aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/sched.c189
-rw-r--r--kernel/sched_fair.c46
-rw-r--r--kernel/sched_features.h2
3 files changed, 180 insertions, 57 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 31e92aee6242..fde6ff903525 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -6589,7 +6589,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6589 break; 6589 break;
6590 } 6590 }
6591 6591
6592 if (!group->cpu_power) { 6592 if (!group->sgp->power) {
6593 printk(KERN_CONT "\n"); 6593 printk(KERN_CONT "\n");
6594 printk(KERN_ERR "ERROR: domain->cpu_power not " 6594 printk(KERN_ERR "ERROR: domain->cpu_power not "
6595 "set\n"); 6595 "set\n");
@@ -6613,9 +6613,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6613 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 6613 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6614 6614
6615 printk(KERN_CONT " %s", str); 6615 printk(KERN_CONT " %s", str);
6616 if (group->cpu_power != SCHED_POWER_SCALE) { 6616 if (group->sgp->power != SCHED_POWER_SCALE) {
6617 printk(KERN_CONT " (cpu_power = %d)", 6617 printk(KERN_CONT " (cpu_power = %d)",
6618 group->cpu_power); 6618 group->sgp->power);
6619 } 6619 }
6620 6620
6621 group = group->next; 6621 group = group->next;
@@ -6806,11 +6806,39 @@ static struct root_domain *alloc_rootdomain(void)
6806 return rd; 6806 return rd;
6807} 6807}
6808 6808
6809static void free_sched_groups(struct sched_group *sg, int free_sgp)
6810{
6811 struct sched_group *tmp, *first;
6812
6813 if (!sg)
6814 return;
6815
6816 first = sg;
6817 do {
6818 tmp = sg->next;
6819
6820 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6821 kfree(sg->sgp);
6822
6823 kfree(sg);
6824 sg = tmp;
6825 } while (sg != first);
6826}
6827
6809static void free_sched_domain(struct rcu_head *rcu) 6828static void free_sched_domain(struct rcu_head *rcu)
6810{ 6829{
6811 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 6830 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6812 if (atomic_dec_and_test(&sd->groups->ref)) 6831
6832 /*
6833 * If its an overlapping domain it has private groups, iterate and
6834 * nuke them all.
6835 */
6836 if (sd->flags & SD_OVERLAP) {
6837 free_sched_groups(sd->groups, 1);
6838 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6839 kfree(sd->groups->sgp);
6813 kfree(sd->groups); 6840 kfree(sd->groups);
6841 }
6814 kfree(sd); 6842 kfree(sd);
6815} 6843}
6816 6844
@@ -6977,6 +7005,7 @@ int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6977struct sd_data { 7005struct sd_data {
6978 struct sched_domain **__percpu sd; 7006 struct sched_domain **__percpu sd;
6979 struct sched_group **__percpu sg; 7007 struct sched_group **__percpu sg;
7008 struct sched_group_power **__percpu sgp;
6980}; 7009};
6981 7010
6982struct s_data { 7011struct s_data {
@@ -6996,15 +7025,73 @@ struct sched_domain_topology_level;
6996typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 7025typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6997typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 7026typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6998 7027
7028#define SDTL_OVERLAP 0x01
7029
6999struct sched_domain_topology_level { 7030struct sched_domain_topology_level {
7000 sched_domain_init_f init; 7031 sched_domain_init_f init;
7001 sched_domain_mask_f mask; 7032 sched_domain_mask_f mask;
7033 int flags;
7002 struct sd_data data; 7034 struct sd_data data;
7003}; 7035};
7004 7036
7005/* 7037static int
7006 * Assumes the sched_domain tree is fully constructed 7038build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7007 */ 7039{
7040 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7041 const struct cpumask *span = sched_domain_span(sd);
7042 struct cpumask *covered = sched_domains_tmpmask;
7043 struct sd_data *sdd = sd->private;
7044 struct sched_domain *child;
7045 int i;
7046
7047 cpumask_clear(covered);
7048
7049 for_each_cpu(i, span) {
7050 struct cpumask *sg_span;
7051
7052 if (cpumask_test_cpu(i, covered))
7053 continue;
7054
7055 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7056 GFP_KERNEL, cpu_to_node(i));
7057
7058 if (!sg)
7059 goto fail;
7060
7061 sg_span = sched_group_cpus(sg);
7062
7063 child = *per_cpu_ptr(sdd->sd, i);
7064 if (child->child) {
7065 child = child->child;
7066 cpumask_copy(sg_span, sched_domain_span(child));
7067 } else
7068 cpumask_set_cpu(i, sg_span);
7069
7070 cpumask_or(covered, covered, sg_span);
7071
7072 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7073 atomic_inc(&sg->sgp->ref);
7074
7075 if (cpumask_test_cpu(cpu, sg_span))
