diff options
Diffstat (limited to 'kernel')
57 files changed, 9869 insertions, 2839 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 149e18ef1ab1..057472fbc272 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -75,7 +75,7 @@ obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | |||
75 | obj-$(CONFIG_GCOV_KERNEL) += gcov/ | 75 | obj-$(CONFIG_GCOV_KERNEL) += gcov/ |
76 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o | 76 | obj-$(CONFIG_AUDIT_TREE) += audit_tree.o |
77 | obj-$(CONFIG_KPROBES) += kprobes.o | 77 | obj-$(CONFIG_KPROBES) += kprobes.o |
78 | obj-$(CONFIG_KGDB) += kgdb.o | 78 | obj-$(CONFIG_KGDB) += debug/ |
79 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o | 79 | obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o |
80 | obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o | 80 | obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o |
81 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 81 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
diff --git a/kernel/acct.c b/kernel/acct.c index e4c0e1fee9b0..385b88461c29 100644 --- a/kernel/acct.c +++ b/kernel/acct.c | |||
@@ -216,7 +216,6 @@ static int acct_on(char *name) | |||
216 | { | 216 | { |
217 | struct file *file; | 217 | struct file *file; |
218 | struct vfsmount *mnt; | 218 | struct vfsmount *mnt; |
219 | int error; | ||
220 | struct pid_namespace *ns; | 219 | struct pid_namespace *ns; |
221 | struct bsd_acct_struct *acct = NULL; | 220 | struct bsd_acct_struct *acct = NULL; |
222 | 221 | ||
@@ -244,13 +243,6 @@ static int acct_on(char *name) | |||
244 | } | 243 | } |
245 | } | 244 | } |
246 | 245 | ||
247 | error = security_acct(file); | ||
248 | if (error) { | ||
249 | kfree(acct); | ||
250 | filp_close(file, NULL); | ||
251 | return error; | ||
252 | } | ||
253 | |||
254 | spin_lock(&acct_lock); | 246 | spin_lock(&acct_lock); |
255 | if (ns->bacct == NULL) { | 247 | if (ns->bacct == NULL) { |
256 | ns->bacct = acct; | 248 | ns->bacct = acct; |
@@ -281,7 +273,7 @@ static int acct_on(char *name) | |||
281 | */ | 273 | */ |
282 | SYSCALL_DEFINE1(acct, const char __user *, name) | 274 | SYSCALL_DEFINE1(acct, const char __user *, name) |
283 | { | 275 | { |
284 | int error; | 276 | int error = 0; |
285 | 277 | ||
286 | if (!capable(CAP_SYS_PACCT)) | 278 | if (!capable(CAP_SYS_PACCT)) |
287 | return -EPERM; | 279 | return -EPERM; |
@@ -299,13 +291,11 @@ SYSCALL_DEFINE1(acct, const char __user *, name) | |||
299 | if (acct == NULL) | 291 | if (acct == NULL) |
300 | return 0; | 292 | return 0; |
301 | 293 | ||
302 | error = security_acct(NULL); | 294 | spin_lock(&acct_lock); |
303 | if (!error) { | 295 | acct_file_reopen(acct, NULL, NULL); |
304 | spin_lock(&acct_lock); | 296 | spin_unlock(&acct_lock); |
305 | acct_file_reopen(acct, NULL, NULL); | ||
306 | spin_unlock(&acct_lock); | ||
307 | } | ||
308 | } | 297 | } |
298 | |||
309 | return error; | 299 | return error; |
310 | } | 300 | } |
311 | 301 | ||
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index e9ec642932ee..291775021b2e 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -3615,7 +3615,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss) | |||
3615 | * @ss: the subsystem to load | 3615 | * @ss: the subsystem to load |
3616 | * | 3616 | * |
3617 | * This function should be called in a modular subsystem's initcall. If the | 3617 | * This function should be called in a modular subsystem's initcall. If the |
3618 | * subsytem is built as a module, it will be assigned a new subsys_id and set | 3618 | * subsystem is built as a module, it will be assigned a new subsys_id and set |
3619 | * up for use. If the subsystem is built-in anyway, work is delegated to the | 3619 | * up for use. If the subsystem is built-in anyway, work is delegated to the |
3620 | * simpler cgroup_init_subsys. | 3620 | * simpler cgroup_init_subsys. |
3621 | */ | 3621 | */ |
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index e5c0244962b0..ce71ed53e88f 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
@@ -89,10 +89,10 @@ struct cgroup_subsys freezer_subsys; | |||
89 | 89 | ||
90 | /* Locks taken and their ordering | 90 | /* Locks taken and their ordering |
91 | * ------------------------------ | 91 | * ------------------------------ |
92 | * css_set_lock | ||
93 | * cgroup_mutex (AKA cgroup_lock) | 92 | * cgroup_mutex (AKA cgroup_lock) |
94 | * task->alloc_lock (AKA task_lock) | ||
95 | * freezer->lock | 93 | * freezer->lock |
94 | * css_set_lock | ||
95 | * task->alloc_lock (AKA task_lock) | ||
96 | * task->sighand->siglock | 96 | * task->sighand->siglock |
97 | * | 97 | * |
98 | * cgroup code forces css_set_lock to be taken before task->alloc_lock | 98 | * cgroup code forces css_set_lock to be taken before task->alloc_lock |
@@ -100,33 +100,38 @@ struct cgroup_subsys freezer_subsys; | |||
100 | * freezer_create(), freezer_destroy(): | 100 | * freezer_create(), freezer_destroy(): |
101 | * cgroup_mutex [ by cgroup core ] | 101 | * cgroup_mutex [ by cgroup core ] |
102 | * | 102 | * |
103 | * can_attach(): | 103 | * freezer_can_attach(): |
104 | * cgroup_mutex | 104 | * cgroup_mutex (held by caller of can_attach) |
105 | * | 105 | * |
106 | * cgroup_frozen(): | 106 | * cgroup_freezing_or_frozen(): |
107 | * task->alloc_lock (to get task's cgroup) | 107 | * task->alloc_lock (to get task's cgroup) |
108 | * | 108 | * |
109 | * freezer_fork() (preserving fork() performance means can't take cgroup_mutex): | 109 | * freezer_fork() (preserving fork() performance means can't take cgroup_mutex): |
110 | * task->alloc_lock (to get task's cgroup) | ||
111 | * freezer->lock | 110 | * freezer->lock |
112 | * sighand->siglock (if the cgroup is freezing) | 111 | * sighand->siglock (if the cgroup is freezing) |
113 | * | 112 | * |
114 | * freezer_read(): | 113 | * freezer_read(): |
115 | * cgroup_mutex | 114 | * cgroup_mutex |
116 | * freezer->lock | 115 | * freezer->lock |
116 | * write_lock css_set_lock (cgroup iterator start) | ||
117 | * task->alloc_lock | ||
117 | * read_lock css_set_lock (cgroup iterator start) | 118 | * read_lock css_set_lock (cgroup iterator start) |
118 | * | 119 | * |
119 | * freezer_write() (freeze): | 120 | * freezer_write() (freeze): |
120 | * cgroup_mutex | 121 | * cgroup_mutex |
121 | * freezer->lock | 122 | * freezer->lock |
123 | * write_lock css_set_lock (cgroup iterator start) | ||
124 | * task->alloc_lock | ||
122 | * read_lock css_set_lock (cgroup iterator start) | 125 | * read_lock css_set_lock (cgroup iterator start) |
123 | * sighand->siglock | 126 | * sighand->siglock (fake signal delivery inside freeze_task()) |
124 | * | 127 | * |
125 | * freezer_write() (unfreeze): | 128 | * freezer_write() (unfreeze): |
126 | * cgroup_mutex | 129 | * cgroup_mutex |
127 | * freezer->lock | 130 | * freezer->lock |
131 | * write_lock css_set_lock (cgroup iterator start) | ||
132 | * task->alloc_lock | ||
128 | * read_lock css_set_lock (cgroup iterator start) | 133 | * read_lock css_set_lock (cgroup iterator start) |
129 | * task->alloc_lock (to prevent races with freeze_task()) | 134 | * task->alloc_lock (inside thaw_process(), prevents race with refrigerator()) |
130 | * sighand->siglock | 135 | * sighand->siglock |
131 | */ | 136 | */ |
132 | static struct cgroup_subsys_state *freezer_create(struct cgroup_subsys *ss, | 137 | static struct cgroup_subsys_state *freezer_create(struct cgroup_subsys *ss, |
diff --git a/kernel/compat.c b/kernel/compat.c index 7f40e9275fd9..5adab05a3172 100644 --- a/kernel/compat.c +++ b/kernel/compat.c | |||
@@ -495,29 +495,26 @@ asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, | |||
495 | { | 495 | { |
496 | int ret; | 496 | int ret; |
497 | cpumask_var_t mask; | 497 | cpumask_var_t mask; |
498 | unsigned long *k; | ||
499 | unsigned int min_length = cpumask_size(); | ||
500 | |||
501 | if (nr_cpu_ids <= BITS_PER_COMPAT_LONG) | ||
502 | min_length = sizeof(compat_ulong_t); | ||
503 | 498 | ||
504 | if (len < min_length) | 499 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
500 | return -EINVAL; | ||
501 | if (len & (sizeof(compat_ulong_t)-1)) | ||
505 | return -EINVAL; | 502 | return -EINVAL; |
506 | 503 | ||
507 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 504 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
508 | return -ENOMEM; | 505 | return -ENOMEM; |
509 | 506 | ||
510 | ret = sched_getaffinity(pid, mask); | 507 | ret = sched_getaffinity(pid, mask); |
511 | if (ret < 0) | 508 | if (ret == 0) { |
512 | goto out; | 509 | size_t retlen = min_t(size_t, len, cpumask_size()); |
513 | 510 | ||
514 | k = cpumask_bits(mask); | 511 | if (compat_put_bitmap(user_mask_ptr, cpumask_bits(mask), retlen * 8)) |
515 | ret = compat_put_bitmap(user_mask_ptr, k, min_length * 8); | 512 | ret = -EFAULT; |
516 | if (ret == 0) | 513 | else |
517 | ret = min_length; | 514 | ret = retlen; |
518 | 515 | } | |
519 | out: | ||
520 | free_cpumask_var(mask); | 516 | free_cpumask_var(mask); |
517 | |||
521 | return ret; | 518 | return ret; |
522 | } | 519 | } |
523 | 520 | ||
diff --git a/kernel/cred.c b/kernel/cred.c index 8f3672a58a1e..2c24870c55d1 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -522,8 +522,6 @@ int commit_creds(struct cred *new) | |||
522 | #endif | 522 | #endif |
523 | BUG_ON(atomic_read(&new->usage) < 1); | 523 | BUG_ON(atomic_read(&new->usage) < 1); |
524 | 524 | ||
525 | security_commit_creds(new, old); | ||
526 | |||
527 | get_cred(new); /* we will require a ref for the subj creds too */ | 525 | get_cred(new); /* we will require a ref for the subj creds too */ |
528 | 526 | ||
529 | /* dumpability changes */ | 527 | /* dumpability changes */ |
diff --git a/kernel/debug/Makefile b/kernel/debug/Makefile new file mode 100644 index 000000000000..a85edc339985 --- /dev/null +++ b/kernel/debug/Makefile | |||
@@ -0,0 +1,6 @@ | |||
1 | # | ||
2 | # Makefile for the linux kernel debugger | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_KGDB) += debug_core.o gdbstub.o | ||
6 | obj-$(CONFIG_KGDB_KDB) += kdb/ | ||
diff --git a/kernel/debug/debug_core.c b/kernel/debug/debug_core.c new file mode 100644 index 000000000000..5cb7cd1de10c --- /dev/null +++ b/kernel/debug/debug_core.c | |||
@@ -0,0 +1,983 @@ | |||
1 | /* | ||
2 | * Kernel Debug Core | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2009 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | #include <linux/pid_namespace.h> | ||
31 | #include <linux/clocksource.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/console.h> | ||
35 | #include <linux/threads.h> | ||
36 | #include <linux/uaccess.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/module.h> | ||
39 | #include <linux/ptrace.h> | ||
40 | #include <linux/string.h> | ||
41 | #include <linux/delay.h> | ||
42 | #include <linux/sched.h> | ||
43 | #include <linux/sysrq.h> | ||
44 | #include <linux/init.h> | ||
45 | #include <linux/kgdb.h> | ||
46 | #include <linux/kdb.h> | ||
47 | #include <linux/pid.h> | ||
48 | #include <linux/smp.h> | ||
49 | #include <linux/mm.h> | ||
50 | |||
51 | #include <asm/cacheflush.h> | ||
52 | #include <asm/byteorder.h> | ||
53 | #include <asm/atomic.h> | ||
54 | #include <asm/system.h> | ||
55 | |||
56 | #include "debug_core.h" | ||
57 | |||
58 | static int kgdb_break_asap; | ||
59 | |||
60 | struct debuggerinfo_struct kgdb_info[NR_CPUS]; | ||
61 | |||
62 | /** | ||
63 | * kgdb_connected - Is a host GDB connected to us? | ||
64 | */ | ||
65 | int kgdb_connected; | ||
66 | EXPORT_SYMBOL_GPL(kgdb_connected); | ||
67 | |||
68 | /* All the KGDB handlers are installed */ | ||
69 | int kgdb_io_module_registered; | ||
70 | |||
71 | /* Guard for recursive entry */ | ||
72 | static int exception_level; | ||
73 | |||
74 | struct kgdb_io *dbg_io_ops; | ||
75 | static DEFINE_SPINLOCK(kgdb_registration_lock); | ||
76 | |||
77 | /* kgdb console driver is loaded */ | ||
78 | static int kgdb_con_registered; | ||
79 | /* determine if kgdb console output should be used */ | ||
80 | static int kgdb_use_con; | ||
81 | /* Flag for alternate operations for early debugging */ | ||
82 | bool dbg_is_early = true; | ||
83 | /* Next cpu to become the master debug core */ | ||
84 | int dbg_switch_cpu; | ||
85 | |||
86 | /* Use kdb or gdbserver mode */ | ||
87 | int dbg_kdb_mode = 1; | ||
88 | |||
89 | static int __init opt_kgdb_con(char *str) | ||
90 | { | ||
91 | kgdb_use_con = 1; | ||
92 | return 0; | ||
93 | } | ||
94 | |||
95 | early_param("kgdbcon", opt_kgdb_con); | ||
96 | |||
97 | module_param(kgdb_use_con, int, 0644); | ||
98 | |||
99 | /* | ||
100 | * Holds information about breakpoints in a kernel. These breakpoints are | ||
101 | * added and removed by gdb. | ||
102 | */ | ||
103 | static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { | ||
104 | [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } | ||
105 | }; | ||
106 | |||
107 | /* | ||
108 | * The CPU# of the active CPU, or -1 if none: | ||
109 | */ | ||
110 | atomic_t kgdb_active = ATOMIC_INIT(-1); | ||
111 | EXPORT_SYMBOL_GPL(kgdb_active); | ||
112 | |||
113 | /* | ||
114 | * We use NR_CPUs not PERCPU, in case kgdb is used to debug early | ||
115 | * bootup code (which might not have percpu set up yet): | ||
116 | */ | ||
117 | static atomic_t passive_cpu_wait[NR_CPUS]; | ||
118 | static atomic_t cpu_in_kgdb[NR_CPUS]; | ||
119 | static atomic_t kgdb_break_tasklet_var; | ||
120 | atomic_t kgdb_setting_breakpoint; | ||
121 | |||
122 | struct task_struct *kgdb_usethread; | ||
123 | struct task_struct *kgdb_contthread; | ||
124 | |||
125 | int kgdb_single_step; | ||
126 | static pid_t kgdb_sstep_pid; | ||
127 | |||
128 | /* to keep track of the CPU which is doing the single stepping*/ | ||
129 | atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); | ||
130 | |||
131 | /* | ||
132 | * If you are debugging a problem where roundup (the collection of | ||
133 | * all other CPUs) is a problem [this should be extremely rare], | ||
134 | * then use the nokgdbroundup option to avoid roundup. In that case | ||
135 | * the other CPUs might interfere with your debugging context, so | ||
136 | * use this with care: | ||
137 | */ | ||
138 | static int kgdb_do_roundup = 1; | ||
139 | |||
140 | static int __init opt_nokgdbroundup(char *str) | ||
141 | { | ||
142 | kgdb_do_roundup = 0; | ||
143 | |||
144 | return 0; | ||
145 | } | ||
146 | |||
147 | early_param("nokgdbroundup", opt_nokgdbroundup); | ||
148 | |||
149 | /* | ||
150 | * Finally, some KGDB code :-) | ||
151 | */ | ||
152 | |||
153 | /* | ||
154 | * Weak aliases for breakpoint management, | ||
155 | * can be overriden by architectures when needed: | ||
156 | */ | ||
157 | int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | ||
158 | { | ||
159 | int err; | ||
160 | |||
161 | err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); | ||
162 | if (err) | ||
163 | return err; | ||
164 | |||
165 | return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, | ||
166 | BREAK_INSTR_SIZE); | ||
167 | } | ||
168 | |||
169 | int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | ||
170 | { | ||
171 | return probe_kernel_write((char *)addr, | ||
172 | (char *)bundle, BREAK_INSTR_SIZE); | ||
173 | } | ||
174 | |||
175 | int __weak kgdb_validate_break_address(unsigned long addr) | ||
176 | { | ||
177 | char tmp_variable[BREAK_INSTR_SIZE]; | ||
178 | int err; | ||
179 | /* Validate setting the breakpoint and then removing it. In the | ||
180 | * remove fails, the kernel needs to emit a bad message because we | ||
181 | * are deep trouble not being able to put things back the way we | ||
182 | * found them. | ||
183 | */ | ||
184 | err = kgdb_arch_set_breakpoint(addr, tmp_variable); | ||
185 | if (err) | ||
186 | return err; | ||
187 | err = kgdb_arch_remove_breakpoint(addr, tmp_variable); | ||
188 | if (err) | ||
189 | printk(KERN_ERR "KGDB: Critical breakpoint error, kernel " | ||
190 | "memory destroyed at: %lx", addr); | ||
191 | return err; | ||
192 | } | ||
193 | |||
194 | unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) | ||
195 | { | ||
196 | return instruction_pointer(regs); | ||
197 | } | ||
198 | |||
199 | int __weak kgdb_arch_init(void) | ||
200 | { | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | int __weak kgdb_skipexception(int exception, struct pt_regs *regs) | ||
205 | { | ||
206 | return 0; | ||
207 | } | ||
208 | |||
209 | /** | ||
210 | * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. | ||
211 | * @regs: Current &struct pt_regs. | ||
212 | * | ||
213 | * This function will be called if the particular architecture must | ||
214 | * disable hardware debugging while it is processing gdb packets or | ||
215 | * handling exception. | ||
216 | */ | ||
217 | void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | ||
218 | { | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Some architectures need cache flushes when we set/clear a | ||
223 | * breakpoint: | ||
224 | */ | ||
225 | static void kgdb_flush_swbreak_addr(unsigned long addr) | ||
226 | { | ||
227 | if (!CACHE_FLUSH_IS_SAFE) | ||
228 | return; | ||
229 | |||
230 | if (current->mm && current->mm->mmap_cache) { | ||
231 | flush_cache_range(current->mm->mmap_cache, | ||
232 | addr, addr + BREAK_INSTR_SIZE); | ||
233 | } | ||
234 | /* Force flush instruction cache if it was outside the mm */ | ||
235 | flush_icache_range(addr, addr + BREAK_INSTR_SIZE); | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * SW breakpoint management: | ||
240 | */ | ||
241 | int dbg_activate_sw_breakpoints(void) | ||
242 | { | ||
243 | unsigned long addr; | ||
244 | int error; | ||
245 | int ret = 0; | ||
246 | int i; | ||
247 | |||
248 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
249 | if (kgdb_break[i].state != BP_SET) | ||
250 | continue; | ||
251 | |||
252 | addr = kgdb_break[i].bpt_addr; | ||
253 | error = kgdb_arch_set_breakpoint(addr, | ||
254 | kgdb_break[i].saved_instr); | ||
255 | if (error) { | ||
256 | ret = error; | ||
257 | printk(KERN_INFO "KGDB: BP install failed: %lx", addr); | ||
258 | continue; | ||
259 | } | ||
260 | |||
261 | kgdb_flush_swbreak_addr(addr); | ||
262 | kgdb_break[i].state = BP_ACTIVE; | ||
263 | } | ||
264 | return ret; | ||
265 | } | ||
266 | |||
267 | int dbg_set_sw_break(unsigned long addr) | ||
268 | { | ||
269 | int err = kgdb_validate_break_address(addr); | ||
270 | int breakno = -1; | ||
271 | int i; | ||
272 | |||
273 | if (err) | ||
274 | return err; | ||
275 | |||
276 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
277 | if ((kgdb_break[i].state == BP_SET) && | ||
278 | (kgdb_break[i].bpt_addr == addr)) | ||
279 | return -EEXIST; | ||
280 | } | ||
281 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
282 | if (kgdb_break[i].state == BP_REMOVED && | ||
283 | kgdb_break[i].bpt_addr == addr) { | ||
284 | breakno = i; | ||
285 | break; | ||
286 | } | ||
287 | } | ||
288 | |||
289 | if (breakno == -1) { | ||
290 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
291 | if (kgdb_break[i].state == BP_UNDEFINED) { | ||
292 | breakno = i; | ||
293 | break; | ||
294 | } | ||
295 | } | ||
296 | } | ||
297 | |||
298 | if (breakno == -1) | ||
299 | return -E2BIG; | ||
300 | |||
301 | kgdb_break[breakno].state = BP_SET; | ||
302 | kgdb_break[breakno].type = BP_BREAKPOINT; | ||
303 | kgdb_break[breakno].bpt_addr = addr; | ||
304 | |||
305 | return 0; | ||
306 | } | ||
307 | |||
308 | int dbg_deactivate_sw_breakpoints(void) | ||
309 | { | ||
310 | unsigned long addr; | ||
311 | int error; | ||
312 | int ret = 0; | ||
313 | int i; | ||
314 | |||
315 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
316 | if (kgdb_break[i].state != BP_ACTIVE) | ||
317 | continue; | ||
318 | addr = kgdb_break[i].bpt_addr; | ||
319 | error = kgdb_arch_remove_breakpoint(addr, | ||
320 | kgdb_break[i].saved_instr); | ||
321 | if (error) { | ||
322 | printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr); | ||
323 | ret = error; | ||
324 | } | ||
325 | |||
326 | kgdb_flush_swbreak_addr(addr); | ||
327 | kgdb_break[i].state = BP_SET; | ||
328 | } | ||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | int dbg_remove_sw_break(unsigned long addr) | ||
333 | { | ||
334 | int i; | ||
335 | |||
336 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
337 | if ((kgdb_break[i].state == BP_SET) && | ||
338 | (kgdb_break[i].bpt_addr == addr)) { | ||
339 | kgdb_break[i].state = BP_REMOVED; | ||
340 | return 0; | ||
341 | } | ||
342 | } | ||
343 | return -ENOENT; | ||
344 | } | ||
345 | |||
346 | int kgdb_isremovedbreak(unsigned long addr) | ||
347 | { | ||
348 | int i; | ||
349 | |||
350 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
351 | if ((kgdb_break[i].state == BP_REMOVED) && | ||
352 | (kgdb_break[i].bpt_addr == addr)) | ||
353 | return 1; | ||
354 | } | ||
355 | return 0; | ||
356 | } | ||
357 | |||
358 | int dbg_remove_all_break(void) | ||
359 | { | ||
360 | unsigned long addr; | ||
361 | int error; | ||
362 | int i; | ||
363 | |||
364 | /* Clear memory breakpoints. */ | ||
365 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
366 | if (kgdb_break[i].state != BP_ACTIVE) | ||
367 | goto setundefined; | ||
368 | addr = kgdb_break[i].bpt_addr; | ||
369 | error = kgdb_arch_remove_breakpoint(addr, | ||
370 | kgdb_break[i].saved_instr); | ||
371 | if (error) | ||
372 | printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n", | ||
373 | addr); | ||
374 | setundefined: | ||
375 | kgdb_break[i].state = BP_UNDEFINED; | ||
376 | } | ||
377 | |||
378 | /* Clear hardware breakpoints. */ | ||
379 | if (arch_kgdb_ops.remove_all_hw_break) | ||
380 | arch_kgdb_ops.remove_all_hw_break(); | ||
381 | |||
382 | return 0; | ||
383 | } | ||
384 | |||
385 | /* | ||
386 | * Return true if there is a valid kgdb I/O module. Also if no | ||
387 | * debugger is attached a message can be printed to the console about | ||
388 | * waiting for the debugger to attach. | ||
389 | * | ||
390 | * The print_wait argument is only to be true when called from inside | ||
391 | * the core kgdb_handle_exception, because it will wait for the | ||
392 | * debugger to attach. | ||
393 | */ | ||
394 | static int kgdb_io_ready(int print_wait) | ||
395 | { | ||
396 | if (!dbg_io_ops) | ||
397 | return 0; | ||
398 | if (kgdb_connected) | ||
399 | return 1; | ||
400 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
401 | return 1; | ||
402 | if (print_wait) { | ||
403 | #ifdef CONFIG_KGDB_KDB | ||
404 | if (!dbg_kdb_mode) | ||
405 | printk(KERN_CRIT "KGDB: waiting... or $3#33 for KDB\n"); | ||
406 | #else | ||
407 | printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); | ||
408 | #endif | ||
409 | } | ||
410 | return 1; | ||
411 | } | ||
412 | |||
413 | static int kgdb_reenter_check(struct kgdb_state *ks) | ||
414 | { | ||
415 | unsigned long addr; | ||
416 | |||
417 | if (atomic_read(&kgdb_active) != raw_smp_processor_id()) | ||
418 | return 0; | ||
419 | |||
420 | /* Panic on recursive debugger calls: */ | ||
421 | exception_level++; | ||
422 | addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
423 | dbg_deactivate_sw_breakpoints(); | ||
424 | |||
425 | /* | ||
426 | * If the break point removed ok at the place exception | ||
427 | * occurred, try to recover and print a warning to the end | ||
428 | * user because the user planted a breakpoint in a place that | ||
429 | * KGDB needs in order to function. | ||
430 | */ | ||
431 | if (dbg_remove_sw_break(addr) == 0) { | ||
432 | exception_level = 0; | ||
433 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
434 | dbg_activate_sw_breakpoints(); | ||
435 | printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n", | ||
436 | addr); | ||
437 | WARN_ON_ONCE(1); | ||
438 | |||
439 | return 1; | ||
440 | } | ||
441 | dbg_remove_all_break(); | ||
442 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
443 | |||
444 | if (exception_level > 1) { | ||
445 | dump_stack(); | ||
446 | panic("Recursive entry to debugger"); | ||
447 | } | ||
448 | |||
449 | printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); | ||
450 | #ifdef CONFIG_KGDB_KDB | ||
451 | /* Allow kdb to debug itself one level */ | ||
452 | return 0; | ||
453 | #endif | ||
454 | dump_stack(); | ||
455 | panic("Recursive entry to debugger"); | ||
456 | |||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | static void dbg_cpu_switch(int cpu, int next_cpu) | ||
461 | { | ||
462 | /* Mark the cpu we are switching away from as a slave when it | ||
463 | * holds the kgdb_active token. This must be done so that the | ||
464 | * that all the cpus wait in for the debug core will not enter | ||
465 | * again as the master. */ | ||
466 | if (cpu == atomic_read(&kgdb_active)) { | ||
467 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
468 | kgdb_info[cpu].exception_state &= ~DCPU_WANT_MASTER; | ||
469 | } | ||
470 | kgdb_info[next_cpu].exception_state |= DCPU_NEXT_MASTER; | ||
471 | } | ||
472 | |||
473 | static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs) | ||
474 | { | ||
475 | unsigned long flags; | ||
476 | int sstep_tries = 100; | ||
477 | int error; | ||
478 | int i, cpu; | ||
479 | int trace_on = 0; | ||
480 | acquirelock: | ||
481 | /* | ||
482 | * Interrupts will be restored by the 'trap return' code, except when | ||
483 | * single stepping. | ||
484 | */ | ||
485 | local_irq_save(flags); | ||
486 | |||
487 | cpu = ks->cpu; | ||
488 | kgdb_info[cpu].debuggerinfo = regs; | ||
489 | kgdb_info[cpu].task = current; | ||
490 | kgdb_info[cpu].ret_state = 0; | ||
491 | kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; | ||
492 | /* | ||
493 | * Make sure the above info reaches the primary CPU before | ||
494 | * our cpu_in_kgdb[] flag setting does: | ||
495 | */ | ||
496 | atomic_inc(&cpu_in_kgdb[cpu]); | ||
497 | |||
498 | if (exception_level == 1) | ||
499 | goto cpu_master_loop; | ||
500 | |||
501 | /* | ||
502 | * CPU will loop if it is a slave or request to become a kgdb | ||
503 | * master cpu and acquire the kgdb_active lock: | ||
504 | */ | ||
505 | while (1) { | ||
506 | cpu_loop: | ||
507 | if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { | ||
508 | kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; | ||
509 | goto cpu_master_loop; | ||
510 | } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { | ||
511 | if (atomic_cmpxchg(&kgdb_active, -1, cpu) == cpu) | ||
512 | break; | ||
513 | } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { | ||
514 | if (!atomic_read(&passive_cpu_wait[cpu])) | ||
515 | goto return_normal; | ||
516 | } else { | ||
517 | return_normal: | ||
518 | /* Return to normal operation by executing any | ||
519 | * hw breakpoint fixup. | ||
520 | */ | ||
521 | if (arch_kgdb_ops.correct_hw_break) | ||
522 | arch_kgdb_ops.correct_hw_break(); | ||
523 | if (trace_on) | ||
524 | tracing_on(); | ||
525 | atomic_dec(&cpu_in_kgdb[cpu]); | ||
526 | touch_softlockup_watchdog_sync(); | ||
527 | clocksource_touch_watchdog(); | ||
528 | local_irq_restore(flags); | ||
529 | return 0; | ||
530 | } | ||
531 | cpu_relax(); | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * For single stepping, try to only enter on the processor | ||
536 | * that was single stepping. To gaurd against a deadlock, the | ||
537 | * kernel will only try for the value of sstep_tries before | ||
538 | * giving up and continuing on. | ||
539 | */ | ||
540 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && | ||
541 | (kgdb_info[cpu].task && | ||
542 | kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { | ||
543 | atomic_set(&kgdb_active, -1); | ||
544 | touch_softlockup_watchdog_sync(); | ||
545 | clocksource_touch_watchdog(); | ||
546 | local_irq_restore(flags); | ||
547 | |||
548 | goto acquirelock; | ||
549 | } | ||
550 | |||
551 | if (!kgdb_io_ready(1)) { | ||
552 | kgdb_info[cpu].ret_state = 1; | ||
553 | goto kgdb_restore; /* No I/O connection, resume the system */ | ||
554 | } | ||
555 | |||
556 | /* | ||
557 | * Don't enter if we have hit a removed breakpoint. | ||
558 | */ | ||
559 | if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) | ||
560 | goto kgdb_restore; | ||
561 | |||
562 | /* Call the I/O driver's pre_exception routine */ | ||
563 | if (dbg_io_ops->pre_exception) | ||
564 | dbg_io_ops->pre_exception(); | ||
565 | |||
566 | kgdb_disable_hw_debug(ks->linux_regs); | ||
567 | |||
568 | /* | ||
569 | * Get the passive CPU lock which will hold all the non-primary | ||
570 | * CPU in a spin state while the debugger is active | ||
571 | */ | ||
572 | if (!kgdb_single_step) { | ||
573 | for (i = 0; i < NR_CPUS; i++) | ||
574 | atomic_inc(&passive_cpu_wait[i]); | ||
575 | } | ||
576 | |||
577 | #ifdef CONFIG_SMP | ||
578 | /* Signal the other CPUs to enter kgdb_wait() */ | ||
579 | if ((!kgdb_single_step) && kgdb_do_roundup) | ||
580 | kgdb_roundup_cpus(flags); | ||
581 | #endif | ||
582 | |||
583 | /* | ||
584 | * Wait for the other CPUs to be notified and be waiting for us: | ||
585 | */ | ||
586 | for_each_online_cpu(i) { | ||
587 | while (kgdb_do_roundup && !atomic_read(&cpu_in_kgdb[i])) | ||
588 | cpu_relax(); | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * At this point the primary processor is completely | ||
593 | * in the debugger and all secondary CPUs are quiescent | ||
594 | */ | ||
595 | dbg_deactivate_sw_breakpoints(); | ||
596 | kgdb_single_step = 0; | ||
597 | kgdb_contthread = current; | ||
598 | exception_level = 0; | ||
599 | trace_on = tracing_is_on(); | ||
600 | if (trace_on) | ||
601 | tracing_off(); | ||
602 | |||
603 | while (1) { | ||
604 | cpu_master_loop: | ||
605 | if (dbg_kdb_mode) { | ||
606 | kgdb_connected = 1; | ||
607 | error = kdb_stub(ks); | ||
608 | } else { | ||
609 | error = gdb_serial_stub(ks); | ||
610 | } | ||
611 | |||
612 | if (error == DBG_PASS_EVENT) { | ||
613 | dbg_kdb_mode = !dbg_kdb_mode; | ||
614 | kgdb_connected = 0; | ||
615 | } else if (error == DBG_SWITCH_CPU_EVENT) { | ||
616 | dbg_cpu_switch(cpu, dbg_switch_cpu); | ||
617 | goto cpu_loop; | ||
618 | } else { | ||
619 | kgdb_info[cpu].ret_state = error; | ||
620 | break; | ||
621 | } | ||
622 | } | ||
623 | |||
624 | /* Call the I/O driver's post_exception routine */ | ||
625 | if (dbg_io_ops->post_exception) | ||
626 | dbg_io_ops->post_exception(); | ||
627 | |||
628 | atomic_dec(&cpu_in_kgdb[ks->cpu]); | ||
629 | |||
630 | if (!kgdb_single_step) { | ||
631 | for (i = NR_CPUS-1; i >= 0; i--) | ||
632 | atomic_dec(&passive_cpu_wait[i]); | ||
633 | /* | ||
634 | * Wait till all the CPUs have quit from the debugger, | ||
635 | * but allow a CPU that hit an exception and is | ||
636 | * waiting to become the master to remain in the debug | ||
637 | * core. | ||
638 | */ | ||
639 | for_each_online_cpu(i) { | ||
640 | while (kgdb_do_roundup && | ||
641 | atomic_read(&cpu_in_kgdb[i]) && | ||
642 | !(kgdb_info[i].exception_state & | ||
643 | DCPU_WANT_MASTER)) | ||
644 | cpu_relax(); | ||
645 | } | ||
646 | } | ||
647 | |||
648 | kgdb_restore: | ||
649 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { | ||
650 | int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); | ||
651 | if (kgdb_info[sstep_cpu].task) | ||
652 | kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; | ||
653 | else | ||
654 | kgdb_sstep_pid = 0; | ||
655 | } | ||
656 | if (trace_on) | ||
657 | tracing_on(); | ||
658 | /* Free kgdb_active */ | ||
659 | atomic_set(&kgdb_active, -1); | ||
660 | touch_softlockup_watchdog_sync(); | ||
661 | clocksource_touch_watchdog(); | ||
662 | local_irq_restore(flags); | ||
663 | |||
664 | return kgdb_info[cpu].ret_state; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * kgdb_handle_exception() - main entry point from a kernel exception | ||
669 | * | ||
670 | * Locking hierarchy: | ||
671 | * interface locks, if any (begin_session) | ||
672 | * kgdb lock (kgdb_active) | ||
673 | */ | ||
674 | int | ||
675 | kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) | ||
676 | { | ||
677 | struct kgdb_state kgdb_var; | ||
678 | struct kgdb_state *ks = &kgdb_var; | ||
679 | int ret; | ||
680 | |||
681 | ks->cpu = raw_smp_processor_id(); | ||
682 | ks->ex_vector = evector; | ||
683 | ks->signo = signo; | ||
684 | ks->err_code = ecode; | ||
685 | ks->kgdb_usethreadid = 0; | ||
686 | ks->linux_regs = regs; | ||
687 | |||
688 | if (kgdb_reenter_check(ks)) | ||
689 | return 0; /* Ouch, double exception ! */ | ||
690 | kgdb_info[ks->cpu].exception_state |= DCPU_WANT_MASTER; | ||
691 | ret = kgdb_cpu_enter(ks, regs); | ||
692 | kgdb_info[ks->cpu].exception_state &= ~(DCPU_WANT_MASTER | | ||
693 | DCPU_IS_SLAVE); | ||
694 | return ret; | ||
695 | } | ||
696 | |||
697 | int kgdb_nmicallback(int cpu, void *regs) | ||
698 | { | ||
699 | #ifdef CONFIG_SMP | ||
700 | struct kgdb_state kgdb_var; | ||
701 | struct kgdb_state *ks = &kgdb_var; | ||
702 | |||
703 | memset(ks, 0, sizeof(struct kgdb_state)); | ||
704 | ks->cpu = cpu; | ||
705 | ks->linux_regs = regs; | ||
706 | |||
707 | if (!atomic_read(&cpu_in_kgdb[cpu]) && | ||
708 | atomic_read(&kgdb_active) != -1 && | ||
709 | atomic_read(&kgdb_active) != cpu) { | ||
710 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
711 | kgdb_cpu_enter(ks, regs); | ||
712 | kgdb_info[cpu].exception_state &= ~DCPU_IS_SLAVE; | ||
713 | return 0; | ||
714 | } | ||
715 | #endif | ||
716 | return 1; | ||
717 | } | ||
718 | |||
719 | static void kgdb_console_write(struct console *co, const char *s, | ||
720 | unsigned count) | ||
721 | { | ||
722 | unsigned long flags; | ||
723 | |||
724 | /* If we're debugging, or KGDB has not connected, don't try | ||
725 | * and print. */ | ||
726 | if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) | ||
727 | return; | ||
728 | |||
729 | local_irq_save(flags); | ||
730 | gdbstub_msg_write(s, count); | ||
731 | local_irq_restore(flags); | ||
732 | } | ||
733 | |||
734 | static struct console kgdbcons = { | ||
735 | .name = "kgdb", | ||
736 | .write = kgdb_console_write, | ||
737 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
738 | .index = -1, | ||
739 | }; | ||
740 | |||
741 | #ifdef CONFIG_MAGIC_SYSRQ | ||
742 | static void sysrq_handle_dbg(int key, struct tty_struct *tty) | ||
743 | { | ||
744 | if (!dbg_io_ops) { | ||
745 | printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); | ||
746 | return; | ||
747 | } | ||
748 | if (!kgdb_connected) { | ||
749 | #ifdef CONFIG_KGDB_KDB | ||
750 | if (!dbg_kdb_mode) | ||
751 | printk(KERN_CRIT "KGDB or $3#33 for KDB\n"); | ||
752 | #else | ||
753 | printk(KERN_CRIT "Entering KGDB\n"); | ||
754 | #endif | ||
755 | } | ||
756 | |||
757 | kgdb_breakpoint(); | ||
758 | } | ||
759 | |||
760 | static struct sysrq_key_op sysrq_dbg_op = { | ||
761 | .handler = sysrq_handle_dbg, | ||
762 | .help_msg = "debug(G)", | ||
763 | .action_msg = "DEBUG", | ||
764 | }; | ||
765 | #endif | ||
766 | |||
767 | static int kgdb_panic_event(struct notifier_block *self, | ||
768 | unsigned long val, | ||
769 | void *data) | ||
770 | { | ||
771 | if (dbg_kdb_mode) | ||
772 | kdb_printf("PANIC: %s\n", (char *)data); | ||
773 | kgdb_breakpoint(); | ||
774 | return NOTIFY_DONE; | ||
775 | } | ||
776 | |||
777 | static struct notifier_block kgdb_panic_event_nb = { | ||
778 | .notifier_call = kgdb_panic_event, | ||
779 | .priority = INT_MAX, | ||
780 | }; | ||
781 | |||
782 | void __weak kgdb_arch_late(void) | ||
783 | { | ||
784 | } | ||
785 | |||
786 | void __init dbg_late_init(void) | ||
787 | { | ||
788 | dbg_is_early = false; | ||
789 | if (kgdb_io_module_registered) | ||
790 | kgdb_arch_late(); | ||
791 | kdb_init(KDB_INIT_FULL); | ||
792 | } | ||
793 | |||
794 | static void kgdb_register_callbacks(void) | ||
795 | { | ||
796 | if (!kgdb_io_module_registered) { | ||
797 | kgdb_io_module_registered = 1; | ||
798 | kgdb_arch_init(); | ||
799 | if (!dbg_is_early) | ||
800 | kgdb_arch_late(); | ||
801 | atomic_notifier_chain_register(&panic_notifier_list, | ||
802 | &kgdb_panic_event_nb); | ||
803 | #ifdef CONFIG_MAGIC_SYSRQ | ||
804 | register_sysrq_key('g', &sysrq_dbg_op); | ||
805 | #endif | ||
806 | if (kgdb_use_con && !kgdb_con_registered) { | ||
807 | register_console(&kgdbcons); | ||
808 | kgdb_con_registered = 1; | ||
809 | } | ||
810 | } | ||
811 | } | ||
812 | |||
813 | static void kgdb_unregister_callbacks(void) | ||
814 | { | ||
815 | /* | ||
816 | * When this routine is called KGDB should unregister from the | ||
817 | * panic handler and clean up, making sure it is not handling any | ||
818 | * break exceptions at the time. | ||
819 | */ | ||
820 | if (kgdb_io_module_registered) { | ||
821 | kgdb_io_module_registered = 0; | ||
822 | atomic_notifier_chain_unregister(&panic_notifier_list, | ||
823 | &kgdb_panic_event_nb); | ||
824 | kgdb_arch_exit(); | ||
825 | #ifdef CONFIG_MAGIC_SYSRQ | ||
826 | unregister_sysrq_key('g', &sysrq_dbg_op); | ||
827 | #endif | ||
828 | if (kgdb_con_registered) { | ||
829 | unregister_console(&kgdbcons); | ||
830 | kgdb_con_registered = 0; | ||
831 | } | ||
832 | } | ||
833 | } | ||
834 | |||
835 | /* | ||
836 | * There are times a tasklet needs to be used vs a compiled in | ||
837 | * break point so as to cause an exception outside a kgdb I/O module, | ||
838 | * such as is the case with kgdboe, where calling a breakpoint in the | ||
839 | * I/O driver itself would be fatal. | ||
840 | */ | ||
841 | static void kgdb_tasklet_bpt(unsigned long ing) | ||
842 | { | ||
843 | kgdb_breakpoint(); | ||
844 | atomic_set(&kgdb_break_tasklet_var, 0); | ||
845 | } | ||
846 | |||
847 | static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0); | ||
848 | |||
849 | void kgdb_schedule_breakpoint(void) | ||
850 | { | ||
851 | if (atomic_read(&kgdb_break_tasklet_var) || | ||
852 | atomic_read(&kgdb_active) != -1 || | ||
853 | atomic_read(&kgdb_setting_breakpoint)) | ||
854 | return; | ||
855 | atomic_inc(&kgdb_break_tasklet_var); | ||
856 | tasklet_schedule(&kgdb_tasklet_breakpoint); | ||
857 | } | ||
858 | EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); | ||
859 | |||
860 | static void kgdb_initial_breakpoint(void) | ||
861 | { | ||
862 | kgdb_break_asap = 0; | ||
863 | |||
864 | printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); | ||
865 | kgdb_breakpoint(); | ||
866 | } | ||
867 | |||
868 | /** | ||
869 | * kgdb_register_io_module - register KGDB IO module | ||
870 | * @new_dbg_io_ops: the io ops vector | ||
871 | * | ||
872 | * Register it with the KGDB core. | ||
873 | */ | ||
874 | int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) | ||
875 | { | ||
876 | int err; | ||
877 | |||
878 | spin_lock(&kgdb_registration_lock); | ||
879 | |||
880 | if (dbg_io_ops) { | ||
881 | spin_unlock(&kgdb_registration_lock); | ||
882 | |||
883 | printk(KERN_ERR "kgdb: Another I/O driver is already " | ||
884 | "registered with KGDB.\n"); | ||
885 | return -EBUSY; | ||
886 | } | ||
887 | |||
888 | if (new_dbg_io_ops->init) { | ||
889 | err = new_dbg_io_ops->init(); | ||
890 | if (err) { | ||
891 | spin_unlock(&kgdb_registration_lock); | ||
892 | return err; | ||
893 | } | ||
894 | } | ||
895 | |||
896 | dbg_io_ops = new_dbg_io_ops; | ||
897 | |||
898 | spin_unlock(&kgdb_registration_lock); | ||
899 | |||
900 | printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", | ||
901 | new_dbg_io_ops->name); | ||
902 | |||
903 | /* Arm KGDB now. */ | ||
904 | kgdb_register_callbacks(); | ||
905 | |||
906 | if (kgdb_break_asap) | ||
907 | kgdb_initial_breakpoint(); | ||
908 | |||
909 | return 0; | ||
910 | } | ||
911 | EXPORT_SYMBOL_GPL(kgdb_register_io_module); | ||
912 | |||
913 | /** | ||
914 | * kkgdb_unregister_io_module - unregister KGDB IO module | ||
915 | * @old_dbg_io_ops: the io ops vector | ||
916 | * | ||
917 | * Unregister it with the KGDB core. | ||
918 | */ | ||
919 | void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) | ||
920 | { | ||
921 | BUG_ON(kgdb_connected); | ||
922 | |||
923 | /* | ||
924 | * KGDB is no longer able to communicate out, so | ||
925 | * unregister our callbacks and reset state. | ||
926 | */ | ||
927 | kgdb_unregister_callbacks(); | ||
928 | |||
929 | spin_lock(&kgdb_registration_lock); | ||
930 | |||
931 | WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); | ||
932 | dbg_io_ops = NULL; | ||
933 | |||
934 | spin_unlock(&kgdb_registration_lock); | ||
935 | |||
936 | printk(KERN_INFO | ||
937 | "kgdb: Unregistered I/O driver %s, debugger disabled.\n", | ||
938 | old_dbg_io_ops->name); | ||
939 | } | ||
940 | EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); | ||
941 | |||
942 | int dbg_io_get_char(void) | ||
943 | { | ||
944 | int ret = dbg_io_ops->read_char(); | ||
945 | if (ret == NO_POLL_CHAR) | ||
946 | return -1; | ||
947 | if (!dbg_kdb_mode) | ||
948 | return ret; | ||
949 | if (ret == 127) | ||
950 | return 8; | ||
951 | return ret; | ||
952 | } | ||
953 | |||
954 | /** | ||
955 | * kgdb_breakpoint - generate breakpoint exception | ||
956 | * | ||
957 | * This function will generate a breakpoint exception. It is used at the | ||
958 | * beginning of a program to sync up with a debugger and can be used | ||
959 | * otherwise as a quick means to stop program execution and "break" into | ||
960 | * the debugger. | ||
961 | */ | ||
962 | void kgdb_breakpoint(void) | ||
963 | { | ||
964 | atomic_inc(&kgdb_setting_breakpoint); | ||
965 | wmb(); /* Sync point before breakpoint */ | ||
966 | arch_kgdb_breakpoint(); | ||
967 | wmb(); /* Sync point after breakpoint */ | ||
968 | atomic_dec(&kgdb_setting_breakpoint); | ||
969 | } | ||
970 | EXPORT_SYMBOL_GPL(kgdb_breakpoint); | ||
971 | |||
972 | static int __init opt_kgdb_wait(char *str) | ||
973 | { | ||
974 | kgdb_break_asap = 1; | ||
975 | |||
976 | kdb_init(KDB_INIT_EARLY); | ||
977 | if (kgdb_io_module_registered) | ||
978 | kgdb_initial_breakpoint(); | ||
979 | |||
980 | return 0; | ||
981 | } | ||
982 | |||
983 | early_param("kgdbwait", opt_kgdb_wait); | ||
diff --git a/kernel/debug/debug_core.h b/kernel/debug/debug_core.h new file mode 100644 index 000000000000..c5d753d80f67 --- /dev/null +++ b/kernel/debug/debug_core.h | |||
@@ -0,0 +1,81 @@ | |||
1 | /* | ||
2 | * Created by: Jason Wessel <jason.wessel@windriver.com> | ||
3 | * | ||
4 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
5 | * | ||
6 | * This file is licensed under the terms of the GNU General Public | ||
7 | * License version 2. This program is licensed "as is" without any | ||
8 | * warranty of any kind, whether express or implied. | ||
9 | */ | ||
10 | |||
11 | #ifndef _DEBUG_CORE_H_ | ||
12 | #define _DEBUG_CORE_H_ | ||
13 | /* | ||
14 | * These are the private implementation headers between the kernel | ||
15 | * debugger core and the debugger front end code. | ||
16 | */ | ||
17 | |||
18 | /* kernel debug core data structures */ | ||
19 | struct kgdb_state { | ||
20 | int ex_vector; | ||
21 | int signo; | ||
22 | int err_code; | ||
23 | int cpu; | ||
24 | int pass_exception; | ||
25 | unsigned long thr_query; | ||
26 | unsigned long threadid; | ||
27 | long kgdb_usethreadid; | ||
28 | struct pt_regs *linux_regs; | ||
29 | }; | ||
30 | |||
31 | /* Exception state values */ | ||
32 | #define DCPU_WANT_MASTER 0x1 /* Waiting to become a master kgdb cpu */ | ||
33 | #define DCPU_NEXT_MASTER 0x2 /* Transition from one master cpu to another */ | ||
34 | #define DCPU_IS_SLAVE 0x4 /* Slave cpu enter exception */ | ||
35 | #define DCPU_SSTEP 0x8 /* CPU is single stepping */ | ||
36 | |||
37 | struct debuggerinfo_struct { | ||
38 | void *debuggerinfo; | ||
39 | struct task_struct *task; | ||
40 | int exception_state; | ||
41 | int ret_state; | ||
42 | int irq_depth; | ||
43 | }; | ||
44 | |||
45 | extern struct debuggerinfo_struct kgdb_info[]; | ||
46 | |||
47 | /* kernel debug core break point routines */ | ||
48 | extern int dbg_remove_all_break(void); | ||
49 | extern int dbg_set_sw_break(unsigned long addr); | ||
50 | extern int dbg_remove_sw_break(unsigned long addr); | ||
51 | extern int dbg_activate_sw_breakpoints(void); | ||
52 | extern int dbg_deactivate_sw_breakpoints(void); | ||
53 | |||
54 | /* polled character access to i/o module */ | ||
55 | extern int dbg_io_get_char(void); | ||
56 | |||
57 | /* stub return value for switching between the gdbstub and kdb */ | ||
58 | #define DBG_PASS_EVENT -12345 | ||
59 | /* Switch from one cpu to another */ | ||
60 | #define DBG_SWITCH_CPU_EVENT -123456 | ||
61 | extern int dbg_switch_cpu; | ||
62 | |||
63 | /* gdbstub interface functions */ | ||
64 | extern int gdb_serial_stub(struct kgdb_state *ks); | ||
65 | extern void gdbstub_msg_write(const char *s, int len); | ||
66 | |||
67 | /* gdbstub functions used for kdb <-> gdbstub transition */ | ||
68 | extern int gdbstub_state(struct kgdb_state *ks, char *cmd); | ||
69 | extern int dbg_kdb_mode; | ||
70 | |||
71 | #ifdef CONFIG_KGDB_KDB | ||
72 | extern int kdb_stub(struct kgdb_state *ks); | ||
73 | extern int kdb_parse(const char *cmdstr); | ||
74 | #else /* ! CONFIG_KGDB_KDB */ | ||
75 | static inline int kdb_stub(struct kgdb_state *ks) | ||
76 | { | ||
77 | return DBG_PASS_EVENT; | ||
78 | } | ||
79 | #endif /* CONFIG_KGDB_KDB */ | ||
80 | |||
81 | #endif /* _DEBUG_CORE_H_ */ | ||
diff --git a/kernel/debug/gdbstub.c b/kernel/debug/gdbstub.c new file mode 100644 index 000000000000..4b17b3269525 --- /dev/null +++ b/kernel/debug/gdbstub.c | |||
@@ -0,0 +1,1017 @@ | |||
1 | /* | ||
2 | * Kernel Debug Core | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2009 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | |||
31 | #include <linux/kernel.h> | ||
32 | #include <linux/kgdb.h> | ||
33 | #include <linux/kdb.h> | ||
34 | #include <linux/reboot.h> | ||
35 | #include <linux/uaccess.h> | ||
36 | #include <asm/cacheflush.h> | ||
37 | #include <asm/unaligned.h> | ||
38 | #include "debug_core.h" | ||
39 | |||
40 | #define KGDB_MAX_THREAD_QUERY 17 | ||
41 | |||
42 | /* Our I/O buffers. */ | ||
43 | static char remcom_in_buffer[BUFMAX]; | ||
44 | static char remcom_out_buffer[BUFMAX]; | ||
45 | |||
46 | /* Storage for the registers, in GDB format. */ | ||
47 | static unsigned long gdb_regs[(NUMREGBYTES + | ||
48 | sizeof(unsigned long) - 1) / | ||
49 | sizeof(unsigned long)]; | ||
50 | |||
51 | /* | ||
52 | * GDB remote protocol parser: | ||
53 | */ | ||
54 | |||
55 | static int hex(char ch) | ||
56 | { | ||
57 | if ((ch >= 'a') && (ch <= 'f')) | ||
58 | return ch - 'a' + 10; | ||
59 | if ((ch >= '0') && (ch <= '9')) | ||
60 | return ch - '0'; | ||
61 | if ((ch >= 'A') && (ch <= 'F')) | ||
62 | return ch - 'A' + 10; | ||
63 | return -1; | ||
64 | } | ||
65 | |||
66 | #ifdef CONFIG_KGDB_KDB | ||
67 | static int gdbstub_read_wait(void) | ||
68 | { | ||
69 | int ret = -1; | ||
70 | int i; | ||
71 | |||
72 | /* poll any additional I/O interfaces that are defined */ | ||
73 | while (ret < 0) | ||
74 | for (i = 0; kdb_poll_funcs[i] != NULL; i++) { | ||
75 | ret = kdb_poll_funcs[i](); | ||
76 | if (ret > 0) | ||
77 | break; | ||
78 | } | ||
79 | return ret; | ||
80 | } | ||
81 | #else | ||
82 | static int gdbstub_read_wait(void) | ||
83 | { | ||
84 | int ret = dbg_io_ops->read_char(); | ||
85 | while (ret == NO_POLL_CHAR) | ||
86 | ret = dbg_io_ops->read_char(); | ||
87 | return ret; | ||
88 | } | ||
89 | #endif | ||
90 | /* scan for the sequence $<data>#<checksum> */ | ||
91 | static void get_packet(char *buffer) | ||
92 | { | ||
93 | unsigned char checksum; | ||
94 | unsigned char xmitcsum; | ||
95 | int count; | ||
96 | char ch; | ||
97 | |||
98 | do { | ||
99 | /* | ||
100 | * Spin and wait around for the start character, ignore all | ||
101 | * other characters: | ||
102 | */ | ||
103 | while ((ch = (gdbstub_read_wait())) != '$') | ||
104 | /* nothing */; | ||
105 | |||
106 | kgdb_connected = 1; | ||
107 | checksum = 0; | ||
108 | xmitcsum = -1; | ||
109 | |||
110 | count = 0; | ||
111 | |||
112 | /* | ||
113 | * now, read until a # or end of buffer is found: | ||
114 | */ | ||
115 | while (count < (BUFMAX - 1)) { | ||
116 | ch = gdbstub_read_wait(); | ||
117 | if (ch == '#') | ||
118 | break; | ||
119 | checksum = checksum + ch; | ||
120 | buffer[count] = ch; | ||
121 | count = count + 1; | ||
122 | } | ||
123 | buffer[count] = 0; | ||
124 | |||
125 | if (ch == '#') { | ||
126 | xmitcsum = hex(gdbstub_read_wait()) << 4; | ||
127 | xmitcsum += hex(gdbstub_read_wait()); | ||
128 | |||
129 | if (checksum != xmitcsum) | ||
130 | /* failed checksum */ | ||
131 | dbg_io_ops->write_char('-'); | ||
132 | else | ||
133 | /* successful transfer */ | ||
134 | dbg_io_ops->write_char('+'); | ||
135 | if (dbg_io_ops->flush) | ||
136 | dbg_io_ops->flush(); | ||
137 | } | ||
138 | } while (checksum != xmitcsum); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * Send the packet in buffer. | ||
143 | * Check for gdb connection if asked for. | ||
144 | */ | ||
145 | static void put_packet(char *buffer) | ||
146 | { | ||
147 | unsigned char checksum; | ||
148 | int count; | ||
149 | char ch; | ||
150 | |||
151 | /* | ||
152 | * $<packet info>#<checksum>. | ||
153 | */ | ||
154 | while (1) { | ||
155 | dbg_io_ops->write_char('$'); | ||
156 | checksum = 0; | ||
157 | count = 0; | ||
158 | |||
159 | while ((ch = buffer[count])) { | ||
160 | dbg_io_ops->write_char(ch); | ||
161 | checksum += ch; | ||
162 | count++; | ||
163 | } | ||
164 | |||
165 | dbg_io_ops->write_char('#'); | ||
166 | dbg_io_ops->write_char(hex_asc_hi(checksum)); | ||
167 | dbg_io_ops->write_char(hex_asc_lo(checksum)); | ||
168 | if (dbg_io_ops->flush) | ||
169 | dbg_io_ops->flush(); | ||
170 | |||
171 | /* Now see what we get in reply. */ | ||
172 | ch = gdbstub_read_wait(); | ||
173 | |||
174 | if (ch == 3) | ||
175 | ch = gdbstub_read_wait(); | ||
176 | |||
177 | /* If we get an ACK, we are done. */ | ||
178 | if (ch == '+') | ||
179 | return; | ||
180 | |||
181 | /* | ||
182 | * If we get the start of another packet, this means | ||
183 | * that GDB is attempting to reconnect. We will NAK | ||
184 | * the packet being sent, and stop trying to send this | ||
185 | * packet. | ||
186 | */ | ||
187 | if (ch == '$') { | ||
188 | dbg_io_ops->write_char('-'); | ||
189 | if (dbg_io_ops->flush) | ||
190 | dbg_io_ops->flush(); | ||
191 | return; | ||
192 | } | ||
193 | } | ||
194 | } | ||
195 | |||
196 | static char gdbmsgbuf[BUFMAX + 1]; | ||
197 | |||
198 | void gdbstub_msg_write(const char *s, int len) | ||
199 | { | ||
200 | char *bufptr; | ||
201 | int wcount; | ||
202 | int i; | ||
203 | |||
204 | if (len == 0) | ||
205 | len = strlen(s); | ||
206 | |||
207 | /* 'O'utput */ | ||
208 | gdbmsgbuf[0] = 'O'; | ||
209 | |||
210 | /* Fill and send buffers... */ | ||
211 | while (len > 0) { | ||
212 | bufptr = gdbmsgbuf + 1; | ||
213 | |||
214 | /* Calculate how many this time */ | ||
215 | if ((len << 1) > (BUFMAX - 2)) | ||
216 | wcount = (BUFMAX - 2) >> 1; | ||
217 | else | ||
218 | wcount = len; | ||
219 | |||
220 | /* Pack in hex chars */ | ||
221 | for (i = 0; i < wcount; i++) | ||
222 | bufptr = pack_hex_byte(bufptr, s[i]); | ||
223 | *bufptr = '\0'; | ||
224 | |||
225 | /* Move up */ | ||
226 | s += wcount; | ||
227 | len -= wcount; | ||
228 | |||
229 | /* Write packet */ | ||
230 | put_packet(gdbmsgbuf); | ||
231 | } | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Convert the memory pointed to by mem into hex, placing result in | ||
236 | * buf. Return a pointer to the last char put in buf (null). May | ||
237 | * return an error. | ||
238 | */ | ||
239 | int kgdb_mem2hex(char *mem, char *buf, int count) | ||
240 | { | ||
241 | char *tmp; | ||
242 | int err; | ||
243 | |||
244 | /* | ||
245 | * We use the upper half of buf as an intermediate buffer for the | ||
246 | * raw memory copy. Hex conversion will work against this one. | ||
247 | */ | ||
248 | tmp = buf + count; | ||
249 | |||
250 | err = probe_kernel_read(tmp, mem, count); | ||
251 | if (!err) { | ||
252 | while (count > 0) { | ||
253 | buf = pack_hex_byte(buf, *tmp); | ||
254 | tmp++; | ||
255 | count--; | ||
256 | } | ||
257 | |||
258 | *buf = 0; | ||
259 | } | ||
260 | |||
261 | return err; | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * Convert the hex array pointed to by buf into binary to be placed in | ||
266 | * mem. Return a pointer to the character AFTER the last byte | ||
267 | * written. May return an error. | ||
268 | */ | ||
269 | int kgdb_hex2mem(char *buf, char *mem, int count) | ||
270 | { | ||
271 | char *tmp_raw; | ||
272 | char *tmp_hex; | ||
273 | |||
274 | /* | ||
275 | * We use the upper half of buf as an intermediate buffer for the | ||
276 | * raw memory that is converted from hex. | ||
277 | */ | ||
278 | tmp_raw = buf + count * 2; | ||
279 | |||
280 | tmp_hex = tmp_raw - 1; | ||
281 | while (tmp_hex >= buf) { | ||
282 | tmp_raw--; | ||
283 | *tmp_raw = hex(*tmp_hex--); | ||
284 | *tmp_raw |= hex(*tmp_hex--) << 4; | ||
285 | } | ||
286 | |||
287 | return probe_kernel_write(mem, tmp_raw, count); | ||
288 | } | ||
289 | |||
290 | /* | ||
291 | * While we find nice hex chars, build a long_val. | ||
292 | * Return number of chars processed. | ||
293 | */ | ||
294 | int kgdb_hex2long(char **ptr, unsigned long *long_val) | ||
295 | { | ||
296 | int hex_val; | ||
297 | int num = 0; | ||
298 | int negate = 0; | ||
299 | |||
300 | *long_val = 0; | ||
301 | |||
302 | if (**ptr == '-') { | ||
303 | negate = 1; | ||
304 | (*ptr)++; | ||
305 | } | ||
306 | while (**ptr) { | ||
307 | hex_val = hex(**ptr); | ||
308 | if (hex_val < 0) | ||
309 | break; | ||
310 | |||
311 | *long_val = (*long_val << 4) | hex_val; | ||
312 | num++; | ||
313 | (*ptr)++; | ||
314 | } | ||
315 | |||
316 | if (negate) | ||
317 | *long_val = -*long_val; | ||
318 | |||
319 | return num; | ||
320 | } | ||
321 | |||
322 | /* | ||
323 | * Copy the binary array pointed to by buf into mem. Fix $, #, and | ||
324 | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. | ||
325 | * The input buf is overwitten with the result to write to mem. | ||
326 | */ | ||
327 | static int kgdb_ebin2mem(char *buf, char *mem, int count) | ||
328 | { | ||
329 | int size = 0; | ||
330 | char *c = buf; | ||
331 | |||
332 | while (count-- > 0) { | ||
333 | c[size] = *buf++; | ||
334 | if (c[size] == 0x7d) | ||
335 | c[size] = *buf++ ^ 0x20; | ||
336 | size++; | ||
337 | } | ||
338 | |||
339 | return probe_kernel_write(mem, c, size); | ||
340 | } | ||
341 | |||
342 | /* Write memory due to an 'M' or 'X' packet. */ | ||
343 | static int write_mem_msg(int binary) | ||
344 | { | ||
345 | char *ptr = &remcom_in_buffer[1]; | ||
346 | unsigned long addr; | ||
347 | unsigned long length; | ||
348 | int err; | ||
349 | |||
350 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | ||
351 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | ||
352 | if (binary) | ||
353 | err = kgdb_ebin2mem(ptr, (char *)addr, length); | ||
354 | else | ||
355 | err = kgdb_hex2mem(ptr, (char *)addr, length); | ||
356 | if (err) | ||
357 | return err; | ||
358 | if (CACHE_FLUSH_IS_SAFE) | ||
359 | flush_icache_range(addr, addr + length); | ||
360 | return 0; | ||
361 | } | ||
362 | |||
363 | return -EINVAL; | ||
364 | } | ||
365 | |||
366 | static void error_packet(char *pkt, int error) | ||
367 | { | ||
368 | error = -error; | ||
369 | pkt[0] = 'E'; | ||
370 | pkt[1] = hex_asc[(error / 10)]; | ||
371 | pkt[2] = hex_asc[(error % 10)]; | ||
372 | pkt[3] = '\0'; | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * Thread ID accessors. We represent a flat TID space to GDB, where | ||
377 | * the per CPU idle threads (which under Linux all have PID 0) are | ||
378 | * remapped to negative TIDs. | ||
379 | */ | ||
380 | |||
381 | #define BUF_THREAD_ID_SIZE 16 | ||
382 | |||
383 | static char *pack_threadid(char *pkt, unsigned char *id) | ||
384 | { | ||
385 | char *limit; | ||
386 | |||
387 | limit = pkt + BUF_THREAD_ID_SIZE; | ||
388 | while (pkt < limit) | ||
389 | pkt = pack_hex_byte(pkt, *id++); | ||
390 | |||
391 | return pkt; | ||
392 | } | ||
393 | |||
394 | static void int_to_threadref(unsigned char *id, int value) | ||
395 | { | ||
396 | unsigned char *scan; | ||
397 | int i = 4; | ||
398 | |||
399 | scan = (unsigned char *)id; | ||
400 | while (i--) | ||
401 | *scan++ = 0; | ||
402 | put_unaligned_be32(value, scan); | ||
403 | } | ||
404 | |||
405 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | ||
406 | { | ||
407 | /* | ||
408 | * Non-positive TIDs are remapped to the cpu shadow information | ||
409 | */ | ||
410 | if (tid == 0 || tid == -1) | ||
411 | tid = -atomic_read(&kgdb_active) - 2; | ||
