diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/exit.c | 13 | ||||
-rw-r--r-- | kernel/fork.c | 1 | ||||
-rw-r--r-- | kernel/mutex.c | 2 | ||||
-rw-r--r-- | kernel/perf_counter.c | 3302 | ||||
-rw-r--r-- | kernel/sched.c | 44 | ||||
-rw-r--r-- | kernel/sys.c | 7 | ||||
-rw-r--r-- | kernel/sys_ni.c | 3 | ||||
-rw-r--r-- | kernel/sysctl.c | 11 | ||||
-rw-r--r-- | kernel/timer.c | 3 |
10 files changed, 3379 insertions, 8 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 42423665660a..e914ca992d70 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -95,6 +95,7 @@ obj-$(CONFIG_FUNCTION_TRACER) += trace/ | |||
95 | obj-$(CONFIG_TRACING) += trace/ | 95 | obj-$(CONFIG_TRACING) += trace/ |
96 | obj-$(CONFIG_SMP) += sched_cpupri.o | 96 | obj-$(CONFIG_SMP) += sched_cpupri.o |
97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
98 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | ||
98 | 99 | ||
99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/exit.c b/kernel/exit.c index abf9cf3b95c6..4741376c8dec 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -158,6 +158,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
158 | { | 158 | { |
159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
160 | 160 | ||
161 | #ifdef CONFIG_PERF_COUNTERS | ||
162 | WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list)); | ||
163 | #endif | ||
161 | trace_sched_process_free(tsk); | 164 | trace_sched_process_free(tsk); |
162 | put_task_struct(tsk); | 165 | put_task_struct(tsk); |
163 | } | 166 | } |
@@ -981,10 +984,6 @@ NORET_TYPE void do_exit(long code) | |||
981 | tsk->mempolicy = NULL; | 984 | tsk->mempolicy = NULL; |
982 | #endif | 985 | #endif |
983 | #ifdef CONFIG_FUTEX | 986 | #ifdef CONFIG_FUTEX |
984 | /* | ||
985 | * This must happen late, after the PID is not | ||
986 | * hashed anymore: | ||
987 | */ | ||
988 | if (unlikely(!list_empty(&tsk->pi_state_list))) | 987 | if (unlikely(!list_empty(&tsk->pi_state_list))) |
989 | exit_pi_state_list(tsk); | 988 | exit_pi_state_list(tsk); |
990 | if (unlikely(current->pi_state_cache)) | 989 | if (unlikely(current->pi_state_cache)) |
@@ -1251,6 +1250,12 @@ static int wait_task_zombie(struct task_struct *p, int options, | |||
1251 | */ | 1250 | */ |
1252 | read_unlock(&tasklist_lock); | 1251 | read_unlock(&tasklist_lock); |
1253 | 1252 | ||
1253 | /* | ||
1254 | * Flush inherited counters to the parent - before the parent | ||
1255 | * gets woken up by child-exit notifications. | ||
1256 | */ | ||
1257 | perf_counter_exit_task(p); | ||
1258 | |||
1254 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 1259 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
1255 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 1260 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1256 | ? p->signal->group_exit_code : p->exit_code; | 1261 | ? p->signal->group_exit_code : p->exit_code; |
diff --git a/kernel/fork.c b/kernel/fork.c index b9e2edd00726..d32fef4d38e5 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -983,6 +983,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
983 | goto fork_out; | 983 | goto fork_out; |
984 | 984 | ||
985 | rt_mutex_init_task(p); | 985 | rt_mutex_init_task(p); |
986 | perf_counter_init_task(p); | ||
986 | 987 | ||
987 | #ifdef CONFIG_PROVE_LOCKING | 988 | #ifdef CONFIG_PROVE_LOCKING |
988 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); | 989 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); |
diff --git a/kernel/mutex.c b/kernel/mutex.c index 507cf2b5e9f1..f415e80a9119 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
@@ -89,7 +89,7 @@ __mutex_lock_slowpath(atomic_t *lock_count); | |||
89 | * | 89 | * |
90 | * This function is similar to (but not equivalent to) down(). | 90 | * This function is similar to (but not equivalent to) down(). |
91 | */ | 91 | */ |
92 | void inline __sched mutex_lock(struct mutex *lock) | 92 | void __sched mutex_lock(struct mutex *lock) |
93 | { | 93 | { |
94 | might_sleep(); | 94 | might_sleep(); |
95 | /* | 95 | /* |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 000000000000..09396098dd0d --- /dev/null +++ b/kernel/perf_counter.c | |||
@@ -0,0 +1,3302 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar | ||
6 | * | ||
7 | * | ||
8 | * For licensing details see kernel-base/COPYING | ||
9 | */ | ||
10 | |||
11 | #include <linux/fs.h> | ||
12 | #include <linux/mm.h> | ||
13 | #include <linux/cpu.h> | ||
14 | #include <linux/smp.h> | ||
15 | #include <linux/file.h> | ||
16 | #include <linux/poll.h> | ||
17 | #include <linux/sysfs.h> | ||
18 | #include <linux/ptrace.h> | ||
19 | #include <linux/percpu.h> | ||
20 | #include <linux/vmstat.h> | ||
21 | #include <linux/hardirq.h> | ||
22 | #include <linux/rculist.h> | ||
23 | #include <linux/uaccess.h> | ||
24 | #include <linux/syscalls.h> | ||
25 | #include <linux/anon_inodes.h> | ||
26 | #include <linux/kernel_stat.h> | ||
27 | #include <linux/perf_counter.h> | ||
28 | #include <linux/dcache.h> | ||
29 | |||
30 | #include <asm/irq_regs.h> | ||
31 | |||
32 | /* | ||
33 | * Each CPU has a list of per CPU counters: | ||
34 | */ | ||
35 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
36 | |||
37 | int perf_max_counters __read_mostly = 1; | ||
38 | static int perf_reserved_percpu __read_mostly; | ||
39 | static int perf_overcommit __read_mostly = 1; | ||
40 | |||
41 | static atomic_t nr_mmap_tracking __read_mostly; | ||
42 | static atomic_t nr_munmap_tracking __read_mostly; | ||
43 | static atomic_t nr_comm_tracking __read_mostly; | ||
44 | |||
45 | int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */ | ||
46 | |||
47 | /* | ||
48 | * Mutex for (sysadmin-configurable) counter reservations: | ||
49 | */ | ||
50 | static DEFINE_MUTEX(perf_resource_mutex); | ||
51 | |||
52 | /* | ||
53 | * Architecture provided APIs - weak aliases: | ||
54 | */ | ||
55 | extern __weak const struct hw_perf_counter_ops * | ||
56 | hw_perf_counter_init(struct perf_counter *counter) | ||
57 | { | ||
58 | return NULL; | ||
59 | } | ||
60 | |||
61 | u64 __weak hw_perf_save_disable(void) { return 0; } | ||
62 | void __weak hw_perf_restore(u64 ctrl) { barrier(); } | ||
63 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
64 | int __weak hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
65 | struct perf_cpu_context *cpuctx, | ||
66 | struct perf_counter_context *ctx, int cpu) | ||
67 | { | ||
68 | return 0; | ||
69 | } | ||
70 | |||
71 | void __weak perf_counter_print_debug(void) { } | ||
72 | |||
73 | static void | ||
74 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
75 | { | ||
76 | struct perf_counter *group_leader = counter->group_leader; | ||
77 | |||
78 | /* | ||
79 | * Depending on whether it is a standalone or sibling counter, | ||
80 | * add it straight to the context's counter list, or to the group | ||
81 | * leader's sibling list: | ||
82 | */ | ||
83 | if (counter->group_leader == counter) | ||
84 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
85 | else { | ||
86 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
87 | group_leader->nr_siblings++; | ||
88 | } | ||
89 | |||
90 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
91 | } | ||
92 | |||
93 | static void | ||
94 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
95 | { | ||
96 | struct perf_counter *sibling, *tmp; | ||
97 | |||
98 | list_del_init(&counter->list_entry); | ||
99 | list_del_rcu(&counter->event_entry); | ||
100 | |||
101 | if (counter->group_leader != counter) | ||
102 | counter->group_leader->nr_siblings--; | ||
103 | |||
104 | /* | ||
105 | * If this was a group counter with sibling counters then | ||
106 | * upgrade the siblings to singleton counters by adding them | ||
107 | * to the context list directly: | ||
108 | */ | ||
109 | list_for_each_entry_safe(sibling, tmp, | ||
110 | &counter->sibling_list, list_entry) { | ||
111 | |||
112 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
113 | sibling->group_leader = sibling; | ||
114 | } | ||
115 | } | ||
116 | |||
117 | static void | ||
118 | counter_sched_out(struct perf_counter *counter, | ||
119 | struct perf_cpu_context *cpuctx, | ||
120 | struct perf_counter_context *ctx) | ||
121 | { | ||
122 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
123 | return; | ||
124 | |||
125 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
126 | counter->tstamp_stopped = ctx->time; | ||
127 | counter->hw_ops->disable(counter); | ||
128 | counter->oncpu = -1; | ||
129 | |||
130 | if (!is_software_counter(counter)) | ||
131 | cpuctx->active_oncpu--; | ||
132 | ctx->nr_active--; | ||
133 | if (counter->hw_event.exclusive || !cpuctx->active_oncpu) | ||
134 | cpuctx->exclusive = 0; | ||
135 | } | ||
136 | |||
137 | static void | ||
138 | group_sched_out(struct perf_counter *group_counter, | ||
139 | struct perf_cpu_context *cpuctx, | ||
140 | struct perf_counter_context *ctx) | ||
141 | { | ||
142 | struct perf_counter *counter; | ||
143 | |||
144 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
145 | return; | ||
146 | |||
147 | counter_sched_out(group_counter, cpuctx, ctx); | ||
148 | |||
149 | /* | ||
150 | * Schedule out siblings (if any): | ||
151 | */ | ||
152 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
153 | counter_sched_out(counter, cpuctx, ctx); | ||
154 | |||
155 | if (group_counter->hw_event.exclusive) | ||
156 | cpuctx->exclusive = 0; | ||
157 | } | ||
158 | |||
159 | /* | ||
160 | * Cross CPU call to remove a performance counter | ||
161 | * | ||
162 | * We disable the counter on the hardware level first. After that we | ||
163 | * remove it from the context list. | ||
164 | */ | ||
165 | static void __perf_counter_remove_from_context(void *info) | ||
166 | { | ||
167 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
168 | struct perf_counter *counter = info; | ||
169 | struct perf_counter_context *ctx = counter->ctx; | ||
170 | unsigned long flags; | ||
171 | u64 perf_flags; | ||
172 | |||
173 | /* | ||
174 | * If this is a task context, we need to check whether it is | ||
175 | * the current task context of this cpu. If not it has been | ||
176 | * scheduled out before the smp call arrived. | ||
177 | */ | ||
178 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
179 | return; | ||
180 | |||
181 | spin_lock_irqsave(&ctx->lock, flags); | ||
182 | |||
183 | counter_sched_out(counter, cpuctx, ctx); | ||
184 | |||
185 | counter->task = NULL; | ||
186 | ctx->nr_counters--; | ||
187 | |||
188 | /* | ||
189 | * Protect the list operation against NMI by disabling the | ||
190 | * counters on a global level. NOP for non NMI based counters. | ||
191 | */ | ||
192 | perf_flags = hw_perf_save_disable(); | ||
193 | list_del_counter(counter, ctx); | ||
194 | hw_perf_restore(perf_flags); | ||
195 | |||
196 | if (!ctx->task) { | ||
197 | /* | ||
198 | * Allow more per task counters with respect to the | ||
199 | * reservation: | ||
200 | */ | ||
201 | cpuctx->max_pertask = | ||
202 | min(perf_max_counters - ctx->nr_counters, | ||
203 | perf_max_counters - perf_reserved_percpu); | ||
204 | } | ||
205 | |||
206 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
207 | } | ||
208 | |||
209 | |||
210 | /* | ||
211 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
212 | * | ||
213 | * Must be called with counter->mutex and ctx->mutex held. | ||
214 | * | ||
215 | * CPU counters are removed with a smp call. For task counters we only | ||
216 | * call when the task is on a CPU. | ||
217 | */ | ||
218 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
219 | { | ||
220 | struct perf_counter_context *ctx = counter->ctx; | ||
221 | struct task_struct *task = ctx->task; | ||
222 | |||
223 | if (!task) { | ||
224 | /* | ||
225 | * Per cpu counters are removed via an smp call and | ||
226 | * the removal is always sucessful. | ||
227 | */ | ||
228 | smp_call_function_single(counter->cpu, | ||
229 | __perf_counter_remove_from_context, | ||
230 | counter, 1); | ||
231 | return; | ||
232 | } | ||
233 | |||
234 | retry: | ||
235 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
236 | counter); | ||
237 | |||
238 | spin_lock_irq(&ctx->lock); | ||
239 | /* | ||
240 | * If the context is active we need to retry the smp call. | ||
241 | */ | ||
242 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
243 | spin_unlock_irq(&ctx->lock); | ||
244 | goto retry; | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * The lock prevents that this context is scheduled in so we | ||
249 | * can remove the counter safely, if the call above did not | ||
250 | * succeed. | ||
251 | */ | ||
252 | if (!list_empty(&counter->list_entry)) { | ||
253 | ctx->nr_counters--; | ||
254 | list_del_counter(counter, ctx); | ||
255 | counter->task = NULL; | ||
256 | } | ||
257 | spin_unlock_irq(&ctx->lock); | ||
258 | } | ||
259 | |||
260 | static inline u64 perf_clock(void) | ||
261 | { | ||
262 | return cpu_clock(smp_processor_id()); | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * Update the record of the current time in a context. | ||
267 | */ | ||
268 | static void update_context_time(struct perf_counter_context *ctx) | ||
269 | { | ||
270 | u64 now = perf_clock(); | ||
271 | |||
272 | ctx->time += now - ctx->timestamp; | ||
273 | ctx->timestamp = now; | ||
274 | } | ||
275 | |||
276 | /* | ||
277 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
278 | */ | ||
279 | static void update_counter_times(struct perf_counter *counter) | ||
280 | { | ||
281 | struct perf_counter_context *ctx = counter->ctx; | ||
282 | u64 run_end; | ||
283 | |||
284 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
285 | return; | ||
286 | |||
287 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
288 | |||
289 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
290 | run_end = counter->tstamp_stopped; | ||
291 | else | ||
292 | run_end = ctx->time; | ||
293 | |||
294 | counter->total_time_running = run_end - counter->tstamp_running; | ||
295 | } | ||
296 | |||
297 | /* | ||
298 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
299 | */ | ||
300 | static void update_group_times(struct perf_counter *leader) | ||
301 | { | ||
302 | struct perf_counter *counter; | ||
303 | |||
304 | update_counter_times(leader); | ||
305 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
306 | update_counter_times(counter); | ||
307 | } | ||
308 | |||
309 | /* | ||
310 | * Cross CPU call to disable a performance counter | ||
311 | */ | ||
312 | static void __perf_counter_disable(void *info) | ||
313 | { | ||
314 | struct perf_counter *counter = info; | ||
315 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
316 | struct perf_counter_context *ctx = counter->ctx; | ||
317 | unsigned long flags; | ||
318 | |||
319 | /* | ||
320 | * If this is a per-task counter, need to check whether this | ||
321 | * counter's task is the current task on this cpu. | ||
322 | */ | ||
323 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
324 | return; | ||
325 | |||
326 | spin_lock_irqsave(&ctx->lock, flags); | ||
327 | |||
328 | /* | ||
329 | * If the counter is on, turn it off. | ||
330 | * If it is in error state, leave it in error state. | ||
331 | */ | ||
332 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
333 | update_context_time(ctx); | ||
334 | update_counter_times(counter); | ||
