| /_--=> lock-depth \n"); |
| 1534 | seq_puts(m, "# ||||| delay \n"); | 1639 | seq_puts(m, "# |||||/ delay \n"); |
| 1535 | seq_puts(m, "# cmd pid ||||| time | caller \n"); | 1640 | seq_puts(m, "# cmd pid |||||| time | caller \n"); |
| 1536 | seq_puts(m, "# \\ / ||||| \\ | / \n"); | 1641 | seq_puts(m, "# \\ / |||||| \\ | / \n"); |
| 1537 | } | 1642 | } |
| 1538 | 1643 | ||
| 1539 | static void print_func_help_header(struct seq_file *m) | 1644 | static void print_func_help_header(struct seq_file *m) |
| @@ -1845,7 +1950,7 @@ static int s_show(struct seq_file *m, void *v) | |||
| 1845 | return 0; | 1950 | return 0; |
| 1846 | } | 1951 | } |
| 1847 | 1952 | ||
| 1848 | static struct seq_operations tracer_seq_ops = { | 1953 | static const struct seq_operations tracer_seq_ops = { |
| 1849 | .start = s_start, | 1954 | .start = s_start, |
| 1850 | .next = s_next, | 1955 | .next = s_next, |
| 1851 | .stop = s_stop, | 1956 | .stop = s_stop, |
| @@ -1880,11 +1985,9 @@ __tracing_open(struct inode *inode, struct file *file) | |||
| 1880 | if (current_trace) | 1985 | if (current_trace) |
| 1881 | *iter->trace = *current_trace; | 1986 | *iter->trace = *current_trace; |
| 1882 | 1987 | ||
| 1883 | if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) | 1988 | if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL)) |
| 1884 | goto fail; | 1989 | goto fail; |
| 1885 | 1990 | ||
| 1886 | cpumask_clear(iter->started); | ||
| 1887 | |||
| 1888 | if (current_trace && current_trace->print_max) | 1991 | if (current_trace && current_trace->print_max) |
| 1889 | iter->tr = &max_tr; | 1992 | iter->tr = &max_tr; |
| 1890 | else | 1993 | else |
| @@ -2059,7 +2162,7 @@ static int t_show(struct seq_file *m, void *v) | |||
| 2059 | return 0; | 2162 | return 0; |
| 2060 | } | 2163 | } |
| 2061 | 2164 | ||
| 2062 | static struct seq_operations show_traces_seq_ops = { | 2165 | static const struct seq_operations show_traces_seq_ops = { |
| 2063 | .start = t_start, | 2166 | .start = t_start, |
| 2064 | .next = t_next, | 2167 | .next = t_next, |
| 2065 | .stop = t_stop, | 2168 | .stop = t_stop, |
| @@ -2338,7 +2441,7 @@ tracing_trace_options_write(struct file *filp, const char __user *ubuf, | |||
| 2338 | return ret; | 2441 | return ret; |
| 2339 | } | 2442 | } |
| 2340 | 2443 | ||
| 2341 | filp->f_pos += cnt; | 2444 | *ppos += cnt; |
| 2342 | 2445 | ||
| 2343 | return cnt; | 2446 | return cnt; |
| 2344 | } | 2447 | } |
| @@ -2480,7 +2583,7 @@ tracing_ctrl_write(struct file *filp, const char __user *ubuf, | |||
| 2480 | } | 2583 | } |
| 2481 | mutex_unlock(&trace_types_lock); | 2584 | mutex_unlock(&trace_types_lock); |
| 2482 | 2585 | ||
| 2483 | filp->f_pos += cnt; | 2586 | *ppos += cnt; |
| 2484 | 2587 | ||
| 2485 | return cnt; | 2588 | return cnt; |
| 2486 | } | 2589 | } |
| @@ -2489,7 +2592,7 @@ static ssize_t | |||
| 2489 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2592 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
| 2490 | size_t cnt, loff_t *ppos) | 2593 | size_t cnt, loff_t *ppos) |
| 2491 | { | 2594 | { |
| 2492 | char buf[max_tracer_type_len+2]; | 2595 | char buf[MAX_TRACER_SIZE+2]; |
| 2493 | int r; | 2596 | int r; |
| 2494 | 2597 | ||
| 2495 | mutex_lock(&trace_types_lock); | 2598 | mutex_lock(&trace_types_lock); |
| @@ -2639,15 +2742,15 @@ static ssize_t | |||
| 2639 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2742 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
| 2640 | size_t cnt, loff_t *ppos) | 2743 | size_t cnt, loff_t *ppos) |
| 2641 | { | 2744 | { |
| 2642 | char buf[max_tracer_type_len+1]; | 2745 | char buf[MAX_TRACER_SIZE+1]; |
| 2643 | int i; | 2746 | int i; |
| 2644 | size_t ret; | 2747 | size_t ret; |
| 2645 | int err; | 2748 | int err; |
| 2646 | 2749 | ||
| 2647 | ret = cnt; | 2750 | ret = cnt; |
| 2648 | 2751 | ||
| 2649 | if (cnt > max_tracer_type_len) | 2752 | if (cnt > MAX_TRACER_SIZE) |
| 2650 | cnt = max_tracer_type_len; | 2753 | cnt = MAX_TRACER_SIZE; |
| 2651 | 2754 | ||
| 2652 | if (copy_from_user(&buf, ubuf, cnt)) | 2755 | if (copy_from_user(&buf, ubuf, cnt)) |
| 2653 | return -EFAULT; | 2756 | return -EFAULT; |
| @@ -2662,7 +2765,7 @@ tracing_set_trace_write(struct file *filp, const char __user *ubuf, | |||
| 2662 | if (err) | 2765 | if (err) |
| 2663 | return err; | 2766 | return err; |
| 2664 | 2767 | ||
| 2665 | filp->f_pos += ret; | 2768 | *ppos += ret; |
| 2666 | 2769 | ||
| 2667 | return ret; | 2770 | return ret; |
| 2668 | } | 2771 | } |
| @@ -3197,7 +3300,7 @@ tracing_entries_write(struct file *filp, const char __user *ubuf, | |||
| 3197 | } | 3300 | } |
| 3198 | } | 3301 | } |
| 3199 | 3302 | ||
| 3200 | filp->f_pos += cnt; | 3303 | *ppos += cnt; |
| 3201 | 3304 | ||
| 3202 | /* If check pages failed, return ENOMEM */ | 3305 | /* If check pages failed, return ENOMEM */ |
| 3203 | if (tracing_disabled) | 3306 | if (tracing_disabled) |
| @@ -3217,22 +3320,11 @@ tracing_entries_write(struct file *filp, const char __user *ubuf, | |||
| 3217 | return cnt; | 3320 | return cnt; |
| 3218 | } | 3321 | } |
| 3219 | 3322 | ||
| 3220 | static int mark_printk(const char *fmt, ...) | ||
| 3221 | { | ||
| 3222 | int ret; | ||
| 3223 | va_list args; | ||
| 3224 | va_start(args, fmt); | ||
| 3225 | ret = trace_vprintk(0, fmt, args); | ||
| 3226 | va_end(args); | ||
| 3227 | return ret; | ||
| 3228 | } | ||
| 3229 | |||
| 3230 | static ssize_t | 3323 | static ssize_t |
| 3231 | tracing_mark_write(struct file *filp, const char __user *ubuf, | 3324 | tracing_mark_write(struct file *filp, const char __user *ubuf, |
| 3232 | size_t cnt, loff_t *fpos) | 3325 | size_t cnt, loff_t *fpos) |
| 3233 | { | 3326 | { |
| 3234 | char *buf; | 3327 | char *buf; |
| 3235 | char *end; | ||
| 3236 | 3328 | ||
| 3237 | if (tracing_disabled) | 3329 | if (tracing_disabled) |
| 3238 | return -EINVAL; | 3330 | return -EINVAL; |
| @@ -3240,7 +3332,7 @@ tracing_mark_write(struct file *filp, const char __user *ubuf, | |||
| 3240 | if (cnt > TRACE_BUF_SIZE) | 3332 | if (cnt > TRACE_BUF_SIZE) |
| 3241 | cnt = TRACE_BUF_SIZE; | 3333 | cnt = TRACE_BUF_SIZE; |
| 3242 | 3334 | ||
| 3243 | buf = kmalloc(cnt + 1, GFP_KERNEL); | 3335 | buf = kmalloc(cnt + 2, GFP_KERNEL); |
| 3244 | if (buf == NULL) | 3336 | if (buf == NULL) |
| 3245 | return -ENOMEM; | 3337 | return -ENOMEM; |
| 3246 | 3338 | ||
| @@ -3248,14 +3340,13 @@ tracing_mark_write(struct file *filp, const char __user *ubuf, | |||
| 3248 | kfree(buf); | 3340 | kfree(buf); |
| 3249 | return -EFAULT; | 3341 | return -EFAULT; |
| 3250 | } | 3342 | } |
| 3343 | if (buf[cnt-1] != '\n') { | ||
| 3344 | buf[cnt] = '\n'; | ||
| 3345 | buf[cnt+1] = '\0'; | ||
| 3346 | } else | ||
| 3347 | buf[cnt] = '\0'; | ||
| 3251 | 3348 | ||
| 3252 | /* Cut from the first nil or newline. */ | 3349 | cnt = trace_vprintk(0, buf, NULL); |
| 3253 | buf[cnt] = '\0'; | ||
| 3254 | end = strchr(buf, '\n'); | ||
| 3255 | if (end) | ||
| 3256 | *end = '\0'; | ||
| 3257 | |||
| 3258 | cnt = mark_printk("%s\n", buf); | ||
| 3259 | kfree(buf); | 3350 | kfree(buf); |
| 3260 | *fpos += cnt; | 3351 | *fpos += cnt; |
| 3261 | 3352 | ||
| @@ -3628,7 +3719,7 @@ tracing_stats_read(struct file *filp, char __user *ubuf, | |||
| 3628 | 3719 | ||
| 3629 | s = kmalloc(sizeof(*s), GFP_KERNEL); | 3720 | s = kmalloc(sizeof(*s), GFP_KERNEL); |
| 3630 | if (!s) | 3721 | if (!s) |
| 3631 | return ENOMEM; | 3722 | return -ENOMEM; |
| 3632 | 3723 | ||
| 3633 | trace_seq_init(s); | 3724 | trace_seq_init(s); |
| 3634 | 3725 | ||
| @@ -4285,7 +4376,7 @@ __init static int tracer_alloc_buffers(void) | |||
| 4285 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) | 4376 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) |
| 4286 | goto out_free_buffer_mask; | 4377 | goto out_free_buffer_mask; |
| 4287 | 4378 | ||
| 4288 | if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) | 4379 | if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) |
| 4289 | goto out_free_tracing_cpumask; | 4380 | goto out_free_tracing_cpumask; |
| 4290 | 4381 | ||
| 4291 | /* To save memory, keep the ring buffer size to its minimum */ | 4382 | /* To save memory, keep the ring buffer size to its minimum */ |
| @@ -4296,7 +4387,6 @@ __init static int tracer_alloc_buffers(void) | |||
| 4296 | 4387 | ||
| 4297 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); | 4388 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); |
| 4298 | cpumask_copy(tracing_cpumask, cpu_all_mask); | 4389 | cpumask_copy(tracing_cpumask, cpu_all_mask); |
| 4299 | cpumask_clear(tracing_reader_cpumask); | ||
| 4300 | 4390 | ||
| 4301 | /* TODO: make the number of buffers hot pluggable with CPUS */ | 4391 | /* TODO: make the number of buffers hot pluggable with CPUS */ |
| 4302 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, | 4392 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, |
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index fa1dccb579d5..1d7f4830a80d 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
| @@ -7,10 +7,11 @@ | |||
| 7 | #include <linux/clocksource.h> | 7 | #include <linux/clocksource.h> |
| 8 | #include <linux/ring_buffer.h> | 8 | #include <linux/ring_buffer.h> |
| 9 | #include <linux/mmiotrace.h> | 9 | #include <linux/mmiotrace.h> |
| 10 | #include <linux/tracepoint.h> | ||
| 10 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 11 | #include <trace/boot.h> | 12 | #include <trace/boot.h> |
| 12 | #include <linux/kmemtrace.h> | 13 | #include <linux/kmemtrace.h> |
| 13 | #include <trace/power.h> | 14 | #include <linux/hw_breakpoint.h> |
| 14 | 15 | ||
| 15 | #include <linux/trace_seq.h> | 16 | #include <linux/trace_seq.h> |
| 16 | #include <linux/ftrace_event.h> | 17 | #include <linux/ftrace_event.h> |
| @@ -36,182 +37,101 @@ enum trace_type { | |||
| 36 | TRACE_HW_BRANCHES, | 37 | TRACE_HW_BRANCHES, |
| 37 | TRACE_KMEM_ALLOC, | 38 | TRACE_KMEM_ALLOC, |
| 38 | TRACE_KMEM_FREE, | 39 | TRACE_KMEM_FREE, |
| 39 | TRACE_POWER, | ||
| 40 | TRACE_BLK, | 40 | TRACE_BLK, |
| 41 | TRACE_KSYM, | ||
| 41 | 42 | ||
| 42 | __TRACE_LAST_TYPE, | 43 | __TRACE_LAST_TYPE, |
| 43 | }; | 44 | }; |
| 44 | 45 | ||
| 45 | /* | 46 | enum kmemtrace_type_id { |
| 46 | * Function trace entry - function address and parent function addres: | 47 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ |
| 47 | */ | 48 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ |
| 48 | struct ftrace_entry { | 49 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ |
| 49 | struct trace_entry ent; | ||
| 50 | unsigned long ip; | ||
| 51 | unsigned long parent_ip; | ||
| 52 | }; | ||
| 53 | |||
| 54 | /* Function call entry */ | ||
| 55 | struct ftrace_graph_ent_entry { | ||
| 56 | struct trace_entry ent; | ||
| 57 | struct ftrace_graph_ent graph_ent; | ||
| 58 | }; | 50 | }; |
| 59 | 51 | ||
| 60 | /* Function return entry */ | ||
| 61 | struct ftrace_graph_ret_entry { | ||
| 62 | struct trace_entry ent; | ||
| 63 | struct ftrace_graph_ret ret; | ||
| 64 | }; | ||
| 65 | extern struct tracer boot_tracer; | 52 | extern struct tracer boot_tracer; |
| 66 | 53 | ||
| 67 | /* | 54 | #undef __field |
| 68 | * Context switch trace entry - which task (and prio) we switched from/to: | 55 | #define __field(type, item) type item; |
| 69 | */ | ||
| 70 | struct ctx_switch_entry { | ||
| 71 | struct trace_entry ent; | ||
| 72 | unsigned int prev_pid; | ||
| 73 | unsigned char prev_prio; | ||
| 74 | unsigned char prev_state; | ||
| 75 | unsigned int next_pid; | ||
| 76 | unsigned char next_prio; | ||
| 77 | unsigned char next_state; | ||
| 78 | unsigned int next_cpu; | ||
| 79 | }; | ||
| 80 | |||
| 81 | /* | ||
| 82 | * Special (free-form) trace entry: | ||
| 83 | */ | ||
| 84 | struct special_entry { | ||
| 85 | struct trace_entry ent; | ||
| 86 | unsigned long arg1; | ||
| 87 | unsigned long arg2; | ||
| 88 | unsigned long arg3; | ||
| 89 | }; | ||
| 90 | |||
| 91 | /* | ||
| 92 | * Stack-trace entry: | ||
| 93 | */ | ||
| 94 | |||
| 95 | #define FTRACE_STACK_ENTRIES 8 | ||
| 96 | |||
| 97 | struct stack_entry { | ||
| 98 | struct trace_entry ent; | ||
| 99 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
| 100 | }; | ||
| 101 | 56 | ||
| 102 | struct userstack_entry { | 57 | #undef __field_struct |
| 103 | struct trace_entry ent; | 58 | #define __field_struct(type, item) __field(type, item) |
| 104 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
| 105 | }; | ||
| 106 | 59 | ||
| 107 | /* | 60 | #undef __field_desc |
| 108 | * trace_printk entry: | 61 | #define __field_desc(type, container, item) |
| 109 | */ | ||
| 110 | struct bprint_entry { | ||
| 111 | struct trace_entry ent; | ||
| 112 | unsigned long ip; | ||
| 113 | const char *fmt; | ||
| 114 | u32 buf[]; | ||
| 115 | }; | ||
| 116 | 62 | ||
| 117 | struct print_entry { | 63 | #undef __array |
| 118 | struct trace_entry ent; | 64 | #define __array(type, item, size) type item[size]; |
| 119 | unsigned long ip; | ||
| 120 | char buf[]; | ||
| 121 | }; | ||
| 122 | 65 | ||
| 123 | #define TRACE_OLD_SIZE 88 | 66 | #undef __array_desc |
| 67 | #define __array_desc(type, container, item, size) | ||
| 124 | 68 | ||
| 125 | struct trace_field_cont { | 69 | #undef __dynamic_array |
| 126 | unsigned char type; | 70 | #define __dynamic_array(type, item) type item[]; |
| 127 | /* Temporary till we get rid of this completely */ | ||
| 128 | char buf[TRACE_OLD_SIZE - 1]; | ||
| 129 | }; | ||
| 130 | 71 | ||
| 131 | struct trace_mmiotrace_rw { | 72 | #undef F_STRUCT |
| 132 | struct trace_entry ent; | 73 | #define F_STRUCT(args...) args |
| 133 | struct mmiotrace_rw rw; | ||
| 134 | }; | ||
| 135 | 74 | ||
| 136 | struct trace_mmiotrace_map { | 75 | #undef FTRACE_ENTRY |
| 137 | struct trace_entry ent; | 76 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
| 138 | struct mmiotrace_map map; | 77 | struct struct_name { \ |
| 139 | }; | 78 | struct trace_entry ent; \ |
| 79 | tstruct \ | ||
| 80 | } | ||
| 140 | 81 | ||
| 141 | struct trace_boot_call { | 82 | #undef TP_ARGS |
| 142 | struct trace_entry ent; | 83 | #define TP_ARGS(args...) args |
| 143 | struct boot_trace_call boot_call; | ||
| 144 | }; | ||
| 145 | 84 | ||
| 146 | struct trace_boot_ret { | 85 | #undef FTRACE_ENTRY_DUP |
| 147 | struct trace_entry ent; | 86 | #define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk) |
| 148 | struct boot_trace_ret boot_ret; | ||
| 149 | }; | ||
| 150 | 87 | ||
| 151 | #define TRACE_FUNC_SIZE 30 | 88 | #include "trace_entries.h" |
| 152 | #define TRACE_FILE_SIZE 20 | ||
| 153 | struct trace_branch { | ||
| 154 | struct trace_entry ent; | ||
| 155 | unsigned line; | ||
| 156 | char func[TRACE_FUNC_SIZE+1]; | ||
| 157 | char file[TRACE_FILE_SIZE+1]; | ||
| 158 | char correct; | ||
| 159 | }; | ||
| 160 | 89 | ||
| 161 | struct hw_branch_entry { | 90 | /* |
| 91 | * syscalls are special, and need special handling, this is why | ||
| 92 | * they are not included in trace_entries.h | ||
| 93 | */ | ||
| 94 | struct syscall_trace_enter { | ||
| 162 | struct trace_entry ent; | 95 | struct trace_entry ent; |
| 163 | u64 from; | 96 | int nr; |
| 164 | u64 to; | 97 | unsigned long args[]; |
| 165 | }; | 98 | }; |
| 166 | 99 | ||
| 167 | struct trace_power { | 100 | struct syscall_trace_exit { |
| 168 | struct trace_entry ent; | 101 | struct trace_entry ent; |
| 169 | struct power_trace state_data; | 102 | int nr; |
| 170 | }; | 103 | long ret; |
| 171 | |||
| 172 | enum kmemtrace_type_id { | ||
| 173 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ | ||
| 174 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ | ||
| 175 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ | ||
| 176 | }; | 104 | }; |
| 177 | 105 | ||
| 178 | struct kmemtrace_alloc_entry { | 106 | struct kprobe_trace_entry { |
| 179 | struct trace_entry ent; | 107 | struct trace_entry ent; |
| 180 | enum kmemtrace_type_id type_id; | 108 | unsigned long ip; |
| 181 | unsigned long call_site; | 109 | int nargs; |
| 182 | const void *ptr; | 110 | unsigned long args[]; |
| 183 | size_t bytes_req; | ||
| 184 | size_t bytes_alloc; | ||
| 185 | gfp_t gfp_flags; | ||
| 186 | int node; | ||
| 187 | }; | 111 | }; |
| 188 | 112 | ||
| 189 | struct kmemtrace_free_entry { | 113 | #define SIZEOF_KPROBE_TRACE_ENTRY(n) \ |
| 190 | struct trace_entry ent; | 114 | (offsetof(struct kprobe_trace_entry, args) + \ |
| 191 | enum kmemtrace_type_id type_id; | 115 | (sizeof(unsigned long) * (n))) |
| 192 | unsigned long call_site; | ||
| 193 | const void *ptr; | ||
| 194 | }; | ||
| 195 | 116 | ||
| 196 | struct syscall_trace_enter { | 117 | struct kretprobe_trace_entry { |
| 197 | struct trace_entry ent; | 118 | struct trace_entry ent; |
| 198 | int nr; | 119 | unsigned long func; |
| 120 | unsigned long ret_ip; | ||
| 121 | int nargs; | ||
| 199 | unsigned long args[]; | 122 | unsigned long args[]; |
| 200 | }; | 123 | }; |
| 201 | 124 | ||
| 202 | struct syscall_trace_exit { | 125 | #define SIZEOF_KRETPROBE_TRACE_ENTRY(n) \ |
| 203 | struct trace_entry ent; | 126 | (offsetof(struct kretprobe_trace_entry, args) + \ |
| 204 | int nr; | 127 | (sizeof(unsigned long) * (n))) |
| 205 | unsigned long ret; | ||
| 206 | }; | ||
| 207 | |||
| 208 | 128 | ||
| 209 | /* | 129 | /* |
| 210 | * trace_flag_type is an enumeration that holds different | 130 | * trace_flag_type is an enumeration that holds different |
| 211 | * states when a trace occurs. These are: | 131 | * states when a trace occurs. These are: |
| 212 | * IRQS_OFF - interrupts were disabled | 132 | * IRQS_OFF - interrupts were disabled |
| 213 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags | 133 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
| 214 | * NEED_RESCED - reschedule is requested | 134 | * NEED_RESCHED - reschedule is requested |
| 215 | * HARDIRQ - inside an interrupt handler | 135 | * HARDIRQ - inside an interrupt handler |
| 216 | * SOFTIRQ - inside a softirq handler | 136 | * SOFTIRQ - inside a softirq handler |
| 217 | */ | 137 | */ |
| @@ -310,11 +230,11 @@ extern void __ftrace_bad_type(void); | |||
| 310 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 230 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
| 311 | TRACE_GRAPH_RET); \ | 231 | TRACE_GRAPH_RET); \ |
| 312 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | 232 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ |
| 313 | IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \ | ||
| 314 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 233 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
| 315 | TRACE_KMEM_ALLOC); \ | 234 | TRACE_KMEM_ALLOC); \ |
| 316 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 235 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
| 317 | TRACE_KMEM_FREE); \ | 236 | TRACE_KMEM_FREE); \ |
| 237 | IF_ASSIGN(var, ent, struct ksym_trace_entry, TRACE_KSYM);\ | ||
| 318 | __ftrace_bad_type(); \ | 238 | __ftrace_bad_type(); \ |
| 319 | } while (0) | 239 | } while (0) |
| 320 | 240 | ||
| @@ -390,7 +310,6 @@ struct tracer { | |||
| 390 | struct tracer *next; | 310 | struct tracer *next; |
| 391 | int print_max; | 311 | int print_max; |
| 392 | struct tracer_flags *flags; | 312 | struct tracer_flags *flags; |
| 393 | struct tracer_stat *stats; | ||
| 394 | }; | 313 | }; |
| 395 | 314 | ||
| 396 | 315 | ||
| @@ -469,6 +388,9 @@ void tracing_stop_sched_switch_record(void); | |||
| 469 | void tracing_start_sched_switch_record(void); | 388 | void tracing_start_sched_switch_record(void); |
| 470 | int register_tracer(struct tracer *type); | 389 | int register_tracer(struct tracer *type); |
| 471 | void unregister_tracer(struct tracer *type); | 390 | void unregister_tracer(struct tracer *type); |
| 391 | int is_tracing_stopped(void); | ||
| 392 | |||
| 393 | extern int process_new_ksym_entry(char *ksymname, int op, unsigned long addr); | ||
| 472 | 394 | ||
| 473 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); | 395 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); |
| 474 | 396 | ||
| @@ -509,20 +431,6 @@ static inline void __trace_stack(struct trace_array *tr, unsigned long flags, | |||
| 509 | 431 | ||
| 510 | extern cycle_t ftrace_now(int cpu); | 432 | extern cycle_t ftrace_now(int cpu); |
| 511 | 433 | ||
| 512 | #ifdef CONFIG_CONTEXT_SWITCH_TRACER | ||
| 513 | typedef void | ||
| 514 | (*tracer_switch_func_t)(void *private, | ||
| 515 | void *__rq, | ||
| 516 | struct task_struct *prev, | ||
| 517 | struct task_struct *next); | ||
| 518 | |||
| 519 | struct tracer_switch_ops { | ||
| 520 | tracer_switch_func_t func; | ||
| 521 | void *private; | ||
| 522 | struct tracer_switch_ops *next; | ||
| 523 | }; | ||
| 524 | #endif /* CONFIG_CONTEXT_SWITCH_TRACER */ | ||
| 525 | |||
| 526 | extern void trace_find_cmdline(int pid, char comm[]); | 434 | extern void trace_find_cmdline(int pid, char comm[]); |
| 527 | 435 | ||
| 528 | #ifdef CONFIG_DYNAMIC_FTRACE | 436 | #ifdef CONFIG_DYNAMIC_FTRACE |
| @@ -558,6 +466,8 @@ extern int trace_selftest_startup_branch(struct tracer *trace, | |||
| 558 | struct trace_array *tr); | 466 | struct trace_array *tr); |
| 559 | extern int trace_selftest_startup_hw_branches(struct tracer *trace, | 467 | extern int trace_selftest_startup_hw_branches(struct tracer *trace, |
| 560 | struct trace_array *tr); | 468 | struct trace_array *tr); |
| 469 | extern int trace_selftest_startup_ksym(struct tracer *trace, | ||
| 470 | struct trace_array *tr); | ||
| 561 | #endif /* CONFIG_FTRACE_STARTUP_TEST */ | 471 | #endif /* CONFIG_FTRACE_STARTUP_TEST */ |
| 562 | 472 | ||
| 563 | extern void *head_page(struct trace_array_cpu *data); | 473 | extern void *head_page(struct trace_array_cpu *data); |
| @@ -603,10 +513,6 @@ static inline int ftrace_graph_addr(unsigned long addr) | |||
| 603 | return 0; | 513 | return 0; |
| 604 | } | 514 | } |
| 605 | #else | 515 | #else |
| 606 | static inline int ftrace_trace_addr(unsigned long addr) | ||
| 607 | { | ||
| 608 | return 1; | ||
| 609 | } | ||
| 610 | static inline int ftrace_graph_addr(unsigned long addr) | 516 | static inline int ftrace_graph_addr(unsigned long addr) |
| 611 | { | 517 | { |
| 612 | return 1; | 518 | return 1; |
| @@ -620,12 +526,12 @@ print_graph_function(struct trace_iterator *iter) | |||
| 620 | } | 526 | } |
| 621 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | 527 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ |
| 622 | 528 | ||
| 623 | extern struct pid *ftrace_pid_trace; | 529 | extern struct list_head ftrace_pids; |
| 624 | 530 | ||
| 625 | #ifdef CONFIG_FUNCTION_TRACER | 531 | #ifdef CONFIG_FUNCTION_TRACER |
| 626 | static inline int ftrace_trace_task(struct task_struct *task) | 532 | static inline int ftrace_trace_task(struct task_struct *task) |
| 627 | { | 533 | { |
| 628 | if (!ftrace_pid_trace) | 534 | if (list_empty(&ftrace_pids)) |
| 629 | return 1; | 535 | return 1; |
| 630 | 536 | ||
| 631 | return test_tsk_trace_trace(task); | 537 | return test_tsk_trace_trace(task); |
| @@ -638,6 +544,41 @@ static inline int ftrace_trace_task(struct task_struct *task) | |||
| 638 | #endif | 544 | #endif |
| 639 | 545 | ||
| 640 | /* | 546 | /* |
| 547 | * struct trace_parser - servers for reading the user input separated by spaces | ||
| 548 | * @cont: set if the input is not complete - no final space char was found | ||
| 549 | * @buffer: holds the parsed user input | ||
| 550 | * @idx: user input lenght | ||
| 551 | * @size: buffer size | ||
| 552 | */ | ||
| 553 | struct trace_parser { | ||
| 554 | bool cont; | ||
| 555 | char *buffer; | ||
| 556 | unsigned idx; | ||
| 557 | unsigned size; | ||
| 558 | }; | ||
| 559 | |||
| 560 | static inline bool trace_parser_loaded(struct trace_parser *parser) | ||
| 561 | { | ||
| 562 | return (parser->idx != 0); | ||
| 563 | } | ||
| 564 | |||
| 565 | static inline bool trace_parser_cont(struct trace_parser *parser) | ||
| 566 | { | ||
| 567 | return parser->cont; | ||
| 568 | } | ||
| 569 | |||
| 570 | static inline void trace_parser_clear(struct trace_parser *parser) | ||
| 571 | { | ||
| 572 | parser->cont = false; | ||
| 573 | parser->idx = 0; | ||
| 574 | } | ||
| 575 | |||
| 576 | extern int trace_parser_get_init(struct trace_parser *parser, int size); | ||
| 577 | extern void trace_parser_put(struct trace_parser *parser); | ||
| 578 | extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
| 579 | size_t cnt, loff_t *ppos); | ||
| 580 | |||
| 581 | /* | ||
| 641 | * trace_iterator_flags is an enumeration that defines bit | 582 | * trace_iterator_flags is an enumeration that defines bit |
| 642 | * positions into trace_flags that controls the output. | 583 | * positions into trace_flags that controls the output. |
| 643 | * | 584 | * |
| @@ -772,7 +713,6 @@ struct event_filter { | |||
| 772 | int n_preds; | 713 | int n_preds; |
| 773 | struct filter_pred **preds; | 714 | struct filter_pred **preds; |
| 774 | char *filter_string; | 715 | char *filter_string; |
| 775 | bool no_reset; | ||
| 776 | }; | 716 | }; |
| 777 | 717 | ||
| 778 | struct event_subsystem { | 718 | struct event_subsystem { |
| @@ -784,22 +724,40 @@ struct event_subsystem { | |||
| 784 | }; | 724 | }; |
| 785 | 725 | ||
| 786 | struct filter_pred; | 726 | struct filter_pred; |
| 727 | struct regex; | ||
| 787 | 728 | ||
| 788 | typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event, | 729 | typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event, |
| 789 | int val1, int val2); | 730 | int val1, int val2); |
| 790 | 731 | ||
| 791 | struct filter_pred { | 732 | typedef int (*regex_match_func)(char *str, struct regex *r, int len); |
| 792 | filter_pred_fn_t fn; | 733 | |
| 793 | u64 val; | 734 | enum regex_type { |
| 794 | char str_val[MAX_FILTER_STR_VAL]; | 735 | MATCH_FULL = 0, |
| 795 | int str_len; | 736 | MATCH_FRONT_ONLY, |
| 796 | char *field_name; | 737 | MATCH_MIDDLE_ONLY, |
| 797 | int offset; | 738 | MATCH_END_ONLY, |
| 798 | int not; | 739 | }; |
| 799 | int op; | 740 | |
| 800 | int pop_n; | 741 | struct regex { |
| 742 | char pattern[MAX_FILTER_STR_VAL]; | ||
| 743 | int len; | ||
| 744 | int field_len; | ||
| 745 | regex_match_func match; | ||
| 801 | }; | 746 | }; |
| 802 | 747 | ||
| 748 | struct filter_pred { | ||
| 749 | filter_pred_fn_t fn; | ||
| 750 | u64 val; | ||
| 751 | struct regex regex; | ||
| 752 | char *field_name; | ||
| 753 | int offset; | ||
| 754 | int not; | ||
| 755 | int op; | ||
| 756 | int pop_n; | ||
| 757 | }; | ||
| 758 | |||
| 759 | extern enum regex_type | ||
| 760 | filter_parse_regex(char *buff, int len, char **search, int *not); | ||
| 803 | extern void print_event_filter(struct ftrace_event_call *call, | 761 | extern void print_event_filter(struct ftrace_event_call *call, |
| 804 | struct trace_seq *s); | 762 | struct trace_seq *s); |
| 805 | extern int apply_event_filter(struct ftrace_event_call *call, | 763 | extern int apply_event_filter(struct ftrace_event_call *call, |
| @@ -815,7 +773,8 @@ filter_check_discard(struct ftrace_event_call *call, void *rec, | |||
| 815 | struct ring_buffer *buffer, | 773 | struct ring_buffer *buffer, |
| 816 | struct ring_buffer_event *event) | 774 | struct ring_buffer_event *event) |
| 817 | { | 775 | { |
| 818 | if (unlikely(call->filter_active) && !filter_match_preds(call, rec)) { | 776 | if (unlikely(call->filter_active) && |
| 777 | !filter_match_preds(call->filter, rec)) { | ||
| 819 | ring_buffer_discard_commit(buffer, event); | 778 | ring_buffer_discard_commit(buffer, event); |
| 820 | return 1; | 779 | return 1; |
| 821 | } | 780 | } |
| @@ -823,58 +782,18 @@ filter_check_discard(struct ftrace_event_call *call, void *rec, | |||
| 823 | return 0; | 782 | return 0; |
| 824 | } | 783 | } |
| 825 | 784 | ||
| 826 | #define DEFINE_COMPARISON_PRED(type) \ | ||
| 827 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
| 828 | int val1, int val2) \ | ||
| 829 | { \ | ||
| 830 | type *addr = (type *)(event + pred->offset); \ | ||
| 831 | type val = (type)pred->val; \ | ||
| 832 | int match = 0; \ | ||
| 833 | \ | ||
| 834 | switch (pred->op) { \ | ||
| 835 | case OP_LT: \ | ||
| 836 | match = (*addr < val); \ | ||
| 837 | break; \ | ||
| 838 | case OP_LE: \ | ||
| 839 | match = (*addr <= val); \ | ||
| 840 | break; \ | ||
| 841 | case OP_GT: \ | ||
| 842 | match = (*addr > val); \ | ||
| 843 | break; \ | ||
| 844 | case OP_GE: \ | ||
| 845 | match = (*addr >= val); \ | ||
| 846 | break; \ | ||
| 847 | default: \ | ||
| 848 | break; \ | ||
| 849 | } \ | ||
| 850 | \ | ||
| 851 | return match; \ | ||
| 852 | } | ||
| 853 | |||
| 854 | #define DEFINE_EQUALITY_PRED(size) \ | ||
| 855 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
| 856 | int val1, int val2) \ | ||
| 857 | { \ | ||
| 858 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
| 859 | u##size val = (u##size)pred->val; \ | ||
| 860 | int match; \ | ||
| 861 | \ | ||
| 862 | match = (val == *addr) ^ pred->not; \ | ||
| 863 | \ | ||
| 864 | return match; \ | ||
| 865 | } | ||
| 866 | |||
| 867 | extern struct mutex event_mutex; | 785 | extern struct mutex event_mutex; |
| 868 | extern struct list_head ftrace_events; | 786 | extern struct list_head ftrace_events; |
| 869 | 787 | ||
| 870 | extern const char *__start___trace_bprintk_fmt[]; | 788 | extern const char *__start___trace_bprintk_fmt[]; |
| 871 | extern const char *__stop___trace_bprintk_fmt[]; | 789 | extern const char *__stop___trace_bprintk_fmt[]; |
| 872 | 790 | ||
| 873 | #undef TRACE_EVENT_FORMAT | 791 | #undef FTRACE_ENTRY |
| 874 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 792 | #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ |
| 875 | extern struct ftrace_event_call event_##call; | 793 | extern struct ftrace_event_call event_##call; |
| 876 | #undef TRACE_EVENT_FORMAT_NOFILTER | 794 | #undef FTRACE_ENTRY_DUP |
| 877 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, tpfmt) | 795 | #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ |
| 878 | #include "trace_event_types.h" | 796 | FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) |
| 797 | #include "trace_entries.h" | ||
| 879 | 798 | ||
| 880 | #endif /* _LINUX_KERNEL_TRACE_H */ | 799 | #endif /* _LINUX_KERNEL_TRACE_H */ |
diff --git a/kernel/trace/trace_boot.c b/kernel/trace/trace_boot.c index 19bfc75d467e..c21d5f3956ad 100644 --- a/kernel/trace/trace_boot.c +++ b/kernel/trace/trace_boot.c | |||
| @@ -129,6 +129,7 @@ struct tracer boot_tracer __read_mostly = | |||
| 129 | 129 | ||
| 130 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | 130 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) |
| 131 | { | 131 | { |
| 132 | struct ftrace_event_call *call = &event_boot_call; | ||
| 132 | struct ring_buffer_event *event; | 133 | struct ring_buffer_event *event; |
| 133 | struct ring_buffer *buffer; | 134 | struct ring_buffer *buffer; |
| 134 | struct trace_boot_call *entry; | 135 | struct trace_boot_call *entry; |
| @@ -150,13 +151,15 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | |||
| 150 | goto out; | 151 | goto out; |
| 151 | entry = ring_buffer_event_data(event); | 152 | entry = ring_buffer_event_data(event); |
| 152 | entry->boot_call = *bt; | 153 | entry->boot_call = *bt; |
| 153 | trace_buffer_unlock_commit(buffer, event, 0, 0); | 154 | if (!filter_check_discard(call, entry, buffer, event)) |
| 155 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 154 | out: | 156 | out: |
| 155 | preempt_enable(); | 157 | preempt_enable(); |
| 156 | } | 158 | } |
| 157 | 159 | ||
| 158 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | 160 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) |
| 159 | { | 161 | { |
| 162 | struct ftrace_event_call *call = &event_boot_ret; | ||
| 160 | struct ring_buffer_event *event; | 163 | struct ring_buffer_event *event; |
| 161 | struct ring_buffer *buffer; | 164 | struct ring_buffer *buffer; |
| 162 | struct trace_boot_ret *entry; | 165 | struct trace_boot_ret *entry; |
| @@ -175,7 +178,8 @@ void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | |||
| 175 | goto out; | 178 | goto out; |
| 176 | entry = ring_buffer_event_data(event); | 179 | entry = ring_buffer_event_data(event); |
| 177 | entry->boot_ret = *bt; | 180 | entry->boot_ret = *bt; |
| 178 | trace_buffer_unlock_commit(buffer, event, 0, 0); | 181 | if (!filter_check_discard(call, entry, buffer, event)) |
| 182 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 179 | out: | 183 | out: |
| 180 | preempt_enable(); | 184 | preempt_enable(); |
| 181 | } | 185 | } |
diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c index 7a7a9fd249a9..4a194f08f88c 100644 --- a/kernel/trace/trace_branch.c +++ b/kernel/trace/trace_branch.c | |||
| @@ -34,6 +34,7 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
| 34 | struct trace_array *tr = branch_tracer; | 34 | struct trace_array *tr = branch_tracer; |
| 35 | struct ring_buffer_event *event; | 35 | struct ring_buffer_event *event; |
| 36 | struct trace_branch *entry; | 36 | struct trace_branch *entry; |
| 37 | struct ring_buffer *buffer; | ||
| 37 | unsigned long flags; | 38 | unsigned long flags; |
| 38 | int cpu, pc; | 39 | int cpu, pc; |
| 39 | const char *p; | 40 | const char *p; |
| @@ -54,7 +55,8 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
| 54 | goto out; | 55 | goto out; |
| 55 | 56 | ||
| 56 | pc = preempt_count(); | 57 | pc = preempt_count(); |
| 57 | event = trace_buffer_lock_reserve(tr, TRACE_BRANCH, | 58 | buffer = tr->buffer; |
| 59 | event = trace_buffer_lock_reserve(buffer, TRACE_BRANCH, | ||
| 58 | sizeof(*entry), flags, pc); | 60 | sizeof(*entry), flags, pc); |
| 59 | if (!event) | 61 | if (!event) |
| 60 | goto out; | 62 | goto out; |
| @@ -74,8 +76,8 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
| 74 | entry->line = f->line; | 76 | entry->line = f->line; |
| 75 | entry->correct = val == expect; | 77 | entry->correct = val == expect; |
| 76 | 78 | ||
| 77 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 79 | if (!filter_check_discard(call, entry, buffer, event)) |