412 | if (tid < -1 && tid > -NR_CPUS - 2) { | ||
413 | if (kgdb_info[-tid - 2].task) | ||
414 | return kgdb_info[-tid - 2].task; | ||
415 | else | ||
416 | return idle_task(-tid - 2); | ||
417 | } | ||
418 | if (tid <= 0) { | ||
419 | printk(KERN_ERR "KGDB: Internal thread select error\n"); | ||
420 | dump_stack(); | ||
421 | return NULL; | ||
422 | } | ||
423 | |||
424 | /* | ||
425 | * find_task_by_pid_ns() does not take the tasklist lock anymore | ||
426 | * but is nicely RCU locked - hence is a pretty resilient | ||
427 | * thing to use: | ||
428 | */ | ||
429 | return find_task_by_pid_ns(tid, &init_pid_ns); | ||
430 | } | ||
431 | |||
432 | |||
433 | /* | ||
434 | * Remap normal tasks to their real PID, | ||
435 | * CPU shadow threads are mapped to -CPU - 2 | ||
436 | */ | ||
437 | static inline int shadow_pid(int realpid) | ||
438 | { | ||
439 | if (realpid) | ||
440 | return realpid; | ||
441 | |||
442 | return -raw_smp_processor_id() - 2; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * All the functions that start with gdb_cmd are the various | ||
447 | * operations to implement the handlers for the gdbserial protocol | ||
448 | * where KGDB is communicating with an external debugger | ||
449 | */ | ||
450 | |||
451 | /* Handle the '?' status packets */ | ||
452 | static void gdb_cmd_status(struct kgdb_state *ks) | ||
453 | { | ||
454 | /* | ||
455 | * We know that this packet is only sent | ||
456 | * during initial connect. So to be safe, | ||
457 | * we clear out our breakpoints now in case | ||
458 | * GDB is reconnecting. | ||
459 | */ | ||
460 | dbg_remove_all_break(); | ||
461 | |||
462 | remcom_out_buffer[0] = 'S'; | ||
463 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | ||
464 | } | ||
465 | |||
466 | /* Handle the 'g' get registers request */ | ||
467 | static void gdb_cmd_getregs(struct kgdb_state *ks) | ||
468 | { | ||
469 | struct task_struct *thread; | ||
470 | void *local_debuggerinfo; | ||
471 | int i; | ||
472 | |||
473 | thread = kgdb_usethread; | ||
474 | if (!thread) { | ||
475 | thread = kgdb_info[ks->cpu].task; | ||
476 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | ||
477 | } else { | ||
478 | local_debuggerinfo = NULL; | ||
479 | for_each_online_cpu(i) { | ||
480 | /* | ||
481 | * Try to find the task on some other | ||
482 | * or possibly this node if we do not | ||
483 | * find the matching task then we try | ||
484 | * to approximate the results. | ||
485 | */ | ||
486 | if (thread == kgdb_info[i].task) | ||
487 | local_debuggerinfo = kgdb_info[i].debuggerinfo; | ||
488 | } | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * All threads that don't have debuggerinfo should be | ||
493 | * in schedule() sleeping, since all other CPUs | ||
494 | * are in kgdb_wait, and thus have debuggerinfo. | ||
495 | */ | ||
496 | if (local_debuggerinfo) { | ||
497 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | ||
498 | } else { | ||
499 | /* | ||
500 | * Pull stuff saved during switch_to; nothing | ||
501 | * else is accessible (or even particularly | ||
502 | * relevant). | ||
503 | * | ||
504 | * This should be enough for a stack trace. | ||
505 | */ | ||
506 | sleeping_thread_to_gdb_regs(gdb_regs, thread); | ||
507 | } | ||
508 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | ||
509 | } | ||
510 | |||
511 | /* Handle the 'G' set registers request */ | ||
512 | static void gdb_cmd_setregs(struct kgdb_state *ks) | ||
513 | { | ||
514 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | ||
515 | |||
516 | if (kgdb_usethread && kgdb_usethread != current) { | ||
517 | error_packet(remcom_out_buffer, -EINVAL); | ||
518 | } else { | ||
519 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | ||
520 | strcpy(remcom_out_buffer, "OK"); | ||
521 | } | ||
522 | } | ||
523 | |||
524 | /* Handle the 'm' memory read bytes */ | ||
525 | static void gdb_cmd_memread(struct kgdb_state *ks) | ||
526 | { | ||
527 | char *ptr = &remcom_in_buffer[1]; | ||
528 | unsigned long length; | ||
529 | unsigned long addr; | ||
530 | int err; | ||
531 | |||
532 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | ||
533 | kgdb_hex2long(&ptr, &length) > 0) { | ||
534 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | ||
535 | if (err) | ||
536 | error_packet(remcom_out_buffer, err); | ||
537 | } else { | ||
538 | error_packet(remcom_out_buffer, -EINVAL); | ||
539 | } | ||
540 | } | ||
541 | |||
542 | /* Handle the 'M' memory write bytes */ | ||
543 | static void gdb_cmd_memwrite(struct kgdb_state *ks) | ||
544 | { | ||
545 | int err = write_mem_msg(0); | ||
546 | |||
547 | if (err) | ||
548 | error_packet(remcom_out_buffer, err); | ||
549 | else | ||
550 | strcpy(remcom_out_buffer, "OK"); | ||
551 | } | ||
552 | |||
553 | /* Handle the 'X' memory binary write bytes */ | ||
554 | static void gdb_cmd_binwrite(struct kgdb_state *ks) | ||
555 | { | ||
556 | int err = write_mem_msg(1); | ||
557 | |||
558 | if (err) | ||
559 | error_packet(remcom_out_buffer, err); | ||
560 | else | ||
561 | strcpy(remcom_out_buffer, "OK"); | ||
562 | } | ||
563 | |||
564 | /* Handle the 'D' or 'k', detach or kill packets */ | ||
565 | static void gdb_cmd_detachkill(struct kgdb_state *ks) | ||
566 | { | ||
567 | int error; | ||
568 | |||
569 | /* The detach case */ | ||
570 | if (remcom_in_buffer[0] == 'D') { | ||
571 | error = dbg_remove_all_break(); | ||
572 | if (error < 0) { | ||
573 | error_packet(remcom_out_buffer, error); | ||
574 | } else { | ||
575 | strcpy(remcom_out_buffer, "OK"); | ||
576 | kgdb_connected = 0; | ||
577 | } | ||
578 | put_packet(remcom_out_buffer); | ||
579 | } else { | ||
580 | /* | ||
581 | * Assume the kill case, with no exit code checking, | ||
582 | * trying to force detach the debugger: | ||
583 | */ | ||
584 | dbg_remove_all_break(); | ||
585 | kgdb_connected = 0; | ||
586 | } | ||
587 | } | ||
588 | |||
589 | /* Handle the 'R' reboot packets */ | ||
590 | static int gdb_cmd_reboot(struct kgdb_state *ks) | ||
591 | { | ||
592 | /* For now, only honor R0 */ | ||
593 | if (strcmp(remcom_in_buffer, "R0") == 0) { | ||
594 | printk(KERN_CRIT "Executing emergency reboot\n"); | ||
595 | strcpy(remcom_out_buffer, "OK"); | ||
596 | put_packet(remcom_out_buffer); | ||
597 | |||
598 | /* | ||
599 | * Execution should not return from | ||
600 | * machine_emergency_restart() | ||
601 | */ | ||
602 | machine_emergency_restart(); | ||
603 | kgdb_connected = 0; | ||
604 | |||
605 | return 1; | ||
606 | } | ||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | /* Handle the 'q' query packets */ | ||
611 | static void gdb_cmd_query(struct kgdb_state *ks) | ||
612 | { | ||
613 | struct task_struct *g; | ||
614 | struct task_struct *p; | ||
615 | unsigned char thref[8]; | ||
616 | char *ptr; | ||
617 | int i; | ||
618 | int cpu; | ||
619 | int finished = 0; | ||
620 | |||
621 | switch (remcom_in_buffer[1]) { | ||
622 | case 's': | ||
623 | case 'f': | ||
624 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { | ||
625 | error_packet(remcom_out_buffer, -EINVAL); | ||
626 | break; | ||
627 | } | ||
628 | |||
629 | i = 0; | ||
630 | remcom_out_buffer[0] = 'm'; | ||
631 | ptr = remcom_out_buffer + 1; | ||
632 | if (remcom_in_buffer[1] == 'f') { | ||
633 | /* Each cpu is a shadow thread */ | ||
634 | for_each_online_cpu(cpu) { | ||
635 | ks->thr_query = 0; | ||
636 | int_to_threadref(thref, -cpu - 2); | ||
637 | pack_threadid(ptr, thref); | ||
638 | ptr += BUF_THREAD_ID_SIZE; | ||
639 | *(ptr++) = ','; | ||
640 | i++; | ||
641 | } | ||
642 | } | ||
643 | |||
644 | do_each_thread(g, p) { | ||
645 | if (i >= ks->thr_query && !finished) { | ||
646 | int_to_threadref(thref, p->pid); | ||
647 | pack_threadid(ptr, thref); | ||
648 | ptr += BUF_THREAD_ID_SIZE; | ||
649 | *(ptr++) = ','; | ||
650 | ks->thr_query++; | ||
651 | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) | ||
652 | finished = 1; | ||
653 | } | ||
654 | i++; | ||
655 | } while_each_thread(g, p); | ||
656 | |||
657 | *(--ptr) = '\0'; | ||
658 | break; | ||
659 | |||
660 | case 'C': | ||
661 | /* Current thread id */ | ||
662 | strcpy(remcom_out_buffer, "QC"); | ||
663 | ks->threadid = shadow_pid(current->pid); | ||
664 | int_to_threadref(thref, ks->threadid); | ||
665 | pack_threadid(remcom_out_buffer + 2, thref); | ||
666 | break; | ||
667 | case 'T': | ||
668 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { | ||
669 | error_packet(remcom_out_buffer, -EINVAL); | ||
670 | break; | ||
671 | } | ||
672 | ks->threadid = 0; | ||
673 | ptr = remcom_in_buffer + 17; | ||
674 | kgdb_hex2long(&ptr, &ks->threadid); | ||
675 | if (!getthread(ks->linux_regs, ks->threadid)) { | ||
676 | error_packet(remcom_out_buffer, -EINVAL); | ||
677 | break; | ||
678 | } | ||
679 | if ((int)ks->threadid > 0) { | ||
680 | kgdb_mem2hex(getthread(ks->linux_regs, | ||
681 | ks->threadid)->comm, | ||
682 | remcom_out_buffer, 16); | ||
683 | } else { | ||
684 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | ||
685 | |||
686 | sprintf(tmpstr, "shadowCPU%d", | ||
687 | (int)(-ks->threadid - 2)); | ||
688 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | ||
689 | } | ||
690 | break; | ||
691 | #ifdef CONFIG_KGDB_KDB | ||
692 | case 'R': | ||
693 | if (strncmp(remcom_in_buffer, "qRcmd,", 6) == 0) { | ||
694 | int len = strlen(remcom_in_buffer + 6); | ||
695 | |||
696 | if ((len % 2) != 0) { | ||
697 | strcpy(remcom_out_buffer, "E01"); | ||
698 | break; | ||
699 | } | ||
700 | kgdb_hex2mem(remcom_in_buffer + 6, | ||
701 | remcom_out_buffer, len); | ||
702 | len = len / 2; | ||
703 | remcom_out_buffer[len++] = 0; | ||
704 | |||
705 | kdb_parse(remcom_out_buffer); | ||
706 | strcpy(remcom_out_buffer, "OK"); | ||
707 | } | ||
708 | break; | ||
709 | #endif | ||
710 | } | ||
711 | } | ||
712 | |||
713 | /* Handle the 'H' task query packets */ | ||
714 | static void gdb_cmd_task(struct kgdb_state *ks) | ||
715 | { | ||
716 | struct task_struct *thread; | ||
717 | char *ptr; | ||
718 | |||
719 | switch (remcom_in_buffer[1]) { | ||
720 | case 'g': | ||
721 | ptr = &remcom_in_buffer[2]; | ||
722 | kgdb_hex2long(&ptr, &ks->threadid); | ||
723 | thread = getthread(ks->linux_regs, ks->threadid); | ||
724 | if (!thread && ks->threadid > 0) { | ||
725 | error_packet(remcom_out_buffer, -EINVAL); | ||
726 | break; | ||
727 | } | ||
728 | kgdb_usethread = thread; | ||
729 | ks->kgdb_usethreadid = ks->threadid; | ||
730 | strcpy(remcom_out_buffer, "OK"); | ||
731 | break; | ||
732 | case 'c': | ||
733 | ptr = &remcom_in_buffer[2]; | ||
734 | kgdb_hex2long(&ptr, &ks->threadid); | ||
735 | if (!ks->threadid) { | ||
736 | kgdb_contthread = NULL; | ||
737 | } else { | ||
738 | thread = getthread(ks->linux_regs, ks->threadid); | ||
739 | if (!thread && ks->threadid > 0) { | ||
740 | error_packet(remcom_out_buffer, -EINVAL); | ||
741 | break; | ||
742 | } | ||
743 | kgdb_contthread = thread; | ||
744 | } | ||
745 | strcpy(remcom_out_buffer, "OK"); | ||
746 | break; | ||
747 | } | ||
748 | } | ||
749 | |||
750 | /* Handle the 'T' thread query packets */ | ||
751 | static void gdb_cmd_thread(struct kgdb_state *ks) | ||
752 | { | ||
753 | char *ptr = &remcom_in_buffer[1]; | ||
754 | struct task_struct *thread; | ||
755 | |||
756 | kgdb_hex2long(&ptr, &ks->threadid); | ||
757 | thread = getthread(ks->linux_regs, ks->threadid); | ||
758 | if (thread) | ||
759 | strcpy(remcom_out_buffer, "OK"); | ||
760 | else | ||
761 | error_packet(remcom_out_buffer, -EINVAL); | ||
762 | } | ||
763 | |||
764 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | ||
765 | static void gdb_cmd_break(struct kgdb_state *ks) | ||
766 | { | ||
767 | /* | ||
768 | * Since GDB-5.3, it's been drafted that '0' is a software | ||
769 | * breakpoint, '1' is a hardware breakpoint, so let's do that. | ||
770 | */ | ||
771 | char *bpt_type = &remcom_in_buffer[1]; | ||
772 | char *ptr = &remcom_in_buffer[2]; | ||
773 | unsigned long addr; | ||
774 | unsigned long length; | ||
775 | int error = 0; | ||
776 | |||
777 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | ||
778 | /* Unsupported */ | ||
779 | if (*bpt_type > '4') | ||
780 | return; | ||
781 | } else { | ||
782 | if (*bpt_type != '0' && *bpt_type != '1') | ||
783 | /* Unsupported. */ | ||
784 | return; | ||
785 | } | ||
786 | |||
787 | /* | ||
788 | * Test if this is a hardware breakpoint, and | ||
789 | * if we support it: | ||
790 | */ | ||
791 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | ||
792 | /* Unsupported. */ | ||
793 | return; | ||
794 | |||
795 | if (*(ptr++) != ',') { | ||
796 | error_packet(remcom_out_buffer, -EINVAL); | ||
797 | return; | ||
798 | } | ||
799 | if (!kgdb_hex2long(&ptr, &addr)) { | ||
800 | error_packet(remcom_out_buffer, -EINVAL); | ||
801 | return; | ||
802 | } | ||
803 | if (*(ptr++) != ',' || | ||
804 | !kgdb_hex2long(&ptr, &length)) { | ||
805 | error_packet(remcom_out_buffer, -EINVAL); | ||
806 | return; | ||
807 | } | ||
808 | |||
809 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | ||
810 | error = dbg_set_sw_break(addr); | ||
811 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | ||
812 | error = dbg_remove_sw_break(addr); | ||
813 | else if (remcom_in_buffer[0] == 'Z') | ||
814 | error = arch_kgdb_ops.set_hw_breakpoint(addr, | ||
815 | (int)length, *bpt_type - '0'); | ||
816 | else if (remcom_in_buffer[0] == 'z') | ||
817 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | ||
818 | (int) length, *bpt_type - '0'); | ||
819 | |||
820 | if (error == 0) | ||
821 | strcpy(remcom_out_buffer, "OK"); | ||
822 | else | ||
823 | error_packet(remcom_out_buffer, error); | ||
824 | } | ||
825 | |||
826 | /* Handle the 'C' signal / exception passing packets */ | ||
827 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | ||
828 | { | ||
829 | /* C09 == pass exception | ||
830 | * C15 == detach kgdb, pass exception | ||
831 | */ | ||
832 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | ||
833 | |||
834 | ks->pass_exception = 1; | ||
835 | remcom_in_buffer[0] = 'c'; | ||
836 | |||
837 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | ||
838 | |||
839 | ks->pass_exception = 1; | ||
840 | remcom_in_buffer[0] = 'D'; | ||
841 | dbg_remove_all_break(); | ||
842 | kgdb_connected = 0; | ||
843 | return 1; | ||
844 | |||
845 | } else { | ||
846 | gdbstub_msg_write("KGDB only knows signal 9 (pass)" | ||
847 | " and 15 (pass and disconnect)\n" | ||
848 | "Executing a continue without signal passing\n", 0); | ||
849 | remcom_in_buffer[0] = 'c'; | ||
850 | } | ||
851 | |||
852 | /* Indicate fall through */ | ||
853 | return -1; | ||
854 | } | ||
855 | |||
856 | /* | ||
857 | * This function performs all gdbserial command procesing | ||
858 | */ | ||
859 | int gdb_serial_stub(struct kgdb_state *ks) | ||
860 | { | ||
861 | int error = 0; | ||
862 | int tmp; | ||
863 | |||
864 | /* Clear the out buffer. */ | ||
865 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
866 | |||
867 | if (kgdb_connected) { | ||
868 | unsigned char thref[8]; | ||
869 | char *ptr; | ||
870 | |||
871 | /* Reply to host that an exception has occurred */ | ||
872 | ptr = remcom_out_buffer; | ||
873 | *ptr++ = 'T'; | ||
874 | ptr = pack_hex_byte(ptr, ks->signo); | ||
875 | ptr += strlen(strcpy(ptr, "thread:")); | ||
876 | int_to_threadref(thref, shadow_pid(current->pid)); | ||
877 | ptr = pack_threadid(ptr, thref); | ||
878 | *ptr++ = ';'; | ||
879 | put_packet(remcom_out_buffer); | ||
880 | } | ||
881 | |||
882 | kgdb_usethread = kgdb_info[ks->cpu].task; | ||
883 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | ||
884 | ks->pass_exception = 0; | ||
885 | |||
886 | while (1) { | ||
887 | error = 0; | ||
888 | |||
889 | /* Clear the out buffer. */ | ||
890 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
891 | |||
892 | get_packet(remcom_in_buffer); | ||
893 | |||
894 | switch (remcom_in_buffer[0]) { | ||
895 | case '?': /* gdbserial status */ | ||
896 | gdb_cmd_status(ks); | ||
897 | break; | ||
898 | case 'g': /* return the value of the CPU registers */ | ||
899 | gdb_cmd_getregs(ks); | ||
900 | break; | ||
901 | case 'G': /* set the value of the CPU registers - return OK */ | ||
902 | gdb_cmd_setregs(ks); | ||
903 | break; | ||
904 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | ||
905 | gdb_cmd_memread(ks); | ||
906 | break; | ||
907 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
908 | gdb_cmd_memwrite(ks); | ||
909 | break; | ||
910 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
911 | gdb_cmd_binwrite(ks); | ||
912 | break; | ||
913 | /* kill or detach. KGDB should treat this like a | ||
914 | * continue. | ||
915 | */ | ||
916 | case 'D': /* Debugger detach */ | ||
917 | case 'k': /* Debugger detach via kill */ | ||
918 | gdb_cmd_detachkill(ks); | ||
919 | goto default_handle; | ||
920 | case 'R': /* Reboot */ | ||
921 | if (gdb_cmd_reboot(ks)) | ||
922 | goto default_handle; | ||
923 | break; | ||
924 | case 'q': /* query command */ | ||
925 | gdb_cmd_query(ks); | ||
926 | break; | ||
927 | case 'H': /* task related */ | ||
928 | gdb_cmd_task(ks); | ||
929 | break; | ||
930 | case 'T': /* Query thread status */ | ||
931 | gdb_cmd_thread(ks); | ||
932 | break; | ||
933 | case 'z': /* Break point remove */ | ||
934 | case 'Z': /* Break point set */ | ||
935 | gdb_cmd_break(ks); | ||
936 | break; | ||
937 | #ifdef CONFIG_KGDB_KDB | ||
938 | case '3': /* Escape into back into kdb */ | ||
939 | if (remcom_in_buffer[1] == '\0') { | ||
940 | gdb_cmd_detachkill(ks); | ||
941 | return DBG_PASS_EVENT; | ||
942 | } | ||
943 | #endif | ||
944 | case 'C': /* Exception passing */ | ||
945 | tmp = gdb_cmd_exception_pass(ks); | ||
946 | if (tmp > 0) | ||
947 | goto default_handle; | ||
948 | if (tmp == 0) | ||
949 | break; | ||
950 | /* Fall through on tmp < 0 */ | ||
951 | case 'c': /* Continue packet */ | ||
952 | case 's': /* Single step packet */ | ||
953 | if (kgdb_contthread && kgdb_contthread != current) { | ||
954 | /* Can't switch threads in kgdb */ | ||
955 | error_packet(remcom_out_buffer, -EINVAL); | ||
956 | break; | ||
957 | } | ||
958 | dbg_activate_sw_breakpoints(); | ||
959 | /* Fall through to default processing */ | ||
960 | default: | ||
961 | default_handle: | ||
962 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
963 | ks->signo, | ||
964 | ks->err_code, | ||
965 | remcom_in_buffer, | ||
966 | remcom_out_buffer, | ||
967 | ks->linux_regs); | ||
968 | /* | ||
969 | * Leave cmd processing on error, detach, | ||
970 | * kill, continue, or single step. | ||
971 | */ | ||
972 | if (error >= 0 || remcom_in_buffer[0] == 'D' || | ||
973 | remcom_in_buffer[0] == 'k') { | ||
974 | error = 0; | ||
975 | goto kgdb_exit; | ||
976 | } | ||
977 | |||
978 | } | ||
979 | |||
980 | /* reply to the request */ | ||
981 | put_packet(remcom_out_buffer); | ||
982 | } | ||
983 | |||
984 | kgdb_exit: | ||
985 | if (ks->pass_exception) | ||
986 | error = 1; | ||
987 | return error; | ||
988 | } | ||
989 | |||
990 | int gdbstub_state(struct kgdb_state *ks, char *cmd) | ||
991 | { | ||
992 | int error; | ||
993 | |||
994 | switch (cmd[0]) { | ||
995 | case 'e': | ||
996 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
997 | ks->signo, | ||
998 | ks->err_code, | ||
999 | remcom_in_buffer, | ||
1000 | remcom_out_buffer, | ||
1001 | ks->linux_regs); | ||
1002 | return error; | ||
1003 | case 's': | ||
1004 | case 'c': | ||
1005 | strcpy(remcom_in_buffer, cmd); | ||
1006 | return 0; | ||
1007 | case '?': | ||
1008 | gdb_cmd_status(ks); | ||
1009 | break; | ||
1010 | case '\0': | ||
1011 | strcpy(remcom_out_buffer, ""); | ||
1012 | break; | ||
1013 | } | ||
1014 | dbg_io_ops->write_char('+'); | ||
1015 | put_packet(remcom_out_buffer); | ||
1016 | return 0; | ||
1017 | } | ||
diff --git a/kernel/debug/kdb/.gitignore b/kernel/debug/kdb/.gitignore new file mode 100644 index 000000000000..396d12eda9e8 --- /dev/null +++ b/kernel/debug/kdb/.gitignore | |||
@@ -0,0 +1 @@ | |||
gen-kdb_cmds.c | |||
diff --git a/kernel/debug/kdb/Makefile b/kernel/debug/kdb/Makefile new file mode 100644 index 000000000000..d4fc58f4b88d --- /dev/null +++ b/kernel/debug/kdb/Makefile | |||
@@ -0,0 +1,25 @@ | |||
1 | # This file is subject to the terms and conditions of the GNU General Public | ||
2 | # License. See the file "COPYING" in the main directory of this archive | ||
3 | # for more details. | ||
4 | # | ||
5 | # Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
6 | # Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
7 | # | ||
8 | |||
9 | CCVERSION := $(shell $(CC) -v 2>&1 | sed -ne '$$p') | ||
10 | obj-y := kdb_io.o kdb_main.o kdb_support.o kdb_bt.o gen-kdb_cmds.o kdb_bp.o kdb_debugger.o | ||
11 | obj-$(CONFIG_KDB_KEYBOARD) += kdb_keyboard.o | ||
12 | |||
13 | clean-files := gen-kdb_cmds.c | ||
14 | |||
15 | quiet_cmd_gen-kdb = GENKDB $@ | ||
16 | cmd_gen-kdb = $(AWK) 'BEGIN {print "\#include <linux/stddef.h>"; print "\#include <linux/init.h>"} \ | ||
17 | /^\#/{next} \ | ||
18 | /^[ \t]*$$/{next} \ | ||
19 | {gsub(/"/, "\\\"", $$0); \ | ||
20 | print "static __initdata char kdb_cmd" cmds++ "[] = \"" $$0 "\\n\";"} \ | ||
21 | END {print "extern char *kdb_cmds[]; char __initdata *kdb_cmds[] = {"; for (i = 0; i < cmds; ++i) {print " kdb_cmd" i ","}; print(" NULL\n};");}' \ | ||
22 | $(filter-out %/Makefile,$^) > $@# | ||
23 | |||
24 | $(obj)/gen-kdb_cmds.c: $(src)/kdb_cmds $(src)/Makefile | ||
25 | $(call cmd,gen-kdb) | ||
diff --git a/kernel/debug/kdb/kdb_bp.c b/kernel/debug/kdb/kdb_bp.c new file mode 100644 index 000000000000..75bd9b3ebbb7 --- /dev/null +++ b/kernel/debug/kdb/kdb_bp.c | |||
@@ -0,0 +1,564 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Breakpoint Handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/string.h> | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/kdb.h> | ||
16 | #include <linux/kgdb.h> | ||
17 | #include <linux/smp.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include "kdb_private.h" | ||
21 | |||
22 | /* | ||
23 | * Table of kdb_breakpoints | ||
24 | */ | ||
25 | kdb_bp_t kdb_breakpoints[KDB_MAXBPT]; | ||
26 | |||
27 | static void kdb_setsinglestep(struct pt_regs *regs) | ||
28 | { | ||
29 | KDB_STATE_SET(DOING_SS); | ||
30 | } | ||
31 | |||
32 | static char *kdb_rwtypes[] = { | ||
33 | "Instruction(i)", | ||
34 | "Instruction(Register)", | ||
35 | "Data Write", | ||
36 | "I/O", | ||
37 | "Data Access" | ||
38 | }; | ||
39 | |||
40 | static char *kdb_bptype(kdb_bp_t *bp) | ||
41 | { | ||
42 | if (bp->bp_type < 0 || bp->bp_type > 4) | ||
43 | return ""; | ||
44 | |||
45 | return kdb_rwtypes[bp->bp_type]; | ||
46 | } | ||
47 | |||
48 | static int kdb_parsebp(int argc, const char **argv, int *nextargp, kdb_bp_t *bp) | ||
49 | { | ||
50 | int nextarg = *nextargp; | ||
51 | int diag; | ||
52 | |||
53 | bp->bph_length = 1; | ||
54 | if ((argc + 1) != nextarg) { | ||
55 | if (strnicmp(argv[nextarg], "datar", sizeof("datar")) == 0) | ||
56 | bp->bp_type = BP_ACCESS_WATCHPOINT; | ||
57 | else if (strnicmp(argv[nextarg], "dataw", sizeof("dataw")) == 0) | ||
58 | bp->bp_type = BP_WRITE_WATCHPOINT; | ||
59 | else if (strnicmp(argv[nextarg], "inst", sizeof("inst")) == 0) | ||
60 | bp->bp_type = BP_HARDWARE_BREAKPOINT; | ||
61 | else | ||
62 | return KDB_ARGCOUNT; | ||
63 | |||
64 | bp->bph_length = 1; | ||
65 | |||
66 | nextarg++; | ||
67 | |||
68 | if ((argc + 1) != nextarg) { | ||
69 | unsigned long len; | ||
70 | |||
71 | diag = kdbgetularg((char *)argv[nextarg], | ||
72 | &len); | ||
73 | if (diag) | ||
74 | return diag; | ||
75 | |||
76 | |||
77 | if (len > 8) | ||
78 | return KDB_BADLENGTH; | ||
79 | |||
80 | bp->bph_length = len; | ||
81 | nextarg++; | ||
82 | } | ||
83 | |||
84 | if ((argc + 1) != nextarg) | ||
85 | return KDB_ARGCOUNT; | ||
86 | } | ||
87 | |||
88 | *nextargp = nextarg; | ||
89 | return 0; | ||
90 | } | ||
91 | |||
92 | static int _kdb_bp_remove(kdb_bp_t *bp) | ||
93 | { | ||
94 | int ret = 1; | ||
95 | if (!bp->bp_installed) | ||
96 | return ret; | ||
97 | if (!bp->bp_type) | ||
98 | ret = dbg_remove_sw_break(bp->bp_addr); | ||
99 | else | ||
100 | ret = arch_kgdb_ops.remove_hw_breakpoint(bp->bp_addr, | ||
101 | bp->bph_length, | ||
102 | bp->bp_type); | ||
103 | if (ret == 0) | ||
104 | bp->bp_installed = 0; | ||
105 | return ret; | ||
106 | } | ||
107 | |||
108 | static void kdb_handle_bp(struct pt_regs *regs, kdb_bp_t *bp) | ||
109 | { | ||
110 | if (KDB_DEBUG(BP)) | ||
111 | kdb_printf("regs->ip = 0x%lx\n", instruction_pointer(regs)); | ||
112 | |||
113 | /* | ||
114 | * Setup single step | ||
115 | */ | ||
116 | kdb_setsinglestep(regs); | ||
117 | |||
118 | /* | ||
119 | * Reset delay attribute | ||
120 | */ | ||
121 | bp->bp_delay = 0; | ||
122 | bp->bp_delayed = 1; | ||
123 | } | ||
124 | |||
125 | static int _kdb_bp_install(struct pt_regs *regs, kdb_bp_t *bp) | ||
126 | { | ||
127 | int ret; | ||
128 | /* | ||
129 | * Install the breakpoint, if it is not already installed. | ||
130 | */ | ||
131 | |||
132 | if (KDB_DEBUG(BP)) | ||
133 | kdb_printf("%s: bp_installed %d\n", | ||
134 | __func__, bp->bp_installed); | ||
135 | if (!KDB_STATE(SSBPT)) | ||
136 | bp->bp_delay = 0; | ||
137 | if (bp->bp_installed) | ||
138 | return 1; | ||
139 | if (bp->bp_delay || (bp->bp_delayed && KDB_STATE(DOING_SS))) { | ||
140 | if (KDB_DEBUG(BP)) | ||
141 | kdb_printf("%s: delayed bp\n", __func__); | ||
142 | kdb_handle_bp(regs, bp); | ||
143 | return 0; | ||
144 | } | ||
145 | if (!bp->bp_type) | ||
146 | ret = dbg_set_sw_break(bp->bp_addr); | ||
147 | else | ||
148 | ret = arch_kgdb_ops.set_hw_breakpoint(bp->bp_addr, | ||
149 | bp->bph_length, | ||
150 | bp->bp_type); | ||
151 | if (ret == 0) { | ||
152 | bp->bp_installed = 1; | ||
153 | } else { | ||
154 | kdb_printf("%s: failed to set breakpoint at 0x%lx\n", | ||
155 | __func__, bp->bp_addr); | ||
156 | return 1; | ||
157 | } | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * kdb_bp_install | ||
163 | * | ||
164 | * Install kdb_breakpoints prior to returning from the | ||
165 | * kernel debugger. This allows the kdb_breakpoints to be set | ||
166 | * upon functions that are used internally by kdb, such as | ||
167 | * printk(). This function is only called once per kdb session. | ||
168 | */ | ||
169 | void kdb_bp_install(struct pt_regs *regs) | ||
170 | { | ||
171 | int i; | ||
172 | |||
173 | for (i = 0; i < KDB_MAXBPT; i++) { | ||
174 | kdb_bp_t *bp = &kdb_breakpoints[i]; | ||
175 | |||
176 | if (KDB_DEBUG(BP)) { | ||
177 | kdb_printf("%s: bp %d bp_enabled %d\n", | ||
178 | __func__, i, bp->bp_enabled); | ||
179 | } | ||
180 | if (bp->bp_enabled) | ||
181 | _kdb_bp_install(regs, bp); | ||
182 | } | ||
183 | } | ||
184 | |||
185 | /* | ||
186 | * kdb_bp_remove | ||
187 | * | ||
188 | * Remove kdb_breakpoints upon entry to the kernel debugger. | ||
189 | * | ||
190 | * Parameters: | ||
191 | * None. | ||
192 | * Outputs: | ||
193 | * None. | ||
194 | * Returns: | ||
195 | * None. | ||
196 | * Locking: | ||
197 | * None. | ||
198 | * Remarks: | ||
199 | */ | ||
200 | void kdb_bp_remove(void) | ||
201 | { | ||
202 | int i; | ||
203 | |||
204 | for (i = KDB_MAXBPT - 1; i >= 0; i--) { | ||
205 | kdb_bp_t *bp = &kdb_breakpoints[i]; | ||
206 | |||
207 | if (KDB_DEBUG(BP)) { | ||
208 | kdb_printf("%s: bp %d bp_enabled %d\n", | ||
209 | __func__, i, bp->bp_enabled); | ||
210 | } | ||
211 | if (bp->bp_enabled) | ||
212 | _kdb_bp_remove(bp); | ||
213 | } | ||
214 | } | ||
215 | |||
216 | |||
217 | /* | ||
218 | * kdb_printbp | ||
219 | * | ||
220 | * Internal function to format and print a breakpoint entry. | ||
221 | * | ||
222 | * Parameters: | ||
223 | * None. | ||
224 | * Outputs: | ||
225 | * None. | ||
226 | * Returns: | ||
227 | * None. | ||
228 | * Locking: | ||
229 | * None. | ||
230 | * Remarks: | ||
231 | */ | ||
232 | |||
233 | static void kdb_printbp(kdb_bp_t *bp, int i) | ||
234 | { | ||
235 | kdb_printf("%s ", kdb_bptype(bp)); | ||
236 | kdb_printf("BP #%d at ", i); | ||
237 | kdb_symbol_print(bp->bp_addr, NULL, KDB_SP_DEFAULT); | ||
238 | |||
239 | if (bp->bp_enabled) | ||
240 | kdb_printf("\n is enabled"); | ||
241 | else | ||
242 | kdb_printf("\n is disabled"); | ||
243 | |||
244 | kdb_printf("\taddr at %016lx, hardtype=%d installed=%d\n", | ||
245 | bp->bp_addr, bp->bp_type, bp->bp_installed); | ||
246 | |||
247 | kdb_printf("\n"); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * kdb_bp | ||
252 | * | ||
253 | * Handle the bp commands. | ||
254 | * | ||
255 | * [bp|bph] <addr-expression> [DATAR|DATAW] | ||
256 | * | ||
257 | * Parameters: | ||
258 | * argc Count of arguments in argv | ||
259 | * argv Space delimited command line arguments | ||
260 | * Outputs: | ||
261 | * None. | ||
262 | * Returns: | ||
263 | * Zero for success, a kdb diagnostic if failure. | ||
264 | * Locking: | ||
265 | * None. | ||
266 | * Remarks: | ||
267 | * | ||
268 | * bp Set breakpoint on all cpus. Only use hardware assist if need. | ||
269 | * bph Set breakpoint on all cpus. Force hardware register | ||
270 | */ | ||
271 | |||
272 | static int kdb_bp(int argc, const char **argv) | ||
273 | { | ||
274 | int i, bpno; | ||
275 | kdb_bp_t *bp, *bp_check; | ||
276 | int diag; | ||
277 | int free; | ||
278 | char *symname = NULL; | ||
279 | long offset = 0ul; | ||
280 | int nextarg; | ||
281 | kdb_bp_t template = {0}; | ||
282 | |||
283 | if (argc == 0) { | ||
284 | /* | ||
285 | * Display breakpoint table | ||
286 | */ | ||
287 | for (bpno = 0, bp = kdb_breakpoints; bpno < KDB_MAXBPT; | ||
288 | bpno++, bp++) { | ||
289 | if (bp->bp_free) | ||
290 | continue; | ||
291 | kdb_printbp(bp, bpno); | ||
292 | } | ||
293 | |||
294 | return 0; | ||
295 | } | ||
296 | |||
297 | nextarg = 1; | ||
298 | diag = kdbgetaddrarg(argc, argv, &nextarg, &template.bp_addr, | ||
299 | &offset, &symname); | ||
300 | if (diag) | ||
301 | return diag; | ||
302 | if (!template.bp_addr) | ||
303 | return KDB_BADINT; | ||
304 | |||
305 | /* | ||
306 | * Find an empty bp structure to allocate | ||
307 | */ | ||
308 | free = KDB_MAXBPT; | ||
309 | for (bpno = 0, bp = kdb_breakpoints; bpno < KDB_MAXBPT; bpno++, bp++) { | ||
310 | if (bp->bp_free) | ||
311 | break; | ||
312 | } | ||
313 | |||
314 | if (bpno == KDB_MAXBPT) | ||
315 | return KDB_TOOMANYBPT; | ||
316 | |||
317 | if (strcmp(argv[0], "bph") == 0) { | ||
318 | template.bp_type = BP_HARDWARE_BREAKPOINT; | ||
319 | diag = kdb_parsebp(argc, argv, &nextarg, &template); | ||
320 | if (diag) | ||
321 | return diag; | ||
322 | } else { | ||
323 | template.bp_type = BP_BREAKPOINT; | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * Check for clashing breakpoints. | ||
328 | * | ||
329 | * Note, in this design we can't have hardware breakpoints | ||
330 | * enabled for both read and write on the same address. | ||
331 | */ | ||
332 | for (i = 0, bp_check = kdb_breakpoints; i < KDB_MAXBPT; | ||
333 | i++, bp_check++) { | ||
334 | if (!bp_check->bp_free && | ||
335 | bp_check->bp_addr == template.bp_addr) { | ||
336 | kdb_printf("You already have a breakpoint at " | ||
337 | kdb_bfd_vma_fmt0 "\n", template.bp_addr); | ||
338 | return KDB_DUPBPT; | ||
339 | } | ||
340 | } | ||
341 | |||
342 | template.bp_enabled = 1; | ||
343 | |||
344 | /* | ||
345 | * Actually allocate the breakpoint found earlier | ||
346 | */ | ||
347 | *bp = template; | ||
348 | bp->bp_free = 0; | ||
349 | |||
350 | kdb_printbp(bp, bpno); | ||
351 | |||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | /* | ||
356 | * kdb_bc | ||
357 | * | ||
358 | * Handles the 'bc', 'be', and 'bd' commands | ||
359 | * | ||
360 | * [bd|bc|be] <breakpoint-number> | ||
361 | * [bd|bc|be] * | ||
362 | * | ||
363 | * Parameters: | ||
364 | * argc Count of arguments in argv | ||
365 | * argv Space delimited command line arguments | ||
366 | * Outputs: | ||
367 | * None. | ||
368 | * Returns: | ||
369 | * Zero for success, a kdb diagnostic for failure | ||
370 | * Locking: | ||
371 | * None. | ||
372 | * Remarks: | ||
373 | */ | ||
374 | static int kdb_bc(int argc, const char **argv) | ||
375 | { | ||
376 | unsigned long addr; | ||
377 | kdb_bp_t *bp = NULL; | ||
378 | int lowbp = KDB_MAXBPT; | ||
379 | int highbp = 0; | ||
380 | int done = 0; | ||
381 | int i; | ||
382 | int diag = 0; | ||
383 | |||
384 | int cmd; /* KDBCMD_B? */ | ||
385 | #define KDBCMD_BC 0 | ||
386 | #define KDBCMD_BE 1 | ||
387 | #define KDBCMD_BD 2 | ||
388 | |||
389 | if (strcmp(argv[0], "be") == 0) | ||
390 | cmd = KDBCMD_BE; | ||
391 | else if (strcmp(argv[0], "bd") == 0) | ||
392 | cmd = KDBCMD_BD; | ||
393 | else | ||
394 | cmd = KDBCMD_BC; | ||
395 | |||
396 | if (argc != 1) | ||
397 | return KDB_ARGCOUNT; | ||
398 | |||
399 | if (strcmp(argv[1], "*") == 0) { | ||
400 | lowbp = 0; | ||
401 | highbp = KDB_MAXBPT; | ||
402 | } else { | ||
403 | diag = kdbgetularg(argv[1], &addr); | ||
404 | if (diag) | ||
405 | return diag; | ||
406 | |||
407 | /* | ||
408 | * For addresses less than the maximum breakpoint number, | ||
409 | * assume that the breakpoint number is desired. | ||
410 | */ | ||
411 | if (addr < KDB_MAXBPT) { | ||
412 | bp = &kdb_breakpoints[addr]; | ||
413 | lowbp = highbp = addr; | ||
414 | highbp++; | ||
415 | } else { | ||
416 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; | ||
417 | i++, bp++) { | ||
418 | if (bp->bp_addr == addr) { | ||
419 | lowbp = highbp = i; | ||
420 | highbp++; | ||
421 | break; | ||
422 | } | ||
423 | } | ||
424 | } | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Now operate on the set of breakpoints matching the input | ||
429 | * criteria (either '*' for all, or an individual breakpoint). | ||
430 | */ | ||
431 | for (bp = &kdb_breakpoints[lowbp], i = lowbp; | ||
432 | i < highbp; | ||
433 | i++, bp++) { | ||
434 | if (bp->bp_free) | ||
435 | continue; | ||
436 | |||
437 | done++; | ||
438 | |||
439 | switch (cmd) { | ||
440 | case KDBCMD_BC: | ||
441 | bp->bp_enabled = 0; | ||
442 | |||
443 | kdb_printf("Breakpoint %d at " | ||
444 | kdb_bfd_vma_fmt " cleared\n", | ||
445 | i, bp->bp_addr); | ||
446 | |||
447 | bp->bp_addr = 0; | ||
448 | bp->bp_free = 1; | ||
449 | |||
450 | break; | ||
451 | case KDBCMD_BE: | ||
452 | bp->bp_enabled = 1; | ||
453 | |||
454 | kdb_printf("Breakpoint %d at " | ||
455 | kdb_bfd_vma_fmt " enabled", | ||
456 | i, bp->bp_addr); | ||
457 | |||
458 | kdb_printf("\n"); | ||
459 | break; | ||
460 | case KDBCMD_BD: | ||
461 | if (!bp->bp_enabled) | ||
462 | break; | ||
463 | |||
464 | bp->bp_enabled = 0; | ||
465 | |||
466 | kdb_printf("Breakpoint %d at " | ||
467 | kdb_bfd_vma_fmt " disabled\n", | ||
468 | i, bp->bp_addr); | ||
469 | |||
470 | break; | ||
471 | } | ||
472 | if (bp->bp_delay && (cmd == KDBCMD_BC || cmd == KDBCMD_BD)) { | ||
473 | bp->bp_delay = 0; | ||
474 | KDB_STATE_CLEAR(SSBPT); | ||
475 | } | ||
476 | } | ||
477 | |||
478 | return (!done) ? KDB_BPTNOTFOUND : 0; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * kdb_ss | ||
483 | * | ||
484 | * Process the 'ss' (Single Step) and 'ssb' (Single Step to Branch) | ||
485 | * commands. | ||
486 | * | ||
487 | * ss | ||
488 | * ssb | ||
489 | * | ||
490 | * Parameters: | ||
491 | * argc Argument count | ||
492 | * argv Argument vector | ||
493 | * Outputs: | ||
494 | * None. | ||
495 | * Returns: | ||
496 | * KDB_CMD_SS[B] for success, a kdb error if failure. | ||
497 | * Locking: | ||
498 | * None. | ||
499 | * Remarks: | ||
500 | * | ||
501 | * Set the arch specific option to trigger a debug trap after the next | ||
502 | * instruction. | ||
503 | * | ||
504 | * For 'ssb', set the trace flag in the debug trap handler | ||
505 | * after printing the current insn and return directly without | ||
506 | * invoking the kdb command processor, until a branch instruction | ||
507 | * is encountered. | ||
508 | */ | ||
509 | |||
510 | static int kdb_ss(int argc, const char **argv) | ||
511 | { | ||
512 | int ssb = 0; | ||
513 | |||
514 | ssb = (strcmp(argv[0], "ssb") == 0); | ||
515 | if (argc != 0) | ||
516 | return KDB_ARGCOUNT; | ||
517 | /* | ||
518 | * Set trace flag and go. | ||
519 | */ | ||
520 | KDB_STATE_SET(DOING_SS); | ||
521 | if (ssb) { | ||
522 | KDB_STATE_SET(DOING_SSB); | ||
523 | return KDB_CMD_SSB; | ||
524 | } | ||
525 | return KDB_CMD_SS; | ||
526 | } | ||
527 | |||
528 | /* Initialize the breakpoint table and register breakpoint commands. */ | ||
529 | |||
530 | void __init kdb_initbptab(void) | ||
531 | { | ||
532 | int i; | ||
533 | kdb_bp_t *bp; | ||
534 | |||
535 | /* | ||
536 | * First time initialization. | ||
537 | */ | ||
538 | memset(&kdb_breakpoints, '\0', sizeof(kdb_breakpoints)); | ||
539 | |||
540 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) | ||
541 | bp->bp_free = 1; | ||
542 | |||
543 | kdb_register_repeat("bp", kdb_bp, "[<vaddr>]", | ||
544 | "Set/Display breakpoints", 0, KDB_REPEAT_NO_ARGS); | ||
545 | kdb_register_repeat("bl", kdb_bp, "[<vaddr>]", | ||
546 | "Display breakpoints", 0, KDB_REPEAT_NO_ARGS); | ||
547 | if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) | ||
548 | kdb_register_repeat("bph", kdb_bp, "[<vaddr>]", | ||
549 | "[datar [length]|dataw [length]] Set hw brk", 0, KDB_REPEAT_NO_ARGS); | ||
550 | kdb_register_repeat("bc", kdb_bc, "<bpnum>", | ||
551 | "Clear Breakpoint", 0, KDB_REPEAT_NONE); | ||
552 | kdb_register_repeat("be", kdb_bc, "<bpnum>", | ||
553 | "Enable Breakpoint", 0, KDB_REPEAT_NONE); | ||
554 | kdb_register_repeat("bd", kdb_bc, "<bpnum>", | ||
555 | "Disable Breakpoint", 0, KDB_REPEAT_NONE); | ||
556 | |||
557 | kdb_register_repeat("ss", kdb_ss, "", | ||
558 | "Single Step", 1, KDB_REPEAT_NO_ARGS); | ||
559 | kdb_register_repeat("ssb", kdb_ss, "", | ||
560 | "Single step to branch/call", 0, KDB_REPEAT_NO_ARGS); | ||
561 | /* | ||
562 | * Architecture dependent initialization. | ||
563 | */ | ||
564 | } | ||
diff --git a/kernel/debug/kdb/kdb_bt.c b/kernel/debug/kdb/kdb_bt.c new file mode 100644 index 000000000000..2f62fe85f16a --- /dev/null +++ b/kernel/debug/kdb/kdb_bt.c | |||
@@ -0,0 +1,210 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Stack Traceback | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/ctype.h> | ||
13 | #include <linux/string.h> | ||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/kdb.h> | ||
17 | #include <linux/nmi.h> | ||
18 | #include <asm/system.h> | ||
19 | #include "kdb_private.h" | ||
20 | |||
21 | |||
22 | static void kdb_show_stack(struct task_struct *p, void *addr) | ||
23 | { | ||
24 | int old_lvl = console_loglevel; | ||
25 | console_loglevel = 15; | ||
26 | kdb_trap_printk++; | ||
27 | kdb_set_current_task(p); | ||
28 | if (addr) { | ||
29 | show_stack((struct task_struct *)p, addr); | ||
30 | } else if (kdb_current_regs) { | ||
31 | #ifdef CONFIG_X86 | ||
32 | show_stack(p, &kdb_current_regs->sp); | ||
33 | #else | ||
34 | show_stack(p, NULL); | ||
35 | #endif | ||
36 | } else { | ||
37 | show_stack(p, NULL); | ||
38 | } | ||
39 | console_loglevel = old_lvl; | ||
40 | kdb_trap_printk--; | ||
41 | } | ||
42 | |||
43 | /* | ||
44 | * kdb_bt | ||
45 | * | ||
46 | * This function implements the 'bt' command. Print a stack | ||
47 | * traceback. | ||
48 | * | ||
49 | * bt [<address-expression>] (addr-exp is for alternate stacks) | ||
50 | * btp <pid> Kernel stack for <pid> | ||
51 | * btt <address-expression> Kernel stack for task structure at | ||
52 | * <address-expression> | ||
53 | * bta [DRSTCZEUIMA] All useful processes, optionally | ||
54 | * filtered by state | ||
55 | * btc [<cpu>] The current process on one cpu, | ||
56 | * default is all cpus | ||
57 | * | ||
58 | * bt <address-expression> refers to a address on the stack, that location | ||
59 | * is assumed to contain a return address. | ||
60 | * | ||
61 | * btt <address-expression> refers to the address of a struct task. | ||
62 | * | ||
63 | * Inputs: | ||
64 | * argc argument count | ||
65 | * argv argument vector | ||
66 | * Outputs: | ||
67 | * None. | ||
68 | * Returns: | ||
69 | * zero for success, a kdb diagnostic if error | ||
70 | * Locking: | ||
71 | * none. | ||
72 | * Remarks: | ||
73 | * Backtrack works best when the code uses frame pointers. But even | ||
74 | * without frame pointers we should get a reasonable trace. | ||
75 | * | ||
76 | * mds comes in handy when examining the stack to do a manual traceback or | ||
77 | * to get a starting point for bt <address-expression>. | ||
78 | */ | ||
79 | |||
80 | static int | ||
81 | kdb_bt1(struct task_struct *p, unsigned long mask, | ||
82 | int argcount, int btaprompt) | ||
83 | { | ||
84 | char buffer[2]; | ||
85 | if (kdb_getarea(buffer[0], (unsigned long)p) || | ||
86 | kdb_getarea(buffer[0], (unsigned long)(p+1)-1)) | ||
87 | return KDB_BADADDR; | ||
88 | if (!kdb_task_state(p, mask)) | ||
89 | return 0; | ||
90 | kdb_printf("Stack traceback for pid %d\n", p->pid); | ||
91 | kdb_ps1(p); | ||
92 | kdb_show_stack(p, NULL); | ||
93 | if (btaprompt) { | ||
94 | kdb_getstr(buffer, sizeof(buffer), | ||
95 | "Enter <q> to end, <cr> to continue:"); | ||
96 | if (buffer[0] == 'q') { | ||
97 | kdb_printf("\n"); | ||
98 | return 1; | ||
99 | } | ||
100 | } | ||
101 | touch_nmi_watchdog(); | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | int | ||
106 | kdb_bt(int argc, const char **argv) | ||
107 | { | ||
108 | int diag; | ||
109 | int argcount = 5; | ||
110 | int btaprompt = 1; | ||
111 | int nextarg; | ||
112 | unsigned long addr; | ||
113 | long offset; | ||
114 | |||
115 | kdbgetintenv("BTARGS", &argcount); /* Arguments to print */ | ||
116 | kdbgetintenv("BTAPROMPT", &btaprompt); /* Prompt after each | ||
117 | * proc in bta */ | ||
118 | |||
119 | if (strcmp(argv[0], "bta") == 0) { | ||
120 | struct task_struct *g, *p; | ||
121 | unsigned long cpu; | ||
122 | unsigned long mask = kdb_task_state_string(argc ? argv[1] : | ||
123 | NULL); | ||
124 | if (argc == 0) | ||
125 | kdb_ps_suppressed(); | ||
126 | /* Run the active tasks first */ | ||
127 | for_each_online_cpu(cpu) { | ||
128 | p = kdb_curr_task(cpu); | ||
129 | if (kdb_bt1(p, mask, argcount, btaprompt)) | ||
130 | return 0; | ||
131 | } | ||
132 | /* Now the inactive tasks */ | ||
133 | kdb_do_each_thread(g, p) { | ||
134 | if (task_curr(p)) | ||
135 | continue; | ||
136 | if (kdb_bt1(p, mask, argcount, btaprompt)) | ||
137 | return 0; | ||
138 | } kdb_while_each_thread(g, p); | ||
139 | } else if (strcmp(argv[0], "btp") == 0) { | ||
140 | struct task_struct *p; | ||
141 | unsigned long pid; | ||
142 | if (argc != 1) | ||
143 | return KDB_ARGCOUNT; | ||
144 | diag = kdbgetularg((char *)argv[1], &pid); | ||
145 | if (diag) | ||
146 | return diag; | ||
147 | p = find_task_by_pid_ns(pid, &init_pid_ns); | ||
148 | if (p) { | ||
149 | kdb_set_current_task(p); | ||
150 | return kdb_bt1(p, ~0UL, argcount, 0); | ||
151 | } | ||
152 | kdb_printf("No process with pid == %ld found\n", pid); | ||
153 | return 0; | ||
154 | } else if (strcmp(argv[0], "btt") == 0) { | ||
155 | if (argc != 1) | ||
156 | return KDB_ARGCOUNT; | ||
157 | diag = kdbgetularg((char *)argv[1], &addr); | ||
158 | if (diag) | ||
159 | return diag; | ||
160 | kdb_set_current_task((struct task_struct *)addr); | ||
161 | return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0); | ||
162 | } else if (strcmp(argv[0], "btc") == 0) { | ||
163 | unsigned long cpu = ~0; | ||
164 | struct task_struct *save_current_task = kdb_current_task; | ||
165 | char buf[80]; | ||
166 | if (argc > 1) | ||
167 | return KDB_ARGCOUNT; | ||
168 | if (argc == 1) { | ||
169 | diag = kdbgetularg((char *)argv[1], &cpu); | ||
170 | if (diag) | ||
171 | return diag; | ||
172 | } | ||
173 | /* Recursive use of kdb_parse, do not use argv after | ||
174 | * this point */ | ||
175 | argv = NULL; | ||
176 | if (cpu != ~0) { | ||
177 | if (cpu >= num_possible_cpus() || !cpu_online(cpu)) { | ||
178 | kdb_printf("no process for cpu %ld\n", cpu); | ||
179 | return 0; | ||
180 | } | ||
181 | sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); | ||
182 | kdb_parse(buf); | ||
183 | return 0; | ||
184 | } | ||
185 | kdb_printf("btc: cpu status: "); | ||
186 | kdb_parse("cpu\n"); | ||
187 | for_each_online_cpu(cpu) { | ||
188 | sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); | ||
189 | kdb_parse(buf); | ||
190 | touch_nmi_watchdog(); | ||
191 | } | ||
192 | kdb_set_current_task(save_current_task); | ||
193 | return 0; | ||
194 | } else { | ||
195 | if (argc) { | ||
196 | nextarg = 1; | ||
197 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, | ||
198 | &offset, NULL); | ||
199 | if (diag) | ||
200 | return diag; | ||
201 | kdb_show_stack(kdb_current_task, (void *)addr); | ||
202 | return 0; | ||
203 | } else { | ||
204 | return kdb_bt1(kdb_current_task, ~0UL, argcount, 0); | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* NOTREACHED */ | ||
209 | return 0; | ||
210 | } | ||
diff --git a/kernel/debug/kdb/kdb_cmds b/kernel/debug/kdb/kdb_cmds new file mode 100644 index 000000000000..56c88e4db309 --- /dev/null +++ b/kernel/debug/kdb/kdb_cmds | |||
@@ -0,0 +1,35 @@ | |||
1 | # Initial commands for kdb, alter to suit your needs. | ||
2 | # These commands are executed in kdb_init() context, no SMP, no | ||
3 | # processes. Commands that require process data (including stack or | ||
4 | # registers) are not reliable this early. set and bp commands should | ||
5 | # be safe. Global breakpoint commands affect each cpu as it is booted. | ||
6 | |||
7 | # Standard debugging information for first level support, just type archkdb | ||
8 | # or archkdbcpu or archkdbshort at the kdb prompt. | ||
9 | |||
10 | defcmd dumpcommon "" "Common kdb debugging" | ||
11 | set BTAPROMPT 0 | ||
12 | set LINES 10000 | ||
13 | -summary | ||
14 | -cpu | ||
15 | -ps | ||
16 | -dmesg 600 | ||
17 | -bt | ||
18 | endefcmd | ||
19 | |||
20 | defcmd dumpall "" "First line debugging" | ||
21 | set BTSYMARG 1 | ||
22 | set BTARGS 9 | ||
23 | pid R | ||
24 | -dumpcommon | ||
25 | -bta | ||
26 | endefcmd | ||
27 | |||
28 | defcmd dumpcpu "" "Same as dumpall but only tasks on cpus" | ||
29 | set BTSYMARG 1 | ||
30 | set BTARGS 9 | ||
31 | pid R | ||
32 | -dumpcommon | ||
33 | -btc | ||
34 | endefcmd | ||
35 | |||
diff --git a/kernel/debug/kdb/kdb_debugger.c b/kernel/debug/kdb/kdb_debugger.c new file mode 100644 index 000000000000..bf6e8270e957 --- /dev/null +++ b/kernel/debug/kdb/kdb_debugger.c | |||
@@ -0,0 +1,169 @@ | |||
1 | /* | ||
2 | * Created by: Jason Wessel <jason.wessel@windriver.com> | ||
3 | * | ||
4 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
5 | * | ||
6 | * This file is licensed under the terms of the GNU General Public | ||
7 | * License version 2. This program is licensed "as is" without any | ||
8 | * warranty of any kind, whether express or implied. | ||
9 | */ | ||
10 | |||
11 | #include <linux/kgdb.h> | ||
12 | #include <linux/kdb.h> | ||
13 | #include <linux/kdebug.h> | ||
14 | #include "kdb_private.h" | ||
15 | #include "../debug_core.h" | ||
16 | |||
17 | /* | ||
18 | * KDB interface to KGDB internals | ||
19 | */ | ||
20 | get_char_func kdb_poll_funcs[] = { | ||
21 | dbg_io_get_char, | ||
22 | NULL, | ||
23 | NULL, | ||
24 | NULL, | ||
25 | NULL, | ||
26 | NULL, | ||
27 | }; | ||
28 | EXPORT_SYMBOL_GPL(kdb_poll_funcs); | ||
29 | |||
30 | int kdb_poll_idx = 1; | ||
31 | EXPORT_SYMBOL_GPL(kdb_poll_idx); | ||
32 | |||
33 | int kdb_stub(struct kgdb_state *ks) | ||
34 | { | ||
35 | int error = 0; | ||
36 | kdb_bp_t *bp; | ||
37 | unsigned long addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
38 | kdb_reason_t reason = KDB_REASON_OOPS; | ||
39 | kdb_dbtrap_t db_result = KDB_DB_NOBPT; | ||
40 | int i; | ||
41 | |||
42 | if (KDB_STATE(REENTRY)) { | ||
43 | reason = KDB_REASON_SWITCH; | ||
44 | KDB_STATE_CLEAR(REENTRY); | ||
45 | addr = instruction_pointer(ks->linux_regs); | ||
46 | } | ||
47 | ks->pass_exception = 0; | ||
48 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
49 | reason = KDB_REASON_KEYBOARD; | ||
50 | |||
51 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) { | ||
52 | if ((bp->bp_enabled) && (bp->bp_addr == addr)) { | ||
53 | reason = KDB_REASON_BREAK; | ||
54 | db_result = KDB_DB_BPT; | ||
55 | if (addr != instruction_pointer(ks->linux_regs)) | ||
56 | kgdb_arch_set_pc(ks->linux_regs, addr); | ||
57 | break; | ||
58 | } | ||
59 | } | ||
60 | if (reason == KDB_REASON_BREAK || reason == KDB_REASON_SWITCH) { | ||
61 | for (i = 0, bp = kdb_breakpoints; i < KDB_MAXBPT; i++, bp++) { | ||
62 | if (bp->bp_free) | ||
63 | continue; | ||
64 | if (bp->bp_addr == addr) { | ||
65 | bp->bp_delay = 1; | ||
66 | bp->bp_delayed = 1; | ||
67 | /* | ||
68 | * SSBPT is set when the kernel debugger must single step a | ||
69 | * task in order to re-establish an instruction breakpoint | ||
70 | * which uses the instruction replacement mechanism. It is | ||
71 | * cleared by any action that removes the need to single-step | ||
72 | * the breakpoint. | ||
73 | */ | ||
74 | reason = KDB_REASON_BREAK; | ||
75 | db_result = KDB_DB_BPT; | ||
76 | KDB_STATE_SET(SSBPT); | ||
77 | break; | ||
78 | } | ||
79 | } | ||
80 | } | ||
81 | |||
82 | if (reason != KDB_REASON_BREAK && ks->ex_vector == 0 && | ||
83 | ks->signo == SIGTRAP) { | ||
84 | reason = KDB_REASON_SSTEP; | ||
85 | db_result = KDB_DB_BPT; | ||
86 | } | ||
87 | /* Set initial kdb state variables */ | ||
88 | KDB_STATE_CLEAR(KGDB_TRANS); | ||
89 | kdb_initial_cpu = ks->cpu; | ||
90 | kdb_current_task = kgdb_info[ks->cpu].task; | ||
91 | kdb_current_regs = kgdb_info[ks->cpu].debuggerinfo; | ||
92 | /* Remove any breakpoints as needed by kdb and clear single step */ | ||
93 | kdb_bp_remove(); | ||
94 | KDB_STATE_CLEAR(DOING_SS); | ||
95 | KDB_STATE_CLEAR(DOING_SSB); | ||
96 | KDB_STATE_SET(PAGER); | ||
97 | /* zero out any offline cpu data */ | ||
98 | for_each_present_cpu(i) { | ||
99 | if (!cpu_online(i)) { | ||
100 | kgdb_info[i].debuggerinfo = NULL; | ||
101 | kgdb_info[i].task = NULL; | ||
102 | } | ||
103 | } | ||
104 | if (ks->err_code == DIE_OOPS || reason == KDB_REASON_OOPS) { | ||
105 | ks->pass_exception = 1; | ||
106 | KDB_FLAG_SET(CATASTROPHIC); | ||
107 | } | ||
108 | kdb_initial_cpu = ks->cpu; | ||
109 | if (KDB_STATE(SSBPT) && reason == KDB_REASON_SSTEP) { | ||
110 | KDB_STATE_CLEAR(SSBPT); | ||
111 | KDB_STATE_CLEAR(DOING_SS); | ||
112 | } else { | ||
113 | /* Start kdb main loop */ | ||
114 | error = kdb_main_loop(KDB_REASON_ENTER, reason, | ||
115 | ks->err_code, db_result, ks->linux_regs); | ||
116 | } | ||
117 | /* | ||
118 | * Upon exit from the kdb main loop setup break points and restart | ||
119 | * the system based on the requested continue state | ||
120 | */ | ||
121 | kdb_initial_cpu = -1; | ||
122 | kdb_current_task = NULL; | ||
123 | kdb_current_regs = NULL; | ||
124 | KDB_STATE_CLEAR(PAGER); | ||
125 | kdbnearsym_cleanup(); | ||
126 | if (error == KDB_CMD_KGDB) { | ||
127 | if (KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)) { | ||
128 | /* | ||
129 | * This inteface glue which allows kdb to transition in into | ||
130 | * the gdb stub. In order to do this the '?' or '' gdb serial | ||
131 | * packet response is processed here. And then control is | ||
132 | * passed to the gdbstub. | ||
133 | */ | ||
134 | if (KDB_STATE(DOING_KGDB)) | ||
135 | gdbstub_state(ks, "?"); | ||
136 | else | ||
137 | gdbstub_state(ks, ""); | ||
138 | KDB_STATE_CLEAR(DOING_KGDB); | ||
139 | KDB_STATE_CLEAR(DOING_KGDB2); | ||
140 | } | ||
141 | return DBG_PASS_EVENT; | ||
142 | } | ||
143 | kdb_bp_install(ks->linux_regs); | ||
144 | dbg_activate_sw_breakpoints(); | ||
145 | /* Set the exit state to a single step or a continue */ | ||
146 | if (KDB_STATE(DOING_SS)) | ||
147 | gdbstub_state(ks, "s"); | ||
148 | else | ||
149 | gdbstub_state(ks, "c"); | ||
150 | |||
151 | KDB_FLAG_CLEAR(CATASTROPHIC); | ||
152 | |||
153 | /* Invoke arch specific exception handling prior to system resume */ | ||
154 | kgdb_info[ks->cpu].ret_state = gdbstub_state(ks, "e"); | ||
155 | if (ks->pass_exception) | ||
156 | kgdb_info[ks->cpu].ret_state = 1; | ||
157 | if (error == KDB_CMD_CPU) { | ||
158 | KDB_STATE_SET(REENTRY); | ||
159 | /* | ||
160 | * Force clear the single step bit because kdb emulates this | ||
161 | * differently vs the gdbstub | ||
162 | */ | ||
163 | kgdb_single_step = 0; | ||
164 | dbg_deactivate_sw_breakpoints(); | ||
165 | return DBG_SWITCH_CPU_EVENT; | ||
166 | } | ||
167 | return kgdb_info[ks->cpu].ret_state; | ||
168 | } | ||
169 | |||
diff --git a/kernel/debug/kdb/kdb_io.c b/kernel/debug/kdb/kdb_io.c new file mode 100644 index 000000000000..c9b7f4f90bba --- /dev/null +++ b/kernel/debug/kdb/kdb_io.c | |||
@@ -0,0 +1,826 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Console I/O handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2006 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/types.h> | ||
14 | #include <linux/ctype.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/kdev_t.h> | ||
18 | #include <linux/console.h> | ||
19 | #include <linux/string.h> | ||
20 | #include <linux/sched.h> | ||
21 | #include <linux/smp.h> | ||
22 | #include <linux/nmi.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/kgdb.h> | ||
25 | #include <linux/kdb.h> | ||
26 | #include <linux/kallsyms.h> | ||
27 | #include "kdb_private.h" | ||
28 | |||
29 | #define CMD_BUFLEN 256 | ||
30 | char kdb_prompt_str[CMD_BUFLEN]; | ||
31 | |||
32 | int kdb_trap_printk; | ||
33 | |||
34 | static void kgdb_transition_check(char *buffer) | ||
35 | { | ||
36 | int slen = strlen(buffer); | ||
37 | if (strncmp(buffer, "$?#3f", slen) != 0 && | ||
38 | strncmp(buffer, "$qSupported#37", slen) != 0 && | ||
39 | strncmp(buffer, "+$qSupported#37", slen) != 0) { | ||
40 | KDB_STATE_SET(KGDB_TRANS); | ||
41 | kdb_printf("%s", buffer); | ||
42 | } | ||
43 | } | ||
44 | |||
45 | static int kdb_read_get_key(char *buffer, size_t bufsize) | ||
46 | { | ||
47 | #define ESCAPE_UDELAY 1000 | ||
48 | #define ESCAPE_DELAY (2*1000000/ESCAPE_UDELAY) /* 2 seconds worth of udelays */ | ||
49 | char escape_data[5]; /* longest vt100 escape sequence is 4 bytes */ | ||
50 | char *ped = escape_data; | ||
51 | int escape_delay = 0; | ||
52 | get_char_func *f, *f_escape = NULL; | ||
53 | int key; | ||
54 | |||
55 | for (f = &kdb_poll_funcs[0]; ; ++f) { | ||
56 | if (*f == NULL) { | ||
57 | /* Reset NMI watchdog once per poll loop */ | ||
58 | touch_nmi_watchdog(); | ||
59 | f = &kdb_poll_funcs[0]; | ||
60 | } | ||
61 | if (escape_delay == 2) { | ||
62 | *ped = '\0'; | ||
63 | ped = escape_data; | ||
64 | --escape_delay; | ||
65 | } | ||
66 | if (escape_delay == 1) { | ||
67 | key = *ped++; | ||
68 | if (!*ped) | ||
69 | --escape_delay; | ||
70 | break; | ||
71 | } | ||
72 | key = (*f)(); | ||
73 | if (key == -1) { | ||
74 | if (escape_delay) { | ||
75 | udelay(ESCAPE_UDELAY); | ||
76 | --escape_delay; | ||
77 | } | ||
78 | continue; | ||
79 | } | ||
80 | if (bufsize <= 2) { | ||
81 | if (key == '\r') | ||
82 | key = '\n'; | ||
83 | *buffer++ = key; | ||
84 | *buffer = '\0'; | ||
85 | return -1; | ||
86 | } | ||
87 | if (escape_delay == 0 && key == '\e') { | ||
88 | escape_delay = ESCAPE_DELAY; | ||
89 | ped = escape_data; | ||
90 | f_escape = f; | ||
91 | } | ||
92 | if (escape_delay) { | ||
93 | *ped++ = key; | ||
94 | if (f_escape != f) { | ||
95 | escape_delay = 2; | ||
96 | continue; | ||
97 | } | ||
98 | if (ped - escape_data == 1) { | ||
99 | /* \e */ | ||
100 | continue; | ||
101 | } else if (ped - escape_data == 2) { | ||
102 | /* \e<something> */ | ||
103 | if (key != '[') | ||
104 | escape_delay = 2; | ||
105 | continue; | ||
106 | } else if (ped - escape_data == 3) { | ||
107 | /* \e[<something> */ | ||
108 | int mapkey = 0; | ||
109 | switch (key) { | ||
110 | case 'A': /* \e[A, up arrow */ | ||
111 | mapkey = 16; | ||
112 | break; | ||
113 | case 'B': /* \e[B, down arrow */ | ||
114 | mapkey = 14; | ||
115 | break; | ||
116 | case 'C': /* \e[C, right arrow */ | ||
117 | mapkey = 6; | ||
118 | break; | ||
119 | case 'D': /* \e[D, left arrow */ | ||
120 | mapkey = 2; | ||
121 | break; | ||
122 | case '1': /* dropthrough */ | ||
123 | case '3': /* dropthrough */ | ||
124 | /* \e[<1,3,4>], may be home, del, end */ | ||
125 | case '4': | ||
126 | mapkey = -1; | ||
127 | break; | ||
128 | } | ||
129 | if (mapkey != -1) { | ||
130 | if (mapkey > 0) { | ||
131 | escape_data[0] = mapkey; | ||
132 | escape_data[1] = '\0'; | ||
133 | } | ||
134 | escape_delay = 2; | ||
135 | } | ||
136 | continue; | ||
137 | } else if (ped - escape_data == 4) { | ||
138 | /* \e[<1,3,4><something> */ | ||
139 | int mapkey = 0; | ||
