diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/Kconfig.preempt | 65 | ||||
| -rw-r--r-- | kernel/Makefile | 2 | ||||
| -rw-r--r-- | kernel/cpu.c | 14 | ||||
| -rw-r--r-- | kernel/cpuset.c | 89 | ||||
| -rw-r--r-- | kernel/crash_dump.c | 52 | ||||
| -rw-r--r-- | kernel/fork.c | 21 | ||||
| -rw-r--r-- | kernel/kexec.c | 1063 | ||||
| -rw-r--r-- | kernel/ksysfs.c | 13 | ||||
| -rw-r--r-- | kernel/panic.c | 23 | ||||
| -rw-r--r-- | kernel/power/Kconfig | 8 | ||||
| -rw-r--r-- | kernel/power/Makefile | 6 | ||||
| -rw-r--r-- | kernel/power/disk.c | 35 | ||||
| -rw-r--r-- | kernel/power/main.c | 16 | ||||
| -rw-r--r-- | kernel/power/process.c | 26 | ||||
| -rw-r--r-- | kernel/power/smp.c | 89 | ||||
| -rw-r--r-- | kernel/power/swsusp.c | 93 | ||||
| -rw-r--r-- | kernel/printk.c | 3 | ||||
| -rw-r--r-- | kernel/resource.c | 2 | ||||
| -rw-r--r-- | kernel/sched.c | 1048 | ||||
| -rw-r--r-- | kernel/signal.c | 5 | ||||
| -rw-r--r-- | kernel/sys.c | 23 | ||||
| -rw-r--r-- | kernel/sys_ni.c | 2 | ||||
| -rw-r--r-- | kernel/sysctl.c | 3 | ||||
| -rw-r--r-- | kernel/timer.c | 2 |
24 files changed, 2103 insertions, 600 deletions
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt new file mode 100644 index 000000000000..0b46a5dff4c0 --- /dev/null +++ b/kernel/Kconfig.preempt | |||
| @@ -0,0 +1,65 @@ | |||
| 1 | |||
| 2 | choice | ||
| 3 | prompt "Preemption Model" | ||
| 4 | default PREEMPT_NONE | ||
| 5 | |||
| 6 | config PREEMPT_NONE | ||
| 7 | bool "No Forced Preemption (Server)" | ||
| 8 | help | ||
| 9 | This is the traditional Linux preemption model, geared towards | ||
| 10 | throughput. It will still provide good latencies most of the | ||
| 11 | time, but there are no guarantees and occasional longer delays | ||
| 12 | are possible. | ||
| 13 | |||
| 14 | Select this option if you are building a kernel for a server or | ||
| 15 | scientific/computation system, or if you want to maximize the | ||
| 16 | raw processing power of the kernel, irrespective of scheduling | ||
| 17 | latencies. | ||
| 18 | |||
| 19 | config PREEMPT_VOLUNTARY | ||
| 20 | bool "Voluntary Kernel Preemption (Desktop)" | ||
| 21 | help | ||
| 22 | This option reduces the latency of the kernel by adding more | ||
| 23 | "explicit preemption points" to the kernel code. These new | ||
| 24 | preemption points have been selected to reduce the maximum | ||
| 25 | latency of rescheduling, providing faster application reactions, | ||
| 26 | at the cost of slighly lower throughput. | ||
| 27 | |||
| 28 | This allows reaction to interactive events by allowing a | ||
| 29 | low priority process to voluntarily preempt itself even if it | ||
| 30 | is in kernel mode executing a system call. This allows | ||
| 31 | applications to run more 'smoothly' even when the system is | ||
| 32 | under load. | ||
| 33 | |||
| 34 | Select this if you are building a kernel for a desktop system. | ||
| 35 | |||
| 36 | config PREEMPT | ||
| 37 | bool "Preemptible Kernel (Low-Latency Desktop)" | ||
| 38 | help | ||
| 39 | This option reduces the latency of the kernel by making | ||
| 40 | all kernel code (that is not executing in a critical section) | ||
| 41 | preemptible. This allows reaction to interactive events by | ||
| 42 | permitting a low priority process to be preempted involuntarily | ||
| 43 | even if it is in kernel mode executing a system call and would | ||
| 44 | otherwise not be about to reach a natural preemption point. | ||
| 45 | This allows applications to run more 'smoothly' even when the | ||
| 46 | system is under load, at the cost of slighly lower throughput | ||
| 47 | and a slight runtime overhead to kernel code. | ||
| 48 | |||
| 49 | Select this if you are building a kernel for a desktop or | ||
| 50 | embedded system with latency requirements in the milliseconds | ||
| 51 | range. | ||
| 52 | |||
| 53 | endchoice | ||
| 54 | |||
| 55 | config PREEMPT_BKL | ||
| 56 | bool "Preempt The Big Kernel Lock" | ||
| 57 | depends on SMP || PREEMPT | ||
| 58 | default y | ||
| 59 | help | ||
| 60 | This option reduces the latency of the kernel by making the | ||
| 61 | big kernel lock preemptible. | ||
| 62 | |||
| 63 | Say Y here if you are building a kernel for a desktop system. | ||
| 64 | Say N if you are unsure. | ||
| 65 | |||
diff --git a/kernel/Makefile b/kernel/Makefile index b01d26fe8db7..cb05cd05d237 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -17,6 +17,7 @@ obj-$(CONFIG_MODULES) += module.o | |||
| 17 | obj-$(CONFIG_KALLSYMS) += kallsyms.o | 17 | obj-$(CONFIG_KALLSYMS) += kallsyms.o |
| 18 | obj-$(CONFIG_PM) += power/ | 18 | obj-$(CONFIG_PM) += power/ |
| 19 | obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o | 19 | obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o |
| 20 | obj-$(CONFIG_KEXEC) += kexec.o | ||
| 20 | obj-$(CONFIG_COMPAT) += compat.o | 21 | obj-$(CONFIG_COMPAT) += compat.o |
| 21 | obj-$(CONFIG_CPUSETS) += cpuset.o | 22 | obj-$(CONFIG_CPUSETS) += cpuset.o |
| 22 | obj-$(CONFIG_IKCONFIG) += configs.o | 23 | obj-$(CONFIG_IKCONFIG) += configs.o |
| @@ -27,6 +28,7 @@ obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | |||
| 27 | obj-$(CONFIG_KPROBES) += kprobes.o | 28 | obj-$(CONFIG_KPROBES) += kprobes.o |
| 28 | obj-$(CONFIG_SYSFS) += ksysfs.o | 29 | obj-$(CONFIG_SYSFS) += ksysfs.o |
| 29 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 30 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
| 31 | obj-$(CONFIG_CRASH_DUMP) += crash_dump.o | ||
| 30 | obj-$(CONFIG_SECCOMP) += seccomp.o | 32 | obj-$(CONFIG_SECCOMP) += seccomp.o |
| 31 | 33 | ||
| 32 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) | 34 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) |
diff --git a/kernel/cpu.c b/kernel/cpu.c index 628f4ccda127..53d8263ae12e 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
| @@ -63,19 +63,15 @@ static int take_cpu_down(void *unused) | |||
| 63 | { | 63 | { |
| 64 | int err; | 64 | int err; |
| 65 | 65 | ||
| 66 | /* Take offline: makes arch_cpu_down somewhat easier. */ | ||
| 67 | cpu_clear(smp_processor_id(), cpu_online_map); | ||
| 68 | |||
| 69 | /* Ensure this CPU doesn't handle any more interrupts. */ | 66 | /* Ensure this CPU doesn't handle any more interrupts. */ |
| 70 | err = __cpu_disable(); | 67 | err = __cpu_disable(); |
| 71 | if (err < 0) | 68 | if (err < 0) |
| 72 | cpu_set(smp_processor_id(), cpu_online_map); | 69 | return err; |
| 73 | else | ||
| 74 | /* Force idle task to run as soon as we yield: it should | ||
| 75 | immediately notice cpu is offline and die quickly. */ | ||
| 76 | sched_idle_next(); | ||
| 77 | 70 | ||
| 78 | return err; | 71 | /* Force idle task to run as soon as we yield: it should |
| 72 | immediately notice cpu is offline and die quickly. */ | ||
| 73 | sched_idle_next(); | ||
| 74 | return 0; | ||
| 79 | } | 75 | } |
| 80 | 76 | ||
| 81 | int cpu_down(unsigned int cpu) | 77 | int cpu_down(unsigned int cpu) |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 79dd929f4084..984c0bf3807f 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
| @@ -595,10 +595,62 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |||
| 595 | return 0; | 595 | return 0; |
| 596 | } | 596 | } |
| 597 | 597 | ||
| 598 | /* | ||
| 599 | * For a given cpuset cur, partition the system as follows | ||
| 600 | * a. All cpus in the parent cpuset's cpus_allowed that are not part of any | ||
| 601 | * exclusive child cpusets | ||
| 602 | * b. All cpus in the current cpuset's cpus_allowed that are not part of any | ||
| 603 | * exclusive child cpusets | ||
| 604 | * Build these two partitions by calling partition_sched_domains | ||
| 605 | * | ||
| 606 | * Call with cpuset_sem held. May nest a call to the | ||
| 607 | * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. | ||
| 608 | */ | ||
| 609 | static void update_cpu_domains(struct cpuset *cur) | ||
| 610 | { | ||
| 611 | struct cpuset *c, *par = cur->parent; | ||
| 612 | cpumask_t pspan, cspan; | ||
| 613 | |||
| 614 | if (par == NULL || cpus_empty(cur->cpus_allowed)) | ||
| 615 | return; | ||
| 616 | |||
| 617 | /* | ||
| 618 | * Get all cpus from parent's cpus_allowed not part of exclusive | ||
| 619 | * children | ||
| 620 | */ | ||
| 621 | pspan = par->cpus_allowed; | ||
| 622 | list_for_each_entry(c, &par->children, sibling) { | ||
| 623 | if (is_cpu_exclusive(c)) | ||
| 624 | cpus_andnot(pspan, pspan, c->cpus_allowed); | ||
| 625 | } | ||
| 626 | if (is_removed(cur) || !is_cpu_exclusive(cur)) { | ||
| 627 | cpus_or(pspan, pspan, cur->cpus_allowed); | ||
| 628 | if (cpus_equal(pspan, cur->cpus_allowed)) | ||
| 629 | return; | ||
| 630 | cspan = CPU_MASK_NONE; | ||
| 631 | } else { | ||
| 632 | if (cpus_empty(pspan)) | ||
| 633 | return; | ||
| 634 | cspan = cur->cpus_allowed; | ||
| 635 | /* | ||
| 636 | * Get all cpus from current cpuset's cpus_allowed not part | ||
| 637 | * of exclusive children | ||
| 638 | */ | ||
| 639 | list_for_each_entry(c, &cur->children, sibling) { | ||
| 640 | if (is_cpu_exclusive(c)) | ||
| 641 | cpus_andnot(cspan, cspan, c->cpus_allowed); | ||
| 642 | } | ||
| 643 | } | ||
| 644 | |||
| 645 | lock_cpu_hotplug(); | ||
| 646 | partition_sched_domains(&pspan, &cspan); | ||
| 647 | unlock_cpu_hotplug(); | ||
| 648 | } | ||
| 649 | |||
| 598 | static int update_cpumask(struct cpuset *cs, char *buf) | 650 | static int update_cpumask(struct cpuset *cs, char *buf) |
| 599 | { | 651 | { |
| 600 | struct cpuset trialcs; | 652 | struct cpuset trialcs; |
| 601 | int retval; | 653 | int retval, cpus_unchanged; |
| 602 | 654 | ||
| 603 | trialcs = *cs; | 655 | trialcs = *cs; |
| 604 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | 656 | retval = cpulist_parse(buf, trialcs.cpus_allowed); |
| @@ -608,9 +660,13 @@ static int update_cpumask(struct cpuset *cs, char *buf) | |||
| 608 | if (cpus_empty(trialcs.cpus_allowed)) | 660 | if (cpus_empty(trialcs.cpus_allowed)) |
| 609 | return -ENOSPC; | 661 | return -ENOSPC; |
| 610 | retval = validate_change(cs, &trialcs); | 662 | retval = validate_change(cs, &trialcs); |
| 611 | if (retval == 0) | 663 | if (retval < 0) |
| 612 | cs->cpus_allowed = trialcs.cpus_allowed; | 664 | return retval; |
| 613 | return retval; | 665 | cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); |
| 666 | cs->cpus_allowed = trialcs.cpus_allowed; | ||
| 667 | if (is_cpu_exclusive(cs) && !cpus_unchanged) | ||
| 668 | update_cpu_domains(cs); | ||
| 669 | return 0; | ||
| 614 | } | 670 | } |
| 615 | 671 | ||
| 616 | static int update_nodemask(struct cpuset *cs, char *buf) | 672 | static int update_nodemask(struct cpuset *cs, char *buf) |
| @@ -646,7 +702,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | |||
| 646 | { | 702 | { |
| 647 | int turning_on; | 703 | int turning_on; |
| 648 | struct cpuset trialcs; | 704 | struct cpuset trialcs; |
| 649 | int err; | 705 | int err, cpu_exclusive_changed; |
| 650 | 706 | ||
| 651 | turning_on = (simple_strtoul(buf, NULL, 10) != 0); | 707 | turning_on = (simple_strtoul(buf, NULL, 10) != 0); |
| 652 | 708 | ||
| @@ -657,13 +713,18 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | |||
| 657 | clear_bit(bit, &trialcs.flags); | 713 | clear_bit(bit, &trialcs.flags); |
| 658 | 714 | ||
| 659 | err = validate_change(cs, &trialcs); | 715 | err = validate_change(cs, &trialcs); |
| 660 | if (err == 0) { | 716 | if (err < 0) |
| 661 | if (turning_on) | 717 | return err; |
| 662 | set_bit(bit, &cs->flags); | 718 | cpu_exclusive_changed = |
| 663 | else | 719 | (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); |
| 664 | clear_bit(bit, &cs->flags); | 720 | if (turning_on) |
| 665 | } | 721 | set_bit(bit, &cs->flags); |
| 666 | return err; | 722 | else |
| 723 | clear_bit(bit, &cs->flags); | ||
| 724 | |||
| 725 | if (cpu_exclusive_changed) | ||
| 726 | update_cpu_domains(cs); | ||
| 727 | return 0; | ||
| 667 | } | 728 | } |
| 668 | 729 | ||
| 669 | static int attach_task(struct cpuset *cs, char *buf) | 730 | static int attach_task(struct cpuset *cs, char *buf) |
| @@ -1309,12 +1370,14 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | |||
| 1309 | up(&cpuset_sem); | 1370 | up(&cpuset_sem); |
| 1310 | return -EBUSY; | 1371 | return -EBUSY; |
| 1311 | } | 1372 | } |
| 1312 | spin_lock(&cs->dentry->d_lock); | ||
| 1313 | parent = cs->parent; | 1373 | parent = cs->parent; |
| 1314 | set_bit(CS_REMOVED, &cs->flags); | 1374 | set_bit(CS_REMOVED, &cs->flags); |
| 1375 | if (is_cpu_exclusive(cs)) | ||
| 1376 | update_cpu_domains(cs); | ||
| 1315 | list_del(&cs->sibling); /* delete my sibling from parent->children */ | 1377 | list_del(&cs->sibling); /* delete my sibling from parent->children */ |
| 1316 | if (list_empty(&parent->children)) | 1378 | if (list_empty(&parent->children)) |
| 1317 | check_for_release(parent); | 1379 | check_for_release(parent); |
| 1380 | spin_lock(&cs->dentry->d_lock); | ||
| 1318 | d = dget(cs->dentry); | 1381 | d = dget(cs->dentry); |
| 1319 | cs->dentry = NULL; | 1382 | cs->dentry = NULL; |
| 1320 | spin_unlock(&d->d_lock); | 1383 | spin_unlock(&d->d_lock); |
diff --git a/kernel/crash_dump.c b/kernel/crash_dump.c new file mode 100644 index 000000000000..459ba49e376a --- /dev/null +++ b/kernel/crash_dump.c | |||
| @@ -0,0 +1,52 @@ | |||
| 1 | /* | ||
| 2 | * kernel/crash_dump.c - Memory preserving reboot related code. | ||
| 3 | * | ||
| 4 | * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) | ||
| 5 | * Copyright (C) IBM Corporation, 2004. All rights reserved | ||
| 6 | */ | ||
| 7 | |||
| 8 | #include <linux/smp_lock.h> | ||
| 9 | #include <linux/errno.h> | ||
| 10 | #include <linux/proc_fs.h> | ||
| 11 | #include <linux/bootmem.h> | ||
| 12 | #include <linux/highmem.h> | ||
| 13 | #include <linux/crash_dump.h> | ||
| 14 | |||
| 15 | #include <asm/io.h> | ||
| 16 | #include <asm/uaccess.h> | ||
| 17 | |||
| 18 | /* Stores the physical address of elf header of crash image. */ | ||
| 19 | unsigned long long elfcorehdr_addr = ELFCORE_ADDR_MAX; | ||
| 20 | |||
| 21 | /* | ||
| 22 | * Copy a page from "oldmem". For this page, there is no pte mapped | ||
| 23 | * in the current kernel. We stitch up a pte, similar to kmap_atomic. | ||
| 24 | */ | ||
| 25 | ssize_t copy_oldmem_page(unsigned long pfn, char *buf, | ||
| 26 | size_t csize, unsigned long offset, int userbuf) | ||
| 27 | { | ||
| 28 | void *page, *vaddr; | ||
| 29 | |||
| 30 | if (!csize) | ||
| 31 | return 0; | ||
| 32 | |||
| 33 | page = kmalloc(PAGE_SIZE, GFP_KERNEL); | ||
| 34 | if (!page) | ||
| 35 | return -ENOMEM; | ||
| 36 | |||
| 37 | vaddr = kmap_atomic_pfn(pfn, KM_PTE0); | ||
| 38 | copy_page(page, vaddr); | ||
| 39 | kunmap_atomic(vaddr, KM_PTE0); | ||
| 40 | |||
| 41 | if (userbuf) { | ||
| 42 | if (copy_to_user(buf, (page + offset), csize)) { | ||
| 43 | kfree(page); | ||
| 44 | return -EFAULT; | ||
| 45 | } | ||
| 46 | } else { | ||
| 47 | memcpy(buf, (page + offset), csize); | ||
| 48 | } | ||
| 49 | |||
| 50 | kfree(page); | ||
| 51 | return csize; | ||
| 52 | } | ||
diff --git a/kernel/fork.c b/kernel/fork.c index a28d11e10877..2c7806873bfd 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -1003,9 +1003,6 @@ static task_t *copy_process(unsigned long clone_flags, | |||
| 1003 | p->pdeath_signal = 0; | 1003 | p->pdeath_signal = 0; |
| 1004 | p->exit_state = 0; | 1004 | p->exit_state = 0; |
| 1005 | 1005 | ||
| 1006 | /* Perform scheduler related setup */ | ||
| 1007 | sched_fork(p); | ||
| 1008 | |||
| 1009 | /* | 1006 | /* |
| 1010 | * Ok, make it visible to the rest of the system. | 1007 | * Ok, make it visible to the rest of the system. |
| 1011 | * We dont wake it up yet. | 1008 | * We dont wake it up yet. |
| @@ -1014,18 +1011,24 @@ static task_t *copy_process(unsigned long clone_flags, | |||
| 1014 | INIT_LIST_HEAD(&p->ptrace_children); | 1011 | INIT_LIST_HEAD(&p->ptrace_children); |
| 1015 | INIT_LIST_HEAD(&p->ptrace_list); | 1012 | INIT_LIST_HEAD(&p->ptrace_list); |
| 1016 | 1013 | ||
| 1014 | /* Perform scheduler related setup. Assign this task to a CPU. */ | ||
| 1015 | sched_fork(p, clone_flags); | ||
| 1016 | |||
| 1017 | /* Need tasklist lock for parent etc handling! */ | 1017 | /* Need tasklist lock for parent etc handling! */ |
| 1018 | write_lock_irq(&tasklist_lock); | 1018 | write_lock_irq(&tasklist_lock); |
| 1019 | 1019 | ||
| 1020 | /* | 1020 | /* |
| 1021 | * The task hasn't been attached yet, so cpus_allowed mask cannot | 1021 | * The task hasn't been attached yet, so its cpus_allowed mask will |
| 1022 | * have changed. The cpus_allowed mask of the parent may have | 1022 | * not be changed, nor will its assigned CPU. |
| 1023 | * changed after it was copied first time, and it may then move to | 1023 | * |
| 1024 | * another CPU - so we re-copy it here and set the child's CPU to | 1024 | * The cpus_allowed mask of the parent may have changed after it was |
| 1025 | * the parent's CPU. This avoids alot of nasty races. | 1025 | * copied first time - so re-copy it here, then check the child's CPU |
| 1026 | * to ensure it is on a valid CPU (and if not, just force it back to | ||
| 1027 | * parent's CPU). This avoids alot of nasty races. | ||
| 1026 | */ | 1028 | */ |
| 1027 | p->cpus_allowed = current->cpus_allowed; | 1029 | p->cpus_allowed = current->cpus_allowed; |
| 1028 | set_task_cpu(p, smp_processor_id()); | 1030 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed))) |
| 1031 | set_task_cpu(p, smp_processor_id()); | ||
| 1029 | 1032 | ||
| 1030 | /* | 1033 | /* |
| 1031 | * Check for pending SIGKILL! The new thread should not be allowed | 1034 | * Check for pending SIGKILL! The new thread should not be allowed |
diff --git a/kernel/kexec.c b/kernel/kexec.c new file mode 100644 index 000000000000..7843548cf2d9 --- /dev/null +++ b/kernel/kexec.c | |||
| @@ -0,0 +1,1063 @@ | |||
| 1 | /* | ||
| 2 | * kexec.c - kexec system call | ||
| 3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | ||
| 4 | * | ||
| 5 | * This source code is licensed under the GNU General Public License, | ||
| 6 | * Version 2. See the file COPYING for more details. | ||
| 7 | */ | ||
| 8 | |||
| 9 | #include <linux/mm.h> | ||
| 10 | #include <linux/file.h> | ||
| 11 | #include <linux/slab.h> | ||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/kexec.h> | ||
| 14 | #include <linux/spinlock.h> | ||
| 15 | #include <linux/list.h> | ||
| 16 | #include <linux/highmem.h> | ||
| 17 | #include <linux/syscalls.h> | ||
| 18 | #include <linux/reboot.h> | ||
| 19 | #include <linux/syscalls.h> | ||
| 20 | #include <linux/ioport.h> | ||
| 21 | #include <linux/hardirq.h> | ||
| 22 | |||
| 23 | #include <asm/page.h> | ||
| 24 | #include <asm/uaccess.h> | ||
| 25 | #include <asm/io.h> | ||
| 26 | #include <asm/system.h> | ||
| 27 | #include <asm/semaphore.h> | ||
| 28 | |||
| 29 | /* Location of the reserved area for the crash kernel */ | ||
| 30 | struct resource crashk_res = { | ||
| 31 | .name = "Crash kernel", | ||
| 32 | .start = 0, | ||
| 33 | .end = 0, | ||
| 34 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | ||
| 35 | }; | ||
| 36 | |||
| 37 | int kexec_should_crash(struct task_struct *p) | ||
| 38 | { | ||
| 39 | if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops) | ||
| 40 | return 1; | ||
| 41 | return 0; | ||
| 42 | } | ||
| 43 | |||
| 44 | /* | ||
| 45 | * When kexec transitions to the new kernel there is a one-to-one | ||
| 46 | * mapping between physical and virtual addresses. On processors | ||
| 47 | * where you can disable the MMU this is trivial, and easy. For | ||
| 48 | * others it is still a simple predictable page table to setup. | ||
| 49 | * | ||
| 50 | * In that environment kexec copies the new kernel to its final | ||
| 51 | * resting place. This means I can only support memory whose | ||
| 52 | * physical address can fit in an unsigned long. In particular | ||
| 53 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | ||
| 54 | * If the assembly stub has more restrictive requirements | ||
| 55 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | ||
| 56 | * defined more restrictively in <asm/kexec.h>. | ||
| 57 | * | ||
| 58 | * The code for the transition from the current kernel to the | ||
| 59 | * the new kernel is placed in the control_code_buffer, whose size | ||
| 60 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | ||
| 61 | * page of memory is necessary, but some architectures require more. | ||
| 62 | * Because this memory must be identity mapped in the transition from | ||
| 63 | * virtual to physical addresses it must live in the range | ||
| 64 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | ||
| 65 | * modifiable. | ||
| 66 | * | ||
| 67 | * The assembly stub in the control code buffer is passed a linked list | ||
| 68 | * of descriptor pages detailing the source pages of the new kernel, | ||
| 69 | * and the destination addresses of those source pages. As this data | ||
| 70 | * structure is not used in the context of the current OS, it must | ||
| 71 | * be self-contained. | ||
| 72 | * | ||
| 73 | * The code has been made to work with highmem pages and will use a | ||
| 74 | * destination page in its final resting place (if it happens | ||
| 75 | * to allocate it). The end product of this is that most of the | ||
| 76 | * physical address space, and most of RAM can be used. | ||
| 77 | * | ||
| 78 | * Future directions include: | ||
| 79 | * - allocating a page table with the control code buffer identity | ||
| 80 | * mapped, to simplify machine_kexec and make kexec_on_panic more | ||
| 81 | * reliable. | ||
| 82 | */ | ||
| 83 | |||
| 84 | /* | ||
| 85 | * KIMAGE_NO_DEST is an impossible destination address..., for | ||
| 86 | * allocating pages whose destination address we do not care about. | ||
| 87 | */ | ||
| 88 | #define KIMAGE_NO_DEST (-1UL) | ||
| 89 | |||
| 90 | static int kimage_is_destination_range(struct kimage *image, | ||
| 91 | unsigned long start, unsigned long end); | ||
| 92 | static struct page *kimage_alloc_page(struct kimage *image, | ||
| 93 | unsigned int gfp_mask, | ||
| 94 | unsigned long dest); | ||
| 95 | |||
| 96 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | ||
| 97 | unsigned long nr_segments, | ||
| 98 | struct kexec_segment __user *segments) | ||
| 99 | { | ||
| 100 | size_t segment_bytes; | ||
| 101 | struct kimage *image; | ||
| 102 | unsigned long i; | ||
| 103 | int result; | ||
| 104 | |||
| 105 | /* Allocate a controlling structure */ | ||
| 106 | result = -ENOMEM; | ||
| 107 | image = kmalloc(sizeof(*image), GFP_KERNEL); | ||
| 108 | if (!image) | ||
| 109 | goto out; | ||
| 110 | |||
| 111 | memset(image, 0, sizeof(*image)); | ||
| 112 | image->head = 0; | ||
| 113 | image->entry = &image->head; | ||
| 114 | image->last_entry = &image->head; | ||
| 115 | image->control_page = ~0; /* By default this does not apply */ | ||
| 116 | image->start = entry; | ||
| 117 | image->type = KEXEC_TYPE_DEFAULT; | ||
| 118 | |||
| 119 | /* Initialize the list of control pages */ | ||
| 120 | INIT_LIST_HEAD(&image->control_pages); | ||
| 121 | |||
| 122 | /* Initialize the list of destination pages */ | ||
| 123 | INIT_LIST_HEAD(&image->dest_pages); | ||
| 124 | |||
| 125 | /* Initialize the list of unuseable pages */ | ||
| 126 | INIT_LIST_HEAD(&image->unuseable_pages); | ||
| 127 | |||
| 128 | /* Read in the segments */ | ||
| 129 | image->nr_segments = nr_segments; | ||