7076 groups = sg;
7077
7078 if (!first)
7079 first = sg;
7080 if (last)
7081 last->next = sg;
7082 last = sg;
7083 last->next = first;
7084 }
7085 sd->groups = groups;
7086
7087 return 0;
7088
7089fail:
7090 free_sched_groups(first, 0);
7091
7092 return -ENOMEM;
7093}
7094
7008static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 7095static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7009{ 7096{
7010 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 7097 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
@@ -7013,24 +7100,24 @@ static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7013 if (child) 7100 if (child)
7014 cpu = cpumask_first(sched_domain_span(child)); 7101 cpu = cpumask_first(sched_domain_span(child));
7015 7102
7016 if (sg) 7103 if (sg) {
7017 *sg = *per_cpu_ptr(sdd->sg, cpu); 7104 *sg = *per_cpu_ptr(sdd->sg, cpu);
7105 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7106 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7107 }
7018 7108
7019 return cpu; 7109 return cpu;
7020} 7110}
7021 7111
7022/* 7112/*
7023 * build_sched_groups takes the cpumask we wish to span, and a pointer
7024 * to a function which identifies what group(along with sched group) a CPU
7025 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7026 * (due to the fact that we keep track of groups covered with a struct cpumask).
7027 *
7028 * build_sched_groups will build a circular linked list of the groups 7113 * build_sched_groups will build a circular linked list of the groups
7029 * covered by the given span, and will set each group's ->cpumask correctly, 7114 * covered by the given span, and will set each group's ->cpumask correctly,
7030 * and ->cpu_power to 0. 7115 * and ->cpu_power to 0.
7116 *
7117 * Assumes the sched_domain tree is fully constructed
7031 */ 7118 */
7032static void 7119static int
7033build_sched_groups(struct sched_domain *sd) 7120build_sched_groups(struct sched_domain *sd, int cpu)
7034{ 7121{
7035 struct sched_group *first = NULL, *last = NULL; 7122 struct sched_group *first = NULL, *last = NULL;
7036 struct sd_data *sdd = sd->private; 7123 struct sd_data *sdd = sd->private;
@@ -7038,6 +7125,12 @@ build_sched_groups(struct sched_domain *sd)
7038 struct cpumask *covered; 7125 struct cpumask *covered;
7039 int i; 7126 int i;
7040 7127
7128 get_group(cpu, sdd, &sd->groups);
7129 atomic_inc(&sd->groups->ref);
7130
7131 if (cpu != cpumask_first(sched_domain_span(sd)))
7132 return 0;
7133
7041 lockdep_assert_held(&sched_domains_mutex); 7134 lockdep_assert_held(&sched_domains_mutex);
7042 covered = sched_domains_tmpmask; 7135 covered = sched_domains_tmpmask;
7043 7136
@@ -7052,7 +7145,7 @@ build_sched_groups(struct sched_domain *sd)
7052 continue; 7145 continue;
7053 7146
7054 cpumask_clear(sched_group_cpus(sg)); 7147 cpumask_clear(sched_group_cpus(sg));
7055 sg->cpu_power = 0; 7148 sg->sgp->power = 0;
7056 7149
7057 for_each_cpu(j, span) { 7150 for_each_cpu(j, span) {
7058 if (get_group(j, sdd, NULL) != group) 7151 if (get_group(j, sdd, NULL) != group)
@@ -7069,6 +7162,8 @@ build_sched_groups(struct sched_domain *sd)
7069 last = sg; 7162 last = sg;
7070 } 7163 }
7071 last->next = first; 7164 last->next = first;
7165
7166 return 0;
7072} 7167}
7073 7168
7074/* 7169/*
@@ -7083,12 +7178,17 @@ build_sched_groups(struct sched_domain *sd)
7083 */ 7178 */
7084static void init_sched_groups_power(int cpu, struct sched_domain *sd) 7179static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7085{ 7180{
7086 WARN_ON(!sd || !sd->groups); 7181 struct sched_group *sg = sd->groups;
7087 7182
7088 if (cpu != group_first_cpu(sd->groups)) 7183 WARN_ON(!sd || !sg);
7089 return;
7090 7184
7091 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups)); 7185 do {
7186 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7187 sg = sg->next;
7188 } while (sg != sd->groups);
7189
7190 if (cpu != group_first_cpu(sg))
7191 return;
7092 7192
7093 update_group_power(sd, cpu); 7193 update_group_power(sd, cpu);
7094} 7194}
@@ -7209,15 +7309,15 @@ static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7209static void claim_allocations(int cpu, struct sched_domain *sd) 7309static void claim_allocations(int cpu, struct sched_domain *sd)
7210{ 7310{
7211 struct sd_data *sdd = sd->private; 7311 struct sd_data *sdd = sd->private;
7212 struct sched_group *sg = sd->groups;
7213 7312
7214 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 7313 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7215 *per_cpu_ptr(sdd->sd, cpu) = NULL; 7314 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7216 7315