335 | if (counter == counter->group_leader) | ||
336 | group_sched_out(counter, cpuctx, ctx); | ||
337 | else | ||
338 | counter_sched_out(counter, cpuctx, ctx); | ||
339 | counter->state = PERF_COUNTER_STATE_OFF; | ||
340 | } | ||
341 | |||
342 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
343 | } | ||
344 | |||
345 | /* | ||
346 | * Disable a counter. | ||
347 | */ | ||
348 | static void perf_counter_disable(struct perf_counter *counter) | ||
349 | { | ||
350 | struct perf_counter_context *ctx = counter->ctx; | ||
351 | struct task_struct *task = ctx->task; | ||
352 | |||
353 | if (!task) { | ||
354 | /* | ||
355 | * Disable the counter on the cpu that it's on | ||
356 | */ | ||
357 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
358 | counter, 1); | ||
359 | return; | ||
360 | } | ||
361 | |||
362 | retry: | ||
363 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
364 | |||
365 | spin_lock_irq(&ctx->lock); | ||
366 | /* | ||
367 | * If the counter is still active, we need to retry the cross-call. | ||
368 | */ | ||
369 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
370 | spin_unlock_irq(&ctx->lock); | ||
371 | goto retry; | ||
372 | } | ||
373 | |||
374 | /* | ||
375 | * Since we have the lock this context can't be scheduled | ||
376 | * in, so we can change the state safely. | ||
377 | */ | ||
378 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
379 | update_counter_times(counter); | ||
380 | counter->state = PERF_COUNTER_STATE_OFF; | ||
381 | } | ||
382 | |||
383 | spin_unlock_irq(&ctx->lock); | ||
384 | } | ||
385 | |||
386 | /* | ||
387 | * Disable a counter and all its children. | ||
388 | */ | ||
389 | static void perf_counter_disable_family(struct perf_counter *counter) | ||
390 | { | ||
391 | struct perf_counter *child; | ||
392 | |||
393 | perf_counter_disable(counter); | ||
394 | |||
395 | /* | ||
396 | * Lock the mutex to protect the list of children | ||
397 | */ | ||
398 | mutex_lock(&counter->mutex); | ||
399 | list_for_each_entry(child, &counter->child_list, child_list) | ||
400 | perf_counter_disable(child); | ||
401 | mutex_unlock(&counter->mutex); | ||
402 | } | ||
403 | |||
404 | static int | ||
405 | counter_sched_in(struct perf_counter *counter, | ||
406 | struct perf_cpu_context *cpuctx, | ||
407 | struct perf_counter_context *ctx, | ||
408 | int cpu) | ||
409 | { | ||
410 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
411 | return 0; | ||
412 | |||
413 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
414 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
415 | /* | ||
416 | * The new state must be visible before we turn it on in the hardware: | ||
417 | */ | ||
418 | smp_wmb(); | ||
419 | |||
420 | if (counter->hw_ops->enable(counter)) { | ||
421 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
422 | counter->oncpu = -1; | ||
423 | return -EAGAIN; | ||
424 | } | ||
425 | |||
426 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
427 | |||
428 | if (!is_software_counter(counter)) | ||
429 | cpuctx->active_oncpu++; | ||
430 | ctx->nr_active++; | ||
431 | |||
432 | if (counter->hw_event.exclusive) | ||
433 | cpuctx->exclusive = 1; | ||
434 | |||
435 | return 0; | ||
436 | } | ||
437 | |||
438 | /* | ||
439 | * Return 1 for a group consisting entirely of software counters, | ||
440 | * 0 if the group contains any hardware counters. | ||
441 | */ | ||
442 | static int is_software_only_group(struct perf_counter *leader) | ||
443 | { | ||
444 | struct perf_counter *counter; | ||
445 | |||
446 | if (!is_software_counter(leader)) | ||
447 | return 0; | ||
448 | |||
449 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
450 | if (!is_software_counter(counter)) | ||
451 | return 0; | ||
452 | |||
453 | return 1; | ||
454 | } | ||
455 | |||
456 | /* | ||
457 | * Work out whether we can put this counter group on the CPU now. | ||
458 | */ | ||
459 | static int group_can_go_on(struct perf_counter *counter, | ||
460 | struct perf_cpu_context *cpuctx, | ||
461 | int can_add_hw) | ||
462 | { | ||
463 | /* | ||
464 | * Groups consisting entirely of software counters can always go on. | ||
465 | */ | ||
466 | if (is_software_only_group(counter)) | ||
467 | return 1; | ||
468 | /* | ||
469 | * If an exclusive group is already on, no other hardware | ||
470 | * counters can go on. | ||
471 | */ | ||
472 | if (cpuctx->exclusive) | ||
473 | return 0; | ||
474 | /* | ||
475 | * If this group is exclusive and there are already | ||
476 | * counters on the CPU, it can't go on. | ||
477 | */ | ||
478 | if (counter->hw_event.exclusive && cpuctx->active_oncpu) | ||
479 | return 0; | ||
480 | /* | ||
481 | * Otherwise, try to add it if all previous groups were able | ||
482 | * to go on. | ||
483 | */ | ||
484 | return can_add_hw; | ||
485 | } | ||
486 | |||
487 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
488 | struct perf_counter_context *ctx) | ||
489 | { | ||
490 | list_add_counter(counter, ctx); | ||
491 | ctx->nr_counters++; | ||
492 | counter->prev_state = PERF_COUNTER_STATE_OFF; | ||
493 | counter->tstamp_enabled = ctx->time; | ||
494 | counter->tstamp_running = ctx->time; | ||
495 | counter->tstamp_stopped = ctx->time; | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * Cross CPU call to install and enable a performance counter | ||
500 | */ | ||
501 | static void __perf_install_in_context(void *info) | ||
502 | { | ||
503 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
504 | struct perf_counter *counter = info; | ||
505 | struct perf_counter_context *ctx = counter->ctx; | ||
506 | struct perf_counter *leader = counter->group_leader; | ||
507 | int cpu = smp_processor_id(); | ||
508 | unsigned long flags; | ||
509 | u64 perf_flags; | ||
510 | int err; | ||
511 | |||
512 | /* | ||
513 | * If this is a task context, we need to check whether it is | ||
514 | * the current task context of this cpu. If not it has been | ||
515 | * scheduled out before the smp call arrived. | ||
516 | */ | ||
517 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
518 | return; | ||
519 | |||
520 | spin_lock_irqsave(&ctx->lock, flags); | ||
521 | update_context_time(ctx); | ||
522 | |||
523 | /* | ||
524 | * Protect the list operation against NMI by disabling the | ||
525 | * counters on a global level. NOP for non NMI based counters. | ||
526 | */ | ||
527 | perf_flags = hw_perf_save_disable(); | ||
528 | |||
529 | add_counter_to_ctx(counter, ctx); | ||
530 | |||
531 | /* | ||
532 | * Don't put the counter on if it is disabled or if | ||
533 | * it is in a group and the group isn't on. | ||
534 | */ | ||
535 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
536 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
537 | goto unlock; | ||
538 | |||
539 | /* | ||
540 | * An exclusive counter can't go on if there are already active | ||
541 | * hardware counters, and no hardware counter can go on if there | ||
542 | * is already an exclusive counter on. | ||
543 | */ | ||
544 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
545 | err = -EEXIST; | ||
546 | else | ||
547 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
548 | |||
549 | if (err) { | ||
550 | /* | ||
551 | * This counter couldn't go on. If it is in a group | ||
552 | * then we have to pull the whole group off. | ||
553 | * If the counter group is pinned then put it in error state. | ||
554 | */ | ||
555 | if (leader != counter) | ||
556 | group_sched_out(leader, cpuctx, ctx); | ||
557 | if (leader->hw_event.pinned) { | ||
558 | update_group_times(leader); | ||
559 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
560 | } | ||
561 | } | ||
562 | |||
563 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
564 | cpuctx->max_pertask--; | ||
565 | |||
566 | unlock: | ||
567 | hw_perf_restore(perf_flags); | ||
568 | |||
569 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
570 | } | ||
571 | |||
572 | /* | ||
573 | * Attach a performance counter to a context | ||
574 | * | ||
575 | * First we add the counter to the list with the hardware enable bit | ||
576 | * in counter->hw_config cleared. | ||
577 | * | ||
578 | * If the counter is attached to a task which is on a CPU we use a smp | ||
579 | * call to enable it in the task context. The task might have been | ||
580 | * scheduled away, but we check this in the smp call again. | ||
581 | * | ||
582 | * Must be called with ctx->mutex held. | ||
583 | */ | ||
584 | static void | ||
585 | perf_install_in_context(struct perf_counter_context *ctx, | ||
586 | struct perf_counter *counter, | ||
587 | int cpu) | ||
588 | { | ||
589 | struct task_struct *task = ctx->task; | ||
590 | |||
591 | if (!task) { | ||
592 | /* | ||
593 | * Per cpu counters are installed via an smp call and | ||
594 | * the install is always sucessful. | ||
595 | */ | ||
596 | smp_call_function_single(cpu, __perf_install_in_context, | ||
597 | counter, 1); | ||
598 | return; | ||
599 | } | ||
600 | |||
601 | counter->task = task; | ||
602 | retry: | ||
603 | task_oncpu_function_call(task, __perf_install_in_context, | ||
604 | counter); | ||
605 | |||
606 | spin_lock_irq(&ctx->lock); | ||
607 | /* | ||
608 | * we need to retry the smp call. | ||
609 | */ | ||
610 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
611 | spin_unlock_irq(&ctx->lock); | ||
612 | goto retry; | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * The lock prevents that this context is scheduled in so we | ||
617 | * can add the counter safely, if it the call above did not | ||
618 | * succeed. | ||
619 | */ | ||
620 | if (list_empty(&counter->list_entry)) | ||
621 | add_counter_to_ctx(counter, ctx); | ||
622 | spin_unlock_irq(&ctx->lock); | ||
623 | } | ||
624 | |||
625 | /* | ||
626 | * Cross CPU call to enable a performance counter | ||
627 | */ | ||
628 | static void __perf_counter_enable(void *info) | ||
629 | { | ||
630 | struct perf_counter *counter = info; | ||
631 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
632 | struct perf_counter_context *ctx = counter->ctx; | ||
633 | struct perf_counter *leader = counter->group_leader; | ||
634 | unsigned long flags; | ||
635 | int err; | ||
636 | |||
637 | /* | ||
638 | * If this is a per-task counter, need to check whether this | ||
639 | * counter's task is the current task on this cpu. | ||
640 | */ | ||
641 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
642 | return; | ||
643 | |||
644 | spin_lock_irqsave(&ctx->lock, flags); | ||
645 | update_context_time(ctx); | ||
646 | |||
647 | counter->prev_state = counter->state; | ||
648 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
649 | goto unlock; | ||
650 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
651 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
652 | |||
653 | /* | ||
654 | * If the counter is in a group and isn't the group leader, | ||
655 | * then don't put it on unless the group is on. | ||
656 | */ | ||
657 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
658 | goto unlock; | ||
659 | |||
660 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
661 | err = -EEXIST; | ||
662 | else | ||
663 | err = counter_sched_in(counter, cpuctx, ctx, | ||
664 | smp_processor_id()); | ||
665 | |||
666 | if (err) { | ||
667 | /* | ||
668 | * If this counter can't go on and it's part of a | ||
669 | * group, then the whole group has to come off. | ||
670 | */ | ||
671 | if (leader != counter) | ||
672 | group_sched_out(leader, cpuctx, ctx); | ||
673 | if (leader->hw_event.pinned) { | ||
674 | update_group_times(leader); | ||
675 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
676 | } | ||
677 | } | ||
678 | |||
679 | unlock: | ||
680 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
681 | } | ||
682 | |||
683 | /* | ||
684 | * Enable a counter. | ||
685 | */ | ||
686 | static void perf_counter_enable(struct perf_counter *counter) | ||
687 | { | ||
688 | struct perf_counter_context *ctx = counter->ctx; | ||
689 | struct task_struct *task = ctx->task; | ||
690 | |||
691 | if (!task) { | ||
692 | /* | ||
693 | * Enable the counter on the cpu that it's on | ||
694 | */ | ||
695 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
696 | counter, 1); | ||
697 | return; | ||
698 | } | ||
699 | |||
700 | spin_lock_irq(&ctx->lock); | ||
701 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
702 | goto out; | ||
703 | |||
704 | /* | ||
705 | * If the counter is in error state, clear that first. | ||
706 | * That way, if we see the counter in error state below, we | ||
707 | * know that it has gone back into error state, as distinct | ||
708 | * from the task having been scheduled away before the | ||
709 | * cross-call arrived. | ||
710 | */ | ||
711 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
712 | counter->state = PERF_COUNTER_STATE_OFF; | ||
713 | |||
714 | retry: | ||
715 | spin_unlock_irq(&ctx->lock); | ||
716 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
717 | |||
718 | spin_lock_irq(&ctx->lock); | ||
719 | |||
720 | /* | ||
721 | * If the context is active and the counter is still off, | ||
722 | * we need to retry the cross-call. | ||
723 | */ | ||
724 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
725 | goto retry; | ||
726 | |||
727 | /* | ||
728 | * Since we have the lock this context can't be scheduled | ||
729 | * in, so we can change the state safely. | ||
730 | */ | ||
731 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
732 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
733 | counter->tstamp_enabled = | ||
734 | ctx->time - counter->total_time_enabled; | ||
735 | } | ||
736 | out: | ||
737 | spin_unlock_irq(&ctx->lock); | ||
738 | } | ||
739 | |||
740 | static void perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
741 | { | ||
742 | atomic_add(refresh, &counter->event_limit); | ||
743 | perf_counter_enable(counter); | ||
744 | } | ||
745 | |||
746 | /* | ||
747 | * Enable a counter and all its children. | ||
748 | */ | ||
749 | static void perf_counter_enable_family(struct perf_counter *counter) | ||
750 | { | ||
751 | struct perf_counter *child; | ||
752 | |||
753 | perf_counter_enable(counter); | ||
754 | |||
755 | /* | ||
756 | * Lock the mutex to protect the list of children | ||
757 | */ | ||
758 | mutex_lock(&counter->mutex); | ||
759 | list_for_each_entry(child, &counter->child_list, child_list) | ||
760 | perf_counter_enable(child); | ||
761 | mutex_unlock(&counter->mutex); | ||
762 | } | ||
763 | |||
764 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
765 | struct perf_cpu_context *cpuctx) | ||
766 | { | ||
767 | struct perf_counter *counter; | ||
768 | u64 flags; | ||
769 | |||
770 | spin_lock(&ctx->lock); | ||
771 | ctx->is_active = 0; | ||
772 | if (likely(!ctx->nr_counters)) | ||
773 | goto out; | ||
774 | update_context_time(ctx); | ||
775 | |||
776 | flags = hw_perf_save_disable(); | ||
777 | if (ctx->nr_active) { | ||
778 | list_for_each_entry(counter, &ctx->counter_list, list_entry) | ||
779 | group_sched_out(counter, cpuctx, ctx); | ||
780 | } | ||
781 | hw_perf_restore(flags); | ||
782 | out: | ||
783 | spin_unlock(&ctx->lock); | ||
784 | } | ||
785 | |||
786 | /* | ||
787 | * Called from scheduler to remove the counters of the current task, | ||
788 | * with interrupts disabled. | ||
789 | * | ||
