diff options
Diffstat (limited to 'kernel')
67 files changed, 3674 insertions, 3455 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 3d9c7e27e3f9..b8d4cd8ac0b9 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -58,7 +58,6 @@ obj-$(CONFIG_KEXEC) += kexec.o | |||
58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o | 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o |
59 | obj-$(CONFIG_COMPAT) += compat.o | 59 | obj-$(CONFIG_COMPAT) += compat.o |
60 | obj-$(CONFIG_CGROUPS) += cgroup.o | 60 | obj-$(CONFIG_CGROUPS) += cgroup.o |
61 | obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o | ||
62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o | 61 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o |
63 | obj-$(CONFIG_CPUSETS) += cpuset.o | 62 | obj-$(CONFIG_CPUSETS) += cpuset.o |
64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o | 63 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o |
@@ -87,7 +86,6 @@ obj-$(CONFIG_RELAY) += relay.o | |||
87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 86 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 87 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 88 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
90 | obj-$(CONFIG_MARKERS) += marker.o | ||
91 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 89 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
92 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 90 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 91 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
@@ -96,7 +94,7 @@ obj-$(CONFIG_X86_DS) += trace/ | |||
96 | obj-$(CONFIG_RING_BUFFER) += trace/ | 94 | obj-$(CONFIG_RING_BUFFER) += trace/ |
97 | obj-$(CONFIG_SMP) += sched_cpupri.o | 95 | obj-$(CONFIG_SMP) += sched_cpupri.o |
98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 96 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
99 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 97 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
100 | 98 | ||
101 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
102 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/audit.c b/kernel/audit.c index defc2e6f1e3b..5feed232be9d 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
@@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
855 | break; | 855 | break; |
856 | } | 856 | } |
857 | case AUDIT_SIGNAL_INFO: | 857 | case AUDIT_SIGNAL_INFO: |
858 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 858 | len = 0; |
859 | if (err) | 859 | if (audit_sig_sid) { |
860 | return err; | 860 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
861 | if (err) | ||
862 | return err; | ||
863 | } | ||
861 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 864 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
862 | if (!sig_data) { | 865 | if (!sig_data) { |
863 | security_release_secctx(ctx, len); | 866 | if (audit_sig_sid) |
867 | security_release_secctx(ctx, len); | ||
864 | return -ENOMEM; | 868 | return -ENOMEM; |
865 | } | 869 | } |
866 | sig_data->uid = audit_sig_uid; | 870 | sig_data->uid = audit_sig_uid; |
867 | sig_data->pid = audit_sig_pid; | 871 | sig_data->pid = audit_sig_pid; |
868 | memcpy(sig_data->ctx, ctx, len); | 872 | if (audit_sig_sid) { |
869 | security_release_secctx(ctx, len); | 873 | memcpy(sig_data->ctx, ctx, len); |
874 | security_release_secctx(ctx, len); | ||
875 | } | ||
870 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 876 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
871 | 0, 0, sig_data, sizeof(*sig_data) + len); | 877 | 0, 0, sig_data, sizeof(*sig_data) + len); |
872 | kfree(sig_data); | 878 | kfree(sig_data); |
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c index 0e96dbc60ea9..cc7e87936cbc 100644 --- a/kernel/audit_watch.c +++ b/kernel/audit_watch.c | |||
@@ -45,8 +45,8 @@ | |||
45 | 45 | ||
46 | struct audit_watch { | 46 | struct audit_watch { |
47 | atomic_t count; /* reference count */ | 47 | atomic_t count; /* reference count */ |
48 | char *path; /* insertion path */ | ||
49 | dev_t dev; /* associated superblock device */ | 48 | dev_t dev; /* associated superblock device */ |
49 | char *path; /* insertion path */ | ||
50 | unsigned long ino; /* associated inode number */ | 50 | unsigned long ino; /* associated inode number */ |
51 | struct audit_parent *parent; /* associated parent */ | 51 | struct audit_parent *parent; /* associated parent */ |
52 | struct list_head wlist; /* entry in parent->watches list */ | 52 | struct list_head wlist; /* entry in parent->watches list */ |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 68d3c6a0ecd6..267e484f0198 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
@@ -168,12 +168,12 @@ struct audit_context { | |||
168 | int in_syscall; /* 1 if task is in a syscall */ | 168 | int in_syscall; /* 1 if task is in a syscall */ |
169 | enum audit_state state, current_state; | 169 | enum audit_state state, current_state; |
170 | unsigned int serial; /* serial number for record */ | 170 | unsigned int serial; /* serial number for record */ |
171 | struct timespec ctime; /* time of syscall entry */ | ||
172 | int major; /* syscall number */ | 171 | int major; /* syscall number */ |
172 | struct timespec ctime; /* time of syscall entry */ | ||
173 | unsigned long argv[4]; /* syscall arguments */ | 173 | unsigned long argv[4]; /* syscall arguments */ |
174 | int return_valid; /* return code is valid */ | ||
175 | long return_code;/* syscall return code */ | 174 | long return_code;/* syscall return code */ |
176 | u64 prio; | 175 | u64 prio; |
176 | int return_valid; /* return code is valid */ | ||
177 | int name_count; | 177 | int name_count; |
178 | struct audit_names names[AUDIT_NAMES]; | 178 | struct audit_names names[AUDIT_NAMES]; |
179 | char * filterkey; /* key for rule that triggered record */ | 179 | char * filterkey; /* key for rule that triggered record */ |
@@ -198,8 +198,8 @@ struct audit_context { | |||
198 | char target_comm[TASK_COMM_LEN]; | 198 | char target_comm[TASK_COMM_LEN]; |
199 | 199 | ||
200 | struct audit_tree_refs *trees, *first_trees; | 200 | struct audit_tree_refs *trees, *first_trees; |
201 | int tree_count; | ||
202 | struct list_head killed_trees; | 201 | struct list_head killed_trees; |
202 | int tree_count; | ||
203 | 203 | ||
204 | int type; | 204 | int type; |
205 | union { | 205 | union { |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index c7ece8f027f2..7ccba4bc5e3b 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -23,6 +23,7 @@ | |||
23 | */ | 23 | */ |
24 | 24 | ||
25 | #include <linux/cgroup.h> | 25 | #include <linux/cgroup.h> |
26 | #include <linux/ctype.h> | ||
26 | #include <linux/errno.h> | 27 | #include <linux/errno.h> |
27 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
28 | #include <linux/kernel.h> | 29 | #include <linux/kernel.h> |
@@ -48,6 +49,8 @@ | |||
48 | #include <linux/namei.h> | 49 | #include <linux/namei.h> |
49 | #include <linux/smp_lock.h> | 50 | #include <linux/smp_lock.h> |
50 | #include <linux/pid_namespace.h> | 51 | #include <linux/pid_namespace.h> |
52 | #include <linux/idr.h> | ||
53 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | ||
51 | 54 | ||
52 | #include <asm/atomic.h> | 55 | #include <asm/atomic.h> |
53 | 56 | ||
@@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = { | |||
60 | #include <linux/cgroup_subsys.h> | 63 | #include <linux/cgroup_subsys.h> |
61 | }; | 64 | }; |
62 | 65 | ||
66 | #define MAX_CGROUP_ROOT_NAMELEN 64 | ||
67 | |||
63 | /* | 68 | /* |
64 | * A cgroupfs_root represents the root of a cgroup hierarchy, | 69 | * A cgroupfs_root represents the root of a cgroup hierarchy, |
65 | * and may be associated with a superblock to form an active | 70 | * and may be associated with a superblock to form an active |
@@ -74,6 +79,9 @@ struct cgroupfs_root { | |||
74 | */ | 79 | */ |
75 | unsigned long subsys_bits; | 80 | unsigned long subsys_bits; |
76 | 81 | ||
82 | /* Unique id for this hierarchy. */ | ||
83 | int hierarchy_id; | ||
84 | |||
77 | /* The bitmask of subsystems currently attached to this hierarchy */ | 85 | /* The bitmask of subsystems currently attached to this hierarchy */ |
78 | unsigned long actual_subsys_bits; | 86 | unsigned long actual_subsys_bits; |
79 | 87 | ||
@@ -94,6 +102,9 @@ struct cgroupfs_root { | |||
94 | 102 | ||
95 | /* The path to use for release notifications. */ | 103 | /* The path to use for release notifications. */ |
96 | char release_agent_path[PATH_MAX]; | 104 | char release_agent_path[PATH_MAX]; |
105 | |||
106 | /* The name for this hierarchy - may be empty */ | ||
107 | char name[MAX_CGROUP_ROOT_NAMELEN]; | ||
97 | }; | 108 | }; |
98 | 109 | ||
99 | /* | 110 | /* |
@@ -141,6 +152,10 @@ struct css_id { | |||
141 | static LIST_HEAD(roots); | 152 | static LIST_HEAD(roots); |
142 | static int root_count; | 153 | static int root_count; |
143 | 154 | ||
155 | static DEFINE_IDA(hierarchy_ida); | ||
156 | static int next_hierarchy_id; | ||
157 | static DEFINE_SPINLOCK(hierarchy_id_lock); | ||
158 | |||
144 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 159 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
145 | #define dummytop (&rootnode.top_cgroup) | 160 | #define dummytop (&rootnode.top_cgroup) |
146 | 161 | ||
@@ -201,6 +216,7 @@ struct cg_cgroup_link { | |||
201 | * cgroup, anchored on cgroup->css_sets | 216 | * cgroup, anchored on cgroup->css_sets |
202 | */ | 217 | */ |
203 | struct list_head cgrp_link_list; | 218 | struct list_head cgrp_link_list; |
219 | struct cgroup *cgrp; | ||
204 | /* | 220 | /* |
205 | * List running through cg_cgroup_links pointing at a | 221 | * List running through cg_cgroup_links pointing at a |
206 | * single css_set object, anchored on css_set->cg_links | 222 | * single css_set object, anchored on css_set->cg_links |
@@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | |||
227 | static DEFINE_RWLOCK(css_set_lock); | 243 | static DEFINE_RWLOCK(css_set_lock); |
228 | static int css_set_count; | 244 | static int css_set_count; |
229 | 245 | ||
230 | /* hash table for cgroup groups. This improves the performance to | 246 | /* |
231 | * find an existing css_set */ | 247 | * hash table for cgroup groups. This improves the performance to find |
248 | * an existing css_set. This hash doesn't (currently) take into | ||
249 | * account cgroups in empty hierarchies. | ||
250 | */ | ||
232 | #define CSS_SET_HASH_BITS 7 | 251 | #define CSS_SET_HASH_BITS 7 |
233 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | 252 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
234 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 253 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
@@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |||
248 | return &css_set_table[index]; | 267 | return &css_set_table[index]; |
249 | } | 268 | } |
250 | 269 | ||
270 | static void free_css_set_rcu(struct rcu_head *obj) | ||
271 | { | ||
272 | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | ||
273 | kfree(cg); | ||
274 | } | ||
275 | |||
251 | /* We don't maintain the lists running through each css_set to its | 276 | /* We don't maintain the lists running through each css_set to its |
252 | * task until after the first call to cgroup_iter_start(). This | 277 | * task until after the first call to cgroup_iter_start(). This |
253 | * reduces the fork()/exit() overhead for people who have cgroups | 278 | * reduces the fork()/exit() overhead for people who have cgroups |
254 | * compiled into their kernel but not actually in use */ | 279 | * compiled into their kernel but not actually in use */ |
255 | static int use_task_css_set_links __read_mostly; | 280 | static int use_task_css_set_links __read_mostly; |
256 | 281 | ||
257 | /* When we create or destroy a css_set, the operation simply | 282 | static void __put_css_set(struct css_set *cg, int taskexit) |
258 | * takes/releases a reference count on all the cgroups referenced | ||
259 | * by subsystems in this css_set. This can end up multiple-counting | ||
260 | * some cgroups, but that's OK - the ref-count is just a | ||
261 | * busy/not-busy indicator; ensuring that we only count each cgroup | ||
262 | * once would require taking a global lock to ensure that no | ||
263 | * subsystems moved between hierarchies while we were doing so. | ||
264 | * | ||
265 | * Possible TODO: decide at boot time based on the number of | ||
266 | * registered subsystems and the number of CPUs or NUMA nodes whether | ||
267 | * it's better for performance to ref-count every subsystem, or to | ||
268 | * take a global lock and only add one ref count to each hierarchy. | ||
269 | */ | ||
270 | |||
271 | /* | ||
272 | * unlink a css_set from the list and free it | ||
273 | */ | ||
274 | static void unlink_css_set(struct css_set *cg) | ||
275 | { | 283 | { |
276 | struct cg_cgroup_link *link; | 284 | struct cg_cgroup_link *link; |
277 | struct cg_cgroup_link *saved_link; | 285 | struct cg_cgroup_link *saved_link; |
278 | |||
279 | hlist_del(&cg->hlist); | ||
280 | css_set_count--; | ||
281 | |||
282 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
283 | cg_link_list) { | ||
284 | list_del(&link->cg_link_list); | ||
285 | list_del(&link->cgrp_link_list); | ||
286 | kfree(link); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | static void __put_css_set(struct css_set *cg, int taskexit) | ||
291 | { | ||
292 | int i; | ||
293 | /* | 286 | /* |
294 | * Ensure that the refcount doesn't hit zero while any readers | 287 | * Ensure that the refcount doesn't hit zero while any readers |
295 | * can see it. Similar to atomic_dec_and_lock(), but for an | 288 | * can see it. Similar to atomic_dec_and_lock(), but for an |
@@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit) | |||
302 | write_unlock(&css_set_lock); | 295 | write_unlock(&css_set_lock); |
303 | return; | 296 | return; |
304 | } | 297 | } |
305 | unlink_css_set(cg); | ||
306 | write_unlock(&css_set_lock); | ||
307 | 298 | ||
308 | rcu_read_lock(); | 299 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
309 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 300 | hlist_del(&cg->hlist); |
310 | struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); | 301 | css_set_count--; |
302 | |||
303 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
304 | cg_link_list) { | ||
305 | struct cgroup *cgrp = link->cgrp; | ||
306 | list_del(&link->cg_link_list); | ||
307 | list_del(&link->cgrp_link_list); | ||
311 | if (atomic_dec_and_test(&cgrp->count) && | 308 | if (atomic_dec_and_test(&cgrp->count) && |
312 | notify_on_release(cgrp)) { | 309 | notify_on_release(cgrp)) { |
313 | if (taskexit) | 310 | if (taskexit) |
314 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 311 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
315 | check_for_release(cgrp); | 312 | check_for_release(cgrp); |
316 | } | 313 | } |
314 | |||
315 | kfree(link); | ||
317 | } | 316 | } |
318 | rcu_read_unlock(); | 317 | |
319 | kfree(cg); | 318 | write_unlock(&css_set_lock); |
319 | call_rcu(&cg->rcu_head, free_css_set_rcu); | ||
320 | } | 320 | } |
321 | 321 | ||
322 | /* | 322 | /* |
@@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg) | |||
338 | } | 338 | } |
339 | 339 | ||
340 | /* | 340 | /* |
341 | * compare_css_sets - helper function for find_existing_css_set(). | ||
342 | * @cg: candidate css_set being tested | ||
343 | * @old_cg: existing css_set for a task | ||
344 | * @new_cgrp: cgroup that's being entered by the task | ||
345 | * @template: desired set of css pointers in css_set (pre-calculated) | ||
346 | * | ||
347 | * Returns true if "cg" matches "old_cg" except for the hierarchy | ||
348 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | ||
349 | */ | ||
350 | static bool compare_css_sets(struct css_set *cg, | ||
351 | struct css_set *old_cg, | ||
352 | struct cgroup *new_cgrp, | ||
353 | struct cgroup_subsys_state *template[]) | ||
354 | { | ||
355 | struct list_head *l1, *l2; | ||
356 | |||
357 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | ||
358 | /* Not all subsystems matched */ | ||
359 | return false; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * Compare cgroup pointers in order to distinguish between | ||
364 | * different cgroups in heirarchies with no subsystems. We | ||
365 | * could get by with just this check alone (and skip the | ||
366 | * memcmp above) but on most setups the memcmp check will | ||
367 | * avoid the need for this more expensive check on almost all | ||
368 | * candidates. | ||
369 | */ | ||
370 | |||
371 | l1 = &cg->cg_links; | ||
372 | l2 = &old_cg->cg_links; | ||
373 | while (1) { | ||
374 | struct cg_cgroup_link *cgl1, *cgl2; | ||
375 | struct cgroup *cg1, *cg2; | ||
376 | |||
377 | l1 = l1->next; | ||
378 | l2 = l2->next; | ||
379 | /* See if we reached the end - both lists are equal length. */ | ||
380 | if (l1 == &cg->cg_links) { | ||
381 | BUG_ON(l2 != &old_cg->cg_links); | ||
382 | break; | ||
383 | } else { | ||
384 | BUG_ON(l2 == &old_cg->cg_links); | ||
385 | } | ||
386 | /* Locate the cgroups associated with these links. */ | ||
387 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | ||
388 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | ||
389 | cg1 = cgl1->cgrp; | ||
390 | cg2 = cgl2->cgrp; | ||
391 | /* Hierarchies should be linked in the same order. */ | ||
392 | BUG_ON(cg1->root != cg2->root); | ||
393 | |||
394 | /* | ||
395 | * If this hierarchy is the hierarchy of the cgroup | ||
396 | * that's changing, then we need to check that this | ||
397 | * css_set points to the new cgroup; if it's any other | ||
398 | * hierarchy, then this css_set should point to the | ||
399 | * same cgroup as the old css_set. | ||
400 | */ | ||
401 | if (cg1->root == new_cgrp->root) { | ||
402 | if (cg1 != new_cgrp) | ||
403 | return false; | ||
404 | } else { | ||
405 | if (cg1 != cg2) | ||
406 | return false; | ||
407 | } | ||
408 | } | ||
409 | return true; | ||
410 | } | ||
411 | |||
412 | /* | ||
341 | * find_existing_css_set() is a helper for | 413 | * find_existing_css_set() is a helper for |
342 | * find_css_set(), and checks to see whether an existing | 414 | * find_css_set(), and checks to see whether an existing |
343 | * css_set is suitable. | 415 | * css_set is suitable. |
@@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set( | |||
378 | 450 | ||
379 | hhead = css_set_hash(template); | 451 | hhead = css_set_hash(template); |
380 | hlist_for_each_entry(cg, node, hhead, hlist) { | 452 | hlist_for_each_entry(cg, node, hhead, hlist) { |
381 | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 453 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
382 | /* All subsystems matched */ | 454 | continue; |
383 | return cg; | 455 | |
384 | } | 456 | /* This css_set matches what we need */ |
457 | return cg; | ||
385 | } | 458 | } |
386 | 459 | ||
387 | /* No existing cgroup group matched */ | 460 | /* No existing cgroup group matched */ |
@@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links, | |||
435 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 508 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
436 | cgrp_link_list); | 509 | cgrp_link_list); |
437 | link->cg = cg; | 510 | link->cg = cg; |
511 | link->cgrp = cgrp; | ||
512 | atomic_inc(&cgrp->count); | ||
438 | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 513 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
439 | list_add(&link->cg_link_list, &cg->cg_links); | 514 | /* |
515 | * Always add links to the tail of the list so that the list | ||
516 | * is sorted by order of hierarchy creation | ||
517 | */ | ||
518 | list_add_tail(&link->cg_link_list, &cg->cg_links); | ||
440 | } | 519 | } |
441 | 520 | ||
442 | /* | 521 | /* |
@@ -451,11 +530,11 @@ static struct css_set *find_css_set( | |||
451 | { | 530 | { |
452 | struct css_set *res; | 531 | struct css_set *res; |
453 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 532 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
454 | int i; | ||
455 | 533 | ||
456 | struct list_head tmp_cg_links; | 534 | struct list_head tmp_cg_links; |
457 | 535 | ||
458 | struct hlist_head *hhead; | 536 | struct hlist_head *hhead; |
537 | struct cg_cgroup_link *link; | ||
459 | 538 | ||
460 | /* First see if we already have a cgroup group that matches | 539 | /* First see if we already have a cgroup group that matches |
461 | * the desired set */ | 540 | * the desired set */ |
@@ -489,20 +568,12 @@ static struct css_set *find_css_set( | |||
489 | 568 | ||
490 | write_lock(&css_set_lock); | 569 | write_lock(&css_set_lock); |
491 | /* Add reference counts and links from the new css_set. */ | 570 | /* Add reference counts and links from the new css_set. */ |
492 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 571 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
493 | struct cgroup *cgrp = res->subsys[i]->cgroup; | 572 | struct cgroup *c = link->cgrp; |
494 | struct cgroup_subsys *ss = subsys[i]; | 573 | if (c->root == cgrp->root) |
495 | atomic_inc(&cgrp->count); | 574 | c = cgrp; |
496 | /* | 575 | link_css_set(&tmp_cg_links, res, c); |
497 | * We want to add a link once per cgroup, so we | ||
498 | * only do it for the first subsystem in each | ||
499 | * hierarchy | ||
500 | */ | ||
501 | if (ss->root->subsys_list.next == &ss->sibling) | ||
502 | link_css_set(&tmp_cg_links, res, cgrp); | ||
503 | } | 576 | } |
504 | if (list_empty(&rootnode.subsys_list)) | ||
505 | link_css_set(&tmp_cg_links, res, dummytop); | ||
506 | 577 | ||
507 | BUG_ON(!list_empty(&tmp_cg_links)); | 578 | BUG_ON(!list_empty(&tmp_cg_links)); |
508 | 579 | ||
@@ -518,6 +589,41 @@ static struct css_set *find_css_set( | |||
518 | } | 589 | } |
519 | 590 | ||
520 | /* | 591 | /* |
592 | * Return the cgroup for "task" from the given hierarchy. Must be | ||
593 | * called with cgroup_mutex held. | ||
594 | */ | ||
595 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | ||
596 | struct cgroupfs_root *root) | ||
597 | { | ||
598 | struct css_set *css; | ||
599 | struct cgroup *res = NULL; | ||
600 | |||
601 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | ||
602 | read_lock(&css_set_lock); | ||
603 | /* | ||
604 | * No need to lock the task - since we hold cgroup_mutex the | ||
605 | * task can't change groups, so the only thing that can happen | ||
606 | * is that it exits and its css is set back to init_css_set. | ||
607 | */ | ||
608 | css = task->cgroups; | ||
609 | if (css == &init_css_set) { | ||
610 | res = &root->top_cgroup; | ||
611 | } else { | ||
612 | struct cg_cgroup_link *link; | ||
613 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | ||
614 | struct cgroup *c = link->cgrp; | ||
615 | if (c->root == root) { | ||
616 | res = c; | ||
617 | break; | ||
618 | } | ||
619 | } | ||
620 | } | ||
621 | read_unlock(&css_set_lock); | ||
622 | BUG_ON(!res); | ||
623 | return res; | ||
624 | } | ||
625 | |||
626 | /* | ||
521 | * There is one global cgroup mutex. We also require taking | 627 | * There is one global cgroup mutex. We also require taking |
522 | * task_lock() when dereferencing a task's cgroup subsys pointers. | 628 | * task_lock() when dereferencing a task's cgroup subsys pointers. |
523 | * See "The task_lock() exception", at the end of this comment. | 629 | * See "The task_lock() exception", at the end of this comment. |
@@ -596,7 +702,7 @@ void cgroup_unlock(void) | |||
596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 702 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 703 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 704 | static int cgroup_populate_dir(struct cgroup *cgrp); |
599 | static struct inode_operations cgroup_dir_inode_operations; | 705 | static const struct inode_operations cgroup_dir_inode_operations; |
600 | static struct file_operations proc_cgroupstats_operations; | 706 | static struct file_operations proc_cgroupstats_operations; |
601 | 707 | ||
602 | static struct backing_dev_info cgroup_backing_dev_info = { | 708 | static struct backing_dev_info cgroup_backing_dev_info = { |
@@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode) | |||
677 | */ | 783 | */ |
678 | deactivate_super(cgrp->root->sb); | 784 | deactivate_super(cgrp->root->sb); |
679 | 785 | ||
786 | /* | ||
787 | * if we're getting rid of the cgroup, refcount should ensure | ||
788 | * that there are no pidlists left. | ||
789 | */ | ||
790 | BUG_ON(!list_empty(&cgrp->pidlists)); | ||
791 | |||
680 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); | 792 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
681 | } | 793 | } |
682 | iput(inode); | 794 | iput(inode); |
@@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
841 | seq_puts(seq, ",noprefix"); | 953 | seq_puts(seq, ",noprefix"); |
842 | if (strlen(root->release_agent_path)) | 954 | if (strlen(root->release_agent_path)) |
843 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 955 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
956 | if (strlen(root->name)) | ||
957 | seq_printf(seq, ",name=%s", root->name); | ||
844 | mutex_unlock(&cgroup_mutex); | 958 | mutex_unlock(&cgroup_mutex); |
845 | return 0; | 959 | return 0; |
846 | } | 960 | } |
@@ -849,6 +963,12 @@ struct cgroup_sb_opts { | |||
849 | unsigned long subsys_bits; | 963 | unsigned long subsys_bits; |
850 | unsigned long flags; | 964 | unsigned long flags; |
851 | char *release_agent; | 965 | char *release_agent; |
966 | char *name; | ||
967 | /* User explicitly requested empty subsystem */ | ||
968 | bool none; | ||
969 | |||
970 | struct cgroupfs_root *new_root; | ||
971 | |||
852 | }; | 972 | }; |
853 | 973 | ||
854 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 974 | /* Convert a hierarchy specifier into a bitmask of subsystems and |
@@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data, | |||
863 | mask = ~(1UL << cpuset_subsys_id); | 983 | mask = ~(1UL << cpuset_subsys_id); |
864 | #endif | 984 | #endif |
865 | 985 | ||
866 | opts->subsys_bits = 0; | 986 | memset(opts, 0, sizeof(*opts)); |
867 | opts->flags = 0; | ||
868 | opts->release_agent = NULL; | ||
869 | 987 | ||
870 | while ((token = strsep(&o, ",")) != NULL) { | 988 | while ((token = strsep(&o, ",")) != NULL) { |
871 | if (!*token) | 989 | if (!*token) |
@@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data, | |||
879 | if (!ss->disabled) | 997 | if (!ss->disabled) |
880 | opts->subsys_bits |= 1ul << i; | 998 | opts->subsys_bits |= 1ul << i; |
881 | } | 999 | } |
1000 | } else if (!strcmp(token, "none")) { | ||
1001 | /* Explicitly have no subsystems */ | ||
1002 | opts->none = true; | ||
882 | } else if (!strcmp(token, "noprefix")) { | 1003 | } else if (!strcmp(token, "noprefix")) { |
883 | set_bit(ROOT_NOPREFIX, &opts->flags); | 1004 | set_bit(ROOT_NOPREFIX, &opts->flags); |
884 | } else if (!strncmp(token, "release_agent=", 14)) { | 1005 | } else if (!strncmp(token, "release_agent=", 14)) { |
885 | /* Specifying two release agents is forbidden */ | 1006 | /* Specifying two release agents is forbidden */ |
886 | if (opts->release_agent) | 1007 | if (opts->release_agent) |
887 | return -EINVAL; | 1008 | return -EINVAL; |
888 | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 1009 | opts->release_agent = |
1010 | kstrndup(token + 14, PATH_MAX, GFP_KERNEL); | ||
889 | if (!opts->release_agent) | 1011 | if (!opts->release_agent) |
890 | return -ENOMEM; | 1012 | return -ENOMEM; |
891 | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 1013 | } else if (!strncmp(token, "name=", 5)) { |
892 | opts->release_agent[PATH_MAX - 1] = 0; | 1014 | int i; |
1015 | const char *name = token + 5; | ||
1016 | /* Can't specify an empty name */ | ||
1017 | if (!strlen(name)) | ||
1018 | return -EINVAL; | ||
1019 | /* Must match [\w.-]+ */ | ||
1020 | for (i = 0; i < strlen(name); i++) { | ||
1021 | char c = name[i]; | ||
1022 | if (isalnum(c)) | ||
1023 | continue; | ||
1024 | if ((c == '.') || (c == '-') || (c == '_')) | ||
1025 | continue; | ||
1026 | return -EINVAL; | ||
1027 | } | ||
1028 | /* Specifying two names is forbidden */ | ||
1029 | if (opts->name) | ||
1030 | return -EINVAL; | ||
1031 | opts->name = kstrndup(name, | ||
1032 | MAX_CGROUP_ROOT_NAMELEN, | ||
1033 | GFP_KERNEL); | ||
1034 | if (!opts->name) | ||
1035 | return -ENOMEM; | ||
893 | } else { | 1036 | } else { |
894 | struct cgroup_subsys *ss; | 1037 | struct cgroup_subsys *ss; |
895 | int i; | 1038 | int i; |
@@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data, | |||
906 | } | 1049 | } |
907 | } | 1050 | } |
908 | 1051 | ||
1052 | /* Consistency checks */ | ||
1053 | |||
909 | /* | 1054 | /* |
910 | * Option noprefix was introduced just for backward compatibility | 1055 | * Option noprefix was introduced just for backward compatibility |
911 | * with the old cpuset, so we allow noprefix only if mounting just | 1056 | * with the old cpuset, so we allow noprefix only if mounting just |
@@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data, | |||
915 | (opts->subsys_bits & mask)) | 1060 | (opts->subsys_bits & mask)) |
916 | return -EINVAL; | 1061 | return -EINVAL; |
917 | 1062 | ||
918 | /* We can't have an empty hierarchy */ | 1063 | |
919 | if (!opts->subsys_bits) | 1064 | /* Can't specify "none" and some subsystems */ |
1065 | if (opts->subsys_bits && opts->none) | ||
1066 | return -EINVAL; | ||
1067 | |||
1068 | /* | ||
1069 | * We either have to specify by name or by subsystems. (So all | ||
1070 | * empty hierarchies must have a name). | ||
1071 | */ | ||
1072 | if (!opts->subsys_bits && !opts->name) | ||
920 | return -EINVAL; | 1073 | return -EINVAL; |
921 | 1074 | ||
922 | return 0; | 1075 | return 0; |
@@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
944 | goto out_unlock; | 1097 | goto out_unlock; |
945 | } | 1098 | } |
946 | 1099 | ||
1100 | /* Don't allow name to change at remount */ | ||
1101 | if (opts.name && strcmp(opts.name, root->name)) { | ||
1102 | ret = -EINVAL; | ||
1103 | goto out_unlock; | ||
1104 | } | ||
1105 | |||
947 | ret = rebind_subsystems(root, opts.subsys_bits); | 1106 | ret = rebind_subsystems(root, opts.subsys_bits); |
948 | if (ret) | 1107 | if (ret) |
949 | goto out_unlock; | 1108 | goto out_unlock; |
@@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
955 | strcpy(root->release_agent_path, opts.release_agent); | 1114 | strcpy(root->release_agent_path, opts.release_agent); |
956 | out_unlock: | 1115 | out_unlock: |
957 | kfree(opts.release_agent); | 1116 | kfree(opts.release_agent); |
1117 | kfree(opts.name); | ||
958 | mutex_unlock(&cgroup_mutex); | 1118 | mutex_unlock(&cgroup_mutex); |
959 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 1119 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
960 | unlock_kernel(); | 1120 | unlock_kernel(); |
961 | return ret; | 1121 | return ret; |
962 | } | 1122 | } |
963 | 1123 | ||
964 | static struct super_operations cgroup_ops = { | 1124 | static const struct super_operations cgroup_ops = { |
965 | .statfs = simple_statfs, | 1125 | .statfs = simple_statfs, |
966 | .drop_inode = generic_delete_inode, | 1126 | .drop_inode = generic_delete_inode, |
967 | .show_options = cgroup_show_options, | 1127 | .show_options = cgroup_show_options, |
@@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
974 | INIT_LIST_HEAD(&cgrp->children); | 1134 | INIT_LIST_HEAD(&cgrp->children); |
975 | INIT_LIST_HEAD(&cgrp->css_sets); | 1135 | INIT_LIST_HEAD(&cgrp->css_sets); |
976 | INIT_LIST_HEAD(&cgrp->release_list); | 1136 | INIT_LIST_HEAD(&cgrp->release_list); |
977 | INIT_LIST_HEAD(&cgrp->pids_list); | 1137 | INIT_LIST_HEAD(&cgrp->pidlists); |
978 | init_rwsem(&cgrp->pids_mutex); | 1138 | mutex_init(&cgrp->pidlist_mutex); |
979 | } | 1139 | } |
1140 | |||
980 | static void init_cgroup_root(struct cgroupfs_root *root) | 1141 | static void init_cgroup_root(struct cgroupfs_root *root) |
981 | { | 1142 | { |
982 | struct cgroup *cgrp = &root->top_cgroup; | 1143 | struct cgroup *cgrp = &root->top_cgroup; |
@@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root) | |||
988 | init_cgroup_housekeeping(cgrp); | 1149 | init_cgroup_housekeeping(cgrp); |
989 | } | 1150 | } |
990 | 1151 | ||
1152 | static bool init_root_id(struct cgroupfs_root *root) | ||
1153 | { | ||
1154 | int ret = 0; | ||
1155 | |||
1156 | do { | ||
1157 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | ||
1158 | return false; | ||
1159 | spin_lock(&hierarchy_id_lock); | ||
1160 | /* Try to allocate the next unused ID */ | ||
1161 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | ||
1162 | &root->hierarchy_id); | ||
1163 | if (ret == -ENOSPC) | ||
1164 | /* Try again starting from 0 */ | ||
1165 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | ||
1166 | if (!ret) { | ||
1167 | next_hierarchy_id = root->hierarchy_id + 1; | ||
1168 | } else if (ret != -EAGAIN) { | ||
1169 | /* Can only get here if the 31-bit IDR is full ... */ | ||
1170 | BUG_ON(ret); | ||
1171 | } | ||
1172 | spin_unlock(&hierarchy_id_lock); | ||
1173 | } while (ret); | ||
1174 | return true; | ||
1175 | } | ||
1176 | |||
991 | static int cgroup_test_super(struct super_block *sb, void *data) | 1177 | static int cgroup_test_super(struct super_block *sb, void *data) |
992 | { | 1178 | { |
993 | struct cgroupfs_root *new = data; | 1179 | struct cgroup_sb_opts *opts = data; |
994 | struct cgroupfs_root *root = sb->s_fs_info; | 1180 | struct cgroupfs_root *root = sb->s_fs_info; |
995 | 1181 | ||
996 | /* First check subsystems */ | 1182 | /* If we asked for a name then it must match */ |
997 | if (new->subsys_bits != root->subsys_bits) | 1183 | if (opts->name && strcmp(opts->name, root->name)) |
998 | return 0; | 1184 | return 0; |
999 | 1185 | ||
1000 | /* Next check flags */ | 1186 | /* |
1001 | if (new->flags != root->flags) | 1187 | * If we asked for subsystems (or explicitly for no |
1188 | * subsystems) then they must match | ||
1189 | */ | ||
1190 | if ((opts->subsys_bits || opts->none) | ||
1191 | && (opts->subsys_bits != root->subsys_bits)) | ||
1002 | return 0; | 1192 | return 0; |
1003 | 1193 | ||
1004 | return 1; | 1194 | return 1; |
1005 | } | 1195 | } |
1006 | 1196 | ||
1197 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | ||
1198 | { | ||
1199 | struct cgroupfs_root *root; | ||
1200 | |||
1201 | if (!opts->subsys_bits && !opts->none) | ||
1202 | return NULL; | ||
1203 | |||
1204 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1205 | if (!root) | ||
1206 | return ERR_PTR(-ENOMEM); | ||
1207 | |||
1208 | if (!init_root_id(root)) { | ||
1209 | kfree(root); | ||
1210 | return ERR_PTR(-ENOMEM); | ||
1211 | } | ||
1212 | init_cgroup_root(root); | ||
1213 | |||
1214 | root->subsys_bits = opts->subsys_bits; | ||
1215 | root->flags = opts->flags; | ||
1216 | if (opts->release_agent) | ||
1217 | strcpy(root->release_agent_path, opts->release_agent); | ||
1218 | if (opts->name) | ||
1219 | strcpy(root->name, opts->name); | ||
1220 | return root; | ||
1221 | } | ||
1222 | |||
1223 | static void cgroup_drop_root(struct cgroupfs_root *root) | ||
1224 | { | ||
1225 | if (!root) | ||
1226 | return; | ||
1227 | |||
1228 | BUG_ON(!root->hierarchy_id); | ||
1229 | spin_lock(&hierarchy_id_lock); | ||
1230 | ida_remove(&hierarchy_ida, root->hierarchy_id); | ||
1231 | spin_unlock(&hierarchy_id_lock); | ||
1232 | kfree(root); | ||
1233 | } | ||
1234 | |||
1007 | static int cgroup_set_super(struct super_block *sb, void *data) | 1235 | static int cgroup_set_super(struct super_block *sb, void *data) |
1008 | { | 1236 | { |
1009 | int ret; | 1237 | int ret; |
1010 | struct cgroupfs_root *root = data; | 1238 | struct cgroup_sb_opts *opts = data; |
1239 | |||
1240 | /* If we don't have a new root, we can't set up a new sb */ | ||
1241 | if (!opts->new_root) | ||
1242 | return -EINVAL; | ||
1243 | |||
1244 | BUG_ON(!opts->subsys_bits && !opts->none); | ||
1011 | 1245 | ||
1012 | ret = set_anon_super(sb, NULL); | 1246 | ret = set_anon_super(sb, NULL); |
1013 | if (ret) | 1247 | if (ret) |
1014 | return ret; | 1248 | return ret; |
1015 | 1249 | ||
1016 | sb->s_fs_info = root; | 1250 | sb->s_fs_info = opts->new_root; |
1017 | root->sb = sb; | 1251 | opts->new_root->sb = sb; |
1018 | 1252 | ||
1019 | sb->s_blocksize = PAGE_CACHE_SIZE; | 1253 | sb->s_blocksize = PAGE_CACHE_SIZE; |
1020 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 1254 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
@@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1051 | void *data, struct vfsmount *mnt) | 1285 | void *data, struct vfsmount *mnt) |
1052 | { | 1286 | { |
1053 | struct cgroup_sb_opts opts; | 1287 | struct cgroup_sb_opts opts; |
1288 | struct cgroupfs_root *root; | ||
1054 | int ret = 0; | 1289 | int ret = 0; |
1055 | struct super_block *sb; | 1290 | struct super_block *sb; |
1056 | struct cgroupfs_root *root; | 1291 | struct cgroupfs_root *new_root; |
1057 | struct list_head tmp_cg_links; | ||
1058 | 1292 | ||
1059 | /* First find the desired set of subsystems */ | 1293 | /* First find the desired set of subsystems */ |
1060 | ret = parse_cgroupfs_options(data, &opts); | 1294 | ret = parse_cgroupfs_options(data, &opts); |
1061 | if (ret) { | 1295 | if (ret) |
1062 | kfree(opts.release_agent); | 1296 | goto out_err; |
1063 | return ret; | ||
1064 | } | ||
1065 | |||
1066 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1067 | if (!root) { | ||
1068 | kfree(opts.release_agent); | ||
1069 | return -ENOMEM; | ||
1070 | } | ||
1071 | 1297 | ||
1072 | init_cgroup_root(root); | 1298 | /* |
1073 | root->subsys_bits = opts.subsys_bits; | 1299 | * Allocate a new cgroup root. We may not need it if we're |
1074 | root->flags = opts.flags; | 1300 | * reusing an existing hierarchy. |
1075 | if (opts.release_agent) { | 1301 | */ |
1076 | strcpy(root->release_agent_path, opts.release_agent); | 1302 | new_root = cgroup_root_from_opts(&opts); |
1077 | kfree(opts.release_agent); | 1303 | if (IS_ERR(new_root)) { |
1304 | ret = PTR_ERR(new_root); | ||
1305 | goto out_err; | ||
1078 | } | 1306 | } |
1307 | opts.new_root = new_root; | ||
1079 | 1308 | ||
1080 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 1309 | /* Locate an existing or new sb for this hierarchy */ |
1081 | 1310 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
1082 | if (IS_ERR(sb)) { | 1311 | if (IS_ERR(sb)) { |
1083 | kfree(root); | 1312 | ret = PTR_ERR(sb); |
1084 | return PTR_ERR(sb); | 1313 | cgroup_drop_root(opts.new_root); |
1314 | goto out_err; | ||
1085 | } | 1315 | } |
1086 | 1316 | ||
1087 | if (sb->s_fs_info != root) { | 1317 | root = sb->s_fs_info; |
1088 | /* Reusing an existing superblock */ | 1318 | BUG_ON(!root); |
1089 | BUG_ON(sb->s_root == NULL); | 1319 | if (root == opts.new_root) { |
1090 | kfree(root); | 1320 | /* We used the new root structure, so this is a new hierarchy */ |
1091 | root = NULL; | 1321 | struct list_head tmp_cg_links; |
1092 | } else { | ||
1093 | /* New superblock */ | ||
1094 | struct cgroup *root_cgrp = &root->top_cgroup; | 1322 | struct cgroup *root_cgrp = &root->top_cgroup; |
1095 | struct inode *inode; | 1323 | struct inode *inode; |
1324 | struct cgroupfs_root *existing_root; | ||
1096 | int i; | 1325 | int i; |
1097 | 1326 | ||
1098 | BUG_ON(sb->s_root != NULL); | 1327 | BUG_ON(sb->s_root != NULL); |
@@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1105 | mutex_lock(&inode->i_mutex); | 1334 | mutex_lock(&inode->i_mutex); |
1106 | mutex_lock(&cgroup_mutex); | 1335 | mutex_lock(&cgroup_mutex); |
1107 | 1336 | ||
1337 | if (strlen(root->name)) { | ||
1338 | /* Check for name clashes with existing mounts */ | ||
1339 | for_each_active_root(existing_root) { | ||
1340 | if (!strcmp(existing_root->name, root->name)) { | ||
1341 | ret = -EBUSY; | ||
1342 | mutex_unlock(&cgroup_mutex); | ||
1343 | mutex_unlock(&inode->i_mutex); | ||
1344 | goto drop_new_super; | ||
1345 | } | ||
1346 | } | ||
1347 | } | ||
1348 | |||
1108 | /* | 1349 | /* |
1109 | * We're accessing css_set_count without locking | 1350 | * We're accessing css_set_count without locking |
1110 | * css_set_lock here, but that's OK - it can only be | 1351 | * css_set_lock here, but that's OK - it can only be |
@@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1123 | if (ret == -EBUSY) { | 1364 | if (ret == -EBUSY) { |
1124 | mutex_unlock(&cgroup_mutex); | 1365 | mutex_unlock(&cgroup_mutex); |
1125 | mutex_unlock(&inode->i_mutex); | 1366 | mutex_unlock(&inode->i_mutex); |
1126 | goto free_cg_links; | 1367 | free_cg_links(&tmp_cg_links); |
1368 | goto drop_new_super; | ||
1127 | } | 1369 | } |
1128 | 1370 | ||
1129 | /* EBUSY should be the only error here */ | 1371 | /* EBUSY should be the only error here */ |
@@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1155 | BUG_ON(root->number_of_cgroups != 1); | 1397 | BUG_ON(root->number_of_cgroups != 1); |
1156 | 1398 | ||
1157 | cgroup_populate_dir(root_cgrp); | 1399 | cgroup_populate_dir(root_cgrp); |
1158 | mutex_unlock(&inode->i_mutex); | ||
1159 | mutex_unlock(&cgroup_mutex); | 1400 | mutex_unlock(&cgroup_mutex); |
1401 | mutex_unlock(&inode->i_mutex); | ||
1402 | } else { | ||
1403 | /* | ||
1404 | * We re-used an existing hierarchy - the new root (if | ||
1405 | * any) is not needed | ||
1406 | */ | ||
1407 | cgroup_drop_root(opts.new_root); | ||
1160 | } | 1408 | } |
1161 | 1409 | ||
1162 | simple_set_mnt(mnt, sb); | 1410 | simple_set_mnt(mnt, sb); |
1411 | kfree(opts.release_agent); | ||
1412 | kfree(opts.name); | ||
1163 | return 0; | 1413 | return 0; |
1164 | 1414 | ||
1165 | free_cg_links: | ||
1166 | free_cg_links(&tmp_cg_links); | ||
1167 | drop_new_super: | 1415 | drop_new_super: |
1168 | deactivate_locked_super(sb); | 1416 | deactivate_locked_super(sb); |
1417 | out_err: | ||
1418 | kfree(opts.release_agent); | ||
1419 | kfree(opts.name); | ||
1420 | |||
1169 | return ret; | 1421 | return ret; |
1170 | } | 1422 | } |
1171 | 1423 | ||
@@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) { | |||
1211 | mutex_unlock(&cgroup_mutex); | 1463 | mutex_unlock(&cgroup_mutex); |
1212 | 1464 | ||
1213 | kill_litter_super(sb); | 1465 | kill_litter_super(sb); |
1214 | kfree(root); | 1466 | cgroup_drop_root(root); |
1215 | } | 1467 | } |
1216 | 1468 | ||
1217 | static struct file_system_type cgroup_fs_type = { | 1469 | static struct file_system_type cgroup_fs_type = { |
@@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | |||
1276 | return 0; | 1528 | return 0; |
1277 | } | 1529 | } |
1278 | 1530 | ||
1279 | /* | ||
1280 | * Return the first subsystem attached to a cgroup's hierarchy, and | ||
1281 | * its subsystem id. | ||
1282 | */ | ||
1283 | |||
1284 | static void get_first_subsys(const struct cgroup *cgrp, | ||
1285 | struct cgroup_subsys_state **css, int *subsys_id) | ||
1286 | { | ||
1287 | const struct cgroupfs_root *root = cgrp->root; | ||
1288 | const struct cgroup_subsys *test_ss; | ||
1289 | BUG_ON(list_empty(&root->subsys_list)); | ||
1290 | test_ss = list_entry(root->subsys_list.next, | ||
1291 | struct cgroup_subsys, sibling); | ||
1292 | if (css) { | ||
1293 | *css = cgrp->subsys[test_ss->subsys_id]; | ||
1294 | BUG_ON(!*css); | ||
1295 | } | ||
1296 | if (subsys_id) | ||
1297 | *subsys_id = test_ss->subsys_id; | ||
1298 | } | ||
1299 | |||
1300 | /** | 1531 | /** |
1301 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 1532 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
1302 | * @cgrp: the cgroup the task is attaching to | 1533 | * @cgrp: the cgroup the task is attaching to |
@@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1313 | struct css_set *cg; | 1544 | struct css_set *cg; |
1314 | struct css_set *newcg; | 1545 | struct css_set *newcg; |
1315 | struct cgroupfs_root *root = cgrp->root; | 1546 | struct cgroupfs_root *root = cgrp->root; |
1316 | int subsys_id; | ||
1317 | |||
1318 | get_first_subsys(cgrp, NULL, &subsys_id); | ||
1319 | 1547 | ||
1320 | /* Nothing to do if the task is already in that cgroup */ | 1548 | /* Nothing to do if the task is already in that cgroup */ |
1321 | oldcgrp = task_cgroup(tsk, subsys_id); | 1549 | oldcgrp = task_cgroup_from_root(tsk, root); |
1322 | if (cgrp == oldcgrp) | 1550 | if (cgrp == oldcgrp) |
1323 | return 0; | 1551 | return 0; |
1324 | 1552 | ||
1325 | for_each_subsys(root, ss) { | 1553 | for_each_subsys(root, ss) { |
1326 | if (ss->can_attach) { | 1554 | if (ss->can_attach) { |
1327 | retval = ss->can_attach(ss, cgrp, tsk); | 1555 | retval = ss->can_attach(ss, cgrp, tsk, false); |
1328 | if (retval) | 1556 | if (retval) |
1329 | return retval; | 1557 | return retval; |
1330 | } | 1558 | } |
@@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1362 | 1590 | ||
1363 | for_each_subsys(root, ss) { | 1591 | for_each_subsys(root, ss) { |
1364 | if (ss->attach) | 1592 | if (ss->attach) |
1365 | ss->attach(ss, cgrp, oldcgrp, tsk); | 1593 | ss->attach(ss, cgrp, oldcgrp, tsk, false); |
1366 | } | 1594 | } |
1367 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1595 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
1368 | synchronize_rcu(); | 1596 | synchronize_rcu(); |
@@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | |||
1423 | return ret; | 1651 | return ret; |
1424 | } | 1652 | } |
1425 | 1653 | ||
1426 | /* The various types of files and directories in a cgroup file system */ | ||
1427 | enum cgroup_filetype { | ||
1428 | FILE_ROOT, | ||
1429 | FILE_DIR, | ||
1430 | FILE_TASKLIST, | ||
1431 | FILE_NOTIFY_ON_RELEASE, | ||
1432 | FILE_RELEASE_AGENT, | ||
1433 | }; | ||
1434 | |||
1435 | /** | 1654 | /** |
1436 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 1655 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
1437 | * @cgrp: the cgroup to be checked for liveness | 1656 | * @cgrp: the cgroup to be checked for liveness |
@@ -1711,7 +1930,7 @@ static struct file_operations cgroup_file_operations = { | |||
1711 | .release = cgroup_file_release, | 1930 | .release = cgroup_file_release, |
1712 | }; | 1931 | }; |
1713 | 1932 | ||
1714 | static struct inode_operations cgroup_dir_inode_operations = { | 1933 | static const struct inode_operations cgroup_dir_inode_operations = { |
1715 | .lookup = simple_lookup, | 1934 | .lookup = simple_lookup, |
1716 | .mkdir = cgroup_mkdir, | 1935 | .mkdir = cgroup_mkdir, |
1717 | .rmdir = cgroup_rmdir, | 1936 | .rmdir = cgroup_rmdir, |
@@ -1876,7 +2095,7 @@ int cgroup_task_count(const struct cgroup *cgrp) | |||
1876 | * the start of a css_set | 2095 | * the start of a css_set |
1877 | */ | 2096 | */ |
1878 | static void cgroup_advance_iter(struct cgroup *cgrp, | 2097 | static void cgroup_advance_iter(struct cgroup *cgrp, |
1879 | struct cgroup_iter *it) | 2098 | struct cgroup_iter *it) |
1880 | { | 2099 | { |
1881 | struct list_head *l = it->cg_link; | 2100 | struct list_head *l = it->cg_link; |
1882 | struct cg_cgroup_link *link; | 2101 | struct cg_cgroup_link *link; |
@@ -2129,7 +2348,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2129 | } | 2348 | } |
2130 | 2349 | ||
2131 | /* | 2350 | /* |
2132 | * Stuff for reading the 'tasks' file. | 2351 | * Stuff for reading the 'tasks'/'procs' files. |
2133 | * | 2352 | * |
2134 | * Reading this file can return large amounts of data if a cgroup has | 2353 | * Reading this file can return large amounts of data if a cgroup has |
2135 | * *lots* of attached tasks. So it may need several calls to read(), | 2354 | * *lots* of attached tasks. So it may need several calls to read(), |
@@ -2139,27 +2358,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2139 | */ | 2358 | */ |
2140 | 2359 | ||
2141 | /* | 2360 | /* |
2142 | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 2361 | * The following two functions "fix" the issue where there are more pids |
2143 | * 'cgrp'. Return actual number of pids loaded. No need to | 2362 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
2144 | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 2363 | * TODO: replace with a kernel-wide solution to this problem |
2145 | * read section, so the css_set can't go away, and is | 2364 | */ |
2146 | * immutable after creation. | 2365 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
2366 | static void *pidlist_allocate(int count) | ||
2367 | { | ||
2368 | if (PIDLIST_TOO_LARGE(count)) | ||
2369 | return vmalloc(count * sizeof(pid_t)); | ||
2370 | else | ||
2371 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | ||
2372 | } | ||
2373 | static void pidlist_free(void *p) | ||
2374 | { | ||
2375 | if (is_vmalloc_addr(p)) | ||
2376 | vfree(p); | ||
2377 | else | ||
2378 | kfree(p); | ||
2379 | } | ||
2380 | static void *pidlist_resize(void *p, int newcount) | ||
2381 | { | ||
2382 | void *newlist; | ||
2383 | /* note: if new alloc fails, old p will still be valid either way */ | ||
2384 | if (is_vmalloc_addr(p)) { | ||
2385 | newlist = vmalloc(newcount * sizeof(pid_t)); | ||
2386 | if (!newlist) | ||
2387 | return NULL; | ||
2388 | memcpy(newlist, p, newcount * sizeof(pid_t)); | ||
2389 | vfree(p); | ||
2390 | } else { | ||
2391 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | ||
2392 | } | ||
2393 | return newlist; | ||
2394 | } | ||
2395 | |||
2396 | /* | ||
2397 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | ||
2398 | * If the new stripped list is sufficiently smaller and there's enough memory | ||
2399 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | ||
2400 | * number of unique elements. | ||
2401 | */ | ||
2402 | /* is the size difference enough that we should re-allocate the array? */ | ||
2403 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | ||
2404 | static int pidlist_uniq(pid_t **p, int length) | ||
2405 | { | ||
2406 | int src, dest = 1; | ||
2407 | pid_t *list = *p; | ||
2408 | pid_t *newlist; | ||
2409 | |||
2410 | /* | ||
2411 | * we presume the 0th element is unique, so i starts at 1. trivial | ||
2412 | * edge cases first; no work needs to be done for either | ||
2413 | */ | ||
2414 | if (length == 0 || length == 1) | ||
2415 | return length; | ||
2416 | /* src and dest walk down the list; dest counts unique elements */ | ||
2417 | for (src = 1; src < length; src++) { | ||
2418 | /* find next unique element */ | ||
2419 | while (list[src] == list[src-1]) { | ||
2420 | src++; | ||
2421 | if (src == length) | ||
2422 | goto after; | ||
2423 | } | ||
2424 | /* dest always points to where the next unique element goes */ | ||
2425 | list[dest] = list[src]; | ||
2426 | dest++; | ||
2427 | } | ||
2428 | after: | ||
2429 | /* | ||
2430 | * if the length difference is large enough, we want to allocate a | ||
2431 | * smaller buffer to save memory. if this fails due to out of memory, | ||
2432 | * we'll just stay with what we've got. | ||
2433 | */ | ||
2434 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | ||
2435 | newlist = pidlist_resize(list, dest); | ||
2436 | if (newlist) | ||
2437 | *p = newlist; | ||
2438 | } | ||
2439 | return dest; | ||
2440 | } | ||
2441 | |||
2442 | static int cmppid(const void *a, const void *b) | ||
2443 | { | ||
2444 | return *(pid_t *)a - *(pid_t *)b; | ||
2445 | } | ||
2446 | |||
2447 | /* | ||
2448 | * find the appropriate pidlist for our purpose (given procs vs tasks) | ||
2449 | * returns with the lock on that pidlist already held, and takes care | ||
2450 | * of the use count, or returns NULL with no locks held if we're out of | ||
2451 | * memory. | ||
2147 | */ | 2452 | */ |
2148 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 2453 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
2454 | enum cgroup_filetype type) | ||
2149 | { | 2455 | { |
2150 | int n = 0, pid; | 2456 | struct cgroup_pidlist *l; |
2457 | /* don't need task_nsproxy() if we're looking at ourself */ | ||
2458 | struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); | ||
2459 | /* | ||
2460 | * We can't drop the pidlist_mutex before taking the l->mutex in case | ||
2461 | * the last ref-holder is trying to remove l from the list at the same | ||
2462 | * time. Holding the pidlist_mutex precludes somebody taking whichever | ||
2463 | * list we find out from under us - compare release_pid_array(). | ||
2464 | */ | ||
2465 | mutex_lock(&cgrp->pidlist_mutex); | ||
2466 | list_for_each_entry(l, &cgrp->pidlists, links) { | ||
2467 | if (l->key.type == type && l->key.ns == ns) { | ||
2468 | /* found a matching list - drop the extra refcount */ | ||
2469 | put_pid_ns(ns); | ||
2470 | /* make sure l doesn't vanish out from under us */ | ||
2471 | down_write(&l->mutex); | ||
2472 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2473 | l->use_count++; | ||
2474 | return l; | ||
2475 | } | ||
2476 | } | ||
2477 | /* entry not found; create a new one */ | ||
2478 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | ||
2479 | if (!l) { | ||
2480 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2481 | put_pid_ns(ns); | ||
2482 | return l; | ||
2483 | } | ||
2484 | init_rwsem(&l->mutex); | ||
2485 | down_write(&l->mutex); | ||
2486 | l->key.type = type; | ||
2487 | l->key.ns = ns; | ||
2488 | l->use_count = 0; /* don't increment here */ | ||
2489 | l->list = NULL; | ||
2490 | l->owner = cgrp; | ||
2491 | list_add(&l->links, &cgrp->pidlists); | ||
2492 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2493 | return l; | ||
2494 | } | ||
2495 | |||
2496 | /* | ||
2497 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | ||
2498 | */ | ||
2499 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | ||
2500 | struct cgroup_pidlist **lp) | ||
2501 | { | ||
2502 | pid_t *array; | ||
2503 | int length; | ||
2504 | int pid, n = 0; /* used for populating the array */ | ||
2151 | struct cgroup_iter it; | 2505 | struct cgroup_iter it; |
2152 | struct task_struct *tsk; | 2506 | struct task_struct *tsk; |
2507 | struct cgroup_pidlist *l; | ||
2508 | |||
2509 | /* | ||
2510 | * If cgroup gets more users after we read count, we won't have | ||
2511 | * enough space - tough. This race is indistinguishable to the | ||
2512 | * caller from the case that the additional cgroup users didn't | ||
2513 | * show up until sometime later on. | ||
2514 | */ | ||
2515 | length = cgroup_task_count(cgrp); | ||
2516 | array = pidlist_allocate(length); | ||
2517 | if (!array) | ||
2518 | return -ENOMEM; | ||
2519 | /* now, populate the array */ | ||
2153 | cgroup_iter_start(cgrp, &it); | 2520 | cgroup_iter_start(cgrp, &it); |
2154 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 2521 | while ((tsk = cgroup_iter_next(cgrp, &it))) { |
2155 | if (unlikely(n == npids)) | 2522 | if (unlikely(n == length)) |
2156 | break; | 2523 | break; |
2157 | pid = task_pid_vnr(tsk); | 2524 | /* get tgid or pid for procs or tasks file respectively */ |
2158 | if (pid > 0) | 2525 | if (type == CGROUP_FILE_PROCS) |
2159 | pidarray[n++] = pid; | 2526 | pid = task_tgid_vnr(tsk); |
2527 | else | ||
2528 | pid = task_pid_vnr(tsk); | ||
2529 | if (pid > 0) /* make sure to only use valid results */ | ||
2530 | array[n++] = pid; | ||
2160 | } | 2531 | } |
2161 | cgroup_iter_end(cgrp, &it); | 2532 | cgroup_iter_end(cgrp, &it); |
2162 | return n; | 2533 | length = n; |
2534 | /* now sort & (if procs) strip out duplicates */ | ||
2535 | sort(array, length, sizeof(pid_t), cmppid, NULL); | ||
2536 | if (type == CGROUP_FILE_PROCS) | ||
2537 | length = pidlist_uniq(&array, length); | ||
2538 | l = cgroup_pidlist_find(cgrp, type); | ||
2539 | if (!l) { | ||
2540 | pidlist_free(array); | ||
2541 | return -ENOMEM; | ||
2542 | } | ||
2543 | /* store array, freeing old if necessary - lock already held */ | ||
2544 | pidlist_free(l->list); | ||
2545 | l->list = array; | ||
2546 | l->length = length; | ||
2547 | l->use_count++; | ||
2548 | up_write(&l->mutex); | ||
2549 | *lp = l; | ||
2550 | return 0; | ||
2163 | } | 2551 | } |
2164 | 2552 | ||
2165 | /** | 2553 | /** |
@@ -2216,37 +2604,14 @@ err: | |||
2216 | return ret; | 2604 | return ret; |
2217 | } | 2605 | } |
2218 | 2606 | ||
2219 | /* | ||
2220 | * Cache pids for all threads in the same pid namespace that are | ||
2221 | * opening the same "tasks" file. | ||
2222 | */ | ||
2223 | struct cgroup_pids { | ||
2224 | /* The node in cgrp->pids_list */ | ||
2225 | struct list_head list; | ||
2226 | /* The cgroup those pids belong to */ | ||
2227 | struct cgroup *cgrp; | ||
2228 | /* The namepsace those pids belong to */ | ||
2229 | struct pid_namespace *ns; | ||
2230 | /* Array of process ids in the cgroup */ | ||
2231 | pid_t *tasks_pids; | ||
2232 | /* How many files are using the this tasks_pids array */ | ||
2233 | int use_count; | ||
2234 | /* Length of the current tasks_pids array */ | ||
2235 | int length; | ||
2236 | }; | ||
2237 | |||
2238 | static int cmppid(const void *a, const void *b) | ||
2239 | { | ||
2240 | return *(pid_t *)a - *(pid_t *)b; | ||
2241 | } | ||
2242 | 2607 | ||
2243 | /* | 2608 | /* |
2244 | * seq_file methods for the "tasks" file. The seq_file position is the | 2609 | * seq_file methods for the tasks/procs files. The seq_file position is the |
2245 | * next pid to display; the seq_file iterator is a pointer to the pid | 2610 | * next pid to display; the seq_file iterator is a pointer to the pid |
2246 | * in the cgroup->tasks_pids array. | 2611 | * in the cgroup->l->list array. |
2247 | */ | 2612 | */ |
2248 | 2613 | ||
2249 | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 2614 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
2250 | { | 2615 | { |
2251 | /* | 2616 | /* |
2252 | * Initially we receive a position value that corresponds to | 2617 | * Initially we receive a position value that corresponds to |
@@ -2254,48 +2619,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
2254 | * after a seek to the start). Use a binary-search to find the | 2619 | * after a seek to the start). Use a binary-search to find the |
2255 | * next pid to display, if any | 2620 | * next pid to display, if any |
2256 | */ | 2621 | */ |
2257 | struct cgroup_pids *cp = s->private; | 2622 | struct cgroup_pidlist *l = s->private; |
2258 | struct cgroup *cgrp = cp->cgrp; | ||
2259 | int index = 0, pid = *pos; | 2623 | int index = 0, pid = *pos; |
2260 | int *iter; | 2624 | int *iter; |
2261 | 2625 | ||
2262 | down_read(&cgrp->pids_mutex); | 2626 | down_read(&l->mutex); |
2263 | if (pid) { | 2627 | if (pid) { |
2264 | int end = cp->length; | 2628 | int end = l->length; |
2265 | 2629 | ||
2266 | while (index < end) { | 2630 | while (index < end) { |
2267 | int mid = (index + end) / 2; | 2631 | int mid = (index + end) / 2; |
2268 | if (cp->tasks_pids[mid] == pid) { | 2632 | if (l->list[mid] == pid) { |
2269 | index = mid; | 2633 | index = mid; |
2270 | break; | 2634 | break; |
2271 | } else if (cp->tasks_pids[mid] <= pid) | 2635 | } else if (l->list[mid] <= pid) |
2272 | index = mid + 1; | 2636 | index = mid + 1; |
2273 | else | 2637 | else |
2274 | end = mid; | 2638 | end = mid; |
2275 | } | 2639 | } |
2276 | } | 2640 | } |
2277 | /* If we're off the end of the array, we're done */ | 2641 | /* If we're off the end of the array, we're done */ |
2278 | if (index >= cp->length) | 2642 | if (index >= l->length) |
2279 | return NULL; | 2643 | return NULL; |
2280 | /* Update the abstract position to be the actual pid that we found */ | 2644 | /* Update the abstract position to be the actual pid that we found */ |
2281 | iter = cp->tasks_pids + index; | 2645 | iter = l->list + index; |
2282 | *pos = *iter; | 2646 | *pos = *iter; |
2283 | return iter; | 2647 | return iter; |
2284 | } | 2648 | } |
2285 | 2649 | ||
2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2650 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
2287 | { | 2651 | { |
2288 | struct cgroup_pids *cp = s->private; | 2652 | struct cgroup_pidlist *l = s->private; |
2289 | struct cgroup *cgrp = cp->cgrp; | 2653 | up_read(&l->mutex); |
2290 | up_read(&cgrp->pids_mutex); | ||
2291 | } | 2654 | } |
2292 | 2655 | ||
2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2656 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
2294 | { | 2657 | { |
2295 | struct cgroup_pids *cp = s->private; | 2658 | struct cgroup_pidlist *l = s->private; |
2296 | int *p = v; | 2659 | pid_t *p = v; |
2297 | int *end = cp->tasks_pids + cp->length; | 2660 | pid_t *end = l->list + l->length; |
2298 | |||
2299 | /* | 2661 | /* |
2300 | * Advance to the next pid in the array. If this goes off the | 2662 | * Advance to the next pid in the array. If this goes off the |
2301 | * end, we're done | 2663 | * end, we're done |
@@ -2309,124 +2671,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | |||
2309 | } | 2671 | } |
2310 | } | 2672 | } |
2311 | 2673 | ||
2312 | static int cgroup_tasks_show(struct seq_file *s, void *v) | 2674 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
2313 | { | 2675 | { |
2314 | return seq_printf(s, "%d\n", *(int *)v); | 2676 | return seq_printf(s, "%d\n", *(int *)v); |
2315 | } | 2677 | } |
2316 | 2678 | ||
2317 | static struct seq_operations cgroup_tasks_seq_operations = { | 2679 | /* |
2318 | .start = cgroup_tasks_start, | 2680 | * seq_operations functions for iterating on pidlists through seq_file - |
2319 | .stop = cgroup_tasks_stop, | 2681 | * independent of whether it's tasks or procs |
2320 | .next = cgroup_tasks_next, | 2682 | */ |
2321 | .show = cgroup_tasks_show, | 2683 | static const struct seq_operations cgroup_pidlist_seq_operations = { |
2684 | .start = cgroup_pidlist_start, | ||
2685 | .stop = cgroup_pidlist_stop, | ||
2686 | .next = cgroup_pidlist_next, | ||
2687 | .show = cgroup_pidlist_show, | ||
2322 | }; | 2688 | }; |
2323 | 2689 | ||
2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) | 2690 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
2325 | { | 2691 | { |
2326 | struct cgroup *cgrp = cp->cgrp; | 2692 | /* |
2327 | 2693 | * the case where we're the last user of this particular pidlist will | |
2328 | down_write(&cgrp->pids_mutex); | 2694 | * have us remove it from the cgroup's list, which entails taking the |
2329 | BUG_ON(!cp->use_count); | 2695 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
2330 | if (!--cp->use_count) { | 2696 | * pidlist_mutex, we have to take pidlist_mutex first. |
2331 | list_del(&cp->list); | 2697 | */ |
2332 | put_pid_ns(cp->ns); | 2698 | mutex_lock(&l->owner->pidlist_mutex); |
2333 | kfree(cp->tasks_pids); | 2699 | down_write(&l->mutex); |
2334 | kfree(cp); | 2700 | BUG_ON(!l->use_count); |
2701 | if (!--l->use_count) { | ||
2702 | /* we're the last user if refcount is 0; remove and free */ | ||
2703 | list_del(&l->links); | ||
2704 | mutex_unlock(&l->owner->pidlist_mutex); | ||
2705 | pidlist_free(l->list); | ||
2706 | put_pid_ns(l->key.ns); | ||
2707 | up_write(&l->mutex); | ||
2708 | kfree(l); | ||
2709 | return; | ||
2335 | } | 2710 | } |
2336 | up_write(&cgrp->pids_mutex); | 2711 | mutex_unlock(&l->owner->pidlist_mutex); |
2712 | up_write(&l->mutex); | ||
2337 | } | 2713 | } |
2338 | 2714 | ||
2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2715 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
2340 | { | 2716 | { |
2341 | struct seq_file *seq; | 2717 | struct cgroup_pidlist *l; |
2342 | struct cgroup_pids *cp; | ||
2343 | |||
2344 | if (!(file->f_mode & FMODE_READ)) | 2718 | if (!(file->f_mode & FMODE_READ)) |
2345 | return 0; | 2719 | return 0; |
2346 | 2720 | /* | |
2347 | seq = file->private_data; | 2721 | * the seq_file will only be initialized if the file was opened for |
2348 | cp = seq->private; | 2722 | * reading; hence we check if it's not null only in that case. |
2349 | 2723 | */ | |
2350 | release_cgroup_pid_array(cp); | 2724 | l = ((struct seq_file *)file->private_data)->private; |
2725 | cgroup_release_pid_array(l); | ||
2351 | return seq_release(inode, file); | 2726 | return seq_release(inode, file); |
2352 | } | 2727 | } |
2353 | 2728 | ||
2354 | static struct file_operations cgroup_tasks_operations = { | 2729 | static const struct file_operations cgroup_pidlist_operations = { |
2355 | .read = seq_read, | 2730 | .read = seq_read, |
2356 | .llseek = seq_lseek, | 2731 | .llseek = seq_lseek, |
2357 | .write = cgroup_file_write, | 2732 | .write = cgroup_file_write, |
2358 | .release = cgroup_tasks_release, | 2733 | .release = cgroup_pidlist_release, |
2359 | }; | 2734 | }; |
2360 | 2735 | ||
2361 | /* | 2736 | /* |
2362 | * Handle an open on 'tasks' file. Prepare an array containing the | 2737 | * The following functions handle opens on a file that displays a pidlist |
2363 | * process id's of tasks currently attached to the cgroup being opened. | 2738 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
2739 | * in the cgroup. | ||
2364 | */ | 2740 | */ |
2365 | 2741 | /* helper function for the two below it */ | |
2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2742 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
2367 | { | 2743 | { |
2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2744 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | 2745 | struct cgroup_pidlist *l; |
2370 | struct cgroup_pids *cp; | ||
2371 | pid_t *pidarray; | ||
2372 | int npids; | ||
2373 | int retval; | 2746 | int retval; |
2374 | 2747 | ||
2375 | /* Nothing to do for write-only files */ | 2748 | /* Nothing to do for write-only files */ |
2376 | if (!(file->f_mode & FMODE_READ)) | 2749 | if (!(file->f_mode & FMODE_READ)) |
2377 | return 0; | 2750 | return 0; |
2378 | 2751 | ||
2379 | /* | 2752 | /* have the array populated */ |
2380 | * If cgroup gets more users after we read count, we won't have | 2753 | retval = pidlist_array_load(cgrp, type, &l); |
2381 | * enough space - tough. This race is indistinguishable to the | 2754 | if (retval) |
2382 | * caller from the case that the additional cgroup users didn't | 2755 | return retval; |
2383 | * show up until sometime later on. | 2756 | /* configure file information */ |
2384 | */ | 2757 | file->f_op = &cgroup_pidlist_operations; |
2385 | npids = cgroup_task_count(cgrp); | ||
2386 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
2387 | if (!pidarray) | ||
2388 | return -ENOMEM; | ||
2389 | npids = pid_array_load(pidarray, npids, cgrp); | ||
2390 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
2391 | |||
2392 | /* | ||
2393 | * Store the array in the cgroup, freeing the old | ||
2394 | * array if necessary | ||
2395 | */ | ||
2396 | down_write(&cgrp->pids_mutex); | ||
2397 | |||
2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { | ||
2399 | if (ns == cp->ns) | ||
2400 | goto found; | ||
2401 | } | ||
2402 | |||
2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
2404 | if (!cp) { | ||
2405 | up_write(&cgrp->pids_mutex); | ||
2406 | kfree(pidarray); | ||
2407 | return -ENOMEM; | ||
2408 | } | ||
2409 | cp->cgrp = cgrp; | ||
2410 | cp->ns = ns; | ||
2411 | get_pid_ns(ns); | ||
2412 | list_add(&cp->list, &cgrp->pids_list); | ||
2413 | found: | ||
2414 | kfree(cp->tasks_pids); | ||
2415 | cp->tasks_pids = pidarray; | ||
2416 | cp->length = npids; | ||
2417 | cp->use_count++; | ||
2418 | up_write(&cgrp->pids_mutex); | ||
2419 | |||
2420 | file->f_op = &cgroup_tasks_operations; | ||
2421 | 2758 | ||
2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2759 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
2423 | if (retval) { | 2760 | if (retval) { |
2424 | release_cgroup_pid_array(cp); | 2761 | cgroup_release_pid_array(l); |
2425 | return retval; | 2762 | return retval; |
2426 | } | 2763 | } |
2427 | ((struct seq_file *)file->private_data)->private = cp; | 2764 | ((struct seq_file *)file->private_data)->private = l; |
2428 | return 0; | 2765 | return 0; |
2429 | } | 2766 | } |
2767 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | ||
2768 | { | ||
2769 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | ||
2770 | } | ||
2771 | static int cgroup_procs_open(struct inode *unused, struct file *file) | ||
2772 | { | ||
2773 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | ||
2774 | } | ||
2430 | 2775 | ||
2431 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 2776 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
2432 | struct cftype *cft) | 2777 | struct cftype *cft) |
@@ -2449,21 +2794,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp, | |||
2449 | /* | 2794 | /* |
2450 | * for the common functions, 'private' gives the type of file | 2795 | * for the common functions, 'private' gives the type of file |
2451 | */ | 2796 | */ |
2797 | /* for hysterical raisins, we can't put this on the older files */ | ||
2798 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | ||
2452 | static struct cftype files[] = { | 2799 | static struct cftype files[] = { |
2453 | { | 2800 | { |
2454 | .name = "tasks", | 2801 | .name = "tasks", |
2455 | .open = cgroup_tasks_open, | 2802 | .open = cgroup_tasks_open, |
2456 | .write_u64 = cgroup_tasks_write, | 2803 | .write_u64 = cgroup_tasks_write, |
2457 | .release = cgroup_tasks_release, | 2804 | .release = cgroup_pidlist_release, |
2458 | .private = FILE_TASKLIST, | ||
2459 | .mode = S_IRUGO | S_IWUSR, | 2805 | .mode = S_IRUGO | S_IWUSR, |
2460 | }, | 2806 | }, |
2461 | 2807 | { | |
2808 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | ||
2809 | .open = cgroup_procs_open, | ||
2810 | /* .write_u64 = cgroup_procs_write, TODO */ | ||
2811 | .release = cgroup_pidlist_release, | ||
2812 | .mode = S_IRUGO, | ||
2813 | }, | ||
2462 | { | 2814 | { |
2463 | .name = "notify_on_release", | 2815 | .name = "notify_on_release", |
2464 | .read_u64 = cgroup_read_notify_on_release, | 2816 | .read_u64 = cgroup_read_notify_on_release, |
2465 | .write_u64 = cgroup_write_notify_on_release, | 2817 | .write_u64 = cgroup_write_notify_on_release, |
2466 | .private = FILE_NOTIFY_ON_RELEASE, | ||
2467 | }, | 2818 | }, |
2468 | }; | 2819 | }; |
2469 | 2820 | ||
@@ -2472,7 +2823,6 @@ static struct cftype cft_release_agent = { | |||
2472 | .read_seq_string = cgroup_release_agent_show, | 2823 | .read_seq_string = cgroup_release_agent_show, |
2473 | .write_string = cgroup_release_agent_write, | 2824 | .write_string = cgroup_release_agent_write, |
2474 | .max_write_len = PATH_MAX, | 2825 | .max_write_len = PATH_MAX, |
2475 | .private = FILE_RELEASE_AGENT, | ||
2476 | }; | 2826 | }; |
2477 | 2827 | ||
2478 | static int cgroup_populate_dir(struct cgroup *cgrp) | 2828 | static int cgroup_populate_dir(struct cgroup *cgrp) |
@@ -2879,6 +3229,7 @@ int __init cgroup_init_early(void) | |||
2879 | init_task.cgroups = &init_css_set; | 3229 | init_task.cgroups = &init_css_set; |
2880 | 3230 | ||
2881 | init_css_set_link.cg = &init_css_set; | 3231 | init_css_set_link.cg = &init_css_set; |
3232 | init_css_set_link.cgrp = dummytop; | ||
2882 | list_add(&init_css_set_link.cgrp_link_list, | 3233 | list_add(&init_css_set_link.cgrp_link_list, |
2883 | &rootnode.top_cgroup.css_sets); | 3234 | &rootnode.top_cgroup.css_sets); |
2884 | list_add(&init_css_set_link.cg_link_list, | 3235 | list_add(&init_css_set_link.cg_link_list, |
@@ -2933,7 +3284,7 @@ int __init cgroup_init(void) | |||
2933 | /* Add init_css_set to the hash table */ | 3284 | /* Add init_css_set to the hash table */ |
2934 | hhead = css_set_hash(init_css_set.subsys); | 3285 | hhead = css_set_hash(init_css_set.subsys); |
2935 | hlist_add_head(&init_css_set.hlist, hhead); | 3286 | hlist_add_head(&init_css_set.hlist, hhead); |
2936 | 3287 | BUG_ON(!init_root_id(&rootnode)); | |
2937 | err = register_filesystem(&cgroup_fs_type); | 3288 | err = register_filesystem(&cgroup_fs_type); |
2938 | if (err < 0) | 3289 | if (err < 0) |
2939 | goto out; | 3290 | goto out; |
@@ -2986,15 +3337,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v) | |||
2986 | for_each_active_root(root) { | 3337 | for_each_active_root(root) { |
2987 | struct cgroup_subsys *ss; | 3338 | struct cgroup_subsys *ss; |
2988 | struct cgroup *cgrp; | 3339 | struct cgroup *cgrp; |
2989 | int subsys_id; | ||
2990 | int count = 0; | 3340 | int count = 0; |
2991 | 3341 | ||
2992 | seq_printf(m, "%lu:", root->subsys_bits); | 3342 | seq_printf(m, "%d:", root->hierarchy_id); |
2993 | for_each_subsys(root, ss) | 3343 | for_each_subsys(root, ss) |
2994 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 3344 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
3345 | if (strlen(root->name)) | ||
3346 | seq_printf(m, "%sname=%s", count ? "," : "", | ||
3347 | root->name); | ||
2995 | seq_putc(m, ':'); | 3348 | seq_putc(m, ':'); |
2996 | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 3349 | cgrp = task_cgroup_from_root(tsk, root); |
2997 | cgrp = task_cgroup(tsk, subsys_id); | ||
2998 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 3350 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
2999 | if (retval < 0) | 3351 | if (retval < 0) |
3000 | goto out_unlock; | 3352 | goto out_unlock; |
@@ -3033,8 +3385,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) | |||
3033 | mutex_lock(&cgroup_mutex); | 3385 | mutex_lock(&cgroup_mutex); |
3034 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 3386 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
3035 | struct cgroup_subsys *ss = subsys[i]; | 3387 | struct cgroup_subsys *ss = subsys[i]; |
3036 | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 3388 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
3037 | ss->name, ss->root->subsys_bits, | 3389 | ss->name, ss->root->hierarchy_id, |
3038 | ss->root->number_of_cgroups, !ss->disabled); | 3390 | ss->root->number_of_cgroups, !ss->disabled); |
3039 | } | 3391 | } |
3040 | mutex_unlock(&cgroup_mutex); | 3392 | mutex_unlock(&cgroup_mutex); |
@@ -3320,13 +3672,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | |||
3320 | { | 3672 | { |
3321 | int ret; | 3673 | int ret; |
3322 | struct cgroup *target; | 3674 | struct cgroup *target; |
3323 | int subsys_id; | ||
3324 | 3675 | ||
3325 | if (cgrp == dummytop) | 3676 | if (cgrp == dummytop) |
