diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/latencytop.c | 83 | ||||
| -rw-r--r-- | kernel/sched.c | 982 | ||||
| -rw-r--r-- | kernel/sched_clock.c | 30 | ||||
| -rw-r--r-- | kernel/sched_debug.c | 8 | ||||
| -rw-r--r-- | kernel/sched_fair.c | 59 | ||||
| -rw-r--r-- | kernel/sched_features.h | 3 | ||||
| -rw-r--r-- | kernel/sched_rt.c | 537 | ||||
| -rw-r--r-- | kernel/sched_stats.h | 7 |
8 files changed, 1215 insertions, 494 deletions
diff --git a/kernel/latencytop.c b/kernel/latencytop.c index 449db466bdbc..ca07c5c0c914 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c | |||
| @@ -9,6 +9,44 @@ | |||
| 9 | * as published by the Free Software Foundation; version 2 | 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. | 10 | * of the License. |
| 11 | */ | 11 | */ |
| 12 | |||
| 13 | /* | ||
| 14 | * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is | ||
| 15 | * used by the "latencytop" userspace tool. The latency that is tracked is not | ||
| 16 | * the 'traditional' interrupt latency (which is primarily caused by something | ||
| 17 | * else consuming CPU), but instead, it is the latency an application encounters | ||
| 18 | * because the kernel sleeps on its behalf for various reasons. | ||
| 19 | * | ||
| 20 | * This code tracks 2 levels of statistics: | ||
| 21 | * 1) System level latency | ||
| 22 | * 2) Per process latency | ||
| 23 | * | ||
| 24 | * The latency is stored in fixed sized data structures in an accumulated form; | ||
| 25 | * if the "same" latency cause is hit twice, this will be tracked as one entry | ||
| 26 | * in the data structure. Both the count, total accumulated latency and maximum | ||
| 27 | * latency are tracked in this data structure. When the fixed size structure is | ||
| 28 | * full, no new causes are tracked until the buffer is flushed by writing to | ||
| 29 | * the /proc file; the userspace tool does this on a regular basis. | ||
| 30 | * | ||
| 31 | * A latency cause is identified by a stringified backtrace at the point that | ||
| 32 | * the scheduler gets invoked. The userland tool will use this string to | ||
| 33 | * identify the cause of the latency in human readable form. | ||
| 34 | * | ||
| 35 | * The information is exported via /proc/latency_stats and /proc/<pid>/latency. | ||
| 36 | * These files look like this: | ||
| 37 | * | ||
| 38 | * Latency Top version : v0.1 | ||
| 39 | * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl | ||
| 40 | * | | | | | ||
| 41 | * | | | +----> the stringified backtrace | ||
| 42 | * | | +---------> The maximum latency for this entry in microseconds | ||
| 43 | * | +--------------> The accumulated latency for this entry (microseconds) | ||
| 44 | * +-------------------> The number of times this entry is hit | ||
| 45 | * | ||
| 46 | * (note: the average latency is the accumulated latency divided by the number | ||
| 47 | * of times) | ||
| 48 | */ | ||
| 49 | |||
| 12 | #include <linux/latencytop.h> | 50 | #include <linux/latencytop.h> |
| 13 | #include <linux/kallsyms.h> | 51 | #include <linux/kallsyms.h> |
| 14 | #include <linux/seq_file.h> | 52 | #include <linux/seq_file.h> |
| @@ -72,7 +110,7 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
| 72 | firstnonnull = i; | 110 | firstnonnull = i; |
| 73 | continue; | 111 | continue; |
| 74 | } | 112 | } |
| 75 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 113 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
| 76 | unsigned long record = lat->backtrace[q]; | 114 | unsigned long record = lat->backtrace[q]; |
| 77 | 115 | ||
| 78 | if (latency_record[i].backtrace[q] != record) { | 116 | if (latency_record[i].backtrace[q] != record) { |
| @@ -101,31 +139,52 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
| 101 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); | 139 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); |
| 102 | } | 140 | } |
| 103 | 141 | ||
| 104 | static inline void store_stacktrace(struct task_struct *tsk, struct latency_record *lat) | 142 | /* |
| 143 | * Iterator to store a backtrace into a latency record entry | ||
| 144 | */ | ||
| 145 | static inline void store_stacktrace(struct task_struct *tsk, | ||
| 146 | struct latency_record *lat) | ||
| 105 | { | 147 | { |
| 106 | struct stack_trace trace; | 148 | struct stack_trace trace; |
| 107 | 149 | ||
| 108 | memset(&trace, 0, sizeof(trace)); | 150 | memset(&trace, 0, sizeof(trace)); |
| 109 | trace.max_entries = LT_BACKTRACEDEPTH; | 151 | trace.max_entries = LT_BACKTRACEDEPTH; |
| 110 | trace.entries = &lat->backtrace[0]; | 152 | trace.entries = &lat->backtrace[0]; |
| 111 | trace.skip = 0; | ||
| 112 | save_stack_trace_tsk(tsk, &trace); | 153 | save_stack_trace_tsk(tsk, &trace); |
| 113 | } | 154 | } |
| 114 | 155 | ||
| 156 | /** | ||
| 157 | * __account_scheduler_latency - record an occured latency | ||
| 158 | * @tsk - the task struct of the task hitting the latency | ||
| 159 | * @usecs - the duration of the latency in microseconds | ||
| 160 | * @inter - 1 if the sleep was interruptible, 0 if uninterruptible | ||
| 161 | * | ||
| 162 | * This function is the main entry point for recording latency entries | ||
| 163 | * as called by the scheduler. | ||
| 164 | * | ||
| 165 | * This function has a few special cases to deal with normal 'non-latency' | ||
| 166 | * sleeps: specifically, interruptible sleep longer than 5 msec is skipped | ||
| 167 | * since this usually is caused by waiting for events via select() and co. | ||
| 168 | * | ||
| 169 | * Negative latencies (caused by time going backwards) are also explicitly | ||
| 170 | * skipped. | ||
| 171 | */ | ||
| 115 | void __sched | 172 | void __sched |
| 116 | account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | 173 | __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) |
| 117 | { | 174 | { |
| 118 | unsigned long flags; | 175 | unsigned long flags; |
| 119 | int i, q; | 176 | int i, q; |
| 120 | struct latency_record lat; | 177 | struct latency_record lat; |
| 121 | 178 | ||
| 122 | if (!latencytop_enabled) | ||
| 123 | return; | ||
| 124 | |||
| 125 | /* Long interruptible waits are generally user requested... */ | 179 | /* Long interruptible waits are generally user requested... */ |
| 126 | if (inter && usecs > 5000) | 180 | if (inter && usecs > 5000) |
| 127 | return; | 181 | return; |
| 128 | 182 | ||
| 183 | /* Negative sleeps are time going backwards */ | ||
| 184 | /* Zero-time sleeps are non-interesting */ | ||
| 185 | if (usecs <= 0) | ||
| 186 | return; | ||
| 187 | |||
| 129 | memset(&lat, 0, sizeof(lat)); | 188 | memset(&lat, 0, sizeof(lat)); |
| 130 | lat.count = 1; | 189 | lat.count = 1; |
| 131 | lat.time = usecs; | 190 | lat.time = usecs; |
| @@ -143,12 +202,12 @@ account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | |||
| 143 | if (tsk->latency_record_count >= LT_SAVECOUNT) | 202 | if (tsk->latency_record_count >= LT_SAVECOUNT) |
| 144 | goto out_unlock; | 203 | goto out_unlock; |
| 145 | 204 | ||
| 146 | for (i = 0; i < LT_SAVECOUNT ; i++) { | 205 | for (i = 0; i < LT_SAVECOUNT; i++) { |
| 147 | struct latency_record *mylat; | 206 | struct latency_record *mylat; |
| 148 | int same = 1; | 207 | int same = 1; |
| 149 | 208 | ||
| 150 | mylat = &tsk->latency_record[i]; | 209 | mylat = &tsk->latency_record[i]; |
| 151 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 210 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
| 152 | unsigned long record = lat.backtrace[q]; | 211 | unsigned long record = lat.backtrace[q]; |
| 153 | 212 | ||
| 154 | if (mylat->backtrace[q] != record) { | 213 | if (mylat->backtrace[q] != record) { |
| @@ -186,7 +245,7 @@ static int lstats_show(struct seq_file *m, void *v) | |||
| 186 | for (i = 0; i < MAXLR; i++) { | 245 | for (i = 0; i < MAXLR; i++) { |
| 187 | if (latency_record[i].backtrace[0]) { | 246 | if (latency_record[i].backtrace[0]) { |
| 188 | int q; | 247 | int q; |
| 189 | seq_printf(m, "%i %li %li ", | 248 | seq_printf(m, "%i %lu %lu ", |
| 190 | latency_record[i].count, | 249 | latency_record[i].count, |
| 191 | latency_record[i].time, | 250 | latency_record[i].time, |
| 192 | latency_record[i].max); | 251 | latency_record[i].max); |
| @@ -223,7 +282,7 @@ static int lstats_open(struct inode *inode, struct file *filp) | |||
| 223 | return single_open(filp, lstats_show, NULL); | 282 | return single_open(filp, lstats_show, NULL); |
| 224 | } | 283 | } |
| 225 | 284 | ||
| 226 | static struct file_operations lstats_fops = { | 285 | static const struct file_operations lstats_fops = { |
| 227 | .open = lstats_open, | 286 | .open = lstats_open, |
| 228 | .read = seq_read, | 287 | .read = seq_read, |
| 229 | .write = lstats_write, | 288 | .write = lstats_write, |
| @@ -236,4 +295,4 @@ static int __init init_lstats_procfs(void) | |||
| 236 | proc_create("latency_stats", 0644, NULL, &lstats_fops); | 295 | proc_create("latency_stats", 0644, NULL, &lstats_fops); |
| 237 | return 0; | 296 | return 0; |
| 238 | } | 297 | } |
| 239 | __initcall(init_lstats_procfs); | 298 | device_initcall(init_lstats_procfs); |
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c2ba67..9f8506d68fdc 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
| 331 | */ | 331 | */ |
| 332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); |
| 333 | 333 | ||
| 334 | #ifdef CONFIG_SMP | ||
| 335 | static int root_task_group_empty(void) | ||
| 336 | { | ||
| 337 | return list_empty(&root_task_group.children); | ||
| 338 | } | ||
| 339 | #endif | ||
| 340 | |||
| 334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED |
| 336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
| @@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 391 | 398 | ||
| 392 | #else | 399 | #else |
| 393 | 400 | ||
| 401 | #ifdef CONFIG_SMP | ||
| 402 | static int root_task_group_empty(void) | ||
| 403 | { | ||
| 404 | return 1; | ||
| 405 | } | ||
| 406 | #endif | ||
| 407 | |||
| 394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) |
| 396 | { | 410 | { |
| @@ -467,11 +481,17 @@ struct rt_rq { | |||
| 467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; |
| 468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; |
| 469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { |
| 485 | int curr; /* highest queued rt task prio */ | ||
| 486 | #ifdef CONFIG_SMP | ||
| 487 | int next; /* next highest */ | ||
| 488 | #endif | ||
| 489 | } highest_prio; | ||
| 471 | #endif | 490 | #endif |
| 472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP |
| 473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; |
| 474 | int overloaded; | 493 | int overloaded; |
| 494 | struct plist_head pushable_tasks; | ||
| 475 | #endif | 495 | #endif |
| 476 | int rt_throttled; | 496 | int rt_throttled; |
| 477 | u64 rt_time; | 497 | u64 rt_time; |
| @@ -549,7 +569,6 @@ struct rq { | |||
| 549 | unsigned long nr_running; | 569 | unsigned long nr_running; |
| 550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 |
| 551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| 552 | unsigned char idle_at_tick; | ||
| 553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ |
| 554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; |
| 555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; |
| @@ -590,6 +609,7 @@ struct rq { | |||
| 590 | struct root_domain *rd; | 609 | struct root_domain *rd; |
| 591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; |
| 592 | 611 | ||
| 612 | unsigned char idle_at_tick; | ||
| 593 | /* For active balancing */ | 613 | /* For active balancing */ |
| 594 | int active_balance; | 614 | int active_balance; |
| 595 | int push_cpu; | 615 | int push_cpu; |
| @@ -618,9 +638,6 @@ struct rq { | |||
| 618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| 619 | 639 | ||
| 620 | /* sys_sched_yield() stats */ | 640 | /* sys_sched_yield() stats */ |
| 621 | unsigned int yld_exp_empty; | ||
| 622 | unsigned int yld_act_empty; | ||
| 623 | unsigned int yld_both_empty; | ||
| 624 | unsigned int yld_count; | 641 | unsigned int yld_count; |
| 625 | 642 | ||
| 626 | /* schedule() stats */ | 643 | /* schedule() stats */ |
| @@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) | |||
| 1183 | 1200 | ||
| 1184 | assert_spin_locked(&task_rq(p)->lock); | 1201 | assert_spin_locked(&task_rq(p)->lock); |
| 1185 | 1202 | ||
| 1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1203 | if (test_tsk_need_resched(p)) |
| 1187 | return; | 1204 | return; |
| 1188 | 1205 | ||
| 1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1206 | set_tsk_need_resched(p); |
| 1190 | 1207 | ||
| 1191 | cpu = task_cpu(p); | 1208 | cpu = task_cpu(p); |
| 1192 | if (cpu == smp_processor_id()) | 1209 | if (cpu == smp_processor_id()) |
| @@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) | |||
| 1242 | * lockless. The worst case is that the other CPU runs the | 1259 | * lockless. The worst case is that the other CPU runs the |
| 1243 | * idle task through an additional NOOP schedule() | 1260 | * idle task through an additional NOOP schedule() |
| 1244 | */ | 1261 | */ |
| 1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1262 | set_tsk_need_resched(rq->idle); |
| 1246 | 1263 | ||
| 1247 | /* NEED_RESCHED must be visible before we test polling */ | 1264 | /* NEED_RESCHED must be visible before we test polling */ |
| 1248 | smp_mb(); | 1265 | smp_mb(); |
| @@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1610 | 1627 | ||
| 1611 | #endif | 1628 | #endif |
| 1612 | 1629 | ||
| 1630 | #ifdef CONFIG_PREEMPT | ||
| 1631 | |||
| 1613 | /* | 1632 | /* |
| 1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1633 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1634 | * way at the expense of forcing extra atomic operations in all | ||
| 1635 | * invocations. This assures that the double_lock is acquired using the | ||
| 1636 | * same underlying policy as the spinlock_t on this architecture, which | ||
| 1637 | * reduces latency compared to the unfair variant below. However, it | ||
| 1638 | * also adds more overhead and therefore may reduce throughput. | ||
| 1615 | */ | 1639 | */ |
| 1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1640 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1641 | __releases(this_rq->lock) | ||
| 1642 | __acquires(busiest->lock) | ||
| 1643 | __acquires(this_rq->lock) | ||
| 1644 | { | ||
| 1645 | spin_unlock(&this_rq->lock); | ||