140 | if (key == '~') { | ||
141 | switch (escape_data[2]) { | ||
142 | case '1': /* \e[1~, home */ | ||
143 | mapkey = 1; | ||
144 | break; | ||
145 | case '3': /* \e[3~, del */ | ||
146 | mapkey = 4; | ||
147 | break; | ||
148 | case '4': /* \e[4~, end */ | ||
149 | mapkey = 5; | ||
150 | break; | ||
151 | } | ||
152 | } | ||
153 | if (mapkey > 0) { | ||
154 | escape_data[0] = mapkey; | ||
155 | escape_data[1] = '\0'; | ||
156 | } | ||
157 | escape_delay = 2; | ||
158 | continue; | ||
159 | } | ||
160 | } | ||
161 | break; /* A key to process */ | ||
162 | } | ||
163 | return key; | ||
164 | } | ||
165 | |||
166 | /* | ||
167 | * kdb_read | ||
168 | * | ||
169 | * This function reads a string of characters, terminated by | ||
170 | * a newline, or by reaching the end of the supplied buffer, | ||
171 | * from the current kernel debugger console device. | ||
172 | * Parameters: | ||
173 | * buffer - Address of character buffer to receive input characters. | ||
174 | * bufsize - size, in bytes, of the character buffer | ||
175 | * Returns: | ||
176 | * Returns a pointer to the buffer containing the received | ||
177 | * character string. This string will be terminated by a | ||
178 | * newline character. | ||
179 | * Locking: | ||
180 | * No locks are required to be held upon entry to this | ||
181 | * function. It is not reentrant - it relies on the fact | ||
182 | * that while kdb is running on only one "master debug" cpu. | ||
183 | * Remarks: | ||
184 | * | ||
185 | * The buffer size must be >= 2. A buffer size of 2 means that the caller only | ||
186 | * wants a single key. | ||
187 | * | ||
188 | * An escape key could be the start of a vt100 control sequence such as \e[D | ||
189 | * (left arrow) or it could be a character in its own right. The standard | ||
190 | * method for detecting the difference is to wait for 2 seconds to see if there | ||
191 | * are any other characters. kdb is complicated by the lack of a timer service | ||
192 | * (interrupts are off), by multiple input sources and by the need to sometimes | ||
193 | * return after just one key. Escape sequence processing has to be done as | ||
194 | * states in the polling loop. | ||
195 | */ | ||
196 | |||
197 | static char *kdb_read(char *buffer, size_t bufsize) | ||
198 | { | ||
199 | char *cp = buffer; | ||
200 | char *bufend = buffer+bufsize-2; /* Reserve space for newline | ||
201 | * and null byte */ | ||
202 | char *lastchar; | ||
203 | char *p_tmp; | ||
204 | char tmp; | ||
205 | static char tmpbuffer[CMD_BUFLEN]; | ||
206 | int len = strlen(buffer); | ||
207 | int len_tmp; | ||
208 | int tab = 0; | ||
209 | int count; | ||
210 | int i; | ||
211 | int diag, dtab_count; | ||
212 | int key; | ||
213 | |||
214 | |||
215 | diag = kdbgetintenv("DTABCOUNT", &dtab_count); | ||
216 | if (diag) | ||
217 | dtab_count = 30; | ||
218 | |||
219 | if (len > 0) { | ||
220 | cp += len; | ||
221 | if (*(buffer+len-1) == '\n') | ||
222 | cp--; | ||
223 | } | ||
224 | |||
225 | lastchar = cp; | ||
226 | *cp = '\0'; | ||
227 | kdb_printf("%s", buffer); | ||
228 | poll_again: | ||
229 | key = kdb_read_get_key(buffer, bufsize); | ||
230 | if (key == -1) | ||
231 | return buffer; | ||
232 | if (key != 9) | ||
233 | tab = 0; | ||
234 | switch (key) { | ||
235 | case 8: /* backspace */ | ||
236 | if (cp > buffer) { | ||
237 | if (cp < lastchar) { | ||
238 | memcpy(tmpbuffer, cp, lastchar - cp); | ||
239 | memcpy(cp-1, tmpbuffer, lastchar - cp); | ||
240 | } | ||
241 | *(--lastchar) = '\0'; | ||
242 | --cp; | ||
243 | kdb_printf("\b%s \r", cp); | ||
244 | tmp = *cp; | ||
245 | *cp = '\0'; | ||
246 | kdb_printf(kdb_prompt_str); | ||
247 | kdb_printf("%s", buffer); | ||
248 | *cp = tmp; | ||
249 | } | ||
250 | break; | ||
251 | case 13: /* enter */ | ||
252 | *lastchar++ = '\n'; | ||
253 | *lastchar++ = '\0'; | ||
254 | kdb_printf("\n"); | ||
255 | return buffer; | ||
256 | case 4: /* Del */ | ||
257 | if (cp < lastchar) { | ||
258 | memcpy(tmpbuffer, cp+1, lastchar - cp - 1); | ||
259 | memcpy(cp, tmpbuffer, lastchar - cp - 1); | ||
260 | *(--lastchar) = '\0'; | ||
261 | kdb_printf("%s \r", cp); | ||
262 | tmp = *cp; | ||
263 | *cp = '\0'; | ||
264 | kdb_printf(kdb_prompt_str); | ||
265 | kdb_printf("%s", buffer); | ||
266 | *cp = tmp; | ||
267 | } | ||
268 | break; | ||
269 | case 1: /* Home */ | ||
270 | if (cp > buffer) { | ||
271 | kdb_printf("\r"); | ||
272 | kdb_printf(kdb_prompt_str); | ||
273 | cp = buffer; | ||
274 | } | ||
275 | break; | ||
276 | case 5: /* End */ | ||
277 | if (cp < lastchar) { | ||
278 | kdb_printf("%s", cp); | ||
279 | cp = lastchar; | ||
280 | } | ||
281 | break; | ||
282 | case 2: /* Left */ | ||
283 | if (cp > buffer) { | ||
284 | kdb_printf("\b"); | ||
285 | --cp; | ||
286 | } | ||
287 | break; | ||
288 | case 14: /* Down */ | ||
289 | memset(tmpbuffer, ' ', | ||
290 | strlen(kdb_prompt_str) + (lastchar-buffer)); | ||
291 | *(tmpbuffer+strlen(kdb_prompt_str) + | ||
292 | (lastchar-buffer)) = '\0'; | ||
293 | kdb_printf("\r%s\r", tmpbuffer); | ||
294 | *lastchar = (char)key; | ||
295 | *(lastchar+1) = '\0'; | ||
296 | return lastchar; | ||
297 | case 6: /* Right */ | ||
298 | if (cp < lastchar) { | ||
299 | kdb_printf("%c", *cp); | ||
300 | ++cp; | ||
301 | } | ||
302 | break; | ||
303 | case 16: /* Up */ | ||
304 | memset(tmpbuffer, ' ', | ||
305 | strlen(kdb_prompt_str) + (lastchar-buffer)); | ||
306 | *(tmpbuffer+strlen(kdb_prompt_str) + | ||
307 | (lastchar-buffer)) = '\0'; | ||
308 | kdb_printf("\r%s\r", tmpbuffer); | ||
309 | *lastchar = (char)key; | ||
310 | *(lastchar+1) = '\0'; | ||
311 | return lastchar; | ||
312 | case 9: /* Tab */ | ||
313 | if (tab < 2) | ||
314 | ++tab; | ||
315 | p_tmp = buffer; | ||
316 | while (*p_tmp == ' ') | ||
317 | p_tmp++; | ||
318 | if (p_tmp > cp) | ||
319 | break; | ||
320 | memcpy(tmpbuffer, p_tmp, cp-p_tmp); | ||
321 | *(tmpbuffer + (cp-p_tmp)) = '\0'; | ||
322 | p_tmp = strrchr(tmpbuffer, ' '); | ||
323 | if (p_tmp) | ||
324 | ++p_tmp; | ||
325 | else | ||
326 | p_tmp = tmpbuffer; | ||
327 | len = strlen(p_tmp); | ||
328 | count = kallsyms_symbol_complete(p_tmp, | ||
329 | sizeof(tmpbuffer) - | ||
330 | (p_tmp - tmpbuffer)); | ||
331 | if (tab == 2 && count > 0) { | ||
332 | kdb_printf("\n%d symbols are found.", count); | ||
333 | if (count > dtab_count) { | ||
334 | count = dtab_count; | ||
335 | kdb_printf(" But only first %d symbols will" | ||
336 | " be printed.\nYou can change the" | ||
337 | " environment variable DTABCOUNT.", | ||
338 | count); | ||
339 | } | ||
340 | kdb_printf("\n"); | ||
341 | for (i = 0; i < count; i++) { | ||
342 | if (kallsyms_symbol_next(p_tmp, i) < 0) | ||
343 | break; | ||
344 | kdb_printf("%s ", p_tmp); | ||
345 | *(p_tmp + len) = '\0'; | ||
346 | } | ||
347 | if (i >= dtab_count) | ||
348 | kdb_printf("..."); | ||
349 | kdb_printf("\n"); | ||
350 | kdb_printf(kdb_prompt_str); | ||
351 | kdb_printf("%s", buffer); | ||
352 | } else if (tab != 2 && count > 0) { | ||
353 | len_tmp = strlen(p_tmp); | ||
354 | strncpy(p_tmp+len_tmp, cp, lastchar-cp+1); | ||
355 | len_tmp = strlen(p_tmp); | ||
356 | strncpy(cp, p_tmp+len, len_tmp-len + 1); | ||
357 | len = len_tmp - len; | ||
358 | kdb_printf("%s", cp); | ||
359 | cp += len; | ||
360 | lastchar += len; | ||
361 | } | ||
362 | kdb_nextline = 1; /* reset output line number */ | ||
363 | break; | ||
364 | default: | ||
365 | if (key >= 32 && lastchar < bufend) { | ||
366 | if (cp < lastchar) { | ||
367 | memcpy(tmpbuffer, cp, lastchar - cp); | ||
368 | memcpy(cp+1, tmpbuffer, lastchar - cp); | ||
369 | *++lastchar = '\0'; | ||
370 | *cp = key; | ||
371 | kdb_printf("%s\r", cp); | ||
372 | ++cp; | ||
373 | tmp = *cp; | ||
374 | *cp = '\0'; | ||
375 | kdb_printf(kdb_prompt_str); | ||
376 | kdb_printf("%s", buffer); | ||
377 | *cp = tmp; | ||
378 | } else { | ||
379 | *++lastchar = '\0'; | ||
380 | *cp++ = key; | ||
381 | /* The kgdb transition check will hide | ||
382 | * printed characters if we think that | ||
383 | * kgdb is connecting, until the check | ||
384 | * fails */ | ||
385 | if (!KDB_STATE(KGDB_TRANS)) | ||
386 | kgdb_transition_check(buffer); | ||
387 | else | ||
388 | kdb_printf("%c", key); | ||
389 | } | ||
390 | /* Special escape to kgdb */ | ||
391 | if (lastchar - buffer >= 5 && | ||
392 | strcmp(lastchar - 5, "$?#3f") == 0) { | ||
393 | strcpy(buffer, "kgdb"); | ||
394 | KDB_STATE_SET(DOING_KGDB); | ||
395 | return buffer; | ||
396 | } | ||
397 | if (lastchar - buffer >= 14 && | ||
398 | strcmp(lastchar - 14, "$qSupported#37") == 0) { | ||
399 | strcpy(buffer, "kgdb"); | ||
400 | KDB_STATE_SET(DOING_KGDB2); | ||
401 | return buffer; | ||
402 | } | ||
403 | } | ||
404 | break; | ||
405 | } | ||
406 | goto poll_again; | ||
407 | } | ||
408 | |||
409 | /* | ||
410 | * kdb_getstr | ||
411 | * | ||
412 | * Print the prompt string and read a command from the | ||
413 | * input device. | ||
414 | * | ||
415 | * Parameters: | ||
416 | * buffer Address of buffer to receive command | ||
417 | * bufsize Size of buffer in bytes | ||
418 | * prompt Pointer to string to use as prompt string | ||
419 | * Returns: | ||
420 | * Pointer to command buffer. | ||
421 | * Locking: | ||
422 | * None. | ||
423 | * Remarks: | ||
424 | * For SMP kernels, the processor number will be | ||
425 | * substituted for %d, %x or %o in the prompt. | ||
426 | */ | ||
427 | |||
428 | char *kdb_getstr(char *buffer, size_t bufsize, char *prompt) | ||
429 | { | ||
430 | if (prompt && kdb_prompt_str != prompt) | ||
431 | strncpy(kdb_prompt_str, prompt, CMD_BUFLEN); | ||
432 | kdb_printf(kdb_prompt_str); | ||
433 | kdb_nextline = 1; /* Prompt and input resets line number */ | ||
434 | return kdb_read(buffer, bufsize); | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * kdb_input_flush | ||
439 | * | ||
440 | * Get rid of any buffered console input. | ||
441 | * | ||
442 | * Parameters: | ||
443 | * none | ||
444 | * Returns: | ||
445 | * nothing | ||
446 | * Locking: | ||
447 | * none | ||
448 | * Remarks: | ||
449 | * Call this function whenever you want to flush input. If there is any | ||
450 | * outstanding input, it ignores all characters until there has been no | ||
451 | * data for approximately 1ms. | ||
452 | */ | ||
453 | |||
454 | static void kdb_input_flush(void) | ||
455 | { | ||
456 | get_char_func *f; | ||
457 | int res; | ||
458 | int flush_delay = 1; | ||
459 | while (flush_delay) { | ||
460 | flush_delay--; | ||
461 | empty: | ||
462 | touch_nmi_watchdog(); | ||
463 | for (f = &kdb_poll_funcs[0]; *f; ++f) { | ||
464 | res = (*f)(); | ||
465 | if (res != -1) { | ||
466 | flush_delay = 1; | ||
467 | goto empty; | ||
468 | } | ||
469 | } | ||
470 | if (flush_delay) | ||
471 | mdelay(1); | ||
472 | } | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * kdb_printf | ||
477 | * | ||
478 | * Print a string to the output device(s). | ||
479 | * | ||
480 | * Parameters: | ||
481 | * printf-like format and optional args. | ||
482 | * Returns: | ||
483 | * 0 | ||
484 | * Locking: | ||
485 | * None. | ||
486 | * Remarks: | ||
487 | * use 'kdbcons->write()' to avoid polluting 'log_buf' with | ||
488 | * kdb output. | ||
489 | * | ||
490 | * If the user is doing a cmd args | grep srch | ||
491 | * then kdb_grepping_flag is set. | ||
492 | * In that case we need to accumulate full lines (ending in \n) before | ||
493 | * searching for the pattern. | ||
494 | */ | ||
495 | |||
496 | static char kdb_buffer[256]; /* A bit too big to go on stack */ | ||
497 | static char *next_avail = kdb_buffer; | ||
498 | static int size_avail; | ||
499 | static int suspend_grep; | ||
500 | |||
501 | /* | ||
502 | * search arg1 to see if it contains arg2 | ||
503 | * (kdmain.c provides flags for ^pat and pat$) | ||
504 | * | ||
505 | * return 1 for found, 0 for not found | ||
506 | */ | ||
507 | static int kdb_search_string(char *searched, char *searchfor) | ||
508 | { | ||
509 | char firstchar, *cp; | ||
510 | int len1, len2; | ||
511 | |||
512 | /* not counting the newline at the end of "searched" */ | ||
513 | len1 = strlen(searched)-1; | ||
514 | len2 = strlen(searchfor); | ||
515 | if (len1 < len2) | ||
516 | return 0; | ||
517 | if (kdb_grep_leading && kdb_grep_trailing && len1 != len2) | ||
518 | return 0; | ||
519 | if (kdb_grep_leading) { | ||
520 | if (!strncmp(searched, searchfor, len2)) | ||
521 | return 1; | ||
522 | } else if (kdb_grep_trailing) { | ||
523 | if (!strncmp(searched+len1-len2, searchfor, len2)) | ||
524 | return 1; | ||
525 | } else { | ||
526 | firstchar = *searchfor; | ||
527 | cp = searched; | ||
528 | while ((cp = strchr(cp, firstchar))) { | ||
529 | if (!strncmp(cp, searchfor, len2)) | ||
530 | return 1; | ||
531 | cp++; | ||
532 | } | ||
533 | } | ||
534 | return 0; | ||
535 | } | ||
536 | |||
537 | int vkdb_printf(const char *fmt, va_list ap) | ||
538 | { | ||
539 | int diag; | ||
540 | int linecount; | ||
541 | int logging, saved_loglevel = 0; | ||
542 | int saved_trap_printk; | ||
543 | int got_printf_lock = 0; | ||
544 | int retlen = 0; | ||
545 | int fnd, len; | ||
546 | char *cp, *cp2, *cphold = NULL, replaced_byte = ' '; | ||
547 | char *moreprompt = "more> "; | ||
548 | struct console *c = console_drivers; | ||
549 | static DEFINE_SPINLOCK(kdb_printf_lock); | ||
550 | unsigned long uninitialized_var(flags); | ||
551 | |||
552 | preempt_disable(); | ||
553 | saved_trap_printk = kdb_trap_printk; | ||
554 | kdb_trap_printk = 0; | ||
555 | |||
556 | /* Serialize kdb_printf if multiple cpus try to write at once. | ||
557 | * But if any cpu goes recursive in kdb, just print the output, | ||
558 | * even if it is interleaved with any other text. | ||
559 | */ | ||
560 | if (!KDB_STATE(PRINTF_LOCK)) { | ||
561 | KDB_STATE_SET(PRINTF_LOCK); | ||
562 | spin_lock_irqsave(&kdb_printf_lock, flags); | ||
563 | got_printf_lock = 1; | ||
564 | atomic_inc(&kdb_event); | ||
565 | } else { | ||
566 | __acquire(kdb_printf_lock); | ||
567 | } | ||
568 | |||
569 | diag = kdbgetintenv("LINES", &linecount); | ||
570 | if (diag || linecount <= 1) | ||
571 | linecount = 24; | ||
572 | |||
573 | diag = kdbgetintenv("LOGGING", &logging); | ||
574 | if (diag) | ||
575 | logging = 0; | ||
576 | |||
577 | if (!kdb_grepping_flag || suspend_grep) { | ||
578 | /* normally, every vsnprintf starts a new buffer */ | ||
579 | next_avail = kdb_buffer; | ||
580 | size_avail = sizeof(kdb_buffer); | ||
581 | } | ||
582 | vsnprintf(next_avail, size_avail, fmt, ap); | ||
583 | |||
584 | /* | ||
585 | * If kdb_parse() found that the command was cmd xxx | grep yyy | ||
586 | * then kdb_grepping_flag is set, and kdb_grep_string contains yyy | ||
587 | * | ||
588 | * Accumulate the print data up to a newline before searching it. | ||
589 | * (vsnprintf does null-terminate the string that it generates) | ||
590 | */ | ||
591 | |||
592 | /* skip the search if prints are temporarily unconditional */ | ||
593 | if (!suspend_grep && kdb_grepping_flag) { | ||
594 | cp = strchr(kdb_buffer, '\n'); | ||
595 | if (!cp) { | ||
596 | /* | ||
597 | * Special cases that don't end with newlines | ||
598 | * but should be written without one: | ||
599 | * The "[nn]kdb> " prompt should | ||
600 | * appear at the front of the buffer. | ||
601 | * | ||
602 | * The "[nn]more " prompt should also be | ||
603 | * (MOREPROMPT -> moreprompt) | ||
604 | * written * but we print that ourselves, | ||
605 | * we set the suspend_grep flag to make | ||
606 | * it unconditional. | ||
607 | * | ||
608 | */ | ||
609 | if (next_avail == kdb_buffer) { | ||
610 | /* | ||
611 | * these should occur after a newline, | ||
612 | * so they will be at the front of the | ||
613 | * buffer | ||
614 | */ | ||
615 | cp2 = kdb_buffer; | ||
616 | len = strlen(kdb_prompt_str); | ||
617 | if (!strncmp(cp2, kdb_prompt_str, len)) { | ||
618 | /* | ||
619 | * We're about to start a new | ||
620 | * command, so we can go back | ||
621 | * to normal mode. | ||
622 | */ | ||
623 | kdb_grepping_flag = 0; | ||
624 | goto kdb_printit; | ||
625 | } | ||
626 | } | ||
627 | /* no newline; don't search/write the buffer | ||
628 | until one is there */ | ||
629 | len = strlen(kdb_buffer); | ||
630 | next_avail = kdb_buffer + len; | ||
631 | size_avail = sizeof(kdb_buffer) - len; | ||
632 | goto kdb_print_out; | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | * The newline is present; print through it or discard | ||
637 | * it, depending on the results of the search. | ||
638 | */ | ||
639 | cp++; /* to byte after the newline */ | ||
640 | replaced_byte = *cp; /* remember what/where it was */ | ||
641 | cphold = cp; | ||
642 | *cp = '\0'; /* end the string for our search */ | ||
643 | |||
644 | /* | ||
645 | * We now have a newline at the end of the string | ||
646 | * Only continue with this output if it contains the | ||
647 | * search string. | ||
648 | */ | ||
649 | fnd = kdb_search_string(kdb_buffer, kdb_grep_string); | ||
650 | if (!fnd) { | ||
651 | /* | ||
652 | * At this point the complete line at the start | ||
653 | * of kdb_buffer can be discarded, as it does | ||
654 | * not contain what the user is looking for. | ||
655 | * Shift the buffer left. | ||
656 | */ | ||
657 | *cphold = replaced_byte; | ||
658 | strcpy(kdb_buffer, cphold); | ||
659 | len = strlen(kdb_buffer); | ||
660 | next_avail = kdb_buffer + len; | ||
661 | size_avail = sizeof(kdb_buffer) - len; | ||
662 | goto kdb_print_out; | ||
663 | } | ||
664 | /* | ||
665 | * at this point the string is a full line and | ||
666 | * should be printed, up to the null. | ||
667 | */ | ||
668 | } | ||
669 | kdb_printit: | ||
670 | |||
671 | /* | ||
672 | * Write to all consoles. | ||
673 | */ | ||
674 | retlen = strlen(kdb_buffer); | ||
675 | if (!dbg_kdb_mode && kgdb_connected) { | ||
676 | gdbstub_msg_write(kdb_buffer, retlen); | ||
677 | } else { | ||
678 | if (!dbg_io_ops->is_console) { | ||
679 | len = strlen(kdb_buffer); | ||
680 | cp = kdb_buffer; | ||
681 | while (len--) { | ||
682 | dbg_io_ops->write_char(*cp); | ||
683 | cp++; | ||
684 | } | ||
685 | } | ||
686 | while (c) { | ||
687 | c->write(c, kdb_buffer, retlen); | ||
688 | touch_nmi_watchdog(); | ||
689 | c = c->next; | ||
690 | } | ||
691 | } | ||
692 | if (logging) { | ||
693 | saved_loglevel = console_loglevel; | ||
694 | console_loglevel = 0; | ||
695 | printk(KERN_INFO "%s", kdb_buffer); | ||
696 | } | ||
697 | |||
698 | if (KDB_STATE(PAGER) && strchr(kdb_buffer, '\n')) | ||
699 | kdb_nextline++; | ||
700 | |||
701 | /* check for having reached the LINES number of printed lines */ | ||
702 | if (kdb_nextline == linecount) { | ||
703 | char buf1[16] = ""; | ||
704 | #if defined(CONFIG_SMP) | ||
705 | char buf2[32]; | ||
706 | #endif | ||
707 | |||
708 | /* Watch out for recursion here. Any routine that calls | ||
709 | * kdb_printf will come back through here. And kdb_read | ||
710 | * uses kdb_printf to echo on serial consoles ... | ||
711 | */ | ||
712 | kdb_nextline = 1; /* In case of recursion */ | ||
713 | |||
714 | /* | ||
715 | * Pause until cr. | ||
716 | */ | ||
717 | moreprompt = kdbgetenv("MOREPROMPT"); | ||
718 | if (moreprompt == NULL) | ||
719 | moreprompt = "more> "; | ||
720 | |||
721 | #if defined(CONFIG_SMP) | ||
722 | if (strchr(moreprompt, '%')) { | ||
723 | sprintf(buf2, moreprompt, get_cpu()); | ||
724 | put_cpu(); | ||
725 | moreprompt = buf2; | ||
726 | } | ||
727 | #endif | ||
728 | |||
729 | kdb_input_flush(); | ||
730 | c = console_drivers; | ||
731 | |||
732 | if (!dbg_io_ops->is_console) { | ||
733 | len = strlen(moreprompt); | ||
734 | cp = moreprompt; | ||
735 | while (len--) { | ||
736 | dbg_io_ops->write_char(*cp); | ||
737 | cp++; | ||
738 | } | ||
739 | } | ||
740 | while (c) { | ||
741 | c->write(c, moreprompt, strlen(moreprompt)); | ||
742 | touch_nmi_watchdog(); | ||
743 | c = c->next; | ||
744 | } | ||
745 | |||
746 | if (logging) | ||
747 | printk("%s", moreprompt); | ||
748 | |||
749 | kdb_read(buf1, 2); /* '2' indicates to return | ||
750 | * immediately after getting one key. */ | ||
751 | kdb_nextline = 1; /* Really set output line 1 */ | ||
752 | |||
753 | /* empty and reset the buffer: */ | ||
754 | kdb_buffer[0] = '\0'; | ||
755 | next_avail = kdb_buffer; | ||
756 | size_avail = sizeof(kdb_buffer); | ||
757 | if ((buf1[0] == 'q') || (buf1[0] == 'Q')) { | ||
758 | /* user hit q or Q */ | ||
759 | KDB_FLAG_SET(CMD_INTERRUPT); /* command interrupted */ | ||
760 | KDB_STATE_CLEAR(PAGER); | ||
761 | /* end of command output; back to normal mode */ | ||
762 | kdb_grepping_flag = 0; | ||
763 | kdb_printf("\n"); | ||
764 | } else if (buf1[0] == ' ') { | ||
765 | kdb_printf("\n"); | ||
766 | suspend_grep = 1; /* for this recursion */ | ||
767 | } else if (buf1[0] == '\n') { | ||
768 | kdb_nextline = linecount - 1; | ||
769 | kdb_printf("\r"); | ||
770 | suspend_grep = 1; /* for this recursion */ | ||
771 | } else if (buf1[0] && buf1[0] != '\n') { | ||
772 | /* user hit something other than enter */ | ||
773 | suspend_grep = 1; /* for this recursion */ | ||
774 | kdb_printf("\nOnly 'q' or 'Q' are processed at more " | ||
775 | "prompt, input ignored\n"); | ||
776 | } else if (kdb_grepping_flag) { | ||
777 | /* user hit enter */ | ||
778 | suspend_grep = 1; /* for this recursion */ | ||
779 | kdb_printf("\n"); | ||
780 | } | ||
781 | kdb_input_flush(); | ||
782 | } | ||
783 | |||
784 | /* | ||
785 | * For grep searches, shift the printed string left. | ||
786 | * replaced_byte contains the character that was overwritten with | ||
787 | * the terminating null, and cphold points to the null. | ||
788 | * Then adjust the notion of available space in the buffer. | ||
789 | */ | ||
790 | if (kdb_grepping_flag && !suspend_grep) { | ||
791 | *cphold = replaced_byte; | ||
792 | strcpy(kdb_buffer, cphold); | ||
793 | len = strlen(kdb_buffer); | ||
794 | next_avail = kdb_buffer + len; | ||
795 | size_avail = sizeof(kdb_buffer) - len; | ||
796 | } | ||
797 | |||
798 | kdb_print_out: | ||
799 | suspend_grep = 0; /* end of what may have been a recursive call */ | ||
800 | if (logging) | ||
801 | console_loglevel = saved_loglevel; | ||
802 | if (KDB_STATE(PRINTF_LOCK) && got_printf_lock) { | ||
803 | got_printf_lock = 0; | ||
804 | spin_unlock_irqrestore(&kdb_printf_lock, flags); | ||
805 | KDB_STATE_CLEAR(PRINTF_LOCK); | ||
806 | atomic_dec(&kdb_event); | ||
807 | } else { | ||
808 | __release(kdb_printf_lock); | ||
809 | } | ||
810 | kdb_trap_printk = saved_trap_printk; | ||
811 | preempt_enable(); | ||
812 | return retlen; | ||
813 | } | ||
814 | |||
815 | int kdb_printf(const char *fmt, ...) | ||
816 | { | ||
817 | va_list ap; | ||
818 | int r; | ||
819 | |||
820 | va_start(ap, fmt); | ||
821 | r = vkdb_printf(fmt, ap); | ||
822 | va_end(ap); | ||
823 | |||
824 | return r; | ||
825 | } | ||
826 | |||
diff --git a/kernel/debug/kdb/kdb_keyboard.c b/kernel/debug/kdb/kdb_keyboard.c new file mode 100644 index 000000000000..4bca634975c0 --- /dev/null +++ b/kernel/debug/kdb/kdb_keyboard.c | |||
@@ -0,0 +1,212 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Dependent Console I/O handler | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. | ||
6 | * | ||
7 | * Copyright (c) 1999-2006 Silicon Graphics, Inc. All Rights Reserved. | ||
8 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
9 | */ | ||
10 | |||
11 | #include <linux/kdb.h> | ||
12 | #include <linux/keyboard.h> | ||
13 | #include <linux/ctype.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/io.h> | ||
16 | |||
17 | /* Keyboard Controller Registers on normal PCs. */ | ||
18 | |||
19 | #define KBD_STATUS_REG 0x64 /* Status register (R) */ | ||
20 | #define KBD_DATA_REG 0x60 /* Keyboard data register (R/W) */ | ||
21 | |||
22 | /* Status Register Bits */ | ||
23 | |||
24 | #define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */ | ||
25 | #define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */ | ||
26 | |||
27 | static int kbd_exists; | ||
28 | |||
29 | /* | ||
30 | * Check if the keyboard controller has a keypress for us. | ||
31 | * Some parts (Enter Release, LED change) are still blocking polled here, | ||
32 | * but hopefully they are all short. | ||
33 | */ | ||
34 | int kdb_get_kbd_char(void) | ||
35 | { | ||
36 | int scancode, scanstatus; | ||
37 | static int shift_lock; /* CAPS LOCK state (0-off, 1-on) */ | ||
38 | static int shift_key; /* Shift next keypress */ | ||
39 | static int ctrl_key; | ||
40 | u_short keychar; | ||
41 | |||
42 | if (KDB_FLAG(NO_I8042) || KDB_FLAG(NO_VT_CONSOLE) || | ||
43 | (inb(KBD_STATUS_REG) == 0xff && inb(KBD_DATA_REG) == 0xff)) { | ||
44 | kbd_exists = 0; | ||
45 | return -1; | ||
46 | } | ||
47 | kbd_exists = 1; | ||
48 | |||
49 | if ((inb(KBD_STATUS_REG) & KBD_STAT_OBF) == 0) | ||
50 | return -1; | ||
51 | |||
52 | /* | ||
53 | * Fetch the scancode | ||
54 | */ | ||
55 | scancode = inb(KBD_DATA_REG); | ||
56 | scanstatus = inb(KBD_STATUS_REG); | ||
57 | |||
58 | /* | ||
59 | * Ignore mouse events. | ||
60 | */ | ||
61 | if (scanstatus & KBD_STAT_MOUSE_OBF) | ||
62 | return -1; | ||
63 | |||
64 | /* | ||
65 | * Ignore release, trigger on make | ||
66 | * (except for shift keys, where we want to | ||
67 | * keep the shift state so long as the key is | ||
68 | * held down). | ||
69 | */ | ||
70 | |||
71 | if (((scancode&0x7f) == 0x2a) || ((scancode&0x7f) == 0x36)) { | ||
72 | /* | ||
73 | * Next key may use shift table | ||
74 | */ | ||
75 | if ((scancode & 0x80) == 0) | ||
76 | shift_key = 1; | ||
77 | else | ||
78 | shift_key = 0; | ||
79 | return -1; | ||
80 | } | ||
81 | |||
82 | if ((scancode&0x7f) == 0x1d) { | ||
83 | /* | ||
84 | * Left ctrl key | ||
85 | */ | ||
86 | if ((scancode & 0x80) == 0) | ||
87 | ctrl_key = 1; | ||
88 | else | ||
89 | ctrl_key = 0; | ||
90 | return -1; | ||
91 | } | ||
92 | |||
93 | if ((scancode & 0x80) != 0) | ||
94 | return -1; | ||
95 | |||
96 | scancode &= 0x7f; | ||
97 | |||
98 | /* | ||
99 | * Translate scancode | ||
100 | */ | ||
101 | |||
102 | if (scancode == 0x3a) { | ||
103 | /* | ||
104 | * Toggle caps lock | ||
105 | */ | ||
106 | shift_lock ^= 1; | ||
107 | |||
108 | #ifdef KDB_BLINK_LED | ||
109 | kdb_toggleled(0x4); | ||
110 | #endif | ||
111 | return -1; | ||
112 | } | ||
113 | |||
114 | if (scancode == 0x0e) { | ||
115 | /* | ||
116 | * Backspace | ||
117 | */ | ||
118 | return 8; | ||
119 | } | ||
120 | |||
121 | /* Special Key */ | ||
122 | switch (scancode) { | ||
123 | case 0xF: /* Tab */ | ||
124 | return 9; | ||
125 | case 0x53: /* Del */ | ||
126 | return 4; | ||
127 | case 0x47: /* Home */ | ||
128 | return 1; | ||
129 | case 0x4F: /* End */ | ||
130 | return 5; | ||
131 | case 0x4B: /* Left */ | ||
132 | return 2; | ||
133 | case 0x48: /* Up */ | ||
134 | return 16; | ||
135 | case 0x50: /* Down */ | ||
136 | return 14; | ||
137 | case 0x4D: /* Right */ | ||
138 | return 6; | ||
139 | } | ||
140 | |||
141 | if (scancode == 0xe0) | ||
142 | return -1; | ||
143 | |||
144 | /* | ||
145 | * For Japanese 86/106 keyboards | ||
146 | * See comment in drivers/char/pc_keyb.c. | ||
147 | * - Masahiro Adegawa | ||
148 | */ | ||
149 | if (scancode == 0x73) | ||
150 | scancode = 0x59; | ||
151 | else if (scancode == 0x7d) | ||
152 | scancode = 0x7c; | ||
153 | |||
154 | if (!shift_lock && !shift_key && !ctrl_key) { | ||
155 | keychar = plain_map[scancode]; | ||
156 | } else if ((shift_lock || shift_key) && key_maps[1]) { | ||
157 | keychar = key_maps[1][scancode]; | ||
158 | } else if (ctrl_key && key_maps[4]) { | ||
159 | keychar = key_maps[4][scancode]; | ||
160 | } else { | ||
161 | keychar = 0x0020; | ||
162 | kdb_printf("Unknown state/scancode (%d)\n", scancode); | ||
163 | } | ||
164 | keychar &= 0x0fff; | ||
165 | if (keychar == '\t') | ||
166 | keychar = ' '; | ||
167 | switch (KTYP(keychar)) { | ||
168 | case KT_LETTER: | ||
169 | case KT_LATIN: | ||
170 | if (isprint(keychar)) | ||
171 | break; /* printable characters */ | ||
172 | /* drop through */ | ||
173 | case KT_SPEC: | ||
174 | if (keychar == K_ENTER) | ||
175 | break; | ||
176 | /* drop through */ | ||
177 | default: | ||
178 | return -1; /* ignore unprintables */ | ||
179 | } | ||
180 | |||
181 | if ((scancode & 0x7f) == 0x1c) { | ||
182 | /* | ||
183 | * enter key. All done. Absorb the release scancode. | ||
184 | */ | ||
185 | while ((inb(KBD_STATUS_REG) & KBD_STAT_OBF) == 0) | ||
186 | ; | ||
187 | |||
188 | /* | ||
189 | * Fetch the scancode | ||
190 | */ | ||
191 | scancode = inb(KBD_DATA_REG); | ||
192 | scanstatus = inb(KBD_STATUS_REG); | ||
193 | |||
194 | while (scanstatus & KBD_STAT_MOUSE_OBF) { | ||
195 | scancode = inb(KBD_DATA_REG); | ||
196 | scanstatus = inb(KBD_STATUS_REG); | ||
197 | } | ||
198 | |||
199 | if (scancode != 0x9c) { | ||
200 | /* | ||
201 | * Wasn't an enter-release, why not? | ||
202 | */ | ||
203 | kdb_printf("kdb: expected enter got 0x%x status 0x%x\n", | ||
204 | scancode, scanstatus); | ||
205 | } | ||
206 | |||
207 | return 13; | ||
208 | } | ||
209 | |||
210 | return keychar & 0xff; | ||
211 | } | ||
212 | EXPORT_SYMBOL_GPL(kdb_get_kbd_char); | ||
diff --git a/kernel/debug/kdb/kdb_main.c b/kernel/debug/kdb/kdb_main.c new file mode 100644 index 000000000000..b724c791b6d4 --- /dev/null +++ b/kernel/debug/kdb/kdb_main.c | |||
@@ -0,0 +1,2849 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Main Code | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> | ||
10 | * Xscale (R) modifications copyright (C) 2003 Intel Corporation. | ||
11 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
12 | */ | ||
13 | |||
14 | #include <linux/ctype.h> | ||
15 | #include <linux/string.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/reboot.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/sysrq.h> | ||
20 | #include <linux/smp.h> | ||
21 | #include <linux/utsname.h> | ||
22 | #include <linux/vmalloc.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/mm.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/kallsyms.h> | ||
27 | #include <linux/kgdb.h> | ||
28 | #include <linux/kdb.h> | ||
29 | #include <linux/notifier.h> | ||
30 | #include <linux/interrupt.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/nmi.h> | ||
33 | #include <linux/time.h> | ||
34 | #include <linux/ptrace.h> | ||
35 | #include <linux/sysctl.h> | ||
36 | #include <linux/cpu.h> | ||
37 | #include <linux/kdebug.h> | ||
38 | #include <linux/proc_fs.h> | ||
39 | #include <linux/uaccess.h> | ||
40 | #include <linux/slab.h> | ||
41 | #include "kdb_private.h" | ||
42 | |||
43 | #define GREP_LEN 256 | ||
44 | char kdb_grep_string[GREP_LEN]; | ||
45 | int kdb_grepping_flag; | ||
46 | EXPORT_SYMBOL(kdb_grepping_flag); | ||
47 | int kdb_grep_leading; | ||
48 | int kdb_grep_trailing; | ||
49 | |||
50 | /* | ||
51 | * Kernel debugger state flags | ||
52 | */ | ||
53 | int kdb_flags; | ||
54 | atomic_t kdb_event; | ||
55 | |||
56 | /* | ||
57 | * kdb_lock protects updates to kdb_initial_cpu. Used to | ||
58 | * single thread processors through the kernel debugger. | ||
59 | */ | ||
60 | int kdb_initial_cpu = -1; /* cpu number that owns kdb */ | ||
61 | int kdb_nextline = 1; | ||
62 | int kdb_state; /* General KDB state */ | ||
63 | |||
64 | struct task_struct *kdb_current_task; | ||
65 | EXPORT_SYMBOL(kdb_current_task); | ||
66 | struct pt_regs *kdb_current_regs; | ||
67 | |||
68 | const char *kdb_diemsg; | ||
69 | static int kdb_go_count; | ||
70 | #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC | ||
71 | static unsigned int kdb_continue_catastrophic = | ||
72 | CONFIG_KDB_CONTINUE_CATASTROPHIC; | ||
73 | #else | ||
74 | static unsigned int kdb_continue_catastrophic; | ||
75 | #endif | ||
76 | |||
77 | /* kdb_commands describes the available commands. */ | ||
78 | static kdbtab_t *kdb_commands; | ||
79 | #define KDB_BASE_CMD_MAX 50 | ||
80 | static int kdb_max_commands = KDB_BASE_CMD_MAX; | ||
81 | static kdbtab_t kdb_base_commands[50]; | ||
82 | #define for_each_kdbcmd(cmd, num) \ | ||
83 | for ((cmd) = kdb_base_commands, (num) = 0; \ | ||
84 | num < kdb_max_commands; \ | ||
85 | num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++) | ||
86 | |||
87 | typedef struct _kdbmsg { | ||
88 | int km_diag; /* kdb diagnostic */ | ||
89 | char *km_msg; /* Corresponding message text */ | ||
90 | } kdbmsg_t; | ||
91 | |||
92 | #define KDBMSG(msgnum, text) \ | ||
93 | { KDB_##msgnum, text } | ||
94 | |||
95 | static kdbmsg_t kdbmsgs[] = { | ||
96 | KDBMSG(NOTFOUND, "Command Not Found"), | ||
97 | KDBMSG(ARGCOUNT, "Improper argument count, see usage."), | ||
98 | KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " | ||
99 | "8 is only allowed on 64 bit systems"), | ||
100 | KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), | ||
101 | KDBMSG(NOTENV, "Cannot find environment variable"), | ||
102 | KDBMSG(NOENVVALUE, "Environment variable should have value"), | ||
103 | KDBMSG(NOTIMP, "Command not implemented"), | ||
104 | KDBMSG(ENVFULL, "Environment full"), | ||
105 | KDBMSG(ENVBUFFULL, "Environment buffer full"), | ||
106 | KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), | ||
107 | #ifdef CONFIG_CPU_XSCALE | ||
108 | KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), | ||
109 | #else | ||
110 | KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), | ||
111 | #endif | ||
112 | KDBMSG(DUPBPT, "Duplicate breakpoint address"), | ||
113 | KDBMSG(BPTNOTFOUND, "Breakpoint not found"), | ||
114 | KDBMSG(BADMODE, "Invalid IDMODE"), | ||
115 | KDBMSG(BADINT, "Illegal numeric value"), | ||
116 | KDBMSG(INVADDRFMT, "Invalid symbolic address format"), | ||
117 | KDBMSG(BADREG, "Invalid register name"), | ||
118 | KDBMSG(BADCPUNUM, "Invalid cpu number"), | ||
119 | KDBMSG(BADLENGTH, "Invalid length field"), | ||
120 | KDBMSG(NOBP, "No Breakpoint exists"), | ||
121 | KDBMSG(BADADDR, "Invalid address"), | ||
122 | }; | ||
123 | #undef KDBMSG | ||
124 | |||
125 | static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); | ||
126 | |||
127 | |||
128 | /* | ||
129 | * Initial environment. This is all kept static and local to | ||
130 | * this file. We don't want to rely on the memory allocation | ||
131 | * mechanisms in the kernel, so we use a very limited allocate-only | ||
132 | * heap for new and altered environment variables. The entire | ||
133 | * environment is limited to a fixed number of entries (add more | ||
134 | * to __env[] if required) and a fixed amount of heap (add more to | ||
135 | * KDB_ENVBUFSIZE if required). | ||
136 | */ | ||
137 | |||
138 | static char *__env[] = { | ||
139 | #if defined(CONFIG_SMP) | ||
140 | "PROMPT=[%d]kdb> ", | ||
141 | "MOREPROMPT=[%d]more> ", | ||
142 | #else | ||
143 | "PROMPT=kdb> ", | ||
144 | "MOREPROMPT=more> ", | ||
145 | #endif | ||
146 | "RADIX=16", | ||
147 | "MDCOUNT=8", /* lines of md output */ | ||
148 | "BTARGS=9", /* 9 possible args in bt */ | ||
149 | KDB_PLATFORM_ENV, | ||
150 | "DTABCOUNT=30", | ||
151 | "NOSECT=1", | ||
152 | (char *)0, | ||
153 | (char *)0, | ||
154 | (char *)0, | ||
155 | (char *)0, | ||
156 | (char *)0, | ||
157 | (char *)0, | ||
158 | (char *)0, | ||
159 | (char *)0, | ||
160 | (char *)0, | ||
161 | (char *)0, | ||
162 | (char *)0, | ||
163 | (char *)0, | ||
164 | (char *)0, | ||
165 | (char *)0, | ||
166 | (char *)0, | ||
167 | (char *)0, | ||
168 | (char *)0, | ||
169 | (char *)0, | ||
170 | (char *)0, | ||
171 | (char *)0, | ||
172 | (char *)0, | ||
173 | (char *)0, | ||
174 | (char *)0, | ||
175 | }; | ||
176 | |||
177 | static const int __nenv = (sizeof(__env) / sizeof(char *)); | ||
178 | |||
179 | struct task_struct *kdb_curr_task(int cpu) | ||
180 | { | ||
181 | struct task_struct *p = curr_task(cpu); | ||
182 | #ifdef _TIF_MCA_INIT | ||
183 | if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) | ||
184 | p = krp->p; | ||
185 | #endif | ||
186 | return p; | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * kdbgetenv - This function will return the character string value of | ||
191 | * an environment variable. | ||
192 | * Parameters: | ||
193 | * match A character string representing an environment variable. | ||
194 | * Returns: | ||
195 | * NULL No environment variable matches 'match' | ||
196 | * char* Pointer to string value of environment variable. | ||
197 | */ | ||
198 | char *kdbgetenv(const char *match) | ||
199 | { | ||
200 | char **ep = __env; | ||
201 | int matchlen = strlen(match); | ||
202 | int i; | ||
203 | |||
204 | for (i = 0; i < __nenv; i++) { | ||
205 | char *e = *ep++; | ||
206 | |||
207 | if (!e) | ||
208 | continue; | ||
209 | |||
210 | if ((strncmp(match, e, matchlen) == 0) | ||
211 | && ((e[matchlen] == '\0') | ||
212 | || (e[matchlen] == '='))) { | ||
213 | char *cp = strchr(e, '='); | ||
214 | return cp ? ++cp : ""; | ||
215 | } | ||
216 | } | ||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * kdballocenv - This function is used to allocate bytes for | ||
222 | * environment entries. | ||
223 | * Parameters: | ||
224 | * match A character string representing a numeric value | ||
225 | * Outputs: | ||
226 | * *value the unsigned long representation of the env variable 'match' | ||
227 | * Returns: | ||
228 | * Zero on success, a kdb diagnostic on failure. | ||
229 | * Remarks: | ||
230 | * We use a static environment buffer (envbuffer) to hold the values | ||
231 | * of dynamically generated environment variables (see kdb_set). Buffer | ||
232 | * space once allocated is never free'd, so over time, the amount of space | ||
233 | * (currently 512 bytes) will be exhausted if env variables are changed | ||
234 | * frequently. | ||
235 | */ | ||
236 | static char *kdballocenv(size_t bytes) | ||
237 | { | ||
238 | #define KDB_ENVBUFSIZE 512 | ||
239 | static char envbuffer[KDB_ENVBUFSIZE]; | ||
240 | static int envbufsize; | ||
241 | char *ep = NULL; | ||
242 | |||
243 | if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { | ||
244 | ep = &envbuffer[envbufsize]; | ||
245 | envbufsize += bytes; | ||
246 | } | ||
247 | return ep; | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * kdbgetulenv - This function will return the value of an unsigned | ||
252 | * long-valued environment variable. | ||
253 | * Parameters: | ||
254 | * match A character string representing a numeric value | ||
255 | * Outputs: | ||
256 | * *value the unsigned long represntation of the env variable 'match' | ||
257 | * Returns: | ||
258 | * Zero on success, a kdb diagnostic on failure. | ||
259 | */ | ||
260 | static int kdbgetulenv(const char *match, unsigned long *value) | ||
261 | { | ||
262 | char *ep; | ||
263 | |||
264 | ep = kdbgetenv(match); | ||
265 | if (!ep) | ||
266 | return KDB_NOTENV; | ||
267 | if (strlen(ep) == 0) | ||
268 | return KDB_NOENVVALUE; | ||
269 | |||
270 | *value = simple_strtoul(ep, NULL, 0); | ||
271 | |||
272 | return 0; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * kdbgetintenv - This function will return the value of an | ||
277 | * integer-valued environment variable. | ||
278 | * Parameters: | ||
279 | * match A character string representing an integer-valued env variable | ||
280 | * Outputs: | ||
281 | * *value the integer representation of the environment variable 'match' | ||
282 | * Returns: | ||
283 | * Zero on success, a kdb diagnostic on failure. | ||
284 | */ | ||
285 | int kdbgetintenv(const char *match, int *value) | ||
286 | { | ||
287 | unsigned long val; | ||
288 | int diag; | ||
289 | |||
290 | diag = kdbgetulenv(match, &val); | ||
291 | if (!diag) | ||
292 | *value = (int) val; | ||
293 | return diag; | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * kdbgetularg - This function will convert a numeric string into an | ||
298 | * unsigned long value. | ||
299 | * Parameters: | ||
300 | * arg A character string representing a numeric value | ||
301 | * Outputs: | ||
302 | * *value the unsigned long represntation of arg. | ||
303 | * Returns: | ||
304 | * Zero on success, a kdb diagnostic on failure. | ||
305 | */ | ||
306 | int kdbgetularg(const char *arg, unsigned long *value) | ||
307 | { | ||
308 | char *endp; | ||
309 | unsigned long val; | ||
310 | |||
311 | val = simple_strtoul(arg, &endp, 0); | ||
312 | |||
313 | if (endp == arg) { | ||
314 | /* | ||
315 | * Try base 16, for us folks too lazy to type the | ||
316 | * leading 0x... | ||
317 | */ | ||
318 | val = simple_strtoul(arg, &endp, 16); | ||
319 | if (endp == arg) | ||
320 | return KDB_BADINT; | ||
321 | } | ||
322 | |||
323 | *value = val; | ||
324 | |||
325 | return 0; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * kdb_set - This function implements the 'set' command. Alter an | ||
330 | * existing environment variable or create a new one. | ||
331 | */ | ||
332 | int kdb_set(int argc, const char **argv) | ||
333 | { | ||
334 | int i; | ||
335 | char *ep; | ||
336 | size_t varlen, vallen; | ||
337 | |||
338 | /* | ||
339 | * we can be invoked two ways: | ||
340 | * set var=value argv[1]="var", argv[2]="value" | ||
341 | * set var = value argv[1]="var", argv[2]="=", argv[3]="value" | ||
342 | * - if the latter, shift 'em down. | ||
343 | */ | ||
344 | if (argc == 3) { | ||
345 | argv[2] = argv[3]; | ||
346 | argc--; | ||
347 | } | ||
348 | |||
349 | if (argc != 2) | ||
350 | return KDB_ARGCOUNT; | ||
351 | |||
352 | /* | ||
353 | * Check for internal variables | ||
354 | */ | ||
355 | if (strcmp(argv[1], "KDBDEBUG") == 0) { | ||
356 | unsigned int debugflags; | ||
357 | char *cp; | ||
358 | |||
359 | debugflags = simple_strtoul(argv[2], &cp, 0); | ||
360 | if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { | ||
361 | kdb_printf("kdb: illegal debug flags '%s'\n", | ||
362 | argv[2]); | ||
363 | return 0; | ||
364 | } | ||
365 | kdb_flags = (kdb_flags & | ||
366 | ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) | ||
367 | | (debugflags << KDB_DEBUG_FLAG_SHIFT); | ||
368 | |||
369 | return 0; | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Tokenizer squashed the '=' sign. argv[1] is variable | ||
374 | * name, argv[2] = value. | ||
375 | */ | ||
376 | varlen = strlen(argv[1]); | ||
377 | vallen = strlen(argv[2]); | ||
378 | ep = kdballocenv(varlen + vallen + 2); | ||
379 | if (ep == (char *)0) | ||
380 | return KDB_ENVBUFFULL; | ||
381 | |||
382 | sprintf(ep, "%s=%s", argv[1], argv[2]); | ||
383 | |||
384 | ep[varlen+vallen+1] = '\0'; | ||
385 | |||
386 | for (i = 0; i < __nenv; i++) { | ||
387 | if (__env[i] | ||
388 | && ((strncmp(__env[i], argv[1], varlen) == 0) | ||
389 | && ((__env[i][varlen] == '\0') | ||
390 | || (__env[i][varlen] == '=')))) { | ||
391 | __env[i] = ep; | ||
392 | return 0; | ||
393 | } | ||
394 | } | ||
395 | |||
396 | /* | ||
397 | * Wasn't existing variable. Fit into slot. | ||
398 | */ | ||
399 | for (i = 0; i < __nenv-1; i++) { | ||
400 | if (__env[i] == (char *)0) { | ||
401 | __env[i] = ep; | ||
402 | return 0; | ||
403 | } | ||
404 | } | ||
405 | |||
406 | return KDB_ENVFULL; | ||
407 | } | ||
408 | |||
409 | static int kdb_check_regs(void) | ||
410 | { | ||
411 | if (!kdb_current_regs) { | ||
412 | kdb_printf("No current kdb registers." | ||
413 | " You may need to select another task\n"); | ||
414 | return KDB_BADREG; | ||
415 | } | ||
416 | return 0; | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * kdbgetaddrarg - This function is responsible for parsing an | ||
421 | * address-expression and returning the value of the expression, | ||
422 | * symbol name, and offset to the caller. | ||
423 | * | ||
424 | * The argument may consist of a numeric value (decimal or | ||
425 | * hexidecimal), a symbol name, a register name (preceeded by the | ||
426 | * percent sign), an environment variable with a numeric value | ||
427 | * (preceeded by a dollar sign) or a simple arithmetic expression | ||
428 | * consisting of a symbol name, +/-, and a numeric constant value | ||
429 | * (offset). | ||
430 | * Parameters: | ||
431 | * argc - count of arguments in argv | ||
432 | * argv - argument vector | ||
433 | * *nextarg - index to next unparsed argument in argv[] | ||
434 | * regs - Register state at time of KDB entry | ||
435 | * Outputs: | ||
436 | * *value - receives the value of the address-expression | ||
437 | * *offset - receives the offset specified, if any | ||
438 | * *name - receives the symbol name, if any | ||
439 | * *nextarg - index to next unparsed argument in argv[] | ||
440 | * Returns: | ||
441 | * zero is returned on success, a kdb diagnostic code is | ||
442 | * returned on error. | ||
443 | */ | ||
444 | int kdbgetaddrarg(int argc, const char **argv, int *nextarg, | ||
445 | unsigned long *value, long *offset, | ||
446 | char **name) | ||
447 | { | ||
448 | unsigned long addr; | ||
449 | unsigned long off = 0; | ||
450 | int positive; | ||
451 | int diag; | ||
452 | int found = 0; | ||
453 | char *symname; | ||
454 | char symbol = '\0'; | ||
455 | char *cp; | ||
456 | kdb_symtab_t symtab; | ||
457 | |||
458 | /* | ||
459 | * Process arguments which follow the following syntax: | ||
460 | * | ||
461 | * symbol | numeric-address [+/- numeric-offset] | ||
462 | * %register | ||
463 | * $environment-variable | ||
464 | */ | ||
465 | |||
466 | if (*nextarg > argc) | ||
467 | return KDB_ARGCOUNT; | ||
468 | |||
469 | symname = (char *)argv[*nextarg]; | ||
470 | |||
471 | /* | ||
472 | * If there is no whitespace between the symbol | ||
473 | * or address and the '+' or '-' symbols, we | ||
474 | * remember the character and replace it with a | ||
475 | * null so the symbol/value can be properly parsed | ||
476 | */ | ||
477 | cp = strpbrk(symname, "+-"); | ||
478 | if (cp != NULL) { | ||
479 | symbol = *cp; | ||
480 | *cp++ = '\0'; | ||
481 | } | ||
482 | |||
483 | if (symname[0] == '$') { | ||
484 | diag = kdbgetulenv(&symname[1], &addr); | ||
485 | if (diag) | ||
486 | return diag; | ||
487 | } else if (symname[0] == '%') { | ||
488 | diag = kdb_check_regs(); | ||
489 | if (diag) | ||
490 | return diag; | ||
491 | /* Implement register values with % at a later time as it is | ||
492 | * arch optional. | ||
493 | */ | ||
494 | return KDB_NOTIMP; | ||
495 | } else { | ||
496 | found = kdbgetsymval(symname, &symtab); | ||
497 | if (found) { | ||
498 | addr = symtab.sym_start; | ||
499 | } else { | ||
500 | diag = kdbgetularg(argv[*nextarg], &addr); | ||
501 | if (diag) | ||
502 | return diag; | ||
503 | } | ||
504 | } | ||
505 | |||
506 | if (!found) | ||
507 | found = kdbnearsym(addr, &symtab); | ||
508 | |||
509 | (*nextarg)++; | ||
510 | |||
511 | if (name) | ||
512 | *name = symname; | ||
513 | if (value) | ||
514 | *value = addr; | ||
515 | if (offset && name && *name) | ||
516 | *offset = addr - symtab.sym_start; | ||
517 | |||
518 | if ((*nextarg > argc) | ||
519 | && (symbol == '\0')) | ||
520 | return 0; | ||
521 | |||
522 | /* | ||
523 | * check for +/- and offset | ||
524 | */ | ||
525 | |||
526 | if (symbol == '\0') { | ||
527 | if ((argv[*nextarg][0] != '+') | ||
528 | && (argv[*nextarg][0] != '-')) { | ||
529 | /* | ||
530 | * Not our argument. Return. | ||
531 | */ | ||
532 | return 0; | ||
533 | } else { | ||
534 | positive = (argv[*nextarg][0] == '+'); | ||
535 | (*nextarg)++; | ||
536 | } | ||
537 | } else | ||
538 | positive = (symbol == '+'); | ||
539 | |||
540 | /* | ||
541 | * Now there must be an offset! | ||
542 | */ | ||
543 | if ((*nextarg > argc) | ||
544 | && (symbol == '\0')) { | ||
545 | return KDB_INVADDRFMT; | ||
546 | } | ||
547 | |||
548 | if (!symbol) { | ||
549 | cp = (char *)argv[*nextarg]; | ||
550 | (*nextarg)++; | ||
551 | } | ||
552 | |||
553 | diag = kdbgetularg(cp, &off); | ||
554 | if (diag) | ||
555 | return diag; | ||
556 | |||
557 | if (!positive) | ||
558 | off = -off; | ||
559 | |||
560 | if (offset) | ||
561 | *offset += off; | ||
562 | |||
563 | if (value) | ||
564 | *value += off; | ||
565 | |||
566 | return 0; | ||
567 | } | ||
568 | |||
569 | static void kdb_cmderror(int diag) | ||
570 | { | ||
571 | int i; | ||
572 | |||
573 | if (diag >= 0) { | ||
574 | kdb_printf("no error detected (diagnostic is %d)\n", diag); | ||
575 | return; | ||
576 | } | ||
577 | |||
578 | for (i = 0; i < __nkdb_err; i++) { | ||
579 | if (kdbmsgs[i].km_diag == diag) { | ||
580 | kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); | ||
581 | return; | ||
582 | } | ||
583 | } | ||
584 | |||
585 | kdb_printf("Unknown diag %d\n", -diag); | ||
586 | } | ||
587 | |||
588 | /* | ||
589 | * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' | ||
590 | * command which defines one command as a set of other commands, | ||
591 | * terminated by endefcmd. kdb_defcmd processes the initial | ||
592 | * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for | ||
593 | * the following commands until 'endefcmd'. | ||
594 | * Inputs: | ||
595 | * argc argument count | ||
596 | * argv argument vector | ||
597 | * Returns: | ||
598 | * zero for success, a kdb diagnostic if error | ||
599 | */ | ||
600 | struct defcmd_set { | ||
601 | int count; | ||
602 | int usable; | ||
603 | char *name; | ||
604 | char *usage; | ||
605 | char *help; | ||
606 | char **command; | ||
607 | }; | ||
608 | static struct defcmd_set *defcmd_set; | ||
609 | static int defcmd_set_count; | ||
610 | static int defcmd_in_progress; | ||
611 | |||
612 | /* Forward references */ | ||
613 | static int kdb_exec_defcmd(int argc, const char **argv); | ||
614 | |||
615 | static int kdb_defcmd2(const char *cmdstr, const char *argv0) | ||
616 | { | ||
617 | struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; | ||
618 | char **save_command = s->command; | ||
619 | if (strcmp(argv0, "endefcmd") == 0) { | ||
620 | defcmd_in_progress = 0; | ||
621 | if (!s->count) | ||
622 | s->usable = 0; | ||
623 | if (s->usable) | ||
624 | kdb_register(s->name, kdb_exec_defcmd, | ||
625 | s->usage, s->help, 0); | ||
626 | return 0; | ||
627 | } | ||
628 | if (!s->usable) | ||
629 | return KDB_NOTIMP; | ||
630 | s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); | ||
631 | if (!s->command) { | ||
632 | kdb_printf("Could not allocate new kdb_defcmd table for %s\n", | ||
633 | cmdstr); | ||
634 | s->usable = 0; | ||
635 | return KDB_NOTIMP; | ||
636 | } | ||
637 | memcpy(s->command, save_command, s->count * sizeof(*(s->command))); | ||
638 | s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); | ||
639 | kfree(save_command); | ||
640 | return 0; | ||
641 | } | ||
642 | |||
643 | static int kdb_defcmd(int argc, const char **argv) | ||
644 | { | ||
645 | struct defcmd_set *save_defcmd_set = defcmd_set, *s; | ||
646 | if (defcmd_in_progress) { | ||
647 | kdb_printf("kdb: nested defcmd detected, assuming missing " | ||
648 | "endefcmd\n"); | ||
649 | kdb_defcmd2("endefcmd", "endefcmd"); | ||
650 | } | ||
651 | if (argc == 0) { | ||
652 | int i; | ||
653 | for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { | ||
654 | kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, | ||
655 | s->usage, s->help); | ||
656 | for (i = 0; i < s->count; ++i) | ||
657 | kdb_printf("%s", s->command[i]); | ||
658 | kdb_printf("endefcmd\n"); | ||
659 | } | ||
660 | return 0; | ||
661 | } | ||
662 | if (argc != 3) | ||
663 | return KDB_ARGCOUNT; | ||
664 | defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), | ||
665 | GFP_KDB); | ||
666 | if (!defcmd_set) { | ||
667 | kdb_printf("Could not allocate new defcmd_set entry for %s\n", | ||
668 | argv[1]); | ||
669 | defcmd_set = save_defcmd_set; | ||
670 | return KDB_NOTIMP; | ||
671 | } | ||
672 | memcpy(defcmd_set, save_defcmd_set, | ||
673 | defcmd_set_count * sizeof(*defcmd_set)); | ||
674 | kfree(save_defcmd_set); | ||
675 | s = defcmd_set + defcmd_set_count; | ||
676 | memset(s, 0, sizeof(*s)); | ||
677 | s->usable = 1; | ||
678 | s->name = kdb_strdup(argv[1], GFP_KDB); | ||
679 | s->usage = kdb_strdup(argv[2], GFP_KDB); | ||
680 | s->help = kdb_strdup(argv[3], GFP_KDB); | ||
681 | if (s->usage[0] == '"') { | ||
682 | strcpy(s->usage, s->usage+1); | ||
683 | s->usage[strlen(s->usage)-1] = '\0'; | ||
684 | } | ||
685 | if (s->help[0] == '"') { | ||
686 | strcpy(s->help, s->help+1); | ||
687 | s->help[strlen(s->help)-1] = '\0'; | ||
688 | } | ||
689 | ++defcmd_set_count; | ||
690 | defcmd_in_progress = 1; | ||
691 | return 0; | ||
692 | } | ||
693 | |||
694 | /* | ||
695 | * kdb_exec_defcmd - Execute the set of commands associated with this | ||
696 | * defcmd name. | ||
697 | * Inputs: | ||
698 | * argc argument count | ||
699 | * argv argument vector | ||
700 | * Returns: | ||
701 | * zero for success, a kdb diagnostic if error | ||
702 | */ | ||
703 | static int kdb_exec_defcmd(int argc, const char **argv) | ||
704 | { | ||
705 | int i, ret; | ||
706 | struct defcmd_set *s; | ||
707 | if (argc != 0) | ||
708 | return KDB_ARGCOUNT; | ||
709 | for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { | ||
710 | if (strcmp(s->name, argv[0]) == 0) | ||
711 | break; | ||
712 | } | ||
713 | if (i == defcmd_set_count) { | ||
714 | kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", | ||
715 | argv[0]); | ||
716 | return KDB_NOTIMP; | ||
717 | } | ||
718 | for (i = 0; i < s->count; ++i) { | ||
719 | /* Recursive use of kdb_parse, do not use argv after | ||
720 | * this point */ | ||
721 | argv = NULL; | ||
722 | kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); | ||
723 | ret = kdb_parse(s->command[i]); | ||
724 | if (ret) | ||
725 | return ret; | ||
726 | } | ||
727 | return 0; | ||
728 | } | ||
729 | |||
730 | /* Command history */ | ||
731 | #define KDB_CMD_HISTORY_COUNT 32 | ||
732 | #define CMD_BUFLEN 200 /* kdb_printf: max printline | ||
733 | * size == 256 */ | ||
734 | static unsigned int cmd_head, cmd_tail; | ||
735 | static unsigned int cmdptr; | ||
736 | static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; | ||
737 | static char cmd_cur[CMD_BUFLEN]; | ||
738 | |||
739 | /* | ||
740 | * The "str" argument may point to something like | grep xyz | ||
741 | */ | ||
742 | static void parse_grep(const char *str) | ||
743 | { | ||
744 | int len; | ||
745 | char *cp = (char *)str, *cp2; | ||
746 | |||
747 | /* sanity check: we should have been called with the \ first */ | ||
748 | if (*cp != '|') | ||
749 | return; | ||
750 | cp++; | ||
751 | while (isspace(*cp)) | ||
752 | cp++; | ||
753 | if (strncmp(cp, "grep ", 5)) { | ||
754 | kdb_printf("invalid 'pipe', see grephelp\n"); | ||
755 | return; | ||
756 | } | ||
757 | cp += 5; | ||
758 | while (isspace(*cp)) | ||
759 | cp++; | ||
760 | cp2 = strchr(cp, '\n'); | ||
761 | if (cp2) | ||
762 | *cp2 = '\0'; /* remove the trailing newline */ | ||
763 | len = strlen(cp); | ||
764 | if (len == 0) { | ||
765 | kdb_printf("invalid 'pipe', see grephelp\n"); | ||
766 | return; | ||
767 | } | ||
768 | /* now cp points to a nonzero length search string */ | ||
769 | if (*cp == '"') { | ||
770 | /* allow it be "x y z" by removing the "'s - there must | ||
771 | be two of them */ | ||
772 | cp++; | ||
773 | cp2 = strchr(cp, '"'); | ||
774 | if (!cp2) { | ||
775 | kdb_printf("invalid quoted string, see grephelp\n"); | ||
776 | return; | ||
777 | } | ||
778 | *cp2 = '\0'; /* end the string where the 2nd " was */ | ||
779 | } | ||
780 | kdb_grep_leading = 0; | ||
781 | if (*cp == '^') { | ||
782 | kdb_grep_leading = 1; | ||
783 | cp++; | ||
784 | } | ||
785 | len = strlen(cp); | ||
786 | kdb_grep_trailing = 0; | ||
787 | if (*(cp+len-1) == '$') { | ||
788 | kdb_grep_trailing = 1; | ||
789 | *(cp+len-1) = '\0'; | ||
790 | } | ||
791 | len = strlen(cp); | ||
792 | if (!len) | ||
793 | return; | ||
794 | if (len >= GREP_LEN) { | ||
795 | kdb_printf("search string too long\n"); | ||
796 | return; | ||
797 | } | ||
798 | strcpy(kdb_grep_string, cp); | ||
799 | kdb_grepping_flag++; | ||
800 | return; | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * kdb_parse - Parse the command line, search the command table for a | ||
805 | * matching command and invoke the command function. This | ||
806 | * function may be called recursively, if it is, the second call | ||
807 | * will overwrite argv and cbuf. It is the caller's | ||
808 | * responsibility to save their argv if they recursively call | ||
809 | * kdb_parse(). | ||
810 | * Parameters: | ||
811 | * cmdstr The input command line to be parsed. | ||
812 | * regs The registers at the time kdb was entered. | ||
813 | * Returns: | ||
814 | * Zero for success, a kdb diagnostic if failure. | ||
815 | * Remarks: | ||
816 | * Limited to 20 tokens. | ||
817 | * | ||
818 | * Real rudimentary tokenization. Basically only whitespace | ||
819 | * is considered a token delimeter (but special consideration | ||