3326 | return 1; | 3677 | return 1; |
3327 | 3678 | ||
3328 | get_first_subsys(cgrp, NULL, &subsys_id); | 3679 | target = task_cgroup_from_root(task, cgrp->root); |
3329 | target = task_cgroup(task, subsys_id); | ||
3330 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3680 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
3331 | cgrp = cgrp->parent; | 3681 | cgrp = cgrp->parent; |
3332 | ret = (cgrp == target); | 3682 | ret = (cgrp == target); |
@@ -3693,3 +4043,154 @@ css_get_next(struct cgroup_subsys *ss, int id, | |||
3693 | return ret; | 4043 | return ret; |
3694 | } | 4044 | } |
3695 | 4045 | ||
4046 | #ifdef CONFIG_CGROUP_DEBUG | ||
4047 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
4048 | struct cgroup *cont) | ||
4049 | { | ||
4050 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
4051 | |||
4052 | if (!css) | ||
4053 | return ERR_PTR(-ENOMEM); | ||
4054 | |||
4055 | return css; | ||
4056 | } | ||
4057 | |||
4058 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4059 | { | ||
4060 | kfree(cont->subsys[debug_subsys_id]); | ||
4061 | } | ||
4062 | |||
4063 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
4064 | { | ||
4065 | return atomic_read(&cont->count); | ||
4066 | } | ||
4067 | |||
4068 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
4069 | { | ||
4070 | return cgroup_task_count(cont); | ||
4071 | } | ||
4072 | |||
4073 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
4074 | { | ||
4075 | return (u64)(unsigned long)current->cgroups; | ||
4076 | } | ||
4077 | |||
4078 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
4079 | struct cftype *cft) | ||
4080 | { | ||
4081 | u64 count; | ||
4082 | |||
4083 | rcu_read_lock(); | ||
4084 | count = atomic_read(¤t->cgroups->refcount); | ||
4085 | rcu_read_unlock(); | ||
4086 | return count; | ||
4087 | } | ||
4088 | |||
4089 | static int current_css_set_cg_links_read(struct cgroup *cont, | ||
4090 | struct cftype *cft, | ||
4091 | struct seq_file *seq) | ||
4092 | { | ||
4093 | struct cg_cgroup_link *link; | ||
4094 | struct css_set *cg; | ||
4095 | |||
4096 | read_lock(&css_set_lock); | ||
4097 | rcu_read_lock(); | ||
4098 | cg = rcu_dereference(current->cgroups); | ||
4099 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | ||
4100 | struct cgroup *c = link->cgrp; | ||
4101 | const char *name; | ||
4102 | |||
4103 | if (c->dentry) | ||
4104 | name = c->dentry->d_name.name; | ||
4105 | else | ||
4106 | name = "?"; | ||
4107 | seq_printf(seq, "Root %d group %s\n", | ||
4108 | c->root->hierarchy_id, name); | ||
4109 | } | ||
4110 | rcu_read_unlock(); | ||
4111 | read_unlock(&css_set_lock); | ||
4112 | return 0; | ||
4113 | } | ||
4114 | |||
4115 | #define MAX_TASKS_SHOWN_PER_CSS 25 | ||
4116 | static int cgroup_css_links_read(struct cgroup *cont, | ||
4117 | struct cftype *cft, | ||
4118 | struct seq_file *seq) | ||
4119 | { | ||
4120 | struct cg_cgroup_link *link; | ||
4121 | |||
4122 | read_lock(&css_set_lock); | ||
4123 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | ||
4124 | struct css_set *cg = link->cg; | ||
4125 | struct task_struct *task; | ||
4126 | int count = 0; | ||
4127 | seq_printf(seq, "css_set %p\n", cg); | ||
4128 | list_for_each_entry(task, &cg->tasks, cg_list) { | ||
4129 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | ||
4130 | seq_puts(seq, " ...\n"); | ||
4131 | break; | ||
4132 | } else { | ||
4133 | seq_printf(seq, " task %d\n", | ||
4134 | task_pid_vnr(task)); | ||
4135 | } | ||
4136 | } | ||
4137 | } | ||
4138 | read_unlock(&css_set_lock); | ||
4139 | return 0; | ||
4140 | } | ||
4141 | |||
4142 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
4143 | { | ||
4144 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
4145 | } | ||
4146 | |||
4147 | static struct cftype debug_files[] = { | ||
4148 | { | ||
4149 | .name = "cgroup_refcount", | ||
4150 | .read_u64 = cgroup_refcount_read, | ||
4151 | }, | ||
4152 | { | ||
4153 | .name = "taskcount", | ||
4154 | .read_u64 = debug_taskcount_read, | ||
4155 | }, | ||
4156 | |||
4157 | { | ||
4158 | .name = "current_css_set", | ||
4159 | .read_u64 = current_css_set_read, | ||
4160 | }, | ||
4161 | |||
4162 | { | ||
4163 | .name = "current_css_set_refcount", | ||
4164 | .read_u64 = current_css_set_refcount_read, | ||
4165 | }, | ||
4166 | |||
4167 | { | ||
4168 | .name = "current_css_set_cg_links", | ||
4169 | .read_seq_string = current_css_set_cg_links_read, | ||
4170 | }, | ||
4171 | |||
4172 | { | ||
4173 | .name = "cgroup_css_links", | ||
4174 | .read_seq_string = cgroup_css_links_read, | ||
4175 | }, | ||
4176 | |||
4177 | { | ||
4178 | .name = "releasable", | ||
4179 | .read_u64 = releasable_read, | ||
4180 | }, | ||
4181 | }; | ||
4182 | |||
4183 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4184 | { | ||
4185 | return cgroup_add_files(cont, ss, debug_files, | ||
4186 | ARRAY_SIZE(debug_files)); | ||
4187 | } | ||
4188 | |||
4189 | struct cgroup_subsys debug_subsys = { | ||
4190 | .name = "debug", | ||
4191 | .create = debug_create, | ||
4192 | .destroy = debug_destroy, | ||
4193 | .populate = debug_populate, | ||
4194 | .subsys_id = debug_subsys_id, | ||
4195 | }; | ||
4196 | #endif /* CONFIG_CGROUP_DEBUG */ | ||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c deleted file mode 100644 index 0c92d797baa6..000000000000 --- a/kernel/cgroup_debug.c +++ /dev/null | |||
@@ -1,105 +0,0 @@ | |||
1 | /* | ||
2 | * kernel/cgroup_debug.c - Example cgroup subsystem that | ||
3 | * exposes debug info | ||
4 | * | ||
5 | * Copyright (C) Google Inc, 2007 | ||
6 | * | ||
7 | * Developed by Paul Menage (menage@google.com) | ||
8 | * | ||
9 | */ | ||
10 | |||
11 | #include <linux/cgroup.h> | ||
12 | #include <linux/fs.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/rcupdate.h> | ||
15 | |||
16 | #include <asm/atomic.h> | ||
17 | |||
18 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
19 | struct cgroup *cont) | ||
20 | { | ||
21 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
22 | |||
23 | if (!css) | ||
24 | return ERR_PTR(-ENOMEM); | ||
25 | |||
26 | return css; | ||
27 | } | ||
28 | |||
29 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
30 | { | ||
31 | kfree(cont->subsys[debug_subsys_id]); | ||
32 | } | ||
33 | |||
34 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
35 | { | ||
36 | return atomic_read(&cont->count); | ||
37 | } | ||
38 | |||
39 | static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
40 | { | ||
41 | u64 count; | ||
42 | |||
43 | count = cgroup_task_count(cont); | ||
44 | return count; | ||
45 | } | ||
46 | |||
47 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
48 | { | ||
49 | return (u64)(long)current->cgroups; | ||
50 | } | ||
51 | |||
52 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
53 | struct cftype *cft) | ||
54 | { | ||
55 | u64 count; | ||
56 | |||
57 | rcu_read_lock(); | ||
58 | count = atomic_read(¤t->cgroups->refcount); | ||
59 | rcu_read_unlock(); | ||
60 | return count; | ||
61 | } | ||
62 | |||
63 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
64 | { | ||
65 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
66 | } | ||
67 | |||
68 | static struct cftype files[] = { | ||
69 | { | ||
70 | .name = "cgroup_refcount", | ||
71 | .read_u64 = cgroup_refcount_read, | ||
72 | }, | ||
73 | { | ||
74 | .name = "taskcount", | ||
75 | .read_u64 = taskcount_read, | ||
76 | }, | ||
77 | |||
78 | { | ||
79 | .name = "current_css_set", | ||
80 | .read_u64 = current_css_set_read, | ||
81 | }, | ||
82 | |||
83 | { | ||
84 | .name = "current_css_set_refcount", | ||
85 | .read_u64 = current_css_set_refcount_read, | ||
86 | }, | ||
87 | |||
88 | { | ||
89 | .name = "releasable", | ||
90 | .read_u64 = releasable_read, | ||
91 | }, | ||
92 | }; | ||
93 | |||
94 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
95 | { | ||
96 | return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | ||
97 | } | ||
98 | |||
99 | struct cgroup_subsys debug_subsys = { | ||
100 | .name = "debug", | ||
101 | .create = debug_create, | ||
102 | .destroy = debug_destroy, | ||
103 | .populate = debug_populate, | ||
104 | .subsys_id = debug_subsys_id, | ||
105 | }; | ||
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index fb249e2bcada..59e9ef6aab40 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
@@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task) | |||
159 | */ | 159 | */ |
160 | static int freezer_can_attach(struct cgroup_subsys *ss, | 160 | static int freezer_can_attach(struct cgroup_subsys *ss, |
161 | struct cgroup *new_cgroup, | 161 | struct cgroup *new_cgroup, |
162 | struct task_struct *task) | 162 | struct task_struct *task, bool threadgroup) |
163 | { | 163 | { |
164 | struct freezer *freezer; | 164 | struct freezer *freezer; |
165 | 165 | ||
@@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss, | |||
177 | if (freezer->state == CGROUP_FROZEN) | 177 | if (freezer->state == CGROUP_FROZEN) |
178 | return -EBUSY; | 178 | return -EBUSY; |
179 | 179 | ||
180 | if (threadgroup) { | ||
181 | struct task_struct *c; | ||
182 | |||
183 | rcu_read_lock(); | ||
184 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
185 | if (is_task_frozen_enough(c)) { | ||
186 | rcu_read_unlock(); | ||
187 | return -EBUSY; | ||
188 | } | ||
189 | } | ||
190 | rcu_read_unlock(); | ||
191 | } | ||
192 | |||
180 | return 0; | 193 | return 0; |
181 | } | 194 | } |
182 | 195 | ||
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 7e75a41bd508..b5cb469d2545 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -1324,9 +1324,10 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
1324 | static cpumask_var_t cpus_attach; | 1324 | static cpumask_var_t cpus_attach; |
1325 | 1325 | ||
1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1328 | struct cgroup *cont, struct task_struct *tsk) | 1328 | struct task_struct *tsk, bool threadgroup) |
1329 | { | 1329 | { |
1330 | int ret; | ||
1330 | struct cpuset *cs = cgroup_cs(cont); | 1331 | struct cpuset *cs = cgroup_cs(cont); |
1331 | 1332 | ||
1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1333 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
@@ -1343,18 +1344,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
1343 | if (tsk->flags & PF_THREAD_BOUND) | 1344 | if (tsk->flags & PF_THREAD_BOUND) |
1344 | return -EINVAL; | 1345 | return -EINVAL; |
1345 | 1346 | ||
1346 | return security_task_setscheduler(tsk, 0, NULL); | 1347 | ret = security_task_setscheduler(tsk, 0, NULL); |
1348 | if (ret) | ||
1349 | return ret; | ||
1350 | if (threadgroup) { | ||
1351 | struct task_struct *c; | ||
1352 | |||
1353 | rcu_read_lock(); | ||
1354 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1355 | ret = security_task_setscheduler(c, 0, NULL); | ||
1356 | if (ret) { | ||
1357 | rcu_read_unlock(); | ||
1358 | return ret; | ||
1359 | } | ||
1360 | } | ||
1361 | rcu_read_unlock(); | ||
1362 | } | ||
1363 | return 0; | ||
1364 | } | ||
1365 | |||
1366 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | ||
1367 | struct cpuset *cs) | ||
1368 | { | ||
1369 | int err; | ||
1370 | /* | ||
1371 | * can_attach beforehand should guarantee that this doesn't fail. | ||
1372 | * TODO: have a better way to handle failure here | ||
1373 | */ | ||
1374 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1375 | WARN_ON_ONCE(err); | ||
1376 | |||
1377 | task_lock(tsk); | ||
1378 | cpuset_change_task_nodemask(tsk, to); | ||
1379 | task_unlock(tsk); | ||
1380 | cpuset_update_task_spread_flag(cs, tsk); | ||
1381 | |||
1347 | } | 1382 | } |
1348 | 1383 | ||
1349 | static void cpuset_attach(struct cgroup_subsys *ss, | 1384 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1350 | struct cgroup *cont, struct cgroup *oldcont, | 1385 | struct cgroup *oldcont, struct task_struct *tsk, |
1351 | struct task_struct *tsk) | 1386 | bool threadgroup) |
1352 | { | 1387 | { |
1353 | nodemask_t from, to; | 1388 | nodemask_t from, to; |
1354 | struct mm_struct *mm; | 1389 | struct mm_struct *mm; |
1355 | struct cpuset *cs = cgroup_cs(cont); | 1390 | struct cpuset *cs = cgroup_cs(cont); |
1356 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1391 | struct cpuset *oldcs = cgroup_cs(oldcont); |
1357 | int err; | ||
1358 | 1392 | ||
1359 | if (cs == &top_cpuset) { | 1393 | if (cs == &top_cpuset) { |
1360 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1394 | cpumask_copy(cpus_attach, cpu_possible_mask); |
@@ -1363,15 +1397,19 @@ static void cpuset_attach(struct cgroup_subsys *ss, | |||
1363 | guarantee_online_cpus(cs, cpus_attach); | 1397 | guarantee_online_cpus(cs, cpus_attach); |
1364 | guarantee_online_mems(cs, &to); | 1398 | guarantee_online_mems(cs, &to); |
1365 | } | 1399 | } |
1366 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1367 | if (err) | ||
1368 | return; | ||
1369 | 1400 | ||
1370 | task_lock(tsk); | 1401 | /* do per-task migration stuff possibly for each in the threadgroup */ |
1371 | cpuset_change_task_nodemask(tsk, &to); | 1402 | cpuset_attach_task(tsk, &to, cs); |
1372 | task_unlock(tsk); | 1403 | if (threadgroup) { |
1373 | cpuset_update_task_spread_flag(cs, tsk); | 1404 | struct task_struct *c; |
1405 | rcu_read_lock(); | ||
1406 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1407 | cpuset_attach_task(c, &to, cs); | ||
1408 | } | ||
1409 | rcu_read_unlock(); | ||
1410 | } | ||
1374 | 1411 | ||
1412 | /* change mm; only needs to be done once even if threadgroup */ | ||
1375 | from = oldcs->mems_allowed; | 1413 | from = oldcs->mems_allowed; |
1376 | to = cs->mems_allowed; | 1414 | to = cs->mems_allowed; |
1377 | mm = get_task_mm(tsk); | 1415 | mm = get_task_mm(tsk); |
diff --git a/kernel/cred.c b/kernel/cred.c index d7f7a01082eb..dd76cfe5f5b0 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -782,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as); | |||
782 | 782 | ||
783 | #ifdef CONFIG_DEBUG_CREDENTIALS | 783 | #ifdef CONFIG_DEBUG_CREDENTIALS |
784 | 784 | ||
785 | bool creds_are_invalid(const struct cred *cred) | ||
786 | { | ||
787 | if (cred->magic != CRED_MAGIC) | ||
788 | return true; | ||
789 | if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) | ||
790 | return true; | ||
791 | #ifdef CONFIG_SECURITY_SELINUX | ||
792 | if (selinux_is_enabled()) { | ||
793 | if ((unsigned long) cred->security < PAGE_SIZE) | ||
794 | return true; | ||
795 | if ((*(u32 *)cred->security & 0xffffff00) == | ||
796 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)) | ||
797 | return true; | ||
798 | } | ||
799 | #endif | ||
800 | return false; | ||
801 | } | ||
802 | EXPORT_SYMBOL(creds_are_invalid); | ||
803 | |||
785 | /* | 804 | /* |
786 | * dump invalid credentials | 805 | * dump invalid credentials |
787 | */ | 806 | */ |
diff --git a/kernel/exit.c b/kernel/exit.c index ae5d8660ddff..5859f598c951 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -47,7 +47,7 @@ | |||
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | 52 | ||
53 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
@@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
154 | { | 154 | { |
155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
156 | 156 | ||
157 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
159 | #endif | 159 | #endif |
160 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
161 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
@@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid) | |||
359 | { | 359 | { |
360 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
361 | 361 | ||
362 | if (task_session(curr) != pid) | 362 | if (task_session(curr) != pid) { |
363 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
364 | proc_sid_connector(curr); | ||
365 | } | ||
364 | 366 | ||
365 | if (task_pgrp(curr) != pid) | 367 | if (task_pgrp(curr) != pid) |
366 | change_pid(curr, PIDTYPE_PGID, pid); | 368 | change_pid(curr, PIDTYPE_PGID, pid); |
@@ -945,6 +947,8 @@ NORET_TYPE void do_exit(long code) | |||
945 | if (group_dead) { | 947 | if (group_dead) { |
946 | hrtimer_cancel(&tsk->signal->real_timer); | 948 | hrtimer_cancel(&tsk->signal->real_timer); |
947 | exit_itimers(tsk->signal); | 949 | exit_itimers(tsk->signal); |
950 | if (tsk->mm) | ||
951 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
948 | } | 952 | } |
949 | acct_collect(code, group_dead); | 953 | acct_collect(code, group_dead); |
950 | if (group_dead) | 954 | if (group_dead) |
@@ -972,8 +976,6 @@ NORET_TYPE void do_exit(long code) | |||
972 | disassociate_ctty(1); | 976 | disassociate_ctty(1); |
973 | 977 | ||
974 | module_put(task_thread_info(tsk)->exec_domain->module); | 978 | module_put(task_thread_info(tsk)->exec_domain->module); |
975 | if (tsk->binfmt) | ||
976 | module_put(tsk->binfmt->module); | ||
977 | 979 | ||
978 | proc_exit_connector(tsk); | 980 | proc_exit_connector(tsk); |
979 | 981 | ||
@@ -981,7 +983,7 @@ NORET_TYPE void do_exit(long code) | |||
981 | * Flush inherited counters to the parent - before the parent | 983 | * Flush inherited counters to the parent - before the parent |
982 | * gets woken up by child-exit notifications. | 984 | * gets woken up by child-exit notifications. |
983 | */ | 985 | */ |
984 | perf_counter_exit_task(tsk); | 986 | perf_event_exit_task(tsk); |
985 | 987 | ||
986 | exit_notify(tsk, group_dead); | 988 | exit_notify(tsk, group_dead); |
987 | #ifdef CONFIG_NUMA | 989 | #ifdef CONFIG_NUMA |
@@ -1093,28 +1095,28 @@ struct wait_opts { | |||
1093 | int __user *wo_stat; | 1095 | int __user *wo_stat; |
1094 | struct rusage __user *wo_rusage; | 1096 | struct rusage __user *wo_rusage; |
1095 | 1097 | ||
1098 | wait_queue_t child_wait; | ||
1096 | int notask_error; | 1099 | int notask_error; |
1097 | }; | 1100 | }; |
1098 | 1101 | ||
1099 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1102 | static inline |
1103 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | ||
1100 | { | 1104 | { |
1101 | struct pid *pid = NULL; | 1105 | if (type != PIDTYPE_PID) |
1102 | if (type == PIDTYPE_PID) | 1106 | task = task->group_leader; |
1103 | pid = task->pids[type].pid; | 1107 | return task->pids[type].pid; |
1104 | else if (type < PIDTYPE_MAX) | ||
1105 | pid = task->group_leader->pids[type].pid; | ||
1106 | return pid; | ||
1107 | } | 1108 | } |
1108 | 1109 | ||
1109 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1110 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1110 | { | 1111 | { |
1111 | int err; | 1112 | return wo->wo_type == PIDTYPE_MAX || |
1112 | 1113 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1113 | if (wo->wo_type < PIDTYPE_MAX) { | 1114 | } |
1114 | if (task_pid_type(p, wo->wo_type) != wo->wo_pid) | ||
1115 | return 0; | ||
1116 | } | ||
1117 | 1115 | ||
1116 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | ||
1117 | { | ||
1118 | if (!eligible_pid(wo, p)) | ||
1119 | return 0; | ||
1118 | /* Wait for all children (clone and not) if __WALL is set; | 1120 | /* Wait for all children (clone and not) if __WALL is set; |
1119 | * otherwise, wait for clone children *only* if __WCLONE is | 1121 | * otherwise, wait for clone children *only* if __WCLONE is |
1120 | * set; otherwise, wait for non-clone children *only*. (Note: | 1122 | * set; otherwise, wait for non-clone children *only*. (Note: |
@@ -1124,10 +1126,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p) | |||
1124 | && !(wo->wo_flags & __WALL)) | 1126 | && !(wo->wo_flags & __WALL)) |
1125 | return 0; | 1127 | return 0; |
1126 | 1128 | ||
1127 | err = security_task_wait(p); | ||
1128 | if (err) | ||
1129 | return err; | ||
1130 | |||
1131 | return 1; | 1129 | return 1; |
1132 | } | 1130 | } |
1133 | 1131 | ||
@@ -1140,18 +1138,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | |||
1140 | 1138 | ||
1141 | put_task_struct(p); | 1139 | put_task_struct(p); |
1142 | infop = wo->wo_info; | 1140 | infop = wo->wo_info; |
1143 | if (!retval) | 1141 | if (infop) { |
1144 | retval = put_user(SIGCHLD, &infop->si_signo); | 1142 | if (!retval) |
1145 | if (!retval) | 1143 | retval = put_user(SIGCHLD, &infop->si_signo); |
1146 | retval = put_user(0, &infop->si_errno); | 1144 | if (!retval) |
1147 | if (!retval) | 1145 | retval = put_user(0, &infop->si_errno); |
1148 | retval = put_user((short)why, &infop->si_code); | 1146 | if (!retval) |
1149 | if (!retval) | 1147 | retval = put_user((short)why, &infop->si_code); |
1150 | retval = put_user(pid, &infop->si_pid); | 1148 | if (!retval) |
1151 | if (!retval) | 1149 | retval = put_user(pid, &infop->si_pid); |
1152 | retval = put_user(uid, &infop->si_uid); | 1150 | if (!retval) |
1153 | if (!retval) | 1151 | retval = put_user(uid, &infop->si_uid); |
1154 | retval = put_user(status, &infop->si_status); | 1152 | if (!retval) |
1153 | retval = put_user(status, &infop->si_status); | ||
1154 | } | ||
1155 | if (!retval) | 1155 | if (!retval) |
1156 | retval = pid; | 1156 | retval = pid; |
1157 | return retval; | 1157 | return retval; |
@@ -1208,6 +1208,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1208 | if (likely(!traced) && likely(!task_detached(p))) { | 1208 | if (likely(!traced) && likely(!task_detached(p))) { |
1209 | struct signal_struct *psig; | 1209 | struct signal_struct *psig; |
1210 | struct signal_struct *sig; | 1210 | struct signal_struct *sig; |
1211 | unsigned long maxrss; | ||
1211 | 1212 | ||
1212 | /* | 1213 | /* |
1213 | * The resource counters for the group leader are in its | 1214 | * The resource counters for the group leader are in its |
@@ -1256,6 +1257,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1256 | psig->coublock += | 1257 | psig->coublock += |
1257 | task_io_get_oublock(p) + | 1258 | task_io_get_oublock(p) + |
1258 | sig->oublock + sig->coublock; | 1259 | sig->oublock + sig->coublock; |
1260 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
1261 | if (psig->cmaxrss < maxrss) | ||
1262 | psig->cmaxrss = maxrss; | ||
1259 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1263 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1260 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1264 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1261 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1265 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
@@ -1477,13 +1481,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | |||
1477 | * then ->notask_error is 0 if @p is an eligible child, | 1481 | * then ->notask_error is 0 if @p is an eligible child, |
1478 | * or another error from security_task_wait(), or still -ECHILD. | 1482 | * or another error from security_task_wait(), or still -ECHILD. |
1479 | */ | 1483 | */ |
1480 | static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, | 1484 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1481 | int ptrace, struct task_struct *p) | 1485 | struct task_struct *p) |
1482 | { | 1486 | { |
1483 | int ret = eligible_child(wo, p); | 1487 | int ret = eligible_child(wo, p); |
1484 | if (!ret) | 1488 | if (!ret) |
1485 | return ret; | 1489 | return ret; |
1486 | 1490 | ||
1491 | ret = security_task_wait(p); | ||
1487 | if (unlikely(ret < 0)) { | 1492 | if (unlikely(ret < 0)) { |
1488 | /* | 1493 | /* |
1489 | * If we have not yet seen any eligible child, | 1494 | * If we have not yet seen any eligible child, |
@@ -1545,7 +1550,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | |||
1545 | * Do not consider detached threads. | 1550 | * Do not consider detached threads. |
1546 | */ | 1551 | */ |
1547 | if (!task_detached(p)) { | 1552 | if (!task_detached(p)) { |
1548 | int ret = wait_consider_task(wo, tsk, 0, p); | 1553 | int ret = wait_consider_task(wo, 0, p); |
1549 | if (ret) | 1554 | if (ret) |
1550 | return ret; | 1555 | return ret; |
1551 | } | 1556 | } |
@@ -1559,7 +1564,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1559 | struct task_struct *p; | 1564 | struct task_struct *p; |
1560 | 1565 | ||
1561 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1566 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1562 | int ret = wait_consider_task(wo, tsk, 1, p); | 1567 | int ret = wait_consider_task(wo, 1, p); |
1563 | if (ret) | 1568 | if (ret) |
1564 | return ret; | 1569 | return ret; |
1565 | } | 1570 | } |
@@ -1567,15 +1572,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1567 | return 0; | 1572 | return 0; |
1568 | } | 1573 | } |
1569 | 1574 | ||
1575 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | ||
1576 | int sync, void *key) | ||
1577 | { | ||
1578 | struct wait_opts *wo = container_of(wait, struct wait_opts, | ||
1579 | child_wait); | ||
1580 | struct task_struct *p = key; | ||
1581 | |||
1582 | if (!eligible_pid(wo, p)) | ||
1583 | return 0; | ||
1584 | |||
1585 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | ||
1586 | return 0; | ||
1587 | |||
1588 | return default_wake_function(wait, mode, sync, key); | ||
1589 | } | ||
1590 | |||
1591 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | ||
1592 | { | ||
1593 | __wake_up_sync_key(&parent->signal->wait_chldexit, | ||
1594 | TASK_INTERRUPTIBLE, 1, p); | ||
1595 | } | ||
1596 | |||
1570 | static long do_wait(struct wait_opts *wo) | 1597 | static long do_wait(struct wait_opts *wo) |
1571 | { | 1598 | { |
1572 | DECLARE_WAITQUEUE(wait, current); | ||
1573 | struct task_struct *tsk; | 1599 | struct task_struct *tsk; |
1574 | int retval; | 1600 | int retval; |
1575 | 1601 | ||
1576 | trace_sched_process_wait(wo->wo_pid); | 1602 | trace_sched_process_wait(wo->wo_pid); |
1577 | 1603 | ||
1578 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 1604 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1605 | wo->child_wait.private = current; | ||
1606 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | ||
1579 | repeat: | 1607 | repeat: |
1580 | /* | 1608 | /* |
1581 | * If there is nothing that can match our critiera just get out. | 1609 | * If there is nothing that can match our critiera just get out. |
@@ -1616,32 +1644,7 @@ notask: | |||
1616 | } | 1644 | } |
1617 | end: | 1645 | end: |
1618 | __set_current_state(TASK_RUNNING); | 1646 | __set_current_state(TASK_RUNNING); |
1619 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 1647 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1620 | if (wo->wo_info) { | ||
1621 | struct siginfo __user *infop = wo->wo_info; | ||
1622 | |||
1623 | if (retval > 0) | ||
1624 | retval = 0; | ||
1625 | else { | ||
1626 | /* | ||
1627 | * For a WNOHANG return, clear out all the fields | ||
1628 | * we would set so the user can easily tell the | ||
1629 | * difference. | ||
1630 | */ | ||
1631 | if (!retval) | ||
1632 | retval = put_user(0, &infop->si_signo); | ||
1633 | if (!retval) | ||
1634 | retval = put_user(0, &infop->si_errno); | ||
1635 | if (!retval) | ||
1636 | retval = put_user(0, &infop->si_code); | ||
1637 | if (!retval) | ||
1638 | retval = put_user(0, &infop->si_pid); | ||
1639 | if (!retval) | ||
1640 | retval = put_user(0, &infop->si_uid); | ||
1641 | if (!retval) | ||
1642 | retval = put_user(0, &infop->si_status); | ||
1643 | } | ||
1644 | } | ||
1645 | return retval; | 1648 | return retval; |
1646 | } | 1649 | } |
1647 | 1650 | ||
@@ -1686,6 +1689,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | |||
1686 | wo.wo_stat = NULL; | 1689 | wo.wo_stat = NULL; |
1687 | wo.wo_rusage = ru; | 1690 | wo.wo_rusage = ru; |
1688 | ret = do_wait(&wo); | 1691 | ret = do_wait(&wo); |
1692 | |||
1693 | if (ret > 0) { | ||
1694 | ret = 0; | ||
1695 | } else if (infop) { | ||
1696 | /* | ||
1697 | * For a WNOHANG return, clear out all the fields | ||
1698 | * we would set so the user can easily tell the | ||
1699 | * difference. | ||
1700 | */ | ||
1701 | if (!ret) | ||
1702 | ret = put_user(0, &infop->si_signo); | ||
1703 | if (!ret) | ||
1704 | ret = put_user(0, &infop->si_errno); | ||
1705 | if (!ret) | ||
1706 | ret = put_user(0, &infop->si_code); | ||
1707 | if (!ret) | ||
1708 | ret = put_user(0, &infop->si_pid); | ||
1709 | if (!ret) | ||
1710 | ret = put_user(0, &infop->si_uid); | ||
1711 | if (!ret) | ||
1712 | ret = put_user(0, &infop->si_status); | ||
1713 | } | ||
1714 | |||
1689 | put_pid(pid); | 1715 | put_pid(pid); |
1690 | 1716 | ||
1691 | /* avoid REGPARM breakage on x86: */ | 1717 | /* avoid REGPARM breakage on x86: */ |
diff --git a/kernel/fork.c b/kernel/fork.c index bfee931ee3fb..266c6af6ef1b 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
52 | #include <linux/ksm.h> | ||
52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
@@ -61,7 +62,8 @@ | |||
61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
66 | #include <linux/posix-timers.h> | ||
65 | 67 | ||
66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
@@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
138 | 140 | ||
141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
142 | { | ||
143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
144 | |||
145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
146 | } | ||
147 | |||
139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
140 | { | 149 | { |
141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
151 | account_kernel_stack(tsk->stack, -1); | ||
142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
@@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
253 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
254 | #endif | 264 | #endif |
255 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
266 | |||
267 | account_kernel_stack(ti, 1); | ||
268 | |||
256 | return tsk; | 269 | return tsk; |
257 | 270 | ||
258 | out: | 271 | out: |
@@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
288 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
289 | rb_parent = NULL; | 302 | rb_parent = NULL; |
290 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
304 | retval = ksm_fork(mm, oldmm); | ||
305 | if (retval) | ||
306 | goto out; | ||
291 | 307 | ||
292 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
293 | struct file *file; | 309 | struct file *file; |
@@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup); | |||
418 | 434 | ||
419 | #include <linux/init_task.h> | 435 | #include <linux/init_task.h> |
420 | 436 | ||
437 | static void mm_init_aio(struct mm_struct *mm) | ||
438 | { | ||
439 | #ifdef CONFIG_AIO | ||
440 | spin_lock_init(&mm->ioctx_lock); | ||
441 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
442 | #endif | ||
443 | } | ||
444 | |||
421 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 445 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
422 | { | 446 | { |
423 | atomic_set(&mm->mm_users, 1); | 447 | atomic_set(&mm->mm_users, 1); |
424 | atomic_set(&mm->mm_count, 1); | 448 | atomic_set(&mm->mm_count, 1); |
425 | init_rwsem(&mm->mmap_sem); | 449 | init_rwsem(&mm->mmap_sem); |
426 | INIT_LIST_HEAD(&mm->mmlist); | 450 | INIT_LIST_HEAD(&mm->mmlist); |
427 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 451 | mm->flags = (current->mm) ? |
452 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
428 | mm->core_state = NULL; | 453 | mm->core_state = NULL; |
429 | mm->nr_ptes = 0; | 454 | mm->nr_ptes = 0; |
430 | set_mm_counter(mm, file_rss, 0); | 455 | set_mm_counter(mm, file_rss, 0); |
431 | set_mm_counter(mm, anon_rss, 0); | 456 | set_mm_counter(mm, anon_rss, 0); |
432 | spin_lock_init(&mm->page_table_lock); | 457 | spin_lock_init(&mm->page_table_lock); |
433 | spin_lock_init(&mm->ioctx_lock); | ||
434 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
435 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 458 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
436 | mm->cached_hole_size = ~0UL; | 459 | mm->cached_hole_size = ~0UL; |
460 | mm_init_aio(mm); | ||
437 | mm_init_owner(mm, p); | 461 | mm_init_owner(mm, p); |
438 | 462 | ||
439 | if (likely(!mm_alloc_pgd(mm))) { | 463 | if (likely(!mm_alloc_pgd(mm))) { |
@@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm) | |||
485 | 509 | ||
486 | if (atomic_dec_and_test(&mm->mm_users)) { | 510 | if (atomic_dec_and_test(&mm->mm_users)) { |
487 | exit_aio(mm); | 511 | exit_aio(mm); |
512 | ksm_exit(mm); | ||
488 | exit_mmap(mm); | 513 | exit_mmap(mm); |
489 | set_mm_exe_file(mm, NULL); | 514 | set_mm_exe_file(mm, NULL); |
490 | if (!list_empty(&mm->mmlist)) { | 515 | if (!list_empty(&mm->mmlist)) { |
@@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm) | |||
493 | spin_unlock(&mmlist_lock); | 518 | spin_unlock(&mmlist_lock); |
494 | } | 519 | } |
495 | put_swap_token(mm); | 520 | put_swap_token(mm); |
521 | if (mm->binfmt) | ||
522 | module_put(mm->binfmt->module); | ||
496 | mmdrop(mm); | 523 | mmdrop(mm); |
497 | } | 524 | } |
498 | } | 525 | } |
@@ -618,9 +645,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk) | |||
618 | mm->hiwater_rss = get_mm_rss(mm); | 645 | mm->hiwater_rss = get_mm_rss(mm); |
619 | mm->hiwater_vm = mm->total_vm; | 646 | mm->hiwater_vm = mm->total_vm; |
620 | 647 | ||
648 | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | ||
649 | goto free_pt; | ||
650 | |||
621 | return mm; | 651 | return mm; |
622 | 652 | ||
623 | free_pt: | 653 | free_pt: |
654 | /* don't put binfmt in mmput, we haven't got module yet */ | ||
655 | mm->binfmt = NULL; | ||
624 | mmput(mm); | 656 | mmput(mm); |
625 | 657 | ||
626 | fail_nomem: | 658 | fail_nomem: |
@@ -788,10 +820,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
788 | thread_group_cputime_init(sig); | 820 | thread_group_cputime_init(sig); |
789 | 821 | ||
790 | /* Expiration times and increments. */ | 822 | /* Expiration times and increments. */ |
791 | sig->it_virt_expires = cputime_zero; | 823 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
792 | sig->it_virt_incr = cputime_zero; | 824 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
793 | sig->it_prof_expires = cputime_zero; | 825 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
794 | sig->it_prof_incr = cputime_zero; | 826 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
795 | 827 | ||
796 | /* Cached expiration times. */ | 828 | /* Cached expiration times. */ |
797 | sig->cputime_expires.prof_exp = cputime_zero; | 829 | sig->cputime_expires.prof_exp = cputime_zero; |
@@ -849,6 +881,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
849 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 881 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
850 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 882 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
851 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 883 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
884 | sig->maxrss = sig->cmaxrss = 0; | ||
852 | task_io_accounting_init(&sig->ioac); | 885 | task_io_accounting_init(&sig->ioac); |
853 | sig->sum_sched_runtime = 0; | 886 | sig->sum_sched_runtime = 0; |
854 | taskstats_tgid_init(sig); | 887 | taskstats_tgid_init(sig); |
@@ -863,6 +896,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
863 | 896 | ||
864 | tty_audit_fork(sig); | 897 | tty_audit_fork(sig); |
865 | 898 | ||
899 | sig->oom_adj = current->signal->oom_adj; | ||
900 | |||
866 | return 0; | 901 | return 0; |
867 | } | 902 | } |
868 | 903 | ||
@@ -958,6 +993,16 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
958 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 993 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
959 | return ERR_PTR(-EINVAL); | 994 | return ERR_PTR(-EINVAL); |
960 | 995 | ||
996 | /* | ||
997 | * Siblings of global init remain as zombies on exit since they are | ||
998 | * not reaped by their parent (swapper). To solve this and to avoid | ||
999 | * multi-rooted process trees, prevent global and container-inits | ||
1000 | * from creating siblings. | ||
1001 | */ | ||
1002 | if ((clone_flags & CLONE_PARENT) && | ||
1003 | current->signal->flags & SIGNAL_UNKILLABLE) | ||
1004 | return ERR_PTR(-EINVAL); | ||
1005 | |||
961 | retval = security_task_create(clone_flags); | 1006 | retval = security_task_create(clone_flags); |
962 | if (retval) | 1007 | if (retval) |
963 | goto fork_out; | 1008 | goto fork_out; |
@@ -999,9 +1044,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
999 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 1044 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
1000 | goto bad_fork_cleanup_count; | 1045 | goto bad_fork_cleanup_count; |
1001 | 1046 | ||
1002 | if (p->binfmt && !try_module_get(p->binfmt->module)) | ||
1003 | goto bad_fork_cleanup_put_domain; | ||
1004 | |||
1005 | p->did_exec = 0; | 1047 | p->did_exec = 0; |
1006 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 1048 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
1007 | copy_flags(clone_flags, p); | 1049 | copy_flags(clone_flags, p); |
@@ -1075,10 +1117,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1075 | 1117 | ||
1076 | p->bts = NULL; | 1118 | p->bts = NULL; |
1077 | 1119 | ||
1120 | p->stack_start = stack_start; | ||
1121 | |||
1078 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1122 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1079 | sched_fork(p, clone_flags); | 1123 | sched_fork(p, clone_flags); |
1080 | 1124 | ||
1081 | retval = perf_counter_init_task(p); | 1125 | retval = perf_event_init_task(p); |
1082 | if (retval) | 1126 | if (retval) |
1083 | goto bad_fork_cleanup_policy; | 1127 | goto bad_fork_cleanup_policy; |
1084 | 1128 | ||
@@ -1253,7 +1297,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1253 | write_unlock_irq(&tasklist_lock); | 1297 | write_unlock_irq(&tasklist_lock); |
1254 | proc_fork_connector(p); | 1298 | proc_fork_connector(p); |
1255 | cgroup_post_fork(p); | 1299 | cgroup_post_fork(p); |
1256 | perf_counter_fork(p); | 1300 | perf_event_fork(p); |
1257 | return p; | 1301 | return p; |
1258 | 1302 | ||
1259 | bad_fork_free_pid: | 1303 | bad_fork_free_pid: |
@@ -1280,16 +1324,13 @@ bad_fork_cleanup_semundo: | |||
1280 | bad_fork_cleanup_audit: | 1324 | bad_fork_cleanup_audit: |
1281 | audit_free(p); | 1325 | audit_free(p); |
1282 | bad_fork_cleanup_policy: | 1326 | bad_fork_cleanup_policy: |
1283 | perf_counter_free_task(p); | 1327 | perf_event_free_task(p); |
1284 | #ifdef CONFIG_NUMA | 1328 | #ifdef CONFIG_NUMA |
1285 | mpol_put(p->mempolicy); | 1329 | mpol_put(p->mempolicy); |
1286 | bad_fork_cleanup_cgroup: | 1330 | bad_fork_cleanup_cgroup: |
1287 | #endif | 1331 | #endif |
1288 | cgroup_exit(p, cgroup_callbacks_done); | 1332 | cgroup_exit(p, cgroup_callbacks_done); |
1289 | delayacct_tsk_free(p); | 1333 | delayacct_tsk_free(p); |
1290 | if (p->binfmt) | ||
1291 | module_put(p->binfmt->module); | ||
1292 | bad_fork_cleanup_put_domain: | ||
1293 | module_put(task_thread_info(p)->exec_domain->module); | 1334 | module_put(task_thread_info(p)->exec_domain->module); |
1294 | bad_fork_cleanup_count: | 1335 | bad_fork_cleanup_count: |
1295 | atomic_dec(&p->cred->user->processes); | 1336 | atomic_dec(&p->cred->user->processes); |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index c03f221fee44..e5d98ce50f89 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -48,6 +48,8 @@ | |||
48 | 48 | ||
49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
50 | 50 | ||
51 | #include <trace/events/timer.h> | ||
52 | |||
51 | /* | 53 | /* |
52 | * The timer bases: | 54 | * The timer bases: |
53 | * | 55 | * |
@@ -442,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
442 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
443 | #endif | 445 | #endif |
444 | 446 | ||
447 | static inline void | ||
448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
449 | enum hrtimer_mode mode) | ||
450 | { | ||
451 | debug_hrtimer_init(timer); | ||
452 | trace_hrtimer_init(timer, clockid, mode); | ||
453 | } | ||
454 | |||
455 | static inline void debug_activate(struct hrtimer *timer) | ||
456 | { | ||
457 | debug_hrtimer_activate(timer); | ||
458 | trace_hrtimer_start(timer); | ||
459 | } | ||
460 | |||
461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
462 | { | ||
463 | debug_hrtimer_deactivate(timer); | ||
464 | trace_hrtimer_cancel(timer); | ||
465 | } | ||
466 | |||
445 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
446 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
447 | 469 | ||
@@ -798,7 +820,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
798 | struct hrtimer *entry; | 820 | struct hrtimer *entry; |
799 | int leftmost = 1; | 821 | int leftmost = 1; |
800 | 822 | ||
801 | debug_hrtimer_activate(timer); | 823 | debug_activate(timer); |
802 | 824 | ||
803 | /* | 825 | /* |
804 | * Find the right place in the rbtree: | 826 | * Find the right place in the rbtree: |
@@ -884,7 +906,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
884 | * reprogramming happens in the interrupt handler. This is a | 906 | * reprogramming happens in the interrupt handler. This is a |
885 | * rare case and less expensive than a smp call. | 907 | * rare case and less expensive than a smp call. |
886 | */ | 908 | */ |
887 | debug_hrtimer_deactivate(timer); | 909 | debug_deactivate(timer); |
888 | timer_stats_hrtimer_clear_start_info(timer); | 910 | timer_stats_hrtimer_clear_start_info(timer); |
889 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 911 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
890 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 912 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
@@ -1117,7 +1139,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1117 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1139 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1118 | enum hrtimer_mode mode) | 1140 | enum hrtimer_mode mode) |
1119 | { | 1141 | { |
1120 | debug_hrtimer_init(timer); | 1142 | debug_init(timer, clock_id, mode); |
1121 | __hrtimer_init(timer, clock_id, mode); | 1143 | __hrtimer_init(timer, clock_id, mode); |
1122 | } | 1144 | } |
1123 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1145 | EXPORT_SYMBOL_GPL(hrtimer_init); |
@@ -1141,7 +1163,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
1141 | } | 1163 | } |
1142 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1164 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
1143 | 1165 | ||
1144 | static void __run_hrtimer(struct hrtimer *timer) | 1166 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
1145 | { | 1167 | { |
1146 | struct hrtimer_clock_base *base = timer->base; | 1168 | struct hrtimer_clock_base *base = timer->base; |
1147 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1169 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
@@ -1150,7 +1172,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1150 | 1172 | ||
1151 | WARN_ON(!irqs_disabled()); | 1173 | WARN_ON(!irqs_disabled()); |
1152 | 1174 | ||
1153 | debug_hrtimer_deactivate(timer); | 1175 | debug_deactivate(timer); |
1154 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1176 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1155 | timer_stats_account_hrtimer(timer); | 1177 | timer_stats_account_hrtimer(timer); |
1156 | fn = timer->function; | 1178 | fn = timer->function; |
@@ -1161,7 +1183,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1161 | * the timer base. | 1183 | * the timer base. |
1162 | */ | 1184 | */ |
1163 | spin_unlock(&cpu_base->lock); | 1185 | spin_unlock(&cpu_base->lock); |
1186 | trace_hrtimer_expire_entry(timer, now); | ||
1164 | restart = fn(timer); | 1187 | restart = fn(timer); |
1188 | trace_hrtimer_expire_exit(timer); | ||
1165 | spin_lock(&cpu_base->lock); | 1189 | spin_lock(&cpu_base->lock); |
1166 | 1190 | ||
1167 | /* | 1191 | /* |
@@ -1272,7 +1296,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
1272 | break; | 1296 | break; |
1273 | } | 1297 | } |
1274 | 1298 | ||
1275 | __run_hrtimer(timer); | 1299 | __run_hrtimer(timer, &basenow); |
1276 | } | 1300 | } |
1277 | base++; | 1301 | base++; |
1278 | } | 1302 | } |
@@ -1394,7 +1418,7 @@ void hrtimer_run_queues(void) | |||
1394 | hrtimer_get_expires_tv64(timer)) | 1418 | hrtimer_get_expires_tv64(timer)) |
1395 | break; | 1419 | break; |
1396 | 1420 | ||
1397 | __run_hrtimer(timer); | 1421 | __run_hrtimer(timer, &base->softirq_time); |
1398 | } | 1422 | } |
1399 | spin_unlock(&cpu_base->lock); | 1423 | spin_unlock(&cpu_base->lock); |
1400 | } | 1424 | } |
@@ -1571,7 +1595,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
1571 | while ((node = rb_first(&old_base->active))) { | 1595 | while ((node = rb_first(&old_base->active))) { |
1572 | timer = rb_entry(node, struct hrtimer, node); | 1596 | timer = rb_entry(node, struct hrtimer, node); |
1573 | BUG_ON(hrtimer_callback_running(timer)); | 1597 | BUG_ON(hrtimer_callback_running(timer)); |
1574 | debug_hrtimer_deactivate(timer); | 1598 | debug_deactivate(timer); |
1575 | 1599 | ||
1576 | /* | 1600 | /* |
1577 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1601 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/hung_task.c b/kernel/hung_task.c index 022a4927b785..d4e841747400 100644 --- a/kernel/hung_task.c +++ b/kernel/hung_task.c | |||
@@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout) | |||
171 | * Process updating of timeout sysctl | 171 | * Process updating of timeout sysctl |
172 | */ | 172 | */ |
173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, | 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, |
174 | struct file *filp, void __user *buffer, | 174 | void __user *buffer, |
175 | size_t *lenp, loff_t *ppos) | 175 | size_t *lenp, loff_t *ppos) |
176 | { | 176 | { |
177 | int ret; | 177 | int ret; |
178 | 178 | ||
179 | ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); | 179 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
180 | 180 | ||
181 | if (ret || !write) | 181 | if (ret || !write) |
182 | goto out; | 182 | goto out; |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
15 | #include <trace/events/timer.h> | ||
15 | 16 | ||
16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
17 | 18 | ||
@@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
42 | } | 43 | } |
43 | 44 | ||
45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
46 | struct itimerval *const value) | ||
47 | { | ||
48 | cputime_t cval, cinterval; | ||
49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
50 | |||
51 | spin_lock_irq(&tsk->sighand->siglock); | ||
52 | |||
53 | cval = it->expires; | ||
54 | cinterval = it->incr; | ||
55 | if (!cputime_eq(cval, cputime_zero)) { | ||
56 | struct task_cputime cputime; | ||
57 | cputime_t t; | ||
58 | |||
59 | thread_group_cputimer(tsk, &cputime); | ||
60 | if (clock_id == CPUCLOCK_PROF) | ||
61 | t = cputime_add(cputime.utime, cputime.stime); | ||
62 | else | ||
63 | /* CPUCLOCK_VIRT */ | ||
64 | t = cputime.utime; | ||
65 | |||
66 | if (cputime_le(cval, t)) | ||
67 | /* about to fire */ | ||
68 | cval = cputime_one_jiffy; | ||
69 | else | ||
70 | cval = cputime_sub(cval, t); | ||
71 | } | ||
72 | |||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | |||
75 | cputime_to_timeval(cval, &value->it_value); | ||
76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
77 | } | ||
78 | |||
44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
45 | { | 80 | { |
46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
47 | cputime_t cinterval, cval; | ||
48 | 82 | ||
49 | switch (which) { | 83 | switch (which) { |
50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
@@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
56 | break; | 90 | break; |
57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
59 | cval = tsk->signal->it_virt_expires; | ||
60 | cinterval = tsk->signal->it_virt_incr; | ||
61 | if (!cputime_eq(cval, cputime_zero)) { | ||
62 | struct task_cputime cputime; | ||
63 | cputime_t utime; | ||
64 | |||
65 | thread_group_cputimer(tsk, &cputime); | ||
66 | utime = cputime.utime; | ||
67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
68 | cval = jiffies_to_cputime(1); | ||
69 | } else { | ||
70 | cval = cputime_sub(cval, utime); | ||
71 | } | ||
72 | } | ||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | cputime_to_timeval(cval, &value->it_value); | ||
75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
76 | break; | 93 | break; |
77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
79 | cval = tsk->signal->it_prof_expires; | ||
80 | cinterval = tsk->signal->it_prof_incr; | ||
81 | if (!cputime_eq(cval, cputime_zero)) { | ||
82 | struct task_cputime times; | ||
83 | cputime_t ptime; | ||
84 | |||
85 | thread_group_cputimer(tsk, ×); | ||
86 | ptime = cputime_add(times.utime, times.stime); | ||
87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
88 | cval = jiffies_to_cputime(1); | ||
89 | } else { | ||
90 | cval = cputime_sub(cval, ptime); | ||
91 | } | ||
92 | } | ||
93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
94 | cputime_to_timeval(cval, &value->it_value); | ||
95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
96 | break; | 96 | break; |
97 | default: | 97 | default: |
98 | return(-EINVAL); | 98 | return(-EINVAL); |
@@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
125 | 125 | ||
126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
127 | 128 | ||
128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
129 | } | 130 | } |
130 | 131 | ||
132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
133 | { | ||
134 | struct timespec ts; | ||
135 | s64 cpu_ns; | ||
136 | |||
137 | cputime_to_timespec(ct, &ts); | ||
138 | cpu_ns = timespec_to_ns(&ts); | ||
139 | |||
140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
141 | } | ||
142 | |||
143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
144 | const struct itimerval *const value, | ||
145 | struct itimerval *const ovalue) | ||
146 | { | ||
147 | cputime_t cval, nval, cinterval, ninterval; | ||
148 | s64 ns_ninterval, ns_nval; | ||
149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
150 | |||
151 | nval = timeval_to_cputime(&value->it_value); | ||
152 | ns_nval = timeval_to_ns(&value->it_value); | ||
153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
155 | |||
156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
158 | |||
159 | spin_lock_irq(&tsk->sighand->siglock); | ||
160 | |||
161 | cval = it->expires; | ||
162 | cinterval = it->incr; | ||
163 | if (!cputime_eq(cval, cputime_zero) || | ||
164 | !cputime_eq(nval, cputime_zero)) { | ||
165 | if (cputime_gt(nval, cputime_zero)) | ||
166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
168 | } | ||
169 | it->expires = nval; | ||
170 | it->incr = ninterval; | ||
171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
173 | |||
174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
175 | |||
176 | if (ovalue) { | ||
177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
179 | } | ||
180 | } | ||
181 | |||
131 | /* | 182 | /* |
132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
133 | */ | 184 | */ |
@@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
141 | ktime_t expires; | 192 | ktime_t expires; |
142 | cputime_t cval, cinterval, nval, ninterval; | ||
143 | 193 | ||
144 | /* | 194 | /* |
145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
@@ -171,51 +221,14 @@ again: | |||
171 | } else | 221 | } else |
172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
173 | 223 | ||
224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
175 | break; | 226 | break; |
176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
179 | spin_lock_irq(&tsk->sighand->siglock); | ||
180 | cval = tsk->signal->it_virt_expires; | ||
181 | cinterval = tsk->signal->it_virt_incr; | ||
182 | if (!cputime_eq(cval, cputime_zero) || | ||
183 | !cputime_eq(nval, cputime_zero)) { | ||
184 | if (cputime_gt(nval, cputime_zero)) | ||
185 | nval = cputime_add(nval, | ||
186 | jiffies_to_cputime(1)); | ||
187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
188 | &nval, &cval); | ||
189 | } | ||
190 | tsk->signal->it_virt_expires = nval; | ||
191 | tsk->signal->it_virt_incr = ninterval; | ||
192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
193 | if (ovalue) { | ||
194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
196 | } | ||
197 | break; | 229 | break; |
198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
201 | spin_lock_irq(&tsk->sighand->siglock); | ||
202 | cval = tsk->signal->it_prof_expires; | ||
203 | cinterval = tsk->signal->it_prof_incr; | ||
204 | if (!cputime_eq(cval, cputime_zero) || | ||
205 | !cputime_eq(nval, cputime_zero)) { | ||
206 | if (cputime_gt(nval, cputime_zero)) | ||
207 | nval = cputime_add(nval, | ||
208 | jiffies_to_cputime(1)); | ||
209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
210 | &nval, &cval); | ||
211 | } | ||
212 | tsk->signal->it_prof_expires = nval; | ||
213 | tsk->signal->it_prof_incr = ninterval; | ||
214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
215 | if (ovalue) { | ||
216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
218 | } | ||
219 | break; | 232 | break; |
220 | default: | 233 | default: |
221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8b6b8b697c68 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
59 | 59 | ||
60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
61 | { | 61 | { |
62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
63 | arch_is_kernel_text(addr)) | ||
63 | return 1; | 64 | return 1; |
64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
65 | } | 66 | } |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ef177d653b2c..cfadc1291d0b 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -1321,7 +1321,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
1321 | return 0; | 1321 | return 0; |
1322 | } | 1322 | } |
1323 | 1323 | ||
1324 | static struct seq_operations kprobes_seq_ops = { | 1324 | static const struct seq_operations kprobes_seq_ops = { |
1325 | .start = kprobe_seq_start, | 1325 | .start = kprobe_seq_start, |
1326 | .next = kprobe_seq_next, | 1326 | .next = kprobe_seq_next, |
1327 | .stop = kprobe_seq_stop, | 1327 | .stop = kprobe_seq_stop, |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index f74d2d7aa605..3815ac1d58b2 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -578,6 +578,9 @@ static int static_obj(void *obj) | |||
578 | if ((addr >= start) && (addr < end)) | 578 | if ((addr >= start) && (addr < end)) |
579 | return 1; | 579 | return 1; |
580 | 580 | ||
581 | if (arch_is_kernel_data(addr)) | ||
582 | return 1; | ||
583 | |||
581 | #ifdef CONFIG_SMP | 584 | #ifdef CONFIG_SMP |
582 | /* | 585 | /* |
583 | * percpu var? | 586 | * percpu var? |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4b3dbc79fdb..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
594 | return 0; | 594 | return 0; |
595 | } | 595 | } |
596 | 596 | ||
597 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
598 | .start = ls_start, | 598 | .start = ls_start, |
599 | .next = ls_next, | 599 | .next = ls_next, |
600 | .stop = ls_stop, | 600 | .stop = ls_stop, |
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
@@ -1,930 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | */ | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/mutex.h> | ||
20 | #include <linux/types.h> | ||
21 | #include <linux/jhash.h> | ||
22 | #include <linux/list.h> | ||
23 | #include <linux/rcupdate.h> | ||
24 | #include <linux/marker.h> | ||
25 | #include <linux/err.h> | ||
26 | #include <linux/slab.h> | ||
27 | |||
28 | extern struct marker __start___markers[]; | ||
29 | extern struct marker __stop___markers[]; | ||
30 | |||
31 | /* Set to 1 to enable marker debug output */ | ||
32 | static const int marker_debug; | ||
33 | |||
34 | /* | ||
35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
36 | * and module markers and the hash table. | ||
37 | */ | ||
38 | static DEFINE_MUTEX(markers_mutex); | ||
39 | |||
40 | /* | ||
41 | * Marker hash table, containing the active markers. | ||
42 | * Protected by module_mutex. | ||
43 | */ | ||
44 | #define MARKER_HASH_BITS 6 | ||
45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
47 | |||
48 | /* | ||
49 | * Note about RCU : | ||
50 | * It is used to make sure every handler has finished using its private data | ||
51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
52 | * also used to delay the free of multiple probes array until a quiescent state | ||
53 | * is reached. | ||
54 | * marker entries modifications are protected by the markers_mutex. | ||
55 | */ | ||
56 | struct marker_entry { | ||
57 | struct hlist_node hlist; | ||
58 | char *format; | ||
59 | /* Probe wrapper */ | ||
60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
61 | struct marker_probe_closure single; | ||
62 | struct marker_probe_closure *multi; | ||
63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
64 | struct rcu_head rcu; | ||
65 | void *oldptr; | ||
66 | int rcu_pending; | ||
67 | unsigned char ptype:1; | ||
68 | unsigned char format_allocated:1; | ||
69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
70 | }; | ||
71 | |||
72 | /** | ||
73 | * __mark_empty_function - Empty probe callback | ||
74 | * @probe_private: probe private data | ||
75 | * @call_private: call site private data | ||
76 | * @fmt: format string | ||
77 | * @...: variable argument list | ||
78 | * | ||
79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
80 | * disabled marker, we make sure the execution flow is always valid even | ||
81 | * though the function pointer change and the marker enabling are two distinct | ||
82 | * operations that modifies the execution flow of preemptible code. | ||
83 | */ | ||
84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
85 | const char *fmt, va_list *args) | ||
86 | { | ||
87 | } | ||
88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
89 | |||
90 | /* | ||
91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
92 | * @mdata: pointer of type struct marker | ||
93 | * @call_private: caller site private data | ||
94 | * @...: Variable argument list. | ||
95 | * | ||
96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
98 | * rcu_dereference() for the pointer read. | ||
99 | */ | ||
100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
101 | void *call_private, ...) | ||
102 | { | ||
103 | va_list args; | ||
104 | char ptype; | ||
105 | |||
106 | /* | ||
107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
108 | * sure the teardown of the callbacks can be done correctly when they | ||
109 | * are in modules and they insure RCU read coherency. | ||
110 | */ | ||
111 | rcu_read_lock_sched_notrace(); | ||
112 | ptype = mdata->ptype; | ||
113 | if (likely(!ptype)) { | ||
114 | marker_probe_func *func; | ||
115 | /* Must read the ptype before ptr. They are not data dependant, | ||
116 | * so we put an explicit smp_rmb() here. */ | ||
117 | smp_rmb(); | ||
118 | func = mdata->single.func; | ||
119 | /* Must read the ptr before private data. They are not data | ||
120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
121 | smp_rmb(); | ||
122 | va_start(args, call_private); | ||
123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
124 | &args); | ||
125 | va_end(args); | ||
126 | } else { | ||
127 | struct marker_probe_closure *multi; | ||
128 | int i; | ||
129 | /* | ||
130 | * Read mdata->ptype before mdata->multi. | ||
131 | */ | ||
132 | smp_rmb(); | ||
133 | multi = mdata->multi; | ||
134 | /* | ||
135 | * multi points to an array, therefore accessing the array | ||
136 | * depends on reading multi. However, even in this case, | ||
137 | * we must insure that the pointer is read _before_ the array | ||
138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
139 | * in the fast path, so put the explicit barrier here. | ||
140 | */ | ||
141 | smp_read_barrier_depends(); | ||
142 | for (i = 0; multi[i].func; i++) { | ||
143 | va_start(args, call_private); | ||
144 | multi[i].func(multi[i].probe_private, call_private, | ||
145 | mdata->format, &args); | ||
146 | va_end(args); | ||
147 | } | ||
148 | } | ||
149 | rcu_read_unlock_sched_notrace(); | ||
150 | } | ||
151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
152 | |||
153 | /* | ||
154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
155 | * @mdata: pointer of type struct marker | ||
156 | * @call_private: caller site private data | ||
157 | * @...: Variable argument list. | ||
158 | * | ||
159 | * Should be connected to markers "MARK_NOARGS". | ||
160 | */ | ||
161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
162 | void *call_private, ...) | ||
163 | { | ||
164 | va_list args; /* not initialized */ | ||
165 | char ptype; | ||
166 | |||
167 | rcu_read_lock_sched_notrace(); | ||
168 | ptype = mdata->ptype; | ||
169 | if (likely(!ptype)) { | ||
170 | marker_probe_func *func; | ||
171 | /* Must read the ptype before ptr. They are not data dependant, | ||
172 | * so we put an explicit smp_rmb() here. */ | ||
173 | smp_rmb(); | ||
174 | func = mdata->single.func; | ||
175 | /* Must read the ptr before private data. They are not data | ||
176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
177 | smp_rmb(); | ||
178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
179 | &args); | ||
180 | } else { | ||
181 | struct marker_probe_closure *multi; | ||
182 | int i; | ||
183 | /* | ||
184 | * Read mdata->ptype before mdata->multi. | ||
185 | */ | ||
186 | smp_rmb(); | ||
187 | multi = mdata->multi; | ||
188 | /* | ||
189 | * multi points to an array, therefore accessing the array | ||
190 | * depends on reading multi. However, even in this case, | ||
191 | * we must insure that the pointer is read _before_ the array | ||
192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
193 | * in the fast path, so put the explicit barrier here. | ||
194 | */ | ||
195 | smp_read_barrier_depends(); | ||
196 | for (i = 0; multi[i].func; i++) | ||
197 | multi[i].func(multi[i].probe_private, call_private, | ||
198 | mdata->format, &args); | ||
199 | } | ||
200 | rcu_read_unlock_sched_notrace(); | ||
201 | } | ||
202 | |||
203 | static void free_old_closure(struct rcu_head *head) | ||
204 | { | ||
205 | struct marker_entry *entry = container_of(head, | ||
206 | struct marker_entry, rcu); | ||
207 | kfree(entry->oldptr); | ||
208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
209 | smp_wmb(); | ||
210 | entry->rcu_pending = 0; | ||
211 | } | ||
212 | |||
213 | static void debug_print_probes(struct marker_entry *entry) | ||
214 | { | ||
215 | int i; | ||
216 | |||
217 | if (!marker_debug) | ||
218 | return; | ||
219 | |||
220 | if (!entry->ptype) { | ||
221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
222 | entry->single.func, | ||
223 | entry->single.probe_private); | ||
224 | } else { | ||
225 | for (i = 0; entry->multi[i].func; i++) | ||
226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
227 | entry->multi[i].func, | ||
228 | entry->multi[i].probe_private); | ||
229 | } | ||
230 | } | ||
231 | |||
232 | static struct marker_probe_closure * | ||
233 | marker_entry_add_probe(struct marker_entry *entry, | ||
234 | marker_probe_func *probe, void *probe_private) | ||
235 | { | ||
236 | int nr_probes = 0; | ||
237 | struct marker_probe_closure *old, *new; | ||
238 | |||
239 | WARN_ON(!probe); | ||
240 | |||
241 | debug_print_probes(entry); | ||
242 | old = entry->multi; | ||
243 | if (!entry->ptype) { | ||
244 | if (entry->single.func == probe && | ||
245 | entry->single.probe_private == probe_private) | ||
246 | return ERR_PTR(-EBUSY); | ||
247 | if (entry->single.func == __mark_empty_function) { | ||
248 | /* 0 -> 1 probes */ | ||
249 | entry->single.func = probe; | ||
250 | entry->single.probe_private = probe_private; | ||
251 | entry->refcount = 1; | ||
252 | entry->ptype = 0; | ||
253 | debug_print_probes(entry); | ||
254 | return NULL; | ||
255 | } else { | ||
256 | /* 1 -> 2 probes */ | ||
257 | nr_probes = 1; | ||
258 | old = NULL; | ||
259 | } | ||
260 | } else { | ||
261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
263 | if (old[nr_probes].func == probe | ||
264 | && old[nr_probes].probe_private | ||
265 | == probe_private) | ||
266 | return ERR_PTR(-EBUSY); | ||
267 | } | ||
268 | /* + 2 : one for new probe, one for NULL func */ | ||
269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
270 | GFP_KERNEL); | ||
271 | if (new == NULL) | ||
272 | return ERR_PTR(-ENOMEM); | ||
273 | if (!old) | ||
274 | new[0] = entry->single; | ||
275 | else | ||
276 | memcpy(new, old, | ||
277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
278 | new[nr_probes].func = probe; | ||
279 | new[nr_probes].probe_private = probe_private; | ||
280 | entry->refcount = nr_probes + 1; | ||
281 | entry->multi = new; | ||
282 | entry->ptype = 1; | ||
283 | debug_print_probes(entry); | ||
284 | return old; | ||
285 | } | ||
286 | |||
287 | static struct marker_probe_closure * | ||
288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
289 | marker_probe_func *probe, void *probe_private) | ||
290 | { | ||
291 | int nr_probes = 0, nr_del = 0, i; | ||
292 | struct marker_probe_closure *old, *new; | ||
293 | |||
294 | old = entry->multi; | ||
295 | |||
296 | debug_print_probes(entry); | ||
297 | if (!entry->ptype) { | ||
298 | /* 0 -> N is an error */ | ||
299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
300 | /* 1 -> 0 probes */ | ||
301 | WARN_ON(probe && entry->single.func != probe); | ||
302 | WARN_ON(entry->single.probe_private != probe_private); | ||
303 | entry->single.func = __mark_empty_function; | ||
304 | entry->refcount = 0; | ||
305 | entry->ptype = 0; | ||
306 | debug_print_probes(entry); | ||
307 | return NULL; | ||
308 | } else { | ||
309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
311 | if ((!probe || old[nr_probes].func == probe) | ||
312 | && old[nr_probes].probe_private | ||
313 | == probe_private) | ||
314 | nr_del++; | ||
315 | } | ||
316 | } | ||
317 | |||
318 | if (nr_probes - nr_del == 0) { | ||
319 | /* N -> 0, (N > 1) */ | ||
320 | entry->single.func = __mark_empty_function; | ||
321 | entry->refcount = 0; | ||
322 | entry->ptype = 0; | ||
323 | } else if (nr_probes - nr_del == 1) { | ||
324 | /* N -> 1, (N > 1) */ | ||
325 | for (i = 0; old[i].func; i++) | ||
326 | if ((probe && old[i].func != probe) || | ||
327 | old[i].probe_private != probe_private) | ||
328 | entry->single = old[i]; | ||
329 | entry->refcount = 1; | ||
330 | entry->ptype = 0; | ||
331 | } else { | ||
332 | int j = 0; | ||
333 | /* N -> M, (N > 1, M > 1) */ | ||
334 | /* + 1 for NULL */ | ||
335 | new = kzalloc((nr_probes - nr_del + 1) | ||
336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
337 | if (new == NULL) | ||
338 | return ERR_PTR(-ENOMEM); | ||
339 | for (i = 0; old[i].func; i++) | ||
340 | if ((probe && old[i].func != probe) || | ||
341 | old[i].probe_private != probe_private) | ||
342 | new[j++] = old[i]; | ||
343 | entry->refcount = nr_probes - nr_del; | ||
344 | entry->ptype = 1; | ||
345 | entry->multi = new; | ||
346 | } | ||
347 | debug_print_probes(entry); | ||
348 | return old; | ||
349 | } | ||
350 | |||
351 | /* | ||
352 | * Get marker if the marker is present in the marker hash table. | ||
353 | * Must be called with markers_mutex held. | ||
354 | * Returns NULL if not present. | ||
355 | */ | ||
356 | static struct marker_entry *get_marker(const char *name) | ||
357 | { | ||
358 | struct hlist_head *head; | ||
359 | struct hlist_node *node; | ||
360 | struct marker_entry *e; | ||
361 | u32 hash = jhash(name, strlen(name), 0); | ||
362 | |||
363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
364 | hlist_for_each_entry(e, node, head, hlist) { | ||
365 | if (!strcmp(name, e->name)) | ||
366 | return e; | ||
367 | } | ||
368 | return NULL; | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
373 | * held. | ||
374 | */ | ||
375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
376 | { | ||
377 | struct hlist_head *head; | ||
378 | struct hlist_node *node; | ||
379 | struct marker_entry *e; | ||
380 | size_t name_len = strlen(name) + 1; | ||
381 | size_t format_len = 0; | ||
382 | u32 hash = jhash(name, name_len-1, 0); | ||
383 | |||
384 | if (format) | ||
385 | format_len = strlen(format) + 1; | ||
386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
387 | hlist_for_each_entry(e, node, head, hlist) { | ||
388 | if (!strcmp(name, e->name)) { | ||
389 | printk(KERN_NOTICE | ||
390 | "Marker %s busy\n", name); | ||
391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
392 | } | ||
393 | } | ||
394 | /* | ||
395 | * Using kmalloc here to allocate a variable length element. Could | ||
396 | * cause some memory fragmentation if overused. | ||
397 | */ | ||
398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
399 | GFP_KERNEL); | ||
400 | if (!e) | ||
401 | return ERR_PTR(-ENOMEM); | ||
402 | memcpy(&e->name[0], name, name_len); | ||
403 | if (format) { | ||
404 | e->format = &e->name[name_len]; | ||
405 | memcpy(e->format, format, format_len); | ||
406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
407 | e->call = marker_probe_cb_noarg; | ||
408 | else | ||
409 | e->call = marker_probe_cb; | ||
410 | trace_mark(core_marker_format, "name %s format %s", | ||
411 | e->name, e->format); | ||
412 | } else { | ||
413 | e->format = NULL; | ||
414 | e->call = marker_probe_cb; | ||
415 | } | ||
416 | e->single.func = __mark_empty_function; | ||
417 | e->single.probe_private = NULL; | ||
418 | e->multi = NULL; | ||
419 | e->ptype = 0; | ||
420 | e->format_allocated = 0; | ||
421 | e->refcount = 0; | ||
422 | e->rcu_pending = 0; | ||
423 | hlist_add_head(&e->hlist, head); | ||
424 | return e; | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
429 | * held. | ||
430 | */ | ||
431 | static int remove_marker(const char *name) | ||
432 | { | ||
433 | struct hlist_head *head; | ||
434 | struct hlist_node *node; | ||
435 | struct marker_entry *e; | ||
436 | int found = 0; | ||
437 | size_t len = strlen(name) + 1; | ||
438 | u32 hash = jhash(name, len-1, 0); | ||
439 | |||
440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
441 | hlist_for_each_entry(e, node, head, hlist) { | ||
442 | if (!strcmp(name, e->name)) { | ||
443 | found = 1; | ||
444 | break; | ||
445 | } | ||
446 | } | ||
447 | if (!found) | ||
448 | return -ENOENT; | ||
449 | if (e->single.func != __mark_empty_function) | ||
450 | return -EBUSY; | ||
451 | hlist_del(&e->hlist); | ||
452 | if (e->format_allocated) | ||
453 | kfree(e->format); | ||
454 | /* Make sure the call_rcu has been executed */ | ||
455 | if (e->rcu_pending) | ||
456 | rcu_barrier_sched(); | ||
457 | kfree(e); | ||
458 | return 0; | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Set the mark_entry format to the format found in the element. | ||
463 | */ | ||
464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
465 | { | ||
466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
467 | if (!entry->format) | ||
468 | return -ENOMEM; | ||
469 | entry->format_allocated = 1; | ||
470 | |||
471 | trace_mark(core_marker_format, "name %s format %s", | ||
472 | entry->name, entry->format); | ||
473 | return 0; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * Sets the probe callback corresponding to one marker. | ||
478 | */ | ||
479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
480 | int active) | ||
481 | { | ||
482 | int ret = 0; | ||
483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
484 | |||
485 | if (entry->format) { | ||
486 | if (strcmp(entry->format, elem->format) != 0) { | ||
487 | printk(KERN_NOTICE | ||
488 | "Format mismatch for probe %s " | ||
489 | "(%s), marker (%s)\n", | ||
490 | entry->name, | ||
491 | entry->format, | ||
492 | elem->format); | ||
493 | return -EPERM; | ||
494 | } | ||
495 | } else { | ||
496 | ret = marker_set_format(entry, elem->format); | ||
497 | if (ret) | ||
498 | return ret; | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * probe_cb setup (statically known) is done here. It is | ||
503 | * asynchronous with the rest of execution, therefore we only | ||
504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
505 | * callback (does not set arguments). | ||
506 | */ | ||
507 | elem->call = entry->call; | ||
508 | /* | ||
509 | * Sanity check : | ||
510 | * We only update the single probe private data when the ptr is | ||
511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
512 | */ | ||
513 | WARN_ON(elem->single.func != __mark_empty_function | ||
514 | && elem->single.probe_private != entry->single.probe_private | ||
515 | && !elem->ptype); | ||
516 | elem->single.probe_private = entry->single.probe_private; | ||
517 | /* | ||
518 | * Make sure the private data is valid when we update the | ||
519 | * single probe ptr. | ||
520 | */ | ||
521 | smp_wmb(); | ||
522 | elem->single.func = entry->single.func; | ||
523 | /* | ||
524 | * We also make sure that the new probe callbacks array is consistent | ||
525 | * before setting a pointer to it. | ||
526 | */ | ||
527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
528 | /* | ||
529 | * Update the function or multi probe array pointer before setting the | ||
530 | * ptype. | ||
531 | */ | ||
532 | smp_wmb(); | ||
533 | elem->ptype = entry->ptype; | ||
534 | |||
535 | if (elem->tp_name && (active ^ elem->state)) { | ||
536 | WARN_ON(!elem->tp_cb); | ||
537 | /* | ||
538 | * It is ok to directly call the probe registration because type | ||
539 | * checking has been done in the __trace_mark_tp() macro. | ||
540 | */ | ||
541 | |||
542 | if (active) { | ||
543 | /* | ||
544 | * try_module_get should always succeed because we hold | ||
545 | * lock_module() to get the tp_cb address. | ||
546 | */ | ||
547 | ret = try_module_get(__module_text_address( | ||
548 | (unsigned long)elem->tp_cb)); | ||
549 | BUG_ON(!ret); | ||
550 | ret = tracepoint_probe_register_noupdate( | ||
551 | elem->tp_name, | ||
552 | elem->tp_cb); | ||
553 | } else { | ||
554 | ret = tracepoint_probe_unregister_noupdate( | ||
555 | elem->tp_name, | ||
556 | elem->tp_cb); | ||
557 | /* | ||
558 | * tracepoint_probe_update_all() must be called | ||