| 78 | ring_buffer_unlock_commit(tr->buffer, event); | 80 | ring_buffer_unlock_commit(buffer, event); |
| 79 | 81 | ||
| 80 | out: | 82 | out: |
| 81 | atomic_dec(&tr->data[cpu]->disabled); | 83 | atomic_dec(&tr->data[cpu]->disabled); |
diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c index b588fd81f7f9..878c03f386ba 100644 --- a/kernel/trace/trace_clock.c +++ b/kernel/trace/trace_clock.c | |||
| @@ -20,6 +20,8 @@ | |||
| 20 | #include <linux/ktime.h> | 20 | #include <linux/ktime.h> |
| 21 | #include <linux/trace_clock.h> | 21 | #include <linux/trace_clock.h> |
| 22 | 22 | ||
| 23 | #include "trace.h" | ||
| 24 | |||
| 23 | /* | 25 | /* |
| 24 | * trace_clock_local(): the simplest and least coherent tracing clock. | 26 | * trace_clock_local(): the simplest and least coherent tracing clock. |
| 25 | * | 27 | * |
| @@ -28,17 +30,17 @@ | |||
| 28 | */ | 30 | */ |
| 29 | u64 notrace trace_clock_local(void) | 31 | u64 notrace trace_clock_local(void) |
| 30 | { | 32 | { |
| 31 | unsigned long flags; | ||
| 32 | u64 clock; | 33 | u64 clock; |
| 34 | int resched; | ||
| 33 | 35 | ||
| 34 | /* | 36 | /* |
| 35 | * sched_clock() is an architecture implemented, fast, scalable, | 37 | * sched_clock() is an architecture implemented, fast, scalable, |
| 36 | * lockless clock. It is not guaranteed to be coherent across | 38 | * lockless clock. It is not guaranteed to be coherent across |
| 37 | * CPUs, nor across CPU idle events. | 39 | * CPUs, nor across CPU idle events. |
| 38 | */ | 40 | */ |
| 39 | raw_local_irq_save(flags); | 41 | resched = ftrace_preempt_disable(); |
| 40 | clock = sched_clock(); | 42 | clock = sched_clock(); |
| 41 | raw_local_irq_restore(flags); | 43 | ftrace_preempt_enable(resched); |
| 42 | 44 | ||
| 43 | return clock; | 45 | return clock; |
| 44 | } | 46 | } |
| @@ -66,10 +68,14 @@ u64 notrace trace_clock(void) | |||
| 66 | * Used by plugins that need globally coherent timestamps. | 68 | * Used by plugins that need globally coherent timestamps. |
| 67 | */ | 69 | */ |
| 68 | 70 | ||
| 69 | static u64 prev_trace_clock_time; | 71 | /* keep prev_time and lock in the same cacheline. */ |
| 70 | 72 | static struct { | |
| 71 | static raw_spinlock_t trace_clock_lock ____cacheline_aligned_in_smp = | 73 | u64 prev_time; |
| 72 | (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 74 | raw_spinlock_t lock; |
| 75 | } trace_clock_struct ____cacheline_aligned_in_smp = | ||
| 76 | { | ||
| 77 | .lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED, | ||
| 78 | }; | ||
| 73 | 79 | ||
| 74 | u64 notrace trace_clock_global(void) | 80 | u64 notrace trace_clock_global(void) |
| 75 | { | 81 | { |
| @@ -88,19 +94,19 @@ u64 notrace trace_clock_global(void) | |||
| 88 | if (unlikely(in_nmi())) | 94 | if (unlikely(in_nmi())) |
| 89 | goto out; | 95 | goto out; |
| 90 | 96 | ||
| 91 | __raw_spin_lock(&trace_clock_lock); | 97 | __raw_spin_lock(&trace_clock_struct.lock); |
| 92 | 98 | ||
| 93 | /* | 99 | /* |
| 94 | * TODO: if this happens often then maybe we should reset | 100 | * TODO: if this happens often then maybe we should reset |
| 95 | * my_scd->clock to prev_trace_clock_time+1, to make sure | 101 | * my_scd->clock to prev_time+1, to make sure |
| 96 | * we start ticking with the local clock from now on? | 102 | * we start ticking with the local clock from now on? |
| 97 | */ | 103 | */ |
| 98 | if ((s64)(now - prev_trace_clock_time) < 0) | 104 | if ((s64)(now - trace_clock_struct.prev_time) < 0) |
| 99 | now = prev_trace_clock_time + 1; | 105 | now = trace_clock_struct.prev_time + 1; |
| 100 | 106 | ||
| 101 | prev_trace_clock_time = now; | 107 | trace_clock_struct.prev_time = now; |
| 102 | 108 | ||
| 103 | __raw_spin_unlock(&trace_clock_lock); | 109 | __raw_spin_unlock(&trace_clock_struct.lock); |
| 104 | 110 | ||
| 105 | out: | 111 | out: |
| 106 | raw_local_irq_restore(flags); | 112 | raw_local_irq_restore(flags); |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h new file mode 100644 index 000000000000..c16a08f399df --- /dev/null +++ b/kernel/trace/trace_entries.h | |||
| @@ -0,0 +1,382 @@ | |||
| 1 | /* | ||
| 2 | * This file defines the trace event structures that go into the ring | ||
| 3 | * buffer directly. They are created via macros so that changes for them | ||
| 4 | * appear in the format file. Using macros will automate this process. | ||
| 5 | * | ||
| 6 | * The macro used to create a ftrace data structure is: | ||
| 7 | * | ||
| 8 | * FTRACE_ENTRY( name, struct_name, id, structure, print ) | ||
| 9 | * | ||
| 10 | * @name: the name used the event name, as well as the name of | ||
| 11 | * the directory that holds the format file. | ||
| 12 | * | ||
| 13 | * @struct_name: the name of the structure that is created. | ||
| 14 | * | ||
| 15 | * @id: The event identifier that is used to detect what event | ||
| 16 | * this is from the ring buffer. | ||
| 17 | * | ||
| 18 | * @structure: the structure layout | ||
| 19 | * | ||
| 20 | * - __field( type, item ) | ||
| 21 | * This is equivalent to declaring | ||
| 22 | * type item; | ||
| 23 | * in the structure. | ||
| 24 | * - __array( type, item, size ) | ||
| 25 | * This is equivalent to declaring | ||
| 26 | * type item[size]; | ||
| 27 | * in the structure. | ||
| 28 | * | ||
| 29 | * * for structures within structures, the format of the internal | ||
| 30 | * structure is layed out. This allows the internal structure | ||
| 31 | * to be deciphered for the format file. Although these macros | ||
| 32 | * may become out of sync with the internal structure, they | ||
| 33 | * will create a compile error if it happens. Since the | ||
| 34 | * internel structures are just tracing helpers, this is not | ||
| 35 | * an issue. | ||
| 36 | * | ||
| 37 | * When an internal structure is used, it should use: | ||
| 38 | * | ||
| 39 | * __field_struct( type, item ) | ||
| 40 | * | ||
| 41 | * instead of __field. This will prevent it from being shown in | ||
| 42 | * the output file. The fields in the structure should use. | ||
| 43 | * | ||
| 44 | * __field_desc( type, container, item ) | ||
| 45 | * __array_desc( type, container, item, len ) | ||
| 46 | * | ||
| 47 | * type, item and len are the same as __field and __array, but | ||
| 48 | * container is added. This is the name of the item in | ||
| 49 | * __field_struct that this is describing. | ||
| 50 | * | ||
| 51 | * | ||
| 52 | * @print: the print format shown to users in the format file. | ||
| 53 | */ | ||
| 54 | |||
| 55 | /* | ||
| 56 | * Function trace entry - function address and parent function addres: | ||
| 57 | */ | ||
| 58 | FTRACE_ENTRY(function, ftrace_entry, | ||
| 59 | |||
| 60 | TRACE_FN, | ||
| 61 | |||
| 62 | F_STRUCT( | ||
| 63 | __field( unsigned long, ip ) | ||
| 64 | __field( unsigned long, parent_ip ) | ||
| 65 | ), | ||
| 66 | |||
| 67 | F_printk(" %lx <-- %lx", __entry->ip, __entry->parent_ip) | ||
| 68 | ); | ||
| 69 | |||
| 70 | /* Function call entry */ | ||
| 71 | FTRACE_ENTRY(funcgraph_entry, ftrace_graph_ent_entry, | ||
| 72 | |||
| 73 | TRACE_GRAPH_ENT, | ||
| 74 | |||
| 75 | F_STRUCT( | ||
| 76 | __field_struct( struct ftrace_graph_ent, graph_ent ) | ||
| 77 | __field_desc( unsigned long, graph_ent, func ) | ||
| 78 | __field_desc( int, graph_ent, depth ) | ||
| 79 | ), | ||
| 80 | |||
| 81 | F_printk("--> %lx (%d)", __entry->func, __entry->depth) | ||
| 82 | ); | ||
| 83 | |||
| 84 | /* Function return entry */ | ||
| 85 | FTRACE_ENTRY(funcgraph_exit, ftrace_graph_ret_entry, | ||
| 86 | |||
| 87 | TRACE_GRAPH_RET, | ||
| 88 | |||
| 89 | F_STRUCT( | ||
| 90 | __field_struct( struct ftrace_graph_ret, ret ) | ||
| 91 | __field_desc( unsigned long, ret, func ) | ||
| 92 | __field_desc( unsigned long long, ret, calltime) | ||
| 93 | __field_desc( unsigned long long, ret, rettime ) | ||
| 94 | __field_desc( unsigned long, ret, overrun ) | ||
| 95 | __field_desc( int, ret, depth ) | ||
| 96 | ), | ||
| 97 | |||
| 98 | F_printk("<-- %lx (%d) (start: %llx end: %llx) over: %d", | ||
| 99 | __entry->func, __entry->depth, | ||
| 100 | __entry->calltime, __entry->rettime, | ||
| 101 | __entry->depth) | ||
| 102 | ); | ||
| 103 | |||
| 104 | /* | ||
| 105 | * Context switch trace entry - which task (and prio) we switched from/to: | ||
| 106 | * | ||
| 107 | * This is used for both wakeup and context switches. We only want | ||
| 108 | * to create one structure, but we need two outputs for it. | ||
| 109 | */ | ||
| 110 | #define FTRACE_CTX_FIELDS \ | ||
| 111 | __field( unsigned int, prev_pid ) \ | ||
| 112 | __field( unsigned char, prev_prio ) \ | ||
| 113 | __field( unsigned char, prev_state ) \ | ||
| 114 | __field( unsigned int, next_pid ) \ | ||
| 115 | __field( unsigned char, next_prio ) \ | ||
| 116 | __field( unsigned char, next_state ) \ | ||
| 117 | __field( unsigned int, next_cpu ) | ||
| 118 | |||
| 119 | FTRACE_ENTRY(context_switch, ctx_switch_entry, | ||
| 120 | |||
| 121 | TRACE_CTX, | ||
| 122 | |||
| 123 | F_STRUCT( | ||
| 124 | FTRACE_CTX_FIELDS | ||
| 125 | ), | ||
| 126 | |||
| 127 | F_printk("%u:%u:%u ==> %u:%u:%u [%03u]", | ||
| 128 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
| 129 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
| 130 | __entry->next_cpu | ||
| 131 | ) | ||
| 132 | ); | ||
| 133 | |||
| 134 | /* | ||
| 135 | * FTRACE_ENTRY_DUP only creates the format file, it will not | ||
| 136 | * create another structure. | ||
| 137 | */ | ||
| 138 | FTRACE_ENTRY_DUP(wakeup, ctx_switch_entry, | ||
| 139 | |||
| 140 | TRACE_WAKE, | ||
| 141 | |||
| 142 | F_STRUCT( | ||
| 143 | FTRACE_CTX_FIELDS | ||
| 144 | ), | ||
| 145 | |||
| 146 | F_printk("%u:%u:%u ==+ %u:%u:%u [%03u]", | ||
| 147 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
| 148 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
| 149 | __entry->next_cpu | ||
| 150 | ) | ||
| 151 | ); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * Special (free-form) trace entry: | ||
| 155 | */ | ||
| 156 | FTRACE_ENTRY(special, special_entry, | ||
| 157 | |||
| 158 | TRACE_SPECIAL, | ||
| 159 | |||
| 160 | F_STRUCT( | ||
| 161 | __field( unsigned long, arg1 ) | ||
| 162 | __field( unsigned long, arg2 ) | ||
| 163 | __field( unsigned long, arg3 ) | ||
| 164 | ), | ||
| 165 | |||
| 166 | F_printk("(%08lx) (%08lx) (%08lx)", | ||
| 167 | __entry->arg1, __entry->arg2, __entry->arg3) | ||
| 168 | ); | ||
| 169 | |||
| 170 | /* | ||
| 171 | * Stack-trace entry: | ||
| 172 | */ | ||
| 173 | |||
| 174 | #define FTRACE_STACK_ENTRIES 8 | ||
| 175 | |||
| 176 | FTRACE_ENTRY(kernel_stack, stack_entry, | ||
| 177 | |||
| 178 | TRACE_STACK, | ||
| 179 | |||
| 180 | F_STRUCT( | ||
| 181 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
| 182 | ), | ||
| 183 | |||
| 184 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 185 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
| 186 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
| 187 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
| 188 | __entry->caller[6], __entry->caller[7]) | ||
| 189 | ); | ||
| 190 | |||
| 191 | FTRACE_ENTRY(user_stack, userstack_entry, | ||
| 192 | |||
| 193 | TRACE_USER_STACK, | ||
| 194 | |||
| 195 | F_STRUCT( | ||
| 196 | __field( unsigned int, tgid ) | ||
| 197 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
| 198 | ), | ||
| 199 | |||
| 200 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 201 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
| 202 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
| 203 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
| 204 | __entry->caller[6], __entry->caller[7]) | ||
| 205 | ); | ||
| 206 | |||
| 207 | /* | ||
| 208 | * trace_printk entry: | ||
| 209 | */ | ||
| 210 | FTRACE_ENTRY(bprint, bprint_entry, | ||
| 211 | |||
| 212 | TRACE_BPRINT, | ||
| 213 | |||
| 214 | F_STRUCT( | ||
| 215 | __field( unsigned long, ip ) | ||
| 216 | __field( const char *, fmt ) | ||
| 217 | __dynamic_array( u32, buf ) | ||
| 218 | ), | ||
| 219 | |||
| 220 | F_printk("%08lx fmt:%p", | ||
| 221 | __entry->ip, __entry->fmt) | ||
| 222 | ); | ||
| 223 | |||
| 224 | FTRACE_ENTRY(print, print_entry, | ||
| 225 | |||
| 226 | TRACE_PRINT, | ||
| 227 | |||
| 228 | F_STRUCT( | ||
| 229 | __field( unsigned long, ip ) | ||
| 230 | __dynamic_array( char, buf ) | ||
| 231 | ), | ||
| 232 | |||
| 233 | F_printk("%08lx %s", | ||
| 234 | __entry->ip, __entry->buf) | ||
| 235 | ); | ||
| 236 | |||
| 237 | FTRACE_ENTRY(mmiotrace_rw, trace_mmiotrace_rw, | ||
| 238 | |||
| 239 | TRACE_MMIO_RW, | ||
| 240 | |||
| 241 | F_STRUCT( | ||
| 242 | __field_struct( struct mmiotrace_rw, rw ) | ||
| 243 | __field_desc( resource_size_t, rw, phys ) | ||
| 244 | __field_desc( unsigned long, rw, value ) | ||
| 245 | __field_desc( unsigned long, rw, pc ) | ||
| 246 | __field_desc( int, rw, map_id ) | ||
| 247 | __field_desc( unsigned char, rw, opcode ) | ||
| 248 | __field_desc( unsigned char, rw, width ) | ||
| 249 | ), | ||
| 250 | |||
| 251 | F_printk("%lx %lx %lx %d %x %x", | ||
| 252 | (unsigned long)__entry->phys, __entry->value, __entry->pc, | ||
| 253 | __entry->map_id, __entry->opcode, __entry->width) | ||
| 254 | ); | ||
| 255 | |||
| 256 | FTRACE_ENTRY(mmiotrace_map, trace_mmiotrace_map, | ||
| 257 | |||
| 258 | TRACE_MMIO_MAP, | ||
| 259 | |||
| 260 | F_STRUCT( | ||
| 261 | __field_struct( struct mmiotrace_map, map ) | ||
| 262 | __field_desc( resource_size_t, map, phys ) | ||
| 263 | __field_desc( unsigned long, map, virt ) | ||
| 264 | __field_desc( unsigned long, map, len ) | ||
| 265 | __field_desc( int, map, map_id ) | ||
| 266 | __field_desc( unsigned char, map, opcode ) | ||
| 267 | ), | ||
| 268 | |||
| 269 | F_printk("%lx %lx %lx %d %x", | ||
| 270 | (unsigned long)__entry->phys, __entry->virt, __entry->len, | ||
| 271 | __entry->map_id, __entry->opcode) | ||
| 272 | ); | ||
| 273 | |||
| 274 | FTRACE_ENTRY(boot_call, trace_boot_call, | ||
| 275 | |||
| 276 | TRACE_BOOT_CALL, | ||
| 277 | |||
| 278 | F_STRUCT( | ||
| 279 | __field_struct( struct boot_trace_call, boot_call ) | ||
| 280 | __field_desc( pid_t, boot_call, caller ) | ||
| 281 | __array_desc( char, boot_call, func, KSYM_SYMBOL_LEN) | ||
| 282 | ), | ||
| 283 | |||
| 284 | F_printk("%d %s", __entry->caller, __entry->func) | ||
| 285 | ); | ||
| 286 | |||
| 287 | FTRACE_ENTRY(boot_ret, trace_boot_ret, | ||
| 288 | |||
| 289 | TRACE_BOOT_RET, | ||
| 290 | |||
| 291 | F_STRUCT( | ||
| 292 | __field_struct( struct boot_trace_ret, boot_ret ) | ||
| 293 | __array_desc( char, boot_ret, func, KSYM_SYMBOL_LEN) | ||
| 294 | __field_desc( int, boot_ret, result ) | ||
| 295 | __field_desc( unsigned long, boot_ret, duration ) | ||
| 296 | ), | ||
| 297 | |||
| 298 | F_printk("%s %d %lx", | ||
| 299 | __entry->func, __entry->result, __entry->duration) | ||
| 300 | ); | ||
| 301 | |||
| 302 | #define TRACE_FUNC_SIZE 30 | ||
| 303 | #define TRACE_FILE_SIZE 20 | ||
| 304 | |||
| 305 | FTRACE_ENTRY(branch, trace_branch, | ||
| 306 | |||
| 307 | TRACE_BRANCH, | ||
| 308 | |||
| 309 | F_STRUCT( | ||
| 310 | __field( unsigned int, line ) | ||
| 311 | __array( char, func, TRACE_FUNC_SIZE+1 ) | ||
| 312 | __array( char, file, TRACE_FILE_SIZE+1 ) | ||
| 313 | __field( char, correct ) | ||
| 314 | ), | ||
| 315 | |||
| 316 | F_printk("%u:%s:%s (%u)", | ||
| 317 | __entry->line, | ||
| 318 | __entry->func, __entry->file, __entry->correct) | ||
| 319 | ); | ||
| 320 | |||
| 321 | FTRACE_ENTRY(hw_branch, hw_branch_entry, | ||
| 322 | |||
| 323 | TRACE_HW_BRANCHES, | ||
| 324 | |||
| 325 | F_STRUCT( | ||
| 326 | __field( u64, from ) | ||
| 327 | __field( u64, to ) | ||
| 328 | ), | ||
| 329 | |||
| 330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | ||
| 331 | ); | ||
| 332 | |||
| 333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | ||
| 334 | |||
| 335 | TRACE_KMEM_ALLOC, | ||
| 336 | |||
| 337 | F_STRUCT( | ||
| 338 | __field( enum kmemtrace_type_id, type_id ) | ||
| 339 | __field( unsigned long, call_site ) | ||
| 340 | __field( const void *, ptr ) | ||
| 341 | __field( size_t, bytes_req ) | ||
| 342 | __field( size_t, bytes_alloc ) | ||
| 343 | __field( gfp_t, gfp_flags ) | ||
| 344 | __field( int, node ) | ||
| 345 | ), | ||
| 346 | |||
| 347 | F_printk("type:%u call_site:%lx ptr:%p req:%zi alloc:%zi" | ||
| 348 | " flags:%x node:%d", | ||
| 349 | __entry->type_id, __entry->call_site, __entry->ptr, | ||
| 350 | __entry->bytes_req, __entry->bytes_alloc, | ||
| 351 | __entry->gfp_flags, __entry->node) | ||
| 352 | ); | ||
| 353 | |||
| 354 | FTRACE_ENTRY(kmem_free, kmemtrace_free_entry, | ||
| 355 | |||
| 356 | TRACE_KMEM_FREE, | ||
| 357 | |||
| 358 | F_STRUCT( | ||
| 359 | __field( enum kmemtrace_type_id, type_id ) | ||
| 360 | __field( unsigned long, call_site ) | ||
| 361 | __field( const void *, ptr ) | ||
| 362 | ), | ||
| 363 | |||
| 364 | F_printk("type:%u call_site:%lx ptr:%p", | ||
| 365 | __entry->type_id, __entry->call_site, __entry->ptr) | ||
| 366 | ); | ||
| 367 | |||
| 368 | FTRACE_ENTRY(ksym_trace, ksym_trace_entry, | ||
| 369 | |||
| 370 | TRACE_KSYM, | ||
| 371 | |||
| 372 | F_STRUCT( | ||
| 373 | __field( unsigned long, ip ) | ||
| 374 | __field( unsigned char, type ) | ||
| 375 | __array( char , cmd, TASK_COMM_LEN ) | ||
| 376 | __field( unsigned long, addr ) | ||
| 377 | ), | ||
| 378 | |||
| 379 | F_printk("ip: %pF type: %d ksym_name: %pS cmd: %s", | ||
| 380 | (void *)__entry->ip, (unsigned int)__entry->type, | ||
| 381 | (void *)__entry->addr, __entry->cmd) | ||
| 382 | ); | ||
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 11ba5bb4ed0a..d9c60f80aa0d 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
| @@ -5,8 +5,62 @@ | |||
| 5 | * | 5 | * |
| 6 | */ | 6 | */ |
| 7 | 7 | ||
| 8 | #include <linux/module.h> | ||
| 8 | #include "trace.h" | 9 | #include "trace.h" |
| 9 | 10 | ||
| 11 | |||
| 12 | char *perf_trace_buf; | ||
| 13 | EXPORT_SYMBOL_GPL(perf_trace_buf); | ||
| 14 | |||
| 15 | char *perf_trace_buf_nmi; | ||
| 16 | EXPORT_SYMBOL_GPL(perf_trace_buf_nmi); | ||
| 17 | |||
| 18 | typedef typeof(char [FTRACE_MAX_PROFILE_SIZE]) perf_trace_t ; | ||
| 19 | |||
| 20 | /* Count the events in use (per event id, not per instance) */ | ||
| 21 | static int total_profile_count; | ||
| 22 | |||
| 23 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
| 24 | { | ||
| 25 | char *buf; | ||
| 26 | int ret = -ENOMEM; | ||
| 27 | |||
| 28 | if (atomic_inc_return(&event->profile_count)) | ||
| 29 | return 0; | ||
| 30 | |||
| 31 | if (!total_profile_count) { | ||
| 32 | buf = (char *)alloc_percpu(perf_trace_t); | ||
| 33 | if (!buf) | ||
| 34 | goto fail_buf; | ||
| 35 | |||
| 36 | rcu_assign_pointer(perf_trace_buf, buf); | ||
| 37 | |||
| 38 | buf = (char *)alloc_percpu(perf_trace_t); | ||
| 39 | if (!buf) | ||
| 40 | goto fail_buf_nmi; | ||
| 41 | |||
| 42 | rcu_assign_pointer(perf_trace_buf_nmi, buf); | ||
| 43 | } | ||
| 44 | |||
| 45 | ret = event->profile_enable(event); | ||
| 46 | if (!ret) { | ||
| 47 | total_profile_count++; | ||
| 48 | return 0; | ||
| 49 | } | ||
| 50 | |||
| 51 | fail_buf_nmi: | ||
| 52 | if (!total_profile_count) { | ||
| 53 | free_percpu(perf_trace_buf_nmi); | ||
| 54 | free_percpu(perf_trace_buf); | ||
| 55 | perf_trace_buf_nmi = NULL; | ||
| 56 | perf_trace_buf = NULL; | ||
| 57 | } | ||
| 58 | fail_buf: | ||
| 59 | atomic_dec(&event->profile_count); | ||
| 60 | |||
| 61 | return ret; | ||
| 62 | } | ||
| 63 | |||
| 10 | int ftrace_profile_enable(int event_id) | 64 | int ftrace_profile_enable(int event_id) |
| 11 | { | 65 | { |
| 12 | struct ftrace_event_call *event; | 66 | struct ftrace_event_call *event; |
| @@ -14,8 +68,9 @@ int ftrace_profile_enable(int event_id) | |||
| 14 | 68 | ||
| 15 | mutex_lock(&event_mutex); | 69 | mutex_lock(&event_mutex); |
| 16 | list_for_each_entry(event, &ftrace_events, list) { | 70 | list_for_each_entry(event, &ftrace_events, list) { |
| 17 | if (event->id == event_id && event->profile_enable) { | 71 | if (event->id == event_id && event->profile_enable && |
| 18 | ret = event->profile_enable(event); | 72 | try_module_get(event->mod)) { |
| 73 | ret = ftrace_profile_enable_event(event); | ||
| 19 | break; | 74 | break; |
| 20 | } | 75 | } |
| 21 | } | 76 | } |
| @@ -24,6 +79,33 @@ int ftrace_profile_enable(int event_id) | |||
| 24 | return ret; | 79 | return ret; |
| 25 | } | 80 | } |
| 26 | 81 | ||
| 82 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
| 83 | { | ||
| 84 | char *buf, *nmi_buf; | ||
| 85 | |||
| 86 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
| 87 | return; | ||
| 88 | |||
| 89 | event->profile_disable(event); | ||
| 90 | |||
| 91 | if (!--total_profile_count) { | ||
| 92 | buf = perf_trace_buf; | ||
| 93 | rcu_assign_pointer(perf_trace_buf, NULL); | ||
| 94 | |||
| 95 | nmi_buf = perf_trace_buf_nmi; | ||
| 96 | rcu_assign_pointer(perf_trace_buf_nmi, NULL); | ||
| 97 | |||
| 98 | /* | ||
| 99 | * Ensure every events in profiling have finished before | ||
| 100 | * releasing the buffers | ||
| 101 | */ | ||
| 102 | synchronize_sched(); | ||
| 103 | |||
| 104 | free_percpu(buf); | ||
| 105 | free_percpu(nmi_buf); | ||
| 106 | } | ||
| 107 | } | ||
| 108 | |||
| 27 | void ftrace_profile_disable(int event_id) | 109 | void ftrace_profile_disable(int event_id) |
| 28 | { | 110 | { |
| 29 | struct ftrace_event_call *event; | 111 | struct ftrace_event_call *event; |
| @@ -31,7 +113,8 @@ void ftrace_profile_disable(int event_id) | |||
| 31 | mutex_lock(&event_mutex); | 113 | mutex_lock(&event_mutex); |
| 32 | list_for_each_entry(event, &ftrace_events, list) { | 114 | list_for_each_entry(event, &ftrace_events, list) { |
| 33 | if (event->id == event_id) { | 115 | if (event->id == event_id) { |
| 34 | event->profile_disable(event); | 116 | ftrace_profile_disable_event(event); |
| 117 | module_put(event->mod); | ||
| 35 | break; | 118 | break; |
| 36 | } | 119 | } |
| 37 | } | 120 | } |
diff --git a/kernel/trace/trace_event_types.h b/kernel/trace/trace_event_types.h deleted file mode 100644 index 6db005e12487..000000000000 --- a/kernel/trace/trace_event_types.h +++ /dev/null | |||
| @@ -1,178 +0,0 @@ | |||
| 1 | #undef TRACE_SYSTEM | ||
| 2 | #define TRACE_SYSTEM ftrace | ||
| 3 | |||
| 4 | /* | ||
| 5 | * We cheat and use the proto type field as the ID | ||
| 6 | * and args as the entry type (minus 'struct') | ||
| 7 | */ | ||
| 8 | TRACE_EVENT_FORMAT(function, TRACE_FN, ftrace_entry, ignore, | ||
| 9 | TRACE_STRUCT( | ||
| 10 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 11 | TRACE_FIELD(unsigned long, parent_ip, parent_ip) | ||
| 12 | ), | ||
| 13 | TP_RAW_FMT(" %lx <-- %lx") | ||
| 14 | ); | ||
| 15 | |||
| 16 | TRACE_EVENT_FORMAT(funcgraph_entry, TRACE_GRAPH_ENT, | ||
| 17 | ftrace_graph_ent_entry, ignore, | ||
| 18 | TRACE_STRUCT( | ||
| 19 | TRACE_FIELD(unsigned long, graph_ent.func, func) | ||
| 20 | TRACE_FIELD(int, graph_ent.depth, depth) | ||
| 21 | ), | ||
| 22 | TP_RAW_FMT("--> %lx (%d)") | ||
| 23 | ); | ||
| 24 | |||
| 25 | TRACE_EVENT_FORMAT(funcgraph_exit, TRACE_GRAPH_RET, | ||
| 26 | ftrace_graph_ret_entry, ignore, | ||
| 27 | TRACE_STRUCT( | ||
| 28 | TRACE_FIELD(unsigned long, ret.func, func) | ||
| 29 | TRACE_FIELD(unsigned long long, ret.calltime, calltime) | ||
| 30 | TRACE_FIELD(unsigned long long, ret.rettime, rettime) | ||
| 31 | TRACE_FIELD(unsigned long, ret.overrun, overrun) | ||
| 32 | TRACE_FIELD(int, ret.depth, depth) | ||
| 33 | ), | ||
| 34 | TP_RAW_FMT("<-- %lx (%d)") | ||
| 35 | ); | ||
| 36 | |||
| 37 | TRACE_EVENT_FORMAT(wakeup, TRACE_WAKE, ctx_switch_entry, ignore, | ||
| 38 | TRACE_STRUCT( | ||
| 39 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
| 40 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
| 41 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
| 42 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
| 43 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
| 44 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
| 45 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
| 46 | ), | ||
| 47 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
| 48 | ); | ||
| 49 | |||
| 50 | TRACE_EVENT_FORMAT(context_switch, TRACE_CTX, ctx_switch_entry, ignore, | ||
| 51 | TRACE_STRUCT( | ||
| 52 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
| 53 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
| 54 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
| 55 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
| 56 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
| 57 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
| 58 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
| 59 | ), | ||
| 60 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
| 61 | ); | ||
| 62 | |||
| 63 | TRACE_EVENT_FORMAT_NOFILTER(special, TRACE_SPECIAL, special_entry, ignore, | ||
| 64 | TRACE_STRUCT( | ||
| 65 | TRACE_FIELD(unsigned long, arg1, arg1) | ||
| 66 | TRACE_FIELD(unsigned long, arg2, arg2) | ||
| 67 | TRACE_FIELD(unsigned long, arg3, arg3) | ||
| 68 | ), | ||
| 69 | TP_RAW_FMT("(%08lx) (%08lx) (%08lx)") | ||
| 70 | ); | ||
| 71 | |||
| 72 | /* | ||
| 73 | * Stack-trace entry: | ||
| 74 | */ | ||
| 75 | |||
| 76 | /* #define FTRACE_STACK_ENTRIES 8 */ | ||
| 77 | |||
| 78 | TRACE_EVENT_FORMAT(kernel_stack, TRACE_STACK, stack_entry, ignore, | ||
| 79 | TRACE_STRUCT( | ||
| 80 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
| 81 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
| 82 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
| 83 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
| 84 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
| 85 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
| 86 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
| 87 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
| 88 | ), | ||
| 89 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 90 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
| 91 | ); | ||
| 92 | |||
| 93 | TRACE_EVENT_FORMAT(user_stack, TRACE_USER_STACK, userstack_entry, ignore, | ||
| 94 | TRACE_STRUCT( | ||
| 95 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
| 96 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
| 97 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
| 98 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
| 99 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
| 100 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
| 101 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
| 102 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
| 103 | ), | ||
| 104 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 105 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
| 106 | ); | ||
| 107 | |||
| 108 | TRACE_EVENT_FORMAT(bprint, TRACE_BPRINT, bprint_entry, ignore, | ||
| 109 | TRACE_STRUCT( | ||
| 110 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 111 | TRACE_FIELD(char *, fmt, fmt) | ||
| 112 | TRACE_FIELD_ZERO_CHAR(buf) | ||
| 113 | ), | ||
| 114 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
| 115 | ); | ||
| 116 | |||
| 117 | TRACE_EVENT_FORMAT(print, TRACE_PRINT, print_entry, ignore, | ||
| 118 | TRACE_STRUCT( | ||
| 119 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 120 | TRACE_FIELD_ZERO_CHAR(buf) | ||
| 121 | ), | ||
| 122 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
| 123 | ); | ||
| 124 | |||
| 125 | TRACE_EVENT_FORMAT(branch, TRACE_BRANCH, trace_branch, ignore, | ||
| 126 | TRACE_STRUCT( | ||
| 127 | TRACE_FIELD(unsigned int, line, line) | ||
| 128 | TRACE_FIELD_SPECIAL(char func[TRACE_FUNC_SIZE+1], func, | ||
| 129 | TRACE_FUNC_SIZE+1, func) | ||
| 130 | TRACE_FIELD_SPECIAL(char file[TRACE_FUNC_SIZE+1], file, | ||
| 131 | TRACE_FUNC_SIZE+1, file) | ||
| 132 | TRACE_FIELD(char, correct, correct) | ||
| 133 | ), | ||
| 134 | TP_RAW_FMT("%u:%s:%s (%u)") | ||
| 135 | ); | ||
| 136 | |||
| 137 | TRACE_EVENT_FORMAT(hw_branch, TRACE_HW_BRANCHES, hw_branch_entry, ignore, | ||
| 138 | TRACE_STRUCT( | ||
| 139 | TRACE_FIELD(u64, from, from) | ||
| 140 | TRACE_FIELD(u64, to, to) | ||
| 141 | ), | ||
| 142 | TP_RAW_FMT("from: %llx to: %llx") | ||
| 143 | ); | ||
| 144 | |||
| 145 | TRACE_EVENT_FORMAT(power, TRACE_POWER, trace_power, ignore, | ||
| 146 | TRACE_STRUCT( | ||
| 147 | TRACE_FIELD_SIGN(ktime_t, state_data.stamp, stamp, 1) | ||
| 148 | TRACE_FIELD_SIGN(ktime_t, state_data.end, end, 1) | ||
| 149 | TRACE_FIELD(int, state_data.type, type) | ||
| 150 | TRACE_FIELD(int, state_data.state, state) | ||
| 151 | ), | ||
| 152 | TP_RAW_FMT("%llx->%llx type:%u state:%u") | ||
| 153 | ); | ||
| 154 | |||
| 155 | TRACE_EVENT_FORMAT(kmem_alloc, TRACE_KMEM_ALLOC, kmemtrace_alloc_entry, ignore, | ||
| 156 | TRACE_STRUCT( | ||
| 157 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
| 158 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
| 159 | TRACE_FIELD(const void *, ptr, ptr) | ||
| 160 | TRACE_FIELD(size_t, bytes_req, bytes_req) | ||
| 161 | TRACE_FIELD(size_t, bytes_alloc, bytes_alloc) | ||
| 162 | TRACE_FIELD(gfp_t, gfp_flags, gfp_flags) | ||
| 163 | TRACE_FIELD(int, node, node) | ||
| 164 | ), | ||
| 165 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p req:%lu alloc:%lu" | ||
| 166 | " flags:%x node:%d") | ||
| 167 | ); | ||
| 168 | |||
| 169 | TRACE_EVENT_FORMAT(kmem_free, TRACE_KMEM_FREE, kmemtrace_free_entry, ignore, | ||
| 170 | TRACE_STRUCT( | ||
| 171 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
| 172 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
| 173 | TRACE_FIELD(const void *, ptr, ptr) | ||
| 174 | ), | ||
| 175 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p") | ||
| 176 | ); | ||
| 177 | |||
| 178 | #undef TRACE_SYSTEM | ||
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 78b1ed230177..1d18315dc836 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
| @@ -21,6 +21,7 @@ | |||
| 21 | 21 | ||
| 22 | #include "trace_output.h" | 22 | #include "trace_output.h" |
| 23 | 23 | ||
| 24 | #undef TRACE_SYSTEM | ||
| 24 | #define TRACE_SYSTEM "TRACE_SYSTEM" | 25 | #define TRACE_SYSTEM "TRACE_SYSTEM" |
| 25 | 26 | ||
| 26 | DEFINE_MUTEX(event_mutex); | 27 | DEFINE_MUTEX(event_mutex); |
| @@ -86,15 +87,13 @@ int trace_define_common_fields(struct ftrace_event_call *call) | |||
| 86 | __common_field(unsigned char, flags); | 87 | __common_field(unsigned char, flags); |
| 87 | __common_field(unsigned char, preempt_count); | 88 | __common_field(unsigned char, preempt_count); |
| 88 | __common_field(int, pid); | 89 | __common_field(int, pid); |
| 89 | __common_field(int, tgid); | 90 | __common_field(int, lock_depth); |
| 90 | 91 | ||
| 91 | return ret; | 92 | return ret; |
| 92 | } | 93 | } |
| 93 | EXPORT_SYMBOL_GPL(trace_define_common_fields); | 94 | EXPORT_SYMBOL_GPL(trace_define_common_fields); |
| 94 | 95 | ||
| 95 | #ifdef CONFIG_MODULES | 96 | void trace_destroy_fields(struct ftrace_event_call *call) |
| 96 | |||
| 97 | static void trace_destroy_fields(struct ftrace_event_call *call) | ||
| 98 | { | 97 | { |
| 99 | struct ftrace_event_field *field, *next; | 98 | struct ftrace_event_field *field, *next; |
| 100 | 99 | ||
| @@ -106,8 +105,6 @@ static void trace_destroy_fields(struct ftrace_event_call *call) | |||
| 106 | } | 105 | } |
| 107 | } | 106 | } |
| 108 | 107 | ||
| 109 | #endif /* CONFIG_MODULES */ | ||
| 110 | |||
| 111 | static void ftrace_event_enable_disable(struct ftrace_event_call *call, | 108 | static void ftrace_event_enable_disable(struct ftrace_event_call *call, |
| 112 | int enable) | 109 | int enable) |
| 113 | { | 110 | { |
| @@ -116,14 +113,14 @@ static void ftrace_event_enable_disable(struct ftrace_event_call *call, | |||
| 116 | if (call->enabled) { | 113 | if (call->enabled) { |
| 117 | call->enabled = 0; | 114 | call->enabled = 0; |
| 118 | tracing_stop_cmdline_record(); | 115 | tracing_stop_cmdline_record(); |
| 119 | call->unregfunc(call->data); | 116 | call->unregfunc(call); |
| 120 | } | 117 | } |
| 121 | break; | 118 | break; |
| 122 | case 1: | 119 | case 1: |
| 123 | if (!call->enabled) { | 120 | if (!call->enabled) { |
| 124 | call->enabled = 1; | 121 | call->enabled = 1; |
| 125 | tracing_start_cmdline_record(); | 122 | tracing_start_cmdline_record(); |
| 126 | call->regfunc(call->data); | 123 | call->regfunc(call); |
| 127 | } | 124 | } |
| 128 | break; | 125 | break; |
| 129 | } | 126 | } |
| @@ -230,73 +227,38 @@ static ssize_t | |||
| 230 | ftrace_event_write(struct file *file, const char __user *ubuf, | 227 | ftrace_event_write(struct file *file, const char __user *ubuf, |
| 231 | size_t cnt, loff_t *ppos) | 228 | size_t cnt, loff_t *ppos) |
| 232 | { | 229 | { |
| 233 | size_t read = 0; | 230 | struct trace_parser parser; |
| 234 | int i, set = 1; | 231 | ssize_t read, ret; |
| 235 | ssize_t ret; | ||
| 236 | char *buf; | ||
| 237 | char ch; | ||
| 238 | 232 | ||
| 239 | if (!cnt || cnt < 0) | 233 | if (!cnt) |
| 240 | return 0; | 234 | return 0; |
| 241 | 235 | ||
| 242 | ret = tracing_update_buffers(); | 236 | ret = tracing_update_buffers(); |
| 243 | if (ret < 0) | 237 | if (ret < 0) |
| 244 | return ret; | 238 | return ret; |
| 245 | 239 | ||
| 246 | ret = get_user(ch, ubuf++); | 240 | if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1)) |
| 247 | if (ret) | ||
| 248 | return ret; | ||
| 249 | read++; | ||
| 250 | cnt--; | ||
| 251 | |||
| 252 | /* skip white space */ | ||
| 253 | while (cnt && isspace(ch)) { | ||
| 254 | ret = get_user(ch, ubuf++); | ||
| 255 | if (ret) | ||
| 256 | return ret; | ||
| 257 | read++; | ||
| 258 | cnt--; | ||
| 259 | } | ||
| 260 | |||
| 261 | /* Only white space found? */ | ||
| 262 | if (isspace(ch)) { | ||
| 263 | file->f_pos += read; | ||
| 264 | ret = read; | ||
| 265 | return ret; | ||
| 266 | } | ||
| 267 | |||
| 268 | buf = kmalloc(EVENT_BUF_SIZE+1, GFP_KERNEL); | ||
| 269 | if (!buf) | ||
| 270 | return -ENOMEM; | 241 | return -ENOMEM; |
| 271 | 242 | ||
| 272 | if (cnt > EVENT_BUF_SIZE) | 243 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 273 | cnt = EVENT_BUF_SIZE; | 244 | |