| 130 | segment_bytes = nr_segments * sizeof(*segments); | ||
| 131 | result = copy_from_user(image->segment, segments, segment_bytes); | ||
| 132 | if (result) | ||
| 133 | goto out; | ||
| 134 | |||
| 135 | /* | ||
| 136 | * Verify we have good destination addresses. The caller is | ||
| 137 | * responsible for making certain we don't attempt to load | ||
| 138 | * the new image into invalid or reserved areas of RAM. This | ||
| 139 | * just verifies it is an address we can use. | ||
| 140 | * | ||
| 141 | * Since the kernel does everything in page size chunks ensure | ||
| 142 | * the destination addreses are page aligned. Too many | ||
| 143 | * special cases crop of when we don't do this. The most | ||
| 144 | * insidious is getting overlapping destination addresses | ||
| 145 | * simply because addresses are changed to page size | ||
| 146 | * granularity. | ||
| 147 | */ | ||
| 148 | result = -EADDRNOTAVAIL; | ||
| 149 | for (i = 0; i < nr_segments; i++) { | ||
| 150 | unsigned long mstart, mend; | ||
| 151 | |||
| 152 | mstart = image->segment[i].mem; | ||
| 153 | mend = mstart + image->segment[i].memsz; | ||
| 154 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | ||
| 155 | goto out; | ||
| 156 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | ||
| 157 | goto out; | ||
| 158 | } | ||
| 159 | |||
| 160 | /* Verify our destination addresses do not overlap. | ||
| 161 | * If we alloed overlapping destination addresses | ||
| 162 | * through very weird things can happen with no | ||
| 163 | * easy explanation as one segment stops on another. | ||
| 164 | */ | ||
| 165 | result = -EINVAL; | ||
| 166 | for (i = 0; i < nr_segments; i++) { | ||
| 167 | unsigned long mstart, mend; | ||
| 168 | unsigned long j; | ||
| 169 | |||
| 170 | mstart = image->segment[i].mem; | ||
| 171 | mend = mstart + image->segment[i].memsz; | ||
| 172 | for (j = 0; j < i; j++) { | ||
| 173 | unsigned long pstart, pend; | ||
| 174 | pstart = image->segment[j].mem; | ||
| 175 | pend = pstart + image->segment[j].memsz; | ||
| 176 | /* Do the segments overlap ? */ | ||
| 177 | if ((mend > pstart) && (mstart < pend)) | ||
| 178 | goto out; | ||
| 179 | } | ||
| 180 | } | ||
| 181 | |||
| 182 | /* Ensure our buffer sizes are strictly less than | ||
| 183 | * our memory sizes. This should always be the case, | ||
| 184 | * and it is easier to check up front than to be surprised | ||
| 185 | * later on. | ||
| 186 | */ | ||
| 187 | result = -EINVAL; | ||
| 188 | for (i = 0; i < nr_segments; i++) { | ||
| 189 | if (image->segment[i].bufsz > image->segment[i].memsz) | ||
| 190 | goto out; | ||
| 191 | } | ||
| 192 | |||
| 193 | result = 0; | ||
| 194 | out: | ||
| 195 | if (result == 0) | ||
| 196 | *rimage = image; | ||
| 197 | else | ||
| 198 | kfree(image); | ||
| 199 | |||
| 200 | return result; | ||
| 201 | |||
| 202 | } | ||
| 203 | |||
| 204 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | ||
| 205 | unsigned long nr_segments, | ||
| 206 | struct kexec_segment __user *segments) | ||
| 207 | { | ||
| 208 | int result; | ||
| 209 | struct kimage *image; | ||
| 210 | |||
| 211 | /* Allocate and initialize a controlling structure */ | ||
| 212 | image = NULL; | ||
| 213 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | ||
| 214 | if (result) | ||
| 215 | goto out; | ||
| 216 | |||
| 217 | *rimage = image; | ||
| 218 | |||
| 219 | /* | ||
| 220 | * Find a location for the control code buffer, and add it | ||
| 221 | * the vector of segments so that it's pages will also be | ||
| 222 | * counted as destination pages. | ||
| 223 | */ | ||
| 224 | result = -ENOMEM; | ||
| 225 | image->control_code_page = kimage_alloc_control_pages(image, | ||
| 226 | get_order(KEXEC_CONTROL_CODE_SIZE)); | ||
| 227 | if (!image->control_code_page) { | ||
| 228 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | ||
| 229 | goto out; | ||
| 230 | } | ||
| 231 | |||
| 232 | result = 0; | ||
| 233 | out: | ||
| 234 | if (result == 0) | ||
| 235 | *rimage = image; | ||
| 236 | else | ||
| 237 | kfree(image); | ||
| 238 | |||
| 239 | return result; | ||
| 240 | } | ||
| 241 | |||
| 242 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | ||
| 243 | unsigned long nr_segments, | ||
| 244 | struct kexec_segment *segments) | ||
| 245 | { | ||
| 246 | int result; | ||
| 247 | struct kimage *image; | ||
| 248 | unsigned long i; | ||
| 249 | |||
| 250 | image = NULL; | ||
| 251 | /* Verify we have a valid entry point */ | ||
| 252 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | ||
| 253 | result = -EADDRNOTAVAIL; | ||
| 254 | goto out; | ||
| 255 | } | ||
| 256 | |||
| 257 | /* Allocate and initialize a controlling structure */ | ||
| 258 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | ||
| 259 | if (result) | ||
| 260 | goto out; | ||
| 261 | |||
| 262 | /* Enable the special crash kernel control page | ||
| 263 | * allocation policy. | ||
| 264 | */ | ||
| 265 | image->control_page = crashk_res.start; | ||
| 266 | image->type = KEXEC_TYPE_CRASH; | ||
| 267 | |||
| 268 | /* | ||
| 269 | * Verify we have good destination addresses. Normally | ||
| 270 | * the caller is responsible for making certain we don't | ||
| 271 | * attempt to load the new image into invalid or reserved | ||
| 272 | * areas of RAM. But crash kernels are preloaded into a | ||
| 273 | * reserved area of ram. We must ensure the addresses | ||
| 274 | * are in the reserved area otherwise preloading the | ||
| 275 | * kernel could corrupt things. | ||
| 276 | */ | ||
| 277 | result = -EADDRNOTAVAIL; | ||
| 278 | for (i = 0; i < nr_segments; i++) { | ||
| 279 | unsigned long mstart, mend; | ||
| 280 | |||
| 281 | mstart = image->segment[i].mem; | ||
| 282 | mend = mstart + image->segment[i].memsz - 1; | ||
| 283 | /* Ensure we are within the crash kernel limits */ | ||
| 284 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | ||
| 285 | goto out; | ||
| 286 | } | ||
| 287 | |||
| 288 | /* | ||
| 289 | * Find a location for the control code buffer, and add | ||
| 290 | * the vector of segments so that it's pages will also be | ||
| 291 | * counted as destination pages. | ||
| 292 | */ | ||
| 293 | result = -ENOMEM; | ||
| 294 | image->control_code_page = kimage_alloc_control_pages(image, | ||
| 295 | get_order(KEXEC_CONTROL_CODE_SIZE)); | ||
| 296 | if (!image->control_code_page) { | ||
| 297 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | ||
| 298 | goto out; | ||
| 299 | } | ||
| 300 | |||
| 301 | result = 0; | ||
| 302 | out: | ||
| 303 | if (result == 0) | ||
| 304 | *rimage = image; | ||
| 305 | else | ||
| 306 | kfree(image); | ||
| 307 | |||
| 308 | return result; | ||
| 309 | } | ||
| 310 | |||
| 311 | static int kimage_is_destination_range(struct kimage *image, | ||
| 312 | unsigned long start, | ||
| 313 | unsigned long end) | ||
| 314 | { | ||
| 315 | unsigned long i; | ||
| 316 | |||
| 317 | for (i = 0; i < image->nr_segments; i++) { | ||
| 318 | unsigned long mstart, mend; | ||
| 319 | |||
| 320 | mstart = image->segment[i].mem; | ||
| 321 | mend = mstart + image->segment[i].memsz; | ||
| 322 | if ((end > mstart) && (start < mend)) | ||
| 323 | return 1; | ||
| 324 | } | ||
| 325 | |||
| 326 | return 0; | ||
| 327 | } | ||
| 328 | |||
| 329 | static struct page *kimage_alloc_pages(unsigned int gfp_mask, | ||
| 330 | unsigned int order) | ||
| 331 | { | ||
| 332 | struct page *pages; | ||
| 333 | |||
| 334 | pages = alloc_pages(gfp_mask, order); | ||
| 335 | if (pages) { | ||
| 336 | unsigned int count, i; | ||
| 337 | pages->mapping = NULL; | ||
| 338 | pages->private = order; | ||
| 339 | count = 1 << order; | ||
| 340 | for (i = 0; i < count; i++) | ||
| 341 | SetPageReserved(pages + i); | ||
| 342 | } | ||
| 343 | |||
| 344 | return pages; | ||
| 345 | } | ||
| 346 | |||
| 347 | static void kimage_free_pages(struct page *page) | ||
| 348 | { | ||
| 349 | unsigned int order, count, i; | ||
| 350 | |||
| 351 | order = page->private; | ||
| 352 | count = 1 << order; | ||
| 353 | for (i = 0; i < count; i++) | ||
| 354 | ClearPageReserved(page + i); | ||
| 355 | __free_pages(page, order); | ||
| 356 | } | ||
| 357 | |||
| 358 | static void kimage_free_page_list(struct list_head *list) | ||
| 359 | { | ||
| 360 | struct list_head *pos, *next; | ||
| 361 | |||
| 362 | list_for_each_safe(pos, next, list) { | ||
| 363 | struct page *page; | ||
| 364 | |||
| 365 | page = list_entry(pos, struct page, lru); | ||
| 366 | list_del(&page->lru); | ||
| 367 | kimage_free_pages(page); | ||
| 368 | } | ||
| 369 | } | ||
| 370 | |||
| 371 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | ||
| 372 | unsigned int order) | ||
| 373 | { | ||
| 374 | /* Control pages are special, they are the intermediaries | ||
| 375 | * that are needed while we copy the rest of the pages | ||
| 376 | * to their final resting place. As such they must | ||
| 377 | * not conflict with either the destination addresses | ||
| 378 | * or memory the kernel is already using. | ||
| 379 | * | ||
| 380 | * The only case where we really need more than one of | ||
| 381 | * these are for architectures where we cannot disable | ||
| 382 | * the MMU and must instead generate an identity mapped | ||
| 383 | * page table for all of the memory. | ||
| 384 | * | ||
| 385 | * At worst this runs in O(N) of the image size. | ||
| 386 | */ | ||
| 387 | struct list_head extra_pages; | ||
| 388 | struct page *pages; | ||
| 389 | unsigned int count; | ||
| 390 | |||
| 391 | count = 1 << order; | ||
| 392 | INIT_LIST_HEAD(&extra_pages); | ||
| 393 | |||
| 394 | /* Loop while I can allocate a page and the page allocated | ||
| 395 | * is a destination page. | ||
| 396 | */ | ||
| 397 | do { | ||
| 398 | unsigned long pfn, epfn, addr, eaddr; | ||
| 399 | |||
| 400 | pages = kimage_alloc_pages(GFP_KERNEL, order); | ||
| 401 | if (!pages) | ||
| 402 | break; | ||
| 403 | pfn = page_to_pfn(pages); | ||
| 404 | epfn = pfn + count; | ||
| 405 | addr = pfn << PAGE_SHIFT; | ||
| 406 | eaddr = epfn << PAGE_SHIFT; | ||
| 407 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | ||
| 408 | kimage_is_destination_range(image, addr, eaddr)) { | ||
| 409 | list_add(&pages->lru, &extra_pages); | ||
| 410 | pages = NULL; | ||
| 411 | } | ||
| 412 | } while (!pages); | ||
| 413 | |||
| 414 | if (pages) { | ||
| 415 | /* Remember the allocated page... */ | ||
| 416 | list_add(&pages->lru, &image->control_pages); | ||
| 417 | |||
| 418 | /* Because the page is already in it's destination | ||
| 419 | * location we will never allocate another page at | ||
| 420 | * that address. Therefore kimage_alloc_pages | ||
| 421 | * will not return it (again) and we don't need | ||
| 422 | * to give it an entry in image->segment[]. | ||
| 423 | */ | ||
| 424 | } | ||
| 425 | /* Deal with the destination pages I have inadvertently allocated. | ||
| 426 | * | ||
| 427 | * Ideally I would convert multi-page allocations into single | ||
| 428 | * page allocations, and add everyting to image->dest_pages. | ||
| 429 | * | ||
| 430 | * For now it is simpler to just free the pages. | ||
| 431 | */ | ||
| 432 | kimage_free_page_list(&extra_pages); | ||
| 433 | |||
| 434 | return pages; | ||
| 435 | } | ||
| 436 | |||
| 437 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | ||
| 438 | unsigned int order) | ||
| 439 | { | ||
| 440 | /* Control pages are special, they are the intermediaries | ||
| 441 | * that are needed while we copy the rest of the pages | ||
| 442 | * to their final resting place. As such they must | ||
| 443 | * not conflict with either the destination addresses | ||
| 444 | * or memory the kernel is already using. | ||
| 445 | * | ||
| 446 | * Control pages are also the only pags we must allocate | ||
| 447 | * when loading a crash kernel. All of the other pages | ||
| 448 | * are specified by the segments and we just memcpy | ||
| 449 | * into them directly. | ||
| 450 | * | ||
| 451 | * The only case where we really need more than one of | ||
| 452 | * these are for architectures where we cannot disable | ||
| 453 | * the MMU and must instead generate an identity mapped | ||
| 454 | * page table for all of the memory. | ||
| 455 | * | ||
| 456 | * Given the low demand this implements a very simple | ||
| 457 | * allocator that finds the first hole of the appropriate | ||
| 458 | * size in the reserved memory region, and allocates all | ||
| 459 | * of the memory up to and including the hole. | ||
| 460 | */ | ||
| 461 | unsigned long hole_start, hole_end, size; | ||
| 462 | struct page *pages; | ||
| 463 | |||
| 464 | pages = NULL; | ||
| 465 | size = (1 << order) << PAGE_SHIFT; | ||
| 466 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | ||
| 467 | hole_end = hole_start + size - 1; | ||
| 468 | while (hole_end <= crashk_res.end) { | ||
| 469 | unsigned long i; | ||
| 470 | |||
| 471 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | ||
| 472 | break; | ||
| 473 | if (hole_end > crashk_res.end) | ||
| 474 | break; | ||
| 475 | /* See if I overlap any of the segments */ | ||
| 476 | for (i = 0; i < image->nr_segments; i++) { | ||
| 477 | unsigned long mstart, mend; | ||
| 478 | |||
| 479 | mstart = image->segment[i].mem; | ||
| 480 | mend = mstart + image->segment[i].memsz - 1; | ||
| 481 | if ((hole_end >= mstart) && (hole_start <= mend)) { | ||
| 482 | /* Advance the hole to the end of the segment */ | ||
| 483 | hole_start = (mend + (size - 1)) & ~(size - 1); | ||
| 484 | hole_end = hole_start + size - 1; | ||
| 485 | break; | ||
| 486 | } | ||
| 487 | } | ||
| 488 | /* If I don't overlap any segments I have found my hole! */ | ||
| 489 | if (i == image->nr_segments) { | ||
| 490 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | ||
| 491 | break; | ||
| 492 | } | ||
| 493 | } | ||
| 494 | if (pages) | ||
| 495 | image->control_page = hole_end; | ||
| 496 | |||
| 497 | return pages; | ||
| 498 | } | ||
| 499 | |||
| 500 | |||
| 501 | struct page *kimage_alloc_control_pages(struct kimage *image, | ||
| 502 | unsigned int order) | ||
| 503 | { | ||
| 504 | struct page *pages = NULL; | ||
| 505 | |||
| 506 | switch (image->type) { | ||
| 507 | case KEXEC_TYPE_DEFAULT: | ||
| 508 | pages = kimage_alloc_normal_control_pages(image, order); | ||
| 509 | break; | ||
| 510 | case KEXEC_TYPE_CRASH: | ||
| 511 | pages = kimage_alloc_crash_control_pages(image, order); | ||
| 512 | break; | ||
| 513 | } | ||
| 514 | |||
| 515 | return pages; | ||
| 516 | } | ||
| 517 | |||
| 518 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | ||
| 519 | { | ||
| 520 | if (*image->entry != 0) | ||
| 521 | image->entry++; | ||
| 522 | |||
| 523 | if (image->entry == image->last_entry) { | ||
| 524 | kimage_entry_t *ind_page; | ||
| 525 | struct page *page; | ||
| 526 | |||
| 527 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | ||
| 528 | if (!page) | ||
| 529 | return -ENOMEM; | ||
| 530 | |||
| 531 | ind_page = page_address(page); | ||
| 532 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | ||
| 533 | image->entry = ind_page; | ||
| 534 | image->last_entry = ind_page + | ||
| 535 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | ||
| 536 | } | ||
| 537 | *image->entry = entry; | ||
| 538 | image->entry++; | ||
| 539 | *image->entry = 0; | ||
| 540 | |||
| 541 | return 0; | ||
| 542 | } | ||
| 543 | |||
| 544 | static int kimage_set_destination(struct kimage *image, | ||
| 545 | unsigned long destination) | ||
| 546 | { | ||
| 547 | int result; | ||
| 548 | |||
| 549 | destination &= PAGE_MASK; | ||
| 550 | result = kimage_add_entry(image, destination | IND_DESTINATION); | ||
| 551 | if (result == 0) | ||
| 552 | image->destination = destination; | ||
| 553 | |||
| 554 | return result; | ||
| 555 | } | ||
| 556 | |||
| 557 | |||
| 558 | static int kimage_add_page(struct kimage *image, unsigned long page) | ||
| 559 | { | ||
| 560 | int result; | ||
| 561 | |||
| 562 | page &= PAGE_MASK; | ||
| 563 | result = kimage_add_entry(image, page | IND_SOURCE); | ||
| 564 | if (result == 0) | ||
| 565 | image->destination += PAGE_SIZE; | ||
| 566 | |||
| 567 | return result; | ||
| 568 | } | ||
| 569 | |||
| 570 | |||
| 571 | static void kimage_free_extra_pages(struct kimage *image) | ||
| 572 | { | ||
| 573 | /* Walk through and free any extra destination pages I may have */ | ||
| 574 | kimage_free_page_list(&image->dest_pages); | ||
| 575 | |||
| 576 | /* Walk through and free any unuseable pages I have cached */ | ||
| 577 | kimage_free_page_list(&image->unuseable_pages); | ||
| 578 | |||
| 579 | } | ||
| 580 | static int kimage_terminate(struct kimage *image) | ||
| 581 | { | ||
| 582 | if (*image->entry != 0) | ||
| 583 | image->entry++; | ||
| 584 | |||
| 585 | *image->entry = IND_DONE; | ||
| 586 | |||
| 587 | return 0; | ||
| 588 | } | ||
| 589 | |||
| 590 | #define for_each_kimage_entry(image, ptr, entry) \ | ||
| 591 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | ||
| 592 | ptr = (entry & IND_INDIRECTION)? \ | ||
| 593 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | ||
| 594 | |||
| 595 | static void kimage_free_entry(kimage_entry_t entry) | ||
| 596 | { | ||
| 597 | struct page *page; | ||
| 598 | |||
| 599 | page = pfn_to_page(entry >> PAGE_SHIFT); | ||
| 600 | kimage_free_pages(page); | ||
| 601 | } | ||
| 602 | |||
| 603 | static void kimage_free(struct kimage *image) | ||
| 604 | { | ||
| 605 | kimage_entry_t *ptr, entry; | ||
| 606 | kimage_entry_t ind = 0; | ||
| 607 | |||
| 608 | if (!image) | ||
| 609 | return; | ||
| 610 | |||
| 611 | kimage_free_extra_pages(image); | ||
| 612 | for_each_kimage_entry(image, ptr, entry) { | ||
| 613 | if (entry & IND_INDIRECTION) { | ||
| 614 | /* Free the previous indirection page */ | ||
| 615 | if (ind & IND_INDIRECTION) | ||
| 616 | kimage_free_entry(ind); | ||
| 617 | /* Save this indirection page until we are | ||
| 618 | * done with it. | ||
| 619 | */ | ||
| 620 | ind = entry; | ||
| 621 | } | ||
| 622 | else if (entry & IND_SOURCE) | ||
| 623 | kimage_free_entry(entry); | ||
| 624 | } | ||
| 625 | /* Free the final indirection page */ | ||
| 626 | if (ind & IND_INDIRECTION) | ||
| 627 | kimage_free_entry(ind); | ||
| 628 | |||
| 629 | /* Handle any machine specific cleanup */ | ||
| 630 | machine_kexec_cleanup(image); | ||
| 631 | |||
| 632 | /* Free the kexec control pages... */ | ||
| 633 | kimage_free_page_list(&image->control_pages); | ||
| 634 | kfree(image); | ||
| 635 | } | ||
| 636 | |||
| 637 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | ||
| 638 | unsigned long page) | ||
| 639 | { | ||
| 640 | kimage_entry_t *ptr, entry; | ||
| 641 | unsigned long destination = 0; | ||
| 642 | |||
| 643 | for_each_kimage_entry(image, ptr, entry) { | ||
| 644 | if (entry & IND_DESTINATION) | ||
| 645 | destination = entry & PAGE_MASK; | ||
| 646 | else if (entry & IND_SOURCE) { | ||
| 647 | if (page == destination) | ||
| 648 | return ptr; | ||
| 649 | destination += PAGE_SIZE; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | |||
| 653 | return 0; | ||
| 654 | } | ||
| 655 | |||
| 656 | static struct page *kimage_alloc_page(struct kimage *image, | ||
| 657 | unsigned int gfp_mask, | ||
| 658 | unsigned long destination) | ||
| 659 | { | ||
| 660 | /* | ||
| 661 | * Here we implement safeguards to ensure that a source page | ||
| 662 | * is not copied to its destination page before the data on | ||
| 663 | * the destination page is no longer useful. | ||
| 664 | * | ||
| 665 | * To do this we maintain the invariant that a source page is | ||
| 666 | * either its own destination page, or it is not a | ||
| 667 | * destination page at all. | ||
| 668 | * | ||
| 669 | * That is slightly stronger than required, but the proof | ||
| 670 | * that no problems will not occur is trivial, and the | ||
| 671 | * implementation is simply to verify. | ||
| 672 | * | ||
| 673 | * When allocating all pages normally this algorithm will run | ||
| 674 | * in O(N) time, but in the worst case it will run in O(N^2) | ||
| 675 | * time. If the runtime is a problem the data structures can | ||
| 676 | * be fixed. | ||
| 677 | */ | ||
| 678 | struct page *page; | ||
| 679 | unsigned long addr; | ||
| 680 | |||
| 681 | /* | ||
| 682 | * Walk through the list of destination pages, and see if I | ||
| 683 | * have a match. | ||
| 684 | */ | ||
| 685 | list_for_each_entry(page, &image->dest_pages, lru) { | ||
| 686 | addr = page_to_pfn(page) << PAGE_SHIFT; | ||
| 687 | if (addr == destination) { | ||
| 688 | list_del(&page->lru); | ||
| 689 | return page; | ||
| 690 | } | ||
| 691 | } | ||
| 692 | page = NULL; | ||
| 693 | while (1) { | ||
| 694 | kimage_entry_t *old; | ||
| 695 | |||
| 696 | /* Allocate a page, if we run out of memory give up */ | ||
| 697 | page = kimage_alloc_pages(gfp_mask, 0); | ||
| 698 | if (!page) | ||
| 699 | return 0; | ||
| 700 | /* If the page cannot be used file it away */ | ||
| 701 | if (page_to_pfn(page) > | ||
| 702 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | ||
| 703 | list_add(&page->lru, &image->unuseable_pages); | ||
| 704 | continue; | ||
| 705 | } | ||
| 706 | addr = page_to_pfn(page) << PAGE_SHIFT; | ||
| 707 | |||
| 708 | /* If it is the destination page we want use it */ | ||
| 709 | if (addr == destination) | ||
| 710 | break; | ||
| 711 | |||
| 712 | /* If the page is not a destination page use it */ | ||
| 713 | if (!kimage_is_destination_range(image, addr, | ||
| 714 | addr + PAGE_SIZE)) | ||
| 715 | break; | ||
| 716 | |||
| 717 | /* | ||
| 718 | * I know that the page is someones destination page. | ||
| 719 | * See if there is already a source page for this | ||
| 720 | * destination page. And if so swap the source pages. | ||
| 721 | */ | ||
| 722 | old = kimage_dst_used(image, addr); | ||
| 723 | if (old) { | ||
| 724 | /* If so move it */ | ||
| 725 | unsigned long old_addr; | ||
| 726 | struct page *old_page; | ||
| 727 | |||
| 728 | old_addr = *old & PAGE_MASK; | ||
| 729 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | ||
| 730 | copy_highpage(page, old_page); | ||
| 731 | *old = addr | (*old & ~PAGE_MASK); | ||
| 732 | |||
| 733 | /* The old page I have found cannot be a | ||
| 734 | * destination page, so return it. | ||
| 735 | */ | ||
| 736 | addr = old_addr; | ||
| 737 | page = old_page; | ||
| 738 | break; | ||
| 739 | } | ||
| 740 | else { | ||
| 741 | /* Place the page on the destination list I | ||
| 742 | * will use it later. | ||
| 743 | */ | ||
| 744 | list_add(&page->lru, &image->dest_pages); | ||
| 745 | } | ||
| 746 | } | ||
| 747 | |||
| 748 | return page; | ||
| 749 | } | ||
| 750 | |||
| 751 | static int kimage_load_normal_segment(struct kimage *image, | ||
| 752 | struct kexec_segment *segment) | ||
| 753 | { | ||
| 754 | unsigned long maddr; | ||
| 755 | unsigned long ubytes, mbytes; | ||
| 756 | int result; | ||
| 757 | unsigned char *buf; | ||
| 758 | |||
| 759 | result = 0; | ||
| 760 | buf = segment->buf; | ||
| 761 | ubytes = segment->bufsz; | ||
| 762 | mbytes = segment->memsz; | ||
| 763 | maddr = segment->mem; | ||
| 764 | |||
| 765 | result = kimage_set_destination(image, maddr); | ||
| 766 | if (result < 0) | ||
| 767 | goto out; | ||
| 768 | |||
| 769 | while (mbytes) { | ||
| 770 | struct page *page; | ||
| 771 | char *ptr; | ||
| 772 | size_t uchunk, mchunk; | ||
| 773 | |||
| 774 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | ||