7217 if (cpu == cpumask_first(sched_group_cpus(sg))) { 7316 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7218 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7219 *per_cpu_ptr(sdd->sg, cpu) = NULL; 7317 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7220 } 7318
7319 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7320 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7221} 7321}
7222 7322
7223#ifdef CONFIG_SCHED_SMT 7323#ifdef CONFIG_SCHED_SMT
@@ -7242,7 +7342,7 @@ static struct sched_domain_topology_level default_topology[] = {
7242#endif 7342#endif
7243 { sd_init_CPU, cpu_cpu_mask, }, 7343 { sd_init_CPU, cpu_cpu_mask, },
7244#ifdef CONFIG_NUMA 7344#ifdef CONFIG_NUMA
7245 { sd_init_NODE, cpu_node_mask, }, 7345 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7246 { sd_init_ALLNODES, cpu_allnodes_mask, }, 7346 { sd_init_ALLNODES, cpu_allnodes_mask, },
7247#endif 7347#endif
7248 { NULL, }, 7348 { NULL, },
@@ -7266,9 +7366,14 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
7266 if (!sdd->sg) 7366 if (!sdd->sg)
7267 return -ENOMEM; 7367 return -ENOMEM;
7268 7368
7369 sdd->sgp = alloc_percpu(struct sched_group_power *);
7370 if (!sdd->sgp)
7371 return -ENOMEM;
7372
7269 for_each_cpu(j, cpu_map) { 7373 for_each_cpu(j, cpu_map) {
7270 struct sched_domain *sd; 7374 struct sched_domain *sd;
7271 struct sched_group *sg; 7375 struct sched_group *sg;
7376 struct sched_group_power *sgp;
7272 7377
7273 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 7378 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7274 GFP_KERNEL, cpu_to_node(j)); 7379 GFP_KERNEL, cpu_to_node(j));
@@ -7283,6 +7388,13 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
7283 return -ENOMEM; 7388 return -ENOMEM;
7284 7389
7285 *per_cpu_ptr(sdd->sg, j) = sg; 7390 *per_cpu_ptr(sdd->sg, j) = sg;
7391
7392 sgp = kzalloc_node(sizeof(struct sched_group_power),
7393 GFP_KERNEL, cpu_to_node(j));
7394 if (!sgp)
7395 return -ENOMEM;
7396
7397 *per_cpu_ptr(sdd->sgp, j) = sgp;
7286 } 7398 }
7287 } 7399 }
7288 7400
@@ -7298,11 +7410,15 @@ static void __sdt_free(const struct cpumask *cpu_map)
7298 struct sd_data *sdd = &tl->data; 7410 struct sd_data *sdd = &tl->data;
7299 7411
7300 for_each_cpu(j, cpu_map) { 7412 for_each_cpu(j, cpu_map) {
7301 kfree(*per_cpu_ptr(sdd->sd, j)); 7413 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7414 if (sd && (sd->flags & SD_OVERLAP))
7415 free_sched_groups(sd->groups, 0);
7302 kfree(*per_cpu_ptr(sdd->sg, j)); 7416 kfree(*per_cpu_ptr(sdd->sg, j));
7417 kfree(*per_cpu_ptr(sdd->sgp, j));
7303 } 7418 }
7304 free_percpu(sdd->sd); 7419 free_percpu(sdd->sd);
7305 free_percpu(sdd->sg); 7420 free_percpu(sdd->sg);
7421 free_percpu(sdd->sgp);
7306 } 7422 }
7307} 7423}
7308 7424
@@ -7348,8 +7464,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
7348 struct sched_domain_topology_level *tl; 7464 struct sched_domain_topology_level *tl;
7349 7465
7350 sd = NULL; 7466 sd = NULL;
7351 for (tl = sched_domain_topology; tl->init; tl++) 7467 for (tl = sched_domain_topology; tl->init; tl++) {
7352 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 7468 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7469 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7470 sd->flags |= SD_OVERLAP;
7471 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7472 break;
7473 }
7353 7474
7354 while (sd->child) 7475 while (sd->child)
7355 sd = sd->child; 7476 sd = sd->child;
@@ -7361,13 +7482,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
7361 for_each_cpu(i, cpu_map) { 7482 for_each_cpu(i, cpu_map) {
7362 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7483 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7363 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 7484 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7364 get_group(i, sd->private, &sd->groups); 7485 if (sd->flags & SD_OVERLAP) {
7365 atomic_inc(&sd->groups->ref); 7486 if (build_overlap_sched_groups(sd, i))
7366 7487 goto error;
7367 if (i != cpumask_first(sched_domain_span(sd))) 7488 } else {
7368 continue; 7489 if (build_sched_groups(sd, i))
7369 7490 goto error;
7370 build_sched_groups(sd); 7491 }
7371 } 7492 }
7372 } 7493 }
7373 7494
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 433491c2dc8f..c768588e180b 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -1585,7 +1585,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1585 } 1585 }
1586 1586
1587 /* Adjust by relative CPU power of the group */ 1587 /* Adjust by relative CPU power of the group */