| 1646 | double_rq_lock(this_rq, busiest); | ||
| 1647 | |||
| 1648 | return 1; | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | #else | ||
| 1652 | /* | ||
| 1653 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
| 1654 | * latency by eliminating extra atomic operations when the locks are | ||
| 1655 | * already in proper order on entry. This favors lower cpu-ids and will | ||
| 1656 | * grant the double lock to lower cpus over higher ids under contention, | ||
| 1657 | * regardless of entry order into the function. | ||
| 1658 | */ | ||
| 1659 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1617 | __releases(this_rq->lock) | 1660 | __releases(this_rq->lock) |
| 1618 | __acquires(busiest->lock) | 1661 | __acquires(busiest->lock) |
| 1619 | __acquires(this_rq->lock) | 1662 | __acquires(this_rq->lock) |
| 1620 | { | 1663 | { |
| 1621 | int ret = 0; | 1664 | int ret = 0; |
| 1622 | 1665 | ||
| 1623 | if (unlikely(!irqs_disabled())) { | ||
| 1624 | /* printk() doesn't work good under rq->lock */ | ||
| 1625 | spin_unlock(&this_rq->lock); | ||
| 1626 | BUG_ON(1); | ||
| 1627 | } | ||
| 1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1666 | if (unlikely(!spin_trylock(&busiest->lock))) { |
| 1629 | if (busiest < this_rq) { | 1667 | if (busiest < this_rq) { |
| 1630 | spin_unlock(&this_rq->lock); | 1668 | spin_unlock(&this_rq->lock); |
| @@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
| 1637 | return ret; | 1675 | return ret; |
| 1638 | } | 1676 | } |
| 1639 | 1677 | ||
| 1678 | #endif /* CONFIG_PREEMPT */ | ||
| 1679 | |||
| 1680 | /* | ||
| 1681 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
| 1682 | */ | ||
| 1683 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1684 | { | ||
| 1685 | if (unlikely(!irqs_disabled())) { | ||
| 1686 | /* printk() doesn't work good under rq->lock */ | ||
| 1687 | spin_unlock(&this_rq->lock); | ||
| 1688 | BUG_ON(1); | ||
| 1689 | } | ||
| 1690 | |||
| 1691 | return _double_lock_balance(this_rq, busiest); | ||
| 1692 | } | ||
| 1693 | |||
| 1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1694 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| 1641 | __releases(busiest->lock) | 1695 | __releases(busiest->lock) |
| 1642 | { | 1696 | { |
| @@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
| 1705 | 1759 | ||
| 1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1760 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
| 1707 | { | 1761 | { |
| 1762 | if (wakeup) | ||
| 1763 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
| 1764 | |||
| 1708 | sched_info_queued(p); | 1765 | sched_info_queued(p); |
| 1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1766 | p->sched_class->enqueue_task(rq, p, wakeup); |
| 1710 | p->se.on_rq = 1; | 1767 | p->se.on_rq = 1; |
| @@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 1712 | 1769 | ||
| 1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1770 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
| 1714 | { | 1771 | { |
| 1715 | if (sleep && p->se.last_wakeup) { | 1772 | if (sleep) { |
| 1716 | update_avg(&p->se.avg_overlap, | 1773 | if (p->se.last_wakeup) { |
| 1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1774 | update_avg(&p->se.avg_overlap, |
| 1718 | p->se.last_wakeup = 0; | 1775 | p->se.sum_exec_runtime - p->se.last_wakeup); |
| 1776 | p->se.last_wakeup = 0; | ||
| 1777 | } else { | ||
| 1778 | update_avg(&p->se.avg_wakeup, | ||
| 1779 | sysctl_sched_wakeup_granularity); | ||
| 1780 | } | ||
| 1719 | } | 1781 | } |
| 1720 | 1782 | ||
| 1721 | sched_info_dequeued(p); | 1783 | sched_info_dequeued(p); |
| @@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
| 2017 | * it must be off the runqueue _entirely_, and not | 2079 | * it must be off the runqueue _entirely_, and not |
| 2018 | * preempted! | 2080 | * preempted! |
| 2019 | * | 2081 | * |
| 2020 | * So if it wa still runnable (but just not actively | 2082 | * So if it was still runnable (but just not actively |
| 2021 | * running right now), it's preempted, and we should | 2083 | * running right now), it's preempted, and we should |
| 2022 | * yield - it could be a while. | 2084 | * yield - it could be a while. |
| 2023 | */ | 2085 | */ |
| @@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2267 | sync = 0; | 2329 | sync = 0; |
| 2268 | 2330 | ||
| 2269 | #ifdef CONFIG_SMP | 2331 | #ifdef CONFIG_SMP |
| 2270 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2332 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
| 2271 | struct sched_domain *sd; | 2333 | struct sched_domain *sd; |
| 2272 | 2334 | ||
| 2273 | this_cpu = raw_smp_processor_id(); | 2335 | this_cpu = raw_smp_processor_id(); |
| @@ -2345,6 +2407,22 @@ out_activate: | |||
| 2345 | activate_task(rq, p, 1); | 2407 | activate_task(rq, p, 1); |
| 2346 | success = 1; | 2408 | success = 1; |
| 2347 | 2409 | ||
| 2410 | /* | ||
| 2411 | * Only attribute actual wakeups done by this task. | ||
| 2412 | */ | ||
| 2413 | if (!in_interrupt()) { | ||
| 2414 | struct sched_entity *se = ¤t->se; | ||
| 2415 | u64 sample = se->sum_exec_runtime; | ||
| 2416 | |||
| 2417 | if (se->last_wakeup) | ||
| 2418 | sample -= se->last_wakeup; | ||
| 2419 | else | ||
| 2420 | sample -= se->start_runtime; | ||
| 2421 | update_avg(&se->avg_wakeup, sample); | ||
| 2422 | |||
| 2423 | se->last_wakeup = se->sum_exec_runtime; | ||
| 2424 | } | ||
| 2425 | |||
| 2348 | out_running: | 2426 | out_running: |
| 2349 | trace_sched_wakeup(rq, p, success); | 2427 | trace_sched_wakeup(rq, p, success); |
| 2350 | check_preempt_curr(rq, p, sync); | 2428 | check_preempt_curr(rq, p, sync); |
| @@ -2355,8 +2433,6 @@ out_running: | |||
| 2355 | p->sched_class->task_wake_up(rq, p); | 2433 | p->sched_class->task_wake_up(rq, p); |
| 2356 | #endif | 2434 | #endif |
| 2357 | out: | 2435 | out: |
| 2358 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
| 2359 | |||
| 2360 | task_rq_unlock(rq, &flags); | 2436 | task_rq_unlock(rq, &flags); |
| 2361 | 2437 | ||
| 2362 | return success; | 2438 | return success; |
| @@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) | |||
| 2386 | p->se.prev_sum_exec_runtime = 0; | 2462 | p->se.prev_sum_exec_runtime = 0; |
| 2387 | p->se.last_wakeup = 0; | 2463 | p->se.last_wakeup = 0; |
| 2388 | p->se.avg_overlap = 0; | 2464 | p->se.avg_overlap = 0; |
| 2465 | p->se.start_runtime = 0; | ||
| 2466 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
| 2389 | 2467 | ||
| 2390 | #ifdef CONFIG_SCHEDSTATS | 2468 | #ifdef CONFIG_SCHEDSTATS |
| 2391 | p->se.wait_start = 0; | 2469 | p->se.wait_start = 0; |
| @@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2448 | /* Want to start with kernel preemption disabled. */ | 2526 | /* Want to start with kernel preemption disabled. */ |
| 2449 | task_thread_info(p)->preempt_count = 1; | 2527 | task_thread_info(p)->preempt_count = 1; |
| 2450 | #endif | 2528 | #endif |
| 2529 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
| 2530 | |||
| 2451 | put_cpu(); | 2531 | put_cpu(); |
| 2452 | } | 2532 | } |
| 2453 | 2533 | ||
| @@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2491 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 2492 | 2572 | ||
| 2493 | /** | 2573 | /** |
| 2494 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2574 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| 2495 | * @notifier: notifier struct to register | 2575 | * @notifier: notifier struct to register |
| 2496 | */ | 2576 | */ |
| 2497 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2577 | void preempt_notifier_register(struct preempt_notifier *notifier) |
| @@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2588 | { | 2668 | { |
| 2589 | struct mm_struct *mm = rq->prev_mm; | 2669 | struct mm_struct *mm = rq->prev_mm; |
| 2590 | long prev_state; | 2670 | long prev_state; |
| 2671 | #ifdef CONFIG_SMP | ||
| 2672 | int post_schedule = 0; | ||
| 2673 | |||
| 2674 | if (current->sched_class->needs_post_schedule) | ||
| 2675 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
| 2676 | #endif | ||
| 2591 | 2677 | ||
| 2592 | rq->prev_mm = NULL; | 2678 | rq->prev_mm = NULL; |
| 2593 | 2679 | ||
| @@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2606 | finish_arch_switch(prev); | 2692 | finish_arch_switch(prev); |
| 2607 | finish_lock_switch(rq, prev); | 2693 | finish_lock_switch(rq, prev); |
| 2608 | #ifdef CONFIG_SMP | 2694 | #ifdef CONFIG_SMP |
| 2609 | if (current->sched_class->post_schedule) | 2695 | if (post_schedule) |
| 2610 | current->sched_class->post_schedule(rq); | 2696 | current->sched_class->post_schedule(rq); |
| 2611 | #endif | 2697 | #endif |
| 2612 | 2698 | ||
| @@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2913 | struct sched_domain *sd, enum cpu_idle_type idle, | 2999 | struct sched_domain *sd, enum cpu_idle_type idle, |
| 2914 | int *all_pinned) | 3000 | int *all_pinned) |
| 2915 | { | 3001 | { |
| 3002 | int tsk_cache_hot = 0; | ||
| 2916 | /* | 3003 | /* |
| 2917 | * We do not migrate tasks that are: | 3004 | * We do not migrate tasks that are: |
| 2918 | * 1) running (obviously), or | 3005 | * 1) running (obviously), or |
| @@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2936 | * 2) too many balance attempts have failed. | 3023 | * 2) too many balance attempts have failed. |
| 2937 | */ | 3024 | */ |
| 2938 | 3025 | ||
| 2939 | if (!task_hot(p, rq->clock, sd) || | 3026 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
| 2940 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3027 | if (!tsk_cache_hot || |
| 3028 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
| 2941 | #ifdef CONFIG_SCHEDSTATS | 3029 | #ifdef CONFIG_SCHEDSTATS |
| 2942 | if (task_hot(p, rq->clock, sd)) { | 3030 | if (tsk_cache_hot) { |
| 2943 | schedstat_inc(sd, lb_hot_gained[idle]); | 3031 | schedstat_inc(sd, lb_hot_gained[idle]); |
| 2944 | schedstat_inc(p, se.nr_forced_migrations); | 3032 | schedstat_inc(p, se.nr_forced_migrations); |
| 2945 | } | 3033 | } |
| @@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2947 | return 1; | 3035 | return 1; |
| 2948 | } | 3036 | } |
| 2949 | 3037 | ||
| 2950 | if (task_hot(p, rq->clock, sd)) { | 3038 | if (tsk_cache_hot) { |
| 2951 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3039 | schedstat_inc(p, se.nr_failed_migrations_hot); |
| 2952 | return 0; | 3040 | return 0; |
| 2953 | } | 3041 | } |
| @@ -2987,6 +3075,16 @@ next: | |||
| 2987 | pulled++; | 3075 | pulled++; |
| 2988 | rem_load_move -= p->se.load.weight; | 3076 | rem_load_move -= p->se.load.weight; |
| 2989 | 3077 | ||
| 3078 | #ifdef CONFIG_PREEMPT | ||
| 3079 | /* | ||
| 3080 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
| 3081 | * will stop after the first task is pulled to minimize the critical | ||
| 3082 | * section. | ||
| 3083 | */ | ||
| 3084 | if (idle == CPU_NEWLY_IDLE) | ||
| 3085 | goto out; | ||
| 3086 | #endif | ||
| 3087 | |||
| 2990 | /* | 3088 | /* |
| 2991 | * We only want to steal up to the prescribed amount of weighted load. | 3089 | * We only want to steal up to the prescribed amount of weighted load. |
| 2992 | */ | 3090 | */ |
| @@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3033 | sd, idle, all_pinned, &this_best_prio); | 3131 | sd, idle, all_pinned, &this_best_prio); |
| 3034 | class = class->next; | 3132 | class = class->next; |
| 3035 | 3133 | ||
| 3134 | #ifdef CONFIG_PREEMPT | ||
| 3135 | /* | ||
| 3136 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 3137 | * kernels will stop after the first task is pulled to minimize | ||
| 3138 | * the critical section. | ||
| 3139 | */ | ||
| 3036 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3140 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
| 3037 | break; | 3141 | break; |
| 3038 | 3142 | #endif | |
| 3039 | } while (class && max_load_move > total_load_moved); | 3143 | } while (class && max_load_move > total_load_moved); |
| 3040 | 3144 | ||
| 3041 | return total_load_moved > 0; | 3145 | return total_load_moved > 0; |
| @@ -3085,246 +3189,479 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3085 | 3189 | ||
| 3086 | return 0; | 3190 | return 0; |
| 3087 | } | 3191 | } |
| 3192 | /********** Helpers for find_busiest_group ************************/ | ||
| 3193 | /** | ||
| 3194 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
| 3195 | * during load balancing. | ||
| 3196 | */ | ||
| 3197 | struct sd_lb_stats { | ||
| 3198 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
| 3199 | struct sched_group *this; /* Local group in this sd */ | ||
| 3200 | unsigned long total_load; /* Total load of all groups in sd */ | ||
| 3201 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
| 3202 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
| 3203 | |||
| 3204 | /** Statistics of this group */ | ||
| 3205 | unsigned long this_load; | ||
| 3206 | unsigned long this_load_per_task; | ||
| 3207 | unsigned long this_nr_running; | ||
| 3208 | |||
| 3209 | /* Statistics of the busiest group */ | ||
| 3210 | unsigned long max_load; | ||
| 3211 | unsigned long busiest_load_per_task; | ||
| 3212 | unsigned long busiest_nr_running; | ||
| 3213 | |||
| 3214 | int group_imb; /* Is there imbalance in this sd */ | ||
| 3215 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3216 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
| 3217 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
| 3218 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
| 3219 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
| 3220 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 3221 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 3222 | #endif | ||
| 3223 | }; | ||
| 3088 | 3224 | ||
| 3089 | /* | 3225 | /** |
| 3090 | * find_busiest_group finds and returns the busiest CPU group within the | 3226 | * sg_lb_stats - stats of a sched_group required for load_balancing |
| 3091 | * domain. It calculates and returns the amount of weighted load which | 3227 | */ |
| 3092 | * should be moved to restore balance via the imbalance parameter. | 3228 | struct sg_lb_stats { |
| 3229 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 3230 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 3231 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 3232 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 3233 | unsigned long group_capacity; | ||