559 | * before the module containing tp_cb is unloaded. | ||
560 | */ | ||
561 | module_put(__module_text_address( | ||
562 | (unsigned long)elem->tp_cb)); | ||
563 | } | ||
564 | } | ||
565 | elem->state = active; | ||
566 | |||
567 | return ret; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * Disable a marker and its probe callback. | ||
572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
573 | * function insures that the original callback is not used anymore. This insured | ||
574 | * by rcu_read_lock_sched around the call site. | ||
575 | */ | ||
576 | static void disable_marker(struct marker *elem) | ||
577 | { | ||
578 | int ret; | ||
579 | |||
580 | /* leave "call" as is. It is known statically. */ | ||
581 | if (elem->tp_name && elem->state) { | ||
582 | WARN_ON(!elem->tp_cb); | ||
583 | /* | ||
584 | * It is ok to directly call the probe registration because type | ||
585 | * checking has been done in the __trace_mark_tp() macro. | ||
586 | */ | ||
587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
588 | elem->tp_cb); | ||
589 | WARN_ON(ret); | ||
590 | /* | ||
591 | * tracepoint_probe_update_all() must be called | ||
592 | * before the module containing tp_cb is unloaded. | ||
593 | */ | ||
594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
595 | } | ||
596 | elem->state = 0; | ||
597 | elem->single.func = __mark_empty_function; | ||
598 | /* Update the function before setting the ptype */ | ||
599 | smp_wmb(); | ||
600 | elem->ptype = 0; /* single probe */ | ||
601 | /* | ||
602 | * Leave the private data and id there, because removal is racy and | ||
603 | * should be done only after an RCU period. These are never used until | ||
604 | * the next initialization anyway. | ||
605 | */ | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * marker_update_probe_range - Update a probe range | ||
610 | * @begin: beginning of the range | ||
611 | * @end: end of the range | ||
612 | * | ||
613 | * Updates the probe callback corresponding to a range of markers. | ||
614 | */ | ||
615 | void marker_update_probe_range(struct marker *begin, | ||
616 | struct marker *end) | ||
617 | { | ||
618 | struct marker *iter; | ||
619 | struct marker_entry *mark_entry; | ||
620 | |||
621 | mutex_lock(&markers_mutex); | ||
622 | for (iter = begin; iter < end; iter++) { | ||
623 | mark_entry = get_marker(iter->name); | ||
624 | if (mark_entry) { | ||
625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
626 | /* | ||
627 | * ignore error, continue | ||
628 | */ | ||
629 | } else { | ||
630 | disable_marker(iter); | ||
631 | } | ||
632 | } | ||
633 | mutex_unlock(&markers_mutex); | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * Update probes, removing the faulty probes. | ||
638 | * | ||
639 | * Internal callback only changed before the first probe is connected to it. | ||
640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
641 | * transitions. All other transitions will leave the old private data valid. | ||
642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
643 | * | ||
644 | * "special case" updates : | ||
645 | * 0 -> 1 callback | ||
646 | * 1 -> 0 callback | ||
647 | * 1 -> 2 callbacks | ||
648 | * 2 -> 1 callbacks | ||
649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
651 | * replacement). | ||
652 | */ | ||
653 | static void marker_update_probes(void) | ||
654 | { | ||
655 | /* Core kernel markers */ | ||
656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
657 | /* Markers in modules. */ | ||
658 | module_update_markers(); | ||
659 | tracepoint_probe_update_all(); | ||
660 | } | ||
661 | |||
662 | /** | ||
663 | * marker_probe_register - Connect a probe to a marker | ||
664 | * @name: marker name | ||
665 | * @format: format string | ||
666 | * @probe: probe handler | ||
667 | * @probe_private: probe private data | ||
668 | * | ||
669 | * private data must be a valid allocated memory address, or NULL. | ||
670 | * Returns 0 if ok, error value on error. | ||
671 | * The probe address must at least be aligned on the architecture pointer size. | ||
672 | */ | ||
673 | int marker_probe_register(const char *name, const char *format, | ||
674 | marker_probe_func *probe, void *probe_private) | ||
675 | { | ||
676 | struct marker_entry *entry; | ||
677 | int ret = 0; | ||
678 | struct marker_probe_closure *old; | ||
679 | |||
680 | mutex_lock(&markers_mutex); | ||
681 | entry = get_marker(name); | ||
682 | if (!entry) { | ||
683 | entry = add_marker(name, format); | ||
684 | if (IS_ERR(entry)) | ||
685 | ret = PTR_ERR(entry); | ||
686 | } else if (format) { | ||
687 | if (!entry->format) | ||
688 | ret = marker_set_format(entry, format); | ||
689 | else if (strcmp(entry->format, format)) | ||
690 | ret = -EPERM; | ||
691 | } | ||
692 | if (ret) | ||
693 | goto end; | ||
694 | |||
695 | /* | ||
696 | * If we detect that a call_rcu is pending for this marker, | ||
697 | * make sure it's executed now. | ||
698 | */ | ||
699 | if (entry->rcu_pending) | ||
700 | rcu_barrier_sched(); | ||
701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
702 | if (IS_ERR(old)) { | ||
703 | ret = PTR_ERR(old); | ||
704 | goto end; | ||
705 | } | ||
706 | mutex_unlock(&markers_mutex); | ||
707 | marker_update_probes(); | ||
708 | mutex_lock(&markers_mutex); | ||
709 | entry = get_marker(name); | ||
710 | if (!entry) | ||
711 | goto end; | ||
712 | if (entry->rcu_pending) | ||
713 | rcu_barrier_sched(); | ||
714 | entry->oldptr = old; | ||
715 | entry->rcu_pending = 1; | ||
716 | /* write rcu_pending before calling the RCU callback */ | ||
717 | smp_wmb(); | ||
718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
719 | end: | ||
720 | mutex_unlock(&markers_mutex); | ||
721 | return ret; | ||
722 | } | ||
723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
724 | |||
725 | /** | ||
726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
727 | * @name: marker name | ||
728 | * @probe: probe function pointer | ||
729 | * @probe_private: probe private data | ||
730 | * | ||
731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
733 | * finished running before doing a module unload, because the module unload | ||
734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
735 | * have finished. | ||
736 | */ | ||
737 | int marker_probe_unregister(const char *name, | ||
738 | marker_probe_func *probe, void *probe_private) | ||
739 | { | ||
740 | struct marker_entry *entry; | ||
741 | struct marker_probe_closure *old; | ||
742 | int ret = -ENOENT; | ||
743 | |||
744 | mutex_lock(&markers_mutex); | ||
745 | entry = get_marker(name); | ||
746 | if (!entry) | ||
747 | goto end; | ||
748 | if (entry->rcu_pending) | ||
749 | rcu_barrier_sched(); | ||
750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
751 | mutex_unlock(&markers_mutex); | ||
752 | marker_update_probes(); | ||
753 | mutex_lock(&markers_mutex); | ||
754 | entry = get_marker(name); | ||
755 | if (!entry) | ||
756 | goto end; | ||
757 | if (entry->rcu_pending) | ||
758 | rcu_barrier_sched(); | ||
759 | entry->oldptr = old; | ||
760 | entry->rcu_pending = 1; | ||
761 | /* write rcu_pending before calling the RCU callback */ | ||
762 | smp_wmb(); | ||
763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
764 | remove_marker(name); /* Ignore busy error message */ | ||
765 | ret = 0; | ||
766 | end: | ||
767 | mutex_unlock(&markers_mutex); | ||
768 | return ret; | ||
769 | } | ||
770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
771 | |||
772 | static struct marker_entry * | ||
773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
774 | { | ||
775 | struct marker_entry *entry; | ||
776 | unsigned int i; | ||
777 | struct hlist_head *head; | ||
778 | struct hlist_node *node; | ||
779 | |||
780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
781 | head = &marker_table[i]; | ||
782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
783 | if (!entry->ptype) { | ||
784 | if (entry->single.func == probe | ||
785 | && entry->single.probe_private | ||
786 | == probe_private) | ||
787 | return entry; | ||
788 | } else { | ||
789 | struct marker_probe_closure *closure; | ||
790 | closure = entry->multi; | ||
791 | for (i = 0; closure[i].func; i++) { | ||
792 | if (closure[i].func == probe && | ||
793 | closure[i].probe_private | ||
794 | == probe_private) | ||
795 | return entry; | ||
796 | } | ||
797 | } | ||
798 | } | ||
799 | } | ||
800 | return NULL; | ||
801 | } | ||
802 | |||
803 | /** | ||
804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
805 | * @probe: probe function | ||
806 | * @probe_private: probe private data | ||
807 | * | ||
808 | * Unregister a probe by providing the registered private data. | ||
809 | * Only removes the first marker found in hash table. | ||
810 | * Return 0 on success or error value. | ||
811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
812 | * finished running before doing a module unload, because the module unload | ||
813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
814 | * have finished. | ||
815 | */ | ||
816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
817 | void *probe_private) | ||
818 | { | ||
819 | struct marker_entry *entry; | ||
820 | int ret = 0; | ||
821 | struct marker_probe_closure *old; | ||
822 | |||
823 | mutex_lock(&markers_mutex); | ||
824 | entry = get_marker_from_private_data(probe, probe_private); | ||
825 | if (!entry) { | ||
826 | ret = -ENOENT; | ||
827 | goto end; | ||
828 | } | ||
829 | if (entry->rcu_pending) | ||
830 | rcu_barrier_sched(); | ||
831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
832 | mutex_unlock(&markers_mutex); | ||
833 | marker_update_probes(); | ||
834 | mutex_lock(&markers_mutex); | ||
835 | entry = get_marker_from_private_data(probe, probe_private); | ||
836 | if (!entry) | ||
837 | goto end; | ||
838 | if (entry->rcu_pending) | ||
839 | rcu_barrier_sched(); | ||
840 | entry->oldptr = old; | ||
841 | entry->rcu_pending = 1; | ||
842 | /* write rcu_pending before calling the RCU callback */ | ||
843 | smp_wmb(); | ||
844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
846 | end: | ||
847 | mutex_unlock(&markers_mutex); | ||
848 | return ret; | ||
849 | } | ||
850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
851 | |||
852 | /** | ||
853 | * marker_get_private_data - Get a marker's probe private data | ||
854 | * @name: marker name | ||
855 | * @probe: probe to match | ||
856 | * @num: get the nth matching probe's private data | ||
857 | * | ||
858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
859 | * ERR_PTR. | ||
860 | * Returns the private data pointer, or an ERR_PTR. | ||
861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
862 | * owner of the data, or its content could vanish. This is mostly used to | ||
863 | * confirm that a caller is the owner of a registered probe. | ||
864 | */ | ||
865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
866 | int num) | ||
867 | { | ||
868 | struct hlist_head *head; | ||
869 | struct hlist_node *node; | ||
870 | struct marker_entry *e; | ||
871 | size_t name_len = strlen(name) + 1; | ||
872 | u32 hash = jhash(name, name_len-1, 0); | ||
873 | int i; | ||
874 | |||
875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
876 | hlist_for_each_entry(e, node, head, hlist) { | ||
877 | if (!strcmp(name, e->name)) { | ||
878 | if (!e->ptype) { | ||
879 | if (num == 0 && e->single.func == probe) | ||
880 | return e->single.probe_private; | ||
881 | } else { | ||
882 | struct marker_probe_closure *closure; | ||
883 | int match = 0; | ||
884 | closure = e->multi; | ||
885 | for (i = 0; closure[i].func; i++) { | ||
886 | if (closure[i].func != probe) | ||
887 | continue; | ||
888 | if (match++ == num) | ||
889 | return closure[i].probe_private; | ||
890 | } | ||
891 | } | ||
892 | break; | ||
893 | } | ||
894 | } | ||
895 | return ERR_PTR(-ENOENT); | ||
896 | } | ||
897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
898 | |||
899 | #ifdef CONFIG_MODULES | ||
900 | |||
901 | int marker_module_notify(struct notifier_block *self, | ||
902 | unsigned long val, void *data) | ||
903 | { | ||
904 | struct module *mod = data; | ||
905 | |||
906 | switch (val) { | ||
907 | case MODULE_STATE_COMING: | ||
908 | marker_update_probe_range(mod->markers, | ||
909 | mod->markers + mod->num_markers); | ||
910 | break; | ||
911 | case MODULE_STATE_GOING: | ||
912 | marker_update_probe_range(mod->markers, | ||
913 | mod->markers + mod->num_markers); | ||
914 | break; | ||
915 | } | ||
916 | return 0; | ||
917 | } | ||
918 | |||
919 | struct notifier_block marker_module_nb = { | ||
920 | .notifier_call = marker_module_notify, | ||
921 | .priority = 0, | ||
922 | }; | ||
923 | |||
924 | static int init_markers(void) | ||
925 | { | ||
926 | return register_module_notifier(&marker_module_nb); | ||
927 | } | ||
928 | __initcall(init_markers); | ||
929 | |||
930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 05ce49ced8f6..5a29397ca4b6 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
50 | #include <asm/mmu_context.h> | ||
50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
@@ -1535,6 +1536,10 @@ static void free_module(struct module *mod) | |||
1535 | 1536 | ||
1536 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
1537 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
1539 | |||
1540 | #ifdef CONFIG_MPU | ||
1541 | update_protections(current->mm); | ||
1542 | #endif | ||
1538 | } | 1543 | } |
1539 | 1544 | ||
1540 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
@@ -1792,6 +1797,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, | |||
1792 | } | 1797 | } |
1793 | } | 1798 | } |
1794 | 1799 | ||
1800 | static void free_modinfo(struct module *mod) | ||
1801 | { | ||
1802 | struct module_attribute *attr; | ||
1803 | int i; | ||
1804 | |||
1805 | for (i = 0; (attr = modinfo_attrs[i]); i++) { | ||
1806 | if (attr->free) | ||
1807 | attr->free(mod); | ||
1808 | } | ||
1809 | } | ||
1810 | |||
1795 | #ifdef CONFIG_KALLSYMS | 1811 | #ifdef CONFIG_KALLSYMS |
1796 | 1812 | ||
1797 | /* lookup symbol in given range of kernel_symbols */ | 1813 | /* lookup symbol in given range of kernel_symbols */ |
@@ -1857,13 +1873,93 @@ static char elf_type(const Elf_Sym *sym, | |||
1857 | return '?'; | 1873 | return '?'; |
1858 | } | 1874 | } |
1859 | 1875 | ||
1876 | static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, | ||
1877 | unsigned int shnum) | ||
1878 | { | ||
1879 | const Elf_Shdr *sec; | ||
1880 | |||
1881 | if (src->st_shndx == SHN_UNDEF | ||
1882 | || src->st_shndx >= shnum | ||
1883 | || !src->st_name) | ||
1884 | return false; | ||
1885 | |||
1886 | sec = sechdrs + src->st_shndx; | ||
1887 | if (!(sec->sh_flags & SHF_ALLOC) | ||
1888 | #ifndef CONFIG_KALLSYMS_ALL | ||
1889 | || !(sec->sh_flags & SHF_EXECINSTR) | ||
1890 | #endif | ||
1891 | || (sec->sh_entsize & INIT_OFFSET_MASK)) | ||
1892 | return false; | ||
1893 | |||
1894 | return true; | ||
1895 | } | ||
1896 | |||
1897 | static unsigned long layout_symtab(struct module *mod, | ||
1898 | Elf_Shdr *sechdrs, | ||
1899 | unsigned int symindex, | ||
1900 | unsigned int strindex, | ||
1901 | const Elf_Ehdr *hdr, | ||
1902 | const char *secstrings, | ||
1903 | unsigned long *pstroffs, | ||
1904 | unsigned long *strmap) | ||
1905 | { | ||
1906 | unsigned long symoffs; | ||
1907 | Elf_Shdr *symsect = sechdrs + symindex; | ||
1908 | Elf_Shdr *strsect = sechdrs + strindex; | ||
1909 | const Elf_Sym *src; | ||
1910 | const char *strtab; | ||
1911 | unsigned int i, nsrc, ndst; | ||
1912 | |||
1913 | /* Put symbol section at end of init part of module. */ | ||
1914 | symsect->sh_flags |= SHF_ALLOC; | ||
1915 | symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect, | ||
1916 | symindex) | INIT_OFFSET_MASK; | ||
1917 | DEBUGP("\t%s\n", secstrings + symsect->sh_name); | ||
1918 | |||
1919 | src = (void *)hdr + symsect->sh_offset; | ||
1920 | nsrc = symsect->sh_size / sizeof(*src); | ||
1921 | strtab = (void *)hdr + strsect->sh_offset; | ||
1922 | for (ndst = i = 1; i < nsrc; ++i, ++src) | ||
1923 | if (is_core_symbol(src, sechdrs, hdr->e_shnum)) { | ||
1924 | unsigned int j = src->st_name; | ||
1925 | |||
1926 | while(!__test_and_set_bit(j, strmap) && strtab[j]) | ||
1927 | ++j; | ||
1928 | ++ndst; | ||
1929 | } | ||
1930 | |||
1931 | /* Append room for core symbols at end of core part. */ | ||
1932 | symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1); | ||
1933 | mod->core_size = symoffs + ndst * sizeof(Elf_Sym); | ||
1934 | |||
1935 | /* Put string table section at end of init part of module. */ | ||
1936 | strsect->sh_flags |= SHF_ALLOC; | ||
1937 | strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect, | ||
1938 | strindex) | INIT_OFFSET_MASK; | ||
1939 | DEBUGP("\t%s\n", secstrings + strsect->sh_name); | ||
1940 | |||
1941 | /* Append room for core symbols' strings at end of core part. */ | ||
1942 | *pstroffs = mod->core_size; | ||
1943 | __set_bit(0, strmap); | ||
1944 | mod->core_size += bitmap_weight(strmap, strsect->sh_size); | ||
1945 | |||
1946 | return symoffs; | ||
1947 | } | ||
1948 | |||
1860 | static void add_kallsyms(struct module *mod, | 1949 | static void add_kallsyms(struct module *mod, |
1861 | Elf_Shdr *sechdrs, | 1950 | Elf_Shdr *sechdrs, |
1951 | unsigned int shnum, | ||
1862 | unsigned int symindex, | 1952 | unsigned int symindex, |
1863 | unsigned int strindex, | 1953 | unsigned int strindex, |
1864 | const char *secstrings) | 1954 | unsigned long symoffs, |
1955 | unsigned long stroffs, | ||
1956 | const char *secstrings, | ||
1957 | unsigned long *strmap) | ||
1865 | { | 1958 | { |
1866 | unsigned int i; | 1959 | unsigned int i, ndst; |
1960 | const Elf_Sym *src; | ||
1961 | Elf_Sym *dst; | ||
1962 | char *s; | ||
1867 | 1963 | ||
1868 | mod->symtab = (void *)sechdrs[symindex].sh_addr; | 1964 | mod->symtab = (void *)sechdrs[symindex].sh_addr; |
1869 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); | 1965 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
@@ -1873,13 +1969,44 @@ static void add_kallsyms(struct module *mod, | |||
1873 | for (i = 0; i < mod->num_symtab; i++) | 1969 | for (i = 0; i < mod->num_symtab; i++) |
1874 | mod->symtab[i].st_info | 1970 | mod->symtab[i].st_info |
1875 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); | 1971 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); |
1972 | |||
1973 | mod->core_symtab = dst = mod->module_core + symoffs; | ||
1974 | src = mod->symtab; | ||
1975 | *dst = *src; | ||
1976 | for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) { | ||
1977 | if (!is_core_symbol(src, sechdrs, shnum)) | ||
1978 | continue; | ||
1979 | dst[ndst] = *src; | ||
1980 | dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name); | ||
1981 | ++ndst; | ||
1982 | } | ||
1983 | mod->core_num_syms = ndst; | ||
1984 | |||
1985 | mod->core_strtab = s = mod->module_core + stroffs; | ||
1986 | for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i) | ||
1987 | if (test_bit(i, strmap)) | ||
1988 | *++s = mod->strtab[i]; | ||
1876 | } | 1989 | } |
1877 | #else | 1990 | #else |
1991 | static inline unsigned long layout_symtab(struct module *mod, | ||
1992 | Elf_Shdr *sechdrs, | ||
1993 | unsigned int symindex, | ||
1994 | unsigned int strindex, | ||
1995 | const Elf_Hdr *hdr, | ||
1996 | const char *secstrings, | ||
1997 | unsigned long *pstroffs, | ||
1998 | unsigned long *strmap) | ||
1999 | { | ||
2000 | } | ||
1878 | static inline void add_kallsyms(struct module *mod, | 2001 | static inline void add_kallsyms(struct module *mod, |
1879 | Elf_Shdr *sechdrs, | 2002 | Elf_Shdr *sechdrs, |
2003 | unsigned int shnum, | ||
1880 | unsigned int symindex, | 2004 | unsigned int symindex, |
1881 | unsigned int strindex, | 2005 | unsigned int strindex, |
1882 | const char *secstrings) | 2006 | unsigned long symoffs, |
2007 | unsigned long stroffs, | ||
2008 | const char *secstrings, | ||
2009 | const unsigned long *strmap) | ||
1883 | { | 2010 | { |
1884 | } | 2011 | } |
1885 | #endif /* CONFIG_KALLSYMS */ | 2012 | #endif /* CONFIG_KALLSYMS */ |
@@ -1954,6 +2081,9 @@ static noinline struct module *load_module(void __user *umod, | |||
1954 | struct module *mod; | 2081 | struct module *mod; |
1955 | long err = 0; | 2082 | long err = 0; |
1956 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 2083 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
2084 | #ifdef CONFIG_KALLSYMS | ||
2085 | unsigned long symoffs, stroffs, *strmap; | ||
2086 | #endif | ||
1957 | mm_segment_t old_fs; | 2087 | mm_segment_t old_fs; |
1958 | 2088 | ||
1959 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", | 2089 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", |
@@ -2035,11 +2165,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2035 | /* Don't keep modinfo and version sections. */ | 2165 | /* Don't keep modinfo and version sections. */ |
2036 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2166 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2037 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2167 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2038 | #ifdef CONFIG_KALLSYMS | ||
2039 | /* Keep symbol and string tables for decoding later. */ | ||
2040 | sechdrs[symindex].sh_flags |= SHF_ALLOC; | ||
2041 | sechdrs[strindex].sh_flags |= SHF_ALLOC; | ||
2042 | #endif | ||
2043 | 2168 | ||
2044 | /* Check module struct version now, before we try to use module. */ | 2169 | /* Check module struct version now, before we try to use module. */ |
2045 | if (!check_modstruct_version(sechdrs, versindex, mod)) { | 2170 | if (!check_modstruct_version(sechdrs, versindex, mod)) { |
@@ -2075,6 +2200,13 @@ static noinline struct module *load_module(void __user *umod, | |||
2075 | goto free_hdr; | 2200 | goto free_hdr; |
2076 | } | 2201 | } |
2077 | 2202 | ||
2203 | strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size) | ||
2204 | * sizeof(long), GFP_KERNEL); | ||
2205 | if (!strmap) { | ||
2206 | err = -ENOMEM; | ||
2207 | goto free_mod; | ||
2208 | } | ||
2209 | |||
2078 | if (find_module(mod->name)) { | 2210 | if (find_module(mod->name)) { |
2079 | err = -EEXIST; | 2211 | err = -EEXIST; |
2080 | goto free_mod; | 2212 | goto free_mod; |
@@ -2104,6 +2236,8 @@ static noinline struct module *load_module(void __user *umod, | |||
2104 | this is done generically; there doesn't appear to be any | 2236 | this is done generically; there doesn't appear to be any |
2105 | special cases for the architectures. */ | 2237 | special cases for the architectures. */ |
2106 | layout_sections(mod, hdr, sechdrs, secstrings); | 2238 | layout_sections(mod, hdr, sechdrs, secstrings); |
2239 | symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr, | ||
2240 | secstrings, &stroffs, strmap); | ||
2107 | 2241 | ||
2108 | /* Do the allocs. */ | 2242 | /* Do the allocs. */ |
2109 | ptr = module_alloc_update_bounds(mod->core_size); | 2243 | ptr = module_alloc_update_bounds(mod->core_size); |
@@ -2237,10 +2371,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2237 | sizeof(*mod->ctors), &mod->num_ctors); | 2371 | sizeof(*mod->ctors), &mod->num_ctors); |
2238 | #endif | 2372 | #endif |
2239 | 2373 | ||
2240 | #ifdef CONFIG_MARKERS | ||
2241 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
2242 | sizeof(*mod->markers), &mod->num_markers); | ||
2243 | #endif | ||
2244 | #ifdef CONFIG_TRACEPOINTS | 2374 | #ifdef CONFIG_TRACEPOINTS |
2245 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2375 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
2246 | "__tracepoints", | 2376 | "__tracepoints", |
@@ -2312,7 +2442,10 @@ static noinline struct module *load_module(void __user *umod, | |||
2312 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, | 2442 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, |
2313 | sechdrs[pcpuindex].sh_size); | 2443 | sechdrs[pcpuindex].sh_size); |
2314 | 2444 | ||
2315 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2445 | add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex, |
2446 | symoffs, stroffs, secstrings, strmap); | ||
2447 | kfree(strmap); | ||
2448 | strmap = NULL; | ||
2316 | 2449 | ||
2317 | if (!mod->taints) { | 2450 | if (!mod->taints) { |
2318 | struct _ddebug *debug; | 2451 | struct _ddebug *debug; |
@@ -2384,13 +2517,14 @@ static noinline struct module *load_module(void __user *umod, | |||
2384 | synchronize_sched(); | 2517 | synchronize_sched(); |
2385 | module_arch_cleanup(mod); | 2518 | module_arch_cleanup(mod); |
2386 | cleanup: | 2519 | cleanup: |
2520 | free_modinfo(mod); | ||
2387 | kobject_del(&mod->mkobj.kobj); | 2521 | kobject_del(&mod->mkobj.kobj); |
2388 | kobject_put(&mod->mkobj.kobj); | 2522 | kobject_put(&mod->mkobj.kobj); |
2389 | free_unload: | 2523 | free_unload: |
2390 | module_unload_free(mod); | 2524 | module_unload_free(mod); |
2391 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) | 2525 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) |
2392 | free_init: | ||
2393 | percpu_modfree(mod->refptr); | 2526 | percpu_modfree(mod->refptr); |
2527 | free_init: | ||
2394 | #endif | 2528 | #endif |
2395 | module_free(mod, mod->module_init); | 2529 | module_free(mod, mod->module_init); |
2396 | free_core: | 2530 | free_core: |
@@ -2401,6 +2535,7 @@ static noinline struct module *load_module(void __user *umod, | |||
2401 | percpu_modfree(percpu); | 2535 | percpu_modfree(percpu); |
2402 | free_mod: | 2536 | free_mod: |
2403 | kfree(args); | 2537 | kfree(args); |
2538 | kfree(strmap); | ||
2404 | free_hdr: | 2539 | free_hdr: |
2405 | vfree(hdr); | 2540 | vfree(hdr); |
2406 | return ERR_PTR(err); | 2541 | return ERR_PTR(err); |
@@ -2490,6 +2625,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
2490 | /* Drop initial reference. */ | 2625 | /* Drop initial reference. */ |
2491 | module_put(mod); | 2626 | module_put(mod); |
2492 | trim_init_extable(mod); | 2627 | trim_init_extable(mod); |
2628 | #ifdef CONFIG_KALLSYMS | ||
2629 | mod->num_symtab = mod->core_num_syms; | ||
2630 | mod->symtab = mod->core_symtab; | ||
2631 | mod->strtab = mod->core_strtab; | ||
2632 | #endif | ||
2493 | module_free(mod, mod->module_init); | 2633 | module_free(mod, mod->module_init); |
2494 | mod->module_init = NULL; | 2634 | mod->module_init = NULL; |
2495 | mod->init_size = 0; | 2635 | mod->init_size = 0; |
@@ -2958,20 +3098,6 @@ void module_layout(struct module *mod, | |||
2958 | EXPORT_SYMBOL(module_layout); | 3098 | EXPORT_SYMBOL(module_layout); |
2959 | #endif | 3099 | #endif |
2960 | 3100 | ||
2961 | #ifdef CONFIG_MARKERS | ||
2962 | void module_update_markers(void) | ||
2963 | { | ||
2964 | struct module *mod; | ||
2965 | |||
2966 | mutex_lock(&module_mutex); | ||
2967 | list_for_each_entry(mod, &modules, list) | ||
2968 | if (!mod->taints) | ||
2969 | marker_update_probe_range(mod->markers, | ||
2970 | mod->markers + mod->num_markers); | ||
2971 | mutex_unlock(&module_mutex); | ||
2972 | } | ||
2973 | #endif | ||
2974 | |||
2975 | #ifdef CONFIG_TRACEPOINTS | 3101 | #ifdef CONFIG_TRACEPOINTS |
2976 | void module_update_tracepoints(void) | 3102 | void module_update_tracepoints(void) |
2977 | { | 3103 | { |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 5aa854f9e5ae..2a5dfec8efe0 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
@@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
42 | * (hence either you are in the same cgroup as task, or in an | 42 | * (hence either you are in the same cgroup as task, or in an |
43 | * ancestor cgroup thereof) | 43 | * ancestor cgroup thereof) |
44 | */ | 44 | */ |
45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup, |
46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct task_struct *task, bool threadgroup) |
47 | { | 47 | { |
48 | if (current != task) { | 48 | if (current != task) { |
49 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
@@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss, | |||
56 | if (!cgroup_is_descendant(new_cgroup, task)) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
57 | return -EPERM; | 57 | return -EPERM; |
58 | 58 | ||
59 | if (threadgroup) { | ||
60 | struct task_struct *c; | ||
61 | rcu_read_lock(); | ||
62 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
63 | if (!cgroup_is_descendant(new_cgroup, c)) { | ||
64 | rcu_read_unlock(); | ||
65 | return -EPERM; | ||
66 | } | ||
67 | } | ||
68 | rcu_read_unlock(); | ||
69 | } | ||
70 | |||
59 | return 0; | 71 | return 0; |
60 | } | 72 | } |
61 | 73 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index 512ab73b0ca3..bcdef26e3332 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -177,7 +177,7 @@ static const struct tnt tnts[] = { | |||
177 | * 'W' - Taint on warning. | 177 | * 'W' - Taint on warning. |
178 | * 'C' - modules from drivers/staging are loaded. | 178 | * 'C' - modules from drivers/staging are loaded. |
179 | * | 179 | * |
180 | * The string is overwritten by the next call to print_taint(). | 180 | * The string is overwritten by the next call to print_tainted(). |
181 | */ | 181 | */ |
182 | const char *print_tainted(void) | 182 | const char *print_tainted(void) |
183 | { | 183 | { |
diff --git a/kernel/params.c b/kernel/params.c index 7f6912ced2ba..9da58eabdcb2 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
@@ -23,6 +23,7 @@ | |||
23 | #include <linux/device.h> | 23 | #include <linux/device.h> |
24 | #include <linux/err.h> | 24 | #include <linux/err.h> |
25 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
26 | #include <linux/ctype.h> | ||
26 | 27 | ||
27 | #if 0 | 28 | #if 0 |
28 | #define DEBUGP printk | 29 | #define DEBUGP printk |
@@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
87 | } | 88 | } |
88 | 89 | ||
89 | for (i = 0; args[i]; i++) { | 90 | for (i = 0; args[i]; i++) { |
90 | if (args[i] == ' ' && !in_quote) | 91 | if (isspace(args[i]) && !in_quote) |
91 | break; | 92 | break; |
92 | if (equals == 0) { | 93 | if (equals == 0) { |
93 | if (args[i] == '=') | 94 | if (args[i] == '=') |
@@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
121 | next = args + i; | 122 | next = args + i; |
122 | 123 | ||
123 | /* Chew up trailing spaces. */ | 124 | /* Chew up trailing spaces. */ |
124 | while (*next == ' ') | 125 | while (isspace(*next)) |
125 | next++; | 126 | next++; |
126 | return next; | 127 | return next; |
127 | } | 128 | } |
@@ -138,7 +139,7 @@ int parse_args(const char *name, | |||
138 | DEBUGP("Parsing ARGS: %s\n", args); | 139 | DEBUGP("Parsing ARGS: %s\n", args); |
139 | 140 | ||
140 | /* Chew leading spaces */ | 141 | /* Chew leading spaces */ |
141 | while (*args == ' ') | 142 | while (isspace(*args)) |
142 | args++; | 143 | args++; |
143 | 144 | ||
144 | while (*args) { | 145 | while (*args) { |
diff --git a/kernel/perf_counter.c b/kernel/perf_event.c index cc768ab81ac8..76ac4db405e9 100644 --- a/kernel/perf_counter.c +++ b/kernel/perf_event.c | |||
@@ -1,12 +1,12 @@ | |||
1 | /* | 1 | /* |
2 | * Performance counter core code | 2 | * Performance events core code: |
3 | * | 3 | * |
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
8 | * | 8 | * |
9 | * For licensing details see kernel-base/COPYING | 9 | * For licensing details see kernel-base/COPYING |
10 | */ | 10 | */ |
11 | 11 | ||
12 | #include <linux/fs.h> | 12 | #include <linux/fs.h> |
@@ -26,66 +26,66 @@ | |||
26 | #include <linux/syscalls.h> | 26 | #include <linux/syscalls.h> |
27 | #include <linux/anon_inodes.h> | 27 | #include <linux/anon_inodes.h> |
28 | #include <linux/kernel_stat.h> | 28 | #include <linux/kernel_stat.h> |
29 | #include <linux/perf_counter.h> | 29 | #include <linux/perf_event.h> |
30 | 30 | ||
31 | #include <asm/irq_regs.h> | 31 | #include <asm/irq_regs.h> |
32 | 32 | ||
33 | /* | 33 | /* |
34 | * Each CPU has a list of per CPU counters: | 34 | * Each CPU has a list of per CPU events: |
35 | */ | 35 | */ |
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); |
37 | 37 | ||
38 | int perf_max_counters __read_mostly = 1; | 38 | int perf_max_events __read_mostly = 1; |
39 | static int perf_reserved_percpu __read_mostly; | 39 | static int perf_reserved_percpu __read_mostly; |
40 | static int perf_overcommit __read_mostly = 1; | 40 | static int perf_overcommit __read_mostly = 1; |
41 | 41 | ||
42 | static atomic_t nr_counters __read_mostly; | 42 | static atomic_t nr_events __read_mostly; |
43 | static atomic_t nr_mmap_counters __read_mostly; | 43 | static atomic_t nr_mmap_events __read_mostly; |
44 | static atomic_t nr_comm_counters __read_mostly; | 44 | static atomic_t nr_comm_events __read_mostly; |
45 | static atomic_t nr_task_counters __read_mostly; | 45 | static atomic_t nr_task_events __read_mostly; |
46 | 46 | ||
47 | /* | 47 | /* |
48 | * perf counter paranoia level: | 48 | * perf event paranoia level: |
49 | * -1 - not paranoid at all | 49 | * -1 - not paranoid at all |
50 | * 0 - disallow raw tracepoint access for unpriv | 50 | * 0 - disallow raw tracepoint access for unpriv |
51 | * 1 - disallow cpu counters for unpriv | 51 | * 1 - disallow cpu events for unpriv |
52 | * 2 - disallow kernel profiling for unpriv | 52 | * 2 - disallow kernel profiling for unpriv |
53 | */ | 53 | */ |
54 | int sysctl_perf_counter_paranoid __read_mostly = 1; | 54 | int sysctl_perf_event_paranoid __read_mostly = 1; |
55 | 55 | ||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | 56 | static inline bool perf_paranoid_tracepoint_raw(void) |
57 | { | 57 | { |
58 | return sysctl_perf_counter_paranoid > -1; | 58 | return sysctl_perf_event_paranoid > -1; |
59 | } | 59 | } |
60 | 60 | ||
61 | static inline bool perf_paranoid_cpu(void) | 61 | static inline bool perf_paranoid_cpu(void) |
62 | { | 62 | { |
63 | return sysctl_perf_counter_paranoid > 0; | 63 | return sysctl_perf_event_paranoid > 0; |
64 | } | 64 | } |
65 | 65 | ||
66 | static inline bool perf_paranoid_kernel(void) | 66 | static inline bool perf_paranoid_kernel(void) |
67 | { | 67 | { |
68 | return sysctl_perf_counter_paranoid > 1; | 68 | return sysctl_perf_event_paranoid > 1; |
69 | } | 69 | } |
70 | 70 | ||
71 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | 71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ |
72 | 72 | ||
73 | /* | 73 | /* |
74 | * max perf counter sample rate | 74 | * max perf event sample rate |
75 | */ | 75 | */ |
76 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | 76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; |
77 | 77 | ||
78 | static atomic64_t perf_counter_id; | 78 | static atomic64_t perf_event_id; |
79 | 79 | ||
80 | /* | 80 | /* |
81 | * Lock for (sysadmin-configurable) counter reservations: | 81 | * Lock for (sysadmin-configurable) event reservations: |
82 | */ | 82 | */ |
83 | static DEFINE_SPINLOCK(perf_resource_lock); | 83 | static DEFINE_SPINLOCK(perf_resource_lock); |
84 | 84 | ||
85 | /* | 85 | /* |
86 | * Architecture provided APIs - weak aliases: | 86 | * Architecture provided APIs - weak aliases: |
87 | */ | 87 | */ |
88 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | 88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) |
89 | { | 89 | { |
90 | return NULL; | 90 | return NULL; |
91 | } | 91 | } |
@@ -93,18 +93,18 @@ extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counte | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | 93 | void __weak hw_perf_disable(void) { barrier(); } |
94 | void __weak hw_perf_enable(void) { barrier(); } | 94 | void __weak hw_perf_enable(void) { barrier(); } |
95 | 95 | ||
96 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | 96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } |
97 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | 97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } |
98 | 98 | ||
99 | int __weak | 99 | int __weak |
100 | hw_perf_group_sched_in(struct perf_counter *group_leader, | 100 | hw_perf_group_sched_in(struct perf_event *group_leader, |
101 | struct perf_cpu_context *cpuctx, | 101 | struct perf_cpu_context *cpuctx, |
102 | struct perf_counter_context *ctx, int cpu) | 102 | struct perf_event_context *ctx, int cpu) |
103 | { | 103 | { |
104 | return 0; | 104 | return 0; |
105 | } | 105 | } |
106 | 106 | ||
107 | void __weak perf_counter_print_debug(void) { } | 107 | void __weak perf_event_print_debug(void) { } |
108 | 108 | ||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | 109 | static DEFINE_PER_CPU(int, perf_disable_count); |
110 | 110 | ||
@@ -130,20 +130,20 @@ void perf_enable(void) | |||
130 | hw_perf_enable(); | 130 | hw_perf_enable(); |
131 | } | 131 | } |
132 | 132 | ||
133 | static void get_ctx(struct perf_counter_context *ctx) | 133 | static void get_ctx(struct perf_event_context *ctx) |
134 | { | 134 | { |
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); |
136 | } | 136 | } |
137 | 137 | ||
138 | static void free_ctx(struct rcu_head *head) | 138 | static void free_ctx(struct rcu_head *head) |
139 | { | 139 | { |
140 | struct perf_counter_context *ctx; | 140 | struct perf_event_context *ctx; |
141 | 141 | ||
142 | ctx = container_of(head, struct perf_counter_context, rcu_head); | 142 | ctx = container_of(head, struct perf_event_context, rcu_head); |
143 | kfree(ctx); | 143 | kfree(ctx); |
144 | } | 144 | } |
145 | 145 | ||
146 | static void put_ctx(struct perf_counter_context *ctx) | 146 | static void put_ctx(struct perf_event_context *ctx) |
147 | { | 147 | { |
148 | if (atomic_dec_and_test(&ctx->refcount)) { | 148 | if (atomic_dec_and_test(&ctx->refcount)) { |
149 | if (ctx->parent_ctx) | 149 | if (ctx->parent_ctx) |
@@ -154,7 +154,7 @@ static void put_ctx(struct perf_counter_context *ctx) | |||
154 | } | 154 | } |
155 | } | 155 | } |
156 | 156 | ||
157 | static void unclone_ctx(struct perf_counter_context *ctx) | 157 | static void unclone_ctx(struct perf_event_context *ctx) |
158 | { | 158 | { |
159 | if (ctx->parent_ctx) { | 159 | if (ctx->parent_ctx) { |
160 | put_ctx(ctx->parent_ctx); | 160 | put_ctx(ctx->parent_ctx); |
@@ -163,37 +163,37 @@ static void unclone_ctx(struct perf_counter_context *ctx) | |||
163 | } | 163 | } |
164 | 164 | ||
165 | /* | 165 | /* |
166 | * If we inherit counters we want to return the parent counter id | 166 | * If we inherit events we want to return the parent event id |
167 | * to userspace. | 167 | * to userspace. |
168 | */ | 168 | */ |
169 | static u64 primary_counter_id(struct perf_counter *counter) | 169 | static u64 primary_event_id(struct perf_event *event) |
170 | { | 170 | { |
171 | u64 id = counter->id; | 171 | u64 id = event->id; |
172 | 172 | ||
173 | if (counter->parent) | 173 | if (event->parent) |
174 | id = counter->parent->id; | 174 | id = event->parent->id; |
175 | 175 | ||
176 | return id; | 176 | return id; |
177 | } | 177 | } |
178 | 178 | ||
179 | /* | 179 | /* |
180 | * Get the perf_counter_context for a task and lock it. | 180 | * Get the perf_event_context for a task and lock it. |
181 | * This has to cope with with the fact that until it is locked, | 181 | * This has to cope with with the fact that until it is locked, |
182 | * the context could get moved to another task. | 182 | * the context could get moved to another task. |
183 | */ | 183 | */ |
184 | static struct perf_counter_context * | 184 | static struct perf_event_context * |
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) |
186 | { | 186 | { |
187 | struct perf_counter_context *ctx; | 187 | struct perf_event_context *ctx; |
188 | 188 | ||
189 | rcu_read_lock(); | 189 | rcu_read_lock(); |
190 | retry: | 190 | retry: |
191 | ctx = rcu_dereference(task->perf_counter_ctxp); | 191 | ctx = rcu_dereference(task->perf_event_ctxp); |
192 | if (ctx) { | 192 | if (ctx) { |
193 | /* | 193 | /* |
194 | * If this context is a clone of another, it might | 194 | * If this context is a clone of another, it might |
195 | * get swapped for another underneath us by | 195 | * get swapped for another underneath us by |
196 | * perf_counter_task_sched_out, though the | 196 | * perf_event_task_sched_out, though the |
197 | * rcu_read_lock() protects us from any context | 197 | * rcu_read_lock() protects us from any context |
198 | * getting freed. Lock the context and check if it | 198 | * getting freed. Lock the context and check if it |
199 | * got swapped before we could get the lock, and retry | 199 | * got swapped before we could get the lock, and retry |
@@ -201,7 +201,7 @@ perf_lock_task_context(struct task_struct *task, unsigned long *flags) | |||
201 | * can't get swapped on us any more. | 201 | * can't get swapped on us any more. |
202 | */ | 202 | */ |
203 | spin_lock_irqsave(&ctx->lock, *flags); | 203 | spin_lock_irqsave(&ctx->lock, *flags); |
204 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | 204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { |
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | 205 | spin_unlock_irqrestore(&ctx->lock, *flags); |
206 | goto retry; | 206 | goto retry; |
207 | } | 207 | } |
@@ -220,9 +220,9 @@ perf_lock_task_context(struct task_struct *task, unsigned long *flags) | |||
220 | * can't get swapped to another task. This also increments its | 220 | * can't get swapped to another task. This also increments its |
221 | * reference count so that the context can't get freed. | 221 | * reference count so that the context can't get freed. |
222 | */ | 222 | */ |
223 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | 223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) |
224 | { | 224 | { |
225 | struct perf_counter_context *ctx; | 225 | struct perf_event_context *ctx; |
226 | unsigned long flags; | 226 | unsigned long flags; |
227 | 227 | ||
228 | ctx = perf_lock_task_context(task, &flags); | 228 | ctx = perf_lock_task_context(task, &flags); |
@@ -233,7 +233,7 @@ static struct perf_counter_context *perf_pin_task_context(struct task_struct *ta | |||
233 | return ctx; | 233 | return ctx; |
234 | } | 234 | } |
235 | 235 | ||
236 | static void perf_unpin_context(struct perf_counter_context *ctx) | 236 | static void perf_unpin_context(struct perf_event_context *ctx) |
237 | { | 237 | { |
238 | unsigned long flags; | 238 | unsigned long flags; |
239 | 239 | ||
@@ -244,123 +244,122 @@ static void perf_unpin_context(struct perf_counter_context *ctx) | |||
244 | } | 244 | } |
245 | 245 | ||
246 | /* | 246 | /* |
247 | * Add a counter from the lists for its context. | 247 | * Add a event from the lists for its context. |
248 | * Must be called with ctx->mutex and ctx->lock held. | 248 | * Must be called with ctx->mutex and ctx->lock held. |
249 | */ | 249 | */ |
250 | static void | 250 | static void |
251 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) |
252 | { | 252 | { |
253 | struct perf_counter *group_leader = counter->group_leader; | 253 | struct perf_event *group_leader = event->group_leader; |
254 | 254 | ||
255 | /* | 255 | /* |
256 | * Depending on whether it is a standalone or sibling counter, | 256 | * Depending on whether it is a standalone or sibling event, |
257 | * add it straight to the context's counter list, or to the group | 257 | * add it straight to the context's event list, or to the group |
258 | * leader's sibling list: | 258 | * leader's sibling list: |
259 | */ | 259 | */ |
260 | if (group_leader == counter) | 260 | if (group_leader == event) |
261 | list_add_tail(&counter->list_entry, &ctx->counter_list); | 261 | list_add_tail(&event->group_entry, &ctx->group_list); |
262 | else { | 262 | else { |
263 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | 263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); |
264 | group_leader->nr_siblings++; | 264 | group_leader->nr_siblings++; |
265 | } | 265 | } |
266 | 266 | ||
267 | list_add_rcu(&counter->event_entry, &ctx->event_list); | 267 | list_add_rcu(&event->event_entry, &ctx->event_list); |
268 | ctx->nr_counters++; | 268 | ctx->nr_events++; |
269 | if (counter->attr.inherit_stat) | 269 | if (event->attr.inherit_stat) |
270 | ctx->nr_stat++; | 270 | ctx->nr_stat++; |
271 | } | 271 | } |
272 | 272 | ||
273 | /* | 273 | /* |
274 | * Remove a counter from the lists for its context. | 274 | * Remove a event from the lists for its context. |
275 | * Must be called with ctx->mutex and ctx->lock held. | 275 | * Must be called with ctx->mutex and ctx->lock held. |
276 | */ | 276 | */ |
277 | static void | 277 | static void |
278 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
279 | { | 279 | { |
280 | struct perf_counter *sibling, *tmp; | 280 | struct perf_event *sibling, *tmp; |
281 | 281 | ||
282 | if (list_empty(&counter->list_entry)) | 282 | if (list_empty(&event->group_entry)) |
283 | return; | 283 | return; |
284 | ctx->nr_counters--; | 284 | ctx->nr_events--; |
285 | if (counter->attr.inherit_stat) | 285 | if (event->attr.inherit_stat) |
286 | ctx->nr_stat--; | 286 | ctx->nr_stat--; |
287 | 287 | ||
288 | list_del_init(&counter->list_entry); | 288 | list_del_init(&event->group_entry); |
289 | list_del_rcu(&counter->event_entry); | 289 | list_del_rcu(&event->event_entry); |
290 | 290 | ||
291 | if (counter->group_leader != counter) | 291 | if (event->group_leader != event) |
292 | counter->group_leader->nr_siblings--; | 292 | event->group_leader->nr_siblings--; |
293 | 293 | ||
294 | /* | 294 | /* |
295 | * If this was a group counter with sibling counters then | 295 | * If this was a group event with sibling events then |
296 | * upgrade the siblings to singleton counters by adding them | 296 | * upgrade the siblings to singleton events by adding them |
297 | * to the context list directly: | 297 | * to the context list directly: |
298 | */ | 298 | */ |
299 | list_for_each_entry_safe(sibling, tmp, | 299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { |
300 | &counter->sibling_list, list_entry) { | ||
301 | 300 | ||
302 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | 301 | list_move_tail(&sibling->group_entry, &ctx->group_list); |
303 | sibling->group_leader = sibling; | 302 | sibling->group_leader = sibling; |
304 | } | 303 | } |
305 | } | 304 | } |
306 | 305 | ||
307 | static void | 306 | static void |
308 | counter_sched_out(struct perf_counter *counter, | 307 | event_sched_out(struct perf_event *event, |
309 | struct perf_cpu_context *cpuctx, | 308 | struct perf_cpu_context *cpuctx, |
310 | struct perf_counter_context *ctx) | 309 | struct perf_event_context *ctx) |
311 | { | 310 | { |
312 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 311 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
313 | return; | 312 | return; |
314 | 313 | ||
315 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 314 | event->state = PERF_EVENT_STATE_INACTIVE; |
316 | if (counter->pending_disable) { | 315 | if (event->pending_disable) { |
317 | counter->pending_disable = 0; | 316 | event->pending_disable = 0; |
318 | counter->state = PERF_COUNTER_STATE_OFF; | 317 | event->state = PERF_EVENT_STATE_OFF; |
319 | } | 318 | } |
320 | counter->tstamp_stopped = ctx->time; | 319 | event->tstamp_stopped = ctx->time; |
321 | counter->pmu->disable(counter); | 320 | event->pmu->disable(event); |
322 | counter->oncpu = -1; | 321 | event->oncpu = -1; |
323 | 322 | ||
324 | if (!is_software_counter(counter)) | 323 | if (!is_software_event(event)) |
325 | cpuctx->active_oncpu--; | 324 | cpuctx->active_oncpu--; |
326 | ctx->nr_active--; | 325 | ctx->nr_active--; |
327 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | 326 | if (event->attr.exclusive || !cpuctx->active_oncpu) |
328 | cpuctx->exclusive = 0; | 327 | cpuctx->exclusive = 0; |
329 | } | 328 | } |
330 | 329 | ||
331 | static void | 330 | static void |
332 | group_sched_out(struct perf_counter *group_counter, | 331 | group_sched_out(struct perf_event *group_event, |
333 | struct perf_cpu_context *cpuctx, | 332 | struct perf_cpu_context *cpuctx, |
334 | struct perf_counter_context *ctx) | 333 | struct perf_event_context *ctx) |
335 | { | 334 | { |
336 | struct perf_counter *counter; | 335 | struct perf_event *event; |
337 | 336 | ||
338 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | 337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) |
339 | return; | 338 | return; |
340 | 339 | ||
341 | counter_sched_out(group_counter, cpuctx, ctx); | 340 | event_sched_out(group_event, cpuctx, ctx); |
342 | 341 | ||
343 | /* | 342 | /* |
344 | * Schedule out siblings (if any): | 343 | * Schedule out siblings (if any): |
345 | */ | 344 | */ |
346 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | 345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) |
347 | counter_sched_out(counter, cpuctx, ctx); | 346 | event_sched_out(event, cpuctx, ctx); |
348 | 347 | ||
349 | if (group_counter->attr.exclusive) | 348 | if (group_event->attr.exclusive) |
350 | cpuctx->exclusive = 0; | 349 | cpuctx->exclusive = 0; |
351 | } | 350 | } |
352 | 351 | ||
353 | /* | 352 | /* |
354 | * Cross CPU call to remove a performance counter | 353 | * Cross CPU call to remove a performance event |
355 | * | 354 | * |
356 | * We disable the counter on the hardware level first. After that we | 355 | * We disable the event on the hardware level first. After that we |
357 | * remove it from the context list. | 356 | * remove it from the context list. |
358 | */ | 357 | */ |
359 | static void __perf_counter_remove_from_context(void *info) | 358 | static void __perf_event_remove_from_context(void *info) |
360 | { | 359 | { |
361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
362 | struct perf_counter *counter = info; | 361 | struct perf_event *event = info; |
363 | struct perf_counter_context *ctx = counter->ctx; | 362 | struct perf_event_context *ctx = event->ctx; |
364 | 363 | ||
365 | /* | 364 | /* |
366 | * If this is a task context, we need to check whether it is | 365 | * If this is a task context, we need to check whether it is |
@@ -373,22 +372,22 @@ static void __perf_counter_remove_from_context(void *info) | |||
373 | spin_lock(&ctx->lock); | 372 | spin_lock(&ctx->lock); |
374 | /* | 373 | /* |
375 | * Protect the list operation against NMI by disabling the | 374 | * Protect the list operation against NMI by disabling the |
376 | * counters on a global level. | 375 | * events on a global level. |
377 | */ | 376 | */ |
378 | perf_disable(); | 377 | perf_disable(); |
379 | 378 | ||
380 | counter_sched_out(counter, cpuctx, ctx); | 379 | event_sched_out(event, cpuctx, ctx); |
381 | 380 | ||
382 | list_del_counter(counter, ctx); | 381 | list_del_event(event, ctx); |
383 | 382 | ||
384 | if (!ctx->task) { | 383 | if (!ctx->task) { |
385 | /* | 384 | /* |
386 | * Allow more per task counters with respect to the | 385 | * Allow more per task events with respect to the |
387 | * reservation: | 386 | * reservation: |
388 | */ | 387 | */ |
389 | cpuctx->max_pertask = | 388 | cpuctx->max_pertask = |
390 | min(perf_max_counters - ctx->nr_counters, | 389 | min(perf_max_events - ctx->nr_events, |
391 | perf_max_counters - perf_reserved_percpu); | 390 | perf_max_events - perf_reserved_percpu); |
392 | } | 391 | } |
393 | 392 | ||
394 | perf_enable(); | 393 | perf_enable(); |
@@ -397,56 +396,56 @@ static void __perf_counter_remove_from_context(void *info) | |||
397 | 396 | ||
398 | 397 | ||
399 | /* | 398 | /* |
400 | * Remove the counter from a task's (or a CPU's) list of counters. | 399 | * Remove the event from a task's (or a CPU's) list of events. |
401 | * | 400 | * |
402 | * Must be called with ctx->mutex held. | 401 | * Must be called with ctx->mutex held. |
403 | * | 402 | * |
404 | * CPU counters are removed with a smp call. For task counters we only | 403 | * CPU events are removed with a smp call. For task events we only |
405 | * call when the task is on a CPU. | 404 | * call when the task is on a CPU. |
406 | * | 405 | * |
407 | * If counter->ctx is a cloned context, callers must make sure that | 406 | * If event->ctx is a cloned context, callers must make sure that |
408 | * every task struct that counter->ctx->task could possibly point to | 407 | * every task struct that event->ctx->task could possibly point to |
409 | * remains valid. This is OK when called from perf_release since | 408 | * remains valid. This is OK when called from perf_release since |
410 | * that only calls us on the top-level context, which can't be a clone. | 409 | * that only calls us on the top-level context, which can't be a clone. |
411 | * When called from perf_counter_exit_task, it's OK because the | 410 | * When called from perf_event_exit_task, it's OK because the |
412 | * context has been detached from its task. | 411 | * context has been detached from its task. |
413 | */ | 412 | */ |
414 | static void perf_counter_remove_from_context(struct perf_counter *counter) | 413 | static void perf_event_remove_from_context(struct perf_event *event) |
415 | { | 414 | { |
416 | struct perf_counter_context *ctx = counter->ctx; | 415 | struct perf_event_context *ctx = event->ctx; |
417 | struct task_struct *task = ctx->task; | 416 | struct task_struct *task = ctx->task; |
418 | 417 | ||
419 | if (!task) { | 418 | if (!task) { |
420 | /* | 419 | /* |
421 | * Per cpu counters are removed via an smp call and | 420 | * Per cpu events are removed via an smp call and |
422 | * the removal is always sucessful. | 421 | * the removal is always sucessful. |
423 | */ | 422 | */ |
424 | smp_call_function_single(counter->cpu, | 423 | smp_call_function_single(event->cpu, |
425 | __perf_counter_remove_from_context, | 424 | __perf_event_remove_from_context, |
426 | counter, 1); | 425 | event, 1); |
427 | return; | 426 | return; |
428 | } | 427 | } |
429 | 428 | ||
430 | retry: | 429 | retry: |
431 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | 430 | task_oncpu_function_call(task, __perf_event_remove_from_context, |
432 | counter); | 431 | event); |
433 | 432 | ||
434 | spin_lock_irq(&ctx->lock); | 433 | spin_lock_irq(&ctx->lock); |
435 | /* | 434 | /* |
436 | * If the context is active we need to retry the smp call. | 435 | * If the context is active we need to retry the smp call. |
437 | */ | 436 | */ |
438 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | 437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { |
439 | spin_unlock_irq(&ctx->lock); | 438 | spin_unlock_irq(&ctx->lock); |
440 | goto retry; | 439 | goto retry; |
441 | } | 440 | } |
442 | 441 | ||
443 | /* | 442 | /* |
444 | * The lock prevents that this context is scheduled in so we | 443 | * The lock prevents that this context is scheduled in so we |
445 | * can remove the counter safely, if the call above did not | 444 | * can remove the event safely, if the call above did not |
446 | * succeed. | 445 | * succeed. |
447 | */ | 446 | */ |
448 | if (!list_empty(&counter->list_entry)) { | 447 | if (!list_empty(&event->group_entry)) { |
449 | list_del_counter(counter, ctx); | 448 | list_del_event(event, ctx); |
450 | } | 449 | } |
451 | spin_unlock_irq(&ctx->lock); | 450 | spin_unlock_irq(&ctx->lock); |
452 | } | 451 | } |
@@ -459,7 +458,7 @@ static inline u64 perf_clock(void) | |||
459 | /* | 458 | /* |
460 | * Update the record of the current time in a context. | 459 | * Update the record of the current time in a context. |
461 | */ | 460 | */ |
462 | static void update_context_time(struct perf_counter_context *ctx) | 461 | static void update_context_time(struct perf_event_context *ctx) |
463 | { | 462 | { |
464 | u64 now = perf_clock(); | 463 | u64 now = perf_clock(); |
465 | 464 | ||
@@ -468,51 +467,51 @@ static void update_context_time(struct perf_counter_context *ctx) | |||
468 | } | 467 | } |
469 | 468 | ||
470 | /* | 469 | /* |
471 | * Update the total_time_enabled and total_time_running fields for a counter. | 470 | * Update the total_time_enabled and total_time_running fields for a event. |
472 | */ | 471 | */ |
473 | static void update_counter_times(struct perf_counter *counter) | 472 | static void update_event_times(struct perf_event *event) |
474 | { | 473 | { |
475 | struct perf_counter_context *ctx = counter->ctx; | 474 | struct perf_event_context *ctx = event->ctx; |
476 | u64 run_end; | 475 | u64 run_end; |
477 | 476 | ||
478 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | 477 | if (event->state < PERF_EVENT_STATE_INACTIVE || |
479 | counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE) | 478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) |
480 | return; | 479 | return; |
481 | 480 | ||
482 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | 481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; |
483 | 482 | ||
484 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | 483 | if (event->state == PERF_EVENT_STATE_INACTIVE) |
485 | run_end = counter->tstamp_stopped; | 484 | run_end = event->tstamp_stopped; |
486 | else | 485 | else |
487 | run_end = ctx->time; | 486 | run_end = ctx->time; |
488 | 487 | ||
489 | counter->total_time_running = run_end - counter->tstamp_running; | 488 | event->total_time_running = run_end - event->tstamp_running; |
490 | } | 489 | } |
491 | 490 | ||
492 | /* | 491 | /* |
493 | * Update total_time_enabled and total_time_running for all counters in a group. | 492 | * Update total_time_enabled and total_time_running for all events in a group. |
494 | */ | 493 | */ |
495 | static void update_group_times(struct perf_counter *leader) | 494 | static void update_group_times(struct perf_event *leader) |
496 | { | 495 | { |
497 | struct perf_counter *counter; | 496 | struct perf_event *event; |
498 | 497 | ||
499 | update_counter_times(leader); | 498 | update_event_times(leader); |
500 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 499 | list_for_each_entry(event, &leader->sibling_list, group_entry) |
501 | update_counter_times(counter); | 500 | update_event_times(event); |
502 | } | 501 | } |
503 | 502 | ||
504 | /* | 503 | /* |
505 | * Cross CPU call to disable a performance counter | 504 | * Cross CPU call to disable a performance event |
506 | */ | 505 | */ |
507 | static void __perf_counter_disable(void *info) | 506 | static void __perf_event_disable(void *info) |
508 | { | 507 | { |
509 | struct perf_counter *counter = info; | 508 | struct perf_event *event = info; |
510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
511 | struct perf_counter_context *ctx = counter->ctx; | 510 | struct perf_event_context *ctx = event->ctx; |
512 | 511 | ||
513 | /* | 512 | /* |
514 | * If this is a per-task counter, need to check whether this | 513 | * If this is a per-task event, need to check whether this |
515 | * counter's task is the current task on this cpu. | 514 | * event's task is the current task on this cpu. |
516 | */ | 515 | */ |
517 | if (ctx->task && cpuctx->task_ctx != ctx) | 516 | if (ctx->task && cpuctx->task_ctx != ctx) |
518 | return; | 517 | return; |
@@ -520,57 +519,57 @@ static void __perf_counter_disable(void *info) | |||
520 | spin_lock(&ctx->lock); | 519 | spin_lock(&ctx->lock); |
521 | 520 | ||
522 | /* | 521 | /* |
523 | * If the counter is on, turn it off. | 522 | * If the event is on, turn it off. |
524 | * If it is in error state, leave it in error state. | 523 | * If it is in error state, leave it in error state. |
525 | */ | 524 | */ |
526 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | 525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { |
527 | update_context_time(ctx); | 526 | update_context_time(ctx); |
528 | update_group_times(counter); | 527 | update_group_times(event); |
529 | if (counter == counter->group_leader) | 528 | if (event == event->group_leader) |
530 | group_sched_out(counter, cpuctx, ctx); | 529 | group_sched_out(event, cpuctx, ctx); |
531 | else | 530 | else |
532 | counter_sched_out(counter, cpuctx, ctx); | 531 | event_sched_out(event, cpuctx, ctx); |
533 | counter->state = PERF_COUNTER_STATE_OFF; | 532 | event->state = PERF_EVENT_STATE_OFF; |
534 | } | 533 | } |
535 | 534 | ||
536 | spin_unlock(&ctx->lock); | 535 | spin_unlock(&ctx->lock); |
537 | } | 536 | } |
538 | 537 | ||
539 | /* | 538 | /* |
540 | * Disable a counter. | 539 | * Disable a event. |
541 | * | 540 | * |
542 | * If counter->ctx is a cloned context, callers must make sure that | 541 | * If event->ctx is a cloned context, callers must make sure that |
543 | * every task struct that counter->ctx->task could possibly point to | 542 | * every task struct that event->ctx->task could possibly point to |
544 | * remains valid. This condition is satisifed when called through | 543 | * remains valid. This condition is satisifed when called through |
545 | * perf_counter_for_each_child or perf_counter_for_each because they | 544 | * perf_event_for_each_child or perf_event_for_each because they |
546 | * hold the top-level counter's child_mutex, so any descendant that | 545 | * hold the top-level event's child_mutex, so any descendant that |
547 | * goes to exit will block in sync_child_counter. | 546 | * goes to exit will block in sync_child_event. |
548 | * When called from perf_pending_counter it's OK because counter->ctx | 547 | * When called from perf_pending_event it's OK because event->ctx |
549 | * is the current context on this CPU and preemption is disabled, | 548 | * is the current context on this CPU and preemption is disabled, |
550 | * hence we can't get into perf_counter_task_sched_out for this context. | 549 | * hence we can't get into perf_event_task_sched_out for this context. |
551 | */ | 550 | */ |
552 | static void perf_counter_disable(struct perf_counter *counter) | 551 | static void perf_event_disable(struct perf_event *event) |
553 | { | 552 | { |
554 | struct perf_counter_context *ctx = counter->ctx; | 553 | struct perf_event_context *ctx = event->ctx; |
555 | struct task_struct *task = ctx->task; | 554 | struct task_struct *task = ctx->task; |
556 | 555 | ||
557 | if (!task) { | 556 | if (!task) { |
558 | /* | 557 | /* |
559 | * Disable the counter on the cpu that it's on | 558 | * Disable the event on the cpu that it's on |
560 | */ | 559 | */ |
561 | smp_call_function_single(counter->cpu, __perf_counter_disable, | 560 | smp_call_function_single(event->cpu, __perf_event_disable, |
562 | counter, 1); | 561 | event, 1); |
563 | return; | 562 | return; |
564 | } | 563 | } |
565 | 564 | ||
566 | retry: | 565 | retry: |
567 | task_oncpu_function_call(task, __perf_counter_disable, counter); | 566 | task_oncpu_function_call(task, __perf_event_disable, event); |
568 | 567 | ||
569 | spin_lock_irq(&ctx->lock); | 568 | spin_lock_irq(&ctx->lock); |
570 | /* | 569 | /* |
571 | * If the counter is still active, we need to retry the cross-call. | 570 | * If the event is still active, we need to retry the cross-call. |
572 | */ | 571 | */ |
573 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { |
574 | spin_unlock_irq(&ctx->lock); | 573 | spin_unlock_irq(&ctx->lock); |
575 | goto retry; | 574 | goto retry; |
576 | } | 575 | } |
@@ -579,73 +578,73 @@ static void perf_counter_disable(struct perf_counter *counter) | |||
579 | * Since we have the lock this context can't be scheduled | 578 | * Since we have the lock this context can't be scheduled |
580 | * in, so we can change the state safely. | 579 | * in, so we can change the state safely. |
581 | */ | 580 | */ |
582 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { |
583 | update_group_times(counter); | 582 | update_group_times(event); |
584 | counter->state = PERF_COUNTER_STATE_OFF; | 583 | event->state = PERF_EVENT_STATE_OFF; |
585 | } | 584 | } |
586 | 585 | ||
587 | spin_unlock_irq(&ctx->lock); | 586 | spin_unlock_irq(&ctx->lock); |
588 | } | 587 | } |
589 | 588 | ||
590 | static int | 589 | static int |
591 | counter_sched_in(struct perf_counter *counter, | 590 | event_sched_in(struct perf_event *event, |
592 | struct perf_cpu_context *cpuctx, | 591 | struct perf_cpu_context *cpuctx, |
593 | struct perf_counter_context *ctx, | 592 | struct perf_event_context *ctx, |
594 | int cpu) | 593 | int cpu) |
595 | { | 594 | { |
596 | if (counter->state <= PERF_COUNTER_STATE_OFF) | 595 | if (event->state <= PERF_EVENT_STATE_OFF) |
597 | return 0; | 596 | return 0; |
598 | 597 | ||
599 | counter->state = PERF_COUNTER_STATE_ACTIVE; | 598 | event->state = PERF_EVENT_STATE_ACTIVE; |
600 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | 599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ |
601 | /* | 600 | /* |
602 | * The new state must be visible before we turn it on in the hardware: | 601 | * The new state must be visible before we turn it on in the hardware: |
603 | */ | 602 | */ |
604 | smp_wmb(); | 603 | smp_wmb(); |
605 | 604 | ||
606 | if (counter->pmu->enable(counter)) { | 605 | if (event->pmu->enable(event)) { |
607 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 606 | event->state = PERF_EVENT_STATE_INACTIVE; |
608 | counter->oncpu = -1; | 607 | event->oncpu = -1; |
609 | return -EAGAIN; | 608 | return -EAGAIN; |
610 | } | 609 | } |
611 | 610 | ||
612 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | 611 | event->tstamp_running += ctx->time - event->tstamp_stopped; |
613 | 612 | ||
614 | if (!is_software_counter(counter)) | 613 | if (!is_software_event(event)) |
615 | cpuctx->active_oncpu++; | 614 | cpuctx->active_oncpu++; |
616 | ctx->nr_active++; | 615 | ctx->nr_active++; |
617 | 616 | ||
618 | if (counter->attr.exclusive) | 617 | if (event->attr.exclusive) |
619 | cpuctx->exclusive = 1; | 618 | cpuctx->exclusive = 1; |
620 | 619 | ||
621 | return 0; | 620 | return 0; |
622 | } | 621 | } |
623 | 622 | ||
624 | static int | 623 | static int |
625 | group_sched_in(struct perf_counter *group_counter, | 624 | group_sched_in(struct perf_event *group_event, |
626 | struct perf_cpu_context *cpuctx, | 625 | struct perf_cpu_context *cpuctx, |
627 | struct perf_counter_context *ctx, | 626 | struct perf_event_context *ctx, |
628 | int cpu) | 627 | int cpu) |
629 | { | 628 | { |
630 | struct perf_counter *counter, *partial_group; | 629 | struct perf_event *event, *partial_group; |
631 | int ret; | 630 | int ret; |
632 | 631 | ||
633 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | 632 | if (group_event->state == PERF_EVENT_STATE_OFF) |
634 | return 0; | 633 | return 0; |
635 | 634 | ||
636 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | 635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); |
637 | if (ret) | 636 | if (ret) |
638 | return ret < 0 ? ret : 0; | 637 | return ret < 0 ? ret : 0; |
639 | 638 | ||
640 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | 639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) |
641 | return -EAGAIN; | 640 | return -EAGAIN; |
642 | 641 | ||
643 | /* | 642 | /* |
644 | * Schedule in siblings as one group (if any): | 643 | * Schedule in siblings as one group (if any): |
645 | */ | 644 | */ |
646 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
647 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | 646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { |
648 | partial_group = counter; | 647 | partial_group = event; |
649 | goto group_error; | 648 | goto group_error; |
650 | } | 649 | } |
651 | } | 650 | } |
@@ -657,57 +656,57 @@ group_error: | |||
657 | * Groups can be scheduled in as one unit only, so undo any | 656 | * Groups can be scheduled in as one unit only, so undo any |
658 | * partial group before returning: | 657 | * partial group before returning: |
659 | */ | 658 | */ |
660 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
661 | if (counter == partial_group) | 660 | if (event == partial_group) |
662 | break; | 661 | break; |
663 | counter_sched_out(counter, cpuctx, ctx); | 662 | event_sched_out(event, cpuctx, ctx); |
664 | } | 663 | } |
665 | counter_sched_out(group_counter, cpuctx, ctx); | 664 | event_sched_out(group_event, cpuctx, ctx); |
666 | 665 | ||
667 | return -EAGAIN; | 666 | return -EAGAIN; |
668 | } | 667 | } |
669 | 668 | ||
670 | /* | 669 | /* |
671 | * Return 1 for a group consisting entirely of software counters, | 670 | * Return 1 for a group consisting entirely of software events, |
672 | * 0 if the group contains any hardware counters. | 671 | * 0 if the group contains any hardware events. |
673 | */ | 672 | */ |
674 | static int is_software_only_group(struct perf_counter *leader) | 673 | static int is_software_only_group(struct perf_event *leader) |
675 | { | 674 | { |
676 | struct perf_counter *counter; | 675 | struct perf_event *event; |
677 | 676 | ||
678 | if (!is_software_counter(leader)) | 677 | if (!is_software_event(leader)) |
679 | return 0; | 678 | return 0; |
680 | 679 | ||
681 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 680 | list_for_each_entry(event, &leader->sibling_list, group_entry) |
682 | if (!is_software_counter(counter)) | 681 | if (!is_software_event(event)) |
683 | return 0; | 682 | return 0; |
684 | 683 | ||
685 | return 1; | 684 | return 1; |
686 | } | 685 | } |
687 | 686 | ||
688 | /* | 687 | /* |
689 | * Work out whether we can put this counter group on the CPU now. | 688 | * Work out whether we can put this event group on the CPU now. |
690 | */ | 689 | */ |
691 | static int group_can_go_on(struct perf_counter *counter, | 690 | static int group_can_go_on(struct perf_event *event, |
692 | struct perf_cpu_context *cpuctx, | 691 | struct perf_cpu_context *cpuctx, |
693 | int can_add_hw) | 692 | int can_add_hw) |
694 | { | 693 | { |
695 | /* | 694 | /* |
696 | * Groups consisting entirely of software counters can always go on. | 695 | * Groups consisting entirely of software events can always go on. |
697 | */ | 696 | */ |
698 | if (is_software_only_group(counter)) | 697 | if (is_software_only_group(event)) |
699 | return 1; | 698 | return 1; |
700 | /* | 699 | /* |
701 | * If an exclusive group is already on, no other hardware | 700 | * If an exclusive group is already on, no other hardware |
702 | * counters can go on. | 701 | * events can go on. |
703 | */ | 702 | */ |
704 | if (cpuctx->exclusive) | 703 | if (cpuctx->exclusive) |
705 | return 0; | 704 | return 0; |
706 | /* | 705 | /* |
707 | * If this group is exclusive and there are already | 706 | * If this group is exclusive and there are already |
708 | * counters on the CPU, it can't go on. | 707 | * events on the CPU, it can't go on. |
709 | */ | 708 | */ |
710 | if (counter->attr.exclusive && cpuctx->active_oncpu) | 709 | if (event->attr.exclusive && cpuctx->active_oncpu) |
711 | return 0; | 710 | return 0; |
712 | /* | 711 | /* |
713 | * Otherwise, try to add it if all previous groups were able | 712 | * Otherwise, try to add it if all previous groups were able |
@@ -716,26 +715,26 @@ static int group_can_go_on(struct perf_counter *counter, | |||
716 | return can_add_hw; | 715 | return can_add_hw; |
717 | } | 716 | } |
718 | 717 | ||
719 | static void add_counter_to_ctx(struct perf_counter *counter, | 718 | static void add_event_to_ctx(struct perf_event *event, |
720 | struct perf_counter_context *ctx) | 719 | struct perf_event_context *ctx) |
721 | { | 720 | { |
722 | list_add_counter(counter, ctx); | 721 | list_add_event(event, ctx); |
723 | counter->tstamp_enabled = ctx->time; | 722 | event->tstamp_enabled = ctx->time; |
724 | counter->tstamp_running = ctx->time; | 723 | event->tstamp_running = ctx->time; |
725 | counter->tstamp_stopped = ctx->time; | 724 | event->tstamp_stopped = ctx->time; |
726 | } | 725 | } |
727 | 726 | ||
728 | /* | 727 | /* |
729 | * Cross CPU call to install and enable a performance counter | 728 | * Cross CPU call to install and enable a performance event |
730 | * | 729 | * |
731 | * Must be called with ctx->mutex held | 730 | * Must be called with ctx->mutex held |
732 | */ | 731 | */ |
733 | static void __perf_install_in_context(void *info) | 732 | static void __perf_install_in_context(void *info) |
734 | { | 733 | { |
735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
736 | struct perf_counter *counter = info; | 735 | struct perf_event *event = info; |
737 | struct perf_counter_context *ctx = counter->ctx; | 736 | struct perf_event_context *ctx = event->ctx; |
738 | struct perf_counter *leader = counter->group_leader; | 737 | struct perf_event *leader = event->group_leader; |
739 | int cpu = smp_processor_id(); | 738 | int cpu = smp_processor_id(); |
740 | int err; | 739 | int err; |
741 | 740 | ||
@@ -744,7 +743,7 @@ static void __perf_install_in_context(void *info) | |||
744 | * the current task context of this cpu. If not it has been | 743 | * the current task context of this cpu. If not it has been |
745 | * scheduled out before the smp call arrived. | 744 | * scheduled out before the smp call arrived. |
746 | * Or possibly this is the right context but it isn't | 745 | * Or possibly this is the right context but it isn't |
747 | * on this cpu because it had no counters. | 746 | * on this cpu because it had no events. |
748 | */ | 747 | */ |
749 | if (ctx->task && cpuctx->task_ctx != ctx) { | 748 | if (ctx->task && cpuctx->task_ctx != ctx) { |
750 | if (cpuctx->task_ctx || ctx->task != current) | 749 | if (cpuctx->task_ctx || ctx->task != current) |
@@ -758,41 +757,41 @@ static void __perf_install_in_context(void *info) | |||
758 | 757 | ||
759 | /* | 758 | /* |
760 | * Protect the list operation against NMI by disabling the | 759 | * Protect the list operation against NMI by disabling the |
761 | * counters on a global level. NOP for non NMI based counters. | 760 | * events on a global level. NOP for non NMI based events. |
762 | */ | 761 | */ |
763 | perf_disable(); | 762 | perf_disable(); |
764 | 763 | ||
765 | add_counter_to_ctx(counter, ctx); | 764 | add_event_to_ctx(event, ctx); |
766 | 765 | ||
767 | /* | 766 | /* |
768 | * Don't put the counter on if it is disabled or if | 767 | * Don't put the event on if it is disabled or if |
769 | * it is in a group and the group isn't on. | 768 | * it is in a group and the group isn't on. |
770 | */ | 769 | */ |
771 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | 770 | if (event->state != PERF_EVENT_STATE_INACTIVE || |