820 | * is taken of the '=' sign as used by the 'set' command). | ||
821 | * | ||
822 | * The algorithm used to tokenize the input string relies on | ||
823 | * there being at least one whitespace (or otherwise useless) | ||
824 | * character between tokens as the character immediately following | ||
825 | * the token is altered in-place to a null-byte to terminate the | ||
826 | * token string. | ||
827 | */ | ||
828 | |||
829 | #define MAXARGC 20 | ||
830 | |||
831 | int kdb_parse(const char *cmdstr) | ||
832 | { | ||
833 | static char *argv[MAXARGC]; | ||
834 | static int argc; | ||
835 | static char cbuf[CMD_BUFLEN+2]; | ||
836 | char *cp; | ||
837 | char *cpp, quoted; | ||
838 | kdbtab_t *tp; | ||
839 | int i, escaped, ignore_errors = 0, check_grep; | ||
840 | |||
841 | /* | ||
842 | * First tokenize the command string. | ||
843 | */ | ||
844 | cp = (char *)cmdstr; | ||
845 | kdb_grepping_flag = check_grep = 0; | ||
846 | |||
847 | if (KDB_FLAG(CMD_INTERRUPT)) { | ||
848 | /* Previous command was interrupted, newline must not | ||
849 | * repeat the command */ | ||
850 | KDB_FLAG_CLEAR(CMD_INTERRUPT); | ||
851 | KDB_STATE_SET(PAGER); | ||
852 | argc = 0; /* no repeat */ | ||
853 | } | ||
854 | |||
855 | if (*cp != '\n' && *cp != '\0') { | ||
856 | argc = 0; | ||
857 | cpp = cbuf; | ||
858 | while (*cp) { | ||
859 | /* skip whitespace */ | ||
860 | while (isspace(*cp)) | ||
861 | cp++; | ||
862 | if ((*cp == '\0') || (*cp == '\n') || | ||
863 | (*cp == '#' && !defcmd_in_progress)) | ||
864 | break; | ||
865 | /* special case: check for | grep pattern */ | ||
866 | if (*cp == '|') { | ||
867 | check_grep++; | ||
868 | break; | ||
869 | } | ||
870 | if (cpp >= cbuf + CMD_BUFLEN) { | ||
871 | kdb_printf("kdb_parse: command buffer " | ||
872 | "overflow, command ignored\n%s\n", | ||
873 | cmdstr); | ||
874 | return KDB_NOTFOUND; | ||
875 | } | ||
876 | if (argc >= MAXARGC - 1) { | ||
877 | kdb_printf("kdb_parse: too many arguments, " | ||
878 | "command ignored\n%s\n", cmdstr); | ||
879 | return KDB_NOTFOUND; | ||
880 | } | ||
881 | argv[argc++] = cpp; | ||
882 | escaped = 0; | ||
883 | quoted = '\0'; | ||
884 | /* Copy to next unquoted and unescaped | ||
885 | * whitespace or '=' */ | ||
886 | while (*cp && *cp != '\n' && | ||
887 | (escaped || quoted || !isspace(*cp))) { | ||
888 | if (cpp >= cbuf + CMD_BUFLEN) | ||
889 | break; | ||
890 | if (escaped) { | ||
891 | escaped = 0; | ||
892 | *cpp++ = *cp++; | ||
893 | continue; | ||
894 | } | ||
895 | if (*cp == '\\') { | ||
896 | escaped = 1; | ||
897 | ++cp; | ||
898 | continue; | ||
899 | } | ||
900 | if (*cp == quoted) | ||
901 | quoted = '\0'; | ||
902 | else if (*cp == '\'' || *cp == '"') | ||
903 | quoted = *cp; | ||
904 | *cpp = *cp++; | ||
905 | if (*cpp == '=' && !quoted) | ||
906 | break; | ||
907 | ++cpp; | ||
908 | } | ||
909 | *cpp++ = '\0'; /* Squash a ws or '=' character */ | ||
910 | } | ||
911 | } | ||
912 | if (!argc) | ||
913 | return 0; | ||
914 | if (check_grep) | ||
915 | parse_grep(cp); | ||
916 | if (defcmd_in_progress) { | ||
917 | int result = kdb_defcmd2(cmdstr, argv[0]); | ||
918 | if (!defcmd_in_progress) { | ||
919 | argc = 0; /* avoid repeat on endefcmd */ | ||
920 | *(argv[0]) = '\0'; | ||
921 | } | ||
922 | return result; | ||
923 | } | ||
924 | if (argv[0][0] == '-' && argv[0][1] && | ||
925 | (argv[0][1] < '0' || argv[0][1] > '9')) { | ||
926 | ignore_errors = 1; | ||
927 | ++argv[0]; | ||
928 | } | ||
929 | |||
930 | for_each_kdbcmd(tp, i) { | ||
931 | if (tp->cmd_name) { | ||
932 | /* | ||
933 | * If this command is allowed to be abbreviated, | ||
934 | * check to see if this is it. | ||
935 | */ | ||
936 | |||
937 | if (tp->cmd_minlen | ||
938 | && (strlen(argv[0]) <= tp->cmd_minlen)) { | ||
939 | if (strncmp(argv[0], | ||
940 | tp->cmd_name, | ||
941 | tp->cmd_minlen) == 0) { | ||
942 | break; | ||
943 | } | ||
944 | } | ||
945 | |||
946 | if (strcmp(argv[0], tp->cmd_name) == 0) | ||
947 | break; | ||
948 | } | ||
949 | } | ||
950 | |||
951 | /* | ||
952 | * If we don't find a command by this name, see if the first | ||
953 | * few characters of this match any of the known commands. | ||
954 | * e.g., md1c20 should match md. | ||
955 | */ | ||
956 | if (i == kdb_max_commands) { | ||
957 | for_each_kdbcmd(tp, i) { | ||
958 | if (tp->cmd_name) { | ||
959 | if (strncmp(argv[0], | ||
960 | tp->cmd_name, | ||
961 | strlen(tp->cmd_name)) == 0) { | ||
962 | break; | ||
963 | } | ||
964 | } | ||
965 | } | ||
966 | } | ||
967 | |||
968 | if (i < kdb_max_commands) { | ||
969 | int result; | ||
970 | KDB_STATE_SET(CMD); | ||
971 | result = (*tp->cmd_func)(argc-1, (const char **)argv); | ||
972 | if (result && ignore_errors && result > KDB_CMD_GO) | ||
973 | result = 0; | ||
974 | KDB_STATE_CLEAR(CMD); | ||
975 | switch (tp->cmd_repeat) { | ||
976 | case KDB_REPEAT_NONE: | ||
977 | argc = 0; | ||
978 | if (argv[0]) | ||
979 | *(argv[0]) = '\0'; | ||
980 | break; | ||
981 | case KDB_REPEAT_NO_ARGS: | ||
982 | argc = 1; | ||
983 | if (argv[1]) | ||
984 | *(argv[1]) = '\0'; | ||
985 | break; | ||
986 | case KDB_REPEAT_WITH_ARGS: | ||
987 | break; | ||
988 | } | ||
989 | return result; | ||
990 | } | ||
991 | |||
992 | /* | ||
993 | * If the input with which we were presented does not | ||
994 | * map to an existing command, attempt to parse it as an | ||
995 | * address argument and display the result. Useful for | ||
996 | * obtaining the address of a variable, or the nearest symbol | ||
997 | * to an address contained in a register. | ||
998 | */ | ||
999 | { | ||
1000 | unsigned long value; | ||
1001 | char *name = NULL; | ||
1002 | long offset; | ||
1003 | int nextarg = 0; | ||
1004 | |||
1005 | if (kdbgetaddrarg(0, (const char **)argv, &nextarg, | ||
1006 | &value, &offset, &name)) { | ||
1007 | return KDB_NOTFOUND; | ||
1008 | } | ||
1009 | |||
1010 | kdb_printf("%s = ", argv[0]); | ||
1011 | kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); | ||
1012 | kdb_printf("\n"); | ||
1013 | return 0; | ||
1014 | } | ||
1015 | } | ||
1016 | |||
1017 | |||
1018 | static int handle_ctrl_cmd(char *cmd) | ||
1019 | { | ||
1020 | #define CTRL_P 16 | ||
1021 | #define CTRL_N 14 | ||
1022 | |||
1023 | /* initial situation */ | ||
1024 | if (cmd_head == cmd_tail) | ||
1025 | return 0; | ||
1026 | switch (*cmd) { | ||
1027 | case CTRL_P: | ||
1028 | if (cmdptr != cmd_tail) | ||
1029 | cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; | ||
1030 | strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); | ||
1031 | return 1; | ||
1032 | case CTRL_N: | ||
1033 | if (cmdptr != cmd_head) | ||
1034 | cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; | ||
1035 | strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); | ||
1036 | return 1; | ||
1037 | } | ||
1038 | return 0; | ||
1039 | } | ||
1040 | |||
1041 | /* | ||
1042 | * kdb_reboot - This function implements the 'reboot' command. Reboot | ||
1043 | * the system immediately, or loop for ever on failure. | ||
1044 | */ | ||
1045 | static int kdb_reboot(int argc, const char **argv) | ||
1046 | { | ||
1047 | emergency_restart(); | ||
1048 | kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); | ||
1049 | while (1) | ||
1050 | cpu_relax(); | ||
1051 | /* NOTREACHED */ | ||
1052 | return 0; | ||
1053 | } | ||
1054 | |||
1055 | static void kdb_dumpregs(struct pt_regs *regs) | ||
1056 | { | ||
1057 | int old_lvl = console_loglevel; | ||
1058 | console_loglevel = 15; | ||
1059 | kdb_trap_printk++; | ||
1060 | show_regs(regs); | ||
1061 | kdb_trap_printk--; | ||
1062 | kdb_printf("\n"); | ||
1063 | console_loglevel = old_lvl; | ||
1064 | } | ||
1065 | |||
1066 | void kdb_set_current_task(struct task_struct *p) | ||
1067 | { | ||
1068 | kdb_current_task = p; | ||
1069 | |||
1070 | if (kdb_task_has_cpu(p)) { | ||
1071 | kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); | ||
1072 | return; | ||
1073 | } | ||
1074 | kdb_current_regs = NULL; | ||
1075 | } | ||
1076 | |||
1077 | /* | ||
1078 | * kdb_local - The main code for kdb. This routine is invoked on a | ||
1079 | * specific processor, it is not global. The main kdb() routine | ||
1080 | * ensures that only one processor at a time is in this routine. | ||
1081 | * This code is called with the real reason code on the first | ||
1082 | * entry to a kdb session, thereafter it is called with reason | ||
1083 | * SWITCH, even if the user goes back to the original cpu. | ||
1084 | * Inputs: | ||
1085 | * reason The reason KDB was invoked | ||
1086 | * error The hardware-defined error code | ||
1087 | * regs The exception frame at time of fault/breakpoint. | ||
1088 | * db_result Result code from the break or debug point. | ||
1089 | * Returns: | ||
1090 | * 0 KDB was invoked for an event which it wasn't responsible | ||
1091 | * 1 KDB handled the event for which it was invoked. | ||
1092 | * KDB_CMD_GO User typed 'go'. | ||
1093 | * KDB_CMD_CPU User switched to another cpu. | ||
1094 | * KDB_CMD_SS Single step. | ||
1095 | * KDB_CMD_SSB Single step until branch. | ||
1096 | */ | ||
1097 | static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, | ||
1098 | kdb_dbtrap_t db_result) | ||
1099 | { | ||
1100 | char *cmdbuf; | ||
1101 | int diag; | ||
1102 | struct task_struct *kdb_current = | ||
1103 | kdb_curr_task(raw_smp_processor_id()); | ||
1104 | |||
1105 | KDB_DEBUG_STATE("kdb_local 1", reason); | ||
1106 | kdb_go_count = 0; | ||
1107 | if (reason == KDB_REASON_DEBUG) { | ||
1108 | /* special case below */ | ||
1109 | } else { | ||
1110 | kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", | ||
1111 | kdb_current, kdb_current->pid); | ||
1112 | #if defined(CONFIG_SMP) | ||
1113 | kdb_printf("on processor %d ", raw_smp_processor_id()); | ||
1114 | #endif | ||
1115 | } | ||
1116 | |||
1117 | switch (reason) { | ||
1118 | case KDB_REASON_DEBUG: | ||
1119 | { | ||
1120 | /* | ||
1121 | * If re-entering kdb after a single step | ||
1122 | * command, don't print the message. | ||
1123 | */ | ||
1124 | switch (db_result) { | ||
1125 | case KDB_DB_BPT: | ||
1126 | kdb_printf("\nEntering kdb (0x%p, pid %d) ", | ||
1127 | kdb_current, kdb_current->pid); | ||
1128 | #if defined(CONFIG_SMP) | ||
1129 | kdb_printf("on processor %d ", raw_smp_processor_id()); | ||
1130 | #endif | ||
1131 | kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", | ||
1132 | instruction_pointer(regs)); | ||
1133 | break; | ||
1134 | case KDB_DB_SSB: | ||
1135 | /* | ||
1136 | * In the midst of ssb command. Just return. | ||
1137 | */ | ||
1138 | KDB_DEBUG_STATE("kdb_local 3", reason); | ||
1139 | return KDB_CMD_SSB; /* Continue with SSB command */ | ||
1140 | |||
1141 | break; | ||
1142 | case KDB_DB_SS: | ||
1143 | break; | ||
1144 | case KDB_DB_SSBPT: | ||
1145 | KDB_DEBUG_STATE("kdb_local 4", reason); | ||
1146 | return 1; /* kdba_db_trap did the work */ | ||
1147 | default: | ||
1148 | kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", | ||
1149 | db_result); | ||
1150 | break; | ||
1151 | } | ||
1152 | |||
1153 | } | ||
1154 | break; | ||
1155 | case KDB_REASON_ENTER: | ||
1156 | if (KDB_STATE(KEYBOARD)) | ||
1157 | kdb_printf("due to Keyboard Entry\n"); | ||
1158 | else | ||
1159 | kdb_printf("due to KDB_ENTER()\n"); | ||
1160 | break; | ||
1161 | case KDB_REASON_KEYBOARD: | ||
1162 | KDB_STATE_SET(KEYBOARD); | ||
1163 | kdb_printf("due to Keyboard Entry\n"); | ||
1164 | break; | ||
1165 | case KDB_REASON_ENTER_SLAVE: | ||
1166 | /* drop through, slaves only get released via cpu switch */ | ||
1167 | case KDB_REASON_SWITCH: | ||
1168 | kdb_printf("due to cpu switch\n"); | ||
1169 | break; | ||
1170 | case KDB_REASON_OOPS: | ||
1171 | kdb_printf("Oops: %s\n", kdb_diemsg); | ||
1172 | kdb_printf("due to oops @ " kdb_machreg_fmt "\n", | ||
1173 | instruction_pointer(regs)); | ||
1174 | kdb_dumpregs(regs); | ||
1175 | break; | ||
1176 | case KDB_REASON_NMI: | ||
1177 | kdb_printf("due to NonMaskable Interrupt @ " | ||
1178 | kdb_machreg_fmt "\n", | ||
1179 | instruction_pointer(regs)); | ||
1180 | kdb_dumpregs(regs); | ||
1181 | break; | ||
1182 | case KDB_REASON_SSTEP: | ||
1183 | case KDB_REASON_BREAK: | ||
1184 | kdb_printf("due to %s @ " kdb_machreg_fmt "\n", | ||
1185 | reason == KDB_REASON_BREAK ? | ||
1186 | "Breakpoint" : "SS trap", instruction_pointer(regs)); | ||
1187 | /* | ||
1188 | * Determine if this breakpoint is one that we | ||
1189 | * are interested in. | ||
1190 | */ | ||
1191 | if (db_result != KDB_DB_BPT) { | ||
1192 | kdb_printf("kdb: error return from kdba_bp_trap: %d\n", | ||
1193 | db_result); | ||
1194 | KDB_DEBUG_STATE("kdb_local 6", reason); | ||
1195 | return 0; /* Not for us, dismiss it */ | ||
1196 | } | ||
1197 | break; | ||
1198 | case KDB_REASON_RECURSE: | ||
1199 | kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", | ||
1200 | instruction_pointer(regs)); | ||
1201 | break; | ||
1202 | default: | ||
1203 | kdb_printf("kdb: unexpected reason code: %d\n", reason); | ||
1204 | KDB_DEBUG_STATE("kdb_local 8", reason); | ||
1205 | return 0; /* Not for us, dismiss it */ | ||
1206 | } | ||
1207 | |||
1208 | while (1) { | ||
1209 | /* | ||
1210 | * Initialize pager context. | ||
1211 | */ | ||
1212 | kdb_nextline = 1; | ||
1213 | KDB_STATE_CLEAR(SUPPRESS); | ||
1214 | |||
1215 | cmdbuf = cmd_cur; | ||
1216 | *cmdbuf = '\0'; | ||
1217 | *(cmd_hist[cmd_head]) = '\0'; | ||
1218 | |||
1219 | if (KDB_FLAG(ONLY_DO_DUMP)) { | ||
1220 | /* kdb is off but a catastrophic error requires a dump. | ||
1221 | * Take the dump and reboot. | ||
1222 | * Turn on logging so the kdb output appears in the log | ||
1223 | * buffer in the dump. | ||
1224 | */ | ||
1225 | const char *setargs[] = { "set", "LOGGING", "1" }; | ||
1226 | kdb_set(2, setargs); | ||
1227 | kdb_reboot(0, NULL); | ||
1228 | /*NOTREACHED*/ | ||
1229 | } | ||
1230 | |||
1231 | do_full_getstr: | ||
1232 | #if defined(CONFIG_SMP) | ||
1233 | snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), | ||
1234 | raw_smp_processor_id()); | ||
1235 | #else | ||
1236 | snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); | ||
1237 | #endif | ||
1238 | if (defcmd_in_progress) | ||
1239 | strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); | ||
1240 | |||
1241 | /* | ||
1242 | * Fetch command from keyboard | ||
1243 | */ | ||
1244 | cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); | ||
1245 | if (*cmdbuf != '\n') { | ||
1246 | if (*cmdbuf < 32) { | ||
1247 | if (cmdptr == cmd_head) { | ||
1248 | strncpy(cmd_hist[cmd_head], cmd_cur, | ||
1249 | CMD_BUFLEN); | ||
1250 | *(cmd_hist[cmd_head] + | ||
1251 | strlen(cmd_hist[cmd_head])-1) = '\0'; | ||
1252 | } | ||
1253 | if (!handle_ctrl_cmd(cmdbuf)) | ||
1254 | *(cmd_cur+strlen(cmd_cur)-1) = '\0'; | ||
1255 | cmdbuf = cmd_cur; | ||
1256 | goto do_full_getstr; | ||
1257 | } else { | ||
1258 | strncpy(cmd_hist[cmd_head], cmd_cur, | ||
1259 | CMD_BUFLEN); | ||
1260 | } | ||
1261 | |||
1262 | cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; | ||
1263 | if (cmd_head == cmd_tail) | ||
1264 | cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; | ||
1265 | } | ||
1266 | |||
1267 | cmdptr = cmd_head; | ||
1268 | diag = kdb_parse(cmdbuf); | ||
1269 | if (diag == KDB_NOTFOUND) { | ||
1270 | kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); | ||
1271 | diag = 0; | ||
1272 | } | ||
1273 | if (diag == KDB_CMD_GO | ||
1274 | || diag == KDB_CMD_CPU | ||
1275 | || diag == KDB_CMD_SS | ||
1276 | || diag == KDB_CMD_SSB | ||
1277 | || diag == KDB_CMD_KGDB) | ||
1278 | break; | ||
1279 | |||
1280 | if (diag) | ||
1281 | kdb_cmderror(diag); | ||
1282 | } | ||
1283 | KDB_DEBUG_STATE("kdb_local 9", diag); | ||
1284 | return diag; | ||
1285 | } | ||
1286 | |||
1287 | |||
1288 | /* | ||
1289 | * kdb_print_state - Print the state data for the current processor | ||
1290 | * for debugging. | ||
1291 | * Inputs: | ||
1292 | * text Identifies the debug point | ||
1293 | * value Any integer value to be printed, e.g. reason code. | ||
1294 | */ | ||
1295 | void kdb_print_state(const char *text, int value) | ||
1296 | { | ||
1297 | kdb_printf("state: %s cpu %d value %d initial %d state %x\n", | ||
1298 | text, raw_smp_processor_id(), value, kdb_initial_cpu, | ||
1299 | kdb_state); | ||
1300 | } | ||
1301 | |||
1302 | /* | ||
1303 | * kdb_main_loop - After initial setup and assignment of the | ||
1304 | * controlling cpu, all cpus are in this loop. One cpu is in | ||
1305 | * control and will issue the kdb prompt, the others will spin | ||
1306 | * until 'go' or cpu switch. | ||
1307 | * | ||
1308 | * To get a consistent view of the kernel stacks for all | ||
1309 | * processes, this routine is invoked from the main kdb code via | ||
1310 | * an architecture specific routine. kdba_main_loop is | ||
1311 | * responsible for making the kernel stacks consistent for all | ||
1312 | * processes, there should be no difference between a blocked | ||
1313 | * process and a running process as far as kdb is concerned. | ||
1314 | * Inputs: | ||
1315 | * reason The reason KDB was invoked | ||
1316 | * error The hardware-defined error code | ||
1317 | * reason2 kdb's current reason code. | ||
1318 | * Initially error but can change | ||
1319 | * acording to kdb state. | ||
1320 | * db_result Result code from break or debug point. | ||
1321 | * regs The exception frame at time of fault/breakpoint. | ||
1322 | * should always be valid. | ||
1323 | * Returns: | ||
1324 | * 0 KDB was invoked for an event which it wasn't responsible | ||
1325 | * 1 KDB handled the event for which it was invoked. | ||
1326 | */ | ||
1327 | int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, | ||
1328 | kdb_dbtrap_t db_result, struct pt_regs *regs) | ||
1329 | { | ||
1330 | int result = 1; | ||
1331 | /* Stay in kdb() until 'go', 'ss[b]' or an error */ | ||
1332 | while (1) { | ||
1333 | /* | ||
1334 | * All processors except the one that is in control | ||
1335 | * will spin here. | ||
1336 | */ | ||
1337 | KDB_DEBUG_STATE("kdb_main_loop 1", reason); | ||
1338 | while (KDB_STATE(HOLD_CPU)) { | ||
1339 | /* state KDB is turned off by kdb_cpu to see if the | ||
1340 | * other cpus are still live, each cpu in this loop | ||
1341 | * turns it back on. | ||
1342 | */ | ||
1343 | if (!KDB_STATE(KDB)) | ||
1344 | KDB_STATE_SET(KDB); | ||
1345 | } | ||
1346 | |||
1347 | KDB_STATE_CLEAR(SUPPRESS); | ||
1348 | KDB_DEBUG_STATE("kdb_main_loop 2", reason); | ||
1349 | if (KDB_STATE(LEAVING)) | ||
1350 | break; /* Another cpu said 'go' */ | ||
1351 | /* Still using kdb, this processor is in control */ | ||
1352 | result = kdb_local(reason2, error, regs, db_result); | ||
1353 | KDB_DEBUG_STATE("kdb_main_loop 3", result); | ||
1354 | |||
1355 | if (result == KDB_CMD_CPU) | ||
1356 | break; | ||
1357 | |||
1358 | if (result == KDB_CMD_SS) { | ||
1359 | KDB_STATE_SET(DOING_SS); | ||
1360 | break; | ||
1361 | } | ||
1362 | |||
1363 | if (result == KDB_CMD_SSB) { | ||
1364 | KDB_STATE_SET(DOING_SS); | ||
1365 | KDB_STATE_SET(DOING_SSB); | ||
1366 | break; | ||
1367 | } | ||
1368 | |||
1369 | if (result == KDB_CMD_KGDB) { | ||
1370 | if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2))) | ||
1371 | kdb_printf("Entering please attach debugger " | ||
1372 | "or use $D#44+ or $3#33\n"); | ||
1373 | break; | ||
1374 | } | ||
1375 | if (result && result != 1 && result != KDB_CMD_GO) | ||
1376 | kdb_printf("\nUnexpected kdb_local return code %d\n", | ||
1377 | result); | ||
1378 | KDB_DEBUG_STATE("kdb_main_loop 4", reason); | ||
1379 | break; | ||
1380 | } | ||
1381 | if (KDB_STATE(DOING_SS)) | ||
1382 | KDB_STATE_CLEAR(SSBPT); | ||
1383 | |||
1384 | return result; | ||
1385 | } | ||
1386 | |||
1387 | /* | ||
1388 | * kdb_mdr - This function implements the guts of the 'mdr', memory | ||
1389 | * read command. | ||
1390 | * mdr <addr arg>,<byte count> | ||
1391 | * Inputs: | ||
1392 | * addr Start address | ||
1393 | * count Number of bytes | ||
1394 | * Returns: | ||
1395 | * Always 0. Any errors are detected and printed by kdb_getarea. | ||
1396 | */ | ||
1397 | static int kdb_mdr(unsigned long addr, unsigned int count) | ||
1398 | { | ||
1399 | unsigned char c; | ||
1400 | while (count--) { | ||
1401 | if (kdb_getarea(c, addr)) | ||
1402 | return 0; | ||
1403 | kdb_printf("%02x", c); | ||
1404 | addr++; | ||
1405 | } | ||
1406 | kdb_printf("\n"); | ||
1407 | return 0; | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1411 | * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', | ||
1412 | * 'md8' 'mdr' and 'mds' commands. | ||
1413 | * | ||
1414 | * md|mds [<addr arg> [<line count> [<radix>]]] | ||
1415 | * mdWcN [<addr arg> [<line count> [<radix>]]] | ||
1416 | * where W = is the width (1, 2, 4 or 8) and N is the count. | ||
1417 | * for eg., md1c20 reads 20 bytes, 1 at a time. | ||
1418 | * mdr <addr arg>,<byte count> | ||
1419 | */ | ||
1420 | static void kdb_md_line(const char *fmtstr, unsigned long addr, | ||
1421 | int symbolic, int nosect, int bytesperword, | ||
1422 | int num, int repeat, int phys) | ||
1423 | { | ||
1424 | /* print just one line of data */ | ||
1425 | kdb_symtab_t symtab; | ||
1426 | char cbuf[32]; | ||
1427 | char *c = cbuf; | ||
1428 | int i; | ||
1429 | unsigned long word; | ||
1430 | |||
1431 | memset(cbuf, '\0', sizeof(cbuf)); | ||
1432 | if (phys) | ||
1433 | kdb_printf("phys " kdb_machreg_fmt0 " ", addr); | ||
1434 | else | ||
1435 | kdb_printf(kdb_machreg_fmt0 " ", addr); | ||
1436 | |||
1437 | for (i = 0; i < num && repeat--; i++) { | ||
1438 | if (phys) { | ||
1439 | if (kdb_getphysword(&word, addr, bytesperword)) | ||
1440 | break; | ||
1441 | } else if (kdb_getword(&word, addr, bytesperword)) | ||
1442 | break; | ||
1443 | kdb_printf(fmtstr, word); | ||
1444 | if (symbolic) | ||
1445 | kdbnearsym(word, &symtab); | ||
1446 | else | ||
1447 | memset(&symtab, 0, sizeof(symtab)); | ||
1448 | if (symtab.sym_name) { | ||
1449 | kdb_symbol_print(word, &symtab, 0); | ||
1450 | if (!nosect) { | ||
1451 | kdb_printf("\n"); | ||
1452 | kdb_printf(" %s %s " | ||
1453 | kdb_machreg_fmt " " | ||
1454 | kdb_machreg_fmt " " | ||
1455 | kdb_machreg_fmt, symtab.mod_name, | ||
1456 | symtab.sec_name, symtab.sec_start, | ||
1457 | symtab.sym_start, symtab.sym_end); | ||
1458 | } | ||
1459 | addr += bytesperword; | ||
1460 | } else { | ||
1461 | union { | ||
1462 | u64 word; | ||
1463 | unsigned char c[8]; | ||
1464 | } wc; | ||
1465 | unsigned char *cp; | ||
1466 | #ifdef __BIG_ENDIAN | ||
1467 | cp = wc.c + 8 - bytesperword; | ||
1468 | #else | ||
1469 | cp = wc.c; | ||
1470 | #endif | ||
1471 | wc.word = word; | ||
1472 | #define printable_char(c) \ | ||
1473 | ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) | ||
1474 | switch (bytesperword) { | ||
1475 | case 8: | ||
1476 | *c++ = printable_char(*cp++); | ||
1477 | *c++ = printable_char(*cp++); | ||
1478 | *c++ = printable_char(*cp++); | ||
1479 | *c++ = printable_char(*cp++); | ||
1480 | addr += 4; | ||
1481 | case 4: | ||
1482 | *c++ = printable_char(*cp++); | ||
1483 | *c++ = printable_char(*cp++); | ||
1484 | addr += 2; | ||
1485 | case 2: | ||
1486 | *c++ = printable_char(*cp++); | ||
1487 | addr++; | ||
1488 | case 1: | ||
1489 | *c++ = printable_char(*cp++); | ||
1490 | addr++; | ||
1491 | break; | ||
1492 | } | ||
1493 | #undef printable_char | ||
1494 | } | ||
1495 | } | ||
1496 | kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), | ||
1497 | " ", cbuf); | ||
1498 | } | ||
1499 | |||
1500 | static int kdb_md(int argc, const char **argv) | ||
1501 | { | ||
1502 | static unsigned long last_addr; | ||
1503 | static int last_radix, last_bytesperword, last_repeat; | ||
1504 | int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; | ||
1505 | int nosect = 0; | ||
1506 | char fmtchar, fmtstr[64]; | ||
1507 | unsigned long addr; | ||
1508 | unsigned long word; | ||
1509 | long offset = 0; | ||
1510 | int symbolic = 0; | ||
1511 | int valid = 0; | ||
1512 | int phys = 0; | ||
1513 | |||
1514 | kdbgetintenv("MDCOUNT", &mdcount); | ||
1515 | kdbgetintenv("RADIX", &radix); | ||
1516 | kdbgetintenv("BYTESPERWORD", &bytesperword); | ||
1517 | |||
1518 | /* Assume 'md <addr>' and start with environment values */ | ||
1519 | repeat = mdcount * 16 / bytesperword; | ||
1520 | |||
1521 | if (strcmp(argv[0], "mdr") == 0) { | ||
1522 | if (argc != 2) | ||
1523 | return KDB_ARGCOUNT; | ||
1524 | valid = 1; | ||
1525 | } else if (isdigit(argv[0][2])) { | ||
1526 | bytesperword = (int)(argv[0][2] - '0'); | ||
1527 | if (bytesperword == 0) { | ||
1528 | bytesperword = last_bytesperword; | ||
1529 | if (bytesperword == 0) | ||
1530 | bytesperword = 4; | ||
1531 | } | ||
1532 | last_bytesperword = bytesperword; | ||
1533 | repeat = mdcount * 16 / bytesperword; | ||
1534 | if (!argv[0][3]) | ||
1535 | valid = 1; | ||
1536 | else if (argv[0][3] == 'c' && argv[0][4]) { | ||
1537 | char *p; | ||
1538 | repeat = simple_strtoul(argv[0] + 4, &p, 10); | ||
1539 | mdcount = ((repeat * bytesperword) + 15) / 16; | ||
1540 | valid = !*p; | ||
1541 | } | ||
1542 | last_repeat = repeat; | ||
1543 | } else if (strcmp(argv[0], "md") == 0) | ||
1544 | valid = 1; | ||
1545 | else if (strcmp(argv[0], "mds") == 0) | ||
1546 | valid = 1; | ||
1547 | else if (strcmp(argv[0], "mdp") == 0) { | ||
1548 | phys = valid = 1; | ||
1549 | } | ||
1550 | if (!valid) | ||
1551 | return KDB_NOTFOUND; | ||
1552 | |||
1553 | if (argc == 0) { | ||
1554 | if (last_addr == 0) | ||
1555 | return KDB_ARGCOUNT; | ||
1556 | addr = last_addr; | ||
1557 | radix = last_radix; | ||
1558 | bytesperword = last_bytesperword; | ||
1559 | repeat = last_repeat; | ||
1560 | mdcount = ((repeat * bytesperword) + 15) / 16; | ||
1561 | } | ||
1562 | |||
1563 | if (argc) { | ||
1564 | unsigned long val; | ||
1565 | int diag, nextarg = 1; | ||
1566 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, | ||
1567 | &offset, NULL); | ||
1568 | if (diag) | ||
1569 | return diag; | ||
1570 | if (argc > nextarg+2) | ||
1571 | return KDB_ARGCOUNT; | ||
1572 | |||
1573 | if (argc >= nextarg) { | ||
1574 | diag = kdbgetularg(argv[nextarg], &val); | ||
1575 | if (!diag) { | ||
1576 | mdcount = (int) val; | ||
1577 | repeat = mdcount * 16 / bytesperword; | ||
1578 | } | ||
1579 | } | ||
1580 | if (argc >= nextarg+1) { | ||
1581 | diag = kdbgetularg(argv[nextarg+1], &val); | ||
1582 | if (!diag) | ||
1583 | radix = (int) val; | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | if (strcmp(argv[0], "mdr") == 0) | ||
1588 | return kdb_mdr(addr, mdcount); | ||
1589 | |||
1590 | switch (radix) { | ||
1591 | case 10: | ||
1592 | fmtchar = 'd'; | ||
1593 | break; | ||
1594 | case 16: | ||
1595 | fmtchar = 'x'; | ||
1596 | break; | ||
1597 | case 8: | ||
1598 | fmtchar = 'o'; | ||
1599 | break; | ||
1600 | default: | ||
1601 | return KDB_BADRADIX; | ||
1602 | } | ||
1603 | |||
1604 | last_radix = radix; | ||
1605 | |||
1606 | if (bytesperword > KDB_WORD_SIZE) | ||
1607 | return KDB_BADWIDTH; | ||
1608 | |||
1609 | switch (bytesperword) { | ||
1610 | case 8: | ||
1611 | sprintf(fmtstr, "%%16.16l%c ", fmtchar); | ||
1612 | break; | ||
1613 | case 4: | ||
1614 | sprintf(fmtstr, "%%8.8l%c ", fmtchar); | ||
1615 | break; | ||
1616 | case 2: | ||
1617 | sprintf(fmtstr, "%%4.4l%c ", fmtchar); | ||
1618 | break; | ||
1619 | case 1: | ||
1620 | sprintf(fmtstr, "%%2.2l%c ", fmtchar); | ||
1621 | break; | ||
1622 | default: | ||
1623 | return KDB_BADWIDTH; | ||
1624 | } | ||
1625 | |||
1626 | last_repeat = repeat; | ||
1627 | last_bytesperword = bytesperword; | ||
1628 | |||
1629 | if (strcmp(argv[0], "mds") == 0) { | ||
1630 | symbolic = 1; | ||
1631 | /* Do not save these changes as last_*, they are temporary mds | ||
1632 | * overrides. | ||
1633 | */ | ||
1634 | bytesperword = KDB_WORD_SIZE; | ||
1635 | repeat = mdcount; | ||
1636 | kdbgetintenv("NOSECT", &nosect); | ||
1637 | } | ||
1638 | |||
1639 | /* Round address down modulo BYTESPERWORD */ | ||
1640 | |||
1641 | addr &= ~(bytesperword-1); | ||
1642 | |||
1643 | while (repeat > 0) { | ||
1644 | unsigned long a; | ||
1645 | int n, z, num = (symbolic ? 1 : (16 / bytesperword)); | ||
1646 | |||
1647 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
1648 | return 0; | ||
1649 | for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { | ||
1650 | if (phys) { | ||
1651 | if (kdb_getphysword(&word, a, bytesperword) | ||
1652 | || word) | ||
1653 | break; | ||
1654 | } else if (kdb_getword(&word, a, bytesperword) || word) | ||
1655 | break; | ||
1656 | } | ||
1657 | n = min(num, repeat); | ||
1658 | kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, | ||
1659 | num, repeat, phys); | ||
1660 | addr += bytesperword * n; | ||
1661 | repeat -= n; | ||
1662 | z = (z + num - 1) / num; | ||
1663 | if (z > 2) { | ||
1664 | int s = num * (z-2); | ||
1665 | kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 | ||
1666 | " zero suppressed\n", | ||
1667 | addr, addr + bytesperword * s - 1); | ||
1668 | addr += bytesperword * s; | ||
1669 | repeat -= s; | ||
1670 | } | ||
1671 | } | ||
1672 | last_addr = addr; | ||
1673 | |||
1674 | return 0; | ||
1675 | } | ||
1676 | |||
1677 | /* | ||
1678 | * kdb_mm - This function implements the 'mm' command. | ||
1679 | * mm address-expression new-value | ||
1680 | * Remarks: | ||
1681 | * mm works on machine words, mmW works on bytes. | ||
1682 | */ | ||
1683 | static int kdb_mm(int argc, const char **argv) | ||
1684 | { | ||
1685 | int diag; | ||
1686 | unsigned long addr; | ||
1687 | long offset = 0; | ||
1688 | unsigned long contents; | ||
1689 | int nextarg; | ||
1690 | int width; | ||
1691 | |||
1692 | if (argv[0][2] && !isdigit(argv[0][2])) | ||
1693 | return KDB_NOTFOUND; | ||
1694 | |||
1695 | if (argc < 2) | ||
1696 | return KDB_ARGCOUNT; | ||
1697 | |||
1698 | nextarg = 1; | ||
1699 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
1700 | if (diag) | ||
1701 | return diag; | ||
1702 | |||
1703 | if (nextarg > argc) | ||
1704 | return KDB_ARGCOUNT; | ||
1705 | diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); | ||
1706 | if (diag) | ||
1707 | return diag; | ||
1708 | |||
1709 | if (nextarg != argc + 1) | ||
1710 | return KDB_ARGCOUNT; | ||
1711 | |||
1712 | width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); | ||
1713 | diag = kdb_putword(addr, contents, width); | ||
1714 | if (diag) | ||
1715 | return diag; | ||
1716 | |||
1717 | kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); | ||
1718 | |||
1719 | return 0; | ||
1720 | } | ||
1721 | |||
1722 | /* | ||
1723 | * kdb_go - This function implements the 'go' command. | ||
1724 | * go [address-expression] | ||
1725 | */ | ||
1726 | static int kdb_go(int argc, const char **argv) | ||
1727 | { | ||
1728 | unsigned long addr; | ||
1729 | int diag; | ||
1730 | int nextarg; | ||
1731 | long offset; | ||
1732 | |||
1733 | if (argc == 1) { | ||
1734 | if (raw_smp_processor_id() != kdb_initial_cpu) { | ||
1735 | kdb_printf("go <address> must be issued from the " | ||
1736 | "initial cpu, do cpu %d first\n", | ||
1737 | kdb_initial_cpu); | ||
1738 | return KDB_ARGCOUNT; | ||
1739 | } | ||
1740 | nextarg = 1; | ||
1741 | diag = kdbgetaddrarg(argc, argv, &nextarg, | ||
1742 | &addr, &offset, NULL); | ||
1743 | if (diag) | ||
1744 | return diag; | ||
1745 | } else if (argc) { | ||
1746 | return KDB_ARGCOUNT; | ||
1747 | } | ||
1748 | |||
1749 | diag = KDB_CMD_GO; | ||
1750 | if (KDB_FLAG(CATASTROPHIC)) { | ||
1751 | kdb_printf("Catastrophic error detected\n"); | ||
1752 | kdb_printf("kdb_continue_catastrophic=%d, ", | ||
1753 | kdb_continue_catastrophic); | ||
1754 | if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { | ||
1755 | kdb_printf("type go a second time if you really want " | ||
1756 | "to continue\n"); | ||
1757 | return 0; | ||
1758 | } | ||
1759 | if (kdb_continue_catastrophic == 2) { | ||
1760 | kdb_printf("forcing reboot\n"); | ||
1761 | kdb_reboot(0, NULL); | ||
1762 | } | ||
1763 | kdb_printf("attempting to continue\n"); | ||
1764 | } | ||
1765 | return diag; | ||
1766 | } | ||
1767 | |||
1768 | /* | ||
1769 | * kdb_rd - This function implements the 'rd' command. | ||
1770 | */ | ||
1771 | static int kdb_rd(int argc, const char **argv) | ||
1772 | { | ||
1773 | int diag = kdb_check_regs(); | ||
1774 | if (diag) | ||
1775 | return diag; | ||
1776 | |||
1777 | kdb_dumpregs(kdb_current_regs); | ||
1778 | return 0; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * kdb_rm - This function implements the 'rm' (register modify) command. | ||
1783 | * rm register-name new-contents | ||
1784 | * Remarks: | ||
1785 | * Currently doesn't allow modification of control or | ||
1786 | * debug registers. | ||
1787 | */ | ||
1788 | static int kdb_rm(int argc, const char **argv) | ||
1789 | { | ||
1790 | int diag; | ||
1791 | int ind = 0; | ||
1792 | unsigned long contents; | ||
1793 | |||
1794 | if (argc != 2) | ||
1795 | return KDB_ARGCOUNT; | ||
1796 | /* | ||
1797 | * Allow presence or absence of leading '%' symbol. | ||
1798 | */ | ||
1799 | if (argv[1][0] == '%') | ||
1800 | ind = 1; | ||
1801 | |||
1802 | diag = kdbgetularg(argv[2], &contents); | ||
1803 | if (diag) | ||
1804 | return diag; | ||
1805 | |||
1806 | diag = kdb_check_regs(); | ||
1807 | if (diag) | ||
1808 | return diag; | ||
1809 | kdb_printf("ERROR: Register set currently not implemented\n"); | ||
1810 | return 0; | ||
1811 | } | ||
1812 | |||
1813 | #if defined(CONFIG_MAGIC_SYSRQ) | ||
1814 | /* | ||
1815 | * kdb_sr - This function implements the 'sr' (SYSRQ key) command | ||
1816 | * which interfaces to the soi-disant MAGIC SYSRQ functionality. | ||
1817 | * sr <magic-sysrq-code> | ||
1818 | */ | ||
1819 | static int kdb_sr(int argc, const char **argv) | ||
1820 | { | ||
1821 | if (argc != 1) | ||
1822 | return KDB_ARGCOUNT; | ||
1823 | sysrq_toggle_support(1); | ||
1824 | kdb_trap_printk++; | ||
1825 | handle_sysrq(*argv[1], NULL); | ||
1826 | kdb_trap_printk--; | ||
1827 | |||
1828 | return 0; | ||
1829 | } | ||
1830 | #endif /* CONFIG_MAGIC_SYSRQ */ | ||
1831 | |||
1832 | /* | ||
1833 | * kdb_ef - This function implements the 'regs' (display exception | ||
1834 | * frame) command. This command takes an address and expects to | ||
1835 | * find an exception frame at that address, formats and prints | ||
1836 | * it. | ||
1837 | * regs address-expression | ||
1838 | * Remarks: | ||
1839 | * Not done yet. | ||
1840 | */ | ||
1841 | static int kdb_ef(int argc, const char **argv) | ||
1842 | { | ||
1843 | int diag; | ||
1844 | unsigned long addr; | ||
1845 | long offset; | ||
1846 | int nextarg; | ||
1847 | |||
1848 | if (argc != 1) | ||
1849 | return KDB_ARGCOUNT; | ||
1850 | |||
1851 | nextarg = 1; | ||
1852 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
1853 | if (diag) | ||
1854 | return diag; | ||
1855 | show_regs((struct pt_regs *)addr); | ||
1856 | return 0; | ||
1857 | } | ||
1858 | |||
1859 | #if defined(CONFIG_MODULES) | ||
1860 | /* modules using other modules */ | ||
1861 | struct module_use { | ||
1862 | struct list_head list; | ||
1863 | struct module *module_which_uses; | ||
1864 | }; | ||
1865 | |||
1866 | /* | ||
1867 | * kdb_lsmod - This function implements the 'lsmod' command. Lists | ||
1868 | * currently loaded kernel modules. | ||
1869 | * Mostly taken from userland lsmod. | ||
1870 | */ | ||
1871 | static int kdb_lsmod(int argc, const char **argv) | ||
1872 | { | ||
1873 | struct module *mod; | ||
1874 | |||
1875 | if (argc != 0) | ||
1876 | return KDB_ARGCOUNT; | ||
1877 | |||
1878 | kdb_printf("Module Size modstruct Used by\n"); | ||
1879 | list_for_each_entry(mod, kdb_modules, list) { | ||
1880 | |||
1881 | kdb_printf("%-20s%8u 0x%p ", mod->name, | ||
1882 | mod->core_size, (void *)mod); | ||
1883 | #ifdef CONFIG_MODULE_UNLOAD | ||
1884 | kdb_printf("%4d ", module_refcount(mod)); | ||
1885 | #endif | ||
1886 | if (mod->state == MODULE_STATE_GOING) | ||
1887 | kdb_printf(" (Unloading)"); | ||
1888 | else if (mod->state == MODULE_STATE_COMING) | ||
1889 | kdb_printf(" (Loading)"); | ||
1890 | else | ||
1891 | kdb_printf(" (Live)"); | ||
1892 | |||
1893 | #ifdef CONFIG_MODULE_UNLOAD | ||
1894 | { | ||
1895 | struct module_use *use; | ||
1896 | kdb_printf(" [ "); | ||
1897 | list_for_each_entry(use, &mod->modules_which_use_me, | ||
1898 | list) | ||
1899 | kdb_printf("%s ", use->module_which_uses->name); | ||
1900 | kdb_printf("]\n"); | ||
1901 | } | ||
1902 | #endif | ||
1903 | } | ||
1904 | |||
1905 | return 0; | ||
1906 | } | ||
1907 | |||
1908 | #endif /* CONFIG_MODULES */ | ||
1909 | |||
1910 | /* | ||
1911 | * kdb_env - This function implements the 'env' command. Display the | ||
1912 | * current environment variables. | ||
1913 | */ | ||
1914 | |||
1915 | static int kdb_env(int argc, const char **argv) | ||
1916 | { | ||
1917 | int i; | ||
1918 | |||
1919 | for (i = 0; i < __nenv; i++) { | ||
1920 | if (__env[i]) | ||
1921 | kdb_printf("%s\n", __env[i]); | ||
1922 | } | ||
1923 | |||
1924 | if (KDB_DEBUG(MASK)) | ||
1925 | kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); | ||
1926 | |||
1927 | return 0; | ||
1928 | } | ||
1929 | |||
1930 | #ifdef CONFIG_PRINTK | ||
1931 | /* | ||
1932 | * kdb_dmesg - This function implements the 'dmesg' command to display | ||
1933 | * the contents of the syslog buffer. | ||
1934 | * dmesg [lines] [adjust] | ||
1935 | */ | ||
1936 | static int kdb_dmesg(int argc, const char **argv) | ||
1937 | { | ||
1938 | char *syslog_data[4], *start, *end, c = '\0', *p; | ||
1939 | int diag, logging, logsize, lines = 0, adjust = 0, n; | ||
1940 | |||
1941 | if (argc > 2) | ||
1942 | return KDB_ARGCOUNT; | ||
1943 | if (argc) { | ||
1944 | char *cp; | ||
1945 | lines = simple_strtol(argv[1], &cp, 0); | ||
1946 | if (*cp) | ||
1947 | lines = 0; | ||
1948 | if (argc > 1) { | ||
1949 | adjust = simple_strtoul(argv[2], &cp, 0); | ||
1950 | if (*cp || adjust < 0) | ||
1951 | adjust = 0; | ||
1952 | } | ||
1953 | } | ||
1954 | |||
1955 | /* disable LOGGING if set */ | ||
1956 | diag = kdbgetintenv("LOGGING", &logging); | ||
1957 | if (!diag && logging) { | ||
1958 | const char *setargs[] = { "set", "LOGGING", "0" }; | ||
1959 | kdb_set(2, setargs); | ||
1960 | } | ||
1961 | |||
1962 | /* syslog_data[0,1] physical start, end+1. syslog_data[2,3] | ||
1963 | * logical start, end+1. */ | ||
1964 | kdb_syslog_data(syslog_data); | ||
1965 | if (syslog_data[2] == syslog_data[3]) | ||
1966 | return 0; | ||
1967 | logsize = syslog_data[1] - syslog_data[0]; | ||
1968 | start = syslog_data[2]; | ||
1969 | end = syslog_data[3]; | ||
1970 | #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0]) | ||
1971 | for (n = 0, p = start; p < end; ++p) { | ||
1972 | c = *KDB_WRAP(p); | ||
1973 | if (c == '\n') | ||
1974 | ++n; | ||
1975 | } | ||
1976 | if (c != '\n') | ||
1977 | ++n; | ||
1978 | if (lines < 0) { | ||
1979 | if (adjust >= n) | ||
1980 | kdb_printf("buffer only contains %d lines, nothing " | ||
1981 | "printed\n", n); | ||
1982 | else if (adjust - lines >= n) | ||
1983 | kdb_printf("buffer only contains %d lines, last %d " | ||
1984 | "lines printed\n", n, n - adjust); | ||
1985 | if (adjust) { | ||
1986 | for (; start < end && adjust; ++start) { | ||
1987 | if (*KDB_WRAP(start) == '\n') | ||
1988 | --adjust; | ||
1989 | } | ||
1990 | if (start < end) | ||
1991 | ++start; | ||
1992 | } | ||
1993 | for (p = start; p < end && lines; ++p) { | ||
1994 | if (*KDB_WRAP(p) == '\n') | ||
1995 | ++lines; | ||
1996 | } | ||
1997 | end = p; | ||
1998 | } else if (lines > 0) { | ||
1999 | int skip = n - (adjust + lines); | ||
2000 | if (adjust >= n) { | ||
2001 | kdb_printf("buffer only contains %d lines, " | ||
2002 | "nothing printed\n", n); | ||
2003 | skip = n; | ||
2004 | } else if (skip < 0) { | ||
2005 | lines += skip; | ||
2006 | skip = 0; | ||
2007 | kdb_printf("buffer only contains %d lines, first " | ||
2008 | "%d lines printed\n", n, lines); | ||
2009 | } | ||
2010 | for (; start < end && skip; ++start) { | ||
2011 | if (*KDB_WRAP(start) == '\n') | ||
2012 | --skip; | ||
2013 | } | ||
2014 | for (p = start; p < end && lines; ++p) { | ||
2015 | if (*KDB_WRAP(p) == '\n') | ||
2016 | --lines; | ||
2017 | } | ||
2018 | end = p; | ||
2019 | } | ||
2020 | /* Do a line at a time (max 200 chars) to reduce protocol overhead */ | ||
2021 | c = '\n'; | ||
2022 | while (start != end) { | ||
2023 | char buf[201]; | ||
2024 | p = buf; | ||
2025 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2026 | return 0; | ||
2027 | while (start < end && (c = *KDB_WRAP(start)) && | ||
2028 | (p - buf) < sizeof(buf)-1) { | ||
2029 | ++start; | ||
2030 | *p++ = c; | ||
2031 | if (c == '\n') | ||
2032 | break; | ||
2033 | } | ||
2034 | *p = '\0'; | ||
2035 | kdb_printf("%s", buf); | ||
2036 | } | ||
2037 | if (c != '\n') | ||
2038 | kdb_printf("\n"); | ||
2039 | |||
2040 | return 0; | ||
2041 | } | ||
2042 | #endif /* CONFIG_PRINTK */ | ||
2043 | /* | ||
2044 | * kdb_cpu - This function implements the 'cpu' command. | ||
2045 | * cpu [<cpunum>] | ||
2046 | * Returns: | ||
2047 | * KDB_CMD_CPU for success, a kdb diagnostic if error | ||
2048 | */ | ||
2049 | static void kdb_cpu_status(void) | ||
2050 | { | ||
2051 | int i, start_cpu, first_print = 1; | ||
2052 | char state, prev_state = '?'; | ||
2053 | |||
2054 | kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); | ||
2055 | kdb_printf("Available cpus: "); | ||
2056 | for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { | ||
2057 | if (!cpu_online(i)) { | ||
2058 | state = 'F'; /* cpu is offline */ | ||
2059 | } else { | ||
2060 | state = ' '; /* cpu is responding to kdb */ | ||
2061 | if (kdb_task_state_char(KDB_TSK(i)) == 'I') | ||
2062 | state = 'I'; /* idle task */ | ||
2063 | } | ||
2064 | if (state != prev_state) { | ||
2065 | if (prev_state != '?') { | ||
2066 | if (!first_print) | ||
2067 | kdb_printf(", "); | ||
2068 | first_print = 0; | ||
2069 | kdb_printf("%d", start_cpu); | ||
2070 | if (start_cpu < i-1) | ||
2071 | kdb_printf("-%d", i-1); | ||
2072 | if (prev_state != ' ') | ||
2073 | kdb_printf("(%c)", prev_state); | ||
2074 | } | ||
2075 | prev_state = state; | ||
2076 | start_cpu = i; | ||
2077 | } | ||
2078 | } | ||
2079 | /* print the trailing cpus, ignoring them if they are all offline */ | ||
2080 | if (prev_state != 'F') { | ||
2081 | if (!first_print) | ||
2082 | kdb_printf(", "); | ||
2083 | kdb_printf("%d", start_cpu); | ||
2084 | if (start_cpu < i-1) | ||
2085 | kdb_printf("-%d", i-1); | ||
2086 | if (prev_state != ' ') | ||
2087 | kdb_printf("(%c)", prev_state); | ||
2088 | } | ||
2089 | kdb_printf("\n"); | ||
2090 | } | ||
2091 | |||
2092 | static int kdb_cpu(int argc, const char **argv) | ||
2093 | { | ||
2094 | unsigned long cpunum; | ||
2095 | int diag; | ||
2096 | |||
2097 | if (argc == 0) { | ||
2098 | kdb_cpu_status(); | ||
2099 | return 0; | ||
2100 | } | ||
2101 | |||
2102 | if (argc != 1) | ||
2103 | return KDB_ARGCOUNT; | ||
2104 | |||
2105 | diag = kdbgetularg(argv[1], &cpunum); | ||
2106 | if (diag) | ||
2107 | return diag; | ||
2108 | |||
2109 | /* | ||
2110 | * Validate cpunum | ||
2111 | */ | ||
2112 | if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) | ||
2113 | return KDB_BADCPUNUM; | ||
2114 | |||
2115 | dbg_switch_cpu = cpunum; | ||
2116 | |||
2117 | /* | ||
2118 | * Switch to other cpu | ||
2119 | */ | ||
2120 | return KDB_CMD_CPU; | ||
2121 | } | ||
2122 | |||
2123 | /* The user may not realize that ps/bta with no parameters does not print idle | ||
2124 | * or sleeping system daemon processes, so tell them how many were suppressed. | ||
2125 | */ | ||
2126 | void kdb_ps_suppressed(void) | ||
2127 | { | ||
2128 | int idle = 0, daemon = 0; | ||
2129 | unsigned long mask_I = kdb_task_state_string("I"), | ||
2130 | mask_M = kdb_task_state_string("M"); | ||
2131 | unsigned long cpu; | ||
2132 | const struct task_struct *p, *g; | ||
2133 | for_each_online_cpu(cpu) { | ||
2134 | p = kdb_curr_task(cpu); | ||
2135 | if (kdb_task_state(p, mask_I)) | ||
2136 | ++idle; | ||
2137 | } | ||
2138 | kdb_do_each_thread(g, p) { | ||
2139 | if (kdb_task_state(p, mask_M)) | ||
2140 | ++daemon; | ||
2141 | } kdb_while_each_thread(g, p); | ||
2142 | if (idle || daemon) { | ||
2143 | if (idle) | ||
2144 | kdb_printf("%d idle process%s (state I)%s\n", | ||
2145 | idle, idle == 1 ? "" : "es", | ||
2146 | daemon ? " and " : ""); | ||
2147 | if (daemon) | ||
2148 | kdb_printf("%d sleeping system daemon (state M) " | ||
2149 | "process%s", daemon, | ||
2150 | daemon == 1 ? "" : "es"); | ||
2151 | kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); | ||
2152 | } | ||
2153 | } | ||
2154 | |||
2155 | /* | ||
2156 | * kdb_ps - This function implements the 'ps' command which shows a | ||
2157 | * list of the active processes. | ||
2158 | * ps [DRSTCZEUIMA] All processes, optionally filtered by state | ||
2159 | */ | ||
2160 | void kdb_ps1(const struct task_struct *p) | ||
2161 | { | ||
2162 | int cpu; | ||
2163 | unsigned long tmp; | ||
2164 | |||
2165 | if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) | ||
2166 | return; | ||
2167 | |||
2168 | cpu = kdb_process_cpu(p); | ||
2169 | kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", | ||
2170 | (void *)p, p->pid, p->parent->pid, | ||
2171 | kdb_task_has_cpu(p), kdb_process_cpu(p), | ||
2172 | kdb_task_state_char(p), | ||
2173 | (void *)(&p->thread), | ||
2174 | p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', | ||
2175 | p->comm); | ||
2176 | if (kdb_task_has_cpu(p)) { | ||
2177 | if (!KDB_TSK(cpu)) { | ||
2178 | kdb_printf(" Error: no saved data for this cpu\n"); | ||
2179 | } else { | ||
2180 | if (KDB_TSK(cpu) != p) | ||
2181 | kdb_printf(" Error: does not match running " | ||
2182 | "process table (0x%p)\n", KDB_TSK(cpu)); | ||
2183 | } | ||
2184 | } | ||
2185 | } | ||
2186 | |||
2187 | static int kdb_ps(int argc, const char **argv) | ||
2188 | { | ||
2189 | struct task_struct *g, *p; | ||
2190 | unsigned long mask, cpu; | ||
2191 | |||
2192 | if (argc == 0) | ||
2193 | kdb_ps_suppressed(); | ||
2194 | kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", | ||
2195 | (int)(2*sizeof(void *))+2, "Task Addr", | ||
2196 | (int)(2*sizeof(void *))+2, "Thread"); | ||
2197 | mask = kdb_task_state_string(argc ? argv[1] : NULL); | ||
2198 | /* Run the active tasks first */ | ||
2199 | for_each_online_cpu(cpu) { | ||
2200 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2201 | return 0; | ||
2202 | p = kdb_curr_task(cpu); | ||
2203 | if (kdb_task_state(p, mask)) | ||
2204 | kdb_ps1(p); | ||
2205 | } | ||
2206 | kdb_printf("\n"); | ||
2207 | /* Now the real tasks */ | ||
2208 | kdb_do_each_thread(g, p) { | ||
2209 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2210 | return 0; | ||
2211 | if (kdb_task_state(p, mask)) | ||
2212 | kdb_ps1(p); | ||
2213 | } kdb_while_each_thread(g, p); | ||
2214 | |||
2215 | return 0; | ||
2216 | } | ||
2217 | |||
2218 | /* | ||
2219 | * kdb_pid - This function implements the 'pid' command which switches | ||
2220 | * the currently active process. | ||
2221 | * pid [<pid> | R] | ||
2222 | */ | ||
2223 | static int kdb_pid(int argc, const char **argv) | ||
2224 | { | ||
2225 | struct task_struct *p; | ||
2226 | unsigned long val; | ||
2227 | int diag; | ||
2228 | |||
2229 | if (argc > 1) | ||
2230 | return KDB_ARGCOUNT; | ||
2231 | |||
2232 | if (argc) { | ||
2233 | if (strcmp(argv[1], "R") == 0) { | ||
2234 | p = KDB_TSK(kdb_initial_cpu); | ||
2235 | } else { | ||
2236 | diag = kdbgetularg(argv[1], &val); | ||
2237 | if (diag) | ||
2238 | return KDB_BADINT; | ||
2239 | |||
2240 | p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); | ||
2241 | if (!p) { | ||
2242 | kdb_printf("No task with pid=%d\n", (pid_t)val); | ||
2243 | return 0; | ||
2244 | } | ||
2245 | } | ||
2246 | kdb_set_current_task(p); | ||
2247 | } | ||
2248 | kdb_printf("KDB current process is %s(pid=%d)\n", | ||
2249 | kdb_current_task->comm, | ||
2250 | kdb_current_task->pid); | ||
2251 | |||
2252 | return 0; | ||
2253 | } | ||
2254 | |||
2255 | /* | ||
2256 | * kdb_ll - This function implements the 'll' command which follows a | ||
2257 | * linked list and executes an arbitrary command for each | ||
2258 | * element. | ||
2259 | */ | ||
2260 | static int kdb_ll(int argc, const char **argv) | ||
2261 | { | ||
2262 | int diag; | ||
2263 | unsigned long addr; | ||
2264 | long offset = 0; | ||
2265 | unsigned long va; | ||
2266 | unsigned long linkoffset; | ||
2267 | int nextarg; | ||
2268 | const char *command; | ||
2269 | |||
2270 | if (argc != 3) | ||
2271 | return KDB_ARGCOUNT; | ||
2272 | |||
2273 | nextarg = 1; | ||
2274 | diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); | ||
2275 | if (diag) | ||
2276 | return diag; | ||
2277 | |||
2278 | diag = kdbgetularg(argv[2], &linkoffset); | ||
2279 | if (diag) | ||
2280 | return diag; | ||
2281 | |||
2282 | /* | ||
2283 | * Using the starting address as | ||
2284 | * the first element in the list, and assuming that | ||
2285 | * the list ends with a null pointer. | ||
2286 | */ | ||
2287 | |||
2288 | va = addr; | ||
2289 | command = kdb_strdup(argv[3], GFP_KDB); | ||
2290 | if (!command) { | ||
2291 | kdb_printf("%s: cannot duplicate command\n", __func__); | ||
2292 | return 0; | ||
2293 | } | ||
2294 | /* Recursive use of kdb_parse, do not use argv after this point */ | ||
2295 | argv = NULL; | ||
2296 | |||
2297 | while (va) { | ||
2298 | char buf[80]; | ||
2299 | |||
2300 | sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); | ||
2301 | diag = kdb_parse(buf); | ||
2302 | if (diag) | ||
2303 | return diag; | ||
2304 | |||
2305 | addr = va + linkoffset; | ||
2306 | if (kdb_getword(&va, addr, sizeof(va))) | ||
2307 | return 0; | ||
2308 | } | ||
2309 | kfree(command); | ||
2310 | |||
2311 | return 0; | ||
2312 | } | ||
2313 | |||
2314 | static int kdb_kgdb(int argc, const char **argv) | ||
2315 | { | ||
2316 | return KDB_CMD_KGDB; | ||
2317 | } | ||
2318 | |||
2319 | /* | ||
2320 | * kdb_help - This function implements the 'help' and '?' commands. | ||
2321 | */ | ||
2322 | static int kdb_help(int argc, const char **argv) | ||
2323 | { | ||
2324 | kdbtab_t *kt; | ||
2325 | int i; | ||
2326 | |||
2327 | kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); | ||
2328 | kdb_printf("-----------------------------" | ||
2329 | "-----------------------------\n"); | ||
2330 | for_each_kdbcmd(kt, i) { | ||
2331 | if (kt->cmd_name) | ||
2332 | kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, | ||
2333 | kt->cmd_usage, kt->cmd_help); | ||
2334 | if (KDB_FLAG(CMD_INTERRUPT)) | ||
2335 | return 0; | ||
2336 | } | ||
2337 | return 0; | ||
2338 | } | ||
2339 | |||
2340 | /* | ||
2341 | * kdb_kill - This function implements the 'kill' commands. | ||
2342 | */ | ||
2343 | static int kdb_kill(int argc, const char **argv) | ||
2344 | { | ||
2345 | long sig, pid; | ||
2346 | char *endp; | ||
2347 | struct task_struct *p; | ||
2348 | struct siginfo info; | ||
2349 | |||
2350 | if (argc != 2) | ||
2351 | return KDB_ARGCOUNT; | ||
2352 | |||
2353 | sig = simple_strtol(argv[1], &endp, 0); | ||
2354 | if (*endp) | ||
2355 | return KDB_BADINT; | ||
2356 | if (sig >= 0) { | ||
2357 | kdb_printf("Invalid signal parameter.<-signal>\n"); | ||
2358 | return 0; | ||
2359 | } | ||
2360 | sig = -sig; | ||
2361 | |||
2362 | pid = simple_strtol(argv[2], &endp, 0); | ||
2363 | if (*endp) | ||
2364 | return KDB_BADINT; | ||
2365 | if (pid <= 0) { | ||
2366 | kdb_printf("Process ID must be large than 0.\n"); | ||
2367 | return 0; | ||
2368 | } | ||
2369 | |||
2370 | /* Find the process. */ | ||
2371 | p = find_task_by_pid_ns(pid, &init_pid_ns); | ||
2372 | if (!p) { | ||
2373 | kdb_printf("The specified process isn't found.\n"); | ||
2374 | return 0; | ||
2375 | } | ||
2376 | p = p->group_leader; | ||
2377 | info.si_signo = sig; | ||
2378 | info.si_errno = 0; | ||
2379 | info.si_code = SI_USER; | ||
2380 | info.si_pid = pid; /* same capabilities as process being signalled */ | ||
2381 | info.si_uid = 0; /* kdb has root authority */ | ||
2382 | kdb_send_sig_info(p, &info); | ||
2383 | return 0; | ||
2384 | } | ||
2385 | |||
2386 | struct kdb_tm { | ||
2387 | int tm_sec; /* seconds */ | ||
2388 | int tm_min; /* minutes */ | ||
2389 | int tm_hour; /* hours */ | ||
2390 | int tm_mday; /* day of the month */ | ||
2391 | int tm_mon; /* month */ | ||
2392 | int tm_year; /* year */ | ||
2393 | }; | ||
2394 | |||
2395 | static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) | ||
2396 | { | ||
2397 | /* This will work from 1970-2099, 2100 is not a leap year */ | ||
2398 | static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, | ||
2399 | 31, 30, 31, 30, 31 }; | ||
2400 | memset(tm, 0, sizeof(*tm)); | ||
2401 | tm->tm_sec = tv->tv_sec % (24 * 60 * 60); | ||
2402 | tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + | ||
2403 | (2 * 365 + 1); /* shift base from 1970 to 1968 */ | ||
2404 | tm->tm_min = tm->tm_sec / 60 % 60; | ||
2405 | tm->tm_hour = tm->tm_sec / 60 / 60; | ||
2406 | tm->tm_sec = tm->tm_sec % 60; | ||
2407 | tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); | ||
2408 | tm->tm_mday %= (4*365+1); | ||
2409 | mon_day[1] = 29; | ||
2410 | while (tm->tm_mday >= mon_day[tm->tm_mon]) { | ||
2411 | tm->tm_mday -= mon_day[tm->tm_mon]; | ||
2412 | if (++tm->tm_mon == 12) { | ||
2413 | tm->tm_mon = 0; | ||
2414 | ++tm->tm_year; | ||
2415 | mon_day[1] = 28; | ||
2416 | } | ||
2417 | } | ||
2418 | ++tm->tm_mday; | ||
2419 | } | ||
2420 | |||
2421 | /* | ||
2422 | * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). | ||
2423 | * I cannot call that code directly from kdb, it has an unconditional | ||
2424 | * cli()/sti() and calls routines that take locks which can stop the debugger. | ||
2425 | */ | ||
2426 | static void kdb_sysinfo(struct sysinfo *val) | ||
2427 | { | ||
2428 | struct timespec uptime; | ||
2429 | do_posix_clock_monotonic_gettime(&uptime); | ||
2430 | memset(val, 0, sizeof(*val)); | ||
2431 | val->uptime = uptime.tv_sec; | ||
2432 | val->loads[0] = avenrun[0]; | ||
2433 | val->loads[1] = avenrun[1]; | ||
2434 | val->loads[2] = avenrun[2]; | ||
2435 | val->procs = nr_threads-1; | ||
2436 | si_meminfo(val); | ||
2437 | |||
2438 | return; | ||
2439 | } | ||
2440 | |||
2441 | /* | ||
2442 | * kdb_summary - This function implements the 'summary' command. | ||
2443 | */ | ||
2444 | static int kdb_summary(int argc, const char **argv) | ||
2445 | { | ||
2446 | struct kdb_tm tm; | ||
2447 | struct sysinfo val; | ||
2448 | |||
2449 | if (argc) | ||
2450 | return KDB_ARGCOUNT; | ||
2451 | |||
2452 | kdb_printf("sysname %s\n", init_uts_ns.name.sysname); | ||
2453 | kdb_printf("release %s\n", init_uts_ns.name.release); | ||
2454 | kdb_printf("version %s\n", init_uts_ns.name.version); | ||
2455 | kdb_printf("machine %s\n", init_uts_ns.name.machine); | ||
2456 | kdb_printf("nodename %s\n", init_uts_ns.name.nodename); | ||
2457 | kdb_printf("domainname %s\n", init_uts_ns.name.domainname); | ||
2458 | kdb_printf("ccversion %s\n", __stringify(CCVERSION)); | ||
2459 | |||
2460 | kdb_gmtime(&xtime, &tm); | ||
2461 | kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " | ||
2462 | "tz_minuteswest %d\n", | ||
2463 | 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, | ||
2464 | tm.tm_hour, tm.tm_min, tm.tm_sec, | ||
2465 | sys_tz.tz_minuteswest); | ||
2466 | |||
2467 | kdb_sysinfo(&val); | ||
2468 | kdb_printf("uptime "); | ||
2469 | if (val.uptime > (24*60*60)) { | ||
2470 | int days = val.uptime / (24*60*60); | ||
2471 | val.uptime %= (24*60*60); | ||
2472 | kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); | ||
2473 | } | ||
2474 | kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); | ||
2475 | |||
2476 | /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ | ||
2477 | |||
2478 | #define LOAD_INT(x) ((x) >> FSHIFT) | ||
2479 | #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) | ||
2480 | kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", | ||
2481 | LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), | ||
2482 | LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), | ||
2483 | LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); | ||
2484 | #undef LOAD_INT | ||
2485 | #undef LOAD_FRAC | ||
2486 | /* Display in kilobytes */ | ||
2487 | #define K(x) ((x) << (PAGE_SHIFT - 10)) | ||
2488 | kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" | ||
2489 | "Buffers: %8lu kB\n", | ||
2490 | val.totalram, val.freeram, val.bufferram); | ||
2491 | return 0; | ||