790 | * We stop each counter and update the counter value in counter->count. | ||
791 | * | ||
792 | * This does not protect us against NMI, but disable() | ||
793 | * sets the disabled bit in the control field of counter _before_ | ||
794 | * accessing the counter control register. If a NMI hits, then it will | ||
795 | * not restart the counter. | ||
796 | */ | ||
797 | void perf_counter_task_sched_out(struct task_struct *task, int cpu) | ||
798 | { | ||
799 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
800 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
801 | struct pt_regs *regs; | ||
802 | |||
803 | if (likely(!cpuctx->task_ctx)) | ||
804 | return; | ||
805 | |||
806 | update_context_time(ctx); | ||
807 | |||
808 | regs = task_pt_regs(task); | ||
809 | perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
810 | __perf_counter_sched_out(ctx, cpuctx); | ||
811 | |||
812 | cpuctx->task_ctx = NULL; | ||
813 | } | ||
814 | |||
815 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
816 | { | ||
817 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
818 | } | ||
819 | |||
820 | static int | ||
821 | group_sched_in(struct perf_counter *group_counter, | ||
822 | struct perf_cpu_context *cpuctx, | ||
823 | struct perf_counter_context *ctx, | ||
824 | int cpu) | ||
825 | { | ||
826 | struct perf_counter *counter, *partial_group; | ||
827 | int ret; | ||
828 | |||
829 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
830 | return 0; | ||
831 | |||
832 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
833 | if (ret) | ||
834 | return ret < 0 ? ret : 0; | ||
835 | |||
836 | group_counter->prev_state = group_counter->state; | ||
837 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
838 | return -EAGAIN; | ||
839 | |||
840 | /* | ||
841 | * Schedule in siblings as one group (if any): | ||
842 | */ | ||
843 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
844 | counter->prev_state = counter->state; | ||
845 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
846 | partial_group = counter; | ||
847 | goto group_error; | ||
848 | } | ||
849 | } | ||
850 | |||
851 | return 0; | ||
852 | |||
853 | group_error: | ||
854 | /* | ||
855 | * Groups can be scheduled in as one unit only, so undo any | ||
856 | * partial group before returning: | ||
857 | */ | ||
858 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
859 | if (counter == partial_group) | ||
860 | break; | ||
861 | counter_sched_out(counter, cpuctx, ctx); | ||
862 | } | ||
863 | counter_sched_out(group_counter, cpuctx, ctx); | ||
864 | |||
865 | return -EAGAIN; | ||
866 | } | ||
867 | |||
868 | static void | ||
869 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
870 | struct perf_cpu_context *cpuctx, int cpu) | ||
871 | { | ||
872 | struct perf_counter *counter; | ||
873 | u64 flags; | ||
874 | int can_add_hw = 1; | ||
875 | |||
876 | spin_lock(&ctx->lock); | ||
877 | ctx->is_active = 1; | ||
878 | if (likely(!ctx->nr_counters)) | ||
879 | goto out; | ||
880 | |||
881 | ctx->timestamp = perf_clock(); | ||
882 | |||
883 | flags = hw_perf_save_disable(); | ||
884 | |||
885 | /* | ||
886 | * First go through the list and put on any pinned groups | ||
887 | * in order to give them the best chance of going on. | ||
888 | */ | ||
889 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
890 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
891 | !counter->hw_event.pinned) | ||
892 | continue; | ||
893 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
894 | continue; | ||
895 | |||
896 | if (group_can_go_on(counter, cpuctx, 1)) | ||
897 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
898 | |||
899 | /* | ||
900 | * If this pinned group hasn't been scheduled, | ||
901 | * put it in error state. | ||
902 | */ | ||
903 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
904 | update_group_times(counter); | ||
905 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
906 | } | ||
907 | } | ||
908 | |||
909 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
910 | /* | ||
911 | * Ignore counters in OFF or ERROR state, and | ||
912 | * ignore pinned counters since we did them already. | ||
913 | */ | ||
914 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
915 | counter->hw_event.pinned) | ||
916 | continue; | ||
917 | |||
918 | /* | ||
919 | * Listen to the 'cpu' scheduling filter constraint | ||
920 | * of counters: | ||
921 | */ | ||
922 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
923 | continue; | ||
924 | |||
925 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
926 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
927 | can_add_hw = 0; | ||
928 | } | ||
929 | } | ||
930 | hw_perf_restore(flags); | ||
931 | out: | ||
932 | spin_unlock(&ctx->lock); | ||
933 | } | ||
934 | |||
935 | /* | ||
936 | * Called from scheduler to add the counters of the current task | ||
937 | * with interrupts disabled. | ||
938 | * | ||
939 | * We restore the counter value and then enable it. | ||
940 | * | ||
941 | * This does not protect us against NMI, but enable() | ||
942 | * sets the enabled bit in the control field of counter _before_ | ||
943 | * accessing the counter control register. If a NMI hits, then it will | ||
944 | * keep the counter running. | ||
945 | */ | ||
946 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
947 | { | ||
948 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
949 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
950 | |||
951 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
952 | cpuctx->task_ctx = ctx; | ||
953 | } | ||
954 | |||
955 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
956 | { | ||
957 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
958 | |||
959 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
960 | } | ||
961 | |||
962 | int perf_counter_task_disable(void) | ||
963 | { | ||
964 | struct task_struct *curr = current; | ||
965 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
966 | struct perf_counter *counter; | ||
967 | unsigned long flags; | ||
968 | u64 perf_flags; | ||
969 | int cpu; | ||
970 | |||
971 | if (likely(!ctx->nr_counters)) | ||
972 | return 0; | ||
973 | |||
974 | local_irq_save(flags); | ||
975 | cpu = smp_processor_id(); | ||
976 | |||
977 | perf_counter_task_sched_out(curr, cpu); | ||
978 | |||
979 | spin_lock(&ctx->lock); | ||
980 | |||
981 | /* | ||
982 | * Disable all the counters: | ||
983 | */ | ||
984 | perf_flags = hw_perf_save_disable(); | ||
985 | |||
986 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
987 | if (counter->state != PERF_COUNTER_STATE_ERROR) { | ||
988 | update_group_times(counter); | ||
989 | counter->state = PERF_COUNTER_STATE_OFF; | ||
990 | } | ||
991 | } | ||
992 | |||
993 | hw_perf_restore(perf_flags); | ||
994 | |||
995 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
996 | |||
997 | return 0; | ||
998 | } | ||
999 | |||
1000 | int perf_counter_task_enable(void) | ||
1001 | { | ||
1002 | struct task_struct *curr = current; | ||
1003 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
1004 | struct perf_counter *counter; | ||
1005 | unsigned long flags; | ||
1006 | u64 perf_flags; | ||
1007 | int cpu; | ||
1008 | |||
1009 | if (likely(!ctx->nr_counters)) | ||
1010 | return 0; | ||
1011 | |||
1012 | local_irq_save(flags); | ||
1013 | cpu = smp_processor_id(); | ||
1014 | |||
1015 | perf_counter_task_sched_out(curr, cpu); | ||
1016 | |||
1017 | spin_lock(&ctx->lock); | ||
1018 | |||
1019 | /* | ||
1020 | * Disable all the counters: | ||
1021 | */ | ||
1022 | perf_flags = hw_perf_save_disable(); | ||
1023 | |||
1024 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1025 | if (counter->state > PERF_COUNTER_STATE_OFF) | ||
1026 | continue; | ||
1027 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
1028 | counter->tstamp_enabled = | ||
1029 | ctx->time - counter->total_time_enabled; | ||
1030 | counter->hw_event.disabled = 0; | ||
1031 | } | ||
1032 | hw_perf_restore(perf_flags); | ||
1033 | |||
1034 | spin_unlock(&ctx->lock); | ||
1035 | |||
1036 | perf_counter_task_sched_in(curr, cpu); | ||
1037 | |||
1038 | local_irq_restore(flags); | ||
1039 | |||
1040 | return 0; | ||
1041 | } | ||
1042 | |||
1043 | /* | ||
1044 | * Round-robin a context's counters: | ||
1045 | */ | ||
1046 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1047 | { | ||
1048 | struct perf_counter *counter; | ||
1049 | u64 perf_flags; | ||
1050 | |||
1051 | if (!ctx->nr_counters) | ||
1052 | return; | ||
1053 | |||
1054 | spin_lock(&ctx->lock); | ||
1055 | /* | ||
1056 | * Rotate the first entry last (works just fine for group counters too): | ||
1057 | */ | ||
1058 | perf_flags = hw_perf_save_disable(); | ||
1059 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1060 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1061 | break; | ||
1062 | } | ||
1063 | hw_perf_restore(perf_flags); | ||
1064 | |||
1065 | spin_unlock(&ctx->lock); | ||
1066 | } | ||
1067 | |||
1068 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1069 | { | ||
1070 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1071 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
1072 | const int rotate_percpu = 0; | ||
1073 | |||
1074 | if (rotate_percpu) | ||
1075 | perf_counter_cpu_sched_out(cpuctx); | ||
1076 | perf_counter_task_sched_out(curr, cpu); | ||
1077 | |||
1078 | if (rotate_percpu) | ||
1079 | rotate_ctx(&cpuctx->ctx); | ||
1080 | rotate_ctx(ctx); | ||
1081 | |||
1082 | if (rotate_percpu) | ||
1083 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1084 | perf_counter_task_sched_in(curr, cpu); | ||
1085 | } | ||
1086 | |||
1087 | /* | ||
1088 | * Cross CPU call to read the hardware counter | ||
1089 | */ | ||
1090 | static void __read(void *info) | ||
1091 | { | ||
1092 | struct perf_counter *counter = info; | ||
1093 | struct perf_counter_context *ctx = counter->ctx; | ||
1094 | unsigned long flags; | ||
1095 | |||
1096 | local_irq_save(flags); | ||
1097 | if (ctx->is_active) | ||
1098 | update_context_time(ctx); | ||
1099 | counter->hw_ops->read(counter); | ||
1100 | update_counter_times(counter); | ||
1101 | local_irq_restore(flags); | ||
1102 | } | ||
1103 | |||
1104 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1105 | { | ||
1106 | /* | ||
1107 | * If counter is enabled and currently active on a CPU, update the | ||
1108 | * value in the counter structure: | ||
1109 | */ | ||
1110 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1111 | smp_call_function_single(counter->oncpu, | ||
1112 | __read, counter, 1); | ||
1113 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1114 | update_counter_times(counter); | ||
1115 | } | ||
1116 | |||
1117 | return atomic64_read(&counter->count); | ||
1118 | } | ||
1119 | |||
1120 | static void put_context(struct perf_counter_context *ctx) | ||
1121 | { | ||
1122 | if (ctx->task) | ||
1123 | put_task_struct(ctx->task); | ||
1124 | } | ||
1125 | |||
1126 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1127 | { | ||
1128 | struct perf_cpu_context *cpuctx; | ||
1129 | struct perf_counter_context *ctx; | ||
1130 | struct task_struct *task; | ||
1131 | |||
1132 | /* | ||
1133 | * If cpu is not a wildcard then this is a percpu counter: | ||
1134 | */ | ||
1135 | if (cpu != -1) { | ||
1136 | /* Must be root to operate on a CPU counter: */ | ||
1137 | if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN)) | ||
1138 | return ERR_PTR(-EACCES); | ||
1139 | |||
1140 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1141 | return ERR_PTR(-EINVAL); | ||
1142 | |||
1143 | /* | ||
1144 | * We could be clever and allow to attach a counter to an | ||
1145 | * offline CPU and activate it when the CPU comes up, but | ||
1146 | * that's for later. | ||
1147 | */ | ||
1148 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1149 | return ERR_PTR(-ENODEV); | ||
1150 | |||
1151 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1152 | ctx = &cpuctx->ctx; | ||
1153 | |||
1154 | return ctx; | ||
1155 | } | ||
1156 | |||
1157 | rcu_read_lock(); | ||
1158 | if (!pid) | ||
1159 | task = current; | ||
1160 | else | ||
1161 | task = find_task_by_vpid(pid); | ||
1162 | if (task) | ||
1163 | get_task_struct(task); | ||
1164 | rcu_read_unlock(); | ||
1165 | |||
1166 | if (!task) | ||
1167 | return ERR_PTR(-ESRCH); | ||
1168 | |||
1169 | ctx = &task->perf_counter_ctx; | ||
1170 | ctx->task = task; | ||
1171 | |||
1172 | /* Reuse ptrace permission checks for now. */ | ||
1173 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) { | ||
1174 | put_context(ctx); | ||
1175 | return ERR_PTR(-EACCES); | ||
1176 | } | ||
1177 | |||
1178 | return ctx; | ||
1179 | } | ||
1180 | |||
1181 | static void free_counter_rcu(struct rcu_head *head) | ||
1182 | { | ||
1183 | struct perf_counter *counter; | ||
1184 | |||
1185 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1186 | kfree(counter); | ||
1187 | } | ||
1188 | |||
1189 | static void perf_pending_sync(struct perf_counter *counter); | ||
1190 | |||
1191 | static void free_counter(struct perf_counter *counter) | ||
1192 | { | ||
1193 | perf_pending_sync(counter); | ||
1194 | |||
1195 | if (counter->hw_event.mmap) | ||
1196 | atomic_dec(&nr_mmap_tracking); | ||
1197 | if (counter->hw_event.munmap) | ||
1198 | atomic_dec(&nr_munmap_tracking); | ||
1199 | if (counter->hw_event.comm) | ||
1200 | atomic_dec(&nr_comm_tracking); | ||
1201 | |||
1202 | if (counter->destroy) | ||
1203 | counter->destroy(counter); | ||
1204 | |||
1205 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1206 | } | ||
1207 | |||
1208 | /* | ||
1209 | * Called when the last reference to the file is gone. | ||
1210 | */ | ||
1211 | static int perf_release(struct inode *inode, struct file *file) | ||
1212 | { | ||
1213 | struct perf_counter *counter = file->private_data; | ||
1214 | struct perf_counter_context *ctx = counter->ctx; | ||
1215 | |||
1216 | file->private_data = NULL; | ||
1217 | |||
1218 | mutex_lock(&ctx->mutex); | ||
1219 | mutex_lock(&counter->mutex); | ||
1220 | |||
1221 | perf_counter_remove_from_context(counter); | ||
1222 | |||
1223 | mutex_unlock(&counter->mutex); | ||
1224 | mutex_unlock(&ctx->mutex); | ||
1225 | |||
1226 | free_counter(counter); | ||
1227 | put_context(ctx); | ||
1228 | |||
1229 | return 0; | ||
1230 | } | ||
1231 | |||
1232 | /* | ||
1233 | * Read the performance counter - simple non blocking version for now | ||
1234 | */ | ||
1235 | static ssize_t | ||
1236 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1237 | { | ||
1238 | u64 values[3]; | ||
1239 | int n; | ||
1240 | |||
1241 | /* | ||
1242 | * Return end-of-file for a read on a counter that is in | ||
1243 | * error state (i.e. because it was pinned but it couldn't be | ||
1244 | * scheduled on to the CPU at some point). | ||
1245 | */ | ||
1246 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1247 | return 0; | ||
1248 | |||
1249 | mutex_lock(&counter->mutex); | ||
1250 | values[0] = perf_counter_read(counter); | ||
1251 | n = 1; | ||
1252 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1253 | values[n++] = counter->total_time_enabled + | ||
1254 | atomic64_read(&counter->child_total_time_enabled); | ||
1255 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1256 | values[n++] = counter->total_time_running + | ||