| 245 | if (read >= 0 && trace_parser_loaded((&parser))) { | ||
| 246 | int set = 1; | ||
| 274 | 247 | ||
| 275 | i = 0; | 248 | if (*parser.buffer == '!') |
| 276 | while (cnt && !isspace(ch)) { | ||
| 277 | if (!i && ch == '!') | ||
| 278 | set = 0; | 249 | set = 0; |
| 279 | else | ||
| 280 | buf[i++] = ch; | ||
| 281 | 250 | ||
| 282 | ret = get_user(ch, ubuf++); | 251 | parser.buffer[parser.idx] = 0; |
| 252 | |||
| 253 | ret = ftrace_set_clr_event(parser.buffer + !set, set); | ||
| 283 | if (ret) | 254 | if (ret) |
| 284 | goto out_free; | 255 | goto out_put; |
| 285 | read++; | ||
| 286 | cnt--; | ||
| 287 | } | 256 | } |
| 288 | buf[i] = 0; | ||
| 289 | |||
| 290 | file->f_pos += read; | ||
| 291 | |||
| 292 | ret = ftrace_set_clr_event(buf, set); | ||
| 293 | if (ret) | ||
| 294 | goto out_free; | ||
| 295 | 257 | ||
| 296 | ret = read; | 258 | ret = read; |
| 297 | 259 | ||
| 298 | out_free: | 260 | out_put: |
| 299 | kfree(buf); | 261 | trace_parser_put(&parser); |
| 300 | 262 | ||
| 301 | return ret; | 263 | return ret; |
| 302 | } | 264 | } |
| @@ -304,42 +266,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 304 | static void * | 266 | static void * |
| 305 | t_next(struct seq_file *m, void *v, loff_t *pos) | 267 | t_next(struct seq_file *m, void *v, loff_t *pos) |
| 306 | { | 268 | { |
| 307 | struct list_head *list = m->private; | 269 | struct ftrace_event_call *call = v; |
| 308 | struct ftrace_event_call *call; | ||
| 309 | 270 | ||
| 310 | (*pos)++; | 271 | (*pos)++; |
| 311 | 272 | ||
| 312 | for (;;) { | 273 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 313 | if (list == &ftrace_events) | ||
| 314 | return NULL; | ||
| 315 | |||
| 316 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 317 | |||
| 318 | /* | 274 | /* |
| 319 | * The ftrace subsystem is for showing formats only. | 275 | * The ftrace subsystem is for showing formats only. |
| 320 | * They can not be enabled or disabled via the event files. | 276 | * They can not be enabled or disabled via the event files. |
| 321 | */ | 277 | */ |
| 322 | if (call->regfunc) | 278 | if (call->regfunc) |
| 323 | break; | 279 | return call; |
| 324 | |||
| 325 | list = list->next; | ||
| 326 | } | 280 | } |
| 327 | 281 | ||
| 328 | m->private = list->next; | 282 | return NULL; |
| 329 | |||
| 330 | return call; | ||
| 331 | } | 283 | } |
| 332 | 284 | ||
| 333 | static void *t_start(struct seq_file *m, loff_t *pos) | 285 | static void *t_start(struct seq_file *m, loff_t *pos) |
| 334 | { | 286 | { |
| 335 | struct ftrace_event_call *call = NULL; | 287 | struct ftrace_event_call *call; |
| 336 | loff_t l; | 288 | loff_t l; |
| 337 | 289 | ||
| 338 | mutex_lock(&event_mutex); | 290 | mutex_lock(&event_mutex); |
| 339 | 291 | ||
| 340 | m->private = ftrace_events.next; | 292 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 341 | for (l = 0; l <= *pos; ) { | 293 | for (l = 0; l <= *pos; ) { |
| 342 | call = t_next(m, NULL, &l); | 294 | call = t_next(m, call, &l); |
| 343 | if (!call) | 295 | if (!call) |
| 344 | break; | 296 | break; |
| 345 | } | 297 | } |
| @@ -349,37 +301,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
| 349 | static void * | 301 | static void * |
| 350 | s_next(struct seq_file *m, void *v, loff_t *pos) | 302 | s_next(struct seq_file *m, void *v, loff_t *pos) |
| 351 | { | 303 | { |
| 352 | struct list_head *list = m->private; | 304 | struct ftrace_event_call *call = v; |
| 353 | struct ftrace_event_call *call; | ||
| 354 | 305 | ||
| 355 | (*pos)++; | 306 | (*pos)++; |
| 356 | 307 | ||
| 357 | retry: | 308 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 358 | if (list == &ftrace_events) | 309 | if (call->enabled) |
| 359 | return NULL; | 310 | return call; |
| 360 | |||
| 361 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 362 | |||
| 363 | if (!call->enabled) { | ||
| 364 | list = list->next; | ||
| 365 | goto retry; | ||
| 366 | } | 311 | } |
| 367 | 312 | ||
| 368 | m->private = list->next; | 313 | return NULL; |
| 369 | |||
| 370 | return call; | ||
| 371 | } | 314 | } |
| 372 | 315 | ||
| 373 | static void *s_start(struct seq_file *m, loff_t *pos) | 316 | static void *s_start(struct seq_file *m, loff_t *pos) |
| 374 | { | 317 | { |
| 375 | struct ftrace_event_call *call = NULL; | 318 | struct ftrace_event_call *call; |
| 376 | loff_t l; | 319 | loff_t l; |
| 377 | 320 | ||
| 378 | mutex_lock(&event_mutex); | 321 | mutex_lock(&event_mutex); |
| 379 | 322 | ||
| 380 | m->private = ftrace_events.next; | 323 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 381 | for (l = 0; l <= *pos; ) { | 324 | for (l = 0; l <= *pos; ) { |
| 382 | call = s_next(m, NULL, &l); | 325 | call = s_next(m, call, &l); |
| 383 | if (!call) | 326 | if (!call) |
| 384 | break; | 327 | break; |
| 385 | } | 328 | } |
| @@ -560,7 +503,7 @@ extern char *__bad_type_size(void); | |||
| 560 | #define FIELD(type, name) \ | 503 | #define FIELD(type, name) \ |
| 561 | sizeof(type) != sizeof(field.name) ? __bad_type_size() : \ | 504 | sizeof(type) != sizeof(field.name) ? __bad_type_size() : \ |
| 562 | #type, "common_" #name, offsetof(typeof(field), name), \ | 505 | #type, "common_" #name, offsetof(typeof(field), name), \ |
| 563 | sizeof(field.name) | 506 | sizeof(field.name), is_signed_type(type) |
| 564 | 507 | ||
| 565 | static int trace_write_header(struct trace_seq *s) | 508 | static int trace_write_header(struct trace_seq *s) |
| 566 | { | 509 | { |
| @@ -568,17 +511,17 @@ static int trace_write_header(struct trace_seq *s) | |||
| 568 | 511 | ||
| 569 | /* struct trace_entry */ | 512 | /* struct trace_entry */ |
| 570 | return trace_seq_printf(s, | 513 | return trace_seq_printf(s, |
| 571 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 514 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" |
| 572 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 515 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" |
| 573 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 516 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" |
| 574 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 517 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" |
| 575 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 518 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n" |
| 576 | "\n", | 519 | "\n", |
| 577 | FIELD(unsigned short, type), | 520 | FIELD(unsigned short, type), |
| 578 | FIELD(unsigned char, flags), | 521 | FIELD(unsigned char, flags), |
| 579 | FIELD(unsigned char, preempt_count), | 522 | FIELD(unsigned char, preempt_count), |
| 580 | FIELD(int, pid), | 523 | FIELD(int, pid), |
| 581 | FIELD(int, tgid)); | 524 | FIELD(int, lock_depth)); |
| 582 | } | 525 | } |
| 583 | 526 | ||
| 584 | static ssize_t | 527 | static ssize_t |
| @@ -931,9 +874,9 @@ event_subsystem_dir(const char *name, struct dentry *d_events) | |||
| 931 | "'%s/filter' entry\n", name); | 874 | "'%s/filter' entry\n", name); |
| 932 | } | 875 | } |
| 933 | 876 | ||
| 934 | entry = trace_create_file("enable", 0644, system->entry, | 877 | trace_create_file("enable", 0644, system->entry, |
| 935 | (void *)system->name, | 878 | (void *)system->name, |
| 936 | &ftrace_system_enable_fops); | 879 | &ftrace_system_enable_fops); |
| 937 | 880 | ||
| 938 | return system->entry; | 881 | return system->entry; |
| 939 | } | 882 | } |
| @@ -945,7 +888,6 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
| 945 | const struct file_operations *filter, | 888 | const struct file_operations *filter, |
| 946 | const struct file_operations *format) | 889 | const struct file_operations *format) |
| 947 | { | 890 | { |
| 948 | struct dentry *entry; | ||
| 949 | int ret; | 891 | int ret; |
| 950 | 892 | ||
| 951 | /* | 893 | /* |
| @@ -963,12 +905,12 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
| 963 | } | 905 | } |
| 964 | 906 | ||
| 965 | if (call->regfunc) | 907 | if (call->regfunc) |
| 966 | entry = trace_create_file("enable", 0644, call->dir, call, | 908 | trace_create_file("enable", 0644, call->dir, call, |
| 967 | enable); | 909 | enable); |
| 968 | 910 | ||
| 969 | if (call->id && call->profile_enable) | 911 | if (call->id && call->profile_enable) |
| 970 | entry = trace_create_file("id", 0444, call->dir, call, | 912 | trace_create_file("id", 0444, call->dir, call, |
| 971 | id); | 913 | id); |
| 972 | 914 | ||
| 973 | if (call->define_fields) { | 915 | if (call->define_fields) { |
| 974 | ret = call->define_fields(call); | 916 | ret = call->define_fields(call); |
| @@ -977,41 +919,60 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
| 977 | " events/%s\n", call->name); | 919 | " events/%s\n", call->name); |
| 978 | return ret; | 920 | return ret; |
| 979 | } | 921 | } |
| 980 | entry = trace_create_file("filter", 0644, call->dir, call, | 922 | trace_create_file("filter", 0644, call->dir, call, |
| 981 | filter); | 923 | filter); |
| 982 | } | 924 | } |
| 983 | 925 | ||
| 984 | /* A trace may not want to export its format */ | 926 | /* A trace may not want to export its format */ |
| 985 | if (!call->show_format) | 927 | if (!call->show_format) |
| 986 | return 0; | 928 | return 0; |
| 987 | 929 | ||
| 988 | entry = trace_create_file("format", 0444, call->dir, call, | 930 | trace_create_file("format", 0444, call->dir, call, |
| 989 | format); | 931 | format); |
| 990 | 932 | ||
| 991 | return 0; | 933 | return 0; |
| 992 | } | 934 | } |
| 993 | 935 | ||
| 994 | #define for_each_event(event, start, end) \ | 936 | static int __trace_add_event_call(struct ftrace_event_call *call) |
| 995 | for (event = start; \ | 937 | { |
| 996 | (unsigned long)event < (unsigned long)end; \ | 938 | struct dentry *d_events; |
| 997 | event++) | 939 | int ret; |
| 998 | 940 | ||
| 999 | #ifdef CONFIG_MODULES | 941 | if (!call->name) |
| 942 | return -EINVAL; | ||
| 1000 | 943 | ||
| 1001 | static LIST_HEAD(ftrace_module_file_list); | 944 | if (call->raw_init) { |
| 945 | ret = call->raw_init(call); | ||
| 946 | if (ret < 0) { | ||
| 947 | if (ret != -ENOSYS) | ||
| 948 | pr_warning("Could not initialize trace " | ||
| 949 | "events/%s\n", call->name); | ||
| 950 | return ret; | ||
| 951 | } | ||
| 952 | } | ||
| 1002 | 953 | ||
| 1003 | /* | 954 | d_events = event_trace_events_dir(); |
| 1004 | * Modules must own their file_operations to keep up with | 955 | if (!d_events) |
| 1005 | * reference counting. | 956 | return -ENOENT; |
| 1006 | */ | 957 | |
| 1007 | struct ftrace_module_file_ops { | 958 | ret = event_create_dir(call, d_events, &ftrace_event_id_fops, |
| 1008 | struct list_head list; | 959 | &ftrace_enable_fops, &ftrace_event_filter_fops, |
| 1009 | struct module *mod; | 960 | &ftrace_event_format_fops); |
| 1010 | struct file_operations id; | 961 | if (!ret) |
| 1011 | struct file_operations enable; | 962 | list_add(&call->list, &ftrace_events); |
| 1012 | struct file_operations format; | 963 | |
| 1013 | struct file_operations filter; | 964 | return ret; |
| 1014 | }; | 965 | } |
| 966 | |||
| 967 | /* Add an additional event_call dynamically */ | ||
| 968 | int trace_add_event_call(struct ftrace_event_call *call) | ||
| 969 | { | ||
| 970 | int ret; | ||
| 971 | mutex_lock(&event_mutex); | ||
| 972 | ret = __trace_add_event_call(call); | ||
| 973 | mutex_unlock(&event_mutex); | ||
| 974 | return ret; | ||
| 975 | } | ||
| 1015 | 976 | ||
| 1016 | static void remove_subsystem_dir(const char *name) | 977 | static void remove_subsystem_dir(const char *name) |
| 1017 | { | 978 | { |
| @@ -1039,6 +1000,53 @@ static void remove_subsystem_dir(const char *name) | |||
| 1039 | } | 1000 | } |
| 1040 | } | 1001 | } |
| 1041 | 1002 | ||
| 1003 | /* | ||
| 1004 | * Must be called under locking both of event_mutex and trace_event_mutex. | ||
| 1005 | */ | ||
| 1006 | static void __trace_remove_event_call(struct ftrace_event_call *call) | ||
| 1007 | { | ||
| 1008 | ftrace_event_enable_disable(call, 0); | ||
| 1009 | if (call->event) | ||
| 1010 | __unregister_ftrace_event(call->event); | ||
| 1011 | debugfs_remove_recursive(call->dir); | ||
| 1012 | list_del(&call->list); | ||
| 1013 | trace_destroy_fields(call); | ||
| 1014 | destroy_preds(call); | ||
| 1015 | remove_subsystem_dir(call->system); | ||
| 1016 | } | ||
| 1017 | |||
| 1018 | /* Remove an event_call */ | ||
| 1019 | void trace_remove_event_call(struct ftrace_event_call *call) | ||
| 1020 | { | ||
| 1021 | mutex_lock(&event_mutex); | ||
| 1022 | down_write(&trace_event_mutex); | ||
| 1023 | __trace_remove_event_call(call); | ||
| 1024 | up_write(&trace_event_mutex); | ||
| 1025 | mutex_unlock(&event_mutex); | ||
| 1026 | } | ||
| 1027 | |||
| 1028 | #define for_each_event(event, start, end) \ | ||
| 1029 | for (event = start; \ | ||
| 1030 | (unsigned long)event < (unsigned long)end; \ | ||
| 1031 | event++) | ||
| 1032 | |||
| 1033 | #ifdef CONFIG_MODULES | ||
| 1034 | |||
| 1035 | static LIST_HEAD(ftrace_module_file_list); | ||
| 1036 | |||
| 1037 | /* | ||
| 1038 | * Modules must own their file_operations to keep up with | ||
| 1039 | * reference counting. | ||
| 1040 | */ | ||
| 1041 | struct ftrace_module_file_ops { | ||
| 1042 | struct list_head list; | ||
| 1043 | struct module *mod; | ||
| 1044 | struct file_operations id; | ||
| 1045 | struct file_operations enable; | ||
| 1046 | struct file_operations format; | ||
| 1047 | struct file_operations filter; | ||
| 1048 | }; | ||
| 1049 | |||
| 1042 | static struct ftrace_module_file_ops * | 1050 | static struct ftrace_module_file_ops * |
| 1043 | trace_create_file_ops(struct module *mod) | 1051 | trace_create_file_ops(struct module *mod) |
| 1044 | { | 1052 | { |
| @@ -1096,7 +1104,7 @@ static void trace_module_add_events(struct module *mod) | |||
| 1096 | if (!call->name) | 1104 | if (!call->name) |
| 1097 | continue; | 1105 | continue; |
| 1098 | if (call->raw_init) { | 1106 | if (call->raw_init) { |
| 1099 | ret = call->raw_init(); | 1107 | ret = call->raw_init(call); |
| 1100 | if (ret < 0) { | 1108 | if (ret < 0) { |
| 1101 | if (ret != -ENOSYS) | 1109 | if (ret != -ENOSYS) |
| 1102 | pr_warning("Could not initialize trace " | 1110 | pr_warning("Could not initialize trace " |
| @@ -1114,10 +1122,11 @@ static void trace_module_add_events(struct module *mod) | |||
| 1114 | return; | 1122 | return; |
| 1115 | } | 1123 | } |
| 1116 | call->mod = mod; | 1124 | call->mod = mod; |
| 1117 | list_add(&call->list, &ftrace_events); | 1125 | ret = event_create_dir(call, d_events, |
| 1118 | event_create_dir(call, d_events, | 1126 | &file_ops->id, &file_ops->enable, |
| 1119 | &file_ops->id, &file_ops->enable, | 1127 | &file_ops->filter, &file_ops->format); |
| 1120 | &file_ops->filter, &file_ops->format); | 1128 | if (!ret) |
| 1129 | list_add(&call->list, &ftrace_events); | ||
| 1121 | } | 1130 | } |
| 1122 | } | 1131 | } |
| 1123 | 1132 | ||
| @@ -1131,14 +1140,7 @@ static void trace_module_remove_events(struct module *mod) | |||
| 1131 | list_for_each_entry_safe(call, p, &ftrace_events, list) { | 1140 | list_for_each_entry_safe(call, p, &ftrace_events, list) { |
| 1132 | if (call->mod == mod) { | 1141 | if (call->mod == mod) { |
| 1133 | found = true; | 1142 | found = true; |
| 1134 | ftrace_event_enable_disable(call, 0); | 1143 | __trace_remove_event_call(call); |
| 1135 | if (call->event) | ||
| 1136 | __unregister_ftrace_event(call->event); | ||
| 1137 | debugfs_remove_recursive(call->dir); | ||
| 1138 | list_del(&call->list); | ||
| 1139 | trace_destroy_fields(call); | ||
| 1140 | destroy_preds(call); | ||
| 1141 | remove_subsystem_dir(call->system); | ||
| 1142 | } | 1144 | } |
| 1143 | } | 1145 | } |
| 1144 | 1146 | ||
| @@ -1187,7 +1189,7 @@ static int trace_module_notify(struct notifier_block *self, | |||
| 1187 | } | 1189 | } |
| 1188 | #endif /* CONFIG_MODULES */ | 1190 | #endif /* CONFIG_MODULES */ |
| 1189 | 1191 | ||
| 1190 | struct notifier_block trace_module_nb = { | 1192 | static struct notifier_block trace_module_nb = { |
| 1191 | .notifier_call = trace_module_notify, | 1193 | .notifier_call = trace_module_notify, |
| 1192 | .priority = 0, | 1194 | .priority = 0, |
| 1193 | }; | 1195 | }; |
| @@ -1256,7 +1258,7 @@ static __init int event_trace_init(void) | |||
| 1256 | if (!call->name) | 1258 | if (!call->name) |
| 1257 | continue; | 1259 | continue; |
| 1258 | if (call->raw_init) { | 1260 | if (call->raw_init) { |
| 1259 | ret = call->raw_init(); | 1261 | ret = call->raw_init(call); |
| 1260 | if (ret < 0) { | 1262 | if (ret < 0) { |
| 1261 | if (ret != -ENOSYS) | 1263 | if (ret != -ENOSYS) |
| 1262 | pr_warning("Could not initialize trace " | 1264 | pr_warning("Could not initialize trace " |
| @@ -1264,10 +1266,12 @@ static __init int event_trace_init(void) | |||
| 1264 | continue; | 1266 | continue; |
| 1265 | } | 1267 | } |
| 1266 | } | 1268 | } |
| 1267 | list_add(&call->list, &ftrace_events); | 1269 | ret = event_create_dir(call, d_events, &ftrace_event_id_fops, |
| 1268 | event_create_dir(call, d_events, &ftrace_event_id_fops, | 1270 | &ftrace_enable_fops, |
| 1269 | &ftrace_enable_fops, &ftrace_event_filter_fops, | 1271 | &ftrace_event_filter_fops, |
| 1270 | &ftrace_event_format_fops); | 1272 | &ftrace_event_format_fops); |
| 1273 | if (!ret) | ||
| 1274 | list_add(&call->list, &ftrace_events); | ||
| 1271 | } | 1275 | } |
| 1272 | 1276 | ||
| 1273 | while (true) { | 1277 | while (true) { |
| @@ -1359,6 +1363,18 @@ static __init void event_trace_self_tests(void) | |||
| 1359 | if (!call->regfunc) | 1363 | if (!call->regfunc) |
| 1360 | continue; | 1364 | continue; |
| 1361 | 1365 | ||
| 1366 | /* | ||
| 1367 | * Testing syscall events here is pretty useless, but | ||
| 1368 | * we still do it if configured. But this is time consuming. | ||
| 1369 | * What we really need is a user thread to perform the | ||
| 1370 | * syscalls as we test. | ||
| 1371 | */ | ||
| 1372 | #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS | ||
| 1373 | if (call->system && | ||
| 1374 | strcmp(call->system, "syscalls") == 0) | ||
| 1375 | continue; | ||
| 1376 | #endif | ||
| 1377 | |||
| 1362 | pr_info("Testing event %s: ", call->name); | 1378 | pr_info("Testing event %s: ", call->name); |
| 1363 | 1379 | ||
| 1364 | /* | 1380 | /* |
| @@ -1432,7 +1448,7 @@ static __init void event_trace_self_tests(void) | |||
| 1432 | 1448 | ||
| 1433 | #ifdef CONFIG_FUNCTION_TRACER | 1449 | #ifdef CONFIG_FUNCTION_TRACER |
| 1434 | 1450 | ||
| 1435 | static DEFINE_PER_CPU(atomic_t, test_event_disable); | 1451 | static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable); |
| 1436 | 1452 | ||
| 1437 | static void | 1453 | static void |
| 1438 | function_test_events_call(unsigned long ip, unsigned long parent_ip) | 1454 | function_test_events_call(unsigned long ip, unsigned long parent_ip) |
| @@ -1449,7 +1465,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
| 1449 | pc = preempt_count(); | 1465 | pc = preempt_count(); |
| 1450 | resched = ftrace_preempt_disable(); | 1466 | resched = ftrace_preempt_disable(); |
| 1451 | cpu = raw_smp_processor_id(); | 1467 | cpu = raw_smp_processor_id(); |
| 1452 | disabled = atomic_inc_return(&per_cpu(test_event_disable, cpu)); | 1468 | disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); |
| 1453 | 1469 | ||
| 1454 | if (disabled != 1) | 1470 | if (disabled != 1) |
| 1455 | goto out; | 1471 | goto out; |
| @@ -1468,7 +1484,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
| 1468 | trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); | 1484 | trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); |
| 1469 | 1485 | ||
| 1470 | out: | 1486 | out: |
| 1471 | atomic_dec(&per_cpu(test_event_disable, cpu)); | 1487 | atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); |
| 1472 | ftrace_preempt_enable(resched); | 1488 | ftrace_preempt_enable(resched); |
| 1473 | } | 1489 | } |
| 1474 | 1490 | ||
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c index 93660fbbf629..50504cb228de 100644 --- a/kernel/trace/trace_events_filter.c +++ b/kernel/trace/trace_events_filter.c | |||
| @@ -18,11 +18,10 @@ | |||
| 18 | * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com> | 18 | * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com> |
| 19 | */ | 19 | */ |
| 20 | 20 | ||
| 21 | #include <linux/debugfs.h> | ||
| 22 | #include <linux/uaccess.h> | ||
| 23 | #include <linux/module.h> | 21 | #include <linux/module.h> |
| 24 | #include <linux/ctype.h> | 22 | #include <linux/ctype.h> |
| 25 | #include <linux/mutex.h> | 23 | #include <linux/mutex.h> |
| 24 | #include <linux/perf_event.h> | ||
| 26 | 25 | ||
| 27 | #include "trace.h" | 26 | #include "trace.h" |
| 28 | #include "trace_output.h" | 27 | #include "trace_output.h" |
| @@ -31,6 +30,7 @@ enum filter_op_ids | |||
| 31 | { | 30 | { |
| 32 | OP_OR, | 31 | OP_OR, |
| 33 | OP_AND, | 32 | OP_AND, |
| 33 | OP_GLOB, | ||
| 34 | OP_NE, | 34 | OP_NE, |
| 35 | OP_EQ, | 35 | OP_EQ, |
| 36 | OP_LT, | 36 | OP_LT, |
| @@ -48,16 +48,17 @@ struct filter_op { | |||
| 48 | }; | 48 | }; |
| 49 | 49 | ||
| 50 | static struct filter_op filter_ops[] = { | 50 | static struct filter_op filter_ops[] = { |
| 51 | { OP_OR, "||", 1 }, | 51 | { OP_OR, "||", 1 }, |
| 52 | { OP_AND, "&&", 2 }, | 52 | { OP_AND, "&&", 2 }, |
| 53 | { OP_NE, "!=", 4 }, | 53 | { OP_GLOB, "~", 4 }, |
| 54 | { OP_EQ, "==", 4 }, | 54 | { OP_NE, "!=", 4 }, |
| 55 | { OP_LT, "<", 5 }, | 55 | { OP_EQ, "==", 4 }, |
| 56 | { OP_LE, "<=", 5 }, | 56 | { OP_LT, "<", 5 }, |
| 57 | { OP_GT, ">", 5 }, | 57 | { OP_LE, "<=", 5 }, |
| 58 | { OP_GE, ">=", 5 }, | 58 | { OP_GT, ">", 5 }, |
| 59 | { OP_NONE, "OP_NONE", 0 }, | 59 | { OP_GE, ">=", 5 }, |
| 60 | { OP_OPEN_PAREN, "(", 0 }, | 60 | { OP_NONE, "OP_NONE", 0 }, |
| 61 | { OP_OPEN_PAREN, "(", 0 }, | ||
| 61 | }; | 62 | }; |
| 62 | 63 | ||
| 63 | enum { | 64 | enum { |
| @@ -121,6 +122,47 @@ struct filter_parse_state { | |||
| 121 | } operand; | 122 | } operand; |
| 122 | }; | 123 | }; |
| 123 | 124 | ||
| 125 | #define DEFINE_COMPARISON_PRED(type) \ | ||
| 126 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
| 127 | int val1, int val2) \ | ||
| 128 | { \ | ||
| 129 | type *addr = (type *)(event + pred->offset); \ | ||
| 130 | type val = (type)pred->val; \ | ||
| 131 | int match = 0; \ | ||
| 132 | \ | ||
| 133 | switch (pred->op) { \ | ||
| 134 | case OP_LT: \ | ||
| 135 | match = (*addr < val); \ | ||
| 136 | break; \ | ||
| 137 | case OP_LE: \ | ||
| 138 | match = (*addr <= val); \ | ||
| 139 | break; \ | ||
| 140 | case OP_GT: \ | ||
| 141 | match = (*addr > val); \ | ||
| 142 | break; \ | ||
| 143 | case OP_GE: \ | ||
| 144 | match = (*addr >= val); \ | ||
| 145 | break; \ | ||
| 146 | default: \ | ||
| 147 | break; \ | ||
| 148 | } \ | ||
| 149 | \ | ||
| 150 | return match; \ | ||
| 151 | } | ||
| 152 | |||
| 153 | #define DEFINE_EQUALITY_PRED(size) \ | ||
| 154 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
| 155 | int val1, int val2) \ | ||
| 156 | { \ | ||
| 157 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
| 158 | u##size val = (u##size)pred->val; \ | ||
| 159 | int match; \ | ||
| 160 | \ | ||
| 161 | match = (val == *addr) ^ pred->not; \ | ||
| 162 | \ | ||
| 163 | return match; \ | ||
| 164 | } | ||
| 165 | |||
| 124 | DEFINE_COMPARISON_PRED(s64); | 166 | DEFINE_COMPARISON_PRED(s64); |
| 125 | DEFINE_COMPARISON_PRED(u64); | 167 | DEFINE_COMPARISON_PRED(u64); |
| 126 | DEFINE_COMPARISON_PRED(s32); | 168 | DEFINE_COMPARISON_PRED(s32); |
| @@ -156,9 +198,9 @@ static int filter_pred_string(struct filter_pred *pred, void *event, | |||
| 156 | char *addr = (char *)(event + pred->offset); | 198 | char *addr = (char *)(event + pred->offset); |
| 157 | int cmp, match; | 199 | int cmp, match; |
| 158 | 200 | ||
| 159 | cmp = strncmp(addr, pred->str_val, pred->str_len); | 201 | cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len); |
| 160 | 202 | ||
| 161 | match = (!cmp) ^ pred->not; | 203 | match = cmp ^ pred->not; |
| 162 | 204 | ||
| 163 | return match; | 205 | return match; |
| 164 | } | 206 | } |
| @@ -170,9 +212,9 @@ static int filter_pred_pchar(struct filter_pred *pred, void *event, | |||
| 170 | char **addr = (char **)(event + pred->offset); | 212 | char **addr = (char **)(event + pred->offset); |
| 171 | int cmp, match; | 213 | int cmp, match; |
| 172 | 214 | ||
| 173 | cmp = strncmp(*addr, pred->str_val, pred->str_len); | 215 | cmp = pred->regex.match(*addr, &pred->regex, pred->regex.field_len); |
| 174 | 216 | ||
| 175 | match = (!cmp) ^ pred->not; | 217 | match = cmp ^ pred->not; |
| 176 | 218 | ||
| 177 | return match; | 219 | return match; |
| 178 | } | 220 | } |
| @@ -196,9 +238,9 @@ static int filter_pred_strloc(struct filter_pred *pred, void *event, | |||
| 196 | char *addr = (char *)(event + str_loc); | 238 | char *addr = (char *)(event + str_loc); |
| 197 | int cmp, match; | 239 | int cmp, match; |
| 198 | 240 | ||
| 199 | cmp = strncmp(addr, pred->str_val, str_len); | 241 | cmp = pred->regex.match(addr, &pred->regex, str_len); |
| 200 | 242 | ||
| 201 | match = (!cmp) ^ pred->not; | 243 | match = cmp ^ pred->not; |
| 202 | 244 | ||
| 203 | return match; | 245 | return match; |
| 204 | } | 246 | } |
| @@ -209,10 +251,121 @@ static int filter_pred_none(struct filter_pred *pred, void *event, | |||
| 209 | return 0; | 251 | return 0; |
| 210 | } | 252 | } |
| 211 | 253 | ||
| 254 | /* Basic regex callbacks */ | ||
| 255 | static int regex_match_full(char *str, struct regex *r, int len) | ||
| 256 | { | ||
| 257 | if (strncmp(str, r->pattern, len) == 0) | ||
| 258 | return 1; | ||
| 259 | return 0; | ||
| 260 | } | ||
| 261 | |||
| 262 | static int regex_match_front(char *str, struct regex *r, int len) | ||
| 263 | { | ||
| 264 | if (strncmp(str, r->pattern, len) == 0) | ||
| 265 | return 1; | ||
| 266 | return 0; | ||
| 267 | } | ||
| 268 | |||
| 269 | static int regex_match_middle(char *str, struct regex *r, int len) | ||
| 270 | { | ||
| 271 | if (strstr(str, r->pattern)) | ||
| 272 | return 1; | ||
| 273 | return 0; | ||
| 274 | } | ||
| 275 | |||
| 276 | static int regex_match_end(char *str, struct regex *r, int len) | ||
| 277 | { | ||
| 278 | char *ptr = strstr(str, r->pattern); | ||
| 279 | |||
| 280 | if (ptr && (ptr[r->len] == 0)) | ||
| 281 | return 1; | ||
| 282 | return 0; | ||
| 283 | } | ||
| 284 | |||
| 285 | /** | ||
| 286 | * filter_parse_regex - parse a basic regex | ||
| 287 | * @buff: the raw regex | ||
| 288 | * @len: length of the regex | ||
| 289 | * @search: will point to the beginning of the string to compare | ||
| 290 | * @not: tell whether the match will have to be inverted | ||
| 291 | * | ||
| 292 | * This passes in a buffer containing a regex and this function will | ||
| 293 | * set search to point to the search part of the buffer and | ||
| 294 | * return the type of search it is (see enum above). | ||
| 295 | * This does modify buff. | ||
| 296 | * | ||
| 297 | * Returns enum type. | ||
| 298 | * search returns the pointer to use for comparison. | ||
| 299 | * not returns 1 if buff started with a '!' | ||
| 300 | * 0 otherwise. | ||
| 301 | */ | ||
| 302 | enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not) | ||
| 303 | { | ||
| 304 | int type = MATCH_FULL; | ||
| 305 | int i; | ||
| 306 | |||
| 307 | if (buff[0] == '!') { | ||
| 308 | *not = 1; | ||
| 309 | buff++; | ||
| 310 | len--; | ||
| 311 | } else | ||
| 312 | *not = 0; | ||
| 313 | |||
| 314 | *search = buff; | ||
| 315 | |||
| 316 | for (i = 0; i < len; i++) { | ||
| 317 | if (buff[i] == '*') { | ||
| 318 | if (!i) { | ||
| 319 | *search = buff + 1; | ||
| 320 | type = MATCH_END_ONLY; | ||
| 321 | } else { | ||
| 322 | if (type == MATCH_END_ONLY) | ||
| 323 | type = MATCH_MIDDLE_ONLY; | ||
| 324 | else | ||
| 325 | type = MATCH_FRONT_ONLY; | ||
| 326 | buff[i] = 0; | ||
| 327 | break; | ||
| 328 | } | ||
| 329 | } | ||
| 330 | } | ||
| 331 | |||
| 332 | return type; | ||
| 333 | } | ||
| 334 | |||
| 335 | static void filter_build_regex(struct filter_pred *pred) | ||
| 336 | { | ||
| 337 | struct regex *r = &pred->regex; | ||
| 338 | char *search; | ||
| 339 | enum regex_type type = MATCH_FULL; | ||
| 340 | int not = 0; | ||
| 341 | |||
| 342 | if (pred->op == OP_GLOB) { | ||
| 343 | type = filter_parse_regex(r->pattern, r->len, &search, ¬); | ||
| 344 | r->len = strlen(search); | ||
| 345 | memmove(r->pattern, search, r->len+1); | ||
| 346 | } | ||
| 347 | |||
| 348 | switch (type) { | ||
| 349 | case MATCH_FULL: | ||
| 350 | r->match = regex_match_full; | ||
| 351 | break; | ||
| 352 | case MATCH_FRONT_ONLY: | ||
| 353 | r->match = regex_match_front; | ||
| 354 | break; | ||
| 355 | case MATCH_MIDDLE_ONLY: | ||
| 356 | r->match = regex_match_middle; | ||
| 357 | break; | ||
| 358 | case MATCH_END_ONLY: | ||
| 359 | r->match = regex_match_end; | ||
| 360 | break; | ||
| 361 | } | ||
| 362 | |||
| 363 | pred->not ^= not; | ||
| 364 | } | ||
| 365 | |||
| 212 | /* return 1 if event matches, 0 otherwise (discard) */ | 366 | /* return 1 if event matches, 0 otherwise (discard) */ |
| 213 | int filter_match_preds(struct ftrace_event_call *call, void *rec) | 367 | int filter_match_preds(struct event_filter *filter, void *rec) |
| 214 | { | 368 | { |
| 215 | struct event_filter *filter = call->filter; | ||
| 216 | int match, top = 0, val1 = 0, val2 = 0; | 369 | int match, top = 0, val1 = 0, val2 = 0; |
| 217 | int stack[MAX_FILTER_PRED]; | 370 | int stack[MAX_FILTER_PRED]; |
| 218 | struct filter_pred *pred; | 371 | struct filter_pred *pred; |
| @@ -355,7 +508,7 @@ static void filter_clear_pred(struct filter_pred *pred) | |||
| 355 | { | 508 | { |
| 356 | kfree(pred->field_name); | 509 | kfree(pred->field_name); |
| 357 | pred->field_name = NULL; | 510 | pred->field_name = NULL; |
| 358 | pred->str_len = 0; | 511 | pred->regex.len = 0; |
| 359 | } | 512 | } |
| 360 | 513 | ||
| 361 | static int filter_set_pred(struct filter_pred *dest, | 514 | static int filter_set_pred(struct filter_pred *dest, |
| @@ -385,9 +538,8 @@ static void filter_disable_preds(struct ftrace_event_call *call) | |||
| 385 | filter->preds[i]->fn = filter_pred_none; | 538 | filter->preds[i]->fn = filter_pred_none; |
| 386 | } | 539 | } |
| 387 | 540 | ||
| 388 | void destroy_preds(struct ftrace_event_call *call) | 541 | static void __free_preds(struct event_filter *filter) |
| 389 | { | 542 | { |
| 390 | struct event_filter *filter = call->filter; | ||
| 391 | int i; | 543 | int i; |
| 392 | 544 | ||
| 393 | if (!filter) | 545 | if (!filter) |
| @@ -400,21 +552,24 @@ void destroy_preds(struct ftrace_event_call *call) | |||
| 400 | kfree(filter->preds); | 552 | kfree(filter->preds); |
| 401 | kfree(filter->filter_string); | 553 | kfree(filter->filter_string); |
| 402 | kfree(filter); | 554 | kfree(filter); |
| 555 | } | ||
| 556 | |||
| 557 | void destroy_preds(struct ftrace_event_call *call) | ||
| 558 | { | ||
| 559 | __free_preds(call->filter); | ||
| 403 | call->filter = NULL; | 560 | call->filter = NULL; |
| 561 | call->filter_active = 0; | ||
| 404 | } | 562 | } |
| 405 | 563 | ||
| 406 | static int init_preds(struct ftrace_event_call *call) | 564 | static struct event_filter *__alloc_preds(void) |
| 407 | { | 565 | { |
| 408 | struct event_filter *filter; | 566 | struct event_filter *filter; |
| 409 | struct filter_pred *pred; | 567 | struct filter_pred *pred; |
| 410 | int i; | 568 | int i; |
| 411 | 569 | ||
| 412 | if (call->filter) | 570 | filter = kzalloc(sizeof(*filter), GFP_KERNEL); |
| 413 | return 0; | 571 | if (!filter) |
| 414 | 572 | return ERR_PTR(-ENOMEM); | |
| 415 | filter = call->filter = kzalloc(sizeof(*filter), GFP_KERNEL); | ||
| 416 | if (!call->filter) | ||
| 417 | return -ENOMEM; | ||
| 418 | 573 | ||
| 419 | filter->n_preds = 0; | 574 | filter->n_preds = 0; |
| 420 | 575 | ||
| @@ -430,12 +585,24 @@ static int init_preds(struct ftrace_event_call *call) | |||
| 430 | filter->preds[i] = pred; | 585 | filter->preds[i] = pred; |
| 431 | } | 586 | } |
| 432 | 587 | ||
| 433 | return 0; | 588 | return filter; |
| 434 | 589 | ||
| 435 | oom: | 590 | oom: |
| 436 | destroy_preds(call); | 591 | __free_preds(filter); |
| 592 | return ERR_PTR(-ENOMEM); | ||
| 593 | } | ||
| 437 | 594 | ||
| 438 | return -ENOMEM; | 595 | static int init_preds(struct ftrace_event_call *call) |
| 596 | { | ||
| 597 | if (call->filter) | ||
| 598 | return 0; | ||
| 599 | |||
| 600 | call->filter_active = 0; | ||
| 601 | call->filter = __alloc_preds(); | ||
| 602 | if (IS_ERR(call->filter)) | ||
| 603 | return PTR_ERR(call->filter); | ||
| 604 | |||
| 605 | return 0; | ||
| 439 | } | 606 | } |
| 440 | 607 | ||
| 441 | static int init_subsystem_preds(struct event_subsystem *system) | 608 | static int init_subsystem_preds(struct event_subsystem *system) |
| @@ -458,14 +625,7 @@ static int init_subsystem_preds(struct event_subsystem *system) | |||
| 458 | return 0; | 625 | return 0; |
| 459 | } | 626 | } |
| 460 | 627 | ||
| 461 | enum { | 628 | static void filter_free_subsystem_preds(struct event_subsystem *system) |
| 462 | FILTER_DISABLE_ALL, | ||
| 463 | FILTER_INIT_NO_RESET, | ||
| 464 | FILTER_SKIP_NO_RESET, | ||
| 465 | }; | ||
| 466 | |||
| 467 | static void filter_free_subsystem_preds(struct event_subsystem *system, | ||
| 468 | int flag) | ||
| 469 | { | 629 | { |
| 470 | struct ftrace_event_call *call; | 630 | struct ftrace_event_call *call; |
| 471 | 631 | ||
| @@ -476,14 +636,6 @@ static void filter_free_subsystem_preds(struct event_subsystem *system, | |||
| 476 | if (strcmp(call->system, system->name) != 0) | 636 | if (strcmp(call->system, system->name) != 0) |
| 477 | continue; | 637 | continue; |
| 478 | 638 | ||
| 479 | if (flag == FILTER_INIT_NO_RESET) { | ||
| 480 | call->filter->no_reset = false; | ||
| 481 | continue; | ||
| 482 | } | ||
| 483 | |||
| 484 | if (flag == FILTER_SKIP_NO_RESET && call->filter->no_reset) | ||
| 485 | continue; | ||
| 486 | |||
| 487 | filter_disable_preds(call); | 639 | filter_disable_preds(call); |