772 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | 771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) |
773 | goto unlock; | 772 | goto unlock; |
774 | 773 | ||
775 | /* | 774 | /* |
776 | * An exclusive counter can't go on if there are already active | 775 | * An exclusive event can't go on if there are already active |
777 | * hardware counters, and no hardware counter can go on if there | 776 | * hardware events, and no hardware event can go on if there |
778 | * is already an exclusive counter on. | 777 | * is already an exclusive event on. |
779 | */ | 778 | */ |
780 | if (!group_can_go_on(counter, cpuctx, 1)) | 779 | if (!group_can_go_on(event, cpuctx, 1)) |
781 | err = -EEXIST; | 780 | err = -EEXIST; |
782 | else | 781 | else |
783 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | 782 | err = event_sched_in(event, cpuctx, ctx, cpu); |
784 | 783 | ||
785 | if (err) { | 784 | if (err) { |
786 | /* | 785 | /* |
787 | * This counter couldn't go on. If it is in a group | 786 | * This event couldn't go on. If it is in a group |
788 | * then we have to pull the whole group off. | 787 | * then we have to pull the whole group off. |
789 | * If the counter group is pinned then put it in error state. | 788 | * If the event group is pinned then put it in error state. |
790 | */ | 789 | */ |
791 | if (leader != counter) | 790 | if (leader != event) |
792 | group_sched_out(leader, cpuctx, ctx); | 791 | group_sched_out(leader, cpuctx, ctx); |
793 | if (leader->attr.pinned) { | 792 | if (leader->attr.pinned) { |
794 | update_group_times(leader); | 793 | update_group_times(leader); |
795 | leader->state = PERF_COUNTER_STATE_ERROR; | 794 | leader->state = PERF_EVENT_STATE_ERROR; |
796 | } | 795 | } |
797 | } | 796 | } |
798 | 797 | ||
@@ -806,92 +805,92 @@ static void __perf_install_in_context(void *info) | |||
806 | } | 805 | } |
807 | 806 | ||
808 | /* | 807 | /* |
809 | * Attach a performance counter to a context | 808 | * Attach a performance event to a context |
810 | * | 809 | * |
811 | * First we add the counter to the list with the hardware enable bit | 810 | * First we add the event to the list with the hardware enable bit |
812 | * in counter->hw_config cleared. | 811 | * in event->hw_config cleared. |
813 | * | 812 | * |
814 | * If the counter is attached to a task which is on a CPU we use a smp | 813 | * If the event is attached to a task which is on a CPU we use a smp |
815 | * call to enable it in the task context. The task might have been | 814 | * call to enable it in the task context. The task might have been |
816 | * scheduled away, but we check this in the smp call again. | 815 | * scheduled away, but we check this in the smp call again. |
817 | * | 816 | * |
818 | * Must be called with ctx->mutex held. | 817 | * Must be called with ctx->mutex held. |
819 | */ | 818 | */ |
820 | static void | 819 | static void |
821 | perf_install_in_context(struct perf_counter_context *ctx, | 820 | perf_install_in_context(struct perf_event_context *ctx, |
822 | struct perf_counter *counter, | 821 | struct perf_event *event, |
823 | int cpu) | 822 | int cpu) |
824 | { | 823 | { |
825 | struct task_struct *task = ctx->task; | 824 | struct task_struct *task = ctx->task; |
826 | 825 | ||
827 | if (!task) { | 826 | if (!task) { |
828 | /* | 827 | /* |
829 | * Per cpu counters are installed via an smp call and | 828 | * Per cpu events are installed via an smp call and |
830 | * the install is always sucessful. | 829 | * the install is always sucessful. |
831 | */ | 830 | */ |
832 | smp_call_function_single(cpu, __perf_install_in_context, | 831 | smp_call_function_single(cpu, __perf_install_in_context, |
833 | counter, 1); | 832 | event, 1); |
834 | return; | 833 | return; |
835 | } | 834 | } |
836 | 835 | ||
837 | retry: | 836 | retry: |
838 | task_oncpu_function_call(task, __perf_install_in_context, | 837 | task_oncpu_function_call(task, __perf_install_in_context, |
839 | counter); | 838 | event); |
840 | 839 | ||
841 | spin_lock_irq(&ctx->lock); | 840 | spin_lock_irq(&ctx->lock); |
842 | /* | 841 | /* |
843 | * we need to retry the smp call. | 842 | * we need to retry the smp call. |
844 | */ | 843 | */ |
845 | if (ctx->is_active && list_empty(&counter->list_entry)) { | 844 | if (ctx->is_active && list_empty(&event->group_entry)) { |
846 | spin_unlock_irq(&ctx->lock); | 845 | spin_unlock_irq(&ctx->lock); |
847 | goto retry; | 846 | goto retry; |
848 | } | 847 | } |
849 | 848 | ||
850 | /* | 849 | /* |
851 | * The lock prevents that this context is scheduled in so we | 850 | * The lock prevents that this context is scheduled in so we |
852 | * can add the counter safely, if it the call above did not | 851 | * can add the event safely, if it the call above did not |
853 | * succeed. | 852 | * succeed. |
854 | */ | 853 | */ |
855 | if (list_empty(&counter->list_entry)) | 854 | if (list_empty(&event->group_entry)) |
856 | add_counter_to_ctx(counter, ctx); | 855 | add_event_to_ctx(event, ctx); |
857 | spin_unlock_irq(&ctx->lock); | 856 | spin_unlock_irq(&ctx->lock); |
858 | } | 857 | } |
859 | 858 | ||
860 | /* | 859 | /* |
861 | * Put a counter into inactive state and update time fields. | 860 | * Put a event into inactive state and update time fields. |
862 | * Enabling the leader of a group effectively enables all | 861 | * Enabling the leader of a group effectively enables all |
863 | * the group members that aren't explicitly disabled, so we | 862 | * the group members that aren't explicitly disabled, so we |
864 | * have to update their ->tstamp_enabled also. | 863 | * have to update their ->tstamp_enabled also. |
865 | * Note: this works for group members as well as group leaders | 864 | * Note: this works for group members as well as group leaders |
866 | * since the non-leader members' sibling_lists will be empty. | 865 | * since the non-leader members' sibling_lists will be empty. |
867 | */ | 866 | */ |
868 | static void __perf_counter_mark_enabled(struct perf_counter *counter, | 867 | static void __perf_event_mark_enabled(struct perf_event *event, |
869 | struct perf_counter_context *ctx) | 868 | struct perf_event_context *ctx) |
870 | { | 869 | { |
871 | struct perf_counter *sub; | 870 | struct perf_event *sub; |
872 | 871 | ||
873 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 872 | event->state = PERF_EVENT_STATE_INACTIVE; |
874 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | 873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; |
875 | list_for_each_entry(sub, &counter->sibling_list, list_entry) | 874 | list_for_each_entry(sub, &event->sibling_list, group_entry) |
876 | if (sub->state >= PERF_COUNTER_STATE_INACTIVE) | 875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) |
877 | sub->tstamp_enabled = | 876 | sub->tstamp_enabled = |
878 | ctx->time - sub->total_time_enabled; | 877 | ctx->time - sub->total_time_enabled; |
879 | } | 878 | } |
880 | 879 | ||
881 | /* | 880 | /* |
882 | * Cross CPU call to enable a performance counter | 881 | * Cross CPU call to enable a performance event |
883 | */ | 882 | */ |
884 | static void __perf_counter_enable(void *info) | 883 | static void __perf_event_enable(void *info) |
885 | { | 884 | { |
886 | struct perf_counter *counter = info; | 885 | struct perf_event *event = info; |
887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
888 | struct perf_counter_context *ctx = counter->ctx; | 887 | struct perf_event_context *ctx = event->ctx; |
889 | struct perf_counter *leader = counter->group_leader; | 888 | struct perf_event *leader = event->group_leader; |
890 | int err; | 889 | int err; |
891 | 890 | ||
892 | /* | 891 | /* |
893 | * If this is a per-task counter, need to check whether this | 892 | * If this is a per-task event, need to check whether this |
894 | * counter's task is the current task on this cpu. | 893 | * event's task is the current task on this cpu. |
895 | */ | 894 | */ |
896 | if (ctx->task && cpuctx->task_ctx != ctx) { | 895 | if (ctx->task && cpuctx->task_ctx != ctx) { |
897 | if (cpuctx->task_ctx || ctx->task != current) | 896 | if (cpuctx->task_ctx || ctx->task != current) |
@@ -903,40 +902,40 @@ static void __perf_counter_enable(void *info) | |||
903 | ctx->is_active = 1; | 902 | ctx->is_active = 1; |
904 | update_context_time(ctx); | 903 | update_context_time(ctx); |
905 | 904 | ||
906 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
907 | goto unlock; | 906 | goto unlock; |
908 | __perf_counter_mark_enabled(counter, ctx); | 907 | __perf_event_mark_enabled(event, ctx); |
909 | 908 | ||
910 | /* | 909 | /* |
911 | * If the counter is in a group and isn't the group leader, | 910 | * If the event is in a group and isn't the group leader, |
912 | * then don't put it on unless the group is on. | 911 | * then don't put it on unless the group is on. |
913 | */ | 912 | */ |
914 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | 913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) |
915 | goto unlock; | 914 | goto unlock; |
916 | 915 | ||
917 | if (!group_can_go_on(counter, cpuctx, 1)) { | 916 | if (!group_can_go_on(event, cpuctx, 1)) { |
918 | err = -EEXIST; | 917 | err = -EEXIST; |
919 | } else { | 918 | } else { |
920 | perf_disable(); | 919 | perf_disable(); |
921 | if (counter == leader) | 920 | if (event == leader) |
922 | err = group_sched_in(counter, cpuctx, ctx, | 921 | err = group_sched_in(event, cpuctx, ctx, |
923 | smp_processor_id()); | 922 | smp_processor_id()); |
924 | else | 923 | else |
925 | err = counter_sched_in(counter, cpuctx, ctx, | 924 | err = event_sched_in(event, cpuctx, ctx, |
926 | smp_processor_id()); | 925 | smp_processor_id()); |
927 | perf_enable(); | 926 | perf_enable(); |
928 | } | 927 | } |
929 | 928 | ||
930 | if (err) { | 929 | if (err) { |
931 | /* | 930 | /* |
932 | * If this counter can't go on and it's part of a | 931 | * If this event can't go on and it's part of a |
933 | * group, then the whole group has to come off. | 932 | * group, then the whole group has to come off. |
934 | */ | 933 | */ |
935 | if (leader != counter) | 934 | if (leader != event) |
936 | group_sched_out(leader, cpuctx, ctx); | 935 | group_sched_out(leader, cpuctx, ctx); |
937 | if (leader->attr.pinned) { | 936 | if (leader->attr.pinned) { |
938 | update_group_times(leader); | 937 | update_group_times(leader); |
939 | leader->state = PERF_COUNTER_STATE_ERROR; | 938 | leader->state = PERF_EVENT_STATE_ERROR; |
940 | } | 939 | } |
941 | } | 940 | } |
942 | 941 | ||
@@ -945,98 +944,98 @@ static void __perf_counter_enable(void *info) | |||
945 | } | 944 | } |
946 | 945 | ||
947 | /* | 946 | /* |
948 | * Enable a counter. | 947 | * Enable a event. |
949 | * | 948 | * |
950 | * If counter->ctx is a cloned context, callers must make sure that | 949 | * If event->ctx is a cloned context, callers must make sure that |
951 | * every task struct that counter->ctx->task could possibly point to | 950 | * every task struct that event->ctx->task could possibly point to |
952 | * remains valid. This condition is satisfied when called through | 951 | * remains valid. This condition is satisfied when called through |
953 | * perf_counter_for_each_child or perf_counter_for_each as described | 952 | * perf_event_for_each_child or perf_event_for_each as described |
954 | * for perf_counter_disable. | 953 | * for perf_event_disable. |
955 | */ | 954 | */ |
956 | static void perf_counter_enable(struct perf_counter *counter) | 955 | static void perf_event_enable(struct perf_event *event) |
957 | { | 956 | { |
958 | struct perf_counter_context *ctx = counter->ctx; | 957 | struct perf_event_context *ctx = event->ctx; |
959 | struct task_struct *task = ctx->task; | 958 | struct task_struct *task = ctx->task; |
960 | 959 | ||
961 | if (!task) { | 960 | if (!task) { |
962 | /* | 961 | /* |
963 | * Enable the counter on the cpu that it's on | 962 | * Enable the event on the cpu that it's on |
964 | */ | 963 | */ |
965 | smp_call_function_single(counter->cpu, __perf_counter_enable, | 964 | smp_call_function_single(event->cpu, __perf_event_enable, |
966 | counter, 1); | 965 | event, 1); |
967 | return; | 966 | return; |
968 | } | 967 | } |
969 | 968 | ||
970 | spin_lock_irq(&ctx->lock); | 969 | spin_lock_irq(&ctx->lock); |
971 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
972 | goto out; | 971 | goto out; |
973 | 972 | ||
974 | /* | 973 | /* |
975 | * If the counter is in error state, clear that first. | 974 | * If the event is in error state, clear that first. |
976 | * That way, if we see the counter in error state below, we | 975 | * That way, if we see the event in error state below, we |
977 | * know that it has gone back into error state, as distinct | 976 | * know that it has gone back into error state, as distinct |
978 | * from the task having been scheduled away before the | 977 | * from the task having been scheduled away before the |
979 | * cross-call arrived. | 978 | * cross-call arrived. |
980 | */ | 979 | */ |
981 | if (counter->state == PERF_COUNTER_STATE_ERROR) | 980 | if (event->state == PERF_EVENT_STATE_ERROR) |
982 | counter->state = PERF_COUNTER_STATE_OFF; | 981 | event->state = PERF_EVENT_STATE_OFF; |
983 | 982 | ||
984 | retry: | 983 | retry: |
985 | spin_unlock_irq(&ctx->lock); | 984 | spin_unlock_irq(&ctx->lock); |
986 | task_oncpu_function_call(task, __perf_counter_enable, counter); | 985 | task_oncpu_function_call(task, __perf_event_enable, event); |
987 | 986 | ||
988 | spin_lock_irq(&ctx->lock); | 987 | spin_lock_irq(&ctx->lock); |
989 | 988 | ||
990 | /* | 989 | /* |
991 | * If the context is active and the counter is still off, | 990 | * If the context is active and the event is still off, |
992 | * we need to retry the cross-call. | 991 | * we need to retry the cross-call. |
993 | */ | 992 | */ |
994 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | 993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) |
995 | goto retry; | 994 | goto retry; |
996 | 995 | ||
997 | /* | 996 | /* |
998 | * Since we have the lock this context can't be scheduled | 997 | * Since we have the lock this context can't be scheduled |
999 | * in, so we can change the state safely. | 998 | * in, so we can change the state safely. |
1000 | */ | 999 | */ |
1001 | if (counter->state == PERF_COUNTER_STATE_OFF) | 1000 | if (event->state == PERF_EVENT_STATE_OFF) |
1002 | __perf_counter_mark_enabled(counter, ctx); | 1001 | __perf_event_mark_enabled(event, ctx); |
1003 | 1002 | ||
1004 | out: | 1003 | out: |
1005 | spin_unlock_irq(&ctx->lock); | 1004 | spin_unlock_irq(&ctx->lock); |
1006 | } | 1005 | } |
1007 | 1006 | ||
1008 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | 1007 | static int perf_event_refresh(struct perf_event *event, int refresh) |
1009 | { | 1008 | { |
1010 | /* | 1009 | /* |
1011 | * not supported on inherited counters | 1010 | * not supported on inherited events |
1012 | */ | 1011 | */ |
1013 | if (counter->attr.inherit) | 1012 | if (event->attr.inherit) |
1014 | return -EINVAL; | 1013 | return -EINVAL; |
1015 | 1014 | ||
1016 | atomic_add(refresh, &counter->event_limit); | 1015 | atomic_add(refresh, &event->event_limit); |
1017 | perf_counter_enable(counter); | 1016 | perf_event_enable(event); |
1018 | 1017 | ||
1019 | return 0; | 1018 | return 0; |
1020 | } | 1019 | } |
1021 | 1020 | ||
1022 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | 1021 | void __perf_event_sched_out(struct perf_event_context *ctx, |
1023 | struct perf_cpu_context *cpuctx) | 1022 | struct perf_cpu_context *cpuctx) |
1024 | { | 1023 | { |
1025 | struct perf_counter *counter; | 1024 | struct perf_event *event; |
1026 | 1025 | ||
1027 | spin_lock(&ctx->lock); | 1026 | spin_lock(&ctx->lock); |
1028 | ctx->is_active = 0; | 1027 | ctx->is_active = 0; |
1029 | if (likely(!ctx->nr_counters)) | 1028 | if (likely(!ctx->nr_events)) |
1030 | goto out; | 1029 | goto out; |
1031 | update_context_time(ctx); | 1030 | update_context_time(ctx); |
1032 | 1031 | ||
1033 | perf_disable(); | 1032 | perf_disable(); |
1034 | if (ctx->nr_active) { | 1033 | if (ctx->nr_active) { |
1035 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1036 | if (counter != counter->group_leader) | 1035 | if (event != event->group_leader) |
1037 | counter_sched_out(counter, cpuctx, ctx); | 1036 | event_sched_out(event, cpuctx, ctx); |
1038 | else | 1037 | else |
1039 | group_sched_out(counter, cpuctx, ctx); | 1038 | group_sched_out(event, cpuctx, ctx); |
1040 | } | 1039 | } |
1041 | } | 1040 | } |
1042 | perf_enable(); | 1041 | perf_enable(); |
@@ -1047,46 +1046,46 @@ void __perf_counter_sched_out(struct perf_counter_context *ctx, | |||
1047 | /* | 1046 | /* |
1048 | * Test whether two contexts are equivalent, i.e. whether they | 1047 | * Test whether two contexts are equivalent, i.e. whether they |
1049 | * have both been cloned from the same version of the same context | 1048 | * have both been cloned from the same version of the same context |
1050 | * and they both have the same number of enabled counters. | 1049 | * and they both have the same number of enabled events. |
1051 | * If the number of enabled counters is the same, then the set | 1050 | * If the number of enabled events is the same, then the set |
1052 | * of enabled counters should be the same, because these are both | 1051 | * of enabled events should be the same, because these are both |
1053 | * inherited contexts, therefore we can't access individual counters | 1052 | * inherited contexts, therefore we can't access individual events |
1054 | * in them directly with an fd; we can only enable/disable all | 1053 | * in them directly with an fd; we can only enable/disable all |
1055 | * counters via prctl, or enable/disable all counters in a family | 1054 | * events via prctl, or enable/disable all events in a family |
1056 | * via ioctl, which will have the same effect on both contexts. | 1055 | * via ioctl, which will have the same effect on both contexts. |
1057 | */ | 1056 | */ |
1058 | static int context_equiv(struct perf_counter_context *ctx1, | 1057 | static int context_equiv(struct perf_event_context *ctx1, |
1059 | struct perf_counter_context *ctx2) | 1058 | struct perf_event_context *ctx2) |
1060 | { | 1059 | { |
1061 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx |
1062 | && ctx1->parent_gen == ctx2->parent_gen | 1061 | && ctx1->parent_gen == ctx2->parent_gen |
1063 | && !ctx1->pin_count && !ctx2->pin_count; | 1062 | && !ctx1->pin_count && !ctx2->pin_count; |
1064 | } | 1063 | } |
1065 | 1064 | ||
1066 | static void __perf_counter_read(void *counter); | 1065 | static void __perf_event_read(void *event); |
1067 | 1066 | ||
1068 | static void __perf_counter_sync_stat(struct perf_counter *counter, | 1067 | static void __perf_event_sync_stat(struct perf_event *event, |
1069 | struct perf_counter *next_counter) | 1068 | struct perf_event *next_event) |
1070 | { | 1069 | { |
1071 | u64 value; | 1070 | u64 value; |
1072 | 1071 | ||
1073 | if (!counter->attr.inherit_stat) | 1072 | if (!event->attr.inherit_stat) |
1074 | return; | 1073 | return; |
1075 | 1074 | ||
1076 | /* | 1075 | /* |
1077 | * Update the counter value, we cannot use perf_counter_read() | 1076 | * Update the event value, we cannot use perf_event_read() |
1078 | * because we're in the middle of a context switch and have IRQs | 1077 | * because we're in the middle of a context switch and have IRQs |
1079 | * disabled, which upsets smp_call_function_single(), however | 1078 | * disabled, which upsets smp_call_function_single(), however |
1080 | * we know the counter must be on the current CPU, therefore we | 1079 | * we know the event must be on the current CPU, therefore we |
1081 | * don't need to use it. | 1080 | * don't need to use it. |
1082 | */ | 1081 | */ |
1083 | switch (counter->state) { | 1082 | switch (event->state) { |
1084 | case PERF_COUNTER_STATE_ACTIVE: | 1083 | case PERF_EVENT_STATE_ACTIVE: |
1085 | __perf_counter_read(counter); | 1084 | __perf_event_read(event); |
1086 | break; | 1085 | break; |
1087 | 1086 | ||
1088 | case PERF_COUNTER_STATE_INACTIVE: | 1087 | case PERF_EVENT_STATE_INACTIVE: |
1089 | update_counter_times(counter); | 1088 | update_event_times(event); |
1090 | break; | 1089 | break; |
1091 | 1090 | ||
1092 | default: | 1091 | default: |
@@ -1094,73 +1093,73 @@ static void __perf_counter_sync_stat(struct perf_counter *counter, | |||
1094 | } | 1093 | } |
1095 | 1094 | ||
1096 | /* | 1095 | /* |
1097 | * In order to keep per-task stats reliable we need to flip the counter | 1096 | * In order to keep per-task stats reliable we need to flip the event |
1098 | * values when we flip the contexts. | 1097 | * values when we flip the contexts. |
1099 | */ | 1098 | */ |
1100 | value = atomic64_read(&next_counter->count); | 1099 | value = atomic64_read(&next_event->count); |
1101 | value = atomic64_xchg(&counter->count, value); | 1100 | value = atomic64_xchg(&event->count, value); |
1102 | atomic64_set(&next_counter->count, value); | 1101 | atomic64_set(&next_event->count, value); |
1103 | 1102 | ||
1104 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | 1103 | swap(event->total_time_enabled, next_event->total_time_enabled); |
1105 | swap(counter->total_time_running, next_counter->total_time_running); | 1104 | swap(event->total_time_running, next_event->total_time_running); |
1106 | 1105 | ||
1107 | /* | 1106 | /* |
1108 | * Since we swizzled the values, update the user visible data too. | 1107 | * Since we swizzled the values, update the user visible data too. |
1109 | */ | 1108 | */ |
1110 | perf_counter_update_userpage(counter); | 1109 | perf_event_update_userpage(event); |
1111 | perf_counter_update_userpage(next_counter); | 1110 | perf_event_update_userpage(next_event); |
1112 | } | 1111 | } |
1113 | 1112 | ||
1114 | #define list_next_entry(pos, member) \ | 1113 | #define list_next_entry(pos, member) \ |
1115 | list_entry(pos->member.next, typeof(*pos), member) | 1114 | list_entry(pos->member.next, typeof(*pos), member) |
1116 | 1115 | ||
1117 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | 1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, |
1118 | struct perf_counter_context *next_ctx) | 1117 | struct perf_event_context *next_ctx) |
1119 | { | 1118 | { |
1120 | struct perf_counter *counter, *next_counter; | 1119 | struct perf_event *event, *next_event; |
1121 | 1120 | ||
1122 | if (!ctx->nr_stat) | 1121 | if (!ctx->nr_stat) |
1123 | return; | 1122 | return; |
1124 | 1123 | ||
1125 | counter = list_first_entry(&ctx->event_list, | 1124 | event = list_first_entry(&ctx->event_list, |
1126 | struct perf_counter, event_entry); | 1125 | struct perf_event, event_entry); |
1127 | 1126 | ||
1128 | next_counter = list_first_entry(&next_ctx->event_list, | 1127 | next_event = list_first_entry(&next_ctx->event_list, |
1129 | struct perf_counter, event_entry); | 1128 | struct perf_event, event_entry); |
1130 | 1129 | ||
1131 | while (&counter->event_entry != &ctx->event_list && | 1130 | while (&event->event_entry != &ctx->event_list && |
1132 | &next_counter->event_entry != &next_ctx->event_list) { | 1131 | &next_event->event_entry != &next_ctx->event_list) { |
1133 | 1132 | ||
1134 | __perf_counter_sync_stat(counter, next_counter); | 1133 | __perf_event_sync_stat(event, next_event); |
1135 | 1134 | ||
1136 | counter = list_next_entry(counter, event_entry); | 1135 | event = list_next_entry(event, event_entry); |
1137 | next_counter = list_next_entry(next_counter, event_entry); | 1136 | next_event = list_next_entry(next_event, event_entry); |
1138 | } | 1137 | } |
1139 | } | 1138 | } |
1140 | 1139 | ||
1141 | /* | 1140 | /* |
1142 | * Called from scheduler to remove the counters of the current task, | 1141 | * Called from scheduler to remove the events of the current task, |
1143 | * with interrupts disabled. | 1142 | * with interrupts disabled. |
1144 | * | 1143 | * |
1145 | * We stop each counter and update the counter value in counter->count. | 1144 | * We stop each event and update the event value in event->count. |
1146 | * | 1145 | * |
1147 | * This does not protect us against NMI, but disable() | 1146 | * This does not protect us against NMI, but disable() |
1148 | * sets the disabled bit in the control field of counter _before_ | 1147 | * sets the disabled bit in the control field of event _before_ |
1149 | * accessing the counter control register. If a NMI hits, then it will | 1148 | * accessing the event control register. If a NMI hits, then it will |
1150 | * not restart the counter. | 1149 | * not restart the event. |
1151 | */ | 1150 | */ |
1152 | void perf_counter_task_sched_out(struct task_struct *task, | 1151 | void perf_event_task_sched_out(struct task_struct *task, |
1153 | struct task_struct *next, int cpu) | 1152 | struct task_struct *next, int cpu) |
1154 | { | 1153 | { |
1155 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
1156 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 1155 | struct perf_event_context *ctx = task->perf_event_ctxp; |
1157 | struct perf_counter_context *next_ctx; | 1156 | struct perf_event_context *next_ctx; |
1158 | struct perf_counter_context *parent; | 1157 | struct perf_event_context *parent; |
1159 | struct pt_regs *regs; | 1158 | struct pt_regs *regs; |
1160 | int do_switch = 1; | 1159 | int do_switch = 1; |
1161 | 1160 | ||
1162 | regs = task_pt_regs(task); | 1161 | regs = task_pt_regs(task); |
1163 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | 1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); |
1164 | 1163 | ||
1165 | if (likely(!ctx || !cpuctx->task_ctx)) | 1164 | if (likely(!ctx || !cpuctx->task_ctx)) |
1166 | return; | 1165 | return; |
@@ -1169,7 +1168,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1169 | 1168 | ||
1170 | rcu_read_lock(); | 1169 | rcu_read_lock(); |
1171 | parent = rcu_dereference(ctx->parent_ctx); | 1170 | parent = rcu_dereference(ctx->parent_ctx); |
1172 | next_ctx = next->perf_counter_ctxp; | 1171 | next_ctx = next->perf_event_ctxp; |
1173 | if (parent && next_ctx && | 1172 | if (parent && next_ctx && |
1174 | rcu_dereference(next_ctx->parent_ctx) == parent) { | 1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { |
1175 | /* | 1174 | /* |
@@ -1186,15 +1185,15 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1186 | if (context_equiv(ctx, next_ctx)) { | 1185 | if (context_equiv(ctx, next_ctx)) { |
1187 | /* | 1186 | /* |
1188 | * XXX do we need a memory barrier of sorts | 1187 | * XXX do we need a memory barrier of sorts |
1189 | * wrt to rcu_dereference() of perf_counter_ctxp | 1188 | * wrt to rcu_dereference() of perf_event_ctxp |
1190 | */ | 1189 | */ |
1191 | task->perf_counter_ctxp = next_ctx; | 1190 | task->perf_event_ctxp = next_ctx; |
1192 | next->perf_counter_ctxp = ctx; | 1191 | next->perf_event_ctxp = ctx; |
1193 | ctx->task = next; | 1192 | ctx->task = next; |
1194 | next_ctx->task = task; | 1193 | next_ctx->task = task; |
1195 | do_switch = 0; | 1194 | do_switch = 0; |
1196 | 1195 | ||
1197 | perf_counter_sync_stat(ctx, next_ctx); | 1196 | perf_event_sync_stat(ctx, next_ctx); |
1198 | } | 1197 | } |
1199 | spin_unlock(&next_ctx->lock); | 1198 | spin_unlock(&next_ctx->lock); |
1200 | spin_unlock(&ctx->lock); | 1199 | spin_unlock(&ctx->lock); |
@@ -1202,7 +1201,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1202 | rcu_read_unlock(); | 1201 | rcu_read_unlock(); |
1203 | 1202 | ||
1204 | if (do_switch) { | 1203 | if (do_switch) { |
1205 | __perf_counter_sched_out(ctx, cpuctx); | 1204 | __perf_event_sched_out(ctx, cpuctx); |
1206 | cpuctx->task_ctx = NULL; | 1205 | cpuctx->task_ctx = NULL; |
1207 | } | 1206 | } |
1208 | } | 1207 | } |
@@ -1210,7 +1209,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1210 | /* | 1209 | /* |
1211 | * Called with IRQs disabled | 1210 | * Called with IRQs disabled |
1212 | */ | 1211 | */ |
1213 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | 1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) |
1214 | { | 1213 | { |
1215 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
1216 | 1215 | ||
@@ -1220,28 +1219,28 @@ static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | |||
1220 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
1221 | return; | 1220 | return; |
1222 | 1221 | ||
1223 | __perf_counter_sched_out(ctx, cpuctx); | 1222 | __perf_event_sched_out(ctx, cpuctx); |
1224 | cpuctx->task_ctx = NULL; | 1223 | cpuctx->task_ctx = NULL; |
1225 | } | 1224 | } |
1226 | 1225 | ||
1227 | /* | 1226 | /* |
1228 | * Called with IRQs disabled | 1227 | * Called with IRQs disabled |
1229 | */ | 1228 | */ |
1230 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | 1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) |
1231 | { | 1230 | { |
1232 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | 1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); |
1233 | } | 1232 | } |
1234 | 1233 | ||
1235 | static void | 1234 | static void |
1236 | __perf_counter_sched_in(struct perf_counter_context *ctx, | 1235 | __perf_event_sched_in(struct perf_event_context *ctx, |
1237 | struct perf_cpu_context *cpuctx, int cpu) | 1236 | struct perf_cpu_context *cpuctx, int cpu) |
1238 | { | 1237 | { |
1239 | struct perf_counter *counter; | 1238 | struct perf_event *event; |
1240 | int can_add_hw = 1; | 1239 | int can_add_hw = 1; |
1241 | 1240 | ||
1242 | spin_lock(&ctx->lock); | 1241 | spin_lock(&ctx->lock); |
1243 | ctx->is_active = 1; | 1242 | ctx->is_active = 1; |
1244 | if (likely(!ctx->nr_counters)) | 1243 | if (likely(!ctx->nr_events)) |
1245 | goto out; | 1244 | goto out; |
1246 | 1245 | ||
1247 | ctx->timestamp = perf_clock(); | 1246 | ctx->timestamp = perf_clock(); |
@@ -1252,52 +1251,52 @@ __perf_counter_sched_in(struct perf_counter_context *ctx, | |||
1252 | * First go through the list and put on any pinned groups | 1251 | * First go through the list and put on any pinned groups |
1253 | * in order to give them the best chance of going on. | 1252 | * in order to give them the best chance of going on. |
1254 | */ | 1253 | */ |
1255 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1256 | if (counter->state <= PERF_COUNTER_STATE_OFF || | 1255 | if (event->state <= PERF_EVENT_STATE_OFF || |
1257 | !counter->attr.pinned) | 1256 | !event->attr.pinned) |
1258 | continue; | 1257 | continue; |
1259 | if (counter->cpu != -1 && counter->cpu != cpu) | 1258 | if (event->cpu != -1 && event->cpu != cpu) |
1260 | continue; | 1259 | continue; |
1261 | 1260 | ||
1262 | if (counter != counter->group_leader) | 1261 | if (event != event->group_leader) |
1263 | counter_sched_in(counter, cpuctx, ctx, cpu); | 1262 | event_sched_in(event, cpuctx, ctx, cpu); |
1264 | else { | 1263 | else { |
1265 | if (group_can_go_on(counter, cpuctx, 1)) | 1264 | if (group_can_go_on(event, cpuctx, 1)) |
1266 | group_sched_in(counter, cpuctx, ctx, cpu); | 1265 | group_sched_in(event, cpuctx, ctx, cpu); |
1267 | } | 1266 | } |
1268 | 1267 | ||
1269 | /* | 1268 | /* |
1270 | * If this pinned group hasn't been scheduled, | 1269 | * If this pinned group hasn't been scheduled, |
1271 | * put it in error state. | 1270 | * put it in error state. |
1272 | */ | 1271 | */ |
1273 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { |
1274 | update_group_times(counter); | 1273 | update_group_times(event); |
1275 | counter->state = PERF_COUNTER_STATE_ERROR; | 1274 | event->state = PERF_EVENT_STATE_ERROR; |
1276 | } | 1275 | } |
1277 | } | 1276 | } |
1278 | 1277 | ||
1279 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1280 | /* | 1279 | /* |
1281 | * Ignore counters in OFF or ERROR state, and | 1280 | * Ignore events in OFF or ERROR state, and |
1282 | * ignore pinned counters since we did them already. | 1281 | * ignore pinned events since we did them already. |
1283 | */ | 1282 | */ |
1284 | if (counter->state <= PERF_COUNTER_STATE_OFF || | 1283 | if (event->state <= PERF_EVENT_STATE_OFF || |
1285 | counter->attr.pinned) | 1284 | event->attr.pinned) |
1286 | continue; | 1285 | continue; |
1287 | 1286 | ||
1288 | /* | 1287 | /* |
1289 | * Listen to the 'cpu' scheduling filter constraint | 1288 | * Listen to the 'cpu' scheduling filter constraint |
1290 | * of counters: | 1289 | * of events: |
1291 | */ | 1290 | */ |
1292 | if (counter->cpu != -1 && counter->cpu != cpu) | 1291 | if (event->cpu != -1 && event->cpu != cpu) |
1293 | continue; | 1292 | continue; |
1294 | 1293 | ||
1295 | if (counter != counter->group_leader) { | 1294 | if (event != event->group_leader) { |
1296 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | 1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) |
1297 | can_add_hw = 0; | 1296 | can_add_hw = 0; |
1298 | } else { | 1297 | } else { |
1299 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | 1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { |
1300 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | 1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) |
1301 | can_add_hw = 0; | 1300 | can_add_hw = 0; |
1302 | } | 1301 | } |
1303 | } | 1302 | } |
@@ -1308,48 +1307,48 @@ __perf_counter_sched_in(struct perf_counter_context *ctx, | |||
1308 | } | 1307 | } |
1309 | 1308 | ||
1310 | /* | 1309 | /* |
1311 | * Called from scheduler to add the counters of the current task | 1310 | * Called from scheduler to add the events of the current task |
1312 | * with interrupts disabled. | 1311 | * with interrupts disabled. |
1313 | * | 1312 | * |
1314 | * We restore the counter value and then enable it. | 1313 | * We restore the event value and then enable it. |
1315 | * | 1314 | * |
1316 | * This does not protect us against NMI, but enable() | 1315 | * This does not protect us against NMI, but enable() |
1317 | * sets the enabled bit in the control field of counter _before_ | 1316 | * sets the enabled bit in the control field of event _before_ |
1318 | * accessing the counter control register. If a NMI hits, then it will | 1317 | * accessing the event control register. If a NMI hits, then it will |
1319 | * keep the counter running. | 1318 | * keep the event running. |
1320 | */ | 1319 | */ |
1321 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | 1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) |
1322 | { | 1321 | { |
1323 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
1324 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 1323 | struct perf_event_context *ctx = task->perf_event_ctxp; |
1325 | 1324 | ||
1326 | if (likely(!ctx)) | 1325 | if (likely(!ctx)) |
1327 | return; | 1326 | return; |
1328 | if (cpuctx->task_ctx == ctx) | 1327 | if (cpuctx->task_ctx == ctx) |
1329 | return; | 1328 | return; |
1330 | __perf_counter_sched_in(ctx, cpuctx, cpu); | 1329 | __perf_event_sched_in(ctx, cpuctx, cpu); |
1331 | cpuctx->task_ctx = ctx; | 1330 | cpuctx->task_ctx = ctx; |
1332 | } | 1331 | } |
1333 | 1332 | ||
1334 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | 1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) |
1335 | { | 1334 | { |
1336 | struct perf_counter_context *ctx = &cpuctx->ctx; | 1335 | struct perf_event_context *ctx = &cpuctx->ctx; |
1337 | 1336 | ||
1338 | __perf_counter_sched_in(ctx, cpuctx, cpu); | 1337 | __perf_event_sched_in(ctx, cpuctx, cpu); |
1339 | } | 1338 | } |
1340 | 1339 | ||
1341 | #define MAX_INTERRUPTS (~0ULL) | 1340 | #define MAX_INTERRUPTS (~0ULL) |
1342 | 1341 | ||
1343 | static void perf_log_throttle(struct perf_counter *counter, int enable); | 1342 | static void perf_log_throttle(struct perf_event *event, int enable); |
1344 | 1343 | ||
1345 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | 1344 | static void perf_adjust_period(struct perf_event *event, u64 events) |
1346 | { | 1345 | { |
1347 | struct hw_perf_counter *hwc = &counter->hw; | 1346 | struct hw_perf_event *hwc = &event->hw; |
1348 | u64 period, sample_period; | 1347 | u64 period, sample_period; |
1349 | s64 delta; | 1348 | s64 delta; |
1350 | 1349 | ||
1351 | events *= hwc->sample_period; | 1350 | events *= hwc->sample_period; |
1352 | period = div64_u64(events, counter->attr.sample_freq); | 1351 | period = div64_u64(events, event->attr.sample_freq); |
1353 | 1352 | ||
1354 | delta = (s64)(period - hwc->sample_period); | 1353 | delta = (s64)(period - hwc->sample_period); |
1355 | delta = (delta + 7) / 8; /* low pass filter */ | 1354 | delta = (delta + 7) / 8; /* low pass filter */ |
@@ -1362,39 +1361,39 @@ static void perf_adjust_period(struct perf_counter *counter, u64 events) | |||
1362 | hwc->sample_period = sample_period; | 1361 | hwc->sample_period = sample_period; |
1363 | } | 1362 | } |
1364 | 1363 | ||
1365 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | 1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) |
1366 | { | 1365 | { |
1367 | struct perf_counter *counter; | 1366 | struct perf_event *event; |
1368 | struct hw_perf_counter *hwc; | 1367 | struct hw_perf_event *hwc; |
1369 | u64 interrupts, freq; | 1368 | u64 interrupts, freq; |
1370 | 1369 | ||
1371 | spin_lock(&ctx->lock); | 1370 | spin_lock(&ctx->lock); |
1372 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1373 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
1374 | continue; | 1373 | continue; |
1375 | 1374 | ||
1376 | hwc = &counter->hw; | 1375 | hwc = &event->hw; |
1377 | 1376 | ||
1378 | interrupts = hwc->interrupts; | 1377 | interrupts = hwc->interrupts; |
1379 | hwc->interrupts = 0; | 1378 | hwc->interrupts = 0; |
1380 | 1379 | ||
1381 | /* | 1380 | /* |
1382 | * unthrottle counters on the tick | 1381 | * unthrottle events on the tick |
1383 | */ | 1382 | */ |
1384 | if (interrupts == MAX_INTERRUPTS) { | 1383 | if (interrupts == MAX_INTERRUPTS) { |
1385 | perf_log_throttle(counter, 1); | 1384 | perf_log_throttle(event, 1); |
1386 | counter->pmu->unthrottle(counter); | 1385 | event->pmu->unthrottle(event); |
1387 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | 1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; |
1388 | } | 1387 | } |
1389 | 1388 | ||
1390 | if (!counter->attr.freq || !counter->attr.sample_freq) | 1389 | if (!event->attr.freq || !event->attr.sample_freq) |
1391 | continue; | 1390 | continue; |
1392 | 1391 | ||
1393 | /* | 1392 | /* |
1394 | * if the specified freq < HZ then we need to skip ticks | 1393 | * if the specified freq < HZ then we need to skip ticks |
1395 | */ | 1394 | */ |
1396 | if (counter->attr.sample_freq < HZ) { | 1395 | if (event->attr.sample_freq < HZ) { |
1397 | freq = counter->attr.sample_freq; | 1396 | freq = event->attr.sample_freq; |
1398 | 1397 | ||
1399 | hwc->freq_count += freq; | 1398 | hwc->freq_count += freq; |
1400 | hwc->freq_interrupts += interrupts; | 1399 | hwc->freq_interrupts += interrupts; |
@@ -1408,7 +1407,7 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1408 | } else | 1407 | } else |
1409 | freq = HZ; | 1408 | freq = HZ; |
1410 | 1409 | ||
1411 | perf_adjust_period(counter, freq * interrupts); | 1410 | perf_adjust_period(event, freq * interrupts); |
1412 | 1411 | ||
1413 | /* | 1412 | /* |
1414 | * In order to avoid being stalled by an (accidental) huge | 1413 | * In order to avoid being stalled by an (accidental) huge |
@@ -1417,9 +1416,9 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1417 | */ | 1416 | */ |
1418 | if (!interrupts) { | 1417 | if (!interrupts) { |
1419 | perf_disable(); | 1418 | perf_disable(); |
1420 | counter->pmu->disable(counter); | 1419 | event->pmu->disable(event); |
1421 | atomic64_set(&hwc->period_left, 0); | 1420 | atomic64_set(&hwc->period_left, 0); |
1422 | counter->pmu->enable(counter); | 1421 | event->pmu->enable(event); |
1423 | perf_enable(); | 1422 | perf_enable(); |
1424 | } | 1423 | } |
1425 | } | 1424 | } |
@@ -1427,22 +1426,22 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1427 | } | 1426 | } |
1428 | 1427 | ||
1429 | /* | 1428 | /* |
1430 | * Round-robin a context's counters: | 1429 | * Round-robin a context's events: |
1431 | */ | 1430 | */ |
1432 | static void rotate_ctx(struct perf_counter_context *ctx) | 1431 | static void rotate_ctx(struct perf_event_context *ctx) |
1433 | { | 1432 | { |
1434 | struct perf_counter *counter; | 1433 | struct perf_event *event; |
1435 | 1434 | ||
1436 | if (!ctx->nr_counters) | 1435 | if (!ctx->nr_events) |
1437 | return; | 1436 | return; |
1438 | 1437 | ||
1439 | spin_lock(&ctx->lock); | 1438 | spin_lock(&ctx->lock); |
1440 | /* | 1439 | /* |
1441 | * Rotate the first entry last (works just fine for group counters too): | 1440 | * Rotate the first entry last (works just fine for group events too): |
1442 | */ | 1441 | */ |
1443 | perf_disable(); | 1442 | perf_disable(); |
1444 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1445 | list_move_tail(&counter->list_entry, &ctx->counter_list); | 1444 | list_move_tail(&event->group_entry, &ctx->group_list); |
1446 | break; | 1445 | break; |
1447 | } | 1446 | } |
1448 | perf_enable(); | 1447 | perf_enable(); |
@@ -1450,93 +1449,93 @@ static void rotate_ctx(struct perf_counter_context *ctx) | |||
1450 | spin_unlock(&ctx->lock); | 1449 | spin_unlock(&ctx->lock); |
1451 | } | 1450 | } |
1452 | 1451 | ||
1453 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | 1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) |
1454 | { | 1453 | { |
1455 | struct perf_cpu_context *cpuctx; | 1454 | struct perf_cpu_context *cpuctx; |
1456 | struct perf_counter_context *ctx; | 1455 | struct perf_event_context *ctx; |
1457 | 1456 | ||
1458 | if (!atomic_read(&nr_counters)) | 1457 | if (!atomic_read(&nr_events)) |
1459 | return; | 1458 | return; |
1460 | 1459 | ||
1461 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
1462 | ctx = curr->perf_counter_ctxp; | 1461 | ctx = curr->perf_event_ctxp; |
1463 | 1462 | ||
1464 | perf_ctx_adjust_freq(&cpuctx->ctx); | 1463 | perf_ctx_adjust_freq(&cpuctx->ctx); |
1465 | if (ctx) | 1464 | if (ctx) |
1466 | perf_ctx_adjust_freq(ctx); | 1465 | perf_ctx_adjust_freq(ctx); |
1467 | 1466 | ||
1468 | perf_counter_cpu_sched_out(cpuctx); | 1467 | perf_event_cpu_sched_out(cpuctx); |
1469 | if (ctx) | 1468 | if (ctx) |
1470 | __perf_counter_task_sched_out(ctx); | 1469 | __perf_event_task_sched_out(ctx); |
1471 | 1470 | ||
1472 | rotate_ctx(&cpuctx->ctx); | 1471 | rotate_ctx(&cpuctx->ctx); |
1473 | if (ctx) | 1472 | if (ctx) |
1474 | rotate_ctx(ctx); | 1473 | rotate_ctx(ctx); |
1475 | 1474 | ||
1476 | perf_counter_cpu_sched_in(cpuctx, cpu); | 1475 | perf_event_cpu_sched_in(cpuctx, cpu); |
1477 | if (ctx) | 1476 | if (ctx) |
1478 | perf_counter_task_sched_in(curr, cpu); | 1477 | perf_event_task_sched_in(curr, cpu); |
1479 | } | 1478 | } |
1480 | 1479 | ||
1481 | /* | 1480 | /* |
1482 | * Enable all of a task's counters that have been marked enable-on-exec. | 1481 | * Enable all of a task's events that have been marked enable-on-exec. |
1483 | * This expects task == current. | 1482 | * This expects task == current. |
1484 | */ | 1483 | */ |
1485 | static void perf_counter_enable_on_exec(struct task_struct *task) | 1484 | static void perf_event_enable_on_exec(struct task_struct *task) |
1486 | { | 1485 | { |
1487 | struct perf_counter_context *ctx; | 1486 | struct perf_event_context *ctx; |
1488 | struct perf_counter *counter; | 1487 | struct perf_event *event; |
1489 | unsigned long flags; | 1488 | unsigned long flags; |
1490 | int enabled = 0; | 1489 | int enabled = 0; |
1491 | 1490 | ||
1492 | local_irq_save(flags); | 1491 | local_irq_save(flags); |
1493 | ctx = task->perf_counter_ctxp; | 1492 | ctx = task->perf_event_ctxp; |
1494 | if (!ctx || !ctx->nr_counters) | 1493 | if (!ctx || !ctx->nr_events) |
1495 | goto out; | 1494 | goto out; |
1496 | 1495 | ||
1497 | __perf_counter_task_sched_out(ctx); | 1496 | __perf_event_task_sched_out(ctx); |
1498 | 1497 | ||
1499 | spin_lock(&ctx->lock); | 1498 | spin_lock(&ctx->lock); |
1500 | 1499 | ||
1501 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1502 | if (!counter->attr.enable_on_exec) | 1501 | if (!event->attr.enable_on_exec) |
1503 | continue; | 1502 | continue; |
1504 | counter->attr.enable_on_exec = 0; | 1503 | event->attr.enable_on_exec = 0; |
1505 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
1506 | continue; | 1505 | continue; |
1507 | __perf_counter_mark_enabled(counter, ctx); | 1506 | __perf_event_mark_enabled(event, ctx); |
1508 | enabled = 1; | 1507 | enabled = 1; |
1509 | } | 1508 | } |
1510 | 1509 | ||
1511 | /* | 1510 | /* |
1512 | * Unclone this context if we enabled any counter. | 1511 | * Unclone this context if we enabled any event. |
1513 | */ | 1512 | */ |
1514 | if (enabled) | 1513 | if (enabled) |
1515 | unclone_ctx(ctx); | 1514 | unclone_ctx(ctx); |
1516 | 1515 | ||
1517 | spin_unlock(&ctx->lock); | 1516 | spin_unlock(&ctx->lock); |
1518 | 1517 | ||
1519 | perf_counter_task_sched_in(task, smp_processor_id()); | 1518 | perf_event_task_sched_in(task, smp_processor_id()); |
1520 | out: | 1519 | out: |
1521 | local_irq_restore(flags); | 1520 | local_irq_restore(flags); |
1522 | } | 1521 | } |
1523 | 1522 | ||
1524 | /* | 1523 | /* |
1525 | * Cross CPU call to read the hardware counter | 1524 | * Cross CPU call to read the hardware event |
1526 | */ | 1525 | */ |
1527 | static void __perf_counter_read(void *info) | 1526 | static void __perf_event_read(void *info) |
1528 | { | 1527 | { |
1529 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
1530 | struct perf_counter *counter = info; | 1529 | struct perf_event *event = info; |
1531 | struct perf_counter_context *ctx = counter->ctx; | 1530 | struct perf_event_context *ctx = event->ctx; |
1532 | unsigned long flags; | 1531 | unsigned long flags; |
1533 | 1532 | ||
1534 | /* | 1533 | /* |
1535 | * If this is a task context, we need to check whether it is | 1534 | * If this is a task context, we need to check whether it is |
1536 | * the current task context of this cpu. If not it has been | 1535 | * the current task context of this cpu. If not it has been |
1537 | * scheduled out before the smp call arrived. In that case | 1536 | * scheduled out before the smp call arrived. In that case |
1538 | * counter->count would have been updated to a recent sample | 1537 | * event->count would have been updated to a recent sample |
1539 | * when the counter was scheduled out. | 1538 | * when the event was scheduled out. |
1540 | */ | 1539 | */ |
1541 | if (ctx->task && cpuctx->task_ctx != ctx) | 1540 | if (ctx->task && cpuctx->task_ctx != ctx) |
1542 | return; | 1541 | return; |
@@ -1544,56 +1543,56 @@ static void __perf_counter_read(void *info) | |||
1544 | local_irq_save(flags); | 1543 | local_irq_save(flags); |
1545 | if (ctx->is_active) | 1544 | if (ctx->is_active) |
1546 | update_context_time(ctx); | 1545 | update_context_time(ctx); |
1547 | counter->pmu->read(counter); | 1546 | event->pmu->read(event); |
1548 | update_counter_times(counter); | 1547 | update_event_times(event); |
1549 | local_irq_restore(flags); | 1548 | local_irq_restore(flags); |
1550 | } | 1549 | } |
1551 | 1550 | ||
1552 | static u64 perf_counter_read(struct perf_counter *counter) | 1551 | static u64 perf_event_read(struct perf_event *event) |
1553 | { | 1552 | { |
1554 | /* | 1553 | /* |
1555 | * If counter is enabled and currently active on a CPU, update the | 1554 | * If event is enabled and currently active on a CPU, update the |
1556 | * value in the counter structure: | 1555 | * value in the event structure: |
1557 | */ | 1556 | */ |
1558 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { |
1559 | smp_call_function_single(counter->oncpu, | 1558 | smp_call_function_single(event->oncpu, |
1560 | __perf_counter_read, counter, 1); | 1559 | __perf_event_read, event, 1); |
1561 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { |
1562 | update_counter_times(counter); | 1561 | update_event_times(event); |
1563 | } | 1562 | } |
1564 | 1563 | ||
1565 | return atomic64_read(&counter->count); | 1564 | return atomic64_read(&event->count); |
1566 | } | 1565 | } |
1567 | 1566 | ||
1568 | /* | 1567 | /* |
1569 | * Initialize the perf_counter context in a task_struct: | 1568 | * Initialize the perf_event context in a task_struct: |
1570 | */ | 1569 | */ |
1571 | static void | 1570 | static void |
1572 | __perf_counter_init_context(struct perf_counter_context *ctx, | 1571 | __perf_event_init_context(struct perf_event_context *ctx, |
1573 | struct task_struct *task) | 1572 | struct task_struct *task) |
1574 | { | 1573 | { |
1575 | memset(ctx, 0, sizeof(*ctx)); | 1574 | memset(ctx, 0, sizeof(*ctx)); |
1576 | spin_lock_init(&ctx->lock); | 1575 | spin_lock_init(&ctx->lock); |
1577 | mutex_init(&ctx->mutex); | 1576 | mutex_init(&ctx->mutex); |
1578 | INIT_LIST_HEAD(&ctx->counter_list); | 1577 | INIT_LIST_HEAD(&ctx->group_list); |
1579 | INIT_LIST_HEAD(&ctx->event_list); | 1578 | INIT_LIST_HEAD(&ctx->event_list); |
1580 | atomic_set(&ctx->refcount, 1); | 1579 | atomic_set(&ctx->refcount, 1); |
1581 | ctx->task = task; | 1580 | ctx->task = task; |
1582 | } | 1581 | } |
1583 | 1582 | ||
1584 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | 1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) |
1585 | { | 1584 | { |
1586 | struct perf_counter_context *ctx; | 1585 | struct perf_event_context *ctx; |
1587 | struct perf_cpu_context *cpuctx; | 1586 | struct perf_cpu_context *cpuctx; |
1588 | struct task_struct *task; | 1587 | struct task_struct *task; |
1589 | unsigned long flags; | 1588 | unsigned long flags; |
1590 | int err; | 1589 | int err; |
1591 | 1590 | ||
1592 | /* | 1591 | /* |
1593 | * If cpu is not a wildcard then this is a percpu counter: | 1592 | * If cpu is not a wildcard then this is a percpu event: |
1594 | */ | 1593 | */ |
1595 | if (cpu != -1) { | 1594 | if (cpu != -1) { |
1596 | /* Must be root to operate on a CPU counter: */ | 1595 | /* Must be root to operate on a CPU event: */ |
1597 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
1598 | return ERR_PTR(-EACCES); | 1597 | return ERR_PTR(-EACCES); |
1599 | 1598 | ||
@@ -1601,7 +1600,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1601 | return ERR_PTR(-EINVAL); | 1600 | return ERR_PTR(-EINVAL); |
1602 | 1601 | ||
1603 | /* | 1602 | /* |
1604 | * We could be clever and allow to attach a counter to an | 1603 | * We could be clever and allow to attach a event to an |
1605 | * offline CPU and activate it when the CPU comes up, but | 1604 | * offline CPU and activate it when the CPU comes up, but |
1606 | * that's for later. | 1605 | * that's for later. |
1607 | */ | 1606 | */ |
@@ -1628,7 +1627,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1628 | return ERR_PTR(-ESRCH); | 1627 | return ERR_PTR(-ESRCH); |
1629 | 1628 | ||
1630 | /* | 1629 | /* |
1631 | * Can't attach counters to a dying task. | 1630 | * Can't attach events to a dying task. |
1632 | */ | 1631 | */ |
1633 | err = -ESRCH; | 1632 | err = -ESRCH; |
1634 | if (task->flags & PF_EXITING) | 1633 | if (task->flags & PF_EXITING) |
@@ -1647,13 +1646,13 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1647 | } | 1646 | } |
1648 | 1647 | ||
1649 | if (!ctx) { | 1648 | if (!ctx) { |
1650 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
1651 | err = -ENOMEM; | 1650 | err = -ENOMEM; |
1652 | if (!ctx) | 1651 | if (!ctx) |
1653 | goto errout; | 1652 | goto errout; |
1654 | __perf_counter_init_context(ctx, task); | 1653 | __perf_event_init_context(ctx, task); |
1655 | get_ctx(ctx); | 1654 | get_ctx(ctx); |
1656 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | 1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { |
1657 | /* | 1656 | /* |
1658 | * We raced with some other task; use | 1657 | * We raced with some other task; use |
1659 | * the context they set. | 1658 | * the context they set. |
@@ -1672,42 +1671,42 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1672 | return ERR_PTR(err); | 1671 | return ERR_PTR(err); |
1673 | } | 1672 | } |
1674 | 1673 | ||
1675 | static void free_counter_rcu(struct rcu_head *head) | 1674 | static void free_event_rcu(struct rcu_head *head) |
1676 | { | 1675 | { |
1677 | struct perf_counter *counter; | 1676 | struct perf_event *event; |
1678 | 1677 | ||
1679 | counter = container_of(head, struct perf_counter, rcu_head); | 1678 | event = container_of(head, struct perf_event, rcu_head); |
1680 | if (counter->ns) | 1679 | if (event->ns) |
1681 | put_pid_ns(counter->ns); | 1680 | put_pid_ns(event->ns); |
1682 | kfree(counter); | 1681 | kfree(event); |
1683 | } | 1682 | } |
1684 | 1683 | ||
1685 | static void perf_pending_sync(struct perf_counter *counter); | 1684 | static void perf_pending_sync(struct perf_event *event); |
1686 | 1685 | ||
1687 | static void free_counter(struct perf_counter *counter) | 1686 | static void free_event(struct perf_event *event) |
1688 | { | 1687 | { |
1689 | perf_pending_sync(counter); | 1688 | perf_pending_sync(event); |
1690 | 1689 | ||
1691 | if (!counter->parent) { | 1690 | if (!event->parent) { |
1692 | atomic_dec(&nr_counters); | 1691 | atomic_dec(&nr_events); |
1693 | if (counter->attr.mmap) | 1692 | if (event->attr.mmap) |
1694 | atomic_dec(&nr_mmap_counters); | 1693 | atomic_dec(&nr_mmap_events); |
1695 | if (counter->attr.comm) | 1694 | if (event->attr.comm) |
1696 | atomic_dec(&nr_comm_counters); | 1695 | atomic_dec(&nr_comm_events); |
1697 | if (counter->attr.task) | 1696 | if (event->attr.task) |
1698 | atomic_dec(&nr_task_counters); | 1697 | atomic_dec(&nr_task_events); |
1699 | } | 1698 | } |
1700 | 1699 | ||
1701 | if (counter->output) { | 1700 | if (event->output) { |
1702 | fput(counter->output->filp); | 1701 | fput(event->output->filp); |
1703 | counter->output = NULL; | 1702 | event->output = NULL; |
1704 | } | 1703 | } |
1705 | 1704 | ||
1706 | if (counter->destroy) | 1705 | if (event->destroy) |
1707 | counter->destroy(counter); | 1706 | event->destroy(event); |
1708 | 1707 | ||
1709 | put_ctx(counter->ctx); | 1708 | put_ctx(event->ctx); |
1710 | call_rcu(&counter->rcu_head, free_counter_rcu); | 1709 | call_rcu(&event->rcu_head, free_event_rcu); |
1711 | } | 1710 | } |
1712 | 1711 | ||
1713 | /* | 1712 | /* |
@@ -1715,43 +1714,43 @@ static void free_counter(struct perf_counter *counter) | |||
1715 | */ | 1714 | */ |
1716 | static int perf_release(struct inode *inode, struct file *file) | 1715 | static int perf_release(struct inode *inode, struct file *file) |
1717 | { | 1716 | { |
1718 | struct perf_counter *counter = file->private_data; | 1717 | struct perf_event *event = file->private_data; |
1719 | struct perf_counter_context *ctx = counter->ctx; | 1718 | struct perf_event_context *ctx = event->ctx; |
1720 | 1719 | ||
1721 | file->private_data = NULL; | 1720 | file->private_data = NULL; |
1722 | 1721 | ||
1723 | WARN_ON_ONCE(ctx->parent_ctx); | 1722 | WARN_ON_ONCE(ctx->parent_ctx); |
1724 | mutex_lock(&ctx->mutex); | 1723 | mutex_lock(&ctx->mutex); |
1725 | perf_counter_remove_from_context(counter); | 1724 | perf_event_remove_from_context(event); |
1726 | mutex_unlock(&ctx->mutex); | 1725 | mutex_unlock(&ctx->mutex); |
1727 | 1726 | ||
1728 | mutex_lock(&counter->owner->perf_counter_mutex); | 1727 | mutex_lock(&event->owner->perf_event_mutex); |
1729 | list_del_init(&counter->owner_entry); | 1728 | list_del_init(&event->owner_entry); |
1730 | mutex_unlock(&counter->owner->perf_counter_mutex); | 1729 | mutex_unlock(&event->owner->perf_event_mutex); |
1731 | put_task_struct(counter->owner); | 1730 | put_task_struct(event->owner); |
1732 | 1731 | ||
1733 | free_counter(counter); | 1732 | free_event(event); |
1734 | 1733 | ||
1735 | return 0; | 1734 | return 0; |
1736 | } | 1735 | } |
1737 | 1736 | ||
1738 | static int perf_counter_read_size(struct perf_counter *counter) | 1737 | static int perf_event_read_size(struct perf_event *event) |
1739 | { | 1738 | { |
1740 | int entry = sizeof(u64); /* value */ | 1739 | int entry = sizeof(u64); /* value */ |
1741 | int size = 0; | 1740 | int size = 0; |
1742 | int nr = 1; | 1741 | int nr = 1; |
1743 | 1742 | ||
1744 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
1745 | size += sizeof(u64); | 1744 | size += sizeof(u64); |
1746 | 1745 | ||
1747 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
1748 | size += sizeof(u64); | 1747 | size += sizeof(u64); |
1749 | 1748 | ||
1750 | if (counter->attr.read_format & PERF_FORMAT_ID) | 1749 | if (event->attr.read_format & PERF_FORMAT_ID) |
1751 | entry += sizeof(u64); | 1750 | entry += sizeof(u64); |
1752 | 1751 | ||
1753 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | 1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { |
1754 | nr += counter->group_leader->nr_siblings; | 1753 | nr += event->group_leader->nr_siblings; |
1755 | size += sizeof(u64); | 1754 | size += sizeof(u64); |
1756 | } | 1755 | } |
1757 | 1756 | ||
@@ -1760,27 +1759,27 @@ static int perf_counter_read_size(struct perf_counter *counter) | |||
1760 | return size; | 1759 | return size; |
1761 | } | 1760 | } |
1762 | 1761 | ||
1763 | static u64 perf_counter_read_value(struct perf_counter *counter) | 1762 | static u64 perf_event_read_value(struct perf_event *event) |
1764 | { | 1763 | { |
1765 | struct perf_counter *child; | 1764 | struct perf_event *child; |
1766 | u64 total = 0; | 1765 | u64 total = 0; |
1767 | 1766 | ||
1768 | total += perf_counter_read(counter); | 1767 | total += perf_event_read(event); |
1769 | list_for_each_entry(child, &counter->child_list, child_list) | 1768 | list_for_each_entry(child, &event->child_list, child_list) |
1770 | total += perf_counter_read(child); | 1769 | total += perf_event_read(child); |
1771 | 1770 | ||
1772 | return total; | 1771 | return total; |
1773 | } | 1772 | } |
1774 | 1773 | ||
1775 | static int perf_counter_read_entry(struct perf_counter *counter, | 1774 | static int perf_event_read_entry(struct perf_event *event, |
1776 | u64 read_format, char __user *buf) | 1775 | u64 read_format, char __user *buf) |
1777 | { | 1776 | { |
1778 | int n = 0, count = 0; | 1777 | int n = 0, count = 0; |
1779 | u64 values[2]; | 1778 | u64 values[2]; |
1780 | 1779 | ||
1781 | values[n++] = perf_counter_read_value(counter); | 1780 | values[n++] = perf_event_read_value(event); |
1782 | if (read_format & PERF_FORMAT_ID) | 1781 | if (read_format & PERF_FORMAT_ID) |
1783 | values[n++] = primary_counter_id(counter); | 1782 | values[n++] = primary_event_id(event); |
1784 | 1783 | ||
1785 | count = n * sizeof(u64); | 1784 | count = n * sizeof(u64); |
1786 | 1785 | ||
@@ -1790,10 +1789,10 @@ static int perf_counter_read_entry(struct perf_counter *counter, | |||
1790 | return count; | 1789 | return count; |
1791 | } | 1790 | } |
1792 | 1791 | ||
1793 | static int perf_counter_read_group(struct perf_counter *counter, | 1792 | static int perf_event_read_group(struct perf_event *event, |
1794 | u64 read_format, char __user *buf) | 1793 | u64 read_format, char __user *buf) |
1795 | { | 1794 | { |
1796 | struct perf_counter *leader = counter->group_leader, *sub; | 1795 | struct perf_event *leader = event->group_leader, *sub; |
1797 | int n = 0, size = 0, err = -EFAULT; | 1796 | int n = 0, size = 0, err = -EFAULT; |
1798 | u64 values[3]; | 1797 | u64 values[3]; |
1799 | 1798 | ||
@@ -1812,14 +1811,14 @@ static int perf_counter_read_group(struct perf_counter *counter, | |||
1812 | if (copy_to_user(buf, values, size)) | 1811 | if (copy_to_user(buf, values, size)) |
1813 | return -EFAULT; | 1812 | return -EFAULT; |
1814 | 1813 | ||
1815 | err = perf_counter_read_entry(leader, read_format, buf + size); | 1814 | err = perf_event_read_entry(leader, read_format, buf + size); |
1816 | if (err < 0) | 1815 | if (err < 0) |
1817 | return err; | 1816 | return err; |
1818 | 1817 | ||
1819 | size += err; | 1818 | size += err; |
1820 | 1819 | ||
1821 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | 1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
1822 | err = perf_counter_read_entry(sub, read_format, | 1821 | err = perf_event_read_entry(sub, read_format, |
1823 | buf + size); | 1822 | buf + size); |
1824 | if (err < 0) | 1823 | if (err < 0) |
1825 | return err; | 1824 | return err; |
@@ -1830,23 +1829,23 @@ static int perf_counter_read_group(struct perf_counter *counter, | |||
1830 | return size; | 1829 | return size; |
1831 | } | 1830 | } |
1832 | 1831 | ||
1833 | static int perf_counter_read_one(struct perf_counter *counter, | 1832 | static int perf_event_read_one(struct perf_event *event, |
1834 | u64 read_format, char __user *buf) | 1833 | u64 read_format, char __user *buf) |
1835 | { | 1834 | { |
1836 | u64 values[4]; | 1835 | u64 values[4]; |
1837 | int n = 0; | 1836 | int n = 0; |
1838 | 1837 | ||
1839 | values[n++] = perf_counter_read_value(counter); | 1838 | values[n++] = perf_event_read_value(event); |
1840 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
1841 | values[n++] = counter->total_time_enabled + | 1840 | values[n++] = event->total_time_enabled + |
1842 | atomic64_read(&counter->child_total_time_enabled); | 1841 | atomic64_read(&event->child_total_time_enabled); |
1843 | } | 1842 | } |
1844 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
1845 | values[n++] = counter->total_time_running + | 1844 | values[n++] = event->total_time_running + |
1846 | atomic64_read(&counter->child_total_time_running); | 1845 | atomic64_read(&event->child_total_time_running); |
1847 | } | 1846 | } |
1848 | if (read_format & PERF_FORMAT_ID) | 1847 | if (read_format & PERF_FORMAT_ID) |
1849 | values[n++] = primary_counter_id(counter); | 1848 | values[n++] = primary_event_id(event); |
1850 | 1849 | ||
1851 | if (copy_to_user(buf, values, n * sizeof(u64))) | 1850 | if (copy_to_user(buf, values, n * sizeof(u64))) |
1852 | return -EFAULT; | 1851 | return -EFAULT; |
@@ -1855,32 +1854,32 @@ static int perf_counter_read_one(struct perf_counter *counter, | |||
1855 | } | 1854 | } |
1856 | 1855 | ||
1857 | /* | 1856 | /* |
1858 | * Read the performance counter - simple non blocking version for now | 1857 | * Read the performance event - simple non blocking version for now |
1859 | */ | 1858 | */ |
1860 | static ssize_t | 1859 | static ssize_t |
1861 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | 1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) |
1862 | { | 1861 | { |
1863 | u64 read_format = counter->attr.read_format; | 1862 | u64 read_format = event->attr.read_format; |
1864 | int ret; | 1863 | int ret; |
1865 | 1864 | ||
1866 | /* | 1865 | /* |
1867 | * Return end-of-file for a read on a counter that is in | 1866 | * Return end-of-file for a read on a event that is in |
1868 | * error state (i.e. because it was pinned but it couldn't be | 1867 | * error state (i.e. because it was pinned but it couldn't be |
1869 | * scheduled on to the CPU at some point). | 1868 | * scheduled on to the CPU at some point). |
1870 | */ | 1869 | */ |
1871 | if (counter->state == PERF_COUNTER_STATE_ERROR) | 1870 | if (event->state == PERF_EVENT_STATE_ERROR) |
1872 | return 0; | 1871 | return 0; |
1873 | 1872 | ||
1874 | if (count < perf_counter_read_size(counter)) | 1873 | if (count < perf_event_read_size(event)) |
1875 | return -ENOSPC; | 1874 | return -ENOSPC; |
1876 | 1875 | ||
1877 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 1876 | WARN_ON_ONCE(event->ctx->parent_ctx); |
1878 | mutex_lock(&counter->child_mutex); | 1877 | mutex_lock(&event->child_mutex); |
1879 | if (read_format & PERF_FORMAT_GROUP) | 1878 | if (read_format & PERF_FORMAT_GROUP) |
1880 | ret = perf_counter_read_group(counter, read_format, buf); | 1879 | ret = perf_event_read_group(event, read_format, buf); |
1881 | else | 1880 | else |
1882 | ret = perf_counter_read_one(counter, read_format, buf); | 1881 | ret = perf_event_read_one(event, read_format, buf); |
1883 | mutex_unlock(&counter->child_mutex); | 1882 | mutex_unlock(&event->child_mutex); |
1884 | 1883 | ||
1885 | return ret; | 1884 | return ret; |
1886 | } | 1885 | } |
@@ -1888,79 +1887,79 @@ perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | |||
1888 | static ssize_t | 1887 | static ssize_t |
1889 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
1890 | { | 1889 | { |
1891 | struct perf_counter *counter = file->private_data; | 1890 | struct perf_event *event = file->private_data; |
1892 | 1891 | ||
1893 | return perf_read_hw(counter, buf, count); | 1892 | return perf_read_hw(event, buf, count); |
1894 | } | 1893 | } |
1895 | 1894 | ||
1896 | static unsigned int perf_poll(struct file *file, poll_table *wait) | 1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) |
1897 | { | 1896 | { |
1898 | struct perf_counter *counter = file->private_data; | 1897 | struct perf_event *event = file->private_data; |
1899 | struct perf_mmap_data *data; | 1898 | struct perf_mmap_data *data; |
1900 | unsigned int events = POLL_HUP; | 1899 | unsigned int events = POLL_HUP; |
1901 | 1900 | ||
1902 | rcu_read_lock(); | 1901 | rcu_read_lock(); |
1903 | data = rcu_dereference(counter->data); | 1902 | data = rcu_dereference(event->data); |
1904 | if (data) | 1903 | if (data) |
1905 | events = atomic_xchg(&data->poll, 0); | 1904 | events = atomic_xchg(&data->poll, 0); |
1906 | rcu_read_unlock(); | 1905 | rcu_read_unlock(); |
1907 | 1906 | ||
1908 | poll_wait(file, &counter->waitq, wait); | 1907 | poll_wait(file, &event->waitq, wait); |
1909 | 1908 | ||
1910 | return events; | 1909 | return events; |
1911 | } | 1910 | } |
1912 | 1911 | ||
1913 | static void perf_counter_reset(struct perf_counter *counter) | 1912 | static void perf_event_reset(struct perf_event *event) |
1914 | { | 1913 | { |
1915 | (void)perf_counter_read(counter); | 1914 | (void)perf_event_read(event); |
1916 | atomic64_set(&counter->count, 0); | 1915 | atomic64_set(&event->count, 0); |
1917 | perf_counter_update_userpage(counter); | 1916 | perf_event_update_userpage(event); |
1918 | } | 1917 | } |
1919 | 1918 | ||
1920 | /* | 1919 | /* |
1921 | * Holding the top-level counter's child_mutex means that any | 1920 | * Holding the top-level event's child_mutex means that any |
1922 | * descendant process that has inherited this counter will block | 1921 | * descendant process that has inherited this event will block |
1923 | * in sync_child_counter if it goes to exit, thus satisfying the | 1922 | * in sync_child_event if it goes to exit, thus satisfying the |
1924 | * task existence requirements of perf_counter_enable/disable. | 1923 | * task existence requirements of perf_event_enable/disable. |
1925 | */ | 1924 | */ |
1926 | static void perf_counter_for_each_child(struct perf_counter *counter, | 1925 | static void perf_event_for_each_child(struct perf_event *event, |
1927 | void (*func)(struct perf_counter *)) | 1926 | void (*func)(struct perf_event *)) |
1928 | { | 1927 | { |
1929 | struct perf_counter *child; | 1928 | struct perf_event *child; |
1930 | 1929 | ||
1931 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 1930 | WARN_ON_ONCE(event->ctx->parent_ctx); |
1932 | mutex_lock(&counter->child_mutex); | 1931 | mutex_lock(&event->child_mutex); |
1933 | func(counter); | 1932 | func(event); |
1934 | list_for_each_entry(child, &counter->child_list, child_list) | 1933 | list_for_each_entry(child, &event->child_list, child_list) |
1935 | func(child); | 1934 | func(child); |
1936 | mutex_unlock(&counter->child_mutex); | 1935 | mutex_unlock(&event->child_mutex); |
1937 | } | 1936 | } |
1938 | 1937 | ||
1939 | static void perf_counter_for_each(struct perf_counter *counter, | 1938 | static void perf_event_for_each(struct perf_event *event, |
1940 | void (*func)(struct perf_counter *)) | 1939 | void (*func)(struct perf_event *)) |
1941 | { | 1940 | { |
1942 | struct perf_counter_context *ctx = counter->ctx; | 1941 | struct perf_event_context *ctx = event->ctx; |
1943 | struct perf_counter *sibling; | 1942 | struct perf_event *sibling; |
1944 | 1943 | ||
1945 | WARN_ON_ONCE(ctx->parent_ctx); | 1944 | WARN_ON_ONCE(ctx->parent_ctx); |
1946 | mutex_lock(&ctx->mutex); | 1945 | mutex_lock(&ctx->mutex); |
1947 | counter = counter->group_leader; | 1946 | event = event->group_leader; |
1948 | 1947 | ||
1949 | perf_counter_for_each_child(counter, func); | 1948 | perf_event_for_each_child(event, func); |
1950 | func(counter); | 1949 | func(event); |
1951 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | 1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) |
1952 | perf_counter_for_each_child(counter, func); | 1951 | perf_event_for_each_child(event, func); |
1953 | mutex_unlock(&ctx->mutex); | 1952 | mutex_unlock(&ctx->mutex); |
1954 | } | 1953 | } |
1955 | 1954 | ||
1956 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | 1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) |
1957 | { | 1956 | { |
1958 | struct perf_counter_context *ctx = counter->ctx; | 1957 | struct perf_event_context *ctx = event->ctx; |
1959 | unsigned long size; | 1958 | unsigned long size; |
1960 | int ret = 0; | 1959 | int ret = 0; |
1961 | u64 value; | 1960 | u64 value; |
1962 | 1961 | ||
1963 | if (!counter->attr.sample_period) | 1962 | if (!event->attr.sample_period) |
1964 | return -EINVAL; | 1963 | return -EINVAL; |
1965 | 1964 | ||
1966 | size = copy_from_user(&value, arg, sizeof(value)); | 1965 | size = copy_from_user(&value, arg, sizeof(value)); |
@@ -1971,16 +1970,16 @@ static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | |||
1971 | return -EINVAL; | 1970 | return -EINVAL; |
1972 | 1971 | ||
1973 | spin_lock_irq(&ctx->lock); | 1972 | spin_lock_irq(&ctx->lock); |
1974 | if (counter->attr.freq) { | 1973 | if (event->attr.freq) { |
1975 | if (value > sysctl_perf_counter_sample_rate) { | 1974 | if (value > sysctl_perf_event_sample_rate) { |
1976 | ret = -EINVAL; | 1975 | ret = -EINVAL; |
1977 | goto unlock; | 1976 | goto unlock; |
1978 | } | 1977 | } |
1979 | 1978 | ||
1980 | counter->attr.sample_freq = value; | 1979 | event->attr.sample_freq = value; |
1981 | } else { | 1980 | } else { |
1982 | counter->attr.sample_period = value; | 1981 | event->attr.sample_period = value; |
1983 | counter->hw.sample_period = value; | 1982 | event->hw.sample_period = value; |
1984 | } | 1983 | } |
1985 | unlock: | 1984 | unlock: |
1986 | spin_unlock_irq(&ctx->lock); | 1985 | spin_unlock_irq(&ctx->lock); |
@@ -1988,80 +1987,80 @@ unlock: | |||
1988 | return ret; | 1987 | return ret; |
1989 | } | 1988 | } |
1990 | 1989 | ||
1991 | int perf_counter_set_output(struct perf_counter *counter, int output_fd); | 1990 | int perf_event_set_output(struct perf_event *event, int output_fd); |
1992 | 1991 | ||
1993 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
1994 | { | 1993 | { |
1995 | struct perf_counter *counter = file->private_data; | 1994 | struct perf_event *event = file->private_data; |
1996 | void (*func)(struct perf_counter *); | 1995 | void (*func)(struct perf_event *); |
1997 | u32 flags = arg; | 1996 | u32 flags = arg; |
1998 | 1997 | ||
1999 | switch (cmd) { | 1998 | switch (cmd) { |
2000 | case PERF_COUNTER_IOC_ENABLE: | 1999 | case PERF_EVENT_IOC_ENABLE: |
2001 | func = perf_counter_enable; | 2000 | func = perf_event_enable; |
2002 | break; | 2001 | break; |
2003 | case PERF_COUNTER_IOC_DISABLE: | 2002 | case PERF_EVENT_IOC_DISABLE: |
2004 | func = perf_counter_disable; | 2003 | func = perf_event_disable; |
2005 | break; | 2004 | break; |
2006 | case PERF_COUNTER_IOC_RESET: | 2005 | case PERF_EVENT_IOC_RESET: |
2007 | func = perf_counter_reset; | 2006 | func = perf_event_reset; |
2008 | break; | 2007 | break; |
2009 | 2008 | ||
2010 | case PERF_COUNTER_IOC_REFRESH: | 2009 | case PERF_EVENT_IOC_REFRESH: |
2011 | return perf_counter_refresh(counter, arg); | 2010 | return perf_event_refresh(event, arg); |
2012 | 2011 | ||
2013 | case PERF_COUNTER_IOC_PERIOD: | 2012 | case PERF_EVENT_IOC_PERIOD: |
2014 | return perf_counter_period(counter, (u64 __user *)arg); | 2013 | return perf_event_period(event, (u64 __user *)arg); |
2015 | 2014 | ||
2016 | case PERF_COUNTER_IOC_SET_OUTPUT: | 2015 | case PERF_EVENT_IOC_SET_OUTPUT: |
2017 | return perf_counter_set_output(counter, arg); | 2016 | return perf_event_set_output(event, arg); |
2018 | 2017 | ||
2019 | default: | 2018 | default: |
2020 | return -ENOTTY; | 2019 | return -ENOTTY; |
2021 | } | 2020 | } |
2022 | 2021 | ||
2023 | if (flags & PERF_IOC_FLAG_GROUP) | 2022 | if (flags & PERF_IOC_FLAG_GROUP) |
2024 | perf_counter_for_each(counter, func); | 2023 | perf_event_for_each(event, func); |
2025 | else | 2024 | else |
2026 | perf_counter_for_each_child(counter, func); | 2025 | perf_event_for_each_child(event, func); |
2027 | 2026 | ||
2028 | return 0; | 2027 | return 0; |
2029 | } | 2028 | } |
2030 | 2029 | ||
2031 | int perf_counter_task_enable(void) | 2030 | int perf_event_task_enable(void) |
2032 | { | 2031 | { |
2033 | struct perf_counter *counter; | 2032 | struct perf_event *event; |
2034 | 2033 | ||
2035 | mutex_lock(¤t->perf_counter_mutex); | 2034 | mutex_lock(¤t->perf_event_mutex); |
2036 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
2037 | perf_counter_for_each_child(counter, perf_counter_enable); | 2036 | perf_event_for_each_child(event, perf_event_enable); |
2038 | mutex_unlock(¤t->perf_counter_mutex); | 2037 | mutex_unlock(¤t->perf_event_mutex); |
2039 | 2038 | ||
2040 | return 0; | 2039 | return 0; |
2041 | } | 2040 | } |
2042 | 2041 | ||
2043 | int perf_counter_task_disable(void) | 2042 | int perf_event_task_disable(void) |
2044 | { | 2043 | { |
2045 | struct perf_counter *counter; | 2044 | struct perf_event *event; |
2046 | 2045 | ||
2047 | mutex_lock(¤t->perf_counter_mutex); | 2046 | mutex_lock(¤t->perf_event_mutex); |
2048 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
2049 | perf_counter_for_each_child(counter, perf_counter_disable); | 2048 | perf_event_for_each_child(event, perf_event_disable); |
2050 | mutex_unlock(¤t->perf_counter_mutex); | 2049 | mutex_unlock(¤t->perf_event_mutex); |
2051 | 2050 | ||
2052 | return 0; | 2051 | return 0; |