| 775 | if (page == 0) { | ||
| 776 | result = -ENOMEM; | ||
| 777 | goto out; | ||
| 778 | } | ||
| 779 | result = kimage_add_page(image, page_to_pfn(page) | ||
| 780 | << PAGE_SHIFT); | ||
| 781 | if (result < 0) | ||
| 782 | goto out; | ||
| 783 | |||
| 784 | ptr = kmap(page); | ||
| 785 | /* Start with a clear page */ | ||
| 786 | memset(ptr, 0, PAGE_SIZE); | ||
| 787 | ptr += maddr & ~PAGE_MASK; | ||
| 788 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | ||
| 789 | if (mchunk > mbytes) | ||
| 790 | mchunk = mbytes; | ||
| 791 | |||
| 792 | uchunk = mchunk; | ||
| 793 | if (uchunk > ubytes) | ||
| 794 | uchunk = ubytes; | ||
| 795 | |||
| 796 | result = copy_from_user(ptr, buf, uchunk); | ||
| 797 | kunmap(page); | ||
| 798 | if (result) { | ||
| 799 | result = (result < 0) ? result : -EIO; | ||
| 800 | goto out; | ||
| 801 | } | ||
| 802 | ubytes -= uchunk; | ||
| 803 | maddr += mchunk; | ||
| 804 | buf += mchunk; | ||
| 805 | mbytes -= mchunk; | ||
| 806 | } | ||
| 807 | out: | ||
| 808 | return result; | ||
| 809 | } | ||
| 810 | |||
| 811 | static int kimage_load_crash_segment(struct kimage *image, | ||
| 812 | struct kexec_segment *segment) | ||
| 813 | { | ||
| 814 | /* For crash dumps kernels we simply copy the data from | ||
| 815 | * user space to it's destination. | ||
| 816 | * We do things a page at a time for the sake of kmap. | ||
| 817 | */ | ||
| 818 | unsigned long maddr; | ||
| 819 | unsigned long ubytes, mbytes; | ||
| 820 | int result; | ||
| 821 | unsigned char *buf; | ||
| 822 | |||
| 823 | result = 0; | ||
| 824 | buf = segment->buf; | ||
| 825 | ubytes = segment->bufsz; | ||
| 826 | mbytes = segment->memsz; | ||
| 827 | maddr = segment->mem; | ||
| 828 | while (mbytes) { | ||
| 829 | struct page *page; | ||
| 830 | char *ptr; | ||
| 831 | size_t uchunk, mchunk; | ||
| 832 | |||
| 833 | page = pfn_to_page(maddr >> PAGE_SHIFT); | ||
| 834 | if (page == 0) { | ||
| 835 | result = -ENOMEM; | ||
| 836 | goto out; | ||
| 837 | } | ||
| 838 | ptr = kmap(page); | ||
| 839 | ptr += maddr & ~PAGE_MASK; | ||
| 840 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | ||
| 841 | if (mchunk > mbytes) | ||
| 842 | mchunk = mbytes; | ||
| 843 | |||
| 844 | uchunk = mchunk; | ||
| 845 | if (uchunk > ubytes) { | ||
| 846 | uchunk = ubytes; | ||
| 847 | /* Zero the trailing part of the page */ | ||
| 848 | memset(ptr + uchunk, 0, mchunk - uchunk); | ||
| 849 | } | ||
| 850 | result = copy_from_user(ptr, buf, uchunk); | ||
| 851 | kunmap(page); | ||
| 852 | if (result) { | ||
| 853 | result = (result < 0) ? result : -EIO; | ||
| 854 | goto out; | ||
| 855 | } | ||
| 856 | ubytes -= uchunk; | ||
| 857 | maddr += mchunk; | ||
| 858 | buf += mchunk; | ||
| 859 | mbytes -= mchunk; | ||
| 860 | } | ||
| 861 | out: | ||
| 862 | return result; | ||
| 863 | } | ||
| 864 | |||
| 865 | static int kimage_load_segment(struct kimage *image, | ||
| 866 | struct kexec_segment *segment) | ||
| 867 | { | ||
| 868 | int result = -ENOMEM; | ||
| 869 | |||
| 870 | switch (image->type) { | ||
| 871 | case KEXEC_TYPE_DEFAULT: | ||
| 872 | result = kimage_load_normal_segment(image, segment); | ||
| 873 | break; | ||
| 874 | case KEXEC_TYPE_CRASH: | ||
| 875 | result = kimage_load_crash_segment(image, segment); | ||
| 876 | break; | ||
| 877 | } | ||
| 878 | |||
| 879 | return result; | ||
| 880 | } | ||
| 881 | |||
| 882 | /* | ||
| 883 | * Exec Kernel system call: for obvious reasons only root may call it. | ||
| 884 | * | ||
| 885 | * This call breaks up into three pieces. | ||
| 886 | * - A generic part which loads the new kernel from the current | ||
| 887 | * address space, and very carefully places the data in the | ||
| 888 | * allocated pages. | ||
| 889 | * | ||
| 890 | * - A generic part that interacts with the kernel and tells all of | ||
| 891 | * the devices to shut down. Preventing on-going dmas, and placing | ||
| 892 | * the devices in a consistent state so a later kernel can | ||
| 893 | * reinitialize them. | ||
| 894 | * | ||
| 895 | * - A machine specific part that includes the syscall number | ||
| 896 | * and the copies the image to it's final destination. And | ||
| 897 | * jumps into the image at entry. | ||
| 898 | * | ||
| 899 | * kexec does not sync, or unmount filesystems so if you need | ||
| 900 | * that to happen you need to do that yourself. | ||
| 901 | */ | ||
| 902 | struct kimage *kexec_image = NULL; | ||
| 903 | static struct kimage *kexec_crash_image = NULL; | ||
| 904 | /* | ||
| 905 | * A home grown binary mutex. | ||
| 906 | * Nothing can wait so this mutex is safe to use | ||
| 907 | * in interrupt context :) | ||
| 908 | */ | ||
| 909 | static int kexec_lock = 0; | ||
| 910 | |||
| 911 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | ||
| 912 | struct kexec_segment __user *segments, | ||
| 913 | unsigned long flags) | ||
| 914 | { | ||
| 915 | struct kimage **dest_image, *image; | ||
| 916 | int locked; | ||
| 917 | int result; | ||
| 918 | |||
| 919 | /* We only trust the superuser with rebooting the system. */ | ||
| 920 | if (!capable(CAP_SYS_BOOT)) | ||
| 921 | return -EPERM; | ||
| 922 | |||
| 923 | /* | ||
| 924 | * Verify we have a legal set of flags | ||
| 925 | * This leaves us room for future extensions. | ||
| 926 | */ | ||
| 927 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | ||
| 928 | return -EINVAL; | ||
| 929 | |||
| 930 | /* Verify we are on the appropriate architecture */ | ||
| 931 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | ||
| 932 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | ||
| 933 | return -EINVAL; | ||
| 934 | |||
| 935 | /* Put an artificial cap on the number | ||
| 936 | * of segments passed to kexec_load. | ||
| 937 | */ | ||
| 938 | if (nr_segments > KEXEC_SEGMENT_MAX) | ||
| 939 | return -EINVAL; | ||
| 940 | |||
| 941 | image = NULL; | ||
| 942 | result = 0; | ||
| 943 | |||
| 944 | /* Because we write directly to the reserved memory | ||
| 945 | * region when loading crash kernels we need a mutex here to | ||
| 946 | * prevent multiple crash kernels from attempting to load | ||
| 947 | * simultaneously, and to prevent a crash kernel from loading | ||
| 948 | * over the top of a in use crash kernel. | ||
| 949 | * | ||
| 950 | * KISS: always take the mutex. | ||
| 951 | */ | ||
| 952 | locked = xchg(&kexec_lock, 1); | ||
| 953 | if (locked) | ||
| 954 | return -EBUSY; | ||
| 955 | |||
| 956 | dest_image = &kexec_image; | ||
| 957 | if (flags & KEXEC_ON_CRASH) | ||
| 958 | dest_image = &kexec_crash_image; | ||
| 959 | if (nr_segments > 0) { | ||
| 960 | unsigned long i; | ||
| 961 | |||
| 962 | /* Loading another kernel to reboot into */ | ||
| 963 | if ((flags & KEXEC_ON_CRASH) == 0) | ||
| 964 | result = kimage_normal_alloc(&image, entry, | ||
| 965 | nr_segments, segments); | ||
| 966 | /* Loading another kernel to switch to if this one crashes */ | ||
| 967 | else if (flags & KEXEC_ON_CRASH) { | ||
| 968 | /* Free any current crash dump kernel before | ||
| 969 | * we corrupt it. | ||
| 970 | */ | ||
| 971 | kimage_free(xchg(&kexec_crash_image, NULL)); | ||
| 972 | result = kimage_crash_alloc(&image, entry, | ||
| 973 | nr_segments, segments); | ||
| 974 | } | ||
| 975 | if (result) | ||
| 976 | goto out; | ||
| 977 | |||
| 978 | result = machine_kexec_prepare(image); | ||
| 979 | if (result) | ||
| 980 | goto out; | ||
| 981 | |||
| 982 | for (i = 0; i < nr_segments; i++) { | ||
| 983 | result = kimage_load_segment(image, &image->segment[i]); | ||
| 984 | if (result) | ||
| 985 | goto out; | ||
| 986 | } | ||
| 987 | result = kimage_terminate(image); | ||
| 988 | if (result) | ||
| 989 | goto out; | ||
| 990 | } | ||
| 991 | /* Install the new kernel, and Uninstall the old */ | ||
| 992 | image = xchg(dest_image, image); | ||
| 993 | |||
| 994 | out: | ||
| 995 | xchg(&kexec_lock, 0); /* Release the mutex */ | ||
| 996 | kimage_free(image); | ||
| 997 | |||
| 998 | return result; | ||
| 999 | } | ||
| 1000 | |||
| 1001 | #ifdef CONFIG_COMPAT | ||
| 1002 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | ||
| 1003 | unsigned long nr_segments, | ||
| 1004 | struct compat_kexec_segment __user *segments, | ||
| 1005 | unsigned long flags) | ||
| 1006 | { | ||
| 1007 | struct compat_kexec_segment in; | ||
| 1008 | struct kexec_segment out, __user *ksegments; | ||
| 1009 | unsigned long i, result; | ||
| 1010 | |||
| 1011 | /* Don't allow clients that don't understand the native | ||
| 1012 | * architecture to do anything. | ||
| 1013 | */ | ||
| 1014 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | ||
| 1015 | return -EINVAL; | ||
| 1016 | |||
| 1017 | if (nr_segments > KEXEC_SEGMENT_MAX) | ||
| 1018 | return -EINVAL; | ||
| 1019 | |||
| 1020 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | ||
| 1021 | for (i=0; i < nr_segments; i++) { | ||
| 1022 | result = copy_from_user(&in, &segments[i], sizeof(in)); | ||
| 1023 | if (result) | ||
| 1024 | return -EFAULT; | ||
| 1025 | |||
| 1026 | out.buf = compat_ptr(in.buf); | ||
| 1027 | out.bufsz = in.bufsz; | ||
| 1028 | out.mem = in.mem; | ||
| 1029 | out.memsz = in.memsz; | ||
| 1030 | |||
| 1031 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | ||
| 1032 | if (result) | ||
| 1033 | return -EFAULT; | ||
| 1034 | } | ||
| 1035 | |||
| 1036 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | ||
| 1037 | } | ||
| 1038 | #endif | ||
| 1039 | |||
| 1040 | void crash_kexec(struct pt_regs *regs) | ||
| 1041 | { | ||
| 1042 | struct kimage *image; | ||
| 1043 | int locked; | ||
| 1044 | |||
| 1045 | |||
| 1046 | /* Take the kexec_lock here to prevent sys_kexec_load | ||
| 1047 | * running on one cpu from replacing the crash kernel | ||
| 1048 | * we are using after a panic on a different cpu. | ||
| 1049 | * | ||
| 1050 | * If the crash kernel was not located in a fixed area | ||
| 1051 | * of memory the xchg(&kexec_crash_image) would be | ||
| 1052 | * sufficient. But since I reuse the memory... | ||
| 1053 | */ | ||
| 1054 | locked = xchg(&kexec_lock, 1); | ||
| 1055 | if (!locked) { | ||
| 1056 | image = xchg(&kexec_crash_image, NULL); | ||
| 1057 | if (image) { | ||
| 1058 | machine_crash_shutdown(regs); | ||
| 1059 | machine_kexec(image); | ||
| 1060 | } | ||
| 1061 | xchg(&kexec_lock, 0); | ||
| 1062 | } | ||
| 1063 | } | ||
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c index 1f064a63f8cf..015fb69ad94d 100644 --- a/kernel/ksysfs.c +++ b/kernel/ksysfs.c | |||
| @@ -30,6 +30,16 @@ static ssize_t hotplug_seqnum_show(struct subsystem *subsys, char *page) | |||
| 30 | KERNEL_ATTR_RO(hotplug_seqnum); | 30 | KERNEL_ATTR_RO(hotplug_seqnum); |
| 31 | #endif | 31 | #endif |
| 32 | 32 | ||
| 33 | #ifdef CONFIG_KEXEC | ||
| 34 | #include <asm/kexec.h> | ||
| 35 | |||
| 36 | static ssize_t crash_notes_show(struct subsystem *subsys, char *page) | ||
| 37 | { | ||
| 38 | return sprintf(page, "%p\n", (void *)crash_notes); | ||
| 39 | } | ||
| 40 | KERNEL_ATTR_RO(crash_notes); | ||
| 41 | #endif | ||
| 42 | |||
| 33 | decl_subsys(kernel, NULL, NULL); | 43 | decl_subsys(kernel, NULL, NULL); |
| 34 | EXPORT_SYMBOL_GPL(kernel_subsys); | 44 | EXPORT_SYMBOL_GPL(kernel_subsys); |
| 35 | 45 | ||
| @@ -37,6 +47,9 @@ static struct attribute * kernel_attrs[] = { | |||
| 37 | #ifdef CONFIG_HOTPLUG | 47 | #ifdef CONFIG_HOTPLUG |
| 38 | &hotplug_seqnum_attr.attr, | 48 | &hotplug_seqnum_attr.attr, |
| 39 | #endif | 49 | #endif |
| 50 | #ifdef CONFIG_KEXEC | ||
| 51 | &crash_notes_attr.attr, | ||
| 52 | #endif | ||
| 40 | NULL | 53 | NULL |
| 41 | }; | 54 | }; |
| 42 | 55 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index 081f7465fc8d..74ba5f3e46c7 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
| @@ -18,6 +18,7 @@ | |||
| 18 | #include <linux/sysrq.h> | 18 | #include <linux/sysrq.h> |
| 19 | #include <linux/interrupt.h> | 19 | #include <linux/interrupt.h> |
| 20 | #include <linux/nmi.h> | 20 | #include <linux/nmi.h> |
| 21 | #include <linux/kexec.h> | ||
| 21 | 22 | ||
| 22 | int panic_timeout; | 23 | int panic_timeout; |
| 23 | int panic_on_oops; | 24 | int panic_on_oops; |
| @@ -63,6 +64,13 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 63 | unsigned long caller = (unsigned long) __builtin_return_address(0); | 64 | unsigned long caller = (unsigned long) __builtin_return_address(0); |
| 64 | #endif | 65 | #endif |
| 65 | 66 | ||
| 67 | /* | ||
| 68 | * It's possible to come here directly from a panic-assertion and not | ||
| 69 | * have preempt disabled. Some functions called from here want | ||
| 70 | * preempt to be disabled. No point enabling it later though... | ||
| 71 | */ | ||
| 72 | preempt_disable(); | ||
| 73 | |||
| 66 | bust_spinlocks(1); | 74 | bust_spinlocks(1); |
| 67 | va_start(args, fmt); | 75 | va_start(args, fmt); |
| 68 | vsnprintf(buf, sizeof(buf), fmt, args); | 76 | vsnprintf(buf, sizeof(buf), fmt, args); |
| @@ -70,7 +78,19 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 70 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); | 78 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); |
| 71 | bust_spinlocks(0); | 79 | bust_spinlocks(0); |
| 72 | 80 | ||
| 81 | /* | ||
| 82 | * If we have crashed and we have a crash kernel loaded let it handle | ||
| 83 | * everything else. | ||
| 84 | * Do we want to call this before we try to display a message? | ||
| 85 | */ | ||
| 86 | crash_kexec(NULL); | ||
| 87 | |||
| 73 | #ifdef CONFIG_SMP | 88 | #ifdef CONFIG_SMP |
| 89 | /* | ||
| 90 | * Note smp_send_stop is the usual smp shutdown function, which | ||
| 91 | * unfortunately means it may not be hardened to work in a panic | ||
| 92 | * situation. | ||
| 93 | */ | ||
| 74 | smp_send_stop(); | 94 | smp_send_stop(); |
| 75 | #endif | 95 | #endif |
| 76 | 96 | ||
| @@ -79,8 +99,7 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
| 79 | if (!panic_blink) | 99 | if (!panic_blink) |
| 80 | panic_blink = no_blink; | 100 | panic_blink = no_blink; |
| 81 | 101 | ||
| 82 | if (panic_timeout > 0) | 102 | if (panic_timeout > 0) { |
| 83 | { | ||
| 84 | /* | 103 | /* |
| 85 | * Delay timeout seconds before rebooting the machine. | 104 | * Delay timeout seconds before rebooting the machine. |
| 86 | * We can't use the "normal" timers since we just panicked.. | 105 | * We can't use the "normal" timers since we just panicked.. |
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig index 696387ffe49c..2c7121d9bff1 100644 --- a/kernel/power/Kconfig +++ b/kernel/power/Kconfig | |||
| @@ -27,8 +27,8 @@ config PM_DEBUG | |||
| 27 | like suspend support. | 27 | like suspend support. |
| 28 | 28 | ||
| 29 | config SOFTWARE_SUSPEND | 29 | config SOFTWARE_SUSPEND |
| 30 | bool "Software Suspend (EXPERIMENTAL)" | 30 | bool "Software Suspend" |
| 31 | depends on EXPERIMENTAL && PM && SWAP | 31 | depends on EXPERIMENTAL && PM && SWAP && ((X86 && SMP) || ((FVR || PPC32 || X86) && !SMP)) |
| 32 | ---help--- | 32 | ---help--- |
| 33 | Enable the possibility of suspending the machine. | 33 | Enable the possibility of suspending the machine. |
| 34 | It doesn't need APM. | 34 | It doesn't need APM. |
| @@ -72,3 +72,7 @@ config PM_STD_PARTITION | |||
| 72 | suspended image to. It will simply pick the first available swap | 72 | suspended image to. It will simply pick the first available swap |
| 73 | device. | 73 | device. |
| 74 | 74 | ||
| 75 | config SUSPEND_SMP | ||
| 76 | bool | ||
| 77 | depends on HOTPLUG_CPU && X86 && PM | ||
| 78 | default y | ||
diff --git a/kernel/power/Makefile b/kernel/power/Makefile index fbdc634135a7..2f438d0eaa13 100644 --- a/kernel/power/Makefile +++ b/kernel/power/Makefile | |||
| @@ -3,9 +3,9 @@ ifeq ($(CONFIG_PM_DEBUG),y) | |||
| 3 | EXTRA_CFLAGS += -DDEBUG | 3 | EXTRA_CFLAGS += -DDEBUG |
| 4 | endif | 4 | endif |
| 5 | 5 | ||
| 6 | swsusp-smp-$(CONFIG_SMP) += smp.o | ||
| 7 | |||
| 8 | obj-y := main.o process.o console.o pm.o | 6 | obj-y := main.o process.o console.o pm.o |
| 9 | obj-$(CONFIG_SOFTWARE_SUSPEND) += swsusp.o $(swsusp-smp-y) disk.o | 7 | obj-$(CONFIG_SOFTWARE_SUSPEND) += swsusp.o disk.o |
| 8 | |||
| 9 | obj-$(CONFIG_SUSPEND_SMP) += smp.o | ||
| 10 | 10 | ||
| 11 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o | 11 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o |
diff --git a/kernel/power/disk.c b/kernel/power/disk.c index 02b6764034dc..fb8de63c2919 100644 --- a/kernel/power/disk.c +++ b/kernel/power/disk.c | |||
| @@ -117,8 +117,8 @@ static void finish(void) | |||
| 117 | { | 117 | { |
| 118 | device_resume(); | 118 | device_resume(); |
| 119 | platform_finish(); | 119 | platform_finish(); |
| 120 | enable_nonboot_cpus(); | ||
| 121 | thaw_processes(); | 120 | thaw_processes(); |
| 121 | enable_nonboot_cpus(); | ||
| 122 | pm_restore_console(); | 122 | pm_restore_console(); |
| 123 | } | 123 | } |
| 124 | 124 | ||
| @@ -131,28 +131,35 @@ static int prepare_processes(void) | |||
| 131 | 131 | ||
| 132 | sys_sync(); | 132 | sys_sync(); |
| 133 | 133 | ||
| 134 | disable_nonboot_cpus(); | ||
| 135 | |||
| 134 | if (freeze_processes()) { | 136 | if (freeze_processes()) { |
| 135 | error = -EBUSY; | 137 | error = -EBUSY; |
| 136 | return error; | 138 | goto thaw; |
| 137 | } | 139 | } |
| 138 | 140 | ||
| 139 | if (pm_disk_mode == PM_DISK_PLATFORM) { | 141 | if (pm_disk_mode == PM_DISK_PLATFORM) { |
| 140 | if (pm_ops && pm_ops->prepare) { | 142 | if (pm_ops && pm_ops->prepare) { |
| 141 | if ((error = pm_ops->prepare(PM_SUSPEND_DISK))) | 143 | if ((error = pm_ops->prepare(PM_SUSPEND_DISK))) |
| 142 | return error; | 144 | goto thaw; |
| 143 | } | 145 | } |
| 144 | } | 146 | } |
| 145 | 147 | ||
| 146 | /* Free memory before shutting down devices. */ | 148 | /* Free memory before shutting down devices. */ |
| 147 | free_some_memory(); | 149 | free_some_memory(); |
| 148 | |||
| 149 | return 0; | 150 | return 0; |
| 151 | thaw: | ||
| 152 | thaw_processes(); | ||
| 153 | enable_nonboot_cpus(); | ||
| 154 | pm_restore_console(); | ||
| 155 | return error; | ||
| 150 | } | 156 | } |
| 151 | 157 | ||
| 152 | static void unprepare_processes(void) | 158 | static void unprepare_processes(void) |
| 153 | { | 159 | { |
| 154 | enable_nonboot_cpus(); | 160 | platform_finish(); |
| 155 | thaw_processes(); | 161 | thaw_processes(); |
| 162 | enable_nonboot_cpus(); | ||
| 156 | pm_restore_console(); | 163 | pm_restore_console(); |
| 157 | } | 164 | } |
| 158 | 165 | ||
| @@ -160,15 +167,9 @@ static int prepare_devices(void) | |||
| 160 | { | 167 | { |
| 161 | int error; | 168 | int error; |
| 162 | 169 | ||
| 163 | disable_nonboot_cpus(); | 170 | if ((error = device_suspend(PMSG_FREEZE))) |
| 164 | if ((error = device_suspend(PMSG_FREEZE))) { | ||
| 165 | printk("Some devices failed to suspend\n"); | 171 | printk("Some devices failed to suspend\n"); |
| 166 | platform_finish(); | 172 | return error; |
| 167 | enable_nonboot_cpus(); | ||
| 168 | return error; | ||
| 169 | } | ||
| 170 | |||
| 171 | return 0; | ||
| 172 | } | 173 | } |
| 173 | 174 | ||
| 174 | /** | 175 | /** |
| @@ -185,9 +186,9 @@ int pm_suspend_disk(void) | |||
| 185 | int error; | 186 | int error; |
| 186 | 187 | ||
| 187 | error = prepare_processes(); | 188 | error = prepare_processes(); |
| 188 | if (!error) { | 189 | if (error) |
| 189 | error = prepare_devices(); | 190 | return error; |
| 190 | } | 191 | error = prepare_devices(); |
| 191 | 192 | ||
| 192 | if (error) { | 193 | if (error) { |
| 193 | unprepare_processes(); | 194 | unprepare_processes(); |
| @@ -250,7 +251,7 @@ static int software_resume(void) | |||
| 250 | 251 | ||
| 251 | if ((error = prepare_processes())) { | 252 | if ((error = prepare_processes())) { |
| 252 | swsusp_close(); | 253 | swsusp_close(); |
| 253 | goto Cleanup; | 254 | goto Done; |
| 254 | } | 255 | } |
| 255 | 256 | ||
| 256 | pr_debug("PM: Reading swsusp image.\n"); | 257 | pr_debug("PM: Reading swsusp image.\n"); |
diff --git a/kernel/power/main.c b/kernel/power/main.c index 4cdebc972ff2..c94cb9e95090 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
| @@ -55,6 +55,13 @@ static int suspend_prepare(suspend_state_t state) | |||
| 55 | 55 | ||
| 56 | pm_prepare_console(); | 56 | pm_prepare_console(); |
| 57 | 57 | ||
| 58 | disable_nonboot_cpus(); | ||
| 59 | |||
| 60 | if (num_online_cpus() != 1) { | ||
| 61 | error = -EPERM; | ||
| 62 | goto Enable_cpu; | ||
| 63 | } | ||
| 64 | |||
| 58 | if (freeze_processes()) { | 65 | if (freeze_processes()) { |
| 59 | error = -EAGAIN; | 66 | error = -EAGAIN; |
| 60 | goto Thaw; | 67 | goto Thaw; |
| @@ -75,6 +82,8 @@ static int suspend_prepare(suspend_state_t state) | |||
| 75 | pm_ops->finish(state); | 82 | pm_ops->finish(state); |
| 76 | Thaw: | 83 | Thaw: |
| 77 | thaw_processes(); | 84 | thaw_processes(); |
| 85 | Enable_cpu: | ||
| 86 | enable_nonboot_cpus(); | ||
| 78 | pm_restore_console(); | 87 | pm_restore_console(); |
| 79 | return error; | 88 | return error; |
| 80 | } | 89 | } |
| @@ -113,6 +122,7 @@ static void suspend_finish(suspend_state_t state) | |||
| 113 | if (pm_ops && pm_ops->finish) | 122 | if (pm_ops && pm_ops->finish) |
| 114 | pm_ops->finish(state); | 123 | pm_ops->finish(state); |
| 115 | thaw_processes(); | 124 | thaw_processes(); |
| 125 | enable_nonboot_cpus(); | ||
| 116 | pm_restore_console(); | 126 | pm_restore_console(); |
| 117 | } | 127 | } |
| 118 | 128 | ||
| @@ -150,12 +160,6 @@ static int enter_state(suspend_state_t state) | |||
| 150 | goto Unlock; | 160 | goto Unlock; |
| 151 | } | 161 | } |
| 152 | 162 | ||
| 153 | /* Suspend is hard to get right on SMP. */ | ||
| 154 | if (num_online_cpus() != 1) { | ||
| 155 | error = -EPERM; | ||
| 156 | goto Unlock; | ||
| 157 | } | ||
| 158 | |||
| 159 | pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]); | 163 | pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]); |
| 160 | if ((error = suspend_prepare(state))) | 164 | if ((error = suspend_prepare(state))) |
| 161 | goto Unlock; | 165 | goto Unlock; |
diff --git a/kernel/power/process.c b/kernel/power/process.c index 78d92dc6a1ed..0a086640bcfc 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
| @@ -32,7 +32,7 @@ static inline int freezeable(struct task_struct * p) | |||
| 32 | } | 32 | } |
| 33 | 33 | ||
| 34 | /* Refrigerator is place where frozen processes are stored :-). */ | 34 | /* Refrigerator is place where frozen processes are stored :-). */ |
| 35 | void refrigerator(unsigned long flag) | 35 | void refrigerator(void) |
| 36 | { | 36 | { |
| 37 | /* Hmm, should we be allowed to suspend when there are realtime | 37 | /* Hmm, should we be allowed to suspend when there are realtime |
| 38 | processes around? */ | 38 | processes around? */ |
| @@ -41,14 +41,13 @@ void refrigerator(unsigned long flag) | |||
| 41 | current->state = TASK_UNINTERRUPTIBLE; | 41 | current->state = TASK_UNINTERRUPTIBLE; |
| 42 | pr_debug("%s entered refrigerator\n", current->comm); | 42 | pr_debug("%s entered refrigerator\n", current->comm); |
| 43 | printk("="); | 43 | printk("="); |
| 44 | current->flags &= ~PF_FREEZE; | ||
| 45 | 44 | ||
| 45 | frozen_process(current); | ||
| 46 | spin_lock_irq(¤t->sighand->siglock); | 46 | spin_lock_irq(¤t->sighand->siglock); |
| 47 | recalc_sigpending(); /* We sent fake signal, clean it up */ | 47 | recalc_sigpending(); /* We sent fake signal, clean it up */ |
| 48 | spin_unlock_irq(¤t->sighand->siglock); | 48 | spin_unlock_irq(¤t->sighand->siglock); |
| 49 | 49 | ||