| 488 | remove_filter_string(call->filter); | 640 | remove_filter_string(call->filter); |
| 489 | } | 641 | } |
| @@ -491,10 +643,10 @@ static void filter_free_subsystem_preds(struct event_subsystem *system, | |||
| 491 | 643 | ||
| 492 | static int filter_add_pred_fn(struct filter_parse_state *ps, | 644 | static int filter_add_pred_fn(struct filter_parse_state *ps, |
| 493 | struct ftrace_event_call *call, | 645 | struct ftrace_event_call *call, |
| 646 | struct event_filter *filter, | ||
| 494 | struct filter_pred *pred, | 647 | struct filter_pred *pred, |
| 495 | filter_pred_fn_t fn) | 648 | filter_pred_fn_t fn) |
| 496 | { | 649 | { |
| 497 | struct event_filter *filter = call->filter; | ||
| 498 | int idx, err; | 650 | int idx, err; |
| 499 | 651 | ||
| 500 | if (filter->n_preds == MAX_FILTER_PRED) { | 652 | if (filter->n_preds == MAX_FILTER_PRED) { |
| @@ -509,7 +661,6 @@ static int filter_add_pred_fn(struct filter_parse_state *ps, | |||
| 509 | return err; | 661 | return err; |
| 510 | 662 | ||
| 511 | filter->n_preds++; | 663 | filter->n_preds++; |
| 512 | call->filter_active = 1; | ||
| 513 | 664 | ||
| 514 | return 0; | 665 | return 0; |
| 515 | } | 666 | } |
| @@ -534,7 +685,10 @@ static bool is_string_field(struct ftrace_event_field *field) | |||
| 534 | 685 | ||
| 535 | static int is_legal_op(struct ftrace_event_field *field, int op) | 686 | static int is_legal_op(struct ftrace_event_field *field, int op) |
| 536 | { | 687 | { |
| 537 | if (is_string_field(field) && (op != OP_EQ && op != OP_NE)) | 688 | if (is_string_field(field) && |
| 689 | (op != OP_EQ && op != OP_NE && op != OP_GLOB)) | ||
| 690 | return 0; | ||
| 691 | if (!is_string_field(field) && op == OP_GLOB) | ||
| 538 | return 0; | 692 | return 0; |
| 539 | 693 | ||
| 540 | return 1; | 694 | return 1; |
| @@ -585,6 +739,7 @@ static filter_pred_fn_t select_comparison_fn(int op, int field_size, | |||
| 585 | 739 | ||
| 586 | static int filter_add_pred(struct filter_parse_state *ps, | 740 | static int filter_add_pred(struct filter_parse_state *ps, |
| 587 | struct ftrace_event_call *call, | 741 | struct ftrace_event_call *call, |
| 742 | struct event_filter *filter, | ||
| 588 | struct filter_pred *pred, | 743 | struct filter_pred *pred, |
| 589 | bool dry_run) | 744 | bool dry_run) |
| 590 | { | 745 | { |
| @@ -619,21 +774,22 @@ static int filter_add_pred(struct filter_parse_state *ps, | |||
| 619 | } | 774 | } |
| 620 | 775 | ||
| 621 | if (is_string_field(field)) { | 776 | if (is_string_field(field)) { |
| 622 | pred->str_len = field->size; | 777 | filter_build_regex(pred); |
| 623 | 778 | ||
| 624 | if (field->filter_type == FILTER_STATIC_STRING) | 779 | if (field->filter_type == FILTER_STATIC_STRING) { |
| 625 | fn = filter_pred_string; | 780 | fn = filter_pred_string; |
| 626 | else if (field->filter_type == FILTER_DYN_STRING) | 781 | pred->regex.field_len = field->size; |
| 782 | } else if (field->filter_type == FILTER_DYN_STRING) | ||
| 627 | fn = filter_pred_strloc; | 783 | fn = filter_pred_strloc; |
| 628 | else { | 784 | else { |
| 629 | fn = filter_pred_pchar; | 785 | fn = filter_pred_pchar; |
| 630 | pred->str_len = strlen(pred->str_val); | 786 | pred->regex.field_len = strlen(pred->regex.pattern); |
| 631 | } | 787 | } |
| 632 | } else { | 788 | } else { |
| 633 | if (field->is_signed) | 789 | if (field->is_signed) |
| 634 | ret = strict_strtoll(pred->str_val, 0, &val); | 790 | ret = strict_strtoll(pred->regex.pattern, 0, &val); |
| 635 | else | 791 | else |
| 636 | ret = strict_strtoull(pred->str_val, 0, &val); | 792 | ret = strict_strtoull(pred->regex.pattern, 0, &val); |
| 637 | if (ret) { | 793 | if (ret) { |
| 638 | parse_error(ps, FILT_ERR_ILLEGAL_INTVAL, 0); | 794 | parse_error(ps, FILT_ERR_ILLEGAL_INTVAL, 0); |
| 639 | return -EINVAL; | 795 | return -EINVAL; |
| @@ -653,45 +809,7 @@ static int filter_add_pred(struct filter_parse_state *ps, | |||
| 653 | 809 | ||
| 654 | add_pred_fn: | 810 | add_pred_fn: |
| 655 | if (!dry_run) | 811 | if (!dry_run) |
| 656 | return filter_add_pred_fn(ps, call, pred, fn); | 812 | return filter_add_pred_fn(ps, call, filter, pred, fn); |
| 657 | return 0; | ||
| 658 | } | ||
| 659 | |||
| 660 | static int filter_add_subsystem_pred(struct filter_parse_state *ps, | ||
| 661 | struct event_subsystem *system, | ||
| 662 | struct filter_pred *pred, | ||
| 663 | char *filter_string, | ||
| 664 | bool dry_run) | ||
| 665 | { | ||
| 666 | struct ftrace_event_call *call; | ||
| 667 | int err = 0; | ||
| 668 | bool fail = true; | ||
| 669 | |||
| 670 | list_for_each_entry(call, &ftrace_events, list) { | ||
| 671 | |||
| 672 | if (!call->define_fields) | ||
| 673 | continue; | ||
| 674 | |||
| 675 | if (strcmp(call->system, system->name)) | ||
| 676 | continue; | ||
| 677 | |||
| 678 | if (call->filter->no_reset) | ||
| 679 | continue; | ||
| 680 | |||
| 681 | err = filter_add_pred(ps, call, pred, dry_run); | ||
| 682 | if (err) | ||
| 683 | call->filter->no_reset = true; | ||
| 684 | else | ||
| 685 | fail = false; | ||
| 686 | |||
| 687 | if (!dry_run) | ||
| 688 | replace_filter_string(call->filter, filter_string); | ||
| 689 | } | ||
| 690 | |||
| 691 | if (fail) { | ||
| 692 | parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); | ||
| 693 | return err; | ||
| 694 | } | ||
| 695 | return 0; | 813 | return 0; |
| 696 | } | 814 | } |
| 697 | 815 | ||
| @@ -892,8 +1010,9 @@ static void postfix_clear(struct filter_parse_state *ps) | |||
| 892 | 1010 | ||
| 893 | while (!list_empty(&ps->postfix)) { | 1011 | while (!list_empty(&ps->postfix)) { |
| 894 | elt = list_first_entry(&ps->postfix, struct postfix_elt, list); | 1012 | elt = list_first_entry(&ps->postfix, struct postfix_elt, list); |
| 895 | kfree(elt->operand); | ||
| 896 | list_del(&elt->list); | 1013 | list_del(&elt->list); |
| 1014 | kfree(elt->operand); | ||
| 1015 | kfree(elt); | ||
| 897 | } | 1016 | } |
| 898 | } | 1017 | } |
| 899 | 1018 | ||
| @@ -1003,8 +1122,8 @@ static struct filter_pred *create_pred(int op, char *operand1, char *operand2) | |||
| 1003 | return NULL; | 1122 | return NULL; |
| 1004 | } | 1123 | } |
| 1005 | 1124 | ||
| 1006 | strcpy(pred->str_val, operand2); | 1125 | strcpy(pred->regex.pattern, operand2); |
| 1007 | pred->str_len = strlen(operand2); | 1126 | pred->regex.len = strlen(pred->regex.pattern); |
| 1008 | 1127 | ||
| 1009 | pred->op = op; | 1128 | pred->op = op; |
| 1010 | 1129 | ||
| @@ -1048,8 +1167,8 @@ static int check_preds(struct filter_parse_state *ps) | |||
| 1048 | return 0; | 1167 | return 0; |
| 1049 | } | 1168 | } |
| 1050 | 1169 | ||
| 1051 | static int replace_preds(struct event_subsystem *system, | 1170 | static int replace_preds(struct ftrace_event_call *call, |
| 1052 | struct ftrace_event_call *call, | 1171 | struct event_filter *filter, |
| 1053 | struct filter_parse_state *ps, | 1172 | struct filter_parse_state *ps, |
| 1054 | char *filter_string, | 1173 | char *filter_string, |
| 1055 | bool dry_run) | 1174 | bool dry_run) |
| @@ -1096,11 +1215,7 @@ static int replace_preds(struct event_subsystem *system, | |||
| 1096 | add_pred: | 1215 | add_pred: |
| 1097 | if (!pred) | 1216 | if (!pred) |
| 1098 | return -ENOMEM; | 1217 | return -ENOMEM; |
| 1099 | if (call) | 1218 | err = filter_add_pred(ps, call, filter, pred, dry_run); |
| 1100 | err = filter_add_pred(ps, call, pred, false); | ||
| 1101 | else | ||
| 1102 | err = filter_add_subsystem_pred(ps, system, pred, | ||
| 1103 | filter_string, dry_run); | ||
| 1104 | filter_free_pred(pred); | 1219 | filter_free_pred(pred); |
| 1105 | if (err) | 1220 | if (err) |
| 1106 | return err; | 1221 | return err; |
| @@ -1111,10 +1226,50 @@ add_pred: | |||
| 1111 | return 0; | 1226 | return 0; |
| 1112 | } | 1227 | } |
| 1113 | 1228 | ||
| 1114 | int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | 1229 | static int replace_system_preds(struct event_subsystem *system, |
| 1230 | struct filter_parse_state *ps, | ||
| 1231 | char *filter_string) | ||
| 1115 | { | 1232 | { |
| 1233 | struct ftrace_event_call *call; | ||
| 1234 | bool fail = true; | ||
| 1116 | int err; | 1235 | int err; |
| 1117 | 1236 | ||
| 1237 | list_for_each_entry(call, &ftrace_events, list) { | ||
| 1238 | struct event_filter *filter = call->filter; | ||
| 1239 | |||
| 1240 | if (!call->define_fields) | ||
| 1241 | continue; | ||
| 1242 | |||
| 1243 | if (strcmp(call->system, system->name) != 0) | ||
| 1244 | continue; | ||
| 1245 | |||
| 1246 | /* try to see if the filter can be applied */ | ||
| 1247 | err = replace_preds(call, filter, ps, filter_string, true); | ||
| 1248 | if (err) | ||
| 1249 | continue; | ||
| 1250 | |||
| 1251 | /* really apply the filter */ | ||
| 1252 | filter_disable_preds(call); | ||
| 1253 | err = replace_preds(call, filter, ps, filter_string, false); | ||
| 1254 | if (err) | ||
| 1255 | filter_disable_preds(call); | ||
| 1256 | else { | ||
| 1257 | call->filter_active = 1; | ||
| 1258 | replace_filter_string(filter, filter_string); | ||
| 1259 | } | ||
| 1260 | fail = false; | ||
| 1261 | } | ||
| 1262 | |||
| 1263 | if (fail) { | ||
| 1264 | parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); | ||
| 1265 | return -EINVAL; | ||
| 1266 | } | ||
| 1267 | return 0; | ||
| 1268 | } | ||
| 1269 | |||
| 1270 | int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | ||
| 1271 | { | ||
| 1272 | int err; | ||
| 1118 | struct filter_parse_state *ps; | 1273 | struct filter_parse_state *ps; |
| 1119 | 1274 | ||
| 1120 | mutex_lock(&event_mutex); | 1275 | mutex_lock(&event_mutex); |
| @@ -1126,8 +1281,7 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | |||
| 1126 | if (!strcmp(strstrip(filter_string), "0")) { | 1281 | if (!strcmp(strstrip(filter_string), "0")) { |
| 1127 | filter_disable_preds(call); | 1282 | filter_disable_preds(call); |
| 1128 | remove_filter_string(call->filter); | 1283 | remove_filter_string(call->filter); |
| 1129 | mutex_unlock(&event_mutex); | 1284 | goto out_unlock; |
| 1130 | return 0; | ||
| 1131 | } | 1285 | } |
| 1132 | 1286 | ||
| 1133 | err = -ENOMEM; | 1287 | err = -ENOMEM; |
| @@ -1145,10 +1299,11 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | |||
| 1145 | goto out; | 1299 | goto out; |
| 1146 | } | 1300 | } |
| 1147 | 1301 | ||
| 1148 | err = replace_preds(NULL, call, ps, filter_string, false); | 1302 | err = replace_preds(call, call->filter, ps, filter_string, false); |
| 1149 | if (err) | 1303 | if (err) |
| 1150 | append_filter_err(ps, call->filter); | 1304 | append_filter_err(ps, call->filter); |
| 1151 | 1305 | else | |
| 1306 | call->filter_active = 1; | ||
| 1152 | out: | 1307 | out: |
| 1153 | filter_opstack_clear(ps); | 1308 | filter_opstack_clear(ps); |
| 1154 | postfix_clear(ps); | 1309 | postfix_clear(ps); |
| @@ -1163,7 +1318,6 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1163 | char *filter_string) | 1318 | char *filter_string) |
| 1164 | { | 1319 | { |
| 1165 | int err; | 1320 | int err; |
| 1166 | |||
| 1167 | struct filter_parse_state *ps; | 1321 | struct filter_parse_state *ps; |
| 1168 | 1322 | ||
| 1169 | mutex_lock(&event_mutex); | 1323 | mutex_lock(&event_mutex); |
| @@ -1173,10 +1327,9 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1173 | goto out_unlock; | 1327 | goto out_unlock; |
| 1174 | 1328 | ||
| 1175 | if (!strcmp(strstrip(filter_string), "0")) { | 1329 | if (!strcmp(strstrip(filter_string), "0")) { |
| 1176 | filter_free_subsystem_preds(system, FILTER_DISABLE_ALL); | 1330 | filter_free_subsystem_preds(system); |
| 1177 | remove_filter_string(system->filter); | 1331 | remove_filter_string(system->filter); |
| 1178 | mutex_unlock(&event_mutex); | 1332 | goto out_unlock; |
| 1179 | return 0; | ||
| 1180 | } | 1333 | } |
| 1181 | 1334 | ||
| 1182 | err = -ENOMEM; | 1335 | err = -ENOMEM; |
| @@ -1193,31 +1346,87 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1193 | goto out; | 1346 | goto out; |
| 1194 | } | 1347 | } |
| 1195 | 1348 | ||
| 1196 | filter_free_subsystem_preds(system, FILTER_INIT_NO_RESET); | 1349 | err = replace_system_preds(system, ps, filter_string); |
| 1197 | 1350 | if (err) | |
| 1198 | /* try to see the filter can be applied to which events */ | ||
| 1199 | err = replace_preds(system, NULL, ps, filter_string, true); | ||
| 1200 | if (err) { | ||
| 1201 | append_filter_err(ps, system->filter); | 1351 | append_filter_err(ps, system->filter); |
| 1202 | goto out; | 1352 | |
| 1353 | out: | ||
| 1354 | filter_opstack_clear(ps); | ||
| 1355 | postfix_clear(ps); | ||
| 1356 | kfree(ps); | ||
| 1357 | out_unlock: | ||
| 1358 | mutex_unlock(&event_mutex); | ||
| 1359 | |||
| 1360 | return err; | ||
| 1361 | } | ||
| 1362 | |||
| 1363 | #ifdef CONFIG_EVENT_PROFILE | ||
| 1364 | |||
| 1365 | void ftrace_profile_free_filter(struct perf_event *event) | ||
| 1366 | { | ||
| 1367 | struct event_filter *filter = event->filter; | ||
| 1368 | |||
| 1369 | event->filter = NULL; | ||
| 1370 | __free_preds(filter); | ||
| 1371 | } | ||
| 1372 | |||
| 1373 | int ftrace_profile_set_filter(struct perf_event *event, int event_id, | ||
| 1374 | char *filter_str) | ||
| 1375 | { | ||
| 1376 | int err; | ||
| 1377 | struct event_filter *filter; | ||
| 1378 | struct filter_parse_state *ps; | ||
| 1379 | struct ftrace_event_call *call = NULL; | ||
| 1380 | |||
| 1381 | mutex_lock(&event_mutex); | ||
| 1382 | |||
| 1383 | list_for_each_entry(call, &ftrace_events, list) { | ||
| 1384 | if (call->id == event_id) | ||
| 1385 | break; | ||
| 1203 | } | 1386 | } |
| 1204 | 1387 | ||
| 1205 | filter_free_subsystem_preds(system, FILTER_SKIP_NO_RESET); | 1388 | err = -EINVAL; |
| 1389 | if (!call) | ||
| 1390 | goto out_unlock; | ||
| 1391 | |||
| 1392 | err = -EEXIST; | ||
| 1393 | if (event->filter) | ||
| 1394 | goto out_unlock; | ||
| 1206 | 1395 | ||
| 1207 | /* really apply the filter to the events */ | 1396 | filter = __alloc_preds(); |
| 1208 | err = replace_preds(system, NULL, ps, filter_string, false); | 1397 | if (IS_ERR(filter)) { |
| 1209 | if (err) { | 1398 | err = PTR_ERR(filter); |
| 1210 | append_filter_err(ps, system->filter); | 1399 | goto out_unlock; |
| 1211 | filter_free_subsystem_preds(system, 2); | ||
| 1212 | } | 1400 | } |
| 1213 | 1401 | ||
| 1214 | out: | 1402 | err = -ENOMEM; |
| 1403 | ps = kzalloc(sizeof(*ps), GFP_KERNEL); | ||
| 1404 | if (!ps) | ||
| 1405 | goto free_preds; | ||
| 1406 | |||
| 1407 | parse_init(ps, filter_ops, filter_str); | ||
| 1408 | err = filter_parse(ps); | ||
| 1409 | if (err) | ||
| 1410 | goto free_ps; | ||
| 1411 | |||
| 1412 | err = replace_preds(call, filter, ps, filter_str, false); | ||
| 1413 | if (!err) | ||
| 1414 | event->filter = filter; | ||
| 1415 | |||
| 1416 | free_ps: | ||
| 1215 | filter_opstack_clear(ps); | 1417 | filter_opstack_clear(ps); |
| 1216 | postfix_clear(ps); | 1418 | postfix_clear(ps); |
| 1217 | kfree(ps); | 1419 | kfree(ps); |
| 1420 | |||
| 1421 | free_preds: | ||
| 1422 | if (err) | ||
| 1423 | __free_preds(filter); | ||
| 1424 | |||
| 1218 | out_unlock: | 1425 | out_unlock: |
| 1219 | mutex_unlock(&event_mutex); | 1426 | mutex_unlock(&event_mutex); |
| 1220 | 1427 | ||
| 1221 | return err; | 1428 | return err; |
| 1222 | } | 1429 | } |
| 1223 | 1430 | ||
| 1431 | #endif /* CONFIG_EVENT_PROFILE */ | ||
| 1432 | |||
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c index df1bf6e48bb9..dff8c84ddf17 100644 --- a/kernel/trace/trace_export.c +++ b/kernel/trace/trace_export.c | |||
| @@ -15,146 +15,127 @@ | |||
| 15 | 15 | ||
| 16 | #include "trace_output.h" | 16 | #include "trace_output.h" |
| 17 | 17 | ||
| 18 | #undef TRACE_SYSTEM | ||
| 19 | #define TRACE_SYSTEM ftrace | ||
| 18 | 20 | ||
| 19 | #undef TRACE_STRUCT | 21 | /* not needed for this file */ |
| 20 | #define TRACE_STRUCT(args...) args | 22 | #undef __field_struct |
| 23 | #define __field_struct(type, item) | ||
| 21 | 24 | ||
| 22 | extern void __bad_type_size(void); | 25 | #undef __field |
| 26 | #define __field(type, item) type item; | ||
| 23 | 27 | ||
| 24 | #undef TRACE_FIELD | 28 | #undef __field_desc |
| 25 | #define TRACE_FIELD(type, item, assign) \ | 29 | #define __field_desc(type, container, item) type item; |
| 26 | if (sizeof(type) != sizeof(field.item)) \ | 30 | |
| 27 | __bad_type_size(); \ | 31 | #undef __array |
| 32 | #define __array(type, item, size) type item[size]; | ||
| 33 | |||
| 34 | #undef __array_desc | ||
| 35 | #define __array_desc(type, container, item, size) type item[size]; | ||
| 36 | |||
| 37 | #undef __dynamic_array | ||
| 38 | #define __dynamic_array(type, item) type item[]; | ||
| 39 | |||
| 40 | #undef F_STRUCT | ||
| 41 | #define F_STRUCT(args...) args | ||
| 42 | |||
| 43 | #undef F_printk | ||
| 44 | #define F_printk(fmt, args...) fmt, args | ||
| 45 | |||
| 46 | #undef FTRACE_ENTRY | ||
| 47 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ | ||
| 48 | struct ____ftrace_##name { \ | ||
| 49 | tstruct \ | ||
| 50 | }; \ | ||
| 51 | static void __always_unused ____ftrace_check_##name(void) \ | ||
| 52 | { \ | ||
| 53 | struct ____ftrace_##name *__entry = NULL; \ | ||
| 54 | \ | ||
| 55 | /* force compile-time check on F_printk() */ \ | ||
| 56 | printk(print); \ | ||
| 57 | } | ||
| 58 | |||
| 59 | #undef FTRACE_ENTRY_DUP | ||
| 60 | #define FTRACE_ENTRY_DUP(name, struct_name, id, tstruct, print) \ | ||
| 61 | FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) | ||
| 62 | |||
| 63 | #include "trace_entries.h" | ||
| 64 | |||
| 65 | |||
| 66 | #undef __field | ||
| 67 | #define __field(type, item) \ | ||
| 28 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | 68 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
| 29 | "offset:%u;\tsize:%u;\n", \ | 69 | "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ |
| 30 | (unsigned int)offsetof(typeof(field), item), \ | 70 | offsetof(typeof(field), item), \ |
| 31 | (unsigned int)sizeof(field.item)); \ | 71 | sizeof(field.item), is_signed_type(type)); \ |
| 32 | if (!ret) \ | 72 | if (!ret) \ |
| 33 | return 0; | 73 | return 0; |
| 34 | 74 | ||
| 75 | #undef __field_desc | ||
| 76 | #define __field_desc(type, container, item) \ | ||
| 77 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | ||
| 78 | "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ | ||
| 79 | offsetof(typeof(field), container.item), \ | ||
| 80 | sizeof(field.container.item), \ | ||
| 81 | is_signed_type(type)); \ | ||
| 82 | if (!ret) \ | ||
| 83 | return 0; | ||
| 35 | 84 | ||
| 36 | #undef TRACE_FIELD_SPECIAL | 85 | #undef __array |
| 37 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | 86 | #define __array(type, item, len) \ |
| 38 | ret = trace_seq_printf(s, "\tfield special:" #type_item ";\t" \ | 87 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ |
| 39 | "offset:%u;\tsize:%u;\n", \ | 88 | "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ |
| 40 | (unsigned int)offsetof(typeof(field), item), \ | 89 | offsetof(typeof(field), item), \ |
| 41 | (unsigned int)sizeof(field.item)); \ | 90 | sizeof(field.item), is_signed_type(type)); \ |
| 42 | if (!ret) \ | 91 | if (!ret) \ |
| 43 | return 0; | 92 | return 0; |
| 44 | 93 | ||
| 45 | #undef TRACE_FIELD_ZERO_CHAR | 94 | #undef __array_desc |
| 46 | #define TRACE_FIELD_ZERO_CHAR(item) \ | 95 | #define __array_desc(type, container, item, len) \ |
| 47 | ret = trace_seq_printf(s, "\tfield:char " #item ";\t" \ | 96 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ |
| 48 | "offset:%u;\tsize:0;\n", \ | 97 | "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \ |
| 49 | (unsigned int)offsetof(typeof(field), item)); \ | 98 | offsetof(typeof(field), container.item), \ |
| 99 | sizeof(field.container.item), \ | ||
| 100 | is_signed_type(type)); \ | ||
| 50 | if (!ret) \ | 101 | if (!ret) \ |
| 51 | return 0; | 102 | return 0; |
| 52 | 103 | ||
| 53 | #undef TRACE_FIELD_SIGN | 104 | #undef __dynamic_array |
| 54 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 105 | #define __dynamic_array(type, item) \ |
| 55 | TRACE_FIELD(type, item, assign) | 106 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
| 107 | "offset:%zu;\tsize:0;\tsigned:%u;\n", \ | ||
| 108 | offsetof(typeof(field), item), \ | ||
| 109 | is_signed_type(type)); \ | ||
| 110 | if (!ret) \ | ||
| 111 | return 0; | ||
| 56 | 112 | ||
| 57 | #undef TP_RAW_FMT | 113 | #undef F_printk |
| 58 | #define TP_RAW_FMT(args...) args | 114 | #define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args) |
| 59 | 115 | ||
| 60 | #undef TRACE_EVENT_FORMAT | 116 | #undef __entry |
| 61 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 117 | #define __entry REC |
| 62 | static int \ | ||
| 63 | ftrace_format_##call(struct ftrace_event_call *unused, \ | ||
| 64 | struct trace_seq *s) \ | ||
| 65 | { \ | ||
| 66 | struct args field; \ | ||
| 67 | int ret; \ | ||
| 68 | \ | ||
| 69 | tstruct; \ | ||
| 70 | \ | ||
| 71 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | ||
| 72 | \ | ||
| 73 | return ret; \ | ||
| 74 | } | ||
| 75 | 118 | ||
| 76 | #undef TRACE_EVENT_FORMAT_NOFILTER | 119 | #undef FTRACE_ENTRY |
| 77 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | 120 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
| 78 | tpfmt) \ | ||
| 79 | static int \ | 121 | static int \ |
| 80 | ftrace_format_##call(struct ftrace_event_call *unused, \ | 122 | ftrace_format_##name(struct ftrace_event_call *unused, \ |
| 81 | struct trace_seq *s) \ | 123 | struct trace_seq *s) \ |
| 82 | { \ | 124 | { \ |
| 83 | struct args field; \ | 125 | struct struct_name field __attribute__((unused)); \ |
| 84 | int ret; \ | 126 | int ret = 0; \ |
| 85 | \ | 127 | \ |
| 86 | tstruct; \ | 128 | tstruct; \ |
| 87 | \ | 129 | \ |
| 88 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | 130 | trace_seq_printf(s, "\nprint fmt: " print); \ |
| 89 | \ | 131 | \ |
| 90 | return ret; \ | 132 | return ret; \ |
| 91 | } | 133 | } |
| 92 | 134 | ||
| 93 | #include "trace_event_types.h" | 135 | #include "trace_entries.h" |
| 94 | |||
| 95 | #undef TRACE_ZERO_CHAR | ||
| 96 | #define TRACE_ZERO_CHAR(arg) | ||
| 97 | |||
| 98 | #undef TRACE_FIELD | ||
| 99 | #define TRACE_FIELD(type, item, assign)\ | ||
| 100 | entry->item = assign; | ||
| 101 | |||
| 102 | #undef TRACE_FIELD | ||
| 103 | #define TRACE_FIELD(type, item, assign)\ | ||
| 104 | entry->item = assign; | ||
| 105 | 136 | ||
| 106 | #undef TRACE_FIELD_SIGN | 137 | #undef __field |
| 107 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 138 | #define __field(type, item) \ |
| 108 | TRACE_FIELD(type, item, assign) | ||
| 109 | |||
| 110 | #undef TP_CMD | ||
| 111 | #define TP_CMD(cmd...) cmd | ||
| 112 | |||
| 113 | #undef TRACE_ENTRY | ||
| 114 | #define TRACE_ENTRY entry | ||
| 115 | |||
| 116 | #undef TRACE_FIELD_SPECIAL | ||
| 117 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | ||
| 118 | cmd; | ||
| 119 | |||
| 120 | #undef TRACE_EVENT_FORMAT | ||
| 121 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | ||
| 122 | int ftrace_define_fields_##call(struct ftrace_event_call *event_call); \ | ||
| 123 | static int ftrace_raw_init_event_##call(void); \ | ||
| 124 | \ | ||
| 125 | struct ftrace_event_call __used \ | ||
| 126 | __attribute__((__aligned__(4))) \ | ||
| 127 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
| 128 | .name = #call, \ | ||
| 129 | .id = proto, \ | ||
| 130 | .system = __stringify(TRACE_SYSTEM), \ | ||
| 131 | .raw_init = ftrace_raw_init_event_##call, \ | ||
| 132 | .show_format = ftrace_format_##call, \ | ||
| 133 | .define_fields = ftrace_define_fields_##call, \ | ||
| 134 | }; \ | ||
| 135 | static int ftrace_raw_init_event_##call(void) \ | ||
| 136 | { \ | ||
| 137 | INIT_LIST_HEAD(&event_##call.fields); \ | ||
| 138 | return 0; \ | ||
| 139 | } \ | ||
| 140 | |||
| 141 | #undef TRACE_EVENT_FORMAT_NOFILTER | ||
| 142 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | ||
| 143 | tpfmt) \ | ||
| 144 | \ | ||
| 145 | struct ftrace_event_call __used \ | ||
| 146 | __attribute__((__aligned__(4))) \ | ||
| 147 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
| 148 | .name = #call, \ | ||
| 149 | .id = proto, \ | ||
| 150 | .system = __stringify(TRACE_SYSTEM), \ | ||
| 151 | .show_format = ftrace_format_##call, \ | ||
| 152 | }; | ||
| 153 | |||
| 154 | #include "trace_event_types.h" | ||
| 155 | |||
| 156 | #undef TRACE_FIELD | ||
| 157 | #define TRACE_FIELD(type, item, assign) \ | ||
| 158 | ret = trace_define_field(event_call, #type, #item, \ | 139 | ret = trace_define_field(event_call, #type, #item, \ |
| 159 | offsetof(typeof(field), item), \ | 140 | offsetof(typeof(field), item), \ |
| 160 | sizeof(field.item), \ | 141 | sizeof(field.item), \ |
| @@ -162,32 +143,45 @@ __attribute__((section("_ftrace_events"))) event_##call = { \ | |||
| 162 | if (ret) \ | 143 | if (ret) \ |
| 163 | return ret; | 144 | return ret; |
| 164 | 145 | ||
| 165 | #undef TRACE_FIELD_SPECIAL | 146 | #undef __field_desc |
| 166 | #define TRACE_FIELD_SPECIAL(type, item, len, cmd) \ | 147 | #define __field_desc(type, container, item) \ |
| 148 | ret = trace_define_field(event_call, #type, #item, \ | ||
| 149 | offsetof(typeof(field), \ | ||
| 150 | container.item), \ | ||
| 151 | sizeof(field.container.item), \ | ||
| 152 | is_signed_type(type), FILTER_OTHER); \ | ||
| 153 | if (ret) \ | ||
| 154 | return ret; | ||
| 155 | |||
| 156 | #undef __array | ||
| 157 | #define __array(type, item, len) \ | ||
| 158 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ | ||
| 167 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ | 159 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ |
| 168 | offsetof(typeof(field), item), \ | 160 | offsetof(typeof(field), item), \ |
| 169 | sizeof(field.item), 0, FILTER_OTHER); \ | 161 | sizeof(field.item), 0, FILTER_OTHER); \ |
| 170 | if (ret) \ | 162 | if (ret) \ |
| 171 | return ret; | 163 | return ret; |
| 172 | 164 | ||
| 173 | #undef TRACE_FIELD_SIGN | 165 | #undef __array_desc |
| 174 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 166 | #define __array_desc(type, container, item, len) \ |
| 175 | ret = trace_define_field(event_call, #type, #item, \ | 167 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ |
| 176 | offsetof(typeof(field), item), \ | 168 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ |
| 177 | sizeof(field.item), is_signed, \ | 169 | offsetof(typeof(field), \ |
| 170 | container.item), \ | ||
| 171 | sizeof(field.container.item), 0, \ | ||
| 178 | FILTER_OTHER); \ | 172 | FILTER_OTHER); \ |
| 179 | if (ret) \ | 173 | if (ret) \ |
| 180 | return ret; | 174 | return ret; |
| 181 | 175 | ||
| 182 | #undef TRACE_FIELD_ZERO_CHAR | 176 | #undef __dynamic_array |
| 183 | #define TRACE_FIELD_ZERO_CHAR(item) | 177 | #define __dynamic_array(type, item) |
| 184 | 178 | ||
| 185 | #undef TRACE_EVENT_FORMAT | 179 | #undef FTRACE_ENTRY |
| 186 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 180 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
| 187 | int \ | 181 | int \ |
| 188 | ftrace_define_fields_##call(struct ftrace_event_call *event_call) \ | 182 | ftrace_define_fields_##name(struct ftrace_event_call *event_call) \ |
| 189 | { \ | 183 | { \ |
| 190 | struct args field; \ | 184 | struct struct_name field; \ |
| 191 | int ret; \ | 185 | int ret; \ |
| 192 | \ | 186 | \ |
| 193 | ret = trace_define_common_fields(event_call); \ | 187 | ret = trace_define_common_fields(event_call); \ |
| @@ -199,8 +193,41 @@ ftrace_define_fields_##call(struct ftrace_event_call *event_call) \ | |||
| 199 | return ret; \ | 193 | return ret; \ |
| 200 | } | 194 | } |
| 201 | 195 | ||
| 202 | #undef TRACE_EVENT_FORMAT_NOFILTER | 196 | #include "trace_entries.h" |
| 203 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | 197 | |
| 204 | tpfmt) | 198 | static int ftrace_raw_init_event(struct ftrace_event_call *call) |
| 199 | { | ||
| 200 | INIT_LIST_HEAD(&call->fields); | ||
| 201 | return 0; | ||
| 202 | } | ||
| 203 | |||
| 204 | #undef __field | ||
| 205 | #define __field(type, item) | ||
| 206 | |||
| 207 | #undef __field_desc | ||
| 208 | #define __field_desc(type, container, item) | ||
| 209 | |||
| 210 | #undef __array | ||
| 211 | #define __array(type, item, len) | ||
| 212 | |||
| 213 | #undef __array_desc | ||
| 214 | #define __array_desc(type, container, item, len) | ||
| 215 | |||
| 216 | #undef __dynamic_array | ||
| 217 | #define __dynamic_array(type, item) | ||
| 218 | |||
| 219 | #undef FTRACE_ENTRY | ||
| 220 | #define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ | ||
| 221 | \ | ||
| 222 | struct ftrace_event_call __used \ | ||
| 223 | __attribute__((__aligned__(4))) \ | ||
| 224 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
| 225 | .name = #call, \ | ||
| 226 | .id = type, \ | ||
| 227 | .system = __stringify(TRACE_SYSTEM), \ | ||
| 228 | .raw_init = ftrace_raw_init_event, \ | ||
| 229 | .show_format = ftrace_format_##call, \ | ||
| 230 | .define_fields = ftrace_define_fields_##call, \ | ||
| 231 | }; \ | ||
| 205 | 232 | ||
| 206 | #include "trace_event_types.h" | 233 | #include "trace_entries.h" |
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c index 5b01b94518fc..b3f3776b0cd6 100644 --- a/kernel/trace/trace_functions.c +++ b/kernel/trace/trace_functions.c | |||
| @@ -290,7 +290,7 @@ ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip, | |||
| 290 | { | 290 | { |
| 291 | long count = (long)data; | 291 | long count = (long)data; |
| 292 | 292 | ||
| 293 | seq_printf(m, "%pf:", (void *)ip); | 293 | seq_printf(m, "%ps:", (void *)ip); |
| 294 | 294 | ||
| 295 | if (ops == &traceon_probe_ops) | 295 | if (ops == &traceon_probe_ops) |
| 296 | seq_printf(m, "traceon"); | 296 | seq_printf(m, "traceon"); |
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index b3749a2c3132..45e6c01b2e4d 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c | |||
| @@ -124,7 +124,7 @@ ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret, | |||
| 124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { | 124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { |
| 125 | ftrace_graph_stop(); | 125 | ftrace_graph_stop(); |
| 126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" | 126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" |
| 127 | " from func %pF return to %lx\n", | 127 | " from func %ps return to %lx\n", |
| 128 | current->ret_stack[index].fp, | 128 | current->ret_stack[index].fp, |
| 129 | frame_pointer, | 129 | frame_pointer, |
| 130 | (void *)current->ret_stack[index].func, | 130 | (void *)current->ret_stack[index].func, |
| @@ -364,6 +364,15 @@ print_graph_proc(struct trace_seq *s, pid_t pid) | |||
| 364 | } | 364 | } |
| 365 | 365 | ||
| 366 | 366 | ||
| 367 | static enum print_line_t | ||
| 368 | print_graph_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
| 369 | { | ||
| 370 | if (!trace_seq_putc(s, ' ')) | ||
| 371 | return 0; | ||
| 372 | |||
| 373 | return trace_print_lat_fmt(s, entry); | ||
| 374 | } | ||
| 375 | |||
| 367 | /* If the pid changed since the last trace, output this event */ | 376 | /* If the pid changed since the last trace, output this event */ |
| 368 | static enum print_line_t | 377 | static enum print_line_t |
| 369 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) | 378 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) |
| @@ -521,6 +530,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
| 521 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 530 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
| 522 | return TRACE_TYPE_PARTIAL_LINE; | 531 | return TRACE_TYPE_PARTIAL_LINE; |
| 523 | } | 532 | } |
| 533 | |||
| 524 | /* Proc */ | 534 | /* Proc */ |
| 525 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { | 535 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { |
| 526 | ret = print_graph_proc(s, pid); | 536 | ret = print_graph_proc(s, pid); |
| @@ -659,7 +669,7 @@ print_graph_entry_leaf(struct trace_iterator *iter, | |||
| 659 | return TRACE_TYPE_PARTIAL_LINE; | 669 | return TRACE_TYPE_PARTIAL_LINE; |
| 660 | } | 670 | } |
| 661 | 671 | ||
| 662 | ret = trace_seq_printf(s, "%pf();\n", (void *)call->func); | 672 | ret = trace_seq_printf(s, "%ps();\n", (void *)call->func); |
| 663 | if (!ret) | 673 | if (!ret) |
| 664 | return TRACE_TYPE_PARTIAL_LINE; | 674 | return TRACE_TYPE_PARTIAL_LINE; |
| 665 | 675 | ||
| @@ -702,7 +712,7 @@ print_graph_entry_nested(struct trace_iterator *iter, | |||
| 702 | return TRACE_TYPE_PARTIAL_LINE; | 712 | return TRACE_TYPE_PARTIAL_LINE; |
| 703 | } | 713 | } |
| 704 | 714 | ||
| 705 | ret = trace_seq_printf(s, "%pf() {\n", (void *)call->func); | 715 | ret = trace_seq_printf(s, "%ps() {\n", (void *)call->func); |
| 706 | if (!ret) | 716 | if (!ret) |
| 707 | return TRACE_TYPE_PARTIAL_LINE; | 717 | return TRACE_TYPE_PARTIAL_LINE; |
| 708 | 718 | ||
| @@ -758,6 +768,13 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | |||
| 758 | return TRACE_TYPE_PARTIAL_LINE; | 768 | return TRACE_TYPE_PARTIAL_LINE; |
| 759 | } | 769 | } |
| 760 | 770 | ||
| 771 | /* Latency format */ | ||
| 772 | if (trace_flags & TRACE_ITER_LATENCY_FMT) { | ||
| 773 | ret = print_graph_lat_fmt(s, ent); | ||
| 774 | if (ret == TRACE_TYPE_PARTIAL_LINE) | ||
| 775 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 776 | } | ||
| 777 | |||
| 761 | return 0; | 778 | return 0; |
| 762 | } | 779 | } |
| 763 | 780 | ||
| @@ -952,28 +969,59 @@ print_graph_function(struct trace_iterator *iter) | |||
| 952 | return TRACE_TYPE_HANDLED; | 969 | return TRACE_TYPE_HANDLED; |
| 953 | } | 970 | } |
| 954 | 971 | ||
| 972 | static void print_lat_header(struct seq_file *s) | ||
| 973 | { | ||
| 974 | static const char spaces[] = " " /* 16 spaces */ | ||
| 975 | " " /* 4 spaces */ | ||
| 976 | " "; /* 17 spaces */ | ||
| 977 | int size = 0; | ||
| 978 | |||
| 979 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | ||
| 980 | size += 16; | ||
| 981 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | ||
| 982 | size += 4; | ||