2053 | } | 2052 | } |
2054 | 2053 | ||
2055 | #ifndef PERF_COUNTER_INDEX_OFFSET | 2054 | #ifndef PERF_EVENT_INDEX_OFFSET |
2056 | # define PERF_COUNTER_INDEX_OFFSET 0 | 2055 | # define PERF_EVENT_INDEX_OFFSET 0 |
2057 | #endif | 2056 | #endif |
2058 | 2057 | ||
2059 | static int perf_counter_index(struct perf_counter *counter) | 2058 | static int perf_event_index(struct perf_event *event) |
2060 | { | 2059 | { |
2061 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
2062 | return 0; | 2061 | return 0; |
2063 | 2062 | ||
2064 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | 2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; |
2065 | } | 2064 | } |
2066 | 2065 | ||
2067 | /* | 2066 | /* |
@@ -2069,13 +2068,13 @@ static int perf_counter_index(struct perf_counter *counter) | |||
2069 | * the seqlock logic goes bad. We can not serialize this because the arch | 2068 | * the seqlock logic goes bad. We can not serialize this because the arch |
2070 | * code calls this from NMI context. | 2069 | * code calls this from NMI context. |
2071 | */ | 2070 | */ |
2072 | void perf_counter_update_userpage(struct perf_counter *counter) | 2071 | void perf_event_update_userpage(struct perf_event *event) |
2073 | { | 2072 | { |
2074 | struct perf_counter_mmap_page *userpg; | 2073 | struct perf_event_mmap_page *userpg; |
2075 | struct perf_mmap_data *data; | 2074 | struct perf_mmap_data *data; |
2076 | 2075 | ||
2077 | rcu_read_lock(); | 2076 | rcu_read_lock(); |
2078 | data = rcu_dereference(counter->data); | 2077 | data = rcu_dereference(event->data); |
2079 | if (!data) | 2078 | if (!data) |
2080 | goto unlock; | 2079 | goto unlock; |
2081 | 2080 | ||
@@ -2088,16 +2087,16 @@ void perf_counter_update_userpage(struct perf_counter *counter) | |||
2088 | preempt_disable(); | 2087 | preempt_disable(); |
2089 | ++userpg->lock; | 2088 | ++userpg->lock; |
2090 | barrier(); | 2089 | barrier(); |
2091 | userpg->index = perf_counter_index(counter); | 2090 | userpg->index = perf_event_index(event); |
2092 | userpg->offset = atomic64_read(&counter->count); | 2091 | userpg->offset = atomic64_read(&event->count); |
2093 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) |
2094 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | 2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); |
2095 | 2094 | ||
2096 | userpg->time_enabled = counter->total_time_enabled + | 2095 | userpg->time_enabled = event->total_time_enabled + |
2097 | atomic64_read(&counter->child_total_time_enabled); | 2096 | atomic64_read(&event->child_total_time_enabled); |
2098 | 2097 | ||
2099 | userpg->time_running = counter->total_time_running + | 2098 | userpg->time_running = event->total_time_running + |
2100 | atomic64_read(&counter->child_total_time_running); | 2099 | atomic64_read(&event->child_total_time_running); |
2101 | 2100 | ||
2102 | barrier(); | 2101 | barrier(); |
2103 | ++userpg->lock; | 2102 | ++userpg->lock; |
@@ -2108,7 +2107,7 @@ unlock: | |||
2108 | 2107 | ||
2109 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
2110 | { | 2109 | { |
2111 | struct perf_counter *counter = vma->vm_file->private_data; | 2110 | struct perf_event *event = vma->vm_file->private_data; |
2112 | struct perf_mmap_data *data; | 2111 | struct perf_mmap_data *data; |
2113 | int ret = VM_FAULT_SIGBUS; | 2112 | int ret = VM_FAULT_SIGBUS; |
2114 | 2113 | ||
@@ -2119,7 +2118,7 @@ static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
2119 | } | 2118 | } |
2120 | 2119 | ||
2121 | rcu_read_lock(); | 2120 | rcu_read_lock(); |
2122 | data = rcu_dereference(counter->data); | 2121 | data = rcu_dereference(event->data); |
2123 | if (!data) | 2122 | if (!data) |
2124 | goto unlock; | 2123 | goto unlock; |
2125 | 2124 | ||
@@ -2148,13 +2147,13 @@ unlock: | |||
2148 | return ret; | 2147 | return ret; |
2149 | } | 2148 | } |
2150 | 2149 | ||
2151 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | 2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) |
2152 | { | 2151 | { |
2153 | struct perf_mmap_data *data; | 2152 | struct perf_mmap_data *data; |
2154 | unsigned long size; | 2153 | unsigned long size; |
2155 | int i; | 2154 | int i; |
2156 | 2155 | ||
2157 | WARN_ON(atomic_read(&counter->mmap_count)); | 2156 | WARN_ON(atomic_read(&event->mmap_count)); |
2158 | 2157 | ||
2159 | size = sizeof(struct perf_mmap_data); | 2158 | size = sizeof(struct perf_mmap_data); |
2160 | size += nr_pages * sizeof(void *); | 2159 | size += nr_pages * sizeof(void *); |
@@ -2176,14 +2175,14 @@ static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | |||
2176 | data->nr_pages = nr_pages; | 2175 | data->nr_pages = nr_pages; |
2177 | atomic_set(&data->lock, -1); | 2176 | atomic_set(&data->lock, -1); |
2178 | 2177 | ||
2179 | if (counter->attr.watermark) { | 2178 | if (event->attr.watermark) { |
2180 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | 2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, |
2181 | counter->attr.wakeup_watermark); | 2180 | event->attr.wakeup_watermark); |
2182 | } | 2181 | } |
2183 | if (!data->watermark) | 2182 | if (!data->watermark) |
2184 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | 2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); |
2185 | 2184 | ||
2186 | rcu_assign_pointer(counter->data, data); | 2185 | rcu_assign_pointer(event->data, data); |
2187 | 2186 | ||
2188 | return 0; | 2187 | return 0; |
2189 | 2188 | ||
@@ -2222,35 +2221,35 @@ static void __perf_mmap_data_free(struct rcu_head *rcu_head) | |||
2222 | kfree(data); | 2221 | kfree(data); |
2223 | } | 2222 | } |
2224 | 2223 | ||
2225 | static void perf_mmap_data_free(struct perf_counter *counter) | 2224 | static void perf_mmap_data_free(struct perf_event *event) |
2226 | { | 2225 | { |
2227 | struct perf_mmap_data *data = counter->data; | 2226 | struct perf_mmap_data *data = event->data; |
2228 | 2227 | ||
2229 | WARN_ON(atomic_read(&counter->mmap_count)); | 2228 | WARN_ON(atomic_read(&event->mmap_count)); |
2230 | 2229 | ||
2231 | rcu_assign_pointer(counter->data, NULL); | 2230 | rcu_assign_pointer(event->data, NULL); |
2232 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | 2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); |
2233 | } | 2232 | } |
2234 | 2233 | ||
2235 | static void perf_mmap_open(struct vm_area_struct *vma) | 2234 | static void perf_mmap_open(struct vm_area_struct *vma) |
2236 | { | 2235 | { |
2237 | struct perf_counter *counter = vma->vm_file->private_data; | 2236 | struct perf_event *event = vma->vm_file->private_data; |
2238 | 2237 | ||
2239 | atomic_inc(&counter->mmap_count); | 2238 | atomic_inc(&event->mmap_count); |
2240 | } | 2239 | } |
2241 | 2240 | ||
2242 | static void perf_mmap_close(struct vm_area_struct *vma) | 2241 | static void perf_mmap_close(struct vm_area_struct *vma) |
2243 | { | 2242 | { |
2244 | struct perf_counter *counter = vma->vm_file->private_data; | 2243 | struct perf_event *event = vma->vm_file->private_data; |
2245 | 2244 | ||
2246 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 2245 | WARN_ON_ONCE(event->ctx->parent_ctx); |
2247 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | 2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { |
2248 | struct user_struct *user = current_user(); | 2247 | struct user_struct *user = current_user(); |
2249 | 2248 | ||
2250 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | 2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); |
2251 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | 2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; |
2252 | perf_mmap_data_free(counter); | 2251 | perf_mmap_data_free(event); |
2253 | mutex_unlock(&counter->mmap_mutex); | 2252 | mutex_unlock(&event->mmap_mutex); |
2254 | } | 2253 | } |
2255 | } | 2254 | } |
2256 | 2255 | ||
@@ -2263,7 +2262,7 @@ static struct vm_operations_struct perf_mmap_vmops = { | |||
2263 | 2262 | ||
2264 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
2265 | { | 2264 | { |
2266 | struct perf_counter *counter = file->private_data; | 2265 | struct perf_event *event = file->private_data; |
2267 | unsigned long user_locked, user_lock_limit; | 2266 | unsigned long user_locked, user_lock_limit; |
2268 | struct user_struct *user = current_user(); | 2267 | struct user_struct *user = current_user(); |
2269 | unsigned long locked, lock_limit; | 2268 | unsigned long locked, lock_limit; |
@@ -2291,21 +2290,21 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) | |||
2291 | if (vma->vm_pgoff != 0) | 2290 | if (vma->vm_pgoff != 0) |
2292 | return -EINVAL; | 2291 | return -EINVAL; |
2293 | 2292 | ||
2294 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 2293 | WARN_ON_ONCE(event->ctx->parent_ctx); |
2295 | mutex_lock(&counter->mmap_mutex); | 2294 | mutex_lock(&event->mmap_mutex); |
2296 | if (counter->output) { | 2295 | if (event->output) { |
2297 | ret = -EINVAL; | 2296 | ret = -EINVAL; |
2298 | goto unlock; | 2297 | goto unlock; |
2299 | } | 2298 | } |
2300 | 2299 | ||
2301 | if (atomic_inc_not_zero(&counter->mmap_count)) { | 2300 | if (atomic_inc_not_zero(&event->mmap_count)) { |
2302 | if (nr_pages != counter->data->nr_pages) | 2301 | if (nr_pages != event->data->nr_pages) |
2303 | ret = -EINVAL; | 2302 | ret = -EINVAL; |
2304 | goto unlock; | 2303 | goto unlock; |
2305 | } | 2304 | } |
2306 | 2305 | ||
2307 | user_extra = nr_pages + 1; | 2306 | user_extra = nr_pages + 1; |
2308 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | 2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); |
2309 | 2308 | ||
2310 | /* | 2309 | /* |
2311 | * Increase the limit linearly with more CPUs: | 2310 | * Increase the limit linearly with more CPUs: |
@@ -2328,20 +2327,20 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) | |||
2328 | goto unlock; | 2327 | goto unlock; |
2329 | } | 2328 | } |
2330 | 2329 | ||
2331 | WARN_ON(counter->data); | 2330 | WARN_ON(event->data); |
2332 | ret = perf_mmap_data_alloc(counter, nr_pages); | 2331 | ret = perf_mmap_data_alloc(event, nr_pages); |
2333 | if (ret) | 2332 | if (ret) |
2334 | goto unlock; | 2333 | goto unlock; |
2335 | 2334 | ||
2336 | atomic_set(&counter->mmap_count, 1); | 2335 | atomic_set(&event->mmap_count, 1); |
2337 | atomic_long_add(user_extra, &user->locked_vm); | 2336 | atomic_long_add(user_extra, &user->locked_vm); |
2338 | vma->vm_mm->locked_vm += extra; | 2337 | vma->vm_mm->locked_vm += extra; |
2339 | counter->data->nr_locked = extra; | 2338 | event->data->nr_locked = extra; |
2340 | if (vma->vm_flags & VM_WRITE) | 2339 | if (vma->vm_flags & VM_WRITE) |
2341 | counter->data->writable = 1; | 2340 | event->data->writable = 1; |
2342 | 2341 | ||
2343 | unlock: | 2342 | unlock: |
2344 | mutex_unlock(&counter->mmap_mutex); | 2343 | mutex_unlock(&event->mmap_mutex); |
2345 | 2344 | ||
2346 | vma->vm_flags |= VM_RESERVED; | 2345 | vma->vm_flags |= VM_RESERVED; |
2347 | vma->vm_ops = &perf_mmap_vmops; | 2346 | vma->vm_ops = &perf_mmap_vmops; |
@@ -2352,11 +2351,11 @@ unlock: | |||
2352 | static int perf_fasync(int fd, struct file *filp, int on) | 2351 | static int perf_fasync(int fd, struct file *filp, int on) |
2353 | { | 2352 | { |
2354 | struct inode *inode = filp->f_path.dentry->d_inode; | 2353 | struct inode *inode = filp->f_path.dentry->d_inode; |
2355 | struct perf_counter *counter = filp->private_data; | 2354 | struct perf_event *event = filp->private_data; |
2356 | int retval; | 2355 | int retval; |
2357 | 2356 | ||
2358 | mutex_lock(&inode->i_mutex); | 2357 | mutex_lock(&inode->i_mutex); |
2359 | retval = fasync_helper(fd, filp, on, &counter->fasync); | 2358 | retval = fasync_helper(fd, filp, on, &event->fasync); |
2360 | mutex_unlock(&inode->i_mutex); | 2359 | mutex_unlock(&inode->i_mutex); |
2361 | 2360 | ||
2362 | if (retval < 0) | 2361 | if (retval < 0) |
@@ -2376,19 +2375,19 @@ static const struct file_operations perf_fops = { | |||
2376 | }; | 2375 | }; |
2377 | 2376 | ||
2378 | /* | 2377 | /* |
2379 | * Perf counter wakeup | 2378 | * Perf event wakeup |
2380 | * | 2379 | * |
2381 | * If there's data, ensure we set the poll() state and publish everything | 2380 | * If there's data, ensure we set the poll() state and publish everything |
2382 | * to user-space before waking everybody up. | 2381 | * to user-space before waking everybody up. |
2383 | */ | 2382 | */ |
2384 | 2383 | ||
2385 | void perf_counter_wakeup(struct perf_counter *counter) | 2384 | void perf_event_wakeup(struct perf_event *event) |
2386 | { | 2385 | { |
2387 | wake_up_all(&counter->waitq); | 2386 | wake_up_all(&event->waitq); |
2388 | 2387 | ||
2389 | if (counter->pending_kill) { | 2388 | if (event->pending_kill) { |
2390 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | 2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); |
2391 | counter->pending_kill = 0; | 2390 | event->pending_kill = 0; |
2392 | } | 2391 | } |
2393 | } | 2392 | } |
2394 | 2393 | ||
@@ -2401,19 +2400,19 @@ void perf_counter_wakeup(struct perf_counter *counter) | |||
2401 | * single linked list and use cmpxchg() to add entries lockless. | 2400 | * single linked list and use cmpxchg() to add entries lockless. |
2402 | */ | 2401 | */ |
2403 | 2402 | ||
2404 | static void perf_pending_counter(struct perf_pending_entry *entry) | 2403 | static void perf_pending_event(struct perf_pending_entry *entry) |
2405 | { | 2404 | { |
2406 | struct perf_counter *counter = container_of(entry, | 2405 | struct perf_event *event = container_of(entry, |
2407 | struct perf_counter, pending); | 2406 | struct perf_event, pending); |
2408 | 2407 | ||
2409 | if (counter->pending_disable) { | 2408 | if (event->pending_disable) { |
2410 | counter->pending_disable = 0; | 2409 | event->pending_disable = 0; |
2411 | __perf_counter_disable(counter); | 2410 | __perf_event_disable(event); |
2412 | } | 2411 | } |
2413 | 2412 | ||
2414 | if (counter->pending_wakeup) { | 2413 | if (event->pending_wakeup) { |
2415 | counter->pending_wakeup = 0; | 2414 | event->pending_wakeup = 0; |
2416 | perf_counter_wakeup(counter); | 2415 | perf_event_wakeup(event); |
2417 | } | 2416 | } |
2418 | } | 2417 | } |
2419 | 2418 | ||
@@ -2439,7 +2438,7 @@ static void perf_pending_queue(struct perf_pending_entry *entry, | |||
2439 | entry->next = *head; | 2438 | entry->next = *head; |
2440 | } while (cmpxchg(head, entry->next, entry) != entry->next); | 2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); |
2441 | 2440 | ||
2442 | set_perf_counter_pending(); | 2441 | set_perf_event_pending(); |
2443 | 2442 | ||
2444 | put_cpu_var(perf_pending_head); | 2443 | put_cpu_var(perf_pending_head); |
2445 | } | 2444 | } |
@@ -2472,7 +2471,7 @@ static int __perf_pending_run(void) | |||
2472 | return nr; | 2471 | return nr; |
2473 | } | 2472 | } |
2474 | 2473 | ||
2475 | static inline int perf_not_pending(struct perf_counter *counter) | 2474 | static inline int perf_not_pending(struct perf_event *event) |
2476 | { | 2475 | { |
2477 | /* | 2476 | /* |
2478 | * If we flush on whatever cpu we run, there is a chance we don't | 2477 | * If we flush on whatever cpu we run, there is a chance we don't |
@@ -2487,15 +2486,15 @@ static inline int perf_not_pending(struct perf_counter *counter) | |||
2487 | * so that we do not miss the wakeup. -- see perf_pending_handle() | 2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() |
2488 | */ | 2487 | */ |
2489 | smp_rmb(); | 2488 | smp_rmb(); |
2490 | return counter->pending.next == NULL; | 2489 | return event->pending.next == NULL; |
2491 | } | 2490 | } |
2492 | 2491 | ||
2493 | static void perf_pending_sync(struct perf_counter *counter) | 2492 | static void perf_pending_sync(struct perf_event *event) |
2494 | { | 2493 | { |
2495 | wait_event(counter->waitq, perf_not_pending(counter)); | 2494 | wait_event(event->waitq, perf_not_pending(event)); |
2496 | } | 2495 | } |
2497 | 2496 | ||
2498 | void perf_counter_do_pending(void) | 2497 | void perf_event_do_pending(void) |
2499 | { | 2498 | { |
2500 | __perf_pending_run(); | 2499 | __perf_pending_run(); |
2501 | } | 2500 | } |
@@ -2536,25 +2535,25 @@ static void perf_output_wakeup(struct perf_output_handle *handle) | |||
2536 | atomic_set(&handle->data->poll, POLL_IN); | 2535 | atomic_set(&handle->data->poll, POLL_IN); |
2537 | 2536 | ||
2538 | if (handle->nmi) { | 2537 | if (handle->nmi) { |
2539 | handle->counter->pending_wakeup = 1; | 2538 | handle->event->pending_wakeup = 1; |
2540 | perf_pending_queue(&handle->counter->pending, | 2539 | perf_pending_queue(&handle->event->pending, |
2541 | perf_pending_counter); | 2540 | perf_pending_event); |
2542 | } else | 2541 | } else |
2543 | perf_counter_wakeup(handle->counter); | 2542 | perf_event_wakeup(handle->event); |
2544 | } | 2543 | } |
2545 | 2544 | ||
2546 | /* | 2545 | /* |
2547 | * Curious locking construct. | 2546 | * Curious locking construct. |
2548 | * | 2547 | * |
2549 | * We need to ensure a later event doesn't publish a head when a former | 2548 | * We need to ensure a later event_id doesn't publish a head when a former |
2550 | * event isn't done writing. However since we need to deal with NMIs we | 2549 | * event_id isn't done writing. However since we need to deal with NMIs we |
2551 | * cannot fully serialize things. | 2550 | * cannot fully serialize things. |
2552 | * | 2551 | * |
2553 | * What we do is serialize between CPUs so we only have to deal with NMI | 2552 | * What we do is serialize between CPUs so we only have to deal with NMI |
2554 | * nesting on a single CPU. | 2553 | * nesting on a single CPU. |
2555 | * | 2554 | * |
2556 | * We only publish the head (and generate a wakeup) when the outer-most | 2555 | * We only publish the head (and generate a wakeup) when the outer-most |
2557 | * event completes. | 2556 | * event_id completes. |
2558 | */ | 2557 | */ |
2559 | static void perf_output_lock(struct perf_output_handle *handle) | 2558 | static void perf_output_lock(struct perf_output_handle *handle) |
2560 | { | 2559 | { |
@@ -2658,10 +2657,10 @@ void perf_output_copy(struct perf_output_handle *handle, | |||
2658 | } | 2657 | } |
2659 | 2658 | ||
2660 | int perf_output_begin(struct perf_output_handle *handle, | 2659 | int perf_output_begin(struct perf_output_handle *handle, |
2661 | struct perf_counter *counter, unsigned int size, | 2660 | struct perf_event *event, unsigned int size, |
2662 | int nmi, int sample) | 2661 | int nmi, int sample) |
2663 | { | 2662 | { |
2664 | struct perf_counter *output_counter; | 2663 | struct perf_event *output_event; |
2665 | struct perf_mmap_data *data; | 2664 | struct perf_mmap_data *data; |
2666 | unsigned long tail, offset, head; | 2665 | unsigned long tail, offset, head; |
2667 | int have_lost; | 2666 | int have_lost; |
@@ -2673,21 +2672,21 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2673 | 2672 | ||
2674 | rcu_read_lock(); | 2673 | rcu_read_lock(); |
2675 | /* | 2674 | /* |
2676 | * For inherited counters we send all the output towards the parent. | 2675 | * For inherited events we send all the output towards the parent. |
2677 | */ | 2676 | */ |
2678 | if (counter->parent) | 2677 | if (event->parent) |
2679 | counter = counter->parent; | 2678 | event = event->parent; |
2680 | 2679 | ||
2681 | output_counter = rcu_dereference(counter->output); | 2680 | output_event = rcu_dereference(event->output); |
2682 | if (output_counter) | 2681 | if (output_event) |
2683 | counter = output_counter; | 2682 | event = output_event; |
2684 | 2683 | ||
2685 | data = rcu_dereference(counter->data); | 2684 | data = rcu_dereference(event->data); |
2686 | if (!data) | 2685 | if (!data) |
2687 | goto out; | 2686 | goto out; |
2688 | 2687 | ||
2689 | handle->data = data; | 2688 | handle->data = data; |
2690 | handle->counter = counter; | 2689 | handle->event = event; |
2691 | handle->nmi = nmi; | 2690 | handle->nmi = nmi; |
2692 | handle->sample = sample; | 2691 | handle->sample = sample; |
2693 | 2692 | ||
@@ -2721,10 +2720,10 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2721 | atomic_set(&data->wakeup, 1); | 2720 | atomic_set(&data->wakeup, 1); |
2722 | 2721 | ||
2723 | if (have_lost) { | 2722 | if (have_lost) { |
2724 | lost_event.header.type = PERF_EVENT_LOST; | 2723 | lost_event.header.type = PERF_RECORD_LOST; |
2725 | lost_event.header.misc = 0; | 2724 | lost_event.header.misc = 0; |
2726 | lost_event.header.size = sizeof(lost_event); | 2725 | lost_event.header.size = sizeof(lost_event); |
2727 | lost_event.id = counter->id; | 2726 | lost_event.id = event->id; |
2728 | lost_event.lost = atomic_xchg(&data->lost, 0); | 2727 | lost_event.lost = atomic_xchg(&data->lost, 0); |
2729 | 2728 | ||
2730 | perf_output_put(handle, lost_event); | 2729 | perf_output_put(handle, lost_event); |
@@ -2743,10 +2742,10 @@ out: | |||
2743 | 2742 | ||
2744 | void perf_output_end(struct perf_output_handle *handle) | 2743 | void perf_output_end(struct perf_output_handle *handle) |
2745 | { | 2744 | { |
2746 | struct perf_counter *counter = handle->counter; | 2745 | struct perf_event *event = handle->event; |
2747 | struct perf_mmap_data *data = handle->data; | 2746 | struct perf_mmap_data *data = handle->data; |
2748 | 2747 | ||
2749 | int wakeup_events = counter->attr.wakeup_events; | 2748 | int wakeup_events = event->attr.wakeup_events; |
2750 | 2749 | ||
2751 | if (handle->sample && wakeup_events) { | 2750 | if (handle->sample && wakeup_events) { |
2752 | int events = atomic_inc_return(&data->events); | 2751 | int events = atomic_inc_return(&data->events); |
@@ -2760,58 +2759,58 @@ void perf_output_end(struct perf_output_handle *handle) | |||
2760 | rcu_read_unlock(); | 2759 | rcu_read_unlock(); |
2761 | } | 2760 | } |
2762 | 2761 | ||
2763 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | 2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) |
2764 | { | 2763 | { |
2765 | /* | 2764 | /* |
2766 | * only top level counters have the pid namespace they were created in | 2765 | * only top level events have the pid namespace they were created in |
2767 | */ | 2766 | */ |
2768 | if (counter->parent) | 2767 | if (event->parent) |
2769 | counter = counter->parent; | 2768 | event = event->parent; |
2770 | 2769 | ||
2771 | return task_tgid_nr_ns(p, counter->ns); | 2770 | return task_tgid_nr_ns(p, event->ns); |
2772 | } | 2771 | } |
2773 | 2772 | ||
2774 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | 2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) |
2775 | { | 2774 | { |
2776 | /* | 2775 | /* |
2777 | * only top level counters have the pid namespace they were created in | 2776 | * only top level events have the pid namespace they were created in |
2778 | */ | 2777 | */ |
2779 | if (counter->parent) | 2778 | if (event->parent) |
2780 | counter = counter->parent; | 2779 | event = event->parent; |
2781 | 2780 | ||
2782 | return task_pid_nr_ns(p, counter->ns); | 2781 | return task_pid_nr_ns(p, event->ns); |
2783 | } | 2782 | } |
2784 | 2783 | ||
2785 | static void perf_output_read_one(struct perf_output_handle *handle, | 2784 | static void perf_output_read_one(struct perf_output_handle *handle, |
2786 | struct perf_counter *counter) | 2785 | struct perf_event *event) |
2787 | { | 2786 | { |
2788 | u64 read_format = counter->attr.read_format; | 2787 | u64 read_format = event->attr.read_format; |
2789 | u64 values[4]; | 2788 | u64 values[4]; |
2790 | int n = 0; | 2789 | int n = 0; |
2791 | 2790 | ||
2792 | values[n++] = atomic64_read(&counter->count); | 2791 | values[n++] = atomic64_read(&event->count); |
2793 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
2794 | values[n++] = counter->total_time_enabled + | 2793 | values[n++] = event->total_time_enabled + |
2795 | atomic64_read(&counter->child_total_time_enabled); | 2794 | atomic64_read(&event->child_total_time_enabled); |
2796 | } | 2795 | } |
2797 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
2798 | values[n++] = counter->total_time_running + | 2797 | values[n++] = event->total_time_running + |
2799 | atomic64_read(&counter->child_total_time_running); | 2798 | atomic64_read(&event->child_total_time_running); |
2800 | } | 2799 | } |
2801 | if (read_format & PERF_FORMAT_ID) | 2800 | if (read_format & PERF_FORMAT_ID) |
2802 | values[n++] = primary_counter_id(counter); | 2801 | values[n++] = primary_event_id(event); |
2803 | 2802 | ||
2804 | perf_output_copy(handle, values, n * sizeof(u64)); | 2803 | perf_output_copy(handle, values, n * sizeof(u64)); |
2805 | } | 2804 | } |
2806 | 2805 | ||
2807 | /* | 2806 | /* |
2808 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | 2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. |
2809 | */ | 2808 | */ |
2810 | static void perf_output_read_group(struct perf_output_handle *handle, | 2809 | static void perf_output_read_group(struct perf_output_handle *handle, |
2811 | struct perf_counter *counter) | 2810 | struct perf_event *event) |
2812 | { | 2811 | { |
2813 | struct perf_counter *leader = counter->group_leader, *sub; | 2812 | struct perf_event *leader = event->group_leader, *sub; |
2814 | u64 read_format = counter->attr.read_format; | 2813 | u64 read_format = event->attr.read_format; |
2815 | u64 values[5]; | 2814 | u64 values[5]; |
2816 | int n = 0; | 2815 | int n = 0; |
2817 | 2816 | ||
@@ -2823,42 +2822,42 @@ static void perf_output_read_group(struct perf_output_handle *handle, | |||
2823 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
2824 | values[n++] = leader->total_time_running; | 2823 | values[n++] = leader->total_time_running; |
2825 | 2824 | ||
2826 | if (leader != counter) | 2825 | if (leader != event) |
2827 | leader->pmu->read(leader); | 2826 | leader->pmu->read(leader); |
2828 | 2827 | ||
2829 | values[n++] = atomic64_read(&leader->count); | 2828 | values[n++] = atomic64_read(&leader->count); |
2830 | if (read_format & PERF_FORMAT_ID) | 2829 | if (read_format & PERF_FORMAT_ID) |
2831 | values[n++] = primary_counter_id(leader); | 2830 | values[n++] = primary_event_id(leader); |
2832 | 2831 | ||
2833 | perf_output_copy(handle, values, n * sizeof(u64)); | 2832 | perf_output_copy(handle, values, n * sizeof(u64)); |
2834 | 2833 | ||
2835 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | 2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
2836 | n = 0; | 2835 | n = 0; |
2837 | 2836 | ||
2838 | if (sub != counter) | 2837 | if (sub != event) |
2839 | sub->pmu->read(sub); | 2838 | sub->pmu->read(sub); |
2840 | 2839 | ||
2841 | values[n++] = atomic64_read(&sub->count); | 2840 | values[n++] = atomic64_read(&sub->count); |
2842 | if (read_format & PERF_FORMAT_ID) | 2841 | if (read_format & PERF_FORMAT_ID) |
2843 | values[n++] = primary_counter_id(sub); | 2842 | values[n++] = primary_event_id(sub); |
2844 | 2843 | ||
2845 | perf_output_copy(handle, values, n * sizeof(u64)); | 2844 | perf_output_copy(handle, values, n * sizeof(u64)); |
2846 | } | 2845 | } |
2847 | } | 2846 | } |
2848 | 2847 | ||
2849 | static void perf_output_read(struct perf_output_handle *handle, | 2848 | static void perf_output_read(struct perf_output_handle *handle, |
2850 | struct perf_counter *counter) | 2849 | struct perf_event *event) |
2851 | { | 2850 | { |
2852 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | 2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) |
2853 | perf_output_read_group(handle, counter); | 2852 | perf_output_read_group(handle, event); |
2854 | else | 2853 | else |
2855 | perf_output_read_one(handle, counter); | 2854 | perf_output_read_one(handle, event); |
2856 | } | 2855 | } |
2857 | 2856 | ||
2858 | void perf_output_sample(struct perf_output_handle *handle, | 2857 | void perf_output_sample(struct perf_output_handle *handle, |
2859 | struct perf_event_header *header, | 2858 | struct perf_event_header *header, |
2860 | struct perf_sample_data *data, | 2859 | struct perf_sample_data *data, |
2861 | struct perf_counter *counter) | 2860 | struct perf_event *event) |
2862 | { | 2861 | { |
2863 | u64 sample_type = data->type; | 2862 | u64 sample_type = data->type; |
2864 | 2863 | ||
@@ -2889,7 +2888,7 @@ void perf_output_sample(struct perf_output_handle *handle, | |||
2889 | perf_output_put(handle, data->period); | 2888 | perf_output_put(handle, data->period); |
2890 | 2889 | ||
2891 | if (sample_type & PERF_SAMPLE_READ) | 2890 | if (sample_type & PERF_SAMPLE_READ) |
2892 | perf_output_read(handle, counter); | 2891 | perf_output_read(handle, event); |
2893 | 2892 | ||
2894 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2895 | if (data->callchain) { | 2894 | if (data->callchain) { |
@@ -2927,14 +2926,14 @@ void perf_output_sample(struct perf_output_handle *handle, | |||
2927 | 2926 | ||
2928 | void perf_prepare_sample(struct perf_event_header *header, | 2927 | void perf_prepare_sample(struct perf_event_header *header, |
2929 | struct perf_sample_data *data, | 2928 | struct perf_sample_data *data, |
2930 | struct perf_counter *counter, | 2929 | struct perf_event *event, |
2931 | struct pt_regs *regs) | 2930 | struct pt_regs *regs) |
2932 | { | 2931 | { |
2933 | u64 sample_type = counter->attr.sample_type; | 2932 | u64 sample_type = event->attr.sample_type; |
2934 | 2933 | ||
2935 | data->type = sample_type; | 2934 | data->type = sample_type; |
2936 | 2935 | ||
2937 | header->type = PERF_EVENT_SAMPLE; | 2936 | header->type = PERF_RECORD_SAMPLE; |
2938 | header->size = sizeof(*header); | 2937 | header->size = sizeof(*header); |
2939 | 2938 | ||
2940 | header->misc = 0; | 2939 | header->misc = 0; |
@@ -2948,8 +2947,8 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2948 | 2947 | ||
2949 | if (sample_type & PERF_SAMPLE_TID) { | 2948 | if (sample_type & PERF_SAMPLE_TID) { |
2950 | /* namespace issues */ | 2949 | /* namespace issues */ |
2951 | data->tid_entry.pid = perf_counter_pid(counter, current); | 2950 | data->tid_entry.pid = perf_event_pid(event, current); |
2952 | data->tid_entry.tid = perf_counter_tid(counter, current); | 2951 | data->tid_entry.tid = perf_event_tid(event, current); |
2953 | 2952 | ||
2954 | header->size += sizeof(data->tid_entry); | 2953 | header->size += sizeof(data->tid_entry); |
2955 | } | 2954 | } |
@@ -2964,13 +2963,13 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2964 | header->size += sizeof(data->addr); | 2963 | header->size += sizeof(data->addr); |
2965 | 2964 | ||
2966 | if (sample_type & PERF_SAMPLE_ID) { | 2965 | if (sample_type & PERF_SAMPLE_ID) { |
2967 | data->id = primary_counter_id(counter); | 2966 | data->id = primary_event_id(event); |
2968 | 2967 | ||
2969 | header->size += sizeof(data->id); | 2968 | header->size += sizeof(data->id); |
2970 | } | 2969 | } |
2971 | 2970 | ||
2972 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | 2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { |
2973 | data->stream_id = counter->id; | 2972 | data->stream_id = event->id; |
2974 | 2973 | ||
2975 | header->size += sizeof(data->stream_id); | 2974 | header->size += sizeof(data->stream_id); |
2976 | } | 2975 | } |
@@ -2986,7 +2985,7 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2986 | header->size += sizeof(data->period); | 2985 | header->size += sizeof(data->period); |
2987 | 2986 | ||
2988 | if (sample_type & PERF_SAMPLE_READ) | 2987 | if (sample_type & PERF_SAMPLE_READ) |
2989 | header->size += perf_counter_read_size(counter); | 2988 | header->size += perf_event_read_size(event); |
2990 | 2989 | ||
2991 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2992 | int size = 1; | 2991 | int size = 1; |
@@ -3012,25 +3011,25 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
3012 | } | 3011 | } |
3013 | } | 3012 | } |
3014 | 3013 | ||
3015 | static void perf_counter_output(struct perf_counter *counter, int nmi, | 3014 | static void perf_event_output(struct perf_event *event, int nmi, |
3016 | struct perf_sample_data *data, | 3015 | struct perf_sample_data *data, |
3017 | struct pt_regs *regs) | 3016 | struct pt_regs *regs) |
3018 | { | 3017 | { |
3019 | struct perf_output_handle handle; | 3018 | struct perf_output_handle handle; |
3020 | struct perf_event_header header; | 3019 | struct perf_event_header header; |
3021 | 3020 | ||
3022 | perf_prepare_sample(&header, data, counter, regs); | 3021 | perf_prepare_sample(&header, data, event, regs); |
3023 | 3022 | ||
3024 | if (perf_output_begin(&handle, counter, header.size, nmi, 1)) | 3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) |
3025 | return; | 3024 | return; |
3026 | 3025 | ||
3027 | perf_output_sample(&handle, &header, data, counter); | 3026 | perf_output_sample(&handle, &header, data, event); |
3028 | 3027 | ||
3029 | perf_output_end(&handle); | 3028 | perf_output_end(&handle); |
3030 | } | 3029 | } |
3031 | 3030 | ||
3032 | /* | 3031 | /* |
3033 | * read event | 3032 | * read event_id |
3034 | */ | 3033 | */ |
3035 | 3034 | ||
3036 | struct perf_read_event { | 3035 | struct perf_read_event { |
@@ -3041,27 +3040,27 @@ struct perf_read_event { | |||
3041 | }; | 3040 | }; |
3042 | 3041 | ||
3043 | static void | 3042 | static void |
3044 | perf_counter_read_event(struct perf_counter *counter, | 3043 | perf_event_read_event(struct perf_event *event, |
3045 | struct task_struct *task) | 3044 | struct task_struct *task) |
3046 | { | 3045 | { |
3047 | struct perf_output_handle handle; | 3046 | struct perf_output_handle handle; |
3048 | struct perf_read_event event = { | 3047 | struct perf_read_event read_event = { |
3049 | .header = { | 3048 | .header = { |
3050 | .type = PERF_EVENT_READ, | 3049 | .type = PERF_RECORD_READ, |
3051 | .misc = 0, | 3050 | .misc = 0, |
3052 | .size = sizeof(event) + perf_counter_read_size(counter), | 3051 | .size = sizeof(read_event) + perf_event_read_size(event), |
3053 | }, | 3052 | }, |
3054 | .pid = perf_counter_pid(counter, task), | 3053 | .pid = perf_event_pid(event, task), |
3055 | .tid = perf_counter_tid(counter, task), | 3054 | .tid = perf_event_tid(event, task), |
3056 | }; | 3055 | }; |
3057 | int ret; | 3056 | int ret; |
3058 | 3057 | ||
3059 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | 3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); |
3060 | if (ret) | 3059 | if (ret) |
3061 | return; | 3060 | return; |
3062 | 3061 | ||
3063 | perf_output_put(&handle, event); | 3062 | perf_output_put(&handle, read_event); |
3064 | perf_output_read(&handle, counter); | 3063 | perf_output_read(&handle, event); |
3065 | 3064 | ||
3066 | perf_output_end(&handle); | 3065 | perf_output_end(&handle); |
3067 | } | 3066 | } |
@@ -3074,7 +3073,7 @@ perf_counter_read_event(struct perf_counter *counter, | |||
3074 | 3073 | ||
3075 | struct perf_task_event { | 3074 | struct perf_task_event { |
3076 | struct task_struct *task; | 3075 | struct task_struct *task; |
3077 | struct perf_counter_context *task_ctx; | 3076 | struct perf_event_context *task_ctx; |
3078 | 3077 | ||
3079 | struct { | 3078 | struct { |
3080 | struct perf_event_header header; | 3079 | struct perf_event_header header; |
@@ -3084,10 +3083,10 @@ struct perf_task_event { | |||
3084 | u32 tid; | 3083 | u32 tid; |
3085 | u32 ptid; | 3084 | u32 ptid; |
3086 | u64 time; | 3085 | u64 time; |
3087 | } event; | 3086 | } event_id; |
3088 | }; | 3087 | }; |
3089 | 3088 | ||
3090 | static void perf_counter_task_output(struct perf_counter *counter, | 3089 | static void perf_event_task_output(struct perf_event *event, |
3091 | struct perf_task_event *task_event) | 3090 | struct perf_task_event *task_event) |
3092 | { | 3091 | { |
3093 | struct perf_output_handle handle; | 3092 | struct perf_output_handle handle; |
@@ -3095,85 +3094,85 @@ static void perf_counter_task_output(struct perf_counter *counter, | |||
3095 | struct task_struct *task = task_event->task; | 3094 | struct task_struct *task = task_event->task; |
3096 | int ret; | 3095 | int ret; |
3097 | 3096 | ||
3098 | size = task_event->event.header.size; | 3097 | size = task_event->event_id.header.size; |
3099 | ret = perf_output_begin(&handle, counter, size, 0, 0); | 3098 | ret = perf_output_begin(&handle, event, size, 0, 0); |
3100 | 3099 | ||
3101 | if (ret) | 3100 | if (ret) |
3102 | return; | 3101 | return; |
3103 | 3102 | ||
3104 | task_event->event.pid = perf_counter_pid(counter, task); | 3103 | task_event->event_id.pid = perf_event_pid(event, task); |
3105 | task_event->event.ppid = perf_counter_pid(counter, current); | 3104 | task_event->event_id.ppid = perf_event_pid(event, current); |
3106 | 3105 | ||
3107 | task_event->event.tid = perf_counter_tid(counter, task); | 3106 | task_event->event_id.tid = perf_event_tid(event, task); |
3108 | task_event->event.ptid = perf_counter_tid(counter, current); | 3107 | task_event->event_id.ptid = perf_event_tid(event, current); |
3109 | 3108 | ||
3110 | task_event->event.time = perf_clock(); | 3109 | task_event->event_id.time = perf_clock(); |
3111 | 3110 | ||
3112 | perf_output_put(&handle, task_event->event); | 3111 | perf_output_put(&handle, task_event->event_id); |
3113 | 3112 | ||
3114 | perf_output_end(&handle); | 3113 | perf_output_end(&handle); |
3115 | } | 3114 | } |
3116 | 3115 | ||
3117 | static int perf_counter_task_match(struct perf_counter *counter) | 3116 | static int perf_event_task_match(struct perf_event *event) |
3118 | { | 3117 | { |
3119 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | 3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) |
3120 | return 1; | 3119 | return 1; |
3121 | 3120 | ||
3122 | return 0; | 3121 | return 0; |
3123 | } | 3122 | } |
3124 | 3123 | ||
3125 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | 3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, |
3126 | struct perf_task_event *task_event) | 3125 | struct perf_task_event *task_event) |
3127 | { | 3126 | { |
3128 | struct perf_counter *counter; | 3127 | struct perf_event *event; |
3129 | 3128 | ||
3130 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3131 | return; | 3130 | return; |
3132 | 3131 | ||
3133 | rcu_read_lock(); | 3132 | rcu_read_lock(); |
3134 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3135 | if (perf_counter_task_match(counter)) | 3134 | if (perf_event_task_match(event)) |
3136 | perf_counter_task_output(counter, task_event); | 3135 | perf_event_task_output(event, task_event); |
3137 | } | 3136 | } |
3138 | rcu_read_unlock(); | 3137 | rcu_read_unlock(); |
3139 | } | 3138 | } |
3140 | 3139 | ||
3141 | static void perf_counter_task_event(struct perf_task_event *task_event) | 3140 | static void perf_event_task_event(struct perf_task_event *task_event) |
3142 | { | 3141 | { |
3143 | struct perf_cpu_context *cpuctx; | 3142 | struct perf_cpu_context *cpuctx; |
3144 | struct perf_counter_context *ctx = task_event->task_ctx; | 3143 | struct perf_event_context *ctx = task_event->task_ctx; |
3145 | 3144 | ||
3146 | cpuctx = &get_cpu_var(perf_cpu_context); | 3145 | cpuctx = &get_cpu_var(perf_cpu_context); |
3147 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | 3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); |
3148 | put_cpu_var(perf_cpu_context); | 3147 | put_cpu_var(perf_cpu_context); |
3149 | 3148 | ||
3150 | rcu_read_lock(); | 3149 | rcu_read_lock(); |
3151 | if (!ctx) | 3150 | if (!ctx) |
3152 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | 3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); |
3153 | if (ctx) | 3152 | if (ctx) |
3154 | perf_counter_task_ctx(ctx, task_event); | 3153 | perf_event_task_ctx(ctx, task_event); |
3155 | rcu_read_unlock(); | 3154 | rcu_read_unlock(); |
3156 | } | 3155 | } |
3157 | 3156 | ||
3158 | static void perf_counter_task(struct task_struct *task, | 3157 | static void perf_event_task(struct task_struct *task, |
3159 | struct perf_counter_context *task_ctx, | 3158 | struct perf_event_context *task_ctx, |
3160 | int new) | 3159 | int new) |
3161 | { | 3160 | { |
3162 | struct perf_task_event task_event; | 3161 | struct perf_task_event task_event; |
3163 | 3162 | ||
3164 | if (!atomic_read(&nr_comm_counters) && | 3163 | if (!atomic_read(&nr_comm_events) && |
3165 | !atomic_read(&nr_mmap_counters) && | 3164 | !atomic_read(&nr_mmap_events) && |
3166 | !atomic_read(&nr_task_counters)) | 3165 | !atomic_read(&nr_task_events)) |
3167 | return; | 3166 | return; |
3168 | 3167 | ||
3169 | task_event = (struct perf_task_event){ | 3168 | task_event = (struct perf_task_event){ |
3170 | .task = task, | 3169 | .task = task, |
3171 | .task_ctx = task_ctx, | 3170 | .task_ctx = task_ctx, |
3172 | .event = { | 3171 | .event_id = { |
3173 | .header = { | 3172 | .header = { |
3174 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | 3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, |
3175 | .misc = 0, | 3174 | .misc = 0, |
3176 | .size = sizeof(task_event.event), | 3175 | .size = sizeof(task_event.event_id), |
3177 | }, | 3176 | }, |
3178 | /* .pid */ | 3177 | /* .pid */ |
3179 | /* .ppid */ | 3178 | /* .ppid */ |
@@ -3182,12 +3181,12 @@ static void perf_counter_task(struct task_struct *task, | |||
3182 | }, | 3181 | }, |
3183 | }; | 3182 | }; |
3184 | 3183 | ||
3185 | perf_counter_task_event(&task_event); | 3184 | perf_event_task_event(&task_event); |
3186 | } | 3185 | } |
3187 | 3186 | ||
3188 | void perf_counter_fork(struct task_struct *task) | 3187 | void perf_event_fork(struct task_struct *task) |
3189 | { | 3188 | { |
3190 | perf_counter_task(task, NULL, 1); | 3189 | perf_event_task(task, NULL, 1); |
3191 | } | 3190 | } |
3192 | 3191 | ||
3193 | /* | 3192 | /* |
@@ -3204,56 +3203,56 @@ struct perf_comm_event { | |||
3204 | 3203 | ||
3205 | u32 pid; | 3204 | u32 pid; |
3206 | u32 tid; | 3205 | u32 tid; |
3207 | } event; | 3206 | } event_id; |
3208 | }; | 3207 | }; |
3209 | 3208 | ||
3210 | static void perf_counter_comm_output(struct perf_counter *counter, | 3209 | static void perf_event_comm_output(struct perf_event *event, |
3211 | struct perf_comm_event *comm_event) | 3210 | struct perf_comm_event *comm_event) |
3212 | { | 3211 | { |
3213 | struct perf_output_handle handle; | 3212 | struct perf_output_handle handle; |
3214 | int size = comm_event->event.header.size; | 3213 | int size = comm_event->event_id.header.size; |
3215 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); |
3216 | 3215 | ||
3217 | if (ret) | 3216 | if (ret) |
3218 | return; | 3217 | return; |
3219 | 3218 | ||
3220 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | 3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); |
3221 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | 3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); |
3222 | 3221 | ||
3223 | perf_output_put(&handle, comm_event->event); | 3222 | perf_output_put(&handle, comm_event->event_id); |
3224 | perf_output_copy(&handle, comm_event->comm, | 3223 | perf_output_copy(&handle, comm_event->comm, |
3225 | comm_event->comm_size); | 3224 | comm_event->comm_size); |
3226 | perf_output_end(&handle); | 3225 | perf_output_end(&handle); |
3227 | } | 3226 | } |
3228 | 3227 | ||
3229 | static int perf_counter_comm_match(struct perf_counter *counter) | 3228 | static int perf_event_comm_match(struct perf_event *event) |
3230 | { | 3229 | { |
3231 | if (counter->attr.comm) | 3230 | if (event->attr.comm) |
3232 | return 1; | 3231 | return 1; |
3233 | 3232 | ||
3234 | return 0; | 3233 | return 0; |
3235 | } | 3234 | } |
3236 | 3235 | ||
3237 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | 3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, |
3238 | struct perf_comm_event *comm_event) | 3237 | struct perf_comm_event *comm_event) |
3239 | { | 3238 | { |
3240 | struct perf_counter *counter; | 3239 | struct perf_event *event; |
3241 | 3240 | ||
3242 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3243 | return; | 3242 | return; |
3244 | 3243 | ||
3245 | rcu_read_lock(); | 3244 | rcu_read_lock(); |
3246 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3247 | if (perf_counter_comm_match(counter)) | 3246 | if (perf_event_comm_match(event)) |
3248 | perf_counter_comm_output(counter, comm_event); | 3247 | perf_event_comm_output(event, comm_event); |
3249 | } | 3248 | } |
3250 | rcu_read_unlock(); | 3249 | rcu_read_unlock(); |
3251 | } | 3250 | } |
3252 | 3251 | ||
3253 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | 3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) |
3254 | { | 3253 | { |
3255 | struct perf_cpu_context *cpuctx; | 3254 | struct perf_cpu_context *cpuctx; |
3256 | struct perf_counter_context *ctx; | 3255 | struct perf_event_context *ctx; |
3257 | unsigned int size; | 3256 | unsigned int size; |
3258 | char comm[TASK_COMM_LEN]; | 3257 | char comm[TASK_COMM_LEN]; |
3259 | 3258 | ||
@@ -3264,10 +3263,10 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event) | |||
3264 | comm_event->comm = comm; | 3263 | comm_event->comm = comm; |
3265 | comm_event->comm_size = size; | 3264 | comm_event->comm_size = size; |
3266 | 3265 | ||
3267 | comm_event->event.header.size = sizeof(comm_event->event) + size; | 3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; |
3268 | 3267 | ||
3269 | cpuctx = &get_cpu_var(perf_cpu_context); | 3268 | cpuctx = &get_cpu_var(perf_cpu_context); |
3270 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | 3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); |
3271 | put_cpu_var(perf_cpu_context); | 3270 | put_cpu_var(perf_cpu_context); |
3272 | 3271 | ||
3273 | rcu_read_lock(); | 3272 | rcu_read_lock(); |
@@ -3275,29 +3274,29 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event) | |||
3275 | * doesn't really matter which of the child contexts the | 3274 | * doesn't really matter which of the child contexts the |
3276 | * events ends up in. | 3275 | * events ends up in. |
3277 | */ | 3276 | */ |
3278 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3277 | ctx = rcu_dereference(current->perf_event_ctxp); |
3279 | if (ctx) | 3278 | if (ctx) |
3280 | perf_counter_comm_ctx(ctx, comm_event); | 3279 | perf_event_comm_ctx(ctx, comm_event); |
3281 | rcu_read_unlock(); | 3280 | rcu_read_unlock(); |
3282 | } | 3281 | } |
3283 | 3282 | ||
3284 | void perf_counter_comm(struct task_struct *task) | 3283 | void perf_event_comm(struct task_struct *task) |
3285 | { | 3284 | { |
3286 | struct perf_comm_event comm_event; | 3285 | struct perf_comm_event comm_event; |
3287 | 3286 | ||
3288 | if (task->perf_counter_ctxp) | 3287 | if (task->perf_event_ctxp) |
3289 | perf_counter_enable_on_exec(task); | 3288 | perf_event_enable_on_exec(task); |
3290 | 3289 | ||
3291 | if (!atomic_read(&nr_comm_counters)) | 3290 | if (!atomic_read(&nr_comm_events)) |
3292 | return; | 3291 | return; |
3293 | 3292 | ||
3294 | comm_event = (struct perf_comm_event){ | 3293 | comm_event = (struct perf_comm_event){ |
3295 | .task = task, | 3294 | .task = task, |
3296 | /* .comm */ | 3295 | /* .comm */ |
3297 | /* .comm_size */ | 3296 | /* .comm_size */ |
3298 | .event = { | 3297 | .event_id = { |
3299 | .header = { | 3298 | .header = { |
3300 | .type = PERF_EVENT_COMM, | 3299 | .type = PERF_RECORD_COMM, |
3301 | .misc = 0, | 3300 | .misc = 0, |
3302 | /* .size */ | 3301 | /* .size */ |
3303 | }, | 3302 | }, |
@@ -3306,7 +3305,7 @@ void perf_counter_comm(struct task_struct *task) | |||
3306 | }, | 3305 | }, |
3307 | }; | 3306 | }; |
3308 | 3307 | ||
3309 | perf_counter_comm_event(&comm_event); | 3308 | perf_event_comm_event(&comm_event); |
3310 | } | 3309 | } |
3311 | 3310 | ||
3312 | /* | 3311 | /* |
@@ -3327,57 +3326,57 @@ struct perf_mmap_event { | |||
3327 | u64 start; | 3326 | u64 start; |
3328 | u64 len; | 3327 | u64 len; |
3329 | u64 pgoff; | 3328 | u64 pgoff; |
3330 | } event; | 3329 | } event_id; |
3331 | }; | 3330 | }; |
3332 | 3331 | ||
3333 | static void perf_counter_mmap_output(struct perf_counter *counter, | 3332 | static void perf_event_mmap_output(struct perf_event *event, |
3334 | struct perf_mmap_event *mmap_event) | 3333 | struct perf_mmap_event *mmap_event) |
3335 | { | 3334 | { |
3336 | struct perf_output_handle handle; | 3335 | struct perf_output_handle handle; |
3337 | int size = mmap_event->event.header.size; | 3336 | int size = mmap_event->event_id.header.size; |
3338 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); |
3339 | 3338 | ||
3340 | if (ret) | 3339 | if (ret) |
3341 | return; | 3340 | return; |
3342 | 3341 | ||
3343 | mmap_event->event.pid = perf_counter_pid(counter, current); | 3342 | mmap_event->event_id.pid = perf_event_pid(event, current); |
3344 | mmap_event->event.tid = perf_counter_tid(counter, current); | 3343 | mmap_event->event_id.tid = perf_event_tid(event, current); |
3345 | 3344 | ||
3346 | perf_output_put(&handle, mmap_event->event); | 3345 | perf_output_put(&handle, mmap_event->event_id); |
3347 | perf_output_copy(&handle, mmap_event->file_name, | 3346 | perf_output_copy(&handle, mmap_event->file_name, |
3348 | mmap_event->file_size); | 3347 | mmap_event->file_size); |
3349 | perf_output_end(&handle); | 3348 | perf_output_end(&handle); |
3350 | } | 3349 | } |
3351 | 3350 | ||
3352 | static int perf_counter_mmap_match(struct perf_counter *counter, | 3351 | static int perf_event_mmap_match(struct perf_event *event, |
3353 | struct perf_mmap_event *mmap_event) | 3352 | struct perf_mmap_event *mmap_event) |
3354 | { | 3353 | { |
3355 | if (counter->attr.mmap) | 3354 | if (event->attr.mmap) |
3356 | return 1; | 3355 | return 1; |
3357 | 3356 | ||
3358 | return 0; | 3357 | return 0; |
3359 | } | 3358 | } |
3360 | 3359 | ||
3361 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | 3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, |
3362 | struct perf_mmap_event *mmap_event) | 3361 | struct perf_mmap_event *mmap_event) |
3363 | { | 3362 | { |
3364 | struct perf_counter *counter; | 3363 | struct perf_event *event; |
3365 | 3364 | ||
3366 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3367 | return; | 3366 | return; |
3368 | 3367 | ||
3369 | rcu_read_lock(); | 3368 | rcu_read_lock(); |
3370 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3371 | if (perf_counter_mmap_match(counter, mmap_event)) | 3370 | if (perf_event_mmap_match(event, mmap_event)) |
3372 | perf_counter_mmap_output(counter, mmap_event); | 3371 | perf_event_mmap_output(event, mmap_event); |
3373 | } | 3372 | } |
3374 | rcu_read_unlock(); | 3373 | rcu_read_unlock(); |
3375 | } | 3374 | } |
3376 | 3375 | ||
3377 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | 3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) |
3378 | { | 3377 | { |
3379 | struct perf_cpu_context *cpuctx; | 3378 | struct perf_cpu_context *cpuctx; |
3380 | struct perf_counter_context *ctx; | 3379 | struct perf_event_context *ctx; |
3381 | struct vm_area_struct *vma = mmap_event->vma; | 3380 | struct vm_area_struct *vma = mmap_event->vma; |
3382 | struct file *file = vma->vm_file; | 3381 | struct file *file = vma->vm_file; |
3383 | unsigned int size; | 3382 | unsigned int size; |
@@ -3425,10 +3424,10 @@ got_name: | |||
3425 | mmap_event->file_name = name; | 3424 | mmap_event->file_name = name; |
3426 | mmap_event->file_size = size; | 3425 | mmap_event->file_size = size; |
3427 | 3426 | ||
3428 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | 3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; |
3429 | 3428 | ||
3430 | cpuctx = &get_cpu_var(perf_cpu_context); | 3429 | cpuctx = &get_cpu_var(perf_cpu_context); |
3431 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | 3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); |
3432 | put_cpu_var(perf_cpu_context); | 3431 | put_cpu_var(perf_cpu_context); |
3433 | 3432 | ||
3434 | rcu_read_lock(); | 3433 | rcu_read_lock(); |
@@ -3436,28 +3435,28 @@ got_name: | |||
3436 | * doesn't really matter which of the child contexts the | 3435 | * doesn't really matter which of the child contexts the |
3437 | * events ends up in. | 3436 | * events ends up in. |
3438 | */ | 3437 | */ |
3439 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3438 | ctx = rcu_dereference(current->perf_event_ctxp); |
3440 | if (ctx) | 3439 | if (ctx) |
3441 | perf_counter_mmap_ctx(ctx, mmap_event); | 3440 | perf_event_mmap_ctx(ctx, mmap_event); |
3442 | rcu_read_unlock(); | 3441 | rcu_read_unlock(); |
3443 | 3442 | ||
3444 | kfree(buf); | 3443 | kfree(buf); |
3445 | } | 3444 | } |
3446 | 3445 | ||
3447 | void __perf_counter_mmap(struct vm_area_struct *vma) | 3446 | void __perf_event_mmap(struct vm_area_struct *vma) |
3448 | { | 3447 | { |
3449 | struct perf_mmap_event mmap_event; | 3448 | struct perf_mmap_event mmap_event; |
3450 | 3449 | ||
3451 | if (!atomic_read(&nr_mmap_counters)) | 3450 | if (!atomic_read(&nr_mmap_events)) |
3452 | return; | 3451 | return; |
3453 | 3452 | ||
3454 | mmap_event = (struct perf_mmap_event){ | 3453 | mmap_event = (struct perf_mmap_event){ |
3455 | .vma = vma, | 3454 | .vma = vma, |
3456 | /* .file_name */ | 3455 | /* .file_name */ |
3457 | /* .file_size */ | 3456 | /* .file_size */ |
3458 | .event = { | 3457 | .event_id = { |
3459 | .header = { | 3458 | .header = { |
3460 | .type = PERF_EVENT_MMAP, | 3459 | .type = PERF_RECORD_MMAP, |
3461 | .misc = 0, | 3460 | .misc = 0, |
3462 | /* .size */ | 3461 | /* .size */ |
3463 | }, | 3462 | }, |
@@ -3469,14 +3468,14 @@ void __perf_counter_mmap(struct vm_area_struct *vma) | |||
3469 | }, | 3468 | }, |
3470 | }; | 3469 | }; |
3471 | 3470 | ||
3472 | perf_counter_mmap_event(&mmap_event); | 3471 | perf_event_mmap_event(&mmap_event); |
3473 | } | 3472 | } |
3474 | 3473 | ||
3475 | /* | 3474 | /* |
3476 | * IRQ throttle logging | 3475 | * IRQ throttle logging |
3477 | */ | 3476 | */ |
3478 | 3477 | ||
3479 | static void perf_log_throttle(struct perf_counter *counter, int enable) | 3478 | static void perf_log_throttle(struct perf_event *event, int enable) |
3480 | { | 3479 | { |
3481 | struct perf_output_handle handle; | 3480 | struct perf_output_handle handle; |
3482 | int ret; | 3481 | int ret; |
@@ -3488,19 +3487,19 @@ static void perf_log_throttle(struct perf_counter *counter, int enable) | |||
3488 | u64 stream_id; | 3487 | u64 stream_id; |
3489 | } throttle_event = { | 3488 | } throttle_event = { |
3490 | .header = { | 3489 | .header = { |
3491 | .type = PERF_EVENT_THROTTLE, | 3490 | .type = PERF_RECORD_THROTTLE, |
3492 | .misc = 0, | 3491 | .misc = 0, |
3493 | .size = sizeof(throttle_event), | 3492 | .size = sizeof(throttle_event), |
3494 | }, | 3493 | }, |
3495 | .time = perf_clock(), | 3494 | .time = perf_clock(), |
3496 | .id = primary_counter_id(counter), | 3495 | .id = primary_event_id(event), |
3497 | .stream_id = counter->id, | 3496 | .stream_id = event->id, |
3498 | }; | 3497 | }; |
3499 | 3498 | ||
3500 | if (enable) | 3499 | if (enable) |
3501 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | 3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; |
3502 | 3501 | ||
3503 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | 3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); |
3504 | if (ret) | 3503 | if (ret) |
3505 | return; | 3504 | return; |
3506 | 3505 | ||
@@ -3509,18 +3508,18 @@ static void perf_log_throttle(struct perf_counter *counter, int enable) | |||
3509 | } | 3508 | } |
3510 | 3509 | ||
3511 | /* | 3510 | /* |
3512 | * Generic counter overflow handling, sampling. | 3511 | * Generic event overflow handling, sampling. |
3513 | */ | 3512 | */ |
3514 | 3513 | ||
3515 | static int __perf_counter_overflow(struct perf_counter *counter, int nmi, | 3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, |
3516 | int throttle, struct perf_sample_data *data, | 3515 | int throttle, struct perf_sample_data *data, |
3517 | struct pt_regs *regs) | 3516 | struct pt_regs *regs) |
3518 | { | 3517 | { |
3519 | int events = atomic_read(&counter->event_limit); | 3518 | int events = atomic_read(&event->event_limit); |
3520 | struct hw_perf_counter *hwc = &counter->hw; | 3519 | struct hw_perf_event *hwc = &event->hw; |
3521 | int ret = 0; | 3520 | int ret = 0; |
3522 | 3521 | ||
3523 | throttle = (throttle && counter->pmu->unthrottle != NULL); | 3522 | throttle = (throttle && event->pmu->unthrottle != NULL); |
3524 | 3523 | ||
3525 | if (!throttle) { | 3524 | if (!throttle) { |
3526 | hwc->interrupts++; | 3525 | hwc->interrupts++; |
@@ -3528,73 +3527,73 @@ static int __perf_counter_overflow(struct perf_counter *counter, int nmi, | |||
3528 | if (hwc->interrupts != MAX_INTERRUPTS) { | 3527 | if (hwc->interrupts != MAX_INTERRUPTS) { |
3529 | hwc->interrupts++; | 3528 | hwc->interrupts++; |
3530 | if (HZ * hwc->interrupts > | 3529 | if (HZ * hwc->interrupts > |
3531 | (u64)sysctl_perf_counter_sample_rate) { | 3530 | (u64)sysctl_perf_event_sample_rate) { |
3532 | hwc->interrupts = MAX_INTERRUPTS; | 3531 | hwc->interrupts = MAX_INTERRUPTS; |
3533 | perf_log_throttle(counter, 0); | 3532 | perf_log_throttle(event, 0); |
3534 | ret = 1; | 3533 | ret = 1; |
3535 | } | 3534 | } |
3536 | } else { | 3535 | } else { |
3537 | /* | 3536 | /* |
3538 | * Keep re-disabling counters even though on the previous | 3537 | * Keep re-disabling events even though on the previous |
3539 | * pass we disabled it - just in case we raced with a | 3538 | * pass we disabled it - just in case we raced with a |
3540 | * sched-in and the counter got enabled again: | 3539 | * sched-in and the event got enabled again: |
3541 | */ | 3540 | */ |
3542 | ret = 1; | 3541 | ret = 1; |
3543 | } | 3542 | } |
3544 | } | 3543 | } |
3545 | 3544 | ||
3546 | if (counter->attr.freq) { | 3545 | if (event->attr.freq) { |
3547 | u64 now = perf_clock(); | 3546 | u64 now = perf_clock(); |
3548 | s64 delta = now - hwc->freq_stamp; | 3547 | s64 delta = now - hwc->freq_stamp; |
3549 | 3548 | ||
3550 | hwc->freq_stamp = now; | 3549 | hwc->freq_stamp = now; |
3551 | 3550 | ||
3552 | if (delta > 0 && delta < TICK_NSEC) | 3551 | if (delta > 0 && delta < TICK_NSEC) |
3553 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | 3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); |
3554 | } | 3553 | } |
3555 | 3554 | ||
3556 | /* | 3555 | /* |
3557 | * XXX event_limit might not quite work as expected on inherited | 3556 | * XXX event_limit might not quite work as expected on inherited |
3558 | * counters | 3557 | * events |
3559 | */ | 3558 | */ |
3560 | 3559 | ||
3561 | counter->pending_kill = POLL_IN; | 3560 | event->pending_kill = POLL_IN; |
3562 | if (events && atomic_dec_and_test(&counter->event_limit)) { | 3561 | if (events && atomic_dec_and_test(&event->event_limit)) { |
3563 | ret = 1; | 3562 | ret = 1; |
3564 | counter->pending_kill = POLL_HUP; | 3563 | event->pending_kill = POLL_HUP; |
3565 | if (nmi) { | 3564 | if (nmi) { |
3566 | counter->pending_disable = 1; | 3565 | event->pending_disable = 1; |
3567 | perf_pending_queue(&counter->pending, | 3566 | perf_pending_queue(&event->pending, |
3568 | perf_pending_counter); | 3567 | perf_pending_event); |
3569 | } else | 3568 | } else |
3570 | perf_counter_disable(counter); | 3569 | perf_event_disable(event); |
3571 | } | 3570 | } |
3572 | 3571 | ||
3573 | perf_counter_output(counter, nmi, data, regs); | 3572 | perf_event_output(event, nmi, data, regs); |
3574 | return ret; | 3573 | return ret; |
3575 | } | 3574 | } |
3576 | 3575 | ||
3577 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | 3576 | int perf_event_overflow(struct perf_event *event, int nmi, |
3578 | struct perf_sample_data *data, | 3577 | struct perf_sample_data *data, |
3579 | struct pt_regs *regs) | 3578 | struct pt_regs *regs) |
3580 | { | 3579 | { |
3581 | return __perf_counter_overflow(counter, nmi, 1, data, regs); | 3580 | return __perf_event_overflow(event, nmi, 1, data, regs); |
3582 | } | 3581 | } |
3583 | 3582 | ||
3584 | /* | 3583 | /* |
3585 | * Generic software counter infrastructure | 3584 | * Generic software event infrastructure |
3586 | */ | 3585 | */ |
3587 | 3586 | ||
3588 | /* | 3587 | /* |
3589 | * We directly increment counter->count and keep a second value in | 3588 | * We directly increment event->count and keep a second value in |
3590 | * counter->hw.period_left to count intervals. This period counter | 3589 | * event->hw.period_left to count intervals. This period event |
3591 | * is kept in the range [-sample_period, 0] so that we can use the | 3590 | * is kept in the range [-sample_period, 0] so that we can use the |
3592 | * sign as trigger. | 3591 | * sign as trigger. |
3593 | */ | 3592 | */ |
3594 | 3593 | ||
3595 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | 3594 | static u64 perf_swevent_set_period(struct perf_event *event) |
3596 | { | 3595 | { |
3597 | struct hw_perf_counter *hwc = &counter->hw; | 3596 | struct hw_perf_event *hwc = &event->hw; |
3598 | u64 period = hwc->last_period; | 3597 | u64 period = hwc->last_period; |
3599 | u64 nr, offset; | 3598 | u64 nr, offset; |
3600 | s64 old, val; | 3599 | s64 old, val; |
@@ -3615,22 +3614,22 @@ again: | |||
3615 | return nr; | 3614 | return nr; |
3616 | } | 3615 | } |
3617 | 3616 | ||
3618 | static void perf_swcounter_overflow(struct perf_counter *counter, | 3617 | static void perf_swevent_overflow(struct perf_event *event, |
3619 | int nmi, struct perf_sample_data *data, | 3618 | int nmi, struct perf_sample_data *data, |
3620 | struct pt_regs *regs) | 3619 | struct pt_regs *regs) |
3621 | { | 3620 | { |
3622 | struct hw_perf_counter *hwc = &counter->hw; | 3621 | struct hw_perf_event *hwc = &event->hw; |
3623 | int throttle = 0; | 3622 | int throttle = 0; |
3624 | u64 overflow; | 3623 | u64 overflow; |
3625 | 3624 | ||
3626 | data->period = counter->hw.last_period; | 3625 | data->period = event->hw.last_period; |
3627 | overflow = perf_swcounter_set_period(counter); | 3626 | overflow = perf_swevent_set_period(event); |
3628 | 3627 | ||
3629 | if (hwc->interrupts == MAX_INTERRUPTS) | 3628 | if (hwc->interrupts == MAX_INTERRUPTS) |
3630 | return; | 3629 | return; |
3631 | 3630 | ||
3632 | for (; overflow; overflow--) { | 3631 | for (; overflow; overflow--) { |
3633 | if (__perf_counter_overflow(counter, nmi, throttle, | 3632 | if (__perf_event_overflow(event, nmi, throttle, |
3634 | data, regs)) { | 3633 | data, regs)) { |
3635 | /* | 3634 | /* |
3636 | * We inhibit the overflow from happening when | 3635 | * We inhibit the overflow from happening when |
@@ -3642,20 +3641,20 @@ static void perf_swcounter_overflow(struct perf_counter *counter, | |||
3642 | } | 3641 | } |
3643 | } | 3642 | } |
3644 | 3643 | ||
3645 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | 3644 | static void perf_swevent_unthrottle(struct perf_event *event) |
3646 | { | 3645 | { |
3647 | /* | 3646 | /* |
3648 | * Nothing to do, we already reset hwc->interrupts. | 3647 | * Nothing to do, we already reset hwc->interrupts. |
3649 | */ | 3648 | */ |
3650 | } | 3649 | } |
3651 | 3650 | ||
3652 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | 3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, |
3653 | int nmi, struct perf_sample_data *data, | 3652 | int nmi, struct perf_sample_data *data, |
3654 | struct pt_regs *regs) | 3653 | struct pt_regs *regs) |
3655 | { | 3654 | { |
3656 | struct hw_perf_counter *hwc = &counter->hw; | 3655 | struct hw_perf_event *hwc = &event->hw; |
3657 | 3656 | ||
3658 | atomic64_add(nr, &counter->count); | 3657 | atomic64_add(nr, &event->count); |
3659 | 3658 | ||
3660 | if (!hwc->sample_period) | 3659 | if (!hwc->sample_period) |
3661 | return; | 3660 | return; |
@@ -3664,29 +3663,29 @@ static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | |||
3664 | return; | 3663 | return; |
3665 | 3664 | ||
3666 | if (!atomic64_add_negative(nr, &hwc->period_left)) | 3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) |
3667 | perf_swcounter_overflow(counter, nmi, data, regs); | 3666 | perf_swevent_overflow(event, nmi, data, regs); |
3668 | } | 3667 | } |
3669 | 3668 | ||
3670 | static int perf_swcounter_is_counting(struct perf_counter *counter) | 3669 | static int perf_swevent_is_counting(struct perf_event *event) |
3671 | { | 3670 | { |
3672 | /* | 3671 | /* |
3673 | * The counter is active, we're good! | 3672 | * The event is active, we're good! |
3674 | */ | 3673 | */ |
3675 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) |
3676 | return 1; | 3675 | return 1; |
3677 | 3676 | ||
3678 | /* | 3677 | /* |
3679 | * The counter is off/error, not counting. | 3678 | * The event is off/error, not counting. |
3680 | */ | 3679 | */ |
3681 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | 3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) |
3682 | return 0; | 3681 | return 0; |
3683 | 3682 | ||
3684 | /* | 3683 | /* |
3685 | * The counter is inactive, if the context is active | 3684 | * The event is inactive, if the context is active |
3686 | * we're part of a group that didn't make it on the 'pmu', | 3685 | * we're part of a group that didn't make it on the 'pmu', |
3687 | * not counting. | 3686 | * not counting. |
3688 | */ | 3687 | */ |
3689 | if (counter->ctx->is_active) | 3688 | if (event->ctx->is_active) |
3690 | return 0; | 3689 | return 0; |
3691 | 3690 | ||
3692 | /* | 3691 | /* |
@@ -3697,49 +3696,49 @@ static int perf_swcounter_is_counting(struct perf_counter *counter) | |||
3697 | return 1; | 3696 | return 1; |
3698 | } | 3697 | } |
3699 | 3698 | ||
3700 | static int perf_swcounter_match(struct perf_counter *counter, | 3699 | static int perf_swevent_match(struct perf_event *event, |
3701 | enum perf_type_id type, | 3700 | enum perf_type_id type, |
3702 | u32 event, struct pt_regs *regs) | 3701 | u32 event_id, struct pt_regs *regs) |
3703 | { | 3702 | { |
3704 | if (!perf_swcounter_is_counting(counter)) | 3703 | if (!perf_swevent_is_counting(event)) |
3705 | return 0; | 3704 | return 0; |
3706 | 3705 | ||
3707 | if (counter->attr.type != type) | 3706 | if (event->attr.type != type) |
3708 | return 0; | 3707 | return 0; |
3709 | if (counter->attr.config != event) | 3708 | if (event->attr.config != event_id) |
3710 | return 0; | 3709 | return 0; |
3711 | 3710 | ||
3712 | if (regs) { | 3711 | if (regs) { |
3713 | if (counter->attr.exclude_user && user_mode(regs)) | 3712 | if (event->attr.exclude_user && user_mode(regs)) |
3714 | return 0; | 3713 | return 0; |
3715 | 3714 | ||
3716 | if (counter->attr.exclude_kernel && !user_mode(regs)) | 3715 | if (event->attr.exclude_kernel && !user_mode(regs)) |
3717 | return 0; | 3716 | return 0; |
3718 | } | 3717 | } |
3719 | 3718 | ||
3720 | return 1; | 3719 | return 1; |
3721 | } | 3720 | } |
3722 | 3721 | ||
3723 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | 3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, |
3724 | enum perf_type_id type, | 3723 | enum perf_type_id type, |
3725 | u32 event, u64 nr, int nmi, | 3724 | u32 event_id, u64 nr, int nmi, |
3726 | struct perf_sample_data *data, | 3725 | struct perf_sample_data *data, |
3727 | struct pt_regs *regs) | 3726 | struct pt_regs *regs) |
3728 | { | 3727 | { |
3729 | struct perf_counter *counter; | 3728 | struct perf_event *event; |
3730 | 3729 | ||
3731 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3732 | return; | 3731 | return; |
3733 | 3732 | ||
3734 | rcu_read_lock(); | 3733 | rcu_read_lock(); |
3735 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3736 | if (perf_swcounter_match(counter, type, event, regs)) | 3735 | if (perf_swevent_match(event, type, event_id, regs)) |
3737 | perf_swcounter_add(counter, nr, nmi, data, regs); | 3736 | perf_swevent_add(event, nr, nmi, data, regs); |
3738 | } | 3737 | } |
3739 | rcu_read_unlock(); | 3738 | rcu_read_unlock(); |
3740 | } | 3739 | } |
3741 | 3740 | ||
3742 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | 3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) |
3743 | { | 3742 | { |
3744 | if (in_nmi()) | 3743 | if (in_nmi()) |
3745 | return &cpuctx->recursion[3]; | 3744 | return &cpuctx->recursion[3]; |
@@ -3753,14 +3752,14 @@ static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | |||
3753 | return &cpuctx->recursion[0]; | 3752 | return &cpuctx->recursion[0]; |
3754 | } | 3753 | } |
3755 | 3754 | ||
3756 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | 3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, |
3757 | u64 nr, int nmi, | 3756 | u64 nr, int nmi, |
3758 | struct perf_sample_data *data, | 3757 | struct perf_sample_data *data, |
3759 | struct pt_regs *regs) | 3758 | struct pt_regs *regs) |
3760 | { | 3759 | { |
3761 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | 3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); |
3762 | int *recursion = perf_swcounter_recursion_context(cpuctx); | 3761 | int *recursion = perf_swevent_recursion_context(cpuctx); |
3763 | struct perf_counter_context *ctx; | 3762 | struct perf_event_context *ctx; |
3764 | 3763 | ||
3765 | if (*recursion) | 3764 | if (*recursion) |
3766 | goto out; | 3765 | goto out; |
@@ -3768,16 +3767,16 @@ static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | |||
3768 | (*recursion)++; | 3767 | (*recursion)++; |
3769 | barrier(); | 3768 | barrier(); |
3770 | 3769 | ||
3771 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | 3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, |
3772 | nr, nmi, data, regs); | 3771 | nr, nmi, data, regs); |
3773 | rcu_read_lock(); | 3772 | rcu_read_lock(); |
3774 | /* | 3773 | /* |
3775 | * doesn't really matter which of the child contexts the | 3774 | * doesn't really matter which of the child contexts the |
3776 | * events ends up in. | 3775 | * events ends up in. |
3777 | */ | 3776 | */ |
3778 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3777 | ctx = rcu_dereference(current->perf_event_ctxp); |
3779 | if (ctx) | 3778 | if (ctx) |
3780 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data, regs); | 3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); |
3781 | rcu_read_unlock(); | 3780 | rcu_read_unlock(); |
3782 | 3781 | ||
3783 | barrier(); | 3782 | barrier(); |
@@ -3787,57 +3786,57 @@ out: | |||
3787 | put_cpu_var(perf_cpu_context); | 3786 | put_cpu_var(perf_cpu_context); |
3788 | } | 3787 | } |
3789 | 3788 | ||
3790 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | 3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, |
3791 | struct pt_regs *regs, u64 addr) | 3790 | struct pt_regs *regs, u64 addr) |
3792 | { | 3791 | { |
3793 | struct perf_sample_data data = { | 3792 | struct perf_sample_data data = { |
3794 | .addr = addr, | 3793 | .addr = addr, |
3795 | }; | 3794 | }; |
3796 | 3795 | ||
3797 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, | 3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, |
3798 | &data, regs); | 3797 | &data, regs); |
3799 | } | 3798 | } |
3800 | 3799 | ||
3801 | static void perf_swcounter_read(struct perf_counter *counter) | 3800 | static void perf_swevent_read(struct perf_event *event) |
3802 | { | 3801 | { |
3803 | } | 3802 | } |
3804 | 3803 | ||
3805 | static int perf_swcounter_enable(struct perf_counter *counter) | 3804 | static int perf_swevent_enable(struct perf_event *event) |
3806 | { | 3805 | { |
3807 | struct hw_perf_counter *hwc = &counter->hw; | 3806 | struct hw_perf_event *hwc = &event->hw; |
3808 | 3807 | ||
3809 | if (hwc->sample_period) { | 3808 | if (hwc->sample_period) { |
3810 | hwc->last_period = hwc->sample_period; | 3809 | hwc->last_period = hwc->sample_period; |
3811 | perf_swcounter_set_period(counter); | 3810 | perf_swevent_set_period(event); |
3812 | } | 3811 | } |
3813 | return 0; | 3812 | return 0; |
3814 | } | 3813 | } |
3815 | 3814 | ||
3816 | static void perf_swcounter_disable(struct perf_counter *counter) | 3815 | static void perf_swevent_disable(struct perf_event *event) |
3817 | { | 3816 | { |
3818 | } | 3817 | } |
3819 | 3818 | ||
3820 | static const struct pmu perf_ops_generic = { | 3819 | static const struct pmu perf_ops_generic = { |
3821 | .enable = perf_swcounter_enable, | 3820 | .enable = perf_swevent_enable, |
3822 | .disable = perf_swcounter_disable, | 3821 | .disable = perf_swevent_disable, |
3823 | .read = perf_swcounter_read, | 3822 | .read = perf_swevent_read, |
3824 | .unthrottle = perf_swcounter_unthrottle, | 3823 | .unthrottle = perf_swevent_unthrottle, |
3825 | }; | 3824 | }; |
3826 | 3825 | ||
3827 | /* | 3826 | /* |
3828 | * hrtimer based swcounter callback | 3827 | * hrtimer based swevent callback |
3829 | */ | 3828 | */ |
3830 | 3829 | ||
3831 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | 3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) |
3832 | { | 3831 | { |
3833 | enum hrtimer_restart ret = HRTIMER_RESTART; | 3832 | enum hrtimer_restart ret = HRTIMER_RESTART; |
3834 | struct perf_sample_data data; | 3833 | struct perf_sample_data data; |
3835 | struct pt_regs *regs; | 3834 | struct pt_regs *regs; |
3836 | struct perf_counter *counter; | 3835 | struct perf_event *event; |
3837 | u64 period; | 3836 | u64 period; |
3838 | 3837 | ||
3839 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | 3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); |
3840 | counter->pmu->read(counter); | 3839 | event->pmu->read(event); |
3841 | 3840 | ||
3842 | data.addr = 0; | 3841 | data.addr = 0; |
3843 | regs = get_irq_regs(); | 3842 | regs = get_irq_regs(); |
@@ -3845,45 +3844,45 @@ static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | |||
3845 | * In case we exclude kernel IPs or are somehow not in interrupt | 3844 | * In case we exclude kernel IPs or are somehow not in interrupt |
3846 | * context, provide the next best thing, the user IP. | 3845 | * context, provide the next best thing, the user IP. |
3847 | */ | 3846 | */ |
3848 | if ((counter->attr.exclude_kernel || !regs) && | 3847 | if ((event->attr.exclude_kernel || !regs) && |
3849 | !counter->attr.exclude_user) | 3848 | !event->attr.exclude_user) |
3850 | regs = task_pt_regs(current); | 3849 | regs = task_pt_regs(current); |
3851 | 3850 | ||
3852 | if (regs) { | 3851 | if (regs) { |
3853 | if (perf_counter_overflow(counter, 0, &data, regs)) | 3852 | if (perf_event_overflow(event, 0, &data, regs)) |
3854 | ret = HRTIMER_NORESTART; | 3853 | ret = HRTIMER_NORESTART; |
3855 | } | 3854 | } |
3856 | 3855 | ||