| 50 | current->flags |= PF_FROZEN; | 50 | while (frozen(current)) |
| 51 | while (current->flags & PF_FROZEN) | ||
| 52 | schedule(); | 51 | schedule(); |
| 53 | pr_debug("%s left refrigerator\n", current->comm); | 52 | pr_debug("%s left refrigerator\n", current->comm); |
| 54 | current->state = save; | 53 | current->state = save; |
| @@ -57,10 +56,10 @@ void refrigerator(unsigned long flag) | |||
| 57 | /* 0 = success, else # of processes that we failed to stop */ | 56 | /* 0 = success, else # of processes that we failed to stop */ |
| 58 | int freeze_processes(void) | 57 | int freeze_processes(void) |
| 59 | { | 58 | { |
| 60 | int todo; | 59 | int todo; |
| 61 | unsigned long start_time; | 60 | unsigned long start_time; |
| 62 | struct task_struct *g, *p; | 61 | struct task_struct *g, *p; |
| 63 | 62 | ||
| 64 | printk( "Stopping tasks: " ); | 63 | printk( "Stopping tasks: " ); |
| 65 | start_time = jiffies; | 64 | start_time = jiffies; |
| 66 | do { | 65 | do { |
| @@ -70,14 +69,12 @@ int freeze_processes(void) | |||
| 70 | unsigned long flags; | 69 | unsigned long flags; |
| 71 | if (!freezeable(p)) | 70 | if (!freezeable(p)) |
| 72 | continue; | 71 | continue; |
| 73 | if ((p->flags & PF_FROZEN) || | 72 | if ((frozen(p)) || |
| 74 | (p->state == TASK_TRACED) || | 73 | (p->state == TASK_TRACED) || |
| 75 | (p->state == TASK_STOPPED)) | 74 | (p->state == TASK_STOPPED)) |
| 76 | continue; | 75 | continue; |
| 77 | 76 | ||
| 78 | /* FIXME: smp problem here: we may not access other process' flags | 77 | freeze(p); |
| 79 | without locking */ | ||
| 80 | p->flags |= PF_FREEZE; | ||
| 81 | spin_lock_irqsave(&p->sighand->siglock, flags); | 78 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 82 | signal_wake_up(p, 0); | 79 | signal_wake_up(p, 0); |
| 83 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 80 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| @@ -91,7 +88,7 @@ int freeze_processes(void) | |||
| 91 | return todo; | 88 | return todo; |
| 92 | } | 89 | } |
| 93 | } while(todo); | 90 | } while(todo); |
| 94 | 91 | ||
| 95 | printk( "|\n" ); | 92 | printk( "|\n" ); |
| 96 | BUG_ON(in_atomic()); | 93 | BUG_ON(in_atomic()); |
| 97 | return 0; | 94 | return 0; |
| @@ -106,10 +103,7 @@ void thaw_processes(void) | |||
| 106 | do_each_thread(g, p) { | 103 | do_each_thread(g, p) { |
| 107 | if (!freezeable(p)) | 104 | if (!freezeable(p)) |
| 108 | continue; | 105 | continue; |
| 109 | if (p->flags & PF_FROZEN) { | 106 | if (!thaw_process(p)) |
| 110 | p->flags &= ~PF_FROZEN; | ||
| 111 | wake_up_process(p); | ||
| 112 | } else | ||
| 113 | printk(KERN_INFO " Strange, %s not stopped\n", p->comm ); | 107 | printk(KERN_INFO " Strange, %s not stopped\n", p->comm ); |
| 114 | } while_each_thread(g, p); | 108 | } while_each_thread(g, p); |
| 115 | 109 | ||
diff --git a/kernel/power/smp.c b/kernel/power/smp.c index 457c2302ed42..bbe23079c62c 100644 --- a/kernel/power/smp.c +++ b/kernel/power/smp.c | |||
| @@ -13,73 +13,52 @@ | |||
| 13 | #include <linux/interrupt.h> | 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/suspend.h> | 14 | #include <linux/suspend.h> |
| 15 | #include <linux/module.h> | 15 | #include <linux/module.h> |
| 16 | #include <linux/cpu.h> | ||
| 16 | #include <asm/atomic.h> | 17 | #include <asm/atomic.h> |
| 17 | #include <asm/tlbflush.h> | 18 | #include <asm/tlbflush.h> |
| 18 | 19 | ||
| 19 | static atomic_t cpu_counter, freeze; | 20 | /* This is protected by pm_sem semaphore */ |
| 20 | 21 | static cpumask_t frozen_cpus; | |
| 21 | |||
| 22 | static void smp_pause(void * data) | ||
| 23 | { | ||
| 24 | struct saved_context ctxt; | ||
| 25 | __save_processor_state(&ctxt); | ||
| 26 | printk("Sleeping in:\n"); | ||
| 27 | dump_stack(); | ||
| 28 | atomic_inc(&cpu_counter); | ||
| 29 | while (atomic_read(&freeze)) { | ||
| 30 | /* FIXME: restore takes place at random piece inside this. | ||
| 31 | This should probably be written in assembly, and | ||
| 32 | preserve general-purpose registers, too | ||
| 33 | |||
| 34 | What about stack? We may need to move to new stack here. | ||
| 35 | |||
| 36 | This should better be ran with interrupts disabled. | ||
| 37 | */ | ||
| 38 | cpu_relax(); | ||
| 39 | barrier(); | ||
| 40 | } | ||
| 41 | atomic_dec(&cpu_counter); | ||
| 42 | __restore_processor_state(&ctxt); | ||
| 43 | } | ||
| 44 | |||
| 45 | static cpumask_t oldmask; | ||
| 46 | 22 | ||
| 47 | void disable_nonboot_cpus(void) | 23 | void disable_nonboot_cpus(void) |
| 48 | { | 24 | { |
| 49 | oldmask = current->cpus_allowed; | 25 | int cpu, error; |
| 50 | set_cpus_allowed(current, cpumask_of_cpu(0)); | ||
| 51 | printk("Freezing CPUs (at %d)", raw_smp_processor_id()); | ||
| 52 | current->state = TASK_INTERRUPTIBLE; | ||
| 53 | schedule_timeout(HZ); | ||
| 54 | printk("..."); | ||
| 55 | BUG_ON(raw_smp_processor_id() != 0); | ||
| 56 | |||
| 57 | /* FIXME: for this to work, all the CPUs must be running | ||
| 58 | * "idle" thread (or we deadlock). Is that guaranteed? */ | ||
| 59 | 26 | ||
| 60 | atomic_set(&cpu_counter, 0); | 27 | error = 0; |
| 61 | atomic_set(&freeze, 1); | 28 | cpus_clear(frozen_cpus); |
| 62 | smp_call_function(smp_pause, NULL, 0, 0); | 29 | printk("Freezing cpus ...\n"); |
| 63 | while (atomic_read(&cpu_counter) < (num_online_cpus() - 1)) { | 30 | for_each_online_cpu(cpu) { |
| 64 | cpu_relax(); | 31 | if (cpu == 0) |
| 65 | barrier(); | 32 | continue; |
| 33 | error = cpu_down(cpu); | ||
| 34 | if (!error) { | ||
| 35 | cpu_set(cpu, frozen_cpus); | ||
| 36 | printk("CPU%d is down\n", cpu); | ||
| 37 | continue; | ||
| 38 | } | ||
| 39 | printk("Error taking cpu %d down: %d\n", cpu, error); | ||
| 66 | } | 40 | } |
| 67 | printk("ok\n"); | 41 | BUG_ON(smp_processor_id() != 0); |
| 42 | if (error) | ||
| 43 | panic("cpus not sleeping"); | ||
| 68 | } | 44 | } |
| 69 | 45 | ||
| 70 | void enable_nonboot_cpus(void) | 46 | void enable_nonboot_cpus(void) |
| 71 | { | 47 | { |
| 72 | printk("Restarting CPUs"); | 48 | int cpu, error; |
| 73 | atomic_set(&freeze, 0); | ||
| 74 | while (atomic_read(&cpu_counter)) { | ||
| 75 | cpu_relax(); | ||
| 76 | barrier(); | ||
| 77 | } | ||
| 78 | printk("..."); | ||
| 79 | set_cpus_allowed(current, oldmask); | ||
| 80 | schedule(); | ||
| 81 | printk("ok\n"); | ||
| 82 | 49 | ||
| 50 | printk("Thawing cpus ...\n"); | ||
| 51 | for_each_cpu_mask(cpu, frozen_cpus) { | ||
| 52 | error = smp_prepare_cpu(cpu); | ||
| 53 | if (!error) | ||
| 54 | error = cpu_up(cpu); | ||
| 55 | if (!error) { | ||
| 56 | printk("CPU%d is up\n", cpu); | ||
| 57 | continue; | ||
| 58 | } | ||
| 59 | printk("Error taking cpu %d up: %d\n", cpu, error); | ||
| 60 | panic("Not enough cpus"); | ||
| 61 | } | ||
| 62 | cpus_clear(frozen_cpus); | ||
| 83 | } | 63 | } |
| 84 | 64 | ||
| 85 | |||
diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c index 53f9f8720ee4..c285fc5a2320 100644 --- a/kernel/power/swsusp.c +++ b/kernel/power/swsusp.c | |||
| @@ -10,12 +10,12 @@ | |||
| 10 | * This file is released under the GPLv2. | 10 | * This file is released under the GPLv2. |
| 11 | * | 11 | * |
| 12 | * I'd like to thank the following people for their work: | 12 | * I'd like to thank the following people for their work: |
| 13 | * | 13 | * |
| 14 | * Pavel Machek <pavel@ucw.cz>: | 14 | * Pavel Machek <pavel@ucw.cz>: |
| 15 | * Modifications, defectiveness pointing, being with me at the very beginning, | 15 | * Modifications, defectiveness pointing, being with me at the very beginning, |
| 16 | * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. | 16 | * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. |
| 17 | * | 17 | * |
| 18 | * Steve Doddi <dirk@loth.demon.co.uk>: | 18 | * Steve Doddi <dirk@loth.demon.co.uk>: |
| 19 | * Support the possibility of hardware state restoring. | 19 | * Support the possibility of hardware state restoring. |
| 20 | * | 20 | * |
| 21 | * Raph <grey.havens@earthling.net>: | 21 | * Raph <grey.havens@earthling.net>: |
| @@ -84,11 +84,11 @@ extern char resume_file[]; | |||
| 84 | static unsigned int nr_copy_pages __nosavedata = 0; | 84 | static unsigned int nr_copy_pages __nosavedata = 0; |
| 85 | 85 | ||
| 86 | /* Suspend pagedir is allocated before final copy, therefore it | 86 | /* Suspend pagedir is allocated before final copy, therefore it |
| 87 | must be freed after resume | 87 | must be freed after resume |
| 88 | 88 | ||
| 89 | Warning: this is evil. There are actually two pagedirs at time of | 89 | Warning: this is evil. There are actually two pagedirs at time of |
| 90 | resume. One is "pagedir_save", which is empty frame allocated at | 90 | resume. One is "pagedir_save", which is empty frame allocated at |
| 91 | time of suspend, that must be freed. Second is "pagedir_nosave", | 91 | time of suspend, that must be freed. Second is "pagedir_nosave", |
| 92 | allocated at time of resume, that travels through memory not to | 92 | allocated at time of resume, that travels through memory not to |
| 93 | collide with anything. | 93 | collide with anything. |
| 94 | 94 | ||
| @@ -132,7 +132,7 @@ static int mark_swapfiles(swp_entry_t prev) | |||
| 132 | { | 132 | { |
| 133 | int error; | 133 | int error; |
| 134 | 134 | ||
| 135 | rw_swap_page_sync(READ, | 135 | rw_swap_page_sync(READ, |
| 136 | swp_entry(root_swap, 0), | 136 | swp_entry(root_swap, 0), |
| 137 | virt_to_page((unsigned long)&swsusp_header)); | 137 | virt_to_page((unsigned long)&swsusp_header)); |
| 138 | if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || | 138 | if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || |
| @@ -140,7 +140,7 @@ static int mark_swapfiles(swp_entry_t prev) | |||
| 140 | memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); | 140 | memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); |
| 141 | memcpy(swsusp_header.sig,SWSUSP_SIG, 10); | 141 | memcpy(swsusp_header.sig,SWSUSP_SIG, 10); |
| 142 | swsusp_header.swsusp_info = prev; | 142 | swsusp_header.swsusp_info = prev; |
| 143 | error = rw_swap_page_sync(WRITE, | 143 | error = rw_swap_page_sync(WRITE, |
| 144 | swp_entry(root_swap, 0), | 144 | swp_entry(root_swap, 0), |
| 145 | virt_to_page((unsigned long) | 145 | virt_to_page((unsigned long) |
| 146 | &swsusp_header)); | 146 | &swsusp_header)); |
| @@ -174,22 +174,22 @@ static int is_resume_device(const struct swap_info_struct *swap_info) | |||
| 174 | static int swsusp_swap_check(void) /* This is called before saving image */ | 174 | static int swsusp_swap_check(void) /* This is called before saving image */ |
| 175 | { | 175 | { |
| 176 | int i, len; | 176 | int i, len; |
| 177 | 177 | ||
| 178 | len=strlen(resume_file); | 178 | len=strlen(resume_file); |
| 179 | root_swap = 0xFFFF; | 179 | root_swap = 0xFFFF; |
| 180 | 180 | ||
| 181 | swap_list_lock(); | 181 | swap_list_lock(); |
| 182 | for(i=0; i<MAX_SWAPFILES; i++) { | 182 | for (i=0; i<MAX_SWAPFILES; i++) { |
| 183 | if (swap_info[i].flags == 0) { | 183 | if (swap_info[i].flags == 0) { |
| 184 | swapfile_used[i]=SWAPFILE_UNUSED; | 184 | swapfile_used[i]=SWAPFILE_UNUSED; |
| 185 | } else { | 185 | } else { |
| 186 | if(!len) { | 186 | if (!len) { |
| 187 | printk(KERN_WARNING "resume= option should be used to set suspend device" ); | 187 | printk(KERN_WARNING "resume= option should be used to set suspend device" ); |
| 188 | if(root_swap == 0xFFFF) { | 188 | if (root_swap == 0xFFFF) { |
| 189 | swapfile_used[i] = SWAPFILE_SUSPEND; | 189 | swapfile_used[i] = SWAPFILE_SUSPEND; |
| 190 | root_swap = i; | 190 | root_swap = i; |
| 191 | } else | 191 | } else |
| 192 | swapfile_used[i] = SWAPFILE_IGNORED; | 192 | swapfile_used[i] = SWAPFILE_IGNORED; |
| 193 | } else { | 193 | } else { |
| 194 | /* we ignore all swap devices that are not the resume_file */ | 194 | /* we ignore all swap devices that are not the resume_file */ |
| 195 | if (is_resume_device(&swap_info[i])) { | 195 | if (is_resume_device(&swap_info[i])) { |
| @@ -209,15 +209,15 @@ static int swsusp_swap_check(void) /* This is called before saving image */ | |||
| 209 | * This is called after saving image so modification | 209 | * This is called after saving image so modification |
| 210 | * will be lost after resume... and that's what we want. | 210 | * will be lost after resume... and that's what we want. |
| 211 | * we make the device unusable. A new call to | 211 | * we make the device unusable. A new call to |
| 212 | * lock_swapdevices can unlock the devices. | 212 | * lock_swapdevices can unlock the devices. |
| 213 | */ | 213 | */ |
| 214 | static void lock_swapdevices(void) | 214 | static void lock_swapdevices(void) |
| 215 | { | 215 | { |
| 216 | int i; | 216 | int i; |
| 217 | 217 | ||
| 218 | swap_list_lock(); | 218 | swap_list_lock(); |
| 219 | for(i = 0; i< MAX_SWAPFILES; i++) | 219 | for (i = 0; i< MAX_SWAPFILES; i++) |
| 220 | if(swapfile_used[i] == SWAPFILE_IGNORED) { | 220 | if (swapfile_used[i] == SWAPFILE_IGNORED) { |
| 221 | swap_info[i].flags ^= 0xFF; | 221 | swap_info[i].flags ^= 0xFF; |
| 222 | } | 222 | } |
| 223 | swap_list_unlock(); | 223 | swap_list_unlock(); |
| @@ -229,7 +229,7 @@ static void lock_swapdevices(void) | |||
| 229 | * @loc: Place to store the entry we used. | 229 | * @loc: Place to store the entry we used. |
| 230 | * | 230 | * |
| 231 | * Allocate a new swap entry and 'sync' it. Note we discard -EIO | 231 | * Allocate a new swap entry and 'sync' it. Note we discard -EIO |
| 232 | * errors. That is an artifact left over from swsusp. It did not | 232 | * errors. That is an artifact left over from swsusp. It did not |
| 233 | * check the return of rw_swap_page_sync() at all, since most pages | 233 | * check the return of rw_swap_page_sync() at all, since most pages |
| 234 | * written back to swap would return -EIO. | 234 | * written back to swap would return -EIO. |
| 235 | * This is a partial improvement, since we will at least return other | 235 | * This is a partial improvement, since we will at least return other |
| @@ -241,7 +241,7 @@ static int write_page(unsigned long addr, swp_entry_t * loc) | |||
| 241 | int error = 0; | 241 | int error = 0; |
| 242 | 242 | ||
| 243 | entry = get_swap_page(); | 243 | entry = get_swap_page(); |
| 244 | if (swp_offset(entry) && | 244 | if (swp_offset(entry) && |
| 245 | swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) { | 245 | swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) { |
| 246 | error = rw_swap_page_sync(WRITE, entry, | 246 | error = rw_swap_page_sync(WRITE, entry, |
| 247 | virt_to_page(addr)); | 247 | virt_to_page(addr)); |
| @@ -257,7 +257,7 @@ static int write_page(unsigned long addr, swp_entry_t * loc) | |||
| 257 | /** | 257 | /** |
| 258 | * data_free - Free the swap entries used by the saved image. | 258 | * data_free - Free the swap entries used by the saved image. |
| 259 | * | 259 | * |
| 260 | * Walk the list of used swap entries and free each one. | 260 | * Walk the list of used swap entries and free each one. |
| 261 | * This is only used for cleanup when suspend fails. | 261 | * This is only used for cleanup when suspend fails. |
| 262 | */ | 262 | */ |
| 263 | static void data_free(void) | 263 | static void data_free(void) |
| @@ -290,7 +290,7 @@ static int data_write(void) | |||
| 290 | mod = 1; | 290 | mod = 1; |
| 291 | 291 | ||
| 292 | printk( "Writing data to swap (%d pages)... ", nr_copy_pages ); | 292 | printk( "Writing data to swap (%d pages)... ", nr_copy_pages ); |
| 293 | for_each_pbe(p, pagedir_nosave) { | 293 | for_each_pbe (p, pagedir_nosave) { |
| 294 | if (!(i%mod)) | 294 | if (!(i%mod)) |
| 295 | printk( "\b\b\b\b%3d%%", i / mod ); | 295 | printk( "\b\b\b\b%3d%%", i / mod ); |
| 296 | if ((error = write_page(p->address, &(p->swap_address)))) | 296 | if ((error = write_page(p->address, &(p->swap_address)))) |
| @@ -335,7 +335,7 @@ static int close_swap(void) | |||
| 335 | 335 | ||
| 336 | dump_info(); | 336 | dump_info(); |
| 337 | error = write_page((unsigned long)&swsusp_info, &entry); | 337 | error = write_page((unsigned long)&swsusp_info, &entry); |
| 338 | if (!error) { | 338 | if (!error) { |
| 339 | printk( "S" ); | 339 | printk( "S" ); |
| 340 | error = mark_swapfiles(entry); | 340 | error = mark_swapfiles(entry); |
| 341 | printk( "|\n" ); | 341 | printk( "|\n" ); |
| @@ -370,7 +370,7 @@ static int write_pagedir(void) | |||
| 370 | struct pbe * pbe; | 370 | struct pbe * pbe; |
| 371 | 371 | ||
| 372 | printk( "Writing pagedir..."); | 372 | printk( "Writing pagedir..."); |
| 373 | for_each_pb_page(pbe, pagedir_nosave) { | 373 | for_each_pb_page (pbe, pagedir_nosave) { |
| 374 | if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++]))) | 374 | if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++]))) |
| 375 | return error; | 375 | return error; |
| 376 | } | 376 | } |
| @@ -472,7 +472,7 @@ static int save_highmem(void) | |||
| 472 | int res = 0; | 472 | int res = 0; |
| 473 | 473 | ||
| 474 | pr_debug("swsusp: Saving Highmem\n"); | 474 | pr_debug("swsusp: Saving Highmem\n"); |
| 475 | for_each_zone(zone) { | 475 | for_each_zone (zone) { |
| 476 | if (is_highmem(zone)) | 476 | if (is_highmem(zone)) |
| 477 | res = save_highmem_zone(zone); | 477 | res = save_highmem_zone(zone); |
| 478 | if (res) | 478 | if (res) |
| @@ -547,7 +547,7 @@ static void count_data_pages(void) | |||
| 547 | 547 | ||
| 548 | nr_copy_pages = 0; | 548 | nr_copy_pages = 0; |
| 549 | 549 | ||
| 550 | for_each_zone(zone) { | 550 | for_each_zone (zone) { |
| 551 | if (is_highmem(zone)) | 551 | if (is_highmem(zone)) |
| 552 | continue; | 552 | continue; |
| 553 | mark_free_pages(zone); | 553 | mark_free_pages(zone); |
| @@ -562,9 +562,9 @@ static void copy_data_pages(void) | |||
| 562 | struct zone *zone; | 562 | struct zone *zone; |
| 563 | unsigned long zone_pfn; | 563 | unsigned long zone_pfn; |
| 564 | struct pbe * pbe = pagedir_nosave; | 564 | struct pbe * pbe = pagedir_nosave; |
| 565 | 565 | ||
| 566 | pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages); | 566 | pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages); |
| 567 | for_each_zone(zone) { | 567 | for_each_zone (zone) { |
| 568 | if (is_highmem(zone)) | 568 | if (is_highmem(zone)) |
| 569 | continue; | 569 | continue; |
| 570 | mark_free_pages(zone); | 570 | mark_free_pages(zone); |
| @@ -702,7 +702,7 @@ static void free_image_pages(void) | |||
| 702 | { | 702 | { |
| 703 | struct pbe * p; | 703 | struct pbe * p; |
| 704 | 704 | ||
| 705 | for_each_pbe(p, pagedir_save) { | 705 | for_each_pbe (p, pagedir_save) { |
| 706 | if (p->address) { | 706 | if (p->address) { |
| 707 | ClearPageNosave(virt_to_page(p->address)); | 707 | ClearPageNosave(virt_to_page(p->address)); |
| 708 | free_page(p->address); | 708 | free_page(p->address); |
| @@ -719,7 +719,7 @@ static int alloc_image_pages(void) | |||
| 719 | { | 719 | { |
| 720 | struct pbe * p; | 720 | struct pbe * p; |
| 721 | 721 | ||
| 722 | for_each_pbe(p, pagedir_save) { | 722 | for_each_pbe (p, pagedir_save) { |
| 723 | p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD); | 723 | p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD); |
| 724 | if (!p->address) | 724 | if (!p->address) |
| 725 | return -ENOMEM; | 725 | return -ENOMEM; |
| @@ -740,7 +740,7 @@ void swsusp_free(void) | |||
| 740 | /** | 740 | /** |
| 741 | * enough_free_mem - Make sure we enough free memory to snapshot. | 741 | * enough_free_mem - Make sure we enough free memory to snapshot. |
| 742 | * | 742 | * |
| 743 | * Returns TRUE or FALSE after checking the number of available | 743 | * Returns TRUE or FALSE after checking the number of available |
| 744 | * free pages. | 744 | * free pages. |
| 745 | */ | 745 | */ |
| 746 | 746 | ||
| @@ -758,11 +758,11 @@ static int enough_free_mem(void) | |||
| 758 | /** | 758 | /** |
| 759 | * enough_swap - Make sure we have enough swap to save the image. | 759 | * enough_swap - Make sure we have enough swap to save the image. |
| 760 | * | 760 | * |
| 761 | * Returns TRUE or FALSE after checking the total amount of swap | 761 | * Returns TRUE or FALSE after checking the total amount of swap |
| 762 | * space avaiable. | 762 | * space avaiable. |
| 763 | * | 763 | * |
| 764 | * FIXME: si_swapinfo(&i) returns all swap devices information. | 764 | * FIXME: si_swapinfo(&i) returns all swap devices information. |
| 765 | * We should only consider resume_device. | 765 | * We should only consider resume_device. |
| 766 | */ | 766 | */ |
| 767 | 767 | ||
| 768 | static int enough_swap(void) | 768 | static int enough_swap(void) |
| @@ -781,18 +781,18 @@ static int swsusp_alloc(void) | |||
| 781 | { | 781 | { |
| 782 | int error; | 782 | int error; |
| 783 | 783 | ||
| 784 | pagedir_nosave = NULL; | ||
| 785 | nr_copy_pages = calc_nr(nr_copy_pages); | ||
| 786 | |||
| 784 | pr_debug("suspend: (pages needed: %d + %d free: %d)\n", | 787 | pr_debug("suspend: (pages needed: %d + %d free: %d)\n", |
| 785 | nr_copy_pages, PAGES_FOR_IO, nr_free_pages()); | 788 | nr_copy_pages, PAGES_FOR_IO, nr_free_pages()); |
| 786 | 789 | ||
| 787 | pagedir_nosave = NULL; | ||
| 788 | if (!enough_free_mem()) | 790 | if (!enough_free_mem()) |
| 789 | return -ENOMEM; | 791 | return -ENOMEM; |
| 790 | 792 | ||
| 791 | if (!enough_swap()) | 793 | if (!enough_swap()) |
| 792 | return -ENOSPC; | 794 | return -ENOSPC; |
| 793 | 795 | ||
| 794 | nr_copy_pages = calc_nr(nr_copy_pages); | ||
| 795 | |||
| 796 | if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) { | 796 | if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) { |
| 797 | printk(KERN_ERR "suspend: Allocating pagedir failed.\n"); | 797 | printk(KERN_ERR "suspend: Allocating pagedir failed.\n"); |
| 798 | return -ENOMEM; | 798 | return -ENOMEM; |
| @@ -827,8 +827,8 @@ static int suspend_prepare_image(void) | |||
| 827 | error = swsusp_alloc(); | 827 | error = swsusp_alloc(); |
| 828 | if (error) | 828 | if (error) |
| 829 | return error; | 829 | return error; |
| 830 | 830 | ||
| 831 | /* During allocating of suspend pagedir, new cold pages may appear. | 831 | /* During allocating of suspend pagedir, new cold pages may appear. |
| 832 | * Kill them. | 832 | * Kill them. |
| 833 | */ | 833 | */ |
| 834 | drain_local_pages(); | 834 | drain_local_pages(); |
| @@ -929,21 +929,6 @@ int swsusp_resume(void) | |||
| 929 | return error; | 929 | return error; |
| 930 | } | 930 | } |
| 931 | 931 | ||
| 932 | /* More restore stuff */ | ||
| 933 | |||
| 934 | /* | ||
| 935 | * Returns true if given address/order collides with any orig_address | ||
| 936 | */ | ||
| 937 | static int does_collide_order(unsigned long addr, int order) | ||
| 938 | { | ||
| 939 | int i; | ||
| 940 | |||
| 941 | for (i=0; i < (1<<order); i++) | ||
| 942 | if (!PageNosaveFree(virt_to_page(addr + i * PAGE_SIZE))) | ||
| 943 | return 1; | ||
| 944 | return 0; | ||
| 945 | } | ||
| 946 | |||
| 947 | /** | 932 | /** |
| 948 | * On resume, for storing the PBE list and the image, | 933 | * On resume, for storing the PBE list and the image, |
| 949 | * we can only use memory pages that do not conflict with the pages | 934 | * we can only use memory pages that do not conflict with the pages |
| @@ -973,7 +958,7 @@ static unsigned long get_usable_page(unsigned gfp_mask) | |||
| 973 | unsigned long m; | 958 | unsigned long m; |
| 974 | 959 | ||
| 975 | m = get_zeroed_page(gfp_mask); | 960 | m = get_zeroed_page(gfp_mask); |