| 983 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | ||
| 984 | size += 17; | ||
| 985 | |||
| 986 | seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); | ||
| 987 | seq_printf(s, "#%.*s / _----=> need-resched \n", size, spaces); | ||
| 988 | seq_printf(s, "#%.*s| / _---=> hardirq/softirq \n", size, spaces); | ||
| 989 | seq_printf(s, "#%.*s|| / _--=> preempt-depth \n", size, spaces); | ||
| 990 | seq_printf(s, "#%.*s||| / _-=> lock-depth \n", size, spaces); | ||
| 991 | seq_printf(s, "#%.*s|||| / \n", size, spaces); | ||
| 992 | } | ||
| 993 | |||
| 955 | static void print_graph_headers(struct seq_file *s) | 994 | static void print_graph_headers(struct seq_file *s) |
| 956 | { | 995 | { |
| 996 | int lat = trace_flags & TRACE_ITER_LATENCY_FMT; | ||
| 997 | |||
| 998 | if (lat) | ||
| 999 | print_lat_header(s); | ||
| 1000 | |||
| 957 | /* 1st line */ | 1001 | /* 1st line */ |
| 958 | seq_printf(s, "# "); | 1002 | seq_printf(s, "#"); |
| 959 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1003 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
| 960 | seq_printf(s, " TIME "); | 1004 | seq_printf(s, " TIME "); |
| 961 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1005 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
| 962 | seq_printf(s, "CPU"); | 1006 | seq_printf(s, " CPU"); |
| 963 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1007 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
| 964 | seq_printf(s, " TASK/PID "); | 1008 | seq_printf(s, " TASK/PID "); |
| 1009 | if (lat) | ||
| 1010 | seq_printf(s, "|||||"); | ||
| 965 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1011 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
| 966 | seq_printf(s, " DURATION "); | 1012 | seq_printf(s, " DURATION "); |
| 967 | seq_printf(s, " FUNCTION CALLS\n"); | 1013 | seq_printf(s, " FUNCTION CALLS\n"); |
| 968 | 1014 | ||
| 969 | /* 2nd line */ | 1015 | /* 2nd line */ |
| 970 | seq_printf(s, "# "); | 1016 | seq_printf(s, "#"); |
| 971 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1017 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
| 972 | seq_printf(s, " | "); | 1018 | seq_printf(s, " | "); |
| 973 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1019 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
| 974 | seq_printf(s, "| "); | 1020 | seq_printf(s, " | "); |
| 975 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1021 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
| 976 | seq_printf(s, " | | "); | 1022 | seq_printf(s, " | | "); |
| 1023 | if (lat) | ||
| 1024 | seq_printf(s, "|||||"); | ||
| 977 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1025 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
| 978 | seq_printf(s, " | | "); | 1026 | seq_printf(s, " | | "); |
| 979 | seq_printf(s, " | | | |\n"); | 1027 | seq_printf(s, " | | | |\n"); |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..69543a905cd5 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
| @@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
| 155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
| 156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
| 157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
| 158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
| 159 | } | 159 | } |
| 160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
| 161 | } | 161 | } |
| @@ -165,6 +165,7 @@ void trace_hw_branch(u64 from, u64 to) | |||
| 165 | struct ftrace_event_call *call = &event_hw_branch; | 165 | struct ftrace_event_call *call = &event_hw_branch; |
| 166 | struct trace_array *tr = hw_branch_trace; | 166 | struct trace_array *tr = hw_branch_trace; |
| 167 | struct ring_buffer_event *event; | 167 | struct ring_buffer_event *event; |
| 168 | struct ring_buffer *buf; | ||
| 168 | struct hw_branch_entry *entry; | 169 | struct hw_branch_entry *entry; |
| 169 | unsigned long irq1; | 170 | unsigned long irq1; |
| 170 | int cpu; | 171 | int cpu; |
| @@ -180,7 +181,8 @@ void trace_hw_branch(u64 from, u64 to) | |||
| 180 | if (atomic_inc_return(&tr->data[cpu]->disabled) != 1) | 181 | if (atomic_inc_return(&tr->data[cpu]->disabled) != 1) |
| 181 | goto out; | 182 | goto out; |
| 182 | 183 | ||
| 183 | event = trace_buffer_lock_reserve(tr, TRACE_HW_BRANCHES, | 184 | buf = tr->buffer; |
| 185 | event = trace_buffer_lock_reserve(buf, TRACE_HW_BRANCHES, | ||
| 184 | sizeof(*entry), 0, 0); | 186 | sizeof(*entry), 0, 0); |
| 185 | if (!event) | 187 | if (!event) |
| 186 | goto out; | 188 | goto out; |
| @@ -189,8 +191,8 @@ void trace_hw_branch(u64 from, u64 to) | |||
| 189 | entry->ent.type = TRACE_HW_BRANCHES; | 191 | entry->ent.type = TRACE_HW_BRANCHES; |
| 190 | entry->from = from; | 192 | entry->from = from; |
| 191 | entry->to = to; | 193 | entry->to = to; |
| 192 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 194 | if (!filter_check_discard(call, entry, buf, event)) |
| 193 | trace_buffer_unlock_commit(tr, event, 0, 0); | 195 | trace_buffer_unlock_commit(buf, event, 0, 0); |
| 194 | 196 | ||
| 195 | out: | 197 | out: |
| 196 | atomic_dec(&tr->data[cpu]->disabled); | 198 | atomic_dec(&tr->data[cpu]->disabled); |
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c index 5555b75a0d12..3aa7eaa2114c 100644 --- a/kernel/trace/trace_irqsoff.c +++ b/kernel/trace/trace_irqsoff.c | |||
| @@ -129,15 +129,10 @@ check_critical_timing(struct trace_array *tr, | |||
| 129 | unsigned long parent_ip, | 129 | unsigned long parent_ip, |
| 130 | int cpu) | 130 | int cpu) |
| 131 | { | 131 | { |
| 132 | unsigned long latency, t0, t1; | ||
| 133 | cycle_t T0, T1, delta; | 132 | cycle_t T0, T1, delta; |
| 134 | unsigned long flags; | 133 | unsigned long flags; |
| 135 | int pc; | 134 | int pc; |
| 136 | 135 | ||
| 137 | /* | ||
| 138 | * usecs conversion is slow so we try to delay the conversion | ||
| 139 | * as long as possible: | ||
| 140 | */ | ||
| 141 | T0 = data->preempt_timestamp; | 136 | T0 = data->preempt_timestamp; |
| 142 | T1 = ftrace_now(cpu); | 137 | T1 = ftrace_now(cpu); |
| 143 | delta = T1-T0; | 138 | delta = T1-T0; |
| @@ -157,18 +152,15 @@ check_critical_timing(struct trace_array *tr, | |||
| 157 | 152 | ||
| 158 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 153 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
| 159 | 154 | ||
| 160 | latency = nsecs_to_usecs(delta); | ||
| 161 | |||
| 162 | if (data->critical_sequence != max_sequence) | 155 | if (data->critical_sequence != max_sequence) |
| 163 | goto out_unlock; | 156 | goto out_unlock; |
| 164 | 157 | ||
| 165 | tracing_max_latency = delta; | ||
| 166 | t0 = nsecs_to_usecs(T0); | ||
| 167 | t1 = nsecs_to_usecs(T1); | ||
| 168 | |||
| 169 | data->critical_end = parent_ip; | 158 | data->critical_end = parent_ip; |
| 170 | 159 | ||
| 171 | update_max_tr_single(tr, current, cpu); | 160 | if (likely(!is_tracing_stopped())) { |
| 161 | tracing_max_latency = delta; | ||
| 162 | update_max_tr_single(tr, current, cpu); | ||
| 163 | } | ||
| 172 | 164 | ||
| 173 | max_sequence++; | 165 | max_sequence++; |
| 174 | 166 | ||
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c new file mode 100644 index 000000000000..aff5f80b59b8 --- /dev/null +++ b/kernel/trace/trace_kprobe.c | |||
| @@ -0,0 +1,1523 @@ | |||
| 1 | /* | ||
| 2 | * Kprobes-based tracing events | ||
| 3 | * | ||
| 4 | * Created by Masami Hiramatsu <mhiramat@redhat.com> | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify | ||
| 7 | * it under the terms of the GNU General Public License version 2 as | ||
| 8 | * published by the Free Software Foundation. | ||
| 9 | * | ||
| 10 | * This program is distributed in the hope that it will be useful, | ||
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 13 | * GNU General Public License for more details. | ||
| 14 | * | ||
| 15 | * You should have received a copy of the GNU General Public License | ||
| 16 | * along with this program; if not, write to the Free Software | ||
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/module.h> | ||
| 21 | #include <linux/uaccess.h> | ||
| 22 | #include <linux/kprobes.h> | ||
| 23 | #include <linux/seq_file.h> | ||
| 24 | #include <linux/slab.h> | ||
| 25 | #include <linux/smp.h> | ||
| 26 | #include <linux/debugfs.h> | ||
| 27 | #include <linux/types.h> | ||
| 28 | #include <linux/string.h> | ||
| 29 | #include <linux/ctype.h> | ||
| 30 | #include <linux/ptrace.h> | ||
| 31 | #include <linux/perf_event.h> | ||
| 32 | |||
| 33 | #include "trace.h" | ||
| 34 | #include "trace_output.h" | ||
| 35 | |||
| 36 | #define MAX_TRACE_ARGS 128 | ||
| 37 | #define MAX_ARGSTR_LEN 63 | ||
| 38 | #define MAX_EVENT_NAME_LEN 64 | ||
| 39 | #define KPROBE_EVENT_SYSTEM "kprobes" | ||
| 40 | |||
| 41 | /* Reserved field names */ | ||
| 42 | #define FIELD_STRING_IP "__probe_ip" | ||
| 43 | #define FIELD_STRING_NARGS "__probe_nargs" | ||
| 44 | #define FIELD_STRING_RETIP "__probe_ret_ip" | ||
| 45 | #define FIELD_STRING_FUNC "__probe_func" | ||
| 46 | |||
| 47 | const char *reserved_field_names[] = { | ||
| 48 | "common_type", | ||
| 49 | "common_flags", | ||
| 50 | "common_preempt_count", | ||
| 51 | "common_pid", | ||
| 52 | "common_tgid", | ||
| 53 | "common_lock_depth", | ||
| 54 | FIELD_STRING_IP, | ||
| 55 | FIELD_STRING_NARGS, | ||
| 56 | FIELD_STRING_RETIP, | ||
| 57 | FIELD_STRING_FUNC, | ||
| 58 | }; | ||
| 59 | |||
| 60 | struct fetch_func { | ||
| 61 | unsigned long (*func)(struct pt_regs *, void *); | ||
| 62 | void *data; | ||
| 63 | }; | ||
| 64 | |||
| 65 | static __kprobes unsigned long call_fetch(struct fetch_func *f, | ||
| 66 | struct pt_regs *regs) | ||
| 67 | { | ||
| 68 | return f->func(regs, f->data); | ||
| 69 | } | ||
| 70 | |||
| 71 | /* fetch handlers */ | ||
| 72 | static __kprobes unsigned long fetch_register(struct pt_regs *regs, | ||
| 73 | void *offset) | ||
| 74 | { | ||
| 75 | return regs_get_register(regs, (unsigned int)((unsigned long)offset)); | ||
| 76 | } | ||
| 77 | |||
| 78 | static __kprobes unsigned long fetch_stack(struct pt_regs *regs, | ||
| 79 | void *num) | ||
| 80 | { | ||
| 81 | return regs_get_kernel_stack_nth(regs, | ||
| 82 | (unsigned int)((unsigned long)num)); | ||
| 83 | } | ||
| 84 | |||
| 85 | static __kprobes unsigned long fetch_memory(struct pt_regs *regs, void *addr) | ||
| 86 | { | ||
| 87 | unsigned long retval; | ||
| 88 | |||
| 89 | if (probe_kernel_address(addr, retval)) | ||
| 90 | return 0; | ||
| 91 | return retval; | ||
| 92 | } | ||
| 93 | |||
| 94 | static __kprobes unsigned long fetch_argument(struct pt_regs *regs, void *num) | ||
| 95 | { | ||
| 96 | return regs_get_argument_nth(regs, (unsigned int)((unsigned long)num)); | ||
| 97 | } | ||
| 98 | |||
| 99 | static __kprobes unsigned long fetch_retvalue(struct pt_regs *regs, | ||
| 100 | void *dummy) | ||
| 101 | { | ||
| 102 | return regs_return_value(regs); | ||
| 103 | } | ||
| 104 | |||
| 105 | static __kprobes unsigned long fetch_stack_address(struct pt_regs *regs, | ||
| 106 | void *dummy) | ||
| 107 | { | ||
| 108 | return kernel_stack_pointer(regs); | ||
| 109 | } | ||
| 110 | |||
| 111 | /* Memory fetching by symbol */ | ||
| 112 | struct symbol_cache { | ||
| 113 | char *symbol; | ||
| 114 | long offset; | ||
| 115 | unsigned long addr; | ||
| 116 | }; | ||
| 117 | |||
| 118 | static unsigned long update_symbol_cache(struct symbol_cache *sc) | ||
| 119 | { | ||
| 120 | sc->addr = (unsigned long)kallsyms_lookup_name(sc->symbol); | ||
| 121 | if (sc->addr) | ||
| 122 | sc->addr += sc->offset; | ||
| 123 | return sc->addr; | ||
| 124 | } | ||
| 125 | |||
| 126 | static void free_symbol_cache(struct symbol_cache *sc) | ||
| 127 | { | ||
| 128 | kfree(sc->symbol); | ||
| 129 | kfree(sc); | ||
| 130 | } | ||
| 131 | |||
| 132 | static struct symbol_cache *alloc_symbol_cache(const char *sym, long offset) | ||
| 133 | { | ||
| 134 | struct symbol_cache *sc; | ||
| 135 | |||
| 136 | if (!sym || strlen(sym) == 0) | ||
| 137 | return NULL; | ||
| 138 | sc = kzalloc(sizeof(struct symbol_cache), GFP_KERNEL); | ||
| 139 | if (!sc) | ||
| 140 | return NULL; | ||
| 141 | |||
| 142 | sc->symbol = kstrdup(sym, GFP_KERNEL); | ||
| 143 | if (!sc->symbol) { | ||
| 144 | kfree(sc); | ||
| 145 | return NULL; | ||
| 146 | } | ||
| 147 | sc->offset = offset; | ||
| 148 | |||
| 149 | update_symbol_cache(sc); | ||
| 150 | return sc; | ||
| 151 | } | ||
| 152 | |||
| 153 | static __kprobes unsigned long fetch_symbol(struct pt_regs *regs, void *data) | ||
| 154 | { | ||
| 155 | struct symbol_cache *sc = data; | ||
| 156 | |||
| 157 | if (sc->addr) | ||
| 158 | return fetch_memory(regs, (void *)sc->addr); | ||
| 159 | else | ||
| 160 | return 0; | ||
| 161 | } | ||
| 162 | |||
| 163 | /* Special indirect memory access interface */ | ||
| 164 | struct indirect_fetch_data { | ||
| 165 | struct fetch_func orig; | ||
| 166 | long offset; | ||
| 167 | }; | ||
| 168 | |||
| 169 | static __kprobes unsigned long fetch_indirect(struct pt_regs *regs, void *data) | ||
| 170 | { | ||
| 171 | struct indirect_fetch_data *ind = data; | ||
| 172 | unsigned long addr; | ||
| 173 | |||
| 174 | addr = call_fetch(&ind->orig, regs); | ||
| 175 | if (addr) { | ||
| 176 | addr += ind->offset; | ||
| 177 | return fetch_memory(regs, (void *)addr); | ||
| 178 | } else | ||
| 179 | return 0; | ||
| 180 | } | ||
| 181 | |||
| 182 | static __kprobes void free_indirect_fetch_data(struct indirect_fetch_data *data) | ||
| 183 | { | ||
| 184 | if (data->orig.func == fetch_indirect) | ||
| 185 | free_indirect_fetch_data(data->orig.data); | ||
| 186 | else if (data->orig.func == fetch_symbol) | ||
| 187 | free_symbol_cache(data->orig.data); | ||
| 188 | kfree(data); | ||
| 189 | } | ||
| 190 | |||
| 191 | /** | ||
| 192 | * Kprobe event core functions | ||
| 193 | */ | ||
| 194 | |||
| 195 | struct probe_arg { | ||
| 196 | struct fetch_func fetch; | ||
| 197 | const char *name; | ||
| 198 | }; | ||
| 199 | |||
| 200 | /* Flags for trace_probe */ | ||
| 201 | #define TP_FLAG_TRACE 1 | ||
| 202 | #define TP_FLAG_PROFILE 2 | ||
| 203 | |||
| 204 | struct trace_probe { | ||
| 205 | struct list_head list; | ||
| 206 | struct kretprobe rp; /* Use rp.kp for kprobe use */ | ||
| 207 | unsigned long nhit; | ||
| 208 | unsigned int flags; /* For TP_FLAG_* */ | ||
| 209 | const char *symbol; /* symbol name */ | ||
| 210 | struct ftrace_event_call call; | ||
| 211 | struct trace_event event; | ||
| 212 | unsigned int nr_args; | ||
| 213 | struct probe_arg args[]; | ||
| 214 | }; | ||
| 215 | |||
| 216 | #define SIZEOF_TRACE_PROBE(n) \ | ||
| 217 | (offsetof(struct trace_probe, args) + \ | ||
| 218 | (sizeof(struct probe_arg) * (n))) | ||
| 219 | |||
| 220 | static __kprobes int probe_is_return(struct trace_probe *tp) | ||
| 221 | { | ||
| 222 | return tp->rp.handler != NULL; | ||
| 223 | } | ||
| 224 | |||
| 225 | static __kprobes const char *probe_symbol(struct trace_probe *tp) | ||
| 226 | { | ||
| 227 | return tp->symbol ? tp->symbol : "unknown"; | ||
| 228 | } | ||
| 229 | |||
| 230 | static int probe_arg_string(char *buf, size_t n, struct fetch_func *ff) | ||
| 231 | { | ||
| 232 | int ret = -EINVAL; | ||
| 233 | |||
| 234 | if (ff->func == fetch_argument) | ||
| 235 | ret = snprintf(buf, n, "$arg%lu", (unsigned long)ff->data); | ||
| 236 | else if (ff->func == fetch_register) { | ||
| 237 | const char *name; | ||
| 238 | name = regs_query_register_name((unsigned int)((long)ff->data)); | ||
| 239 | ret = snprintf(buf, n, "%%%s", name); | ||
| 240 | } else if (ff->func == fetch_stack) | ||
| 241 | ret = snprintf(buf, n, "$stack%lu", (unsigned long)ff->data); | ||
| 242 | else if (ff->func == fetch_memory) | ||
| 243 | ret = snprintf(buf, n, "@0x%p", ff->data); | ||
| 244 | else if (ff->func == fetch_symbol) { | ||
| 245 | struct symbol_cache *sc = ff->data; | ||
| 246 | if (sc->offset) | ||
| 247 | ret = snprintf(buf, n, "@%s%+ld", sc->symbol, | ||
| 248 | sc->offset); | ||
| 249 | else | ||
| 250 | ret = snprintf(buf, n, "@%s", sc->symbol); | ||
| 251 | } else if (ff->func == fetch_retvalue) | ||
| 252 | ret = snprintf(buf, n, "$retval"); | ||
| 253 | else if (ff->func == fetch_stack_address) | ||
| 254 | ret = snprintf(buf, n, "$stack"); | ||
| 255 | else if (ff->func == fetch_indirect) { | ||
| 256 | struct indirect_fetch_data *id = ff->data; | ||
| 257 | size_t l = 0; | ||
| 258 | ret = snprintf(buf, n, "%+ld(", id->offset); | ||
| 259 | if (ret >= n) | ||
| 260 | goto end; | ||
| 261 | l += ret; | ||
| 262 | ret = probe_arg_string(buf + l, n - l, &id->orig); | ||
| 263 | if (ret < 0) | ||
| 264 | goto end; | ||
| 265 | l += ret; | ||
| 266 | ret = snprintf(buf + l, n - l, ")"); | ||
| 267 | ret += l; | ||
| 268 | } | ||
| 269 | end: | ||
| 270 | if (ret >= n) | ||
| 271 | return -ENOSPC; | ||
| 272 | return ret; | ||
| 273 | } | ||
| 274 | |||
| 275 | static int register_probe_event(struct trace_probe *tp); | ||
| 276 | static void unregister_probe_event(struct trace_probe *tp); | ||
| 277 | |||
| 278 | static DEFINE_MUTEX(probe_lock); | ||
| 279 | static LIST_HEAD(probe_list); | ||
| 280 | |||
| 281 | static int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs); | ||
| 282 | static int kretprobe_dispatcher(struct kretprobe_instance *ri, | ||
| 283 | struct pt_regs *regs); | ||
| 284 | |||
| 285 | /* | ||
| 286 | * Allocate new trace_probe and initialize it (including kprobes). | ||
| 287 | */ | ||
| 288 | static struct trace_probe *alloc_trace_probe(const char *group, | ||
| 289 | const char *event, | ||
| 290 | void *addr, | ||
| 291 | const char *symbol, | ||
| 292 | unsigned long offs, | ||
| 293 | int nargs, int is_return) | ||
| 294 | { | ||
| 295 | struct trace_probe *tp; | ||
| 296 | |||
| 297 | tp = kzalloc(SIZEOF_TRACE_PROBE(nargs), GFP_KERNEL); | ||
| 298 | if (!tp) | ||
| 299 | return ERR_PTR(-ENOMEM); | ||
| 300 | |||
| 301 | if (symbol) { | ||
| 302 | tp->symbol = kstrdup(symbol, GFP_KERNEL); | ||
| 303 | if (!tp->symbol) | ||
| 304 | goto error; | ||
| 305 | tp->rp.kp.symbol_name = tp->symbol; | ||
| 306 | tp->rp.kp.offset = offs; | ||
| 307 | } else | ||
| 308 | tp->rp.kp.addr = addr; | ||
| 309 | |||
| 310 | if (is_return) | ||
| 311 | tp->rp.handler = kretprobe_dispatcher; | ||
| 312 | else | ||
| 313 | tp->rp.kp.pre_handler = kprobe_dispatcher; | ||
| 314 | |||
| 315 | if (!event) | ||
| 316 | goto error; | ||
| 317 | tp->call.name = kstrdup(event, GFP_KERNEL); | ||
| 318 | if (!tp->call.name) | ||
| 319 | goto error; | ||
| 320 | |||
| 321 | if (!group) | ||
| 322 | goto error; | ||
| 323 | tp->call.system = kstrdup(group, GFP_KERNEL); | ||
| 324 | if (!tp->call.system) | ||
| 325 | goto error; | ||
| 326 | |||
| 327 | INIT_LIST_HEAD(&tp->list); | ||
| 328 | return tp; | ||
| 329 | error: | ||
| 330 | kfree(tp->call.name); | ||
| 331 | kfree(tp->symbol); | ||
| 332 | kfree(tp); | ||
| 333 | return ERR_PTR(-ENOMEM); | ||
| 334 | } | ||
| 335 | |||
| 336 | static void free_probe_arg(struct probe_arg *arg) | ||
| 337 | { | ||
| 338 | if (arg->fetch.func == fetch_symbol) | ||
| 339 | free_symbol_cache(arg->fetch.data); | ||
| 340 | else if (arg->fetch.func == fetch_indirect) | ||
| 341 | free_indirect_fetch_data(arg->fetch.data); | ||
| 342 | kfree(arg->name); | ||
| 343 | } | ||
| 344 | |||
| 345 | static void free_trace_probe(struct trace_probe *tp) | ||
| 346 | { | ||
| 347 | int i; | ||
| 348 | |||
| 349 | for (i = 0; i < tp->nr_args; i++) | ||
| 350 | free_probe_arg(&tp->args[i]); | ||
| 351 | |||
| 352 | kfree(tp->call.system); | ||
| 353 | kfree(tp->call.name); | ||
| 354 | kfree(tp->symbol); | ||
| 355 | kfree(tp); | ||
| 356 | } | ||
| 357 | |||
| 358 | static struct trace_probe *find_probe_event(const char *event, | ||
| 359 | const char *group) | ||
| 360 | { | ||
| 361 | struct trace_probe *tp; | ||
| 362 | |||
| 363 | list_for_each_entry(tp, &probe_list, list) | ||
| 364 | if (strcmp(tp->call.name, event) == 0 && | ||
| 365 | strcmp(tp->call.system, group) == 0) | ||
| 366 | return tp; | ||
| 367 | return NULL; | ||
| 368 | } | ||
| 369 | |||
| 370 | /* Unregister a trace_probe and probe_event: call with locking probe_lock */ | ||
| 371 | static void unregister_trace_probe(struct trace_probe *tp) | ||
| 372 | { | ||
| 373 | if (probe_is_return(tp)) | ||
| 374 | unregister_kretprobe(&tp->rp); | ||
| 375 | else | ||
| 376 | unregister_kprobe(&tp->rp.kp); | ||
| 377 | list_del(&tp->list); | ||
| 378 | unregister_probe_event(tp); | ||
| 379 | } | ||
| 380 | |||
| 381 | /* Register a trace_probe and probe_event */ | ||
| 382 | static int register_trace_probe(struct trace_probe *tp) | ||
| 383 | { | ||
| 384 | struct trace_probe *old_tp; | ||
| 385 | int ret; | ||
| 386 | |||
| 387 | mutex_lock(&probe_lock); | ||
| 388 | |||
| 389 | /* register as an event */ | ||
| 390 | old_tp = find_probe_event(tp->call.name, tp->call.system); | ||
| 391 | if (old_tp) { | ||
| 392 | /* delete old event */ | ||
| 393 | unregister_trace_probe(old_tp); | ||
| 394 | free_trace_probe(old_tp); | ||
| 395 | } | ||
| 396 | ret = register_probe_event(tp); | ||
| 397 | if (ret) { | ||
| 398 | pr_warning("Faild to register probe event(%d)\n", ret); | ||
| 399 | goto end; | ||
| 400 | } | ||
| 401 | |||
| 402 | tp->rp.kp.flags |= KPROBE_FLAG_DISABLED; | ||
| 403 | if (probe_is_return(tp)) | ||
| 404 | ret = register_kretprobe(&tp->rp); | ||
| 405 | else | ||
| 406 | ret = register_kprobe(&tp->rp.kp); | ||
| 407 | |||
| 408 | if (ret) { | ||
| 409 | pr_warning("Could not insert probe(%d)\n", ret); | ||
| 410 | if (ret == -EILSEQ) { | ||
| 411 | pr_warning("Probing address(0x%p) is not an " | ||
| 412 | "instruction boundary.\n", | ||
| 413 | tp->rp.kp.addr); | ||
| 414 | ret = -EINVAL; | ||
| 415 | } | ||
| 416 | unregister_probe_event(tp); | ||
| 417 | } else | ||
| 418 | list_add_tail(&tp->list, &probe_list); | ||
| 419 | end: | ||
| 420 | mutex_unlock(&probe_lock); | ||
| 421 | return ret; | ||
| 422 | } | ||
| 423 | |||
| 424 | /* Split symbol and offset. */ | ||
| 425 | static int split_symbol_offset(char *symbol, unsigned long *offset) | ||
| 426 | { | ||
| 427 | char *tmp; | ||
| 428 | int ret; | ||
| 429 | |||
| 430 | if (!offset) | ||
| 431 | return -EINVAL; | ||
| 432 | |||
| 433 | tmp = strchr(symbol, '+'); | ||
| 434 | if (tmp) { | ||
| 435 | /* skip sign because strict_strtol doesn't accept '+' */ | ||
| 436 | ret = strict_strtoul(tmp + 1, 0, offset); | ||
| 437 | if (ret) | ||
| 438 | return ret; | ||
| 439 | *tmp = '\0'; | ||
| 440 | } else | ||
| 441 | *offset = 0; | ||
| 442 | return 0; | ||
| 443 | } | ||
| 444 | |||
| 445 | #define PARAM_MAX_ARGS 16 | ||
| 446 | #define PARAM_MAX_STACK (THREAD_SIZE / sizeof(unsigned long)) | ||
| 447 | |||
| 448 | static int parse_probe_vars(char *arg, struct fetch_func *ff, int is_return) | ||
| 449 | { | ||
| 450 | int ret = 0; | ||
| 451 | unsigned long param; | ||
| 452 | |||
| 453 | if (strcmp(arg, "retval") == 0) { | ||
| 454 | if (is_return) { | ||
| 455 | ff->func = fetch_retvalue; | ||
| 456 | ff->data = NULL; | ||
| 457 | } else | ||
| 458 | ret = -EINVAL; | ||
| 459 | } else if (strncmp(arg, "stack", 5) == 0) { | ||
| 460 | if (arg[5] == '\0') { | ||
| 461 | ff->func = fetch_stack_address; | ||
| 462 | ff->data = NULL; | ||
| 463 | } else if (isdigit(arg[5])) { | ||
| 464 | ret = strict_strtoul(arg + 5, 10, ¶m); | ||
| 465 | if (ret || param > PARAM_MAX_STACK) | ||
| 466 | ret = -EINVAL; | ||
| 467 | else { | ||
| 468 | ff->func = fetch_stack; | ||
| 469 | ff->data = (void *)param; | ||
| 470 | } | ||
| 471 | } else | ||
| 472 | ret = -EINVAL; | ||
| 473 | } else if (strncmp(arg, "arg", 3) == 0 && isdigit(arg[3])) { | ||
| 474 | ret = strict_strtoul(arg + 3, 10, ¶m); | ||
| 475 | if (ret || param > PARAM_MAX_ARGS) | ||
| 476 | ret = -EINVAL; | ||
| 477 | else { | ||
| 478 | ff->func = fetch_argument; | ||
| 479 | ff->data = (void *)param; | ||
| 480 | } | ||
| 481 | } else | ||
| 482 | ret = -EINVAL; | ||
| 483 | return ret; | ||
| 484 | } | ||
| 485 | |||
| 486 | /* Recursive argument parser */ | ||
| 487 | static int __parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | ||
| 488 | { | ||
| 489 | int ret = 0; | ||
| 490 | unsigned long param; | ||
| 491 | long offset; | ||
| 492 | char *tmp; | ||
| 493 | |||
| 494 | switch (arg[0]) { | ||
| 495 | case '$': | ||
| 496 | ret = parse_probe_vars(arg + 1, ff, is_return); | ||
| 497 | break; | ||
| 498 | case '%': /* named register */ | ||
| 499 | ret = regs_query_register_offset(arg + 1); | ||
| 500 | if (ret >= 0) { | ||
| 501 | ff->func = fetch_register; | ||
| 502 | ff->data = (void *)(unsigned long)ret; | ||
| 503 | ret = 0; | ||
| 504 | } | ||
| 505 | break; | ||
| 506 | case '@': /* memory or symbol */ | ||
| 507 | if (isdigit(arg[1])) { | ||
| 508 | ret = strict_strtoul(arg + 1, 0, ¶m); | ||
| 509 | if (ret) | ||
| 510 | break; | ||
| 511 | ff->func = fetch_memory; | ||
| 512 | ff->data = (void *)param; | ||
| 513 | } else { | ||
| 514 | ret = split_symbol_offset(arg + 1, &offset); | ||
| 515 | if (ret) | ||
| 516 | break; | ||
| 517 | ff->data = alloc_symbol_cache(arg + 1, offset); | ||
| 518 | if (ff->data) | ||
| 519 | ff->func = fetch_symbol; | ||
| 520 | else | ||
| 521 | ret = -EINVAL; | ||
| 522 | } | ||
| 523 | break; | ||
| 524 | case '+': /* indirect memory */ | ||
| 525 | case '-': | ||
| 526 | tmp = strchr(arg, '('); | ||
| 527 | if (!tmp) { | ||
| 528 | ret = -EINVAL; | ||
| 529 | break; | ||
| 530 | } | ||
| 531 | *tmp = '\0'; | ||
| 532 | ret = strict_strtol(arg + 1, 0, &offset); | ||
| 533 | if (ret) | ||
| 534 | break; | ||
| 535 | if (arg[0] == '-') | ||
| 536 | offset = -offset; | ||
| 537 | arg = tmp + 1; | ||
| 538 | tmp = strrchr(arg, ')'); | ||
| 539 | if (tmp) { | ||
| 540 | struct indirect_fetch_data *id; | ||
| 541 | *tmp = '\0'; | ||
| 542 | id = kzalloc(sizeof(struct indirect_fetch_data), | ||
| 543 | GFP_KERNEL); | ||
| 544 | if (!id) | ||
| 545 | return -ENOMEM; | ||
| 546 | id->offset = offset; | ||
| 547 | ret = __parse_probe_arg(arg, &id->orig, is_return); | ||
| 548 | if (ret) | ||
| 549 | kfree(id); | ||
| 550 | else { | ||
| 551 | ff->func = fetch_indirect; | ||
| 552 | ff->data = (void *)id; | ||
| 553 | } | ||
| 554 | } else | ||
| 555 | ret = -EINVAL; | ||
| 556 | break; | ||
| 557 | default: | ||
| 558 | /* TODO: support custom handler */ | ||
| 559 | ret = -EINVAL; | ||
| 560 | } | ||
| 561 | return ret; | ||
| 562 | } | ||
| 563 | |||
| 564 | /* String length checking wrapper */ | ||
| 565 | static int parse_probe_arg(char *arg, struct fetch_func *ff, int is_return) | ||
| 566 | { | ||
| 567 | if (strlen(arg) > MAX_ARGSTR_LEN) { | ||
| 568 | pr_info("Argument is too long.: %s\n", arg); | ||
| 569 | return -ENOSPC; | ||
| 570 | } | ||
| 571 | return __parse_probe_arg(arg, ff, is_return); | ||
| 572 | } | ||
| 573 | |||
| 574 | /* Return 1 if name is reserved or already used by another argument */ | ||
| 575 | static int conflict_field_name(const char *name, | ||
| 576 | struct probe_arg *args, int narg) | ||
| 577 | { | ||
| 578 | int i; | ||
| 579 | for (i = 0; i < ARRAY_SIZE(reserved_field_names); i++) | ||
| 580 | if (strcmp(reserved_field_names[i], name) == 0) | ||
| 581 | return 1; | ||
| 582 | for (i = 0; i < narg; i++) | ||
| 583 | if (strcmp(args[i].name, name) == 0) | ||
| 584 | return 1; | ||
| 585 | return 0; | ||
| 586 | } | ||
| 587 | |||
| 588 | static int create_trace_probe(int argc, char **argv) | ||
| 589 | { | ||
| 590 | /* | ||
| 591 | * Argument syntax: | ||
| 592 | * - Add kprobe: p[:[GRP/]EVENT] KSYM[+OFFS]|KADDR [FETCHARGS] | ||
| 593 | * - Add kretprobe: r[:[GRP/]EVENT] KSYM[+0] [FETCHARGS] | ||
| 594 | * Fetch args: | ||
| 595 | * $argN : fetch Nth of function argument. (N:0-) | ||
| 596 | * $retval : fetch return value | ||
| 597 | * $stack : fetch stack address | ||
| 598 | * $stackN : fetch Nth of stack (N:0-) | ||
| 599 | * @ADDR : fetch memory at ADDR (ADDR should be in kernel) | ||
| 600 | * @SYM[+|-offs] : fetch memory at SYM +|- offs (SYM is a data symbol) | ||
| 601 | * %REG : fetch register REG | ||
| 602 | * Indirect memory fetch: | ||
| 603 | * +|-offs(ARG) : fetch memory at ARG +|- offs address. | ||
| 604 | * Alias name of args: | ||
| 605 | * NAME=FETCHARG : set NAME as alias of FETCHARG. | ||
| 606 | */ | ||
| 607 | struct trace_probe *tp; | ||
| 608 | int i, ret = 0; | ||
| 609 | int is_return = 0; | ||
| 610 | char *symbol = NULL, *event = NULL, *arg = NULL, *group = NULL; | ||
| 611 | unsigned long offset = 0; | ||
| 612 | void *addr = NULL; | ||
| 613 | char buf[MAX_EVENT_NAME_LEN]; | ||
| 614 | |||
| 615 | if (argc < 2) { | ||
| 616 | pr_info("Probe point is not specified.\n"); | ||
| 617 | return -EINVAL; | ||
| 618 | } | ||
| 619 | |||
| 620 | if (argv[0][0] == 'p') | ||
| 621 | is_return = 0; | ||
| 622 | else if (argv[0][0] == 'r') | ||
| 623 | is_return = 1; | ||
| 624 | else { | ||
| 625 | pr_info("Probe definition must be started with 'p' or 'r'.\n"); | ||
| 626 | return -EINVAL; | ||
| 627 | } | ||
| 628 | |||
| 629 | if (argv[0][1] == ':') { | ||
| 630 | event = &argv[0][2]; | ||
| 631 | if (strchr(event, '/')) { | ||
| 632 | group = event; | ||
| 633 | event = strchr(group, '/') + 1; | ||
| 634 | event[-1] = '\0'; | ||
| 635 | if (strlen(group) == 0) { | ||
| 636 | pr_info("Group name is not specifiled\n"); | ||
| 637 | return -EINVAL; | ||
| 638 | } | ||
| 639 | } | ||
| 640 | if (strlen(event) == 0) { | ||
| 641 | pr_info("Event name is not specifiled\n"); | ||
| 642 | return -EINVAL; | ||
| 643 | } | ||
| 644 | } | ||
| 645 | |||
| 646 | if (isdigit(argv[1][0])) { | ||
| 647 | if (is_return) { | ||
| 648 | pr_info("Return probe point must be a symbol.\n"); | ||
| 649 | return -EINVAL; | ||
| 650 | } | ||
| 651 | /* an address specified */ | ||
| 652 | ret = strict_strtoul(&argv[0][2], 0, (unsigned long *)&addr); | ||
| 653 | if (ret) { | ||
| 654 | pr_info("Failed to parse address.\n"); | ||
| 655 | return ret; | ||
| 656 | } | ||
| 657 | } else { | ||
| 658 | /* a symbol specified */ | ||
| 659 | symbol = argv[1]; | ||
| 660 | /* TODO: support .init module functions */ | ||
| 661 | ret = split_symbol_offset(symbol, &offset); | ||
| 662 | if (ret) { | ||
| 663 | pr_info("Failed to parse symbol.\n"); | ||
| 664 | return ret; | ||
| 665 | } | ||
| 666 | if (offset && is_return) { | ||
| 667 | pr_info("Return probe must be used without offset.\n"); | ||
| 668 | return -EINVAL; | ||
| 669 | } | ||
| 670 | } | ||
| 671 | argc -= 2; argv += 2; | ||
| 672 | |||
| 673 | /* setup a probe */ | ||
| 674 | if (!group) | ||
| 675 | group = KPROBE_EVENT_SYSTEM; | ||
| 676 | if (!event) { | ||
| 677 | /* Make a new event name */ | ||
| 678 | if (symbol) | ||
| 679 | snprintf(buf, MAX_EVENT_NAME_LEN, "%c@%s%+ld", | ||
| 680 | is_return ? 'r' : 'p', symbol, offset); | ||
| 681 | else | ||
| 682 | snprintf(buf, MAX_EVENT_NAME_LEN, "%c@0x%p", | ||
| 683 | is_return ? 'r' : 'p', addr); | ||
| 684 | event = buf; | ||
| 685 | } | ||
| 686 | tp = alloc_trace_probe(group, event, addr, symbol, offset, argc, | ||
| 687 | is_return); | ||
| 688 | if (IS_ERR(tp)) { | ||
| 689 | pr_info("Failed to allocate trace_probe.(%d)\n", | ||
| 690 | (int)PTR_ERR(tp)); | ||
| 691 | return PTR_ERR(tp); | ||
| 692 | } | ||
| 693 | |||
| 694 | /* parse arguments */ | ||
| 695 | ret = 0; | ||
| 696 | for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) { | ||
| 697 | /* Parse argument name */ | ||
| 698 | arg = strchr(argv[i], '='); | ||
| 699 | if (arg) | ||
| 700 | *arg++ = '\0'; | ||
| 701 | else | ||
| 702 | arg = argv[i]; | ||
| 703 | |||
| 704 | if (conflict_field_name(argv[i], tp->args, i)) { | ||
| 705 | pr_info("Argument%d name '%s' conflicts with " | ||
| 706 | "another field.\n", i, argv[i]); | ||
| 707 | ret = -EINVAL; | ||
| 708 | goto error; | ||
| 709 | } | ||
| 710 | |||
| 711 | tp->args[i].name = kstrdup(argv[i], GFP_KERNEL); | ||
| 712 | if (!tp->args[i].name) { | ||
| 713 | pr_info("Failed to allocate argument%d name '%s'.\n", | ||
| 714 | i, argv[i]); | ||
| 715 | ret = -ENOMEM; | ||
| 716 | goto error; | ||
| 717 | } | ||
| 718 | |||
| 719 | /* Parse fetch argument */ | ||
| 720 | ret = parse_probe_arg(arg, &tp->args[i].fetch, is_return); | ||
| 721 | if (ret) { | ||
| 722 | pr_info("Parse error at argument%d. (%d)\n", i, ret); | ||
| 723 | kfree(tp->args[i].name); | ||
| 724 | goto error; | ||
| 725 | } | ||
| 726 | |||
| 727 | tp->nr_args++; | ||
| 728 | } | ||
| 729 | |||
| 730 | ret = register_trace_probe(tp); | ||
| 731 | if (ret) | ||
| 732 | goto error; | ||
| 733 | return 0; | ||
| 734 | |||
| 735 | error: | ||
| 736 | free_trace_probe(tp); | ||
| 737 | return ret; | ||
| 738 | } | ||
| 739 | |||
| 740 | static void cleanup_all_probes(void) | ||
| 741 | { | ||
| 742 | struct trace_probe *tp; | ||
| 743 | |||
| 744 | mutex_lock(&probe_lock); | ||
| 745 | /* TODO: Use batch unregistration */ | ||
| 746 | while (!list_empty(&probe_list)) { | ||
| 747 | tp = list_entry(probe_list.next, struct trace_probe, list); | ||
| 748 | unregister_trace_probe(tp); | ||
| 749 | free_trace_probe(tp); | ||
| 750 | } | ||
| 751 | mutex_unlock(&probe_lock); | ||
| 752 | } | ||
| 753 | |||
| 754 | |||
| 755 | /* Probes listing interfaces */ | ||
| 756 | static void *probes_seq_start(struct seq_file *m, loff_t *pos) | ||
| 757 | { | ||
| 758 | mutex_lock(&probe_lock); | ||
| 759 | return seq_list_start(&probe_list, *pos); | ||
| 760 | } | ||
| 761 | |||
| 762 | static void *probes_seq_next(struct seq_file *m, void *v, loff_t *pos) | ||
| 763 | { | ||
| 764 | return seq_list_next(v, &probe_list, pos); | ||
| 765 | } | ||
| 766 | |||
| 767 | static void probes_seq_stop(struct seq_file *m, void *v) | ||
| 768 | { | ||
| 769 | mutex_unlock(&probe_lock); | ||
| 770 | } | ||
| 771 | |||
| 772 | static int probes_seq_show(struct seq_file *m, void *v) | ||
| 773 | { | ||
| 774 | struct trace_probe *tp = v; | ||
| 775 | int i, ret; | ||
| 776 | char buf[MAX_ARGSTR_LEN + 1]; | ||
| 777 | |||
| 778 | seq_printf(m, "%c", probe_is_return(tp) ? 'r' : 'p'); | ||