| 3234 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 3235 | }; | ||
| 3236 | |||
| 3237 | /** | ||
| 3238 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
| 3239 | * @group: The group whose first cpu is to be returned. | ||
| 3093 | */ | 3240 | */ |
| 3094 | static struct sched_group * | 3241 | static inline unsigned int group_first_cpu(struct sched_group *group) |
| 3095 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3096 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3097 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 3098 | { | 3242 | { |
| 3099 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3243 | return cpumask_first(sched_group_cpus(group)); |
| 3100 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3244 | } |
| 3101 | unsigned long max_pull; | ||
| 3102 | unsigned long busiest_load_per_task, busiest_nr_running; | ||
| 3103 | unsigned long this_load_per_task, this_nr_running; | ||
| 3104 | int load_idx, group_imb = 0; | ||
| 3105 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3106 | int power_savings_balance = 1; | ||
| 3107 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | ||
| 3108 | unsigned long min_nr_running = ULONG_MAX; | ||
| 3109 | struct sched_group *group_min = NULL, *group_leader = NULL; | ||
| 3110 | #endif | ||
| 3111 | 3245 | ||
| 3112 | max_load = this_load = total_load = total_pwr = 0; | 3246 | /** |
| 3113 | busiest_load_per_task = busiest_nr_running = 0; | 3247 | * get_sd_load_idx - Obtain the load index for a given sched domain. |
| 3114 | this_load_per_task = this_nr_running = 0; | 3248 | * @sd: The sched_domain whose load_idx is to be obtained. |
| 3249 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 3250 | */ | ||
| 3251 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 3252 | enum cpu_idle_type idle) | ||
| 3253 | { | ||
| 3254 | int load_idx; | ||
| 3115 | 3255 | ||
| 3116 | if (idle == CPU_NOT_IDLE) | 3256 | switch (idle) { |
| 3257 | case CPU_NOT_IDLE: | ||
| 3117 | load_idx = sd->busy_idx; | 3258 | load_idx = sd->busy_idx; |
| 3118 | else if (idle == CPU_NEWLY_IDLE) | 3259 | break; |
| 3260 | |||
| 3261 | case CPU_NEWLY_IDLE: | ||
| 3119 | load_idx = sd->newidle_idx; | 3262 | load_idx = sd->newidle_idx; |
| 3120 | else | 3263 | break; |
| 3264 | default: | ||
| 3121 | load_idx = sd->idle_idx; | 3265 | load_idx = sd->idle_idx; |
| 3266 | break; | ||
| 3267 | } | ||
| 3122 | 3268 | ||
| 3123 | do { | 3269 | return load_idx; |
| 3124 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3270 | } |
| 3125 | int local_group; | ||
| 3126 | int i; | ||
| 3127 | int __group_imb = 0; | ||
| 3128 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3129 | unsigned long sum_nr_running, sum_weighted_load; | ||
| 3130 | unsigned long sum_avg_load_per_task; | ||
| 3131 | unsigned long avg_load_per_task; | ||
| 3132 | 3271 | ||
| 3133 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3134 | sched_group_cpus(group)); | ||
| 3135 | 3272 | ||
| 3136 | if (local_group) | 3273 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| 3137 | balance_cpu = cpumask_first(sched_group_cpus(group)); | 3274 | /** |
| 3275 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 3276 | * the given sched_domain, during load balancing. | ||
| 3277 | * | ||
| 3278 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 3279 | * @sds: Variable containing the statistics for sd. | ||
| 3280 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 3281 | */ | ||
| 3282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 3283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 3284 | { | ||
| 3285 | /* | ||
| 3286 | * Busy processors will not participate in power savings | ||
| 3287 | * balance. | ||
| 3288 | */ | ||
| 3289 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3290 | sds->power_savings_balance = 0; | ||
| 3291 | else { | ||
| 3292 | sds->power_savings_balance = 1; | ||
| 3293 | sds->min_nr_running = ULONG_MAX; | ||
| 3294 | sds->leader_nr_running = 0; | ||
| 3295 | } | ||
| 3296 | } | ||
| 3138 | 3297 | ||
| 3139 | /* Tally up the load of all CPUs in the group */ | 3298 | /** |
| 3140 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3299 | * update_sd_power_savings_stats - Update the power saving stats for a |
| 3141 | sum_avg_load_per_task = avg_load_per_task = 0; | 3300 | * sched_domain while performing load balancing. |
| 3301 | * | ||
| 3302 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 3303 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3304 | * @local_group: Does group contain the CPU for which we're performing | ||
| 3305 | * load balancing ? | ||
| 3306 | * @sgs: Variable containing the statistics of the group. | ||
| 3307 | */ | ||
| 3308 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 3309 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 3310 | { | ||
| 3142 | 3311 | ||
| 3143 | max_cpu_load = 0; | 3312 | if (!sds->power_savings_balance) |
| 3144 | min_cpu_load = ~0UL; | 3313 | return; |
| 3145 | 3314 | ||
| 3146 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 3315 | /* |
| 3147 | struct rq *rq = cpu_rq(i); | 3316 | * If the local group is idle or completely loaded |
| 3317 | * no need to do power savings balance at this domain | ||
| 3318 | */ | ||
| 3319 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 3320 | !sds->this_nr_running)) | ||
| 3321 | sds->power_savings_balance = 0; | ||
| 3148 | 3322 | ||
| 3149 | if (*sd_idle && rq->nr_running) | 3323 | /* |
| 3150 | *sd_idle = 0; | 3324 | * If a group is already running at full capacity or idle, |
| 3325 | * don't include that group in power savings calculations | ||
| 3326 | */ | ||
| 3327 | if (!sds->power_savings_balance || | ||
| 3328 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 3329 | !sgs->sum_nr_running) | ||
| 3330 | return; | ||
| 3151 | 3331 | ||
| 3152 | /* Bias balancing toward cpus of our domain */ | 3332 | /* |
| 3153 | if (local_group) { | 3333 | * Calculate the group which has the least non-idle load. |
| 3154 | if (idle_cpu(i) && !first_idle_cpu) { | 3334 | * This is the group from where we need to pick up the load |
| 3155 | first_idle_cpu = 1; | 3335 | * for saving power |
| 3156 | balance_cpu = i; | 3336 | */ |
| 3157 | } | 3337 | if ((sgs->sum_nr_running < sds->min_nr_running) || |
| 3338 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 3339 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 3340 | sds->group_min = group; | ||
| 3341 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 3342 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 3343 | sgs->sum_nr_running; | ||
| 3344 | } | ||
| 3158 | 3345 | ||
| 3159 | load = target_load(i, load_idx); | 3346 | /* |
| 3160 | } else { | 3347 | * Calculate the group which is almost near its |
| 3161 | load = source_load(i, load_idx); | 3348 | * capacity but still has some space to pick up some load |
| 3162 | if (load > max_cpu_load) | 3349 | * from other group and save more power |
| 3163 | max_cpu_load = load; | 3350 | */ |
| 3164 | if (min_cpu_load > load) | 3351 | if (sgs->sum_nr_running > sgs->group_capacity - 1) |
| 3165 | min_cpu_load = load; | 3352 | return; |
| 3166 | } | ||
| 3167 | 3353 | ||
| 3168 | avg_load += load; | 3354 | if (sgs->sum_nr_running > sds->leader_nr_running || |
| 3169 | sum_nr_running += rq->nr_running; | 3355 | (sgs->sum_nr_running == sds->leader_nr_running && |
| 3170 | sum_weighted_load += weighted_cpuload(i); | 3356 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { |
| 3357 | sds->group_leader = group; | ||
| 3358 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 3359 | } | ||
| 3360 | } | ||
| 3171 | 3361 | ||
| 3172 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3362 | /** |
| 3173 | } | 3363 | * check_power_save_busiest_group - Check if we have potential to perform |
| 3364 | * some power-savings balance. If yes, set the busiest group to be | ||
| 3365 | * the least loaded group in the sched_domain, so that it's CPUs can | ||
| 3366 | * be put to idle. | ||
| 3367 | * | ||
| 3368 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3369 | * under consideration. | ||
| 3370 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 3371 | * @imbalance: Variable to store the imbalance. | ||
| 3372 | * | ||
| 3373 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 3374 | * Else returns 0. | ||
| 3375 | */ | ||
| 3376 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3377 | int this_cpu, unsigned long *imbalance) | ||
| 3378 | { | ||
| 3379 | if (!sds->power_savings_balance) | ||
| 3380 | return 0; | ||
| 3174 | 3381 | ||
| 3175 | /* | 3382 | if (sds->this != sds->group_leader || |
| 3176 | * First idle cpu or the first cpu(busiest) in this sched group | 3383 | sds->group_leader == sds->group_min) |
| 3177 | * is eligible for doing load balancing at this and above | 3384 | return 0; |
| 3178 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 3179 | * to do the newly idle load balance. | ||
| 3180 | */ | ||
| 3181 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
| 3182 | balance_cpu != this_cpu && balance) { | ||
| 3183 | *balance = 0; | ||
| 3184 | goto ret; | ||
| 3185 | } | ||
| 3186 | 3385 | ||
| 3187 | total_load += avg_load; | 3386 | *imbalance = sds->min_load_per_task; |
| 3188 | total_pwr += group->__cpu_power; | 3387 | sds->busiest = sds->group_min; |
| 3189 | 3388 | ||
| 3190 | /* Adjust by relative CPU power of the group */ | 3389 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { |
| 3191 | avg_load = sg_div_cpu_power(group, | 3390 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = |
| 3192 | avg_load * SCHED_LOAD_SCALE); | 3391 | group_first_cpu(sds->group_leader); |
| 3392 | } | ||
| 3193 | 3393 | ||
| 3394 | return 1; | ||
| 3194 | 3395 | ||
| 3195 | /* | 3396 | } |
| 3196 | * Consider the group unbalanced when the imbalance is larger | 3397 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 3197 | * than the average weight of two tasks. | 3398 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
| 3198 | * | 3399 | struct sd_lb_stats *sds, enum cpu_idle_type idle) |
| 3199 | * APZ: with cgroup the avg task weight can vary wildly and | 3400 | { |
| 3200 | * might not be a suitable number - should we keep a | 3401 | return; |
| 3201 | * normalized nr_running number somewhere that negates | 3402 | } |
| 3202 | * the hierarchy? | ||
| 3203 | */ | ||
| 3204 | avg_load_per_task = sg_div_cpu_power(group, | ||
| 3205 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | ||
| 3206 | 3403 | ||
| 3207 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3404 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
| 3208 | __group_imb = 1; | 3405 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
| 3406 | { | ||
| 3407 | return; | ||
| 3408 | } | ||
| 3409 | |||
| 3410 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3411 | int this_cpu, unsigned long *imbalance) | ||
| 3412 | { | ||
| 3413 | return 0; | ||
| 3414 | } | ||
| 3415 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 3209 | 3416 | ||
| 3210 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
| 3211 | 3417 | ||
| 3418 | /** | ||
| 3419 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3420 | * @group: sched_group whose statistics are to be updated. | ||
| 3421 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3422 | * @idle: Idle status of this_cpu | ||
| 3423 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 3424 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3425 | * @local_group: Does group contain this_cpu. | ||
| 3426 | * @cpus: Set of cpus considered for load balancing. | ||
| 3427 | * @balance: Should we balance. | ||
| 3428 | * @sgs: variable to hold the statistics for this group. | ||
| 3429 | */ | ||
| 3430 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | ||
| 3431 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
| 3432 | int local_group, const struct cpumask *cpus, | ||
| 3433 | int *balance, struct sg_lb_stats *sgs) | ||
| 3434 | { | ||
| 3435 | unsigned long load, max_cpu_load, min_cpu_load; | ||
| 3436 | int i; | ||
| 3437 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3438 | unsigned long sum_avg_load_per_task; | ||
| 3439 | unsigned long avg_load_per_task; | ||
| 3440 | |||
| 3441 | if (local_group) | ||
| 3442 | balance_cpu = group_first_cpu(group); | ||
| 3443 | |||
| 3444 | /* Tally up the load of all CPUs in the group */ | ||
| 3445 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
| 3446 | max_cpu_load = 0; | ||
| 3447 | min_cpu_load = ~0UL; | ||
| 3448 | |||
| 3449 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 3450 | struct rq *rq = cpu_rq(i); | ||
| 3451 | |||
| 3452 | if (*sd_idle && rq->nr_running) | ||
| 3453 | *sd_idle = 0; | ||
| 3454 | |||
| 3455 | /* Bias balancing toward cpus of our domain */ | ||
| 3212 | if (local_group) { | 3456 | if (local_group) { |
| 3213 | this_load = avg_load; | 3457 | if (idle_cpu(i) && !first_idle_cpu) { |
| 3214 | this = group; | 3458 | first_idle_cpu = 1; |
| 3215 | this_nr_running = sum_nr_running; | 3459 | balance_cpu = i; |
| 3216 | this_load_per_task = sum_weighted_load; | 3460 | } |
| 3217 | } else if (avg_load > max_load && | 3461 | |
| 3218 | (sum_nr_running > group_capacity || __group_imb)) { | 3462 | load = target_load(i, load_idx); |
| 3219 | max_load = avg_load; | 3463 | } else { |
| 3220 | busiest = group; | 3464 | load = source_load(i, load_idx); |
| 3221 | busiest_nr_running = sum_nr_running; | 3465 | if (load > max_cpu_load) |
| 3222 | busiest_load_per_task = sum_weighted_load; | 3466 | max_cpu_load = load; |
| 3223 | group_imb = __group_imb; | 3467 | if (min_cpu_load > load) |
| 3468 | min_cpu_load = load; | ||
| 3224 | } | 3469 | } |
| 3225 | 3470 | ||
| 3226 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3471 | sgs->group_load += load; |
| 3227 | /* | 3472 | sgs->sum_nr_running += rq->nr_running; |
| 3228 | * Busy processors will not participate in power savings | 3473 | sgs->sum_weighted_load += weighted_cpuload(i); |
| 3229 | * balance. | ||
| 3230 | */ | ||
| 3231 | if (idle == CPU_NOT_IDLE || | ||
| 3232 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3233 | goto group_next; | ||
| 3234 | 3474 | ||
| 3235 | /* | 3475 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
| 3236 | * If the local group is idle or completely loaded | 3476 | } |
| 3237 | * no need to do power savings balance at this domain | ||