| 976 | while (does_collide_order(m, 0)) { | 961 | while (!PageNosaveFree(virt_to_page(m))) { |
| 977 | eat_page((void *)m); | 962 | eat_page((void *)m); |
| 978 | m = get_zeroed_page(gfp_mask); | 963 | m = get_zeroed_page(gfp_mask); |
| 979 | if (!m) | 964 | if (!m) |
| @@ -1045,7 +1030,7 @@ static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist) | |||
| 1045 | 1030 | ||
| 1046 | /* Set page flags */ | 1031 | /* Set page flags */ |
| 1047 | 1032 | ||
| 1048 | for_each_zone(zone) { | 1033 | for_each_zone (zone) { |
| 1049 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | 1034 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) |
| 1050 | SetPageNosaveFree(pfn_to_page(zone_pfn + | 1035 | SetPageNosaveFree(pfn_to_page(zone_pfn + |
| 1051 | zone->zone_start_pfn)); | 1036 | zone->zone_start_pfn)); |
| @@ -1061,7 +1046,7 @@ static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist) | |||
| 1061 | /* Relocate colliding pages */ | 1046 | /* Relocate colliding pages */ |
| 1062 | 1047 | ||
| 1063 | for_each_pb_page (pbpage, pblist) { | 1048 | for_each_pb_page (pbpage, pblist) { |
| 1064 | if (does_collide_order((unsigned long)pbpage, 0)) { | 1049 | if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) { |
| 1065 | m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD); | 1050 | m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD); |
| 1066 | if (!m) { | 1051 | if (!m) { |
| 1067 | error = -ENOMEM; | 1052 | error = -ENOMEM; |
| @@ -1193,8 +1178,10 @@ static const char * sanity_check(void) | |||
| 1193 | return "version"; | 1178 | return "version"; |
| 1194 | if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) | 1179 | if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) |
| 1195 | return "machine"; | 1180 | return "machine"; |
| 1181 | #if 0 | ||
| 1196 | if(swsusp_info.cpus != num_online_cpus()) | 1182 | if(swsusp_info.cpus != num_online_cpus()) |
| 1197 | return "number of cpus"; | 1183 | return "number of cpus"; |
| 1184 | #endif | ||
| 1198 | return NULL; | 1185 | return NULL; |
| 1199 | } | 1186 | } |
| 1200 | 1187 | ||
diff --git a/kernel/printk.c b/kernel/printk.c index 3a442bfb8bee..5092397fac29 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
| @@ -588,8 +588,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
| 588 | log_level_unknown = 1; | 588 | log_level_unknown = 1; |
| 589 | } | 589 | } |
| 590 | 590 | ||
| 591 | if (!cpu_online(smp_processor_id()) && | 591 | if (!cpu_online(smp_processor_id())) { |
| 592 | system_state != SYSTEM_RUNNING) { | ||
| 593 | /* | 592 | /* |
| 594 | * Some console drivers may assume that per-cpu resources have | 593 | * Some console drivers may assume that per-cpu resources have |
| 595 | * been allocated. So don't allow them to be called by this | 594 | * been allocated. So don't allow them to be called by this |
diff --git a/kernel/resource.c b/kernel/resource.c index 52f696f11adf..26967e042201 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
| @@ -263,7 +263,7 @@ static int find_resource(struct resource *root, struct resource *new, | |||
| 263 | new->start = min; | 263 | new->start = min; |
| 264 | if (new->end > max) | 264 | if (new->end > max) |
| 265 | new->end = max; | 265 | new->end = max; |
| 266 | new->start = (new->start + align - 1) & ~(align - 1); | 266 | new->start = ALIGN(new->start, align); |
| 267 | if (alignf) | 267 | if (alignf) |
| 268 | alignf(alignf_data, new, size, align); | 268 | alignf(alignf_data, new, size, align); |
| 269 | if (new->start < new->end && new->end - new->start >= size - 1) { | 269 | if (new->start < new->end && new->end - new->start >= size - 1) { |
diff --git a/kernel/sched.c b/kernel/sched.c index 76080d142e3d..a07cff90d849 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -166,7 +166,7 @@ | |||
| 166 | #define SCALE_PRIO(x, prio) \ | 166 | #define SCALE_PRIO(x, prio) \ |
| 167 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | 167 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) |
| 168 | 168 | ||
| 169 | static inline unsigned int task_timeslice(task_t *p) | 169 | static unsigned int task_timeslice(task_t *p) |
| 170 | { | 170 | { |
| 171 | if (p->static_prio < NICE_TO_PRIO(0)) | 171 | if (p->static_prio < NICE_TO_PRIO(0)) |
| 172 | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | 172 | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); |
| @@ -206,7 +206,7 @@ struct runqueue { | |||
| 206 | */ | 206 | */ |
| 207 | unsigned long nr_running; | 207 | unsigned long nr_running; |
| 208 | #ifdef CONFIG_SMP | 208 | #ifdef CONFIG_SMP |
| 209 | unsigned long cpu_load; | 209 | unsigned long cpu_load[3]; |
| 210 | #endif | 210 | #endif |
| 211 | unsigned long long nr_switches; | 211 | unsigned long long nr_switches; |
| 212 | 212 | ||
| @@ -260,22 +260,86 @@ struct runqueue { | |||
| 260 | 260 | ||
| 261 | static DEFINE_PER_CPU(struct runqueue, runqueues); | 261 | static DEFINE_PER_CPU(struct runqueue, runqueues); |
| 262 | 262 | ||
| 263 | /* | ||
| 264 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
| 265 | * See detach_destroy_domains: synchronize_sched for details. | ||
| 266 | * | ||
| 267 | * The domain tree of any CPU may only be accessed from within | ||
| 268 | * preempt-disabled sections. | ||
| 269 | */ | ||
| 263 | #define for_each_domain(cpu, domain) \ | 270 | #define for_each_domain(cpu, domain) \ |
| 264 | for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent) | 271 | for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent) |
| 265 | 272 | ||
| 266 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 273 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 267 | #define this_rq() (&__get_cpu_var(runqueues)) | 274 | #define this_rq() (&__get_cpu_var(runqueues)) |
| 268 | #define task_rq(p) cpu_rq(task_cpu(p)) | 275 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 269 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 276 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 270 | 277 | ||
| 271 | /* | ||
| 272 | * Default context-switch locking: | ||
| 273 | */ | ||
| 274 | #ifndef prepare_arch_switch | 278 | #ifndef prepare_arch_switch |
| 275 | # define prepare_arch_switch(rq, next) do { } while (0) | 279 | # define prepare_arch_switch(next) do { } while (0) |
| 276 | # define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock) | 280 | #endif |
| 277 | # define task_running(rq, p) ((rq)->curr == (p)) | 281 | #ifndef finish_arch_switch |
| 282 | # define finish_arch_switch(prev) do { } while (0) | ||
| 283 | #endif | ||
| 284 | |||
| 285 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
| 286 | static inline int task_running(runqueue_t *rq, task_t *p) | ||
| 287 | { | ||
| 288 | return rq->curr == p; | ||
| 289 | } | ||
| 290 | |||
| 291 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | ||
| 292 | { | ||
| 293 | } | ||
| 294 | |||
| 295 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | ||
| 296 | { | ||
| 297 | spin_unlock_irq(&rq->lock); | ||
| 298 | } | ||
| 299 | |||
| 300 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
| 301 | static inline int task_running(runqueue_t *rq, task_t *p) | ||
| 302 | { | ||
| 303 | #ifdef CONFIG_SMP | ||
| 304 | return p->oncpu; | ||
| 305 | #else | ||
| 306 | return rq->curr == p; | ||
| 307 | #endif | ||
| 308 | } | ||
| 309 | |||
| 310 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | ||
| 311 | { | ||
| 312 | #ifdef CONFIG_SMP | ||
| 313 | /* | ||
| 314 | * We can optimise this out completely for !SMP, because the | ||
| 315 | * SMP rebalancing from interrupt is the only thing that cares | ||
| 316 | * here. | ||
| 317 | */ | ||
| 318 | next->oncpu = 1; | ||
| 319 | #endif | ||
| 320 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
| 321 | spin_unlock_irq(&rq->lock); | ||
| 322 | #else | ||
| 323 | spin_unlock(&rq->lock); | ||
| 324 | #endif | ||
| 325 | } | ||
| 326 | |||
| 327 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | ||
| 328 | { | ||
| 329 | #ifdef CONFIG_SMP | ||
| 330 | /* | ||
| 331 | * After ->oncpu is cleared, the task can be moved to a different CPU. | ||
| 332 | * We must ensure this doesn't happen until the switch is completely | ||
| 333 | * finished. | ||
| 334 | */ | ||
| 335 | smp_wmb(); | ||
| 336 | prev->oncpu = 0; | ||
| 278 | #endif | 337 | #endif |
| 338 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
| 339 | local_irq_enable(); | ||
| 340 | #endif | ||
| 341 | } | ||
| 342 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
| 279 | 343 | ||
| 280 | /* | 344 | /* |
| 281 | * task_rq_lock - lock the runqueue a given task resides on and disable | 345 | * task_rq_lock - lock the runqueue a given task resides on and disable |
| @@ -309,7 +373,7 @@ static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | |||
| 309 | * bump this up when changing the output format or the meaning of an existing | 373 | * bump this up when changing the output format or the meaning of an existing |
| 310 | * format, so that tools can adapt (or abort) | 374 | * format, so that tools can adapt (or abort) |
| 311 | */ | 375 | */ |
| 312 | #define SCHEDSTAT_VERSION 11 | 376 | #define SCHEDSTAT_VERSION 12 |
| 313 | 377 | ||
| 314 | static int show_schedstat(struct seq_file *seq, void *v) | 378 | static int show_schedstat(struct seq_file *seq, void *v) |
| 315 | { | 379 | { |
| @@ -338,6 +402,7 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
| 338 | 402 | ||
| 339 | #ifdef CONFIG_SMP | 403 | #ifdef CONFIG_SMP |
| 340 | /* domain-specific stats */ | 404 | /* domain-specific stats */ |
| 405 | preempt_disable(); | ||
| 341 | for_each_domain(cpu, sd) { | 406 | for_each_domain(cpu, sd) { |
| 342 | enum idle_type itype; | 407 | enum idle_type itype; |
| 343 | char mask_str[NR_CPUS]; | 408 | char mask_str[NR_CPUS]; |
| @@ -356,11 +421,13 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
| 356 | sd->lb_nobusyq[itype], | 421 | sd->lb_nobusyq[itype], |
| 357 | sd->lb_nobusyg[itype]); | 422 | sd->lb_nobusyg[itype]); |
| 358 | } | 423 | } |
| 359 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n", | 424 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n", |
| 360 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 425 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, |
| 361 | sd->sbe_pushed, sd->sbe_attempts, | 426 | sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, |
| 427 | sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | ||
| 362 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 428 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); |
| 363 | } | 429 | } |
| 430 | preempt_enable(); | ||
| 364 | #endif | 431 | #endif |
| 365 | } | 432 | } |
| 366 | return 0; | 433 | return 0; |
| @@ -414,22 +481,6 @@ static inline runqueue_t *this_rq_lock(void) | |||
| 414 | return rq; | 481 | return rq; |
| 415 | } | 482 | } |
| 416 | 483 | ||
| 417 | #ifdef CONFIG_SCHED_SMT | ||
| 418 | static int cpu_and_siblings_are_idle(int cpu) | ||
| 419 | { | ||
| 420 | int sib; | ||
| 421 | for_each_cpu_mask(sib, cpu_sibling_map[cpu]) { | ||
| 422 | if (idle_cpu(sib)) | ||
| 423 | continue; | ||
| 424 | return 0; | ||
| 425 | } | ||
| 426 | |||
| 427 | return 1; | ||
| 428 | } | ||
| 429 | #else | ||
| 430 | #define cpu_and_siblings_are_idle(A) idle_cpu(A) | ||
| 431 | #endif | ||
| 432 | |||
| 433 | #ifdef CONFIG_SCHEDSTATS | 484 | #ifdef CONFIG_SCHEDSTATS |
| 434 | /* | 485 | /* |
| 435 | * Called when a process is dequeued from the active array and given | 486 | * Called when a process is dequeued from the active array and given |
| @@ -622,7 +673,7 @@ static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | |||
| 622 | rq->nr_running++; | 673 | rq->nr_running++; |
| 623 | } | 674 | } |
| 624 | 675 | ||
| 625 | static void recalc_task_prio(task_t *p, unsigned long long now) | 676 | static int recalc_task_prio(task_t *p, unsigned long long now) |
| 626 | { | 677 | { |
| 627 | /* Caller must always ensure 'now >= p->timestamp' */ | 678 | /* Caller must always ensure 'now >= p->timestamp' */ |
| 628 | unsigned long long __sleep_time = now - p->timestamp; | 679 | unsigned long long __sleep_time = now - p->timestamp; |
| @@ -681,7 +732,7 @@ static void recalc_task_prio(task_t *p, unsigned long long now) | |||
| 681 | } | 732 | } |
| 682 | } | 733 | } |
| 683 | 734 | ||
| 684 | p->prio = effective_prio(p); | 735 | return effective_prio(p); |
| 685 | } | 736 | } |
| 686 | 737 | ||
| 687 | /* | 738 | /* |
| @@ -704,7 +755,7 @@ static void activate_task(task_t *p, runqueue_t *rq, int local) | |||
| 704 | } | 755 | } |
| 705 | #endif | 756 | #endif |
| 706 | 757 | ||
| 707 | recalc_task_prio(p, now); | 758 | p->prio = recalc_task_prio(p, now); |
| 708 | 759 | ||
| 709 | /* | 760 | /* |
| 710 | * This checks to make sure it's not an uninterruptible task | 761 | * This checks to make sure it's not an uninterruptible task |
| @@ -782,22 +833,12 @@ inline int task_curr(const task_t *p) | |||
| 782 | } | 833 | } |
| 783 | 834 | ||
| 784 | #ifdef CONFIG_SMP | 835 | #ifdef CONFIG_SMP |
| 785 | enum request_type { | ||
| 786 | REQ_MOVE_TASK, | ||
| 787 | REQ_SET_DOMAIN, | ||
| 788 | }; | ||
| 789 | |||
| 790 | typedef struct { | 836 | typedef struct { |
| 791 | struct list_head list; | 837 | struct list_head list; |
| 792 | enum request_type type; | ||
| 793 | 838 | ||
| 794 | /* For REQ_MOVE_TASK */ | ||
| 795 | task_t *task; | 839 | task_t *task; |
| 796 | int dest_cpu; | 840 | int dest_cpu; |
| 797 | 841 | ||
| 798 | /* For REQ_SET_DOMAIN */ | ||
| 799 | struct sched_domain *sd; | ||
| 800 | |||
| 801 | struct completion done; | 842 | struct completion done; |
| 802 | } migration_req_t; | 843 | } migration_req_t; |
| 803 | 844 | ||
| @@ -819,7 +860,6 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | |||
| 819 | } | 860 | } |
| 820 | 861 | ||
| 821 | init_completion(&req->done); | 862 | init_completion(&req->done); |
| 822 | req->type = REQ_MOVE_TASK; | ||
| 823 | req->task = p; | 863 | req->task = p; |
| 824 | req->dest_cpu = dest_cpu; | 864 | req->dest_cpu = dest_cpu; |
| 825 | list_add(&req->list, &rq->migration_queue); | 865 | list_add(&req->list, &rq->migration_queue); |
| @@ -886,26 +926,154 @@ void kick_process(task_t *p) | |||
| 886 | * We want to under-estimate the load of migration sources, to | 926 | * We want to under-estimate the load of migration sources, to |
| 887 | * balance conservatively. | 927 | * balance conservatively. |
| 888 | */ | 928 | */ |
| 889 | static inline unsigned long source_load(int cpu) | 929 | static inline unsigned long source_load(int cpu, int type) |
| 890 | { | 930 | { |
| 891 | runqueue_t *rq = cpu_rq(cpu); | 931 | runqueue_t *rq = cpu_rq(cpu); |
| 892 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 932 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; |
| 933 | if (type == 0) | ||
| 934 | return load_now; | ||
| 893 | 935 | ||
| 894 | return min(rq->cpu_load, load_now); | 936 | return min(rq->cpu_load[type-1], load_now); |
| 895 | } | 937 | } |
| 896 | 938 | ||
| 897 | /* | 939 | /* |
| 898 | * Return a high guess at the load of a migration-target cpu | 940 | * Return a high guess at the load of a migration-target cpu |
| 899 | */ | 941 | */ |
| 900 | static inline unsigned long target_load(int cpu) | 942 | static inline unsigned long target_load(int cpu, int type) |
| 901 | { | 943 | { |
| 902 | runqueue_t *rq = cpu_rq(cpu); | 944 | runqueue_t *rq = cpu_rq(cpu); |
| 903 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 945 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; |
| 946 | if (type == 0) | ||
| 947 | return load_now; | ||
| 904 | 948 | ||
| 905 | return max(rq->cpu_load, load_now); | 949 | return max(rq->cpu_load[type-1], load_now); |
| 906 | } | 950 | } |
| 907 | 951 | ||
| 908 | #endif | 952 | /* |
| 953 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 954 | * domain. | ||
| 955 | */ | ||
| 956 | static struct sched_group * | ||
| 957 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
| 958 | { | ||
| 959 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
| 960 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
| 961 | int load_idx = sd->forkexec_idx; | ||
| 962 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
| 963 | |||
| 964 | do { | ||
| 965 | unsigned long load, avg_load; | ||
| 966 | int local_group; | ||
| 967 | int i; | ||
| 968 | |||
| 969 | local_group = cpu_isset(this_cpu, group->cpumask); | ||
| 970 | /* XXX: put a cpus allowed check */ | ||
| 971 | |||
| 972 | /* Tally up the load of all CPUs in the group */ | ||
| 973 | avg_load = 0; | ||
| 974 | |||
| 975 | for_each_cpu_mask(i, group->cpumask) { | ||
| 976 | /* Bias balancing toward cpus of our domain */ | ||
| 977 | if (local_group) | ||
| 978 | load = source_load(i, load_idx); | ||
| 979 | else | ||
| 980 | load = target_load(i, load_idx); | ||
| 981 | |||
| 982 | avg_load += load; | ||
| 983 | } | ||
| 984 | |||
| 985 | /* Adjust by relative CPU power of the group */ | ||
| 986 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 987 | |||
| 988 | if (local_group) { | ||
| 989 | this_load = avg_load; | ||
| 990 | this = group; | ||
| 991 | } else if (avg_load < min_load) { | ||
| 992 | min_load = avg_load; | ||
| 993 | idlest = group; | ||
| 994 | } | ||
| 995 | group = group->next; | ||
| 996 | } while (group != sd->groups); | ||
| 997 | |||
| 998 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 999 | return NULL; | ||
| 1000 | return idlest; | ||
| 1001 | } | ||
| 1002 | |||
| 1003 | /* | ||
| 1004 | * find_idlest_queue - find the idlest runqueue among the cpus in group. | ||
| 1005 | */ | ||
| 1006 | static int find_idlest_cpu(struct sched_group *group, int this_cpu) | ||
| 1007 | { | ||
| 1008 | unsigned long load, min_load = ULONG_MAX; | ||
| 1009 | int idlest = -1; | ||
| 1010 | int i; | ||
| 1011 | |||
| 1012 | for_each_cpu_mask(i, group->cpumask) { | ||
| 1013 | load = source_load(i, 0); | ||
| 1014 | |||
| 1015 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 1016 | min_load = load; | ||
| 1017 | idlest = i; | ||
| 1018 | } | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | return idlest; | ||
| 1022 | } | ||
| 1023 | |||
| 1024 | /* | ||
| 1025 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
| 1026 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
| 1027 | * SD_BALANCE_EXEC. | ||
| 1028 | * | ||
| 1029 | * Balance, ie. select the least loaded group. | ||
| 1030 | * | ||
| 1031 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 1032 | * | ||
| 1033 | * preempt must be disabled. | ||
| 1034 | */ | ||
| 1035 | static int sched_balance_self(int cpu, int flag) | ||
| 1036 | { | ||
| 1037 | struct task_struct *t = current; | ||
| 1038 | struct sched_domain *tmp, *sd = NULL; | ||
| 1039 | |||
| 1040 | for_each_domain(cpu, tmp) | ||
| 1041 | if (tmp->flags & flag) | ||
| 1042 | sd = tmp; | ||
| 1043 | |||
| 1044 | while (sd) { | ||
| 1045 | cpumask_t span; | ||
| 1046 | struct sched_group *group; | ||
| 1047 | int new_cpu; | ||
| 1048 | int weight; | ||
| 1049 | |||
| 1050 | span = sd->span; | ||
| 1051 | group = find_idlest_group(sd, t, cpu); | ||
| 1052 | if (!group) | ||
| 1053 | goto nextlevel; | ||
| 1054 | |||
| 1055 | new_cpu = find_idlest_cpu(group, cpu); | ||
| 1056 | if (new_cpu == -1 || new_cpu == cpu) | ||
| 1057 | goto nextlevel; | ||
| 1058 | |||
| 1059 | /* Now try balancing at a lower domain level */ | ||
| 1060 | cpu = new_cpu; | ||
| 1061 | nextlevel: | ||
| 1062 | sd = NULL; | ||
| 1063 | weight = cpus_weight(span); | ||
| 1064 | for_each_domain(cpu, tmp) { | ||
| 1065 | if (weight <= cpus_weight(tmp->span)) | ||
| 1066 | break; | ||
| 1067 | if (tmp->flags & flag) | ||
| 1068 | sd = tmp; | ||
| 1069 | } | ||
| 1070 | /* while loop will break here if sd == NULL */ | ||
| 1071 | } | ||
| 1072 | |||
| 1073 | return cpu; | ||
| 1074 | } | ||
| 1075 | |||
| 1076 | #endif /* CONFIG_SMP */ | ||
| 909 | 1077 | ||
| 910 | /* | 1078 | /* |
| 911 | * wake_idle() will wake a task on an idle cpu if task->cpu is | 1079 | * wake_idle() will wake a task on an idle cpu if task->cpu is |
| @@ -927,14 +1095,14 @@ static int wake_idle(int cpu, task_t *p) | |||
| 927 | 1095 | ||
| 928 | for_each_domain(cpu, sd) { | 1096 | for_each_domain(cpu, sd) { |
| 929 | if (sd->flags & SD_WAKE_IDLE) { | 1097 | if (sd->flags & SD_WAKE_IDLE) { |
| 930 | cpus_and(tmp, sd->span, cpu_online_map); | 1098 | cpus_and(tmp, sd->span, p->cpus_allowed); |
| 931 | cpus_and(tmp, tmp, p->cpus_allowed); | ||
| 932 | for_each_cpu_mask(i, tmp) { | 1099 | for_each_cpu_mask(i, tmp) { |
| 933 | if (idle_cpu(i)) | 1100 | if (idle_cpu(i)) |
| 934 | return i; | 1101 | return i; |
| 935 | } | 1102 | } |
| 936 | } | 1103 | } |
| 937 | else break; | 1104 | else |
| 1105 | break; | ||
| 938 | } | 1106 | } |
| 939 | return cpu; | 1107 | return cpu; |
| 940 | } | 1108 | } |
| @@ -967,7 +1135,7 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync) | |||
| 967 | runqueue_t *rq; | 1135 | runqueue_t *rq; |
| 968 | #ifdef CONFIG_SMP | 1136 | #ifdef CONFIG_SMP |
| 969 | unsigned long load, this_load; | 1137 | unsigned long load, this_load; |
| 970 | struct sched_domain *sd; | 1138 | struct sched_domain *sd, *this_sd = NULL; |
| 971 | int new_cpu; | 1139 | int new_cpu; |
| 972 | #endif | 1140 | #endif |
| 973 | 1141 | ||
| @@ -986,70 +1154,69 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync) | |||
| 986 | if (unlikely(task_running(rq, p))) | 1154 | if (unlikely(task_running(rq, p))) |
| 987 | goto out_activate; | 1155 | goto out_activate; |
| 988 | 1156 | ||
| 989 | #ifdef CONFIG_SCHEDSTATS | 1157 | new_cpu = cpu; |
| 1158 | |||
| 990 | schedstat_inc(rq, ttwu_cnt); | 1159 | schedstat_inc(rq, ttwu_cnt); |
| 991 | if (cpu == this_cpu) { | 1160 | if (cpu == this_cpu) { |
| 992 | schedstat_inc(rq, ttwu_local); | 1161 | schedstat_inc(rq, ttwu_local); |
| 993 | } else { | 1162 | goto out_set_cpu; |
| 994 | for_each_domain(this_cpu, sd) { | 1163 | } |
| 995 | if (cpu_isset(cpu, sd->span)) { | 1164 | |
| 996 | schedstat_inc(sd, ttwu_wake_remote); | 1165 | for_each_domain(this_cpu, sd) { |
| 997 | break; | 1166 | if (cpu_isset(cpu, sd->span)) { |
| 998 | } | 1167 | schedstat_inc(sd, ttwu_wake_remote); |
| 1168 | this_sd = sd; | ||
| 1169 | break; | ||
| 999 | } | 1170 | } |
| 1000 | } | 1171 | } |
| 1001 | #endif | ||
| 1002 | 1172 | ||
| 1003 | new_cpu = cpu; | 1173 | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) |
| 1004 | if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | ||
| 1005 | goto out_set_cpu; | 1174 | goto out_set_cpu; |
| 1006 | 1175 | ||
| 1007 | load = source_load(cpu); | ||
| 1008 | this_load = target_load(this_cpu); | ||
| 1009 | |||
| 1010 | /* | 1176 | /* |
| 1011 | * If sync wakeup then subtract the (maximum possible) effect of | 1177 | * Check for affine wakeup and passive balancing possibilities. |
| 1012 | * the currently running task from the load of the current CPU: | ||
| 1013 | */ | 1178 | */ |
| 1014 | if (sync) | 1179 | if (this_sd) { |
| 1015 | this_load -= SCHED_LOAD_SCALE; | 1180 | int idx = this_sd->wake_idx; |
| 1181 | unsigned int imbalance; | ||
| 1016 | 1182 | ||
| 1017 | /* Don't pull the task off an idle CPU to a busy one */ | 1183 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; |
| 1018 | if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2) | ||
| 1019 | goto out_set_cpu; | ||