3857 | period = max_t(u64, 10000, counter->hw.sample_period); | 3856 | period = max_t(u64, 10000, event->hw.sample_period); |
3858 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
3859 | 3858 | ||
3860 | return ret; | 3859 | return ret; |
3861 | } | 3860 | } |
3862 | 3861 | ||
3863 | /* | 3862 | /* |
3864 | * Software counter: cpu wall time clock | 3863 | * Software event: cpu wall time clock |
3865 | */ | 3864 | */ |
3866 | 3865 | ||
3867 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | 3866 | static void cpu_clock_perf_event_update(struct perf_event *event) |
3868 | { | 3867 | { |
3869 | int cpu = raw_smp_processor_id(); | 3868 | int cpu = raw_smp_processor_id(); |
3870 | s64 prev; | 3869 | s64 prev; |
3871 | u64 now; | 3870 | u64 now; |
3872 | 3871 | ||
3873 | now = cpu_clock(cpu); | 3872 | now = cpu_clock(cpu); |
3874 | prev = atomic64_read(&counter->hw.prev_count); | 3873 | prev = atomic64_read(&event->hw.prev_count); |
3875 | atomic64_set(&counter->hw.prev_count, now); | 3874 | atomic64_set(&event->hw.prev_count, now); |
3876 | atomic64_add(now - prev, &counter->count); | 3875 | atomic64_add(now - prev, &event->count); |
3877 | } | 3876 | } |
3878 | 3877 | ||
3879 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | 3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) |
3880 | { | 3879 | { |
3881 | struct hw_perf_counter *hwc = &counter->hw; | 3880 | struct hw_perf_event *hwc = &event->hw; |
3882 | int cpu = raw_smp_processor_id(); | 3881 | int cpu = raw_smp_processor_id(); |
3883 | 3882 | ||
3884 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | 3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); |
3885 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
3886 | hwc->hrtimer.function = perf_swcounter_hrtimer; | 3885 | hwc->hrtimer.function = perf_swevent_hrtimer; |
3887 | if (hwc->sample_period) { | 3886 | if (hwc->sample_period) { |
3888 | u64 period = max_t(u64, 10000, hwc->sample_period); | 3887 | u64 period = max_t(u64, 10000, hwc->sample_period); |
3889 | __hrtimer_start_range_ns(&hwc->hrtimer, | 3888 | __hrtimer_start_range_ns(&hwc->hrtimer, |
@@ -3894,48 +3893,48 @@ static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | |||
3894 | return 0; | 3893 | return 0; |
3895 | } | 3894 | } |
3896 | 3895 | ||
3897 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | 3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) |
3898 | { | 3897 | { |
3899 | if (counter->hw.sample_period) | 3898 | if (event->hw.sample_period) |
3900 | hrtimer_cancel(&counter->hw.hrtimer); | 3899 | hrtimer_cancel(&event->hw.hrtimer); |
3901 | cpu_clock_perf_counter_update(counter); | 3900 | cpu_clock_perf_event_update(event); |
3902 | } | 3901 | } |
3903 | 3902 | ||
3904 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | 3903 | static void cpu_clock_perf_event_read(struct perf_event *event) |
3905 | { | 3904 | { |
3906 | cpu_clock_perf_counter_update(counter); | 3905 | cpu_clock_perf_event_update(event); |
3907 | } | 3906 | } |
3908 | 3907 | ||
3909 | static const struct pmu perf_ops_cpu_clock = { | 3908 | static const struct pmu perf_ops_cpu_clock = { |
3910 | .enable = cpu_clock_perf_counter_enable, | 3909 | .enable = cpu_clock_perf_event_enable, |
3911 | .disable = cpu_clock_perf_counter_disable, | 3910 | .disable = cpu_clock_perf_event_disable, |
3912 | .read = cpu_clock_perf_counter_read, | 3911 | .read = cpu_clock_perf_event_read, |
3913 | }; | 3912 | }; |
3914 | 3913 | ||
3915 | /* | 3914 | /* |
3916 | * Software counter: task time clock | 3915 | * Software event: task time clock |
3917 | */ | 3916 | */ |
3918 | 3917 | ||
3919 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | 3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) |
3920 | { | 3919 | { |
3921 | u64 prev; | 3920 | u64 prev; |
3922 | s64 delta; | 3921 | s64 delta; |
3923 | 3922 | ||
3924 | prev = atomic64_xchg(&counter->hw.prev_count, now); | 3923 | prev = atomic64_xchg(&event->hw.prev_count, now); |
3925 | delta = now - prev; | 3924 | delta = now - prev; |
3926 | atomic64_add(delta, &counter->count); | 3925 | atomic64_add(delta, &event->count); |
3927 | } | 3926 | } |
3928 | 3927 | ||
3929 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | 3928 | static int task_clock_perf_event_enable(struct perf_event *event) |
3930 | { | 3929 | { |
3931 | struct hw_perf_counter *hwc = &counter->hw; | 3930 | struct hw_perf_event *hwc = &event->hw; |
3932 | u64 now; | 3931 | u64 now; |
3933 | 3932 | ||
3934 | now = counter->ctx->time; | 3933 | now = event->ctx->time; |
3935 | 3934 | ||
3936 | atomic64_set(&hwc->prev_count, now); | 3935 | atomic64_set(&hwc->prev_count, now); |
3937 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
3938 | hwc->hrtimer.function = perf_swcounter_hrtimer; | 3937 | hwc->hrtimer.function = perf_swevent_hrtimer; |
3939 | if (hwc->sample_period) { | 3938 | if (hwc->sample_period) { |
3940 | u64 period = max_t(u64, 10000, hwc->sample_period); | 3939 | u64 period = max_t(u64, 10000, hwc->sample_period); |
3941 | __hrtimer_start_range_ns(&hwc->hrtimer, | 3940 | __hrtimer_start_range_ns(&hwc->hrtimer, |
@@ -3946,38 +3945,38 @@ static int task_clock_perf_counter_enable(struct perf_counter *counter) | |||
3946 | return 0; | 3945 | return 0; |
3947 | } | 3946 | } |
3948 | 3947 | ||
3949 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | 3948 | static void task_clock_perf_event_disable(struct perf_event *event) |
3950 | { | 3949 | { |
3951 | if (counter->hw.sample_period) | 3950 | if (event->hw.sample_period) |
3952 | hrtimer_cancel(&counter->hw.hrtimer); | 3951 | hrtimer_cancel(&event->hw.hrtimer); |
3953 | task_clock_perf_counter_update(counter, counter->ctx->time); | 3952 | task_clock_perf_event_update(event, event->ctx->time); |
3954 | 3953 | ||
3955 | } | 3954 | } |
3956 | 3955 | ||
3957 | static void task_clock_perf_counter_read(struct perf_counter *counter) | 3956 | static void task_clock_perf_event_read(struct perf_event *event) |
3958 | { | 3957 | { |
3959 | u64 time; | 3958 | u64 time; |
3960 | 3959 | ||
3961 | if (!in_nmi()) { | 3960 | if (!in_nmi()) { |
3962 | update_context_time(counter->ctx); | 3961 | update_context_time(event->ctx); |
3963 | time = counter->ctx->time; | 3962 | time = event->ctx->time; |
3964 | } else { | 3963 | } else { |
3965 | u64 now = perf_clock(); | 3964 | u64 now = perf_clock(); |
3966 | u64 delta = now - counter->ctx->timestamp; | 3965 | u64 delta = now - event->ctx->timestamp; |
3967 | time = counter->ctx->time + delta; | 3966 | time = event->ctx->time + delta; |
3968 | } | 3967 | } |
3969 | 3968 | ||
3970 | task_clock_perf_counter_update(counter, time); | 3969 | task_clock_perf_event_update(event, time); |
3971 | } | 3970 | } |
3972 | 3971 | ||
3973 | static const struct pmu perf_ops_task_clock = { | 3972 | static const struct pmu perf_ops_task_clock = { |
3974 | .enable = task_clock_perf_counter_enable, | 3973 | .enable = task_clock_perf_event_enable, |
3975 | .disable = task_clock_perf_counter_disable, | 3974 | .disable = task_clock_perf_event_disable, |
3976 | .read = task_clock_perf_counter_read, | 3975 | .read = task_clock_perf_event_read, |
3977 | }; | 3976 | }; |
3978 | 3977 | ||
3979 | #ifdef CONFIG_EVENT_PROFILE | 3978 | #ifdef CONFIG_EVENT_PROFILE |
3980 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | 3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, |
3981 | int entry_size) | 3980 | int entry_size) |
3982 | { | 3981 | { |
3983 | struct perf_raw_record raw = { | 3982 | struct perf_raw_record raw = { |
@@ -3995,78 +3994,78 @@ void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | |||
3995 | if (!regs) | 3994 | if (!regs) |
3996 | regs = task_pt_regs(current); | 3995 | regs = task_pt_regs(current); |
3997 | 3996 | ||
3998 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | 3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, |
3999 | &data, regs); | 3998 | &data, regs); |
4000 | } | 3999 | } |
4001 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | 4000 | EXPORT_SYMBOL_GPL(perf_tp_event); |
4002 | 4001 | ||
4003 | extern int ftrace_profile_enable(int); | 4002 | extern int ftrace_profile_enable(int); |
4004 | extern void ftrace_profile_disable(int); | 4003 | extern void ftrace_profile_disable(int); |
4005 | 4004 | ||
4006 | static void tp_perf_counter_destroy(struct perf_counter *counter) | 4005 | static void tp_perf_event_destroy(struct perf_event *event) |
4007 | { | 4006 | { |
4008 | ftrace_profile_disable(counter->attr.config); | 4007 | ftrace_profile_disable(event->attr.config); |
4009 | } | 4008 | } |
4010 | 4009 | ||
4011 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4012 | { | 4011 | { |
4013 | /* | 4012 | /* |
4014 | * Raw tracepoint data is a severe data leak, only allow root to | 4013 | * Raw tracepoint data is a severe data leak, only allow root to |
4015 | * have these. | 4014 | * have these. |
4016 | */ | 4015 | */ |
4017 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | 4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && |
4018 | perf_paranoid_tracepoint_raw() && | 4017 | perf_paranoid_tracepoint_raw() && |
4019 | !capable(CAP_SYS_ADMIN)) | 4018 | !capable(CAP_SYS_ADMIN)) |
4020 | return ERR_PTR(-EPERM); | 4019 | return ERR_PTR(-EPERM); |
4021 | 4020 | ||
4022 | if (ftrace_profile_enable(counter->attr.config)) | 4021 | if (ftrace_profile_enable(event->attr.config)) |
4023 | return NULL; | 4022 | return NULL; |
4024 | 4023 | ||
4025 | counter->destroy = tp_perf_counter_destroy; | 4024 | event->destroy = tp_perf_event_destroy; |
4026 | 4025 | ||
4027 | return &perf_ops_generic; | 4026 | return &perf_ops_generic; |
4028 | } | 4027 | } |
4029 | #else | 4028 | #else |
4030 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4031 | { | 4030 | { |
4032 | return NULL; | 4031 | return NULL; |
4033 | } | 4032 | } |
4034 | #endif | 4033 | #endif |
4035 | 4034 | ||
4036 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | 4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
4037 | 4036 | ||
4038 | static void sw_perf_counter_destroy(struct perf_counter *counter) | 4037 | static void sw_perf_event_destroy(struct perf_event *event) |
4039 | { | 4038 | { |
4040 | u64 event = counter->attr.config; | 4039 | u64 event_id = event->attr.config; |
4041 | 4040 | ||
4042 | WARN_ON(counter->parent); | 4041 | WARN_ON(event->parent); |
4043 | 4042 | ||
4044 | atomic_dec(&perf_swcounter_enabled[event]); | 4043 | atomic_dec(&perf_swevent_enabled[event_id]); |
4045 | } | 4044 | } |
4046 | 4045 | ||
4047 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | 4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) |
4048 | { | 4047 | { |
4049 | const struct pmu *pmu = NULL; | 4048 | const struct pmu *pmu = NULL; |
4050 | u64 event = counter->attr.config; | 4049 | u64 event_id = event->attr.config; |
4051 | 4050 | ||
4052 | /* | 4051 | /* |
4053 | * Software counters (currently) can't in general distinguish | 4052 | * Software events (currently) can't in general distinguish |
4054 | * between user, kernel and hypervisor events. | 4053 | * between user, kernel and hypervisor events. |
4055 | * However, context switches and cpu migrations are considered | 4054 | * However, context switches and cpu migrations are considered |
4056 | * to be kernel events, and page faults are never hypervisor | 4055 | * to be kernel events, and page faults are never hypervisor |
4057 | * events. | 4056 | * events. |
4058 | */ | 4057 | */ |
4059 | switch (event) { | 4058 | switch (event_id) { |
4060 | case PERF_COUNT_SW_CPU_CLOCK: | 4059 | case PERF_COUNT_SW_CPU_CLOCK: |
4061 | pmu = &perf_ops_cpu_clock; | 4060 | pmu = &perf_ops_cpu_clock; |
4062 | 4061 | ||
4063 | break; | 4062 | break; |
4064 | case PERF_COUNT_SW_TASK_CLOCK: | 4063 | case PERF_COUNT_SW_TASK_CLOCK: |
4065 | /* | 4064 | /* |
4066 | * If the user instantiates this as a per-cpu counter, | 4065 | * If the user instantiates this as a per-cpu event, |
4067 | * use the cpu_clock counter instead. | 4066 | * use the cpu_clock event instead. |
4068 | */ | 4067 | */ |
4069 | if (counter->ctx->task) | 4068 | if (event->ctx->task) |
4070 | pmu = &perf_ops_task_clock; | 4069 | pmu = &perf_ops_task_clock; |
4071 | else | 4070 | else |
4072 | pmu = &perf_ops_cpu_clock; | 4071 | pmu = &perf_ops_cpu_clock; |
@@ -4077,9 +4076,9 @@ static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | |||
4077 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | 4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: |
4078 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | 4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: |
4079 | case PERF_COUNT_SW_CPU_MIGRATIONS: | 4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: |
4080 | if (!counter->parent) { | 4079 | if (!event->parent) { |
4081 | atomic_inc(&perf_swcounter_enabled[event]); | 4080 | atomic_inc(&perf_swevent_enabled[event_id]); |
4082 | counter->destroy = sw_perf_counter_destroy; | 4081 | event->destroy = sw_perf_event_destroy; |
4083 | } | 4082 | } |
4084 | pmu = &perf_ops_generic; | 4083 | pmu = &perf_ops_generic; |
4085 | break; | 4084 | break; |
@@ -4089,62 +4088,62 @@ static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | |||
4089 | } | 4088 | } |
4090 | 4089 | ||
4091 | /* | 4090 | /* |
4092 | * Allocate and initialize a counter structure | 4091 | * Allocate and initialize a event structure |
4093 | */ | 4092 | */ |
4094 | static struct perf_counter * | 4093 | static struct perf_event * |
4095 | perf_counter_alloc(struct perf_counter_attr *attr, | 4094 | perf_event_alloc(struct perf_event_attr *attr, |
4096 | int cpu, | 4095 | int cpu, |
4097 | struct perf_counter_context *ctx, | 4096 | struct perf_event_context *ctx, |
4098 | struct perf_counter *group_leader, | 4097 | struct perf_event *group_leader, |
4099 | struct perf_counter *parent_counter, | 4098 | struct perf_event *parent_event, |
4100 | gfp_t gfpflags) | 4099 | gfp_t gfpflags) |
4101 | { | 4100 | { |
4102 | const struct pmu *pmu; | 4101 | const struct pmu *pmu; |
4103 | struct perf_counter *counter; | 4102 | struct perf_event *event; |
4104 | struct hw_perf_counter *hwc; | 4103 | struct hw_perf_event *hwc; |
4105 | long err; | 4104 | long err; |
4106 | 4105 | ||
4107 | counter = kzalloc(sizeof(*counter), gfpflags); | 4106 | event = kzalloc(sizeof(*event), gfpflags); |
4108 | if (!counter) | 4107 | if (!event) |
4109 | return ERR_PTR(-ENOMEM); | 4108 | return ERR_PTR(-ENOMEM); |
4110 | 4109 | ||
4111 | /* | 4110 | /* |
4112 | * Single counters are their own group leaders, with an | 4111 | * Single events are their own group leaders, with an |
4113 | * empty sibling list: | 4112 | * empty sibling list: |
4114 | */ | 4113 | */ |
4115 | if (!group_leader) | 4114 | if (!group_leader) |
4116 | group_leader = counter; | 4115 | group_leader = event; |
4117 | 4116 | ||
4118 | mutex_init(&counter->child_mutex); | 4117 | mutex_init(&event->child_mutex); |
4119 | INIT_LIST_HEAD(&counter->child_list); | 4118 | INIT_LIST_HEAD(&event->child_list); |
4120 | 4119 | ||
4121 | INIT_LIST_HEAD(&counter->list_entry); | 4120 | INIT_LIST_HEAD(&event->group_entry); |
4122 | INIT_LIST_HEAD(&counter->event_entry); | 4121 | INIT_LIST_HEAD(&event->event_entry); |
4123 | INIT_LIST_HEAD(&counter->sibling_list); | 4122 | INIT_LIST_HEAD(&event->sibling_list); |
4124 | init_waitqueue_head(&counter->waitq); | 4123 | init_waitqueue_head(&event->waitq); |
4125 | 4124 | ||
4126 | mutex_init(&counter->mmap_mutex); | 4125 | mutex_init(&event->mmap_mutex); |
4127 | 4126 | ||
4128 | counter->cpu = cpu; | 4127 | event->cpu = cpu; |
4129 | counter->attr = *attr; | 4128 | event->attr = *attr; |
4130 | counter->group_leader = group_leader; | 4129 | event->group_leader = group_leader; |
4131 | counter->pmu = NULL; | 4130 | event->pmu = NULL; |
4132 | counter->ctx = ctx; | 4131 | event->ctx = ctx; |
4133 | counter->oncpu = -1; | 4132 | event->oncpu = -1; |
4134 | 4133 | ||
4135 | counter->parent = parent_counter; | 4134 | event->parent = parent_event; |
4136 | 4135 | ||
4137 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | 4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); |
4138 | counter->id = atomic64_inc_return(&perf_counter_id); | 4137 | event->id = atomic64_inc_return(&perf_event_id); |
4139 | 4138 | ||
4140 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 4139 | event->state = PERF_EVENT_STATE_INACTIVE; |
4141 | 4140 | ||
4142 | if (attr->disabled) | 4141 | if (attr->disabled) |
4143 | counter->state = PERF_COUNTER_STATE_OFF; | 4142 | event->state = PERF_EVENT_STATE_OFF; |
4144 | 4143 | ||
4145 | pmu = NULL; | 4144 | pmu = NULL; |
4146 | 4145 | ||
4147 | hwc = &counter->hw; | 4146 | hwc = &event->hw; |
4148 | hwc->sample_period = attr->sample_period; | 4147 | hwc->sample_period = attr->sample_period; |
4149 | if (attr->freq && attr->sample_freq) | 4148 | if (attr->freq && attr->sample_freq) |
4150 | hwc->sample_period = 1; | 4149 | hwc->sample_period = 1; |
@@ -4153,7 +4152,7 @@ perf_counter_alloc(struct perf_counter_attr *attr, | |||
4153 | atomic64_set(&hwc->period_left, hwc->sample_period); | 4152 | atomic64_set(&hwc->period_left, hwc->sample_period); |
4154 | 4153 | ||
4155 | /* | 4154 | /* |
4156 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | 4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events |
4157 | */ | 4156 | */ |
4158 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | 4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) |
4159 | goto done; | 4158 | goto done; |
@@ -4162,15 +4161,15 @@ perf_counter_alloc(struct perf_counter_attr *attr, | |||
4162 | case PERF_TYPE_RAW: | 4161 | case PERF_TYPE_RAW: |
4163 | case PERF_TYPE_HARDWARE: | 4162 | case PERF_TYPE_HARDWARE: |
4164 | case PERF_TYPE_HW_CACHE: | 4163 | case PERF_TYPE_HW_CACHE: |
4165 | pmu = hw_perf_counter_init(counter); | 4164 | pmu = hw_perf_event_init(event); |
4166 | break; | 4165 | break; |
4167 | 4166 | ||
4168 | case PERF_TYPE_SOFTWARE: | 4167 | case PERF_TYPE_SOFTWARE: |
4169 | pmu = sw_perf_counter_init(counter); | 4168 | pmu = sw_perf_event_init(event); |
4170 | break; | 4169 | break; |
4171 | 4170 | ||
4172 | case PERF_TYPE_TRACEPOINT: | 4171 | case PERF_TYPE_TRACEPOINT: |
4173 | pmu = tp_perf_counter_init(counter); | 4172 | pmu = tp_perf_event_init(event); |
4174 | break; | 4173 | break; |
4175 | 4174 | ||
4176 | default: | 4175 | default: |
@@ -4184,29 +4183,29 @@ done: | |||
4184 | err = PTR_ERR(pmu); | 4183 | err = PTR_ERR(pmu); |
4185 | 4184 | ||
4186 | if (err) { | 4185 | if (err) { |
4187 | if (counter->ns) | 4186 | if (event->ns) |
4188 | put_pid_ns(counter->ns); | 4187 | put_pid_ns(event->ns); |
4189 | kfree(counter); | 4188 | kfree(event); |
4190 | return ERR_PTR(err); | 4189 | return ERR_PTR(err); |
4191 | } | 4190 | } |
4192 | 4191 | ||
4193 | counter->pmu = pmu; | 4192 | event->pmu = pmu; |
4194 | 4193 | ||
4195 | if (!counter->parent) { | 4194 | if (!event->parent) { |
4196 | atomic_inc(&nr_counters); | 4195 | atomic_inc(&nr_events); |
4197 | if (counter->attr.mmap) | 4196 | if (event->attr.mmap) |
4198 | atomic_inc(&nr_mmap_counters); | 4197 | atomic_inc(&nr_mmap_events); |
4199 | if (counter->attr.comm) | 4198 | if (event->attr.comm) |
4200 | atomic_inc(&nr_comm_counters); | 4199 | atomic_inc(&nr_comm_events); |
4201 | if (counter->attr.task) | 4200 | if (event->attr.task) |
4202 | atomic_inc(&nr_task_counters); | 4201 | atomic_inc(&nr_task_events); |
4203 | } | 4202 | } |
4204 | 4203 | ||
4205 | return counter; | 4204 | return event; |
4206 | } | 4205 | } |
4207 | 4206 | ||
4208 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | 4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, |
4209 | struct perf_counter_attr *attr) | 4208 | struct perf_event_attr *attr) |
4210 | { | 4209 | { |
4211 | u32 size; | 4210 | u32 size; |
4212 | int ret; | 4211 | int ret; |
@@ -4285,11 +4284,11 @@ err_size: | |||
4285 | goto out; | 4284 | goto out; |
4286 | } | 4285 | } |
4287 | 4286 | ||
4288 | int perf_counter_set_output(struct perf_counter *counter, int output_fd) | 4287 | int perf_event_set_output(struct perf_event *event, int output_fd) |
4289 | { | 4288 | { |
4290 | struct perf_counter *output_counter = NULL; | 4289 | struct perf_event *output_event = NULL; |
4291 | struct file *output_file = NULL; | 4290 | struct file *output_file = NULL; |
4292 | struct perf_counter *old_output; | 4291 | struct perf_event *old_output; |
4293 | int fput_needed = 0; | 4292 | int fput_needed = 0; |
4294 | int ret = -EINVAL; | 4293 | int ret = -EINVAL; |
4295 | 4294 | ||
@@ -4303,28 +4302,28 @@ int perf_counter_set_output(struct perf_counter *counter, int output_fd) | |||
4303 | if (output_file->f_op != &perf_fops) | 4302 | if (output_file->f_op != &perf_fops) |
4304 | goto out; | 4303 | goto out; |
4305 | 4304 | ||
4306 | output_counter = output_file->private_data; | 4305 | output_event = output_file->private_data; |
4307 | 4306 | ||
4308 | /* Don't chain output fds */ | 4307 | /* Don't chain output fds */ |
4309 | if (output_counter->output) | 4308 | if (output_event->output) |
4310 | goto out; | 4309 | goto out; |
4311 | 4310 | ||
4312 | /* Don't set an output fd when we already have an output channel */ | 4311 | /* Don't set an output fd when we already have an output channel */ |
4313 | if (counter->data) | 4312 | if (event->data) |
4314 | goto out; | 4313 | goto out; |
4315 | 4314 | ||
4316 | atomic_long_inc(&output_file->f_count); | 4315 | atomic_long_inc(&output_file->f_count); |
4317 | 4316 | ||
4318 | set: | 4317 | set: |
4319 | mutex_lock(&counter->mmap_mutex); | 4318 | mutex_lock(&event->mmap_mutex); |
4320 | old_output = counter->output; | 4319 | old_output = event->output; |
4321 | rcu_assign_pointer(counter->output, output_counter); | 4320 | rcu_assign_pointer(event->output, output_event); |
4322 | mutex_unlock(&counter->mmap_mutex); | 4321 | mutex_unlock(&event->mmap_mutex); |
4323 | 4322 | ||
4324 | if (old_output) { | 4323 | if (old_output) { |
4325 | /* | 4324 | /* |
4326 | * we need to make sure no existing perf_output_*() | 4325 | * we need to make sure no existing perf_output_*() |
4327 | * is still referencing this counter. | 4326 | * is still referencing this event. |
4328 | */ | 4327 | */ |
4329 | synchronize_rcu(); | 4328 | synchronize_rcu(); |
4330 | fput(old_output->filp); | 4329 | fput(old_output->filp); |
@@ -4337,21 +4336,21 @@ out: | |||
4337 | } | 4336 | } |
4338 | 4337 | ||
4339 | /** | 4338 | /** |
4340 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | 4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu |
4341 | * | 4340 | * |
4342 | * @attr_uptr: event type attributes for monitoring/sampling | 4341 | * @attr_uptr: event_id type attributes for monitoring/sampling |
4343 | * @pid: target pid | 4342 | * @pid: target pid |
4344 | * @cpu: target cpu | 4343 | * @cpu: target cpu |
4345 | * @group_fd: group leader counter fd | 4344 | * @group_fd: group leader event fd |
4346 | */ | 4345 | */ |
4347 | SYSCALL_DEFINE5(perf_counter_open, | 4346 | SYSCALL_DEFINE5(perf_event_open, |
4348 | struct perf_counter_attr __user *, attr_uptr, | 4347 | struct perf_event_attr __user *, attr_uptr, |
4349 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
4350 | { | 4349 | { |
4351 | struct perf_counter *counter, *group_leader; | 4350 | struct perf_event *event, *group_leader; |
4352 | struct perf_counter_attr attr; | 4351 | struct perf_event_attr attr; |
4353 | struct perf_counter_context *ctx; | 4352 | struct perf_event_context *ctx; |
4354 | struct file *counter_file = NULL; | 4353 | struct file *event_file = NULL; |
4355 | struct file *group_file = NULL; | 4354 | struct file *group_file = NULL; |
4356 | int fput_needed = 0; | 4355 | int fput_needed = 0; |
4357 | int fput_needed2 = 0; | 4356 | int fput_needed2 = 0; |
@@ -4371,7 +4370,7 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4371 | } | 4370 | } |
4372 | 4371 | ||
4373 | if (attr.freq) { | 4372 | if (attr.freq) { |
4374 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | 4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) |
4375 | return -EINVAL; | 4374 | return -EINVAL; |
4376 | } | 4375 | } |
4377 | 4376 | ||
@@ -4383,7 +4382,7 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4383 | return PTR_ERR(ctx); | 4382 | return PTR_ERR(ctx); |
4384 | 4383 | ||
4385 | /* | 4384 | /* |
4386 | * Look up the group leader (we will attach this counter to it): | 4385 | * Look up the group leader (we will attach this event to it): |
4387 | */ | 4386 | */ |
4388 | group_leader = NULL; | 4387 | group_leader = NULL; |
4389 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | 4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { |
@@ -4414,45 +4413,45 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4414 | goto err_put_context; | 4413 | goto err_put_context; |
4415 | } | 4414 | } |
4416 | 4415 | ||
4417 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | 4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, |
4418 | NULL, GFP_KERNEL); | 4417 | NULL, GFP_KERNEL); |
4419 | err = PTR_ERR(counter); | 4418 | err = PTR_ERR(event); |
4420 | if (IS_ERR(counter)) | 4419 | if (IS_ERR(event)) |
4421 | goto err_put_context; | 4420 | goto err_put_context; |
4422 | 4421 | ||
4423 | err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | 4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); |
4424 | if (err < 0) | 4423 | if (err < 0) |
4425 | goto err_free_put_context; | 4424 | goto err_free_put_context; |
4426 | 4425 | ||
4427 | counter_file = fget_light(err, &fput_needed2); | 4426 | event_file = fget_light(err, &fput_needed2); |
4428 | if (!counter_file) | 4427 | if (!event_file) |
4429 | goto err_free_put_context; | 4428 | goto err_free_put_context; |
4430 | 4429 | ||
4431 | if (flags & PERF_FLAG_FD_OUTPUT) { | 4430 | if (flags & PERF_FLAG_FD_OUTPUT) { |
4432 | err = perf_counter_set_output(counter, group_fd); | 4431 | err = perf_event_set_output(event, group_fd); |
4433 | if (err) | 4432 | if (err) |
4434 | goto err_fput_free_put_context; | 4433 | goto err_fput_free_put_context; |
4435 | } | 4434 | } |
4436 | 4435 | ||
4437 | counter->filp = counter_file; | 4436 | event->filp = event_file; |
4438 | WARN_ON_ONCE(ctx->parent_ctx); | 4437 | WARN_ON_ONCE(ctx->parent_ctx); |
4439 | mutex_lock(&ctx->mutex); | 4438 | mutex_lock(&ctx->mutex); |
4440 | perf_install_in_context(ctx, counter, cpu); | 4439 | perf_install_in_context(ctx, event, cpu); |
4441 | ++ctx->generation; | 4440 | ++ctx->generation; |
4442 | mutex_unlock(&ctx->mutex); | 4441 | mutex_unlock(&ctx->mutex); |
4443 | 4442 | ||
4444 | counter->owner = current; | 4443 | event->owner = current; |
4445 | get_task_struct(current); | 4444 | get_task_struct(current); |
4446 | mutex_lock(¤t->perf_counter_mutex); | 4445 | mutex_lock(¤t->perf_event_mutex); |
4447 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | 4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
4448 | mutex_unlock(¤t->perf_counter_mutex); | 4447 | mutex_unlock(¤t->perf_event_mutex); |
4449 | 4448 | ||
4450 | err_fput_free_put_context: | 4449 | err_fput_free_put_context: |
4451 | fput_light(counter_file, fput_needed2); | 4450 | fput_light(event_file, fput_needed2); |
4452 | 4451 | ||
4453 | err_free_put_context: | 4452 | err_free_put_context: |
4454 | if (err < 0) | 4453 | if (err < 0) |
4455 | kfree(counter); | 4454 | kfree(event); |
4456 | 4455 | ||
4457 | err_put_context: | 4456 | err_put_context: |
4458 | if (err < 0) | 4457 | if (err < 0) |
@@ -4464,88 +4463,88 @@ err_put_context: | |||
4464 | } | 4463 | } |
4465 | 4464 | ||
4466 | /* | 4465 | /* |
4467 | * inherit a counter from parent task to child task: | 4466 | * inherit a event from parent task to child task: |
4468 | */ | 4467 | */ |
4469 | static struct perf_counter * | 4468 | static struct perf_event * |
4470 | inherit_counter(struct perf_counter *parent_counter, | 4469 | inherit_event(struct perf_event *parent_event, |
4471 | struct task_struct *parent, | 4470 | struct task_struct *parent, |
4472 | struct perf_counter_context *parent_ctx, | 4471 | struct perf_event_context *parent_ctx, |
4473 | struct task_struct *child, | 4472 | struct task_struct *child, |
4474 | struct perf_counter *group_leader, | 4473 | struct perf_event *group_leader, |
4475 | struct perf_counter_context *child_ctx) | 4474 | struct perf_event_context *child_ctx) |
4476 | { | 4475 | { |
4477 | struct perf_counter *child_counter; | 4476 | struct perf_event *child_event; |
4478 | 4477 | ||
4479 | /* | 4478 | /* |
4480 | * Instead of creating recursive hierarchies of counters, | 4479 | * Instead of creating recursive hierarchies of events, |
4481 | * we link inherited counters back to the original parent, | 4480 | * we link inherited events back to the original parent, |
4482 | * which has a filp for sure, which we use as the reference | 4481 | * which has a filp for sure, which we use as the reference |
4483 | * count: | 4482 | * count: |
4484 | */ | 4483 | */ |
4485 | if (parent_counter->parent) | 4484 | if (parent_event->parent) |
4486 | parent_counter = parent_counter->parent; | 4485 | parent_event = parent_event->parent; |
4487 | 4486 | ||
4488 | child_counter = perf_counter_alloc(&parent_counter->attr, | 4487 | child_event = perf_event_alloc(&parent_event->attr, |
4489 | parent_counter->cpu, child_ctx, | 4488 | parent_event->cpu, child_ctx, |
4490 | group_leader, parent_counter, | 4489 | group_leader, parent_event, |
4491 | GFP_KERNEL); | 4490 | GFP_KERNEL); |
4492 | if (IS_ERR(child_counter)) | 4491 | if (IS_ERR(child_event)) |
4493 | return child_counter; | 4492 | return child_event; |
4494 | get_ctx(child_ctx); | 4493 | get_ctx(child_ctx); |
4495 | 4494 | ||
4496 | /* | 4495 | /* |
4497 | * Make the child state follow the state of the parent counter, | 4496 | * Make the child state follow the state of the parent event, |
4498 | * not its attr.disabled bit. We hold the parent's mutex, | 4497 | * not its attr.disabled bit. We hold the parent's mutex, |
4499 | * so we won't race with perf_counter_{en, dis}able_family. | 4498 | * so we won't race with perf_event_{en, dis}able_family. |
4500 | */ | 4499 | */ |
4501 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | 4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) |
4502 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | 4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; |
4503 | else | 4502 | else |
4504 | child_counter->state = PERF_COUNTER_STATE_OFF; | 4503 | child_event->state = PERF_EVENT_STATE_OFF; |
4505 | 4504 | ||
4506 | if (parent_counter->attr.freq) | 4505 | if (parent_event->attr.freq) |
4507 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | 4506 | child_event->hw.sample_period = parent_event->hw.sample_period; |
4508 | 4507 | ||
4509 | /* | 4508 | /* |
4510 | * Link it up in the child's context: | 4509 | * Link it up in the child's context: |
4511 | */ | 4510 | */ |
4512 | add_counter_to_ctx(child_counter, child_ctx); | 4511 | add_event_to_ctx(child_event, child_ctx); |
4513 | 4512 | ||
4514 | /* | 4513 | /* |
4515 | * Get a reference to the parent filp - we will fput it | 4514 | * Get a reference to the parent filp - we will fput it |
4516 | * when the child counter exits. This is safe to do because | 4515 | * when the child event exits. This is safe to do because |
4517 | * we are in the parent and we know that the filp still | 4516 | * we are in the parent and we know that the filp still |
4518 | * exists and has a nonzero count: | 4517 | * exists and has a nonzero count: |
4519 | */ | 4518 | */ |
4520 | atomic_long_inc(&parent_counter->filp->f_count); | 4519 | atomic_long_inc(&parent_event->filp->f_count); |
4521 | 4520 | ||
4522 | /* | 4521 | /* |
4523 | * Link this into the parent counter's child list | 4522 | * Link this into the parent event's child list |
4524 | */ | 4523 | */ |
4525 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
4526 | mutex_lock(&parent_counter->child_mutex); | 4525 | mutex_lock(&parent_event->child_mutex); |
4527 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | 4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); |
4528 | mutex_unlock(&parent_counter->child_mutex); | 4527 | mutex_unlock(&parent_event->child_mutex); |
4529 | 4528 | ||
4530 | return child_counter; | 4529 | return child_event; |
4531 | } | 4530 | } |
4532 | 4531 | ||
4533 | static int inherit_group(struct perf_counter *parent_counter, | 4532 | static int inherit_group(struct perf_event *parent_event, |
4534 | struct task_struct *parent, | 4533 | struct task_struct *parent, |
4535 | struct perf_counter_context *parent_ctx, | 4534 | struct perf_event_context *parent_ctx, |
4536 | struct task_struct *child, | 4535 | struct task_struct *child, |
4537 | struct perf_counter_context *child_ctx) | 4536 | struct perf_event_context *child_ctx) |
4538 | { | 4537 | { |
4539 | struct perf_counter *leader; | 4538 | struct perf_event *leader; |
4540 | struct perf_counter *sub; | 4539 | struct perf_event *sub; |
4541 | struct perf_counter *child_ctr; | 4540 | struct perf_event *child_ctr; |
4542 | 4541 | ||
4543 | leader = inherit_counter(parent_counter, parent, parent_ctx, | 4542 | leader = inherit_event(parent_event, parent, parent_ctx, |
4544 | child, NULL, child_ctx); | 4543 | child, NULL, child_ctx); |
4545 | if (IS_ERR(leader)) | 4544 | if (IS_ERR(leader)) |
4546 | return PTR_ERR(leader); | 4545 | return PTR_ERR(leader); |
4547 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | 4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { |
4548 | child_ctr = inherit_counter(sub, parent, parent_ctx, | 4547 | child_ctr = inherit_event(sub, parent, parent_ctx, |
4549 | child, leader, child_ctx); | 4548 | child, leader, child_ctx); |
4550 | if (IS_ERR(child_ctr)) | 4549 | if (IS_ERR(child_ctr)) |
4551 | return PTR_ERR(child_ctr); | 4550 | return PTR_ERR(child_ctr); |
@@ -4553,74 +4552,74 @@ static int inherit_group(struct perf_counter *parent_counter, | |||
4553 | return 0; | 4552 | return 0; |
4554 | } | 4553 | } |
4555 | 4554 | ||
4556 | static void sync_child_counter(struct perf_counter *child_counter, | 4555 | static void sync_child_event(struct perf_event *child_event, |
4557 | struct task_struct *child) | 4556 | struct task_struct *child) |
4558 | { | 4557 | { |
4559 | struct perf_counter *parent_counter = child_counter->parent; | 4558 | struct perf_event *parent_event = child_event->parent; |
4560 | u64 child_val; | 4559 | u64 child_val; |
4561 | 4560 | ||
4562 | if (child_counter->attr.inherit_stat) | 4561 | if (child_event->attr.inherit_stat) |
4563 | perf_counter_read_event(child_counter, child); | 4562 | perf_event_read_event(child_event, child); |
4564 | 4563 | ||
4565 | child_val = atomic64_read(&child_counter->count); | 4564 | child_val = atomic64_read(&child_event->count); |
4566 | 4565 | ||
4567 | /* | 4566 | /* |
4568 | * Add back the child's count to the parent's count: | 4567 | * Add back the child's count to the parent's count: |
4569 | */ | 4568 | */ |
4570 | atomic64_add(child_val, &parent_counter->count); | 4569 | atomic64_add(child_val, &parent_event->count); |
4571 | atomic64_add(child_counter->total_time_enabled, | 4570 | atomic64_add(child_event->total_time_enabled, |
4572 | &parent_counter->child_total_time_enabled); | 4571 | &parent_event->child_total_time_enabled); |
4573 | atomic64_add(child_counter->total_time_running, | 4572 | atomic64_add(child_event->total_time_running, |
4574 | &parent_counter->child_total_time_running); | 4573 | &parent_event->child_total_time_running); |
4575 | 4574 | ||
4576 | /* | 4575 | /* |
4577 | * Remove this counter from the parent's list | 4576 | * Remove this event from the parent's list |
4578 | */ | 4577 | */ |
4579 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
4580 | mutex_lock(&parent_counter->child_mutex); | 4579 | mutex_lock(&parent_event->child_mutex); |
4581 | list_del_init(&child_counter->child_list); | 4580 | list_del_init(&child_event->child_list); |
4582 | mutex_unlock(&parent_counter->child_mutex); | 4581 | mutex_unlock(&parent_event->child_mutex); |
4583 | 4582 | ||
4584 | /* | 4583 | /* |
4585 | * Release the parent counter, if this was the last | 4584 | * Release the parent event, if this was the last |
4586 | * reference to it. | 4585 | * reference to it. |
4587 | */ | 4586 | */ |
4588 | fput(parent_counter->filp); | 4587 | fput(parent_event->filp); |
4589 | } | 4588 | } |
4590 | 4589 | ||
4591 | static void | 4590 | static void |
4592 | __perf_counter_exit_task(struct perf_counter *child_counter, | 4591 | __perf_event_exit_task(struct perf_event *child_event, |
4593 | struct perf_counter_context *child_ctx, | 4592 | struct perf_event_context *child_ctx, |
4594 | struct task_struct *child) | 4593 | struct task_struct *child) |
4595 | { | 4594 | { |
4596 | struct perf_counter *parent_counter; | 4595 | struct perf_event *parent_event; |
4597 | 4596 | ||
4598 | update_counter_times(child_counter); | 4597 | update_event_times(child_event); |
4599 | perf_counter_remove_from_context(child_counter); | 4598 | perf_event_remove_from_context(child_event); |
4600 | 4599 | ||
4601 | parent_counter = child_counter->parent; | 4600 | parent_event = child_event->parent; |
4602 | /* | 4601 | /* |
4603 | * It can happen that parent exits first, and has counters | 4602 | * It can happen that parent exits first, and has events |
4604 | * that are still around due to the child reference. These | 4603 | * that are still around due to the child reference. These |
4605 | * counters need to be zapped - but otherwise linger. | 4604 | * events need to be zapped - but otherwise linger. |
4606 | */ | 4605 | */ |
4607 | if (parent_counter) { | 4606 | if (parent_event) { |
4608 | sync_child_counter(child_counter, child); | 4607 | sync_child_event(child_event, child); |
4609 | free_counter(child_counter); | 4608 | free_event(child_event); |
4610 | } | 4609 | } |
4611 | } | 4610 | } |
4612 | 4611 | ||
4613 | /* | 4612 | /* |
4614 | * When a child task exits, feed back counter values to parent counters. | 4613 | * When a child task exits, feed back event values to parent events. |
4615 | */ | 4614 | */ |
4616 | void perf_counter_exit_task(struct task_struct *child) | 4615 | void perf_event_exit_task(struct task_struct *child) |
4617 | { | 4616 | { |
4618 | struct perf_counter *child_counter, *tmp; | 4617 | struct perf_event *child_event, *tmp; |
4619 | struct perf_counter_context *child_ctx; | 4618 | struct perf_event_context *child_ctx; |
4620 | unsigned long flags; | 4619 | unsigned long flags; |
4621 | 4620 | ||
4622 | if (likely(!child->perf_counter_ctxp)) { | 4621 | if (likely(!child->perf_event_ctxp)) { |
4623 | perf_counter_task(child, NULL, 0); | 4622 | perf_event_task(child, NULL, 0); |
4624 | return; | 4623 | return; |
4625 | } | 4624 | } |
4626 | 4625 | ||
@@ -4631,37 +4630,37 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4631 | * scheduled, so we are now safe from rescheduling changing | 4630 | * scheduled, so we are now safe from rescheduling changing |
4632 | * our context. | 4631 | * our context. |
4633 | */ | 4632 | */ |
4634 | child_ctx = child->perf_counter_ctxp; | 4633 | child_ctx = child->perf_event_ctxp; |
4635 | __perf_counter_task_sched_out(child_ctx); | 4634 | __perf_event_task_sched_out(child_ctx); |
4636 | 4635 | ||
4637 | /* | 4636 | /* |
4638 | * Take the context lock here so that if find_get_context is | 4637 | * Take the context lock here so that if find_get_context is |
4639 | * reading child->perf_counter_ctxp, we wait until it has | 4638 | * reading child->perf_event_ctxp, we wait until it has |
4640 | * incremented the context's refcount before we do put_ctx below. | 4639 | * incremented the context's refcount before we do put_ctx below. |
4641 | */ | 4640 | */ |
4642 | spin_lock(&child_ctx->lock); | 4641 | spin_lock(&child_ctx->lock); |
4643 | child->perf_counter_ctxp = NULL; | 4642 | child->perf_event_ctxp = NULL; |
4644 | /* | 4643 | /* |
4645 | * If this context is a clone; unclone it so it can't get | 4644 | * If this context is a clone; unclone it so it can't get |
4646 | * swapped to another process while we're removing all | 4645 | * swapped to another process while we're removing all |
4647 | * the counters from it. | 4646 | * the events from it. |
4648 | */ | 4647 | */ |
4649 | unclone_ctx(child_ctx); | 4648 | unclone_ctx(child_ctx); |
4650 | spin_unlock_irqrestore(&child_ctx->lock, flags); | 4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); |
4651 | 4650 | ||
4652 | /* | 4651 | /* |
4653 | * Report the task dead after unscheduling the counters so that we | 4652 | * Report the task dead after unscheduling the events so that we |
4654 | * won't get any samples after PERF_EVENT_EXIT. We can however still | 4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still |
4655 | * get a few PERF_EVENT_READ events. | 4654 | * get a few PERF_RECORD_READ events. |
4656 | */ | 4655 | */ |
4657 | perf_counter_task(child, child_ctx, 0); | 4656 | perf_event_task(child, child_ctx, 0); |
4658 | 4657 | ||
4659 | /* | 4658 | /* |
4660 | * We can recurse on the same lock type through: | 4659 | * We can recurse on the same lock type through: |
4661 | * | 4660 | * |
4662 | * __perf_counter_exit_task() | 4661 | * __perf_event_exit_task() |
4663 | * sync_child_counter() | 4662 | * sync_child_event() |
4664 | * fput(parent_counter->filp) | 4663 | * fput(parent_event->filp) |
4665 | * perf_release() | 4664 | * perf_release() |
4666 | * mutex_lock(&ctx->mutex) | 4665 | * mutex_lock(&ctx->mutex) |
4667 | * | 4666 | * |
@@ -4670,16 +4669,16 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4670 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | 4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); |
4671 | 4670 | ||
4672 | again: | 4671 | again: |
4673 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | 4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, |
4674 | list_entry) | 4673 | group_entry) |
4675 | __perf_counter_exit_task(child_counter, child_ctx, child); | 4674 | __perf_event_exit_task(child_event, child_ctx, child); |
4676 | 4675 | ||
4677 | /* | 4676 | /* |
4678 | * If the last counter was a group counter, it will have appended all | 4677 | * If the last event was a group event, it will have appended all |
4679 | * its siblings to the list, but we obtained 'tmp' before that which | 4678 | * its siblings to the list, but we obtained 'tmp' before that which |
4680 | * will still point to the list head terminating the iteration. | 4679 | * will still point to the list head terminating the iteration. |
4681 | */ | 4680 | */ |
4682 | if (!list_empty(&child_ctx->counter_list)) | 4681 | if (!list_empty(&child_ctx->group_list)) |
4683 | goto again; | 4682 | goto again; |
4684 | 4683 | ||
4685 | mutex_unlock(&child_ctx->mutex); | 4684 | mutex_unlock(&child_ctx->mutex); |
@@ -4691,33 +4690,33 @@ again: | |||
4691 | * free an unexposed, unused context as created by inheritance by | 4690 | * free an unexposed, unused context as created by inheritance by |
4692 | * init_task below, used by fork() in case of fail. | 4691 | * init_task below, used by fork() in case of fail. |
4693 | */ | 4692 | */ |
4694 | void perf_counter_free_task(struct task_struct *task) | 4693 | void perf_event_free_task(struct task_struct *task) |
4695 | { | 4694 | { |
4696 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 4695 | struct perf_event_context *ctx = task->perf_event_ctxp; |
4697 | struct perf_counter *counter, *tmp; | 4696 | struct perf_event *event, *tmp; |
4698 | 4697 | ||
4699 | if (!ctx) | 4698 | if (!ctx) |
4700 | return; | 4699 | return; |
4701 | 4700 | ||
4702 | mutex_lock(&ctx->mutex); | 4701 | mutex_lock(&ctx->mutex); |
4703 | again: | 4702 | again: |
4704 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | 4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { |
4705 | struct perf_counter *parent = counter->parent; | 4704 | struct perf_event *parent = event->parent; |
4706 | 4705 | ||
4707 | if (WARN_ON_ONCE(!parent)) | 4706 | if (WARN_ON_ONCE(!parent)) |
4708 | continue; | 4707 | continue; |
4709 | 4708 | ||
4710 | mutex_lock(&parent->child_mutex); | 4709 | mutex_lock(&parent->child_mutex); |
4711 | list_del_init(&counter->child_list); | 4710 | list_del_init(&event->child_list); |
4712 | mutex_unlock(&parent->child_mutex); | 4711 | mutex_unlock(&parent->child_mutex); |
4713 | 4712 | ||
4714 | fput(parent->filp); | 4713 | fput(parent->filp); |
4715 | 4714 | ||
4716 | list_del_counter(counter, ctx); | 4715 | list_del_event(event, ctx); |
4717 | free_counter(counter); | 4716 | free_event(event); |
4718 | } | 4717 | } |
4719 | 4718 | ||
4720 | if (!list_empty(&ctx->counter_list)) | 4719 | if (!list_empty(&ctx->group_list)) |
4721 | goto again; | 4720 | goto again; |
4722 | 4721 | ||
4723 | mutex_unlock(&ctx->mutex); | 4722 | mutex_unlock(&ctx->mutex); |
@@ -4726,37 +4725,37 @@ again: | |||
4726 | } | 4725 | } |
4727 | 4726 | ||
4728 | /* | 4727 | /* |
4729 | * Initialize the perf_counter context in task_struct | 4728 | * Initialize the perf_event context in task_struct |
4730 | */ | 4729 | */ |
4731 | int perf_counter_init_task(struct task_struct *child) | 4730 | int perf_event_init_task(struct task_struct *child) |
4732 | { | 4731 | { |
4733 | struct perf_counter_context *child_ctx, *parent_ctx; | 4732 | struct perf_event_context *child_ctx, *parent_ctx; |
4734 | struct perf_counter_context *cloned_ctx; | 4733 | struct perf_event_context *cloned_ctx; |
4735 | struct perf_counter *counter; | 4734 | struct perf_event *event; |
4736 | struct task_struct *parent = current; | 4735 | struct task_struct *parent = current; |
4737 | int inherited_all = 1; | 4736 | int inherited_all = 1; |
4738 | int ret = 0; | 4737 | int ret = 0; |
4739 | 4738 | ||
4740 | child->perf_counter_ctxp = NULL; | 4739 | child->perf_event_ctxp = NULL; |
4741 | 4740 | ||
4742 | mutex_init(&child->perf_counter_mutex); | 4741 | mutex_init(&child->perf_event_mutex); |
4743 | INIT_LIST_HEAD(&child->perf_counter_list); | 4742 | INIT_LIST_HEAD(&child->perf_event_list); |
4744 | 4743 | ||
4745 | if (likely(!parent->perf_counter_ctxp)) | 4744 | if (likely(!parent->perf_event_ctxp)) |
4746 | return 0; | 4745 | return 0; |
4747 | 4746 | ||
4748 | /* | 4747 | /* |
4749 | * This is executed from the parent task context, so inherit | 4748 | * This is executed from the parent task context, so inherit |
4750 | * counters that have been marked for cloning. | 4749 | * events that have been marked for cloning. |
4751 | * First allocate and initialize a context for the child. | 4750 | * First allocate and initialize a context for the child. |
4752 | */ | 4751 | */ |
4753 | 4752 | ||
4754 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
4755 | if (!child_ctx) | 4754 | if (!child_ctx) |
4756 | return -ENOMEM; | 4755 | return -ENOMEM; |
4757 | 4756 | ||
4758 | __perf_counter_init_context(child_ctx, child); | 4757 | __perf_event_init_context(child_ctx, child); |
4759 | child->perf_counter_ctxp = child_ctx; | 4758 | child->perf_event_ctxp = child_ctx; |
4760 | get_task_struct(child); | 4759 | get_task_struct(child); |
4761 | 4760 | ||
4762 | /* | 4761 | /* |
@@ -4782,16 +4781,16 @@ int perf_counter_init_task(struct task_struct *child) | |||
4782 | * We dont have to disable NMIs - we are only looking at | 4781 | * We dont have to disable NMIs - we are only looking at |
4783 | * the list, not manipulating it: | 4782 | * the list, not manipulating it: |
4784 | */ | 4783 | */ |
4785 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | 4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { |
4786 | if (counter != counter->group_leader) | 4785 | if (event != event->group_leader) |
4787 | continue; | 4786 | continue; |
4788 | 4787 | ||
4789 | if (!counter->attr.inherit) { | 4788 | if (!event->attr.inherit) { |
4790 | inherited_all = 0; | 4789 | inherited_all = 0; |
4791 | continue; | 4790 | continue; |
4792 | } | 4791 | } |
4793 | 4792 | ||
4794 | ret = inherit_group(counter, parent, parent_ctx, | 4793 | ret = inherit_group(event, parent, parent_ctx, |
4795 | child, child_ctx); | 4794 | child, child_ctx); |
4796 | if (ret) { | 4795 | if (ret) { |
4797 | inherited_all = 0; | 4796 | inherited_all = 0; |
@@ -4805,7 +4804,7 @@ int perf_counter_init_task(struct task_struct *child) | |||
4805 | * context, or of whatever the parent is a clone of. | 4804 | * context, or of whatever the parent is a clone of. |
4806 | * Note that if the parent is a clone, it could get | 4805 | * Note that if the parent is a clone, it could get |
4807 | * uncloned at any point, but that doesn't matter | 4806 | * uncloned at any point, but that doesn't matter |
4808 | * because the list of counters and the generation | 4807 | * because the list of events and the generation |
4809 | * count can't have changed since we took the mutex. | 4808 | * count can't have changed since we took the mutex. |
4810 | */ | 4809 | */ |
4811 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | 4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); |
@@ -4826,41 +4825,41 @@ int perf_counter_init_task(struct task_struct *child) | |||
4826 | return ret; | 4825 | return ret; |
4827 | } | 4826 | } |
4828 | 4827 | ||
4829 | static void __cpuinit perf_counter_init_cpu(int cpu) | 4828 | static void __cpuinit perf_event_init_cpu(int cpu) |
4830 | { | 4829 | { |
4831 | struct perf_cpu_context *cpuctx; | 4830 | struct perf_cpu_context *cpuctx; |
4832 | 4831 | ||
4833 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
4834 | __perf_counter_init_context(&cpuctx->ctx, NULL); | 4833 | __perf_event_init_context(&cpuctx->ctx, NULL); |
4835 | 4834 | ||
4836 | spin_lock(&perf_resource_lock); | 4835 | spin_lock(&perf_resource_lock); |
4837 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | 4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; |
4838 | spin_unlock(&perf_resource_lock); | 4837 | spin_unlock(&perf_resource_lock); |
4839 | 4838 | ||
4840 | hw_perf_counter_setup(cpu); | 4839 | hw_perf_event_setup(cpu); |
4841 | } | 4840 | } |
4842 | 4841 | ||
4843 | #ifdef CONFIG_HOTPLUG_CPU | 4842 | #ifdef CONFIG_HOTPLUG_CPU |
4844 | static void __perf_counter_exit_cpu(void *info) | 4843 | static void __perf_event_exit_cpu(void *info) |
4845 | { | 4844 | { |
4846 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
4847 | struct perf_counter_context *ctx = &cpuctx->ctx; | 4846 | struct perf_event_context *ctx = &cpuctx->ctx; |
4848 | struct perf_counter *counter, *tmp; | 4847 | struct perf_event *event, *tmp; |
4849 | 4848 | ||
4850 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | 4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) |
4851 | __perf_counter_remove_from_context(counter); | 4850 | __perf_event_remove_from_context(event); |
4852 | } | 4851 | } |
4853 | static void perf_counter_exit_cpu(int cpu) | 4852 | static void perf_event_exit_cpu(int cpu) |
4854 | { | 4853 | { |
4855 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
4856 | struct perf_counter_context *ctx = &cpuctx->ctx; | 4855 | struct perf_event_context *ctx = &cpuctx->ctx; |
4857 | 4856 | ||
4858 | mutex_lock(&ctx->mutex); | 4857 | mutex_lock(&ctx->mutex); |
4859 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | 4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); |
4860 | mutex_unlock(&ctx->mutex); | 4859 | mutex_unlock(&ctx->mutex); |
4861 | } | 4860 | } |
4862 | #else | 4861 | #else |
4863 | static inline void perf_counter_exit_cpu(int cpu) { } | 4862 | static inline void perf_event_exit_cpu(int cpu) { } |
4864 | #endif | 4863 | #endif |
4865 | 4864 | ||
4866 | static int __cpuinit | 4865 | static int __cpuinit |
@@ -4872,17 +4871,17 @@ perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | |||
4872 | 4871 | ||
4873 | case CPU_UP_PREPARE: | 4872 | case CPU_UP_PREPARE: |
4874 | case CPU_UP_PREPARE_FROZEN: | 4873 | case CPU_UP_PREPARE_FROZEN: |
4875 | perf_counter_init_cpu(cpu); | 4874 | perf_event_init_cpu(cpu); |
4876 | break; | 4875 | break; |
4877 | 4876 | ||
4878 | case CPU_ONLINE: | 4877 | case CPU_ONLINE: |
4879 | case CPU_ONLINE_FROZEN: | 4878 | case CPU_ONLINE_FROZEN: |
4880 | hw_perf_counter_setup_online(cpu); | 4879 | hw_perf_event_setup_online(cpu); |
4881 | break; | 4880 | break; |
4882 | 4881 | ||
4883 | case CPU_DOWN_PREPARE: | 4882 | case CPU_DOWN_PREPARE: |
4884 | case CPU_DOWN_PREPARE_FROZEN: | 4883 | case CPU_DOWN_PREPARE_FROZEN: |
4885 | perf_counter_exit_cpu(cpu); | 4884 | perf_event_exit_cpu(cpu); |
4886 | break; | 4885 | break; |
4887 | 4886 | ||
4888 | default: | 4887 | default: |
@@ -4900,7 +4899,7 @@ static struct notifier_block __cpuinitdata perf_cpu_nb = { | |||
4900 | .priority = 20, | 4899 | .priority = 20, |
4901 | }; | 4900 | }; |
4902 | 4901 | ||
4903 | void __init perf_counter_init(void) | 4902 | void __init perf_event_init(void) |
4904 | { | 4903 | { |
4905 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | 4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, |
4906 | (void *)(long)smp_processor_id()); | 4905 | (void *)(long)smp_processor_id()); |
@@ -4926,7 +4925,7 @@ perf_set_reserve_percpu(struct sysdev_class *class, | |||
4926 | err = strict_strtoul(buf, 10, &val); | 4925 | err = strict_strtoul(buf, 10, &val); |
4927 | if (err) | 4926 | if (err) |
4928 | return err; | 4927 | return err; |
4929 | if (val > perf_max_counters) | 4928 | if (val > perf_max_events) |
4930 | return -EINVAL; | 4929 | return -EINVAL; |
4931 | 4930 | ||
4932 | spin_lock(&perf_resource_lock); | 4931 | spin_lock(&perf_resource_lock); |
@@ -4934,8 +4933,8 @@ perf_set_reserve_percpu(struct sysdev_class *class, | |||
4934 | for_each_online_cpu(cpu) { | 4933 | for_each_online_cpu(cpu) { |
4935 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
4936 | spin_lock_irq(&cpuctx->ctx.lock); | 4935 | spin_lock_irq(&cpuctx->ctx.lock); |
4937 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | 4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, |
4938 | perf_max_counters - perf_reserved_percpu); | 4937 | perf_max_events - perf_reserved_percpu); |
4939 | cpuctx->max_pertask = mpt; | 4938 | cpuctx->max_pertask = mpt; |
4940 | spin_unlock_irq(&cpuctx->ctx.lock); | 4939 | spin_unlock_irq(&cpuctx->ctx.lock); |
4941 | } | 4940 | } |
@@ -4990,12 +4989,12 @@ static struct attribute *perfclass_attrs[] = { | |||
4990 | 4989 | ||
4991 | static struct attribute_group perfclass_attr_group = { | 4990 | static struct attribute_group perfclass_attr_group = { |
4992 | .attrs = perfclass_attrs, | 4991 | .attrs = perfclass_attrs, |
4993 | .name = "perf_counters", | 4992 | .name = "perf_events", |
4994 | }; | 4993 | }; |
4995 | 4994 | ||
4996 | static int __init perf_counter_sysfs_init(void) | 4995 | static int __init perf_event_sysfs_init(void) |
4997 | { | 4996 | { |
4998 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | 4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, |
4999 | &perfclass_attr_group); | 4998 | &perfclass_attr_group); |
5000 | } | 4999 | } |
5001 | device_initcall(perf_counter_sysfs_init); | 5000 | device_initcall(perf_event_sysfs_init); |
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -40,7 +40,7 @@ | |||
40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
45 | 45 | ||
46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
@@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
500 | { | 500 | { |
501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
503 | 502 | ||
504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
505 | &pidhash_shift, NULL, 4096); | ||
506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
507 | 507 | ||
508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
509 | pidhash_size, pidhash_shift, | ||
510 | pidhash_size * sizeof(struct hlist_head)); | ||
511 | |||
512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
513 | if (!pid_hash) | ||
514 | panic("Could not alloc pidhash!\n"); | ||
515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
517 | } | 510 | } |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 821722ae58a7..86b3796b0436 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
@@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old | |||
118 | { | 118 | { |
119 | if (!(flags & CLONE_NEWPID)) | 119 | if (!(flags & CLONE_NEWPID)) |
120 | return get_pid_ns(old_ns); | 120 | return get_pid_ns(old_ns); |
121 | if (flags & CLONE_THREAD) | 121 | if (flags & (CLONE_THREAD|CLONE_PARENT)) |
122 | return ERR_PTR(-EINVAL); | 122 | return ERR_PTR(-EINVAL); |
123 | return create_pid_namespace(old_ns); | 123 | return create_pid_namespace(old_ns); |
124 | } | 124 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -8,17 +8,18 @@ | |||
8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
11 | #include <trace/events/timer.h> | ||
11 | 12 | ||
12 | /* | 13 | /* |
13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
14 | */ | 15 | */ |
15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
16 | { | 17 | { |
17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
18 | 20 | ||
19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
@@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
542 | now); | 543 | now); |
543 | } | 544 | } |
544 | 545 | ||
546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
547 | { | ||
548 | return cputime_eq(expires, cputime_zero) || | ||
549 | cputime_gt(expires, new_exp); | ||
550 | } | ||
551 | |||
552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
553 | { | ||
554 | return !cputime_eq(expires, cputime_zero) && | ||
555 | cputime_le(expires, new_exp); | ||
556 | } | ||
545 | /* | 557 | /* |
546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
@@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
586 | */ | 598 | */ |
587 | 599 | ||
588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
601 | union cpu_time_count *exp = &nt->expires; | ||
602 | |||
589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
590 | default: | 604 | default: |
591 | BUG(); | 605 | BUG(); |
592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
594 | cputime_zero) || | 608 | exp->cpu)) |
595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
596 | nt->expires.cpu)) | ||
597 | p->cputime_expires.prof_exp = | ||
598 | nt->expires.cpu; | ||
599 | break; | 610 | break; |
600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
602 | cputime_zero) || | 613 | exp->cpu)) |
603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
604 | nt->expires.cpu)) | ||
605 | p->cputime_expires.virt_exp = | ||
606 | nt->expires.cpu; | ||
607 | break; | 615 | break; |
608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
611 | nt->expires.sched) | ||
612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
613 | nt->expires.sched; | 620 | exp->sched; |
614 | break; | 621 | break; |
615 | } | 622 | } |
616 | } else { | 623 | } else { |
624 | struct signal_struct *const sig = p->signal; | ||
625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
626 | |||
617 | /* | 627 | /* |
618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
619 | */ | 629 | */ |
@@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
621 | default: | 631 | default: |
622 | BUG(); | 632 | BUG(); |
623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
625 | cputime_zero) && | 635 | exp->cpu)) |
626 | cputime_lt(p->signal->it_virt_expires, | ||
627 | timer->it.cpu.expires.cpu)) | ||
628 | break; | 636 | break; |
629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
630 | timer->it.cpu.expires.cpu; | ||
631 | break; | 638 | break; |
632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
634 | cputime_zero) && | 641 | exp->cpu)) |
635 | cputime_lt(p->signal->it_prof_expires, | ||
636 | timer->it.cpu.expires.cpu)) | ||
637 | break; | 642 | break; |
638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
641 | break; | 646 | break; |
642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
643 | timer->it.cpu.expires.cpu; | ||
644 | break; | 648 | break; |
645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
647 | timer->it.cpu.expires.sched; | ||
648 | break; | 651 | break; |
649 | } | 652 | } |
650 | } | 653 | } |
@@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1072 | } | 1075 | } |
1073 | 1076 | ||
1077 | static u32 onecputick; | ||
1078 | |||
1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
1081 | { | ||
1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
1083 | return; | ||
1084 | |||
1085 | if (cputime_ge(cur_time, it->expires)) { | ||
1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
1087 | it->expires = cputime_add(it->expires, it->incr); | ||
1088 | it->error += it->incr_error; | ||
1089 | if (it->error >= onecputick) { | ||
1090 | it->expires = cputime_sub(it->expires, | ||
1091 | cputime_one_jiffy); | ||
1092 | it->error -= onecputick; | ||
1093 | } | ||
1094 | } else { | ||
1095 | it->expires = cputime_zero; | ||
1096 | } | ||
1097 | |||
1098 | trace_itimer_expire(signo == SIGPROF ? | ||
1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
1100 | tsk->signal->leader_pid, cur_time); | ||
1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
1102 | } | ||
1103 | |||
1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
1105 | (cputime_eq(*expires, cputime_zero) || | ||
1106 | cputime_lt(it->expires, *expires))) { | ||
1107 | *expires = it->expires; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1074 | /* | 1111 | /* |
1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
1091 | */ | 1128 | */ |
1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
1099 | return; | 1136 | return; |
@@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1153 | /* | 1190 | /* |
1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
1155 | */ | 1192 | */ |
1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
1161 | sig->it_prof_expires = cputime_add( | ||
1162 | sig->it_prof_expires, ptime); | ||
1163 | } | ||
1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
1165 | } | ||
1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
1169 | prof_expires = sig->it_prof_expires; | ||
1170 | } | ||
1171 | } | ||
1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1177 | sig->it_virt_expires = cputime_add( | ||
1178 | sig->it_virt_expires, utime); | ||
1179 | } | ||
1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
1181 | } | ||
1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
1185 | virt_expires = sig->it_virt_expires; | ||
1186 | } | ||
1187 | } | ||
1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
1190 | cputime_t x; | 1200 | cputime_t x; |
@@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
1461 | } else { | 1471 | } else { |
1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
1463 | } | 1473 | } |
@@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
1705 | }; | 1715 | }; |
1716 | struct timespec ts; | ||
1706 | 1717 | ||
1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1709 | 1720 | ||
1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
1722 | onecputick = ts.tv_nsec; | ||
1723 | WARN_ON(ts.tv_sec != 0); | ||
1724 | |||
1710 | return 0; | 1725 | return 0; |
1711 | } | 1726 | } |
1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
@@ -9,6 +9,7 @@ | |||
9 | #undef DEBUG | 9 | #undef DEBUG |
10 | 10 | ||
11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
12 | #include <linux/oom.h> | ||
12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 97955b0e44f4..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
620 | } else | 620 | } else |
621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 8ba052c86d48..b101cdc4df3f 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
@@ -13,7 +13,6 @@ | |||
13 | 13 | ||
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/file.h> | 15 | #include <linux/file.h> |
16 | #include <linux/utsname.h> | ||
17 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
18 | #include <linux/bitops.h> | 17 | #include <linux/bitops.h> |
19 | #include <linux/genhd.h> | 18 | #include <linux/genhd.h> |
diff --git a/kernel/printk.c b/kernel/printk.c index 602033acd6c7..f38b07f78a4e 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -206,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
206 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
207 | 207 | ||
208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
209 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 209 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
210 | 210 | ||
211 | static int __init boot_delay_setup(char *str) | 211 | static int __init boot_delay_setup(char *str) |
212 | { | 212 | { |
213 | unsigned long lpj; | 213 | unsigned long lpj; |
214 | unsigned long long loops_per_msec; | ||
215 | 214 | ||
216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 215 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 216 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
@@ -220,10 +219,9 @@ static int __init boot_delay_setup(char *str) | |||
220 | if (boot_delay > 10 * 1000) | 219 | if (boot_delay > 10 * 1000) |
221 | boot_delay = 0; | 220 | boot_delay = 0; |
222 | 221 | ||
223 | printk_delay_msec = loops_per_msec; | 222 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
224 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 223 | "HZ: %d, loops_per_msec: %llu\n", |
225 | "HZ: %d, printk_delay_msec: %llu\n", | 224 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
226 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
227 | return 1; | 225 | return 1; |
228 | } | 226 | } |
229 | __setup("boot_delay=", boot_delay_setup); | 227 | __setup("boot_delay=", boot_delay_setup); |
@@ -236,7 +234,7 @@ static void boot_delay_msec(void) | |||
236 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 234 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
237 | return; | 235 | return; |
238 | 236 | ||
239 | k = (unsigned long long)printk_delay_msec * boot_delay; | 237 | k = (unsigned long long)loops_per_msec * boot_delay; |
240 | 238 | ||
241 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 239 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
242 | while (k) { | 240 | while (k) { |
@@ -655,6 +653,20 @@ static int recursion_bug; | |||
655 | static int new_text_line = 1; | 653 | static int new_text_line = 1; |
656 | static char printk_buf[1024]; | 654 | static char printk_buf[1024]; |
657 | 655 | ||
656 | int printk_delay_msec __read_mostly; | ||
657 | |||
658 | static inline void printk_delay(void) | ||
659 | { | ||
660 | if (unlikely(printk_delay_msec)) { | ||
661 | int m = printk_delay_msec; | ||
662 | |||
663 | while (m--) { | ||
664 | mdelay(1); | ||
665 | touch_nmi_watchdog(); | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | |||
658 | asmlinkage int vprintk(const char *fmt, va_list args) | 670 | asmlinkage int vprintk(const char *fmt, va_list args) |
659 | { | 671 | { |
660 | int printed_len = 0; | 672 | int printed_len = 0; |
@@ -664,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
664 | char *p; | 676 | char *p; |
665 | 677 | ||
666 | boot_delay_msec(); | 678 | boot_delay_msec(); |
679 | printk_delay(); | ||
667 | 680 | ||
668 | preempt_disable(); | 681 | preempt_disable(); |
669 | /* This stops the holder of console_sem just where we want him */ | 682 | /* This stops the holder of console_sem just where we want him */ |
diff --git a/kernel/profile.c b/kernel/profile.c index 419250ebec4d..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
@@ -442,48 +442,51 @@ void profile_tick(int type) | |||
442 | 442 | ||
443 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
444 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
445 | #include <linux/seq_file.h> | ||
445 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
446 | 447 | ||
447 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
448 | int count, int *eof, void *data) | ||
449 | { | 449 | { |
450 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
451 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
452 | return -EINVAL; | 452 | return 0; |
453 | len += sprintf(page + len, "\n"); | ||
454 | return len; | ||
455 | } | 453 | } |
456 | 454 | ||
457 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
458 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
458 | } | ||
459 | |||
460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
461 | const char __user *buffer, size_t count, loff_t *pos) | ||
459 | { | 462 | { |
460 | struct cpumask *mask = data; | ||
461 | unsigned long full_count = count, err; | ||
462 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
464 | int err; | ||
463 | 465 | ||
464 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
465 | return -ENOMEM; | 467 | return -ENOMEM; |
466 | 468 | ||
467 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
468 | if (!err) { | 470 | if (!err) { |
469 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
470 | err = full_count; | 472 | err = count; |
471 | } | 473 | } |
472 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
473 | return err; | 475 | return err; |
474 | } | 476 | } |
475 | 477 | ||
478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
479 | .open = prof_cpu_mask_proc_open, | ||
480 | .read = seq_read, | ||
481 | .llseek = seq_lseek, | ||
482 | .release = single_release, | ||
483 | .write = prof_cpu_mask_proc_write, | ||
484 | }; | ||
485 | |||
476 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
477 | { | 487 | { |
478 | struct proc_dir_entry *entry; | ||
479 | |||
480 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
481 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
482 | if (!entry) | ||
483 | return; | ||
484 | entry->data = prof_cpu_mask; | ||
485 | entry->read_proc = prof_cpu_mask_read_proc; | ||
486 | entry->write_proc = prof_cpu_mask_write_proc; | ||
487 | } | 490 | } |
488 | 491 | ||
489 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 307c285af59e..23bd09cd042e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh) | |||
266 | * or self-reaping. Do notification now if it would have happened earlier. | 266 | * or self-reaping. Do notification now if it would have happened earlier. |
267 | * If it should reap itself, return true. | 267 | * If it should reap itself, return true. |
268 | * | 268 | * |
269 | * If it's our own child, there is no notification to do. | 269 | * If it's our own child, there is no notification to do. But if our normal |
270 | * But if our normal children self-reap, then this child | 270 | * children self-reap, then this child was prevented by ptrace and we must |
271 | * was prevented by ptrace and we must reap it now. | 271 | * reap it now, in that case we must also wake up sub-threads sleeping in |
272 | * do_wait(). | ||
272 | */ | 273 | */ |
273 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | 274 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
274 | { | 275 | { |
@@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | |||
278 | if (!task_detached(p) && thread_group_empty(p)) { | 279 | if (!task_detached(p) && thread_group_empty(p)) { |
279 | if (!same_thread_group(p->real_parent, tracer)) | 280 | if (!same_thread_group(p->real_parent, tracer)) |
280 | do_notify_parent(p, p->exit_signal); | 281 | do_notify_parent(p, p->exit_signal); |
281 | else if (ignoring_children(tracer->sighand)) | 282 | else if (ignoring_children(tracer->sighand)) { |
283 | __wake_up_parent(p, tracer); | ||
282 | p->exit_signal = -1; | 284 | p->exit_signal = -1; |
285 | } | ||
283 | } | 286 | } |
284 | if (task_detached(p)) { | 287 | if (task_detached(p)) { |
285 | /* Mark it as in the process of being reaped. */ | 288 | /* Mark it as in the process of being reaped. */ |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index bd5d5c8e5140..37ac45483082 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -19,7 +19,7 @@ | |||
19 | * | 19 | * |
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
22 | * | 22 | * |
23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
25 | * Papers: | 25 | * Papers: |
@@ -27,7 +27,7 @@ | |||
27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
28 | * | 28 | * |
29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
31 | * | 31 | * |
32 | */ | 32 | */ |
33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
@@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
74 | complete(&rcu->completion); | 74 | complete(&rcu->completion); |
75 | } | 75 | } |
76 | 76 | ||
77 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
78 | |||
77 | /** | 79 | /** |
78 | * synchronize_rcu - wait until a grace period has elapsed. | 80 | * synchronize_rcu - wait until a grace period has elapsed. |
79 | * | 81 | * |
@@ -87,7 +89,7 @@ void synchronize_rcu(void) | |||
87 | { | 89 | { |
88 | struct rcu_synchronize rcu; | 90 | struct rcu_synchronize rcu; |
89 | 91 | ||
90 | if (rcu_blocking_is_gp()) | 92 | if (!rcu_scheduler_active) |
91 | return; | 93 | return; |
92 | 94 | ||
93 | init_completion(&rcu.completion); | 95 | init_completion(&rcu.completion); |
@@ -98,6 +100,46 @@ void synchronize_rcu(void) | |||
98 | } | 100 | } |
99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 101 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
100 | 102 | ||
103 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
104 | |||
105 | /** | ||
106 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
107 | * | ||
108 | * Control will return to the caller some time after a full rcu-sched | ||
109 | * grace period has elapsed, in other words after all currently executing | ||
110 | * rcu-sched read-side critical sections have completed. These read-side | ||
111 | * critical sections are delimited by rcu_read_lock_sched() and | ||
112 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
113 | * local_irq_disable(), and so on may be used in place of | ||
114 | * rcu_read_lock_sched(). | ||
115 | * | ||
116 | * This means that all preempt_disable code sequences, including NMI and | ||