2492 | } | ||
2493 | |||
2494 | /* | ||
2495 | * kdb_per_cpu - This function implements the 'per_cpu' command. | ||
2496 | */ | ||
2497 | static int kdb_per_cpu(int argc, const char **argv) | ||
2498 | { | ||
2499 | char buf[256], fmtstr[64]; | ||
2500 | kdb_symtab_t symtab; | ||
2501 | cpumask_t suppress = CPU_MASK_NONE; | ||
2502 | int cpu, diag; | ||
2503 | unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL; | ||
2504 | |||
2505 | if (argc < 1 || argc > 3) | ||
2506 | return KDB_ARGCOUNT; | ||
2507 | |||
2508 | snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]); | ||
2509 | if (!kdbgetsymval(buf, &symtab)) { | ||
2510 | kdb_printf("%s is not a per_cpu variable\n", argv[1]); | ||
2511 | return KDB_BADADDR; | ||
2512 | } | ||
2513 | if (argc >= 2) { | ||
2514 | diag = kdbgetularg(argv[2], &bytesperword); | ||
2515 | if (diag) | ||
2516 | return diag; | ||
2517 | } | ||
2518 | if (!bytesperword) | ||
2519 | bytesperword = KDB_WORD_SIZE; | ||
2520 | else if (bytesperword > KDB_WORD_SIZE) | ||
2521 | return KDB_BADWIDTH; | ||
2522 | sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); | ||
2523 | if (argc >= 3) { | ||
2524 | diag = kdbgetularg(argv[3], &whichcpu); | ||
2525 | if (diag) | ||
2526 | return diag; | ||
2527 | if (!cpu_online(whichcpu)) { | ||
2528 | kdb_printf("cpu %ld is not online\n", whichcpu); | ||
2529 | return KDB_BADCPUNUM; | ||
2530 | } | ||
2531 | } | ||
2532 | |||
2533 | /* Most architectures use __per_cpu_offset[cpu], some use | ||
2534 | * __per_cpu_offset(cpu), smp has no __per_cpu_offset. | ||
2535 | */ | ||
2536 | #ifdef __per_cpu_offset | ||
2537 | #define KDB_PCU(cpu) __per_cpu_offset(cpu) | ||
2538 | #else | ||
2539 | #ifdef CONFIG_SMP | ||
2540 | #define KDB_PCU(cpu) __per_cpu_offset[cpu] | ||
2541 | #else | ||
2542 | #define KDB_PCU(cpu) 0 | ||
2543 | #endif | ||
2544 | #endif | ||
2545 | |||
2546 | for_each_online_cpu(cpu) { | ||
2547 | if (whichcpu != ~0UL && whichcpu != cpu) | ||
2548 | continue; | ||
2549 | addr = symtab.sym_start + KDB_PCU(cpu); | ||
2550 | diag = kdb_getword(&val, addr, bytesperword); | ||
2551 | if (diag) { | ||
2552 | kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " | ||
2553 | "read, diag=%d\n", cpu, addr, diag); | ||
2554 | continue; | ||
2555 | } | ||
2556 | #ifdef CONFIG_SMP | ||
2557 | if (!val) { | ||
2558 | cpu_set(cpu, suppress); | ||
2559 | continue; | ||
2560 | } | ||
2561 | #endif /* CONFIG_SMP */ | ||
2562 | kdb_printf("%5d ", cpu); | ||
2563 | kdb_md_line(fmtstr, addr, | ||
2564 | bytesperword == KDB_WORD_SIZE, | ||
2565 | 1, bytesperword, 1, 1, 0); | ||
2566 | } | ||
2567 | if (cpus_weight(suppress) == 0) | ||
2568 | return 0; | ||
2569 | kdb_printf("Zero suppressed cpu(s):"); | ||
2570 | for (cpu = first_cpu(suppress); cpu < num_possible_cpus(); | ||
2571 | cpu = next_cpu(cpu, suppress)) { | ||
2572 | kdb_printf(" %d", cpu); | ||
2573 | if (cpu == num_possible_cpus() - 1 || | ||
2574 | next_cpu(cpu, suppress) != cpu + 1) | ||
2575 | continue; | ||
2576 | while (cpu < num_possible_cpus() && | ||
2577 | next_cpu(cpu, suppress) == cpu + 1) | ||
2578 | ++cpu; | ||
2579 | kdb_printf("-%d", cpu); | ||
2580 | } | ||
2581 | kdb_printf("\n"); | ||
2582 | |||
2583 | #undef KDB_PCU | ||
2584 | |||
2585 | return 0; | ||
2586 | } | ||
2587 | |||
2588 | /* | ||
2589 | * display help for the use of cmd | grep pattern | ||
2590 | */ | ||
2591 | static int kdb_grep_help(int argc, const char **argv) | ||
2592 | { | ||
2593 | kdb_printf("Usage of cmd args | grep pattern:\n"); | ||
2594 | kdb_printf(" Any command's output may be filtered through an "); | ||
2595 | kdb_printf("emulated 'pipe'.\n"); | ||
2596 | kdb_printf(" 'grep' is just a key word.\n"); | ||
2597 | kdb_printf(" The pattern may include a very limited set of " | ||
2598 | "metacharacters:\n"); | ||
2599 | kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); | ||
2600 | kdb_printf(" And if there are spaces in the pattern, you may " | ||
2601 | "quote it:\n"); | ||
2602 | kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" | ||
2603 | " or \"^pat tern$\"\n"); | ||
2604 | return 0; | ||
2605 | } | ||
2606 | |||
2607 | /* | ||
2608 | * kdb_register_repeat - This function is used to register a kernel | ||
2609 | * debugger command. | ||
2610 | * Inputs: | ||
2611 | * cmd Command name | ||
2612 | * func Function to execute the command | ||
2613 | * usage A simple usage string showing arguments | ||
2614 | * help A simple help string describing command | ||
2615 | * repeat Does the command auto repeat on enter? | ||
2616 | * Returns: | ||
2617 | * zero for success, one if a duplicate command. | ||
2618 | */ | ||
2619 | #define kdb_command_extend 50 /* arbitrary */ | ||
2620 | int kdb_register_repeat(char *cmd, | ||
2621 | kdb_func_t func, | ||
2622 | char *usage, | ||
2623 | char *help, | ||
2624 | short minlen, | ||
2625 | kdb_repeat_t repeat) | ||
2626 | { | ||
2627 | int i; | ||
2628 | kdbtab_t *kp; | ||
2629 | |||
2630 | /* | ||
2631 | * Brute force method to determine duplicates | ||
2632 | */ | ||
2633 | for_each_kdbcmd(kp, i) { | ||
2634 | if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { | ||
2635 | kdb_printf("Duplicate kdb command registered: " | ||
2636 | "%s, func %p help %s\n", cmd, func, help); | ||
2637 | return 1; | ||
2638 | } | ||
2639 | } | ||
2640 | |||
2641 | /* | ||
2642 | * Insert command into first available location in table | ||
2643 | */ | ||
2644 | for_each_kdbcmd(kp, i) { | ||
2645 | if (kp->cmd_name == NULL) | ||
2646 | break; | ||
2647 | } | ||
2648 | |||
2649 | if (i >= kdb_max_commands) { | ||
2650 | kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + | ||
2651 | kdb_command_extend) * sizeof(*new), GFP_KDB); | ||
2652 | if (!new) { | ||
2653 | kdb_printf("Could not allocate new kdb_command " | ||
2654 | "table\n"); | ||
2655 | return 1; | ||
2656 | } | ||
2657 | if (kdb_commands) { | ||
2658 | memcpy(new, kdb_commands, | ||
2659 | kdb_max_commands * sizeof(*new)); | ||
2660 | kfree(kdb_commands); | ||
2661 | } | ||
2662 | memset(new + kdb_max_commands, 0, | ||
2663 | kdb_command_extend * sizeof(*new)); | ||
2664 | kdb_commands = new; | ||
2665 | kp = kdb_commands + kdb_max_commands; | ||
2666 | kdb_max_commands += kdb_command_extend; | ||
2667 | } | ||
2668 | |||
2669 | kp->cmd_name = cmd; | ||
2670 | kp->cmd_func = func; | ||
2671 | kp->cmd_usage = usage; | ||
2672 | kp->cmd_help = help; | ||
2673 | kp->cmd_flags = 0; | ||
2674 | kp->cmd_minlen = minlen; | ||
2675 | kp->cmd_repeat = repeat; | ||
2676 | |||
2677 | return 0; | ||
2678 | } | ||
2679 | |||
2680 | /* | ||
2681 | * kdb_register - Compatibility register function for commands that do | ||
2682 | * not need to specify a repeat state. Equivalent to | ||
2683 | * kdb_register_repeat with KDB_REPEAT_NONE. | ||
2684 | * Inputs: | ||
2685 | * cmd Command name | ||
2686 | * func Function to execute the command | ||
2687 | * usage A simple usage string showing arguments | ||
2688 | * help A simple help string describing command | ||
2689 | * Returns: | ||
2690 | * zero for success, one if a duplicate command. | ||
2691 | */ | ||
2692 | int kdb_register(char *cmd, | ||
2693 | kdb_func_t func, | ||
2694 | char *usage, | ||
2695 | char *help, | ||
2696 | short minlen) | ||
2697 | { | ||
2698 | return kdb_register_repeat(cmd, func, usage, help, minlen, | ||
2699 | KDB_REPEAT_NONE); | ||
2700 | } | ||
2701 | |||
2702 | /* | ||
2703 | * kdb_unregister - This function is used to unregister a kernel | ||
2704 | * debugger command. It is generally called when a module which | ||
2705 | * implements kdb commands is unloaded. | ||
2706 | * Inputs: | ||
2707 | * cmd Command name | ||
2708 | * Returns: | ||
2709 | * zero for success, one command not registered. | ||
2710 | */ | ||
2711 | int kdb_unregister(char *cmd) | ||
2712 | { | ||
2713 | int i; | ||
2714 | kdbtab_t *kp; | ||
2715 | |||
2716 | /* | ||
2717 | * find the command. | ||
2718 | */ | ||
2719 | for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) { | ||
2720 | if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { | ||
2721 | kp->cmd_name = NULL; | ||
2722 | return 0; | ||
2723 | } | ||
2724 | } | ||
2725 | |||
2726 | /* Couldn't find it. */ | ||
2727 | return 1; | ||
2728 | } | ||
2729 | |||
2730 | /* Initialize the kdb command table. */ | ||
2731 | static void __init kdb_inittab(void) | ||
2732 | { | ||
2733 | int i; | ||
2734 | kdbtab_t *kp; | ||
2735 | |||
2736 | for_each_kdbcmd(kp, i) | ||
2737 | kp->cmd_name = NULL; | ||
2738 | |||
2739 | kdb_register_repeat("md", kdb_md, "<vaddr>", | ||
2740 | "Display Memory Contents, also mdWcN, e.g. md8c1", 1, | ||
2741 | KDB_REPEAT_NO_ARGS); | ||
2742 | kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", | ||
2743 | "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); | ||
2744 | kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", | ||
2745 | "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); | ||
2746 | kdb_register_repeat("mds", kdb_md, "<vaddr>", | ||
2747 | "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); | ||
2748 | kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", | ||
2749 | "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); | ||
2750 | kdb_register_repeat("go", kdb_go, "[<vaddr>]", | ||
2751 | "Continue Execution", 1, KDB_REPEAT_NONE); | ||
2752 | kdb_register_repeat("rd", kdb_rd, "", | ||
2753 | "Display Registers", 0, KDB_REPEAT_NONE); | ||
2754 | kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", | ||
2755 | "Modify Registers", 0, KDB_REPEAT_NONE); | ||
2756 | kdb_register_repeat("ef", kdb_ef, "<vaddr>", | ||
2757 | "Display exception frame", 0, KDB_REPEAT_NONE); | ||
2758 | kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", | ||
2759 | "Stack traceback", 1, KDB_REPEAT_NONE); | ||
2760 | kdb_register_repeat("btp", kdb_bt, "<pid>", | ||
2761 | "Display stack for process <pid>", 0, KDB_REPEAT_NONE); | ||
2762 | kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", | ||
2763 | "Display stack all processes", 0, KDB_REPEAT_NONE); | ||
2764 | kdb_register_repeat("btc", kdb_bt, "", | ||
2765 | "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); | ||
2766 | kdb_register_repeat("btt", kdb_bt, "<vaddr>", | ||
2767 | "Backtrace process given its struct task address", 0, | ||
2768 | KDB_REPEAT_NONE); | ||
2769 | kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", | ||
2770 | "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); | ||
2771 | kdb_register_repeat("env", kdb_env, "", | ||
2772 | "Show environment variables", 0, KDB_REPEAT_NONE); | ||
2773 | kdb_register_repeat("set", kdb_set, "", | ||
2774 | "Set environment variables", 0, KDB_REPEAT_NONE); | ||
2775 | kdb_register_repeat("help", kdb_help, "", | ||
2776 | "Display Help Message", 1, KDB_REPEAT_NONE); | ||
2777 | kdb_register_repeat("?", kdb_help, "", | ||
2778 | "Display Help Message", 0, KDB_REPEAT_NONE); | ||
2779 | kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", | ||
2780 | "Switch to new cpu", 0, KDB_REPEAT_NONE); | ||
2781 | kdb_register_repeat("kgdb", kdb_kgdb, "", | ||
2782 | "Enter kgdb mode", 0, KDB_REPEAT_NONE); | ||
2783 | kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", | ||
2784 | "Display active task list", 0, KDB_REPEAT_NONE); | ||
2785 | kdb_register_repeat("pid", kdb_pid, "<pidnum>", | ||
2786 | "Switch to another task", 0, KDB_REPEAT_NONE); | ||
2787 | kdb_register_repeat("reboot", kdb_reboot, "", | ||
2788 | "Reboot the machine immediately", 0, KDB_REPEAT_NONE); | ||
2789 | #if defined(CONFIG_MODULES) | ||
2790 | kdb_register_repeat("lsmod", kdb_lsmod, "", | ||
2791 | "List loaded kernel modules", 0, KDB_REPEAT_NONE); | ||
2792 | #endif | ||
2793 | #if defined(CONFIG_MAGIC_SYSRQ) | ||
2794 | kdb_register_repeat("sr", kdb_sr, "<key>", | ||
2795 | "Magic SysRq key", 0, KDB_REPEAT_NONE); | ||
2796 | #endif | ||
2797 | #if defined(CONFIG_PRINTK) | ||
2798 | kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", | ||
2799 | "Display syslog buffer", 0, KDB_REPEAT_NONE); | ||
2800 | #endif | ||
2801 | kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", | ||
2802 | "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); | ||
2803 | kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", | ||
2804 | "Send a signal to a process", 0, KDB_REPEAT_NONE); | ||
2805 | kdb_register_repeat("summary", kdb_summary, "", | ||
2806 | "Summarize the system", 4, KDB_REPEAT_NONE); | ||
2807 | kdb_register_repeat("per_cpu", kdb_per_cpu, "", | ||
2808 | "Display per_cpu variables", 3, KDB_REPEAT_NONE); | ||
2809 | kdb_register_repeat("grephelp", kdb_grep_help, "", | ||
2810 | "Display help on | grep", 0, KDB_REPEAT_NONE); | ||
2811 | } | ||
2812 | |||
2813 | /* Execute any commands defined in kdb_cmds. */ | ||
2814 | static void __init kdb_cmd_init(void) | ||
2815 | { | ||
2816 | int i, diag; | ||
2817 | for (i = 0; kdb_cmds[i]; ++i) { | ||
2818 | diag = kdb_parse(kdb_cmds[i]); | ||
2819 | if (diag) | ||
2820 | kdb_printf("kdb command %s failed, kdb diag %d\n", | ||
2821 | kdb_cmds[i], diag); | ||
2822 | } | ||
2823 | if (defcmd_in_progress) { | ||
2824 | kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); | ||
2825 | kdb_parse("endefcmd"); | ||
2826 | } | ||
2827 | } | ||
2828 | |||
2829 | /* Intialize kdb_printf, breakpoint tables and kdb state */ | ||
2830 | void __init kdb_init(int lvl) | ||
2831 | { | ||
2832 | static int kdb_init_lvl = KDB_NOT_INITIALIZED; | ||
2833 | int i; | ||
2834 | |||
2835 | if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) | ||
2836 | return; | ||
2837 | for (i = kdb_init_lvl; i < lvl; i++) { | ||
2838 | switch (i) { | ||
2839 | case KDB_NOT_INITIALIZED: | ||
2840 | kdb_inittab(); /* Initialize Command Table */ | ||
2841 | kdb_initbptab(); /* Initialize Breakpoints */ | ||
2842 | break; | ||
2843 | case KDB_INIT_EARLY: | ||
2844 | kdb_cmd_init(); /* Build kdb_cmds tables */ | ||
2845 | break; | ||
2846 | } | ||
2847 | } | ||
2848 | kdb_init_lvl = lvl; | ||
2849 | } | ||
diff --git a/kernel/debug/kdb/kdb_private.h b/kernel/debug/kdb/kdb_private.h new file mode 100644 index 000000000000..97d3ba69775d --- /dev/null +++ b/kernel/debug/kdb/kdb_private.h | |||
@@ -0,0 +1,300 @@ | |||
1 | #ifndef _KDBPRIVATE_H | ||
2 | #define _KDBPRIVATE_H | ||
3 | |||
4 | /* | ||
5 | * Kernel Debugger Architecture Independent Private Headers | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General Public | ||
8 | * License. See the file "COPYING" in the main directory of this archive | ||
9 | * for more details. | ||
10 | * | ||
11 | * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
12 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
13 | */ | ||
14 | |||
15 | #include <linux/kgdb.h> | ||
16 | #include "../debug_core.h" | ||
17 | |||
18 | /* Kernel Debugger Error codes. Must not overlap with command codes. */ | ||
19 | #define KDB_NOTFOUND (-1) | ||
20 | #define KDB_ARGCOUNT (-2) | ||
21 | #define KDB_BADWIDTH (-3) | ||
22 | #define KDB_BADRADIX (-4) | ||
23 | #define KDB_NOTENV (-5) | ||
24 | #define KDB_NOENVVALUE (-6) | ||
25 | #define KDB_NOTIMP (-7) | ||
26 | #define KDB_ENVFULL (-8) | ||
27 | #define KDB_ENVBUFFULL (-9) | ||
28 | #define KDB_TOOMANYBPT (-10) | ||
29 | #define KDB_TOOMANYDBREGS (-11) | ||
30 | #define KDB_DUPBPT (-12) | ||
31 | #define KDB_BPTNOTFOUND (-13) | ||
32 | #define KDB_BADMODE (-14) | ||
33 | #define KDB_BADINT (-15) | ||
34 | #define KDB_INVADDRFMT (-16) | ||
35 | #define KDB_BADREG (-17) | ||
36 | #define KDB_BADCPUNUM (-18) | ||
37 | #define KDB_BADLENGTH (-19) | ||
38 | #define KDB_NOBP (-20) | ||
39 | #define KDB_BADADDR (-21) | ||
40 | |||
41 | /* Kernel Debugger Command codes. Must not overlap with error codes. */ | ||
42 | #define KDB_CMD_GO (-1001) | ||
43 | #define KDB_CMD_CPU (-1002) | ||
44 | #define KDB_CMD_SS (-1003) | ||
45 | #define KDB_CMD_SSB (-1004) | ||
46 | #define KDB_CMD_KGDB (-1005) | ||
47 | #define KDB_CMD_KGDB2 (-1006) | ||
48 | |||
49 | /* Internal debug flags */ | ||
50 | #define KDB_DEBUG_FLAG_BP 0x0002 /* Breakpoint subsystem debug */ | ||
51 | #define KDB_DEBUG_FLAG_BB_SUMM 0x0004 /* Basic block analysis, summary only */ | ||
52 | #define KDB_DEBUG_FLAG_AR 0x0008 /* Activation record, generic */ | ||
53 | #define KDB_DEBUG_FLAG_ARA 0x0010 /* Activation record, arch specific */ | ||
54 | #define KDB_DEBUG_FLAG_BB 0x0020 /* All basic block analysis */ | ||
55 | #define KDB_DEBUG_FLAG_STATE 0x0040 /* State flags */ | ||
56 | #define KDB_DEBUG_FLAG_MASK 0xffff /* All debug flags */ | ||
57 | #define KDB_DEBUG_FLAG_SHIFT 16 /* Shift factor for dbflags */ | ||
58 | |||
59 | #define KDB_DEBUG(flag) (kdb_flags & \ | ||
60 | (KDB_DEBUG_FLAG_##flag << KDB_DEBUG_FLAG_SHIFT)) | ||
61 | #define KDB_DEBUG_STATE(text, value) if (KDB_DEBUG(STATE)) \ | ||
62 | kdb_print_state(text, value) | ||
63 | |||
64 | #if BITS_PER_LONG == 32 | ||
65 | |||
66 | #define KDB_PLATFORM_ENV "BYTESPERWORD=4" | ||
67 | |||
68 | #define kdb_machreg_fmt "0x%lx" | ||
69 | #define kdb_machreg_fmt0 "0x%08lx" | ||
70 | #define kdb_bfd_vma_fmt "0x%lx" | ||
71 | #define kdb_bfd_vma_fmt0 "0x%08lx" | ||
72 | #define kdb_elfw_addr_fmt "0x%x" | ||
73 | #define kdb_elfw_addr_fmt0 "0x%08x" | ||
74 | #define kdb_f_count_fmt "%d" | ||
75 | |||
76 | #elif BITS_PER_LONG == 64 | ||
77 | |||
78 | #define KDB_PLATFORM_ENV "BYTESPERWORD=8" | ||
79 | |||
80 | #define kdb_machreg_fmt "0x%lx" | ||
81 | #define kdb_machreg_fmt0 "0x%016lx" | ||
82 | #define kdb_bfd_vma_fmt "0x%lx" | ||
83 | #define kdb_bfd_vma_fmt0 "0x%016lx" | ||
84 | #define kdb_elfw_addr_fmt "0x%x" | ||
85 | #define kdb_elfw_addr_fmt0 "0x%016x" | ||
86 | #define kdb_f_count_fmt "%ld" | ||
87 | |||
88 | #endif | ||
89 | |||
90 | /* | ||
91 | * KDB_MAXBPT describes the total number of breakpoints | ||
92 | * supported by this architecure. | ||
93 | */ | ||
94 | #define KDB_MAXBPT 16 | ||
95 | |||
96 | /* Maximum number of arguments to a function */ | ||
97 | #define KDB_MAXARGS 16 | ||
98 | |||
99 | typedef enum { | ||
100 | KDB_REPEAT_NONE = 0, /* Do not repeat this command */ | ||
101 | KDB_REPEAT_NO_ARGS, /* Repeat the command without arguments */ | ||
102 | KDB_REPEAT_WITH_ARGS, /* Repeat the command including its arguments */ | ||
103 | } kdb_repeat_t; | ||
104 | |||
105 | typedef int (*kdb_func_t)(int, const char **); | ||
106 | |||
107 | /* Symbol table format returned by kallsyms. */ | ||
108 | typedef struct __ksymtab { | ||
109 | unsigned long value; /* Address of symbol */ | ||
110 | const char *mod_name; /* Module containing symbol or | ||
111 | * "kernel" */ | ||
112 | unsigned long mod_start; | ||
113 | unsigned long mod_end; | ||
114 | const char *sec_name; /* Section containing symbol */ | ||
115 | unsigned long sec_start; | ||
116 | unsigned long sec_end; | ||
117 | const char *sym_name; /* Full symbol name, including | ||
118 | * any version */ | ||
119 | unsigned long sym_start; | ||
120 | unsigned long sym_end; | ||
121 | } kdb_symtab_t; | ||
122 | extern int kallsyms_symbol_next(char *prefix_name, int flag); | ||
123 | extern int kallsyms_symbol_complete(char *prefix_name, int max_len); | ||
124 | |||
125 | /* Exported Symbols for kernel loadable modules to use. */ | ||
126 | extern int kdb_register(char *, kdb_func_t, char *, char *, short); | ||
127 | extern int kdb_register_repeat(char *, kdb_func_t, char *, char *, | ||
128 | short, kdb_repeat_t); | ||
129 | extern int kdb_unregister(char *); | ||
130 | |||
131 | extern int kdb_getarea_size(void *, unsigned long, size_t); | ||
132 | extern int kdb_putarea_size(unsigned long, void *, size_t); | ||
133 | |||
134 | /* | ||
135 | * Like get_user and put_user, kdb_getarea and kdb_putarea take variable | ||
136 | * names, not pointers. The underlying *_size functions take pointers. | ||
137 | */ | ||
138 | #define kdb_getarea(x, addr) kdb_getarea_size(&(x), addr, sizeof((x))) | ||
139 | #define kdb_putarea(addr, x) kdb_putarea_size(addr, &(x), sizeof((x))) | ||
140 | |||
141 | extern int kdb_getphysword(unsigned long *word, | ||
142 | unsigned long addr, size_t size); | ||
143 | extern int kdb_getword(unsigned long *, unsigned long, size_t); | ||
144 | extern int kdb_putword(unsigned long, unsigned long, size_t); | ||
145 | |||
146 | extern int kdbgetularg(const char *, unsigned long *); | ||
147 | extern int kdb_set(int, const char **); | ||
148 | extern char *kdbgetenv(const char *); | ||
149 | extern int kdbgetintenv(const char *, int *); | ||
150 | extern int kdbgetaddrarg(int, const char **, int*, unsigned long *, | ||
151 | long *, char **); | ||
152 | extern int kdbgetsymval(const char *, kdb_symtab_t *); | ||
153 | extern int kdbnearsym(unsigned long, kdb_symtab_t *); | ||
154 | extern void kdbnearsym_cleanup(void); | ||
155 | extern char *kdb_strdup(const char *str, gfp_t type); | ||
156 | extern void kdb_symbol_print(unsigned long, const kdb_symtab_t *, unsigned int); | ||
157 | |||
158 | /* Routine for debugging the debugger state. */ | ||
159 | extern void kdb_print_state(const char *, int); | ||
160 | |||
161 | extern int kdb_state; | ||
162 | #define KDB_STATE_KDB 0x00000001 /* Cpu is inside kdb */ | ||
163 | #define KDB_STATE_LEAVING 0x00000002 /* Cpu is leaving kdb */ | ||
164 | #define KDB_STATE_CMD 0x00000004 /* Running a kdb command */ | ||
165 | #define KDB_STATE_KDB_CONTROL 0x00000008 /* This cpu is under | ||
166 | * kdb control */ | ||
167 | #define KDB_STATE_HOLD_CPU 0x00000010 /* Hold this cpu inside kdb */ | ||
168 | #define KDB_STATE_DOING_SS 0x00000020 /* Doing ss command */ | ||
169 | #define KDB_STATE_DOING_SSB 0x00000040 /* Doing ssb command, | ||
170 | * DOING_SS is also set */ | ||
171 | #define KDB_STATE_SSBPT 0x00000080 /* Install breakpoint | ||
172 | * after one ss, independent of | ||
173 | * DOING_SS */ | ||
174 | #define KDB_STATE_REENTRY 0x00000100 /* Valid re-entry into kdb */ | ||
175 | #define KDB_STATE_SUPPRESS 0x00000200 /* Suppress error messages */ | ||
176 | #define KDB_STATE_PAGER 0x00000400 /* pager is available */ | ||
177 | #define KDB_STATE_GO_SWITCH 0x00000800 /* go is switching | ||
178 | * back to initial cpu */ | ||
179 | #define KDB_STATE_PRINTF_LOCK 0x00001000 /* Holds kdb_printf lock */ | ||
180 | #define KDB_STATE_WAIT_IPI 0x00002000 /* Waiting for kdb_ipi() NMI */ | ||
181 | #define KDB_STATE_RECURSE 0x00004000 /* Recursive entry to kdb */ | ||
182 | #define KDB_STATE_IP_ADJUSTED 0x00008000 /* Restart IP has been | ||
183 | * adjusted */ | ||
184 | #define KDB_STATE_GO1 0x00010000 /* go only releases one cpu */ | ||
185 | #define KDB_STATE_KEYBOARD 0x00020000 /* kdb entered via | ||
186 | * keyboard on this cpu */ | ||
187 | #define KDB_STATE_KEXEC 0x00040000 /* kexec issued */ | ||
188 | #define KDB_STATE_DOING_KGDB 0x00080000 /* kgdb enter now issued */ | ||
189 | #define KDB_STATE_DOING_KGDB2 0x00100000 /* kgdb enter now issued */ | ||
190 | #define KDB_STATE_KGDB_TRANS 0x00200000 /* Transition to kgdb */ | ||
191 | #define KDB_STATE_ARCH 0xff000000 /* Reserved for arch | ||
192 | * specific use */ | ||
193 | |||
194 | #define KDB_STATE(flag) (kdb_state & KDB_STATE_##flag) | ||
195 | #define KDB_STATE_SET(flag) ((void)(kdb_state |= KDB_STATE_##flag)) | ||
196 | #define KDB_STATE_CLEAR(flag) ((void)(kdb_state &= ~KDB_STATE_##flag)) | ||
197 | |||
198 | extern int kdb_nextline; /* Current number of lines displayed */ | ||
199 | |||
200 | typedef struct _kdb_bp { | ||
201 | unsigned long bp_addr; /* Address breakpoint is present at */ | ||
202 | unsigned int bp_free:1; /* This entry is available */ | ||
203 | unsigned int bp_enabled:1; /* Breakpoint is active in register */ | ||
204 | unsigned int bp_type:4; /* Uses hardware register */ | ||
205 | unsigned int bp_installed:1; /* Breakpoint is installed */ | ||
206 | unsigned int bp_delay:1; /* Do delayed bp handling */ | ||
207 | unsigned int bp_delayed:1; /* Delayed breakpoint */ | ||
208 | unsigned int bph_length; /* HW break length */ | ||
209 | } kdb_bp_t; | ||
210 | |||
211 | #ifdef CONFIG_KGDB_KDB | ||
212 | extern kdb_bp_t kdb_breakpoints[/* KDB_MAXBPT */]; | ||
213 | |||
214 | /* The KDB shell command table */ | ||
215 | typedef struct _kdbtab { | ||
216 | char *cmd_name; /* Command name */ | ||
217 | kdb_func_t cmd_func; /* Function to execute command */ | ||
218 | char *cmd_usage; /* Usage String for this command */ | ||
219 | char *cmd_help; /* Help message for this command */ | ||
220 | short cmd_flags; /* Parsing flags */ | ||
221 | short cmd_minlen; /* Minimum legal # command | ||
222 | * chars required */ | ||
223 | kdb_repeat_t cmd_repeat; /* Does command auto repeat on enter? */ | ||
224 | } kdbtab_t; | ||
225 | |||
226 | extern int kdb_bt(int, const char **); /* KDB display back trace */ | ||
227 | |||
228 | /* KDB breakpoint management functions */ | ||
229 | extern void kdb_initbptab(void); | ||
230 | extern void kdb_bp_install(struct pt_regs *); | ||
231 | extern void kdb_bp_remove(void); | ||
232 | |||
233 | typedef enum { | ||
234 | KDB_DB_BPT, /* Breakpoint */ | ||
235 | KDB_DB_SS, /* Single-step trap */ | ||
236 | KDB_DB_SSB, /* Single step to branch */ | ||
237 | KDB_DB_SSBPT, /* Single step over breakpoint */ | ||
238 | KDB_DB_NOBPT /* Spurious breakpoint */ | ||
239 | } kdb_dbtrap_t; | ||
240 | |||
241 | extern int kdb_main_loop(kdb_reason_t, kdb_reason_t, | ||
242 | int, kdb_dbtrap_t, struct pt_regs *); | ||
243 | |||
244 | /* Miscellaneous functions and data areas */ | ||
245 | extern int kdb_grepping_flag; | ||
246 | extern char kdb_grep_string[]; | ||
247 | extern int kdb_grep_leading; | ||
248 | extern int kdb_grep_trailing; | ||
249 | extern char *kdb_cmds[]; | ||
250 | extern void kdb_syslog_data(char *syslog_data[]); | ||
251 | extern unsigned long kdb_task_state_string(const char *); | ||
252 | extern char kdb_task_state_char (const struct task_struct *); | ||
253 | extern unsigned long kdb_task_state(const struct task_struct *p, | ||
254 | unsigned long mask); | ||
255 | extern void kdb_ps_suppressed(void); | ||
256 | extern void kdb_ps1(const struct task_struct *p); | ||
257 | extern void kdb_print_nameval(const char *name, unsigned long val); | ||
258 | extern void kdb_send_sig_info(struct task_struct *p, struct siginfo *info); | ||
259 | extern void kdb_meminfo_proc_show(void); | ||
260 | extern const char *kdb_walk_kallsyms(loff_t *pos); | ||
261 | extern char *kdb_getstr(char *, size_t, char *); | ||
262 | |||
263 | /* Defines for kdb_symbol_print */ | ||
264 | #define KDB_SP_SPACEB 0x0001 /* Space before string */ | ||
265 | #define KDB_SP_SPACEA 0x0002 /* Space after string */ | ||
266 | #define KDB_SP_PAREN 0x0004 /* Parenthesis around string */ | ||
267 | #define KDB_SP_VALUE 0x0008 /* Print the value of the address */ | ||
268 | #define KDB_SP_SYMSIZE 0x0010 /* Print the size of the symbol */ | ||
269 | #define KDB_SP_NEWLINE 0x0020 /* Newline after string */ | ||
270 | #define KDB_SP_DEFAULT (KDB_SP_VALUE|KDB_SP_PAREN) | ||
271 | |||
272 | #define KDB_TSK(cpu) kgdb_info[cpu].task | ||
273 | #define KDB_TSKREGS(cpu) kgdb_info[cpu].debuggerinfo | ||
274 | |||
275 | extern struct task_struct *kdb_curr_task(int); | ||
276 | |||
277 | #define kdb_task_has_cpu(p) (task_curr(p)) | ||
278 | |||
279 | /* Simplify coexistence with NPTL */ | ||
280 | #define kdb_do_each_thread(g, p) do_each_thread(g, p) | ||
281 | #define kdb_while_each_thread(g, p) while_each_thread(g, p) | ||
282 | |||
283 | #define GFP_KDB (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) | ||
284 | |||
285 | extern void *debug_kmalloc(size_t size, gfp_t flags); | ||
286 | extern void debug_kfree(void *); | ||
287 | extern void debug_kusage(void); | ||
288 | |||
289 | extern void kdb_set_current_task(struct task_struct *); | ||
290 | extern struct task_struct *kdb_current_task; | ||
291 | #ifdef CONFIG_MODULES | ||
292 | extern struct list_head *kdb_modules; | ||
293 | #endif /* CONFIG_MODULES */ | ||
294 | |||
295 | extern char kdb_prompt_str[]; | ||
296 | |||
297 | #define KDB_WORD_SIZE ((int)sizeof(unsigned long)) | ||
298 | |||
299 | #endif /* CONFIG_KGDB_KDB */ | ||
300 | #endif /* !_KDBPRIVATE_H */ | ||
diff --git a/kernel/debug/kdb/kdb_support.c b/kernel/debug/kdb/kdb_support.c new file mode 100644 index 000000000000..45344d5c53dd --- /dev/null +++ b/kernel/debug/kdb/kdb_support.c | |||
@@ -0,0 +1,927 @@ | |||
1 | /* | ||
2 | * Kernel Debugger Architecture Independent Support Functions | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. | ||
10 | * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net> | ||
11 | */ | ||
12 | |||
13 | #include <stdarg.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/mm.h> | ||
17 | #include <linux/kallsyms.h> | ||
18 | #include <linux/stddef.h> | ||
19 | #include <linux/vmalloc.h> | ||
20 | #include <linux/ptrace.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/highmem.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/kdb.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include "kdb_private.h" | ||
29 | |||
30 | /* | ||
31 | * kdbgetsymval - Return the address of the given symbol. | ||
32 | * | ||
33 | * Parameters: | ||
34 | * symname Character string containing symbol name | ||
35 | * symtab Structure to receive results | ||
36 | * Returns: | ||
37 | * 0 Symbol not found, symtab zero filled | ||
38 | * 1 Symbol mapped to module/symbol/section, data in symtab | ||
39 | */ | ||
40 | int kdbgetsymval(const char *symname, kdb_symtab_t *symtab) | ||
41 | { | ||
42 | if (KDB_DEBUG(AR)) | ||
43 | kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname, | ||
44 | symtab); | ||
45 | memset(symtab, 0, sizeof(*symtab)); | ||
46 | symtab->sym_start = kallsyms_lookup_name(symname); | ||
47 | if (symtab->sym_start) { | ||
48 | if (KDB_DEBUG(AR)) | ||
49 | kdb_printf("kdbgetsymval: returns 1, " | ||
50 | "symtab->sym_start=0x%lx\n", | ||
51 | symtab->sym_start); | ||
52 | return 1; | ||
53 | } | ||
54 | if (KDB_DEBUG(AR)) | ||
55 | kdb_printf("kdbgetsymval: returns 0\n"); | ||
56 | return 0; | ||
57 | } | ||
58 | EXPORT_SYMBOL(kdbgetsymval); | ||
59 | |||
60 | static char *kdb_name_table[100]; /* arbitrary size */ | ||
61 | |||
62 | /* | ||
63 | * kdbnearsym - Return the name of the symbol with the nearest address | ||
64 | * less than 'addr'. | ||
65 | * | ||
66 | * Parameters: | ||
67 | * addr Address to check for symbol near | ||
68 | * symtab Structure to receive results | ||
69 | * Returns: | ||
70 | * 0 No sections contain this address, symtab zero filled | ||
71 | * 1 Address mapped to module/symbol/section, data in symtab | ||
72 | * Remarks: | ||
73 | * 2.6 kallsyms has a "feature" where it unpacks the name into a | ||
74 | * string. If that string is reused before the caller expects it | ||
75 | * then the caller sees its string change without warning. To | ||
76 | * avoid cluttering up the main kdb code with lots of kdb_strdup, | ||
77 | * tests and kfree calls, kdbnearsym maintains an LRU list of the | ||
78 | * last few unique strings. The list is sized large enough to | ||
79 | * hold active strings, no kdb caller of kdbnearsym makes more | ||
80 | * than ~20 later calls before using a saved value. | ||
81 | */ | ||
82 | int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab) | ||
83 | { | ||
84 | int ret = 0; | ||
85 | unsigned long symbolsize; | ||
86 | unsigned long offset; | ||
87 | #define knt1_size 128 /* must be >= kallsyms table size */ | ||
88 | char *knt1 = NULL; | ||
89 | |||
90 | if (KDB_DEBUG(AR)) | ||
91 | kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr, symtab); | ||
92 | memset(symtab, 0, sizeof(*symtab)); | ||
93 | |||
94 | if (addr < 4096) | ||
95 | goto out; | ||
96 | knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC); | ||
97 | if (!knt1) { | ||
98 | kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n", | ||
99 | addr); | ||
100 | goto out; | ||
101 | } | ||
102 | symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset, | ||
103 | (char **)(&symtab->mod_name), knt1); | ||
104 | if (offset > 8*1024*1024) { | ||
105 | symtab->sym_name = NULL; | ||
106 | addr = offset = symbolsize = 0; | ||
107 | } | ||
108 | symtab->sym_start = addr - offset; | ||
109 | symtab->sym_end = symtab->sym_start + symbolsize; | ||
110 | ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0'; | ||
111 | |||
112 | if (ret) { | ||
113 | int i; | ||
114 | /* Another 2.6 kallsyms "feature". Sometimes the sym_name is | ||
115 | * set but the buffer passed into kallsyms_lookup is not used, | ||
116 | * so it contains garbage. The caller has to work out which | ||
117 | * buffer needs to be saved. | ||
118 | * | ||
119 | * What was Rusty smoking when he wrote that code? | ||
120 | */ | ||
121 | if (symtab->sym_name != knt1) { | ||
122 | strncpy(knt1, symtab->sym_name, knt1_size); | ||
123 | knt1[knt1_size-1] = '\0'; | ||
124 | } | ||
125 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { | ||
126 | if (kdb_name_table[i] && | ||
127 | strcmp(kdb_name_table[i], knt1) == 0) | ||
128 | break; | ||
129 | } | ||
130 | if (i >= ARRAY_SIZE(kdb_name_table)) { | ||
131 | debug_kfree(kdb_name_table[0]); | ||
132 | memcpy(kdb_name_table, kdb_name_table+1, | ||
133 | sizeof(kdb_name_table[0]) * | ||
134 | (ARRAY_SIZE(kdb_name_table)-1)); | ||
135 | } else { | ||
136 | debug_kfree(knt1); | ||
137 | knt1 = kdb_name_table[i]; | ||
138 | memcpy(kdb_name_table+i, kdb_name_table+i+1, | ||
139 | sizeof(kdb_name_table[0]) * | ||
140 | (ARRAY_SIZE(kdb_name_table)-i-1)); | ||
141 | } | ||
142 | i = ARRAY_SIZE(kdb_name_table) - 1; | ||
143 | kdb_name_table[i] = knt1; | ||
144 | symtab->sym_name = kdb_name_table[i]; | ||
145 | knt1 = NULL; | ||
146 | } | ||
147 | |||
148 | if (symtab->mod_name == NULL) | ||
149 | symtab->mod_name = "kernel"; | ||
150 | if (KDB_DEBUG(AR)) | ||
151 | kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, " | ||
152 | "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret, | ||
153 | symtab->sym_start, symtab->mod_name, symtab->sym_name, | ||
154 | symtab->sym_name); | ||
155 | |||
156 | out: | ||
157 | debug_kfree(knt1); | ||
158 | return ret; | ||
159 | } | ||
160 | |||
161 | void kdbnearsym_cleanup(void) | ||
162 | { | ||
163 | int i; | ||
164 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { | ||
165 | if (kdb_name_table[i]) { | ||
166 | debug_kfree(kdb_name_table[i]); | ||
167 | kdb_name_table[i] = NULL; | ||
168 | } | ||
169 | } | ||
170 | } | ||
171 | |||
172 | static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1]; | ||
173 | |||
174 | /* | ||
175 | * kallsyms_symbol_complete | ||
176 | * | ||
177 | * Parameters: | ||
178 | * prefix_name prefix of a symbol name to lookup | ||
179 | * max_len maximum length that can be returned | ||
180 | * Returns: | ||
181 | * Number of symbols which match the given prefix. | ||
182 | * Notes: | ||
183 | * prefix_name is changed to contain the longest unique prefix that | ||
184 | * starts with this prefix (tab completion). | ||
185 | */ | ||
186 | int kallsyms_symbol_complete(char *prefix_name, int max_len) | ||
187 | { | ||
188 | loff_t pos = 0; | ||
189 | int prefix_len = strlen(prefix_name), prev_len = 0; | ||
190 | int i, number = 0; | ||
191 | const char *name; | ||
192 | |||
193 | while ((name = kdb_walk_kallsyms(&pos))) { | ||
194 | if (strncmp(name, prefix_name, prefix_len) == 0) { | ||
195 | strcpy(ks_namebuf, name); | ||
196 | /* Work out the longest name that matches the prefix */ | ||
197 | if (++number == 1) { | ||
198 | prev_len = min_t(int, max_len-1, | ||
199 | strlen(ks_namebuf)); | ||
200 | memcpy(ks_namebuf_prev, ks_namebuf, prev_len); | ||
201 | ks_namebuf_prev[prev_len] = '\0'; | ||
202 | continue; | ||
203 | } | ||
204 | for (i = 0; i < prev_len; i++) { | ||
205 | if (ks_namebuf[i] != ks_namebuf_prev[i]) { | ||
206 | prev_len = i; | ||
207 | ks_namebuf_prev[i] = '\0'; | ||
208 | break; | ||
209 | } | ||
210 | } | ||
211 | } | ||
212 | } | ||
213 | if (prev_len > prefix_len) | ||
214 | memcpy(prefix_name, ks_namebuf_prev, prev_len+1); | ||
215 | return number; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * kallsyms_symbol_next | ||
220 | * | ||
221 | * Parameters: | ||
222 | * prefix_name prefix of a symbol name to lookup | ||
223 | * flag 0 means search from the head, 1 means continue search. | ||
224 | * Returns: | ||
225 | * 1 if a symbol matches the given prefix. | ||
226 | * 0 if no string found | ||
227 | */ | ||
228 | int kallsyms_symbol_next(char *prefix_name, int flag) | ||
229 | { | ||
230 | int prefix_len = strlen(prefix_name); | ||
231 | static loff_t pos; | ||
232 | const char *name; | ||
233 | |||
234 | if (!flag) | ||
235 | pos = 0; | ||
236 | |||
237 | while ((name = kdb_walk_kallsyms(&pos))) { | ||
238 | if (strncmp(name, prefix_name, prefix_len) == 0) { | ||
239 | strncpy(prefix_name, name, strlen(name)+1); | ||
240 | return 1; | ||
241 | } | ||
242 | } | ||
243 | return 0; | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * kdb_symbol_print - Standard method for printing a symbol name and offset. | ||
248 | * Inputs: | ||
249 | * addr Address to be printed. | ||
250 | * symtab Address of symbol data, if NULL this routine does its | ||
251 | * own lookup. | ||
252 | * punc Punctuation for string, bit field. | ||
253 | * Remarks: | ||
254 | * The string and its punctuation is only printed if the address | ||
255 | * is inside the kernel, except that the value is always printed | ||
256 | * when requested. | ||
257 | */ | ||
258 | void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p, | ||
259 | unsigned int punc) | ||
260 | { | ||
261 | kdb_symtab_t symtab, *symtab_p2; | ||
262 | if (symtab_p) { | ||
263 | symtab_p2 = (kdb_symtab_t *)symtab_p; | ||
264 | } else { | ||
265 | symtab_p2 = &symtab; | ||
266 | kdbnearsym(addr, symtab_p2); | ||
267 | } | ||
268 | if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE))) | ||
269 | return; | ||
270 | if (punc & KDB_SP_SPACEB) | ||
271 | kdb_printf(" "); | ||
272 | if (punc & KDB_SP_VALUE) | ||
273 | kdb_printf(kdb_machreg_fmt0, addr); | ||
274 | if (symtab_p2->sym_name) { | ||
275 | if (punc & KDB_SP_VALUE) | ||
276 | kdb_printf(" "); | ||
277 | if (punc & KDB_SP_PAREN) | ||
278 | kdb_printf("("); | ||
279 | if (strcmp(symtab_p2->mod_name, "kernel")) | ||
280 | kdb_printf("[%s]", symtab_p2->mod_name); | ||
281 | kdb_printf("%s", symtab_p2->sym_name); | ||
282 | if (addr != symtab_p2->sym_start) | ||
283 | kdb_printf("+0x%lx", addr - symtab_p2->sym_start); | ||
284 | if (punc & KDB_SP_SYMSIZE) | ||
285 | kdb_printf("/0x%lx", | ||
286 | symtab_p2->sym_end - symtab_p2->sym_start); | ||
287 | if (punc & KDB_SP_PAREN) | ||
288 | kdb_printf(")"); | ||
289 | } | ||
290 | if (punc & KDB_SP_SPACEA) | ||
291 | kdb_printf(" "); | ||
292 | if (punc & KDB_SP_NEWLINE) | ||
293 | kdb_printf("\n"); | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * kdb_strdup - kdb equivalent of strdup, for disasm code. | ||
298 | * Inputs: | ||
299 | * str The string to duplicate. | ||
300 | * type Flags to kmalloc for the new string. | ||
301 | * Returns: | ||
302 | * Address of the new string, NULL if storage could not be allocated. | ||
303 | * Remarks: | ||
304 | * This is not in lib/string.c because it uses kmalloc which is not | ||
305 | * available when string.o is used in boot loaders. | ||
306 | */ | ||
307 | char *kdb_strdup(const char *str, gfp_t type) | ||
308 | { | ||
309 | int n = strlen(str)+1; | ||
310 | char *s = kmalloc(n, type); | ||
311 | if (!s) | ||
312 | return NULL; | ||
313 | return strcpy(s, str); | ||
314 | } | ||
315 | |||
316 | /* | ||
317 | * kdb_getarea_size - Read an area of data. The kdb equivalent of | ||
318 | * copy_from_user, with kdb messages for invalid addresses. | ||
319 | * Inputs: | ||
320 | * res Pointer to the area to receive the result. | ||
321 | * addr Address of the area to copy. | ||
322 | * size Size of the area. | ||
323 | * Returns: | ||
324 | * 0 for success, < 0 for error. | ||
325 | */ | ||
326 | int kdb_getarea_size(void *res, unsigned long addr, size_t size) | ||
327 | { | ||
328 | int ret = probe_kernel_read((char *)res, (char *)addr, size); | ||
329 | if (ret) { | ||
330 | if (!KDB_STATE(SUPPRESS)) { | ||
331 | kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr); | ||
332 | KDB_STATE_SET(SUPPRESS); | ||
333 | } | ||
334 | ret = KDB_BADADDR; | ||
335 | } else { | ||
336 | KDB_STATE_CLEAR(SUPPRESS); | ||
337 | } | ||
338 | return ret; | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * kdb_putarea_size - Write an area of data. The kdb equivalent of | ||
343 | * copy_to_user, with kdb messages for invalid addresses. | ||
344 | * Inputs: | ||
345 | * addr Address of the area to write to. | ||
346 | * res Pointer to the area holding the data. | ||
347 | * size Size of the area. | ||
348 | * Returns: | ||
349 | * 0 for success, < 0 for error. | ||
350 | */ | ||
351 | int kdb_putarea_size(unsigned long addr, void *res, size_t size) | ||
352 | { | ||
353 | int ret = probe_kernel_read((char *)addr, (char *)res, size); | ||
354 | if (ret) { | ||
355 | if (!KDB_STATE(SUPPRESS)) { | ||
356 | kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr); | ||
357 | KDB_STATE_SET(SUPPRESS); | ||
358 | } | ||
359 | ret = KDB_BADADDR; | ||
360 | } else { | ||
361 | KDB_STATE_CLEAR(SUPPRESS); | ||
362 | } | ||
363 | return ret; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * kdb_getphys - Read data from a physical address. Validate the | ||
368 | * address is in range, use kmap_atomic() to get data | ||
369 | * similar to kdb_getarea() - but for phys addresses | ||
370 | * Inputs: | ||
371 | * res Pointer to the word to receive the result | ||
372 | * addr Physical address of the area to copy | ||
373 | * size Size of the area | ||
374 | * Returns: | ||
375 | * 0 for success, < 0 for error. | ||
376 | */ | ||
377 | static int kdb_getphys(void *res, unsigned long addr, size_t size) | ||
378 | { | ||
379 | unsigned long pfn; | ||
380 | void *vaddr; | ||
381 | struct page *page; | ||
382 | |||
383 | pfn = (addr >> PAGE_SHIFT); | ||
384 | if (!pfn_valid(pfn)) | ||
385 | return 1; | ||
386 | page = pfn_to_page(pfn); | ||
387 | vaddr = kmap_atomic(page, KM_KDB); | ||
388 | memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size); | ||
389 | kunmap_atomic(vaddr, KM_KDB); | ||
390 | |||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * kdb_getphysword | ||
396 | * Inputs: | ||
397 | * word Pointer to the word to receive the result. | ||
398 | * addr Address of the area to copy. | ||
399 | * size Size of the area. | ||
400 | * Returns: | ||
401 | * 0 for success, < 0 for error. | ||
402 | */ | ||
403 | int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size) | ||
404 | { | ||
405 | int diag; | ||
406 | __u8 w1; | ||
407 | __u16 w2; | ||
408 | __u32 w4; | ||
409 | __u64 w8; | ||
410 | *word = 0; /* Default value if addr or size is invalid */ | ||
411 | |||
412 | switch (size) { | ||
413 | case 1: | ||
414 | diag = kdb_getphys(&w1, addr, sizeof(w1)); | ||
415 | if (!diag) | ||
416 | *word = w1; | ||
417 | break; | ||
418 | case 2: | ||
419 | diag = kdb_getphys(&w2, addr, sizeof(w2)); | ||
420 | if (!diag) | ||
421 | *word = w2; | ||
422 | break; | ||
423 | case 4: | ||
424 | diag = kdb_getphys(&w4, addr, sizeof(w4)); | ||
425 | if (!diag) | ||
426 | *word = w4; | ||
427 | break; | ||
428 | case 8: | ||
429 | if (size <= sizeof(*word)) { | ||
430 | diag = kdb_getphys(&w8, addr, sizeof(w8)); | ||
431 | if (!diag) | ||
432 | *word = w8; | ||
433 | break; | ||
434 | } | ||
435 | /* drop through */ | ||
436 | default: | ||
437 | diag = KDB_BADWIDTH; | ||
438 | kdb_printf("kdb_getphysword: bad width %ld\n", (long) size); | ||
439 | } | ||
440 | return diag; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats | ||
445 | * data as numbers. | ||
446 | * Inputs: | ||
447 | * word Pointer to the word to receive the result. | ||
448 | * addr Address of the area to copy. | ||
449 | * size Size of the area. | ||
450 | * Returns: | ||
451 | * 0 for success, < 0 for error. | ||
452 | */ | ||
453 | int kdb_getword(unsigned long *word, unsigned long addr, size_t size) | ||
454 | { | ||
455 | int diag; | ||
456 | __u8 w1; | ||
457 | __u16 w2; | ||
458 | __u32 w4; | ||
459 | __u64 w8; | ||
460 | *word = 0; /* Default value if addr or size is invalid */ | ||
461 | switch (size) { | ||
462 | case 1: | ||
463 | diag = kdb_getarea(w1, addr); | ||
464 | if (!diag) | ||
465 | *word = w1; | ||
466 | break; | ||
467 | case 2: | ||
468 | diag = kdb_getarea(w2, addr); | ||
469 | if (!diag) | ||
470 | *word = w2; | ||
471 | break; | ||
472 | case 4: | ||
473 | diag = kdb_getarea(w4, addr); | ||
474 | if (!diag) | ||
475 | *word = w4; | ||
476 | break; | ||
477 | case 8: | ||
478 | if (size <= sizeof(*word)) { | ||
479 | diag = kdb_getarea(w8, addr); | ||
480 | if (!diag) | ||
481 | *word = w8; | ||
482 | break; | ||
483 | } | ||
484 | /* drop through */ | ||
485 | default: | ||
486 | diag = KDB_BADWIDTH; | ||
487 | kdb_printf("kdb_getword: bad width %ld\n", (long) size); | ||
488 | } | ||
489 | return diag; | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * kdb_putword - Write a binary value. Unlike kdb_putarea, this | ||
494 | * treats data as numbers. | ||
495 | * Inputs: | ||
496 | * addr Address of the area to write to.. | ||
497 | * word The value to set. | ||
498 | * size Size of the area. | ||
499 | * Returns: | ||
500 | * 0 for success, < 0 for error. | ||
501 | */ | ||
502 | int kdb_putword(unsigned long addr, unsigned long word, size_t size) | ||
503 | { | ||
504 | int diag; | ||
505 | __u8 w1; | ||
506 | __u16 w2; | ||
507 | __u32 w4; | ||
508 | __u64 w8; | ||
509 | switch (size) { | ||
510 | case 1: | ||
511 | w1 = word; | ||
512 | diag = kdb_putarea(addr, w1); | ||
513 | break; | ||
514 | case 2: | ||
515 | w2 = word; | ||
516 | diag = kdb_putarea(addr, w2); | ||
517 | break; | ||
518 | case 4: | ||
519 | w4 = word; | ||
520 | diag = kdb_putarea(addr, w4); | ||
521 | break; | ||
522 | case 8: | ||
523 | if (size <= sizeof(word)) { | ||
524 | w8 = word; | ||
525 | diag = kdb_putarea(addr, w8); | ||
526 | break; | ||
527 | } | ||
528 | /* drop through */ | ||
529 | default: | ||
530 | diag = KDB_BADWIDTH; | ||
531 | kdb_printf("kdb_putword: bad width %ld\n", (long) size); | ||
532 | } | ||
533 | return diag; | ||
534 | } | ||
535 | |||
536 | /* | ||
537 | * kdb_task_state_string - Convert a string containing any of the | ||
538 | * letters DRSTCZEUIMA to a mask for the process state field and | ||
539 | * return the value. If no argument is supplied, return the mask | ||
540 | * that corresponds to environment variable PS, DRSTCZEU by | ||
541 | * default. | ||
542 | * Inputs: | ||
543 | * s String to convert | ||
544 | * Returns: | ||
545 | * Mask for process state. | ||
546 | * Notes: | ||
547 | * The mask folds data from several sources into a single long value, so | ||
548 | * be carefull not to overlap the bits. TASK_* bits are in the LSB, | ||
549 | * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there | ||
550 | * is no overlap between TASK_* and EXIT_* but that may not always be | ||
551 | * true, so EXIT_* bits are shifted left 16 bits before being stored in | ||
552 | * the mask. | ||
553 | */ | ||
554 | |||
555 | /* unrunnable is < 0 */ | ||
556 | #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1)) | ||
557 | #define RUNNING (1UL << (8*sizeof(unsigned long) - 2)) | ||
558 | #define IDLE (1UL << (8*sizeof(unsigned long) - 3)) | ||
559 | #define DAEMON (1UL << (8*sizeof(unsigned long) - 4)) | ||
560 | |||
561 | unsigned long kdb_task_state_string(const char *s) | ||
562 | { | ||
563 | long res = 0; | ||
564 | if (!s) { | ||
565 | s = kdbgetenv("PS"); | ||
566 | if (!s) | ||
567 | s = "DRSTCZEU"; /* default value for ps */ | ||
568 | } | ||
569 | while (*s) { | ||
570 | switch (*s) { | ||
571 | case 'D': | ||
572 | res |= TASK_UNINTERRUPTIBLE; | ||
573 | break; | ||
574 | case 'R': | ||
575 | res |= RUNNING; | ||
576 | break; | ||
577 | case 'S': | ||
578 | res |= TASK_INTERRUPTIBLE; | ||
579 | break; | ||
580 | case 'T': | ||
581 | res |= TASK_STOPPED; | ||
582 | break; | ||
583 | case 'C': | ||
584 | res |= TASK_TRACED; | ||
585 | break; | ||
586 | case 'Z': | ||
587 | res |= EXIT_ZOMBIE << 16; | ||
588 | break; | ||
589 | case 'E': | ||
590 | res |= EXIT_DEAD << 16; | ||
591 | break; | ||
592 | case 'U': | ||
593 | res |= UNRUNNABLE; | ||
594 | break; | ||
595 | case 'I': | ||
596 | res |= IDLE; | ||
597 | break; | ||
598 | case 'M': | ||
599 | res |= DAEMON; | ||
600 | break; | ||
601 | case 'A': | ||
602 | res = ~0UL; | ||
603 | break; | ||
604 | default: | ||
605 | kdb_printf("%s: unknown flag '%c' ignored\n", | ||
606 | __func__, *s); | ||
607 | break; | ||
608 | } | ||
609 | ++s; | ||
610 | } | ||
611 | return res; | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * kdb_task_state_char - Return the character that represents the task state. | ||
616 | * Inputs: | ||
617 | * p struct task for the process | ||
618 | * Returns: | ||
619 | * One character to represent the task state. | ||
620 | */ | ||
621 | char kdb_task_state_char (const struct task_struct *p) | ||
622 | { | ||
623 | int cpu; | ||
624 | char state; | ||
625 | unsigned long tmp; | ||
626 | |||
627 | if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) | ||
628 | return 'E'; | ||
629 | |||
630 | cpu = kdb_process_cpu(p); | ||
631 | state = (p->state == 0) ? 'R' : | ||
632 | (p->state < 0) ? 'U' : | ||
633 | (p->state & TASK_UNINTERRUPTIBLE) ? 'D' : | ||
634 | (p->state & TASK_STOPPED) ? 'T' : | ||
635 | (p->state & TASK_TRACED) ? 'C' : | ||
636 | (p->exit_state & EXIT_ZOMBIE) ? 'Z' : | ||
637 | (p->exit_state & EXIT_DEAD) ? 'E' : | ||
638 | (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?'; | ||
639 | if (p->pid == 0) { | ||
640 | /* Idle task. Is it really idle, apart from the kdb | ||
641 | * interrupt? */ | ||
642 | if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) { | ||
643 | if (cpu != kdb_initial_cpu) | ||
644 | state = 'I'; /* idle task */ | ||
645 | } | ||
646 | } else if (!p->mm && state == 'S') { | ||
647 | state = 'M'; /* sleeping system daemon */ | ||
648 | } | ||
649 | return state; | ||
650 | } | ||
651 | |||
652 | /* | ||
653 | * kdb_task_state - Return true if a process has the desired state | ||
654 | * given by the mask. | ||
655 | * Inputs: | ||
656 | * p struct task for the process | ||
657 | * mask mask from kdb_task_state_string to select processes | ||
658 | * Returns: | ||
659 | * True if the process matches at least one criteria defined by the mask. | ||
660 | */ | ||
661 | unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask) | ||
662 | { | ||
663 | char state[] = { kdb_task_state_char(p), '\0' }; | ||
664 | return (mask & kdb_task_state_string(state)) != 0; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * kdb_print_nameval - Print a name and its value, converting the | ||
669 | * value to a symbol lookup if possible. | ||
670 | * Inputs: | ||
671 | * name field name to print | ||
672 | * val value of field | ||
673 | */ | ||
674 | void kdb_print_nameval(const char *name, unsigned long val) | ||
675 | { | ||
676 | kdb_symtab_t symtab; | ||
677 | kdb_printf(" %-11.11s ", name); | ||
678 | if (kdbnearsym(val, &symtab)) | ||
679 | kdb_symbol_print(val, &symtab, | ||
680 | KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE); | ||
681 | else | ||
682 | kdb_printf("0x%lx\n", val); | ||
683 | } | ||
684 | |||
685 | /* Last ditch allocator for debugging, so we can still debug even when | ||
686 | * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned | ||
687 | * for space usage, not for speed. One smallish memory pool, the free | ||
688 | * chain is always in ascending address order to allow coalescing, | ||
689 | * allocations are done in brute force best fit. | ||
690 | */ | ||
691 | |||
692 | struct debug_alloc_header { | ||
693 | u32 next; /* offset of next header from start of pool */ | ||
694 | u32 size; | ||
695 | void *caller; | ||
696 | }; | ||
697 | |||
698 | /* The memory returned by this allocator must be aligned, which means | ||
699 | * so must the header size. Do not assume that sizeof(struct | ||
700 | * debug_alloc_header) is a multiple of the alignment, explicitly | ||
701 | * calculate the overhead of this header, including the alignment. | ||
702 | * The rest of this code must not use sizeof() on any header or | ||
703 | * pointer to a header. | ||
704 | */ | ||
705 | #define dah_align 8 | ||
706 | #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align) | ||
707 | |||
708 | static u64 debug_alloc_pool_aligned[256*1024/dah_align]; /* 256K pool */ | ||
709 | static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned; | ||
710 | static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max; | ||
711 | |||
712 | /* Locking is awkward. The debug code is called from all contexts, | ||
713 | * including non maskable interrupts. A normal spinlock is not safe | ||
714 | * in NMI context. Try to get the debug allocator lock, if it cannot | ||
715 | * be obtained after a second then give up. If the lock could not be | ||
716 | * previously obtained on this cpu then only try once. | ||
717 | * | ||
718 | * sparse has no annotation for "this function _sometimes_ acquires a | ||
719 | * lock", so fudge the acquire/release notation. | ||
720 | */ | ||
721 | static DEFINE_SPINLOCK(dap_lock); | ||
722 | static int get_dap_lock(void) | ||
723 | __acquires(dap_lock) | ||
724 | { | ||
725 | static int dap_locked = -1; | ||
726 | int count; | ||
727 | if (dap_locked == smp_processor_id()) | ||
728 | count = 1; | ||
729 | else | ||
730 | count = 1000; | ||
731 | while (1) { | ||
732 | if (spin_trylock(&dap_lock)) { | ||
733 | dap_locked = -1; | ||
734 | return 1; | ||
735 | } | ||
736 | if (!count--) | ||
737 | break; | ||
738 | udelay(1000); | ||
739 | } | ||
740 | dap_locked = smp_processor_id(); | ||
741 | __acquire(dap_lock); | ||
742 | return 0; | ||
743 | } | ||
744 | |||
745 | void *debug_kmalloc(size_t size, gfp_t flags) | ||
746 | { | ||
747 | unsigned int rem, h_offset; | ||
748 | struct debug_alloc_header *best, *bestprev, *prev, *h; | ||
749 | void *p = NULL; | ||
750 | if (!get_dap_lock()) { | ||
751 | __release(dap_lock); /* we never actually got it */ | ||
752 | return NULL; | ||
753 | } | ||
754 | h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); | ||
755 | if (dah_first_call) { | ||
756 | h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead; | ||
757 | dah_first_call = 0; | ||
758 | } | ||
759 | size = ALIGN(size, dah_align); | ||
760 | prev = best = bestprev = NULL; | ||
761 | while (1) { | ||
762 | if (h->size >= size && (!best || h->size < best->size)) { | ||
763 | best = h; | ||
764 | bestprev = prev; | ||
765 | if (h->size == size) | ||
766 | break; | ||
767 | } | ||
768 | if (!h->next) | ||
769 | break; | ||
770 | prev = h; | ||
771 | h = (struct debug_alloc_header *)(debug_alloc_pool + h->next); | ||
772 | } | ||
773 | if (!best) | ||
774 | goto out; | ||
775 | rem = best->size - size; | ||
776 | /* The pool must always contain at least one header */ | ||
777 | if (best->next == 0 && bestprev == NULL && rem < dah_overhead) | ||
778 | goto out; | ||
779 | if (rem >= dah_overhead) { | ||
780 | best->size = size; | ||
781 | h_offset = ((char *)best - debug_alloc_pool) + | ||
782 | dah_overhead + best->size; | ||
783 | h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset); | ||
784 | h->size = rem - dah_overhead; | ||
785 | h->next = best->next; | ||
786 | } else | ||
787 | h_offset = best->next; | ||
788 | best->caller = __builtin_return_address(0); | ||
789 | dah_used += best->size; | ||
790 | dah_used_max = max(dah_used, dah_used_max); | ||
791 | if (bestprev) | ||
792 | bestprev->next = h_offset; | ||
793 | else | ||
794 | dah_first = h_offset; | ||
795 | p = (char *)best + dah_overhead; | ||
796 | memset(p, POISON_INUSE, best->size - 1); | ||
797 | *((char *)p + best->size - 1) = POISON_END; | ||
798 | out: | ||
799 | spin_unlock(&dap_lock); | ||
800 | return p; | ||
801 | } | ||
802 | |||
803 | void debug_kfree(void *p) | ||
804 | { | ||
805 | struct debug_alloc_header *h; | ||
806 | unsigned int h_offset; | ||
807 | if (!p) | ||
808 | return; | ||
809 | if ((char *)p < debug_alloc_pool || | ||
810 | (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) { | ||
811 | kfree(p); | ||
812 | return; | ||
813 | } | ||
814 | if (!get_dap_lock()) { | ||