| 1020 | 1184 | ||
| 1021 | new_cpu = this_cpu; /* Wake to this CPU if we can */ | 1185 | load = source_load(cpu, idx); |
| 1186 | this_load = target_load(this_cpu, idx); | ||
| 1022 | 1187 | ||
| 1023 | /* | 1188 | new_cpu = this_cpu; /* Wake to this CPU if we can */ |
| 1024 | * Scan domains for affine wakeup and passive balancing | ||
| 1025 | * possibilities. | ||
| 1026 | */ | ||
| 1027 | for_each_domain(this_cpu, sd) { | ||
| 1028 | unsigned int imbalance; | ||
| 1029 | /* | ||
| 1030 | * Start passive balancing when half the imbalance_pct | ||
| 1031 | * limit is reached. | ||
| 1032 | */ | ||
| 1033 | imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2; | ||
| 1034 | 1189 | ||
| 1035 | if ((sd->flags & SD_WAKE_AFFINE) && | 1190 | if (this_sd->flags & SD_WAKE_AFFINE) { |
| 1036 | !task_hot(p, rq->timestamp_last_tick, sd)) { | 1191 | unsigned long tl = this_load; |
| 1037 | /* | 1192 | /* |
| 1038 | * This domain has SD_WAKE_AFFINE and p is cache cold | 1193 | * If sync wakeup then subtract the (maximum possible) |
| 1039 | * in this domain. | 1194 | * effect of the currently running task from the load |
| 1195 | * of the current CPU: | ||
| 1040 | */ | 1196 | */ |
| 1041 | if (cpu_isset(cpu, sd->span)) { | 1197 | if (sync) |
| 1042 | schedstat_inc(sd, ttwu_move_affine); | 1198 | tl -= SCHED_LOAD_SCALE; |
| 1199 | |||
| 1200 | if ((tl <= load && | ||
| 1201 | tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) || | ||
| 1202 | 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) { | ||
| 1203 | /* | ||
| 1204 | * This domain has SD_WAKE_AFFINE and | ||
| 1205 | * p is cache cold in this domain, and | ||
| 1206 | * there is no bad imbalance. | ||
| 1207 | */ | ||
| 1208 | schedstat_inc(this_sd, ttwu_move_affine); | ||
| 1043 | goto out_set_cpu; | 1209 | goto out_set_cpu; |
| 1044 | } | 1210 | } |
| 1045 | } else if ((sd->flags & SD_WAKE_BALANCE) && | 1211 | } |
| 1046 | imbalance*this_load <= 100*load) { | 1212 | |
| 1047 | /* | 1213 | /* |
| 1048 | * This domain has SD_WAKE_BALANCE and there is | 1214 | * Start passive balancing when half the imbalance_pct |
| 1049 | * an imbalance. | 1215 | * limit is reached. |
| 1050 | */ | 1216 | */ |
| 1051 | if (cpu_isset(cpu, sd->span)) { | 1217 | if (this_sd->flags & SD_WAKE_BALANCE) { |
| 1052 | schedstat_inc(sd, ttwu_move_balance); | 1218 | if (imbalance*this_load <= 100*load) { |
| 1219 | schedstat_inc(this_sd, ttwu_move_balance); | ||
| 1053 | goto out_set_cpu; | 1220 | goto out_set_cpu; |
| 1054 | } | 1221 | } |
| 1055 | } | 1222 | } |
| @@ -1120,17 +1287,19 @@ int fastcall wake_up_state(task_t *p, unsigned int state) | |||
| 1120 | return try_to_wake_up(p, state, 0); | 1287 | return try_to_wake_up(p, state, 0); |
| 1121 | } | 1288 | } |
| 1122 | 1289 | ||
| 1123 | #ifdef CONFIG_SMP | ||
| 1124 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | ||
| 1125 | struct sched_domain *sd); | ||
| 1126 | #endif | ||
| 1127 | |||
| 1128 | /* | 1290 | /* |
| 1129 | * Perform scheduler related setup for a newly forked process p. | 1291 | * Perform scheduler related setup for a newly forked process p. |
| 1130 | * p is forked by current. | 1292 | * p is forked by current. |
| 1131 | */ | 1293 | */ |
| 1132 | void fastcall sched_fork(task_t *p) | 1294 | void fastcall sched_fork(task_t *p, int clone_flags) |
| 1133 | { | 1295 | { |
| 1296 | int cpu = get_cpu(); | ||
| 1297 | |||
| 1298 | #ifdef CONFIG_SMP | ||
| 1299 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
| 1300 | #endif | ||
| 1301 | set_task_cpu(p, cpu); | ||
| 1302 | |||
| 1134 | /* | 1303 | /* |
| 1135 | * We mark the process as running here, but have not actually | 1304 | * We mark the process as running here, but have not actually |
| 1136 | * inserted it onto the runqueue yet. This guarantees that | 1305 | * inserted it onto the runqueue yet. This guarantees that |
| @@ -1140,17 +1309,14 @@ void fastcall sched_fork(task_t *p) | |||
| 1140 | p->state = TASK_RUNNING; | 1309 | p->state = TASK_RUNNING; |
| 1141 | INIT_LIST_HEAD(&p->run_list); | 1310 | INIT_LIST_HEAD(&p->run_list); |
| 1142 | p->array = NULL; | 1311 | p->array = NULL; |
| 1143 | spin_lock_init(&p->switch_lock); | ||
| 1144 | #ifdef CONFIG_SCHEDSTATS | 1312 | #ifdef CONFIG_SCHEDSTATS |
| 1145 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 1313 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| 1146 | #endif | 1314 | #endif |
| 1315 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | ||
| 1316 | p->oncpu = 0; | ||
| 1317 | #endif | ||
| 1147 | #ifdef CONFIG_PREEMPT | 1318 | #ifdef CONFIG_PREEMPT |
| 1148 | /* | 1319 | /* Want to start with kernel preemption disabled. */ |
| 1149 | * During context-switch we hold precisely one spinlock, which | ||
| 1150 | * schedule_tail drops. (in the common case it's this_rq()->lock, | ||
| 1151 | * but it also can be p->switch_lock.) So we compensate with a count | ||
| 1152 | * of 1. Also, we want to start with kernel preemption disabled. | ||
| 1153 | */ | ||
| 1154 | p->thread_info->preempt_count = 1; | 1320 | p->thread_info->preempt_count = 1; |
| 1155 | #endif | 1321 | #endif |
| 1156 | /* | 1322 | /* |
| @@ -1174,12 +1340,10 @@ void fastcall sched_fork(task_t *p) | |||
| 1174 | * runqueue lock is not a problem. | 1340 | * runqueue lock is not a problem. |
| 1175 | */ | 1341 | */ |
| 1176 | current->time_slice = 1; | 1342 | current->time_slice = 1; |
| 1177 | preempt_disable(); | ||
| 1178 | scheduler_tick(); | 1343 | scheduler_tick(); |
| 1179 | local_irq_enable(); | 1344 | } |
| 1180 | preempt_enable(); | 1345 | local_irq_enable(); |
| 1181 | } else | 1346 | put_cpu(); |
| 1182 | local_irq_enable(); | ||
| 1183 | } | 1347 | } |
| 1184 | 1348 | ||
| 1185 | /* | 1349 | /* |
| @@ -1196,10 +1360,9 @@ void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags) | |||
| 1196 | runqueue_t *rq, *this_rq; | 1360 | runqueue_t *rq, *this_rq; |
| 1197 | 1361 | ||
| 1198 | rq = task_rq_lock(p, &flags); | 1362 | rq = task_rq_lock(p, &flags); |
| 1199 | cpu = task_cpu(p); | ||
| 1200 | this_cpu = smp_processor_id(); | ||
| 1201 | |||
| 1202 | BUG_ON(p->state != TASK_RUNNING); | 1363 | BUG_ON(p->state != TASK_RUNNING); |
| 1364 | this_cpu = smp_processor_id(); | ||
| 1365 | cpu = task_cpu(p); | ||
| 1203 | 1366 | ||
| 1204 | /* | 1367 | /* |
| 1205 | * We decrease the sleep average of forking parents | 1368 | * We decrease the sleep average of forking parents |
| @@ -1296,22 +1459,40 @@ void fastcall sched_exit(task_t * p) | |||
| 1296 | } | 1459 | } |
| 1297 | 1460 | ||
| 1298 | /** | 1461 | /** |
| 1462 | * prepare_task_switch - prepare to switch tasks | ||
| 1463 | * @rq: the runqueue preparing to switch | ||
| 1464 | * @next: the task we are going to switch to. | ||
| 1465 | * | ||
| 1466 | * This is called with the rq lock held and interrupts off. It must | ||
| 1467 | * be paired with a subsequent finish_task_switch after the context | ||
| 1468 | * switch. | ||
| 1469 | * | ||
| 1470 | * prepare_task_switch sets up locking and calls architecture specific | ||
| 1471 | * hooks. | ||
| 1472 | */ | ||
| 1473 | static inline void prepare_task_switch(runqueue_t *rq, task_t *next) | ||
| 1474 | { | ||
| 1475 | prepare_lock_switch(rq, next); | ||
| 1476 | prepare_arch_switch(next); | ||
| 1477 | } | ||
| 1478 | |||
| 1479 | /** | ||
| 1299 | * finish_task_switch - clean up after a task-switch | 1480 | * finish_task_switch - clean up after a task-switch |
| 1300 | * @prev: the thread we just switched away from. | 1481 | * @prev: the thread we just switched away from. |
| 1301 | * | 1482 | * |
| 1302 | * We enter this with the runqueue still locked, and finish_arch_switch() | 1483 | * finish_task_switch must be called after the context switch, paired |
| 1303 | * will unlock it along with doing any other architecture-specific cleanup | 1484 | * with a prepare_task_switch call before the context switch. |
| 1304 | * actions. | 1485 | * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| 1486 | * and do any other architecture-specific cleanup actions. | ||
| 1305 | * | 1487 | * |
| 1306 | * Note that we may have delayed dropping an mm in context_switch(). If | 1488 | * Note that we may have delayed dropping an mm in context_switch(). If |
| 1307 | * so, we finish that here outside of the runqueue lock. (Doing it | 1489 | * so, we finish that here outside of the runqueue lock. (Doing it |
| 1308 | * with the lock held can cause deadlocks; see schedule() for | 1490 | * with the lock held can cause deadlocks; see schedule() for |
| 1309 | * details.) | 1491 | * details.) |
| 1310 | */ | 1492 | */ |
| 1311 | static inline void finish_task_switch(task_t *prev) | 1493 | static inline void finish_task_switch(runqueue_t *rq, task_t *prev) |
| 1312 | __releases(rq->lock) | 1494 | __releases(rq->lock) |
| 1313 | { | 1495 | { |
| 1314 | runqueue_t *rq = this_rq(); | ||
| 1315 | struct mm_struct *mm = rq->prev_mm; | 1496 | struct mm_struct *mm = rq->prev_mm; |
| 1316 | unsigned long prev_task_flags; | 1497 | unsigned long prev_task_flags; |
| 1317 | 1498 | ||
| @@ -1329,7 +1510,8 @@ static inline void finish_task_switch(task_t *prev) | |||
| 1329 | * Manfred Spraul <manfred@colorfullife.com> | 1510 | * Manfred Spraul <manfred@colorfullife.com> |
| 1330 | */ | 1511 | */ |
| 1331 | prev_task_flags = prev->flags; | 1512 | prev_task_flags = prev->flags; |
| 1332 | finish_arch_switch(rq, prev); | 1513 | finish_arch_switch(prev); |
| 1514 | finish_lock_switch(rq, prev); | ||
| 1333 | if (mm) | 1515 | if (mm) |
| 1334 | mmdrop(mm); | 1516 | mmdrop(mm); |
| 1335 | if (unlikely(prev_task_flags & PF_DEAD)) | 1517 | if (unlikely(prev_task_flags & PF_DEAD)) |
| @@ -1343,8 +1525,12 @@ static inline void finish_task_switch(task_t *prev) | |||
| 1343 | asmlinkage void schedule_tail(task_t *prev) | 1525 | asmlinkage void schedule_tail(task_t *prev) |
| 1344 | __releases(rq->lock) | 1526 | __releases(rq->lock) |
| 1345 | { | 1527 | { |
| 1346 | finish_task_switch(prev); | 1528 | runqueue_t *rq = this_rq(); |
| 1347 | 1529 | finish_task_switch(rq, prev); | |
| 1530 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | ||
| 1531 | /* In this case, finish_task_switch does not reenable preemption */ | ||
| 1532 | preempt_enable(); | ||
| 1533 | #endif | ||
| 1348 | if (current->set_child_tid) | 1534 | if (current->set_child_tid) |
| 1349 | put_user(current->pid, current->set_child_tid); | 1535 | put_user(current->pid, current->set_child_tid); |
| 1350 | } | 1536 | } |
| @@ -1494,51 +1680,6 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | |||
| 1494 | } | 1680 | } |
| 1495 | 1681 | ||
| 1496 | /* | 1682 | /* |
| 1497 | * find_idlest_cpu - find the least busy runqueue. | ||
| 1498 | */ | ||
| 1499 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | ||
| 1500 | struct sched_domain *sd) | ||
| 1501 | { | ||
| 1502 | unsigned long load, min_load, this_load; | ||
| 1503 | int i, min_cpu; | ||
| 1504 | cpumask_t mask; | ||
| 1505 | |||
| 1506 | min_cpu = UINT_MAX; | ||
| 1507 | min_load = ULONG_MAX; | ||
| 1508 | |||
| 1509 | cpus_and(mask, sd->span, p->cpus_allowed); | ||
| 1510 | |||
| 1511 | for_each_cpu_mask(i, mask) { | ||
| 1512 | load = target_load(i); | ||
| 1513 | |||
| 1514 | if (load < min_load) { | ||
| 1515 | min_cpu = i; | ||
| 1516 | min_load = load; | ||
| 1517 | |||
| 1518 | /* break out early on an idle CPU: */ | ||
| 1519 | if (!min_load) | ||
| 1520 | break; | ||
| 1521 | } | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | /* add +1 to account for the new task */ | ||
| 1525 | this_load = source_load(this_cpu) + SCHED_LOAD_SCALE; | ||
| 1526 | |||
| 1527 | /* | ||
| 1528 | * Would with the addition of the new task to the | ||
| 1529 | * current CPU there be an imbalance between this | ||
| 1530 | * CPU and the idlest CPU? | ||
| 1531 | * | ||
| 1532 | * Use half of the balancing threshold - new-context is | ||
| 1533 | * a good opportunity to balance. | ||
| 1534 | */ | ||
| 1535 | if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100) | ||
| 1536 | return min_cpu; | ||
| 1537 | |||
| 1538 | return this_cpu; | ||
| 1539 | } | ||
| 1540 | |||
| 1541 | /* | ||
| 1542 | * If dest_cpu is allowed for this process, migrate the task to it. | 1683 | * If dest_cpu is allowed for this process, migrate the task to it. |
| 1543 | * This is accomplished by forcing the cpu_allowed mask to only | 1684 | * This is accomplished by forcing the cpu_allowed mask to only |
| 1544 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | 1685 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
| @@ -1571,37 +1712,16 @@ out: | |||
| 1571 | } | 1712 | } |
| 1572 | 1713 | ||
| 1573 | /* | 1714 | /* |
| 1574 | * sched_exec(): find the highest-level, exec-balance-capable | 1715 | * sched_exec - execve() is a valuable balancing opportunity, because at |
| 1575 | * domain and try to migrate the task to the least loaded CPU. | 1716 | * this point the task has the smallest effective memory and cache footprint. |
| 1576 | * | ||
| 1577 | * execve() is a valuable balancing opportunity, because at this point | ||
| 1578 | * the task has the smallest effective memory and cache footprint. | ||
| 1579 | */ | 1717 | */ |
| 1580 | void sched_exec(void) | 1718 | void sched_exec(void) |
| 1581 | { | 1719 | { |
| 1582 | struct sched_domain *tmp, *sd = NULL; | ||
| 1583 | int new_cpu, this_cpu = get_cpu(); | 1720 | int new_cpu, this_cpu = get_cpu(); |
| 1584 | 1721 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | |
| 1585 | /* Prefer the current CPU if there's only this task running */ | ||
| 1586 | if (this_rq()->nr_running <= 1) | ||
| 1587 | goto out; | ||
| 1588 | |||
| 1589 | for_each_domain(this_cpu, tmp) | ||
| 1590 | if (tmp->flags & SD_BALANCE_EXEC) | ||
| 1591 | sd = tmp; | ||
| 1592 | |||
| 1593 | if (sd) { | ||
| 1594 | schedstat_inc(sd, sbe_attempts); | ||
| 1595 | new_cpu = find_idlest_cpu(current, this_cpu, sd); | ||
| 1596 | if (new_cpu != this_cpu) { | ||
| 1597 | schedstat_inc(sd, sbe_pushed); | ||
| 1598 | put_cpu(); | ||
| 1599 | sched_migrate_task(current, new_cpu); | ||
| 1600 | return; | ||
| 1601 | } | ||
| 1602 | } | ||
| 1603 | out: | ||
| 1604 | put_cpu(); | 1722 | put_cpu(); |
| 1723 | if (new_cpu != this_cpu) | ||
| 1724 | sched_migrate_task(current, new_cpu); | ||
| 1605 | } | 1725 | } |
| 1606 | 1726 | ||
| 1607 | /* | 1727 | /* |
| @@ -1632,7 +1752,7 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | |||
| 1632 | */ | 1752 | */ |
| 1633 | static inline | 1753 | static inline |
| 1634 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | 1754 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, |
| 1635 | struct sched_domain *sd, enum idle_type idle) | 1755 | struct sched_domain *sd, enum idle_type idle, int *all_pinned) |
| 1636 | { | 1756 | { |
| 1637 | /* | 1757 | /* |
| 1638 | * We do not migrate tasks that are: | 1758 | * We do not migrate tasks that are: |
| @@ -1640,23 +1760,24 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | |||
| 1640 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 1760 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
| 1641 | * 3) are cache-hot on their current CPU. | 1761 | * 3) are cache-hot on their current CPU. |
| 1642 | */ | 1762 | */ |
| 1643 | if (task_running(rq, p)) | ||
| 1644 | return 0; | ||
| 1645 | if (!cpu_isset(this_cpu, p->cpus_allowed)) | 1763 | if (!cpu_isset(this_cpu, p->cpus_allowed)) |
| 1646 | return 0; | 1764 | return 0; |
| 1765 | *all_pinned = 0; | ||
| 1766 | |||
| 1767 | if (task_running(rq, p)) | ||
| 1768 | return 0; | ||
| 1647 | 1769 | ||
| 1648 | /* | 1770 | /* |
| 1649 | * Aggressive migration if: | 1771 | * Aggressive migration if: |
| 1650 | * 1) the [whole] cpu is idle, or | 1772 | * 1) task is cache cold, or |
| 1651 | * 2) too many balance attempts have failed. | 1773 | * 2) too many balance attempts have failed. |
| 1652 | */ | 1774 | */ |
| 1653 | 1775 | ||
| 1654 | if (cpu_and_siblings_are_idle(this_cpu) || \ | 1776 | if (sd->nr_balance_failed > sd->cache_nice_tries) |
| 1655 | sd->nr_balance_failed > sd->cache_nice_tries) | ||
| 1656 | return 1; | 1777 | return 1; |
| 1657 | 1778 | ||
| 1658 | if (task_hot(p, rq->timestamp_last_tick, sd)) | 1779 | if (task_hot(p, rq->timestamp_last_tick, sd)) |
| 1659 | return 0; | 1780 | return 0; |
| 1660 | return 1; | 1781 | return 1; |
| 1661 | } | 1782 | } |
| 1662 | 1783 | ||
| @@ -1669,16 +1790,18 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | |||
| 1669 | */ | 1790 | */ |
| 1670 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | 1791 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, |
| 1671 | unsigned long max_nr_move, struct sched_domain *sd, | 1792 | unsigned long max_nr_move, struct sched_domain *sd, |
| 1672 | enum idle_type idle) | 1793 | enum idle_type idle, int *all_pinned) |
| 1673 | { | 1794 | { |
| 1674 | prio_array_t *array, *dst_array; | 1795 | prio_array_t *array, *dst_array; |
| 1675 | struct list_head *head, *curr; | 1796 | struct list_head *head, *curr; |
| 1676 | int idx, pulled = 0; | 1797 | int idx, pulled = 0, pinned = 0; |
| 1677 | task_t *tmp; | 1798 | task_t *tmp; |
| 1678 | 1799 | ||
| 1679 | if (max_nr_move <= 0 || busiest->nr_running <= 1) | 1800 | if (max_nr_move == 0) |
| 1680 | goto out; | 1801 | goto out; |
| 1681 | 1802 | ||
| 1803 | pinned = 1; | ||
| 1804 | |||
| 1682 | /* | 1805 | /* |
| 1683 | * We first consider expired tasks. Those will likely not be | 1806 | * We first consider expired tasks. Those will likely not be |
| 1684 | * executed in the near future, and they are most likely to | 1807 | * executed in the near future, and they are most likely to |
| @@ -1717,7 +1840,7 @@ skip_queue: | |||
| 1717 | 1840 | ||
| 1718 | curr = curr->prev; | 1841 | curr = curr->prev; |
| 1719 | 1842 | ||
| 1720 | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) { | 1843 | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { |
| 1721 | if (curr != head) | 1844 | if (curr != head) |
| 1722 | goto skip_queue; | 1845 | goto skip_queue; |
| 1723 | idx++; | 1846 | idx++; |
| @@ -1746,6 +1869,9 @@ out: | |||
| 1746 | * inside pull_task(). | 1869 | * inside pull_task(). |
| 1747 | */ | 1870 | */ |
| 1748 | schedstat_add(sd, lb_gained[idle], pulled); | 1871 | schedstat_add(sd, lb_gained[idle], pulled); |
| 1872 | |||
| 1873 | if (all_pinned) | ||
| 1874 | *all_pinned = pinned; | ||
| 1749 | return pulled; | 1875 | return pulled; |
| 1750 | } | 1876 | } |
| 1751 | 1877 | ||
| @@ -1760,8 +1886,15 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, | |||
| 1760 | { | 1886 | { |
| 1761 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 1887 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; |
| 1762 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 1888 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; |
| 1889 | int load_idx; | ||
| 1763 | 1890 | ||
| 1764 | max_load = this_load = total_load = total_pwr = 0; | 1891 | max_load = this_load = total_load = total_pwr = 0; |
| 1892 | if (idle == NOT_IDLE) | ||
| 1893 | load_idx = sd->busy_idx; | ||
| 1894 | else if (idle == NEWLY_IDLE) | ||
| 1895 | load_idx = sd->newidle_idx; | ||
| 1896 | else | ||
| 1897 | load_idx = sd->idle_idx; | ||
| 1765 | 1898 | ||
| 1766 | do { | 1899 | do { |
| 1767 | unsigned long load; | 1900 | unsigned long load; |
| @@ -1776,9 +1909,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, | |||
| 1776 | for_each_cpu_mask(i, group->cpumask) { | 1909 | for_each_cpu_mask(i, group->cpumask) { |
| 1777 | /* Bias balancing toward cpus of our domain */ | 1910 | /* Bias balancing toward cpus of our domain */ |
| 1778 | if (local_group) | 1911 | if (local_group) |
| 1779 | load = target_load(i); | 1912 | load = target_load(i, load_idx); |
| 1780 | else | 1913 | else |
| 1781 | load = source_load(i); | 1914 | load = source_load(i, load_idx); |
| 1782 | 1915 | ||
| 1783 | avg_load += load; | 1916 | avg_load += load; |
| 1784 | } | 1917 | } |
| @@ -1792,12 +1925,10 @@ find_busiest_group(struct sched_domain *sd, int this_cpu, | |||
| 1792 | if (local_group) { | 1925 | if (local_group) { |
| 1793 | this_load = avg_load; | 1926 | this_load = avg_load; |
| 1794 | this = group; | 1927 | this = group; |
| 1795 | goto nextgroup; | ||
| 1796 | } else if (avg_load > max_load) { | 1928 | } else if (avg_load > max_load) { |
| 1797 | max_load = avg_load; | 1929 | max_load = avg_load; |
| 1798 | busiest = group; | 1930 | busiest = group; |
| 1799 | } | 1931 | } |
| 1800 | nextgroup: | ||
| 1801 | group = group->next; | 1932 | group = group->next; |
| 1802 | } while (group != sd->groups); | 1933 | } while (group != sd->groups); |
| 1803 | 1934 | ||
| @@ -1870,15 +2001,9 @@ nextgroup: | |||
| 1870 | 2001 | ||
| 1871 | /* Get rid of the scaling factor, rounding down as we divide */ | 2002 | /* Get rid of the scaling factor, rounding down as we divide */ |
| 1872 | *imbalance = *imbalance / SCHED_LOAD_SCALE; | 2003 | *imbalance = *imbalance / SCHED_LOAD_SCALE; |
| 1873 | |||
| 1874 | return busiest; | 2004 | return busiest; |
| 1875 | 2005 | ||
| 1876 | out_balanced: | 2006 | out_balanced: |
| 1877 | if (busiest && (idle == NEWLY_IDLE || | ||
| 1878 | (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) { | ||
| 1879 | *imbalance = 1; | ||
| 1880 | return busiest; | ||
| 1881 | } | ||
| 1882 | 2007 | ||
| 1883 | *imbalance = 0; | 2008 | *imbalance = 0; |
| 1884 | return NULL; | 2009 | return NULL; |
| @@ -1894,7 +2019,7 @@ static runqueue_t *find_busiest_queue(struct sched_group *group) | |||
| 1894 | int i; | 2019 | int i; |
| 1895 | 2020 | ||
| 1896 | for_each_cpu_mask(i, group->cpumask) { | 2021 | for_each_cpu_mask(i, group->cpumask) { |
| 1897 | load = source_load(i); | 2022 | load = source_load(i, 0); |
| 1898 | 2023 | ||
| 1899 | if (load > max_load) { | 2024 | if (load > max_load) { |
| 1900 | max_load = load; | 2025 | max_load = load; |
| @@ -1906,6 +2031,12 @@ static runqueue_t *find_busiest_queue(struct sched_group *group) | |||
| 1906 | } | 2031 | } |
| 1907 | 2032 | ||
| 1908 | /* | 2033 | /* |
| 2034 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
| 2035 | * so long as it is large enough. | ||
| 2036 | */ | ||
| 2037 | #define MAX_PINNED_INTERVAL 512 | ||
| 2038 | |||
| 2039 | /* | ||
| 1909 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 2040 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
| 1910 | * tasks if there is an imbalance. | 2041 | * tasks if there is an imbalance. |
| 1911 | * | 2042 | * |
| @@ -1917,7 +2048,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq, | |||
| 1917 | struct sched_group *group; | 2048 | struct sched_group *group; |
| 1918 | runqueue_t *busiest; | 2049 | runqueue_t *busiest; |
| 1919 | unsigned long imbalance; | 2050 | unsigned long imbalance; |
| 1920 | int nr_moved; | 2051 | int nr_moved, all_pinned = 0; |
| 2052 | int active_balance = 0; | ||
| 1921 | 2053 | ||
| 1922 | spin_lock(&this_rq->lock); | 2054 | spin_lock(&this_rq->lock); |
| 1923 | schedstat_inc(sd, lb_cnt[idle]); | 2055 | schedstat_inc(sd, lb_cnt[idle]); |
| @@ -1934,15 +2066,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq, | |||
| 1934 | goto out_balanced; | 2066 | goto out_balanced; |
| 1935 | } | 2067 | } |
| 1936 | 2068 | ||
| 1937 | /* | 2069 | BUG_ON(busiest == this_rq); |
| 1938 | * This should be "impossible", but since load | ||
| 1939 | * balancing is inherently racy and statistical, | ||