1588 avg_load = (avg_load * SCHED_POWER_SCALE) / group->cpu_power; 1588 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1589 1589
1590 if (local_group) { 1590 if (local_group) {
1591 this_load = avg_load; 1591 this_load = avg_load;
@@ -2631,7 +2631,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
2631 power >>= SCHED_POWER_SHIFT; 2631 power >>= SCHED_POWER_SHIFT;
2632 } 2632 }
2633 2633
2634 sdg->cpu_power_orig = power; 2634 sdg->sgp->power_orig = power;
2635 2635
2636 if (sched_feat(ARCH_POWER)) 2636 if (sched_feat(ARCH_POWER))
2637 power *= arch_scale_freq_power(sd, cpu); 2637 power *= arch_scale_freq_power(sd, cpu);
@@ -2647,7 +2647,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
2647 power = 1; 2647 power = 1;
2648 2648
2649 cpu_rq(cpu)->cpu_power = power; 2649 cpu_rq(cpu)->cpu_power = power;
2650 sdg->cpu_power = power; 2650 sdg->sgp->power = power;
2651} 2651}
2652 2652
2653static void update_group_power(struct sched_domain *sd, int cpu) 2653static void update_group_power(struct sched_domain *sd, int cpu)
@@ -2665,11 +2665,11 @@ static void update_group_power(struct sched_domain *sd, int cpu)
2665 2665
2666 group = child->groups; 2666 group = child->groups;
2667 do { 2667 do {
2668 power += group->cpu_power; 2668 power += group->sgp->power;
2669 group = group->next; 2669 group = group->next;
2670 } while (group != child->groups); 2670 } while (group != child->groups);
2671 2671
2672 sdg->cpu_power = power; 2672 sdg->sgp->power = power;
2673} 2673}
2674 2674
2675/* 2675/*
@@ -2691,7 +2691,7 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2691 /* 2691 /*
2692 * If ~90% of the cpu_power is still there, we're good. 2692 * If ~90% of the cpu_power is still there, we're good.
2693 */ 2693 */
2694 if (group->cpu_power * 32 > group->cpu_power_orig * 29) 2694 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
2695 return 1; 2695 return 1;
2696 2696
2697 return 0; 2697 return 0;
@@ -2771,7 +2771,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
2771 } 2771 }
2772 2772
2773 /* Adjust by relative CPU power of the group */ 2773 /* Adjust by relative CPU power of the group */
2774 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->cpu_power; 2774 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
2775 2775
2776 /* 2776 /*
2777 * Consider the group unbalanced when the imbalance is larger 2777 * Consider the group unbalanced when the imbalance is larger
@@ -2788,7 +2788,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
2788 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) 2788 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2789 sgs->group_imb = 1; 2789 sgs->group_imb = 1;
2790 2790
2791 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, 2791 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
2792 SCHED_POWER_SCALE); 2792 SCHED_POWER_SCALE);
2793 if (!sgs->group_capacity) 2793 if (!sgs->group_capacity)
2794 sgs->group_capacity = fix_small_capacity(sd, group); 2794 sgs->group_capacity = fix_small_capacity(sd, group);
@@ -2877,7 +2877,7 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2877 return; 2877 return;
2878 2878
2879 sds->total_load += sgs.group_load; 2879 sds->total_load += sgs.group_load;
2880 sds->total_pwr += sg->cpu_power; 2880 sds->total_pwr += sg->sgp->power;
2881 2881
2882 /* 2882 /*
2883 * In case the child domain prefers tasks go to siblings 2883 * In case the child domain prefers tasks go to siblings
@@ -2962,7 +2962,7 @@ static int check_asym_packing(struct sched_domain *sd,
2962 if (this_cpu > busiest_cpu) 2962 if (this_cpu > busiest_cpu)
2963 return 0; 2963 return 0;
2964 2964
2965 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power, 2965 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
2966 SCHED_POWER_SCALE); 2966 SCHED_POWER_SCALE);
2967 return 1; 2967 return 1;
2968} 2968}
@@ -2993,7 +2993,7 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2993 2993
2994 scaled_busy_load_per_task = sds->busiest_load_per_task 2994 scaled_busy_load_per_task = sds->busiest_load_per_task
2995 * SCHED_POWER_SCALE; 2995 * SCHED_POWER_SCALE;
2996 scaled_busy_load_per_task /= sds->busiest->cpu_power; 2996 scaled_busy_load_per_task /= sds->busiest->sgp->power;
2997 2997
2998 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 2998 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2999 (scaled_busy_load_per_task * imbn)) { 2999 (scaled_busy_load_per_task * imbn)) {
@@ -3007,28 +3007,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3007 * moving them. 3007 * moving them.