117 | * hardware-interrupt handlers, in progress on entry will have completed | ||
118 | * before this primitive returns. However, this does not guarantee that | ||
119 | * softirq handlers will have completed, since in some kernels, these | ||
120 | * handlers can run in process context, and can block. | ||
121 | * | ||
122 | * This primitive provides the guarantees made by the (now removed) | ||
123 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
124 | * guarantees that rcu_read_lock() sections will have completed. | ||
125 | * In "classic RCU", these two guarantees happen to be one and | ||
126 | * the same, but can differ in realtime RCU implementations. | ||
127 | */ | ||
128 | void synchronize_sched(void) | ||
129 | { | ||
130 | struct rcu_synchronize rcu; | ||
131 | |||
132 | if (rcu_blocking_is_gp()) | ||
133 | return; | ||
134 | |||
135 | init_completion(&rcu.completion); | ||
136 | /* Will wake me after RCU finished. */ | ||
137 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
138 | /* Wait for it. */ | ||
139 | wait_for_completion(&rcu.completion); | ||
140 | } | ||
141 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
142 | |||
101 | /** | 143 | /** |
102 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | 144 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. |
103 | * | 145 | * |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index b33db539a8ad..233768f21f97 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -18,7 +18,7 @@ | |||
18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
19 | * | 19 | * |
20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
22 | * | 22 | * |
23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
24 | */ | 24 | */ |
@@ -50,7 +50,7 @@ | |||
50 | 50 | ||
51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
54 | 54 | ||
55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
@@ -110,8 +110,8 @@ struct rcu_torture { | |||
110 | }; | 110 | }; |
111 | 111 | ||
112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
@@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
130 | 130 | ||
131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
132 | 132 | ||
133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
@@ -267,7 +267,8 @@ struct rcu_torture_ops { | |||
267 | int irq_capable; | 267 | int irq_capable; |
268 | char *name; | 268 | char *name; |
269 | }; | 269 | }; |
270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
271 | static struct rcu_torture_ops *cur_ops; | ||
271 | 272 | ||
272 | /* | 273 | /* |
273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
@@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
281 | 282 | ||
282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
283 | { | 284 | { |
284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
286 | 287 | ||
287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
289 | * period, and we want a long delay occasionally to trigger | ||
290 | * force_quiescent_state. */ | ||
288 | 291 | ||
289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
290 | if (!delay) | 293 | mdelay(longdelay_ms); |
291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
295 | udelay(shortdelay_us); | ||
292 | } | 296 | } |
293 | 297 | ||
294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
@@ -339,8 +343,8 @@ static struct rcu_torture_ops rcu_ops = { | |||
339 | .sync = synchronize_rcu, | 343 | .sync = synchronize_rcu, |
340 | .cb_barrier = rcu_barrier, | 344 | .cb_barrier = rcu_barrier, |
341 | .stats = NULL, | 345 | .stats = NULL, |
342 | .irq_capable = 1, | 346 | .irq_capable = 1, |
343 | .name = "rcu" | 347 | .name = "rcu" |
344 | }; | 348 | }; |
345 | 349 | ||
346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 350 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
@@ -638,7 +642,8 @@ rcu_torture_writer(void *arg) | |||
638 | 642 | ||
639 | do { | 643 | do { |
640 | schedule_timeout_uninterruptible(1); | 644 | schedule_timeout_uninterruptible(1); |
641 | if ((rp = rcu_torture_alloc()) == NULL) | 645 | rp = rcu_torture_alloc(); |
646 | if (rp == NULL) | ||
642 | continue; | 647 | continue; |
643 | rp->rtort_pipe_count = 0; | 648 | rp->rtort_pipe_count = 0; |
644 | udelay(rcu_random(&rand) & 0x3ff); | 649 | udelay(rcu_random(&rand) & 0x3ff); |
@@ -1110,7 +1115,7 @@ rcu_torture_init(void) | |||
1110 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1115 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
1111 | torture_type); | 1116 | torture_type); |
1112 | mutex_unlock(&fullstop_mutex); | 1117 | mutex_unlock(&fullstop_mutex); |
1113 | return (-EINVAL); | 1118 | return -EINVAL; |
1114 | } | 1119 | } |
1115 | if (cur_ops->init) | 1120 | if (cur_ops->init) |
1116 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1121 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
@@ -1161,7 +1166,7 @@ rcu_torture_init(void) | |||
1161 | goto unwind; | 1166 | goto unwind; |
1162 | } | 1167 | } |
1163 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1168 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
1164 | GFP_KERNEL); | 1169 | GFP_KERNEL); |
1165 | if (fakewriter_tasks == NULL) { | 1170 | if (fakewriter_tasks == NULL) { |
1166 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1171 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
1167 | firsterr = -ENOMEM; | 1172 | firsterr = -ENOMEM; |
@@ -1170,7 +1175,7 @@ rcu_torture_init(void) | |||
1170 | for (i = 0; i < nfakewriters; i++) { | 1175 | for (i = 0; i < nfakewriters; i++) { |
1171 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1176 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
1172 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1177 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
1173 | "rcu_torture_fakewriter"); | 1178 | "rcu_torture_fakewriter"); |
1174 | if (IS_ERR(fakewriter_tasks[i])) { | 1179 | if (IS_ERR(fakewriter_tasks[i])) { |
1175 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1180 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
1176 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1181 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 6b11b07cfe7f..52b06f6e158c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
@@ -25,7 +25,7 @@ | |||
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
26 | * | 26 | * |
27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
28 | * Documentation/RCU | 28 | * Documentation/RCU |
29 | */ | 29 | */ |
30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
@@ -107,27 +107,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | |||
107 | */ | 107 | */ |
108 | void rcu_sched_qs(int cpu) | 108 | void rcu_sched_qs(int cpu) |
109 | { | 109 | { |
110 | unsigned long flags; | ||
111 | struct rcu_data *rdp; | 110 | struct rcu_data *rdp; |
112 | 111 | ||
113 | local_irq_save(flags); | ||
114 | rdp = &per_cpu(rcu_sched_data, cpu); | 112 | rdp = &per_cpu(rcu_sched_data, cpu); |
115 | rdp->passed_quiesc = 1; | ||
116 | rdp->passed_quiesc_completed = rdp->completed; | 113 | rdp->passed_quiesc_completed = rdp->completed; |
117 | rcu_preempt_qs(cpu); | 114 | barrier(); |
118 | local_irq_restore(flags); | 115 | rdp->passed_quiesc = 1; |
116 | rcu_preempt_note_context_switch(cpu); | ||
119 | } | 117 | } |
120 | 118 | ||
121 | void rcu_bh_qs(int cpu) | 119 | void rcu_bh_qs(int cpu) |
122 | { | 120 | { |
123 | unsigned long flags; | ||
124 | struct rcu_data *rdp; | 121 | struct rcu_data *rdp; |
125 | 122 | ||
126 | local_irq_save(flags); | ||
127 | rdp = &per_cpu(rcu_bh_data, cpu); | 123 | rdp = &per_cpu(rcu_bh_data, cpu); |
128 | rdp->passed_quiesc = 1; | ||
129 | rdp->passed_quiesc_completed = rdp->completed; | 124 | rdp->passed_quiesc_completed = rdp->completed; |
130 | local_irq_restore(flags); | 125 | barrier(); |
126 | rdp->passed_quiesc = 1; | ||
131 | } | 127 | } |
132 | 128 | ||
133 | #ifdef CONFIG_NO_HZ | 129 | #ifdef CONFIG_NO_HZ |
@@ -605,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
605 | { | 601 | { |
606 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 602 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
607 | struct rcu_node *rnp = rcu_get_root(rsp); | 603 | struct rcu_node *rnp = rcu_get_root(rsp); |
608 | struct rcu_node *rnp_cur; | ||
609 | struct rcu_node *rnp_end; | ||
610 | 604 | ||
611 | if (!cpu_needs_another_gp(rsp, rdp)) { | 605 | if (!cpu_needs_another_gp(rsp, rdp)) { |
612 | spin_unlock_irqrestore(&rnp->lock, flags); | 606 | spin_unlock_irqrestore(&rnp->lock, flags); |
@@ -615,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
615 | 609 | ||
616 | /* Advance to a new grace period and initialize state. */ | 610 | /* Advance to a new grace period and initialize state. */ |
617 | rsp->gpnum++; | 611 | rsp->gpnum++; |
612 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
618 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 613 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
619 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 614 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
620 | record_gp_stall_check_time(rsp); | 615 | record_gp_stall_check_time(rsp); |
@@ -631,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
631 | 626 | ||
632 | /* Special-case the common single-level case. */ | 627 | /* Special-case the common single-level case. */ |
633 | if (NUM_RCU_NODES == 1) { | 628 | if (NUM_RCU_NODES == 1) { |
629 | rcu_preempt_check_blocked_tasks(rnp); | ||
634 | rnp->qsmask = rnp->qsmaskinit; | 630 | rnp->qsmask = rnp->qsmaskinit; |
631 | rnp->gpnum = rsp->gpnum; | ||
635 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 632 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
636 | spin_unlock_irqrestore(&rnp->lock, flags); | 633 | spin_unlock_irqrestore(&rnp->lock, flags); |
637 | return; | 634 | return; |
@@ -644,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
644 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 641 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
645 | 642 | ||
646 | /* | 643 | /* |
647 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 644 | * Set the quiescent-state-needed bits in all the rcu_node |
648 | * nodes for all currently online CPUs. This operation relies | 645 | * structures for all currently online CPUs in breadth-first |
649 | * on the layout of the hierarchy within the rsp->node[] array. | 646 | * order, starting from the root rcu_node structure. This |
650 | * Note that other CPUs will access only the leaves of the | 647 | * operation relies on the layout of the hierarchy within the |
651 | * hierarchy, which still indicate that no grace period is in | 648 | * rsp->node[] array. Note that other CPUs will access only |
652 | * progress. In addition, we have excluded CPU-hotplug operations. | 649 | * the leaves of the hierarchy, which still indicate that no |
653 | * | 650 | * grace period is in progress, at least until the corresponding |
654 | * We therefore do not need to hold any locks. Any required | 651 | * leaf node has been initialized. In addition, we have excluded |
655 | * memory barriers will be supplied by the locks guarding the | 652 | * CPU-hotplug operations. |
656 | * leaf rcu_nodes in the hierarchy. | ||
657 | */ | ||
658 | |||
659 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
660 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
661 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
662 | |||
663 | /* | ||
664 | * Now set up the leaf nodes. Here we must be careful. First, | ||
665 | * we need to hold the lock in order to exclude other CPUs, which | ||
666 | * might be contending for the leaf nodes' locks. Second, as | ||
667 | * soon as we initialize a given leaf node, its CPUs might run | ||
668 | * up the rest of the hierarchy. We must therefore acquire locks | ||
669 | * for each node that we touch during this stage. (But we still | ||
670 | * are excluding CPU-hotplug operations.) | ||
671 | * | 653 | * |
672 | * Note that the grace period cannot complete until we finish | 654 | * Note that the grace period cannot complete until we finish |
673 | * the initialization process, as there will be at least one | 655 | * the initialization process, as there will be at least one |
674 | * qsmask bit set in the root node until that time, namely the | 656 | * qsmask bit set in the root node until that time, namely the |
675 | * one corresponding to this CPU. | 657 | * one corresponding to this CPU, due to the fact that we have |
658 | * irqs disabled. | ||
676 | */ | 659 | */ |
677 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 660 | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { |
678 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 661 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
679 | for (; rnp_cur < rnp_end; rnp_cur++) { | 662 | rcu_preempt_check_blocked_tasks(rnp); |
680 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 663 | rnp->qsmask = rnp->qsmaskinit; |
681 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 664 | rnp->gpnum = rsp->gpnum; |
682 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 665 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
683 | } | 666 | } |
684 | 667 | ||
685 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 668 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
@@ -722,6 +705,7 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |||
722 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | 705 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) |
723 | __releases(rnp->lock) | 706 | __releases(rnp->lock) |
724 | { | 707 | { |
708 | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | ||
725 | rsp->completed = rsp->gpnum; | 709 | rsp->completed = rsp->gpnum; |
726 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | 710 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); |
727 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | 711 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
@@ -739,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
739 | unsigned long flags) | 723 | unsigned long flags) |
740 | __releases(rnp->lock) | 724 | __releases(rnp->lock) |
741 | { | 725 | { |
726 | struct rcu_node *rnp_c; | ||
727 | |||
742 | /* Walk up the rcu_node hierarchy. */ | 728 | /* Walk up the rcu_node hierarchy. */ |
743 | for (;;) { | 729 | for (;;) { |
744 | if (!(rnp->qsmask & mask)) { | 730 | if (!(rnp->qsmask & mask)) { |
@@ -762,8 +748,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
762 | break; | 748 | break; |
763 | } | 749 | } |
764 | spin_unlock_irqrestore(&rnp->lock, flags); | 750 | spin_unlock_irqrestore(&rnp->lock, flags); |
751 | rnp_c = rnp; | ||
765 | rnp = rnp->parent; | 752 | rnp = rnp->parent; |
766 | spin_lock_irqsave(&rnp->lock, flags); | 753 | spin_lock_irqsave(&rnp->lock, flags); |
754 | WARN_ON_ONCE(rnp_c->qsmask); | ||
767 | } | 755 | } |
768 | 756 | ||
769 | /* | 757 | /* |
@@ -776,10 +764,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
776 | 764 | ||
777 | /* | 765 | /* |
778 | * Record a quiescent state for the specified CPU, which must either be | 766 | * Record a quiescent state for the specified CPU, which must either be |
779 | * the current CPU or an offline CPU. The lastcomp argument is used to | 767 | * the current CPU. The lastcomp argument is used to make sure we are |
780 | * make sure we are still in the grace period of interest. We don't want | 768 | * still in the grace period of interest. We don't want to end the current |
781 | * to end the current grace period based on quiescent states detected in | 769 | * grace period based on quiescent states detected in an earlier grace |
782 | * an earlier grace period! | 770 | * period! |
783 | */ | 771 | */ |
784 | static void | 772 | static void |
785 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 773 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
@@ -814,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
814 | * This GP can't end until cpu checks in, so all of our | 802 | * This GP can't end until cpu checks in, so all of our |
815 | * callbacks can be processed during the next GP. | 803 | * callbacks can be processed during the next GP. |
816 | */ | 804 | */ |
817 | rdp = rsp->rda[smp_processor_id()]; | ||
818 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 805 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
819 | 806 | ||
820 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 807 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
@@ -872,7 +859,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
872 | spin_lock_irqsave(&rsp->onofflock, flags); | 859 | spin_lock_irqsave(&rsp->onofflock, flags); |
873 | 860 | ||
874 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 861 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
875 | rnp = rdp->mynode; | 862 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
876 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 863 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
877 | do { | 864 | do { |
878 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 865 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
@@ -881,7 +868,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
881 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 868 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
882 | break; | 869 | break; |
883 | } | 870 | } |
884 | rcu_preempt_offline_tasks(rsp, rnp); | 871 | rcu_preempt_offline_tasks(rsp, rnp, rdp); |
885 | mask = rnp->grpmask; | 872 | mask = rnp->grpmask; |
886 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 873 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
887 | rnp = rnp->parent; | 874 | rnp = rnp->parent; |
@@ -890,9 +877,6 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
890 | 877 | ||
891 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 878 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
892 | 879 | ||
893 | /* Being offline is a quiescent state, so go record it. */ | ||
894 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
895 | |||
896 | /* | 880 | /* |
897 | * Move callbacks from the outgoing CPU to the running CPU. | 881 | * Move callbacks from the outgoing CPU to the running CPU. |
898 | * Note that the outgoing CPU is now quiscent, so it is now | 882 | * Note that the outgoing CPU is now quiscent, so it is now |
@@ -1457,20 +1441,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | |||
1457 | rnp = rnp->parent; | 1441 | rnp = rnp->parent; |
1458 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1442 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
1459 | 1443 | ||
1460 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1444 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
1461 | |||
1462 | /* | ||
1463 | * A new grace period might start here. If so, we will be part of | ||
1464 | * it, and its gpnum will be greater than ours, so we will | ||
1465 | * participate. It is also possible for the gpnum to have been | ||
1466 | * incremented before this function was called, and the bitmasks | ||
1467 | * to not be filled out until now, in which case we will also | ||
1468 | * participate due to our gpnum being behind. | ||
1469 | */ | ||
1470 | |||
1471 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
1472 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
1473 | local_irq_restore(flags); | ||
1474 | } | 1445 | } |
1475 | 1446 | ||
1476 | static void __cpuinit rcu_online_cpu(int cpu) | 1447 | static void __cpuinit rcu_online_cpu(int cpu) |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index bf8a6f9f134d..8e8287a983c2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
@@ -142,7 +142,7 @@ struct rcu_data { | |||
142 | */ | 142 | */ |
143 | struct rcu_head *nxtlist; | 143 | struct rcu_head *nxtlist; |
144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; |
145 | long qlen; /* # of queued callbacks */ | 145 | long qlen; /* # of queued callbacks */ |
146 | long blimit; /* Upper limit on a processed batch */ | 146 | long blimit; /* Upper limit on a processed batch */ |
147 | 147 | ||
148 | #ifdef CONFIG_NO_HZ | 148 | #ifdef CONFIG_NO_HZ |
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 47789369ea59..1cee04f627eb 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
@@ -64,22 +64,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
64 | * not in a quiescent state. There might be any number of tasks blocked | 64 | * not in a quiescent state. There might be any number of tasks blocked |
65 | * while in an RCU read-side critical section. | 65 | * while in an RCU read-side critical section. |
66 | */ | 66 | */ |
67 | static void rcu_preempt_qs_record(int cpu) | 67 | static void rcu_preempt_qs(int cpu) |
68 | { | 68 | { |
69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); |
70 | rdp->passed_quiesc = 1; | ||
71 | rdp->passed_quiesc_completed = rdp->completed; | 70 | rdp->passed_quiesc_completed = rdp->completed; |
71 | barrier(); | ||
72 | rdp->passed_quiesc = 1; | ||
72 | } | 73 | } |
73 | 74 | ||
74 | /* | 75 | /* |
75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | 76 | * We have entered the scheduler, and the current task might soon be |
76 | * If we are in an RCU read-side critical section, we need to reflect | 77 | * context-switched away from. If this task is in an RCU read-side |
77 | * that in the state of the rcu_node structure corresponding to this CPU. | 78 | * critical section, we will no longer be able to rely on the CPU to |
78 | * Caller must disable hardirqs. | 79 | * record that fact, so we enqueue the task on the appropriate entry |
80 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
81 | * it exits the outermost enclosing RCU read-side critical section. | ||
82 | * Therefore, the current grace period cannot be permitted to complete | ||
83 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
84 | * rnp->gpnum empties. | ||
85 | * | ||
86 | * Caller must disable preemption. | ||
79 | */ | 87 | */ |
80 | static void rcu_preempt_qs(int cpu) | 88 | static void rcu_preempt_note_context_switch(int cpu) |
81 | { | 89 | { |
82 | struct task_struct *t = current; | 90 | struct task_struct *t = current; |
91 | unsigned long flags; | ||
83 | int phase; | 92 | int phase; |
84 | struct rcu_data *rdp; | 93 | struct rcu_data *rdp; |
85 | struct rcu_node *rnp; | 94 | struct rcu_node *rnp; |
@@ -90,7 +99,7 @@ static void rcu_preempt_qs(int cpu) | |||
90 | /* Possibly blocking in an RCU read-side critical section. */ | 99 | /* Possibly blocking in an RCU read-side critical section. */ |
91 | rdp = rcu_preempt_state.rda[cpu]; | 100 | rdp = rcu_preempt_state.rda[cpu]; |
92 | rnp = rdp->mynode; | 101 | rnp = rdp->mynode; |
93 | spin_lock(&rnp->lock); | 102 | spin_lock_irqsave(&rnp->lock, flags); |
94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 103 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
95 | t->rcu_blocked_node = rnp; | 104 | t->rcu_blocked_node = rnp; |
96 | 105 | ||
@@ -103,11 +112,15 @@ static void rcu_preempt_qs(int cpu) | |||
103 | * state for the current grace period), then as long | 112 | * state for the current grace period), then as long |
104 | * as that task remains queued, the current grace period | 113 | * as that task remains queued, the current grace period |
105 | * cannot end. | 114 | * cannot end. |
115 | * | ||
116 | * But first, note that the current CPU must still be | ||
117 | * on line! | ||
106 | */ | 118 | */ |
107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | 119 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
120 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
121 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | 122 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); |
109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | 123 | spin_unlock_irqrestore(&rnp->lock, flags); |
110 | spin_unlock(&rnp->lock); | ||
111 | } | 124 | } |
112 | 125 | ||
113 | /* | 126 | /* |
@@ -119,9 +132,10 @@ static void rcu_preempt_qs(int cpu) | |||
119 | * grace period, then the fact that the task has been enqueued | 132 | * grace period, then the fact that the task has been enqueued |
120 | * means that we continue to block the current grace period. | 133 | * means that we continue to block the current grace period. |
121 | */ | 134 | */ |
122 | rcu_preempt_qs_record(cpu); | 135 | rcu_preempt_qs(cpu); |
123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | 136 | local_irq_save(flags); |
124 | RCU_READ_UNLOCK_GOT_QS); | 137 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
138 | local_irq_restore(flags); | ||
125 | } | 139 | } |
126 | 140 | ||
127 | /* | 141 | /* |
@@ -157,7 +171,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
157 | special = t->rcu_read_unlock_special; | 171 | special = t->rcu_read_unlock_special; |
158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | 172 | if (special & RCU_READ_UNLOCK_NEED_QS) { |
159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 173 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | 174 | rcu_preempt_qs(smp_processor_id()); |
161 | } | 175 | } |
162 | 176 | ||
163 | /* Hardware IRQ handlers cannot block. */ | 177 | /* Hardware IRQ handlers cannot block. */ |
@@ -177,10 +191,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
177 | */ | 191 | */ |
178 | for (;;) { | 192 | for (;;) { |
179 | rnp = t->rcu_blocked_node; | 193 | rnp = t->rcu_blocked_node; |
180 | spin_lock(&rnp->lock); | 194 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
181 | if (rnp == t->rcu_blocked_node) | 195 | if (rnp == t->rcu_blocked_node) |
182 | break; | 196 | break; |
183 | spin_unlock(&rnp->lock); | 197 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
184 | } | 198 | } |
185 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | 199 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); |
186 | list_del_init(&t->rcu_node_entry); | 200 | list_del_init(&t->rcu_node_entry); |
@@ -194,9 +208,8 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
194 | */ | 208 | */ |
195 | if (!empty && rnp->qsmask == 0 && | 209 | if (!empty && rnp->qsmask == 0 && |
196 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | 210 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { |
197 | t->rcu_read_unlock_special &= | 211 | struct rcu_node *rnp_p; |
198 | ~(RCU_READ_UNLOCK_NEED_QS | | 212 | |
199 | RCU_READ_UNLOCK_GOT_QS); | ||
200 | if (rnp->parent == NULL) { | 213 | if (rnp->parent == NULL) { |
201 | /* Only one rcu_node in the tree. */ | 214 | /* Only one rcu_node in the tree. */ |
202 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | 215 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); |
@@ -205,9 +218,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
205 | /* Report up the rest of the hierarchy. */ | 218 | /* Report up the rest of the hierarchy. */ |
206 | mask = rnp->grpmask; | 219 | mask = rnp->grpmask; |
207 | spin_unlock_irqrestore(&rnp->lock, flags); | 220 | spin_unlock_irqrestore(&rnp->lock, flags); |
208 | rnp = rnp->parent; | 221 | rnp_p = rnp->parent; |
209 | spin_lock_irqsave(&rnp->lock, flags); | 222 | spin_lock_irqsave(&rnp_p->lock, flags); |
210 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | 223 | WARN_ON_ONCE(rnp->qsmask); |
224 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags); | ||
211 | return; | 225 | return; |
212 | } | 226 | } |
213 | spin_unlock(&rnp->lock); | 227 | spin_unlock(&rnp->lock); |
@@ -259,6 +273,19 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
259 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 273 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
260 | 274 | ||
261 | /* | 275 | /* |
276 | * Check that the list of blocked tasks for the newly completed grace | ||
277 | * period is in fact empty. It is a serious bug to complete a grace | ||
278 | * period that still has RCU readers blocked! This function must be | ||
279 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
280 | * must be held by the caller. | ||
281 | */ | ||
282 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
283 | { | ||
284 | WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])); | ||
285 | WARN_ON_ONCE(rnp->qsmask); | ||
286 | } | ||
287 | |||
288 | /* | ||
262 | * Check for preempted RCU readers for the specified rcu_node structure. | 289 | * Check for preempted RCU readers for the specified rcu_node structure. |
263 | * If the caller needs a reliable answer, it must hold the rcu_node's | 290 | * If the caller needs a reliable answer, it must hold the rcu_node's |
264 | * >lock. | 291 | * >lock. |
@@ -280,7 +307,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
280 | * The caller must hold rnp->lock with irqs disabled. | 307 | * The caller must hold rnp->lock with irqs disabled. |
281 | */ | 308 | */ |
282 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 309 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
283 | struct rcu_node *rnp) | 310 | struct rcu_node *rnp, |
311 | struct rcu_data *rdp) | ||
284 | { | 312 | { |
285 | int i; | 313 | int i; |
286 | struct list_head *lp; | 314 | struct list_head *lp; |
@@ -292,6 +320,9 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
292 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 320 | WARN_ONCE(1, "Last CPU thought to be offlined?"); |
293 | return; /* Shouldn't happen: at least one CPU online. */ | 321 | return; /* Shouldn't happen: at least one CPU online. */ |
294 | } | 322 | } |
323 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
324 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
325 | !list_empty(&rnp->blocked_tasks[1]))); | ||
295 | 326 | ||
296 | /* | 327 | /* |
297 | * Move tasks up to root rcu_node. Rely on the fact that the | 328 | * Move tasks up to root rcu_node. Rely on the fact that the |
@@ -335,20 +366,12 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
335 | struct task_struct *t = current; | 366 | struct task_struct *t = current; |
336 | 367 | ||
337 | if (t->rcu_read_lock_nesting == 0) { | 368 | if (t->rcu_read_lock_nesting == 0) { |
338 | t->rcu_read_unlock_special &= | 369 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
339 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | 370 | rcu_preempt_qs(cpu); |
340 | rcu_preempt_qs_record(cpu); | ||
341 | return; | 371 | return; |
342 | } | 372 | } |
343 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | 373 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) |
344 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | 374 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
345 | rcu_preempt_qs_record(cpu); | ||
346 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | ||
347 | } else if (!(t->rcu_read_unlock_special & | ||
348 | RCU_READ_UNLOCK_NEED_QS)) { | ||
349 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
350 | } | ||
351 | } | ||
352 | } | 375 | } |
353 | 376 | ||
354 | /* | 377 | /* |
@@ -434,7 +457,7 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
434 | * Because preemptable RCU does not exist, we never have to check for | 457 | * Because preemptable RCU does not exist, we never have to check for |
435 | * CPUs being in quiescent states. | 458 | * CPUs being in quiescent states. |
436 | */ | 459 | */ |
437 | static void rcu_preempt_qs(int cpu) | 460 | static void rcu_preempt_note_context_switch(int cpu) |
438 | { | 461 | { |
439 | } | 462 | } |
440 | 463 | ||
@@ -451,6 +474,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
451 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 474 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
452 | 475 | ||
453 | /* | 476 | /* |
477 | * Because there is no preemptable RCU, there can be no readers blocked, | ||
478 | * so there is no need to check for blocked tasks. So check only for | ||
479 | * bogus qsmask values. | ||
480 | */ | ||
481 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
482 | { | ||
483 | WARN_ON_ONCE(rnp->qsmask); | ||
484 | } | ||
485 | |||
486 | /* | ||
454 | * Because preemptable RCU does not exist, there are never any preempted | 487 | * Because preemptable RCU does not exist, there are never any preempted |
455 | * RCU readers. | 488 | * RCU readers. |
456 | */ | 489 | */ |
@@ -466,7 +499,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
466 | * tasks that were blocked within RCU read-side critical sections. | 499 | * tasks that were blocked within RCU read-side critical sections. |
467 | */ | 500 | */ |
468 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 501 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
469 | struct rcu_node *rnp) | 502 | struct rcu_node *rnp, |
503 | struct rcu_data *rdp) | ||
470 | { | 504 | { |
471 | } | 505 | } |
472 | 506 | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index 0ea1bff69727..c89f5e9fd173 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
@@ -20,7 +20,7 @@ | |||
20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
21 | * | 21 | * |
22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
23 | * Documentation/RCU | 23 | * Documentation/RCU |
24 | * | 24 | * |
25 | */ | 25 | */ |
26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
diff --git a/kernel/res_counter.c b/kernel/res_counter.c index e1338f074314..88faec23e833 100644 --- a/kernel/res_counter.c +++ b/kernel/res_counter.c | |||
@@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent) | |||
19 | { | 19 | { |
20 | spin_lock_init(&counter->lock); | 20 | spin_lock_init(&counter->lock); |
21 | counter->limit = RESOURCE_MAX; | 21 | counter->limit = RESOURCE_MAX; |
22 | counter->soft_limit = RESOURCE_MAX; | ||
22 | counter->parent = parent; | 23 | counter->parent = parent; |
23 | } | 24 | } |
24 | 25 | ||
@@ -36,17 +37,27 @@ int res_counter_charge_locked(struct res_counter *counter, unsigned long val) | |||
36 | } | 37 | } |
37 | 38 | ||
38 | int res_counter_charge(struct res_counter *counter, unsigned long val, | 39 | int res_counter_charge(struct res_counter *counter, unsigned long val, |
39 | struct res_counter **limit_fail_at) | 40 | struct res_counter **limit_fail_at, |
41 | struct res_counter **soft_limit_fail_at) | ||
40 | { | 42 | { |
41 | int ret; | 43 | int ret; |
42 | unsigned long flags; | 44 | unsigned long flags; |
43 | struct res_counter *c, *u; | 45 | struct res_counter *c, *u; |
44 | 46 | ||
45 | *limit_fail_at = NULL; | 47 | *limit_fail_at = NULL; |
48 | if (soft_limit_fail_at) | ||
49 | *soft_limit_fail_at = NULL; | ||
46 | local_irq_save(flags); | 50 | local_irq_save(flags); |
47 | for (c = counter; c != NULL; c = c->parent) { | 51 | for (c = counter; c != NULL; c = c->parent) { |
48 | spin_lock(&c->lock); | 52 | spin_lock(&c->lock); |
49 | ret = res_counter_charge_locked(c, val); | 53 | ret = res_counter_charge_locked(c, val); |
54 | /* | ||
55 | * With soft limits, we return the highest ancestor | ||
56 | * that exceeds its soft limit | ||
57 | */ | ||
58 | if (soft_limit_fail_at && | ||
59 | !res_counter_soft_limit_check_locked(c)) | ||
60 | *soft_limit_fail_at = c; | ||
50 | spin_unlock(&c->lock); | 61 | spin_unlock(&c->lock); |
51 | if (ret < 0) { | 62 | if (ret < 0) { |
52 | *limit_fail_at = c; | 63 | *limit_fail_at = c; |
@@ -74,7 +85,8 @@ void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val) | |||
74 | counter->usage -= val; | 85 | counter->usage -= val; |
75 | } | 86 | } |
76 | 87 | ||
77 | void res_counter_uncharge(struct res_counter *counter, unsigned long val) | 88 | void res_counter_uncharge(struct res_counter *counter, unsigned long val, |
89 | bool *was_soft_limit_excess) | ||
78 | { | 90 | { |
79 | unsigned long flags; | 91 | unsigned long flags; |
80 | struct res_counter *c; | 92 | struct res_counter *c; |
@@ -82,6 +94,9 @@ void res_counter_uncharge(struct res_counter *counter, unsigned long val) | |||
82 | local_irq_save(flags); | 94 | local_irq_save(flags); |
83 | for (c = counter; c != NULL; c = c->parent) { | 95 | for (c = counter; c != NULL; c = c->parent) { |
84 | spin_lock(&c->lock); | 96 | spin_lock(&c->lock); |
97 | if (was_soft_limit_excess) | ||
98 | *was_soft_limit_excess = | ||
99 | !res_counter_soft_limit_check_locked(c); | ||
85 | res_counter_uncharge_locked(c, val); | 100 | res_counter_uncharge_locked(c, val); |
86 | spin_unlock(&c->lock); | 101 | spin_unlock(&c->lock); |
87 | } | 102 | } |
@@ -101,6 +116,8 @@ res_counter_member(struct res_counter *counter, int member) | |||
101 | return &counter->limit; | 116 | return &counter->limit; |
102 | case RES_FAILCNT: | 117 | case RES_FAILCNT: |
103 | return &counter->failcnt; | 118 | return &counter->failcnt; |
119 | case RES_SOFT_LIMIT: | ||
120 | return &counter->soft_limit; | ||
104 | }; | 121 | }; |
105 | 122 | ||
106 | BUG(); | 123 | BUG(); |
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
223 | 223 | ||
224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
225 | 225 | ||
226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
227 | /* | 227 | /* |
228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
231 | */ | 231 | */ |
232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
233 | { | 233 | { |
234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
235 | struct resource *p; | 235 | struct resource *p; |
@@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
247 | continue; | 247 | continue; |
248 | if (name && strcmp(p->name, name)) | ||
249 | continue; | ||
248 | if (p->start > end) { | 250 | if (p->start > end) { |
249 | p = NULL; | 251 | p = NULL; |
250 | break; | 252 | break; |
@@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
262 | res->end = p->end; | 264 | res->end = p->end; |
263 | return 0; | 265 | return 0; |
264 | } | 266 | } |
265 | int | 267 | |
266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
271 | * Now, this function is only for "System RAM". | ||
272 | */ | ||
273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
268 | { | 275 | { |
269 | struct resource res; | 276 | struct resource res; |
270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
271 | u64 orig_end; | 278 | u64 orig_end; |
272 | int ret = -1; | 279 | int ret = -1; |
280 | |||
273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
276 | orig_end = res.end; | 284 | orig_end = res.end; |
277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index faf4d463bbff..ee61f454a98b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -39,7 +39,7 @@ | |||
39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
@@ -681,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) | |||
681 | * This interface allows printk to be called with the runqueue lock | 681 | * This interface allows printk to be called with the runqueue lock |
682 | * held and know whether or not it is OK to wake up the klogd. | 682 | * held and know whether or not it is OK to wake up the klogd. |
683 | */ | 683 | */ |
684 | int runqueue_is_locked(void) | 684 | int runqueue_is_locked(int cpu) |
685 | { | 685 | { |
686 | int cpu = get_cpu(); | 686 | return spin_is_locked(&cpu_rq(cpu)->lock); |
687 | struct rq *rq = cpu_rq(cpu); | ||
688 | int ret; | ||
689 | |||
690 | ret = spin_is_locked(&rq->lock); | ||
691 | put_cpu(); | ||
692 | return ret; | ||
693 | } | 687 | } |
694 | 688 | ||
695 | /* | 689 | /* |
@@ -2059,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
2059 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
2060 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
2061 | #endif | 2055 | #endif |
2062 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
2063 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
2064 | } | 2058 | } |
2065 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
@@ -2724,7 +2718,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2724 | */ | 2718 | */ |
2725 | prev_state = prev->state; | 2719 | prev_state = prev->state; |
2726 | finish_arch_switch(prev); | 2720 | finish_arch_switch(prev); |
2727 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2721 | perf_event_task_sched_in(current, cpu_of(rq)); |
2728 | finish_lock_switch(rq, prev); | 2722 | finish_lock_switch(rq, prev); |
2729 | 2723 | ||
2730 | fire_sched_in_preempt_notifiers(current); | 2724 | fire_sched_in_preempt_notifiers(current); |
@@ -2910,6 +2904,19 @@ unsigned long nr_iowait(void) | |||
2910 | return sum; | 2904 | return sum; |
2911 | } | 2905 | } |
2912 | 2906 | ||
2907 | unsigned long nr_iowait_cpu(void) | ||
2908 | { | ||
2909 | struct rq *this = this_rq(); | ||
2910 | return atomic_read(&this->nr_iowait); | ||
2911 | } | ||
2912 | |||
2913 | unsigned long this_cpu_load(void) | ||
2914 | { | ||
2915 | struct rq *this = this_rq(); | ||
2916 | return this->cpu_load[0]; | ||
2917 | } | ||
2918 | |||
2919 | |||
2913 | /* Variables and functions for calc_load */ | 2920 | /* Variables and functions for calc_load */ |
2914 | static atomic_long_t calc_load_tasks; | 2921 | static atomic_long_t calc_load_tasks; |
2915 | static unsigned long calc_load_update; | 2922 | static unsigned long calc_load_update; |
@@ -5085,17 +5092,16 @@ void account_idle_time(cputime_t cputime) | |||
5085 | */ | 5092 | */ |
5086 | void account_process_tick(struct task_struct *p, int user_tick) | 5093 | void account_process_tick(struct task_struct *p, int user_tick) |
5087 | { | 5094 | { |
5088 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5095 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
5089 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
5090 | struct rq *rq = this_rq(); | 5096 | struct rq *rq = this_rq(); |
5091 | 5097 | ||
5092 | if (user_tick) | 5098 | if (user_tick) |
5093 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5099 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
5094 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5100 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
5095 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5101 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
5096 | one_jiffy_scaled); | 5102 | one_jiffy_scaled); |
5097 | else | 5103 | else |
5098 | account_idle_time(one_jiffy); | 5104 | account_idle_time(cputime_one_jiffy); |
5099 | } | 5105 | } |
5100 | 5106 | ||
5101 | /* | 5107 | /* |
@@ -5199,7 +5205,7 @@ void scheduler_tick(void) | |||
5199 | curr->sched_class->task_tick(rq, curr, 0); | 5205 | curr->sched_class->task_tick(rq, curr, 0); |
5200 | spin_unlock(&rq->lock); | 5206 | spin_unlock(&rq->lock); |
5201 | 5207 | ||
5202 | perf_counter_task_tick(curr, cpu); | 5208 | perf_event_task_tick(curr, cpu); |
5203 | 5209 | ||
5204 | #ifdef CONFIG_SMP | 5210 | #ifdef CONFIG_SMP |
5205 | rq->idle_at_tick = idle_cpu(cpu); | 5211 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5415,7 +5421,7 @@ need_resched_nonpreemptible: | |||
5415 | 5421 | ||
5416 | if (likely(prev != next)) { | 5422 | if (likely(prev != next)) { |
5417 | sched_info_switch(prev, next); | 5423 | sched_info_switch(prev, next); |
5418 | perf_counter_task_sched_out(prev, next, cpu); | 5424 | perf_event_task_sched_out(prev, next, cpu); |
5419 | 5425 | ||
5420 | rq->nr_switches++; | 5426 | rq->nr_switches++; |
5421 | rq->curr = next; | 5427 | rq->curr = next; |
@@ -6825,23 +6831,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6825 | if (retval) | 6831 | if (retval) |
6826 | goto out_unlock; | 6832 | goto out_unlock; |
6827 | 6833 | ||
6828 | /* | 6834 | time_slice = p->sched_class->get_rr_interval(p); |
6829 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
6830 | * tasks that are on an otherwise idle runqueue: | ||
6831 | */ | ||
6832 | time_slice = 0; | ||
6833 | if (p->policy == SCHED_RR) { | ||
6834 | time_slice = DEF_TIMESLICE; | ||
6835 | } else if (p->policy != SCHED_FIFO) { | ||
6836 | struct sched_entity *se = &p->se; | ||
6837 | unsigned long flags; | ||
6838 | struct rq *rq; | ||
6839 | 6835 | ||
6840 | rq = task_rq_lock(p, &flags); | ||
6841 | if (rq->cfs.load.weight) | ||
6842 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
6843 | task_rq_unlock(rq, &flags); | ||
6844 | } | ||
6845 | read_unlock(&tasklist_lock); | 6836 | read_unlock(&tasklist_lock); |
6846 | jiffies_to_timespec(time_slice, &t); | 6837 | jiffies_to_timespec(time_slice, &t); |
6847 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6838 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
@@ -7692,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7692 | /* | 7683 | /* |
7693 | * Register at high priority so that task migration (migrate_all_tasks) | 7684 | * Register at high priority so that task migration (migrate_all_tasks) |
7694 | * happens before everything else. This has to be lower priority than | 7685 | * happens before everything else. This has to be lower priority than |
7695 | * the notifier in the perf_counter subsystem, though. | 7686 | * the notifier in the perf_event subsystem, though. |
7696 | */ | 7687 | */ |
7697 | static struct notifier_block __cpuinitdata migration_notifier = { | 7688 | static struct notifier_block __cpuinitdata migration_notifier = { |
7698 | .notifier_call = migration_call, | 7689 | .notifier_call = migration_call, |
@@ -9171,6 +9162,7 @@ void __init sched_init_smp(void) | |||
9171 | cpumask_var_t non_isolated_cpus; | 9162 | cpumask_var_t non_isolated_cpus; |
9172 | 9163 | ||
9173 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9164 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
9165 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9174 | 9166 | ||
9175 | #if defined(CONFIG_NUMA) | 9167 | #if defined(CONFIG_NUMA) |
9176 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9168 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
@@ -9202,7 +9194,6 @@ void __init sched_init_smp(void) | |||
9202 | sched_init_granularity(); | 9194 | sched_init_granularity(); |
9203 | free_cpumask_var(non_isolated_cpus); | 9195 | free_cpumask_var(non_isolated_cpus); |
9204 | 9196 | ||
9205 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9206 | init_sched_rt_class(); | 9197 | init_sched_rt_class(); |
9207 | } | 9198 | } |
9208 | #else | 9199 | #else |
@@ -9549,7 +9540,7 @@ void __init sched_init(void) | |||
9549 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9540 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
9550 | #endif /* SMP */ | 9541 | #endif /* SMP */ |
9551 | 9542 | ||
9552 | perf_counter_init(); | 9543 | perf_event_init(); |
9553 | 9544 | ||
9554 | scheduler_running = 1; | 9545 | scheduler_running = 1; |
9555 | } | 9546 | } |
@@ -10321,7 +10312,7 @@ static int sched_rt_global_constraints(void) | |||
10321 | #endif /* CONFIG_RT_GROUP_SCHED */ | 10312 | #endif /* CONFIG_RT_GROUP_SCHED */ |
10322 | 10313 | ||
10323 | int sched_rt_handler(struct ctl_table *table, int write, | 10314 | int sched_rt_handler(struct ctl_table *table, int write, |
10324 | struct file *filp, void __user *buffer, size_t *lenp, | 10315 | void __user *buffer, size_t *lenp, |
10325 | loff_t *ppos) | 10316 | loff_t *ppos) |
10326 | { | 10317 | { |
10327 | int ret; | 10318 | int ret; |
@@ -10332,7 +10323,7 @@ int sched_rt_handler(struct ctl_table *table, int write, | |||
10332 | old_period = sysctl_sched_rt_period; | 10323 | old_period = sysctl_sched_rt_period; |
10333 | old_runtime = sysctl_sched_rt_runtime; | 10324 | old_runtime = sysctl_sched_rt_runtime; |
10334 | 10325 | ||
10335 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 10326 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
10336 | 10327 | ||
10337 | if (!ret && write) { | 10328 | if (!ret && write) { |
10338 | ret = sched_rt_global_constraints(); | 10329 | ret = sched_rt_global_constraints(); |
@@ -10386,8 +10377,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
10386 | } | 10377 | } |
10387 | 10378 | ||
10388 | static int | 10379 | static int |
10389 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10380 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
10390 | struct task_struct *tsk) | ||
10391 | { | 10381 | { |
10392 | #ifdef CONFIG_RT_GROUP_SCHED | 10382 | #ifdef CONFIG_RT_GROUP_SCHED |
10393 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 10383 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
@@ -10397,15 +10387,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
10397 | if (tsk->sched_class != &fair_sched_class) | 10387 | if (tsk->sched_class != &fair_sched_class) |
10398 | return -EINVAL; | 10388 | return -EINVAL; |
10399 | #endif | 10389 | #endif |
10390 | return 0; | ||
10391 | } | ||
10400 | 10392 | ||
10393 | static int | ||
10394 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
10395 | struct task_struct *tsk, bool threadgroup) | ||
10396 | { | ||
10397 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | ||
10398 | if (retval) | ||
10399 | return retval; | ||
10400 | if (threadgroup) { | ||
10401 | struct task_struct *c; | ||
10402 | rcu_read_lock(); | ||
10403 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10404 | retval = cpu_cgroup_can_attach_task(cgrp, c); | ||
10405 | if (retval) { | ||
10406 | rcu_read_unlock(); | ||
10407 | return retval; | ||
10408 | } | ||
10409 | } | ||
10410 | rcu_read_unlock(); | ||
10411 | } | ||
10401 | return 0; | 10412 | return 0; |
10402 | } | 10413 | } |
10403 | 10414 | ||
10404 | static void | 10415 | static void |
10405 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10416 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
10406 | struct cgroup *old_cont, struct task_struct *tsk) | 10417 | struct cgroup *old_cont, struct task_struct *tsk, |
10418 | bool threadgroup) | ||
10407 | { | 10419 | { |
10408 | sched_move_task(tsk); | 10420 | sched_move_task(tsk); |
10421 | if (threadgroup) { | ||
10422 | struct task_struct *c; | ||
10423 | rcu_read_lock(); | ||
10424 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10425 | sched_move_task(c); | ||
10426 | } | ||
10427 | rcu_read_unlock(); | ||
10428 | } | ||
10409 | } | 10429 | } |
10410 | 10430 | ||
10411 | #ifdef CONFIG_FAIR_GROUP_SCHED | 10431 | #ifdef CONFIG_FAIR_GROUP_SCHED |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 990b188803ce..4e777b47eeda 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | |||
384 | 384 | ||
385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | void __user *buffer, size_t *lenp, |
388 | loff_t *ppos) | 388 | loff_t *ppos) |
389 | { | 389 | { |
390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
391 | 391 | ||
392 | if (ret || !write) | 392 | if (ret || !write) |
393 | return ret; | 393 | return ret; |
@@ -710,31 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
710 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
711 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
712 | 712 | ||
713 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
714 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
715 | if (sched_feat(FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
716 | unsigned long thresh = sysctl_sched_latency; | ||
717 | 716 | ||
718 | /* | 717 | /* |
719 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
720 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
721 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
722 | * all of which have the same weight. | 721 | * all of which have the same weight. |
723 | */ | 722 | */ |
724 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
725 | (!entity_is_task(se) || | 724 | task_of(se)->policy != SCHED_IDLE)) |
726 | task_of(se)->policy != SCHED_IDLE)) | 725 | thresh = calc_delta_fair(thresh, se); |
727 | thresh = calc_delta_fair(thresh, se); | ||
728 | 726 | ||
729 | /* | 727 | /* |
730 | * Halve their sleep time's effect, to allow | 728 | * Halve their sleep time's effect, to allow |
731 | * for a gentler effect of sleepers: | 729 | * for a gentler effect of sleepers: |
732 | */ | 730 | */ |
733 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | 731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) |
734 | thresh >>= 1; | 732 | thresh >>= 1; |
735 | 733 | ||
736 | vruntime -= thresh; | 734 | vruntime -= thresh; |
737 | } | ||
738 | } | 735 | } |
739 | 736 | ||
740 | /* ensure we never gain time by being placed backwards. */ | 737 | /* ensure we never gain time by being placed backwards. */ |
@@ -1343,7 +1340,8 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1343 | int sync = wake_flags & WF_SYNC; | 1340 | int sync = wake_flags & WF_SYNC; |
1344 | 1341 | ||
1345 | if (sd_flag & SD_BALANCE_WAKE) { | 1342 | if (sd_flag & SD_BALANCE_WAKE) { |
1346 | if (sched_feat(AFFINE_WAKEUPS)) | 1343 | if (sched_feat(AFFINE_WAKEUPS) && |
1344 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1347 | want_affine = 1; | 1345 | want_affine = 1; |
1348 | new_cpu = prev_cpu; | 1346 | new_cpu = prev_cpu; |
1349 | } | 1347 | } |
@@ -1941,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p) | |||
1941 | } | 1939 | } |
1942 | #endif | 1940 | #endif |
1943 | 1941 | ||
1942 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
1943 | { | ||
1944 | struct sched_entity *se = &task->se; | ||
1945 | unsigned long flags; | ||
1946 | struct rq *rq; | ||
1947 | unsigned int rr_interval = 0; | ||
1948 | |||
1949 | /* | ||
1950 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
1951 | * idle runqueue: | ||
1952 | */ | ||
1953 | rq = task_rq_lock(task, &flags); | ||
1954 | if (rq->cfs.load.weight) | ||
1955 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
1956 | task_rq_unlock(rq, &flags); | ||
1957 | |||
1958 | return rr_interval; | ||
1959 | } | ||
1960 | |||
1944 | /* | 1961 | /* |
1945 | * All the scheduling class methods: | 1962 | * All the scheduling class methods: |
1946 | */ | 1963 | */ |
@@ -1969,6 +1986,8 @@ static const struct sched_class fair_sched_class = { | |||
1969 | .prio_changed = prio_changed_fair, | 1986 | .prio_changed = prio_changed_fair, |
1970 | .switched_to = switched_to_fair, | 1987 | .switched_to = switched_to_fair, |
1971 | 1988 | ||
1989 | .get_rr_interval = get_rr_interval_fair, | ||
1990 | |||
1972 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1991 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1973 | .moved_group = moved_group_fair, | 1992 | .moved_group = moved_group_fair, |
1974 | #endif | 1993 | #endif |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index a8b448af004b..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
@@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
98 | } | 98 | } |
99 | 99 | ||
100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
101 | { | ||
102 | return 0; | ||
103 | } | ||
104 | |||
100 | /* | 105 | /* |
101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
102 | */ | 107 | */ |
@@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
124 | 129 | ||
130 | .get_rr_interval = get_rr_interval_idle, | ||
131 | |||
125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 13de7126a6ab..a4d790cddb19 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -1734,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
1734 | dequeue_pushable_task(rq, p); | 1734 | dequeue_pushable_task(rq, p); |
1735 | } | 1735 | } |
1736 | 1736 | ||
1737 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
1738 | { | ||
1739 | /* | ||
1740 | * Time slice is 0 for SCHED_FIFO tasks | ||
1741 | */ | ||
1742 | if (task->policy == SCHED_RR) | ||
1743 | return DEF_TIMESLICE; | ||
1744 | else | ||
1745 | return 0; | ||
1746 | } | ||
1747 | |||
1737 | static const struct sched_class rt_sched_class = { | 1748 | static const struct sched_class rt_sched_class = { |
1738 | .next = &fair_sched_class, | 1749 | .next = &fair_sched_class, |
1739 | .enqueue_task = enqueue_task_rt, | 1750 | .enqueue_task = enqueue_task_rt, |
@@ -1762,6 +1773,8 @@ static const struct sched_class rt_sched_class = { | |||
1762 | .set_curr_task = set_curr_task_rt, | 1773 | .set_curr_task = set_curr_task_rt, |
1763 | .task_tick = task_tick_rt, | 1774 | .task_tick = task_tick_rt, |
1764 | 1775 | ||
1776 | .get_rr_interval = get_rr_interval_rt, | ||
1777 | |||
1765 | .prio_changed = prio_changed_rt, | 1778 | .prio_changed = prio_changed_rt, |
1766 | .switched_to = switched_to_rt, | 1779 | .switched_to = switched_to_rt, |
1767 | }; | 1780 | }; |
diff --git a/kernel/signal.c b/kernel/signal.c index 64c5deeaca5d..6705320784fd 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -705,7 +705,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | |||
705 | 705 | ||
706 | if (why) { | 706 | if (why) { |
707 | /* | 707 | /* |
708 | * The first thread which returns from finish_stop() | 708 | * The first thread which returns from do_signal_stop() |
709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
710 | * notify its parent. See get_signal_to_deliver(). | 710 | * notify its parent. See get_signal_to_deliver(). |
711 | */ | 711 | */ |
@@ -971,6 +971,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
971 | return send_signal(sig, info, t, 0); | 971 | return send_signal(sig, info, t, 0); |
972 | } | 972 | } |
973 | 973 | ||
974 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | ||
975 | bool group) | ||
976 | { | ||
977 | unsigned long flags; | ||
978 | int ret = -ESRCH; | ||
979 | |||
980 | if (lock_task_sighand(p, &flags)) { | ||
981 | ret = send_signal(sig, info, p, group); | ||
982 | unlock_task_sighand(p, &flags); | ||
983 | } | ||
984 | |||
985 | return ret; | ||
986 | } | ||
987 | |||
974 | /* | 988 | /* |
975 | * Force a signal that the process can't ignore: if necessary | 989 | * Force a signal that the process can't ignore: if necessary |
976 | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 990 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
@@ -1036,12 +1050,6 @@ void zap_other_threads(struct task_struct *p) | |||
1036 | } | 1050 | } |
1037 | } | 1051 | } |
1038 | 1052 | ||
1039 | int __fatal_signal_pending(struct task_struct *tsk) | ||
1040 | { | ||
1041 | return sigismember(&tsk->pending.signal, SIGKILL); | ||
1042 | } | ||
1043 | EXPORT_SYMBOL(__fatal_signal_pending); | ||
1044 | |||
1045 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1053 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
1046 | { | 1054 | { |
1047 | struct sighand_struct *sighand; | 1055 | struct sighand_struct *sighand; |
@@ -1068,18 +1076,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long | |||
1068 | */ | 1076 | */ |
1069 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1077 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1070 | { | 1078 | { |
1071 | unsigned long flags; | 1079 | int ret = check_kill_permission(sig, info, p); |
1072 | int ret; | ||
1073 | 1080 | ||
1074 | ret = check_kill_permission(sig, info, p); | 1081 | if (!ret && sig) |
1075 | 1082 | ret = do_send_sig_info(sig, info, p, true); | |
1076 | if (!ret && sig) { | ||
1077 | ret = -ESRCH; | ||
1078 | if (lock_task_sighand(p, &flags)) { | ||
1079 | ret = __group_send_sig_info(sig, info, p); | ||
1080 | unlock_task_sighand(p, &flags); | ||
1081 | } | ||
1082 | } | ||
1083 | 1083 | ||
1084 | return ret; | 1084 | return ret; |
1085 | } | 1085 | } |
@@ -1224,15 +1224,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | |||
1224 | * These are for backward compatibility with the rest of the kernel source. | 1224 | * These are for backward compatibility with the rest of the kernel source. |
1225 | */ | 1225 | */ |
1226 | 1226 | ||
1227 | /* | ||
1228 | * The caller must ensure the task can't exit. | ||
1229 | */ | ||
1230 | int | 1227 | int |
1231 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1228 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1232 | { | 1229 | { |
1233 | int ret; | ||
1234 | unsigned long flags; | ||
1235 | |||
1236 | /* | 1230 | /* |
1237 | * Make sure legacy kernel users don't send in bad values | 1231 | * Make sure legacy kernel users don't send in bad values |
1238 | * (normal paths check this in check_kill_permission). | 1232 | * (normal paths check this in check_kill_permission). |
@@ -1240,10 +1234,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | |||
1240 | if (!valid_signal(sig)) | 1234 | if (!valid_signal(sig)) |
1241 | return -EINVAL; | 1235 | return -EINVAL; |
1242 | 1236 | ||
1243 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1237 | return do_send_sig_info(sig, info, p, false); |
1244 | ret = specific_send_sig_info(sig, info, p); | ||
1245 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
1246 | return ret; | ||
1247 | } | 1238 | } |
1248 | 1239 | ||
1249 | #define __si_special(priv) \ | 1240 | #define __si_special(priv) \ |
@@ -1383,15 +1374,6 @@ ret: | |||
1383 | } | 1374 | } |
1384 | 1375 | ||
1385 | /* | 1376 | /* |
1386 | * Wake up any threads in the parent blocked in wait* syscalls. | ||
1387 | */ | ||
1388 | static inline void __wake_up_parent(struct task_struct *p, | ||
1389 | struct task_struct *parent) | ||
1390 | { | ||
1391 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | ||
1392 | } | ||
1393 | |||
1394 | /* | ||
1395 | * Let a parent know about the death of a child. | 1377 | * Let a parent know about the death of a child. |
1396 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 1378 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
1397 | * | 1379 | * |
@@ -1673,29 +1655,6 @@ void ptrace_notify(int exit_code) | |||
1673 | spin_unlock_irq(¤t->sighand->siglock); | 1655 | spin_unlock_irq(¤t->sighand->siglock); |
1674 | } | 1656 | } |
1675 | 1657 | ||
1676 | static void | ||
1677 | finish_stop(int stop_count) | ||
1678 | { | ||
1679 | /* | ||
1680 | * If there are no other threads in the group, or if there is | ||
1681 | * a group stop in progress and we are the last to stop, | ||
1682 | * report to the parent. When ptraced, every thread reports itself. | ||
1683 | */ | ||
1684 | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | ||
1685 | read_lock(&tasklist_lock); | ||
1686 | do_notify_parent_cldstop(current, CLD_STOPPED); | ||
1687 | read_unlock(&tasklist_lock); | ||
1688 | } | ||
1689 | |||
1690 | do { | ||
1691 | schedule(); | ||
1692 | } while (try_to_freeze()); | ||
1693 | /* | ||
1694 | * Now we don't run again until continued. | ||
1695 | */ | ||
1696 | current->exit_code = 0; | ||
1697 | } | ||
1698 | |||
1699 | /* | 1658 | /* |
1700 | * This performs the stopping for SIGSTOP and other stop signals. | 1659 | * This performs the stopping for SIGSTOP and other stop signals. |
1701 | * We have to stop all threads in the thread group. | 1660 | * We have to stop all threads in the thread group. |
@@ -1705,15 +1664,9 @@ finish_stop(int stop_count) | |||
1705 | static int do_signal_stop(int signr) | 1664 | static int do_signal_stop(int signr) |
1706 | { | 1665 | { |
1707 | struct signal_struct *sig = current->signal; | 1666 | struct signal_struct *sig = current->signal; |
1708 | int stop_count; | 1667 | int notify; |
1709 | 1668 | ||
1710 | if (sig->group_stop_count > 0) { | 1669 | if (!sig->group_stop_count) { |
1711 | /* | ||
1712 | * There is a group stop in progress. We don't need to | ||
1713 | * start another one. | ||
1714 | */ | ||
1715 | stop_count = --sig->group_stop_count; | ||
1716 | } else { | ||
1717 | struct task_struct *t; | 1670 | struct task_struct *t; |
1718 | 1671 | ||
1719 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 1672 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
@@ -1725,7 +1678,7 @@ static int do_signal_stop(int signr) | |||
1725 | */ | 1678 | */ |
1726 | sig->group_exit_code = signr; | 1679 | sig->group_exit_code = signr; |
1727 | 1680 | ||
1728 | stop_count = 0; | 1681 | sig->group_stop_count = 1; |
1729 | for (t = next_thread(current); t != current; t = next_thread(t)) | 1682 | for (t = next_thread(current); t != current; t = next_thread(t)) |
1730 | /* | 1683 | /* |
1731 | * Setting state to TASK_STOPPED for a group | 1684 | * Setting state to TASK_STOPPED for a group |
@@ -1734,19 +1687,44 @@ static int do_signal_stop(int signr) | |||
1734 | */ | 1687 | */ |
1735 | if (!(t->flags & PF_EXITING) && | 1688 | if (!(t->flags & PF_EXITING) && |
1736 | !task_is_stopped_or_traced(t)) { | 1689 | !task_is_stopped_or_traced(t)) { |
1737 | stop_count++; | 1690 | sig->group_stop_count++; |
1738 | signal_wake_up(t, 0); | 1691 | signal_wake_up(t, 0); |
1739 | } | 1692 | } |
1740 | sig->group_stop_count = stop_count; | ||
1741 | } | 1693 | } |
1694 | /* | ||
1695 | * If there are no other threads in the group, or if there is | ||
1696 | * a group stop in progress and we are the last to stop, report | ||
1697 | * to the parent. When ptraced, every thread reports itself. | ||
1698 | */ | ||
1699 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; | ||
1700 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); | ||
1701 | /* | ||
1702 | * tracehook_notify_jctl() can drop and reacquire siglock, so | ||
1703 | * we keep ->group_stop_count != 0 before the call. If SIGCONT | ||
1704 | * or SIGKILL comes in between ->group_stop_count == 0. | ||
1705 | */ | ||
1706 | if (sig->group_stop_count) { | ||
1707 | if (!--sig->group_stop_count) | ||
1708 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1709 | current->exit_code = sig->group_exit_code; | ||
1710 | __set_current_state(TASK_STOPPED); | ||
1711 | } | ||
1712 | spin_unlock_irq(¤t->sighand->siglock); | ||
1742 | 1713 | ||
1743 | if (stop_count == 0) | 1714 | if (notify) { |
1744 | sig->flags = SIGNAL_STOP_STOPPED; | 1715 | read_lock(&tasklist_lock); |
1745 | current->exit_code = sig->group_exit_code; | 1716 | do_notify_parent_cldstop(current, notify); |
1746 | __set_current_state(TASK_STOPPED); | 1717 | read_unlock(&tasklist_lock); |
1718 | } | ||
1719 | |||
1720 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | ||
1721 | do { | ||
1722 | schedule(); | ||
1723 | } while (try_to_freeze()); | ||
1724 | |||
1725 | tracehook_finish_jctl(); | ||
1726 | current->exit_code = 0; | ||
1747 | 1727 | ||
1748 | spin_unlock_irq(¤t->sighand->siglock); | ||
1749 | finish_stop(stop_count); | ||
1750 | return 1; | 1728 | return 1; |
1751 | } | 1729 | } |
1752 | 1730 | ||
@@ -1815,14 +1793,15 @@ relock: | |||
1815 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 1793 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
1816 | ? CLD_CONTINUED : CLD_STOPPED; | 1794 | ? CLD_CONTINUED : CLD_STOPPED; |
1817 | signal->flags &= ~SIGNAL_CLD_MASK; | 1795 | signal->flags &= ~SIGNAL_CLD_MASK; |
1818 | spin_unlock_irq(&sighand->siglock); | ||
1819 | 1796 | ||
1820 | if (unlikely(!tracehook_notify_jctl(1, why))) | 1797 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
1821 | goto relock; | 1798 | spin_unlock_irq(&sighand->siglock); |
1822 | 1799 | ||
1823 | read_lock(&tasklist_lock); | 1800 | if (why) { |
1824 | do_notify_parent_cldstop(current->group_leader, why); | 1801 | read_lock(&tasklist_lock); |
1825 | read_unlock(&tasklist_lock); | 1802 | do_notify_parent_cldstop(current->group_leader, why); |
1803 | read_unlock(&tasklist_lock); | ||
1804 | } | ||
1826 | goto relock; | 1805 | goto relock; |
1827 | } | 1806 | } |
1828 | 1807 | ||
@@ -1987,14 +1966,14 @@ void exit_signals(struct task_struct *tsk) | |||
1987 | if (unlikely(tsk->signal->group_stop_count) && | 1966 | if (unlikely(tsk->signal->group_stop_count) && |
1988 | !--tsk->signal->group_stop_count) { | 1967 | !--tsk->signal->group_stop_count) { |
1989 | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 1968 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
1990 | group_stop = 1; | 1969 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
1991 | } | 1970 | } |
1992 | out: | 1971 | out: |
1993 | spin_unlock_irq(&tsk->sighand->siglock); | 1972 | spin_unlock_irq(&tsk->sighand->siglock); |
1994 | 1973 | ||
1995 | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 1974 | if (unlikely(group_stop)) { |
1996 | read_lock(&tasklist_lock); | 1975 | read_lock(&tasklist_lock); |
1997 | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 1976 | do_notify_parent_cldstop(tsk, group_stop); |
1998 | read_unlock(&tasklist_lock); | 1977 | read_unlock(&tasklist_lock); |
1999 | } | 1978 | } |
2000 | } | 1979 | } |
@@ -2290,7 +2269,6 @@ static int | |||
2290 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 2269 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
2291 | { | 2270 | { |
2292 | struct task_struct *p; | 2271 | struct task_struct *p; |
2293 | unsigned long flags; | ||
2294 | int error = -ESRCH; | 2272 | int error = -ESRCH; |
2295 | 2273 | ||
2296 | rcu_read_lock(); | 2274 | rcu_read_lock(); |
@@ -2300,14 +2278,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | |||
2300 | /* | 2278 | /* |
2301 | * The null signal is a permissions and process existence | 2279 | * The null signal is a permissions and process existence |
2302 | * probe. No signal is actually delivered. | 2280 | * probe. No signal is actually delivered. |
2303 | * | ||
2304 | * If lock_task_sighand() fails we pretend the task dies | ||
2305 | * after receiving the signal. The window is tiny, and the | ||
2306 | * signal is private anyway. | ||
2307 | */ | 2281 | */ |
2308 | if (!error && sig && lock_task_sighand(p, &flags)) { | 2282 | if (!error && sig) { |
2309 | error = specific_send_sig_info(sig, info, p); | 2283 | error = do_send_sig_info(sig, info, p, false); |
2310 | unlock_task_sighand(p, &flags); | 2284 | /* |
2285 | * If lock_task_sighand() failed we pretend the task | ||
2286 | * dies after receiving the signal. The window is tiny, | ||
2287 | * and the signal is private anyway. | ||
2288 | */ | ||
2289 | if (unlikely(error == -ESRCH)) | ||
2290 | error = 0; | ||
2311 | } | 2291 | } |
2312 | } | 2292 | } |
2313 | rcu_read_unlock(); | 2293 | rcu_read_unlock(); |
diff --git a/kernel/slow-work.c b/kernel/slow-work.c index 09d7519557d3..0d31135efbf4 100644 --- a/kernel/slow-work.c +++ b/kernel/slow-work.c | |||
@@ -26,10 +26,10 @@ static void slow_work_cull_timeout(unsigned long); | |||
26 | static void slow_work_oom_timeout(unsigned long); | 26 | static void slow_work_oom_timeout(unsigned long); |
27 | 27 | ||
28 | #ifdef CONFIG_SYSCTL | 28 | #ifdef CONFIG_SYSCTL |
29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
30 | void __user *, size_t *, loff_t *); | 30 | void __user *, size_t *, loff_t *); |
31 | 31 | ||
32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
33 | void __user *, size_t *, loff_t *); | 33 | void __user *, size_t *, loff_t *); |
34 | #endif | 34 | #endif |
35 | 35 | ||
@@ -493,10 +493,10 @@ static void slow_work_oom_timeout(unsigned long data) | |||
493 | * Handle adjustment of the minimum number of threads | 493 | * Handle adjustment of the minimum number of threads |
494 | */ | 494 | */ |
495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
496 | struct file *filp, void __user *buffer, | 496 | void __user *buffer, |
497 | size_t *lenp, loff_t *ppos) | 497 | size_t *lenp, loff_t *ppos) |
498 | { | 498 | { |
499 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 499 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
500 | int n; | 500 | int n; |
501 | 501 | ||
502 | if (ret == 0) { | 502 | if (ret == 0) { |
@@ -521,10 +521,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | |||
521 | * Handle adjustment of the maximum number of threads | 521 | * Handle adjustment of the maximum number of threads |
522 | */ | 522 | */ |
523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
524 | struct file *filp, void __user *buffer, | 524 | void __user *buffer, |
525 | size_t *lenp, loff_t *ppos) | 525 | size_t *lenp, loff_t *ppos) |
526 | { | 526 | { |
527 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 527 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
528 | int n; | 528 | int n; |
529 | 529 | ||
530 | if (ret == 0) { | 530 | if (ret == 0) { |
diff --git a/kernel/smp.c b/kernel/smp.c index 8e218500ab14..c9d1c7835c2f 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -29,8 +29,7 @@ enum { | |||
29 | 29 | ||
30 | struct call_function_data { | 30 | struct call_function_data { |
31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
32 | spinlock_t lock; | 32 | atomic_t refs; |
33 | unsigned int refs; | ||
34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
35 | }; | 34 | }; |
36 | 35 | ||
@@ -39,9 +38,7 @@ struct call_single_queue { | |||
39 | spinlock_t lock; | 38 | spinlock_t lock; |
40 | }; | 39 | }; |
41 | 40 | ||
42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
44 | }; | ||
45 | 42 | ||
46 | static int | 43 | static int |
47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
@@ -196,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
196 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
197 | int refs; | 194 | int refs; |
198 | 195 | ||
199 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
200 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
201 | spin_unlock(&data->lock); | ||
202 | continue; | 197 | continue; |
203 | } | ||
204 | cpumask_clear_cpu(cpu, data->cpumask); | ||
205 | spin_unlock(&data->lock); | ||
206 | 198 | ||
207 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
208 | 200 | ||
209 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
210 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
211 | refs = --data->refs; | ||
212 | if (!refs) { | 203 | if (!refs) { |
213 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
214 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
215 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
216 | } | 207 | } |
217 | spin_unlock(&data->lock); | ||
218 | 208 | ||
219 | if (refs) | 209 | if (refs) |
220 | continue; | 210 | continue; |
@@ -357,13 +347,6 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
357 | generic_exec_single(cpu, data, wait); | 347 | generic_exec_single(cpu, data, wait); |
358 | } | 348 | } |
359 | 349 | ||
360 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ | ||
361 | |||
362 | #ifndef arch_send_call_function_ipi_mask | ||
363 | # define arch_send_call_function_ipi_mask(maskp) \ | ||
364 | arch_send_call_function_ipi(*(maskp)) | ||
365 | #endif | ||
366 | |||
367 | /** | 350 | /** |
368 | * smp_call_function_many(): Run a function on a set of other CPUs. | 351 | * smp_call_function_many(): Run a function on a set of other CPUs. |