| 1940 | * it could happen in theory. | ||
| 1941 | */ | ||
| 1942 | if (unlikely(busiest == this_rq)) { | ||
| 1943 | WARN_ON(1); | ||
| 1944 | goto out_balanced; | ||
| 1945 | } | ||
| 1946 | 2070 | ||
| 1947 | schedstat_add(sd, lb_imbalance[idle], imbalance); | 2071 | schedstat_add(sd, lb_imbalance[idle], imbalance); |
| 1948 | 2072 | ||
| @@ -1956,9 +2080,15 @@ static int load_balance(int this_cpu, runqueue_t *this_rq, | |||
| 1956 | */ | 2080 | */ |
| 1957 | double_lock_balance(this_rq, busiest); | 2081 | double_lock_balance(this_rq, busiest); |
| 1958 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 2082 | nr_moved = move_tasks(this_rq, this_cpu, busiest, |
| 1959 | imbalance, sd, idle); | 2083 | imbalance, sd, idle, |
| 2084 | &all_pinned); | ||
| 1960 | spin_unlock(&busiest->lock); | 2085 | spin_unlock(&busiest->lock); |
| 2086 | |||
| 2087 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
| 2088 | if (unlikely(all_pinned)) | ||
| 2089 | goto out_balanced; | ||
| 1961 | } | 2090 | } |
| 2091 | |||
| 1962 | spin_unlock(&this_rq->lock); | 2092 | spin_unlock(&this_rq->lock); |
| 1963 | 2093 | ||
| 1964 | if (!nr_moved) { | 2094 | if (!nr_moved) { |
| @@ -1966,36 +2096,38 @@ static int load_balance(int this_cpu, runqueue_t *this_rq, | |||
| 1966 | sd->nr_balance_failed++; | 2096 | sd->nr_balance_failed++; |
| 1967 | 2097 | ||
| 1968 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 2098 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { |
| 1969 | int wake = 0; | ||
| 1970 | 2099 | ||
| 1971 | spin_lock(&busiest->lock); | 2100 | spin_lock(&busiest->lock); |
| 1972 | if (!busiest->active_balance) { | 2101 | if (!busiest->active_balance) { |
| 1973 | busiest->active_balance = 1; | 2102 | busiest->active_balance = 1; |
| 1974 | busiest->push_cpu = this_cpu; | 2103 | busiest->push_cpu = this_cpu; |
| 1975 | wake = 1; | 2104 | active_balance = 1; |
| 1976 | } | 2105 | } |
| 1977 | spin_unlock(&busiest->lock); | 2106 | spin_unlock(&busiest->lock); |
| 1978 | if (wake) | 2107 | if (active_balance) |
| 1979 | wake_up_process(busiest->migration_thread); | 2108 | wake_up_process(busiest->migration_thread); |
| 1980 | 2109 | ||
| 1981 | /* | 2110 | /* |
| 1982 | * We've kicked active balancing, reset the failure | 2111 | * We've kicked active balancing, reset the failure |
| 1983 | * counter. | 2112 | * counter. |
| 1984 | */ | 2113 | */ |
| 1985 | sd->nr_balance_failed = sd->cache_nice_tries; | 2114 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
| 1986 | } | 2115 | } |
| 1987 | 2116 | } else | |
| 1988 | /* | ||
| 1989 | * We were unbalanced, but unsuccessful in move_tasks(), | ||
| 1990 | * so bump the balance_interval to lessen the lock contention. | ||
| 1991 | */ | ||
| 1992 | if (sd->balance_interval < sd->max_interval) | ||
| 1993 | sd->balance_interval++; | ||
| 1994 | } else { | ||
| 1995 | sd->nr_balance_failed = 0; | 2117 | sd->nr_balance_failed = 0; |
| 1996 | 2118 | ||
| 2119 | if (likely(!active_balance)) { | ||
| 1997 | /* We were unbalanced, so reset the balancing interval */ | 2120 | /* We were unbalanced, so reset the balancing interval */ |
| 1998 | sd->balance_interval = sd->min_interval; | 2121 | sd->balance_interval = sd->min_interval; |
| 2122 | } else { | ||
| 2123 | /* | ||
| 2124 | * If we've begun active balancing, start to back off. This | ||
| 2125 | * case may not be covered by the all_pinned logic if there | ||
| 2126 | * is only 1 task on the busy runqueue (because we don't call | ||
| 2127 | * move_tasks). | ||
| 2128 | */ | ||
| 2129 | if (sd->balance_interval < sd->max_interval) | ||
| 2130 | sd->balance_interval *= 2; | ||
| 1999 | } | 2131 | } |
| 2000 | 2132 | ||
| 2001 | return nr_moved; | 2133 | return nr_moved; |
| @@ -2005,8 +2137,10 @@ out_balanced: | |||
| 2005 | 2137 | ||
| 2006 | schedstat_inc(sd, lb_balanced[idle]); | 2138 | schedstat_inc(sd, lb_balanced[idle]); |
| 2007 | 2139 | ||
| 2140 | sd->nr_balance_failed = 0; | ||
| 2008 | /* tune up the balancing interval */ | 2141 | /* tune up the balancing interval */ |
| 2009 | if (sd->balance_interval < sd->max_interval) | 2142 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
| 2143 | (sd->balance_interval < sd->max_interval)) | ||
| 2010 | sd->balance_interval *= 2; | 2144 | sd->balance_interval *= 2; |
| 2011 | 2145 | ||
| 2012 | return 0; | 2146 | return 0; |
| @@ -2030,31 +2164,36 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | |||
| 2030 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 2164 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); |
| 2031 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE); | 2165 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE); |
| 2032 | if (!group) { | 2166 | if (!group) { |
| 2033 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | ||
| 2034 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 2167 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); |
| 2035 | goto out; | 2168 | goto out_balanced; |
| 2036 | } | 2169 | } |
| 2037 | 2170 | ||
| 2038 | busiest = find_busiest_queue(group); | 2171 | busiest = find_busiest_queue(group); |
| 2039 | if (!busiest || busiest == this_rq) { | 2172 | if (!busiest) { |
| 2040 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | ||
| 2041 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 2173 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); |
| 2042 | goto out; | 2174 | goto out_balanced; |
| 2043 | } | 2175 | } |
| 2044 | 2176 | ||
| 2177 | BUG_ON(busiest == this_rq); | ||
| 2178 | |||
| 2045 | /* Attempt to move tasks */ | 2179 | /* Attempt to move tasks */ |
| 2046 | double_lock_balance(this_rq, busiest); | 2180 | double_lock_balance(this_rq, busiest); |
| 2047 | 2181 | ||
| 2048 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 2182 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); |
| 2049 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 2183 | nr_moved = move_tasks(this_rq, this_cpu, busiest, |
| 2050 | imbalance, sd, NEWLY_IDLE); | 2184 | imbalance, sd, NEWLY_IDLE, NULL); |
| 2051 | if (!nr_moved) | 2185 | if (!nr_moved) |
| 2052 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 2186 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); |
| 2187 | else | ||
| 2188 | sd->nr_balance_failed = 0; | ||
| 2053 | 2189 | ||
| 2054 | spin_unlock(&busiest->lock); | 2190 | spin_unlock(&busiest->lock); |
| 2055 | |||
| 2056 | out: | ||
| 2057 | return nr_moved; | 2191 | return nr_moved; |
| 2192 | |||
| 2193 | out_balanced: | ||
| 2194 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | ||
| 2195 | sd->nr_balance_failed = 0; | ||
| 2196 | return 0; | ||
| 2058 | } | 2197 | } |
| 2059 | 2198 | ||
| 2060 | /* | 2199 | /* |
| @@ -2086,56 +2225,42 @@ static inline void idle_balance(int this_cpu, runqueue_t *this_rq) | |||
| 2086 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | 2225 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) |
| 2087 | { | 2226 | { |
| 2088 | struct sched_domain *sd; | 2227 | struct sched_domain *sd; |
| 2089 | struct sched_group *cpu_group; | ||
| 2090 | runqueue_t *target_rq; | 2228 | runqueue_t *target_rq; |
| 2091 | cpumask_t visited_cpus; | 2229 | int target_cpu = busiest_rq->push_cpu; |
| 2092 | int cpu; | 2230 | |
| 2231 | if (busiest_rq->nr_running <= 1) | ||
| 2232 | /* no task to move */ | ||
| 2233 | return; | ||
| 2234 | |||
| 2235 | target_rq = cpu_rq(target_cpu); | ||
| 2093 | 2236 | ||
| 2094 | /* | 2237 | /* |
| 2095 | * Search for suitable CPUs to push tasks to in successively higher | 2238 | * This condition is "impossible", if it occurs |
| 2096 | * domains with SD_LOAD_BALANCE set. | 2239 | * we need to fix it. Originally reported by |
| 2240 | * Bjorn Helgaas on a 128-cpu setup. | ||
| 2097 | */ | 2241 | */ |
| 2098 | visited_cpus = CPU_MASK_NONE; | 2242 | BUG_ON(busiest_rq == target_rq); |
| 2099 | for_each_domain(busiest_cpu, sd) { | ||
| 2100 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 2101 | /* no more domains to search */ | ||
| 2102 | break; | ||
| 2103 | 2243 | ||
| 2104 | schedstat_inc(sd, alb_cnt); | 2244 | /* move a task from busiest_rq to target_rq */ |
| 2245 | double_lock_balance(busiest_rq, target_rq); | ||
| 2105 | 2246 | ||
| 2106 | cpu_group = sd->groups; | 2247 | /* Search for an sd spanning us and the target CPU. */ |
| 2107 | do { | 2248 | for_each_domain(target_cpu, sd) |
| 2108 | for_each_cpu_mask(cpu, cpu_group->cpumask) { | 2249 | if ((sd->flags & SD_LOAD_BALANCE) && |
| 2109 | if (busiest_rq->nr_running <= 1) | 2250 | cpu_isset(busiest_cpu, sd->span)) |
| 2110 | /* no more tasks left to move */ | 2251 | break; |
| 2111 | return; | 2252 | |
| 2112 | if (cpu_isset(cpu, visited_cpus)) | 2253 | if (unlikely(sd == NULL)) |
| 2113 | continue; | 2254 | goto out; |
| 2114 | cpu_set(cpu, visited_cpus); | 2255 | |
| 2115 | if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu) | 2256 | schedstat_inc(sd, alb_cnt); |
| 2116 | continue; | 2257 | |
| 2117 | 2258 | if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL)) | |
| 2118 | target_rq = cpu_rq(cpu); | 2259 | schedstat_inc(sd, alb_pushed); |
| 2119 | /* | 2260 | else |
| 2120 | * This condition is "impossible", if it occurs | 2261 | schedstat_inc(sd, alb_failed); |
| 2121 | * we need to fix it. Originally reported by | 2262 | out: |
| 2122 | * Bjorn Helgaas on a 128-cpu setup. | 2263 | spin_unlock(&target_rq->lock); |
| 2123 | */ | ||
| 2124 | BUG_ON(busiest_rq == target_rq); | ||
| 2125 | |||
| 2126 | /* move a task from busiest_rq to target_rq */ | ||
| 2127 | double_lock_balance(busiest_rq, target_rq); | ||
| 2128 | if (move_tasks(target_rq, cpu, busiest_rq, | ||
| 2129 | 1, sd, SCHED_IDLE)) { | ||
| 2130 | schedstat_inc(sd, alb_pushed); | ||
| 2131 | } else { | ||
| 2132 | schedstat_inc(sd, alb_failed); | ||
| 2133 | } | ||
| 2134 | spin_unlock(&target_rq->lock); | ||
| 2135 | } | ||
| 2136 | cpu_group = cpu_group->next; | ||
| 2137 | } while (cpu_group != sd->groups); | ||
| 2138 | } | ||
| 2139 | } | 2264 | } |
| 2140 | 2265 | ||
| 2141 | /* | 2266 | /* |
| @@ -2156,18 +2281,23 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | |||
| 2156 | unsigned long old_load, this_load; | 2281 | unsigned long old_load, this_load; |
| 2157 | unsigned long j = jiffies + CPU_OFFSET(this_cpu); | 2282 | unsigned long j = jiffies + CPU_OFFSET(this_cpu); |
| 2158 | struct sched_domain *sd; | 2283 | struct sched_domain *sd; |
| 2284 | int i; | ||
| 2159 | 2285 | ||
| 2160 | /* Update our load */ | ||
| 2161 | old_load = this_rq->cpu_load; | ||
| 2162 | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | 2286 | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; |
| 2163 | /* | 2287 | /* Update our load */ |
| 2164 | * Round up the averaging division if load is increasing. This | 2288 | for (i = 0; i < 3; i++) { |
| 2165 | * prevents us from getting stuck on 9 if the load is 10, for | 2289 | unsigned long new_load = this_load; |
| 2166 | * example. | 2290 | int scale = 1 << i; |
| 2167 | */ | 2291 | old_load = this_rq->cpu_load[i]; |
| 2168 | if (this_load > old_load) | 2292 | /* |
| 2169 | old_load++; | 2293 | * Round up the averaging division if load is increasing. This |
| 2170 | this_rq->cpu_load = (old_load + this_load) / 2; | 2294 | * prevents us from getting stuck on 9 if the load is 10, for |
| 2295 | * example. | ||
| 2296 | */ | ||
| 2297 | if (new_load > old_load) | ||
| 2298 | new_load += scale-1; | ||
| 2299 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale; | ||
| 2300 | } | ||
| 2171 | 2301 | ||
| 2172 | for_each_domain(this_cpu, sd) { | 2302 | for_each_domain(this_cpu, sd) { |
| 2173 | unsigned long interval; | 2303 | unsigned long interval; |
| @@ -2447,11 +2577,15 @@ out: | |||
| 2447 | #ifdef CONFIG_SCHED_SMT | 2577 | #ifdef CONFIG_SCHED_SMT |
| 2448 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 2578 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) |
| 2449 | { | 2579 | { |
| 2450 | struct sched_domain *sd = this_rq->sd; | 2580 | struct sched_domain *tmp, *sd = NULL; |
| 2451 | cpumask_t sibling_map; | 2581 | cpumask_t sibling_map; |
| 2452 | int i; | 2582 | int i; |
| 2453 | 2583 | ||
| 2454 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 2584 | for_each_domain(this_cpu, tmp) |
| 2585 | if (tmp->flags & SD_SHARE_CPUPOWER) | ||
| 2586 | sd = tmp; | ||
| 2587 | |||
| 2588 | if (!sd) | ||
| 2455 | return; | 2589 | return; |
| 2456 | 2590 | ||
| 2457 | /* | 2591 | /* |
| @@ -2492,13 +2626,17 @@ static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | |||
| 2492 | 2626 | ||
| 2493 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 2627 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) |
| 2494 | { | 2628 | { |
| 2495 | struct sched_domain *sd = this_rq->sd; | 2629 | struct sched_domain *tmp, *sd = NULL; |
| 2496 | cpumask_t sibling_map; | 2630 | cpumask_t sibling_map; |
| 2497 | prio_array_t *array; | 2631 | prio_array_t *array; |
| 2498 | int ret = 0, i; | 2632 | int ret = 0, i; |
| 2499 | task_t *p; | 2633 | task_t *p; |
| 2500 | 2634 | ||
| 2501 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 2635 | for_each_domain(this_cpu, tmp) |
| 2636 | if (tmp->flags & SD_SHARE_CPUPOWER) | ||
| 2637 | sd = tmp; | ||
| 2638 | |||
| 2639 | if (!sd) | ||
| 2502 | return 0; | 2640 | return 0; |
| 2503 | 2641 | ||
| 2504 | /* | 2642 | /* |
| @@ -2613,7 +2751,7 @@ asmlinkage void __sched schedule(void) | |||
| 2613 | struct list_head *queue; | 2751 | struct list_head *queue; |
| 2614 | unsigned long long now; | 2752 | unsigned long long now; |
| 2615 | unsigned long run_time; | 2753 | unsigned long run_time; |
| 2616 | int cpu, idx; | 2754 | int cpu, idx, new_prio; |
| 2617 | 2755 | ||
| 2618 | /* | 2756 | /* |
| 2619 | * Test if we are atomic. Since do_exit() needs to call into | 2757 | * Test if we are atomic. Since do_exit() needs to call into |
| @@ -2735,9 +2873,14 @@ go_idle: | |||
| 2735 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 2873 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; |
| 2736 | 2874 | ||
| 2737 | array = next->array; | 2875 | array = next->array; |
| 2738 | dequeue_task(next, array); | 2876 | new_prio = recalc_task_prio(next, next->timestamp + delta); |
| 2739 | recalc_task_prio(next, next->timestamp + delta); | 2877 | |
| 2740 | enqueue_task(next, array); | 2878 | if (unlikely(next->prio != new_prio)) { |
| 2879 | dequeue_task(next, array); | ||
| 2880 | next->prio = new_prio; | ||
| 2881 | enqueue_task(next, array); | ||
| 2882 | } else | ||
| 2883 | requeue_task(next, array); | ||
| 2741 | } | 2884 | } |
| 2742 | next->activated = 0; | 2885 | next->activated = 0; |
| 2743 | switch_tasks: | 2886 | switch_tasks: |
| @@ -2761,11 +2904,15 @@ switch_tasks: | |||
| 2761 | rq->curr = next; | 2904 | rq->curr = next; |
| 2762 | ++*switch_count; | 2905 | ++*switch_count; |
| 2763 | 2906 | ||
| 2764 | prepare_arch_switch(rq, next); | 2907 | prepare_task_switch(rq, next); |
| 2765 | prev = context_switch(rq, prev, next); | 2908 | prev = context_switch(rq, prev, next); |
| 2766 | barrier(); | 2909 | barrier(); |
| 2767 | 2910 | /* | |
| 2768 | finish_task_switch(prev); | 2911 | * this_rq must be evaluated again because prev may have moved |
| 2912 | * CPUs since it called schedule(), thus the 'rq' on its stack | ||
| 2913 | * frame will be invalid. | ||
| 2914 | */ | ||
| 2915 | finish_task_switch(this_rq(), prev); | ||
| 2769 | } else | 2916 | } else |
| 2770 | spin_unlock_irq(&rq->lock); | 2917 | spin_unlock_irq(&rq->lock); |
| 2771 | 2918 | ||
| @@ -3384,13 +3531,24 @@ recheck: | |||
| 3384 | if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) | 3531 | if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) |
| 3385 | return -EINVAL; | 3532 | return -EINVAL; |
| 3386 | 3533 | ||
| 3387 | if ((policy == SCHED_FIFO || policy == SCHED_RR) && | 3534 | /* |
| 3388 | param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur && | 3535 | * Allow unprivileged RT tasks to decrease priority: |
| 3389 | !capable(CAP_SYS_NICE)) | 3536 | */ |
| 3390 | return -EPERM; | 3537 | if (!capable(CAP_SYS_NICE)) { |
| 3391 | if ((current->euid != p->euid) && (current->euid != p->uid) && | 3538 | /* can't change policy */ |
| 3392 | !capable(CAP_SYS_NICE)) | 3539 | if (policy != p->policy) |
| 3393 | return -EPERM; | 3540 | return -EPERM; |
| 3541 | /* can't increase priority */ | ||
| 3542 | if (policy != SCHED_NORMAL && | ||
| 3543 | param->sched_priority > p->rt_priority && | ||
| 3544 | param->sched_priority > | ||
| 3545 | p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | ||
| 3546 | return -EPERM; | ||
| 3547 | /* can't change other user's priorities */ | ||
| 3548 | if ((current->euid != p->euid) && | ||
| 3549 | (current->euid != p->uid)) | ||
| 3550 | return -EPERM; | ||
| 3551 | } | ||
| 3394 | 3552 | ||
| 3395 | retval = security_task_setscheduler(p, policy, param); | 3553 | retval = security_task_setscheduler(p, policy, param); |
| 3396 | if (retval) | 3554 | if (retval) |
| @@ -4030,6 +4188,9 @@ void __devinit init_idle(task_t *idle, int cpu) | |||
| 4030 | 4188 | ||
| 4031 | spin_lock_irqsave(&rq->lock, flags); | 4189 | spin_lock_irqsave(&rq->lock, flags); |
| 4032 | rq->curr = rq->idle = idle; | 4190 | rq->curr = rq->idle = idle; |
| 4191 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | ||
| 4192 | idle->oncpu = 1; | ||
| 4193 | #endif | ||
| 4033 | set_tsk_need_resched(idle); | 4194 | set_tsk_need_resched(idle); |
| 4034 | spin_unlock_irqrestore(&rq->lock, flags); | 4195 | spin_unlock_irqrestore(&rq->lock, flags); |
| 4035 | 4196 | ||
| @@ -4174,8 +4335,7 @@ static int migration_thread(void * data) | |||
| 4174 | struct list_head *head; | 4335 | struct list_head *head; |
| 4175 | migration_req_t *req; | 4336 | migration_req_t *req; |
| 4176 | 4337 | ||
| 4177 | if (current->flags & PF_FREEZE) | 4338 | try_to_freeze(); |
| 4178 | refrigerator(PF_FREEZE); | ||
| 4179 | 4339 | ||
| 4180 | spin_lock_irq(&rq->lock); | 4340 | spin_lock_irq(&rq->lock); |
| 4181 | 4341 | ||
| @@ -4200,17 +4360,9 @@ static int migration_thread(void * data) | |||
| 4200 | req = list_entry(head->next, migration_req_t, list); | 4360 | req = list_entry(head->next, migration_req_t, list); |
| 4201 | list_del_init(head->next); | 4361 | list_del_init(head->next); |
| 4202 | 4362 | ||
| 4203 | if (req->type == REQ_MOVE_TASK) { | 4363 | spin_unlock(&rq->lock); |
| 4204 | spin_unlock(&rq->lock); | 4364 | __migrate_task(req->task, cpu, req->dest_cpu); |
| 4205 | __migrate_task(req->task, cpu, req->dest_cpu); | 4365 | local_irq_enable(); |
| 4206 | local_irq_enable(); | ||
| 4207 | } else if (req->type == REQ_SET_DOMAIN) { | ||
| 4208 | rq->sd = req->sd; | ||
| 4209 | spin_unlock_irq(&rq->lock); | ||
| 4210 | } else { | ||
| 4211 | spin_unlock_irq(&rq->lock); | ||
| 4212 | WARN_ON(1); | ||
| 4213 | } | ||
| 4214 | 4366 | ||
| 4215 | complete(&req->done); | 4367 | complete(&req->done); |
| 4216 | } | 4368 | } |
| @@ -4441,7 +4593,6 @@ static int migration_call(struct notifier_block *nfb, unsigned long action, | |||
| 4441 | migration_req_t *req; | 4593 | migration_req_t *req; |
| 4442 | req = list_entry(rq->migration_queue.next, | 4594 | req = list_entry(rq->migration_queue.next, |
| 4443 | migration_req_t, list); | 4595 | migration_req_t, list); |
| 4444 | BUG_ON(req->type != REQ_MOVE_TASK); | ||
| 4445 | list_del_init(&req->list); | 4596 | list_del_init(&req->list); |
| 4446 | complete(&req->done); | 4597 | complete(&req->done); |
| 4447 | } | 4598 | } |
| @@ -4472,12 +4623,17 @@ int __init migration_init(void) | |||
| 4472 | #endif | 4623 | #endif |
| 4473 | 4624 | ||
| 4474 | #ifdef CONFIG_SMP | 4625 | #ifdef CONFIG_SMP |
| 4475 | #define SCHED_DOMAIN_DEBUG | 4626 | #undef SCHED_DOMAIN_DEBUG |
| 4476 | #ifdef SCHED_DOMAIN_DEBUG | 4627 | #ifdef SCHED_DOMAIN_DEBUG |
| 4477 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 4628 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
| 4478 | { | 4629 | { |
| 4479 | int level = 0; | 4630 | int level = 0; |
| 4480 | 4631 | ||
| 4632 | if (!sd) { | ||
| 4633 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | ||
| 4634 | return; | ||
| 4635 | } | ||
| 4636 | |||
| 4481 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 4637 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
| 4482 | 4638 | ||
| 4483 | do { | 4639 | do { |
| @@ -4560,37 +4716,81 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) | |||
| 4560 | #define sched_domain_debug(sd, cpu) {} | 4716 | #define sched_domain_debug(sd, cpu) {} |
| 4561 | #endif | 4717 | #endif |
| 4562 | 4718 | ||
| 4719 | static int sd_degenerate(struct sched_domain *sd) | ||
| 4720 | { | ||
| 4721 | if (cpus_weight(sd->span) == 1) | ||
| 4722 | return 1; | ||
| 4723 | |||
| 4724 | /* Following flags need at least 2 groups */ | ||
| 4725 | if (sd->flags & (SD_LOAD_BALANCE | | ||
| 4726 | SD_BALANCE_NEWIDLE | | ||
| 4727 | SD_BALANCE_FORK | | ||
| 4728 | SD_BALANCE_EXEC)) { | ||
| 4729 | if (sd->groups != sd->groups->next) | ||
| 4730 | return 0; | ||
| 4731 | } | ||
| 4732 | |||
| 4733 | /* Following flags don't use groups */ | ||
| 4734 | if (sd->flags & (SD_WAKE_IDLE | | ||
| 4735 | SD_WAKE_AFFINE | | ||
| 4736 | SD_WAKE_BALANCE)) | ||
| 4737 | return 0; | ||
| 4738 | |||
| 4739 | return 1; | ||
| 4740 | } | ||
| 4741 | |||
| 4742 | static int sd_parent_degenerate(struct sched_domain *sd, | ||
| 4743 | struct sched_domain *parent) | ||
| 4744 | { | ||
| 4745 | unsigned long cflags = sd->flags, pflags = parent->flags; | ||
| 4746 | |||
| 4747 | if (sd_degenerate(parent)) | ||
| 4748 | return 1; | ||
| 4749 | |||
| 4750 | if (!cpus_equal(sd->span, parent->span)) | ||
| 4751 | return 0; | ||
| 4752 | |||
| 4753 | /* Does parent contain flags not in child? */ | ||
| 4754 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
| 4755 | if (cflags & SD_WAKE_AFFINE) | ||
| 4756 | pflags &= ~SD_WAKE_BALANCE; | ||
| 4757 | /* Flags needing groups don't count if only 1 group in parent */ | ||
| 4758 | if (parent->groups == parent->groups->next) { | ||
| 4759 | pflags &= ~(SD_LOAD_BALANCE | | ||
| 4760 | SD_BALANCE_NEWIDLE | | ||
| 4761 | SD_BALANCE_FORK | | ||
| 4762 | SD_BALANCE_EXEC); | ||
| 4763 | } | ||
| 4764 | if (~cflags & pflags) | ||
| 4765 | return 0; | ||
| 4766 | |||
| 4767 | return 1; | ||
| 4768 | } | ||
| 4769 | |||
| 4563 | /* | 4770 | /* |
| 4564 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 4771 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
| 4565 | * hold the hotplug lock. | 4772 | * hold the hotplug lock. |
| 4566 | */ | 4773 | */ |
| 4567 | void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu) | 4774 | void cpu_attach_domain(struct sched_domain *sd, int cpu) |
| 4568 | { | 4775 | { |
| 4569 | migration_req_t req; | ||
| 4570 | unsigned long flags; | ||
| 4571 | runqueue_t *rq = cpu_rq(cpu); | 4776 | runqueue_t *rq = cpu_rq(cpu); |
| 4572 | int local = 1; | 4777 | struct sched_domain *tmp; |
| 4573 | |||
| 4574 | sched_domain_debug(sd, cpu); | ||
| 4575 | 4778 | ||
| 4576 | spin_lock_irqsave(&rq->lock, flags); | 4779 | /* Remove the sched domains which do not contribute to scheduling. */ |
| 4577 | 4780 | for (tmp = sd; tmp; tmp = tmp->parent) { | |
| 4578 | if (cpu == smp_processor_id() || !cpu_online(cpu)) { | 4781 | struct sched_domain *parent = tmp->parent; |
| 4579 | rq->sd = sd; | 4782 | if (!parent) |