3008 */ 3008 */
3009 3009
3010 pwr_now += sds->busiest->cpu_power * 3010 pwr_now += sds->busiest->sgp->power *
3011 min(sds->busiest_load_per_task, sds->max_load); 3011 min(sds->busiest_load_per_task, sds->max_load);
3012 pwr_now += sds->this->cpu_power * 3012 pwr_now += sds->this->sgp->power *
3013 min(sds->this_load_per_task, sds->this_load); 3013 min(sds->this_load_per_task, sds->this_load);
3014 pwr_now /= SCHED_POWER_SCALE; 3014 pwr_now /= SCHED_POWER_SCALE;
3015 3015
3016 /* Amount of load we'd subtract */ 3016 /* Amount of load we'd subtract */
3017 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3017 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3018 sds->busiest->cpu_power; 3018 sds->busiest->sgp->power;
3019 if (sds->max_load > tmp) 3019 if (sds->max_load > tmp)
3020 pwr_move += sds->busiest->cpu_power * 3020 pwr_move += sds->busiest->sgp->power *
3021 min(sds->busiest_load_per_task, sds->max_load - tmp); 3021 min(sds->busiest_load_per_task, sds->max_load - tmp);
3022 3022
3023 /* Amount of load we'd add */ 3023 /* Amount of load we'd add */
3024 if (sds->max_load * sds->busiest->cpu_power < 3024 if (sds->max_load * sds->busiest->sgp->power <
3025 sds->busiest_load_per_task * SCHED_POWER_SCALE) 3025 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3026 tmp = (sds->max_load * sds->busiest->cpu_power) / 3026 tmp = (sds->max_load * sds->busiest->sgp->power) /
3027 sds->this->cpu_power; 3027 sds->this->sgp->power;
3028 else 3028 else
3029 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3029 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3030 sds->this->cpu_power; 3030 sds->this->sgp->power;
3031 pwr_move += sds->this->cpu_power * 3031 pwr_move += sds->this->sgp->power *
3032 min(sds->this_load_per_task, sds->this_load + tmp); 3032 min(sds->this_load_per_task, sds->this_load + tmp);
3033 pwr_move /= SCHED_POWER_SCALE; 3033 pwr_move /= SCHED_POWER_SCALE;
3034 3034
@@ -3074,7 +3074,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3074 3074
3075 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 3075 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3076 3076
3077 load_above_capacity /= sds->busiest->cpu_power; 3077 load_above_capacity /= sds->busiest->sgp->power;
3078 } 3078 }
3079 3079
3080 /* 3080 /*
@@ -3090,8 +3090,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3090 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 3090 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3091 3091
3092 /* How much load to actually move to equalise the imbalance */ 3092 /* How much load to actually move to equalise the imbalance */
3093 *imbalance = min(max_pull * sds->busiest->cpu_power, 3093 *imbalance = min(max_pull * sds->busiest->sgp->power,
3094 (sds->avg_load - sds->this_load) * sds->this->cpu_power) 3094 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3095 / SCHED_POWER_SCALE; 3095 / SCHED_POWER_SCALE;
3096 3096
3097 /* 3097 /*
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index be40f7371ee1..1e7066d76c26 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -70,3 +70,5 @@ SCHED_FEAT(NONIRQ_POWER, 1)
70 * using the scheduler IPI. Reduces rq->lock contention/bounces. 70 * using the scheduler IPI. Reduces rq->lock contention/bounces.
71 */ 71 */
72SCHED_FEAT(TTWU_QUEUE, 1) 72SCHED_FEAT(TTWU_QUEUE, 1)
73
74SCHED_FEAT(FORCE_SD_OVERLAP, 0)