1257 | atomic64_read(&counter->child_total_time_running); | ||
1258 | mutex_unlock(&counter->mutex); | ||
1259 | |||
1260 | if (count < n * sizeof(u64)) | ||
1261 | return -EINVAL; | ||
1262 | count = n * sizeof(u64); | ||
1263 | |||
1264 | if (copy_to_user(buf, values, count)) | ||
1265 | return -EFAULT; | ||
1266 | |||
1267 | return count; | ||
1268 | } | ||
1269 | |||
1270 | static ssize_t | ||
1271 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1272 | { | ||
1273 | struct perf_counter *counter = file->private_data; | ||
1274 | |||
1275 | return perf_read_hw(counter, buf, count); | ||
1276 | } | ||
1277 | |||
1278 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1279 | { | ||
1280 | struct perf_counter *counter = file->private_data; | ||
1281 | struct perf_mmap_data *data; | ||
1282 | unsigned int events; | ||
1283 | |||
1284 | rcu_read_lock(); | ||
1285 | data = rcu_dereference(counter->data); | ||
1286 | if (data) | ||
1287 | events = atomic_xchg(&data->wakeup, 0); | ||
1288 | else | ||
1289 | events = POLL_HUP; | ||
1290 | rcu_read_unlock(); | ||
1291 | |||
1292 | poll_wait(file, &counter->waitq, wait); | ||
1293 | |||
1294 | return events; | ||
1295 | } | ||
1296 | |||
1297 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1298 | { | ||
1299 | struct perf_counter *counter = file->private_data; | ||
1300 | int err = 0; | ||
1301 | |||
1302 | switch (cmd) { | ||
1303 | case PERF_COUNTER_IOC_ENABLE: | ||
1304 | perf_counter_enable_family(counter); | ||
1305 | break; | ||
1306 | case PERF_COUNTER_IOC_DISABLE: | ||
1307 | perf_counter_disable_family(counter); | ||
1308 | break; | ||
1309 | case PERF_COUNTER_IOC_REFRESH: | ||
1310 | perf_counter_refresh(counter, arg); | ||
1311 | break; | ||
1312 | default: | ||
1313 | err = -ENOTTY; | ||
1314 | } | ||
1315 | return err; | ||
1316 | } | ||
1317 | |||
1318 | /* | ||
1319 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
1320 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
1321 | * code calls this from NMI context. | ||
1322 | */ | ||
1323 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
1324 | { | ||
1325 | struct perf_mmap_data *data; | ||
1326 | struct perf_counter_mmap_page *userpg; | ||
1327 | |||
1328 | rcu_read_lock(); | ||
1329 | data = rcu_dereference(counter->data); | ||
1330 | if (!data) | ||
1331 | goto unlock; | ||
1332 | |||
1333 | userpg = data->user_page; | ||
1334 | |||
1335 | /* | ||
1336 | * Disable preemption so as to not let the corresponding user-space | ||
1337 | * spin too long if we get preempted. | ||
1338 | */ | ||
1339 | preempt_disable(); | ||
1340 | ++userpg->lock; | ||
1341 | barrier(); | ||
1342 | userpg->index = counter->hw.idx; | ||
1343 | userpg->offset = atomic64_read(&counter->count); | ||
1344 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
1345 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
1346 | |||
1347 | barrier(); | ||
1348 | ++userpg->lock; | ||
1349 | preempt_enable(); | ||
1350 | unlock: | ||
1351 | rcu_read_unlock(); | ||
1352 | } | ||
1353 | |||
1354 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
1355 | { | ||
1356 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1357 | struct perf_mmap_data *data; | ||
1358 | int ret = VM_FAULT_SIGBUS; | ||
1359 | |||
1360 | rcu_read_lock(); | ||
1361 | data = rcu_dereference(counter->data); | ||
1362 | if (!data) | ||
1363 | goto unlock; | ||
1364 | |||
1365 | if (vmf->pgoff == 0) { | ||
1366 | vmf->page = virt_to_page(data->user_page); | ||
1367 | } else { | ||
1368 | int nr = vmf->pgoff - 1; | ||
1369 | |||
1370 | if ((unsigned)nr > data->nr_pages) | ||
1371 | goto unlock; | ||
1372 | |||
1373 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
1374 | } | ||
1375 | get_page(vmf->page); | ||
1376 | ret = 0; | ||
1377 | unlock: | ||
1378 | rcu_read_unlock(); | ||
1379 | |||
1380 | return ret; | ||
1381 | } | ||
1382 | |||
1383 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
1384 | { | ||
1385 | struct perf_mmap_data *data; | ||
1386 | unsigned long size; | ||
1387 | int i; | ||
1388 | |||
1389 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1390 | |||
1391 | size = sizeof(struct perf_mmap_data); | ||
1392 | size += nr_pages * sizeof(void *); | ||
1393 | |||
1394 | data = kzalloc(size, GFP_KERNEL); | ||
1395 | if (!data) | ||
1396 | goto fail; | ||
1397 | |||
1398 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
1399 | if (!data->user_page) | ||
1400 | goto fail_user_page; | ||
1401 | |||
1402 | for (i = 0; i < nr_pages; i++) { | ||
1403 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
1404 | if (!data->data_pages[i]) | ||
1405 | goto fail_data_pages; | ||
1406 | } | ||
1407 | |||
1408 | data->nr_pages = nr_pages; | ||
1409 | |||
1410 | rcu_assign_pointer(counter->data, data); | ||
1411 | |||
1412 | return 0; | ||
1413 | |||
1414 | fail_data_pages: | ||
1415 | for (i--; i >= 0; i--) | ||
1416 | free_page((unsigned long)data->data_pages[i]); | ||
1417 | |||
1418 | free_page((unsigned long)data->user_page); | ||
1419 | |||
1420 | fail_user_page: | ||
1421 | kfree(data); | ||
1422 | |||
1423 | fail: | ||
1424 | return -ENOMEM; | ||
1425 | } | ||
1426 | |||
1427 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
1428 | { | ||
1429 | struct perf_mmap_data *data = container_of(rcu_head, | ||
1430 | struct perf_mmap_data, rcu_head); | ||
1431 | int i; | ||
1432 | |||
1433 | free_page((unsigned long)data->user_page); | ||
1434 | for (i = 0; i < data->nr_pages; i++) | ||
1435 | free_page((unsigned long)data->data_pages[i]); | ||
1436 | kfree(data); | ||
1437 | } | ||
1438 | |||
1439 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
1440 | { | ||
1441 | struct perf_mmap_data *data = counter->data; | ||
1442 | |||
1443 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1444 | |||
1445 | rcu_assign_pointer(counter->data, NULL); | ||
1446 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
1447 | } | ||
1448 | |||
1449 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
1450 | { | ||
1451 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1452 | |||
1453 | atomic_inc(&counter->mmap_count); | ||
1454 | } | ||
1455 | |||
1456 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
1457 | { | ||
1458 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1459 | |||
1460 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, | ||
1461 | &counter->mmap_mutex)) { | ||
1462 | vma->vm_mm->locked_vm -= counter->data->nr_pages + 1; | ||
1463 | perf_mmap_data_free(counter); | ||
1464 | mutex_unlock(&counter->mmap_mutex); | ||
1465 | } | ||
1466 | } | ||
1467 | |||
1468 | static struct vm_operations_struct perf_mmap_vmops = { | ||
1469 | .open = perf_mmap_open, | ||
1470 | .close = perf_mmap_close, | ||
1471 | .fault = perf_mmap_fault, | ||
1472 | }; | ||
1473 | |||
1474 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
1475 | { | ||
1476 | struct perf_counter *counter = file->private_data; | ||
1477 | unsigned long vma_size; | ||
1478 | unsigned long nr_pages; | ||
1479 | unsigned long locked, lock_limit; | ||
1480 | int ret = 0; | ||
1481 | |||
1482 | if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE)) | ||
1483 | return -EINVAL; | ||
1484 | |||
1485 | vma_size = vma->vm_end - vma->vm_start; | ||
1486 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
1487 | |||
1488 | /* | ||
1489 | * If we have data pages ensure they're a power-of-two number, so we | ||
1490 | * can do bitmasks instead of modulo. | ||
1491 | */ | ||
1492 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
1493 | return -EINVAL; | ||
1494 | |||
1495 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
1496 | return -EINVAL; | ||
1497 | |||
1498 | if (vma->vm_pgoff != 0) | ||
1499 | return -EINVAL; | ||
1500 | |||
1501 | mutex_lock(&counter->mmap_mutex); | ||
1502 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
1503 | if (nr_pages != counter->data->nr_pages) | ||
1504 | ret = -EINVAL; | ||
1505 | goto unlock; | ||
1506 | } | ||
1507 | |||
1508 | locked = vma->vm_mm->locked_vm; | ||
1509 | locked += nr_pages + 1; | ||
1510 | |||
1511 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
1512 | lock_limit >>= PAGE_SHIFT; | ||
1513 | |||
1514 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
1515 | ret = -EPERM; | ||
1516 | goto unlock; | ||
1517 | } | ||
1518 | |||
1519 | WARN_ON(counter->data); | ||
1520 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
1521 | if (ret) | ||
1522 | goto unlock; | ||
1523 | |||
1524 | atomic_set(&counter->mmap_count, 1); | ||
1525 | vma->vm_mm->locked_vm += nr_pages + 1; | ||
1526 | unlock: | ||
1527 | mutex_unlock(&counter->mmap_mutex); | ||
1528 | |||
1529 | vma->vm_flags &= ~VM_MAYWRITE; | ||
1530 | vma->vm_flags |= VM_RESERVED; | ||
1531 | vma->vm_ops = &perf_mmap_vmops; | ||
1532 | |||
1533 | return ret; | ||
1534 | } | ||
1535 | |||
1536 | static int perf_fasync(int fd, struct file *filp, int on) | ||
1537 | { | ||
1538 | struct perf_counter *counter = filp->private_data; | ||
1539 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
1540 | int retval; | ||
1541 | |||
1542 | mutex_lock(&inode->i_mutex); | ||
1543 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
1544 | mutex_unlock(&inode->i_mutex); | ||
1545 | |||
1546 | if (retval < 0) | ||
1547 | return retval; | ||
1548 | |||
1549 | return 0; | ||
1550 | } | ||
1551 | |||
1552 | static const struct file_operations perf_fops = { | ||
1553 | .release = perf_release, | ||
1554 | .read = perf_read, | ||
1555 | .poll = perf_poll, | ||
1556 | .unlocked_ioctl = perf_ioctl, | ||
1557 | .compat_ioctl = perf_ioctl, | ||
1558 | .mmap = perf_mmap, | ||
1559 | .fasync = perf_fasync, | ||
1560 | }; | ||
1561 | |||
1562 | /* | ||
1563 | * Perf counter wakeup | ||
1564 | * | ||
1565 | * If there's data, ensure we set the poll() state and publish everything | ||
1566 | * to user-space before waking everybody up. | ||
1567 | */ | ||
1568 | |||
1569 | void perf_counter_wakeup(struct perf_counter *counter) | ||
1570 | { | ||
1571 | struct perf_mmap_data *data; | ||
1572 | |||
1573 | rcu_read_lock(); | ||
1574 | data = rcu_dereference(counter->data); | ||
1575 | if (data) { | ||
1576 | atomic_set(&data->wakeup, POLL_IN); | ||
1577 | /* | ||
1578 | * Ensure all data writes are issued before updating the | ||
1579 | * user-space data head information. The matching rmb() | ||
1580 | * will be in userspace after reading this value. | ||
1581 | */ | ||
1582 | smp_wmb(); | ||
1583 | data->user_page->data_head = atomic_read(&data->head); | ||
1584 | } | ||
1585 | rcu_read_unlock(); | ||
1586 | |||
1587 | wake_up_all(&counter->waitq); | ||
1588 | |||
1589 | if (counter->pending_kill) { | ||
1590 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
1591 | counter->pending_kill = 0; | ||
1592 | } | ||
1593 | } | ||
1594 | |||
1595 | /* | ||
1596 | * Pending wakeups | ||
1597 | * | ||
1598 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
1599 | * | ||
1600 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
1601 | * single linked list and use cmpxchg() to add entries lockless. | ||
1602 | */ | ||
1603 | |||
1604 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
1605 | { | ||
1606 | struct perf_counter *counter = container_of(entry, | ||
1607 | struct perf_counter, pending); | ||
1608 | |||
1609 | if (counter->pending_disable) { | ||
1610 | counter->pending_disable = 0; | ||
1611 | perf_counter_disable(counter); | ||
1612 | } | ||
1613 | |||
1614 | if (counter->pending_wakeup) { | ||
1615 | counter->pending_wakeup = 0; | ||
1616 | perf_counter_wakeup(counter); | ||
1617 | } | ||
1618 | } | ||
1619 | |||
1620 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
1621 | |||
1622 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
1623 | PENDING_TAIL, | ||
1624 | }; | ||
1625 | |||
1626 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
1627 | void (*func)(struct perf_pending_entry *)) | ||
1628 | { | ||
1629 | struct perf_pending_entry **head; | ||
1630 | |||
1631 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
1632 | return; | ||
1633 | |||
1634 | entry->func = func; | ||
1635 | |||
1636 | head = &get_cpu_var(perf_pending_head); | ||
1637 | |||
1638 | do { | ||
1639 | entry->next = *head; | ||
1640 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
1641 | |||
1642 | set_perf_counter_pending(); | ||
1643 | |||
1644 | put_cpu_var(perf_pending_head); | ||
1645 | } | ||
1646 | |||
1647 | static int __perf_pending_run(void) | ||
1648 | { | ||
1649 | struct perf_pending_entry *list; | ||
1650 | int nr = 0; | ||
1651 | |||
1652 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
1653 | while (list != PENDING_TAIL) { | ||
1654 | void (*func)(struct perf_pending_entry *); | ||
1655 | struct perf_pending_entry *entry = list; | ||
1656 | |||
1657 | list = list->next; | ||
1658 | |||
1659 | func = entry->func; | ||
1660 | entry->next = NULL; | ||
1661 | /* | ||
1662 | * Ensure we observe the unqueue before we issue the wakeup, | ||
1663 | * so that we won't be waiting forever. | ||
1664 | * -- see perf_not_pending(). | ||
1665 | */ | ||
1666 | smp_wmb(); | ||
1667 | |||
1668 | func(entry); | ||
1669 | nr++; | ||
1670 | } | ||
1671 | |||
1672 | return nr; | ||
1673 | } | ||
1674 | |||
1675 | static inline int perf_not_pending(struct perf_counter *counter) | ||
1676 | { | ||
1677 | /* | ||
1678 | * If we flush on whatever cpu we run, there is a chance we don't | ||
1679 | * need to wait. | ||
1680 | */ | ||
1681 | get_cpu(); | ||
1682 | __perf_pending_run(); | ||
1683 | put_cpu(); | ||
1684 | |||
1685 | /* | ||
1686 | * Ensure we see the proper queue state before going to sleep | ||
1687 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
1688 | */ | ||
1689 | smp_rmb(); | ||
1690 | return counter->pending.next == NULL; | ||
1691 | } | ||
1692 | |||
1693 | static void perf_pending_sync(struct perf_counter *counter) | ||
1694 | { | ||
1695 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
1696 | } | ||
1697 | |||
1698 | void perf_counter_do_pending(void) | ||
1699 | { | ||
1700 | __perf_pending_run(); | ||
1701 | } | ||
1702 | |||
1703 | /* | ||
1704 | * Callchain support -- arch specific | ||
1705 | */ | ||
1706 | |||
1707 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
1708 | { | ||
1709 | return NULL; | ||
1710 | } | ||
1711 | |||
1712 | /* | ||
1713 | * Output | ||
1714 | */ | ||
1715 | |||
1716 | struct perf_output_handle { | ||
1717 | struct perf_counter *counter; | ||
1718 | struct perf_mmap_data *data; | ||
1719 | unsigned int offset; | ||
1720 | unsigned int head; | ||
1721 | int wakeup; | ||
1722 | int nmi; | ||
1723 | int overflow; | ||
1724 | }; | ||
1725 | |||
1726 | static inline void __perf_output_wakeup(struct perf_output_handle *handle) | ||
1727 | { | ||
1728 | if (handle->nmi) { | ||
1729 | handle->counter->pending_wakeup = 1; | ||
1730 | perf_pending_queue(&handle->counter->pending, | ||
1731 | perf_pending_counter); | ||
1732 | } else | ||
1733 | perf_counter_wakeup(handle->counter); | ||
1734 | } | ||
1735 | |||
1736 | static int perf_output_begin(struct perf_output_handle *handle, | ||
1737 | struct perf_counter *counter, unsigned int size, | ||
1738 | int nmi, int overflow) | ||
1739 | { | ||
1740 | struct perf_mmap_data *data; | ||
1741 | unsigned int offset, head; | ||