| 3238 | */ | ||
| 3239 | if (local_group && (this_nr_running >= group_capacity || | ||
| 3240 | !this_nr_running)) | ||
| 3241 | power_savings_balance = 0; | ||
| 3242 | 3477 | ||
| 3243 | /* | 3478 | /* |
| 3244 | * If a group is already running at full capacity or idle, | 3479 | * First idle cpu or the first cpu(busiest) in this sched group |
| 3245 | * don't include that group in power savings calculations | 3480 | * is eligible for doing load balancing at this and above |
| 3246 | */ | 3481 | * domains. In the newly idle case, we will allow all the cpu's |
| 3247 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3482 | * to do the newly idle load balance. |
| 3248 | || !sum_nr_running) | 3483 | */ |
| 3249 | goto group_next; | 3484 | if (idle != CPU_NEWLY_IDLE && local_group && |
| 3485 | balance_cpu != this_cpu && balance) { | ||
| 3486 | *balance = 0; | ||
| 3487 | return; | ||
| 3488 | } | ||
| 3250 | 3489 | ||
| 3251 | /* | 3490 | /* Adjust by relative CPU power of the group */ |
| 3252 | * Calculate the group which has the least non-idle load. | 3491 | sgs->avg_load = sg_div_cpu_power(group, |
| 3253 | * This is the group from where we need to pick up the load | 3492 | sgs->group_load * SCHED_LOAD_SCALE); |
| 3254 | * for saving power | ||
| 3255 | */ | ||
| 3256 | if ((sum_nr_running < min_nr_running) || | ||
| 3257 | (sum_nr_running == min_nr_running && | ||
| 3258 | cpumask_first(sched_group_cpus(group)) > | ||
| 3259 | cpumask_first(sched_group_cpus(group_min)))) { | ||
| 3260 | group_min = group; | ||
| 3261 | min_nr_running = sum_nr_running; | ||
| 3262 | min_load_per_task = sum_weighted_load / | ||
| 3263 | sum_nr_running; | ||
| 3264 | } | ||
| 3265 | 3493 | ||
| 3266 | /* | 3494 | |
| 3267 | * Calculate the group which is almost near its | 3495 | /* |
| 3268 | * capacity but still has some space to pick up some load | 3496 | * Consider the group unbalanced when the imbalance is larger |
| 3269 | * from other group and save more power | 3497 | * than the average weight of two tasks. |
| 3270 | */ | 3498 | * |
| 3271 | if (sum_nr_running <= group_capacity - 1) { | 3499 | * APZ: with cgroup the avg task weight can vary wildly and |
| 3272 | if (sum_nr_running > leader_nr_running || | 3500 | * might not be a suitable number - should we keep a |
| 3273 | (sum_nr_running == leader_nr_running && | 3501 | * normalized nr_running number somewhere that negates |
| 3274 | cpumask_first(sched_group_cpus(group)) < | 3502 | * the hierarchy? |
| 3275 | cpumask_first(sched_group_cpus(group_leader)))) { | 3503 | */ |
| 3276 | group_leader = group; | 3504 | avg_load_per_task = sg_div_cpu_power(group, |
| 3277 | leader_nr_running = sum_nr_running; | 3505 | sum_avg_load_per_task * SCHED_LOAD_SCALE); |
| 3278 | } | 3506 | |
| 3507 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
| 3508 | sgs->group_imb = 1; | ||
| 3509 | |||
| 3510 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
| 3511 | |||
| 3512 | } | ||
| 3513 | |||
| 3514 | /** | ||
| 3515 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3516 | * @sd: sched_domain whose statistics are to be updated. | ||
| 3517 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3518 | * @idle: Idle status of this_cpu | ||
| 3519 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3520 | * @cpus: Set of cpus considered for load balancing. | ||
| 3521 | * @balance: Should we balance. | ||
| 3522 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 3523 | */ | ||
| 3524 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 3525 | enum cpu_idle_type idle, int *sd_idle, | ||
| 3526 | const struct cpumask *cpus, int *balance, | ||
| 3527 | struct sd_lb_stats *sds) | ||
| 3528 | { | ||
| 3529 | struct sched_group *group = sd->groups; | ||
| 3530 | struct sg_lb_stats sgs; | ||
| 3531 | int load_idx; | ||
| 3532 | |||
| 3533 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 3534 | load_idx = get_sd_load_idx(sd, idle); | ||
| 3535 | |||
| 3536 | do { | ||
| 3537 | int local_group; | ||
| 3538 | |||
| 3539 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3540 | sched_group_cpus(group)); | ||
| 3541 | memset(&sgs, 0, sizeof(sgs)); | ||
| 3542 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | ||
| 3543 | local_group, cpus, balance, &sgs); | ||
| 3544 | |||
| 3545 | if (local_group && balance && !(*balance)) | ||
| 3546 | return; | ||
| 3547 | |||
| 3548 | sds->total_load += sgs.group_load; | ||
| 3549 | sds->total_pwr += group->__cpu_power; | ||
| 3550 | |||
| 3551 | if (local_group) { | ||
| 3552 | sds->this_load = sgs.avg_load; | ||
| 3553 | sds->this = group; | ||
| 3554 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 3555 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 3556 | } else if (sgs.avg_load > sds->max_load && | ||
| 3557 | (sgs.sum_nr_running > sgs.group_capacity || | ||
| 3558 | sgs.group_imb)) { | ||
| 3559 | sds->max_load = sgs.avg_load; | ||
| 3560 | sds->busiest = group; | ||
| 3561 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 3562 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 3563 | sds->group_imb = sgs.group_imb; | ||
| 3279 | } | 3564 | } |
| 3280 | group_next: | 3565 | |
| 3281 | #endif | 3566 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
| 3282 | group = group->next; | 3567 | group = group->next; |
| 3283 | } while (group != sd->groups); | 3568 | } while (group != sd->groups); |
| 3284 | 3569 | ||
| 3285 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3570 | } |
| 3286 | goto out_balanced; | ||
| 3287 | |||
| 3288 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
| 3289 | 3571 | ||
| 3290 | if (this_load >= avg_load || | 3572 | /** |
| 3291 | 100*max_load <= sd->imbalance_pct*this_load) | 3573 | * fix_small_imbalance - Calculate the minor imbalance that exists |
| 3292 | goto out_balanced; | 3574 | * amongst the groups of a sched_domain, during |
| 3575 | * load balancing. | ||
| 3576 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3577 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 3578 | * @imbalance: Variable to store the imbalance. | ||
| 3579 | */ | ||
| 3580 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 3581 | int this_cpu, unsigned long *imbalance) | ||
| 3582 | { | ||
| 3583 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 3584 | unsigned int imbn = 2; | ||
| 3585 | |||
| 3586 | if (sds->this_nr_running) { | ||
| 3587 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 3588 | if (sds->busiest_load_per_task > | ||
| 3589 | sds->this_load_per_task) | ||
| 3590 | imbn = 1; | ||
| 3591 | } else | ||
| 3592 | sds->this_load_per_task = | ||
| 3593 | cpu_avg_load_per_task(this_cpu); | ||
| 3293 | 3594 | ||
| 3294 | busiest_load_per_task /= busiest_nr_running; | 3595 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= |
| 3295 | if (group_imb) | 3596 | sds->busiest_load_per_task * imbn) { |
| 3296 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3597 | *imbalance = sds->busiest_load_per_task; |
| 3598 | return; | ||
| 3599 | } | ||
| 3297 | 3600 | ||
| 3298 | /* | 3601 | /* |
| 3299 | * We're trying to get all the cpus to the average_load, so we don't | 3602 | * OK, we don't have enough imbalance to justify moving tasks, |
| 3300 | * want to push ourselves above the average load, nor do we wish to | 3603 | * however we may be able to increase total CPU power used by |
| 3301 | * reduce the max loaded cpu below the average load, as either of these | 3604 | * moving them. |
| 3302 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3303 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3304 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3305 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3306 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3307 | * appear as very large values with unsigned longs. | ||
| 3308 | */ | 3605 | */ |
| 3309 | if (max_load <= busiest_load_per_task) | ||
| 3310 | goto out_balanced; | ||
| 3311 | 3606 | ||
| 3607 | pwr_now += sds->busiest->__cpu_power * | ||
| 3608 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 3609 | pwr_now += sds->this->__cpu_power * | ||
| 3610 | min(sds->this_load_per_task, sds->this_load); | ||
| 3611 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3612 | |||
| 3613 | /* Amount of load we'd subtract */ | ||
| 3614 | tmp = sg_div_cpu_power(sds->busiest, | ||
| 3615 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3616 | if (sds->max_load > tmp) | ||
| 3617 | pwr_move += sds->busiest->__cpu_power * | ||
| 3618 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 3619 | |||
| 3620 | /* Amount of load we'd add */ | ||
| 3621 | if (sds->max_load * sds->busiest->__cpu_power < | ||
| 3622 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3623 | tmp = sg_div_cpu_power(sds->this, | ||
| 3624 | sds->max_load * sds->busiest->__cpu_power); | ||
| 3625 | else | ||
| 3626 | tmp = sg_div_cpu_power(sds->this, | ||
| 3627 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3628 | pwr_move += sds->this->__cpu_power * | ||
| 3629 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 3630 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3631 | |||
| 3632 | /* Move if we gain throughput */ | ||
| 3633 | if (pwr_move > pwr_now) | ||
| 3634 | *imbalance = sds->busiest_load_per_task; | ||
| 3635 | } | ||
| 3636 | |||
| 3637 | /** | ||
| 3638 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 3639 | * groups of a given sched_domain during load balance. | ||
| 3640 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3641 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 3642 | * @imbalance: The variable to store the imbalance. | ||
| 3643 | */ | ||
| 3644 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 3645 | unsigned long *imbalance) | ||
| 3646 | { | ||
| 3647 | unsigned long max_pull; | ||
| 3312 | /* | 3648 | /* |
| 3313 | * In the presence of smp nice balancing, certain scenarios can have | 3649 | * In the presence of smp nice balancing, certain scenarios can have |
| 3314 | * max load less than avg load(as we skip the groups at or below | 3650 | * max load less than avg load(as we skip the groups at or below |
| 3315 | * its cpu_power, while calculating max_load..) | 3651 | * its cpu_power, while calculating max_load..) |
| 3316 | */ | 3652 | */ |
| 3317 | if (max_load < avg_load) { | 3653 | if (sds->max_load < sds->avg_load) { |
| 3318 | *imbalance = 0; | 3654 | *imbalance = 0; |
| 3319 | goto small_imbalance; | 3655 | return fix_small_imbalance(sds, this_cpu, imbalance); |
| 3320 | } | 3656 | } |
| 3321 | 3657 | ||
| 3322 | /* Don't want to pull so many tasks that a group would go idle */ | 3658 | /* Don't want to pull so many tasks that a group would go idle */ |
| 3323 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3659 | max_pull = min(sds->max_load - sds->avg_load, |
| 3660 | sds->max_load - sds->busiest_load_per_task); | ||
| 3324 | 3661 | ||
| 3325 | /* How much load to actually move to equalise the imbalance */ | 3662 | /* How much load to actually move to equalise the imbalance */ |
| 3326 | *imbalance = min(max_pull * busiest->__cpu_power, | 3663 | *imbalance = min(max_pull * sds->busiest->__cpu_power, |
| 3327 | (avg_load - this_load) * this->__cpu_power) | 3664 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) |
| 3328 | / SCHED_LOAD_SCALE; | 3665 | / SCHED_LOAD_SCALE; |
| 3329 | 3666 | ||
| 3330 | /* | 3667 | /* |
| @@ -3333,78 +3670,110 @@ group_next: | |||
| 3333 | * a think about bumping its value to force at least one task to be | 3670 | * a think about bumping its value to force at least one task to be |
| 3334 | * moved | 3671 | * moved |
| 3335 | */ | 3672 | */ |
| 3336 | if (*imbalance < busiest_load_per_task) { | 3673 | if (*imbalance < sds->busiest_load_per_task) |
| 3337 | unsigned long tmp, pwr_now, pwr_move; | 3674 | return fix_small_imbalance(sds, this_cpu, imbalance); |
| 3338 | unsigned int imbn; | ||
| 3339 | |||
| 3340 | small_imbalance: | ||
| 3341 | pwr_move = pwr_now = 0; | ||
| 3342 | imbn = 2; | ||
| 3343 | if (this_nr_running) { | ||
| 3344 | this_load_per_task /= this_nr_running; | ||
| 3345 | if (busiest_load_per_task > this_load_per_task) | ||
| 3346 | imbn = 1; | ||
| 3347 | } else | ||
| 3348 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | ||
| 3349 | 3675 | ||
| 3350 | if (max_load - this_load + busiest_load_per_task >= | 3676 | } |
| 3351 | busiest_load_per_task * imbn) { | 3677 | /******* find_busiest_group() helpers end here *********************/ |
| 3352 | *imbalance = busiest_load_per_task; | ||
| 3353 | return busiest; | ||
| 3354 | } | ||
| 3355 | 3678 | ||
| 3356 | /* | 3679 | /** |
| 3357 | * OK, we don't have enough imbalance to justify moving tasks, | 3680 | * find_busiest_group - Returns the busiest group within the sched_domain |
| 3358 | * however we may be able to increase total CPU power used by | 3681 | * if there is an imbalance. If there isn't an imbalance, and |
| 3359 | * moving them. | 3682 | * the user has opted for power-savings, it returns a group whose |
| 3360 | */ | 3683 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
| 3684 | * such a group exists. | ||
| 3685 | * | ||
| 3686 | * Also calculates the amount of weighted load which should be moved | ||
| 3687 | * to restore balance. | ||
| 3688 | * | ||
| 3689 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 3690 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 3691 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 3692 | * be moved to restore balance/put a group to idle. | ||
| 3693 | * @idle: The idle status of this_cpu. | ||
| 3694 | * @sd_idle: The idleness of sd | ||
| 3695 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 3696 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 3697 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 3698 | * | ||
| 3699 | * Returns: - the busiest group if imbalance exists. | ||
| 3700 | * - If no imbalance and user has opted for power-savings balance, | ||
| 3701 | * return the least loaded group whose CPUs can be | ||
| 3702 | * put to idle by rebalancing its tasks onto our group. | ||
| 3703 | */ | ||
| 3704 | static struct sched_group * | ||
| 3705 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3706 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3707 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 3708 | { | ||
| 3709 | struct sd_lb_stats sds; | ||