| 779 | seq_printf(m, ":%s/%s", tp->call.system, tp->call.name); | ||
| 780 | |||
| 781 | if (!tp->symbol) | ||
| 782 | seq_printf(m, " 0x%p", tp->rp.kp.addr); | ||
| 783 | else if (tp->rp.kp.offset) | ||
| 784 | seq_printf(m, " %s+%u", probe_symbol(tp), tp->rp.kp.offset); | ||
| 785 | else | ||
| 786 | seq_printf(m, " %s", probe_symbol(tp)); | ||
| 787 | |||
| 788 | for (i = 0; i < tp->nr_args; i++) { | ||
| 789 | ret = probe_arg_string(buf, MAX_ARGSTR_LEN, &tp->args[i].fetch); | ||
| 790 | if (ret < 0) { | ||
| 791 | pr_warning("Argument%d decoding error(%d).\n", i, ret); | ||
| 792 | return ret; | ||
| 793 | } | ||
| 794 | seq_printf(m, " %s=%s", tp->args[i].name, buf); | ||
| 795 | } | ||
| 796 | seq_printf(m, "\n"); | ||
| 797 | return 0; | ||
| 798 | } | ||
| 799 | |||
| 800 | static const struct seq_operations probes_seq_op = { | ||
| 801 | .start = probes_seq_start, | ||
| 802 | .next = probes_seq_next, | ||
| 803 | .stop = probes_seq_stop, | ||
| 804 | .show = probes_seq_show | ||
| 805 | }; | ||
| 806 | |||
| 807 | static int probes_open(struct inode *inode, struct file *file) | ||
| 808 | { | ||
| 809 | if ((file->f_mode & FMODE_WRITE) && | ||
| 810 | (file->f_flags & O_TRUNC)) | ||
| 811 | cleanup_all_probes(); | ||
| 812 | |||
| 813 | return seq_open(file, &probes_seq_op); | ||
| 814 | } | ||
| 815 | |||
| 816 | static int command_trace_probe(const char *buf) | ||
| 817 | { | ||
| 818 | char **argv; | ||
| 819 | int argc = 0, ret = 0; | ||
| 820 | |||
| 821 | argv = argv_split(GFP_KERNEL, buf, &argc); | ||
| 822 | if (!argv) | ||
| 823 | return -ENOMEM; | ||
| 824 | |||
| 825 | if (argc) | ||
| 826 | ret = create_trace_probe(argc, argv); | ||
| 827 | |||
| 828 | argv_free(argv); | ||
| 829 | return ret; | ||
| 830 | } | ||
| 831 | |||
| 832 | #define WRITE_BUFSIZE 128 | ||
| 833 | |||
| 834 | static ssize_t probes_write(struct file *file, const char __user *buffer, | ||
| 835 | size_t count, loff_t *ppos) | ||
| 836 | { | ||
| 837 | char *kbuf, *tmp; | ||
| 838 | int ret; | ||
| 839 | size_t done; | ||
| 840 | size_t size; | ||
| 841 | |||
| 842 | kbuf = kmalloc(WRITE_BUFSIZE, GFP_KERNEL); | ||
| 843 | if (!kbuf) | ||
| 844 | return -ENOMEM; | ||
| 845 | |||
| 846 | ret = done = 0; | ||
| 847 | while (done < count) { | ||
| 848 | size = count - done; | ||
| 849 | if (size >= WRITE_BUFSIZE) | ||
| 850 | size = WRITE_BUFSIZE - 1; | ||
| 851 | if (copy_from_user(kbuf, buffer + done, size)) { | ||
| 852 | ret = -EFAULT; | ||
| 853 | goto out; | ||
| 854 | } | ||
| 855 | kbuf[size] = '\0'; | ||
| 856 | tmp = strchr(kbuf, '\n'); | ||
| 857 | if (tmp) { | ||
| 858 | *tmp = '\0'; | ||
| 859 | size = tmp - kbuf + 1; | ||
| 860 | } else if (done + size < count) { | ||
| 861 | pr_warning("Line length is too long: " | ||
| 862 | "Should be less than %d.", WRITE_BUFSIZE); | ||
| 863 | ret = -EINVAL; | ||
| 864 | goto out; | ||
| 865 | } | ||
| 866 | done += size; | ||
| 867 | /* Remove comments */ | ||
| 868 | tmp = strchr(kbuf, '#'); | ||
| 869 | if (tmp) | ||
| 870 | *tmp = '\0'; | ||
| 871 | |||
| 872 | ret = command_trace_probe(kbuf); | ||
| 873 | if (ret) | ||
| 874 | goto out; | ||
| 875 | } | ||
| 876 | ret = done; | ||
| 877 | out: | ||
| 878 | kfree(kbuf); | ||
| 879 | return ret; | ||
| 880 | } | ||
| 881 | |||
| 882 | static const struct file_operations kprobe_events_ops = { | ||
| 883 | .owner = THIS_MODULE, | ||
| 884 | .open = probes_open, | ||
| 885 | .read = seq_read, | ||
| 886 | .llseek = seq_lseek, | ||
| 887 | .release = seq_release, | ||
| 888 | .write = probes_write, | ||
| 889 | }; | ||
| 890 | |||
| 891 | /* Probes profiling interfaces */ | ||
| 892 | static int probes_profile_seq_show(struct seq_file *m, void *v) | ||
| 893 | { | ||
| 894 | struct trace_probe *tp = v; | ||
| 895 | |||
| 896 | seq_printf(m, " %-44s %15lu %15lu\n", tp->call.name, tp->nhit, | ||
| 897 | tp->rp.kp.nmissed); | ||
| 898 | |||
| 899 | return 0; | ||
| 900 | } | ||
| 901 | |||
| 902 | static const struct seq_operations profile_seq_op = { | ||
| 903 | .start = probes_seq_start, | ||
| 904 | .next = probes_seq_next, | ||
| 905 | .stop = probes_seq_stop, | ||
| 906 | .show = probes_profile_seq_show | ||
| 907 | }; | ||
| 908 | |||
| 909 | static int profile_open(struct inode *inode, struct file *file) | ||
| 910 | { | ||
| 911 | return seq_open(file, &profile_seq_op); | ||
| 912 | } | ||
| 913 | |||
| 914 | static const struct file_operations kprobe_profile_ops = { | ||
| 915 | .owner = THIS_MODULE, | ||
| 916 | .open = profile_open, | ||
| 917 | .read = seq_read, | ||
| 918 | .llseek = seq_lseek, | ||
| 919 | .release = seq_release, | ||
| 920 | }; | ||
| 921 | |||
| 922 | /* Kprobe handler */ | ||
| 923 | static __kprobes int kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) | ||
| 924 | { | ||
| 925 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); | ||
| 926 | struct kprobe_trace_entry *entry; | ||
| 927 | struct ring_buffer_event *event; | ||
| 928 | struct ring_buffer *buffer; | ||
| 929 | int size, i, pc; | ||
| 930 | unsigned long irq_flags; | ||
| 931 | struct ftrace_event_call *call = &tp->call; | ||
| 932 | |||
| 933 | tp->nhit++; | ||
| 934 | |||
| 935 | local_save_flags(irq_flags); | ||
| 936 | pc = preempt_count(); | ||
| 937 | |||
| 938 | size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args); | ||
| 939 | |||
| 940 | event = trace_current_buffer_lock_reserve(&buffer, call->id, size, | ||
| 941 | irq_flags, pc); | ||
| 942 | if (!event) | ||
| 943 | return 0; | ||
| 944 | |||
| 945 | entry = ring_buffer_event_data(event); | ||
| 946 | entry->nargs = tp->nr_args; | ||
| 947 | entry->ip = (unsigned long)kp->addr; | ||
| 948 | for (i = 0; i < tp->nr_args; i++) | ||
| 949 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | ||
| 950 | |||
| 951 | if (!filter_current_check_discard(buffer, call, entry, event)) | ||
| 952 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); | ||
| 953 | return 0; | ||
| 954 | } | ||
| 955 | |||
| 956 | /* Kretprobe handler */ | ||
| 957 | static __kprobes int kretprobe_trace_func(struct kretprobe_instance *ri, | ||
| 958 | struct pt_regs *regs) | ||
| 959 | { | ||
| 960 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); | ||
| 961 | struct kretprobe_trace_entry *entry; | ||
| 962 | struct ring_buffer_event *event; | ||
| 963 | struct ring_buffer *buffer; | ||
| 964 | int size, i, pc; | ||
| 965 | unsigned long irq_flags; | ||
| 966 | struct ftrace_event_call *call = &tp->call; | ||
| 967 | |||
| 968 | local_save_flags(irq_flags); | ||
| 969 | pc = preempt_count(); | ||
| 970 | |||
| 971 | size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args); | ||
| 972 | |||
| 973 | event = trace_current_buffer_lock_reserve(&buffer, call->id, size, | ||
| 974 | irq_flags, pc); | ||
| 975 | if (!event) | ||
| 976 | return 0; | ||
| 977 | |||
| 978 | entry = ring_buffer_event_data(event); | ||
| 979 | entry->nargs = tp->nr_args; | ||
| 980 | entry->func = (unsigned long)tp->rp.kp.addr; | ||
| 981 | entry->ret_ip = (unsigned long)ri->ret_addr; | ||
| 982 | for (i = 0; i < tp->nr_args; i++) | ||
| 983 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | ||
| 984 | |||
| 985 | if (!filter_current_check_discard(buffer, call, entry, event)) | ||
| 986 | trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); | ||
| 987 | |||
| 988 | return 0; | ||
| 989 | } | ||
| 990 | |||
| 991 | /* Event entry printers */ | ||
| 992 | enum print_line_t | ||
| 993 | print_kprobe_event(struct trace_iterator *iter, int flags) | ||
| 994 | { | ||
| 995 | struct kprobe_trace_entry *field; | ||
| 996 | struct trace_seq *s = &iter->seq; | ||
| 997 | struct trace_event *event; | ||
| 998 | struct trace_probe *tp; | ||
| 999 | int i; | ||
| 1000 | |||
| 1001 | field = (struct kprobe_trace_entry *)iter->ent; | ||
| 1002 | event = ftrace_find_event(field->ent.type); | ||
| 1003 | tp = container_of(event, struct trace_probe, event); | ||
| 1004 | |||
| 1005 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) | ||
| 1006 | goto partial; | ||
| 1007 | |||
| 1008 | if (!seq_print_ip_sym(s, field->ip, flags | TRACE_ITER_SYM_OFFSET)) | ||
| 1009 | goto partial; | ||
| 1010 | |||
| 1011 | if (!trace_seq_puts(s, ")")) | ||
| 1012 | goto partial; | ||
| 1013 | |||
| 1014 | for (i = 0; i < field->nargs; i++) | ||
| 1015 | if (!trace_seq_printf(s, " %s=%lx", | ||
| 1016 | tp->args[i].name, field->args[i])) | ||
| 1017 | goto partial; | ||
| 1018 | |||
| 1019 | if (!trace_seq_puts(s, "\n")) | ||
| 1020 | goto partial; | ||
| 1021 | |||
| 1022 | return TRACE_TYPE_HANDLED; | ||
| 1023 | partial: | ||
| 1024 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 1025 | } | ||
| 1026 | |||
| 1027 | enum print_line_t | ||
| 1028 | print_kretprobe_event(struct trace_iterator *iter, int flags) | ||
| 1029 | { | ||
| 1030 | struct kretprobe_trace_entry *field; | ||
| 1031 | struct trace_seq *s = &iter->seq; | ||
| 1032 | struct trace_event *event; | ||
| 1033 | struct trace_probe *tp; | ||
| 1034 | int i; | ||
| 1035 | |||
| 1036 | field = (struct kretprobe_trace_entry *)iter->ent; | ||
| 1037 | event = ftrace_find_event(field->ent.type); | ||
| 1038 | tp = container_of(event, struct trace_probe, event); | ||
| 1039 | |||
| 1040 | if (!trace_seq_printf(s, "%s: (", tp->call.name)) | ||
| 1041 | goto partial; | ||
| 1042 | |||
| 1043 | if (!seq_print_ip_sym(s, field->ret_ip, flags | TRACE_ITER_SYM_OFFSET)) | ||
| 1044 | goto partial; | ||
| 1045 | |||
| 1046 | if (!trace_seq_puts(s, " <- ")) | ||
| 1047 | goto partial; | ||
| 1048 | |||
| 1049 | if (!seq_print_ip_sym(s, field->func, flags & ~TRACE_ITER_SYM_OFFSET)) | ||
| 1050 | goto partial; | ||
| 1051 | |||
| 1052 | if (!trace_seq_puts(s, ")")) | ||
| 1053 | goto partial; | ||
| 1054 | |||
| 1055 | for (i = 0; i < field->nargs; i++) | ||
| 1056 | if (!trace_seq_printf(s, " %s=%lx", | ||
| 1057 | tp->args[i].name, field->args[i])) | ||
| 1058 | goto partial; | ||
| 1059 | |||
| 1060 | if (!trace_seq_puts(s, "\n")) | ||
| 1061 | goto partial; | ||
| 1062 | |||
| 1063 | return TRACE_TYPE_HANDLED; | ||
| 1064 | partial: | ||
| 1065 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 1066 | } | ||
| 1067 | |||
| 1068 | static int probe_event_enable(struct ftrace_event_call *call) | ||
| 1069 | { | ||
| 1070 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1071 | |||
| 1072 | tp->flags |= TP_FLAG_TRACE; | ||
| 1073 | if (probe_is_return(tp)) | ||
| 1074 | return enable_kretprobe(&tp->rp); | ||
| 1075 | else | ||
| 1076 | return enable_kprobe(&tp->rp.kp); | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | static void probe_event_disable(struct ftrace_event_call *call) | ||
| 1080 | { | ||
| 1081 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1082 | |||
| 1083 | tp->flags &= ~TP_FLAG_TRACE; | ||
| 1084 | if (!(tp->flags & (TP_FLAG_TRACE | TP_FLAG_PROFILE))) { | ||
| 1085 | if (probe_is_return(tp)) | ||
| 1086 | disable_kretprobe(&tp->rp); | ||
| 1087 | else | ||
| 1088 | disable_kprobe(&tp->rp.kp); | ||
| 1089 | } | ||
| 1090 | } | ||
| 1091 | |||
| 1092 | static int probe_event_raw_init(struct ftrace_event_call *event_call) | ||
| 1093 | { | ||
| 1094 | INIT_LIST_HEAD(&event_call->fields); | ||
| 1095 | |||
| 1096 | return 0; | ||
| 1097 | } | ||
| 1098 | |||
| 1099 | #undef DEFINE_FIELD | ||
| 1100 | #define DEFINE_FIELD(type, item, name, is_signed) \ | ||
| 1101 | do { \ | ||
| 1102 | ret = trace_define_field(event_call, #type, name, \ | ||
| 1103 | offsetof(typeof(field), item), \ | ||
| 1104 | sizeof(field.item), is_signed, \ | ||
| 1105 | FILTER_OTHER); \ | ||
| 1106 | if (ret) \ | ||
| 1107 | return ret; \ | ||
| 1108 | } while (0) | ||
| 1109 | |||
| 1110 | static int kprobe_event_define_fields(struct ftrace_event_call *event_call) | ||
| 1111 | { | ||
| 1112 | int ret, i; | ||
| 1113 | struct kprobe_trace_entry field; | ||
| 1114 | struct trace_probe *tp = (struct trace_probe *)event_call->data; | ||
| 1115 | |||
| 1116 | ret = trace_define_common_fields(event_call); | ||
| 1117 | if (!ret) | ||
| 1118 | return ret; | ||
| 1119 | |||
| 1120 | DEFINE_FIELD(unsigned long, ip, FIELD_STRING_IP, 0); | ||
| 1121 | DEFINE_FIELD(int, nargs, FIELD_STRING_NARGS, 1); | ||
| 1122 | /* Set argument names as fields */ | ||
| 1123 | for (i = 0; i < tp->nr_args; i++) | ||
| 1124 | DEFINE_FIELD(unsigned long, args[i], tp->args[i].name, 0); | ||
| 1125 | return 0; | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | static int kretprobe_event_define_fields(struct ftrace_event_call *event_call) | ||
| 1129 | { | ||
| 1130 | int ret, i; | ||
| 1131 | struct kretprobe_trace_entry field; | ||
| 1132 | struct trace_probe *tp = (struct trace_probe *)event_call->data; | ||
| 1133 | |||
| 1134 | ret = trace_define_common_fields(event_call); | ||
| 1135 | if (!ret) | ||
| 1136 | return ret; | ||
| 1137 | |||
| 1138 | DEFINE_FIELD(unsigned long, func, FIELD_STRING_FUNC, 0); | ||
| 1139 | DEFINE_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP, 0); | ||
| 1140 | DEFINE_FIELD(int, nargs, FIELD_STRING_NARGS, 1); | ||
| 1141 | /* Set argument names as fields */ | ||
| 1142 | for (i = 0; i < tp->nr_args; i++) | ||
| 1143 | DEFINE_FIELD(unsigned long, args[i], tp->args[i].name, 0); | ||
| 1144 | return 0; | ||
| 1145 | } | ||
| 1146 | |||
| 1147 | static int __probe_event_show_format(struct trace_seq *s, | ||
| 1148 | struct trace_probe *tp, const char *fmt, | ||
| 1149 | const char *arg) | ||
| 1150 | { | ||
| 1151 | int i; | ||
| 1152 | |||
| 1153 | /* Show format */ | ||
| 1154 | if (!trace_seq_printf(s, "\nprint fmt: \"%s", fmt)) | ||
| 1155 | return 0; | ||
| 1156 | |||
| 1157 | for (i = 0; i < tp->nr_args; i++) | ||
| 1158 | if (!trace_seq_printf(s, " %s=%%lx", tp->args[i].name)) | ||
| 1159 | return 0; | ||
| 1160 | |||
| 1161 | if (!trace_seq_printf(s, "\", %s", arg)) | ||
| 1162 | return 0; | ||
| 1163 | |||
| 1164 | for (i = 0; i < tp->nr_args; i++) | ||
| 1165 | if (!trace_seq_printf(s, ", REC->%s", tp->args[i].name)) | ||
| 1166 | return 0; | ||
| 1167 | |||
| 1168 | return trace_seq_puts(s, "\n"); | ||
| 1169 | } | ||
| 1170 | |||
| 1171 | #undef SHOW_FIELD | ||
| 1172 | #define SHOW_FIELD(type, item, name) \ | ||
| 1173 | do { \ | ||
| 1174 | ret = trace_seq_printf(s, "\tfield: " #type " %s;\t" \ | ||
| 1175 | "offset:%u;\tsize:%u;\n", name, \ | ||
| 1176 | (unsigned int)offsetof(typeof(field), item),\ | ||
| 1177 | (unsigned int)sizeof(type)); \ | ||
| 1178 | if (!ret) \ | ||
| 1179 | return 0; \ | ||
| 1180 | } while (0) | ||
| 1181 | |||
| 1182 | static int kprobe_event_show_format(struct ftrace_event_call *call, | ||
| 1183 | struct trace_seq *s) | ||
| 1184 | { | ||
| 1185 | struct kprobe_trace_entry field __attribute__((unused)); | ||
| 1186 | int ret, i; | ||
| 1187 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1188 | |||
| 1189 | SHOW_FIELD(unsigned long, ip, FIELD_STRING_IP); | ||
| 1190 | SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); | ||
| 1191 | |||
| 1192 | /* Show fields */ | ||
| 1193 | for (i = 0; i < tp->nr_args; i++) | ||
| 1194 | SHOW_FIELD(unsigned long, args[i], tp->args[i].name); | ||
| 1195 | trace_seq_puts(s, "\n"); | ||
| 1196 | |||
| 1197 | return __probe_event_show_format(s, tp, "(%lx)", | ||
| 1198 | "REC->" FIELD_STRING_IP); | ||
| 1199 | } | ||
| 1200 | |||
| 1201 | static int kretprobe_event_show_format(struct ftrace_event_call *call, | ||
| 1202 | struct trace_seq *s) | ||
| 1203 | { | ||
| 1204 | struct kretprobe_trace_entry field __attribute__((unused)); | ||
| 1205 | int ret, i; | ||
| 1206 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1207 | |||
| 1208 | SHOW_FIELD(unsigned long, func, FIELD_STRING_FUNC); | ||
| 1209 | SHOW_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP); | ||
| 1210 | SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); | ||
| 1211 | |||
| 1212 | /* Show fields */ | ||
| 1213 | for (i = 0; i < tp->nr_args; i++) | ||
| 1214 | SHOW_FIELD(unsigned long, args[i], tp->args[i].name); | ||
| 1215 | trace_seq_puts(s, "\n"); | ||
| 1216 | |||
| 1217 | return __probe_event_show_format(s, tp, "(%lx <- %lx)", | ||
| 1218 | "REC->" FIELD_STRING_FUNC | ||
| 1219 | ", REC->" FIELD_STRING_RETIP); | ||
| 1220 | } | ||
| 1221 | |||
| 1222 | #ifdef CONFIG_EVENT_PROFILE | ||
| 1223 | |||
| 1224 | /* Kprobe profile handler */ | ||
| 1225 | static __kprobes int kprobe_profile_func(struct kprobe *kp, | ||
| 1226 | struct pt_regs *regs) | ||
| 1227 | { | ||
| 1228 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); | ||
| 1229 | struct ftrace_event_call *call = &tp->call; | ||
| 1230 | struct kprobe_trace_entry *entry; | ||
| 1231 | struct trace_entry *ent; | ||
| 1232 | int size, __size, i, pc, __cpu; | ||
| 1233 | unsigned long irq_flags; | ||
| 1234 | char *trace_buf; | ||
| 1235 | char *raw_data; | ||
| 1236 | int rctx; | ||
| 1237 | |||
| 1238 | pc = preempt_count(); | ||
| 1239 | __size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args); | ||
| 1240 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); | ||
| 1241 | size -= sizeof(u32); | ||
| 1242 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 1243 | "profile buffer not large enough")) | ||
| 1244 | return 0; | ||
| 1245 | |||
| 1246 | /* | ||
| 1247 | * Protect the non nmi buffer | ||
| 1248 | * This also protects the rcu read side | ||
| 1249 | */ | ||
| 1250 | local_irq_save(irq_flags); | ||
| 1251 | |||
| 1252 | rctx = perf_swevent_get_recursion_context(); | ||
| 1253 | if (rctx < 0) | ||
| 1254 | goto end_recursion; | ||
| 1255 | |||
| 1256 | __cpu = smp_processor_id(); | ||
| 1257 | |||
| 1258 | if (in_nmi()) | ||
| 1259 | trace_buf = rcu_dereference(perf_trace_buf_nmi); | ||
| 1260 | else | ||
| 1261 | trace_buf = rcu_dereference(perf_trace_buf); | ||
| 1262 | |||
| 1263 | if (!trace_buf) | ||
| 1264 | goto end; | ||
| 1265 | |||
| 1266 | raw_data = per_cpu_ptr(trace_buf, __cpu); | ||
| 1267 | |||
| 1268 | /* Zero dead bytes from alignment to avoid buffer leak to userspace */ | ||
| 1269 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 1270 | entry = (struct kprobe_trace_entry *)raw_data; | ||
| 1271 | ent = &entry->ent; | ||
| 1272 | |||
| 1273 | tracing_generic_entry_update(ent, irq_flags, pc); | ||
| 1274 | ent->type = call->id; | ||
| 1275 | entry->nargs = tp->nr_args; | ||
| 1276 | entry->ip = (unsigned long)kp->addr; | ||
| 1277 | for (i = 0; i < tp->nr_args; i++) | ||
| 1278 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | ||
| 1279 | perf_tp_event(call->id, entry->ip, 1, entry, size); | ||
| 1280 | |||
| 1281 | end: | ||
| 1282 | perf_swevent_put_recursion_context(rctx); | ||
| 1283 | end_recursion: | ||
| 1284 | local_irq_restore(irq_flags); | ||
| 1285 | |||
| 1286 | return 0; | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | /* Kretprobe profile handler */ | ||
| 1290 | static __kprobes int kretprobe_profile_func(struct kretprobe_instance *ri, | ||
| 1291 | struct pt_regs *regs) | ||
| 1292 | { | ||
| 1293 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); | ||
| 1294 | struct ftrace_event_call *call = &tp->call; | ||
| 1295 | struct kretprobe_trace_entry *entry; | ||
| 1296 | struct trace_entry *ent; | ||
| 1297 | int size, __size, i, pc, __cpu; | ||
| 1298 | unsigned long irq_flags; | ||
| 1299 | char *trace_buf; | ||
| 1300 | char *raw_data; | ||
| 1301 | int rctx; | ||
| 1302 | |||
| 1303 | pc = preempt_count(); | ||
| 1304 | __size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args); | ||
| 1305 | size = ALIGN(__size + sizeof(u32), sizeof(u64)); | ||
| 1306 | size -= sizeof(u32); | ||
| 1307 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 1308 | "profile buffer not large enough")) | ||
| 1309 | return 0; | ||
| 1310 | |||
| 1311 | /* | ||
| 1312 | * Protect the non nmi buffer | ||
| 1313 | * This also protects the rcu read side | ||
| 1314 | */ | ||
| 1315 | local_irq_save(irq_flags); | ||
| 1316 | |||
| 1317 | rctx = perf_swevent_get_recursion_context(); | ||
| 1318 | if (rctx < 0) | ||
| 1319 | goto end_recursion; | ||
| 1320 | |||
| 1321 | __cpu = smp_processor_id(); | ||
| 1322 | |||
| 1323 | if (in_nmi()) | ||
| 1324 | trace_buf = rcu_dereference(perf_trace_buf_nmi); | ||
| 1325 | else | ||
| 1326 | trace_buf = rcu_dereference(perf_trace_buf); | ||
| 1327 | |||
| 1328 | if (!trace_buf) | ||
| 1329 | goto end; | ||
| 1330 | |||
| 1331 | raw_data = per_cpu_ptr(trace_buf, __cpu); | ||
| 1332 | |||
| 1333 | /* Zero dead bytes from alignment to avoid buffer leak to userspace */ | ||
| 1334 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 1335 | entry = (struct kretprobe_trace_entry *)raw_data; | ||
| 1336 | ent = &entry->ent; | ||
| 1337 | |||
| 1338 | tracing_generic_entry_update(ent, irq_flags, pc); | ||
| 1339 | ent->type = call->id; | ||
| 1340 | entry->nargs = tp->nr_args; | ||
| 1341 | entry->func = (unsigned long)tp->rp.kp.addr; | ||
| 1342 | entry->ret_ip = (unsigned long)ri->ret_addr; | ||
| 1343 | for (i = 0; i < tp->nr_args; i++) | ||
| 1344 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | ||
| 1345 | perf_tp_event(call->id, entry->ret_ip, 1, entry, size); | ||
| 1346 | |||
| 1347 | end: | ||
| 1348 | perf_swevent_put_recursion_context(rctx); | ||
| 1349 | end_recursion: | ||
| 1350 | local_irq_restore(irq_flags); | ||
| 1351 | |||
| 1352 | return 0; | ||
| 1353 | } | ||
| 1354 | |||
| 1355 | static int probe_profile_enable(struct ftrace_event_call *call) | ||
| 1356 | { | ||
| 1357 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1358 | |||
| 1359 | tp->flags |= TP_FLAG_PROFILE; | ||
| 1360 | |||
| 1361 | if (probe_is_return(tp)) | ||
| 1362 | return enable_kretprobe(&tp->rp); | ||
| 1363 | else | ||
| 1364 | return enable_kprobe(&tp->rp.kp); | ||
| 1365 | } | ||
| 1366 | |||
| 1367 | static void probe_profile_disable(struct ftrace_event_call *call) | ||
| 1368 | { | ||
| 1369 | struct trace_probe *tp = (struct trace_probe *)call->data; | ||
| 1370 | |||
| 1371 | tp->flags &= ~TP_FLAG_PROFILE; | ||
| 1372 | |||
| 1373 | if (!(tp->flags & TP_FLAG_TRACE)) { | ||
| 1374 | if (probe_is_return(tp)) | ||
| 1375 | disable_kretprobe(&tp->rp); | ||
| 1376 | else | ||
| 1377 | disable_kprobe(&tp->rp.kp); | ||
| 1378 | } | ||
| 1379 | } | ||
| 1380 | #endif /* CONFIG_EVENT_PROFILE */ | ||
| 1381 | |||
| 1382 | |||
| 1383 | static __kprobes | ||
| 1384 | int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs) | ||
| 1385 | { | ||
| 1386 | struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); | ||
| 1387 | |||
| 1388 | if (tp->flags & TP_FLAG_TRACE) | ||
| 1389 | kprobe_trace_func(kp, regs); | ||
| 1390 | #ifdef CONFIG_EVENT_PROFILE | ||
| 1391 | if (tp->flags & TP_FLAG_PROFILE) | ||
| 1392 | kprobe_profile_func(kp, regs); | ||
| 1393 | #endif /* CONFIG_EVENT_PROFILE */ | ||
| 1394 | return 0; /* We don't tweek kernel, so just return 0 */ | ||
| 1395 | } | ||
| 1396 | |||
| 1397 | static __kprobes | ||
| 1398 | int kretprobe_dispatcher(struct kretprobe_instance *ri, struct pt_regs *regs) | ||
| 1399 | { | ||
| 1400 | struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); | ||
| 1401 | |||
| 1402 | if (tp->flags & TP_FLAG_TRACE) | ||
| 1403 | kretprobe_trace_func(ri, regs); | ||
| 1404 | #ifdef CONFIG_EVENT_PROFILE | ||
| 1405 | if (tp->flags & TP_FLAG_PROFILE) | ||
| 1406 | kretprobe_profile_func(ri, regs); | ||
| 1407 | #endif /* CONFIG_EVENT_PROFILE */ | ||
| 1408 | return 0; /* We don't tweek kernel, so just return 0 */ | ||
| 1409 | } | ||
| 1410 | |||
| 1411 | static int register_probe_event(struct trace_probe *tp) | ||
| 1412 | { | ||
| 1413 | struct ftrace_event_call *call = &tp->call; | ||
| 1414 | int ret; | ||
| 1415 | |||
| 1416 | /* Initialize ftrace_event_call */ | ||
| 1417 | if (probe_is_return(tp)) { | ||
| 1418 | tp->event.trace = print_kretprobe_event; | ||
| 1419 | call->raw_init = probe_event_raw_init; | ||
| 1420 | call->show_format = kretprobe_event_show_format; | ||
| 1421 | call->define_fields = kretprobe_event_define_fields; | ||
| 1422 | } else { | ||
| 1423 | tp->event.trace = print_kprobe_event; | ||
| 1424 | call->raw_init = probe_event_raw_init; | ||
| 1425 | call->show_format = kprobe_event_show_format; | ||
| 1426 | call->define_fields = kprobe_event_define_fields; | ||
| 1427 | } | ||
| 1428 | call->event = &tp->event; | ||
| 1429 | call->id = register_ftrace_event(&tp->event); | ||
| 1430 | if (!call->id) | ||
| 1431 | return -ENODEV; | ||
| 1432 | call->enabled = 0; | ||
| 1433 | call->regfunc = probe_event_enable; | ||
| 1434 | call->unregfunc = probe_event_disable; | ||
| 1435 | |||
| 1436 | #ifdef CONFIG_EVENT_PROFILE | ||
| 1437 | atomic_set(&call->profile_count, -1); | ||
| 1438 | call->profile_enable = probe_profile_enable; | ||
| 1439 | call->profile_disable = probe_profile_disable; | ||
| 1440 | #endif | ||
| 1441 | call->data = tp; | ||
| 1442 | ret = trace_add_event_call(call); | ||
| 1443 | if (ret) { | ||
| 1444 | pr_info("Failed to register kprobe event: %s\n", call->name); | ||
| 1445 | unregister_ftrace_event(&tp->event); | ||
| 1446 | } | ||
| 1447 | return ret; | ||
| 1448 | } | ||
| 1449 | |||
| 1450 | static void unregister_probe_event(struct trace_probe *tp) | ||
| 1451 | { | ||
| 1452 | /* tp->event is unregistered in trace_remove_event_call() */ | ||
| 1453 | trace_remove_event_call(&tp->call); | ||
| 1454 | } | ||
| 1455 | |||
| 1456 | /* Make a debugfs interface for controling probe points */ | ||
| 1457 | static __init int init_kprobe_trace(void) | ||
| 1458 | { | ||
| 1459 | struct dentry *d_tracer; | ||
| 1460 | struct dentry *entry; | ||
| 1461 | |||
| 1462 | d_tracer = tracing_init_dentry(); | ||
| 1463 | if (!d_tracer) | ||
| 1464 | return 0; | ||
| 1465 | |||
| 1466 | entry = debugfs_create_file("kprobe_events", 0644, d_tracer, | ||
| 1467 | NULL, &kprobe_events_ops); | ||
| 1468 | |||
| 1469 | /* Event list interface */ | ||
| 1470 | if (!entry) | ||
| 1471 | pr_warning("Could not create debugfs " | ||
| 1472 | "'kprobe_events' entry\n"); | ||
| 1473 | |||
| 1474 | /* Profile interface */ | ||
| 1475 | entry = debugfs_create_file("kprobe_profile", 0444, d_tracer, | ||
| 1476 | NULL, &kprobe_profile_ops); | ||
| 1477 | |||
| 1478 | if (!entry) | ||
| 1479 | pr_warning("Could not create debugfs " | ||
| 1480 | "'kprobe_profile' entry\n"); | ||
| 1481 | return 0; | ||
| 1482 | } | ||
| 1483 | fs_initcall(init_kprobe_trace); | ||
| 1484 | |||
| 1485 | |||
| 1486 | #ifdef CONFIG_FTRACE_STARTUP_TEST | ||
| 1487 | |||
| 1488 | static int kprobe_trace_selftest_target(int a1, int a2, int a3, | ||
| 1489 | int a4, int a5, int a6) | ||
| 1490 | { | ||
| 1491 | return a1 + a2 + a3 + a4 + a5 + a6; | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | static __init int kprobe_trace_self_tests_init(void) | ||
| 1495 | { | ||
| 1496 | int ret; | ||
| 1497 | int (*target)(int, int, int, int, int, int); | ||
| 1498 | |||
| 1499 | target = kprobe_trace_selftest_target; | ||
| 1500 | |||
| 1501 | pr_info("Testing kprobe tracing: "); | ||
| 1502 | |||
| 1503 | ret = command_trace_probe("p:testprobe kprobe_trace_selftest_target " | ||
| 1504 | "$arg1 $arg2 $arg3 $arg4 $stack $stack0"); | ||
| 1505 | if (WARN_ON_ONCE(ret)) | ||
| 1506 | pr_warning("error enabling function entry\n"); | ||
| 1507 | |||
| 1508 | ret = command_trace_probe("r:testprobe2 kprobe_trace_selftest_target " | ||
| 1509 | "$retval"); | ||
| 1510 | if (WARN_ON_ONCE(ret)) | ||
| 1511 | pr_warning("error enabling function return\n"); | ||
| 1512 | |||
| 1513 | ret = target(1, 2, 3, 4, 5, 6); | ||
| 1514 | |||
| 1515 | cleanup_all_probes(); | ||
| 1516 | |||
| 1517 | pr_cont("OK\n"); | ||
| 1518 | return 0; | ||
| 1519 | } | ||
| 1520 | |||
| 1521 | late_initcall(kprobe_trace_self_tests_init); | ||
| 1522 | |||
| 1523 | #endif | ||
diff --git a/kernel/trace/trace_ksym.c b/kernel/trace/trace_ksym.c new file mode 100644 index 000000000000..ddfa0fd43bc0 --- /dev/null +++ b/kernel/trace/trace_ksym.c | |||
| @@ -0,0 +1,550 @@ | |||
| 1 | /* | ||
| 2 | * trace_ksym.c - Kernel Symbol Tracer | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright (C) IBM Corporation, 2009 | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <linux/kallsyms.h> | ||
| 22 | #include <linux/uaccess.h> | ||
| 23 | #include <linux/debugfs.h> | ||
| 24 | #include <linux/ftrace.h> | ||
| 25 | #include <linux/module.h> | ||
| 26 | #include <linux/fs.h> | ||
| 27 | |||
| 28 | #include "trace_output.h" | ||
| 29 | #include "trace_stat.h" | ||
| 30 | #include "trace.h" | ||
| 31 | |||
| 32 | #include <linux/hw_breakpoint.h> | ||
| 33 | #include <asm/hw_breakpoint.h> | ||
| 34 | |||
| 35 | /* | ||
| 36 | * For now, let us restrict the no. of symbols traced simultaneously to number | ||
| 37 | * of available hardware breakpoint registers. | ||
| 38 | */ | ||
| 39 | #define KSYM_TRACER_MAX HBP_NUM | ||
| 40 | |||
| 41 | #define KSYM_TRACER_OP_LEN 3 /* rw- */ | ||
| 42 | |||
| 43 | struct trace_ksym { | ||
| 44 | struct perf_event **ksym_hbp; | ||
| 45 | struct perf_event_attr attr; | ||
| 46 | #ifdef CONFIG_PROFILE_KSYM_TRACER | ||
| 47 | unsigned long counter; | ||
| 48 | #endif | ||
| 49 | struct hlist_node ksym_hlist; | ||
| 50 | }; | ||
| 51 | |||
| 52 | static struct trace_array *ksym_trace_array; | ||
| 53 | |||
| 54 | static unsigned int ksym_filter_entry_count; | ||
| 55 | static unsigned int ksym_tracing_enabled; | ||
| 56 | |||
| 57 | static HLIST_HEAD(ksym_filter_head); | ||
| 58 | |||
| 59 | static DEFINE_MUTEX(ksym_tracer_mutex); | ||
| 60 | |||
| 61 | #ifdef CONFIG_PROFILE_KSYM_TRACER | ||
| 62 | |||
| 63 | #define MAX_UL_INT 0xffffffff | ||
| 64 | |||
| 65 | void ksym_collect_stats(unsigned long hbp_hit_addr) | ||
| 66 | { | ||
| 67 | struct hlist_node *node; | ||
| 68 | struct trace_ksym *entry; | ||
| 69 | |||
| 70 | rcu_read_lock(); | ||
| 71 | hlist_for_each_entry_rcu(entry, node, &ksym_filter_head, ksym_hlist) { | ||
| 72 | if ((entry->attr.bp_addr == hbp_hit_addr) && | ||
| 73 | (entry->counter <= MAX_UL_INT)) { | ||
| 74 | entry->counter++; | ||
| 75 | break; | ||
| 76 | } | ||
| 77 | } | ||
| 78 | rcu_read_unlock(); | ||
| 79 | } | ||
| 80 | #endif /* CONFIG_PROFILE_KSYM_TRACER */ | ||
| 81 | |||
| 82 | void ksym_hbp_handler(struct perf_event *hbp, void *data) | ||
| 83 | { | ||
| 84 | struct ring_buffer_event *event; | ||
| 85 | struct ksym_trace_entry *entry; | ||
| 86 | struct pt_regs *regs = data; | ||
| 87 | struct ring_buffer *buffer; | ||
| 88 | int pc; | ||
| 89 | |||
| 90 | if (!ksym_tracing_enabled) | ||
| 91 | return; | ||
| 92 | |||
| 93 | buffer = ksym_trace_array->buffer; | ||
| 94 | |||
| 95 | pc = preempt_count(); | ||
| 96 | |||
| 97 | event = trace_buffer_lock_reserve(buffer, TRACE_KSYM, | ||
| 98 | sizeof(*entry), 0, pc); | ||
| 99 | if (!event) | ||
| 100 | return; | ||
| 101 | |||
| 102 | entry = ring_buffer_event_data(event); | ||
| 103 | entry->ip = instruction_pointer(regs); | ||
| 104 | entry->type = hw_breakpoint_type(hbp); | ||
| 105 | entry->addr = hw_breakpoint_addr(hbp); | ||
| 106 | strlcpy(entry->cmd, current->comm, TASK_COMM_LEN); | ||
| 107 | |||
| 108 | #ifdef CONFIG_PROFILE_KSYM_TRACER | ||
| 109 | ksym_collect_stats(hw_breakpoint_addr(hbp)); | ||
| 110 | #endif /* CONFIG_PROFILE_KSYM_TRACER */ | ||
| 111 | |||
| 112 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 113 | } | ||
| 114 | |||
| 115 | /* Valid access types are represented as | ||
| 116 | * | ||
| 117 | * rw- : Set Read/Write Access Breakpoint | ||
| 118 | * -w- : Set Write Access Breakpoint | ||
| 119 | * --- : Clear Breakpoints | ||
| 120 | * --x : Set Execution Break points (Not available yet) | ||
| 121 | * | ||
| 122 | */ | ||
| 123 | static int ksym_trace_get_access_type(char *str) | ||
| 124 | { | ||
| 125 | int access = 0; | ||
| 126 | |||
| 127 | if (str[0] == 'r') | ||
| 128 | access |= HW_BREAKPOINT_R; | ||
| 129 | |||
| 130 | if (str[1] == 'w') | ||
| 131 | access |= HW_BREAKPOINT_W; | ||
| 132 | |||
| 133 | if (str[2] == 'x') | ||
| 134 | access |= HW_BREAKPOINT_X; | ||
| 135 | |||
| 136 | switch (access) { | ||
| 137 | case HW_BREAKPOINT_R: | ||
| 138 | case HW_BREAKPOINT_W: | ||
| 139 | case HW_BREAKPOINT_W | HW_BREAKPOINT_R: | ||
| 140 | return access; | ||
| 141 | default: | ||
| 142 | return -EINVAL; | ||
| 143 | } | ||
| 144 | } | ||
| 145 | |||
| 146 | /* | ||
| 147 | * There can be several possible malformed requests and we attempt to capture | ||
| 148 | * all of them. We enumerate some of the rules | ||
| 149 | * 1. We will not allow kernel symbols with ':' since it is used as a delimiter. | ||
| 150 | * i.e. multiple ':' symbols disallowed. Possible uses are of the form | ||
| 151 | * <module>:<ksym_name>:<op>. | ||
| 152 | * 2. No delimiter symbol ':' in the input string | ||
| 153 | * 3. Spurious operator symbols or symbols not in their respective positions | ||
| 154 | * 4. <ksym_name>:--- i.e. clear breakpoint request when ksym_name not in file | ||
| 155 | * 5. Kernel symbol not a part of /proc/kallsyms | ||
| 156 | * 6. Duplicate requests | ||
| 157 | */ | ||
| 158 | static int parse_ksym_trace_str(char *input_string, char **ksymname, | ||
| 159 | unsigned long *addr) | ||
| 160 | { | ||
| 161 | int ret; | ||
| 162 | |||
| 163 | *ksymname = strsep(&input_string, ":"); | ||
| 164 | *addr = kallsyms_lookup_name(*ksymname); | ||
| 165 | |||
| 166 | /* Check for malformed request: (2), (1) and (5) */ | ||
| 167 | if ((!input_string) || | ||
| 168 | (strlen(input_string) != KSYM_TRACER_OP_LEN) || | ||
| 169 | (*addr == 0)) | ||
| 170 | return -EINVAL;; | ||
| 171 | |||
| 172 | ret = ksym_trace_get_access_type(input_string); | ||
| 173 | |||
| 174 | return ret; | ||
| 175 | } | ||
| 176 | |||
| 177 | int process_new_ksym_entry(char *ksymname, int op, unsigned long addr) | ||
| 178 | { | ||
| 179 | struct trace_ksym *entry; | ||
| 180 | int ret = -ENOMEM; | ||
| 181 | |||
| 182 | if (ksym_filter_entry_count >= KSYM_TRACER_MAX) { | ||
| 183 | printk(KERN_ERR "ksym_tracer: Maximum limit:(%d) reached. No" | ||