815 | __release(dap_lock); /* we never actually got it */ | ||
816 | return; /* memory leak, cannot be helped */ | ||
817 | } | ||
818 | h = (struct debug_alloc_header *)((char *)p - dah_overhead); | ||
819 | memset(p, POISON_FREE, h->size - 1); | ||
820 | *((char *)p + h->size - 1) = POISON_END; | ||
821 | h->caller = NULL; | ||
822 | dah_used -= h->size; | ||
823 | h_offset = (char *)h - debug_alloc_pool; | ||
824 | if (h_offset < dah_first) { | ||
825 | h->next = dah_first; | ||
826 | dah_first = h_offset; | ||
827 | } else { | ||
828 | struct debug_alloc_header *prev; | ||
829 | unsigned int prev_offset; | ||
830 | prev = (struct debug_alloc_header *)(debug_alloc_pool + | ||
831 | dah_first); | ||
832 | while (1) { | ||
833 | if (!prev->next || prev->next > h_offset) | ||
834 | break; | ||
835 | prev = (struct debug_alloc_header *) | ||
836 | (debug_alloc_pool + prev->next); | ||
837 | } | ||
838 | prev_offset = (char *)prev - debug_alloc_pool; | ||
839 | if (prev_offset + dah_overhead + prev->size == h_offset) { | ||
840 | prev->size += dah_overhead + h->size; | ||
841 | memset(h, POISON_FREE, dah_overhead - 1); | ||
842 | *((char *)h + dah_overhead - 1) = POISON_END; | ||
843 | h = prev; | ||
844 | h_offset = prev_offset; | ||
845 | } else { | ||
846 | h->next = prev->next; | ||
847 | prev->next = h_offset; | ||
848 | } | ||
849 | } | ||
850 | if (h_offset + dah_overhead + h->size == h->next) { | ||
851 | struct debug_alloc_header *next; | ||
852 | next = (struct debug_alloc_header *) | ||
853 | (debug_alloc_pool + h->next); | ||
854 | h->size += dah_overhead + next->size; | ||
855 | h->next = next->next; | ||
856 | memset(next, POISON_FREE, dah_overhead - 1); | ||
857 | *((char *)next + dah_overhead - 1) = POISON_END; | ||
858 | } | ||
859 | spin_unlock(&dap_lock); | ||
860 | } | ||
861 | |||
862 | void debug_kusage(void) | ||
863 | { | ||
864 | struct debug_alloc_header *h_free, *h_used; | ||
865 | #ifdef CONFIG_IA64 | ||
866 | /* FIXME: using dah for ia64 unwind always results in a memory leak. | ||
867 | * Fix that memory leak first, then set debug_kusage_one_time = 1 for | ||
868 | * all architectures. | ||
869 | */ | ||
870 | static int debug_kusage_one_time; | ||
871 | #else | ||
872 | static int debug_kusage_one_time = 1; | ||
873 | #endif | ||
874 | if (!get_dap_lock()) { | ||
875 | __release(dap_lock); /* we never actually got it */ | ||
876 | return; | ||
877 | } | ||
878 | h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); | ||
879 | if (dah_first == 0 && | ||
880 | (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead || | ||
881 | dah_first_call)) | ||
882 | goto out; | ||
883 | if (!debug_kusage_one_time) | ||
884 | goto out; | ||
885 | debug_kusage_one_time = 0; | ||
886 | kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n", | ||
887 | __func__, dah_first); | ||
888 | if (dah_first) { | ||
889 | h_used = (struct debug_alloc_header *)debug_alloc_pool; | ||
890 | kdb_printf("%s: h_used %p size %d\n", __func__, h_used, | ||
891 | h_used->size); | ||
892 | } | ||
893 | do { | ||
894 | h_used = (struct debug_alloc_header *) | ||
895 | ((char *)h_free + dah_overhead + h_free->size); | ||
896 | kdb_printf("%s: h_used %p size %d caller %p\n", | ||
897 | __func__, h_used, h_used->size, h_used->caller); | ||
898 | h_free = (struct debug_alloc_header *) | ||
899 | (debug_alloc_pool + h_free->next); | ||
900 | } while (h_free->next); | ||
901 | h_used = (struct debug_alloc_header *) | ||
902 | ((char *)h_free + dah_overhead + h_free->size); | ||
903 | if ((char *)h_used - debug_alloc_pool != | ||
904 | sizeof(debug_alloc_pool_aligned)) | ||
905 | kdb_printf("%s: h_used %p size %d caller %p\n", | ||
906 | __func__, h_used, h_used->size, h_used->caller); | ||
907 | out: | ||
908 | spin_unlock(&dap_lock); | ||
909 | } | ||
910 | |||
911 | /* Maintain a small stack of kdb_flags to allow recursion without disturbing | ||
912 | * the global kdb state. | ||
913 | */ | ||
914 | |||
915 | static int kdb_flags_stack[4], kdb_flags_index; | ||
916 | |||
917 | void kdb_save_flags(void) | ||
918 | { | ||
919 | BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack)); | ||
920 | kdb_flags_stack[kdb_flags_index++] = kdb_flags; | ||
921 | } | ||
922 | |||
923 | void kdb_restore_flags(void) | ||
924 | { | ||
925 | BUG_ON(kdb_flags_index <= 0); | ||
926 | kdb_flags = kdb_flags_stack[--kdb_flags_index]; | ||
927 | } | ||
diff --git a/kernel/groups.c b/kernel/groups.c index 2b45b2ee3964..53b1916c9492 100644 --- a/kernel/groups.c +++ b/kernel/groups.c | |||
@@ -164,12 +164,6 @@ int groups_search(const struct group_info *group_info, gid_t grp) | |||
164 | */ | 164 | */ |
165 | int set_groups(struct cred *new, struct group_info *group_info) | 165 | int set_groups(struct cred *new, struct group_info *group_info) |
166 | { | 166 | { |
167 | int retval; | ||
168 | |||
169 | retval = security_task_setgroups(group_info); | ||
170 | if (retval) | ||
171 | return retval; | ||
172 | |||
173 | put_group_info(new->group_info); | 167 | put_group_info(new->group_info); |
174 | groups_sort(group_info); | 168 | groups_sort(group_info); |
175 | get_group_info(group_info); | 169 | get_group_info(group_info); |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 0086628b6e97..b9b134b35088 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -1749,35 +1749,15 @@ void __init hrtimers_init(void) | |||
1749 | } | 1749 | } |
1750 | 1750 | ||
1751 | /** | 1751 | /** |
1752 | * schedule_hrtimeout_range - sleep until timeout | 1752 | * schedule_hrtimeout_range_clock - sleep until timeout |
1753 | * @expires: timeout value (ktime_t) | 1753 | * @expires: timeout value (ktime_t) |
1754 | * @delta: slack in expires timeout (ktime_t) | 1754 | * @delta: slack in expires timeout (ktime_t) |
1755 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 1755 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
1756 | * | 1756 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
1757 | * Make the current task sleep until the given expiry time has | ||
1758 | * elapsed. The routine will return immediately unless | ||
1759 | * the current task state has been set (see set_current_state()). | ||
1760 | * | ||
1761 | * The @delta argument gives the kernel the freedom to schedule the | ||
1762 | * actual wakeup to a time that is both power and performance friendly. | ||
1763 | * The kernel give the normal best effort behavior for "@expires+@delta", | ||
1764 | * but may decide to fire the timer earlier, but no earlier than @expires. | ||
1765 | * | ||
1766 | * You can set the task state as follows - | ||
1767 | * | ||
1768 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | ||
1769 | * pass before the routine returns. | ||
1770 | * | ||
1771 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1772 | * delivered to the current task. | ||
1773 | * | ||
1774 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1775 | * routine returns. | ||
1776 | * | ||
1777 | * Returns 0 when the timer has expired otherwise -EINTR | ||
1778 | */ | 1757 | */ |
1779 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | 1758 | int __sched |
1780 | const enum hrtimer_mode mode) | 1759 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, |
1760 | const enum hrtimer_mode mode, int clock) | ||
1781 | { | 1761 | { |
1782 | struct hrtimer_sleeper t; | 1762 | struct hrtimer_sleeper t; |
1783 | 1763 | ||
@@ -1799,7 +1779,7 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |||
1799 | return -EINTR; | 1779 | return -EINTR; |
1800 | } | 1780 | } |
1801 | 1781 | ||
1802 | hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode); | 1782 | hrtimer_init_on_stack(&t.timer, clock, mode); |
1803 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); | 1783 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
1804 | 1784 | ||
1805 | hrtimer_init_sleeper(&t, current); | 1785 | hrtimer_init_sleeper(&t, current); |
@@ -1818,6 +1798,41 @@ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |||
1818 | 1798 | ||
1819 | return !t.task ? 0 : -EINTR; | 1799 | return !t.task ? 0 : -EINTR; |
1820 | } | 1800 | } |
1801 | |||
1802 | /** | ||
1803 | * schedule_hrtimeout_range - sleep until timeout | ||
1804 | * @expires: timeout value (ktime_t) | ||
1805 | * @delta: slack in expires timeout (ktime_t) | ||
1806 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | ||
1807 | * | ||
1808 | * Make the current task sleep until the given expiry time has | ||
1809 | * elapsed. The routine will return immediately unless | ||
1810 | * the current task state has been set (see set_current_state()). | ||
1811 | * | ||
1812 | * The @delta argument gives the kernel the freedom to schedule the | ||
1813 | * actual wakeup to a time that is both power and performance friendly. | ||
1814 | * The kernel give the normal best effort behavior for "@expires+@delta", | ||
1815 | * but may decide to fire the timer earlier, but no earlier than @expires. | ||
1816 | * | ||
1817 | * You can set the task state as follows - | ||
1818 | * | ||
1819 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | ||
1820 | * pass before the routine returns. | ||
1821 | * | ||
1822 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1823 | * delivered to the current task. | ||
1824 | * | ||
1825 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1826 | * routine returns. | ||
1827 | * | ||
1828 | * Returns 0 when the timer has expired otherwise -EINTR | ||
1829 | */ | ||
1830 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | ||
1831 | const enum hrtimer_mode mode) | ||
1832 | { | ||
1833 | return schedule_hrtimeout_range_clock(expires, delta, mode, | ||
1834 | CLOCK_MONOTONIC); | ||
1835 | } | ||
1821 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); | 1836 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1822 | 1837 | ||
1823 | /** | 1838 | /** |
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 76d5a671bfe1..27e5c6911223 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
@@ -370,9 +370,6 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
370 | irqreturn_t ret, retval = IRQ_NONE; | 370 | irqreturn_t ret, retval = IRQ_NONE; |
371 | unsigned int status = 0; | 371 | unsigned int status = 0; |
372 | 372 | ||
373 | if (!(action->flags & IRQF_DISABLED)) | ||
374 | local_irq_enable_in_hardirq(); | ||
375 | |||
376 | do { | 373 | do { |
377 | trace_irq_handler_entry(irq, action); | 374 | trace_irq_handler_entry(irq, action); |
378 | ret = action->handler(irq, action->dev_id); | 375 | ret = action->handler(irq, action->dev_id); |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 704e488730a5..3164ba7ce151 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -138,6 +138,22 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
138 | return 0; | 138 | return 0; |
139 | } | 139 | } |
140 | 140 | ||
141 | int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) | ||
142 | { | ||
143 | struct irq_desc *desc = irq_to_desc(irq); | ||
144 | unsigned long flags; | ||
145 | |||
146 | if (!desc) | ||
147 | return -EINVAL; | ||
148 | |||
149 | raw_spin_lock_irqsave(&desc->lock, flags); | ||
150 | desc->affinity_hint = m; | ||
151 | raw_spin_unlock_irqrestore(&desc->lock, flags); | ||
152 | |||
153 | return 0; | ||
154 | } | ||
155 | EXPORT_SYMBOL_GPL(irq_set_affinity_hint); | ||
156 | |||
141 | #ifndef CONFIG_AUTO_IRQ_AFFINITY | 157 | #ifndef CONFIG_AUTO_IRQ_AFFINITY |
142 | /* | 158 | /* |
143 | * Generic version of the affinity autoselector. | 159 | * Generic version of the affinity autoselector. |
@@ -757,16 +773,6 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
757 | if (new->flags & IRQF_ONESHOT) | 773 | if (new->flags & IRQF_ONESHOT) |
758 | desc->status |= IRQ_ONESHOT; | 774 | desc->status |= IRQ_ONESHOT; |
759 | 775 | ||
760 | /* | ||
761 | * Force MSI interrupts to run with interrupts | ||
762 | * disabled. The multi vector cards can cause stack | ||
763 | * overflows due to nested interrupts when enough of | ||
764 | * them are directed to a core and fire at the same | ||
765 | * time. | ||
766 | */ | ||
767 | if (desc->msi_desc) | ||
768 | new->flags |= IRQF_DISABLED; | ||
769 | |||
770 | if (!(desc->status & IRQ_NOAUTOEN)) { | 776 | if (!(desc->status & IRQ_NOAUTOEN)) { |
771 | desc->depth = 0; | 777 | desc->depth = 0; |
772 | desc->status &= ~IRQ_DISABLED; | 778 | desc->status &= ~IRQ_DISABLED; |
@@ -916,6 +922,12 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
916 | desc->chip->disable(irq); | 922 | desc->chip->disable(irq); |
917 | } | 923 | } |
918 | 924 | ||
925 | #ifdef CONFIG_SMP | ||
926 | /* make sure affinity_hint is cleaned up */ | ||
927 | if (WARN_ON_ONCE(desc->affinity_hint)) | ||
928 | desc->affinity_hint = NULL; | ||
929 | #endif | ||
930 | |||
919 | raw_spin_unlock_irqrestore(&desc->lock, flags); | 931 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
920 | 932 | ||
921 | unregister_handler_proc(irq, action); | 933 | unregister_handler_proc(irq, action); |
@@ -1027,7 +1039,6 @@ EXPORT_SYMBOL(free_irq); | |||
1027 | * Flags: | 1039 | * Flags: |
1028 | * | 1040 | * |
1029 | * IRQF_SHARED Interrupt is shared | 1041 | * IRQF_SHARED Interrupt is shared |
1030 | * IRQF_DISABLED Disable local interrupts while processing | ||
1031 | * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy | 1042 | * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy |
1032 | * IRQF_TRIGGER_* Specify active edge(s) or level | 1043 | * IRQF_TRIGGER_* Specify active edge(s) or level |
1033 | * | 1044 | * |
@@ -1041,25 +1052,6 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
1041 | int retval; | 1052 | int retval; |
1042 | 1053 | ||
1043 | /* | 1054 | /* |
1044 | * handle_IRQ_event() always ignores IRQF_DISABLED except for | ||
1045 | * the _first_ irqaction (sigh). That can cause oopsing, but | ||
1046 | * the behavior is classified as "will not fix" so we need to | ||
1047 | * start nudging drivers away from using that idiom. | ||
1048 | */ | ||
1049 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) == | ||
1050 | (IRQF_SHARED|IRQF_DISABLED)) { | ||
1051 | pr_warning( | ||
1052 | "IRQ %d/%s: IRQF_DISABLED is not guaranteed on shared IRQs\n", | ||
1053 | irq, devname); | ||
1054 | } | ||
1055 | |||
1056 | #ifdef CONFIG_LOCKDEP | ||
1057 | /* | ||
1058 | * Lockdep wants atomic interrupt handlers: | ||
1059 | */ | ||
1060 | irqflags |= IRQF_DISABLED; | ||
1061 | #endif | ||
1062 | /* | ||
1063 | * Sanity-check: shared interrupts must pass in a real dev-ID, | 1055 | * Sanity-check: shared interrupts must pass in a real dev-ID, |
1064 | * otherwise we'll have trouble later trying to figure out | 1056 | * otherwise we'll have trouble later trying to figure out |
1065 | * which interrupt is which (messes up the interrupt freeing | 1057 | * which interrupt is which (messes up the interrupt freeing |
@@ -1120,3 +1112,40 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
1120 | return retval; | 1112 | return retval; |
1121 | } | 1113 | } |
1122 | EXPORT_SYMBOL(request_threaded_irq); | 1114 | EXPORT_SYMBOL(request_threaded_irq); |
1115 | |||
1116 | /** | ||
1117 | * request_any_context_irq - allocate an interrupt line | ||
1118 | * @irq: Interrupt line to allocate | ||
1119 | * @handler: Function to be called when the IRQ occurs. | ||
1120 | * Threaded handler for threaded interrupts. | ||
1121 | * @flags: Interrupt type flags | ||
1122 | * @name: An ascii name for the claiming device | ||
1123 | * @dev_id: A cookie passed back to the handler function | ||
1124 | * | ||
1125 | * This call allocates interrupt resources and enables the | ||
1126 | * interrupt line and IRQ handling. It selects either a | ||
1127 | * hardirq or threaded handling method depending on the | ||
1128 | * context. | ||
1129 | * | ||
1130 | * On failure, it returns a negative value. On success, | ||
1131 | * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. | ||
1132 | */ | ||
1133 | int request_any_context_irq(unsigned int irq, irq_handler_t handler, | ||
1134 | unsigned long flags, const char *name, void *dev_id) | ||
1135 | { | ||
1136 | struct irq_desc *desc = irq_to_desc(irq); | ||
1137 | int ret; | ||
1138 | |||
1139 | if (!desc) | ||
1140 | return -EINVAL; | ||
1141 | |||
1142 | if (desc->status & IRQ_NESTED_THREAD) { | ||
1143 | ret = request_threaded_irq(irq, NULL, handler, | ||
1144 | flags, name, dev_id); | ||
1145 | return !ret ? IRQC_IS_NESTED : ret; | ||
1146 | } | ||
1147 | |||
1148 | ret = request_irq(irq, handler, flags, name, dev_id); | ||
1149 | return !ret ? IRQC_IS_HARDIRQ : ret; | ||
1150 | } | ||
1151 | EXPORT_SYMBOL_GPL(request_any_context_irq); | ||
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c index 7a6eb04ef6b5..09a2ee540bd2 100644 --- a/kernel/irq/proc.c +++ b/kernel/irq/proc.c | |||
@@ -32,6 +32,27 @@ static int irq_affinity_proc_show(struct seq_file *m, void *v) | |||
32 | return 0; | 32 | return 0; |
33 | } | 33 | } |
34 | 34 | ||
35 | static int irq_affinity_hint_proc_show(struct seq_file *m, void *v) | ||
36 | { | ||
37 | struct irq_desc *desc = irq_to_desc((long)m->private); | ||
38 | unsigned long flags; | ||
39 | cpumask_var_t mask; | ||
40 | |||
41 | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) | ||
42 | return -ENOMEM; | ||
43 | |||
44 | raw_spin_lock_irqsave(&desc->lock, flags); | ||
45 | if (desc->affinity_hint) | ||
46 | cpumask_copy(mask, desc->affinity_hint); | ||
47 | raw_spin_unlock_irqrestore(&desc->lock, flags); | ||
48 | |||
49 | seq_cpumask(m, mask); | ||
50 | seq_putc(m, '\n'); | ||
51 | free_cpumask_var(mask); | ||
52 | |||
53 | return 0; | ||
54 | } | ||
55 | |||
35 | #ifndef is_affinity_mask_valid | 56 | #ifndef is_affinity_mask_valid |
36 | #define is_affinity_mask_valid(val) 1 | 57 | #define is_affinity_mask_valid(val) 1 |
37 | #endif | 58 | #endif |
@@ -84,6 +105,11 @@ static int irq_affinity_proc_open(struct inode *inode, struct file *file) | |||
84 | return single_open(file, irq_affinity_proc_show, PDE(inode)->data); | 105 | return single_open(file, irq_affinity_proc_show, PDE(inode)->data); |
85 | } | 106 | } |
86 | 107 | ||
108 | static int irq_affinity_hint_proc_open(struct inode *inode, struct file *file) | ||
109 | { | ||
110 | return single_open(file, irq_affinity_hint_proc_show, PDE(inode)->data); | ||
111 | } | ||
112 | |||
87 | static const struct file_operations irq_affinity_proc_fops = { | 113 | static const struct file_operations irq_affinity_proc_fops = { |
88 | .open = irq_affinity_proc_open, | 114 | .open = irq_affinity_proc_open, |
89 | .read = seq_read, | 115 | .read = seq_read, |
@@ -92,6 +118,13 @@ static const struct file_operations irq_affinity_proc_fops = { | |||
92 | .write = irq_affinity_proc_write, | 118 | .write = irq_affinity_proc_write, |
93 | }; | 119 | }; |
94 | 120 | ||
121 | static const struct file_operations irq_affinity_hint_proc_fops = { | ||
122 | .open = irq_affinity_hint_proc_open, | ||
123 | .read = seq_read, | ||
124 | .llseek = seq_lseek, | ||
125 | .release = single_release, | ||
126 | }; | ||
127 | |||
95 | static int default_affinity_show(struct seq_file *m, void *v) | 128 | static int default_affinity_show(struct seq_file *m, void *v) |
96 | { | 129 | { |
97 | seq_cpumask(m, irq_default_affinity); | 130 | seq_cpumask(m, irq_default_affinity); |
@@ -147,6 +180,26 @@ static const struct file_operations default_affinity_proc_fops = { | |||
147 | .release = single_release, | 180 | .release = single_release, |
148 | .write = default_affinity_write, | 181 | .write = default_affinity_write, |
149 | }; | 182 | }; |
183 | |||
184 | static int irq_node_proc_show(struct seq_file *m, void *v) | ||
185 | { | ||
186 | struct irq_desc *desc = irq_to_desc((long) m->private); | ||
187 | |||
188 | seq_printf(m, "%d\n", desc->node); | ||
189 | return 0; | ||
190 | } | ||
191 | |||
192 | static int irq_node_proc_open(struct inode *inode, struct file *file) | ||
193 | { | ||
194 | return single_open(file, irq_node_proc_show, PDE(inode)->data); | ||
195 | } | ||
196 | |||
197 | static const struct file_operations irq_node_proc_fops = { | ||
198 | .open = irq_node_proc_open, | ||
199 | .read = seq_read, | ||
200 | .llseek = seq_lseek, | ||
201 | .release = single_release, | ||
202 | }; | ||
150 | #endif | 203 | #endif |
151 | 204 | ||
152 | static int irq_spurious_proc_show(struct seq_file *m, void *v) | 205 | static int irq_spurious_proc_show(struct seq_file *m, void *v) |
@@ -231,6 +284,13 @@ void register_irq_proc(unsigned int irq, struct irq_desc *desc) | |||
231 | /* create /proc/irq/<irq>/smp_affinity */ | 284 | /* create /proc/irq/<irq>/smp_affinity */ |
232 | proc_create_data("smp_affinity", 0600, desc->dir, | 285 | proc_create_data("smp_affinity", 0600, desc->dir, |
233 | &irq_affinity_proc_fops, (void *)(long)irq); | 286 | &irq_affinity_proc_fops, (void *)(long)irq); |
287 | |||
288 | /* create /proc/irq/<irq>/affinity_hint */ | ||
289 | proc_create_data("affinity_hint", 0400, desc->dir, | ||
290 | &irq_affinity_hint_proc_fops, (void *)(long)irq); | ||
291 | |||
292 | proc_create_data("node", 0444, desc->dir, | ||
293 | &irq_node_proc_fops, (void *)(long)irq); | ||
234 | #endif | 294 | #endif |
235 | 295 | ||
236 | proc_create_data("spurious", 0444, desc->dir, | 296 | proc_create_data("spurious", 0444, desc->dir, |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 13aff293f4de..6f6d091b5757 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/init.h> | 16 | #include <linux/init.h> |
17 | #include <linux/seq_file.h> | 17 | #include <linux/seq_file.h> |
18 | #include <linux/fs.h> | 18 | #include <linux/fs.h> |
19 | #include <linux/kdb.h> | ||
19 | #include <linux/err.h> | 20 | #include <linux/err.h> |
20 | #include <linux/proc_fs.h> | 21 | #include <linux/proc_fs.h> |
21 | #include <linux/sched.h> /* for cond_resched */ | 22 | #include <linux/sched.h> /* for cond_resched */ |
@@ -516,6 +517,26 @@ static int kallsyms_open(struct inode *inode, struct file *file) | |||
516 | return ret; | 517 | return ret; |
517 | } | 518 | } |
518 | 519 | ||
520 | #ifdef CONFIG_KGDB_KDB | ||
521 | const char *kdb_walk_kallsyms(loff_t *pos) | ||
522 | { | ||
523 | static struct kallsym_iter kdb_walk_kallsyms_iter; | ||
524 | if (*pos == 0) { | ||
525 | memset(&kdb_walk_kallsyms_iter, 0, | ||
526 | sizeof(kdb_walk_kallsyms_iter)); | ||
527 | reset_iter(&kdb_walk_kallsyms_iter, 0); | ||
528 | } | ||
529 | while (1) { | ||
530 | if (!update_iter(&kdb_walk_kallsyms_iter, *pos)) | ||
531 | return NULL; | ||
532 | ++*pos; | ||
533 | /* Some debugging symbols have no name. Ignore them. */ | ||
534 | if (kdb_walk_kallsyms_iter.name[0]) | ||
535 | return kdb_walk_kallsyms_iter.name; | ||
536 | } | ||
537 | } | ||
538 | #endif /* CONFIG_KGDB_KDB */ | ||
539 | |||
519 | static const struct file_operations kallsyms_operations = { | 540 | static const struct file_operations kallsyms_operations = { |
520 | .open = kallsyms_open, | 541 | .open = kallsyms_open, |
521 | .read = seq_read, | 542 | .read = seq_read, |
diff --git a/kernel/kgdb.c b/kernel/kgdb.c deleted file mode 100644 index 11f3515ca83f..000000000000 --- a/kernel/kgdb.c +++ /dev/null | |||
@@ -1,1764 +0,0 @@ | |||
1 | /* | ||
2 | * KGDB stub. | ||
3 | * | ||
4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> | ||
5 | * | ||
6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. | ||
7 | * Copyright (C) 2002-2004 Timesys Corporation | ||
8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> | ||
9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> | ||
10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> | ||
11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. | ||
12 | * Copyright (C) 2005-2008 Wind River Systems, Inc. | ||
13 | * Copyright (C) 2007 MontaVista Software, Inc. | ||
14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
15 | * | ||
16 | * Contributors at various stages not listed above: | ||
17 | * Jason Wessel ( jason.wessel@windriver.com ) | ||
18 | * George Anzinger <george@mvista.com> | ||
19 | * Anurekh Saxena (anurekh.saxena@timesys.com) | ||
20 | * Lake Stevens Instrument Division (Glenn Engel) | ||
21 | * Jim Kingdon, Cygnus Support. | ||
22 | * | ||
23 | * Original KGDB stub: David Grothe <dave@gcom.com>, | ||
24 | * Tigran Aivazian <tigran@sco.com> | ||
25 | * | ||
26 | * This file is licensed under the terms of the GNU General Public License | ||
27 | * version 2. This program is licensed "as is" without any warranty of any | ||
28 | * kind, whether express or implied. | ||
29 | */ | ||
30 | #include <linux/pid_namespace.h> | ||
31 | #include <linux/clocksource.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/console.h> | ||
35 | #include <linux/threads.h> | ||
36 | #include <linux/uaccess.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/module.h> | ||
39 | #include <linux/ptrace.h> | ||
40 | #include <linux/reboot.h> | ||
41 | #include <linux/string.h> | ||
42 | #include <linux/delay.h> | ||
43 | #include <linux/sched.h> | ||
44 | #include <linux/sysrq.h> | ||
45 | #include <linux/init.h> | ||
46 | #include <linux/kgdb.h> | ||
47 | #include <linux/pid.h> | ||
48 | #include <linux/smp.h> | ||
49 | #include <linux/mm.h> | ||
50 | |||
51 | #include <asm/cacheflush.h> | ||
52 | #include <asm/byteorder.h> | ||
53 | #include <asm/atomic.h> | ||
54 | #include <asm/system.h> | ||
55 | #include <asm/unaligned.h> | ||
56 | |||
57 | static int kgdb_break_asap; | ||
58 | |||
59 | #define KGDB_MAX_THREAD_QUERY 17 | ||
60 | struct kgdb_state { | ||
61 | int ex_vector; | ||
62 | int signo; | ||
63 | int err_code; | ||
64 | int cpu; | ||
65 | int pass_exception; | ||
66 | unsigned long thr_query; | ||
67 | unsigned long threadid; | ||
68 | long kgdb_usethreadid; | ||
69 | struct pt_regs *linux_regs; | ||
70 | }; | ||
71 | |||
72 | /* Exception state values */ | ||
73 | #define DCPU_WANT_MASTER 0x1 /* Waiting to become a master kgdb cpu */ | ||
74 | #define DCPU_NEXT_MASTER 0x2 /* Transition from one master cpu to another */ | ||
75 | #define DCPU_IS_SLAVE 0x4 /* Slave cpu enter exception */ | ||
76 | #define DCPU_SSTEP 0x8 /* CPU is single stepping */ | ||
77 | |||
78 | static struct debuggerinfo_struct { | ||
79 | void *debuggerinfo; | ||
80 | struct task_struct *task; | ||
81 | int exception_state; | ||
82 | } kgdb_info[NR_CPUS]; | ||
83 | |||
84 | /** | ||
85 | * kgdb_connected - Is a host GDB connected to us? | ||
86 | */ | ||
87 | int kgdb_connected; | ||
88 | EXPORT_SYMBOL_GPL(kgdb_connected); | ||
89 | |||
90 | /* All the KGDB handlers are installed */ | ||
91 | static int kgdb_io_module_registered; | ||
92 | |||
93 | /* Guard for recursive entry */ | ||
94 | static int exception_level; | ||
95 | |||
96 | static struct kgdb_io *kgdb_io_ops; | ||
97 | static DEFINE_SPINLOCK(kgdb_registration_lock); | ||
98 | |||
99 | /* kgdb console driver is loaded */ | ||
100 | static int kgdb_con_registered; | ||
101 | /* determine if kgdb console output should be used */ | ||
102 | static int kgdb_use_con; | ||
103 | |||
104 | static int __init opt_kgdb_con(char *str) | ||
105 | { | ||
106 | kgdb_use_con = 1; | ||
107 | return 0; | ||
108 | } | ||
109 | |||
110 | early_param("kgdbcon", opt_kgdb_con); | ||
111 | |||
112 | module_param(kgdb_use_con, int, 0644); | ||
113 | |||
114 | /* | ||
115 | * Holds information about breakpoints in a kernel. These breakpoints are | ||
116 | * added and removed by gdb. | ||
117 | */ | ||
118 | static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { | ||
119 | [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } | ||
120 | }; | ||
121 | |||
122 | /* | ||
123 | * The CPU# of the active CPU, or -1 if none: | ||
124 | */ | ||
125 | atomic_t kgdb_active = ATOMIC_INIT(-1); | ||
126 | |||
127 | /* | ||
128 | * We use NR_CPUs not PERCPU, in case kgdb is used to debug early | ||
129 | * bootup code (which might not have percpu set up yet): | ||
130 | */ | ||
131 | static atomic_t passive_cpu_wait[NR_CPUS]; | ||
132 | static atomic_t cpu_in_kgdb[NR_CPUS]; | ||
133 | atomic_t kgdb_setting_breakpoint; | ||
134 | |||
135 | struct task_struct *kgdb_usethread; | ||
136 | struct task_struct *kgdb_contthread; | ||
137 | |||
138 | int kgdb_single_step; | ||
139 | pid_t kgdb_sstep_pid; | ||
140 | |||
141 | /* Our I/O buffers. */ | ||
142 | static char remcom_in_buffer[BUFMAX]; | ||
143 | static char remcom_out_buffer[BUFMAX]; | ||
144 | |||
145 | /* Storage for the registers, in GDB format. */ | ||
146 | static unsigned long gdb_regs[(NUMREGBYTES + | ||
147 | sizeof(unsigned long) - 1) / | ||
148 | sizeof(unsigned long)]; | ||
149 | |||
150 | /* to keep track of the CPU which is doing the single stepping*/ | ||
151 | atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); | ||
152 | |||
153 | /* | ||
154 | * If you are debugging a problem where roundup (the collection of | ||
155 | * all other CPUs) is a problem [this should be extremely rare], | ||
156 | * then use the nokgdbroundup option to avoid roundup. In that case | ||
157 | * the other CPUs might interfere with your debugging context, so | ||
158 | * use this with care: | ||
159 | */ | ||
160 | static int kgdb_do_roundup = 1; | ||
161 | |||
162 | static int __init opt_nokgdbroundup(char *str) | ||
163 | { | ||
164 | kgdb_do_roundup = 0; | ||
165 | |||
166 | return 0; | ||
167 | } | ||
168 | |||
169 | early_param("nokgdbroundup", opt_nokgdbroundup); | ||
170 | |||
171 | /* | ||
172 | * Finally, some KGDB code :-) | ||
173 | */ | ||
174 | |||
175 | /* | ||
176 | * Weak aliases for breakpoint management, | ||
177 | * can be overriden by architectures when needed: | ||
178 | */ | ||
179 | int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) | ||
180 | { | ||
181 | int err; | ||
182 | |||
183 | err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); | ||
184 | if (err) | ||
185 | return err; | ||
186 | |||
187 | return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, | ||
188 | BREAK_INSTR_SIZE); | ||
189 | } | ||
190 | |||
191 | int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) | ||
192 | { | ||
193 | return probe_kernel_write((char *)addr, | ||
194 | (char *)bundle, BREAK_INSTR_SIZE); | ||
195 | } | ||
196 | |||
197 | int __weak kgdb_validate_break_address(unsigned long addr) | ||
198 | { | ||
199 | char tmp_variable[BREAK_INSTR_SIZE]; | ||
200 | int err; | ||
201 | /* Validate setting the breakpoint and then removing it. In the | ||
202 | * remove fails, the kernel needs to emit a bad message because we | ||
203 | * are deep trouble not being able to put things back the way we | ||
204 | * found them. | ||
205 | */ | ||
206 | err = kgdb_arch_set_breakpoint(addr, tmp_variable); | ||
207 | if (err) | ||
208 | return err; | ||
209 | err = kgdb_arch_remove_breakpoint(addr, tmp_variable); | ||
210 | if (err) | ||
211 | printk(KERN_ERR "KGDB: Critical breakpoint error, kernel " | ||
212 | "memory destroyed at: %lx", addr); | ||
213 | return err; | ||
214 | } | ||
215 | |||
216 | unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) | ||
217 | { | ||
218 | return instruction_pointer(regs); | ||
219 | } | ||
220 | |||
221 | int __weak kgdb_arch_init(void) | ||
222 | { | ||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | int __weak kgdb_skipexception(int exception, struct pt_regs *regs) | ||
227 | { | ||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | void __weak | ||
232 | kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) | ||
233 | { | ||
234 | return; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. | ||
239 | * @regs: Current &struct pt_regs. | ||
240 | * | ||
241 | * This function will be called if the particular architecture must | ||
242 | * disable hardware debugging while it is processing gdb packets or | ||
243 | * handling exception. | ||
244 | */ | ||
245 | void __weak kgdb_disable_hw_debug(struct pt_regs *regs) | ||
246 | { | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * GDB remote protocol parser: | ||
251 | */ | ||
252 | |||
253 | static int hex(char ch) | ||
254 | { | ||
255 | if ((ch >= 'a') && (ch <= 'f')) | ||
256 | return ch - 'a' + 10; | ||
257 | if ((ch >= '0') && (ch <= '9')) | ||
258 | return ch - '0'; | ||
259 | if ((ch >= 'A') && (ch <= 'F')) | ||
260 | return ch - 'A' + 10; | ||
261 | return -1; | ||
262 | } | ||
263 | |||
264 | /* scan for the sequence $<data>#<checksum> */ | ||
265 | static void get_packet(char *buffer) | ||
266 | { | ||
267 | unsigned char checksum; | ||
268 | unsigned char xmitcsum; | ||
269 | int count; | ||
270 | char ch; | ||
271 | |||
272 | do { | ||
273 | /* | ||
274 | * Spin and wait around for the start character, ignore all | ||
275 | * other characters: | ||
276 | */ | ||
277 | while ((ch = (kgdb_io_ops->read_char())) != '$') | ||
278 | /* nothing */; | ||
279 | |||
280 | kgdb_connected = 1; | ||
281 | checksum = 0; | ||
282 | xmitcsum = -1; | ||
283 | |||
284 | count = 0; | ||
285 | |||
286 | /* | ||
287 | * now, read until a # or end of buffer is found: | ||
288 | */ | ||
289 | while (count < (BUFMAX - 1)) { | ||
290 | ch = kgdb_io_ops->read_char(); | ||
291 | if (ch == '#') | ||
292 | break; | ||
293 | checksum = checksum + ch; | ||
294 | buffer[count] = ch; | ||
295 | count = count + 1; | ||
296 | } | ||
297 | buffer[count] = 0; | ||
298 | |||
299 | if (ch == '#') { | ||
300 | xmitcsum = hex(kgdb_io_ops->read_char()) << 4; | ||
301 | xmitcsum += hex(kgdb_io_ops->read_char()); | ||
302 | |||
303 | if (checksum != xmitcsum) | ||
304 | /* failed checksum */ | ||
305 | kgdb_io_ops->write_char('-'); | ||
306 | else | ||
307 | /* successful transfer */ | ||
308 | kgdb_io_ops->write_char('+'); | ||
309 | if (kgdb_io_ops->flush) | ||
310 | kgdb_io_ops->flush(); | ||
311 | } | ||
312 | } while (checksum != xmitcsum); | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * Send the packet in buffer. | ||
317 | * Check for gdb connection if asked for. | ||
318 | */ | ||
319 | static void put_packet(char *buffer) | ||
320 | { | ||
321 | unsigned char checksum; | ||
322 | int count; | ||
323 | char ch; | ||
324 | |||
325 | /* | ||
326 | * $<packet info>#<checksum>. | ||
327 | */ | ||
328 | while (1) { | ||
329 | kgdb_io_ops->write_char('$'); | ||
330 | checksum = 0; | ||
331 | count = 0; | ||
332 | |||
333 | while ((ch = buffer[count])) { | ||
334 | kgdb_io_ops->write_char(ch); | ||
335 | checksum += ch; | ||
336 | count++; | ||
337 | } | ||
338 | |||
339 | kgdb_io_ops->write_char('#'); | ||
340 | kgdb_io_ops->write_char(hex_asc_hi(checksum)); | ||
341 | kgdb_io_ops->write_char(hex_asc_lo(checksum)); | ||
342 | if (kgdb_io_ops->flush) | ||
343 | kgdb_io_ops->flush(); | ||
344 | |||
345 | /* Now see what we get in reply. */ | ||
346 | ch = kgdb_io_ops->read_char(); | ||
347 | |||
348 | if (ch == 3) | ||
349 | ch = kgdb_io_ops->read_char(); | ||
350 | |||
351 | /* If we get an ACK, we are done. */ | ||
352 | if (ch == '+') | ||
353 | return; | ||
354 | |||
355 | /* | ||
356 | * If we get the start of another packet, this means | ||
357 | * that GDB is attempting to reconnect. We will NAK | ||
358 | * the packet being sent, and stop trying to send this | ||
359 | * packet. | ||
360 | */ | ||
361 | if (ch == '$') { | ||
362 | kgdb_io_ops->write_char('-'); | ||
363 | if (kgdb_io_ops->flush) | ||
364 | kgdb_io_ops->flush(); | ||
365 | return; | ||
366 | } | ||
367 | } | ||
368 | } | ||
369 | |||
370 | /* | ||
371 | * Convert the memory pointed to by mem into hex, placing result in buf. | ||
372 | * Return a pointer to the last char put in buf (null). May return an error. | ||
373 | */ | ||
374 | int kgdb_mem2hex(char *mem, char *buf, int count) | ||
375 | { | ||
376 | char *tmp; | ||
377 | int err; | ||
378 | |||
379 | /* | ||
380 | * We use the upper half of buf as an intermediate buffer for the | ||
381 | * raw memory copy. Hex conversion will work against this one. | ||
382 | */ | ||
383 | tmp = buf + count; | ||
384 | |||
385 | err = probe_kernel_read(tmp, mem, count); | ||
386 | if (!err) { | ||
387 | while (count > 0) { | ||
388 | buf = pack_hex_byte(buf, *tmp); | ||
389 | tmp++; | ||
390 | count--; | ||
391 | } | ||
392 | |||
393 | *buf = 0; | ||
394 | } | ||
395 | |||
396 | return err; | ||
397 | } | ||
398 | |||
399 | /* | ||
400 | * Copy the binary array pointed to by buf into mem. Fix $, #, and | ||
401 | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. | ||
402 | * The input buf is overwitten with the result to write to mem. | ||
403 | */ | ||
404 | static int kgdb_ebin2mem(char *buf, char *mem, int count) | ||
405 | { | ||
406 | int size = 0; | ||
407 | char *c = buf; | ||
408 | |||
409 | while (count-- > 0) { | ||
410 | c[size] = *buf++; | ||
411 | if (c[size] == 0x7d) | ||
412 | c[size] = *buf++ ^ 0x20; | ||
413 | size++; | ||
414 | } | ||
415 | |||
416 | return probe_kernel_write(mem, c, size); | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * Convert the hex array pointed to by buf into binary to be placed in mem. | ||
421 | * Return a pointer to the character AFTER the last byte written. | ||
422 | * May return an error. | ||
423 | */ | ||
424 | int kgdb_hex2mem(char *buf, char *mem, int count) | ||
425 | { | ||
426 | char *tmp_raw; | ||
427 | char *tmp_hex; | ||
428 | |||
429 | /* | ||
430 | * We use the upper half of buf as an intermediate buffer for the | ||
431 | * raw memory that is converted from hex. | ||
432 | */ | ||
433 | tmp_raw = buf + count * 2; | ||
434 | |||
435 | tmp_hex = tmp_raw - 1; | ||
436 | while (tmp_hex >= buf) { | ||
437 | tmp_raw--; | ||
438 | *tmp_raw = hex(*tmp_hex--); | ||
439 | *tmp_raw |= hex(*tmp_hex--) << 4; | ||
440 | } | ||
441 | |||
442 | return probe_kernel_write(mem, tmp_raw, count); | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * While we find nice hex chars, build a long_val. | ||
447 | * Return number of chars processed. | ||
448 | */ | ||
449 | int kgdb_hex2long(char **ptr, unsigned long *long_val) | ||
450 | { | ||
451 | int hex_val; | ||
452 | int num = 0; | ||
453 | int negate = 0; | ||
454 | |||
455 | *long_val = 0; | ||
456 | |||
457 | if (**ptr == '-') { | ||
458 | negate = 1; | ||
459 | (*ptr)++; | ||
460 | } | ||
461 | while (**ptr) { | ||
462 | hex_val = hex(**ptr); | ||
463 | if (hex_val < 0) | ||
464 | break; | ||
465 | |||
466 | *long_val = (*long_val << 4) | hex_val; | ||
467 | num++; | ||
468 | (*ptr)++; | ||
469 | } | ||
470 | |||
471 | if (negate) | ||
472 | *long_val = -*long_val; | ||
473 | |||
474 | return num; | ||
475 | } | ||
476 | |||
477 | /* Write memory due to an 'M' or 'X' packet. */ | ||
478 | static int write_mem_msg(int binary) | ||
479 | { | ||
480 | char *ptr = &remcom_in_buffer[1]; | ||
481 | unsigned long addr; | ||
482 | unsigned long length; | ||
483 | int err; | ||
484 | |||
485 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && | ||
486 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { | ||
487 | if (binary) | ||
488 | err = kgdb_ebin2mem(ptr, (char *)addr, length); | ||
489 | else | ||
490 | err = kgdb_hex2mem(ptr, (char *)addr, length); | ||
491 | if (err) | ||
492 | return err; | ||
493 | if (CACHE_FLUSH_IS_SAFE) | ||
494 | flush_icache_range(addr, addr + length); | ||
495 | return 0; | ||
496 | } | ||
497 | |||
498 | return -EINVAL; | ||
499 | } | ||
500 | |||
501 | static void error_packet(char *pkt, int error) | ||
502 | { | ||
503 | error = -error; | ||
504 | pkt[0] = 'E'; | ||
505 | pkt[1] = hex_asc[(error / 10)]; | ||
506 | pkt[2] = hex_asc[(error % 10)]; | ||
507 | pkt[3] = '\0'; | ||
508 | } | ||
509 | |||
510 | /* | ||
511 | * Thread ID accessors. We represent a flat TID space to GDB, where | ||
512 | * the per CPU idle threads (which under Linux all have PID 0) are | ||
513 | * remapped to negative TIDs. | ||
514 | */ | ||
515 | |||
516 | #define BUF_THREAD_ID_SIZE 16 | ||
517 | |||
518 | static char *pack_threadid(char *pkt, unsigned char *id) | ||
519 | { | ||
520 | char *limit; | ||
521 | |||
522 | limit = pkt + BUF_THREAD_ID_SIZE; | ||
523 | while (pkt < limit) | ||
524 | pkt = pack_hex_byte(pkt, *id++); | ||
525 | |||
526 | return pkt; | ||
527 | } | ||
528 | |||
529 | static void int_to_threadref(unsigned char *id, int value) | ||
530 | { | ||
531 | unsigned char *scan; | ||
532 | int i = 4; | ||
533 | |||
534 | scan = (unsigned char *)id; | ||
535 | while (i--) | ||
536 | *scan++ = 0; | ||
537 | put_unaligned_be32(value, scan); | ||
538 | } | ||
539 | |||
540 | static struct task_struct *getthread(struct pt_regs *regs, int tid) | ||
541 | { | ||
542 | /* | ||
543 | * Non-positive TIDs are remapped to the cpu shadow information | ||
544 | */ | ||
545 | if (tid == 0 || tid == -1) | ||
546 | tid = -atomic_read(&kgdb_active) - 2; | ||
547 | if (tid < -1 && tid > -NR_CPUS - 2) { | ||
548 | if (kgdb_info[-tid - 2].task) | ||
549 | return kgdb_info[-tid - 2].task; | ||
550 | else | ||
551 | return idle_task(-tid - 2); | ||
552 | } | ||
553 | if (tid <= 0) { | ||
554 | printk(KERN_ERR "KGDB: Internal thread select error\n"); | ||
555 | dump_stack(); | ||
556 | return NULL; | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * find_task_by_pid_ns() does not take the tasklist lock anymore | ||
561 | * but is nicely RCU locked - hence is a pretty resilient | ||
562 | * thing to use: | ||
563 | */ | ||
564 | return find_task_by_pid_ns(tid, &init_pid_ns); | ||
565 | } | ||
566 | |||
567 | /* | ||
568 | * Some architectures need cache flushes when we set/clear a | ||
569 | * breakpoint: | ||
570 | */ | ||
571 | static void kgdb_flush_swbreak_addr(unsigned long addr) | ||
572 | { | ||
573 | if (!CACHE_FLUSH_IS_SAFE) | ||
574 | return; | ||
575 | |||
576 | if (current->mm && current->mm->mmap_cache) { | ||
577 | flush_cache_range(current->mm->mmap_cache, | ||
578 | addr, addr + BREAK_INSTR_SIZE); | ||
579 | } | ||
580 | /* Force flush instruction cache if it was outside the mm */ | ||
581 | flush_icache_range(addr, addr + BREAK_INSTR_SIZE); | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | * SW breakpoint management: | ||
586 | */ | ||
587 | static int kgdb_activate_sw_breakpoints(void) | ||
588 | { | ||
589 | unsigned long addr; | ||
590 | int error; | ||
591 | int ret = 0; | ||
592 | int i; | ||
593 | |||
594 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
595 | if (kgdb_break[i].state != BP_SET) | ||
596 | continue; | ||
597 | |||
598 | addr = kgdb_break[i].bpt_addr; | ||
599 | error = kgdb_arch_set_breakpoint(addr, | ||
600 | kgdb_break[i].saved_instr); | ||
601 | if (error) { | ||
602 | ret = error; | ||
603 | printk(KERN_INFO "KGDB: BP install failed: %lx", addr); | ||
604 | continue; | ||
605 | } | ||
606 | |||
607 | kgdb_flush_swbreak_addr(addr); | ||
608 | kgdb_break[i].state = BP_ACTIVE; | ||
609 | } | ||
610 | return ret; | ||
611 | } | ||
612 | |||
613 | static int kgdb_set_sw_break(unsigned long addr) | ||
614 | { | ||
615 | int err = kgdb_validate_break_address(addr); | ||
616 | int breakno = -1; | ||
617 | int i; | ||
618 | |||
619 | if (err) | ||
620 | return err; | ||
621 | |||
622 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
623 | if ((kgdb_break[i].state == BP_SET) && | ||
624 | (kgdb_break[i].bpt_addr == addr)) | ||
625 | return -EEXIST; | ||
626 | } | ||
627 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
628 | if (kgdb_break[i].state == BP_REMOVED && | ||
629 | kgdb_break[i].bpt_addr == addr) { | ||
630 | breakno = i; | ||
631 | break; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | if (breakno == -1) { | ||
636 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
637 | if (kgdb_break[i].state == BP_UNDEFINED) { | ||
638 | breakno = i; | ||
639 | break; | ||
640 | } | ||
641 | } | ||
642 | } | ||
643 | |||
644 | if (breakno == -1) | ||
645 | return -E2BIG; | ||
646 | |||
647 | kgdb_break[breakno].state = BP_SET; | ||
648 | kgdb_break[breakno].type = BP_BREAKPOINT; | ||
649 | kgdb_break[breakno].bpt_addr = addr; | ||
650 | |||
651 | return 0; | ||
652 | } | ||
653 | |||
654 | static int kgdb_deactivate_sw_breakpoints(void) | ||
655 | { | ||
656 | unsigned long addr; | ||
657 | int error; | ||
658 | int ret = 0; | ||
659 | int i; | ||
660 | |||
661 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
662 | if (kgdb_break[i].state != BP_ACTIVE) | ||
663 | continue; | ||
664 | addr = kgdb_break[i].bpt_addr; | ||
665 | error = kgdb_arch_remove_breakpoint(addr, | ||
666 | kgdb_break[i].saved_instr); | ||
667 | if (error) { | ||
668 | printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr); | ||
669 | ret = error; | ||
670 | } | ||
671 | |||
672 | kgdb_flush_swbreak_addr(addr); | ||
673 | kgdb_break[i].state = BP_SET; | ||
674 | } | ||
675 | return ret; | ||
676 | } | ||
677 | |||
678 | static int kgdb_remove_sw_break(unsigned long addr) | ||
679 | { | ||
680 | int i; | ||
681 | |||
682 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
683 | if ((kgdb_break[i].state == BP_SET) && | ||
684 | (kgdb_break[i].bpt_addr == addr)) { | ||
685 | kgdb_break[i].state = BP_REMOVED; | ||
686 | return 0; | ||
687 | } | ||
688 | } | ||
689 | return -ENOENT; | ||
690 | } | ||
691 | |||
692 | int kgdb_isremovedbreak(unsigned long addr) | ||
693 | { | ||
694 | int i; | ||
695 | |||
696 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
697 | if ((kgdb_break[i].state == BP_REMOVED) && | ||
698 | (kgdb_break[i].bpt_addr == addr)) | ||
699 | return 1; | ||
700 | } | ||
701 | return 0; | ||
702 | } | ||
703 | |||
704 | static int remove_all_break(void) | ||
705 | { | ||
706 | unsigned long addr; | ||
707 | int error; | ||
708 | int i; | ||
709 | |||
710 | /* Clear memory breakpoints. */ | ||
711 | for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { | ||
712 | if (kgdb_break[i].state != BP_ACTIVE) | ||
713 | goto setundefined; | ||
714 | addr = kgdb_break[i].bpt_addr; | ||
715 | error = kgdb_arch_remove_breakpoint(addr, | ||
716 | kgdb_break[i].saved_instr); | ||
717 | if (error) | ||
718 | printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n", | ||
719 | addr); | ||
720 | setundefined: | ||
721 | kgdb_break[i].state = BP_UNDEFINED; | ||
722 | } | ||
723 | |||
724 | /* Clear hardware breakpoints. */ | ||
725 | if (arch_kgdb_ops.remove_all_hw_break) | ||
726 | arch_kgdb_ops.remove_all_hw_break(); | ||
727 | |||
728 | return 0; | ||
729 | } | ||
730 | |||
731 | /* | ||
732 | * Remap normal tasks to their real PID, | ||
733 | * CPU shadow threads are mapped to -CPU - 2 | ||
734 | */ | ||
735 | static inline int shadow_pid(int realpid) | ||
736 | { | ||
737 | if (realpid) | ||
738 | return realpid; | ||
739 | |||
740 | return -raw_smp_processor_id() - 2; | ||
741 | } | ||
742 | |||
743 | static char gdbmsgbuf[BUFMAX + 1]; | ||
744 | |||
745 | static void kgdb_msg_write(const char *s, int len) | ||
746 | { | ||
747 | char *bufptr; | ||
748 | int wcount; | ||
749 | int i; | ||
750 | |||
751 | /* 'O'utput */ | ||
752 | gdbmsgbuf[0] = 'O'; | ||
753 | |||
754 | /* Fill and send buffers... */ | ||
755 | while (len > 0) { | ||
756 | bufptr = gdbmsgbuf + 1; | ||
757 | |||
758 | /* Calculate how many this time */ | ||
759 | if ((len << 1) > (BUFMAX - 2)) | ||
760 | wcount = (BUFMAX - 2) >> 1; | ||
761 | else | ||
762 | wcount = len; | ||
763 | |||
764 | /* Pack in hex chars */ | ||
765 | for (i = 0; i < wcount; i++) | ||
766 | bufptr = pack_hex_byte(bufptr, s[i]); | ||
767 | *bufptr = '\0'; | ||
768 | |||
769 | /* Move up */ | ||
770 | s += wcount; | ||
771 | len -= wcount; | ||
772 | |||
773 | /* Write packet */ | ||
774 | put_packet(gdbmsgbuf); | ||
775 | } | ||
776 | } | ||
777 | |||
778 | /* | ||
779 | * Return true if there is a valid kgdb I/O module. Also if no | ||
780 | * debugger is attached a message can be printed to the console about | ||
781 | * waiting for the debugger to attach. | ||
782 | * | ||
783 | * The print_wait argument is only to be true when called from inside | ||
784 | * the core kgdb_handle_exception, because it will wait for the | ||
785 | * debugger to attach. | ||
786 | */ | ||
787 | static int kgdb_io_ready(int print_wait) | ||
788 | { | ||
789 | if (!kgdb_io_ops) | ||
790 | return 0; | ||
791 | if (kgdb_connected) | ||
792 | return 1; | ||
793 | if (atomic_read(&kgdb_setting_breakpoint)) | ||
794 | return 1; | ||
795 | if (print_wait) | ||
796 | printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); | ||
797 | return 1; | ||
798 | } | ||
799 | |||
800 | /* | ||
801 | * All the functions that start with gdb_cmd are the various | ||
802 | * operations to implement the handlers for the gdbserial protocol | ||
803 | * where KGDB is communicating with an external debugger | ||
804 | */ | ||
805 | |||
806 | /* Handle the '?' status packets */ | ||
807 | static void gdb_cmd_status(struct kgdb_state *ks) | ||
808 | { | ||
809 | /* | ||
810 | * We know that this packet is only sent | ||
811 | * during initial connect. So to be safe, | ||
812 | * we clear out our breakpoints now in case | ||
813 | * GDB is reconnecting. | ||
814 | */ | ||
815 | remove_all_break(); | ||
816 | |||
817 | remcom_out_buffer[0] = 'S'; | ||
818 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); | ||
819 | } | ||
820 | |||
821 | /* Handle the 'g' get registers request */ | ||
822 | static void gdb_cmd_getregs(struct kgdb_state *ks) | ||
823 | { | ||
824 | struct task_struct *thread; | ||
825 | void *local_debuggerinfo; | ||
826 | int i; | ||
827 | |||
828 | thread = kgdb_usethread; | ||
829 | if (!thread) { | ||
830 | thread = kgdb_info[ks->cpu].task; | ||
831 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; | ||
832 | } else { | ||
833 | local_debuggerinfo = NULL; | ||
834 | for_each_online_cpu(i) { | ||
835 | /* | ||
836 | * Try to find the task on some other | ||
837 | * or possibly this node if we do not | ||
838 | * find the matching task then we try | ||
839 | * to approximate the results. | ||
840 | */ | ||
841 | if (thread == kgdb_info[i].task) | ||
842 | local_debuggerinfo = kgdb_info[i].debuggerinfo; | ||
843 | } | ||
844 | } | ||
845 | |||
846 | /* | ||
847 | * All threads that don't have debuggerinfo should be | ||
848 | * in schedule() sleeping, since all other CPUs | ||
849 | * are in kgdb_wait, and thus have debuggerinfo. | ||
850 | */ | ||
851 | if (local_debuggerinfo) { | ||
852 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); | ||
853 | } else { | ||
854 | /* | ||
855 | * Pull stuff saved during switch_to; nothing | ||
856 | * else is accessible (or even particularly | ||
857 | * relevant). | ||
858 | * | ||
859 | * This should be enough for a stack trace. | ||
860 | */ | ||
861 | sleeping_thread_to_gdb_regs(gdb_regs, thread); | ||
862 | } | ||
863 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); | ||
864 | } | ||
865 | |||
866 | /* Handle the 'G' set registers request */ | ||
867 | static void gdb_cmd_setregs(struct kgdb_state *ks) | ||
868 | { | ||
869 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); | ||
870 | |||
871 | if (kgdb_usethread && kgdb_usethread != current) { | ||
872 | error_packet(remcom_out_buffer, -EINVAL); | ||
873 | } else { | ||
874 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); | ||
875 | strcpy(remcom_out_buffer, "OK"); | ||
876 | } | ||
877 | } | ||
878 | |||
879 | /* Handle the 'm' memory read bytes */ | ||
880 | static void gdb_cmd_memread(struct kgdb_state *ks) | ||
881 | { | ||
882 | char *ptr = &remcom_in_buffer[1]; | ||
883 | unsigned long length; | ||
884 | unsigned long addr; | ||
885 | int err; | ||
886 | |||
887 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && | ||
888 | kgdb_hex2long(&ptr, &length) > 0) { | ||
889 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); | ||
890 | if (err) | ||
891 | error_packet(remcom_out_buffer, err); | ||
892 | } else { | ||
893 | error_packet(remcom_out_buffer, -EINVAL); | ||
894 | } | ||
895 | } | ||
896 | |||
897 | /* Handle the 'M' memory write bytes */ | ||
898 | static void gdb_cmd_memwrite(struct kgdb_state *ks) | ||
899 | { | ||
900 | int err = write_mem_msg(0); | ||
901 | |||
902 | if (err) | ||
903 | error_packet(remcom_out_buffer, err); | ||
904 | else | ||
905 | strcpy(remcom_out_buffer, "OK"); | ||
906 | } | ||
907 | |||
908 | /* Handle the 'X' memory binary write bytes */ | ||
909 | static void gdb_cmd_binwrite(struct kgdb_state *ks) | ||
910 | { | ||
911 | int err = write_mem_msg(1); | ||
912 | |||
913 | if (err) | ||
914 | error_packet(remcom_out_buffer, err); | ||
915 | else | ||
916 | strcpy(remcom_out_buffer, "OK"); | ||
917 | } | ||
918 | |||
919 | /* Handle the 'D' or 'k', detach or kill packets */ | ||
920 | static void gdb_cmd_detachkill(struct kgdb_state *ks) | ||
921 | { | ||
922 | int error; | ||
923 | |||
924 | /* The detach case */ | ||
925 | if (remcom_in_buffer[0] == 'D') { | ||
926 | error = remove_all_break(); | ||
927 | if (error < 0) { | ||
928 | error_packet(remcom_out_buffer, error); | ||
929 | } else { | ||
930 | strcpy(remcom_out_buffer, "OK"); | ||
931 | kgdb_connected = 0; | ||
932 | } | ||
933 | put_packet(remcom_out_buffer); | ||
934 | } else { | ||
935 | /* | ||
936 | * Assume the kill case, with no exit code checking, | ||
937 | * trying to force detach the debugger: | ||
938 | */ | ||
939 | remove_all_break(); | ||
940 | kgdb_connected = 0; | ||
941 | } | ||
942 | } | ||
943 | |||
944 | /* Handle the 'R' reboot packets */ | ||
945 | static int gdb_cmd_reboot(struct kgdb_state *ks) | ||
946 | { | ||
947 | /* For now, only honor R0 */ | ||
948 | if (strcmp(remcom_in_buffer, "R0") == 0) { | ||
949 | printk(KERN_CRIT "Executing emergency reboot\n"); | ||
950 | strcpy(remcom_out_buffer, "OK"); | ||
951 | put_packet(remcom_out_buffer); | ||
952 | |||
953 | /* | ||
954 | * Execution should not return from | ||
955 | * machine_emergency_restart() | ||
956 | */ | ||
957 | machine_emergency_restart(); | ||
958 | kgdb_connected = 0; | ||
959 | |||
960 | return 1; | ||
961 | } | ||
962 | return 0; | ||
963 | } | ||
964 | |||
965 | /* Handle the 'q' query packets */ | ||
966 | static void gdb_cmd_query(struct kgdb_state *ks) | ||
967 | { | ||
968 | struct task_struct *g; | ||
969 | struct task_struct *p; | ||
970 | unsigned char thref[8]; | ||
971 | char *ptr; | ||
972 | int i; | ||
973 | int cpu; | ||
974 | int finished = 0; | ||
975 | |||
976 | switch (remcom_in_buffer[1]) { | ||
977 | case 's': | ||
978 | case 'f': | ||
979 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { | ||
980 | error_packet(remcom_out_buffer, -EINVAL); | ||
981 | break; | ||
982 | } | ||
983 | |||
984 | i = 0; | ||
985 | remcom_out_buffer[0] = 'm'; | ||
986 | ptr = remcom_out_buffer + 1; | ||
987 | if (remcom_in_buffer[1] == 'f') { | ||
988 | /* Each cpu is a shadow thread */ | ||
989 | for_each_online_cpu(cpu) { | ||
990 | ks->thr_query = 0; | ||
991 | int_to_threadref(thref, -cpu - 2); | ||
992 | pack_threadid(ptr, thref); | ||
993 | ptr += BUF_THREAD_ID_SIZE; | ||
994 | *(ptr++) = ','; | ||
995 | i++; | ||
996 | } | ||
997 | } | ||
998 | |||
999 | do_each_thread(g, p) { | ||
1000 | if (i >= ks->thr_query && !finished) { | ||
1001 | int_to_threadref(thref, p->pid); | ||
1002 | pack_threadid(ptr, thref); | ||
1003 | ptr += BUF_THREAD_ID_SIZE; | ||
1004 | *(ptr++) = ','; | ||
1005 | ks->thr_query++; | ||
1006 | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) | ||
1007 | finished = 1; | ||
1008 | } | ||
1009 | i++; | ||
1010 | } while_each_thread(g, p); | ||
1011 | |||
1012 | *(--ptr) = '\0'; | ||
1013 | break; | ||
1014 | |||
1015 | case 'C': | ||
1016 | /* Current thread id */ | ||
1017 | strcpy(remcom_out_buffer, "QC"); | ||
1018 | ks->threadid = shadow_pid(current->pid); | ||
1019 | int_to_threadref(thref, ks->threadid); | ||
1020 | pack_threadid(remcom_out_buffer + 2, thref); | ||
1021 | break; | ||
1022 | case 'T': | ||
1023 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { | ||
1024 | error_packet(remcom_out_buffer, -EINVAL); | ||
1025 | break; | ||
1026 | } | ||
1027 | ks->threadid = 0; | ||
1028 | ptr = remcom_in_buffer + 17; | ||
1029 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1030 | if (!getthread(ks->linux_regs, ks->threadid)) { | ||
1031 | error_packet(remcom_out_buffer, -EINVAL); | ||
1032 | break; | ||
1033 | } | ||
1034 | if ((int)ks->threadid > 0) { | ||
1035 | kgdb_mem2hex(getthread(ks->linux_regs, | ||
1036 | ks->threadid)->comm, | ||
1037 | remcom_out_buffer, 16); | ||
1038 | } else { | ||
1039 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; | ||
1040 | |||
1041 | sprintf(tmpstr, "shadowCPU%d", | ||
1042 | (int)(-ks->threadid - 2)); | ||
1043 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); | ||
1044 | } | ||