| 3361 | 3710 | ||
| 3362 | pwr_now += busiest->__cpu_power * | 3711 | memset(&sds, 0, sizeof(sds)); |
| 3363 | min(busiest_load_per_task, max_load); | ||
| 3364 | pwr_now += this->__cpu_power * | ||
| 3365 | min(this_load_per_task, this_load); | ||
| 3366 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3367 | |||
| 3368 | /* Amount of load we'd subtract */ | ||
| 3369 | tmp = sg_div_cpu_power(busiest, | ||
| 3370 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3371 | if (max_load > tmp) | ||
| 3372 | pwr_move += busiest->__cpu_power * | ||
| 3373 | min(busiest_load_per_task, max_load - tmp); | ||
| 3374 | |||
| 3375 | /* Amount of load we'd add */ | ||
| 3376 | if (max_load * busiest->__cpu_power < | ||
| 3377 | busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3378 | tmp = sg_div_cpu_power(this, | ||
| 3379 | max_load * busiest->__cpu_power); | ||
| 3380 | else | ||
| 3381 | tmp = sg_div_cpu_power(this, | ||
| 3382 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3383 | pwr_move += this->__cpu_power * | ||
| 3384 | min(this_load_per_task, this_load + tmp); | ||
| 3385 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3386 | 3712 | ||
| 3387 | /* Move if we gain throughput */ | 3713 | /* |
| 3388 | if (pwr_move > pwr_now) | 3714 | * Compute the various statistics relavent for load balancing at |
| 3389 | *imbalance = busiest_load_per_task; | 3715 | * this level. |
| 3390 | } | 3716 | */ |
| 3717 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
| 3718 | balance, &sds); | ||
| 3719 | |||
| 3720 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
| 3721 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
| 3722 | * at this level. | ||
| 3723 | * 2) There is no busy sibling group to pull from. | ||
| 3724 | * 3) This group is the busiest group. | ||
| 3725 | * 4) This group is more busy than the avg busieness at this | ||
| 3726 | * sched_domain. | ||
| 3727 | * 5) The imbalance is within the specified limit. | ||
| 3728 | * 6) Any rebalance would lead to ping-pong | ||
| 3729 | */ | ||
| 3730 | if (balance && !(*balance)) | ||
| 3731 | goto ret; | ||
| 3391 | 3732 | ||
| 3392 | return busiest; | 3733 | if (!sds.busiest || sds.busiest_nr_running == 0) |
| 3734 | goto out_balanced; | ||
| 3393 | 3735 | ||
| 3394 | out_balanced: | 3736 | if (sds.this_load >= sds.max_load) |
| 3395 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3737 | goto out_balanced; |
| 3396 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3397 | goto ret; | ||
| 3398 | 3738 | ||
| 3399 | if (this == group_leader && group_leader != group_min) { | 3739 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
| 3400 | *imbalance = min_load_per_task; | 3740 | |
| 3401 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 3741 | if (sds.this_load >= sds.avg_load) |
| 3402 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 3742 | goto out_balanced; |
| 3403 | cpumask_first(sched_group_cpus(group_leader)); | 3743 | |
| 3404 | } | 3744 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) |
| 3405 | return group_min; | 3745 | goto out_balanced; |
| 3406 | } | 3746 | |
| 3407 | #endif | 3747 | sds.busiest_load_per_task /= sds.busiest_nr_running; |
| 3748 | if (sds.group_imb) | ||
| 3749 | sds.busiest_load_per_task = | ||
| 3750 | min(sds.busiest_load_per_task, sds.avg_load); | ||
| 3751 | |||
| 3752 | /* | ||
| 3753 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 3754 | * want to push ourselves above the average load, nor do we wish to | ||
| 3755 | * reduce the max loaded cpu below the average load, as either of these | ||
| 3756 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3757 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3758 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3759 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3760 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3761 | * appear as very large values with unsigned longs. | ||
| 3762 | */ | ||
| 3763 | if (sds.max_load <= sds.busiest_load_per_task) | ||
| 3764 | goto out_balanced; | ||
| 3765 | |||
| 3766 | /* Looks like there is an imbalance. Compute it */ | ||
| 3767 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 3768 | return sds.busiest; | ||
| 3769 | |||
| 3770 | out_balanced: | ||
| 3771 | /* | ||
| 3772 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 3773 | * to save power. | ||
| 3774 | */ | ||
| 3775 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 3776 | return sds.busiest; | ||
| 3408 | ret: | 3777 | ret: |
| 3409 | *imbalance = 0; | 3778 | *imbalance = 0; |
| 3410 | return NULL; | 3779 | return NULL; |
| @@ -4057,6 +4426,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
| 4057 | #endif | 4426 | #endif |
| 4058 | } | 4427 | } |
| 4059 | 4428 | ||
| 4429 | static inline int on_null_domain(int cpu) | ||
| 4430 | { | ||
| 4431 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4432 | } | ||
| 4433 | |||
| 4060 | /* | 4434 | /* |
| 4061 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4435 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
| 4062 | * | 4436 | * |
| @@ -4114,7 +4488,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
| 4114 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4488 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
| 4115 | return; | 4489 | return; |
| 4116 | #endif | 4490 | #endif |
| 4117 | if (time_after_eq(jiffies, rq->next_balance)) | 4491 | /* Don't need to rebalance while attached to NULL domain */ |
| 4492 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 4493 | likely(!on_null_domain(cpu))) | ||
| 4118 | raise_softirq(SCHED_SOFTIRQ); | 4494 | raise_softirq(SCHED_SOFTIRQ); |
| 4119 | } | 4495 | } |
| 4120 | 4496 | ||
| @@ -4508,11 +4884,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 4508 | #endif | 4884 | #endif |
| 4509 | } | 4885 | } |
| 4510 | 4886 | ||
| 4887 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
| 4888 | { | ||
| 4889 | if (prev->state == TASK_RUNNING) { | ||
| 4890 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 4891 | |||
| 4892 | runtime -= prev->se.prev_sum_exec_runtime; | ||
| 4893 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 4894 | |||
| 4895 | /* | ||
| 4896 | * In order to avoid avg_overlap growing stale when we are | ||
| 4897 | * indeed overlapping and hence not getting put to sleep, grow | ||
| 4898 | * the avg_overlap on preemption. | ||
| 4899 | * | ||
| 4900 | * We use the average preemption runtime because that | ||
| 4901 | * correlates to the amount of cache footprint a task can | ||
| 4902 | * build up. | ||
| 4903 | */ | ||
| 4904 | update_avg(&prev->se.avg_overlap, runtime); | ||
| 4905 | } | ||
| 4906 | prev->sched_class->put_prev_task(rq, prev); | ||
| 4907 | } | ||
| 4908 | |||
| 4511 | /* | 4909 | /* |
| 4512 | * Pick up the highest-prio task: | 4910 | * Pick up the highest-prio task: |
| 4513 | */ | 4911 | */ |
| 4514 | static inline struct task_struct * | 4912 | static inline struct task_struct * |
| 4515 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4913 | pick_next_task(struct rq *rq) |
| 4516 | { | 4914 | { |
| 4517 | const struct sched_class *class; | 4915 | const struct sched_class *class; |
| 4518 | struct task_struct *p; | 4916 | struct task_struct *p; |
| @@ -4586,8 +4984,8 @@ need_resched_nonpreemptible: | |||
| 4586 | if (unlikely(!rq->nr_running)) | 4984 | if (unlikely(!rq->nr_running)) |
| 4587 | idle_balance(cpu, rq); | 4985 | idle_balance(cpu, rq); |
| 4588 | 4986 | ||
| 4589 | prev->sched_class->put_prev_task(rq, prev); | 4987 | put_prev_task(rq, prev); |
| 4590 | next = pick_next_task(rq, prev); | 4988 | next = pick_next_task(rq); |
| 4591 | 4989 | ||
| 4592 | if (likely(prev != next)) { | 4990 | if (likely(prev != next)) { |
| 4593 | sched_info_switch(prev, next); | 4991 | sched_info_switch(prev, next); |
| @@ -4642,7 +5040,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
| 4642 | * between schedule and now. | 5040 | * between schedule and now. |
| 4643 | */ | 5041 | */ |
| 4644 | barrier(); | 5042 | barrier(); |
| 4645 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5043 | } while (need_resched()); |
| 4646 | } | 5044 | } |
| 4647 | EXPORT_SYMBOL(preempt_schedule); | 5045 | EXPORT_SYMBOL(preempt_schedule); |
| 4648 | 5046 | ||
| @@ -4671,7 +5069,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 4671 | * between schedule and now. | 5069 | * between schedule and now. |
| 4672 | */ | 5070 | */ |
| 4673 | barrier(); | 5071 | barrier(); |
| 4674 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5072 | } while (need_resched()); |
| 4675 | } | 5073 | } |
| 4676 | 5074 | ||
| 4677 | #endif /* CONFIG_PREEMPT */ | 5075 | #endif /* CONFIG_PREEMPT */ |
| @@ -5145,7 +5543,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
| 5145 | if (increment > 40) | 5543 | if (increment > 40) |
| 5146 | increment = 40; | 5544 | increment = 40; |
| 5147 | 5545 | ||
| 5148 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5546 | nice = TASK_NICE(current) + increment; |
| 5149 | if (nice < -20) | 5547 | if (nice < -20) |
| 5150 | nice = -20; | 5548 | nice = -20; |
| 5151 | if (nice > 19) | 5549 | if (nice > 19) |
| @@ -6423,7 +6821,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
| 6423 | if (!rq->nr_running) | 6821 | if (!rq->nr_running) |
| 6424 | break; | 6822 | break; |
| 6425 | update_rq_clock(rq); | 6823 | update_rq_clock(rq); |
| 6426 | next = pick_next_task(rq, rq->curr); | 6824 | next = pick_next_task(rq); |
| 6427 | if (!next) | 6825 | if (!next) |
| 6428 | break; | 6826 | break; |
| 6429 | next->sched_class->put_prev_task(rq, next); | 6827 | next->sched_class->put_prev_task(rq, next); |
| @@ -8218,11 +8616,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
| 8218 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8616 | __set_bit(MAX_RT_PRIO, array->bitmap); |
| 8219 | 8617 | ||
| 8220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8618 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 8221 | rt_rq->highest_prio = MAX_RT_PRIO; | 8619 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
| 8620 | #ifdef CONFIG_SMP | ||
| 8621 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
| 8622 | #endif | ||
| 8222 | #endif | 8623 | #endif |
| 8223 | #ifdef CONFIG_SMP | 8624 | #ifdef CONFIG_SMP |
| 8224 | rt_rq->rt_nr_migratory = 0; | 8625 | rt_rq->rt_nr_migratory = 0; |
| 8225 | rt_rq->overloaded = 0; | 8626 | rt_rq->overloaded = 0; |
| 8627 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
| 8226 | #endif | 8628 | #endif |
| 8227 | 8629 | ||
| 8228 | rt_rq->rt_time = 0; | 8630 | rt_rq->rt_time = 0; |
| @@ -9598,7 +10000,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
| 9598 | struct cpuacct *ca; | 10000 | struct cpuacct *ca; |
| 9599 | int cpu; | 10001 | int cpu; |
| 9600 | 10002 | ||
| 9601 | if (!cpuacct_subsys.active) | 10003 | if (unlikely(!cpuacct_subsys.active)) |
| 9602 | return; | 10004 | return; |
| 9603 | 10005 | ||
| 9604 | cpu = task_cpu(tsk); | 10006 | cpu = task_cpu(tsk); |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index a0b0852414cc..390f33234bd0 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
| @@ -24,11 +24,11 @@ | |||
| 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat | 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat |
| 25 | * consistent between cpus (never more than 2 jiffies difference). | 25 | * consistent between cpus (never more than 2 jiffies difference). |
| 26 | */ | 26 | */ |
| 27 | #include <linux/sched.h> | ||
| 28 | #include <linux/percpu.h> | ||
| 29 | #include <linux/spinlock.h> | 27 | #include <linux/spinlock.h> |
| 30 | #include <linux/ktime.h> | ||
| 31 | #include <linux/module.h> | 28 | #include <linux/module.h> |
| 29 | #include <linux/percpu.h> | ||
| 30 | #include <linux/ktime.h> | ||
| 31 | #include <linux/sched.h> | ||
| 32 | 32 | ||
| 33 | /* | 33 | /* |
| 34 | * Scheduler clock - returns current time in nanosec units. | 34 | * Scheduler clock - returns current time in nanosec units. |
| @@ -43,6 +43,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
| 43 | static __read_mostly int sched_clock_running; | 43 | static __read_mostly int sched_clock_running; |
| 44 | 44 | ||
| 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| 46 | __read_mostly int sched_clock_stable; | ||
| 46 | 47 | ||
| 47 | struct sched_clock_data { | 48 | struct sched_clock_data { |
| 48 | /* | 49 | /* |
| @@ -87,7 +88,7 @@ void sched_clock_init(void) | |||
| 87 | } | 88 | } |
| 88 | 89 | ||
| 89 | /* | 90 | /* |
| 90 | * min,max except they take wrapping into account | 91 | * min, max except they take wrapping into account |
| 91 | */ | 92 | */ |
| 92 | 93 | ||
| 93 | static inline u64 wrap_min(u64 x, u64 y) | 94 | static inline u64 wrap_min(u64 x, u64 y) |
| @@ -111,15 +112,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
| 111 | s64 delta = now - scd->tick_raw; | 112 | s64 delta = now - scd->tick_raw; |
| 112 | u64 clock, min_clock, max_clock; | 113 | u64 clock, min_clock, max_clock; |
| 113 | 114 | ||
| 114 | WARN_ON_ONCE(!irqs_disabled()); | ||
| 115 | |||
| 116 | if (unlikely(delta < 0)) | 115 | if (unlikely(delta < 0)) |
| 117 | delta = 0; | 116 | delta = 0; |
| 118 | 117 | ||
| 119 | /* | 118 | /* |
| 120 | * scd->clock = clamp(scd->tick_gtod + delta, | 119 | * scd->clock = clamp(scd->tick_gtod + delta, |
| 121 | * max(scd->tick_gtod, scd->clock), | 120 | * max(scd->tick_gtod, scd->clock), |
| 122 | * scd->tick_gtod + TICK_NSEC); | 121 | * scd->tick_gtod + TICK_NSEC); |
| 123 | */ | 122 | */ |
| 124 | 123 | ||
| 125 | clock = scd->tick_gtod + delta; | 124 | clock = scd->tick_gtod + delta; |
| @@ -148,12 +147,13 @@ static void lock_double_clock(struct sched_clock_data *data1, | |||
| 148 | 147 | ||
| 149 | u64 sched_clock_cpu(int cpu) | 148 | u64 sched_clock_cpu(int cpu) |
| 150 | { | 149 | { |
| 151 | struct sched_clock_data *scd = cpu_sdc(cpu); | ||
| 152 | u64 now, clock, this_clock, remote_clock; | 150 | u64 now, clock, this_clock, remote_clock; |
| 151 | struct sched_clock_data *scd; | ||
| 153 | 152 | ||
| 154 | if (unlikely(!sched_clock_running)) | 153 | if (sched_clock_stable) |
| 155 | return 0ull; | 154 | return sched_clock(); |
| 156 | 155 | ||
| 156 | scd = cpu_sdc(cpu); | ||
| 157 | WARN_ON_ONCE(!irqs_disabled()); | 157 | WARN_ON_ONCE(!irqs_disabled()); |
| 158 | now = sched_clock(); | 158 | now = sched_clock(); |