| 184 | " new requests for tracing can be accepted now.\n", | ||
| 185 | KSYM_TRACER_MAX); | ||
| 186 | return -ENOSPC; | ||
| 187 | } | ||
| 188 | |||
| 189 | entry = kzalloc(sizeof(struct trace_ksym), GFP_KERNEL); | ||
| 190 | if (!entry) | ||
| 191 | return -ENOMEM; | ||
| 192 | |||
| 193 | hw_breakpoint_init(&entry->attr); | ||
| 194 | |||
| 195 | entry->attr.bp_type = op; | ||
| 196 | entry->attr.bp_addr = addr; | ||
| 197 | entry->attr.bp_len = HW_BREAKPOINT_LEN_4; | ||
| 198 | |||
| 199 | ret = -EAGAIN; | ||
| 200 | entry->ksym_hbp = register_wide_hw_breakpoint(&entry->attr, | ||
| 201 | ksym_hbp_handler); | ||
| 202 | |||
| 203 | if (IS_ERR(entry->ksym_hbp)) { | ||
| 204 | ret = PTR_ERR(entry->ksym_hbp); | ||
| 205 | printk(KERN_INFO "ksym_tracer request failed. Try again" | ||
| 206 | " later!!\n"); | ||
| 207 | goto err; | ||
| 208 | } | ||
| 209 | |||
| 210 | hlist_add_head_rcu(&(entry->ksym_hlist), &ksym_filter_head); | ||
| 211 | ksym_filter_entry_count++; | ||
| 212 | |||
| 213 | return 0; | ||
| 214 | |||
| 215 | err: | ||
| 216 | kfree(entry); | ||
| 217 | |||
| 218 | return ret; | ||
| 219 | } | ||
| 220 | |||
| 221 | static ssize_t ksym_trace_filter_read(struct file *filp, char __user *ubuf, | ||
| 222 | size_t count, loff_t *ppos) | ||
| 223 | { | ||
| 224 | struct trace_ksym *entry; | ||
| 225 | struct hlist_node *node; | ||
| 226 | struct trace_seq *s; | ||
| 227 | ssize_t cnt = 0; | ||
| 228 | int ret; | ||
| 229 | |||
| 230 | s = kmalloc(sizeof(*s), GFP_KERNEL); | ||
| 231 | if (!s) | ||
| 232 | return -ENOMEM; | ||
| 233 | trace_seq_init(s); | ||
| 234 | |||
| 235 | mutex_lock(&ksym_tracer_mutex); | ||
| 236 | |||
| 237 | hlist_for_each_entry(entry, node, &ksym_filter_head, ksym_hlist) { | ||
| 238 | ret = trace_seq_printf(s, "%pS:", (void *)entry->attr.bp_addr); | ||
| 239 | if (entry->attr.bp_type == HW_BREAKPOINT_R) | ||
| 240 | ret = trace_seq_puts(s, "r--\n"); | ||
| 241 | else if (entry->attr.bp_type == HW_BREAKPOINT_W) | ||
| 242 | ret = trace_seq_puts(s, "-w-\n"); | ||
| 243 | else if (entry->attr.bp_type == (HW_BREAKPOINT_W | HW_BREAKPOINT_R)) | ||
| 244 | ret = trace_seq_puts(s, "rw-\n"); | ||
| 245 | WARN_ON_ONCE(!ret); | ||
| 246 | } | ||
| 247 | |||
| 248 | cnt = simple_read_from_buffer(ubuf, count, ppos, s->buffer, s->len); | ||
| 249 | |||
| 250 | mutex_unlock(&ksym_tracer_mutex); | ||
| 251 | |||
| 252 | kfree(s); | ||
| 253 | |||
| 254 | return cnt; | ||
| 255 | } | ||
| 256 | |||
| 257 | static void __ksym_trace_reset(void) | ||
| 258 | { | ||
| 259 | struct trace_ksym *entry; | ||
| 260 | struct hlist_node *node, *node1; | ||
| 261 | |||
| 262 | mutex_lock(&ksym_tracer_mutex); | ||
| 263 | hlist_for_each_entry_safe(entry, node, node1, &ksym_filter_head, | ||
| 264 | ksym_hlist) { | ||
| 265 | unregister_wide_hw_breakpoint(entry->ksym_hbp); | ||
| 266 | ksym_filter_entry_count--; | ||
| 267 | hlist_del_rcu(&(entry->ksym_hlist)); | ||
| 268 | synchronize_rcu(); | ||
| 269 | kfree(entry); | ||
| 270 | } | ||
| 271 | mutex_unlock(&ksym_tracer_mutex); | ||
| 272 | } | ||
| 273 | |||
| 274 | static ssize_t ksym_trace_filter_write(struct file *file, | ||
| 275 | const char __user *buffer, | ||
| 276 | size_t count, loff_t *ppos) | ||
| 277 | { | ||
| 278 | struct trace_ksym *entry; | ||
| 279 | struct hlist_node *node; | ||
| 280 | char *input_string, *ksymname = NULL; | ||
| 281 | unsigned long ksym_addr = 0; | ||
| 282 | int ret, op, changed = 0; | ||
| 283 | |||
| 284 | input_string = kzalloc(count + 1, GFP_KERNEL); | ||
| 285 | if (!input_string) | ||
| 286 | return -ENOMEM; | ||
| 287 | |||
| 288 | if (copy_from_user(input_string, buffer, count)) { | ||
| 289 | kfree(input_string); | ||
| 290 | return -EFAULT; | ||
| 291 | } | ||
| 292 | input_string[count] = '\0'; | ||
| 293 | |||
| 294 | strstrip(input_string); | ||
| 295 | |||
| 296 | /* | ||
| 297 | * Clear all breakpoints if: | ||
| 298 | * 1: echo > ksym_trace_filter | ||
| 299 | * 2: echo 0 > ksym_trace_filter | ||
| 300 | * 3: echo "*:---" > ksym_trace_filter | ||
| 301 | */ | ||
| 302 | if (!input_string[0] || !strcmp(input_string, "0") || | ||
| 303 | !strcmp(input_string, "*:---")) { | ||
| 304 | __ksym_trace_reset(); | ||
| 305 | kfree(input_string); | ||
| 306 | return count; | ||
| 307 | } | ||
| 308 | |||
| 309 | ret = op = parse_ksym_trace_str(input_string, &ksymname, &ksym_addr); | ||
| 310 | if (ret < 0) { | ||
| 311 | kfree(input_string); | ||
| 312 | return ret; | ||
| 313 | } | ||
| 314 | |||
| 315 | mutex_lock(&ksym_tracer_mutex); | ||
| 316 | |||
| 317 | ret = -EINVAL; | ||
| 318 | hlist_for_each_entry(entry, node, &ksym_filter_head, ksym_hlist) { | ||
| 319 | if (entry->attr.bp_addr == ksym_addr) { | ||
| 320 | /* Check for malformed request: (6) */ | ||
| 321 | if (entry->attr.bp_type != op) | ||
| 322 | changed = 1; | ||
| 323 | else | ||
| 324 | goto out; | ||
| 325 | break; | ||
| 326 | } | ||
| 327 | } | ||
| 328 | if (changed) { | ||
| 329 | unregister_wide_hw_breakpoint(entry->ksym_hbp); | ||
| 330 | entry->attr.bp_type = op; | ||
| 331 | ret = 0; | ||
| 332 | if (op > 0) { | ||
| 333 | entry->ksym_hbp = | ||
| 334 | register_wide_hw_breakpoint(&entry->attr, | ||
| 335 | ksym_hbp_handler); | ||
| 336 | if (IS_ERR(entry->ksym_hbp)) | ||
| 337 | ret = PTR_ERR(entry->ksym_hbp); | ||
| 338 | else | ||
| 339 | goto out; | ||
| 340 | } | ||
| 341 | /* Error or "symbol:---" case: drop it */ | ||
| 342 | ksym_filter_entry_count--; | ||
| 343 | hlist_del_rcu(&(entry->ksym_hlist)); | ||
| 344 | synchronize_rcu(); | ||
| 345 | kfree(entry); | ||
| 346 | goto out; | ||
| 347 | } else { | ||
| 348 | /* Check for malformed request: (4) */ | ||
| 349 | if (op == 0) | ||
| 350 | goto out; | ||
| 351 | ret = process_new_ksym_entry(ksymname, op, ksym_addr); | ||
| 352 | } | ||
| 353 | out: | ||
| 354 | mutex_unlock(&ksym_tracer_mutex); | ||
| 355 | |||
| 356 | kfree(input_string); | ||
| 357 | |||
| 358 | if (!ret) | ||
| 359 | ret = count; | ||
| 360 | return ret; | ||
| 361 | } | ||
| 362 | |||
| 363 | static const struct file_operations ksym_tracing_fops = { | ||
| 364 | .open = tracing_open_generic, | ||
| 365 | .read = ksym_trace_filter_read, | ||
| 366 | .write = ksym_trace_filter_write, | ||
| 367 | }; | ||
| 368 | |||
| 369 | static void ksym_trace_reset(struct trace_array *tr) | ||
| 370 | { | ||
| 371 | ksym_tracing_enabled = 0; | ||
| 372 | __ksym_trace_reset(); | ||
| 373 | } | ||
| 374 | |||
| 375 | static int ksym_trace_init(struct trace_array *tr) | ||
| 376 | { | ||
| 377 | int cpu, ret = 0; | ||
| 378 | |||
| 379 | for_each_online_cpu(cpu) | ||
| 380 | tracing_reset(tr, cpu); | ||
| 381 | ksym_tracing_enabled = 1; | ||
| 382 | ksym_trace_array = tr; | ||
| 383 | |||
| 384 | return ret; | ||
| 385 | } | ||
| 386 | |||
| 387 | static void ksym_trace_print_header(struct seq_file *m) | ||
| 388 | { | ||
| 389 | seq_puts(m, | ||
| 390 | "# TASK-PID CPU# Symbol " | ||
| 391 | "Type Function\n"); | ||
| 392 | seq_puts(m, | ||
| 393 | "# | | | " | ||
| 394 | " | |\n"); | ||
| 395 | } | ||
| 396 | |||
| 397 | static enum print_line_t ksym_trace_output(struct trace_iterator *iter) | ||
| 398 | { | ||
| 399 | struct trace_entry *entry = iter->ent; | ||
| 400 | struct trace_seq *s = &iter->seq; | ||
| 401 | struct ksym_trace_entry *field; | ||
| 402 | char str[KSYM_SYMBOL_LEN]; | ||
| 403 | int ret; | ||
| 404 | |||
| 405 | if (entry->type != TRACE_KSYM) | ||
| 406 | return TRACE_TYPE_UNHANDLED; | ||
| 407 | |||
| 408 | trace_assign_type(field, entry); | ||
| 409 | |||
| 410 | ret = trace_seq_printf(s, "%11s-%-5d [%03d] %pS", field->cmd, | ||
| 411 | entry->pid, iter->cpu, (char *)field->addr); | ||
| 412 | if (!ret) | ||
| 413 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 414 | |||
| 415 | switch (field->type) { | ||
| 416 | case HW_BREAKPOINT_R: | ||
| 417 | ret = trace_seq_printf(s, " R "); | ||
| 418 | break; | ||
| 419 | case HW_BREAKPOINT_W: | ||
| 420 | ret = trace_seq_printf(s, " W "); | ||
| 421 | break; | ||
| 422 | case HW_BREAKPOINT_R | HW_BREAKPOINT_W: | ||
| 423 | ret = trace_seq_printf(s, " RW "); | ||
| 424 | break; | ||
| 425 | default: | ||
| 426 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 427 | } | ||
| 428 | |||
| 429 | if (!ret) | ||
| 430 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 431 | |||
| 432 | sprint_symbol(str, field->ip); | ||
| 433 | ret = trace_seq_printf(s, "%s\n", str); | ||
| 434 | if (!ret) | ||
| 435 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 436 | |||
| 437 | return TRACE_TYPE_HANDLED; | ||
| 438 | } | ||
| 439 | |||
| 440 | struct tracer ksym_tracer __read_mostly = | ||
| 441 | { | ||
| 442 | .name = "ksym_tracer", | ||
| 443 | .init = ksym_trace_init, | ||
| 444 | .reset = ksym_trace_reset, | ||
| 445 | #ifdef CONFIG_FTRACE_SELFTEST | ||
| 446 | .selftest = trace_selftest_startup_ksym, | ||
| 447 | #endif | ||
| 448 | .print_header = ksym_trace_print_header, | ||
| 449 | .print_line = ksym_trace_output | ||
| 450 | }; | ||
| 451 | |||
| 452 | __init static int init_ksym_trace(void) | ||
| 453 | { | ||
| 454 | struct dentry *d_tracer; | ||
| 455 | struct dentry *entry; | ||
| 456 | |||
| 457 | d_tracer = tracing_init_dentry(); | ||
| 458 | ksym_filter_entry_count = 0; | ||
| 459 | |||
| 460 | entry = debugfs_create_file("ksym_trace_filter", 0644, d_tracer, | ||
| 461 | NULL, &ksym_tracing_fops); | ||
| 462 | if (!entry) | ||
| 463 | pr_warning("Could not create debugfs " | ||
| 464 | "'ksym_trace_filter' file\n"); | ||
| 465 | |||
| 466 | return register_tracer(&ksym_tracer); | ||
| 467 | } | ||
| 468 | device_initcall(init_ksym_trace); | ||
| 469 | |||
| 470 | |||
| 471 | #ifdef CONFIG_PROFILE_KSYM_TRACER | ||
| 472 | static int ksym_tracer_stat_headers(struct seq_file *m) | ||
| 473 | { | ||
| 474 | seq_puts(m, " Access Type "); | ||
| 475 | seq_puts(m, " Symbol Counter\n"); | ||
| 476 | seq_puts(m, " ----------- "); | ||
| 477 | seq_puts(m, " ------ -------\n"); | ||
| 478 | return 0; | ||
| 479 | } | ||
| 480 | |||
| 481 | static int ksym_tracer_stat_show(struct seq_file *m, void *v) | ||
| 482 | { | ||
| 483 | struct hlist_node *stat = v; | ||
| 484 | struct trace_ksym *entry; | ||
| 485 | int access_type = 0; | ||
| 486 | char fn_name[KSYM_NAME_LEN]; | ||
| 487 | |||
| 488 | entry = hlist_entry(stat, struct trace_ksym, ksym_hlist); | ||
| 489 | |||
| 490 | access_type = entry->attr.bp_type; | ||
| 491 | |||
| 492 | switch (access_type) { | ||
| 493 | case HW_BREAKPOINT_R: | ||
| 494 | seq_puts(m, " R "); | ||
| 495 | break; | ||
| 496 | case HW_BREAKPOINT_W: | ||
| 497 | seq_puts(m, " W "); | ||
| 498 | break; | ||
| 499 | case HW_BREAKPOINT_R | HW_BREAKPOINT_W: | ||
| 500 | seq_puts(m, " RW "); | ||
| 501 | break; | ||
| 502 | default: | ||
| 503 | seq_puts(m, " NA "); | ||
| 504 | } | ||
| 505 | |||
| 506 | if (lookup_symbol_name(entry->attr.bp_addr, fn_name) >= 0) | ||
| 507 | seq_printf(m, " %-36s", fn_name); | ||
| 508 | else | ||
| 509 | seq_printf(m, " %-36s", "<NA>"); | ||
| 510 | seq_printf(m, " %15lu\n", entry->counter); | ||
| 511 | |||
| 512 | return 0; | ||
| 513 | } | ||
| 514 | |||
| 515 | static void *ksym_tracer_stat_start(struct tracer_stat *trace) | ||
| 516 | { | ||
| 517 | return ksym_filter_head.first; | ||
| 518 | } | ||
| 519 | |||
| 520 | static void * | ||
| 521 | ksym_tracer_stat_next(void *v, int idx) | ||
| 522 | { | ||
| 523 | struct hlist_node *stat = v; | ||
| 524 | |||
| 525 | return stat->next; | ||
| 526 | } | ||
| 527 | |||
| 528 | static struct tracer_stat ksym_tracer_stats = { | ||
| 529 | .name = "ksym_tracer", | ||
| 530 | .stat_start = ksym_tracer_stat_start, | ||
| 531 | .stat_next = ksym_tracer_stat_next, | ||
| 532 | .stat_headers = ksym_tracer_stat_headers, | ||
| 533 | .stat_show = ksym_tracer_stat_show | ||
| 534 | }; | ||
| 535 | |||
| 536 | __init static int ksym_tracer_stat_init(void) | ||
| 537 | { | ||
| 538 | int ret; | ||
| 539 | |||
| 540 | ret = register_stat_tracer(&ksym_tracer_stats); | ||
| 541 | if (ret) { | ||
| 542 | printk(KERN_WARNING "Warning: could not register " | ||
| 543 | "ksym tracer stats\n"); | ||
| 544 | return 1; | ||
| 545 | } | ||
| 546 | |||
| 547 | return 0; | ||
| 548 | } | ||
| 549 | fs_initcall(ksym_tracer_stat_init); | ||
| 550 | #endif /* CONFIG_PROFILE_KSYM_TRACER */ | ||
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c index c4c9bbda53d3..0acd834659ed 100644 --- a/kernel/trace/trace_mmiotrace.c +++ b/kernel/trace/trace_mmiotrace.c | |||
| @@ -307,6 +307,7 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
| 307 | struct trace_array_cpu *data, | 307 | struct trace_array_cpu *data, |
| 308 | struct mmiotrace_rw *rw) | 308 | struct mmiotrace_rw *rw) |
| 309 | { | 309 | { |
| 310 | struct ftrace_event_call *call = &event_mmiotrace_rw; | ||
| 310 | struct ring_buffer *buffer = tr->buffer; | 311 | struct ring_buffer *buffer = tr->buffer; |
| 311 | struct ring_buffer_event *event; | 312 | struct ring_buffer_event *event; |
| 312 | struct trace_mmiotrace_rw *entry; | 313 | struct trace_mmiotrace_rw *entry; |
| @@ -320,7 +321,9 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
| 320 | } | 321 | } |
| 321 | entry = ring_buffer_event_data(event); | 322 | entry = ring_buffer_event_data(event); |
| 322 | entry->rw = *rw; | 323 | entry->rw = *rw; |
| 323 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 324 | |
| 325 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 326 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 324 | } | 327 | } |
| 325 | 328 | ||
| 326 | void mmio_trace_rw(struct mmiotrace_rw *rw) | 329 | void mmio_trace_rw(struct mmiotrace_rw *rw) |
| @@ -334,6 +337,7 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
| 334 | struct trace_array_cpu *data, | 337 | struct trace_array_cpu *data, |
| 335 | struct mmiotrace_map *map) | 338 | struct mmiotrace_map *map) |
| 336 | { | 339 | { |
| 340 | struct ftrace_event_call *call = &event_mmiotrace_map; | ||
| 337 | struct ring_buffer *buffer = tr->buffer; | 341 | struct ring_buffer *buffer = tr->buffer; |
| 338 | struct ring_buffer_event *event; | 342 | struct ring_buffer_event *event; |
| 339 | struct trace_mmiotrace_map *entry; | 343 | struct trace_mmiotrace_map *entry; |
| @@ -347,7 +351,9 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
| 347 | } | 351 | } |
| 348 | entry = ring_buffer_event_data(event); | 352 | entry = ring_buffer_event_data(event); |
| 349 | entry->map = *map; | 353 | entry->map = *map; |
| 350 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 354 | |
| 355 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 356 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 351 | } | 357 | } |
| 352 | 358 | ||
| 353 | void mmio_trace_mapping(struct mmiotrace_map *map) | 359 | void mmio_trace_mapping(struct mmiotrace_map *map) |
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index e0c2545622e8..b6c12c6a1bcd 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
| @@ -69,6 +69,9 @@ enum print_line_t trace_print_printk_msg_only(struct trace_iterator *iter) | |||
| 69 | * @s: trace sequence descriptor | 69 | * @s: trace sequence descriptor |
| 70 | * @fmt: printf format string | 70 | * @fmt: printf format string |
| 71 | * | 71 | * |
| 72 | * It returns 0 if the trace oversizes the buffer's free | ||
| 73 | * space, 1 otherwise. | ||
| 74 | * | ||
| 72 | * The tracer may use either sequence operations or its own | 75 | * The tracer may use either sequence operations or its own |
| 73 | * copy to user routines. To simplify formating of a trace | 76 | * copy to user routines. To simplify formating of a trace |
| 74 | * trace_seq_printf is used to store strings into a special | 77 | * trace_seq_printf is used to store strings into a special |
| @@ -95,7 +98,7 @@ trace_seq_printf(struct trace_seq *s, const char *fmt, ...) | |||
| 95 | 98 | ||
| 96 | s->len += ret; | 99 | s->len += ret; |
| 97 | 100 | ||
| 98 | return len; | 101 | return 1; |
| 99 | } | 102 | } |
| 100 | EXPORT_SYMBOL_GPL(trace_seq_printf); | 103 | EXPORT_SYMBOL_GPL(trace_seq_printf); |
| 101 | 104 | ||
| @@ -407,7 +410,7 @@ seq_print_userip_objs(const struct userstack_entry *entry, struct trace_seq *s, | |||
| 407 | * since individual threads might have already quit! | 410 | * since individual threads might have already quit! |
| 408 | */ | 411 | */ |
| 409 | rcu_read_lock(); | 412 | rcu_read_lock(); |
| 410 | task = find_task_by_vpid(entry->ent.tgid); | 413 | task = find_task_by_vpid(entry->tgid); |
| 411 | if (task) | 414 | if (task) |
| 412 | mm = get_task_mm(task); | 415 | mm = get_task_mm(task); |
| 413 | rcu_read_unlock(); | 416 | rcu_read_unlock(); |
| @@ -460,18 +463,23 @@ seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags) | |||
| 460 | return ret; | 463 | return ret; |
| 461 | } | 464 | } |
| 462 | 465 | ||
| 463 | static int | 466 | /** |
| 464 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | 467 | * trace_print_lat_fmt - print the irq, preempt and lockdep fields |
| 468 | * @s: trace seq struct to write to | ||
| 469 | * @entry: The trace entry field from the ring buffer | ||
| 470 | * | ||
| 471 | * Prints the generic fields of irqs off, in hard or softirq, preempt | ||
| 472 | * count and lock depth. | ||
| 473 | */ | ||
| 474 | int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
| 465 | { | 475 | { |
| 466 | int hardirq, softirq; | 476 | int hardirq, softirq; |
| 467 | char comm[TASK_COMM_LEN]; | 477 | int ret; |
| 468 | 478 | ||
| 469 | trace_find_cmdline(entry->pid, comm); | ||
| 470 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; | 479 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; |
| 471 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; | 480 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; |
| 472 | 481 | ||
| 473 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d%c%c%c", | 482 | if (!trace_seq_printf(s, "%c%c%c", |
| 474 | comm, entry->pid, cpu, | ||
| 475 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : | 483 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : |
| 476 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? | 484 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? |
| 477 | 'X' : '.', | 485 | 'X' : '.', |
| @@ -482,8 +490,31 @@ lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | |||
| 482 | return 0; | 490 | return 0; |
| 483 | 491 | ||
| 484 | if (entry->preempt_count) | 492 | if (entry->preempt_count) |
| 485 | return trace_seq_printf(s, "%x", entry->preempt_count); | 493 | ret = trace_seq_printf(s, "%x", entry->preempt_count); |
| 486 | return trace_seq_puts(s, "."); | 494 | else |
| 495 | ret = trace_seq_putc(s, '.'); | ||
| 496 | |||
| 497 | if (!ret) | ||
| 498 | return 0; | ||
| 499 | |||
| 500 | if (entry->lock_depth < 0) | ||
| 501 | return trace_seq_putc(s, '.'); | ||
| 502 | |||
| 503 | return trace_seq_printf(s, "%d", entry->lock_depth); | ||
| 504 | } | ||
| 505 | |||
| 506 | static int | ||
| 507 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | ||
| 508 | { | ||
| 509 | char comm[TASK_COMM_LEN]; | ||
| 510 | |||
| 511 | trace_find_cmdline(entry->pid, comm); | ||
| 512 | |||
| 513 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d", | ||
| 514 | comm, entry->pid, cpu)) | ||
| 515 | return 0; | ||
| 516 | |||
| 517 | return trace_print_lat_fmt(s, entry); | ||
| 487 | } | 518 | } |
| 488 | 519 | ||
| 489 | static unsigned long preempt_mark_thresh = 100; | 520 | static unsigned long preempt_mark_thresh = 100; |
| @@ -857,7 +888,7 @@ static int trace_ctxwake_raw(struct trace_iterator *iter, char S) | |||
| 857 | trace_assign_type(field, iter->ent); | 888 | trace_assign_type(field, iter->ent); |
| 858 | 889 | ||
| 859 | if (!S) | 890 | if (!S) |
| 860 | task_state_char(field->prev_state); | 891 | S = task_state_char(field->prev_state); |
| 861 | T = task_state_char(field->next_state); | 892 | T = task_state_char(field->next_state); |
| 862 | if (!trace_seq_printf(&iter->seq, "%d %d %c %d %d %d %c\n", | 893 | if (!trace_seq_printf(&iter->seq, "%d %d %c %d %d %d %c\n", |
| 863 | field->prev_pid, | 894 | field->prev_pid, |
| @@ -892,7 +923,7 @@ static int trace_ctxwake_hex(struct trace_iterator *iter, char S) | |||
| 892 | trace_assign_type(field, iter->ent); | 923 | trace_assign_type(field, iter->ent); |
| 893 | 924 | ||
| 894 | if (!S) | 925 | if (!S) |
| 895 | task_state_char(field->prev_state); | 926 | S = task_state_char(field->prev_state); |
| 896 | T = task_state_char(field->next_state); | 927 | T = task_state_char(field->next_state); |
| 897 | 928 | ||
| 898 | SEQ_PUT_HEX_FIELD_RET(s, field->prev_pid); | 929 | SEQ_PUT_HEX_FIELD_RET(s, field->prev_pid); |
diff --git a/kernel/trace/trace_output.h b/kernel/trace/trace_output.h index d38bec4a9c30..9d91c72ba38b 100644 --- a/kernel/trace/trace_output.h +++ b/kernel/trace/trace_output.h | |||
| @@ -26,6 +26,8 @@ extern struct trace_event *ftrace_find_event(int type); | |||
| 26 | 26 | ||
| 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, | 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, |
| 28 | int flags); | 28 | int flags); |
| 29 | extern int | ||
| 30 | trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry); | ||
| 29 | 31 | ||
| 30 | /* used by module unregistering */ | 32 | /* used by module unregistering */ |
| 31 | extern int __unregister_ftrace_event(struct trace_event *event); | 33 | extern int __unregister_ftrace_event(struct trace_event *event); |
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c deleted file mode 100644 index fe1a00f1445a..000000000000 --- a/kernel/trace/trace_power.c +++ /dev/null | |||
| @@ -1,218 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * ring buffer based C-state tracer | ||
| 3 | * | ||
| 4 | * Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | * Copyright (C) 2008 Intel Corporation | ||
| 6 | * | ||
| 7 | * Much is borrowed from trace_boot.c which is | ||
| 8 | * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com> | ||
| 9 | * | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/init.h> | ||
| 13 | #include <linux/debugfs.h> | ||
| 14 | #include <trace/power.h> | ||
| 15 | #include <linux/kallsyms.h> | ||
| 16 | #include <linux/module.h> | ||
| 17 | |||
| 18 | #include "trace.h" | ||
| 19 | #include "trace_output.h" | ||
| 20 | |||
| 21 | static struct trace_array *power_trace; | ||
| 22 | static int __read_mostly trace_power_enabled; | ||
| 23 | |||
| 24 | static void probe_power_start(struct power_trace *it, unsigned int type, | ||
| 25 | unsigned int level) | ||
| 26 | { | ||
| 27 | if (!trace_power_enabled) | ||
| 28 | return; | ||
| 29 | |||
| 30 | memset(it, 0, sizeof(struct power_trace)); | ||
| 31 | it->state = level; | ||
| 32 | it->type = type; | ||
| 33 | it->stamp = ktime_get(); | ||
| 34 | } | ||
| 35 | |||
| 36 | |||
| 37 | static void probe_power_end(struct power_trace *it) | ||
| 38 | { | ||
| 39 | struct ftrace_event_call *call = &event_power; | ||
| 40 | struct ring_buffer_event *event; | ||
| 41 | struct ring_buffer *buffer; | ||
| 42 | struct trace_power *entry; | ||
| 43 | struct trace_array_cpu *data; | ||
| 44 | struct trace_array *tr = power_trace; | ||
| 45 | |||
| 46 | if (!trace_power_enabled) | ||
| 47 | return; | ||
| 48 | |||
| 49 | buffer = tr->buffer; | ||
| 50 | |||
| 51 | preempt_disable(); | ||
| 52 | it->end = ktime_get(); | ||
| 53 | data = tr->data[smp_processor_id()]; | ||
| 54 | |||
| 55 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
| 56 | sizeof(*entry), 0, 0); | ||
| 57 | if (!event) | ||
| 58 | goto out; | ||
| 59 | entry = ring_buffer_event_data(event); | ||
| 60 | entry->state_data = *it; | ||
| 61 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 62 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 63 | out: | ||
| 64 | preempt_enable(); | ||
| 65 | } | ||
| 66 | |||
| 67 | static void probe_power_mark(struct power_trace *it, unsigned int type, | ||
| 68 | unsigned int level) | ||
| 69 | { | ||
| 70 | struct ftrace_event_call *call = &event_power; | ||
| 71 | struct ring_buffer_event *event; | ||
| 72 | struct ring_buffer *buffer; | ||
| 73 | struct trace_power *entry; | ||
| 74 | struct trace_array_cpu *data; | ||
| 75 | struct trace_array *tr = power_trace; | ||
| 76 | |||
| 77 | if (!trace_power_enabled) | ||
| 78 | return; | ||
| 79 | |||
| 80 | buffer = tr->buffer; | ||
| 81 | |||
| 82 | memset(it, 0, sizeof(struct power_trace)); | ||
| 83 | it->state = level; | ||
| 84 | it->type = type; | ||
| 85 | it->stamp = ktime_get(); | ||
| 86 | preempt_disable(); | ||
| 87 | it->end = it->stamp; | ||
| 88 | data = tr->data[smp_processor_id()]; | ||
| 89 | |||
| 90 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
| 91 | sizeof(*entry), 0, 0); | ||
| 92 | if (!event) | ||
| 93 | goto out; | ||
| 94 | entry = ring_buffer_event_data(event); | ||
| 95 | entry->state_data = *it; | ||
| 96 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 97 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 98 | out: | ||
| 99 | preempt_enable(); | ||
| 100 | } | ||
| 101 | |||
| 102 | static int tracing_power_register(void) | ||
| 103 | { | ||
| 104 | int ret; | ||
| 105 | |||
| 106 | ret = register_trace_power_start(probe_power_start); | ||
| 107 | if (ret) { | ||
| 108 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 109 | " probe to trace_power_start\n"); | ||
| 110 | return ret; | ||
| 111 | } | ||
| 112 | ret = register_trace_power_end(probe_power_end); | ||
| 113 | if (ret) { | ||
| 114 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 115 | " probe to trace_power_end\n"); | ||
| 116 | goto fail_start; | ||
| 117 | } | ||
| 118 | ret = register_trace_power_mark(probe_power_mark); | ||
| 119 | if (ret) { | ||
| 120 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 121 | " probe to trace_power_mark\n"); | ||
| 122 | goto fail_end; | ||
| 123 | } | ||
| 124 | return ret; | ||
| 125 | fail_end: | ||
| 126 | unregister_trace_power_end(probe_power_end); | ||
| 127 | fail_start: | ||
| 128 | unregister_trace_power_start(probe_power_start); | ||
| 129 | return ret; | ||
| 130 | } | ||
| 131 | |||
| 132 | static void start_power_trace(struct trace_array *tr) | ||
| 133 | { | ||
| 134 | trace_power_enabled = 1; | ||
| 135 | } | ||
| 136 | |||
| 137 | static void stop_power_trace(struct trace_array *tr) | ||
| 138 | { | ||
| 139 | trace_power_enabled = 0; | ||
| 140 | } | ||
| 141 | |||
| 142 | static void power_trace_reset(struct trace_array *tr) | ||
| 143 | { | ||
| 144 | trace_power_enabled = 0; | ||
| 145 | unregister_trace_power_start(probe_power_start); | ||
| 146 | unregister_trace_power_end(probe_power_end); | ||
| 147 | unregister_trace_power_mark(probe_power_mark); | ||
| 148 | } | ||
| 149 | |||
| 150 | |||
| 151 | static int power_trace_init(struct trace_array *tr) | ||
| 152 | { | ||
| 153 | power_trace = tr; | ||
| 154 | |||
| 155 | trace_power_enabled = 1; | ||
| 156 | tracing_power_register(); | ||
| 157 | |||
| 158 | tracing_reset_online_cpus(tr); | ||
| 159 | return 0; | ||
| 160 | } | ||
| 161 | |||
| 162 | static enum print_line_t power_print_line(struct trace_iterator *iter) | ||
| 163 | { | ||
| 164 | int ret = 0; | ||
| 165 | struct trace_entry *entry = iter->ent; | ||
| 166 | struct trace_power *field ; | ||
| 167 | struct power_trace *it; | ||
| 168 | struct trace_seq *s = &iter->seq; | ||
| 169 | struct timespec stamp; | ||
| 170 | struct timespec duration; | ||
| 171 | |||
| 172 | trace_assign_type(field, entry); | ||
| 173 | it = &field->state_data; | ||
| 174 | stamp = ktime_to_timespec(it->stamp); | ||
| 175 | duration = ktime_to_timespec(ktime_sub(it->end, it->stamp)); | ||
| 176 | |||
| 177 | if (entry->type == TRACE_POWER) { | ||
| 178 | if (it->type == POWER_CSTATE) | ||
| 179 | ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n", | ||
| 180 | stamp.tv_sec, | ||
| 181 | stamp.tv_nsec, | ||
| 182 | it->state, iter->cpu, | ||
| 183 | duration.tv_sec, | ||
| 184 | duration.tv_nsec); | ||
| 185 | if (it->type == POWER_PSTATE) | ||
| 186 | ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n", | ||
| 187 | stamp.tv_sec, | ||
| 188 | stamp.tv_nsec, | ||
| 189 | it->state, iter->cpu); | ||
| 190 | if (!ret) | ||
| 191 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 192 | return TRACE_TYPE_HANDLED; | ||
| 193 | } | ||
| 194 | return TRACE_TYPE_UNHANDLED; | ||
| 195 | } | ||
| 196 | |||
| 197 | static void power_print_header(struct seq_file *s) | ||
| 198 | { | ||
| 199 | seq_puts(s, "# TIMESTAMP STATE EVENT\n"); | ||
| 200 | seq_puts(s, "# | | |\n"); | ||
| 201 | } | ||
| 202 | |||
| 203 | static struct tracer power_tracer __read_mostly = | ||
| 204 | { | ||
| 205 | .name = "power", | ||
| 206 | .init = power_trace_init, | ||
| 207 | .start = start_power_trace, | ||
| 208 | .stop = stop_power_trace, | ||
| 209 | .reset = power_trace_reset, | ||
| 210 | .print_line = power_print_line, | ||
| 211 | .print_header = power_print_header, | ||
| 212 | }; | ||
| 213 | |||
| 214 | static int init_power_trace(void) | ||
| 215 | { | ||
| 216 | return register_tracer(&power_tracer); | ||
| 217 | } | ||
| 218 | device_initcall(init_power_trace); | ||
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 687699d365ae..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
| @@ -11,7 +11,6 @@ | |||
| 11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
| 13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
| 14 | #include <linux/marker.h> | ||
| 15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
| 16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
| 17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index ad69f105a7c6..26185d727676 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c | |||
| @@ -24,6 +24,7 @@ static int __read_mostly tracer_enabled; | |||
| 24 | 24 | ||
| 25 | static struct task_struct *wakeup_task; | 25 | static struct task_struct *wakeup_task; |
| 26 | static int wakeup_cpu; | 26 | static int wakeup_cpu; |
| 27 | static int wakeup_current_cpu; | ||
| 27 | static unsigned wakeup_prio = -1; | 28 | static unsigned wakeup_prio = -1; |
| 28 | static int wakeup_rt; | 29 | static int wakeup_rt; |
| 29 | 30 | ||
| @@ -56,33 +57,23 @@ wakeup_tracer_call(unsigned long ip, unsigned long parent_ip) | |||
| 56 | resched = ftrace_preempt_disable(); | 57 | resched = ftrace_preempt_disable(); |
| 57 | 58 | ||
| 58 | cpu = raw_smp_processor_id(); | 59 | cpu = raw_smp_processor_id(); |
| 60 | if (cpu != wakeup_current_cpu) | ||
| 61 | goto out_enable; | ||
| 62 | |||
| 59 | data = tr->data[cpu]; | 63 | data = tr->data[cpu]; |
| 60 | disabled = atomic_inc_return(&data->disabled); | 64 | disabled = atomic_inc_return(&data->disabled); |
| 61 | if (unlikely(disabled != 1)) | 65 | if (unlikely(disabled != 1)) |
| 62 | goto out; | 66 | goto out; |
| 63 | 67 | ||
| 64 | local_irq_save(flags); | 68 | local_irq_save(flags); |
| 65 | __raw_spin_lock(&wakeup_lock); | ||
| 66 | |||
| 67 | if (unlikely(!wakeup_task)) | ||
| 68 | goto unlock; | ||
| 69 | |||
| 70 | /* | ||
| 71 | * The task can't disappear because it needs to | ||
| 72 | * wake up first, and we have the wakeup_lock. | ||
| 73 | */ | ||
| 74 | if (task_cpu(wakeup_task) != cpu) | ||
| 75 | goto unlock; | ||
| 76 | 69 | ||
| 77 | trace_function(tr, ip, parent_ip, flags, pc); | 70 | trace_function(tr, ip, parent_ip, flags, pc); |
| 78 | 71 | ||
| 79 | unlock: | ||
| 80 | __raw_spin_unlock(&wakeup_lock); | ||
| 81 | local_irq_restore(flags); | 72 | local_irq_restore(flags); |
| 82 | 73 | ||
| 83 | out: | 74 | out: |
| 84 | atomic_dec(&data->disabled); | 75 | atomic_dec(&data->disabled); |
| 85 | 76 | out_enable: | |
| 86 | ftrace_preempt_enable(resched); | 77 | ftrace_preempt_enable(resched); |
| 87 | } | 78 | } |
| 88 | 79 | ||
| @@ -107,11 +98,18 @@ static int report_latency(cycle_t delta) | |||
| 107 | return 1; | 98 | return 1; |
| 108 | } | 99 | } |
| 109 | 100 | ||
| 101 | static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | ||
| 102 | { | ||
| 103 | if (task != wakeup_task) | ||
| 104 | return; | ||
| 105 | |||
| 106 | wakeup_current_cpu = cpu; | ||
| 107 | } | ||
| 108 | |||
| 110 | static void notrace | 109 | static void notrace |
| 111 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | 110 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, |
| 112 | struct task_struct *next) | 111 | struct task_struct *next) |
| 113 | { | 112 | { |
| 114 | unsigned long latency = 0, t0 = 0, t1 = 0; | ||
| 115 | struct trace_array_cpu *data; | 113 | struct trace_array_cpu *data; |
| 116 | cycle_t T0, T1, delta; | 114 | cycle_t T0, T1, delta; |
| 117 | unsigned long flags; | 115 | unsigned long flags; |
| @@ -157,10 +155,6 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
| 157 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); | 155 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); |
| 158 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); | 156 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); |
| 159 | 157 | ||
| 160 | /* | ||
| 161 | * usecs conversion is slow so we try to delay the conversion | ||
| 162 | * as long as possible: | ||
| 163 | */ | ||
| 164 | T0 = data->preempt_timestamp; | 158 | T0 = data->preempt_timestamp; |
| 165 | T1 = ftrace_now(cpu); | 159 | T1 = ftrace_now(cpu); |
| 166 | delta = T1-T0; | 160 | delta = T1-T0; |
| @@ -168,13 +162,10 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
| 168 | if (!report_latency(delta)) | 162 | if (!report_latency(delta)) |
| 169 | goto out_unlock; | 163 | goto out_unlock; |
| 170 | 164 | ||
| 171 | latency = nsecs_to_usecs(delta); | 165 | if (likely(!is_tracing_stopped())) { |
| 172 | 166 | tracing_max_latency = delta; | |
| 173 | tracing_max_latency = delta; | 167 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); |
| 174 | t0 = nsecs_to_usecs(T0); | 168 | } |
| 175 | t1 = nsecs_to_usecs(T1); | ||
| 176 | |||
| 177 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); | ||
| 178 | 169 | ||