369 | * @mask: The set of cpus to run on (only runs on online subset). | 352 | * @mask: The set of cpus to run on (only runs on online subset). |
@@ -419,23 +402,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
419 | data = &__get_cpu_var(cfd_data); | 402 | data = &__get_cpu_var(cfd_data); |
420 | csd_lock(&data->csd); | 403 | csd_lock(&data->csd); |
421 | 404 | ||
422 | spin_lock_irqsave(&data->lock, flags); | ||
423 | data->csd.func = func; | 405 | data->csd.func = func; |
424 | data->csd.info = info; | 406 | data->csd.info = info; |
425 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 407 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
426 | cpumask_clear_cpu(this_cpu, data->cpumask); | 408 | cpumask_clear_cpu(this_cpu, data->cpumask); |
427 | data->refs = cpumask_weight(data->cpumask); | 409 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
428 | 410 | ||
429 | spin_lock(&call_function.lock); | 411 | spin_lock_irqsave(&call_function.lock, flags); |
430 | /* | 412 | /* |
431 | * Place entry at the _HEAD_ of the list, so that any cpu still | 413 | * Place entry at the _HEAD_ of the list, so that any cpu still |
432 | * observing the entry in generic_smp_call_function_interrupt() | 414 | * observing the entry in generic_smp_call_function_interrupt() |
433 | * will not miss any other list entries: | 415 | * will not miss any other list entries: |
434 | */ | 416 | */ |
435 | list_add_rcu(&data->csd.list, &call_function.queue); | 417 | list_add_rcu(&data->csd.list, &call_function.queue); |
436 | spin_unlock(&call_function.lock); | 418 | spin_unlock_irqrestore(&call_function.lock, flags); |
437 | |||
438 | spin_unlock_irqrestore(&data->lock, flags); | ||
439 | 419 | ||
440 | /* | 420 | /* |
441 | * Make the list addition visible before sending the ipi. | 421 | * Make the list addition visible before sending the ipi. |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 88796c330838..81324d12eb35 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void) | |||
90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); | 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); |
91 | 91 | ||
92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, | 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, |
93 | struct file *filp, void __user *buffer, | 93 | void __user *buffer, |
94 | size_t *lenp, loff_t *ppos) | 94 | size_t *lenp, loff_t *ppos) |
95 | { | 95 | { |
96 | touch_all_softlockup_watchdogs(); | 96 | touch_all_softlockup_watchdogs(); |
97 | return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 97 | return proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
98 | } | 98 | } |
99 | 99 | ||
100 | /* | 100 | /* |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..255475d163e0 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,7 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1338 | unsigned long flags; | 1338 | unsigned long flags; |
1339 | cputime_t utime, stime; | 1339 | cputime_t utime, stime; |
1340 | struct task_cputime cputime; | 1340 | struct task_cputime cputime; |
1341 | unsigned long maxrss = 0; | ||
1341 | 1342 | ||
1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
@@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1346 | utime = task_utime(current); | 1347 | utime = task_utime(current); |
1347 | stime = task_stime(current); | 1348 | stime = task_stime(current); |
1348 | accumulate_thread_rusage(p, r); | 1349 | accumulate_thread_rusage(p, r); |
1350 | maxrss = p->signal->maxrss; | ||
1349 | goto out; | 1351 | goto out; |
1350 | } | 1352 | } |
1351 | 1353 | ||
@@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1363 | r->ru_majflt = p->signal->cmaj_flt; | 1365 | r->ru_majflt = p->signal->cmaj_flt; |
1364 | r->ru_inblock = p->signal->cinblock; | 1366 | r->ru_inblock = p->signal->cinblock; |
1365 | r->ru_oublock = p->signal->coublock; | 1367 | r->ru_oublock = p->signal->coublock; |
1368 | maxrss = p->signal->cmaxrss; | ||
1366 | 1369 | ||
1367 | if (who == RUSAGE_CHILDREN) | 1370 | if (who == RUSAGE_CHILDREN) |
1368 | break; | 1371 | break; |
@@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1377 | r->ru_majflt += p->signal->maj_flt; | 1380 | r->ru_majflt += p->signal->maj_flt; |
1378 | r->ru_inblock += p->signal->inblock; | 1381 | r->ru_inblock += p->signal->inblock; |
1379 | r->ru_oublock += p->signal->oublock; | 1382 | r->ru_oublock += p->signal->oublock; |
1383 | if (maxrss < p->signal->maxrss) | ||
1384 | maxrss = p->signal->maxrss; | ||
1380 | t = p; | 1385 | t = p; |
1381 | do { | 1386 | do { |
1382 | accumulate_thread_rusage(t, r); | 1387 | accumulate_thread_rusage(t, r); |
@@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1392 | out: | 1397 | out: |
1393 | cputime_to_timeval(utime, &r->ru_utime); | 1398 | cputime_to_timeval(utime, &r->ru_utime); |
1394 | cputime_to_timeval(stime, &r->ru_stime); | 1399 | cputime_to_timeval(stime, &r->ru_stime); |
1400 | |||
1401 | if (who != RUSAGE_CHILDREN) { | ||
1402 | struct mm_struct *mm = get_task_mm(p); | ||
1403 | if (mm) { | ||
1404 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
1405 | mmput(mm); | ||
1406 | } | ||
1407 | } | ||
1408 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
1395 | } | 1409 | } |
1396 | 1410 | ||
1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1411 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
@@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1511 | case PR_SET_TSC: | 1525 | case PR_SET_TSC: |
1512 | error = SET_TSC_CTL(arg2); | 1526 | error = SET_TSC_CTL(arg2); |
1513 | break; | 1527 | break; |
1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1528 | case PR_TASK_PERF_EVENTS_DISABLE: |
1515 | error = perf_counter_task_disable(); | 1529 | error = perf_event_task_disable(); |
1516 | break; | 1530 | break; |
1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1531 | case PR_TASK_PERF_EVENTS_ENABLE: |
1518 | error = perf_counter_task_enable(); | 1532 | error = perf_event_task_enable(); |
1519 | break; | 1533 | break; |
1520 | case PR_GET_TIMERSLACK: | 1534 | case PR_GET_TIMERSLACK: |
1521 | error = current->timer_slack_ns; | 1535 | error = current->timer_slack_ns; |
@@ -1528,6 +1542,28 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1528 | current->timer_slack_ns = arg2; | 1542 | current->timer_slack_ns = arg2; |
1529 | error = 0; | 1543 | error = 0; |
1530 | break; | 1544 | break; |
1545 | case PR_MCE_KILL: | ||
1546 | if (arg4 | arg5) | ||
1547 | return -EINVAL; | ||
1548 | switch (arg2) { | ||
1549 | case 0: | ||
1550 | if (arg3 != 0) | ||
1551 | return -EINVAL; | ||
1552 | current->flags &= ~PF_MCE_PROCESS; | ||
1553 | break; | ||
1554 | case 1: | ||
1555 | current->flags |= PF_MCE_PROCESS; | ||
1556 | if (arg3 != 0) | ||
1557 | current->flags |= PF_MCE_EARLY; | ||
1558 | else | ||
1559 | current->flags &= ~PF_MCE_EARLY; | ||
1560 | break; | ||
1561 | default: | ||
1562 | return -EINVAL; | ||
1563 | } | ||
1564 | error = 0; | ||
1565 | break; | ||
1566 | |||
1531 | default: | 1567 | default: |
1532 | error = -EINVAL; | 1568 | error = -EINVAL; |
1533 | break; | 1569 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..515bc230ac2a 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -177,4 +177,4 @@ cond_syscall(sys_eventfd); | |||
177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
178 | 178 | ||
179 | /* performance counters: */ | 179 | /* performance counters: */ |
180 | cond_syscall(sys_perf_counter_open); | 180 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 1a631ba684a4..0d949c517412 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -26,7 +26,6 @@ | |||
26 | #include <linux/proc_fs.h> | 26 | #include <linux/proc_fs.h> |
27 | #include <linux/security.h> | 27 | #include <linux/security.h> |
28 | #include <linux/ctype.h> | 28 | #include <linux/ctype.h> |
29 | #include <linux/utsname.h> | ||
30 | #include <linux/kmemcheck.h> | 29 | #include <linux/kmemcheck.h> |
31 | #include <linux/smp_lock.h> | 30 | #include <linux/smp_lock.h> |
32 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
@@ -50,7 +49,7 @@ | |||
50 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
51 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
52 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
53 | #include <linux/perf_counter.h> | 52 | #include <linux/perf_event.h> |
54 | 53 | ||
55 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
56 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
@@ -77,6 +76,7 @@ extern int max_threads; | |||
77 | extern int core_uses_pid; | 76 | extern int core_uses_pid; |
78 | extern int suid_dumpable; | 77 | extern int suid_dumpable; |
79 | extern char core_pattern[]; | 78 | extern char core_pattern[]; |
79 | extern unsigned int core_pipe_limit; | ||
80 | extern int pid_max; | 80 | extern int pid_max; |
81 | extern int min_free_kbytes; | 81 | extern int min_free_kbytes; |
82 | extern int pid_max_min, pid_max_max; | 82 | extern int pid_max_min, pid_max_max; |
@@ -106,6 +106,9 @@ static int __maybe_unused one = 1; | |||
106 | static int __maybe_unused two = 2; | 106 | static int __maybe_unused two = 2; |
107 | static unsigned long one_ul = 1; | 107 | static unsigned long one_ul = 1; |
108 | static int one_hundred = 100; | 108 | static int one_hundred = 100; |
109 | #ifdef CONFIG_PRINTK | ||
110 | static int ten_thousand = 10000; | ||
111 | #endif | ||
109 | 112 | ||
110 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 113 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
111 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 114 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
@@ -160,9 +163,9 @@ extern int max_lock_depth; | |||
160 | #endif | 163 | #endif |
161 | 164 | ||
162 | #ifdef CONFIG_PROC_SYSCTL | 165 | #ifdef CONFIG_PROC_SYSCTL |
163 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 166 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
164 | void __user *buffer, size_t *lenp, loff_t *ppos); | 167 | void __user *buffer, size_t *lenp, loff_t *ppos); |
165 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 168 | static int proc_taint(struct ctl_table *table, int write, |
166 | void __user *buffer, size_t *lenp, loff_t *ppos); | 169 | void __user *buffer, size_t *lenp, loff_t *ppos); |
167 | #endif | 170 | #endif |
168 | 171 | ||
@@ -421,6 +424,14 @@ static struct ctl_table kern_table[] = { | |||
421 | .proc_handler = &proc_dostring, | 424 | .proc_handler = &proc_dostring, |
422 | .strategy = &sysctl_string, | 425 | .strategy = &sysctl_string, |
423 | }, | 426 | }, |
427 | { | ||
428 | .ctl_name = CTL_UNNUMBERED, | ||
429 | .procname = "core_pipe_limit", | ||
430 | .data = &core_pipe_limit, | ||
431 | .maxlen = sizeof(unsigned int), | ||
432 | .mode = 0644, | ||
433 | .proc_handler = &proc_dointvec, | ||
434 | }, | ||
424 | #ifdef CONFIG_PROC_SYSCTL | 435 | #ifdef CONFIG_PROC_SYSCTL |
425 | { | 436 | { |
426 | .procname = "tainted", | 437 | .procname = "tainted", |
@@ -722,6 +733,17 @@ static struct ctl_table kern_table[] = { | |||
722 | .mode = 0644, | 733 | .mode = 0644, |
723 | .proc_handler = &proc_dointvec, | 734 | .proc_handler = &proc_dointvec, |
724 | }, | 735 | }, |
736 | { | ||
737 | .ctl_name = CTL_UNNUMBERED, | ||
738 | .procname = "printk_delay", | ||
739 | .data = &printk_delay_msec, | ||
740 | .maxlen = sizeof(int), | ||
741 | .mode = 0644, | ||
742 | .proc_handler = &proc_dointvec_minmax, | ||
743 | .strategy = &sysctl_intvec, | ||
744 | .extra1 = &zero, | ||
745 | .extra2 = &ten_thousand, | ||
746 | }, | ||
725 | #endif | 747 | #endif |
726 | { | 748 | { |
727 | .ctl_name = KERN_NGROUPS_MAX, | 749 | .ctl_name = KERN_NGROUPS_MAX, |
@@ -964,28 +986,28 @@ static struct ctl_table kern_table[] = { | |||
964 | .child = slow_work_sysctls, | 986 | .child = slow_work_sysctls, |
965 | }, | 987 | }, |
966 | #endif | 988 | #endif |
967 | #ifdef CONFIG_PERF_COUNTERS | 989 | #ifdef CONFIG_PERF_EVENTS |
968 | { | 990 | { |
969 | .ctl_name = CTL_UNNUMBERED, | 991 | .ctl_name = CTL_UNNUMBERED, |
970 | .procname = "perf_counter_paranoid", | 992 | .procname = "perf_event_paranoid", |
971 | .data = &sysctl_perf_counter_paranoid, | 993 | .data = &sysctl_perf_event_paranoid, |
972 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 994 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
973 | .mode = 0644, | 995 | .mode = 0644, |
974 | .proc_handler = &proc_dointvec, | 996 | .proc_handler = &proc_dointvec, |
975 | }, | 997 | }, |
976 | { | 998 | { |
977 | .ctl_name = CTL_UNNUMBERED, | 999 | .ctl_name = CTL_UNNUMBERED, |
978 | .procname = "perf_counter_mlock_kb", | 1000 | .procname = "perf_event_mlock_kb", |
979 | .data = &sysctl_perf_counter_mlock, | 1001 | .data = &sysctl_perf_event_mlock, |
980 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 1002 | .maxlen = sizeof(sysctl_perf_event_mlock), |
981 | .mode = 0644, | 1003 | .mode = 0644, |
982 | .proc_handler = &proc_dointvec, | 1004 | .proc_handler = &proc_dointvec, |
983 | }, | 1005 | }, |
984 | { | 1006 | { |
985 | .ctl_name = CTL_UNNUMBERED, | 1007 | .ctl_name = CTL_UNNUMBERED, |
986 | .procname = "perf_counter_max_sample_rate", | 1008 | .procname = "perf_event_max_sample_rate", |
987 | .data = &sysctl_perf_counter_sample_rate, | 1009 | .data = &sysctl_perf_event_sample_rate, |
988 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1010 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
989 | .mode = 0644, | 1011 | .mode = 0644, |
990 | .proc_handler = &proc_dointvec, | 1012 | .proc_handler = &proc_dointvec, |
991 | }, | 1013 | }, |
@@ -1376,6 +1398,31 @@ static struct ctl_table vm_table[] = { | |||
1376 | .mode = 0644, | 1398 | .mode = 0644, |
1377 | .proc_handler = &scan_unevictable_handler, | 1399 | .proc_handler = &scan_unevictable_handler, |
1378 | }, | 1400 | }, |
1401 | #ifdef CONFIG_MEMORY_FAILURE | ||
1402 | { | ||
1403 | .ctl_name = CTL_UNNUMBERED, | ||
1404 | .procname = "memory_failure_early_kill", | ||
1405 | .data = &sysctl_memory_failure_early_kill, | ||
1406 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | ||
1407 | .mode = 0644, | ||
1408 | .proc_handler = &proc_dointvec_minmax, | ||
1409 | .strategy = &sysctl_intvec, | ||
1410 | .extra1 = &zero, | ||
1411 | .extra2 = &one, | ||
1412 | }, | ||
1413 | { | ||
1414 | .ctl_name = CTL_UNNUMBERED, | ||
1415 | .procname = "memory_failure_recovery", | ||
1416 | .data = &sysctl_memory_failure_recovery, | ||
1417 | .maxlen = sizeof(sysctl_memory_failure_recovery), | ||
1418 | .mode = 0644, | ||
1419 | .proc_handler = &proc_dointvec_minmax, | ||
1420 | .strategy = &sysctl_intvec, | ||
1421 | .extra1 = &zero, | ||
1422 | .extra2 = &one, | ||
1423 | }, | ||
1424 | #endif | ||
1425 | |||
1379 | /* | 1426 | /* |
1380 | * NOTE: do not add new entries to this table unless you have read | 1427 | * NOTE: do not add new entries to this table unless you have read |
1381 | * Documentation/sysctl/ctl_unnumbered.txt | 1428 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -2204,7 +2251,7 @@ void sysctl_head_put(struct ctl_table_header *head) | |||
2204 | #ifdef CONFIG_PROC_SYSCTL | 2251 | #ifdef CONFIG_PROC_SYSCTL |
2205 | 2252 | ||
2206 | static int _proc_do_string(void* data, int maxlen, int write, | 2253 | static int _proc_do_string(void* data, int maxlen, int write, |
2207 | struct file *filp, void __user *buffer, | 2254 | void __user *buffer, |
2208 | size_t *lenp, loff_t *ppos) | 2255 | size_t *lenp, loff_t *ppos) |
2209 | { | 2256 | { |
2210 | size_t len; | 2257 | size_t len; |
@@ -2265,7 +2312,6 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2265 | * proc_dostring - read a string sysctl | 2312 | * proc_dostring - read a string sysctl |
2266 | * @table: the sysctl table | 2313 | * @table: the sysctl table |
2267 | * @write: %TRUE if this is a write to the sysctl file | 2314 | * @write: %TRUE if this is a write to the sysctl file |
2268 | * @filp: the file structure | ||
2269 | * @buffer: the user buffer | 2315 | * @buffer: the user buffer |
2270 | * @lenp: the size of the user buffer | 2316 | * @lenp: the size of the user buffer |
2271 | * @ppos: file position | 2317 | * @ppos: file position |
@@ -2279,10 +2325,10 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2279 | * | 2325 | * |
2280 | * Returns 0 on success. | 2326 | * Returns 0 on success. |
2281 | */ | 2327 | */ |
2282 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2328 | int proc_dostring(struct ctl_table *table, int write, |
2283 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2329 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2284 | { | 2330 | { |
2285 | return _proc_do_string(table->data, table->maxlen, write, filp, | 2331 | return _proc_do_string(table->data, table->maxlen, write, |
2286 | buffer, lenp, ppos); | 2332 | buffer, lenp, ppos); |
2287 | } | 2333 | } |
2288 | 2334 | ||
@@ -2307,7 +2353,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
2307 | } | 2353 | } |
2308 | 2354 | ||
2309 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2355 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
2310 | int write, struct file *filp, void __user *buffer, | 2356 | int write, void __user *buffer, |
2311 | size_t *lenp, loff_t *ppos, | 2357 | size_t *lenp, loff_t *ppos, |
2312 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2358 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2313 | int write, void *data), | 2359 | int write, void *data), |
@@ -2414,13 +2460,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
2414 | #undef TMPBUFLEN | 2460 | #undef TMPBUFLEN |
2415 | } | 2461 | } |
2416 | 2462 | ||
2417 | static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2463 | static int do_proc_dointvec(struct ctl_table *table, int write, |
2418 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2464 | void __user *buffer, size_t *lenp, loff_t *ppos, |
2419 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2465 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2420 | int write, void *data), | 2466 | int write, void *data), |
2421 | void *data) | 2467 | void *data) |
2422 | { | 2468 | { |
2423 | return __do_proc_dointvec(table->data, table, write, filp, | 2469 | return __do_proc_dointvec(table->data, table, write, |
2424 | buffer, lenp, ppos, conv, data); | 2470 | buffer, lenp, ppos, conv, data); |
2425 | } | 2471 | } |
2426 | 2472 | ||
@@ -2428,7 +2474,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2428 | * proc_dointvec - read a vector of integers | 2474 | * proc_dointvec - read a vector of integers |
2429 | * @table: the sysctl table | 2475 | * @table: the sysctl table |
2430 | * @write: %TRUE if this is a write to the sysctl file | 2476 | * @write: %TRUE if this is a write to the sysctl file |
2431 | * @filp: the file structure | ||
2432 | * @buffer: the user buffer | 2477 | * @buffer: the user buffer |
2433 | * @lenp: the size of the user buffer | 2478 | * @lenp: the size of the user buffer |
2434 | * @ppos: file position | 2479 | * @ppos: file position |
@@ -2438,10 +2483,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2438 | * | 2483 | * |
2439 | * Returns 0 on success. | 2484 | * Returns 0 on success. |
2440 | */ | 2485 | */ |
2441 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2486 | int proc_dointvec(struct ctl_table *table, int write, |
2442 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2487 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2443 | { | 2488 | { |
2444 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2489 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2445 | NULL,NULL); | 2490 | NULL,NULL); |
2446 | } | 2491 | } |
2447 | 2492 | ||
@@ -2449,7 +2494,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | |||
2449 | * Taint values can only be increased | 2494 | * Taint values can only be increased |
2450 | * This means we can safely use a temporary. | 2495 | * This means we can safely use a temporary. |
2451 | */ | 2496 | */ |
2452 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 2497 | static int proc_taint(struct ctl_table *table, int write, |
2453 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2498 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2454 | { | 2499 | { |
2455 | struct ctl_table t; | 2500 | struct ctl_table t; |
@@ -2461,7 +2506,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp, | |||
2461 | 2506 | ||
2462 | t = *table; | 2507 | t = *table; |
2463 | t.data = &tmptaint; | 2508 | t.data = &tmptaint; |
2464 | err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); | 2509 | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); |
2465 | if (err < 0) | 2510 | if (err < 0) |
2466 | return err; | 2511 | return err; |
2467 | 2512 | ||
@@ -2513,7 +2558,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2513 | * proc_dointvec_minmax - read a vector of integers with min/max values | 2558 | * proc_dointvec_minmax - read a vector of integers with min/max values |
2514 | * @table: the sysctl table | 2559 | * @table: the sysctl table |
2515 | * @write: %TRUE if this is a write to the sysctl file | 2560 | * @write: %TRUE if this is a write to the sysctl file |
2516 | * @filp: the file structure | ||
2517 | * @buffer: the user buffer | 2561 | * @buffer: the user buffer |
2518 | * @lenp: the size of the user buffer | 2562 | * @lenp: the size of the user buffer |
2519 | * @ppos: file position | 2563 | * @ppos: file position |
@@ -2526,19 +2570,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2526 | * | 2570 | * |
2527 | * Returns 0 on success. | 2571 | * Returns 0 on success. |
2528 | */ | 2572 | */ |
2529 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2573 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2530 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2574 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2531 | { | 2575 | { |
2532 | struct do_proc_dointvec_minmax_conv_param param = { | 2576 | struct do_proc_dointvec_minmax_conv_param param = { |
2533 | .min = (int *) table->extra1, | 2577 | .min = (int *) table->extra1, |
2534 | .max = (int *) table->extra2, | 2578 | .max = (int *) table->extra2, |
2535 | }; | 2579 | }; |
2536 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2580 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2537 | do_proc_dointvec_minmax_conv, ¶m); | 2581 | do_proc_dointvec_minmax_conv, ¶m); |
2538 | } | 2582 | } |
2539 | 2583 | ||
2540 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, | 2584 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, |
2541 | struct file *filp, | ||
2542 | void __user *buffer, | 2585 | void __user *buffer, |
2543 | size_t *lenp, loff_t *ppos, | 2586 | size_t *lenp, loff_t *ppos, |
2544 | unsigned long convmul, | 2587 | unsigned long convmul, |
@@ -2643,21 +2686,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
2643 | } | 2686 | } |
2644 | 2687 | ||
2645 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2688 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
2646 | struct file *filp, | ||
2647 | void __user *buffer, | 2689 | void __user *buffer, |
2648 | size_t *lenp, loff_t *ppos, | 2690 | size_t *lenp, loff_t *ppos, |
2649 | unsigned long convmul, | 2691 | unsigned long convmul, |
2650 | unsigned long convdiv) | 2692 | unsigned long convdiv) |
2651 | { | 2693 | { |
2652 | return __do_proc_doulongvec_minmax(table->data, table, write, | 2694 | return __do_proc_doulongvec_minmax(table->data, table, write, |
2653 | filp, buffer, lenp, ppos, convmul, convdiv); | 2695 | buffer, lenp, ppos, convmul, convdiv); |
2654 | } | 2696 | } |
2655 | 2697 | ||
2656 | /** | 2698 | /** |
2657 | * proc_doulongvec_minmax - read a vector of long integers with min/max values | 2699 | * proc_doulongvec_minmax - read a vector of long integers with min/max values |
2658 | * @table: the sysctl table | 2700 | * @table: the sysctl table |
2659 | * @write: %TRUE if this is a write to the sysctl file | 2701 | * @write: %TRUE if this is a write to the sysctl file |
2660 | * @filp: the file structure | ||
2661 | * @buffer: the user buffer | 2702 | * @buffer: the user buffer |
2662 | * @lenp: the size of the user buffer | 2703 | * @lenp: the size of the user buffer |
2663 | * @ppos: file position | 2704 | * @ppos: file position |
@@ -2670,17 +2711,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | |||
2670 | * | 2711 | * |
2671 | * Returns 0 on success. | 2712 | * Returns 0 on success. |
2672 | */ | 2713 | */ |
2673 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2714 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2674 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2715 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2675 | { | 2716 | { |
2676 | return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); | 2717 | return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l); |
2677 | } | 2718 | } |
2678 | 2719 | ||
2679 | /** | 2720 | /** |
2680 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values | 2721 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values |
2681 | * @table: the sysctl table | 2722 | * @table: the sysctl table |
2682 | * @write: %TRUE if this is a write to the sysctl file | 2723 | * @write: %TRUE if this is a write to the sysctl file |
2683 | * @filp: the file structure | ||
2684 | * @buffer: the user buffer | 2724 | * @buffer: the user buffer |
2685 | * @lenp: the size of the user buffer | 2725 | * @lenp: the size of the user buffer |
2686 | * @ppos: file position | 2726 | * @ppos: file position |
@@ -2695,11 +2735,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp | |||
2695 | * Returns 0 on success. | 2735 | * Returns 0 on success. |
2696 | */ | 2736 | */ |
2697 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2737 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2698 | struct file *filp, | ||
2699 | void __user *buffer, | 2738 | void __user *buffer, |
2700 | size_t *lenp, loff_t *ppos) | 2739 | size_t *lenp, loff_t *ppos) |
2701 | { | 2740 | { |
2702 | return do_proc_doulongvec_minmax(table, write, filp, buffer, | 2741 | return do_proc_doulongvec_minmax(table, write, buffer, |
2703 | lenp, ppos, HZ, 1000l); | 2742 | lenp, ppos, HZ, 1000l); |
2704 | } | 2743 | } |
2705 | 2744 | ||
@@ -2775,7 +2814,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2775 | * proc_dointvec_jiffies - read a vector of integers as seconds | 2814 | * proc_dointvec_jiffies - read a vector of integers as seconds |
2776 | * @table: the sysctl table | 2815 | * @table: the sysctl table |
2777 | * @write: %TRUE if this is a write to the sysctl file | 2816 | * @write: %TRUE if this is a write to the sysctl file |
2778 | * @filp: the file structure | ||
2779 | * @buffer: the user buffer | 2817 | * @buffer: the user buffer |
2780 | * @lenp: the size of the user buffer | 2818 | * @lenp: the size of the user buffer |
2781 | * @ppos: file position | 2819 | * @ppos: file position |
@@ -2787,10 +2825,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2787 | * | 2825 | * |
2788 | * Returns 0 on success. | 2826 | * Returns 0 on success. |
2789 | */ | 2827 | */ |
2790 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2828 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2791 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2829 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2792 | { | 2830 | { |
2793 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2831 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2794 | do_proc_dointvec_jiffies_conv,NULL); | 2832 | do_proc_dointvec_jiffies_conv,NULL); |
2795 | } | 2833 | } |
2796 | 2834 | ||
@@ -2798,7 +2836,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2798 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds | 2836 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds |
2799 | * @table: the sysctl table | 2837 | * @table: the sysctl table |
2800 | * @write: %TRUE if this is a write to the sysctl file | 2838 | * @write: %TRUE if this is a write to the sysctl file |
2801 | * @filp: the file structure | ||
2802 | * @buffer: the user buffer | 2839 | * @buffer: the user buffer |
2803 | * @lenp: the size of the user buffer | 2840 | * @lenp: the size of the user buffer |
2804 | * @ppos: pointer to the file position | 2841 | * @ppos: pointer to the file position |
@@ -2810,10 +2847,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2810 | * | 2847 | * |
2811 | * Returns 0 on success. | 2848 | * Returns 0 on success. |
2812 | */ | 2849 | */ |
2813 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2850 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2814 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2851 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2815 | { | 2852 | { |
2816 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2853 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2817 | do_proc_dointvec_userhz_jiffies_conv,NULL); | 2854 | do_proc_dointvec_userhz_jiffies_conv,NULL); |
2818 | } | 2855 | } |
2819 | 2856 | ||
@@ -2821,7 +2858,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2821 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds | 2858 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds |
2822 | * @table: the sysctl table | 2859 | * @table: the sysctl table |
2823 | * @write: %TRUE if this is a write to the sysctl file | 2860 | * @write: %TRUE if this is a write to the sysctl file |
2824 | * @filp: the file structure | ||
2825 | * @buffer: the user buffer | 2861 | * @buffer: the user buffer |
2826 | * @lenp: the size of the user buffer | 2862 | * @lenp: the size of the user buffer |
2827 | * @ppos: file position | 2863 | * @ppos: file position |
@@ -2834,14 +2870,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2834 | * | 2870 | * |
2835 | * Returns 0 on success. | 2871 | * Returns 0 on success. |
2836 | */ | 2872 | */ |
2837 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2873 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2838 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2874 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2839 | { | 2875 | { |
2840 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2876 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2841 | do_proc_dointvec_ms_jiffies_conv, NULL); | 2877 | do_proc_dointvec_ms_jiffies_conv, NULL); |
2842 | } | 2878 | } |
2843 | 2879 | ||
2844 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 2880 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
2845 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2846 | { | 2882 | { |
2847 | struct pid *new_pid; | 2883 | struct pid *new_pid; |
@@ -2850,7 +2886,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2850 | 2886 | ||
2851 | tmp = pid_vnr(cad_pid); | 2887 | tmp = pid_vnr(cad_pid); |
2852 | 2888 | ||
2853 | r = __do_proc_dointvec(&tmp, table, write, filp, buffer, | 2889 | r = __do_proc_dointvec(&tmp, table, write, buffer, |
2854 | lenp, ppos, NULL, NULL); | 2890 | lenp, ppos, NULL, NULL); |
2855 | if (r || !write) | 2891 | if (r || !write) |
2856 | return r; | 2892 | return r; |
@@ -2865,50 +2901,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2865 | 2901 | ||
2866 | #else /* CONFIG_PROC_FS */ | 2902 | #else /* CONFIG_PROC_FS */ |
2867 | 2903 | ||
2868 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2904 | int proc_dostring(struct ctl_table *table, int write, |
2869 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2905 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2870 | { | 2906 | { |
2871 | return -ENOSYS; | 2907 | return -ENOSYS; |
2872 | } | 2908 | } |
2873 | 2909 | ||
2874 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2910 | int proc_dointvec(struct ctl_table *table, int write, |
2875 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2911 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2876 | { | 2912 | { |
2877 | return -ENOSYS; | 2913 | return -ENOSYS; |
2878 | } | 2914 | } |
2879 | 2915 | ||
2880 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2916 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2881 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2917 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2882 | { | 2918 | { |
2883 | return -ENOSYS; | 2919 | return -ENOSYS; |
2884 | } | 2920 | } |
2885 | 2921 | ||
2886 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2922 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2887 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2923 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2888 | { | 2924 | { |
2889 | return -ENOSYS; | 2925 | return -ENOSYS; |
2890 | } | 2926 | } |
2891 | 2927 | ||
2892 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2928 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2893 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2929 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2894 | { | 2930 | { |
2895 | return -ENOSYS; | 2931 | return -ENOSYS; |
2896 | } | 2932 | } |
2897 | 2933 | ||
2898 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2934 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2899 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2935 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2900 | { | 2936 | { |
2901 | return -ENOSYS; | 2937 | return -ENOSYS; |
2902 | } | 2938 | } |
2903 | 2939 | ||
2904 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2940 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2905 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2941 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2906 | { | 2942 | { |
2907 | return -ENOSYS; | 2943 | return -ENOSYS; |
2908 | } | 2944 | } |
2909 | 2945 | ||
2910 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2946 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2911 | struct file *filp, | ||
2912 | void __user *buffer, | 2947 | void __user *buffer, |
2913 | size_t *lenp, loff_t *ppos) | 2948 | size_t *lenp, loff_t *ppos) |
2914 | { | 2949 | { |
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 0b0a6366c9d4..ee266620b06c 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o |
2 | 2 | ||
3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c new file mode 100644 index 000000000000..86628e755f38 --- /dev/null +++ b/kernel/time/timeconv.c | |||
@@ -0,0 +1,127 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. | ||
3 | * This file is part of the GNU C Library. | ||
4 | * Contributed by Paul Eggert (eggert@twinsun.com). | ||
5 | * | ||
6 | * The GNU C Library is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU Library General Public License as | ||
8 | * published by the Free Software Foundation; either version 2 of the | ||
9 | * License, or (at your option) any later version. | ||
10 | * | ||
11 | * The GNU C Library is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | * Library General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU Library General Public | ||
17 | * License along with the GNU C Library; see the file COPYING.LIB. If not, | ||
18 | * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
19 | * Boston, MA 02111-1307, USA. | ||
20 | */ | ||
21 | |||
22 | /* | ||
23 | * Converts the calendar time to broken-down time representation | ||
24 | * Based on code from glibc-2.6 | ||
25 | * | ||
26 | * 2009-7-14: | ||
27 | * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com> | ||
28 | */ | ||
29 | |||
30 | #include <linux/time.h> | ||
31 | #include <linux/module.h> | ||
32 | |||
33 | /* | ||
34 | * Nonzero if YEAR is a leap year (every 4 years, | ||
35 | * except every 100th isn't, and every 400th is). | ||
36 | */ | ||
37 | static int __isleap(long year) | ||
38 | { | ||
39 | return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0); | ||
40 | } | ||
41 | |||
42 | /* do a mathdiv for long type */ | ||
43 | static long math_div(long a, long b) | ||
44 | { | ||
45 | return a / b - (a % b < 0); | ||
46 | } | ||
47 | |||
48 | /* How many leap years between y1 and y2, y1 must less or equal to y2 */ | ||
49 | static long leaps_between(long y1, long y2) | ||
50 | { | ||
51 | long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100) | ||
52 | + math_div(y1 - 1, 400); | ||
53 | long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100) | ||
54 | + math_div(y2 - 1, 400); | ||
55 | return leaps2 - leaps1; | ||
56 | } | ||
57 | |||
58 | /* How many days come before each month (0-12). */ | ||
59 | static const unsigned short __mon_yday[2][13] = { | ||
60 | /* Normal years. */ | ||
61 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, | ||
62 | /* Leap years. */ | ||
63 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} | ||
64 | }; | ||
65 | |||
66 | #define SECS_PER_HOUR (60 * 60) | ||
67 | #define SECS_PER_DAY (SECS_PER_HOUR * 24) | ||
68 | |||
69 | /** | ||
70 | * time_to_tm - converts the calendar time to local broken-down time | ||
71 | * | ||
72 | * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970, | ||
73 | * Coordinated Universal Time (UTC). | ||
74 | * @offset offset seconds adding to totalsecs. | ||
75 | * @result pointer to struct tm variable to receive broken-down time | ||
76 | */ | ||
77 | void time_to_tm(time_t totalsecs, int offset, struct tm *result) | ||
78 | { | ||
79 | long days, rem, y; | ||
80 | const unsigned short *ip; | ||
81 | |||
82 | days = totalsecs / SECS_PER_DAY; | ||
83 | rem = totalsecs % SECS_PER_DAY; | ||
84 | rem += offset; | ||
85 | while (rem < 0) { | ||
86 | rem += SECS_PER_DAY; | ||
87 | --days; | ||
88 | } | ||
89 | while (rem >= SECS_PER_DAY) { | ||
90 | rem -= SECS_PER_DAY; | ||
91 | ++days; | ||
92 | } | ||
93 | |||
94 | result->tm_hour = rem / SECS_PER_HOUR; | ||
95 | rem %= SECS_PER_HOUR; | ||
96 | result->tm_min = rem / 60; | ||
97 | result->tm_sec = rem % 60; | ||
98 | |||
99 | /* January 1, 1970 was a Thursday. */ | ||
100 | result->tm_wday = (4 + days) % 7; | ||
101 | if (result->tm_wday < 0) | ||
102 | result->tm_wday += 7; | ||
103 | |||
104 | y = 1970; | ||
105 | |||
106 | while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { | ||
107 | /* Guess a corrected year, assuming 365 days per year. */ | ||
108 | long yg = y + math_div(days, 365); | ||
109 | |||
110 | /* Adjust DAYS and Y to match the guessed year. */ | ||
111 | days -= (yg - y) * 365 + leaps_between(y, yg); | ||
112 | y = yg; | ||
113 | } | ||
114 | |||
115 | result->tm_year = y - 1900; | ||
116 | |||
117 | result->tm_yday = days; | ||
118 | |||
119 | ip = __mon_yday[__isleap(y)]; | ||
120 | for (y = 11; days < ip[y]; y--) | ||
121 | continue; | ||
122 | days -= ip[y]; | ||
123 | |||
124 | result->tm_mon = y; | ||
125 | result->tm_mday = days + 1; | ||
126 | } | ||
127 | EXPORT_SYMBOL(time_to_tm); | ||
diff --git a/kernel/timer.c b/kernel/timer.c index bbb51074680e..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,7 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | 42 | ||
43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
@@ -46,6 +46,9 @@ | |||
46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
48 | 48 | ||
49 | #define CREATE_TRACE_POINTS | ||
50 | #include <trace/events/timer.h> | ||
51 | |||
49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
50 | 53 | ||
51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
@@ -521,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
521 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
522 | #endif | 525 | #endif |
523 | 526 | ||
527 | static inline void debug_init(struct timer_list *timer) | ||
528 | { | ||
529 | debug_timer_init(timer); | ||
530 | trace_timer_init(timer); | ||
531 | } | ||
532 | |||
533 | static inline void | ||
534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
535 | { | ||
536 | debug_timer_activate(timer); | ||
537 | trace_timer_start(timer, expires); | ||
538 | } | ||
539 | |||
540 | static inline void debug_deactivate(struct timer_list *timer) | ||
541 | { | ||
542 | debug_timer_deactivate(timer); | ||
543 | trace_timer_cancel(timer); | ||
544 | } | ||
545 | |||
524 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
525 | const char *name, | 547 | const char *name, |
526 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
@@ -549,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
549 | const char *name, | 571 | const char *name, |
550 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
551 | { | 573 | { |
552 | debug_timer_init(timer); | 574 | debug_init(timer); |
553 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
554 | } | 576 | } |
555 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
@@ -568,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
568 | { | 590 | { |
569 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
570 | 592 | ||
571 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
572 | 594 | ||
573 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
574 | if (clear_pending) | 596 | if (clear_pending) |
@@ -632,7 +654,7 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
632 | goto out_unlock; | 654 | goto out_unlock; |
633 | } | 655 | } |
634 | 656 | ||
635 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
636 | 658 | ||
637 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
638 | 660 | ||
@@ -787,7 +809,7 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
787 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
788 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
789 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
790 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
791 | if (time_before(timer->expires, base->next_timer) && | 813 | if (time_before(timer->expires, base->next_timer) && |
792 | !tbase_get_deferrable(timer->base)) | 814 | !tbase_get_deferrable(timer->base)) |
793 | base->next_timer = timer->expires; | 815 | base->next_timer = timer->expires; |
@@ -1000,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
1000 | */ | 1022 | */ |
1001 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
1002 | 1024 | ||
1025 | trace_timer_expire_entry(timer); | ||
1003 | fn(data); | 1026 | fn(data); |
1027 | trace_timer_expire_exit(timer); | ||
1004 | 1028 | ||
1005 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
1006 | 1030 | ||
@@ -1187,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1187 | { | 1211 | { |
1188 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1189 | 1213 | ||
1190 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
1191 | 1215 | ||
1192 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
1193 | 1217 | ||
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index e71634604400..b416512ad17f 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -83,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
83 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
84 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
86 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
87 | 87 | ||
88 | config TRACING | 88 | config TRACING |
89 | bool | 89 | bool |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index cc615f84751b..a142579765bf 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -1520,7 +1520,7 @@ static int t_show(struct seq_file *m, void *v) | |||
1520 | return 0; | 1520 | return 0; |
1521 | } | 1521 | } |
1522 | 1522 | ||
1523 | static struct seq_operations show_ftrace_seq_ops = { | 1523 | static const struct seq_operations show_ftrace_seq_ops = { |
1524 | .start = t_start, | 1524 | .start = t_start, |
1525 | .next = t_next, | 1525 | .next = t_next, |
1526 | .stop = t_stop, | 1526 | .stop = t_stop, |
@@ -2414,11 +2414,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
2414 | static void * | 2414 | static void * |
2415 | __g_next(struct seq_file *m, loff_t *pos) | 2415 | __g_next(struct seq_file *m, loff_t *pos) |
2416 | { | 2416 | { |
2417 | unsigned long *array = m->private; | ||
2418 | |||
2419 | if (*pos >= ftrace_graph_count) | 2417 | if (*pos >= ftrace_graph_count) |
2420 | return NULL; | 2418 | return NULL; |
2421 | return &array[*pos]; | 2419 | return &ftrace_graph_funcs[*pos]; |
2422 | } | 2420 | } |
2423 | 2421 | ||
2424 | static void * | 2422 | static void * |
@@ -2461,7 +2459,7 @@ static int g_show(struct seq_file *m, void *v) | |||
2461 | return 0; | 2459 | return 0; |
2462 | } | 2460 | } |
2463 | 2461 | ||
2464 | static struct seq_operations ftrace_graph_seq_ops = { | 2462 | static const struct seq_operations ftrace_graph_seq_ops = { |
2465 | .start = g_start, | 2463 | .start = g_start, |
2466 | .next = g_next, | 2464 | .next = g_next, |
2467 | .stop = g_stop, | 2465 | .stop = g_stop, |
@@ -2482,16 +2480,10 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
2482 | ftrace_graph_count = 0; | 2480 | ftrace_graph_count = 0; |
2483 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2481 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
2484 | } | 2482 | } |
2483 | mutex_unlock(&graph_lock); | ||
2485 | 2484 | ||
2486 | if (file->f_mode & FMODE_READ) { | 2485 | if (file->f_mode & FMODE_READ) |
2487 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2486 | ret = seq_open(file, &ftrace_graph_seq_ops); |
2488 | if (!ret) { | ||
2489 | struct seq_file *m = file->private_data; | ||
2490 | m->private = ftrace_graph_funcs; | ||
2491 | } | ||
2492 | } else | ||
2493 | file->private_data = ftrace_graph_funcs; | ||
2494 | mutex_unlock(&graph_lock); | ||
2495 | 2487 | ||
2496 | return ret; | 2488 | return ret; |
2497 | } | 2489 | } |
@@ -2560,7 +2552,6 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2560 | size_t cnt, loff_t *ppos) | 2552 | size_t cnt, loff_t *ppos) |
2561 | { | 2553 | { |
2562 | struct trace_parser parser; | 2554 | struct trace_parser parser; |
2563 | unsigned long *array; | ||
2564 | size_t read = 0; | 2555 | size_t read = 0; |
2565 | ssize_t ret; | 2556 | ssize_t ret; |
2566 | 2557 | ||
@@ -2574,12 +2565,6 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2574 | goto out; | 2565 | goto out; |
2575 | } | 2566 | } |
2576 | 2567 | ||
2577 | if (file->f_mode & FMODE_READ) { | ||
2578 | struct seq_file *m = file->private_data; | ||
2579 | array = m->private; | ||
2580 | } else | ||
2581 | array = file->private_data; | ||
2582 | |||
2583 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { | 2568 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
2584 | ret = -ENOMEM; | 2569 | ret = -ENOMEM; |
2585 | goto out; | 2570 | goto out; |
@@ -2591,7 +2576,7 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2591 | parser.buffer[parser.idx] = 0; | 2576 | parser.buffer[parser.idx] = 0; |
2592 | 2577 | ||
2593 | /* we allow only one expression at a time */ | 2578 | /* we allow only one expression at a time */ |
2594 | ret = ftrace_set_func(array, &ftrace_graph_count, | 2579 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
2595 | parser.buffer); | 2580 | parser.buffer); |
2596 | if (ret) | 2581 | if (ret) |
2597 | goto out; | 2582 | goto out; |
@@ -3030,7 +3015,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops) | |||
3030 | 3015 | ||
3031 | int | 3016 | int |
3032 | ftrace_enable_sysctl(struct ctl_table *table, int write, | 3017 | ftrace_enable_sysctl(struct ctl_table *table, int write, |
3033 | struct file *file, void __user *buffer, size_t *lenp, | 3018 | void __user *buffer, size_t *lenp, |
3034 | loff_t *ppos) | 3019 | loff_t *ppos) |
3035 | { | 3020 | { |
3036 | int ret; | 3021 | int ret; |
@@ -3040,7 +3025,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
3040 | 3025 | ||
3041 | mutex_lock(&ftrace_lock); | 3026 | mutex_lock(&ftrace_lock); |
3042 | 3027 | ||
3043 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 3028 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
3044 | 3029 | ||
3045 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) | 3030 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
3046 | goto out; | 3031 | goto out; |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index fd52a19dd172..411af37f4be4 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -125,13 +125,13 @@ int ftrace_dump_on_oops; | |||
125 | 125 | ||
126 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
127 | 127 | ||
128 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
129 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
130 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
131 | 131 | ||
132 | static int __init set_ftrace(char *str) | 132 | static int __init set_ftrace(char *str) |
133 | { | 133 | { |
134 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
135 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
136 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
137 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
@@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
242 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
243 | 243 | ||
244 | /* | 244 | /* |
245 | * max_tracer_type_len is used to simplify the allocating of | ||
246 | * buffers to read userspace tracer names. We keep track of | ||
247 | * the longest tracer name registered. | ||
248 | */ | ||
249 | static int max_tracer_type_len; | ||
250 | |||
251 | /* | ||
252 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
253 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
254 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
@@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock); | |||
275 | */ | 268 | */ |
276 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
277 | { | 270 | { |
271 | int cpu; | ||
272 | |||
273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
274 | return; | ||
278 | /* | 275 | /* |
279 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
280 | * have for now: | 277 | * have for now: |
281 | */ | 278 | */ |
282 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
280 | if (!runqueue_is_locked(cpu)) | ||
283 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
282 | put_cpu(); | ||
284 | } | 283 | } |
285 | 284 | ||
286 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
@@ -619,7 +618,6 @@ __releases(kernel_lock) | |||
619 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
620 | { | 619 | { |
621 | struct tracer *t; | 620 | struct tracer *t; |
622 | int len; | ||
623 | int ret = 0; | 621 | int ret = 0; |
624 | 622 | ||
625 | if (!type->name) { | 623 | if (!type->name) { |
@@ -627,6 +625,11 @@ __acquires(kernel_lock) | |||
627 | return -1; | 625 | return -1; |
628 | } | 626 | } |
629 | 627 | ||
628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
630 | return -1; | ||
631 | } | ||
632 | |||
630 | /* | 633 | /* |
631 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
632 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
@@ -641,7 +644,7 @@ __acquires(kernel_lock) | |||
641 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
642 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
643 | /* already found */ | 646 | /* already found */ |
644 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
645 | type->name); | 648 | type->name); |
646 | ret = -1; | 649 | ret = -1; |
647 | goto out; | 650 | goto out; |
@@ -692,9 +695,6 @@ __acquires(kernel_lock) | |||
692 | 695 | ||
693 | type->next = trace_types; | 696 | type->next = trace_types; |
694 | trace_types = type; | 697 | trace_types = type; |
695 | len = strlen(type->name); | ||
696 | if (len > max_tracer_type_len) | ||
697 | max_tracer_type_len = len; | ||
698 | 698 | ||
699 | out: | 699 | out: |
700 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
@@ -703,7 +703,7 @@ __acquires(kernel_lock) | |||
703 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
704 | goto out_unlock; | 704 | goto out_unlock; |
705 | 705 | ||
706 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
707 | goto out_unlock; | 707 | goto out_unlock; |
708 | 708 | ||
709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
@@ -725,14 +725,13 @@ __acquires(kernel_lock) | |||
725 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
726 | { | 726 | { |
727 | struct tracer **t; | 727 | struct tracer **t; |
728 | int len; | ||
729 | 728 | ||
730 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
731 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
732 | if (*t == type) | 731 | if (*t == type) |
733 | goto found; | 732 | goto found; |
734 | } | 733 | } |
735 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
736 | goto out; | 735 | goto out; |
737 | 736 | ||
738 | found: | 737 | found: |
@@ -745,17 +744,7 @@ void unregister_tracer(struct tracer *type) | |||
745 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
746 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
747 | } | 746 | } |
748 | 747 | out: | |
749 | if (strlen(type->name) != max_tracer_type_len) | ||
750 | goto out; | ||
751 | |||
752 | max_tracer_type_len = 0; | ||
753 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
754 | len = strlen((*t)->name); | ||
755 | if (len > max_tracer_type_len) | ||
756 | max_tracer_type_len = len; | ||
757 | } | ||
758 | out: | ||
759 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
760 | } | 749 | } |
761 | 750 | ||
@@ -1960,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v) | |||
1960 | return 0; | 1949 | return 0; |
1961 | } | 1950 | } |
1962 | 1951 | ||
1963 | static struct seq_operations tracer_seq_ops = { | 1952 | static const struct seq_operations tracer_seq_ops = { |
1964 | .start = s_start, | 1953 | .start = s_start, |
1965 | .next = s_next, | 1954 | .next = s_next, |
1966 | .stop = s_stop, | 1955 | .stop = s_stop, |
@@ -1995,11 +1984,9 @@ __tracing_open(struct inode *inode, struct file *file) | |||
1995 | if (current_trace) | 1984 | if (current_trace) |
1996 | *iter->trace = *current_trace; | 1985 | *iter->trace = *current_trace; |
1997 | 1986 | ||
1998 | if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) | 1987 | if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL)) |
1999 | goto fail; | 1988 | goto fail; |
2000 | 1989 | ||
2001 | cpumask_clear(iter->started); | ||
2002 | |||
2003 | if (current_trace && current_trace->print_max) | 1990 | if (current_trace && current_trace->print_max) |
2004 | iter->tr = &max_tr; | 1991 | iter->tr = &max_tr; |
2005 | else | 1992 | else |
@@ -2174,7 +2161,7 @@ static int t_show(struct seq_file *m, void *v) | |||
2174 | return 0; | 2161 | return 0; |
2175 | } | 2162 | } |
2176 | 2163 | ||
2177 | static struct seq_operations show_traces_seq_ops = { | 2164 | static const struct seq_operations show_traces_seq_ops = { |
2178 | .start = t_start, | 2165 | .start = t_start, |
2179 | .next = t_next, | 2166 | .next = t_next, |
2180 | .stop = t_stop, | 2167 | .stop = t_stop, |
@@ -2604,7 +2591,7 @@ static ssize_t | |||
2604 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2591 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
2605 | size_t cnt, loff_t *ppos) | 2592 | size_t cnt, loff_t *ppos) |
2606 | { | 2593 | { |
2607 | char buf[max_tracer_type_len+2]; | 2594 | char buf[MAX_TRACER_SIZE+2]; |
2608 | int r; | 2595 | int r; |
2609 | 2596 | ||
2610 | mutex_lock(&trace_types_lock); | 2597 | mutex_lock(&trace_types_lock); |
@@ -2754,15 +2741,15 @@ static ssize_t | |||
2754 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2741 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
2755 | size_t cnt, loff_t *ppos) | 2742 | size_t cnt, loff_t *ppos) |
2756 | { | 2743 | { |
2757 | char buf[max_tracer_type_len+1]; | 2744 | char buf[MAX_TRACER_SIZE+1]; |
2758 | int i; | 2745 | int i; |
2759 | size_t ret; | 2746 | size_t ret; |
2760 | int err; | 2747 | int err; |
2761 | 2748 | ||
2762 | ret = cnt; | 2749 | ret = cnt; |
2763 | 2750 | ||
2764 | if (cnt > max_tracer_type_len) | 2751 | if (cnt > MAX_TRACER_SIZE) |
2765 | cnt = max_tracer_type_len; | 2752 | cnt = MAX_TRACER_SIZE; |
2766 | 2753 | ||
2767 | if (copy_from_user(&buf, ubuf, cnt)) | 2754 | if (copy_from_user(&buf, ubuf, cnt)) |
2768 | return -EFAULT; | 2755 | return -EFAULT; |
@@ -4400,7 +4387,7 @@ __init static int tracer_alloc_buffers(void) | |||
4400 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) | 4387 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) |
4401 | goto out_free_buffer_mask; | 4388 | goto out_free_buffer_mask; |
4402 | 4389 | ||
4403 | if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) | 4390 | if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) |
4404 | goto out_free_tracing_cpumask; | 4391 | goto out_free_tracing_cpumask; |
4405 | 4392 | ||
4406 | /* To save memory, keep the ring buffer size to its minimum */ | 4393 | /* To save memory, keep the ring buffer size to its minimum */ |
@@ -4411,7 +4398,6 @@ __init static int tracer_alloc_buffers(void) | |||
4411 | 4398 | ||
4412 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); | 4399 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); |
4413 | cpumask_copy(tracing_cpumask, cpu_all_mask); | 4400 | cpumask_copy(tracing_cpumask, cpu_all_mask); |
4414 | cpumask_clear(tracing_reader_cpumask); | ||
4415 | 4401 | ||
4416 | /* TODO: make the number of buffers hot pluggable with CPUS */ | 4402 | /* TODO: make the number of buffers hot pluggable with CPUS */ |
4417 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, | 4403 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, |
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 55a25c933d15..dd44b8768867 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
@@ -8,6 +8,57 @@ | |||
8 | #include <linux/module.h> | 8 | #include <linux/module.h> |
9 | #include "trace.h" | 9 | #include "trace.h" |
10 | 10 | ||
11 | /* | ||
12 | * We can't use a size but a type in alloc_percpu() | ||
13 | * So let's create a dummy type that matches the desired size | ||
14 | */ | ||
15 | typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t; | ||
16 | |||
17 | char *trace_profile_buf; | ||
18 | EXPORT_SYMBOL_GPL(trace_profile_buf); | ||
19 | |||
20 | char *trace_profile_buf_nmi; | ||
21 | EXPORT_SYMBOL_GPL(trace_profile_buf_nmi); | ||
22 | |||
23 | /* Count the events in use (per event id, not per instance) */ | ||
24 | static int total_profile_count; | ||
25 | |||
26 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
27 | { | ||
28 | char *buf; | ||
29 | int ret = -ENOMEM; | ||
30 | |||
31 | if (atomic_inc_return(&event->profile_count)) | ||
32 | return 0; | ||
33 | |||
34 | if (!total_profile_count++) { | ||
35 | buf = (char *)alloc_percpu(profile_buf_t); | ||
36 | if (!buf) | ||
37 | goto fail_buf; | ||
38 | |||
39 | rcu_assign_pointer(trace_profile_buf, buf); | ||
40 | |||
41 | buf = (char *)alloc_percpu(profile_buf_t); | ||
42 | if (!buf) | ||
43 | goto fail_buf_nmi; | ||
44 | |||
45 | rcu_assign_pointer(trace_profile_buf_nmi, buf); | ||
46 | } | ||
47 | |||
48 | ret = event->profile_enable(); | ||
49 | if (!ret) | ||
50 | return 0; | ||
51 | |||
52 | kfree(trace_profile_buf_nmi); | ||
53 | fail_buf_nmi: | ||
54 | kfree(trace_profile_buf); | ||
55 | fail_buf: | ||
56 | total_profile_count--; | ||
57 | atomic_dec(&event->profile_count); | ||
58 | |||
59 | return ret; | ||
60 | } | ||
61 | |||
11 | int ftrace_profile_enable(int event_id) | 62 | int ftrace_profile_enable(int event_id) |
12 | { | 63 | { |
13 | struct ftrace_event_call *event; | 64 | struct ftrace_event_call *event; |
@@ -17,7 +68,7 @@ int ftrace_profile_enable(int event_id) | |||
17 | list_for_each_entry(event, &ftrace_events, list) { | 68 | list_for_each_entry(event, &ftrace_events, list) { |
18 | if (event->id == event_id && event->profile_enable && | 69 | if (event->id == event_id && event->profile_enable && |
19 | try_module_get(event->mod)) { | 70 | try_module_get(event->mod)) { |
20 | ret = event->profile_enable(event); | 71 | ret = ftrace_profile_enable_event(event); |
21 | break; | 72 | break; |
22 | } | 73 | } |
23 | } | 74 | } |
@@ -26,6 +77,33 @@ int ftrace_profile_enable(int event_id) | |||
26 | return ret; | 77 | return ret; |
27 | } | 78 | } |
28 | 79 | ||
80 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
81 | { | ||
82 | char *buf, *nmi_buf; | ||
83 | |||
84 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
85 | return; | ||
86 | |||
87 | event->profile_disable(); | ||
88 | |||
89 | if (!--total_profile_count) { | ||
90 | buf = trace_profile_buf; | ||
91 | rcu_assign_pointer(trace_profile_buf, NULL); | ||
92 | |||
93 | nmi_buf = trace_profile_buf_nmi; | ||
94 | rcu_assign_pointer(trace_profile_buf_nmi, NULL); | ||
95 | |||
96 | /* | ||
97 | * Ensure every events in profiling have finished before | ||
98 | * releasing the buffers | ||
99 | */ | ||
100 | synchronize_sched(); | ||
101 | |||
102 | free_percpu(buf); | ||
103 | free_percpu(nmi_buf); | ||
104 | } | ||
105 | } | ||
106 | |||
29 | void ftrace_profile_disable(int event_id) | 107 | void ftrace_profile_disable(int event_id) |
30 | { | 108 | { |
31 | struct ftrace_event_call *event; | 109 | struct ftrace_event_call *event; |
@@ -33,7 +111,7 @@ void ftrace_profile_disable(int event_id) | |||
33 | mutex_lock(&event_mutex); | 111 | mutex_lock(&event_mutex); |
34 | list_for_each_entry(event, &ftrace_events, list) { | 112 | list_for_each_entry(event, &ftrace_events, list) { |
35 | if (event->id == event_id) { | 113 | if (event->id == event_id) { |
36 | event->profile_disable(event); | 114 | ftrace_profile_disable_event(event); |
37 | module_put(event->mod); | 115 | module_put(event->mod); |
38 | break; | 116 | break; |
39 | } | 117 | } |
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 56c260b83a9c..6f03c8a1105e 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
@@ -271,42 +271,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
271 | static void * | 271 | static void * |
272 | t_next(struct seq_file *m, void *v, loff_t *pos) | 272 | t_next(struct seq_file *m, void *v, loff_t *pos) |
273 | { | 273 | { |
274 | struct list_head *list = m->private; | 274 | struct ftrace_event_call *call = v; |
275 | struct ftrace_event_call *call; | ||
276 | 275 | ||
277 | (*pos)++; | 276 | (*pos)++; |
278 | 277 | ||
279 | for (;;) { | 278 | list_for_each_entry_continue(call, &ftrace_events, list) { |
280 | if (list == &ftrace_events) | ||
281 | return NULL; | ||
282 | |||
283 | call = list_entry(list, struct ftrace_event_call, list); | ||
284 | |||
285 | /* | 279 | /* |
286 | * The ftrace subsystem is for showing formats only. | 280 | * The ftrace subsystem is for showing formats only. |
287 | * They can not be enabled or disabled via the event files. | 281 | * They can not be enabled or disabled via the event files. |
288 | */ | 282 | */ |
289 | if (call->regfunc) | 283 | if (call->regfunc) |
290 | break; | 284 | return call; |
291 | |||
292 | list = list->next; | ||
293 | } | 285 | } |
294 | 286 | ||
295 | m->private = list->next; | 287 | return NULL; |
296 | |||
297 | return call; | ||
298 | } | 288 | } |
299 | 289 | ||
300 | static void *t_start(struct seq_file *m, loff_t *pos) | 290 | static void *t_start(struct seq_file *m, loff_t *pos) |
301 | { | 291 | { |
302 | struct ftrace_event_call *call = NULL; | 292 | struct ftrace_event_call *call; |
303 | loff_t l; | 293 | loff_t l; |
304 | 294 | ||
305 | mutex_lock(&event_mutex); | 295 | mutex_lock(&event_mutex); |
306 | 296 | ||
307 | m->private = ftrace_events.next; | 297 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
308 | for (l = 0; l <= *pos; ) { | 298 | for (l = 0; l <= *pos; ) { |
309 | call = t_next(m, NULL, &l); | 299 | call = t_next(m, call, &l); |
310 | if (!call) | 300 | if (!call) |
311 | break; | 301 | break; |
312 | } | 302 | } |
@@ -316,37 +306,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
316 | static void * | 306 | static void * |
317 | s_next(struct seq_file *m, void *v, loff_t *pos) | 307 | s_next(struct seq_file *m, void *v, loff_t *pos) |
318 | { | 308 | { |
319 | struct list_head *list = m->private; | 309 | struct ftrace_event_call *call = v; |
320 | struct ftrace_event_call *call; | ||
321 | 310 | ||
322 | (*pos)++; | 311 | (*pos)++; |
323 | 312 | ||
324 | retry: | 313 | list_for_each_entry_continue(call, &ftrace_events, list) { |
325 | if (list == &ftrace_events) | 314 | if (call->enabled) |
326 | return NULL; | 315 | return call; |
327 | |||
328 | call = list_entry(list, struct ftrace_event_call, list); | ||
329 | |||
330 | if (!call->enabled) { | ||
331 | list = list->next; | ||
332 | goto retry; | ||
333 | } | 316 | } |
334 | 317 | ||
335 | m->private = list->next; | 318 | return NULL; |
336 | |||
337 | return call; | ||
338 | } | 319 | } |
339 | 320 | ||
340 | static void *s_start(struct seq_file *m, loff_t *pos) | 321 | static void *s_start(struct seq_file *m, loff_t *pos) |
341 | { | 322 | { |
342 | struct ftrace_event_call *call = NULL; | 323 | struct ftrace_event_call *call; |
343 | loff_t l; | 324 | loff_t l; |
344 | 325 | ||
345 | mutex_lock(&event_mutex); | 326 | mutex_lock(&event_mutex); |
346 | 327 | ||
347 | m->private = ftrace_events.next; | 328 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
348 | for (l = 0; l <= *pos; ) { | 329 | for (l = 0; l <= *pos; ) { |
349 | call = s_next(m, NULL, &l); | 330 | call = s_next(m, call, &l); |
350 | if (!call) | 331 | if (!call) |
351 | break; | 332 | break; |
352 | } | 333 | } |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..23b63859130e 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
@@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
159 | } | 159 | } |
160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
161 | } | 161 | } |
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 687699d365ae..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
@@ -11,7 +11,6 @@ | |||
11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
14 | #include <linux/marker.h> | ||
15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 0f6facb050a1..8504ac71e4e8 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
@@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = { | |||
296 | 296 | ||
297 | int | 297 | int |
298 | stack_trace_sysctl(struct ctl_table *table, int write, | 298 | stack_trace_sysctl(struct ctl_table *table, int write, |
299 | struct file *file, void __user *buffer, size_t *lenp, | 299 | void __user *buffer, size_t *lenp, |
300 | loff_t *ppos) | 300 | loff_t *ppos) |
301 | { | 301 | { |
302 | int ret; | 302 | int ret; |
303 | 303 | ||
304 | mutex_lock(&stack_sysctl_mutex); | 304 | mutex_lock(&stack_sysctl_mutex); |
305 | 305 | ||
306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
307 | 307 | ||
308 | if (ret || !write || | 308 | if (ret || !write || |
309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 8712ce3c6a0e..9fbce6c9d2e1 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
@@ -2,7 +2,7 @@ | |||
2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
7 | 7 | ||
8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
@@ -384,10 +384,13 @@ static int sys_prof_refcount_exit; | |||
384 | 384 | ||
385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) |
386 | { | 386 | { |
387 | struct syscall_trace_enter *rec; | ||
388 | struct syscall_metadata *sys_data; | 387 | struct syscall_metadata *sys_data; |
388 | struct syscall_trace_enter *rec; | ||
389 | unsigned long flags; | ||
390 | char *raw_data; | ||
389 | int syscall_nr; | 391 | int syscall_nr; |
390 | int size; | 392 | int size; |
393 | int cpu; | ||
391 | 394 | ||
392 | syscall_nr = syscall_get_nr(current, regs); | 395 | syscall_nr = syscall_get_nr(current, regs); |
393 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) | 396 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
@@ -402,20 +405,38 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
402 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | 405 | size = ALIGN(size + sizeof(u32), sizeof(u64)); |
403 | size -= sizeof(u32); | 406 | size -= sizeof(u32); |
404 | 407 | ||
405 | do { | 408 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, |
406 | char raw_data[size]; | 409 | "profile buffer not large enough")) |
410 | return; | ||
411 | |||
412 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
413 | local_irq_save(flags); | ||
407 | 414 | ||
408 | /* zero the dead bytes from align to not leak stack to user */ | 415 | cpu = smp_processor_id(); |
409 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | 416 | |
417 | if (in_nmi()) | ||
418 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
419 | else | ||
420 | raw_data = rcu_dereference(trace_profile_buf); | ||
421 | |||
422 | if (!raw_data) | ||
423 | goto end; | ||
410 | 424 | ||
411 | rec = (struct syscall_trace_enter *) raw_data; | 425 | raw_data = per_cpu_ptr(raw_data, cpu); |
412 | tracing_generic_entry_update(&rec->ent, 0, 0); | 426 | |
413 | rec->ent.type = sys_data->enter_id; | 427 | /* zero the dead bytes from align to not leak stack to user */ |
414 | rec->nr = syscall_nr; | 428 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; |
415 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 429 | |
416 | (unsigned long *)&rec->args); | 430 | rec = (struct syscall_trace_enter *) raw_data; |
417 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | 431 | tracing_generic_entry_update(&rec->ent, 0, 0); |
418 | } while(0); | 432 | rec->ent.type = sys_data->enter_id; |
433 | rec->nr = syscall_nr; | ||
434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
435 | (unsigned long *)&rec->args); | ||
436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); | ||
437 | |||
438 | end: | ||
439 | local_irq_restore(flags); | ||
419 | } | 440 | } |
420 | 441 | ||
421 | int reg_prof_syscall_enter(char *name) | 442 | int reg_prof_syscall_enter(char *name) |
@@ -460,8 +481,12 @@ void unreg_prof_syscall_enter(char *name) | |||
460 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | 481 | static void prof_syscall_exit(struct pt_regs *regs, long ret) |
461 | { | 482 | { |
462 | struct syscall_metadata *sys_data; | 483 | struct syscall_metadata *sys_data; |
463 | struct syscall_trace_exit rec; | 484 | struct syscall_trace_exit *rec; |
485 | unsigned long flags; | ||
464 | int syscall_nr; | 486 | int syscall_nr; |
487 | char *raw_data; | ||
488 | int size; | ||
489 | int cpu; | ||
465 | 490 | ||
466 | syscall_nr = syscall_get_nr(current, regs); | 491 | syscall_nr = syscall_get_nr(current, regs); |
467 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | 492 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) |
@@ -471,12 +496,46 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
471 | if (!sys_data) | 496 | if (!sys_data) |
472 | return; | 497 | return; |
473 | 498 | ||
474 | tracing_generic_entry_update(&rec.ent, 0, 0); | 499 | /* We can probably do that at build time */ |
475 | rec.ent.type = sys_data->exit_id; | 500 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); |
476 | rec.nr = syscall_nr; | 501 | size -= sizeof(u32); |
477 | rec.ret = syscall_get_return_value(current, regs); | ||
478 | 502 | ||
479 | perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); | 503 | /* |
504 | * Impossible, but be paranoid with the future | ||
505 | * How to put this check outside runtime? | ||
506 | */ | ||
507 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
508 | "exit event has grown above profile buffer size")) | ||
509 | return; | ||
510 | |||
511 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
512 | local_irq_save(flags); | ||
513 | cpu = smp_processor_id(); | ||
514 | |||
515 | if (in_nmi()) | ||
516 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
517 | else | ||
518 | raw_data = rcu_dereference(trace_profile_buf); | ||
519 | |||
520 | if (!raw_data) | ||
521 | goto end; | ||
522 | |||
523 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
524 | |||
525 | /* zero the dead bytes from align to not leak stack to user */ | ||
526 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
527 | |||
528 | rec = (struct syscall_trace_exit *)raw_data; | ||
529 | |||
530 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
531 | rec->ent.type = sys_data->exit_id; | ||
532 | rec->nr = syscall_nr; | ||
533 | rec->ret = syscall_get_return_value(current, regs); | ||
534 | |||
535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); | ||
536 | |||
537 | end: | ||
538 | local_irq_restore(flags); | ||
480 | } | 539 | } |
481 | 540 | ||
482 | int reg_prof_syscall_exit(char *name) | 541 | int reg_prof_syscall_exit(char *name) |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
@@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
48 | 48 | ||
49 | /* | 49 | /* |
50 | * Note about RCU : | 50 | * Note about RCU : |
51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
52 | * state is reached. | 52 | * state is reached. |
53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
54 | */ | 54 | */ |
diff --git a/kernel/uid16.c b/kernel/uid16.c index 0314501688b9..419209893d87 100644 --- a/kernel/uid16.c +++ b/kernel/uid16.c | |||
@@ -4,7 +4,6 @@ | |||
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
7 | #include <linux/utsname.h> | ||
8 | #include <linux/mman.h> | 7 | #include <linux/mman.h> |
9 | #include <linux/notifier.h> | 8 | #include <linux/notifier.h> |
10 | #include <linux/reboot.h> | 9 | #include <linux/reboot.h> |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 92359cc747a7..69eae358a726 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
@@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
44 | */ | 44 | */ |
45 | static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, | 45 | static int proc_do_uts_string(ctl_table *table, int write, |
46 | void __user *buffer, size_t *lenp, loff_t *ppos) | 46 | void __user *buffer, size_t *lenp, loff_t *ppos) |
47 | { | 47 | { |
48 | struct ctl_table uts_table; | 48 | struct ctl_table uts_table; |
49 | int r; | 49 | int r; |
50 | memcpy(&uts_table, table, sizeof(uts_table)); | 50 | memcpy(&uts_table, table, sizeof(uts_table)); |
51 | uts_table.data = get_uts(table, write); | 51 | uts_table.data = get_uts(table, write); |
52 | r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); | 52 | r = proc_dostring(&uts_table,write,buffer,lenp, ppos); |
53 | put_uts(table, write, uts_table.data); | 53 | put_uts(table, write, uts_table.data); |
54 | return r; | 54 | return r; |
55 | } | 55 | } |