| 159 | 159 | ||
| @@ -195,14 +195,18 @@ u64 sched_clock_cpu(int cpu) | |||
| 195 | 195 | ||
| 196 | void sched_clock_tick(void) | 196 | void sched_clock_tick(void) |
| 197 | { | 197 | { |
| 198 | struct sched_clock_data *scd = this_scd(); | 198 | struct sched_clock_data *scd; |
| 199 | u64 now, now_gtod; | 199 | u64 now, now_gtod; |
| 200 | 200 | ||
| 201 | if (sched_clock_stable) | ||
| 202 | return; | ||
| 203 | |||
| 201 | if (unlikely(!sched_clock_running)) | 204 | if (unlikely(!sched_clock_running)) |
| 202 | return; | 205 | return; |
| 203 | 206 | ||
| 204 | WARN_ON_ONCE(!irqs_disabled()); | 207 | WARN_ON_ONCE(!irqs_disabled()); |
| 205 | 208 | ||
| 209 | scd = this_scd(); | ||
| 206 | now_gtod = ktime_to_ns(ktime_get()); | 210 | now_gtod = ktime_to_ns(ktime_get()); |
| 207 | now = sched_clock(); | 211 | now = sched_clock(); |
| 208 | 212 | ||
| @@ -250,7 +254,7 @@ u64 sched_clock_cpu(int cpu) | |||
| 250 | return sched_clock(); | 254 | return sched_clock(); |
| 251 | } | 255 | } |
| 252 | 256 | ||
| 253 | #endif | 257 | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| 254 | 258 | ||
| 255 | unsigned long long cpu_clock(int cpu) | 259 | unsigned long long cpu_clock(int cpu) |
| 256 | { | 260 | { |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 16eeba4e4169..467ca72f1657 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
| @@ -272,7 +272,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
| 272 | P(nr_switches); | 272 | P(nr_switches); |
| 273 | P(nr_load_updates); | 273 | P(nr_load_updates); |
| 274 | P(nr_uninterruptible); | 274 | P(nr_uninterruptible); |
| 275 | SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); | ||
| 276 | PN(next_balance); | 275 | PN(next_balance); |
| 277 | P(curr->pid); | 276 | P(curr->pid); |
| 278 | PN(clock); | 277 | PN(clock); |
| @@ -287,9 +286,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
| 287 | #ifdef CONFIG_SCHEDSTATS | 286 | #ifdef CONFIG_SCHEDSTATS |
| 288 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); | 287 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); |
| 289 | 288 | ||
| 290 | P(yld_exp_empty); | ||
| 291 | P(yld_act_empty); | ||
| 292 | P(yld_both_empty); | ||
| 293 | P(yld_count); | 289 | P(yld_count); |
| 294 | 290 | ||
| 295 | P(sched_switch); | 291 | P(sched_switch); |
| @@ -314,7 +310,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
| 314 | u64 now = ktime_to_ns(ktime_get()); | 310 | u64 now = ktime_to_ns(ktime_get()); |
| 315 | int cpu; | 311 | int cpu; |
| 316 | 312 | ||
| 317 | SEQ_printf(m, "Sched Debug Version: v0.08, %s %.*s\n", | 313 | SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n", |
| 318 | init_utsname()->release, | 314 | init_utsname()->release, |
| 319 | (int)strcspn(init_utsname()->version, " "), | 315 | (int)strcspn(init_utsname()->version, " "), |
| 320 | init_utsname()->version); | 316 | init_utsname()->version); |
| @@ -325,6 +321,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
| 325 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) | 321 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) |
| 326 | #define PN(x) \ | 322 | #define PN(x) \ |
| 327 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | 323 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) |
| 324 | P(jiffies); | ||
| 328 | PN(sysctl_sched_latency); | 325 | PN(sysctl_sched_latency); |
| 329 | PN(sysctl_sched_min_granularity); | 326 | PN(sysctl_sched_min_granularity); |
| 330 | PN(sysctl_sched_wakeup_granularity); | 327 | PN(sysctl_sched_wakeup_granularity); |
| @@ -397,6 +394,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 397 | PN(se.vruntime); | 394 | PN(se.vruntime); |
| 398 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
| 399 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
| 397 | PN(se.avg_wakeup); | ||
| 400 | 398 | ||
| 401 | nr_switches = p->nvcsw + p->nivcsw; | 399 | nr_switches = p->nvcsw + p->nivcsw; |
| 402 | 400 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 0566f2a03c42..3816f217f119 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -1314,16 +1314,63 @@ out: | |||
| 1314 | } | 1314 | } |
| 1315 | #endif /* CONFIG_SMP */ | 1315 | #endif /* CONFIG_SMP */ |
| 1316 | 1316 | ||
| 1317 | static unsigned long wakeup_gran(struct sched_entity *se) | 1317 | /* |
| 1318 | * Adaptive granularity | ||
| 1319 | * | ||
| 1320 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
| 1321 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
| 1322 | * | ||
| 1323 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
| 1324 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
| 1325 | * to run for at least the amount of time we'd like to run. | ||
| 1326 | * | ||
| 1327 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
| 1328 | * | ||
| 1329 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
| 1330 | * degrading latency on load. | ||
| 1331 | */ | ||
| 1332 | static unsigned long | ||
| 1333 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
| 1334 | { | ||
| 1335 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
| 1336 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
| 1337 | u64 gran = 0; | ||
| 1338 | |||
| 1339 | if (this_run < expected_wakeup) | ||
| 1340 | gran = expected_wakeup - this_run; | ||
| 1341 | |||
| 1342 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
| 1343 | } | ||
| 1344 | |||
| 1345 | static unsigned long | ||
| 1346 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
| 1318 | { | 1347 | { |
| 1319 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1348 | unsigned long gran = sysctl_sched_wakeup_granularity; |
| 1320 | 1349 | ||
| 1350 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
| 1351 | gran = adaptive_gran(curr, se); | ||
| 1352 | |||
| 1321 | /* | 1353 | /* |
| 1322 | * More easily preempt - nice tasks, while not making it harder for | 1354 | * Since its curr running now, convert the gran from real-time |
| 1323 | * + nice tasks. | 1355 | * to virtual-time in his units. |
| 1324 | */ | 1356 | */ |
| 1325 | if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD) | 1357 | if (sched_feat(ASYM_GRAN)) { |
| 1326 | gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se); | 1358 | /* |
| 1359 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
| 1360 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
| 1361 | * the resulting gran will be larger, therefore penalizing the | ||
| 1362 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
| 1363 | * be smaller, again penalizing the lighter task. | ||
| 1364 | * | ||
| 1365 | * This is especially important for buddies when the leftmost | ||
| 1366 | * task is higher priority than the buddy. | ||
| 1367 | */ | ||
| 1368 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
| 1369 | gran = calc_delta_fair(gran, se); | ||
| 1370 | } else { | ||
| 1371 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
| 1372 | gran = calc_delta_fair(gran, curr); | ||
| 1373 | } | ||
| 1327 | 1374 | ||
| 1328 | return gran; | 1375 | return gran; |
| 1329 | } | 1376 | } |
| @@ -1350,7 +1397,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |||
| 1350 | if (vdiff <= 0) | 1397 | if (vdiff <= 0) |
| 1351 | return -1; | 1398 | return -1; |
| 1352 | 1399 | ||
| 1353 | gran = wakeup_gran(curr); | 1400 | gran = wakeup_gran(curr, se); |
| 1354 | if (vdiff > gran) | 1401 | if (vdiff > gran) |
| 1355 | return 1; | 1402 | return 1; |
| 1356 | 1403 | ||
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index da5d93b5d2c6..76f61756e677 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
| @@ -1,5 +1,6 @@ | |||
| 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) |
| 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 1) | 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
| 3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
| 3 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
| 4 | SCHED_FEAT(START_DEBIT, 1) | 5 | SCHED_FEAT(START_DEBIT, 1) |
| 5 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index bac1061cea2f..c79dc7844012 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
| @@ -3,6 +3,40 @@ | |||
| 3 | * policies) | 3 | * policies) |
| 4 | */ | 4 | */ |
| 5 | 5 | ||
| 6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
| 7 | { | ||
| 8 | return container_of(rt_se, struct task_struct, rt); | ||
| 9 | } | ||
| 10 | |||
| 11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 12 | |||
| 13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 14 | { | ||
| 15 | return rt_rq->rq; | ||
| 16 | } | ||
| 17 | |||
| 18 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 19 | { | ||
| 20 | return rt_se->rt_rq; | ||
| 21 | } | ||
| 22 | |||
| 23 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
| 24 | |||
| 25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 26 | { | ||
| 27 | return container_of(rt_rq, struct rq, rt); | ||
| 28 | } | ||
| 29 | |||
| 30 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 31 | { | ||
| 32 | struct task_struct *p = rt_task_of(rt_se); | ||
| 33 | struct rq *rq = task_rq(p); | ||
| 34 | |||
| 35 | return &rq->rt; | ||
| 36 | } | ||
| 37 | |||
| 38 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
| 39 | |||
| 6 | #ifdef CONFIG_SMP | 40 | #ifdef CONFIG_SMP |
| 7 | 41 | ||
| 8 | static inline int rt_overloaded(struct rq *rq) | 42 | static inline int rt_overloaded(struct rq *rq) |
| @@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) | |||
| 37 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 71 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
| 38 | } | 72 | } |
| 39 | 73 | ||
| 40 | static void update_rt_migration(struct rq *rq) | 74 | static void update_rt_migration(struct rt_rq *rt_rq) |
| 41 | { | 75 | { |
| 42 | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { |
| 43 | if (!rq->rt.overloaded) { | 77 | if (!rt_rq->overloaded) { |
| 44 | rt_set_overload(rq); | 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
| 45 | rq->rt.overloaded = 1; | 79 | rt_rq->overloaded = 1; |
| 46 | } | 80 | } |
| 47 | } else if (rq->rt.overloaded) { | 81 | } else if (rt_rq->overloaded) { |
| 48 | rt_clear_overload(rq); | 82 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
| 49 | rq->rt.overloaded = 0; | 83 | rt_rq->overloaded = 0; |
| 50 | } | 84 | } |
| 51 | } | 85 | } |
| 52 | #endif /* CONFIG_SMP */ | ||
| 53 | 86 | ||
| 54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 88 | { | ||
| 89 | if (rt_se->nr_cpus_allowed > 1) | ||
| 90 | rt_rq->rt_nr_migratory++; | ||
| 91 | |||
| 92 | update_rt_migration(rt_rq); | ||
| 93 | } | ||
| 94 | |||
| 95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 96 | { | ||
| 97 | if (rt_se->nr_cpus_allowed > 1) | ||
| 98 | rt_rq->rt_nr_migratory--; | ||
| 99 | |||
| 100 | update_rt_migration(rt_rq); | ||
| 101 | } | ||
| 102 | |||
| 103 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 104 | { | ||
| 105 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 106 | plist_node_init(&p->pushable_tasks, p->prio); | ||
| 107 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 108 | } | ||
| 109 | |||
| 110 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 111 | { | ||
| 112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
| 113 | } | ||
| 114 | |||
| 115 | #else | ||
| 116 | |||
| 117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 55 | { | 118 | { |
| 56 | return container_of(rt_se, struct task_struct, rt); | ||
| 57 | } | 119 | } |
| 58 | 120 | ||
| 121 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
| 122 | { | ||
| 123 | } | ||
| 124 | |||
| 125 | static inline | ||
| 126 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 127 | { | ||
| 128 | } | ||
| 129 | |||
| 130 | static inline | ||
| 131 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 132 | { | ||
| 133 | } | ||
| 134 | |||
| 135 | #endif /* CONFIG_SMP */ | ||
| 136 | |||
| 59 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 137 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
| 60 | { | 138 | { |
| 61 | return !list_empty(&rt_se->run_list); | 139 | return !list_empty(&rt_se->run_list); |
| @@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
| 79 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 157 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
| 80 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 158 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
| 81 | 159 | ||
| 82 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 83 | { | ||
| 84 | return rt_rq->rq; | ||
| 85 | } | ||
| 86 | |||
| 87 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 88 | { | ||
| 89 | return rt_se->rt_rq; | ||
| 90 | } | ||
| 91 | |||
| 92 | #define for_each_sched_rt_entity(rt_se) \ | 160 | #define for_each_sched_rt_entity(rt_se) \ |
| 93 | for (; rt_se; rt_se = rt_se->parent) | 161 | for (; rt_se; rt_se = rt_se->parent) |
| 94 | 162 | ||
| @@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
| 108 | if (rt_rq->rt_nr_running) { | 176 | if (rt_rq->rt_nr_running) { |
| 109 | if (rt_se && !on_rt_rq(rt_se)) | 177 | if (rt_se && !on_rt_rq(rt_se)) |
| 110 | enqueue_rt_entity(rt_se); | 178 | enqueue_rt_entity(rt_se); |
| 111 | if (rt_rq->highest_prio < curr->prio) | 179 | if (rt_rq->highest_prio.curr < curr->prio) |
| 112 | resched_task(curr); | 180 | resched_task(curr); |
| 113 | } | 181 | } |
| 114 | } | 182 | } |
| @@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
| 176 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 244 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
| 177 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 245 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
| 178 | 246 | ||
| 179 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
| 180 | { | ||
| 181 | return container_of(rt_rq, struct rq, rt); | ||
| 182 | } | ||
| 183 | |||
| 184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
| 185 | { | ||
| 186 | struct task_struct *p = rt_task_of(rt_se); | ||
| 187 | struct rq *rq = task_rq(p); | ||
| 188 | |||
| 189 | return &rq->rt; | ||
| 190 | } | ||
| 191 | |||
| 192 | #define for_each_sched_rt_entity(rt_se) \ | 247 | #define for_each_sched_rt_entity(rt_se) \ |
| 193 | for (; rt_se; rt_se = NULL) | 248 | for (; rt_se; rt_se = NULL) |
| 194 | 249 | ||
| @@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
| 473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 528 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