1742 | |||
1743 | rcu_read_lock(); | ||
1744 | data = rcu_dereference(counter->data); | ||
1745 | if (!data) | ||
1746 | goto out; | ||
1747 | |||
1748 | handle->counter = counter; | ||
1749 | handle->nmi = nmi; | ||
1750 | handle->overflow = overflow; | ||
1751 | |||
1752 | if (!data->nr_pages) | ||
1753 | goto fail; | ||
1754 | |||
1755 | do { | ||
1756 | offset = head = atomic_read(&data->head); | ||
1757 | head += size; | ||
1758 | } while (atomic_cmpxchg(&data->head, offset, head) != offset); | ||
1759 | |||
1760 | handle->data = data; | ||
1761 | handle->offset = offset; | ||
1762 | handle->head = head; | ||
1763 | handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT); | ||
1764 | |||
1765 | return 0; | ||
1766 | |||
1767 | fail: | ||
1768 | __perf_output_wakeup(handle); | ||
1769 | out: | ||
1770 | rcu_read_unlock(); | ||
1771 | |||
1772 | return -ENOSPC; | ||
1773 | } | ||
1774 | |||
1775 | static void perf_output_copy(struct perf_output_handle *handle, | ||
1776 | void *buf, unsigned int len) | ||
1777 | { | ||
1778 | unsigned int pages_mask; | ||
1779 | unsigned int offset; | ||
1780 | unsigned int size; | ||
1781 | void **pages; | ||
1782 | |||
1783 | offset = handle->offset; | ||
1784 | pages_mask = handle->data->nr_pages - 1; | ||
1785 | pages = handle->data->data_pages; | ||
1786 | |||
1787 | do { | ||
1788 | unsigned int page_offset; | ||
1789 | int nr; | ||
1790 | |||
1791 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
1792 | page_offset = offset & (PAGE_SIZE - 1); | ||
1793 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
1794 | |||
1795 | memcpy(pages[nr] + page_offset, buf, size); | ||
1796 | |||
1797 | len -= size; | ||
1798 | buf += size; | ||
1799 | offset += size; | ||
1800 | } while (len); | ||
1801 | |||
1802 | handle->offset = offset; | ||
1803 | |||
1804 | WARN_ON_ONCE(handle->offset > handle->head); | ||
1805 | } | ||
1806 | |||
1807 | #define perf_output_put(handle, x) \ | ||
1808 | perf_output_copy((handle), &(x), sizeof(x)) | ||
1809 | |||
1810 | static void perf_output_end(struct perf_output_handle *handle) | ||
1811 | { | ||
1812 | int wakeup_events = handle->counter->hw_event.wakeup_events; | ||
1813 | |||
1814 | if (handle->overflow && wakeup_events) { | ||
1815 | int events = atomic_inc_return(&handle->data->events); | ||
1816 | if (events >= wakeup_events) { | ||
1817 | atomic_sub(wakeup_events, &handle->data->events); | ||
1818 | __perf_output_wakeup(handle); | ||
1819 | } | ||
1820 | } else if (handle->wakeup) | ||
1821 | __perf_output_wakeup(handle); | ||
1822 | rcu_read_unlock(); | ||
1823 | } | ||
1824 | |||
1825 | static void perf_counter_output(struct perf_counter *counter, | ||
1826 | int nmi, struct pt_regs *regs, u64 addr) | ||
1827 | { | ||
1828 | int ret; | ||
1829 | u64 record_type = counter->hw_event.record_type; | ||
1830 | struct perf_output_handle handle; | ||
1831 | struct perf_event_header header; | ||
1832 | u64 ip; | ||
1833 | struct { | ||
1834 | u32 pid, tid; | ||
1835 | } tid_entry; | ||
1836 | struct { | ||
1837 | u64 event; | ||
1838 | u64 counter; | ||
1839 | } group_entry; | ||
1840 | struct perf_callchain_entry *callchain = NULL; | ||
1841 | int callchain_size = 0; | ||
1842 | u64 time; | ||
1843 | |||
1844 | header.type = 0; | ||
1845 | header.size = sizeof(header); | ||
1846 | |||
1847 | header.misc = PERF_EVENT_MISC_OVERFLOW; | ||
1848 | header.misc |= user_mode(regs) ? | ||
1849 | PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL; | ||
1850 | |||
1851 | if (record_type & PERF_RECORD_IP) { | ||
1852 | ip = instruction_pointer(regs); | ||
1853 | header.type |= PERF_RECORD_IP; | ||
1854 | header.size += sizeof(ip); | ||
1855 | } | ||
1856 | |||
1857 | if (record_type & PERF_RECORD_TID) { | ||
1858 | /* namespace issues */ | ||
1859 | tid_entry.pid = current->group_leader->pid; | ||
1860 | tid_entry.tid = current->pid; | ||
1861 | |||
1862 | header.type |= PERF_RECORD_TID; | ||
1863 | header.size += sizeof(tid_entry); | ||
1864 | } | ||
1865 | |||
1866 | if (record_type & PERF_RECORD_TIME) { | ||
1867 | /* | ||
1868 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
1869 | */ | ||
1870 | time = sched_clock(); | ||
1871 | |||
1872 | header.type |= PERF_RECORD_TIME; | ||
1873 | header.size += sizeof(u64); | ||
1874 | } | ||
1875 | |||
1876 | if (record_type & PERF_RECORD_ADDR) { | ||
1877 | header.type |= PERF_RECORD_ADDR; | ||
1878 | header.size += sizeof(u64); | ||
1879 | } | ||
1880 | |||
1881 | if (record_type & PERF_RECORD_GROUP) { | ||
1882 | header.type |= PERF_RECORD_GROUP; | ||
1883 | header.size += sizeof(u64) + | ||
1884 | counter->nr_siblings * sizeof(group_entry); | ||
1885 | } | ||
1886 | |||
1887 | if (record_type & PERF_RECORD_CALLCHAIN) { | ||
1888 | callchain = perf_callchain(regs); | ||
1889 | |||
1890 | if (callchain) { | ||
1891 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
1892 | |||
1893 | header.type |= PERF_RECORD_CALLCHAIN; | ||
1894 | header.size += callchain_size; | ||
1895 | } | ||
1896 | } | ||
1897 | |||
1898 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
1899 | if (ret) | ||
1900 | return; | ||
1901 | |||
1902 | perf_output_put(&handle, header); | ||
1903 | |||
1904 | if (record_type & PERF_RECORD_IP) | ||
1905 | perf_output_put(&handle, ip); | ||
1906 | |||
1907 | if (record_type & PERF_RECORD_TID) | ||
1908 | perf_output_put(&handle, tid_entry); | ||
1909 | |||
1910 | if (record_type & PERF_RECORD_TIME) | ||
1911 | perf_output_put(&handle, time); | ||
1912 | |||
1913 | if (record_type & PERF_RECORD_ADDR) | ||
1914 | perf_output_put(&handle, addr); | ||
1915 | |||
1916 | if (record_type & PERF_RECORD_GROUP) { | ||
1917 | struct perf_counter *leader, *sub; | ||
1918 | u64 nr = counter->nr_siblings; | ||
1919 | |||
1920 | perf_output_put(&handle, nr); | ||
1921 | |||
1922 | leader = counter->group_leader; | ||
1923 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
1924 | if (sub != counter) | ||
1925 | sub->hw_ops->read(sub); | ||
1926 | |||
1927 | group_entry.event = sub->hw_event.config; | ||
1928 | group_entry.counter = atomic64_read(&sub->count); | ||
1929 | |||
1930 | perf_output_put(&handle, group_entry); | ||
1931 | } | ||
1932 | } | ||
1933 | |||
1934 | if (callchain) | ||
1935 | perf_output_copy(&handle, callchain, callchain_size); | ||
1936 | |||
1937 | perf_output_end(&handle); | ||
1938 | } | ||
1939 | |||
1940 | /* | ||
1941 | * comm tracking | ||
1942 | */ | ||
1943 | |||
1944 | struct perf_comm_event { | ||
1945 | struct task_struct *task; | ||
1946 | char *comm; | ||
1947 | int comm_size; | ||
1948 | |||
1949 | struct { | ||
1950 | struct perf_event_header header; | ||
1951 | |||
1952 | u32 pid; | ||
1953 | u32 tid; | ||
1954 | } event; | ||
1955 | }; | ||
1956 | |||
1957 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
1958 | struct perf_comm_event *comm_event) | ||
1959 | { | ||
1960 | struct perf_output_handle handle; | ||
1961 | int size = comm_event->event.header.size; | ||
1962 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
1963 | |||
1964 | if (ret) | ||
1965 | return; | ||
1966 | |||
1967 | perf_output_put(&handle, comm_event->event); | ||
1968 | perf_output_copy(&handle, comm_event->comm, | ||
1969 | comm_event->comm_size); | ||
1970 | perf_output_end(&handle); | ||
1971 | } | ||
1972 | |||
1973 | static int perf_counter_comm_match(struct perf_counter *counter, | ||
1974 | struct perf_comm_event *comm_event) | ||
1975 | { | ||
1976 | if (counter->hw_event.comm && | ||
1977 | comm_event->event.header.type == PERF_EVENT_COMM) | ||
1978 | return 1; | ||
1979 | |||
1980 | return 0; | ||
1981 | } | ||
1982 | |||
1983 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
1984 | struct perf_comm_event *comm_event) | ||
1985 | { | ||
1986 | struct perf_counter *counter; | ||
1987 | |||
1988 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
1989 | return; | ||
1990 | |||
1991 | rcu_read_lock(); | ||
1992 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
1993 | if (perf_counter_comm_match(counter, comm_event)) | ||
1994 | perf_counter_comm_output(counter, comm_event); | ||
1995 | } | ||
1996 | rcu_read_unlock(); | ||
1997 | } | ||
1998 | |||
1999 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
2000 | { | ||
2001 | struct perf_cpu_context *cpuctx; | ||
2002 | unsigned int size; | ||
2003 | char *comm = comm_event->task->comm; | ||
2004 | |||
2005 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
2006 | |||
2007 | comm_event->comm = comm; | ||
2008 | comm_event->comm_size = size; | ||
2009 | |||
2010 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
2011 | |||
2012 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2013 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
2014 | put_cpu_var(perf_cpu_context); | ||
2015 | |||
2016 | perf_counter_comm_ctx(¤t->perf_counter_ctx, comm_event); | ||
2017 | } | ||
2018 | |||
2019 | void perf_counter_comm(struct task_struct *task) | ||
2020 | { | ||
2021 | struct perf_comm_event comm_event; | ||
2022 | |||
2023 | if (!atomic_read(&nr_comm_tracking)) | ||
2024 | return; | ||
2025 | |||
2026 | comm_event = (struct perf_comm_event){ | ||
2027 | .task = task, | ||
2028 | .event = { | ||
2029 | .header = { .type = PERF_EVENT_COMM, }, | ||
2030 | .pid = task->group_leader->pid, | ||
2031 | .tid = task->pid, | ||
2032 | }, | ||
2033 | }; | ||
2034 | |||
2035 | perf_counter_comm_event(&comm_event); | ||
2036 | } | ||
2037 | |||
2038 | /* | ||
2039 | * mmap tracking | ||
2040 | */ | ||
2041 | |||
2042 | struct perf_mmap_event { | ||
2043 | struct file *file; | ||
2044 | char *file_name; | ||
2045 | int file_size; | ||
2046 | |||
2047 | struct { | ||
2048 | struct perf_event_header header; | ||
2049 | |||
2050 | u32 pid; | ||
2051 | u32 tid; | ||
2052 | u64 start; | ||
2053 | u64 len; | ||
2054 | u64 pgoff; | ||
2055 | } event; | ||
2056 | }; | ||
2057 | |||
2058 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
2059 | struct perf_mmap_event *mmap_event) | ||
2060 | { | ||
2061 | struct perf_output_handle handle; | ||
2062 | int size = mmap_event->event.header.size; | ||
2063 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
2064 | |||
2065 | if (ret) | ||
2066 | return; | ||
2067 | |||
2068 | perf_output_put(&handle, mmap_event->event); | ||
2069 | perf_output_copy(&handle, mmap_event->file_name, | ||
2070 | mmap_event->file_size); | ||
2071 | perf_output_end(&handle); | ||
2072 | } | ||
2073 | |||
2074 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
2075 | struct perf_mmap_event *mmap_event) | ||
2076 | { | ||
2077 | if (counter->hw_event.mmap && | ||
2078 | mmap_event->event.header.type == PERF_EVENT_MMAP) | ||
2079 | return 1; | ||
2080 | |||
2081 | if (counter->hw_event.munmap && | ||
2082 | mmap_event->event.header.type == PERF_EVENT_MUNMAP) | ||
2083 | return 1; | ||
2084 | |||
2085 | return 0; | ||
2086 | } | ||
2087 | |||
2088 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
2089 | struct perf_mmap_event *mmap_event) | ||
2090 | { | ||
2091 | struct perf_counter *counter; | ||
2092 | |||
2093 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2094 | return; | ||
2095 | |||
2096 | rcu_read_lock(); | ||
2097 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2098 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
2099 | perf_counter_mmap_output(counter, mmap_event); | ||
2100 | } | ||
2101 | rcu_read_unlock(); | ||
2102 | } | ||
2103 | |||
2104 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
2105 | { | ||
2106 | struct perf_cpu_context *cpuctx; | ||
2107 | struct file *file = mmap_event->file; | ||
2108 | unsigned int size; | ||
2109 | char tmp[16]; | ||
2110 | char *buf = NULL; | ||
2111 | char *name; | ||
2112 | |||
2113 | if (file) { | ||
2114 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
2115 | if (!buf) { | ||
2116 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
2117 | goto got_name; | ||
2118 | } | ||
2119 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
2120 | if (IS_ERR(name)) { | ||
2121 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
2122 | goto got_name; | ||
2123 | } | ||
2124 | } else { | ||
2125 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
2126 | goto got_name; | ||
2127 | } | ||
2128 | |||
2129 | got_name: | ||
2130 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
2131 | |||
2132 | mmap_event->file_name = name; | ||
2133 | mmap_event->file_size = size; | ||
2134 | |||
2135 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
2136 | |||
2137 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2138 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
2139 | put_cpu_var(perf_cpu_context); | ||
2140 | |||
2141 | perf_counter_mmap_ctx(¤t->perf_counter_ctx, mmap_event); | ||
2142 | |||
2143 | kfree(buf); | ||
2144 | } | ||
2145 | |||
2146 | void perf_counter_mmap(unsigned long addr, unsigned long len, | ||
2147 | unsigned long pgoff, struct file *file) | ||
2148 | { | ||
2149 | struct perf_mmap_event mmap_event; | ||
2150 | |||
2151 | if (!atomic_read(&nr_mmap_tracking)) | ||
2152 | return; | ||
2153 | |||
2154 | mmap_event = (struct perf_mmap_event){ | ||
2155 | .file = file, | ||
2156 | .event = { | ||
2157 | .header = { .type = PERF_EVENT_MMAP, }, | ||
2158 | .pid = current->group_leader->pid, | ||
2159 | .tid = current->pid, | ||
2160 | .start = addr, | ||
2161 | .len = len, | ||
2162 | .pgoff = pgoff, | ||
2163 | }, | ||
2164 | }; | ||
2165 | |||
2166 | perf_counter_mmap_event(&mmap_event); | ||
2167 | } | ||
2168 | |||
2169 | void perf_counter_munmap(unsigned long addr, unsigned long len, | ||
2170 | unsigned long pgoff, struct file *file) | ||
2171 | { | ||
2172 | struct perf_mmap_event mmap_event; | ||
2173 | |||
2174 | if (!atomic_read(&nr_munmap_tracking)) | ||
2175 | return; | ||
2176 | |||
2177 | mmap_event = (struct perf_mmap_event){ | ||
2178 | .file = file, | ||
2179 | .event = { | ||
2180 | .header = { .type = PERF_EVENT_MUNMAP, }, | ||
2181 | .pid = current->group_leader->pid, | ||
2182 | .tid = current->pid, | ||
2183 | .start = addr, | ||
2184 | .len = len, | ||
2185 | .pgoff = pgoff, | ||
2186 | }, | ||
2187 | }; | ||
2188 | |||
2189 | perf_counter_mmap_event(&mmap_event); | ||
2190 | } | ||
2191 | |||
2192 | /* | ||
2193 | * Generic counter overflow handling. | ||
2194 | */ | ||
2195 | |||
2196 | int perf_counter_overflow(struct perf_counter *counter, | ||
2197 | int nmi, struct pt_regs *regs, u64 addr) | ||
2198 | { | ||
2199 | int events = atomic_read(&counter->event_limit); | ||
2200 | int ret = 0; | ||
2201 | |||
2202 | counter->pending_kill = POLL_IN; | ||
2203 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
2204 | ret = 1; | ||
2205 | counter->pending_kill = POLL_HUP; | ||
2206 | if (nmi) { | ||
2207 | counter->pending_disable = 1; | ||
2208 | perf_pending_queue(&counter->pending, | ||
2209 | perf_pending_counter); | ||
2210 | } else | ||
2211 | perf_counter_disable(counter); | ||
2212 | } | ||
2213 | |||
2214 | perf_counter_output(counter, nmi, regs, addr); | ||
2215 | return ret; | ||
2216 | } | ||
2217 | |||
2218 | /* | ||
2219 | * Generic software counter infrastructure | ||
2220 | */ | ||
2221 | |||
2222 | static void perf_swcounter_update(struct perf_counter *counter) | ||
2223 | { | ||
2224 | struct hw_perf_counter *hwc = &counter->hw; | ||