1045 | break; | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | /* Handle the 'H' task query packets */ | ||
1050 | static void gdb_cmd_task(struct kgdb_state *ks) | ||
1051 | { | ||
1052 | struct task_struct *thread; | ||
1053 | char *ptr; | ||
1054 | |||
1055 | switch (remcom_in_buffer[1]) { | ||
1056 | case 'g': | ||
1057 | ptr = &remcom_in_buffer[2]; | ||
1058 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1059 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1060 | if (!thread && ks->threadid > 0) { | ||
1061 | error_packet(remcom_out_buffer, -EINVAL); | ||
1062 | break; | ||
1063 | } | ||
1064 | kgdb_usethread = thread; | ||
1065 | ks->kgdb_usethreadid = ks->threadid; | ||
1066 | strcpy(remcom_out_buffer, "OK"); | ||
1067 | break; | ||
1068 | case 'c': | ||
1069 | ptr = &remcom_in_buffer[2]; | ||
1070 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1071 | if (!ks->threadid) { | ||
1072 | kgdb_contthread = NULL; | ||
1073 | } else { | ||
1074 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1075 | if (!thread && ks->threadid > 0) { | ||
1076 | error_packet(remcom_out_buffer, -EINVAL); | ||
1077 | break; | ||
1078 | } | ||
1079 | kgdb_contthread = thread; | ||
1080 | } | ||
1081 | strcpy(remcom_out_buffer, "OK"); | ||
1082 | break; | ||
1083 | } | ||
1084 | } | ||
1085 | |||
1086 | /* Handle the 'T' thread query packets */ | ||
1087 | static void gdb_cmd_thread(struct kgdb_state *ks) | ||
1088 | { | ||
1089 | char *ptr = &remcom_in_buffer[1]; | ||
1090 | struct task_struct *thread; | ||
1091 | |||
1092 | kgdb_hex2long(&ptr, &ks->threadid); | ||
1093 | thread = getthread(ks->linux_regs, ks->threadid); | ||
1094 | if (thread) | ||
1095 | strcpy(remcom_out_buffer, "OK"); | ||
1096 | else | ||
1097 | error_packet(remcom_out_buffer, -EINVAL); | ||
1098 | } | ||
1099 | |||
1100 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ | ||
1101 | static void gdb_cmd_break(struct kgdb_state *ks) | ||
1102 | { | ||
1103 | /* | ||
1104 | * Since GDB-5.3, it's been drafted that '0' is a software | ||
1105 | * breakpoint, '1' is a hardware breakpoint, so let's do that. | ||
1106 | */ | ||
1107 | char *bpt_type = &remcom_in_buffer[1]; | ||
1108 | char *ptr = &remcom_in_buffer[2]; | ||
1109 | unsigned long addr; | ||
1110 | unsigned long length; | ||
1111 | int error = 0; | ||
1112 | |||
1113 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { | ||
1114 | /* Unsupported */ | ||
1115 | if (*bpt_type > '4') | ||
1116 | return; | ||
1117 | } else { | ||
1118 | if (*bpt_type != '0' && *bpt_type != '1') | ||
1119 | /* Unsupported. */ | ||
1120 | return; | ||
1121 | } | ||
1122 | |||
1123 | /* | ||
1124 | * Test if this is a hardware breakpoint, and | ||
1125 | * if we support it: | ||
1126 | */ | ||
1127 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) | ||
1128 | /* Unsupported. */ | ||
1129 | return; | ||
1130 | |||
1131 | if (*(ptr++) != ',') { | ||
1132 | error_packet(remcom_out_buffer, -EINVAL); | ||
1133 | return; | ||
1134 | } | ||
1135 | if (!kgdb_hex2long(&ptr, &addr)) { | ||
1136 | error_packet(remcom_out_buffer, -EINVAL); | ||
1137 | return; | ||
1138 | } | ||
1139 | if (*(ptr++) != ',' || | ||
1140 | !kgdb_hex2long(&ptr, &length)) { | ||
1141 | error_packet(remcom_out_buffer, -EINVAL); | ||
1142 | return; | ||
1143 | } | ||
1144 | |||
1145 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') | ||
1146 | error = kgdb_set_sw_break(addr); | ||
1147 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') | ||
1148 | error = kgdb_remove_sw_break(addr); | ||
1149 | else if (remcom_in_buffer[0] == 'Z') | ||
1150 | error = arch_kgdb_ops.set_hw_breakpoint(addr, | ||
1151 | (int)length, *bpt_type - '0'); | ||
1152 | else if (remcom_in_buffer[0] == 'z') | ||
1153 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, | ||
1154 | (int) length, *bpt_type - '0'); | ||
1155 | |||
1156 | if (error == 0) | ||
1157 | strcpy(remcom_out_buffer, "OK"); | ||
1158 | else | ||
1159 | error_packet(remcom_out_buffer, error); | ||
1160 | } | ||
1161 | |||
1162 | /* Handle the 'C' signal / exception passing packets */ | ||
1163 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) | ||
1164 | { | ||
1165 | /* C09 == pass exception | ||
1166 | * C15 == detach kgdb, pass exception | ||
1167 | */ | ||
1168 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { | ||
1169 | |||
1170 | ks->pass_exception = 1; | ||
1171 | remcom_in_buffer[0] = 'c'; | ||
1172 | |||
1173 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { | ||
1174 | |||
1175 | ks->pass_exception = 1; | ||
1176 | remcom_in_buffer[0] = 'D'; | ||
1177 | remove_all_break(); | ||
1178 | kgdb_connected = 0; | ||
1179 | return 1; | ||
1180 | |||
1181 | } else { | ||
1182 | kgdb_msg_write("KGDB only knows signal 9 (pass)" | ||
1183 | " and 15 (pass and disconnect)\n" | ||
1184 | "Executing a continue without signal passing\n", 0); | ||
1185 | remcom_in_buffer[0] = 'c'; | ||
1186 | } | ||
1187 | |||
1188 | /* Indicate fall through */ | ||
1189 | return -1; | ||
1190 | } | ||
1191 | |||
1192 | /* | ||
1193 | * This function performs all gdbserial command procesing | ||
1194 | */ | ||
1195 | static int gdb_serial_stub(struct kgdb_state *ks) | ||
1196 | { | ||
1197 | int error = 0; | ||
1198 | int tmp; | ||
1199 | |||
1200 | /* Clear the out buffer. */ | ||
1201 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
1202 | |||
1203 | if (kgdb_connected) { | ||
1204 | unsigned char thref[8]; | ||
1205 | char *ptr; | ||
1206 | |||
1207 | /* Reply to host that an exception has occurred */ | ||
1208 | ptr = remcom_out_buffer; | ||
1209 | *ptr++ = 'T'; | ||
1210 | ptr = pack_hex_byte(ptr, ks->signo); | ||
1211 | ptr += strlen(strcpy(ptr, "thread:")); | ||
1212 | int_to_threadref(thref, shadow_pid(current->pid)); | ||
1213 | ptr = pack_threadid(ptr, thref); | ||
1214 | *ptr++ = ';'; | ||
1215 | put_packet(remcom_out_buffer); | ||
1216 | } | ||
1217 | |||
1218 | kgdb_usethread = kgdb_info[ks->cpu].task; | ||
1219 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); | ||
1220 | ks->pass_exception = 0; | ||
1221 | |||
1222 | while (1) { | ||
1223 | error = 0; | ||
1224 | |||
1225 | /* Clear the out buffer. */ | ||
1226 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); | ||
1227 | |||
1228 | get_packet(remcom_in_buffer); | ||
1229 | |||
1230 | switch (remcom_in_buffer[0]) { | ||
1231 | case '?': /* gdbserial status */ | ||
1232 | gdb_cmd_status(ks); | ||
1233 | break; | ||
1234 | case 'g': /* return the value of the CPU registers */ | ||
1235 | gdb_cmd_getregs(ks); | ||
1236 | break; | ||
1237 | case 'G': /* set the value of the CPU registers - return OK */ | ||
1238 | gdb_cmd_setregs(ks); | ||
1239 | break; | ||
1240 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | ||
1241 | gdb_cmd_memread(ks); | ||
1242 | break; | ||
1243 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
1244 | gdb_cmd_memwrite(ks); | ||
1245 | break; | ||
1246 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ | ||
1247 | gdb_cmd_binwrite(ks); | ||
1248 | break; | ||
1249 | /* kill or detach. KGDB should treat this like a | ||
1250 | * continue. | ||
1251 | */ | ||
1252 | case 'D': /* Debugger detach */ | ||
1253 | case 'k': /* Debugger detach via kill */ | ||
1254 | gdb_cmd_detachkill(ks); | ||
1255 | goto default_handle; | ||
1256 | case 'R': /* Reboot */ | ||
1257 | if (gdb_cmd_reboot(ks)) | ||
1258 | goto default_handle; | ||
1259 | break; | ||
1260 | case 'q': /* query command */ | ||
1261 | gdb_cmd_query(ks); | ||
1262 | break; | ||
1263 | case 'H': /* task related */ | ||
1264 | gdb_cmd_task(ks); | ||
1265 | break; | ||
1266 | case 'T': /* Query thread status */ | ||
1267 | gdb_cmd_thread(ks); | ||
1268 | break; | ||
1269 | case 'z': /* Break point remove */ | ||
1270 | case 'Z': /* Break point set */ | ||
1271 | gdb_cmd_break(ks); | ||
1272 | break; | ||
1273 | case 'C': /* Exception passing */ | ||
1274 | tmp = gdb_cmd_exception_pass(ks); | ||
1275 | if (tmp > 0) | ||
1276 | goto default_handle; | ||
1277 | if (tmp == 0) | ||
1278 | break; | ||
1279 | /* Fall through on tmp < 0 */ | ||
1280 | case 'c': /* Continue packet */ | ||
1281 | case 's': /* Single step packet */ | ||
1282 | if (kgdb_contthread && kgdb_contthread != current) { | ||
1283 | /* Can't switch threads in kgdb */ | ||
1284 | error_packet(remcom_out_buffer, -EINVAL); | ||
1285 | break; | ||
1286 | } | ||
1287 | kgdb_activate_sw_breakpoints(); | ||
1288 | /* Fall through to default processing */ | ||
1289 | default: | ||
1290 | default_handle: | ||
1291 | error = kgdb_arch_handle_exception(ks->ex_vector, | ||
1292 | ks->signo, | ||
1293 | ks->err_code, | ||
1294 | remcom_in_buffer, | ||
1295 | remcom_out_buffer, | ||
1296 | ks->linux_regs); | ||
1297 | /* | ||
1298 | * Leave cmd processing on error, detach, | ||
1299 | * kill, continue, or single step. | ||
1300 | */ | ||
1301 | if (error >= 0 || remcom_in_buffer[0] == 'D' || | ||
1302 | remcom_in_buffer[0] == 'k') { | ||
1303 | error = 0; | ||
1304 | goto kgdb_exit; | ||
1305 | } | ||
1306 | |||
1307 | } | ||
1308 | |||
1309 | /* reply to the request */ | ||
1310 | put_packet(remcom_out_buffer); | ||
1311 | } | ||
1312 | |||
1313 | kgdb_exit: | ||
1314 | if (ks->pass_exception) | ||
1315 | error = 1; | ||
1316 | return error; | ||
1317 | } | ||
1318 | |||
1319 | static int kgdb_reenter_check(struct kgdb_state *ks) | ||
1320 | { | ||
1321 | unsigned long addr; | ||
1322 | |||
1323 | if (atomic_read(&kgdb_active) != raw_smp_processor_id()) | ||
1324 | return 0; | ||
1325 | |||
1326 | /* Panic on recursive debugger calls: */ | ||
1327 | exception_level++; | ||
1328 | addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); | ||
1329 | kgdb_deactivate_sw_breakpoints(); | ||
1330 | |||
1331 | /* | ||
1332 | * If the break point removed ok at the place exception | ||
1333 | * occurred, try to recover and print a warning to the end | ||
1334 | * user because the user planted a breakpoint in a place that | ||
1335 | * KGDB needs in order to function. | ||
1336 | */ | ||
1337 | if (kgdb_remove_sw_break(addr) == 0) { | ||
1338 | exception_level = 0; | ||
1339 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
1340 | kgdb_activate_sw_breakpoints(); | ||
1341 | printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n", | ||
1342 | addr); | ||
1343 | WARN_ON_ONCE(1); | ||
1344 | |||
1345 | return 1; | ||
1346 | } | ||
1347 | remove_all_break(); | ||
1348 | kgdb_skipexception(ks->ex_vector, ks->linux_regs); | ||
1349 | |||
1350 | if (exception_level > 1) { | ||
1351 | dump_stack(); | ||
1352 | panic("Recursive entry to debugger"); | ||
1353 | } | ||
1354 | |||
1355 | printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); | ||
1356 | dump_stack(); | ||
1357 | panic("Recursive entry to debugger"); | ||
1358 | |||
1359 | return 1; | ||
1360 | } | ||
1361 | |||
1362 | static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs) | ||
1363 | { | ||
1364 | unsigned long flags; | ||
1365 | int sstep_tries = 100; | ||
1366 | int error = 0; | ||
1367 | int i, cpu; | ||
1368 | int trace_on = 0; | ||
1369 | acquirelock: | ||
1370 | /* | ||
1371 | * Interrupts will be restored by the 'trap return' code, except when | ||
1372 | * single stepping. | ||
1373 | */ | ||
1374 | local_irq_save(flags); | ||
1375 | |||
1376 | cpu = ks->cpu; | ||
1377 | kgdb_info[cpu].debuggerinfo = regs; | ||
1378 | kgdb_info[cpu].task = current; | ||
1379 | /* | ||
1380 | * Make sure the above info reaches the primary CPU before | ||
1381 | * our cpu_in_kgdb[] flag setting does: | ||
1382 | */ | ||
1383 | atomic_inc(&cpu_in_kgdb[cpu]); | ||
1384 | |||
1385 | /* | ||
1386 | * CPU will loop if it is a slave or request to become a kgdb | ||
1387 | * master cpu and acquire the kgdb_active lock: | ||
1388 | */ | ||
1389 | while (1) { | ||
1390 | if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { | ||
1391 | if (atomic_cmpxchg(&kgdb_active, -1, cpu) == cpu) | ||
1392 | break; | ||
1393 | } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { | ||
1394 | if (!atomic_read(&passive_cpu_wait[cpu])) | ||
1395 | goto return_normal; | ||
1396 | } else { | ||
1397 | return_normal: | ||
1398 | /* Return to normal operation by executing any | ||
1399 | * hw breakpoint fixup. | ||
1400 | */ | ||
1401 | if (arch_kgdb_ops.correct_hw_break) | ||
1402 | arch_kgdb_ops.correct_hw_break(); | ||
1403 | if (trace_on) | ||
1404 | tracing_on(); | ||
1405 | atomic_dec(&cpu_in_kgdb[cpu]); | ||
1406 | touch_softlockup_watchdog_sync(); | ||
1407 | clocksource_touch_watchdog(); | ||
1408 | local_irq_restore(flags); | ||
1409 | return 0; | ||
1410 | } | ||
1411 | cpu_relax(); | ||
1412 | } | ||
1413 | |||
1414 | /* | ||
1415 | * For single stepping, try to only enter on the processor | ||
1416 | * that was single stepping. To gaurd against a deadlock, the | ||
1417 | * kernel will only try for the value of sstep_tries before | ||
1418 | * giving up and continuing on. | ||
1419 | */ | ||
1420 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && | ||
1421 | (kgdb_info[cpu].task && | ||
1422 | kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { | ||
1423 | atomic_set(&kgdb_active, -1); | ||
1424 | touch_softlockup_watchdog_sync(); | ||
1425 | clocksource_touch_watchdog(); | ||
1426 | local_irq_restore(flags); | ||
1427 | |||
1428 | goto acquirelock; | ||
1429 | } | ||
1430 | |||
1431 | if (!kgdb_io_ready(1)) { | ||
1432 | error = 1; | ||
1433 | goto kgdb_restore; /* No I/O connection, so resume the system */ | ||
1434 | } | ||
1435 | |||
1436 | /* | ||
1437 | * Don't enter if we have hit a removed breakpoint. | ||
1438 | */ | ||
1439 | if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) | ||
1440 | goto kgdb_restore; | ||
1441 | |||
1442 | /* Call the I/O driver's pre_exception routine */ | ||
1443 | if (kgdb_io_ops->pre_exception) | ||
1444 | kgdb_io_ops->pre_exception(); | ||
1445 | |||
1446 | kgdb_disable_hw_debug(ks->linux_regs); | ||
1447 | |||
1448 | /* | ||
1449 | * Get the passive CPU lock which will hold all the non-primary | ||
1450 | * CPU in a spin state while the debugger is active | ||
1451 | */ | ||
1452 | if (!kgdb_single_step) { | ||
1453 | for (i = 0; i < NR_CPUS; i++) | ||
1454 | atomic_inc(&passive_cpu_wait[i]); | ||
1455 | } | ||
1456 | |||
1457 | #ifdef CONFIG_SMP | ||
1458 | /* Signal the other CPUs to enter kgdb_wait() */ | ||
1459 | if ((!kgdb_single_step) && kgdb_do_roundup) | ||
1460 | kgdb_roundup_cpus(flags); | ||
1461 | #endif | ||
1462 | |||
1463 | /* | ||
1464 | * Wait for the other CPUs to be notified and be waiting for us: | ||
1465 | */ | ||
1466 | for_each_online_cpu(i) { | ||
1467 | while (!atomic_read(&cpu_in_kgdb[i])) | ||
1468 | cpu_relax(); | ||
1469 | } | ||
1470 | |||
1471 | /* | ||
1472 | * At this point the primary processor is completely | ||
1473 | * in the debugger and all secondary CPUs are quiescent | ||
1474 | */ | ||
1475 | kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); | ||
1476 | kgdb_deactivate_sw_breakpoints(); | ||
1477 | kgdb_single_step = 0; | ||
1478 | kgdb_contthread = current; | ||
1479 | exception_level = 0; | ||
1480 | trace_on = tracing_is_on(); | ||
1481 | if (trace_on) | ||
1482 | tracing_off(); | ||
1483 | |||
1484 | /* Talk to debugger with gdbserial protocol */ | ||
1485 | error = gdb_serial_stub(ks); | ||
1486 | |||
1487 | /* Call the I/O driver's post_exception routine */ | ||
1488 | if (kgdb_io_ops->post_exception) | ||
1489 | kgdb_io_ops->post_exception(); | ||
1490 | |||
1491 | atomic_dec(&cpu_in_kgdb[ks->cpu]); | ||
1492 | |||
1493 | if (!kgdb_single_step) { | ||
1494 | for (i = NR_CPUS-1; i >= 0; i--) | ||
1495 | atomic_dec(&passive_cpu_wait[i]); | ||
1496 | /* | ||
1497 | * Wait till all the CPUs have quit | ||
1498 | * from the debugger. | ||
1499 | */ | ||
1500 | for_each_online_cpu(i) { | ||
1501 | while (atomic_read(&cpu_in_kgdb[i])) | ||
1502 | cpu_relax(); | ||
1503 | } | ||
1504 | } | ||
1505 | |||
1506 | kgdb_restore: | ||
1507 | if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { | ||
1508 | int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); | ||
1509 | if (kgdb_info[sstep_cpu].task) | ||
1510 | kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; | ||
1511 | else | ||
1512 | kgdb_sstep_pid = 0; | ||
1513 | } | ||
1514 | if (trace_on) | ||
1515 | tracing_on(); | ||
1516 | /* Free kgdb_active */ | ||
1517 | atomic_set(&kgdb_active, -1); | ||
1518 | touch_softlockup_watchdog_sync(); | ||
1519 | clocksource_touch_watchdog(); | ||
1520 | local_irq_restore(flags); | ||
1521 | |||
1522 | return error; | ||
1523 | } | ||
1524 | |||
1525 | /* | ||
1526 | * kgdb_handle_exception() - main entry point from a kernel exception | ||
1527 | * | ||
1528 | * Locking hierarchy: | ||
1529 | * interface locks, if any (begin_session) | ||
1530 | * kgdb lock (kgdb_active) | ||
1531 | */ | ||
1532 | int | ||
1533 | kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) | ||
1534 | { | ||
1535 | struct kgdb_state kgdb_var; | ||
1536 | struct kgdb_state *ks = &kgdb_var; | ||
1537 | int ret; | ||
1538 | |||
1539 | ks->cpu = raw_smp_processor_id(); | ||
1540 | ks->ex_vector = evector; | ||
1541 | ks->signo = signo; | ||
1542 | ks->ex_vector = evector; | ||
1543 | ks->err_code = ecode; | ||
1544 | ks->kgdb_usethreadid = 0; | ||
1545 | ks->linux_regs = regs; | ||
1546 | |||
1547 | if (kgdb_reenter_check(ks)) | ||
1548 | return 0; /* Ouch, double exception ! */ | ||
1549 | kgdb_info[ks->cpu].exception_state |= DCPU_WANT_MASTER; | ||
1550 | ret = kgdb_cpu_enter(ks, regs); | ||
1551 | kgdb_info[ks->cpu].exception_state &= ~DCPU_WANT_MASTER; | ||
1552 | return ret; | ||
1553 | } | ||
1554 | |||
1555 | int kgdb_nmicallback(int cpu, void *regs) | ||
1556 | { | ||
1557 | #ifdef CONFIG_SMP | ||
1558 | struct kgdb_state kgdb_var; | ||
1559 | struct kgdb_state *ks = &kgdb_var; | ||
1560 | |||
1561 | memset(ks, 0, sizeof(struct kgdb_state)); | ||
1562 | ks->cpu = cpu; | ||
1563 | ks->linux_regs = regs; | ||
1564 | |||
1565 | if (!atomic_read(&cpu_in_kgdb[cpu]) && | ||
1566 | atomic_read(&kgdb_active) != -1 && | ||
1567 | atomic_read(&kgdb_active) != cpu) { | ||
1568 | kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE; | ||
1569 | kgdb_cpu_enter(ks, regs); | ||
1570 | kgdb_info[cpu].exception_state &= ~DCPU_IS_SLAVE; | ||
1571 | return 0; | ||
1572 | } | ||
1573 | #endif | ||
1574 | return 1; | ||
1575 | } | ||
1576 | |||
1577 | static void kgdb_console_write(struct console *co, const char *s, | ||
1578 | unsigned count) | ||
1579 | { | ||
1580 | unsigned long flags; | ||
1581 | |||
1582 | /* If we're debugging, or KGDB has not connected, don't try | ||
1583 | * and print. */ | ||
1584 | if (!kgdb_connected || atomic_read(&kgdb_active) != -1) | ||
1585 | return; | ||
1586 | |||
1587 | local_irq_save(flags); | ||
1588 | kgdb_msg_write(s, count); | ||
1589 | local_irq_restore(flags); | ||
1590 | } | ||
1591 | |||
1592 | static struct console kgdbcons = { | ||
1593 | .name = "kgdb", | ||
1594 | .write = kgdb_console_write, | ||
1595 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
1596 | .index = -1, | ||
1597 | }; | ||
1598 | |||
1599 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1600 | static void sysrq_handle_gdb(int key, struct tty_struct *tty) | ||
1601 | { | ||
1602 | if (!kgdb_io_ops) { | ||
1603 | printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); | ||
1604 | return; | ||
1605 | } | ||
1606 | if (!kgdb_connected) | ||
1607 | printk(KERN_CRIT "Entering KGDB\n"); | ||
1608 | |||
1609 | kgdb_breakpoint(); | ||
1610 | } | ||
1611 | |||
1612 | static struct sysrq_key_op sysrq_gdb_op = { | ||
1613 | .handler = sysrq_handle_gdb, | ||
1614 | .help_msg = "debug(G)", | ||
1615 | .action_msg = "DEBUG", | ||
1616 | }; | ||
1617 | #endif | ||
1618 | |||
1619 | static void kgdb_register_callbacks(void) | ||
1620 | { | ||
1621 | if (!kgdb_io_module_registered) { | ||
1622 | kgdb_io_module_registered = 1; | ||
1623 | kgdb_arch_init(); | ||
1624 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1625 | register_sysrq_key('g', &sysrq_gdb_op); | ||
1626 | #endif | ||
1627 | if (kgdb_use_con && !kgdb_con_registered) { | ||
1628 | register_console(&kgdbcons); | ||
1629 | kgdb_con_registered = 1; | ||
1630 | } | ||
1631 | } | ||
1632 | } | ||
1633 | |||
1634 | static void kgdb_unregister_callbacks(void) | ||
1635 | { | ||
1636 | /* | ||
1637 | * When this routine is called KGDB should unregister from the | ||
1638 | * panic handler and clean up, making sure it is not handling any | ||
1639 | * break exceptions at the time. | ||
1640 | */ | ||
1641 | if (kgdb_io_module_registered) { | ||
1642 | kgdb_io_module_registered = 0; | ||
1643 | kgdb_arch_exit(); | ||
1644 | #ifdef CONFIG_MAGIC_SYSRQ | ||
1645 | unregister_sysrq_key('g', &sysrq_gdb_op); | ||
1646 | #endif | ||
1647 | if (kgdb_con_registered) { | ||
1648 | unregister_console(&kgdbcons); | ||
1649 | kgdb_con_registered = 0; | ||
1650 | } | ||
1651 | } | ||
1652 | } | ||
1653 | |||
1654 | static void kgdb_initial_breakpoint(void) | ||
1655 | { | ||
1656 | kgdb_break_asap = 0; | ||
1657 | |||
1658 | printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); | ||
1659 | kgdb_breakpoint(); | ||
1660 | } | ||
1661 | |||
1662 | /** | ||
1663 | * kgdb_register_io_module - register KGDB IO module | ||
1664 | * @new_kgdb_io_ops: the io ops vector | ||
1665 | * | ||
1666 | * Register it with the KGDB core. | ||
1667 | */ | ||
1668 | int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops) | ||
1669 | { | ||
1670 | int err; | ||
1671 | |||
1672 | spin_lock(&kgdb_registration_lock); | ||
1673 | |||
1674 | if (kgdb_io_ops) { | ||
1675 | spin_unlock(&kgdb_registration_lock); | ||
1676 | |||
1677 | printk(KERN_ERR "kgdb: Another I/O driver is already " | ||
1678 | "registered with KGDB.\n"); | ||
1679 | return -EBUSY; | ||
1680 | } | ||
1681 | |||
1682 | if (new_kgdb_io_ops->init) { | ||
1683 | err = new_kgdb_io_ops->init(); | ||
1684 | if (err) { | ||
1685 | spin_unlock(&kgdb_registration_lock); | ||
1686 | return err; | ||
1687 | } | ||
1688 | } | ||
1689 | |||
1690 | kgdb_io_ops = new_kgdb_io_ops; | ||
1691 | |||
1692 | spin_unlock(&kgdb_registration_lock); | ||
1693 | |||
1694 | printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", | ||
1695 | new_kgdb_io_ops->name); | ||
1696 | |||
1697 | /* Arm KGDB now. */ | ||
1698 | kgdb_register_callbacks(); | ||
1699 | |||
1700 | if (kgdb_break_asap) | ||
1701 | kgdb_initial_breakpoint(); | ||
1702 | |||
1703 | return 0; | ||
1704 | } | ||
1705 | EXPORT_SYMBOL_GPL(kgdb_register_io_module); | ||
1706 | |||
1707 | /** | ||
1708 | * kkgdb_unregister_io_module - unregister KGDB IO module | ||
1709 | * @old_kgdb_io_ops: the io ops vector | ||
1710 | * | ||
1711 | * Unregister it with the KGDB core. | ||
1712 | */ | ||
1713 | void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops) | ||
1714 | { | ||
1715 | BUG_ON(kgdb_connected); | ||
1716 | |||
1717 | /* | ||
1718 | * KGDB is no longer able to communicate out, so | ||
1719 | * unregister our callbacks and reset state. | ||
1720 | */ | ||
1721 | kgdb_unregister_callbacks(); | ||
1722 | |||
1723 | spin_lock(&kgdb_registration_lock); | ||
1724 | |||
1725 | WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops); | ||
1726 | kgdb_io_ops = NULL; | ||
1727 | |||
1728 | spin_unlock(&kgdb_registration_lock); | ||
1729 | |||
1730 | printk(KERN_INFO | ||
1731 | "kgdb: Unregistered I/O driver %s, debugger disabled.\n", | ||
1732 | old_kgdb_io_ops->name); | ||
1733 | } | ||
1734 | EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); | ||
1735 | |||
1736 | /** | ||
1737 | * kgdb_breakpoint - generate breakpoint exception | ||
1738 | * | ||
1739 | * This function will generate a breakpoint exception. It is used at the | ||
1740 | * beginning of a program to sync up with a debugger and can be used | ||
1741 | * otherwise as a quick means to stop program execution and "break" into | ||
1742 | * the debugger. | ||
1743 | */ | ||
1744 | void kgdb_breakpoint(void) | ||
1745 | { | ||
1746 | atomic_inc(&kgdb_setting_breakpoint); | ||
1747 | wmb(); /* Sync point before breakpoint */ | ||
1748 | arch_kgdb_breakpoint(); | ||
1749 | wmb(); /* Sync point after breakpoint */ | ||
1750 | atomic_dec(&kgdb_setting_breakpoint); | ||
1751 | } | ||
1752 | EXPORT_SYMBOL_GPL(kgdb_breakpoint); | ||
1753 | |||
1754 | static int __init opt_kgdb_wait(char *str) | ||
1755 | { | ||
1756 | kgdb_break_asap = 1; | ||
1757 | |||
1758 | if (kgdb_io_module_registered) | ||
1759 | kgdb_initial_breakpoint(); | ||
1760 | |||
1761 | return 0; | ||
1762 | } | ||
1763 | |||
1764 | early_param("kgdbwait", opt_kgdb_wait); | ||
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c index 21fe3c426948..0b624e791805 100644 --- a/kernel/ksysfs.c +++ b/kernel/ksysfs.c | |||
@@ -138,7 +138,8 @@ extern const void __start_notes __attribute__((weak)); | |||
138 | extern const void __stop_notes __attribute__((weak)); | 138 | extern const void __stop_notes __attribute__((weak)); |
139 | #define notes_size (&__stop_notes - &__start_notes) | 139 | #define notes_size (&__stop_notes - &__start_notes) |
140 | 140 | ||
141 | static ssize_t notes_read(struct kobject *kobj, struct bin_attribute *bin_attr, | 141 | static ssize_t notes_read(struct file *filp, struct kobject *kobj, |
142 | struct bin_attribute *bin_attr, | ||
142 | char *buf, loff_t off, size_t count) | 143 | char *buf, loff_t off, size_t count) |
143 | { | 144 | { |
144 | memcpy(buf, &__start_notes + off, count); | 145 | memcpy(buf, &__start_notes + off, count); |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index ec21304856d1..54286798c37b 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -2711,6 +2711,8 @@ void lockdep_init_map(struct lockdep_map *lock, const char *name, | |||
2711 | } | 2711 | } |
2712 | EXPORT_SYMBOL_GPL(lockdep_init_map); | 2712 | EXPORT_SYMBOL_GPL(lockdep_init_map); |
2713 | 2713 | ||
2714 | struct lock_class_key __lockdep_no_validate__; | ||
2715 | |||
2714 | /* | 2716 | /* |
2715 | * This gets called for every mutex_lock*()/spin_lock*() operation. | 2717 | * This gets called for every mutex_lock*()/spin_lock*() operation. |
2716 | * We maintain the dependency maps and validate the locking attempt: | 2718 | * We maintain the dependency maps and validate the locking attempt: |
@@ -2745,6 +2747,9 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2745 | return 0; | 2747 | return 0; |
2746 | } | 2748 | } |
2747 | 2749 | ||
2750 | if (lock->key == &__lockdep_no_validate__) | ||
2751 | check = 1; | ||
2752 | |||
2748 | if (!subclass) | 2753 | if (!subclass) |
2749 | class = lock->class_cache; | 2754 | class = lock->class_cache; |
2750 | /* | 2755 | /* |
diff --git a/kernel/module.c b/kernel/module.c index 970d773aec62..a8014bfb5a4e 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -77,6 +77,10 @@ | |||
77 | DEFINE_MUTEX(module_mutex); | 77 | DEFINE_MUTEX(module_mutex); |
78 | EXPORT_SYMBOL_GPL(module_mutex); | 78 | EXPORT_SYMBOL_GPL(module_mutex); |
79 | static LIST_HEAD(modules); | 79 | static LIST_HEAD(modules); |
80 | #ifdef CONFIG_KGDB_KDB | ||
81 | struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */ | ||
82 | #endif /* CONFIG_KGDB_KDB */ | ||
83 | |||
80 | 84 | ||
81 | /* Block module loading/unloading? */ | 85 | /* Block module loading/unloading? */ |
82 | int modules_disabled = 0; | 86 | int modules_disabled = 0; |
@@ -1197,7 +1201,7 @@ struct module_notes_attrs { | |||
1197 | struct bin_attribute attrs[0]; | 1201 | struct bin_attribute attrs[0]; |
1198 | }; | 1202 | }; |
1199 | 1203 | ||
1200 | static ssize_t module_notes_read(struct kobject *kobj, | 1204 | static ssize_t module_notes_read(struct file *filp, struct kobject *kobj, |
1201 | struct bin_attribute *bin_attr, | 1205 | struct bin_attribute *bin_attr, |
1202 | char *buf, loff_t pos, size_t count) | 1206 | char *buf, loff_t pos, size_t count) |
1203 | { | 1207 | { |
diff --git a/kernel/padata.c b/kernel/padata.c index fd03513c7327..b1c9857f8402 100644 --- a/kernel/padata.c +++ b/kernel/padata.c | |||
@@ -29,7 +29,7 @@ | |||
29 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
30 | 30 | ||
31 | #define MAX_SEQ_NR INT_MAX - NR_CPUS | 31 | #define MAX_SEQ_NR INT_MAX - NR_CPUS |
32 | #define MAX_OBJ_NUM 10000 * NR_CPUS | 32 | #define MAX_OBJ_NUM 1000 |
33 | 33 | ||
34 | static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) | 34 | static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) |
35 | { | 35 | { |
@@ -88,7 +88,7 @@ static void padata_parallel_worker(struct work_struct *work) | |||
88 | local_bh_enable(); | 88 | local_bh_enable(); |
89 | } | 89 | } |
90 | 90 | ||
91 | /* | 91 | /** |
92 | * padata_do_parallel - padata parallelization function | 92 | * padata_do_parallel - padata parallelization function |
93 | * | 93 | * |
94 | * @pinst: padata instance | 94 | * @pinst: padata instance |
@@ -152,6 +152,23 @@ out: | |||
152 | } | 152 | } |
153 | EXPORT_SYMBOL(padata_do_parallel); | 153 | EXPORT_SYMBOL(padata_do_parallel); |
154 | 154 | ||
155 | /* | ||
156 | * padata_get_next - Get the next object that needs serialization. | ||
157 | * | ||
158 | * Return values are: | ||
159 | * | ||
160 | * A pointer to the control struct of the next object that needs | ||
161 | * serialization, if present in one of the percpu reorder queues. | ||
162 | * | ||
163 | * NULL, if all percpu reorder queues are empty. | ||
164 | * | ||
165 | * -EINPROGRESS, if the next object that needs serialization will | ||
166 | * be parallel processed by another cpu and is not yet present in | ||
167 | * the cpu's reorder queue. | ||
168 | * | ||
169 | * -ENODATA, if this cpu has to do the parallel processing for | ||
170 | * the next object. | ||
171 | */ | ||
155 | static struct padata_priv *padata_get_next(struct parallel_data *pd) | 172 | static struct padata_priv *padata_get_next(struct parallel_data *pd) |
156 | { | 173 | { |
157 | int cpu, num_cpus, empty, calc_seq_nr; | 174 | int cpu, num_cpus, empty, calc_seq_nr; |
@@ -173,7 +190,7 @@ static struct padata_priv *padata_get_next(struct parallel_data *pd) | |||
173 | 190 | ||
174 | /* | 191 | /* |
175 | * Calculate the seq_nr of the object that should be | 192 | * Calculate the seq_nr of the object that should be |
176 | * next in this queue. | 193 | * next in this reorder queue. |
177 | */ | 194 | */ |
178 | overrun = 0; | 195 | overrun = 0; |
179 | calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus) | 196 | calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus) |
@@ -231,7 +248,8 @@ static struct padata_priv *padata_get_next(struct parallel_data *pd) | |||
231 | goto out; | 248 | goto out; |
232 | } | 249 | } |
233 | 250 | ||
234 | if (next_nr % num_cpus == next_queue->cpu_index) { | 251 | queue = per_cpu_ptr(pd->queue, smp_processor_id()); |
252 | if (queue->cpu_index == next_queue->cpu_index) { | ||
235 | padata = ERR_PTR(-ENODATA); | 253 | padata = ERR_PTR(-ENODATA); |
236 | goto out; | 254 | goto out; |
237 | } | 255 | } |
@@ -247,19 +265,40 @@ static void padata_reorder(struct parallel_data *pd) | |||
247 | struct padata_queue *queue; | 265 | struct padata_queue *queue; |
248 | struct padata_instance *pinst = pd->pinst; | 266 | struct padata_instance *pinst = pd->pinst; |
249 | 267 | ||
250 | try_again: | 268 | /* |
269 | * We need to ensure that only one cpu can work on dequeueing of | ||
270 | * the reorder queue the time. Calculating in which percpu reorder | ||
271 | * queue the next object will arrive takes some time. A spinlock | ||
272 | * would be highly contended. Also it is not clear in which order | ||
273 | * the objects arrive to the reorder queues. So a cpu could wait to | ||
274 | * get the lock just to notice that there is nothing to do at the | ||
275 | * moment. Therefore we use a trylock and let the holder of the lock | ||
276 | * care for all the objects enqueued during the holdtime of the lock. | ||
277 | */ | ||
251 | if (!spin_trylock_bh(&pd->lock)) | 278 | if (!spin_trylock_bh(&pd->lock)) |
252 | goto out; | 279 | return; |
253 | 280 | ||
254 | while (1) { | 281 | while (1) { |
255 | padata = padata_get_next(pd); | 282 | padata = padata_get_next(pd); |
256 | 283 | ||
284 | /* | ||
285 | * All reorder queues are empty, or the next object that needs | ||
286 | * serialization is parallel processed by another cpu and is | ||
287 | * still on it's way to the cpu's reorder queue, nothing to | ||
288 | * do for now. | ||
289 | */ | ||
257 | if (!padata || PTR_ERR(padata) == -EINPROGRESS) | 290 | if (!padata || PTR_ERR(padata) == -EINPROGRESS) |
258 | break; | 291 | break; |
259 | 292 | ||
293 | /* | ||
294 | * This cpu has to do the parallel processing of the next | ||
295 | * object. It's waiting in the cpu's parallelization queue, | ||
296 | * so exit imediately. | ||
297 | */ | ||
260 | if (PTR_ERR(padata) == -ENODATA) { | 298 | if (PTR_ERR(padata) == -ENODATA) { |
299 | del_timer(&pd->timer); | ||
261 | spin_unlock_bh(&pd->lock); | 300 | spin_unlock_bh(&pd->lock); |
262 | goto out; | 301 | return; |
263 | } | 302 | } |
264 | 303 | ||
265 | queue = per_cpu_ptr(pd->queue, padata->cb_cpu); | 304 | queue = per_cpu_ptr(pd->queue, padata->cb_cpu); |
@@ -273,13 +312,27 @@ try_again: | |||
273 | 312 | ||
274 | spin_unlock_bh(&pd->lock); | 313 | spin_unlock_bh(&pd->lock); |
275 | 314 | ||
276 | if (atomic_read(&pd->reorder_objects)) | 315 | /* |
277 | goto try_again; | 316 | * The next object that needs serialization might have arrived to |
317 | * the reorder queues in the meantime, we will be called again | ||
318 | * from the timer function if noone else cares for it. | ||
319 | */ | ||
320 | if (atomic_read(&pd->reorder_objects) | ||
321 | && !(pinst->flags & PADATA_RESET)) | ||
322 | mod_timer(&pd->timer, jiffies + HZ); | ||
323 | else | ||
324 | del_timer(&pd->timer); | ||
278 | 325 | ||
279 | out: | ||
280 | return; | 326 | return; |
281 | } | 327 | } |
282 | 328 | ||
329 | static void padata_reorder_timer(unsigned long arg) | ||
330 | { | ||
331 | struct parallel_data *pd = (struct parallel_data *)arg; | ||
332 | |||
333 | padata_reorder(pd); | ||
334 | } | ||
335 | |||
283 | static void padata_serial_worker(struct work_struct *work) | 336 | static void padata_serial_worker(struct work_struct *work) |
284 | { | 337 | { |
285 | struct padata_queue *queue; | 338 | struct padata_queue *queue; |
@@ -308,7 +361,7 @@ static void padata_serial_worker(struct work_struct *work) | |||
308 | local_bh_enable(); | 361 | local_bh_enable(); |
309 | } | 362 | } |
310 | 363 | ||
311 | /* | 364 | /** |
312 | * padata_do_serial - padata serialization function | 365 | * padata_do_serial - padata serialization function |
313 | * | 366 | * |
314 | * @padata: object to be serialized. | 367 | * @padata: object to be serialized. |
@@ -338,6 +391,7 @@ void padata_do_serial(struct padata_priv *padata) | |||
338 | } | 391 | } |
339 | EXPORT_SYMBOL(padata_do_serial); | 392 | EXPORT_SYMBOL(padata_do_serial); |
340 | 393 | ||
394 | /* Allocate and initialize the internal cpumask dependend resources. */ | ||
341 | static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | 395 | static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, |
342 | const struct cpumask *cpumask) | 396 | const struct cpumask *cpumask) |
343 | { | 397 | { |
@@ -358,17 +412,15 @@ static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | |||
358 | if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL)) | 412 | if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL)) |
359 | goto err_free_queue; | 413 | goto err_free_queue; |
360 | 414 | ||
361 | for_each_possible_cpu(cpu) { | 415 | cpumask_and(pd->cpumask, cpumask, cpu_active_mask); |
416 | |||
417 | for_each_cpu(cpu, pd->cpumask) { | ||
362 | queue = per_cpu_ptr(pd->queue, cpu); | 418 | queue = per_cpu_ptr(pd->queue, cpu); |
363 | 419 | ||
364 | queue->pd = pd; | 420 | queue->pd = pd; |
365 | 421 | ||
366 | if (cpumask_test_cpu(cpu, cpumask) | 422 | queue->cpu_index = cpu_index; |
367 | && cpumask_test_cpu(cpu, cpu_active_mask)) { | 423 | cpu_index++; |
368 | queue->cpu_index = cpu_index; | ||
369 | cpu_index++; | ||
370 | } else | ||
371 | queue->cpu_index = -1; | ||
372 | 424 | ||
373 | INIT_LIST_HEAD(&queue->reorder.list); | 425 | INIT_LIST_HEAD(&queue->reorder.list); |
374 | INIT_LIST_HEAD(&queue->parallel.list); | 426 | INIT_LIST_HEAD(&queue->parallel.list); |
@@ -382,11 +434,10 @@ static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst, | |||
382 | atomic_set(&queue->num_obj, 0); | 434 | atomic_set(&queue->num_obj, 0); |
383 | } | 435 | } |
384 | 436 | ||
385 | cpumask_and(pd->cpumask, cpumask, cpu_active_mask); | ||
386 | |||
387 | num_cpus = cpumask_weight(pd->cpumask); | 437 | num_cpus = cpumask_weight(pd->cpumask); |
388 | pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1; | 438 | pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1; |
389 | 439 | ||
440 | setup_timer(&pd->timer, padata_reorder_timer, (unsigned long)pd); | ||
390 | atomic_set(&pd->seq_nr, -1); | 441 | atomic_set(&pd->seq_nr, -1); |
391 | atomic_set(&pd->reorder_objects, 0); | 442 | atomic_set(&pd->reorder_objects, 0); |
392 | atomic_set(&pd->refcnt, 0); | 443 | atomic_set(&pd->refcnt, 0); |
@@ -410,6 +461,31 @@ static void padata_free_pd(struct parallel_data *pd) | |||
410 | kfree(pd); | 461 | kfree(pd); |
411 | } | 462 | } |
412 | 463 | ||
464 | /* Flush all objects out of the padata queues. */ | ||
465 | static void padata_flush_queues(struct parallel_data *pd) | ||
466 | { | ||
467 | int cpu; | ||
468 | struct padata_queue *queue; | ||
469 | |||
470 | for_each_cpu(cpu, pd->cpumask) { | ||
471 | queue = per_cpu_ptr(pd->queue, cpu); | ||
472 | flush_work(&queue->pwork); | ||
473 | } | ||
474 | |||
475 | del_timer_sync(&pd->timer); | ||
476 | |||
477 | if (atomic_read(&pd->reorder_objects)) | ||
478 | padata_reorder(pd); | ||
479 | |||
480 | for_each_cpu(cpu, pd->cpumask) { | ||
481 | queue = per_cpu_ptr(pd->queue, cpu); | ||
482 | flush_work(&queue->swork); | ||
483 | } | ||
484 | |||
485 | BUG_ON(atomic_read(&pd->refcnt) != 0); | ||
486 | } | ||
487 | |||
488 | /* Replace the internal control stucture with a new one. */ | ||
413 | static void padata_replace(struct padata_instance *pinst, | 489 | static void padata_replace(struct padata_instance *pinst, |
414 | struct parallel_data *pd_new) | 490 | struct parallel_data *pd_new) |
415 | { | 491 | { |
@@ -421,17 +497,13 @@ static void padata_replace(struct padata_instance *pinst, | |||
421 | 497 | ||
422 | synchronize_rcu(); | 498 | synchronize_rcu(); |
423 | 499 | ||
424 | while (atomic_read(&pd_old->refcnt) != 0) | 500 | padata_flush_queues(pd_old); |
425 | yield(); | ||
426 | |||
427 | flush_workqueue(pinst->wq); | ||
428 | |||
429 | padata_free_pd(pd_old); | 501 | padata_free_pd(pd_old); |
430 | 502 | ||
431 | pinst->flags &= ~PADATA_RESET; | 503 | pinst->flags &= ~PADATA_RESET; |
432 | } | 504 | } |
433 | 505 | ||
434 | /* | 506 | /** |
435 | * padata_set_cpumask - set the cpumask that padata should use | 507 | * padata_set_cpumask - set the cpumask that padata should use |
436 | * | 508 | * |
437 | * @pinst: padata instance | 509 | * @pinst: padata instance |
@@ -443,10 +515,10 @@ int padata_set_cpumask(struct padata_instance *pinst, | |||
443 | struct parallel_data *pd; | 515 | struct parallel_data *pd; |
444 | int err = 0; | 516 | int err = 0; |
445 | 517 | ||
446 | might_sleep(); | ||
447 | |||
448 | mutex_lock(&pinst->lock); | 518 | mutex_lock(&pinst->lock); |
449 | 519 | ||
520 | get_online_cpus(); | ||
521 | |||
450 | pd = padata_alloc_pd(pinst, cpumask); | 522 | pd = padata_alloc_pd(pinst, cpumask); |
451 | if (!pd) { | 523 | if (!pd) { |
452 | err = -ENOMEM; | 524 | err = -ENOMEM; |
@@ -458,6 +530,8 @@ int padata_set_cpumask(struct padata_instance *pinst, | |||
458 | padata_replace(pinst, pd); | 530 | padata_replace(pinst, pd); |
459 | 531 | ||
460 | out: | 532 | out: |
533 | put_online_cpus(); | ||
534 | |||
461 | mutex_unlock(&pinst->lock); | 535 | mutex_unlock(&pinst->lock); |
462 | 536 | ||
463 | return err; | 537 | return err; |
@@ -479,7 +553,7 @@ static int __padata_add_cpu(struct padata_instance *pinst, int cpu) | |||
479 | return 0; | 553 | return 0; |
480 | } | 554 | } |
481 | 555 | ||
482 | /* | 556 | /** |
483 | * padata_add_cpu - add a cpu to the padata cpumask | 557 | * padata_add_cpu - add a cpu to the padata cpumask |
484 | * | 558 | * |
485 | * @pinst: padata instance | 559 | * @pinst: padata instance |
@@ -489,12 +563,12 @@ int padata_add_cpu(struct padata_instance *pinst, int cpu) | |||
489 | { | 563 | { |
490 | int err; | 564 | int err; |
491 | 565 | ||
492 | might_sleep(); | ||
493 | |||
494 | mutex_lock(&pinst->lock); | 566 | mutex_lock(&pinst->lock); |
495 | 567 | ||
568 | get_online_cpus(); | ||
496 | cpumask_set_cpu(cpu, pinst->cpumask); | 569 | cpumask_set_cpu(cpu, pinst->cpumask); |
497 | err = __padata_add_cpu(pinst, cpu); | 570 | err = __padata_add_cpu(pinst, cpu); |
571 | put_online_cpus(); | ||
498 | 572 | ||
499 | mutex_unlock(&pinst->lock); | 573 | mutex_unlock(&pinst->lock); |
500 | 574 | ||
@@ -517,7 +591,7 @@ static int __padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
517 | return 0; | 591 | return 0; |
518 | } | 592 | } |
519 | 593 | ||
520 | /* | 594 | /** |
521 | * padata_remove_cpu - remove a cpu from the padata cpumask | 595 | * padata_remove_cpu - remove a cpu from the padata cpumask |
522 | * | 596 | * |
523 | * @pinst: padata instance | 597 | * @pinst: padata instance |
@@ -527,12 +601,12 @@ int padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
527 | { | 601 | { |
528 | int err; | 602 | int err; |
529 | 603 | ||
530 | might_sleep(); | ||
531 | |||
532 | mutex_lock(&pinst->lock); | 604 | mutex_lock(&pinst->lock); |
533 | 605 | ||
606 | get_online_cpus(); | ||
534 | cpumask_clear_cpu(cpu, pinst->cpumask); | 607 | cpumask_clear_cpu(cpu, pinst->cpumask); |
535 | err = __padata_remove_cpu(pinst, cpu); | 608 | err = __padata_remove_cpu(pinst, cpu); |
609 | put_online_cpus(); | ||
536 | 610 | ||
537 | mutex_unlock(&pinst->lock); | 611 | mutex_unlock(&pinst->lock); |
538 | 612 | ||
@@ -540,38 +614,35 @@ int padata_remove_cpu(struct padata_instance *pinst, int cpu) | |||
540 | } | 614 | } |
541 | EXPORT_SYMBOL(padata_remove_cpu); | 615 | EXPORT_SYMBOL(padata_remove_cpu); |
542 | 616 | ||
543 | /* | 617 | /** |
544 | * padata_start - start the parallel processing | 618 | * padata_start - start the parallel processing |
545 | * | 619 | * |
546 | * @pinst: padata instance to start | 620 | * @pinst: padata instance to start |
547 | */ | 621 | */ |
548 | void padata_start(struct padata_instance *pinst) | 622 | void padata_start(struct padata_instance *pinst) |
549 | { | 623 | { |
550 | might_sleep(); | ||
551 | |||
552 | mutex_lock(&pinst->lock); | 624 | mutex_lock(&pinst->lock); |
553 | pinst->flags |= PADATA_INIT; | 625 | pinst->flags |= PADATA_INIT; |
554 | mutex_unlock(&pinst->lock); | 626 | mutex_unlock(&pinst->lock); |
555 | } | 627 | } |
556 | EXPORT_SYMBOL(padata_start); | 628 | EXPORT_SYMBOL(padata_start); |
557 | 629 | ||
558 | /* | 630 | /** |
559 | * padata_stop - stop the parallel processing | 631 | * padata_stop - stop the parallel processing |
560 | * | 632 | * |
561 | * @pinst: padata instance to stop | 633 | * @pinst: padata instance to stop |
562 | */ | 634 | */ |
563 | void padata_stop(struct padata_instance *pinst) | 635 | void padata_stop(struct padata_instance *pinst) |
564 | { | 636 | { |
565 | might_sleep(); | ||
566 | |||
567 | mutex_lock(&pinst->lock); | 637 | mutex_lock(&pinst->lock); |
568 | pinst->flags &= ~PADATA_INIT; | 638 | pinst->flags &= ~PADATA_INIT; |
569 | mutex_unlock(&pinst->lock); | 639 | mutex_unlock(&pinst->lock); |
570 | } | 640 | } |
571 | EXPORT_SYMBOL(padata_stop); | 641 | EXPORT_SYMBOL(padata_stop); |
572 | 642 | ||
573 | static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | 643 | #ifdef CONFIG_HOTPLUG_CPU |
574 | unsigned long action, void *hcpu) | 644 | static int padata_cpu_callback(struct notifier_block *nfb, |
645 | unsigned long action, void *hcpu) | ||
575 | { | 646 | { |
576 | int err; | 647 | int err; |
577 | struct padata_instance *pinst; | 648 | struct padata_instance *pinst; |
@@ -621,8 +692,9 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
621 | 692 | ||
622 | return NOTIFY_OK; | 693 | return NOTIFY_OK; |
623 | } | 694 | } |
695 | #endif | ||
624 | 696 | ||
625 | /* | 697 | /** |
626 | * padata_alloc - allocate and initialize a padata instance | 698 | * padata_alloc - allocate and initialize a padata instance |
627 | * | 699 | * |
628 | * @cpumask: cpumask that padata uses for parallelization | 700 | * @cpumask: cpumask that padata uses for parallelization |
@@ -631,7 +703,6 @@ static int __cpuinit padata_cpu_callback(struct notifier_block *nfb, | |||
631 | struct padata_instance *padata_alloc(const struct cpumask *cpumask, | 703 | struct padata_instance *padata_alloc(const struct cpumask *cpumask, |
632 | struct workqueue_struct *wq) | 704 | struct workqueue_struct *wq) |
633 | { | 705 | { |
634 | int err; | ||
635 | struct padata_instance *pinst; | 706 | struct padata_instance *pinst; |
636 | struct parallel_data *pd; | 707 | struct parallel_data *pd; |
637 | 708 | ||
@@ -639,6 +710,8 @@ struct padata_instance *padata_alloc(const struct cpumask *cpumask, | |||
639 | if (!pinst) | 710 | if (!pinst) |
640 | goto err; | 711 | goto err; |
641 | 712 | ||
713 | get_online_cpus(); | ||
714 | |||
642 | pd = padata_alloc_pd(pinst, cpumask); | 715 | pd = padata_alloc_pd(pinst, cpumask); |
643 | if (!pd) | 716 | if (!pd) |
644 | goto err_free_inst; | 717 | goto err_free_inst; |
@@ -654,31 +727,32 @@ struct padata_instance *padata_alloc(const struct cpumask *cpumask, | |||
654 | 727 | ||
655 | pinst->flags = 0; | 728 | pinst->flags = 0; |
656 | 729 | ||
730 | #ifdef CONFIG_HOTPLUG_CPU | ||
657 | pinst->cpu_notifier.notifier_call = padata_cpu_callback; | 731 | pinst->cpu_notifier.notifier_call = padata_cpu_callback; |
658 | pinst->cpu_notifier.priority = 0; | 732 | pinst->cpu_notifier.priority = 0; |
659 | err = register_hotcpu_notifier(&pinst->cpu_notifier); | 733 | register_hotcpu_notifier(&pinst->cpu_notifier); |
660 | if (err) | 734 | #endif |
661 | goto err_free_cpumask; | 735 | |
736 | put_online_cpus(); | ||
662 | 737 | ||
663 | mutex_init(&pinst->lock); | 738 | mutex_init(&pinst->lock); |
664 | 739 | ||
665 | return pinst; | 740 | return pinst; |
666 | 741 | ||
667 | err_free_cpumask: | ||
668 | free_cpumask_var(pinst->cpumask); | ||
669 | err_free_pd: | 742 | err_free_pd: |
670 | padata_free_pd(pd); | 743 | padata_free_pd(pd); |
671 | err_free_inst: | 744 | err_free_inst: |
672 | kfree(pinst); | 745 | kfree(pinst); |
746 | put_online_cpus(); | ||
673 | err: | 747 | err: |
674 | return NULL; | 748 | return NULL; |
675 | } | 749 | } |
676 | EXPORT_SYMBOL(padata_alloc); | 750 | EXPORT_SYMBOL(padata_alloc); |
677 | 751 | ||
678 | /* | 752 | /** |
679 | * padata_free - free a padata instance | 753 | * padata_free - free a padata instance |
680 | * | 754 | * |
681 | * @ padata_inst: padata instance to free | 755 | * @padata_inst: padata instance to free |
682 | */ | 756 | */ |
683 | void padata_free(struct padata_instance *pinst) | 757 | void padata_free(struct padata_instance *pinst) |
684 | { | 758 | { |
@@ -686,10 +760,13 @@ void padata_free(struct padata_instance *pinst) | |||
686 | 760 | ||
687 | synchronize_rcu(); | 761 | synchronize_rcu(); |
688 | 762 | ||
689 | while (atomic_read(&pinst->pd->refcnt) != 0) | 763 | #ifdef CONFIG_HOTPLUG_CPU |
690 | yield(); | ||
691 | |||
692 | unregister_hotcpu_notifier(&pinst->cpu_notifier); | 764 | unregister_hotcpu_notifier(&pinst->cpu_notifier); |
765 | #endif | ||
766 | get_online_cpus(); | ||
767 | padata_flush_queues(pinst->pd); | ||
768 | put_online_cpus(); | ||
769 | |||
693 | padata_free_pd(pinst->pd); | 770 | padata_free_pd(pinst->pd); |
694 | free_cpumask_var(pinst->cpumask); | 771 | free_cpumask_var(pinst->cpumask); |
695 | kfree(pinst); | 772 | kfree(pinst); |
diff --git a/kernel/pm_qos_params.c b/kernel/pm_qos_params.c index 3db49b9ca374..f42d3f737a33 100644 --- a/kernel/pm_qos_params.c +++ b/kernel/pm_qos_params.c | |||
@@ -2,7 +2,7 @@ | |||
2 | * This module exposes the interface to kernel space for specifying | 2 | * This module exposes the interface to kernel space for specifying |
3 | * QoS dependencies. It provides infrastructure for registration of: | 3 | * QoS dependencies. It provides infrastructure for registration of: |
4 | * | 4 | * |
5 | * Dependents on a QoS value : register requirements | 5 | * Dependents on a QoS value : register requests |
6 | * Watchers of QoS value : get notified when target QoS value changes | 6 | * Watchers of QoS value : get notified when target QoS value changes |
7 | * | 7 | * |
8 | * This QoS design is best effort based. Dependents register their QoS needs. | 8 | * This QoS design is best effort based. Dependents register their QoS needs. |
@@ -14,19 +14,21 @@ | |||
14 | * timeout: usec <-- currently not used. | 14 | * timeout: usec <-- currently not used. |
15 | * throughput: kbs (kilo byte / sec) | 15 | * throughput: kbs (kilo byte / sec) |
16 | * | 16 | * |
17 | * There are lists of pm_qos_objects each one wrapping requirements, notifiers | 17 | * There are lists of pm_qos_objects each one wrapping requests, notifiers |
18 | * | 18 | * |
19 | * User mode requirements on a QOS parameter register themselves to the | 19 | * User mode requests on a QOS parameter register themselves to the |
20 | * subsystem by opening the device node /dev/... and writing there request to | 20 | * subsystem by opening the device node /dev/... and writing there request to |
21 | * the node. As long as the process holds a file handle open to the node the | 21 | * the node. As long as the process holds a file handle open to the node the |
22 | * client continues to be accounted for. Upon file release the usermode | 22 | * client continues to be accounted for. Upon file release the usermode |
23 | * requirement is removed and a new qos target is computed. This way when the | 23 | * request is removed and a new qos target is computed. This way when the |
24 | * requirement that the application has is cleaned up when closes the file | 24 | * request that the application has is cleaned up when closes the file |
25 | * pointer or exits the pm_qos_object will get an opportunity to clean up. | 25 | * pointer or exits the pm_qos_object will get an opportunity to clean up. |
26 | * | 26 | * |
27 | * Mark Gross <mgross@linux.intel.com> | 27 | * Mark Gross <mgross@linux.intel.com> |
28 | */ | 28 | */ |
29 | 29 | ||
30 | /*#define DEBUG*/ | ||
31 | |||
30 | #include <linux/pm_qos_params.h> | 32 | #include <linux/pm_qos_params.h> |
31 | #include <linux/sched.h> | 33 | #include <linux/sched.h> |
32 | #include <linux/spinlock.h> | 34 | #include <linux/spinlock.h> |
@@ -42,25 +44,25 @@ | |||
42 | #include <linux/uaccess.h> | 44 | #include <linux/uaccess.h> |
43 | 45 | ||
44 | /* | 46 | /* |
45 | * locking rule: all changes to requirements or notifiers lists | 47 | * locking rule: all changes to requests or notifiers lists |
46 | * or pm_qos_object list and pm_qos_objects need to happen with pm_qos_lock | 48 | * or pm_qos_object list and pm_qos_objects need to happen with pm_qos_lock |
47 | * held, taken with _irqsave. One lock to rule them all | 49 | * held, taken with _irqsave. One lock to rule them all |
48 | */ | 50 | */ |
49 | struct requirement_list { | 51 | struct pm_qos_request_list { |
50 | struct list_head list; | 52 | struct list_head list; |
51 | union { | 53 | union { |
52 | s32 value; | 54 | s32 value; |
53 | s32 usec; | 55 | s32 usec; |
54 | s32 kbps; | 56 | s32 kbps; |
55 | }; | 57 | }; |
56 | char *name; | 58 | int pm_qos_class; |
57 | }; | 59 | }; |
58 | 60 | ||
59 | static s32 max_compare(s32 v1, s32 v2); | 61 | static s32 max_compare(s32 v1, s32 v2); |
60 | static s32 min_compare(s32 v1, s32 v2); | 62 | static s32 min_compare(s32 v1, s32 v2); |
61 | 63 | ||
62 | struct pm_qos_object { | 64 | struct pm_qos_object { |
63 | struct requirement_list requirements; | 65 | struct pm_qos_request_list requests; |
64 | struct blocking_notifier_head *notifiers; | 66 | struct blocking_notifier_head *notifiers; |
65 | struct miscdevice pm_qos_power_miscdev; | 67 | struct miscdevice pm_qos_power_miscdev; |
66 | char *name; | 68 | char *name; |
@@ -72,7 +74,7 @@ struct pm_qos_object { | |||
72 | static struct pm_qos_object null_pm_qos; | 74 | static struct pm_qos_object null_pm_qos; |
73 | static BLOCKING_NOTIFIER_HEAD(cpu_dma_lat_notifier); | 75 | static BLOCKING_NOTIFIER_HEAD(cpu_dma_lat_notifier); |
74 | static struct pm_qos_object cpu_dma_pm_qos = { | 76 | static struct pm_qos_object cpu_dma_pm_qos = { |
75 | .requirements = {LIST_HEAD_INIT(cpu_dma_pm_qos.requirements.list)}, | 77 | .requests = {LIST_HEAD_INIT(cpu_dma_pm_qos.requests.list)}, |
76 | .notifiers = &cpu_dma_lat_notifier, | 78 | .notifiers = &cpu_dma_lat_notifier, |
77 | .name = "cpu_dma_latency", | 79 | .name = "cpu_dma_latency", |
78 | .default_value = 2000 * USEC_PER_SEC, | 80 | .default_value = 2000 * USEC_PER_SEC, |
@@ -82,7 +84,7 @@ static struct pm_qos_object cpu_dma_pm_qos = { | |||
82 | 84 | ||
83 | static BLOCKING_NOTIFIER_HEAD(network_lat_notifier); | 85 | static BLOCKING_NOTIFIER_HEAD(network_lat_notifier); |
84 | static struct pm_qos_object network_lat_pm_qos = { | 86 | static struct pm_qos_object network_lat_pm_qos = { |
85 | .requirements = {LIST_HEAD_INIT(network_lat_pm_qos.requirements.list)}, | 87 | .requests = {LIST_HEAD_INIT(network_lat_pm_qos.requests.list)}, |
86 | .notifiers = &network_lat_notifier, | 88 | .notifiers = &network_lat_notifier, |
87 | .name = "network_latency", | 89 | .name = "network_latency", |
88 | .default_value = 2000 * USEC_PER_SEC, | 90 | .default_value = 2000 * USEC_PER_SEC, |
@@ -93,8 +95,7 @@ static struct pm_qos_object network_lat_pm_qos = { | |||
93 | 95 | ||
94 | static BLOCKING_NOTIFIER_HEAD(network_throughput_notifier); | 96 | static BLOCKING_NOTIFIER_HEAD(network_throughput_notifier); |
95 | static struct pm_qos_object network_throughput_pm_qos = { | 97 | static struct pm_qos_object network_throughput_pm_qos = { |
96 | .requirements = | 98 | .requests = {LIST_HEAD_INIT(network_throughput_pm_qos.requests.list)}, |
97 | {LIST_HEAD_INIT(network_throughput_pm_qos.requirements.list)}, | ||
98 | .notifiers = &network_throughput_notifier, | 99 | .notifiers = &network_throughput_notifier, |
99 | .name = "network_throughput", | 100 | .name = "network_throughput", |
100 | .default_value = 0, | 101 | .default_value = 0, |
@@ -135,31 +136,34 @@ static s32 min_compare(s32 v1, s32 v2) | |||
135 | } | 136 | } |
136 | 137 | ||
137 | 138 | ||
138 | static void update_target(int target) | 139 | static void update_target(int pm_qos_class) |
139 | { | 140 | { |
140 | s32 extreme_value; | 141 | s32 extreme_value; |
141 | struct requirement_list *node; | 142 | struct pm_qos_request_list *node; |
142 | unsigned long flags; | 143 | unsigned long flags; |
143 | int call_notifier = 0; | 144 | int call_notifier = 0; |
144 | 145 | ||
145 | spin_lock_irqsave(&pm_qos_lock, flags); | 146 | spin_lock_irqsave(&pm_qos_lock, flags); |
146 | extreme_value = pm_qos_array[target]->default_value; | 147 | extreme_value = pm_qos_array[pm_qos_class]->default_value; |
147 | list_for_each_entry(node, | 148 | list_for_each_entry(node, |
148 | &pm_qos_array[target]->requirements.list, list) { | 149 | &pm_qos_array[pm_qos_class]->requests.list, list) { |
149 | extreme_value = pm_qos_array[target]->comparitor( | 150 | extreme_value = pm_qos_array[pm_qos_class]->comparitor( |
150 | extreme_value, node->value); | 151 | extreme_value, node->value); |
151 | } | 152 | } |
152 | if (atomic_read(&pm_qos_array[target]->target_value) != extreme_value) { | 153 | if (atomic_read(&pm_qos_array[pm_qos_class]->target_value) != |
154 | extreme_value) { | ||
153 | call_notifier = 1; | 155 | call_notifier = 1; |
154 | atomic_set(&pm_qos_array[target]->target_value, extreme_value); | 156 | atomic_set(&pm_qos_array[pm_qos_class]->target_value, |
155 | pr_debug(KERN_ERR "new target for qos %d is %d\n", target, | 157 | extreme_value); |
156 | atomic_read(&pm_qos_array[target]->target_value)); | 158 | pr_debug(KERN_ERR "new target for qos %d is %d\n", pm_qos_class, |
159 | atomic_read(&pm_qos_array[pm_qos_class]->target_value)); | ||