| 474 | 529 | ||
| 475 | if (rt_rq) | 530 | if (rt_rq) |
| 476 | return rt_rq->highest_prio; | 531 | return rt_rq->highest_prio.curr; |
| 477 | #endif | 532 | #endif |
| 478 | 533 | ||
| 479 | return rt_task_of(rt_se)->prio; | 534 | return rt_task_of(rt_se)->prio; |
| @@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) | |||
| 547 | } | 602 | } |
| 548 | } | 603 | } |
| 549 | 604 | ||
| 550 | static inline | 605 | #if defined CONFIG_SMP |
| 551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 606 | |
| 607 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
| 608 | |||
| 609 | static inline int next_prio(struct rq *rq) | ||
| 552 | { | 610 | { |
| 553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 611 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
| 554 | rt_rq->rt_nr_running++; | 612 | |
| 555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 613 | if (next && rt_prio(next->prio)) |
| 556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | 614 | return next->prio; |
| 557 | #ifdef CONFIG_SMP | 615 | else |
| 558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 616 | return MAX_RT_PRIO; |
| 559 | #endif | 617 | } |
| 618 | |||
| 619 | static void | ||
| 620 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
| 621 | { | ||
| 622 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 623 | |||
| 624 | if (prio < prev_prio) { | ||
| 625 | |||
| 626 | /* | ||
| 627 | * If the new task is higher in priority than anything on the | ||
| 628 | * run-queue, we know that the previous high becomes our | ||
| 629 | * next-highest. | ||
| 630 | */ | ||
| 631 | rt_rq->highest_prio.next = prev_prio; | ||
| 560 | 632 | ||
| 561 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
| 562 | #ifdef CONFIG_SMP | ||
| 563 | if (rq->online) | 633 | if (rq->online) |
| 564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 634 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
| 565 | rt_se_prio(rt_se)); | ||
| 566 | #endif | ||
| 567 | } | ||
| 568 | #endif | ||
| 569 | #ifdef CONFIG_SMP | ||
| 570 | if (rt_se->nr_cpus_allowed > 1) { | ||
| 571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 572 | 635 | ||
| 573 | rq->rt.rt_nr_migratory++; | 636 | } else if (prio == rt_rq->highest_prio.curr) |
| 574 | } | 637 | /* |
| 638 | * If the next task is equal in priority to the highest on | ||
| 639 | * the run-queue, then we implicitly know that the next highest | ||
| 640 | * task cannot be any lower than current | ||
| 641 | */ | ||
| 642 | rt_rq->highest_prio.next = prio; | ||
| 643 | else if (prio < rt_rq->highest_prio.next) | ||
| 644 | /* | ||
| 645 | * Otherwise, we need to recompute next-highest | ||
| 646 | */ | ||
| 647 | rt_rq->highest_prio.next = next_prio(rq); | ||
| 648 | } | ||
| 575 | 649 | ||
| 576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 650 | static void |
| 577 | #endif | 651 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
| 578 | #ifdef CONFIG_RT_GROUP_SCHED | 652 | { |
| 579 | if (rt_se_boosted(rt_se)) | 653 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 580 | rt_rq->rt_nr_boosted++; | ||
| 581 | 654 | ||
| 582 | if (rt_rq->tg) | 655 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
| 583 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 656 | rt_rq->highest_prio.next = next_prio(rq); |
| 584 | #else | 657 | |
| 585 | start_rt_bandwidth(&def_rt_bandwidth); | 658 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
| 586 | #endif | 659 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
| 587 | } | 660 | } |
| 588 | 661 | ||
| 662 | #else /* CONFIG_SMP */ | ||
| 663 | |||
| 589 | static inline | 664 | static inline |
| 590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 665 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 591 | { | 666 | static inline |
| 592 | #ifdef CONFIG_SMP | 667 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 593 | int highest_prio = rt_rq->highest_prio; | 668 | |
| 594 | #endif | 669 | #endif /* CONFIG_SMP */ |
| 595 | 670 | ||
| 596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
| 597 | WARN_ON(!rt_rq->rt_nr_running); | ||
| 598 | rt_rq->rt_nr_running--; | ||
| 599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 671 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 672 | static void | ||
| 673 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
| 674 | { | ||
| 675 | int prev_prio = rt_rq->highest_prio.curr; | ||
| 676 | |||
| 677 | if (prio < prev_prio) | ||
| 678 | rt_rq->highest_prio.curr = prio; | ||
| 679 | |||
| 680 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
| 681 | } | ||
| 682 | |||
| 683 | static void | ||
| 684 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
| 685 | { | ||
| 686 | int prev_prio = rt_rq->highest_prio.curr; | ||
| 687 | |||
| 600 | if (rt_rq->rt_nr_running) { | 688 | if (rt_rq->rt_nr_running) { |
| 601 | struct rt_prio_array *array; | ||
| 602 | 689 | ||
| 603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 690 | WARN_ON(prio < prev_prio); |
| 604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 691 | |
| 605 | /* recalculate */ | 692 | /* |
| 606 | array = &rt_rq->active; | 693 | * This may have been our highest task, and therefore |
| 607 | rt_rq->highest_prio = | 694 | * we may have some recomputation to do |
| 695 | */ | ||
| 696 | if (prio == prev_prio) { | ||
| 697 | struct rt_prio_array *array = &rt_rq->active; | ||
| 698 | |||
| 699 | rt_rq->highest_prio.curr = | ||
| 608 | sched_find_first_bit(array->bitmap); | 700 | sched_find_first_bit(array->bitmap); |
| 609 | } /* otherwise leave rq->highest prio alone */ | 701 | } |
| 702 | |||
| 610 | } else | 703 | } else |
| 611 | rt_rq->highest_prio = MAX_RT_PRIO; | 704 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
| 612 | #endif | ||
| 613 | #ifdef CONFIG_SMP | ||
| 614 | if (rt_se->nr_cpus_allowed > 1) { | ||
| 615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
| 616 | rq->rt.rt_nr_migratory--; | ||
| 617 | } | ||
| 618 | 705 | ||
| 619 | if (rt_rq->highest_prio != highest_prio) { | 706 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
| 620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 707 | } |
| 621 | 708 | ||
| 622 | if (rq->online) | 709 | #else |
| 623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 710 | |
| 624 | rt_rq->highest_prio); | 711 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 625 | } | 712 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 713 | |||
| 714 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
| 626 | 715 | ||
| 627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
| 628 | #endif /* CONFIG_SMP */ | ||
| 629 | #ifdef CONFIG_RT_GROUP_SCHED | 716 | #ifdef CONFIG_RT_GROUP_SCHED |
| 717 | |||
| 718 | static void | ||
| 719 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 720 | { | ||
| 721 | if (rt_se_boosted(rt_se)) | ||
| 722 | rt_rq->rt_nr_boosted++; | ||
| 723 | |||
| 724 | if (rt_rq->tg) | ||
| 725 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
| 726 | } | ||
| 727 | |||
| 728 | static void | ||
| 729 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 730 | { | ||
| 630 | if (rt_se_boosted(rt_se)) | 731 | if (rt_se_boosted(rt_se)) |
| 631 | rt_rq->rt_nr_boosted--; | 732 | rt_rq->rt_nr_boosted--; |
| 632 | 733 | ||
| 633 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 734 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
| 634 | #endif | 735 | } |
| 736 | |||
| 737 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
| 738 | |||
| 739 | static void | ||
| 740 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 741 | { | ||
| 742 | start_rt_bandwidth(&def_rt_bandwidth); | ||
| 743 | } | ||
| 744 | |||
| 745 | static inline | ||
| 746 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
| 747 | |||
| 748 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
| 749 | |||
| 750 | static inline | ||
| 751 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 752 | { | ||
| 753 | int prio = rt_se_prio(rt_se); | ||
| 754 | |||
| 755 | WARN_ON(!rt_prio(prio)); | ||
| 756 | rt_rq->rt_nr_running++; | ||
| 757 | |||
| 758 | inc_rt_prio(rt_rq, prio); | ||
| 759 | inc_rt_migration(rt_se, rt_rq); | ||
| 760 | inc_rt_group(rt_se, rt_rq); | ||
| 761 | } | ||
| 762 | |||
| 763 | static inline | ||
| 764 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
| 765 | { | ||
| 766 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
| 767 | WARN_ON(!rt_rq->rt_nr_running); | ||
| 768 | rt_rq->rt_nr_running--; | ||
| 769 | |||
| 770 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
| 771 | dec_rt_migration(rt_se, rt_rq); | ||
| 772 | dec_rt_group(rt_se, rt_rq); | ||
| 635 | } | 773 | } |
| 636 | 774 | ||
| 637 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) | 775 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
| @@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 718 | 856 | ||
| 719 | enqueue_rt_entity(rt_se); | 857 | enqueue_rt_entity(rt_se); |
| 720 | 858 | ||
| 859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
| 860 | enqueue_pushable_task(rq, p); | ||
| 861 | |||
| 721 | inc_cpu_load(rq, p->se.load.weight); | 862 | inc_cpu_load(rq, p->se.load.weight); |
| 722 | } | 863 | } |
| 723 | 864 | ||
| @@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
| 728 | update_curr_rt(rq); | 869 | update_curr_rt(rq); |
| 729 | dequeue_rt_entity(rt_se); | 870 | dequeue_rt_entity(rt_se); |
| 730 | 871 | ||
| 872 | dequeue_pushable_task(rq, p); | ||
| 873 | |||
| 731 | dec_cpu_load(rq, p->se.load.weight); | 874 | dec_cpu_load(rq, p->se.load.weight); |
| 732 | } | 875 | } |
| 733 | 876 | ||
| @@ -878,7 +1021,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
| 878 | return next; | 1021 | return next; |
| 879 | } | 1022 | } |
| 880 | 1023 | ||
| 881 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1024 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
| 882 | { | 1025 | { |
| 883 | struct sched_rt_entity *rt_se; | 1026 | struct sched_rt_entity *rt_se; |
| 884 | struct task_struct *p; | 1027 | struct task_struct *p; |
| @@ -900,6 +1043,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
| 900 | 1043 | ||
| 901 | p = rt_task_of(rt_se); | 1044 | p = rt_task_of(rt_se); |
| 902 | p->se.exec_start = rq->clock; | 1045 | p->se.exec_start = rq->clock; |
| 1046 | |||
| 1047 | return p; | ||
| 1048 | } | ||
| 1049 | |||
| 1050 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
| 1051 | { | ||
| 1052 | struct task_struct *p = _pick_next_task_rt(rq); | ||
| 1053 | |||
| 1054 | /* The running task is never eligible for pushing */ | ||
| 1055 | if (p) | ||
| 1056 | dequeue_pushable_task(rq, p); | ||
| 1057 | |||
| 903 | return p; | 1058 | return p; |
| 904 | } | 1059 | } |
| 905 | 1060 | ||
| @@ -907,6 +1062,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
| 907 | { | 1062 | { |
| 908 | update_curr_rt(rq); | 1063 | update_curr_rt(rq); |
| 909 | p->se.exec_start = 0; | 1064 | p->se.exec_start = 0; |
| 1065 | |||
| 1066 | /* | ||
| 1067 | * The previous task needs to be made eligible for pushing | ||
| 1068 | * if it is still active | ||
| 1069 | */ | ||
| 1070 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
| 1071 | enqueue_pushable_task(rq, p); | ||
| 910 | } | 1072 | } |
| 911 | 1073 | ||
| 912 | #ifdef CONFIG_SMP | 1074 | #ifdef CONFIG_SMP |
| @@ -1072,7 +1234,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
| 1072 | } | 1234 | } |
| 1073 | 1235 | ||
| 1074 | /* If this rq is still suitable use it. */ | 1236 | /* If this rq is still suitable use it. */ |
| 1075 | if (lowest_rq->rt.highest_prio > task->prio) | 1237 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
| 1076 | break; | 1238 | break; |
| 1077 | 1239 | ||
| 1078 | /* try again */ | 1240 | /* try again */ |
| @@ -1083,6 +1245,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
| 1083 | return lowest_rq; | 1245 | return lowest_rq; |
| 1084 | } | 1246 | } |
| 1085 | 1247 | ||
| 1248 | static inline int has_pushable_tasks(struct rq *rq) | ||
| 1249 | { | ||
| 1250 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
| 1251 | } | ||
| 1252 | |||
| 1253 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
| 1254 | { | ||
| 1255 | struct task_struct *p; | ||
| 1256 | |||
| 1257 | if (!has_pushable_tasks(rq)) | ||
| 1258 | return NULL; | ||
| 1259 | |||
| 1260 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
| 1261 | struct task_struct, pushable_tasks); | ||
| 1262 | |||
| 1263 | BUG_ON(rq->cpu != task_cpu(p)); | ||
| 1264 | BUG_ON(task_current(rq, p)); | ||
| 1265 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
| 1266 | |||
| 1267 | BUG_ON(!p->se.on_rq); | ||
| 1268 | BUG_ON(!rt_task(p)); | ||
| 1269 | |||
| 1270 | return p; | ||
| 1271 | } | ||
| 1272 | |||
| 1086 | /* | 1273 | /* |
| 1087 | * If the current CPU has more than one RT task, see if the non | 1274 | * If the current CPU has more than one RT task, see if the non |
| 1088 | * running task can migrate over to a CPU that is running a task | 1275 | * running task can migrate over to a CPU that is running a task |
| @@ -1092,13 +1279,11 @@ static int push_rt_task(struct rq *rq) | |||
| 1092 | { | 1279 | { |
| 1093 | struct task_struct *next_task; | 1280 | struct task_struct *next_task; |
| 1094 | struct rq *lowest_rq; | 1281 | struct rq *lowest_rq; |
| 1095 | int ret = 0; | ||
| 1096 | int paranoid = RT_MAX_TRIES; | ||
| 1097 | 1282 | ||
| 1098 | if (!rq->rt.overloaded) | 1283 | if (!rq->rt.overloaded) |
| 1099 | return 0; | 1284 | return 0; |
| 1100 | 1285 | ||
| 1101 | next_task = pick_next_highest_task_rt(rq, -1); | 1286 | next_task = pick_next_pushable_task(rq); |
| 1102 | if (!next_task) | 1287 | if (!next_task) |
| 1103 | return 0; | 1288 | return 0; |
| 1104 | 1289 | ||
| @@ -1127,16 +1312,34 @@ static int push_rt_task(struct rq *rq) | |||
| 1127 | struct task_struct *task; | 1312 | struct task_struct *task; |
| 1128 | /* | 1313 | /* |
| 1129 | * find lock_lowest_rq releases rq->lock | 1314 | * find lock_lowest_rq releases rq->lock |
| 1130 | * so it is possible that next_task has changed. | 1315 | * so it is possible that next_task has migrated. |
| 1131 | * If it has, then try again. | 1316 | * |
| 1317 | * We need to make sure that the task is still on the same | ||
| 1318 | * run-queue and is also still the next task eligible for | ||
| 1319 | * pushing. | ||
| 1132 | */ | 1320 | */ |