2225 | u64 prev, now; | ||
2226 | s64 delta; | ||
2227 | |||
2228 | again: | ||
2229 | prev = atomic64_read(&hwc->prev_count); | ||
2230 | now = atomic64_read(&hwc->count); | ||
2231 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
2232 | goto again; | ||
2233 | |||
2234 | delta = now - prev; | ||
2235 | |||
2236 | atomic64_add(delta, &counter->count); | ||
2237 | atomic64_sub(delta, &hwc->period_left); | ||
2238 | } | ||
2239 | |||
2240 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
2241 | { | ||
2242 | struct hw_perf_counter *hwc = &counter->hw; | ||
2243 | s64 left = atomic64_read(&hwc->period_left); | ||
2244 | s64 period = hwc->irq_period; | ||
2245 | |||
2246 | if (unlikely(left <= -period)) { | ||
2247 | left = period; | ||
2248 | atomic64_set(&hwc->period_left, left); | ||
2249 | } | ||
2250 | |||
2251 | if (unlikely(left <= 0)) { | ||
2252 | left += period; | ||
2253 | atomic64_add(period, &hwc->period_left); | ||
2254 | } | ||
2255 | |||
2256 | atomic64_set(&hwc->prev_count, -left); | ||
2257 | atomic64_set(&hwc->count, -left); | ||
2258 | } | ||
2259 | |||
2260 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
2261 | { | ||
2262 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
2263 | struct perf_counter *counter; | ||
2264 | struct pt_regs *regs; | ||
2265 | |||
2266 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
2267 | counter->hw_ops->read(counter); | ||
2268 | |||
2269 | regs = get_irq_regs(); | ||
2270 | /* | ||
2271 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
2272 | * context, provide the next best thing, the user IP. | ||
2273 | */ | ||
2274 | if ((counter->hw_event.exclude_kernel || !regs) && | ||
2275 | !counter->hw_event.exclude_user) | ||
2276 | regs = task_pt_regs(current); | ||
2277 | |||
2278 | if (regs) { | ||
2279 | if (perf_counter_overflow(counter, 0, regs, 0)) | ||
2280 | ret = HRTIMER_NORESTART; | ||
2281 | } | ||
2282 | |||
2283 | hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period)); | ||
2284 | |||
2285 | return ret; | ||
2286 | } | ||
2287 | |||
2288 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
2289 | int nmi, struct pt_regs *regs, u64 addr) | ||
2290 | { | ||
2291 | perf_swcounter_update(counter); | ||
2292 | perf_swcounter_set_period(counter); | ||
2293 | if (perf_counter_overflow(counter, nmi, regs, addr)) | ||
2294 | /* soft-disable the counter */ | ||
2295 | ; | ||
2296 | |||
2297 | } | ||
2298 | |||
2299 | static int perf_swcounter_match(struct perf_counter *counter, | ||
2300 | enum perf_event_types type, | ||
2301 | u32 event, struct pt_regs *regs) | ||
2302 | { | ||
2303 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
2304 | return 0; | ||
2305 | |||
2306 | if (perf_event_raw(&counter->hw_event)) | ||
2307 | return 0; | ||
2308 | |||
2309 | if (perf_event_type(&counter->hw_event) != type) | ||
2310 | return 0; | ||
2311 | |||
2312 | if (perf_event_id(&counter->hw_event) != event) | ||
2313 | return 0; | ||
2314 | |||
2315 | if (counter->hw_event.exclude_user && user_mode(regs)) | ||
2316 | return 0; | ||
2317 | |||
2318 | if (counter->hw_event.exclude_kernel && !user_mode(regs)) | ||
2319 | return 0; | ||
2320 | |||
2321 | return 1; | ||
2322 | } | ||
2323 | |||
2324 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
2325 | int nmi, struct pt_regs *regs, u64 addr) | ||
2326 | { | ||
2327 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
2328 | if (counter->hw.irq_period && !neg) | ||
2329 | perf_swcounter_overflow(counter, nmi, regs, addr); | ||
2330 | } | ||
2331 | |||
2332 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
2333 | enum perf_event_types type, u32 event, | ||
2334 | u64 nr, int nmi, struct pt_regs *regs, | ||
2335 | u64 addr) | ||
2336 | { | ||
2337 | struct perf_counter *counter; | ||
2338 | |||
2339 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2340 | return; | ||
2341 | |||
2342 | rcu_read_lock(); | ||
2343 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2344 | if (perf_swcounter_match(counter, type, event, regs)) | ||
2345 | perf_swcounter_add(counter, nr, nmi, regs, addr); | ||
2346 | } | ||
2347 | rcu_read_unlock(); | ||
2348 | } | ||
2349 | |||
2350 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
2351 | { | ||
2352 | if (in_nmi()) | ||
2353 | return &cpuctx->recursion[3]; | ||
2354 | |||
2355 | if (in_irq()) | ||
2356 | return &cpuctx->recursion[2]; | ||
2357 | |||
2358 | if (in_softirq()) | ||
2359 | return &cpuctx->recursion[1]; | ||
2360 | |||
2361 | return &cpuctx->recursion[0]; | ||
2362 | } | ||
2363 | |||
2364 | static void __perf_swcounter_event(enum perf_event_types type, u32 event, | ||
2365 | u64 nr, int nmi, struct pt_regs *regs, | ||
2366 | u64 addr) | ||
2367 | { | ||
2368 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
2369 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
2370 | |||
2371 | if (*recursion) | ||
2372 | goto out; | ||
2373 | |||
2374 | (*recursion)++; | ||
2375 | barrier(); | ||
2376 | |||
2377 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
2378 | nr, nmi, regs, addr); | ||
2379 | if (cpuctx->task_ctx) { | ||
2380 | perf_swcounter_ctx_event(cpuctx->task_ctx, type, event, | ||
2381 | nr, nmi, regs, addr); | ||
2382 | } | ||
2383 | |||
2384 | barrier(); | ||
2385 | (*recursion)--; | ||
2386 | |||
2387 | out: | ||
2388 | put_cpu_var(perf_cpu_context); | ||
2389 | } | ||
2390 | |||
2391 | void | ||
2392 | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | ||
2393 | { | ||
2394 | __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr); | ||
2395 | } | ||
2396 | |||
2397 | static void perf_swcounter_read(struct perf_counter *counter) | ||
2398 | { | ||
2399 | perf_swcounter_update(counter); | ||
2400 | } | ||
2401 | |||
2402 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
2403 | { | ||
2404 | perf_swcounter_set_period(counter); | ||
2405 | return 0; | ||
2406 | } | ||
2407 | |||
2408 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
2409 | { | ||
2410 | perf_swcounter_update(counter); | ||
2411 | } | ||
2412 | |||
2413 | static const struct hw_perf_counter_ops perf_ops_generic = { | ||
2414 | .enable = perf_swcounter_enable, | ||
2415 | .disable = perf_swcounter_disable, | ||
2416 | .read = perf_swcounter_read, | ||
2417 | }; | ||
2418 | |||
2419 | /* | ||
2420 | * Software counter: cpu wall time clock | ||
2421 | */ | ||
2422 | |||
2423 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
2424 | { | ||
2425 | int cpu = raw_smp_processor_id(); | ||
2426 | s64 prev; | ||
2427 | u64 now; | ||
2428 | |||
2429 | now = cpu_clock(cpu); | ||
2430 | prev = atomic64_read(&counter->hw.prev_count); | ||
2431 | atomic64_set(&counter->hw.prev_count, now); | ||
2432 | atomic64_add(now - prev, &counter->count); | ||
2433 | } | ||
2434 | |||
2435 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
2436 | { | ||
2437 | struct hw_perf_counter *hwc = &counter->hw; | ||
2438 | int cpu = raw_smp_processor_id(); | ||
2439 | |||
2440 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
2441 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2442 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2443 | if (hwc->irq_period) { | ||
2444 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2445 | ns_to_ktime(hwc->irq_period), 0, | ||
2446 | HRTIMER_MODE_REL, 0); | ||
2447 | } | ||
2448 | |||
2449 | return 0; | ||
2450 | } | ||
2451 | |||
2452 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
2453 | { | ||
2454 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2455 | cpu_clock_perf_counter_update(counter); | ||
2456 | } | ||
2457 | |||
2458 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
2459 | { | ||
2460 | cpu_clock_perf_counter_update(counter); | ||
2461 | } | ||
2462 | |||
2463 | static const struct hw_perf_counter_ops perf_ops_cpu_clock = { | ||
2464 | .enable = cpu_clock_perf_counter_enable, | ||
2465 | .disable = cpu_clock_perf_counter_disable, | ||
2466 | .read = cpu_clock_perf_counter_read, | ||
2467 | }; | ||
2468 | |||
2469 | /* | ||
2470 | * Software counter: task time clock | ||
2471 | */ | ||
2472 | |||
2473 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
2474 | { | ||
2475 | u64 prev; | ||
2476 | s64 delta; | ||
2477 | |||
2478 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
2479 | delta = now - prev; | ||
2480 | atomic64_add(delta, &counter->count); | ||
2481 | } | ||
2482 | |||
2483 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
2484 | { | ||
2485 | struct hw_perf_counter *hwc = &counter->hw; | ||
2486 | u64 now; | ||
2487 | |||
2488 | now = counter->ctx->time; | ||
2489 | |||
2490 | atomic64_set(&hwc->prev_count, now); | ||
2491 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2492 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2493 | if (hwc->irq_period) { | ||
2494 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2495 | ns_to_ktime(hwc->irq_period), 0, | ||
2496 | HRTIMER_MODE_REL, 0); | ||
2497 | } | ||
2498 | |||
2499 | return 0; | ||
2500 | } | ||
2501 | |||
2502 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
2503 | { | ||
2504 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2505 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
2506 | |||
2507 | } | ||
2508 | |||
2509 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
2510 | { | ||
2511 | u64 time; | ||
2512 | |||
2513 | if (!in_nmi()) { | ||
2514 | update_context_time(counter->ctx); | ||
2515 | time = counter->ctx->time; | ||
2516 | } else { | ||
2517 | u64 now = perf_clock(); | ||
2518 | u64 delta = now - counter->ctx->timestamp; | ||
2519 | time = counter->ctx->time + delta; | ||
2520 | } | ||
2521 | |||
2522 | task_clock_perf_counter_update(counter, time); | ||
2523 | } | ||
2524 | |||
2525 | static const struct hw_perf_counter_ops perf_ops_task_clock = { | ||
2526 | .enable = task_clock_perf_counter_enable, | ||
2527 | .disable = task_clock_perf_counter_disable, | ||
2528 | .read = task_clock_perf_counter_read, | ||
2529 | }; | ||
2530 | |||
2531 | /* | ||
2532 | * Software counter: cpu migrations | ||
2533 | */ | ||
2534 | |||
2535 | static inline u64 get_cpu_migrations(struct perf_counter *counter) | ||
2536 | { | ||
2537 | struct task_struct *curr = counter->ctx->task; | ||
2538 | |||
2539 | if (curr) | ||
2540 | return curr->se.nr_migrations; | ||
2541 | return cpu_nr_migrations(smp_processor_id()); | ||
2542 | } | ||
2543 | |||
2544 | static void cpu_migrations_perf_counter_update(struct perf_counter *counter) | ||
2545 | { | ||
2546 | u64 prev, now; | ||
2547 | s64 delta; | ||
2548 | |||
2549 | prev = atomic64_read(&counter->hw.prev_count); | ||
2550 | now = get_cpu_migrations(counter); | ||
2551 | |||
2552 | atomic64_set(&counter->hw.prev_count, now); | ||
2553 | |||
2554 | delta = now - prev; | ||
2555 | |||
2556 | atomic64_add(delta, &counter->count); | ||
2557 | } | ||
2558 | |||
2559 | static void cpu_migrations_perf_counter_read(struct perf_counter *counter) | ||
2560 | { | ||
2561 | cpu_migrations_perf_counter_update(counter); | ||
2562 | } | ||
2563 | |||
2564 | static int cpu_migrations_perf_counter_enable(struct perf_counter *counter) | ||
2565 | { | ||
2566 | if (counter->prev_state <= PERF_COUNTER_STATE_OFF) | ||
2567 | atomic64_set(&counter->hw.prev_count, | ||
2568 | get_cpu_migrations(counter)); | ||
2569 | return 0; | ||
2570 | } | ||
2571 | |||
2572 | static void cpu_migrations_perf_counter_disable(struct perf_counter *counter) | ||
2573 | { | ||
2574 | cpu_migrations_perf_counter_update(counter); | ||
2575 | } | ||
2576 | |||
2577 | static const struct hw_perf_counter_ops perf_ops_cpu_migrations = { | ||
2578 | .enable = cpu_migrations_perf_counter_enable, | ||
2579 | .disable = cpu_migrations_perf_counter_disable, | ||
2580 | .read = cpu_migrations_perf_counter_read, | ||
2581 | }; | ||
2582 | |||
2583 | #ifdef CONFIG_EVENT_PROFILE | ||
2584 | void perf_tpcounter_event(int event_id) | ||
2585 | { | ||
2586 | struct pt_regs *regs = get_irq_regs(); | ||
2587 | |||
2588 | if (!regs) | ||
2589 | regs = task_pt_regs(current); | ||
2590 | |||
2591 | __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0); | ||
2592 | } | ||
2593 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
2594 | |||
2595 | extern int ftrace_profile_enable(int); | ||
2596 | extern void ftrace_profile_disable(int); | ||
2597 | |||
2598 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
2599 | { | ||
2600 | ftrace_profile_disable(perf_event_id(&counter->hw_event)); | ||
2601 | } | ||
2602 | |||
2603 | static const struct hw_perf_counter_ops * | ||
2604 | tp_perf_counter_init(struct perf_counter *counter) | ||
2605 | { | ||
2606 | int event_id = perf_event_id(&counter->hw_event); | ||
2607 | int ret; | ||
2608 | |||
2609 | ret = ftrace_profile_enable(event_id); | ||
2610 | if (ret) | ||
2611 | return NULL; | ||
2612 | |||
2613 | counter->destroy = tp_perf_counter_destroy; | ||
2614 | counter->hw.irq_period = counter->hw_event.irq_period; | ||
2615 | |||
2616 | return &perf_ops_generic; | ||
2617 | } | ||
2618 | #else | ||
2619 | static const struct hw_perf_counter_ops * | ||
2620 | tp_perf_counter_init(struct perf_counter *counter) | ||
2621 | { | ||
2622 | return NULL; | ||
2623 | } | ||
2624 | #endif | ||
2625 | |||
2626 | static const struct hw_perf_counter_ops * | ||
2627 | sw_perf_counter_init(struct perf_counter *counter) | ||
2628 | { | ||
2629 | struct perf_counter_hw_event *hw_event = &counter->hw_event; | ||
2630 | const struct hw_perf_counter_ops *hw_ops = NULL; | ||
2631 | struct hw_perf_counter *hwc = &counter->hw; | ||
2632 | |||
2633 | /* | ||
2634 | * Software counters (currently) can't in general distinguish | ||
2635 | * between user, kernel and hypervisor events. | ||
2636 | * However, context switches and cpu migrations are considered | ||
2637 | * to be kernel events, and page faults are never hypervisor | ||
2638 | * events. | ||
2639 | */ | ||
2640 | switch (perf_event_id(&counter->hw_event)) { | ||
2641 | case PERF_COUNT_CPU_CLOCK: | ||
2642 | hw_ops = &perf_ops_cpu_clock; | ||
2643 | |||
2644 | if (hw_event->irq_period && hw_event->irq_period < 10000) | ||
2645 | hw_event->irq_period = 10000; | ||
2646 | break; | ||
2647 | case PERF_COUNT_TASK_CLOCK: | ||
2648 | /* | ||
2649 | * If the user instantiates this as a per-cpu counter, | ||
2650 | * use the cpu_clock counter instead. | ||
2651 | */ | ||
2652 | if (counter->ctx->task) | ||
2653 | hw_ops = &perf_ops_task_clock; | ||
2654 | else | ||
2655 | hw_ops = &perf_ops_cpu_clock; | ||
2656 | |||
2657 | if (hw_event->irq_period && hw_event->irq_period < 10000) | ||
2658 | hw_event->irq_period = 10000; | ||
2659 | break; | ||
2660 | case PERF_COUNT_PAGE_FAULTS: | ||
2661 | case PERF_COUNT_PAGE_FAULTS_MIN: | ||
2662 | case PERF_COUNT_PAGE_FAULTS_MAJ: | ||
2663 | case PERF_COUNT_CONTEXT_SWITCHES: | ||
2664 | hw_ops = &perf_ops_generic; | ||
2665 | break; | ||
2666 | case PERF_COUNT_CPU_MIGRATIONS: | ||
2667 | if (!counter->hw_event.exclude_kernel) | ||
2668 | hw_ops = &perf_ops_cpu_migrations; | ||
2669 | break; | ||
2670 | } | ||
2671 | |||
2672 | if (hw_ops) | ||
2673 | hwc->irq_period = hw_event->irq_period; | ||
2674 | |||
2675 | return hw_ops; | ||
2676 | } | ||
2677 | |||
2678 | /* | ||
2679 | * Allocate and initialize a counter structure | ||
2680 | */ | ||