| 4580 | } else { | 4783 | break; |
| 4581 | init_completion(&req.done); | 4784 | if (sd_parent_degenerate(tmp, parent)) |
| 4582 | req.type = REQ_SET_DOMAIN; | 4785 | tmp->parent = parent->parent; |
| 4583 | req.sd = sd; | ||
| 4584 | list_add(&req.list, &rq->migration_queue); | ||
| 4585 | local = 0; | ||
| 4586 | } | 4786 | } |
| 4587 | 4787 | ||
| 4588 | spin_unlock_irqrestore(&rq->lock, flags); | 4788 | if (sd && sd_degenerate(sd)) |
| 4789 | sd = sd->parent; | ||
| 4589 | 4790 | ||
| 4590 | if (!local) { | 4791 | sched_domain_debug(sd, cpu); |
| 4591 | wake_up_process(rq->migration_thread); | 4792 | |
| 4592 | wait_for_completion(&req.done); | 4793 | rcu_assign_pointer(rq->sd, sd); |
| 4593 | } | ||
| 4594 | } | 4794 | } |
| 4595 | 4795 | ||
| 4596 | /* cpus with isolated domains */ | 4796 | /* cpus with isolated domains */ |
| @@ -4622,7 +4822,7 @@ __setup ("isolcpus=", isolated_cpu_setup); | |||
| 4622 | * covered by the given span, and will set each group's ->cpumask correctly, | 4822 | * covered by the given span, and will set each group's ->cpumask correctly, |
| 4623 | * and ->cpu_power to 0. | 4823 | * and ->cpu_power to 0. |
| 4624 | */ | 4824 | */ |
| 4625 | void __devinit init_sched_build_groups(struct sched_group groups[], | 4825 | void init_sched_build_groups(struct sched_group groups[], |
| 4626 | cpumask_t span, int (*group_fn)(int cpu)) | 4826 | cpumask_t span, int (*group_fn)(int cpu)) |
| 4627 | { | 4827 | { |
| 4628 | struct sched_group *first = NULL, *last = NULL; | 4828 | struct sched_group *first = NULL, *last = NULL; |
| @@ -4658,13 +4858,14 @@ void __devinit init_sched_build_groups(struct sched_group groups[], | |||
| 4658 | 4858 | ||
| 4659 | 4859 | ||
| 4660 | #ifdef ARCH_HAS_SCHED_DOMAIN | 4860 | #ifdef ARCH_HAS_SCHED_DOMAIN |
| 4661 | extern void __devinit arch_init_sched_domains(void); | 4861 | extern void build_sched_domains(const cpumask_t *cpu_map); |
| 4662 | extern void __devinit arch_destroy_sched_domains(void); | 4862 | extern void arch_init_sched_domains(const cpumask_t *cpu_map); |
| 4863 | extern void arch_destroy_sched_domains(const cpumask_t *cpu_map); | ||
| 4663 | #else | 4864 | #else |
| 4664 | #ifdef CONFIG_SCHED_SMT | 4865 | #ifdef CONFIG_SCHED_SMT |
| 4665 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 4866 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); |
| 4666 | static struct sched_group sched_group_cpus[NR_CPUS]; | 4867 | static struct sched_group sched_group_cpus[NR_CPUS]; |
| 4667 | static int __devinit cpu_to_cpu_group(int cpu) | 4868 | static int cpu_to_cpu_group(int cpu) |
| 4668 | { | 4869 | { |
| 4669 | return cpu; | 4870 | return cpu; |
| 4670 | } | 4871 | } |
| @@ -4672,7 +4873,7 @@ static int __devinit cpu_to_cpu_group(int cpu) | |||
| 4672 | 4873 | ||
| 4673 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 4874 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
| 4674 | static struct sched_group sched_group_phys[NR_CPUS]; | 4875 | static struct sched_group sched_group_phys[NR_CPUS]; |
| 4675 | static int __devinit cpu_to_phys_group(int cpu) | 4876 | static int cpu_to_phys_group(int cpu) |
| 4676 | { | 4877 | { |
| 4677 | #ifdef CONFIG_SCHED_SMT | 4878 | #ifdef CONFIG_SCHED_SMT |
| 4678 | return first_cpu(cpu_sibling_map[cpu]); | 4879 | return first_cpu(cpu_sibling_map[cpu]); |
| @@ -4685,7 +4886,7 @@ static int __devinit cpu_to_phys_group(int cpu) | |||
| 4685 | 4886 | ||
| 4686 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 4887 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
| 4687 | static struct sched_group sched_group_nodes[MAX_NUMNODES]; | 4888 | static struct sched_group sched_group_nodes[MAX_NUMNODES]; |
| 4688 | static int __devinit cpu_to_node_group(int cpu) | 4889 | static int cpu_to_node_group(int cpu) |
| 4689 | { | 4890 | { |
| 4690 | return cpu_to_node(cpu); | 4891 | return cpu_to_node(cpu); |
| 4691 | } | 4892 | } |
| @@ -4716,39 +4917,28 @@ static void check_sibling_maps(void) | |||
| 4716 | #endif | 4917 | #endif |
| 4717 | 4918 | ||
| 4718 | /* | 4919 | /* |
| 4719 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 4920 | * Build sched domains for a given set of cpus and attach the sched domains |
| 4921 | * to the individual cpus | ||
| 4720 | */ | 4922 | */ |
| 4721 | static void __devinit arch_init_sched_domains(void) | 4923 | static void build_sched_domains(const cpumask_t *cpu_map) |
| 4722 | { | 4924 | { |
| 4723 | int i; | 4925 | int i; |
| 4724 | cpumask_t cpu_default_map; | ||
| 4725 | |||
| 4726 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | ||
| 4727 | check_sibling_maps(); | ||
| 4728 | #endif | ||
| 4729 | /* | ||
| 4730 | * Setup mask for cpus without special case scheduling requirements. | ||
| 4731 | * For now this just excludes isolated cpus, but could be used to | ||
| 4732 | * exclude other special cases in the future. | ||
| 4733 | */ | ||
| 4734 | cpus_complement(cpu_default_map, cpu_isolated_map); | ||
| 4735 | cpus_and(cpu_default_map, cpu_default_map, cpu_online_map); | ||
| 4736 | 4926 | ||
| 4737 | /* | 4927 | /* |
| 4738 | * Set up domains. Isolated domains just stay on the dummy domain. | 4928 | * Set up domains for cpus specified by the cpu_map. |
| 4739 | */ | 4929 | */ |
| 4740 | for_each_cpu_mask(i, cpu_default_map) { | 4930 | for_each_cpu_mask(i, *cpu_map) { |
| 4741 | int group; | 4931 | int group; |
| 4742 | struct sched_domain *sd = NULL, *p; | 4932 | struct sched_domain *sd = NULL, *p; |
| 4743 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 4933 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); |
| 4744 | 4934 | ||
| 4745 | cpus_and(nodemask, nodemask, cpu_default_map); | 4935 | cpus_and(nodemask, nodemask, *cpu_map); |
| 4746 | 4936 | ||
| 4747 | #ifdef CONFIG_NUMA | 4937 | #ifdef CONFIG_NUMA |
| 4748 | sd = &per_cpu(node_domains, i); | 4938 | sd = &per_cpu(node_domains, i); |
| 4749 | group = cpu_to_node_group(i); | 4939 | group = cpu_to_node_group(i); |
| 4750 | *sd = SD_NODE_INIT; | 4940 | *sd = SD_NODE_INIT; |
| 4751 | sd->span = cpu_default_map; | 4941 | sd->span = *cpu_map; |
| 4752 | sd->groups = &sched_group_nodes[group]; | 4942 | sd->groups = &sched_group_nodes[group]; |
| 4753 | #endif | 4943 | #endif |
| 4754 | 4944 | ||
| @@ -4766,7 +4956,7 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4766 | group = cpu_to_cpu_group(i); | 4956 | group = cpu_to_cpu_group(i); |
| 4767 | *sd = SD_SIBLING_INIT; | 4957 | *sd = SD_SIBLING_INIT; |
| 4768 | sd->span = cpu_sibling_map[i]; | 4958 | sd->span = cpu_sibling_map[i]; |
| 4769 | cpus_and(sd->span, sd->span, cpu_default_map); | 4959 | cpus_and(sd->span, sd->span, *cpu_map); |
| 4770 | sd->parent = p; | 4960 | sd->parent = p; |
| 4771 | sd->groups = &sched_group_cpus[group]; | 4961 | sd->groups = &sched_group_cpus[group]; |
| 4772 | #endif | 4962 | #endif |
| @@ -4776,7 +4966,7 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4776 | /* Set up CPU (sibling) groups */ | 4966 | /* Set up CPU (sibling) groups */ |
| 4777 | for_each_online_cpu(i) { | 4967 | for_each_online_cpu(i) { |
| 4778 | cpumask_t this_sibling_map = cpu_sibling_map[i]; | 4968 | cpumask_t this_sibling_map = cpu_sibling_map[i]; |
| 4779 | cpus_and(this_sibling_map, this_sibling_map, cpu_default_map); | 4969 | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); |
| 4780 | if (i != first_cpu(this_sibling_map)) | 4970 | if (i != first_cpu(this_sibling_map)) |
| 4781 | continue; | 4971 | continue; |
| 4782 | 4972 | ||
| @@ -4789,7 +4979,7 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4789 | for (i = 0; i < MAX_NUMNODES; i++) { | 4979 | for (i = 0; i < MAX_NUMNODES; i++) { |
| 4790 | cpumask_t nodemask = node_to_cpumask(i); | 4980 | cpumask_t nodemask = node_to_cpumask(i); |
| 4791 | 4981 | ||
| 4792 | cpus_and(nodemask, nodemask, cpu_default_map); | 4982 | cpus_and(nodemask, nodemask, *cpu_map); |
| 4793 | if (cpus_empty(nodemask)) | 4983 | if (cpus_empty(nodemask)) |
| 4794 | continue; | 4984 | continue; |
| 4795 | 4985 | ||
| @@ -4799,12 +4989,12 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4799 | 4989 | ||
| 4800 | #ifdef CONFIG_NUMA | 4990 | #ifdef CONFIG_NUMA |
| 4801 | /* Set up node groups */ | 4991 | /* Set up node groups */ |
| 4802 | init_sched_build_groups(sched_group_nodes, cpu_default_map, | 4992 | init_sched_build_groups(sched_group_nodes, *cpu_map, |
| 4803 | &cpu_to_node_group); | 4993 | &cpu_to_node_group); |
| 4804 | #endif | 4994 | #endif |
| 4805 | 4995 | ||
| 4806 | /* Calculate CPU power for physical packages and nodes */ | 4996 | /* Calculate CPU power for physical packages and nodes */ |
| 4807 | for_each_cpu_mask(i, cpu_default_map) { | 4997 | for_each_cpu_mask(i, *cpu_map) { |
| 4808 | int power; | 4998 | int power; |
| 4809 | struct sched_domain *sd; | 4999 | struct sched_domain *sd; |
| 4810 | #ifdef CONFIG_SCHED_SMT | 5000 | #ifdef CONFIG_SCHED_SMT |
| @@ -4828,7 +5018,7 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4828 | } | 5018 | } |
| 4829 | 5019 | ||
| 4830 | /* Attach the domains */ | 5020 | /* Attach the domains */ |
| 4831 | for_each_online_cpu(i) { | 5021 | for_each_cpu_mask(i, *cpu_map) { |
| 4832 | struct sched_domain *sd; | 5022 | struct sched_domain *sd; |
| 4833 | #ifdef CONFIG_SCHED_SMT | 5023 | #ifdef CONFIG_SCHED_SMT |
| 4834 | sd = &per_cpu(cpu_domains, i); | 5024 | sd = &per_cpu(cpu_domains, i); |
| @@ -4838,41 +5028,85 @@ static void __devinit arch_init_sched_domains(void) | |||
| 4838 | cpu_attach_domain(sd, i); | 5028 | cpu_attach_domain(sd, i); |
| 4839 | } | 5029 | } |
| 4840 | } | 5030 | } |
| 5031 | /* | ||
| 5032 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | ||
| 5033 | */ | ||
| 5034 | static void arch_init_sched_domains(cpumask_t *cpu_map) | ||
| 5035 | { | ||
| 5036 | cpumask_t cpu_default_map; | ||
| 5037 | |||
| 5038 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | ||
| 5039 | check_sibling_maps(); | ||
| 5040 | #endif | ||
| 5041 | /* | ||
| 5042 | * Setup mask for cpus without special case scheduling requirements. | ||
| 5043 | * For now this just excludes isolated cpus, but could be used to | ||
| 5044 | * exclude other special cases in the future. | ||
| 5045 | */ | ||
| 5046 | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | ||
| 5047 | |||
| 5048 | build_sched_domains(&cpu_default_map); | ||
| 5049 | } | ||
| 4841 | 5050 | ||
| 4842 | #ifdef CONFIG_HOTPLUG_CPU | 5051 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) |
| 4843 | static void __devinit arch_destroy_sched_domains(void) | ||
| 4844 | { | 5052 | { |
| 4845 | /* Do nothing: everything is statically allocated. */ | 5053 | /* Do nothing: everything is statically allocated. */ |
| 4846 | } | 5054 | } |
| 4847 | #endif | ||
| 4848 | 5055 | ||
| 4849 | #endif /* ARCH_HAS_SCHED_DOMAIN */ | 5056 | #endif /* ARCH_HAS_SCHED_DOMAIN */ |
| 4850 | 5057 | ||
| 4851 | /* | 5058 | /* |
| 4852 | * Initial dummy domain for early boot and for hotplug cpu. Being static, | 5059 | * Detach sched domains from a group of cpus specified in cpu_map |
| 4853 | * it is initialized to zero, so all balancing flags are cleared which is | 5060 | * These cpus will now be attached to the NULL domain |
| 4854 | * what we want. | ||
| 4855 | */ | 5061 | */ |
| 4856 | static struct sched_domain sched_domain_dummy; | 5062 | static inline void detach_destroy_domains(const cpumask_t *cpu_map) |
| 5063 | { | ||
| 5064 | int i; | ||
| 5065 | |||
| 5066 | for_each_cpu_mask(i, *cpu_map) | ||
| 5067 | cpu_attach_domain(NULL, i); | ||
| 5068 | synchronize_sched(); | ||
| 5069 | arch_destroy_sched_domains(cpu_map); | ||
| 5070 | } | ||
| 5071 | |||
| 5072 | /* | ||
| 5073 | * Partition sched domains as specified by the cpumasks below. | ||
| 5074 | * This attaches all cpus from the cpumasks to the NULL domain, | ||
| 5075 | * waits for a RCU quiescent period, recalculates sched | ||
| 5076 | * domain information and then attaches them back to the | ||
| 5077 | * correct sched domains | ||
| 5078 | * Call with hotplug lock held | ||
| 5079 | */ | ||
| 5080 | void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) | ||
| 5081 | { | ||
| 5082 | cpumask_t change_map; | ||
| 5083 | |||
| 5084 | cpus_and(*partition1, *partition1, cpu_online_map); | ||
| 5085 | cpus_and(*partition2, *partition2, cpu_online_map); | ||
| 5086 | cpus_or(change_map, *partition1, *partition2); | ||
| 5087 | |||
| 5088 | /* Detach sched domains from all of the affected cpus */ | ||
| 5089 | detach_destroy_domains(&change_map); | ||
| 5090 | if (!cpus_empty(*partition1)) | ||
| 5091 | build_sched_domains(partition1); | ||
| 5092 | if (!cpus_empty(*partition2)) | ||
| 5093 | build_sched_domains(partition2); | ||
| 5094 | } | ||
| 4857 | 5095 | ||
| 4858 | #ifdef CONFIG_HOTPLUG_CPU | 5096 | #ifdef CONFIG_HOTPLUG_CPU |
| 4859 | /* | 5097 | /* |
| 4860 | * Force a reinitialization of the sched domains hierarchy. The domains | 5098 | * Force a reinitialization of the sched domains hierarchy. The domains |
| 4861 | * and groups cannot be updated in place without racing with the balancing | 5099 | * and groups cannot be updated in place without racing with the balancing |
| 4862 | * code, so we temporarily attach all running cpus to a "dummy" domain | 5100 | * code, so we temporarily attach all running cpus to the NULL domain |
| 4863 | * which will prevent rebalancing while the sched domains are recalculated. | 5101 | * which will prevent rebalancing while the sched domains are recalculated. |
| 4864 | */ | 5102 | */ |
| 4865 | static int update_sched_domains(struct notifier_block *nfb, | 5103 | static int update_sched_domains(struct notifier_block *nfb, |
| 4866 | unsigned long action, void *hcpu) | 5104 | unsigned long action, void *hcpu) |
| 4867 | { | 5105 | { |
| 4868 | int i; | ||
| 4869 | |||
| 4870 | switch (action) { | 5106 | switch (action) { |
| 4871 | case CPU_UP_PREPARE: | 5107 | case CPU_UP_PREPARE: |
| 4872 | case CPU_DOWN_PREPARE: | 5108 | case CPU_DOWN_PREPARE: |
| 4873 | for_each_online_cpu(i) | 5109 | detach_destroy_domains(&cpu_online_map); |
| 4874 | cpu_attach_domain(&sched_domain_dummy, i); | ||
| 4875 | arch_destroy_sched_domains(); | ||
| 4876 | return NOTIFY_OK; | 5110 | return NOTIFY_OK; |
| 4877 | 5111 | ||
| 4878 | case CPU_UP_CANCELED: | 5112 | case CPU_UP_CANCELED: |
| @@ -4888,7 +5122,7 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
| 4888 | } | 5122 | } |
| 4889 | 5123 | ||
| 4890 | /* The hotplug lock is already held by cpu_up/cpu_down */ | 5124 | /* The hotplug lock is already held by cpu_up/cpu_down */ |
| 4891 | arch_init_sched_domains(); | 5125 | arch_init_sched_domains(&cpu_online_map); |
| 4892 | 5126 | ||
| 4893 | return NOTIFY_OK; | 5127 | return NOTIFY_OK; |
| 4894 | } | 5128 | } |
| @@ -4897,7 +5131,7 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
| 4897 | void __init sched_init_smp(void) | 5131 | void __init sched_init_smp(void) |
| 4898 | { | 5132 | { |
| 4899 | lock_cpu_hotplug(); | 5133 | lock_cpu_hotplug(); |
| 4900 | arch_init_sched_domains(); | 5134 | arch_init_sched_domains(&cpu_online_map); |
| 4901 | unlock_cpu_hotplug(); | 5135 | unlock_cpu_hotplug(); |
| 4902 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 5136 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
| 4903 | hotcpu_notifier(update_sched_domains, 0); | 5137 | hotcpu_notifier(update_sched_domains, 0); |
| @@ -4927,13 +5161,15 @@ void __init sched_init(void) | |||
| 4927 | 5161 | ||
| 4928 | rq = cpu_rq(i); | 5162 | rq = cpu_rq(i); |
| 4929 | spin_lock_init(&rq->lock); | 5163 | spin_lock_init(&rq->lock); |
| 5164 | rq->nr_running = 0; | ||
| 4930 | rq->active = rq->arrays; | 5165 | rq->active = rq->arrays; |
| 4931 | rq->expired = rq->arrays + 1; | 5166 | rq->expired = rq->arrays + 1; |
| 4932 | rq->best_expired_prio = MAX_PRIO; | 5167 | rq->best_expired_prio = MAX_PRIO; |
| 4933 | 5168 | ||
| 4934 | #ifdef CONFIG_SMP | 5169 | #ifdef CONFIG_SMP |
| 4935 | rq->sd = &sched_domain_dummy; | 5170 | rq->sd = NULL; |
| 4936 | rq->cpu_load = 0; | 5171 | for (j = 1; j < 3; j++) |
| 5172 | rq->cpu_load[j] = 0; | ||
| 4937 | rq->active_balance = 0; | 5173 | rq->active_balance = 0; |
| 4938 | rq->push_cpu = 0; | 5174 | rq->push_cpu = 0; |
| 4939 | rq->migration_thread = NULL; | 5175 | rq->migration_thread = NULL; |
diff --git a/kernel/signal.c b/kernel/signal.c index d1258729a5f9..ca1186eef938 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
| @@ -213,7 +213,7 @@ static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | |||
| 213 | fastcall void recalc_sigpending_tsk(struct task_struct *t) | 213 | fastcall void recalc_sigpending_tsk(struct task_struct *t) |
| 214 | { | 214 | { |
| 215 | if (t->signal->group_stop_count > 0 || | 215 | if (t->signal->group_stop_count > 0 || |
| 216 | (t->flags & PF_FREEZE) || | 216 | (freezing(t)) || |
| 217 | PENDING(&t->pending, &t->blocked) || | 217 | PENDING(&t->pending, &t->blocked) || |
| 218 | PENDING(&t->signal->shared_pending, &t->blocked)) | 218 | PENDING(&t->signal->shared_pending, &t->blocked)) |
| 219 | set_tsk_thread_flag(t, TIF_SIGPENDING); | 219 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| @@ -2231,8 +2231,7 @@ sys_rt_sigtimedwait(const sigset_t __user *uthese, | |||
| 2231 | current->state = TASK_INTERRUPTIBLE; | 2231 | current->state = TASK_INTERRUPTIBLE; |
| 2232 | timeout = schedule_timeout(timeout); | 2232 | timeout = schedule_timeout(timeout); |
| 2233 | 2233 | ||
| 2234 | if (current->flags & PF_FREEZE) | 2234 | try_to_freeze(); |
| 2235 | refrigerator(PF_FREEZE); | ||
| 2236 | spin_lock_irq(¤t->sighand->siglock); | 2235 | spin_lock_irq(¤t->sighand->siglock); |
| 2237 | sig = dequeue_signal(current, &these, &info); | 2236 | sig = dequeue_signal(current, &these, &info); |
| 2238 | current->blocked = current->real_blocked; | 2237 | current->blocked = current->real_blocked; |
diff --git a/kernel/sys.c b/kernel/sys.c index da24bc1292db..9a24374c23bc 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
| @@ -16,6 +16,8 @@ | |||
| 16 | #include <linux/init.h> | 16 | #include <linux/init.h> |
| 17 | #include <linux/highuid.h> | 17 | #include <linux/highuid.h> |
| 18 | #include <linux/fs.h> | 18 | #include <linux/fs.h> |
| 19 | #include <linux/kernel.h> | ||
| 20 | #include <linux/kexec.h> | ||
| 19 | #include <linux/workqueue.h> | 21 | #include <linux/workqueue.h> |
| 20 | #include <linux/device.h> | 22 | #include <linux/device.h> |
| 21 | #include <linux/key.h> | 23 | #include <linux/key.h> |
| @@ -405,6 +407,7 @@ asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user | |||
| 405 | case LINUX_REBOOT_CMD_HALT: | 407 | case LINUX_REBOOT_CMD_HALT: |
| 406 | notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); | 408 | notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); |
| 407 | system_state = SYSTEM_HALT; | 409 | system_state = SYSTEM_HALT; |
| 410 | device_suspend(PMSG_SUSPEND); | ||
| 408 | device_shutdown(); | 411 | device_shutdown(); |
| 409 | printk(KERN_EMERG "System halted.\n"); | 412 | printk(KERN_EMERG "System halted.\n"); |
| 410 | machine_halt(); | 413 | machine_halt(); |
| @@ -415,6 +418,7 @@ asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user | |||
| 415 | case LINUX_REBOOT_CMD_POWER_OFF: | 418 | case LINUX_REBOOT_CMD_POWER_OFF: |
| 416 | notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); | 419 | notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); |
| 417 | system_state = SYSTEM_POWER_OFF; | 420 | system_state = SYSTEM_POWER_OFF; |
| 421 | device_suspend(PMSG_SUSPEND); | ||
| 418 | device_shutdown(); | 422 | device_shutdown(); |
| 419 | printk(KERN_EMERG "Power down.\n"); | 423 | printk(KERN_EMERG "Power down.\n"); |
| 420 | machine_power_off(); | 424 | machine_power_off(); |
| @@ -431,11 +435,30 @@ asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user | |||
| 431 | 435 | ||
| 432 | notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer); | 436 | notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer); |
| 433 | system_state = SYSTEM_RESTART; | 437 | system_state = SYSTEM_RESTART; |
| 438 | device_suspend(PMSG_FREEZE); | ||
| 434 | device_shutdown(); | 439 | device_shutdown(); |
| 435 | printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer); | 440 | printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer); |
| 436 | machine_restart(buffer); | 441 | machine_restart(buffer); |
| 437 | break; | 442 | break; |
| 438 | 443 | ||
| 444 | #ifdef CONFIG_KEXEC | ||
| 445 | case LINUX_REBOOT_CMD_KEXEC: | ||
| 446 | { | ||
| 447 | struct kimage *image; | ||
| 448 | image = xchg(&kexec_image, 0); | ||
| 449 | if (!image) { | ||
| 450 | unlock_kernel(); | ||
| 451 | return -EINVAL; | ||
| 452 | } | ||
| 453 | notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); | ||
| 454 | system_state = SYSTEM_RESTART; | ||
| 455 | device_shutdown(); | ||
| 456 | printk(KERN_EMERG "Starting new kernel\n"); | ||
| 457 | machine_shutdown(); | ||
| 458 | machine_kexec(image); | ||
| 459 | break; | ||
| 460 | } | ||
| 461 | #endif | ||
| 439 | #ifdef CONFIG_SOFTWARE_SUSPEND | 462 | #ifdef CONFIG_SOFTWARE_SUSPEND |
| 440 | case LINUX_REBOOT_CMD_SW_SUSPEND: | 463 | case LINUX_REBOOT_CMD_SW_SUSPEND: |
| 441 | { | 464 | { |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 6f15bea7d1a8..29196ce9b40f 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
| @@ -18,6 +18,8 @@ cond_syscall(sys_acct); | |||
| 18 | cond_syscall(sys_lookup_dcookie); | 18 | cond_syscall(sys_lookup_dcookie); |
| 19 | cond_syscall(sys_swapon); | 19 | cond_syscall(sys_swapon); |
| 20 | cond_syscall(sys_swapoff); | 20 | cond_syscall(sys_swapoff); |
| 21 | cond_syscall(sys_kexec_load); | ||
| 22 | cond_syscall(compat_sys_kexec_load); | ||
| 21 | cond_syscall(sys_init_module); | 23 | cond_syscall(sys_init_module); |
| 22 | cond_syscall(sys_delete_module); | 24 | cond_syscall(sys_delete_module); |
| 23 | cond_syscall(sys_socketpair); | 25 | cond_syscall(sys_socketpair); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 24a4d12d5aa9..270ee7fadbd8 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
| @@ -1000,8 +1000,7 @@ int do_sysctl(int __user *name, int nlen, void __user *oldval, size_t __user *ol | |||
| 1000 | int error = parse_table(name, nlen, oldval, oldlenp, | 1000 | int error = parse_table(name, nlen, oldval, oldlenp, |
| 1001 | newval, newlen, head->ctl_table, | 1001 | newval, newlen, head->ctl_table, |
| 1002 | &context); | 1002 | &context); |
| 1003 | if (context) | 1003 | kfree(context); |
| 1004 | kfree(context); | ||
| 1005 | if (error != -ENOTDIR) | 1004 | if (error != -ENOTDIR) |
| 1006 | return error; | 1005 | return error; |
| 1007 | tmp = tmp->next; | 1006 | tmp = tmp->next; |
diff --git a/kernel/timer.c b/kernel/timer.c index 51ff917c9590..f2a11887a726 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -1597,7 +1597,7 @@ void msleep(unsigned int msecs) | |||
| 1597 | EXPORT_SYMBOL(msleep); | 1597 | EXPORT_SYMBOL(msleep); |
| 1598 | 1598 | ||
| 1599 | /** | 1599 | /** |
| 1600 | * msleep_interruptible - sleep waiting for waitqueue interruptions | 1600 | * msleep_interruptible - sleep waiting for signals |
| 1601 | * @msecs: Time in milliseconds to sleep for | 1601 | * @msecs: Time in milliseconds to sleep for |
| 1602 | */ | 1602 | */ |
| 1603 | unsigned long msleep_interruptible(unsigned int msecs) | 1603 | unsigned long msleep_interruptible(unsigned int msecs) |