| 1133 | task = pick_next_highest_task_rt(rq, -1); | 1321 | task = pick_next_pushable_task(rq); |
| 1134 | if (unlikely(task != next_task) && task && paranoid--) { | 1322 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
| 1135 | put_task_struct(next_task); | 1323 | /* |
| 1136 | next_task = task; | 1324 | * If we get here, the task hasnt moved at all, but |
| 1137 | goto retry; | 1325 | * it has failed to push. We will not try again, |
| 1326 | * since the other cpus will pull from us when they | ||
| 1327 | * are ready. | ||
| 1328 | */ | ||
| 1329 | dequeue_pushable_task(rq, next_task); | ||
| 1330 | goto out; | ||
| 1138 | } | 1331 | } |
| 1139 | goto out; | 1332 | |
| 1333 | if (!task) | ||
| 1334 | /* No more tasks, just exit */ | ||
| 1335 | goto out; | ||
| 1336 | |||
| 1337 | /* | ||
| 1338 | * Something has shifted, try again. | ||
| 1339 | */ | ||
| 1340 | put_task_struct(next_task); | ||
| 1341 | next_task = task; | ||
| 1342 | goto retry; | ||
| 1140 | } | 1343 | } |
| 1141 | 1344 | ||
| 1142 | deactivate_task(rq, next_task, 0); | 1345 | deactivate_task(rq, next_task, 0); |
| @@ -1147,23 +1350,12 @@ static int push_rt_task(struct rq *rq) | |||
| 1147 | 1350 | ||
| 1148 | double_unlock_balance(rq, lowest_rq); | 1351 | double_unlock_balance(rq, lowest_rq); |
| 1149 | 1352 | ||
| 1150 | ret = 1; | ||
| 1151 | out: | 1353 | out: |
| 1152 | put_task_struct(next_task); | 1354 | put_task_struct(next_task); |
| 1153 | 1355 | ||
| 1154 | return ret; | 1356 | return 1; |
| 1155 | } | 1357 | } |
| 1156 | 1358 | ||
| 1157 | /* | ||
| 1158 | * TODO: Currently we just use the second highest prio task on | ||
| 1159 | * the queue, and stop when it can't migrate (or there's | ||
| 1160 | * no more RT tasks). There may be a case where a lower | ||
| 1161 | * priority RT task has a different affinity than the | ||
| 1162 | * higher RT task. In this case the lower RT task could | ||
| 1163 | * possibly be able to migrate where as the higher priority | ||
| 1164 | * RT task could not. We currently ignore this issue. | ||
| 1165 | * Enhancements are welcome! | ||
| 1166 | */ | ||
| 1167 | static void push_rt_tasks(struct rq *rq) | 1359 | static void push_rt_tasks(struct rq *rq) |
| 1168 | { | 1360 | { |
| 1169 | /* push_rt_task will return true if it moved an RT */ | 1361 | /* push_rt_task will return true if it moved an RT */ |
| @@ -1174,33 +1366,35 @@ static void push_rt_tasks(struct rq *rq) | |||
| 1174 | static int pull_rt_task(struct rq *this_rq) | 1366 | static int pull_rt_task(struct rq *this_rq) |
| 1175 | { | 1367 | { |
| 1176 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1368 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
| 1177 | struct task_struct *p, *next; | 1369 | struct task_struct *p; |
| 1178 | struct rq *src_rq; | 1370 | struct rq *src_rq; |
| 1179 | 1371 | ||
| 1180 | if (likely(!rt_overloaded(this_rq))) | 1372 | if (likely(!rt_overloaded(this_rq))) |
| 1181 | return 0; | 1373 | return 0; |
| 1182 | 1374 | ||
| 1183 | next = pick_next_task_rt(this_rq); | ||
| 1184 | |||
| 1185 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1375 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
| 1186 | if (this_cpu == cpu) | 1376 | if (this_cpu == cpu) |
| 1187 | continue; | 1377 | continue; |
| 1188 | 1378 | ||
| 1189 | src_rq = cpu_rq(cpu); | 1379 | src_rq = cpu_rq(cpu); |
| 1380 | |||
| 1381 | /* | ||
| 1382 | * Don't bother taking the src_rq->lock if the next highest | ||
| 1383 | * task is known to be lower-priority than our current task. | ||
| 1384 | * This may look racy, but if this value is about to go | ||
| 1385 | * logically higher, the src_rq will push this task away. | ||
| 1386 | * And if its going logically lower, we do not care | ||
| 1387 | */ | ||
| 1388 | if (src_rq->rt.highest_prio.next >= | ||
| 1389 | this_rq->rt.highest_prio.curr) | ||
| 1390 | continue; | ||
| 1391 | |||
| 1190 | /* | 1392 | /* |
| 1191 | * We can potentially drop this_rq's lock in | 1393 | * We can potentially drop this_rq's lock in |
| 1192 | * double_lock_balance, and another CPU could | 1394 | * double_lock_balance, and another CPU could |
| 1193 | * steal our next task - hence we must cause | 1395 | * alter this_rq |
| 1194 | * the caller to recalculate the next task | ||
| 1195 | * in that case: | ||
| 1196 | */ | 1396 | */ |
| 1197 | if (double_lock_balance(this_rq, src_rq)) { | 1397 | double_lock_balance(this_rq, src_rq); |
| 1198 | struct task_struct *old_next = next; | ||
| 1199 | |||
| 1200 | next = pick_next_task_rt(this_rq); | ||
| 1201 | if (next != old_next) | ||
| 1202 | ret = 1; | ||
| 1203 | } | ||
| 1204 | 1398 | ||
| 1205 | /* | 1399 | /* |
| 1206 | * Are there still pullable RT tasks? | 1400 | * Are there still pullable RT tasks? |
| @@ -1214,7 +1408,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1214 | * Do we have an RT task that preempts | 1408 | * Do we have an RT task that preempts |
| 1215 | * the to-be-scheduled task? | 1409 | * the to-be-scheduled task? |
| 1216 | */ | 1410 | */ |
| 1217 | if (p && (!next || (p->prio < next->prio))) { | 1411 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
| 1218 | WARN_ON(p == src_rq->curr); | 1412 | WARN_ON(p == src_rq->curr); |
| 1219 | WARN_ON(!p->se.on_rq); | 1413 | WARN_ON(!p->se.on_rq); |
| 1220 | 1414 | ||
| @@ -1224,12 +1418,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1224 | * This is just that p is wakeing up and hasn't | 1418 | * This is just that p is wakeing up and hasn't |
| 1225 | * had a chance to schedule. We only pull | 1419 | * had a chance to schedule. We only pull |
| 1226 | * p if it is lower in priority than the | 1420 | * p if it is lower in priority than the |
| 1227 | * current task on the run queue or | 1421 | * current task on the run queue |
| 1228 | * this_rq next task is lower in prio than | ||
| 1229 | * the current task on that rq. | ||
| 1230 | */ | 1422 | */ |
| 1231 | if (p->prio < src_rq->curr->prio || | 1423 | if (p->prio < src_rq->curr->prio) |
| 1232 | (next && next->prio < src_rq->curr->prio)) | ||
| 1233 | goto skip; | 1424 | goto skip; |
| 1234 | 1425 | ||
| 1235 | ret = 1; | 1426 | ret = 1; |
| @@ -1242,13 +1433,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1242 | * case there's an even higher prio task | 1433 | * case there's an even higher prio task |
| 1243 | * in another runqueue. (low likelyhood | 1434 | * in another runqueue. (low likelyhood |
| 1244 | * but possible) | 1435 | * but possible) |
| 1245 | * | ||
| 1246 | * Update next so that we won't pick a task | ||
| 1247 | * on another cpu with a priority lower (or equal) | ||
| 1248 | * than the one we just picked. | ||
| 1249 | */ | 1436 | */ |
| 1250 | next = p; | ||
| 1251 | |||
| 1252 | } | 1437 | } |
| 1253 | skip: | 1438 | skip: |
| 1254 | double_unlock_balance(this_rq, src_rq); | 1439 | double_unlock_balance(this_rq, src_rq); |
| @@ -1260,24 +1445,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
| 1260 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1445 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
| 1261 | { | 1446 | { |
| 1262 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1447 | /* Try to pull RT tasks here if we lower this rq's prio */ |
| 1263 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1448 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
| 1264 | pull_rt_task(rq); | 1449 | pull_rt_task(rq); |
| 1265 | } | 1450 | } |
| 1266 | 1451 | ||
| 1452 | /* | ||
| 1453 | * assumes rq->lock is held | ||
| 1454 | */ | ||
| 1455 | static int needs_post_schedule_rt(struct rq *rq) | ||
| 1456 | { | ||
| 1457 | return has_pushable_tasks(rq); | ||
| 1458 | } | ||
| 1459 | |||
| 1267 | static void post_schedule_rt(struct rq *rq) | 1460 | static void post_schedule_rt(struct rq *rq) |
| 1268 | { | 1461 | { |
| 1269 | /* | 1462 | /* |
| 1270 | * If we have more than one rt_task queued, then | 1463 | * This is only called if needs_post_schedule_rt() indicates that |
| 1271 | * see if we can push the other rt_tasks off to other CPUS. | 1464 | * we need to push tasks away |
| 1272 | * Note we may release the rq lock, and since | ||
| 1273 | * the lock was owned by prev, we need to release it | ||
| 1274 | * first via finish_lock_switch and then reaquire it here. | ||
| 1275 | */ | 1465 | */ |
| 1276 | if (unlikely(rq->rt.overloaded)) { | 1466 | spin_lock_irq(&rq->lock); |
| 1277 | spin_lock_irq(&rq->lock); | 1467 | push_rt_tasks(rq); |
| 1278 | push_rt_tasks(rq); | 1468 | spin_unlock_irq(&rq->lock); |
| 1279 | spin_unlock_irq(&rq->lock); | ||
| 1280 | } | ||
| 1281 | } | 1469 | } |
| 1282 | 1470 | ||
| 1283 | /* | 1471 | /* |
| @@ -1288,7 +1476,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
| 1288 | { | 1476 | { |
| 1289 | if (!task_running(rq, p) && | 1477 | if (!task_running(rq, p) && |
| 1290 | !test_tsk_need_resched(rq->curr) && | 1478 | !test_tsk_need_resched(rq->curr) && |
| 1291 | rq->rt.overloaded) | 1479 | has_pushable_tasks(rq) && |
| 1480 | p->rt.nr_cpus_allowed > 1) | ||
| 1292 | push_rt_tasks(rq); | 1481 | push_rt_tasks(rq); |
| 1293 | } | 1482 | } |
| 1294 | 1483 | ||
| @@ -1324,6 +1513,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
| 1324 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1513 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
| 1325 | struct rq *rq = task_rq(p); | 1514 | struct rq *rq = task_rq(p); |
| 1326 | 1515 | ||
| 1516 | if (!task_current(rq, p)) { | ||
| 1517 | /* | ||
| 1518 | * Make sure we dequeue this task from the pushable list | ||
| 1519 | * before going further. It will either remain off of | ||
| 1520 | * the list because we are no longer pushable, or it | ||
| 1521 | * will be requeued. | ||
| 1522 | */ | ||
| 1523 | if (p->rt.nr_cpus_allowed > 1) | ||
| 1524 | dequeue_pushable_task(rq, p); | ||
| 1525 | |||
| 1526 | /* | ||
| 1527 | * Requeue if our weight is changing and still > 1 | ||
| 1528 | */ | ||
| 1529 | if (weight > 1) | ||
| 1530 | enqueue_pushable_task(rq, p); | ||
| 1531 | |||
| 1532 | } | ||
| 1533 | |||
| 1327 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1534 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
| 1328 | rq->rt.rt_nr_migratory++; | 1535 | rq->rt.rt_nr_migratory++; |
| 1329 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1536 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
| @@ -1331,7 +1538,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
| 1331 | rq->rt.rt_nr_migratory--; | 1538 | rq->rt.rt_nr_migratory--; |
| 1332 | } | 1539 | } |
| 1333 | 1540 | ||
| 1334 | update_rt_migration(rq); | 1541 | update_rt_migration(&rq->rt); |
| 1335 | } | 1542 | } |
| 1336 | 1543 | ||
| 1337 | cpumask_copy(&p->cpus_allowed, new_mask); | 1544 | cpumask_copy(&p->cpus_allowed, new_mask); |
| @@ -1346,7 +1553,7 @@ static void rq_online_rt(struct rq *rq) | |||
| 1346 | 1553 | ||
| 1347 | __enable_runtime(rq); | 1554 | __enable_runtime(rq); |
| 1348 | 1555 | ||
| 1349 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1556 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
| 1350 | } | 1557 | } |
| 1351 | 1558 | ||
| 1352 | /* Assumes rq->lock is held */ | 1559 | /* Assumes rq->lock is held */ |
| @@ -1438,7 +1645,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
| 1438 | * can release the rq lock and p could migrate. | 1645 | * can release the rq lock and p could migrate. |
| 1439 | * Only reschedule if p is still on the same runqueue. | 1646 | * Only reschedule if p is still on the same runqueue. |
| 1440 | */ | 1647 | */ |
| 1441 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1648 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
| 1442 | resched_task(p); | 1649 | resched_task(p); |
| 1443 | #else | 1650 | #else |
| 1444 | /* For UP simply resched on drop of prio */ | 1651 | /* For UP simply resched on drop of prio */ |
| @@ -1509,6 +1716,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
| 1509 | struct task_struct *p = rq->curr; | 1716 | struct task_struct *p = rq->curr; |
| 1510 | 1717 | ||
| 1511 | p->se.exec_start = rq->clock; | 1718 | p->se.exec_start = rq->clock; |
| 1719 | |||
| 1720 | /* The running task is never eligible for pushing */ | ||
| 1721 | dequeue_pushable_task(rq, p); | ||
| 1512 | } | 1722 | } |
| 1513 | 1723 | ||
| 1514 | static const struct sched_class rt_sched_class = { | 1724 | static const struct sched_class rt_sched_class = { |
| @@ -1531,6 +1741,7 @@ static const struct sched_class rt_sched_class = { | |||
| 1531 | .rq_online = rq_online_rt, | 1741 | .rq_online = rq_online_rt, |
| 1532 | .rq_offline = rq_offline_rt, | 1742 | .rq_offline = rq_offline_rt, |
| 1533 | .pre_schedule = pre_schedule_rt, | 1743 | .pre_schedule = pre_schedule_rt, |
| 1744 | .needs_post_schedule = needs_post_schedule_rt, | ||
| 1534 | .post_schedule = post_schedule_rt, | 1745 | .post_schedule = post_schedule_rt, |
| 1535 | .task_wake_up = task_wake_up_rt, | 1746 | .task_wake_up = task_wake_up_rt, |
| 1536 | .switched_from = switched_from_rt, | 1747 | .switched_from = switched_from_rt, |
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index a8f93dd374e1..32d2bd4061b0 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h | |||
| @@ -4,7 +4,7 @@ | |||
| 4 | * bump this up when changing the output format or the meaning of an existing | 4 | * bump this up when changing the output format or the meaning of an existing |
| 5 | * format, so that tools can adapt (or abort) | 5 | * format, so that tools can adapt (or abort) |
| 6 | */ | 6 | */ |
| 7 | #define SCHEDSTAT_VERSION 14 | 7 | #define SCHEDSTAT_VERSION 15 |
| 8 | 8 | ||
| 9 | static int show_schedstat(struct seq_file *seq, void *v) | 9 | static int show_schedstat(struct seq_file *seq, void *v) |
| 10 | { | 10 | { |
| @@ -26,9 +26,8 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
| 26 | 26 | ||
| 27 | /* runqueue-specific stats */ | 27 | /* runqueue-specific stats */ |
| 28 | seq_printf(seq, | 28 | seq_printf(seq, |
| 29 | "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", | 29 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", |
| 30 | cpu, rq->yld_both_empty, | 30 | cpu, rq->yld_count, |
| 31 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, | ||
| 32 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | 31 | rq->sched_switch, rq->sched_count, rq->sched_goidle, |
| 33 | rq->ttwu_count, rq->ttwu_local, | 32 | rq->ttwu_count, rq->ttwu_local, |
| 34 | rq->rq_cpu_time, | 33 | rq->rq_cpu_time, |