2681 | static struct perf_counter * | ||
2682 | perf_counter_alloc(struct perf_counter_hw_event *hw_event, | ||
2683 | int cpu, | ||
2684 | struct perf_counter_context *ctx, | ||
2685 | struct perf_counter *group_leader, | ||
2686 | gfp_t gfpflags) | ||
2687 | { | ||
2688 | const struct hw_perf_counter_ops *hw_ops; | ||
2689 | struct perf_counter *counter; | ||
2690 | long err; | ||
2691 | |||
2692 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
2693 | if (!counter) | ||
2694 | return ERR_PTR(-ENOMEM); | ||
2695 | |||
2696 | /* | ||
2697 | * Single counters are their own group leaders, with an | ||
2698 | * empty sibling list: | ||
2699 | */ | ||
2700 | if (!group_leader) | ||
2701 | group_leader = counter; | ||
2702 | |||
2703 | mutex_init(&counter->mutex); | ||
2704 | INIT_LIST_HEAD(&counter->list_entry); | ||
2705 | INIT_LIST_HEAD(&counter->event_entry); | ||
2706 | INIT_LIST_HEAD(&counter->sibling_list); | ||
2707 | init_waitqueue_head(&counter->waitq); | ||
2708 | |||
2709 | mutex_init(&counter->mmap_mutex); | ||
2710 | |||
2711 | INIT_LIST_HEAD(&counter->child_list); | ||
2712 | |||
2713 | counter->cpu = cpu; | ||
2714 | counter->hw_event = *hw_event; | ||
2715 | counter->group_leader = group_leader; | ||
2716 | counter->hw_ops = NULL; | ||
2717 | counter->ctx = ctx; | ||
2718 | |||
2719 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
2720 | if (hw_event->disabled) | ||
2721 | counter->state = PERF_COUNTER_STATE_OFF; | ||
2722 | |||
2723 | hw_ops = NULL; | ||
2724 | |||
2725 | if (perf_event_raw(hw_event)) { | ||
2726 | hw_ops = hw_perf_counter_init(counter); | ||
2727 | goto done; | ||
2728 | } | ||
2729 | |||
2730 | switch (perf_event_type(hw_event)) { | ||
2731 | case PERF_TYPE_HARDWARE: | ||
2732 | hw_ops = hw_perf_counter_init(counter); | ||
2733 | break; | ||
2734 | |||
2735 | case PERF_TYPE_SOFTWARE: | ||
2736 | hw_ops = sw_perf_counter_init(counter); | ||
2737 | break; | ||
2738 | |||
2739 | case PERF_TYPE_TRACEPOINT: | ||
2740 | hw_ops = tp_perf_counter_init(counter); | ||
2741 | break; | ||
2742 | } | ||
2743 | done: | ||
2744 | err = 0; | ||
2745 | if (!hw_ops) | ||
2746 | err = -EINVAL; | ||
2747 | else if (IS_ERR(hw_ops)) | ||
2748 | err = PTR_ERR(hw_ops); | ||
2749 | |||
2750 | if (err) { | ||
2751 | kfree(counter); | ||
2752 | return ERR_PTR(err); | ||
2753 | } | ||
2754 | |||
2755 | counter->hw_ops = hw_ops; | ||
2756 | |||
2757 | if (counter->hw_event.mmap) | ||
2758 | atomic_inc(&nr_mmap_tracking); | ||
2759 | if (counter->hw_event.munmap) | ||
2760 | atomic_inc(&nr_munmap_tracking); | ||
2761 | if (counter->hw_event.comm) | ||
2762 | atomic_inc(&nr_comm_tracking); | ||
2763 | |||
2764 | return counter; | ||
2765 | } | ||
2766 | |||
2767 | /** | ||
2768 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
2769 | * | ||
2770 | * @hw_event_uptr: event type attributes for monitoring/sampling | ||
2771 | * @pid: target pid | ||
2772 | * @cpu: target cpu | ||
2773 | * @group_fd: group leader counter fd | ||
2774 | */ | ||
2775 | SYSCALL_DEFINE5(perf_counter_open, | ||
2776 | const struct perf_counter_hw_event __user *, hw_event_uptr, | ||
2777 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
2778 | { | ||
2779 | struct perf_counter *counter, *group_leader; | ||
2780 | struct perf_counter_hw_event hw_event; | ||
2781 | struct perf_counter_context *ctx; | ||
2782 | struct file *counter_file = NULL; | ||
2783 | struct file *group_file = NULL; | ||
2784 | int fput_needed = 0; | ||
2785 | int fput_needed2 = 0; | ||
2786 | int ret; | ||
2787 | |||
2788 | /* for future expandability... */ | ||
2789 | if (flags) | ||
2790 | return -EINVAL; | ||
2791 | |||
2792 | if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0) | ||
2793 | return -EFAULT; | ||
2794 | |||
2795 | /* | ||
2796 | * Get the target context (task or percpu): | ||
2797 | */ | ||
2798 | ctx = find_get_context(pid, cpu); | ||
2799 | if (IS_ERR(ctx)) | ||
2800 | return PTR_ERR(ctx); | ||
2801 | |||
2802 | /* | ||
2803 | * Look up the group leader (we will attach this counter to it): | ||
2804 | */ | ||
2805 | group_leader = NULL; | ||
2806 | if (group_fd != -1) { | ||
2807 | ret = -EINVAL; | ||
2808 | group_file = fget_light(group_fd, &fput_needed); | ||
2809 | if (!group_file) | ||
2810 | goto err_put_context; | ||
2811 | if (group_file->f_op != &perf_fops) | ||
2812 | goto err_put_context; | ||
2813 | |||
2814 | group_leader = group_file->private_data; | ||
2815 | /* | ||
2816 | * Do not allow a recursive hierarchy (this new sibling | ||
2817 | * becoming part of another group-sibling): | ||
2818 | */ | ||
2819 | if (group_leader->group_leader != group_leader) | ||
2820 | goto err_put_context; | ||
2821 | /* | ||
2822 | * Do not allow to attach to a group in a different | ||
2823 | * task or CPU context: | ||
2824 | */ | ||
2825 | if (group_leader->ctx != ctx) | ||
2826 | goto err_put_context; | ||
2827 | /* | ||
2828 | * Only a group leader can be exclusive or pinned | ||
2829 | */ | ||
2830 | if (hw_event.exclusive || hw_event.pinned) | ||
2831 | goto err_put_context; | ||
2832 | } | ||
2833 | |||
2834 | counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader, | ||
2835 | GFP_KERNEL); | ||
2836 | ret = PTR_ERR(counter); | ||
2837 | if (IS_ERR(counter)) | ||
2838 | goto err_put_context; | ||
2839 | |||
2840 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
2841 | if (ret < 0) | ||
2842 | goto err_free_put_context; | ||
2843 | |||
2844 | counter_file = fget_light(ret, &fput_needed2); | ||
2845 | if (!counter_file) | ||
2846 | goto err_free_put_context; | ||
2847 | |||
2848 | counter->filp = counter_file; | ||
2849 | mutex_lock(&ctx->mutex); | ||
2850 | perf_install_in_context(ctx, counter, cpu); | ||
2851 | mutex_unlock(&ctx->mutex); | ||
2852 | |||
2853 | fput_light(counter_file, fput_needed2); | ||
2854 | |||
2855 | out_fput: | ||
2856 | fput_light(group_file, fput_needed); | ||
2857 | |||
2858 | return ret; | ||
2859 | |||
2860 | err_free_put_context: | ||
2861 | kfree(counter); | ||
2862 | |||
2863 | err_put_context: | ||
2864 | put_context(ctx); | ||
2865 | |||
2866 | goto out_fput; | ||
2867 | } | ||
2868 | |||
2869 | /* | ||
2870 | * Initialize the perf_counter context in a task_struct: | ||
2871 | */ | ||
2872 | static void | ||
2873 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
2874 | struct task_struct *task) | ||
2875 | { | ||
2876 | memset(ctx, 0, sizeof(*ctx)); | ||
2877 | spin_lock_init(&ctx->lock); | ||
2878 | mutex_init(&ctx->mutex); | ||
2879 | INIT_LIST_HEAD(&ctx->counter_list); | ||
2880 | INIT_LIST_HEAD(&ctx->event_list); | ||
2881 | ctx->task = task; | ||
2882 | } | ||
2883 | |||
2884 | /* | ||
2885 | * inherit a counter from parent task to child task: | ||
2886 | */ | ||
2887 | static struct perf_counter * | ||
2888 | inherit_counter(struct perf_counter *parent_counter, | ||
2889 | struct task_struct *parent, | ||
2890 | struct perf_counter_context *parent_ctx, | ||
2891 | struct task_struct *child, | ||
2892 | struct perf_counter *group_leader, | ||
2893 | struct perf_counter_context *child_ctx) | ||
2894 | { | ||
2895 | struct perf_counter *child_counter; | ||
2896 | |||
2897 | /* | ||
2898 | * Instead of creating recursive hierarchies of counters, | ||
2899 | * we link inherited counters back to the original parent, | ||
2900 | * which has a filp for sure, which we use as the reference | ||
2901 | * count: | ||
2902 | */ | ||
2903 | if (parent_counter->parent) | ||
2904 | parent_counter = parent_counter->parent; | ||
2905 | |||
2906 | child_counter = perf_counter_alloc(&parent_counter->hw_event, | ||
2907 | parent_counter->cpu, child_ctx, | ||
2908 | group_leader, GFP_KERNEL); | ||
2909 | if (IS_ERR(child_counter)) | ||
2910 | return child_counter; | ||
2911 | |||
2912 | /* | ||
2913 | * Link it up in the child's context: | ||
2914 | */ | ||
2915 | child_counter->task = child; | ||
2916 | add_counter_to_ctx(child_counter, child_ctx); | ||
2917 | |||
2918 | child_counter->parent = parent_counter; | ||
2919 | /* | ||
2920 | * inherit into child's child as well: | ||
2921 | */ | ||
2922 | child_counter->hw_event.inherit = 1; | ||
2923 | |||
2924 | /* | ||
2925 | * Get a reference to the parent filp - we will fput it | ||
2926 | * when the child counter exits. This is safe to do because | ||
2927 | * we are in the parent and we know that the filp still | ||
2928 | * exists and has a nonzero count: | ||
2929 | */ | ||
2930 | atomic_long_inc(&parent_counter->filp->f_count); | ||
2931 | |||
2932 | /* | ||
2933 | * Link this into the parent counter's child list | ||
2934 | */ | ||
2935 | mutex_lock(&parent_counter->mutex); | ||
2936 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
2937 | |||
2938 | /* | ||
2939 | * Make the child state follow the state of the parent counter, | ||
2940 | * not its hw_event.disabled bit. We hold the parent's mutex, | ||
2941 | * so we won't race with perf_counter_{en,dis}able_family. | ||
2942 | */ | ||
2943 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
2944 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
2945 | else | ||
2946 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
2947 | |||
2948 | mutex_unlock(&parent_counter->mutex); | ||
2949 | |||
2950 | return child_counter; | ||
2951 | } | ||
2952 | |||
2953 | static int inherit_group(struct perf_counter *parent_counter, | ||
2954 | struct task_struct *parent, | ||
2955 | struct perf_counter_context *parent_ctx, | ||
2956 | struct task_struct *child, | ||
2957 | struct perf_counter_context *child_ctx) | ||
2958 | { | ||
2959 | struct perf_counter *leader; | ||
2960 | struct perf_counter *sub; | ||
2961 | struct perf_counter *child_ctr; | ||
2962 | |||
2963 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
2964 | child, NULL, child_ctx); | ||
2965 | if (IS_ERR(leader)) | ||
2966 | return PTR_ERR(leader); | ||
2967 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
2968 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
2969 | child, leader, child_ctx); | ||
2970 | if (IS_ERR(child_ctr)) | ||
2971 | return PTR_ERR(child_ctr); | ||
2972 | } | ||
2973 | return 0; | ||
2974 | } | ||
2975 | |||
2976 | static void sync_child_counter(struct perf_counter *child_counter, | ||
2977 | struct perf_counter *parent_counter) | ||
2978 | { | ||
2979 | u64 parent_val, child_val; | ||
2980 | |||
2981 | parent_val = atomic64_read(&parent_counter->count); | ||
2982 | child_val = atomic64_read(&child_counter->count); | ||
2983 | |||
2984 | /* | ||
2985 | * Add back the child's count to the parent's count: | ||
2986 | */ | ||
2987 | atomic64_add(child_val, &parent_counter->count); | ||
2988 | atomic64_add(child_counter->total_time_enabled, | ||
2989 | &parent_counter->child_total_time_enabled); | ||
2990 | atomic64_add(child_counter->total_time_running, | ||
2991 | &parent_counter->child_total_time_running); | ||
2992 | |||
2993 | /* | ||
2994 | * Remove this counter from the parent's list | ||
2995 | */ | ||
2996 | mutex_lock(&parent_counter->mutex); | ||
2997 | list_del_init(&child_counter->child_list); | ||
2998 | mutex_unlock(&parent_counter->mutex); | ||
2999 | |||
3000 | /* | ||
3001 | * Release the parent counter, if this was the last | ||
3002 | * reference to it. | ||
3003 | */ | ||
3004 | fput(parent_counter->filp); | ||
3005 | } | ||
3006 | |||
3007 | static void | ||
3008 | __perf_counter_exit_task(struct task_struct *child, | ||
3009 | struct perf_counter *child_counter, | ||
3010 | struct perf_counter_context *child_ctx) | ||
3011 | { | ||
3012 | struct perf_counter *parent_counter; | ||
3013 | struct perf_counter *sub, *tmp; | ||
3014 | |||
3015 | /* | ||
3016 | * If we do not self-reap then we have to wait for the | ||
3017 | * child task to unschedule (it will happen for sure), | ||
3018 | * so that its counter is at its final count. (This | ||
3019 | * condition triggers rarely - child tasks usually get | ||
3020 | * off their CPU before the parent has a chance to | ||
3021 | * get this far into the reaping action) | ||
3022 | */ | ||
3023 | if (child != current) { | ||
3024 | wait_task_inactive(child, 0); | ||
3025 | list_del_init(&child_counter->list_entry); | ||
3026 | update_counter_times(child_counter); | ||
3027 | } else { | ||
3028 | struct perf_cpu_context *cpuctx; | ||
3029 | unsigned long flags; | ||
3030 | u64 perf_flags; | ||
3031 | |||
3032 | /* | ||
3033 | * Disable and unlink this counter. | ||
3034 | * | ||
3035 | * Be careful about zapping the list - IRQ/NMI context | ||
3036 | * could still be processing it: | ||
3037 | */ | ||
3038 | local_irq_save(flags); | ||
3039 | perf_flags = hw_perf_save_disable(); | ||
3040 | |||
3041 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3042 | |||
3043 | group_sched_out(child_counter, cpuctx, child_ctx); | ||
3044 | update_counter_times(child_counter); | ||
3045 | |||
3046 | list_del_init(&child_counter->list_entry); | ||
3047 | |||
3048 | child_ctx->nr_counters--; | ||
3049 | |||
3050 | hw_perf_restore(perf_flags); | ||
3051 | local_irq_restore(flags); | ||
3052 | } | ||
3053 | |||
3054 | parent_counter = child_counter->parent; | ||
3055 | /* | ||
3056 | * It can happen that parent exits first, and has counters | ||
3057 | * that are still around due to the child reference. These | ||
3058 | * counters need to be zapped - but otherwise linger. | ||
3059 | */ | ||
3060 | if (parent_counter) { | ||
3061 | sync_child_counter(child_counter, parent_counter); | ||
3062 | list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list, | ||
3063 | list_entry) { | ||
3064 | if (sub->parent) { | ||
3065 | sync_child_counter(sub, sub->parent); | ||
3066 | free_counter(sub); | ||
3067 | } | ||
3068 | } | ||
3069 | free_counter(child_counter); | ||
3070 | } | ||
3071 | } | ||
3072 | |||
3073 | /* | ||
3074 | * When a child task exits, feed back counter values to parent counters. | ||
3075 | * | ||
3076 | * Note: we may be running in child context, but the PID is not hashed | ||
3077 | * anymore so new counters will not be added. | ||
3078 | */ | ||
3079 | void perf_counter_exit_task(struct task_struct *child) | ||
3080 | { | ||
3081 | struct perf_counter *child_counter, *tmp; | ||
3082 | struct perf_counter_context *child_ctx; | ||
3083 | |||
3084 | child_ctx = &child->perf_counter_ctx; | ||
3085 | |||
3086 | if (likely(!child_ctx->nr_counters)) | ||
3087 | return; | ||
3088 | |||
3089 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
3090 | list_entry) | ||
3091 | __perf_counter_exit_task(child, child_counter, child_ctx); | ||
3092 | } | ||
3093 | |||
3094 | /* | ||
3095 | * Initialize the perf_counter context in task_struct | ||
3096 | */ | ||
3097 | void perf_counter_init_task(struct task_struct *child) | ||
3098 | { | ||
3099 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
3100 | struct perf_counter *counter; | ||
3101 | struct task_struct *parent = current; | ||
3102 | |||
3103 | child_ctx = &child->perf_counter_ctx; | ||
3104 | parent_ctx = &parent->perf_counter_ctx; | ||
3105 | |||
3106 | __perf_counter_init_context(child_ctx, child); | ||
3107 | |||
3108 | /* | ||
3109 | * This is executed from the parent task context, so inherit | ||
3110 | * counters that have been marked for cloning: | ||
3111 | */ | ||
3112 | |||
3113 | if (likely(!parent_ctx->nr_counters)) | ||