| 179 | out_unlock: | 170 | out_unlock: |
| 180 | __wakeup_reset(wakeup_trace); | 171 | __wakeup_reset(wakeup_trace); |
| @@ -244,6 +235,7 @@ probe_wakeup(struct rq *rq, struct task_struct *p, int success) | |||
| 244 | __wakeup_reset(wakeup_trace); | 235 | __wakeup_reset(wakeup_trace); |
| 245 | 236 | ||
| 246 | wakeup_cpu = task_cpu(p); | 237 | wakeup_cpu = task_cpu(p); |
| 238 | wakeup_current_cpu = wakeup_cpu; | ||
| 247 | wakeup_prio = p->prio; | 239 | wakeup_prio = p->prio; |
| 248 | 240 | ||
| 249 | wakeup_task = p; | 241 | wakeup_task = p; |
| @@ -293,6 +285,13 @@ static void start_wakeup_tracer(struct trace_array *tr) | |||
| 293 | goto fail_deprobe_wake_new; | 285 | goto fail_deprobe_wake_new; |
| 294 | } | 286 | } |
| 295 | 287 | ||
| 288 | ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
| 289 | if (ret) { | ||
| 290 | pr_info("wakeup trace: Couldn't activate tracepoint" | ||
| 291 | " probe to kernel_sched_migrate_task\n"); | ||
| 292 | return; | ||
| 293 | } | ||
| 294 | |||
| 296 | wakeup_reset(tr); | 295 | wakeup_reset(tr); |
| 297 | 296 | ||
| 298 | /* | 297 | /* |
| @@ -325,6 +324,7 @@ static void stop_wakeup_tracer(struct trace_array *tr) | |||
| 325 | unregister_trace_sched_switch(probe_wakeup_sched_switch); | 324 | unregister_trace_sched_switch(probe_wakeup_sched_switch); |
| 326 | unregister_trace_sched_wakeup_new(probe_wakeup); | 325 | unregister_trace_sched_wakeup_new(probe_wakeup); |
| 327 | unregister_trace_sched_wakeup(probe_wakeup); | 326 | unregister_trace_sched_wakeup(probe_wakeup); |
| 327 | unregister_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
| 328 | } | 328 | } |
| 329 | 329 | ||
| 330 | static int __wakeup_tracer_init(struct trace_array *tr) | 330 | static int __wakeup_tracer_init(struct trace_array *tr) |
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c index d2cdbabb4ead..dc98309e839a 100644 --- a/kernel/trace/trace_selftest.c +++ b/kernel/trace/trace_selftest.c | |||
| @@ -17,6 +17,7 @@ static inline int trace_valid_entry(struct trace_entry *entry) | |||
| 17 | case TRACE_GRAPH_ENT: | 17 | case TRACE_GRAPH_ENT: |
| 18 | case TRACE_GRAPH_RET: | 18 | case TRACE_GRAPH_RET: |
| 19 | case TRACE_HW_BRANCHES: | 19 | case TRACE_HW_BRANCHES: |
| 20 | case TRACE_KSYM: | ||
| 20 | return 1; | 21 | return 1; |
| 21 | } | 22 | } |
| 22 | return 0; | 23 | return 0; |
| @@ -808,3 +809,57 @@ trace_selftest_startup_hw_branches(struct tracer *trace, | |||
| 808 | return ret; | 809 | return ret; |
| 809 | } | 810 | } |
| 810 | #endif /* CONFIG_HW_BRANCH_TRACER */ | 811 | #endif /* CONFIG_HW_BRANCH_TRACER */ |
| 812 | |||
| 813 | #ifdef CONFIG_KSYM_TRACER | ||
| 814 | static int ksym_selftest_dummy; | ||
| 815 | |||
| 816 | int | ||
| 817 | trace_selftest_startup_ksym(struct tracer *trace, struct trace_array *tr) | ||
| 818 | { | ||
| 819 | unsigned long count; | ||
| 820 | int ret; | ||
| 821 | |||
| 822 | /* start the tracing */ | ||
| 823 | ret = tracer_init(trace, tr); | ||
| 824 | if (ret) { | ||
| 825 | warn_failed_init_tracer(trace, ret); | ||
| 826 | return ret; | ||
| 827 | } | ||
| 828 | |||
| 829 | ksym_selftest_dummy = 0; | ||
| 830 | /* Register the read-write tracing request */ | ||
| 831 | |||
| 832 | ret = process_new_ksym_entry("ksym_selftest_dummy", | ||
| 833 | HW_BREAKPOINT_R | HW_BREAKPOINT_W, | ||
| 834 | (unsigned long)(&ksym_selftest_dummy)); | ||
| 835 | |||
| 836 | if (ret < 0) { | ||
| 837 | printk(KERN_CONT "ksym_trace read-write startup test failed\n"); | ||
| 838 | goto ret_path; | ||
| 839 | } | ||
| 840 | /* Perform a read and a write operation over the dummy variable to | ||
| 841 | * trigger the tracer | ||
| 842 | */ | ||
| 843 | if (ksym_selftest_dummy == 0) | ||
| 844 | ksym_selftest_dummy++; | ||
| 845 | |||
| 846 | /* stop the tracing. */ | ||
| 847 | tracing_stop(); | ||
| 848 | /* check the trace buffer */ | ||
| 849 | ret = trace_test_buffer(tr, &count); | ||
| 850 | trace->reset(tr); | ||
| 851 | tracing_start(); | ||
| 852 | |||
| 853 | /* read & write operations - one each is performed on the dummy variable | ||
| 854 | * triggering two entries in the trace buffer | ||
| 855 | */ | ||
| 856 | if (!ret && count != 2) { | ||
| 857 | printk(KERN_CONT "Ksym tracer startup test failed"); | ||
| 858 | ret = -1; | ||
| 859 | } | ||
| 860 | |||
| 861 | ret_path: | ||
| 862 | return ret; | ||
| 863 | } | ||
| 864 | #endif /* CONFIG_KSYM_TRACER */ | ||
| 865 | |||
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 0f6facb050a1..8504ac71e4e8 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
| @@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = { | |||
| 296 | 296 | ||
| 297 | int | 297 | int |
| 298 | stack_trace_sysctl(struct ctl_table *table, int write, | 298 | stack_trace_sysctl(struct ctl_table *table, int write, |
| 299 | struct file *file, void __user *buffer, size_t *lenp, | 299 | void __user *buffer, size_t *lenp, |
| 300 | loff_t *ppos) | 300 | loff_t *ppos) |
| 301 | { | 301 | { |
| 302 | int ret; | 302 | int ret; |
| 303 | 303 | ||
| 304 | mutex_lock(&stack_sysctl_mutex); | 304 | mutex_lock(&stack_sysctl_mutex); |
| 305 | 305 | ||
| 306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 307 | 307 | ||
| 308 | if (ret || !write || | 308 | if (ret || !write || |
| 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 8712ce3c6a0e..57501d90096a 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
| @@ -2,7 +2,7 @@ | |||
| 2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
| 3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
| 4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
| 5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
| 6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
| 7 | 7 | ||
| 8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
| @@ -14,6 +14,43 @@ static int sys_refcount_exit; | |||
| 14 | static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls); | 14 | static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls); |
| 15 | static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls); | 15 | static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls); |
| 16 | 16 | ||
| 17 | extern unsigned long __start_syscalls_metadata[]; | ||
| 18 | extern unsigned long __stop_syscalls_metadata[]; | ||
| 19 | |||
| 20 | static struct syscall_metadata **syscalls_metadata; | ||
| 21 | |||
| 22 | static struct syscall_metadata *find_syscall_meta(unsigned long syscall) | ||
| 23 | { | ||
| 24 | struct syscall_metadata *start; | ||
| 25 | struct syscall_metadata *stop; | ||
| 26 | char str[KSYM_SYMBOL_LEN]; | ||
| 27 | |||
| 28 | |||
| 29 | start = (struct syscall_metadata *)__start_syscalls_metadata; | ||
| 30 | stop = (struct syscall_metadata *)__stop_syscalls_metadata; | ||
| 31 | kallsyms_lookup(syscall, NULL, NULL, NULL, str); | ||
| 32 | |||
| 33 | for ( ; start < stop; start++) { | ||
| 34 | /* | ||
| 35 | * Only compare after the "sys" prefix. Archs that use | ||
| 36 | * syscall wrappers may have syscalls symbols aliases prefixed | ||
| 37 | * with "SyS" instead of "sys", leading to an unwanted | ||
| 38 | * mismatch. | ||
| 39 | */ | ||
| 40 | if (start->name && !strcmp(start->name + 3, str + 3)) | ||
| 41 | return start; | ||
| 42 | } | ||
| 43 | return NULL; | ||
| 44 | } | ||
| 45 | |||
| 46 | static struct syscall_metadata *syscall_nr_to_meta(int nr) | ||
| 47 | { | ||
| 48 | if (!syscalls_metadata || nr >= NR_syscalls || nr < 0) | ||
| 49 | return NULL; | ||
| 50 | |||
| 51 | return syscalls_metadata[nr]; | ||
| 52 | } | ||
| 53 | |||
| 17 | enum print_line_t | 54 | enum print_line_t |
| 18 | print_syscall_enter(struct trace_iterator *iter, int flags) | 55 | print_syscall_enter(struct trace_iterator *iter, int flags) |
| 19 | { | 56 | { |
| @@ -30,7 +67,7 @@ print_syscall_enter(struct trace_iterator *iter, int flags) | |||
| 30 | if (!entry) | 67 | if (!entry) |
| 31 | goto end; | 68 | goto end; |
| 32 | 69 | ||
| 33 | if (entry->enter_id != ent->type) { | 70 | if (entry->enter_event->id != ent->type) { |
| 34 | WARN_ON_ONCE(1); | 71 | WARN_ON_ONCE(1); |
| 35 | goto end; | 72 | goto end; |
| 36 | } | 73 | } |
| @@ -85,7 +122,7 @@ print_syscall_exit(struct trace_iterator *iter, int flags) | |||
| 85 | return TRACE_TYPE_HANDLED; | 122 | return TRACE_TYPE_HANDLED; |
| 86 | } | 123 | } |
| 87 | 124 | ||
| 88 | if (entry->exit_id != ent->type) { | 125 | if (entry->exit_event->id != ent->type) { |
| 89 | WARN_ON_ONCE(1); | 126 | WARN_ON_ONCE(1); |
| 90 | return TRACE_TYPE_UNHANDLED; | 127 | return TRACE_TYPE_UNHANDLED; |
| 91 | } | 128 | } |
| @@ -103,24 +140,19 @@ extern char *__bad_type_size(void); | |||
| 103 | #define SYSCALL_FIELD(type, name) \ | 140 | #define SYSCALL_FIELD(type, name) \ |
| 104 | sizeof(type) != sizeof(trace.name) ? \ | 141 | sizeof(type) != sizeof(trace.name) ? \ |
| 105 | __bad_type_size() : \ | 142 | __bad_type_size() : \ |
| 106 | #type, #name, offsetof(typeof(trace), name), sizeof(trace.name) | 143 | #type, #name, offsetof(typeof(trace), name), \ |
| 144 | sizeof(trace.name), is_signed_type(type) | ||
| 107 | 145 | ||
| 108 | int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) | 146 | int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) |
| 109 | { | 147 | { |
| 110 | int i; | 148 | int i; |
| 111 | int nr; | ||
| 112 | int ret; | 149 | int ret; |
| 113 | struct syscall_metadata *entry; | 150 | struct syscall_metadata *entry = call->data; |
| 114 | struct syscall_trace_enter trace; | 151 | struct syscall_trace_enter trace; |
| 115 | int offset = offsetof(struct syscall_trace_enter, args); | 152 | int offset = offsetof(struct syscall_trace_enter, args); |
| 116 | 153 | ||
| 117 | nr = syscall_name_to_nr(call->data); | 154 | ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" |
| 118 | entry = syscall_nr_to_meta(nr); | 155 | "\tsigned:%u;\n", |
| 119 | |||
| 120 | if (!entry) | ||
| 121 | return 0; | ||
| 122 | |||
| 123 | ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", | ||
| 124 | SYSCALL_FIELD(int, nr)); | 156 | SYSCALL_FIELD(int, nr)); |
| 125 | if (!ret) | 157 | if (!ret) |
| 126 | return 0; | 158 | return 0; |
| @@ -130,8 +162,10 @@ int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) | |||
| 130 | entry->args[i]); | 162 | entry->args[i]); |
| 131 | if (!ret) | 163 | if (!ret) |
| 132 | return 0; | 164 | return 0; |
| 133 | ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;\n", offset, | 165 | ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;" |
| 134 | sizeof(unsigned long)); | 166 | "\tsigned:%u;\n", offset, |
| 167 | sizeof(unsigned long), | ||
| 168 | is_signed_type(unsigned long)); | ||
| 135 | if (!ret) | 169 | if (!ret) |
| 136 | return 0; | 170 | return 0; |
| 137 | offset += sizeof(unsigned long); | 171 | offset += sizeof(unsigned long); |
| @@ -163,10 +197,12 @@ int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) | |||
| 163 | struct syscall_trace_exit trace; | 197 | struct syscall_trace_exit trace; |
| 164 | 198 | ||
| 165 | ret = trace_seq_printf(s, | 199 | ret = trace_seq_printf(s, |
| 166 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 200 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" |
| 167 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", | 201 | "\tsigned:%u;\n" |
| 202 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" | ||
| 203 | "\tsigned:%u;\n", | ||
| 168 | SYSCALL_FIELD(int, nr), | 204 | SYSCALL_FIELD(int, nr), |
| 169 | SYSCALL_FIELD(unsigned long, ret)); | 205 | SYSCALL_FIELD(long, ret)); |
| 170 | if (!ret) | 206 | if (!ret) |
| 171 | return 0; | 207 | return 0; |
| 172 | 208 | ||
| @@ -176,22 +212,19 @@ int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) | |||
| 176 | int syscall_enter_define_fields(struct ftrace_event_call *call) | 212 | int syscall_enter_define_fields(struct ftrace_event_call *call) |
| 177 | { | 213 | { |
| 178 | struct syscall_trace_enter trace; | 214 | struct syscall_trace_enter trace; |
| 179 | struct syscall_metadata *meta; | 215 | struct syscall_metadata *meta = call->data; |
| 180 | int ret; | 216 | int ret; |
| 181 | int nr; | ||
| 182 | int i; | 217 | int i; |
| 183 | int offset = offsetof(typeof(trace), args); | 218 | int offset = offsetof(typeof(trace), args); |
| 184 | 219 | ||
| 185 | nr = syscall_name_to_nr(call->data); | ||
| 186 | meta = syscall_nr_to_meta(nr); | ||
| 187 | |||
| 188 | if (!meta) | ||
| 189 | return 0; | ||
| 190 | |||
| 191 | ret = trace_define_common_fields(call); | 220 | ret = trace_define_common_fields(call); |
| 192 | if (ret) | 221 | if (ret) |
| 193 | return ret; | 222 | return ret; |
| 194 | 223 | ||
| 224 | ret = trace_define_field(call, SYSCALL_FIELD(int, nr), FILTER_OTHER); | ||
| 225 | if (ret) | ||
| 226 | return ret; | ||
| 227 | |||
| 195 | for (i = 0; i < meta->nb_args; i++) { | 228 | for (i = 0; i < meta->nb_args; i++) { |
| 196 | ret = trace_define_field(call, meta->types[i], | 229 | ret = trace_define_field(call, meta->types[i], |
| 197 | meta->args[i], offset, | 230 | meta->args[i], offset, |
| @@ -212,7 +245,11 @@ int syscall_exit_define_fields(struct ftrace_event_call *call) | |||
| 212 | if (ret) | 245 | if (ret) |
| 213 | return ret; | 246 | return ret; |
| 214 | 247 | ||
| 215 | ret = trace_define_field(call, SYSCALL_FIELD(unsigned long, ret), 0, | 248 | ret = trace_define_field(call, SYSCALL_FIELD(int, nr), FILTER_OTHER); |
| 249 | if (ret) | ||
| 250 | return ret; | ||
| 251 | |||
| 252 | ret = trace_define_field(call, SYSCALL_FIELD(long, ret), | ||
| 216 | FILTER_OTHER); | 253 | FILTER_OTHER); |
| 217 | 254 | ||
| 218 | return ret; | 255 | return ret; |
| @@ -239,8 +276,8 @@ void ftrace_syscall_enter(struct pt_regs *regs, long id) | |||
| 239 | 276 | ||
| 240 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; | 277 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; |
| 241 | 278 | ||
| 242 | event = trace_current_buffer_lock_reserve(&buffer, sys_data->enter_id, | 279 | event = trace_current_buffer_lock_reserve(&buffer, |
| 243 | size, 0, 0); | 280 | sys_data->enter_event->id, size, 0, 0); |
| 244 | if (!event) | 281 | if (!event) |
| 245 | return; | 282 | return; |
| 246 | 283 | ||
| @@ -271,8 +308,8 @@ void ftrace_syscall_exit(struct pt_regs *regs, long ret) | |||
| 271 | if (!sys_data) | 308 | if (!sys_data) |
| 272 | return; | 309 | return; |
| 273 | 310 | ||
| 274 | event = trace_current_buffer_lock_reserve(&buffer, sys_data->exit_id, | 311 | event = trace_current_buffer_lock_reserve(&buffer, |
| 275 | sizeof(*entry), 0, 0); | 312 | sys_data->exit_event->id, sizeof(*entry), 0, 0); |
| 276 | if (!event) | 313 | if (!event) |
| 277 | return; | 314 | return; |
| 278 | 315 | ||
| @@ -285,14 +322,12 @@ void ftrace_syscall_exit(struct pt_regs *regs, long ret) | |||
| 285 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); | 322 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); |
| 286 | } | 323 | } |
| 287 | 324 | ||
| 288 | int reg_event_syscall_enter(void *ptr) | 325 | int reg_event_syscall_enter(struct ftrace_event_call *call) |
| 289 | { | 326 | { |
| 290 | int ret = 0; | 327 | int ret = 0; |
| 291 | int num; | 328 | int num; |
| 292 | char *name; | ||
| 293 | 329 | ||
| 294 | name = (char *)ptr; | 330 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 295 | num = syscall_name_to_nr(name); | ||
| 296 | if (num < 0 || num >= NR_syscalls) | 331 | if (num < 0 || num >= NR_syscalls) |
| 297 | return -ENOSYS; | 332 | return -ENOSYS; |
| 298 | mutex_lock(&syscall_trace_lock); | 333 | mutex_lock(&syscall_trace_lock); |
| @@ -309,13 +344,11 @@ int reg_event_syscall_enter(void *ptr) | |||
| 309 | return ret; | 344 | return ret; |
| 310 | } | 345 | } |
| 311 | 346 | ||
| 312 | void unreg_event_syscall_enter(void *ptr) | 347 | void unreg_event_syscall_enter(struct ftrace_event_call *call) |
| 313 | { | 348 | { |
| 314 | int num; | 349 | int num; |
| 315 | char *name; | ||
| 316 | 350 | ||
| 317 | name = (char *)ptr; | 351 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 318 | num = syscall_name_to_nr(name); | ||
| 319 | if (num < 0 || num >= NR_syscalls) | 352 | if (num < 0 || num >= NR_syscalls) |
| 320 | return; | 353 | return; |
| 321 | mutex_lock(&syscall_trace_lock); | 354 | mutex_lock(&syscall_trace_lock); |
| @@ -326,14 +359,12 @@ void unreg_event_syscall_enter(void *ptr) | |||
| 326 | mutex_unlock(&syscall_trace_lock); | 359 | mutex_unlock(&syscall_trace_lock); |
| 327 | } | 360 | } |
| 328 | 361 | ||
| 329 | int reg_event_syscall_exit(void *ptr) | 362 | int reg_event_syscall_exit(struct ftrace_event_call *call) |
| 330 | { | 363 | { |
| 331 | int ret = 0; | 364 | int ret = 0; |
| 332 | int num; | 365 | int num; |
| 333 | char *name; | ||
| 334 | 366 | ||
| 335 | name = (char *)ptr; | 367 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 336 | num = syscall_name_to_nr(name); | ||
| 337 | if (num < 0 || num >= NR_syscalls) | 368 | if (num < 0 || num >= NR_syscalls) |
| 338 | return -ENOSYS; | 369 | return -ENOSYS; |
| 339 | mutex_lock(&syscall_trace_lock); | 370 | mutex_lock(&syscall_trace_lock); |
| @@ -350,13 +381,11 @@ int reg_event_syscall_exit(void *ptr) | |||
| 350 | return ret; | 381 | return ret; |
| 351 | } | 382 | } |
| 352 | 383 | ||
| 353 | void unreg_event_syscall_exit(void *ptr) | 384 | void unreg_event_syscall_exit(struct ftrace_event_call *call) |
| 354 | { | 385 | { |
| 355 | int num; | 386 | int num; |
| 356 | char *name; | ||
| 357 | 387 | ||
| 358 | name = (char *)ptr; | 388 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 359 | num = syscall_name_to_nr(name); | ||
| 360 | if (num < 0 || num >= NR_syscalls) | 389 | if (num < 0 || num >= NR_syscalls) |
| 361 | return; | 390 | return; |
| 362 | mutex_lock(&syscall_trace_lock); | 391 | mutex_lock(&syscall_trace_lock); |
| @@ -367,13 +396,44 @@ void unreg_event_syscall_exit(void *ptr) | |||
| 367 | mutex_unlock(&syscall_trace_lock); | 396 | mutex_unlock(&syscall_trace_lock); |
| 368 | } | 397 | } |
| 369 | 398 | ||
| 370 | struct trace_event event_syscall_enter = { | 399 | int init_syscall_trace(struct ftrace_event_call *call) |
| 371 | .trace = print_syscall_enter, | 400 | { |
| 372 | }; | 401 | int id; |
| 402 | |||
| 403 | id = register_ftrace_event(call->event); | ||
| 404 | if (!id) | ||
| 405 | return -ENODEV; | ||
| 406 | call->id = id; | ||
| 407 | INIT_LIST_HEAD(&call->fields); | ||
| 408 | return 0; | ||
| 409 | } | ||
| 410 | |||
| 411 | int __init init_ftrace_syscalls(void) | ||
| 412 | { | ||
| 413 | struct syscall_metadata *meta; | ||
| 414 | unsigned long addr; | ||
| 415 | int i; | ||
| 416 | |||
| 417 | syscalls_metadata = kzalloc(sizeof(*syscalls_metadata) * | ||
| 418 | NR_syscalls, GFP_KERNEL); | ||
| 419 | if (!syscalls_metadata) { | ||
| 420 | WARN_ON(1); | ||
| 421 | return -ENOMEM; | ||
| 422 | } | ||
| 373 | 423 | ||
| 374 | struct trace_event event_syscall_exit = { | 424 | for (i = 0; i < NR_syscalls; i++) { |
| 375 | .trace = print_syscall_exit, | 425 | addr = arch_syscall_addr(i); |
| 376 | }; | 426 | meta = find_syscall_meta(addr); |
| 427 | if (!meta) | ||
| 428 | continue; | ||
| 429 | |||
| 430 | meta->syscall_nr = i; | ||
| 431 | syscalls_metadata[i] = meta; | ||
| 432 | } | ||
| 433 | |||
| 434 | return 0; | ||
| 435 | } | ||
| 436 | core_initcall(init_ftrace_syscalls); | ||
| 377 | 437 | ||
| 378 | #ifdef CONFIG_EVENT_PROFILE | 438 | #ifdef CONFIG_EVENT_PROFILE |
| 379 | 439 | ||
| @@ -384,10 +444,15 @@ static int sys_prof_refcount_exit; | |||
| 384 | 444 | ||
| 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | 445 | static void prof_syscall_enter(struct pt_regs *regs, long id) |
| 386 | { | 446 | { |
| 387 | struct syscall_trace_enter *rec; | ||
| 388 | struct syscall_metadata *sys_data; | 447 | struct syscall_metadata *sys_data; |
| 448 | struct syscall_trace_enter *rec; | ||
| 449 | unsigned long flags; | ||
| 450 | char *trace_buf; | ||
| 451 | char *raw_data; | ||
| 389 | int syscall_nr; | 452 | int syscall_nr; |
| 453 | int rctx; | ||
| 390 | int size; | 454 | int size; |
| 455 | int cpu; | ||
| 391 | 456 | ||
| 392 | syscall_nr = syscall_get_nr(current, regs); | 457 | syscall_nr = syscall_get_nr(current, regs); |
| 393 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) | 458 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
| @@ -402,30 +467,49 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
| 402 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | 467 | size = ALIGN(size + sizeof(u32), sizeof(u64)); |
| 403 | size -= sizeof(u32); | 468 | size -= sizeof(u32); |
| 404 | 469 | ||
| 405 | do { | 470 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, |
| 406 | char raw_data[size]; | 471 | "profile buffer not large enough")) |
| 472 | return; | ||
| 473 | |||
| 474 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 475 | local_irq_save(flags); | ||
| 476 | |||
| 477 | rctx = perf_swevent_get_recursion_context(); | ||
| 478 | if (rctx < 0) | ||
| 479 | goto end_recursion; | ||
| 480 | |||
| 481 | cpu = smp_processor_id(); | ||
| 482 | |||
| 483 | trace_buf = rcu_dereference(perf_trace_buf); | ||
| 484 | |||
| 485 | if (!trace_buf) | ||
| 486 | goto end; | ||
| 487 | |||
| 488 | raw_data = per_cpu_ptr(trace_buf, cpu); | ||
| 489 | |||
| 490 | /* zero the dead bytes from align to not leak stack to user */ | ||
| 491 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 407 | 492 | ||
| 408 | /* zero the dead bytes from align to not leak stack to user */ | 493 | rec = (struct syscall_trace_enter *) raw_data; |
| 409 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | 494 | tracing_generic_entry_update(&rec->ent, 0, 0); |
| 495 | rec->ent.type = sys_data->enter_event->id; | ||
| 496 | rec->nr = syscall_nr; | ||
| 497 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
| 498 | (unsigned long *)&rec->args); | ||
| 499 | perf_tp_event(sys_data->enter_event->id, 0, 1, rec, size); | ||
| 410 | 500 | ||
| 411 | rec = (struct syscall_trace_enter *) raw_data; | 501 | end: |
| 412 | tracing_generic_entry_update(&rec->ent, 0, 0); | 502 | perf_swevent_put_recursion_context(rctx); |
| 413 | rec->ent.type = sys_data->enter_id; | 503 | end_recursion: |
| 414 | rec->nr = syscall_nr; | 504 | local_irq_restore(flags); |
| 415 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
| 416 | (unsigned long *)&rec->args); | ||
| 417 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | ||
| 418 | } while(0); | ||
| 419 | } | 505 | } |
| 420 | 506 | ||
| 421 | int reg_prof_syscall_enter(char *name) | 507 | int prof_sysenter_enable(struct ftrace_event_call *call) |
| 422 | { | 508 | { |
| 423 | int ret = 0; | 509 | int ret = 0; |
| 424 | int num; | 510 | int num; |
| 425 | 511 | ||
| 426 | num = syscall_name_to_nr(name); | 512 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 427 | if (num < 0 || num >= NR_syscalls) | ||
| 428 | return -ENOSYS; | ||
| 429 | 513 | ||
| 430 | mutex_lock(&syscall_trace_lock); | 514 | mutex_lock(&syscall_trace_lock); |
| 431 | if (!sys_prof_refcount_enter) | 515 | if (!sys_prof_refcount_enter) |
| @@ -441,13 +525,11 @@ int reg_prof_syscall_enter(char *name) | |||
| 441 | return ret; | 525 | return ret; |
| 442 | } | 526 | } |
| 443 | 527 | ||
| 444 | void unreg_prof_syscall_enter(char *name) | 528 | void prof_sysenter_disable(struct ftrace_event_call *call) |
| 445 | { | 529 | { |
| 446 | int num; | 530 | int num; |
| 447 | 531 | ||
| 448 | num = syscall_name_to_nr(name); | 532 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 449 | if (num < 0 || num >= NR_syscalls) | ||
| 450 | return; | ||
| 451 | 533 | ||
| 452 | mutex_lock(&syscall_trace_lock); | 534 | mutex_lock(&syscall_trace_lock); |
| 453 | sys_prof_refcount_enter--; | 535 | sys_prof_refcount_enter--; |
| @@ -460,8 +542,14 @@ void unreg_prof_syscall_enter(char *name) | |||
| 460 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | 542 | static void prof_syscall_exit(struct pt_regs *regs, long ret) |
| 461 | { | 543 | { |
| 462 | struct syscall_metadata *sys_data; | 544 | struct syscall_metadata *sys_data; |
| 463 | struct syscall_trace_exit rec; | 545 | struct syscall_trace_exit *rec; |
| 546 | unsigned long flags; | ||
| 464 | int syscall_nr; | 547 | int syscall_nr; |
| 548 | char *trace_buf; | ||
| 549 | char *raw_data; | ||
| 550 | int rctx; | ||
| 551 | int size; | ||
| 552 | int cpu; | ||
| 465 | 553 | ||
| 466 | syscall_nr = syscall_get_nr(current, regs); | 554 | syscall_nr = syscall_get_nr(current, regs); |
| 467 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | 555 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) |
| @@ -471,22 +559,58 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
| 471 | if (!sys_data) | 559 | if (!sys_data) |
| 472 | return; | 560 | return; |
| 473 | 561 | ||
| 474 | tracing_generic_entry_update(&rec.ent, 0, 0); | 562 | /* We can probably do that at build time */ |
| 475 | rec.ent.type = sys_data->exit_id; | 563 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); |
| 476 | rec.nr = syscall_nr; | 564 | size -= sizeof(u32); |
| 477 | rec.ret = syscall_get_return_value(current, regs); | 565 | |
| 566 | /* | ||
| 567 | * Impossible, but be paranoid with the future | ||
| 568 | * How to put this check outside runtime? | ||
| 569 | */ | ||
| 570 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 571 | "exit event has grown above profile buffer size")) | ||
| 572 | return; | ||
| 573 | |||
| 574 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 575 | local_irq_save(flags); | ||
| 576 | |||
| 577 | rctx = perf_swevent_get_recursion_context(); | ||
| 578 | if (rctx < 0) | ||
| 579 | goto end_recursion; | ||
| 580 | |||
| 581 | cpu = smp_processor_id(); | ||
| 582 | |||
| 583 | trace_buf = rcu_dereference(perf_trace_buf); | ||
| 584 | |||
| 585 | if (!trace_buf) | ||
| 586 | goto end; | ||
| 587 | |||
| 588 | raw_data = per_cpu_ptr(trace_buf, cpu); | ||
| 478 | 589 | ||
| 479 | perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); | 590 | /* zero the dead bytes from align to not leak stack to user */ |
| 591 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 592 | |||
| 593 | rec = (struct syscall_trace_exit *)raw_data; | ||
| 594 | |||
| 595 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
| 596 | rec->ent.type = sys_data->exit_event->id; | ||
| 597 | rec->nr = syscall_nr; | ||
| 598 | rec->ret = syscall_get_return_value(current, regs); | ||
| 599 | |||
| 600 | perf_tp_event(sys_data->exit_event->id, 0, 1, rec, size); | ||
| 601 | |||
| 602 | end: | ||
| 603 | perf_swevent_put_recursion_context(rctx); | ||
| 604 | end_recursion: | ||
| 605 | local_irq_restore(flags); | ||
| 480 | } | 606 | } |
| 481 | 607 | ||
| 482 | int reg_prof_syscall_exit(char *name) | 608 | int prof_sysexit_enable(struct ftrace_event_call *call) |
| 483 | { | 609 | { |
| 484 | int ret = 0; | 610 | int ret = 0; |
| 485 | int num; | 611 | int num; |
| 486 | 612 | ||
| 487 | num = syscall_name_to_nr(name); | 613 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 488 | if (num < 0 || num >= NR_syscalls) | ||
| 489 | return -ENOSYS; | ||
| 490 | 614 | ||
| 491 | mutex_lock(&syscall_trace_lock); | 615 | mutex_lock(&syscall_trace_lock); |
| 492 | if (!sys_prof_refcount_exit) | 616 | if (!sys_prof_refcount_exit) |
| @@ -502,13 +626,11 @@ int reg_prof_syscall_exit(char *name) | |||
| 502 | return ret; | 626 | return ret; |
| 503 | } | 627 | } |
| 504 | 628 | ||
| 505 | void unreg_prof_syscall_exit(char *name) | 629 | void prof_sysexit_disable(struct ftrace_event_call *call) |
| 506 | { | 630 | { |
| 507 | int num; | 631 | int num; |
| 508 | 632 | ||
| 509 | num = syscall_name_to_nr(name); | 633 | num = ((struct syscall_metadata *)call->data)->syscall_nr; |
| 510 | if (num < 0 || num >= NR_syscalls) | ||
| 511 | return; | ||
| 512 | 634 | ||
| 513 | mutex_lock(&syscall_trace_lock); | 635 | mutex_lock(&syscall_trace_lock); |
| 514 | sys_prof_refcount_exit--; | 636 | sys_prof_refcount_exit--; |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
| @@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
| 48 | 48 | ||
| 49 | /* | 49 | /* |
| 50 | * Note about RCU : | 50 | * Note about RCU : |
| 51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
| 52 | * state is reached. | 52 | * state is reached. |
| 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
| 54 | */ | 54 | */ |
diff --git a/kernel/uid16.c b/kernel/uid16.c index 0314501688b9..419209893d87 100644 --- a/kernel/uid16.c +++ b/kernel/uid16.c | |||
| @@ -4,7 +4,6 @@ | |||
| 4 | */ | 4 | */ |
| 5 | 5 | ||
| 6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
| 7 | #include <linux/utsname.h> | ||
| 8 | #include <linux/mman.h> | 7 | #include <linux/mman.h> |
| 9 | #include <linux/notifier.h> | 8 | #include <linux/notifier.h> |
| 10 | #include <linux/reboot.h> | 9 | #include <linux/reboot.h> |
diff --git a/kernel/user.c b/kernel/user.c index 2c000e7132ac..46d0165ca70c 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
| @@ -330,9 +330,9 @@ done: | |||
| 330 | */ | 330 | */ |
| 331 | static void free_user(struct user_struct *up, unsigned long flags) | 331 | static void free_user(struct user_struct *up, unsigned long flags) |
| 332 | { | 332 | { |
| 333 | spin_unlock_irqrestore(&uidhash_lock, flags); | ||
| 334 | INIT_DELAYED_WORK(&up->work, cleanup_user_struct); | 333 | INIT_DELAYED_WORK(&up->work, cleanup_user_struct); |
| 335 | schedule_delayed_work(&up->work, msecs_to_jiffies(1000)); | 334 | schedule_delayed_work(&up->work, msecs_to_jiffies(1000)); |
| 335 | spin_unlock_irqrestore(&uidhash_lock, flags); | ||
| 336 | } | 336 | } |
| 337 | 337 | ||
| 338 | #else /* CONFIG_USER_SCHED && CONFIG_SYSFS */ | 338 | #else /* CONFIG_USER_SCHED && CONFIG_SYSFS */ |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 92359cc747a7..69eae358a726 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
| @@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
| 42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
| 43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
| 44 | */ | 44 | */ |
| 45 | static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, | 45 | static int proc_do_uts_string(ctl_table *table, int write, |
| 46 | void __user *buffer, size_t *lenp, loff_t *ppos) | 46 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 47 | { | 47 | { |
| 48 | struct ctl_table uts_table; | 48 | struct ctl_table uts_table; |
| 49 | int r; | 49 | int r; |
| 50 | memcpy(&uts_table, table, sizeof(uts_table)); | 50 | memcpy(&uts_table, table, sizeof(uts_table)); |
| 51 | uts_table.data = get_uts(table, write); | 51 | uts_table.data = get_uts(table, write); |
| 52 | r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); | 52 | r = proc_dostring(&uts_table,write,buffer,lenp, ppos); |
| 53 | put_uts(table, write, uts_table.data); | 53 | put_uts(table, write, uts_table.data); |
| 54 | return r; | 54 | return r; |
| 55 | } | 55 | } |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index addfe2df93b1..67e526b6ae81 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
| @@ -640,6 +640,24 @@ int schedule_delayed_work(struct delayed_work *dwork, | |||
| 640 | EXPORT_SYMBOL(schedule_delayed_work); | 640 | EXPORT_SYMBOL(schedule_delayed_work); |
| 641 | 641 | ||
| 642 | /** | 642 | /** |
| 643 | * flush_delayed_work - block until a dwork_struct's callback has terminated | ||
| 644 | * @dwork: the delayed work which is to be flushed | ||
| 645 | * | ||
| 646 | * Any timeout is cancelled, and any pending work is run immediately. | ||
| 647 | */ | ||
| 648 | void flush_delayed_work(struct delayed_work *dwork) | ||
| 649 | { | ||
| 650 | if (del_timer_sync(&dwork->timer)) { | ||
| 651 | struct cpu_workqueue_struct *cwq; | ||
| 652 | cwq = wq_per_cpu(keventd_wq, get_cpu()); | ||
| 653 | __queue_work(cwq, &dwork->work); | ||
| 654 | put_cpu(); | ||
| 655 | } | ||
| 656 | flush_work(&dwork->work); | ||
| 657 | } | ||
| 658 | EXPORT_SYMBOL(flush_delayed_work); | ||
| 659 | |||
| 660 | /** | ||
| 643 | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay | 661 | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay |
| 644 | * @cpu: cpu to use | 662 | * @cpu: cpu to use |
| 645 | * @dwork: job to be done | 663 | * @dwork: job to be done |
| @@ -667,6 +685,7 @@ EXPORT_SYMBOL(schedule_delayed_work_on); | |||
| 667 | int schedule_on_each_cpu(work_func_t func) | 685 | int schedule_on_each_cpu(work_func_t func) |
| 668 | { | 686 | { |
| 669 | int cpu; | 687 | int cpu; |
| 688 | int orig = -1; | ||
| 670 | struct work_struct *works; | 689 | struct work_struct *works; |
| 671 | 690 | ||
| 672 | works = alloc_percpu(struct work_struct); | 691 | works = alloc_percpu(struct work_struct); |
| @@ -674,14 +693,28 @@ int schedule_on_each_cpu(work_func_t func) | |||
| 674 | return -ENOMEM; | 693 | return -ENOMEM; |
| 675 | 694 | ||
| 676 | get_online_cpus(); | 695 | get_online_cpus(); |
| 696 | |||
| 697 | /* | ||
| 698 | * When running in keventd don't schedule a work item on | ||
| 699 | * itself. Can just call directly because the work queue is | ||
| 700 | * already bound. This also is faster. | ||
| 701 | */ | ||
| 702 | if (current_is_keventd()) | ||
| 703 | orig = raw_smp_processor_id(); | ||
| 704 | |||
| 677 | for_each_online_cpu(cpu) { | 705 | for_each_online_cpu(cpu) { |
| 678 | struct work_struct *work = per_cpu_ptr(works, cpu); | 706 | struct work_struct *work = per_cpu_ptr(works, cpu); |
| 679 | 707 | ||
| 680 | INIT_WORK(work, func); | 708 | INIT_WORK(work, func); |
| 681 | schedule_work_on(cpu, work); | 709 | if (cpu != orig) |
| 710 | schedule_work_on(cpu, work); | ||
| 682 | } | 711 | } |
| 712 | if (orig >= 0) | ||
| 713 | func(per_cpu_ptr(works, orig)); | ||
| 714 | |||
| 683 | for_each_online_cpu(cpu) | 715 | for_each_online_cpu(cpu) |
| 684 | flush_work(per_cpu_ptr(works, cpu)); | 716 | flush_work(per_cpu_ptr(works, cpu)); |
| 717 | |||
| 685 | put_online_cpus(); | 718 | put_online_cpus(); |
| 686 | free_percpu(works); | 719 | free_percpu(works); |
| 687 | return 0; | 720 | return 0; |