3114 | return; | ||
3115 | |||
3116 | /* | ||
3117 | * Lock the parent list. No need to lock the child - not PID | ||
3118 | * hashed yet and not running, so nobody can access it. | ||
3119 | */ | ||
3120 | mutex_lock(&parent_ctx->mutex); | ||
3121 | |||
3122 | /* | ||
3123 | * We dont have to disable NMIs - we are only looking at | ||
3124 | * the list, not manipulating it: | ||
3125 | */ | ||
3126 | list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) { | ||
3127 | if (!counter->hw_event.inherit) | ||
3128 | continue; | ||
3129 | |||
3130 | if (inherit_group(counter, parent, | ||
3131 | parent_ctx, child, child_ctx)) | ||
3132 | break; | ||
3133 | } | ||
3134 | |||
3135 | mutex_unlock(&parent_ctx->mutex); | ||
3136 | } | ||
3137 | |||
3138 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
3139 | { | ||
3140 | struct perf_cpu_context *cpuctx; | ||
3141 | |||
3142 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3143 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
3144 | |||
3145 | mutex_lock(&perf_resource_mutex); | ||
3146 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
3147 | mutex_unlock(&perf_resource_mutex); | ||
3148 | |||
3149 | hw_perf_counter_setup(cpu); | ||
3150 | } | ||
3151 | |||
3152 | #ifdef CONFIG_HOTPLUG_CPU | ||
3153 | static void __perf_counter_exit_cpu(void *info) | ||
3154 | { | ||
3155 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3156 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3157 | struct perf_counter *counter, *tmp; | ||
3158 | |||
3159 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
3160 | __perf_counter_remove_from_context(counter); | ||
3161 | } | ||
3162 | static void perf_counter_exit_cpu(int cpu) | ||
3163 | { | ||
3164 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3165 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3166 | |||
3167 | mutex_lock(&ctx->mutex); | ||
3168 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
3169 | mutex_unlock(&ctx->mutex); | ||
3170 | } | ||
3171 | #else | ||
3172 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
3173 | #endif | ||
3174 | |||
3175 | static int __cpuinit | ||
3176 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
3177 | { | ||
3178 | unsigned int cpu = (long)hcpu; | ||
3179 | |||
3180 | switch (action) { | ||
3181 | |||
3182 | case CPU_UP_PREPARE: | ||
3183 | case CPU_UP_PREPARE_FROZEN: | ||
3184 | perf_counter_init_cpu(cpu); | ||
3185 | break; | ||
3186 | |||
3187 | case CPU_DOWN_PREPARE: | ||
3188 | case CPU_DOWN_PREPARE_FROZEN: | ||
3189 | perf_counter_exit_cpu(cpu); | ||
3190 | break; | ||
3191 | |||
3192 | default: | ||
3193 | break; | ||
3194 | } | ||
3195 | |||
3196 | return NOTIFY_OK; | ||
3197 | } | ||
3198 | |||
3199 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
3200 | .notifier_call = perf_cpu_notify, | ||
3201 | }; | ||
3202 | |||
3203 | static int __init perf_counter_init(void) | ||
3204 | { | ||
3205 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
3206 | (void *)(long)smp_processor_id()); | ||
3207 | register_cpu_notifier(&perf_cpu_nb); | ||
3208 | |||
3209 | return 0; | ||
3210 | } | ||
3211 | early_initcall(perf_counter_init); | ||
3212 | |||
3213 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
3214 | { | ||
3215 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
3216 | } | ||
3217 | |||
3218 | static ssize_t | ||
3219 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
3220 | const char *buf, | ||
3221 | size_t count) | ||
3222 | { | ||
3223 | struct perf_cpu_context *cpuctx; | ||
3224 | unsigned long val; | ||
3225 | int err, cpu, mpt; | ||
3226 | |||
3227 | err = strict_strtoul(buf, 10, &val); | ||
3228 | if (err) | ||
3229 | return err; | ||
3230 | if (val > perf_max_counters) | ||
3231 | return -EINVAL; | ||
3232 | |||
3233 | mutex_lock(&perf_resource_mutex); | ||
3234 | perf_reserved_percpu = val; | ||
3235 | for_each_online_cpu(cpu) { | ||
3236 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3237 | spin_lock_irq(&cpuctx->ctx.lock); | ||
3238 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
3239 | perf_max_counters - perf_reserved_percpu); | ||
3240 | cpuctx->max_pertask = mpt; | ||
3241 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
3242 | } | ||
3243 | mutex_unlock(&perf_resource_mutex); | ||
3244 | |||
3245 | return count; | ||
3246 | } | ||
3247 | |||
3248 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
3249 | { | ||
3250 | return sprintf(buf, "%d\n", perf_overcommit); | ||
3251 | } | ||
3252 | |||
3253 | static ssize_t | ||
3254 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
3255 | { | ||
3256 | unsigned long val; | ||
3257 | int err; | ||
3258 | |||
3259 | err = strict_strtoul(buf, 10, &val); | ||
3260 | if (err) | ||
3261 | return err; | ||
3262 | if (val > 1) | ||
3263 | return -EINVAL; | ||
3264 | |||
3265 | mutex_lock(&perf_resource_mutex); | ||
3266 | perf_overcommit = val; | ||
3267 | mutex_unlock(&perf_resource_mutex); | ||
3268 | |||
3269 | return count; | ||
3270 | } | ||
3271 | |||
3272 | static SYSDEV_CLASS_ATTR( | ||
3273 | reserve_percpu, | ||
3274 | 0644, | ||
3275 | perf_show_reserve_percpu, | ||
3276 | perf_set_reserve_percpu | ||
3277 | ); | ||
3278 | |||
3279 | static SYSDEV_CLASS_ATTR( | ||
3280 | overcommit, | ||
3281 | 0644, | ||
3282 | perf_show_overcommit, | ||
3283 | perf_set_overcommit | ||
3284 | ); | ||
3285 | |||
3286 | static struct attribute *perfclass_attrs[] = { | ||
3287 | &attr_reserve_percpu.attr, | ||
3288 | &attr_overcommit.attr, | ||
3289 | NULL | ||
3290 | }; | ||
3291 | |||
3292 | static struct attribute_group perfclass_attr_group = { | ||
3293 | .attrs = perfclass_attrs, | ||
3294 | .name = "perf_counters", | ||
3295 | }; | ||
3296 | |||
3297 | static int __init perf_counter_sysfs_init(void) | ||
3298 | { | ||
3299 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
3300 | &perfclass_attr_group); | ||
3301 | } | ||
3302 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/sched.c b/kernel/sched.c index b902e587a3a0..2f600e30dcf0 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -584,6 +584,7 @@ struct rq { | |||
584 | struct load_weight load; | 584 | struct load_weight load; |
585 | unsigned long nr_load_updates; | 585 | unsigned long nr_load_updates; |
586 | u64 nr_switches; | 586 | u64 nr_switches; |
587 | u64 nr_migrations_in; | ||
587 | 588 | ||
588 | struct cfs_rq cfs; | 589 | struct cfs_rq cfs; |
589 | struct rt_rq rt; | 590 | struct rt_rq rt; |
@@ -692,7 +693,7 @@ static inline int cpu_of(struct rq *rq) | |||
692 | #define task_rq(p) cpu_rq(task_cpu(p)) | 693 | #define task_rq(p) cpu_rq(task_cpu(p)) |
693 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 694 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
694 | 695 | ||
695 | static inline void update_rq_clock(struct rq *rq) | 696 | inline void update_rq_clock(struct rq *rq) |
696 | { | 697 | { |
697 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 698 | rq->clock = sched_clock_cpu(cpu_of(rq)); |
698 | } | 699 | } |
@@ -1967,12 +1968,15 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
1967 | p->se.sleep_start -= clock_offset; | 1968 | p->se.sleep_start -= clock_offset; |
1968 | if (p->se.block_start) | 1969 | if (p->se.block_start) |
1969 | p->se.block_start -= clock_offset; | 1970 | p->se.block_start -= clock_offset; |
1971 | #endif | ||
1970 | if (old_cpu != new_cpu) { | 1972 | if (old_cpu != new_cpu) { |
1971 | schedstat_inc(p, se.nr_migrations); | 1973 | p->se.nr_migrations++; |
1974 | new_rq->nr_migrations_in++; | ||
1975 | #ifdef CONFIG_SCHEDSTATS | ||
1972 | if (task_hot(p, old_rq->clock, NULL)) | 1976 | if (task_hot(p, old_rq->clock, NULL)) |
1973 | schedstat_inc(p, se.nr_forced2_migrations); | 1977 | schedstat_inc(p, se.nr_forced2_migrations); |
1974 | } | ||
1975 | #endif | 1978 | #endif |
1979 | } | ||
1976 | p->se.vruntime -= old_cfsrq->min_vruntime - | 1980 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1977 | new_cfsrq->min_vruntime; | 1981 | new_cfsrq->min_vruntime; |
1978 | 1982 | ||
@@ -2324,6 +2328,27 @@ static int sched_balance_self(int cpu, int flag) | |||
2324 | 2328 | ||
2325 | #endif /* CONFIG_SMP */ | 2329 | #endif /* CONFIG_SMP */ |
2326 | 2330 | ||
2331 | /** | ||
2332 | * task_oncpu_function_call - call a function on the cpu on which a task runs | ||
2333 | * @p: the task to evaluate | ||
2334 | * @func: the function to be called | ||
2335 | * @info: the function call argument | ||
2336 | * | ||
2337 | * Calls the function @func when the task is currently running. This might | ||
2338 | * be on the current CPU, which just calls the function directly | ||
2339 | */ | ||
2340 | void task_oncpu_function_call(struct task_struct *p, | ||
2341 | void (*func) (void *info), void *info) | ||
2342 | { | ||
2343 | int cpu; | ||
2344 | |||
2345 | preempt_disable(); | ||
2346 | cpu = task_cpu(p); | ||
2347 | if (task_curr(p)) | ||
2348 | smp_call_function_single(cpu, func, info, 1); | ||
2349 | preempt_enable(); | ||
2350 | } | ||
2351 | |||
2327 | /*** | 2352 | /*** |
2328 | * try_to_wake_up - wake up a thread | 2353 | * try_to_wake_up - wake up a thread |
2329 | * @p: the to-be-woken-up thread | 2354 | * @p: the to-be-woken-up thread |
@@ -2480,6 +2505,7 @@ static void __sched_fork(struct task_struct *p) | |||
2480 | p->se.exec_start = 0; | 2505 | p->se.exec_start = 0; |
2481 | p->se.sum_exec_runtime = 0; | 2506 | p->se.sum_exec_runtime = 0; |
2482 | p->se.prev_sum_exec_runtime = 0; | 2507 | p->se.prev_sum_exec_runtime = 0; |
2508 | p->se.nr_migrations = 0; | ||
2483 | p->se.last_wakeup = 0; | 2509 | p->se.last_wakeup = 0; |
2484 | p->se.avg_overlap = 0; | 2510 | p->se.avg_overlap = 0; |
2485 | p->se.start_runtime = 0; | 2511 | p->se.start_runtime = 0; |
@@ -2710,6 +2736,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2710 | */ | 2736 | */ |
2711 | prev_state = prev->state; | 2737 | prev_state = prev->state; |
2712 | finish_arch_switch(prev); | 2738 | finish_arch_switch(prev); |
2739 | perf_counter_task_sched_in(current, cpu_of(rq)); | ||
2713 | finish_lock_switch(rq, prev); | 2740 | finish_lock_switch(rq, prev); |
2714 | #ifdef CONFIG_SMP | 2741 | #ifdef CONFIG_SMP |
2715 | if (post_schedule) | 2742 | if (post_schedule) |
@@ -2872,6 +2899,15 @@ unsigned long nr_active(void) | |||
2872 | } | 2899 | } |
2873 | 2900 | ||
2874 | /* | 2901 | /* |
2902 | * Externally visible per-cpu scheduler statistics: | ||
2903 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
2904 | */ | ||
2905 | u64 cpu_nr_migrations(int cpu) | ||
2906 | { | ||
2907 | return cpu_rq(cpu)->nr_migrations_in; | ||
2908 | } | ||
2909 | |||
2910 | /* | ||
2875 | * Update rq->cpu_load[] statistics. This function is usually called every | 2911 | * Update rq->cpu_load[] statistics. This function is usually called every |
2876 | * scheduler tick (TICK_NSEC). | 2912 | * scheduler tick (TICK_NSEC). |
2877 | */ | 2913 | */ |
@@ -4838,6 +4874,7 @@ void scheduler_tick(void) | |||
4838 | update_rq_clock(rq); | 4874 | update_rq_clock(rq); |
4839 | update_cpu_load(rq); | 4875 | update_cpu_load(rq); |
4840 | curr->sched_class->task_tick(rq, curr, 0); | 4876 | curr->sched_class->task_tick(rq, curr, 0); |
4877 | perf_counter_task_tick(curr, cpu); | ||
4841 | spin_unlock(&rq->lock); | 4878 | spin_unlock(&rq->lock); |
4842 | 4879 | ||
4843 | #ifdef CONFIG_SMP | 4880 | #ifdef CONFIG_SMP |
@@ -5053,6 +5090,7 @@ need_resched_nonpreemptible: | |||
5053 | 5090 | ||
5054 | if (likely(prev != next)) { | 5091 | if (likely(prev != next)) { |
5055 | sched_info_switch(prev, next); | 5092 | sched_info_switch(prev, next); |
5093 | perf_counter_task_sched_out(prev, cpu); | ||
5056 | 5094 | ||
5057 | rq->nr_switches++; | 5095 | rq->nr_switches++; |
5058 | rq->curr = next; | 5096 | rq->curr = next; |
diff --git a/kernel/sys.c b/kernel/sys.c index e7998cf31498..438d99a38c87 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,6 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | ||
17 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
18 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
19 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1793,6 +1794,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1793 | case PR_SET_TSC: | 1794 | case PR_SET_TSC: |
1794 | error = SET_TSC_CTL(arg2); | 1795 | error = SET_TSC_CTL(arg2); |
1795 | break; | 1796 | break; |
1797 | case PR_TASK_PERF_COUNTERS_DISABLE: | ||
1798 | error = perf_counter_task_disable(); | ||
1799 | break; | ||
1800 | case PR_TASK_PERF_COUNTERS_ENABLE: | ||
1801 | error = perf_counter_task_enable(); | ||
1802 | break; | ||
1796 | case PR_GET_TIMERSLACK: | 1803 | case PR_GET_TIMERSLACK: |
1797 | error = current->timer_slack_ns; | 1804 | error = current->timer_slack_ns; |
1798 | break; | 1805 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 27dad2967387..68320f6b07b5 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -175,3 +175,6 @@ cond_syscall(compat_sys_timerfd_settime); | |||
175 | cond_syscall(compat_sys_timerfd_gettime); | 175 | cond_syscall(compat_sys_timerfd_gettime); |
176 | cond_syscall(sys_eventfd); | 176 | cond_syscall(sys_eventfd); |
177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
178 | |||
179 | /* performance counters: */ | ||
180 | cond_syscall(sys_perf_counter_open); | ||
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index e3d2c7dd59b9..8203d70928d5 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
50 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
51 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
52 | #include <linux/perf_counter.h> | ||
52 | 53 | ||
53 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
54 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
@@ -910,6 +911,16 @@ static struct ctl_table kern_table[] = { | |||
910 | .child = slow_work_sysctls, | 911 | .child = slow_work_sysctls, |
911 | }, | 912 | }, |
912 | #endif | 913 | #endif |
914 | #ifdef CONFIG_PERF_COUNTERS | ||
915 | { | ||
916 | .ctl_name = CTL_UNNUMBERED, | ||
917 | .procname = "perf_counter_privileged", | ||
918 | .data = &sysctl_perf_counter_priv, | ||
919 | .maxlen = sizeof(sysctl_perf_counter_priv), | ||
920 | .mode = 0644, | ||
921 | .proc_handler = &proc_dointvec, | ||
922 | }, | ||
923 | #endif | ||
913 | /* | 924 | /* |
914 | * NOTE: do not add new entries to this table unless you have read | 925 | * NOTE: do not add new entries to this table unless you have read |
915 | * Documentation/sysctl/ctl_unnumbered.txt | 926 | * Documentation/sysctl/ctl_unnumbered.txt |
diff --git a/kernel/timer.c b/kernel/timer.c index cffffad01c31..fed53be44fd9 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,6 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | ||
40 | 41 | ||
41 | #include <asm/uaccess.h> | 42 | #include <asm/uaccess.h> |
42 | #include <asm/unistd.h> | 43 | #include <asm/unistd.h> |
@@ -1170,6 +1171,8 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1170 | { | 1171 | { |
1171 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1172 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1172 | 1173 | ||
1174 | perf_counter_do_pending(); | ||
1175 | |||
1173 | hrtimer_run_pending(); | 1176 | hrtimer_run_pending(); |
1174 | 1177 | ||
1175 | if (time_after_eq(jiffies, base->timer_jiffies)) | 1178 | if (time_after_eq(jiffies, base->timer_jiffies)) |