157 | } | 160 | } |
158 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 161 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
159 | 162 | ||
160 | if (call_notifier) | 163 | if (call_notifier) |
161 | blocking_notifier_call_chain(pm_qos_array[target]->notifiers, | 164 | blocking_notifier_call_chain( |
162 | (unsigned long) extreme_value, NULL); | 165 | pm_qos_array[pm_qos_class]->notifiers, |
166 | (unsigned long) extreme_value, NULL); | ||
163 | } | 167 | } |
164 | 168 | ||
165 | static int register_pm_qos_misc(struct pm_qos_object *qos) | 169 | static int register_pm_qos_misc(struct pm_qos_object *qos) |
@@ -185,125 +189,112 @@ static int find_pm_qos_object_by_minor(int minor) | |||
185 | } | 189 | } |
186 | 190 | ||
187 | /** | 191 | /** |
188 | * pm_qos_requirement - returns current system wide qos expectation | 192 | * pm_qos_request - returns current system wide qos expectation |
189 | * @pm_qos_class: identification of which qos value is requested | 193 | * @pm_qos_class: identification of which qos value is requested |
190 | * | 194 | * |
191 | * This function returns the current target value in an atomic manner. | 195 | * This function returns the current target value in an atomic manner. |
192 | */ | 196 | */ |
193 | int pm_qos_requirement(int pm_qos_class) | 197 | int pm_qos_request(int pm_qos_class) |
194 | { | 198 | { |
195 | return atomic_read(&pm_qos_array[pm_qos_class]->target_value); | 199 | return atomic_read(&pm_qos_array[pm_qos_class]->target_value); |
196 | } | 200 | } |
197 | EXPORT_SYMBOL_GPL(pm_qos_requirement); | 201 | EXPORT_SYMBOL_GPL(pm_qos_request); |
198 | 202 | ||
199 | /** | 203 | /** |
200 | * pm_qos_add_requirement - inserts new qos request into the list | 204 | * pm_qos_add_request - inserts new qos request into the list |
201 | * @pm_qos_class: identifies which list of qos request to us | 205 | * @pm_qos_class: identifies which list of qos request to us |
202 | * @name: identifies the request | ||
203 | * @value: defines the qos request | 206 | * @value: defines the qos request |
204 | * | 207 | * |
205 | * This function inserts a new entry in the pm_qos_class list of requested qos | 208 | * This function inserts a new entry in the pm_qos_class list of requested qos |
206 | * performance characteristics. It recomputes the aggregate QoS expectations | 209 | * performance characteristics. It recomputes the aggregate QoS expectations |
207 | * for the pm_qos_class of parameters. | 210 | * for the pm_qos_class of parameters, and returns the pm_qos_request list |
211 | * element as a handle for use in updating and removal. Call needs to save | ||
212 | * this handle for later use. | ||
208 | */ | 213 | */ |
209 | int pm_qos_add_requirement(int pm_qos_class, char *name, s32 value) | 214 | struct pm_qos_request_list *pm_qos_add_request(int pm_qos_class, s32 value) |
210 | { | 215 | { |
211 | struct requirement_list *dep; | 216 | struct pm_qos_request_list *dep; |
212 | unsigned long flags; | 217 | unsigned long flags; |
213 | 218 | ||
214 | dep = kzalloc(sizeof(struct requirement_list), GFP_KERNEL); | 219 | dep = kzalloc(sizeof(struct pm_qos_request_list), GFP_KERNEL); |
215 | if (dep) { | 220 | if (dep) { |
216 | if (value == PM_QOS_DEFAULT_VALUE) | 221 | if (value == PM_QOS_DEFAULT_VALUE) |
217 | dep->value = pm_qos_array[pm_qos_class]->default_value; | 222 | dep->value = pm_qos_array[pm_qos_class]->default_value; |
218 | else | 223 | else |
219 | dep->value = value; | 224 | dep->value = value; |
220 | dep->name = kstrdup(name, GFP_KERNEL); | 225 | dep->pm_qos_class = pm_qos_class; |
221 | if (!dep->name) | ||
222 | goto cleanup; | ||
223 | 226 | ||
224 | spin_lock_irqsave(&pm_qos_lock, flags); | 227 | spin_lock_irqsave(&pm_qos_lock, flags); |
225 | list_add(&dep->list, | 228 | list_add(&dep->list, |
226 | &pm_qos_array[pm_qos_class]->requirements.list); | 229 | &pm_qos_array[pm_qos_class]->requests.list); |
227 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 230 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
228 | update_target(pm_qos_class); | 231 | update_target(pm_qos_class); |
229 | |||
230 | return 0; | ||
231 | } | 232 | } |
232 | 233 | ||
233 | cleanup: | 234 | return dep; |
234 | kfree(dep); | ||
235 | return -ENOMEM; | ||
236 | } | 235 | } |
237 | EXPORT_SYMBOL_GPL(pm_qos_add_requirement); | 236 | EXPORT_SYMBOL_GPL(pm_qos_add_request); |
238 | 237 | ||
239 | /** | 238 | /** |
240 | * pm_qos_update_requirement - modifies an existing qos request | 239 | * pm_qos_update_request - modifies an existing qos request |
241 | * @pm_qos_class: identifies which list of qos request to us | 240 | * @pm_qos_req : handle to list element holding a pm_qos request to use |
242 | * @name: identifies the request | ||
243 | * @value: defines the qos request | 241 | * @value: defines the qos request |
244 | * | 242 | * |
245 | * Updates an existing qos requirement for the pm_qos_class of parameters along | 243 | * Updates an existing qos request for the pm_qos_class of parameters along |
246 | * with updating the target pm_qos_class value. | 244 | * with updating the target pm_qos_class value. |
247 | * | 245 | * |
248 | * If the named request isn't in the list then no change is made. | 246 | * Attempts are made to make this code callable on hot code paths. |
249 | */ | 247 | */ |
250 | int pm_qos_update_requirement(int pm_qos_class, char *name, s32 new_value) | 248 | void pm_qos_update_request(struct pm_qos_request_list *pm_qos_req, |
249 | s32 new_value) | ||
251 | { | 250 | { |
252 | unsigned long flags; | 251 | unsigned long flags; |
253 | struct requirement_list *node; | ||
254 | int pending_update = 0; | 252 | int pending_update = 0; |
253 | s32 temp; | ||
255 | 254 | ||
256 | spin_lock_irqsave(&pm_qos_lock, flags); | 255 | if (pm_qos_req) { /*guard against callers passing in null */ |
257 | list_for_each_entry(node, | 256 | spin_lock_irqsave(&pm_qos_lock, flags); |
258 | &pm_qos_array[pm_qos_class]->requirements.list, list) { | 257 | if (new_value == PM_QOS_DEFAULT_VALUE) |
259 | if (strcmp(node->name, name) == 0) { | 258 | temp = pm_qos_array[pm_qos_req->pm_qos_class]->default_value; |
260 | if (new_value == PM_QOS_DEFAULT_VALUE) | 259 | else |
261 | node->value = | 260 | temp = new_value; |
262 | pm_qos_array[pm_qos_class]->default_value; | 261 | |
263 | else | 262 | if (temp != pm_qos_req->value) { |
264 | node->value = new_value; | ||
265 | pending_update = 1; | 263 | pending_update = 1; |
266 | break; | 264 | pm_qos_req->value = temp; |
267 | } | 265 | } |
266 | spin_unlock_irqrestore(&pm_qos_lock, flags); | ||
267 | if (pending_update) | ||
268 | update_target(pm_qos_req->pm_qos_class); | ||
268 | } | 269 | } |
269 | spin_unlock_irqrestore(&pm_qos_lock, flags); | ||
270 | if (pending_update) | ||
271 | update_target(pm_qos_class); | ||
272 | |||
273 | return 0; | ||
274 | } | 270 | } |
275 | EXPORT_SYMBOL_GPL(pm_qos_update_requirement); | 271 | EXPORT_SYMBOL_GPL(pm_qos_update_request); |
276 | 272 | ||
277 | /** | 273 | /** |
278 | * pm_qos_remove_requirement - modifies an existing qos request | 274 | * pm_qos_remove_request - modifies an existing qos request |
279 | * @pm_qos_class: identifies which list of qos request to us | 275 | * @pm_qos_req: handle to request list element |
280 | * @name: identifies the request | ||
281 | * | 276 | * |
282 | * Will remove named qos request from pm_qos_class list of parameters and | 277 | * Will remove pm qos request from the list of requests and |
283 | * recompute the current target value for the pm_qos_class. | 278 | * recompute the current target value for the pm_qos_class. Call this |
279 | * on slow code paths. | ||
284 | */ | 280 | */ |
285 | void pm_qos_remove_requirement(int pm_qos_class, char *name) | 281 | void pm_qos_remove_request(struct pm_qos_request_list *pm_qos_req) |
286 | { | 282 | { |
287 | unsigned long flags; | 283 | unsigned long flags; |
288 | struct requirement_list *node; | 284 | int qos_class; |
289 | int pending_update = 0; | ||
290 | 285 | ||
286 | if (pm_qos_req == NULL) | ||
287 | return; | ||
288 | /* silent return to keep pcm code cleaner */ | ||
289 | |||
290 | qos_class = pm_qos_req->pm_qos_class; | ||
291 | spin_lock_irqsave(&pm_qos_lock, flags); | 291 | spin_lock_irqsave(&pm_qos_lock, flags); |
292 | list_for_each_entry(node, | 292 | list_del(&pm_qos_req->list); |
293 | &pm_qos_array[pm_qos_class]->requirements.list, list) { | 293 | kfree(pm_qos_req); |
294 | if (strcmp(node->name, name) == 0) { | ||
295 | kfree(node->name); | ||
296 | list_del(&node->list); | ||
297 | kfree(node); | ||
298 | pending_update = 1; | ||
299 | break; | ||
300 | } | ||
301 | } | ||
302 | spin_unlock_irqrestore(&pm_qos_lock, flags); | 294 | spin_unlock_irqrestore(&pm_qos_lock, flags); |
303 | if (pending_update) | 295 | update_target(qos_class); |
304 | update_target(pm_qos_class); | ||
305 | } | 296 | } |
306 | EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); | 297 | EXPORT_SYMBOL_GPL(pm_qos_remove_request); |
307 | 298 | ||
308 | /** | 299 | /** |
309 | * pm_qos_add_notifier - sets notification entry for changes to target value | 300 | * pm_qos_add_notifier - sets notification entry for changes to target value |
@@ -313,7 +304,7 @@ EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); | |||
313 | * will register the notifier into a notification chain that gets called | 304 | * will register the notifier into a notification chain that gets called |
314 | * upon changes to the pm_qos_class target value. | 305 | * upon changes to the pm_qos_class target value. |
315 | */ | 306 | */ |
316 | int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) | 307 | int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) |
317 | { | 308 | { |
318 | int retval; | 309 | int retval; |
319 | 310 | ||
@@ -343,21 +334,16 @@ int pm_qos_remove_notifier(int pm_qos_class, struct notifier_block *notifier) | |||
343 | } | 334 | } |
344 | EXPORT_SYMBOL_GPL(pm_qos_remove_notifier); | 335 | EXPORT_SYMBOL_GPL(pm_qos_remove_notifier); |
345 | 336 | ||
346 | #define PID_NAME_LEN 32 | ||
347 | |||
348 | static int pm_qos_power_open(struct inode *inode, struct file *filp) | 337 | static int pm_qos_power_open(struct inode *inode, struct file *filp) |
349 | { | 338 | { |
350 | int ret; | ||
351 | long pm_qos_class; | 339 | long pm_qos_class; |
352 | char name[PID_NAME_LEN]; | ||
353 | 340 | ||
354 | pm_qos_class = find_pm_qos_object_by_minor(iminor(inode)); | 341 | pm_qos_class = find_pm_qos_object_by_minor(iminor(inode)); |
355 | if (pm_qos_class >= 0) { | 342 | if (pm_qos_class >= 0) { |
356 | filp->private_data = (void *)pm_qos_class; | 343 | filp->private_data = (void *) pm_qos_add_request(pm_qos_class, |
357 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | 344 | PM_QOS_DEFAULT_VALUE); |
358 | ret = pm_qos_add_requirement(pm_qos_class, name, | 345 | |
359 | PM_QOS_DEFAULT_VALUE); | 346 | if (filp->private_data) |
360 | if (ret >= 0) | ||
361 | return 0; | 347 | return 0; |
362 | } | 348 | } |
363 | return -EPERM; | 349 | return -EPERM; |
@@ -365,32 +351,40 @@ static int pm_qos_power_open(struct inode *inode, struct file *filp) | |||
365 | 351 | ||
366 | static int pm_qos_power_release(struct inode *inode, struct file *filp) | 352 | static int pm_qos_power_release(struct inode *inode, struct file *filp) |
367 | { | 353 | { |
368 | int pm_qos_class; | 354 | struct pm_qos_request_list *req; |
369 | char name[PID_NAME_LEN]; | ||
370 | 355 | ||
371 | pm_qos_class = (long)filp->private_data; | 356 | req = (struct pm_qos_request_list *)filp->private_data; |
372 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | 357 | pm_qos_remove_request(req); |
373 | pm_qos_remove_requirement(pm_qos_class, name); | ||
374 | 358 | ||
375 | return 0; | 359 | return 0; |
376 | } | 360 | } |
377 | 361 | ||
362 | |||
378 | static ssize_t pm_qos_power_write(struct file *filp, const char __user *buf, | 363 | static ssize_t pm_qos_power_write(struct file *filp, const char __user *buf, |
379 | size_t count, loff_t *f_pos) | 364 | size_t count, loff_t *f_pos) |
380 | { | 365 | { |
381 | s32 value; | 366 | s32 value; |
382 | int pm_qos_class; | 367 | int x; |
383 | char name[PID_NAME_LEN]; | 368 | char ascii_value[11]; |
384 | 369 | struct pm_qos_request_list *pm_qos_req; | |
385 | pm_qos_class = (long)filp->private_data; | 370 | |
386 | if (count != sizeof(s32)) | 371 | if (count == sizeof(s32)) { |
372 | if (copy_from_user(&value, buf, sizeof(s32))) | ||
373 | return -EFAULT; | ||
374 | } else if (count == 11) { /* len('0x12345678/0') */ | ||
375 | if (copy_from_user(ascii_value, buf, 11)) | ||
376 | return -EFAULT; | ||
377 | x = sscanf(ascii_value, "%x", &value); | ||
378 | if (x != 1) | ||
379 | return -EINVAL; | ||
380 | pr_debug(KERN_ERR "%s, %d, 0x%x\n", ascii_value, x, value); | ||
381 | } else | ||
387 | return -EINVAL; | 382 | return -EINVAL; |
388 | if (copy_from_user(&value, buf, sizeof(s32))) | ||
389 | return -EFAULT; | ||
390 | snprintf(name, PID_NAME_LEN, "process_%d", current->pid); | ||
391 | pm_qos_update_requirement(pm_qos_class, name, value); | ||
392 | 383 | ||
393 | return sizeof(s32); | 384 | pm_qos_req = (struct pm_qos_request_list *)filp->private_data; |
385 | pm_qos_update_request(pm_qos_req, value); | ||
386 | |||
387 | return count; | ||
394 | } | 388 | } |
395 | 389 | ||
396 | 390 | ||
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index bc7704b3a443..00bb252f29a2 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -11,19 +11,18 @@ | |||
11 | #include <trace/events/timer.h> | 11 | #include <trace/events/timer.h> |
12 | 12 | ||
13 | /* | 13 | /* |
14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | ||
16 | * siglock protection since other code may update expiration cache as | ||
17 | * well. | ||
15 | */ | 18 | */ |
16 | void update_rlimit_cpu(unsigned long rlim_new) | 19 | void update_rlimit_cpu(unsigned long rlim_new) |
17 | { | 20 | { |
18 | cputime_t cputime = secs_to_cputime(rlim_new); | 21 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
20 | 22 | ||
21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || | 23 | spin_lock_irq(¤t->sighand->siglock); |
22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
23 | spin_lock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | ||
25 | spin_unlock_irq(¤t->sighand->siglock); | ||
26 | } | ||
27 | } | 26 | } |
28 | 27 | ||
29 | static int check_clock(const clockid_t which_clock) | 28 | static int check_clock(const clockid_t which_clock) |
@@ -548,111 +547,62 @@ static inline int expires_gt(cputime_t expires, cputime_t new_exp) | |||
548 | cputime_gt(expires, new_exp); | 547 | cputime_gt(expires, new_exp); |
549 | } | 548 | } |
550 | 549 | ||
551 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
552 | { | ||
553 | return !cputime_eq(expires, cputime_zero) && | ||
554 | cputime_le(expires, new_exp); | ||
555 | } | ||
556 | /* | 550 | /* |
557 | * Insert the timer on the appropriate list before any timers that | 551 | * Insert the timer on the appropriate list before any timers that |
558 | * expire later. This must be called with the tasklist_lock held | 552 | * expire later. This must be called with the tasklist_lock held |
559 | * for reading, and interrupts disabled. | 553 | * for reading, interrupts disabled and p->sighand->siglock taken. |
560 | */ | 554 | */ |
561 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | 555 | static void arm_timer(struct k_itimer *timer) |
562 | { | 556 | { |
563 | struct task_struct *p = timer->it.cpu.task; | 557 | struct task_struct *p = timer->it.cpu.task; |
564 | struct list_head *head, *listpos; | 558 | struct list_head *head, *listpos; |
559 | struct task_cputime *cputime_expires; | ||
565 | struct cpu_timer_list *const nt = &timer->it.cpu; | 560 | struct cpu_timer_list *const nt = &timer->it.cpu; |
566 | struct cpu_timer_list *next; | 561 | struct cpu_timer_list *next; |
567 | unsigned long i; | ||
568 | 562 | ||
569 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | 563 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
570 | p->cpu_timers : p->signal->cpu_timers); | 564 | head = p->cpu_timers; |
565 | cputime_expires = &p->cputime_expires; | ||
566 | } else { | ||
567 | head = p->signal->cpu_timers; | ||
568 | cputime_expires = &p->signal->cputime_expires; | ||
569 | } | ||
571 | head += CPUCLOCK_WHICH(timer->it_clock); | 570 | head += CPUCLOCK_WHICH(timer->it_clock); |
572 | 571 | ||
573 | BUG_ON(!irqs_disabled()); | ||
574 | spin_lock(&p->sighand->siglock); | ||
575 | |||
576 | listpos = head; | 572 | listpos = head; |
577 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 573 | list_for_each_entry(next, head, entry) { |
578 | list_for_each_entry(next, head, entry) { | 574 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) |
579 | if (next->expires.sched > nt->expires.sched) | 575 | break; |
580 | break; | 576 | listpos = &next->entry; |
581 | listpos = &next->entry; | ||
582 | } | ||
583 | } else { | ||
584 | list_for_each_entry(next, head, entry) { | ||
585 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) | ||
586 | break; | ||
587 | listpos = &next->entry; | ||
588 | } | ||
589 | } | 577 | } |
590 | list_add(&nt->entry, listpos); | 578 | list_add(&nt->entry, listpos); |
591 | 579 | ||
592 | if (listpos == head) { | 580 | if (listpos == head) { |
581 | union cpu_time_count *exp = &nt->expires; | ||
582 | |||
593 | /* | 583 | /* |
594 | * We are the new earliest-expiring timer. | 584 | * We are the new earliest-expiring POSIX 1.b timer, hence |
595 | * If we are a thread timer, there can always | 585 | * need to update expiration cache. Take into account that |
596 | * be a process timer telling us to stop earlier. | 586 | * for process timers we share expiration cache with itimers |
587 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | ||
597 | */ | 588 | */ |
598 | 589 | ||
599 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 590 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
600 | union cpu_time_count *exp = &nt->expires; | 591 | case CPUCLOCK_PROF: |
601 | 592 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | |
602 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 593 | cputime_expires->prof_exp = exp->cpu; |
603 | default: | 594 | break; |
604 | BUG(); | 595 | case CPUCLOCK_VIRT: |
605 | case CPUCLOCK_PROF: | 596 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) |
606 | if (expires_gt(p->cputime_expires.prof_exp, | 597 | cputime_expires->virt_exp = exp->cpu; |
607 | exp->cpu)) | 598 | break; |
608 | p->cputime_expires.prof_exp = exp->cpu; | 599 | case CPUCLOCK_SCHED: |
609 | break; | 600 | if (cputime_expires->sched_exp == 0 || |
610 | case CPUCLOCK_VIRT: | 601 | cputime_expires->sched_exp > exp->sched) |
611 | if (expires_gt(p->cputime_expires.virt_exp, | 602 | cputime_expires->sched_exp = exp->sched; |
612 | exp->cpu)) | 603 | break; |
613 | p->cputime_expires.virt_exp = exp->cpu; | ||
614 | break; | ||
615 | case CPUCLOCK_SCHED: | ||
616 | if (p->cputime_expires.sched_exp == 0 || | ||
617 | p->cputime_expires.sched_exp > exp->sched) | ||
618 | p->cputime_expires.sched_exp = | ||
619 | exp->sched; | ||
620 | break; | ||
621 | } | ||
622 | } else { | ||
623 | struct signal_struct *const sig = p->signal; | ||
624 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
625 | |||
626 | /* | ||
627 | * For a process timer, set the cached expiration time. | ||
628 | */ | ||
629 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
630 | default: | ||
631 | BUG(); | ||
632 | case CPUCLOCK_VIRT: | ||
633 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, | ||
634 | exp->cpu)) | ||
635 | break; | ||
636 | sig->cputime_expires.virt_exp = exp->cpu; | ||
637 | break; | ||
638 | case CPUCLOCK_PROF: | ||
639 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, | ||
640 | exp->cpu)) | ||
641 | break; | ||
642 | i = sig->rlim[RLIMIT_CPU].rlim_cur; | ||
643 | if (i != RLIM_INFINITY && | ||
644 | i <= cputime_to_secs(exp->cpu)) | ||
645 | break; | ||
646 | sig->cputime_expires.prof_exp = exp->cpu; | ||
647 | break; | ||
648 | case CPUCLOCK_SCHED: | ||
649 | sig->cputime_expires.sched_exp = exp->sched; | ||
650 | break; | ||
651 | } | ||
652 | } | 604 | } |
653 | } | 605 | } |
654 | |||
655 | spin_unlock(&p->sighand->siglock); | ||
656 | } | 606 | } |
657 | 607 | ||
658 | /* | 608 | /* |
@@ -660,7 +610,12 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
660 | */ | 610 | */ |
661 | static void cpu_timer_fire(struct k_itimer *timer) | 611 | static void cpu_timer_fire(struct k_itimer *timer) |
662 | { | 612 | { |
663 | if (unlikely(timer->sigq == NULL)) { | 613 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
614 | /* | ||
615 | * User don't want any signal. | ||
616 | */ | ||
617 | timer->it.cpu.expires.sched = 0; | ||
618 | } else if (unlikely(timer->sigq == NULL)) { | ||
664 | /* | 619 | /* |
665 | * This a special case for clock_nanosleep, | 620 | * This a special case for clock_nanosleep, |
666 | * not a normal timer from sys_timer_create. | 621 | * not a normal timer from sys_timer_create. |
@@ -721,7 +676,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
721 | struct itimerspec *new, struct itimerspec *old) | 676 | struct itimerspec *new, struct itimerspec *old) |
722 | { | 677 | { |
723 | struct task_struct *p = timer->it.cpu.task; | 678 | struct task_struct *p = timer->it.cpu.task; |
724 | union cpu_time_count old_expires, new_expires, val; | 679 | union cpu_time_count old_expires, new_expires, old_incr, val; |
725 | int ret; | 680 | int ret; |
726 | 681 | ||
727 | if (unlikely(p == NULL)) { | 682 | if (unlikely(p == NULL)) { |
@@ -752,6 +707,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
752 | BUG_ON(!irqs_disabled()); | 707 | BUG_ON(!irqs_disabled()); |
753 | 708 | ||
754 | ret = 0; | 709 | ret = 0; |
710 | old_incr = timer->it.cpu.incr; | ||
755 | spin_lock(&p->sighand->siglock); | 711 | spin_lock(&p->sighand->siglock); |
756 | old_expires = timer->it.cpu.expires; | 712 | old_expires = timer->it.cpu.expires; |
757 | if (unlikely(timer->it.cpu.firing)) { | 713 | if (unlikely(timer->it.cpu.firing)) { |
@@ -759,7 +715,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
759 | ret = TIMER_RETRY; | 715 | ret = TIMER_RETRY; |
760 | } else | 716 | } else |
761 | list_del_init(&timer->it.cpu.entry); | 717 | list_del_init(&timer->it.cpu.entry); |
762 | spin_unlock(&p->sighand->siglock); | ||
763 | 718 | ||
764 | /* | 719 | /* |
765 | * We need to sample the current value to convert the new | 720 | * We need to sample the current value to convert the new |
@@ -813,6 +768,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
813 | * disable this firing since we are already reporting | 768 | * disable this firing since we are already reporting |
814 | * it as an overrun (thanks to bump_cpu_timer above). | 769 | * it as an overrun (thanks to bump_cpu_timer above). |
815 | */ | 770 | */ |
771 | spin_unlock(&p->sighand->siglock); | ||
816 | read_unlock(&tasklist_lock); | 772 | read_unlock(&tasklist_lock); |
817 | goto out; | 773 | goto out; |
818 | } | 774 | } |
@@ -828,11 +784,11 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
828 | */ | 784 | */ |
829 | timer->it.cpu.expires = new_expires; | 785 | timer->it.cpu.expires = new_expires; |
830 | if (new_expires.sched != 0 && | 786 | if (new_expires.sched != 0 && |
831 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
832 | cpu_time_before(timer->it_clock, val, new_expires)) { | 787 | cpu_time_before(timer->it_clock, val, new_expires)) { |
833 | arm_timer(timer, val); | 788 | arm_timer(timer); |
834 | } | 789 | } |
835 | 790 | ||
791 | spin_unlock(&p->sighand->siglock); | ||
836 | read_unlock(&tasklist_lock); | 792 | read_unlock(&tasklist_lock); |
837 | 793 | ||
838 | /* | 794 | /* |
@@ -853,7 +809,6 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
853 | timer->it_overrun = -1; | 809 | timer->it_overrun = -1; |
854 | 810 | ||
855 | if (new_expires.sched != 0 && | 811 | if (new_expires.sched != 0 && |
856 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | ||
857 | !cpu_time_before(timer->it_clock, val, new_expires)) { | 812 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
858 | /* | 813 | /* |
859 | * The designated time already passed, so we notify | 814 | * The designated time already passed, so we notify |
@@ -867,7 +822,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |||
867 | out: | 822 | out: |
868 | if (old) { | 823 | if (old) { |
869 | sample_to_timespec(timer->it_clock, | 824 | sample_to_timespec(timer->it_clock, |
870 | timer->it.cpu.incr, &old->it_interval); | 825 | old_incr, &old->it_interval); |
871 | } | 826 | } |
872 | return ret; | 827 | return ret; |
873 | } | 828 | } |
@@ -927,25 +882,6 @@ void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |||
927 | read_unlock(&tasklist_lock); | 882 | read_unlock(&tasklist_lock); |
928 | } | 883 | } |
929 | 884 | ||
930 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
931 | if (timer->it.cpu.incr.sched == 0 && | ||
932 | cpu_time_before(timer->it_clock, | ||
933 | timer->it.cpu.expires, now)) { | ||
934 | /* | ||
935 | * Do-nothing timer expired and has no reload, | ||
936 | * so it's as if it was never set. | ||
937 | */ | ||
938 | timer->it.cpu.expires.sched = 0; | ||
939 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
940 | return; | ||
941 | } | ||
942 | /* | ||
943 | * Account for any expirations and reloads that should | ||
944 | * have happened. | ||
945 | */ | ||
946 | bump_cpu_timer(timer, now); | ||
947 | } | ||
948 | |||
949 | if (unlikely(clear_dead)) { | 885 | if (unlikely(clear_dead)) { |
950 | /* | 886 | /* |
951 | * We've noticed that the thread is dead, but | 887 | * We've noticed that the thread is dead, but |
@@ -1066,16 +1002,9 @@ static void stop_process_timers(struct signal_struct *sig) | |||
1066 | struct thread_group_cputimer *cputimer = &sig->cputimer; | 1002 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
1067 | unsigned long flags; | 1003 | unsigned long flags; |
1068 | 1004 | ||
1069 | if (!cputimer->running) | ||
1070 | return; | ||
1071 | |||
1072 | spin_lock_irqsave(&cputimer->lock, flags); | 1005 | spin_lock_irqsave(&cputimer->lock, flags); |
1073 | cputimer->running = 0; | 1006 | cputimer->running = 0; |
1074 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1007 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1075 | |||
1076 | sig->cputime_expires.prof_exp = cputime_zero; | ||
1077 | sig->cputime_expires.virt_exp = cputime_zero; | ||
1078 | sig->cputime_expires.sched_exp = 0; | ||
1079 | } | 1008 | } |
1080 | 1009 | ||
1081 | static u32 onecputick; | 1010 | static u32 onecputick; |
@@ -1112,6 +1041,23 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | |||
1112 | } | 1041 | } |
1113 | } | 1042 | } |
1114 | 1043 | ||
1044 | /** | ||
1045 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | ||
1046 | * | ||
1047 | * @cputime: The struct to compare. | ||
1048 | * | ||
1049 | * Checks @cputime to see if all fields are zero. Returns true if all fields | ||
1050 | * are zero, false if any field is nonzero. | ||
1051 | */ | ||
1052 | static inline int task_cputime_zero(const struct task_cputime *cputime) | ||
1053 | { | ||
1054 | if (cputime_eq(cputime->utime, cputime_zero) && | ||
1055 | cputime_eq(cputime->stime, cputime_zero) && | ||
1056 | cputime->sum_exec_runtime == 0) | ||
1057 | return 1; | ||
1058 | return 0; | ||
1059 | } | ||
1060 | |||
1115 | /* | 1061 | /* |
1116 | * Check for any per-thread CPU timers that have fired and move them | 1062 | * Check for any per-thread CPU timers that have fired and move them |
1117 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1063 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1129,19 +1075,6 @@ static void check_process_timers(struct task_struct *tsk, | |||
1129 | unsigned long soft; | 1075 | unsigned long soft; |
1130 | 1076 | ||
1131 | /* | 1077 | /* |
1132 | * Don't sample the current process CPU clocks if there are no timers. | ||
1133 | */ | ||
1134 | if (list_empty(&timers[CPUCLOCK_PROF]) && | ||
1135 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && | ||
1136 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | ||
1137 | list_empty(&timers[CPUCLOCK_VIRT]) && | ||
1138 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && | ||
1139 | list_empty(&timers[CPUCLOCK_SCHED])) { | ||
1140 | stop_process_timers(sig); | ||
1141 | return; | ||
1142 | } | ||
1143 | |||
1144 | /* | ||
1145 | * Collect the current process totals. | 1078 | * Collect the current process totals. |
1146 | */ | 1079 | */ |
1147 | thread_group_cputimer(tsk, &cputime); | 1080 | thread_group_cputimer(tsk, &cputime); |
@@ -1230,18 +1163,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1230 | } | 1163 | } |
1231 | } | 1164 | } |
1232 | 1165 | ||
1233 | if (!cputime_eq(prof_expires, cputime_zero) && | 1166 | sig->cputime_expires.prof_exp = prof_expires; |
1234 | (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) || | 1167 | sig->cputime_expires.virt_exp = virt_expires; |
1235 | cputime_gt(sig->cputime_expires.prof_exp, prof_expires))) | 1168 | sig->cputime_expires.sched_exp = sched_expires; |
1236 | sig->cputime_expires.prof_exp = prof_expires; | 1169 | if (task_cputime_zero(&sig->cputime_expires)) |
1237 | if (!cputime_eq(virt_expires, cputime_zero) && | 1170 | stop_process_timers(sig); |
1238 | (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) || | ||
1239 | cputime_gt(sig->cputime_expires.virt_exp, virt_expires))) | ||
1240 | sig->cputime_expires.virt_exp = virt_expires; | ||
1241 | if (sched_expires != 0 && | ||
1242 | (sig->cputime_expires.sched_exp == 0 || | ||
1243 | sig->cputime_expires.sched_exp > sched_expires)) | ||
1244 | sig->cputime_expires.sched_exp = sched_expires; | ||
1245 | } | 1171 | } |
1246 | 1172 | ||
1247 | /* | 1173 | /* |
@@ -1270,6 +1196,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1270 | goto out; | 1196 | goto out; |
1271 | } | 1197 | } |
1272 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | 1198 | read_lock(&tasklist_lock); /* arm_timer needs it. */ |
1199 | spin_lock(&p->sighand->siglock); | ||
1273 | } else { | 1200 | } else { |
1274 | read_lock(&tasklist_lock); | 1201 | read_lock(&tasklist_lock); |
1275 | if (unlikely(p->signal == NULL)) { | 1202 | if (unlikely(p->signal == NULL)) { |
@@ -1290,6 +1217,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1290 | clear_dead_task(timer, now); | 1217 | clear_dead_task(timer, now); |
1291 | goto out_unlock; | 1218 | goto out_unlock; |
1292 | } | 1219 | } |
1220 | spin_lock(&p->sighand->siglock); | ||
1293 | cpu_timer_sample_group(timer->it_clock, p, &now); | 1221 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1294 | bump_cpu_timer(timer, now); | 1222 | bump_cpu_timer(timer, now); |
1295 | /* Leave the tasklist_lock locked for the call below. */ | 1223 | /* Leave the tasklist_lock locked for the call below. */ |
@@ -1298,7 +1226,9 @@ void posix_cpu_timer_schedule(struct k_itimer *timer) | |||
1298 | /* | 1226 | /* |
1299 | * Now re-arm for the new expiry time. | 1227 | * Now re-arm for the new expiry time. |
1300 | */ | 1228 | */ |
1301 | arm_timer(timer, now); | 1229 | BUG_ON(!irqs_disabled()); |
1230 | arm_timer(timer); | ||
1231 | spin_unlock(&p->sighand->siglock); | ||
1302 | 1232 | ||
1303 | out_unlock: | 1233 | out_unlock: |
1304 | read_unlock(&tasklist_lock); | 1234 | read_unlock(&tasklist_lock); |
@@ -1310,23 +1240,6 @@ out: | |||
1310 | } | 1240 | } |
1311 | 1241 | ||
1312 | /** | 1242 | /** |
1313 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | ||
1314 | * | ||
1315 | * @cputime: The struct to compare. | ||
1316 | * | ||
1317 | * Checks @cputime to see if all fields are zero. Returns true if all fields | ||
1318 | * are zero, false if any field is nonzero. | ||
1319 | */ | ||
1320 | static inline int task_cputime_zero(const struct task_cputime *cputime) | ||
1321 | { | ||
1322 | if (cputime_eq(cputime->utime, cputime_zero) && | ||
1323 | cputime_eq(cputime->stime, cputime_zero) && | ||
1324 | cputime->sum_exec_runtime == 0) | ||
1325 | return 1; | ||
1326 | return 0; | ||
1327 | } | ||
1328 | |||
1329 | /** | ||
1330 | * task_cputime_expired - Compare two task_cputime entities. | 1243 | * task_cputime_expired - Compare two task_cputime entities. |
1331 | * | 1244 | * |
1332 | * @sample: The task_cputime structure to be checked for expiration. | 1245 | * @sample: The task_cputime structure to be checked for expiration. |
@@ -1382,7 +1295,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
1382 | } | 1295 | } |
1383 | 1296 | ||
1384 | sig = tsk->signal; | 1297 | sig = tsk->signal; |
1385 | if (!task_cputime_zero(&sig->cputime_expires)) { | 1298 | if (sig->cputimer.running) { |
1386 | struct task_cputime group_sample; | 1299 | struct task_cputime group_sample; |
1387 | 1300 | ||
1388 | thread_group_cputimer(tsk, &group_sample); | 1301 | thread_group_cputimer(tsk, &group_sample); |
@@ -1390,7 +1303,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
1390 | return 1; | 1303 | return 1; |
1391 | } | 1304 | } |
1392 | 1305 | ||
1393 | return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY; | 1306 | return 0; |
1394 | } | 1307 | } |
1395 | 1308 | ||
1396 | /* | 1309 | /* |
@@ -1419,7 +1332,12 @@ void run_posix_cpu_timers(struct task_struct *tsk) | |||
1419 | * put them on the firing list. | 1332 | * put them on the firing list. |
1420 | */ | 1333 | */ |
1421 | check_thread_timers(tsk, &firing); | 1334 | check_thread_timers(tsk, &firing); |
1422 | check_process_timers(tsk, &firing); | 1335 | /* |
1336 | * If there are any active process wide timers (POSIX 1.b, itimers, | ||
1337 | * RLIMIT_CPU) cputimer must be running. | ||
1338 | */ | ||
1339 | if (tsk->signal->cputimer.running) | ||
1340 | check_process_timers(tsk, &firing); | ||
1423 | 1341 | ||
1424 | /* | 1342 | /* |
1425 | * We must release these locks before taking any timer's lock. | 1343 | * We must release these locks before taking any timer's lock. |
@@ -1456,21 +1374,23 @@ void run_posix_cpu_timers(struct task_struct *tsk) | |||
1456 | } | 1374 | } |
1457 | 1375 | ||
1458 | /* | 1376 | /* |
1459 | * Set one of the process-wide special case CPU timers. | 1377 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
1460 | * The tsk->sighand->siglock must be held by the caller. | 1378 | * The tsk->sighand->siglock must be held by the caller. |
1461 | * The *newval argument is relative and we update it to be absolute, *oldval | ||
1462 | * is absolute and we update it to be relative. | ||
1463 | */ | 1379 | */ |
1464 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 1380 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
1465 | cputime_t *newval, cputime_t *oldval) | 1381 | cputime_t *newval, cputime_t *oldval) |
1466 | { | 1382 | { |
1467 | union cpu_time_count now; | 1383 | union cpu_time_count now; |
1468 | struct list_head *head; | ||
1469 | 1384 | ||
1470 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 1385 | BUG_ON(clock_idx == CPUCLOCK_SCHED); |
1471 | cpu_timer_sample_group(clock_idx, tsk, &now); | 1386 | cpu_timer_sample_group(clock_idx, tsk, &now); |
1472 | 1387 | ||
1473 | if (oldval) { | 1388 | if (oldval) { |
1389 | /* | ||
1390 | * We are setting itimer. The *oldval is absolute and we update | ||
1391 | * it to be relative, *newval argument is relative and we update | ||
1392 | * it to be absolute. | ||
1393 | */ | ||
1474 | if (!cputime_eq(*oldval, cputime_zero)) { | 1394 | if (!cputime_eq(*oldval, cputime_zero)) { |
1475 | if (cputime_le(*oldval, now.cpu)) { | 1395 | if (cputime_le(*oldval, now.cpu)) { |
1476 | /* Just about to fire. */ | 1396 | /* Just about to fire. */ |
@@ -1483,33 +1403,21 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1483 | if (cputime_eq(*newval, cputime_zero)) | 1403 | if (cputime_eq(*newval, cputime_zero)) |
1484 | return; | 1404 | return; |
1485 | *newval = cputime_add(*newval, now.cpu); | 1405 | *newval = cputime_add(*newval, now.cpu); |
1486 | |||
1487 | /* | ||
1488 | * If the RLIMIT_CPU timer will expire before the | ||
1489 | * ITIMER_PROF timer, we have nothing else to do. | ||
1490 | */ | ||
1491 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | ||
1492 | < cputime_to_secs(*newval)) | ||
1493 | return; | ||
1494 | } | 1406 | } |
1495 | 1407 | ||
1496 | /* | 1408 | /* |
1497 | * Check whether there are any process timers already set to fire | 1409 | * Update expiration cache if we are the earliest timer, or eventually |
1498 | * before this one. If so, we don't have anything more to do. | 1410 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
1499 | */ | 1411 | */ |
1500 | head = &tsk->signal->cpu_timers[clock_idx]; | 1412 | switch (clock_idx) { |
1501 | if (list_empty(head) || | 1413 | case CPUCLOCK_PROF: |
1502 | cputime_ge(list_first_entry(head, | 1414 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
1503 | struct cpu_timer_list, entry)->expires.cpu, | ||
1504 | *newval)) { | ||
1505 | switch (clock_idx) { | ||
1506 | case CPUCLOCK_PROF: | ||
1507 | tsk->signal->cputime_expires.prof_exp = *newval; | 1415 | tsk->signal->cputime_expires.prof_exp = *newval; |
1508 | break; | 1416 | break; |
1509 | case CPUCLOCK_VIRT: | 1417 | case CPUCLOCK_VIRT: |
1418 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | ||
1510 | tsk->signal->cputime_expires.virt_exp = *newval; | 1419 | tsk->signal->cputime_expires.virt_exp = *newval; |
1511 | break; | 1420 | break; |
1512 | } | ||
1513 | } | 1421 | } |
1514 | } | 1422 | } |
1515 | 1423 | ||
diff --git a/kernel/power/Makefile b/kernel/power/Makefile index 43191815f874..524e058dcf06 100644 --- a/kernel/power/Makefile +++ b/kernel/power/Makefile | |||
@@ -8,7 +8,8 @@ obj-$(CONFIG_PM_SLEEP) += console.o | |||
8 | obj-$(CONFIG_FREEZER) += process.o | 8 | obj-$(CONFIG_FREEZER) += process.o |
9 | obj-$(CONFIG_SUSPEND) += suspend.o | 9 | obj-$(CONFIG_SUSPEND) += suspend.o |
10 | obj-$(CONFIG_PM_TEST_SUSPEND) += suspend_test.o | 10 | obj-$(CONFIG_PM_TEST_SUSPEND) += suspend_test.o |
11 | obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o | 11 | obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o \ |
12 | block_io.o | ||
12 | obj-$(CONFIG_HIBERNATION_NVS) += hibernate_nvs.o | 13 | obj-$(CONFIG_HIBERNATION_NVS) += hibernate_nvs.o |
13 | 14 | ||
14 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o | 15 | obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o |
diff --git a/kernel/power/block_io.c b/kernel/power/block_io.c new file mode 100644 index 000000000000..97024fd40cd5 --- /dev/null +++ b/kernel/power/block_io.c | |||
@@ -0,0 +1,103 @@ | |||
1 | /* | ||
2 | * This file provides functions for block I/O operations on swap/file. | ||
3 | * | ||
4 | * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> | ||
5 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | */ | ||
9 | |||
10 | #include <linux/bio.h> | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/pagemap.h> | ||
13 | #include <linux/swap.h> | ||
14 | |||
15 | #include "power.h" | ||
16 | |||
17 | /** | ||
18 | * submit - submit BIO request. | ||
19 | * @rw: READ or WRITE. | ||
20 | * @off physical offset of page. | ||
21 | * @page: page we're reading or writing. | ||
22 | * @bio_chain: list of pending biod (for async reading) | ||
23 | * | ||
24 | * Straight from the textbook - allocate and initialize the bio. | ||
25 | * If we're reading, make sure the page is marked as dirty. | ||
26 | * Then submit it and, if @bio_chain == NULL, wait. | ||
27 | */ | ||
28 | static int submit(int rw, struct block_device *bdev, sector_t sector, | ||
29 | struct page *page, struct bio **bio_chain) | ||
30 | { | ||
31 | const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | ||
32 | struct bio *bio; | ||
33 | |||
34 | bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); | ||
35 | bio->bi_sector = sector; | ||
36 | bio->bi_bdev = bdev; | ||
37 | bio->bi_end_io = end_swap_bio_read; | ||
38 | |||
39 | if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { | ||
40 | printk(KERN_ERR "PM: Adding page to bio failed at %llu\n", | ||
41 | (unsigned long long)sector); | ||
42 | bio_put(bio); | ||
43 | return -EFAULT; | ||
44 | } | ||
45 | |||
46 | lock_page(page); | ||
47 | bio_get(bio); | ||
48 | |||
49 | if (bio_chain == NULL) { | ||
50 | submit_bio(bio_rw, bio); | ||
51 | wait_on_page_locked(page); | ||
52 | if (rw == READ) | ||
53 | bio_set_pages_dirty(bio); | ||
54 | bio_put(bio); | ||
55 | } else { | ||
56 | if (rw == READ) | ||
57 | get_page(page); /* These pages are freed later */ | ||
58 | bio->bi_private = *bio_chain; | ||
59 | *bio_chain = bio; | ||
60 | submit_bio(bio_rw, bio); | ||
61 | } | ||
62 | return 0; | ||
63 | } | ||
64 | |||
65 | int hib_bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
66 | { | ||
67 | return submit(READ, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), | ||
68 | virt_to_page(addr), bio_chain); | ||
69 | } | ||
70 | |||
71 | int hib_bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
72 | { | ||
73 | return submit(WRITE, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), | ||
74 | virt_to_page(addr), bio_chain); | ||
75 | } | ||
76 | |||
77 | int hib_wait_on_bio_chain(struct bio **bio_chain) | ||
78 | { | ||
79 | struct bio *bio; | ||
80 | struct bio *next_bio; | ||
81 | int ret = 0; | ||
82 | |||
83 | if (bio_chain == NULL) | ||
84 | return 0; | ||
85 | |||
86 | bio = *bio_chain; | ||
87 | if (bio == NULL) | ||
88 | return 0; | ||
89 | while (bio) { | ||
90 | struct page *page; | ||
91 | |||
92 | next_bio = bio->bi_private; | ||
93 | page = bio->bi_io_vec[0].bv_page; | ||
94 | wait_on_page_locked(page); | ||
95 | if (!PageUptodate(page) || PageError(page)) | ||
96 | ret = -EIO; | ||
97 | put_page(page); | ||
98 | bio_put(bio); | ||
99 | bio = next_bio; | ||
100 | } | ||
101 | *bio_chain = NULL; | ||
102 | return ret; | ||
103 | } | ||
diff --git a/kernel/power/power.h b/kernel/power/power.h index 46c5a26630a3..006270fe382d 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
@@ -97,24 +97,12 @@ extern int hibernate_preallocate_memory(void); | |||
97 | */ | 97 | */ |
98 | 98 | ||
99 | struct snapshot_handle { | 99 | struct snapshot_handle { |
100 | loff_t offset; /* number of the last byte ready for reading | ||
101 | * or writing in the sequence | ||
102 | */ | ||
103 | unsigned int cur; /* number of the block of PAGE_SIZE bytes the | 100 | unsigned int cur; /* number of the block of PAGE_SIZE bytes the |
104 | * next operation will refer to (ie. current) | 101 | * next operation will refer to (ie. current) |
105 | */ | 102 | */ |
106 | unsigned int cur_offset; /* offset with respect to the current | ||
107 | * block (for the next operation) | ||
108 | */ | ||
109 | unsigned int prev; /* number of the block of PAGE_SIZE bytes that | ||
110 | * was the current one previously | ||
111 | */ | ||
112 | void *buffer; /* address of the block to read from | 103 | void *buffer; /* address of the block to read from |
113 | * or write to | 104 | * or write to |
114 | */ | 105 | */ |
115 | unsigned int buf_offset; /* location to read from or write to, | ||
116 | * given as a displacement from 'buffer' | ||
117 | */ | ||
118 | int sync_read; /* Set to one to notify the caller of | 106 | int sync_read; /* Set to one to notify the caller of |
119 | * snapshot_write_next() that it may | 107 | * snapshot_write_next() that it may |
120 | * need to call wait_on_bio_chain() | 108 | * need to call wait_on_bio_chain() |
@@ -125,12 +113,12 @@ struct snapshot_handle { | |||
125 | * snapshot_read_next()/snapshot_write_next() is allowed to | 113 | * snapshot_read_next()/snapshot_write_next() is allowed to |
126 | * read/write data after the function returns | 114 | * read/write data after the function returns |
127 | */ | 115 | */ |
128 | #define data_of(handle) ((handle).buffer + (handle).buf_offset) | 116 | #define data_of(handle) ((handle).buffer) |
129 | 117 | ||
130 | extern unsigned int snapshot_additional_pages(struct zone *zone); | 118 | extern unsigned int snapshot_additional_pages(struct zone *zone); |
131 | extern unsigned long snapshot_get_image_size(void); | 119 | extern unsigned long snapshot_get_image_size(void); |
132 | extern int snapshot_read_next(struct snapshot_handle *handle, size_t count); | 120 | extern int snapshot_read_next(struct snapshot_handle *handle); |
133 | extern int snapshot_write_next(struct snapshot_handle *handle, size_t count); | 121 | extern int snapshot_write_next(struct snapshot_handle *handle); |
134 | extern void snapshot_write_finalize(struct snapshot_handle *handle); | 122 | extern void snapshot_write_finalize(struct snapshot_handle *handle); |
135 | extern int snapshot_image_loaded(struct snapshot_handle *handle); | 123 | extern int snapshot_image_loaded(struct snapshot_handle *handle); |
136 | 124 | ||
@@ -154,6 +142,15 @@ extern int swsusp_read(unsigned int *flags_p); | |||
154 | extern int swsusp_write(unsigned int flags); | 142 | extern int swsusp_write(unsigned int flags); |
155 | extern void swsusp_close(fmode_t); | 143 | extern void swsusp_close(fmode_t); |
156 | 144 | ||
145 | /* kernel/power/block_io.c */ | ||
146 | extern struct block_device *hib_resume_bdev; | ||
147 | |||
148 | extern int hib_bio_read_page(pgoff_t page_off, void *addr, | ||
149 | struct bio **bio_chain); | ||
150 | extern int hib_bio_write_page(pgoff_t page_off, void *addr, | ||
151 | struct bio **bio_chain); | ||
152 | extern int hib_wait_on_bio_chain(struct bio **bio_chain); | ||
153 | |||
157 | struct timeval; | 154 | struct timeval; |
158 | /* kernel/power/swsusp.c */ | 155 | /* kernel/power/swsusp.c */ |
159 | extern void swsusp_show_speed(struct timeval *, struct timeval *, | 156 | extern void swsusp_show_speed(struct timeval *, struct timeval *, |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index be861c26dda7..25ce010e9f8b 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -1604,14 +1604,9 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) | |||
1604 | * snapshot_handle structure. The structure gets updated and a pointer | 1604 | * snapshot_handle structure. The structure gets updated and a pointer |
1605 | * to it should be passed to this function every next time. | 1605 | * to it should be passed to this function every next time. |
1606 | * | 1606 | * |
1607 | * The @count parameter should contain the number of bytes the caller | ||
1608 | * wants to read from the snapshot. It must not be zero. | ||
1609 | * | ||
1610 | * On success the function returns a positive number. Then, the caller | 1607 | * On success the function returns a positive number. Then, the caller |
1611 | * is allowed to read up to the returned number of bytes from the memory | 1608 | * is allowed to read up to the returned number of bytes from the memory |
1612 | * location computed by the data_of() macro. The number returned | 1609 | * location computed by the data_of() macro. |
1613 | * may be smaller than @count, but this only happens if the read would | ||
1614 | * cross a page boundary otherwise. | ||
1615 | * | 1610 | * |
1616 | * The function returns 0 to indicate the end of data stream condition, | 1611 | * The function returns 0 to indicate the end of data stream condition, |
1617 | * and a negative number is returned on error. In such cases the | 1612 | * and a negative number is returned on error. In such cases the |
@@ -1619,7 +1614,7 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) | |||
1619 | * any more. | 1614 | * any more. |
1620 | */ | 1615 | */ |
1621 | 1616 | ||
1622 | int snapshot_read_next(struct snapshot_handle *handle, size_t count) | 1617 | int snapshot_read_next(struct snapshot_handle *handle) |
1623 | { | 1618 | { |
1624 | if (handle->cur > nr_meta_pages + nr_copy_pages) | 1619 | if (handle->cur > nr_meta_pages + nr_copy_pages) |
1625 | return 0; | 1620 | return 0; |
@@ -1630,7 +1625,7 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) | |||
1630 | if (!buffer) | 1625 | if (!buffer) |
1631 | return -ENOMEM; | 1626 | return -ENOMEM; |
1632 | } | 1627 | } |
1633 | if (!handle->offset) { | 1628 | if (!handle->cur) { |
1634 | int error; | 1629 | int error; |
1635 | 1630 | ||
1636 | error = init_header((struct swsusp_info *)buffer); | 1631 | error = init_header((struct swsusp_info *)buffer); |
@@ -1639,42 +1634,30 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) | |||
1639 | handle->buffer = buffer; | 1634 | handle->buffer = buffer; |
1640 | memory_bm_position_reset(&orig_bm); | 1635 | memory_bm_position_reset(&orig_bm); |
1641 | memory_bm_position_reset(©_bm); | 1636 | memory_bm_position_reset(©_bm); |
1642 | } | 1637 | } else if (handle->cur <= nr_meta_pages) { |
1643 | if (handle->prev < handle->cur) { | 1638 | memset(buffer, 0, PAGE_SIZE); |
1644 | if (handle->cur <= nr_meta_pages) { | 1639 | pack_pfns(buffer, &orig_bm); |
1645 | memset(buffer, 0, PAGE_SIZE); | 1640 | } else { |
1646 | pack_pfns(buffer, &orig_bm); | 1641 | struct page *page; |
1647 | } else { | ||
1648 | struct page *page; | ||
1649 | 1642 | ||
1650 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); | 1643 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); |
1651 | if (PageHighMem(page)) { | 1644 | if (PageHighMem(page)) { |
1652 | /* Highmem pages are copied to the buffer, | 1645 | /* Highmem pages are copied to the buffer, |
1653 | * because we can't return with a kmapped | 1646 | * because we can't return with a kmapped |
1654 | * highmem page (we may not be called again). | 1647 | * highmem page (we may not be called again). |
1655 | */ | 1648 | */ |
1656 | void *kaddr; | 1649 | void *kaddr; |
1657 | 1650 | ||
1658 | kaddr = kmap_atomic(page, KM_USER0); | 1651 | kaddr = kmap_atomic(page, KM_USER0); |
1659 | memcpy(buffer, kaddr, PAGE_SIZE); | 1652 | memcpy(buffer, kaddr, PAGE_SIZE); |
1660 | kunmap_atomic(kaddr, KM_USER0); | 1653 | kunmap_atomic(kaddr, KM_USER0); |
1661 | handle->buffer = buffer; | 1654 | handle->buffer = buffer; |
1662 | } else { | 1655 | } else { |
1663 | handle->buffer = page_address(page); | 1656 | handle->buffer = page_address(page); |
1664 | } | ||
1665 | } | 1657 | } |
1666 | handle->prev = handle->cur; | ||
1667 | } | ||
1668 | handle->buf_offset = handle->cur_offset; | ||
1669 | if (handle->cur_offset + count >= PAGE_SIZE) { | ||
1670 | count = PAGE_SIZE - handle->cur_offset; | ||
1671 | handle->cur_offset = 0; | ||
1672 | handle->cur++; | ||
1673 | } else { | ||
1674 | handle->cur_offset += count; | ||
1675 | } | 1658 | } |
1676 | handle->offset += count; | 1659 | handle->cur++; |
1677 | return count; | 1660 | return PAGE_SIZE; |
1678 | } | 1661 | } |
1679 | 1662 | ||
1680 | /** | 1663 | /** |
@@ -2133,14 +2116,9 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) | |||
2133 | * snapshot_handle structure. The structure gets updated and a pointer | 2116 | * snapshot_handle structure. The structure gets updated and a pointer |
2134 | * to it should be passed to this function every next time. | 2117 | * to it should be passed to this function every next time. |
2135 | * | 2118 | * |
2136 | * The @count parameter should contain the number of bytes the caller | ||
2137 | * wants to write to the image. It must not be zero. | ||
2138 | * | ||
2139 | * On success the function returns a positive number. Then, the caller | 2119 | * On success the function returns a positive number. Then, the caller |
2140 | * is allowed to write up to the returned number of bytes to the memory | 2120 | * is allowed to write up to the returned number of bytes to the memory |
2141 | * location computed by the data_of() macro. The number returned | 2121 | * location computed by the data_of() macro. |
2142 | * may be smaller than @count, but this only happens if the write would | ||
2143 | * cross a page boundary otherwise. | ||
2144 | * | 2122 | * |
2145 | * The function returns 0 to indicate the "end of file" condition, | 2123 | * The function returns 0 to indicate the "end of file" condition, |
2146 | * and a negative number is returned on error. In such cases the | 2124 | * and a negative number is returned on error. In such cases the |
@@ -2148,16 +2126,18 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) | |||
2148 | * any more. | 2126 | * any more. |
2149 | */ | 2127 | */ |
2150 | 2128 | ||
2151 | int snapshot_write_next(struct snapshot_handle *handle, size_t count) | 2129 | int snapshot_write_next(struct snapshot_handle *handle) |
2152 | { | 2130 | { |
2153 | static struct chain_allocator ca; | 2131 | static struct chain_allocator ca; |
2154 | int error = 0; | 2132 | int error = 0; |
2155 | 2133 | ||
2156 | /* Check if we have already loaded the entire image */ | 2134 | /* Check if we have already loaded the entire image */ |
2157 | if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) | 2135 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) |
2158 | return 0; | 2136 | return 0; |
2159 | 2137 | ||
2160 | if (handle->offset == 0) { | 2138 | handle->sync_read = 1; |
2139 | |||
2140 | if (!handle->cur) { | ||
2161 | if (!buffer) | 2141 | if (!buffer) |
2162 | /* This makes the buffer be freed by swsusp_free() */ | 2142 | /* This makes the buffer be freed by swsusp_free() */ |
2163 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); | 2143 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
@@ -2166,56 +2146,43 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count) | |||
2166 | return -ENOMEM; | 2146 | return -ENOMEM; |
2167 | 2147 | ||
2168 | handle->buffer = buffer; | 2148 | handle->buffer = buffer; |
2169 | } | 2149 | } else if (handle->cur == 1) { |
2170 | handle->sync_read = 1; | 2150 | error = load_header(buffer); |
2171 | if (handle->prev < handle->cur) { | 2151 | if (error) |
2172 | if (handle->prev == 0) { | 2152 | return error; |
2173 | error = load_header(buffer); | ||
2174 | if (error) | ||
2175 | return error; | ||
2176 | 2153 | ||
2177 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); | 2154 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); |
2178 | if (error) | 2155 | if (error) |
2179 | return error; | 2156 | return error; |
2157 | |||
2158 | } else if (handle->cur <= nr_meta_pages + 1) { | ||
2159 | error = unpack_orig_pfns(buffer, ©_bm); | ||
2160 | if (error) | ||
2161 | return error; | ||
2180 | 2162 | ||
2181 | } else if (handle->prev <= nr_meta_pages) { | 2163 | if (handle->cur == nr_meta_pages + 1) { |
2182 | error = unpack_orig_pfns(buffer, ©_bm); | 2164 | error = prepare_image(&orig_bm, ©_bm); |
2183 | if (error) | 2165 | if (error) |
2184 | return error; | 2166 | return error; |
2185 | 2167 | ||
2186 | if (handle->prev == nr_meta_pages) { | 2168 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); |
2187 | error = prepare_image(&orig_bm, ©_bm); | 2169 | memory_bm_position_reset(&orig_bm); |
2188 | if (error) | 2170 | restore_pblist = NULL; |
2189 | return error; | ||
2190 | |||
2191 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); | ||
2192 | memory_bm_position_reset(&orig_bm); | ||
2193 | restore_pblist = NULL; | ||
2194 | handle->buffer = get_buffer(&orig_bm, &ca); | ||
2195 | handle->sync_read = 0; | ||
2196 | if (IS_ERR(handle->buffer)) | ||
2197 | return PTR_ERR(handle->buffer); | ||
2198 | } | ||
2199 | } else { | ||
2200 | copy_last_highmem_page(); | ||
2201 | handle->buffer = get_buffer(&orig_bm, &ca); | 2171 | handle->buffer = get_buffer(&orig_bm, &ca); |
2172 | handle->sync_read = 0; | ||
2202 | if (IS_ERR(handle->buffer)) | 2173 | if (IS_ERR(handle->buffer)) |
2203 | return PTR_ERR(handle->buffer); | 2174 | return PTR_ERR(handle->buffer); |
2204 | if (handle->buffer != buffer) | ||
2205 | handle->sync_read = 0; | ||
2206 | } | 2175 | } |
2207 | handle->prev = handle->cur; | ||
2208 | } | ||
2209 | handle->buf_offset = handle->cur_offset; | ||
2210 | if (handle->cur_offset + count >= PAGE_SIZE) { | ||
2211 | count = PAGE_SIZE - handle->cur_offset; | ||
2212 | handle->cur_offset = 0; | ||
2213 | handle->cur++; | ||
2214 | } else { | 2176 | } else { |
2215 | handle->cur_offset += count; | 2177 | copy_last_highmem_page(); |
2178 | handle->buffer = get_buffer(&orig_bm, &ca); | ||
2179 | if (IS_ERR(handle->buffer)) | ||
2180 | return PTR_ERR(handle->buffer); | ||
2181 | if (handle->buffer != buffer) | ||
2182 | handle->sync_read = 0; | ||
2216 | } | 2183 | } |
2217 | handle->offset += count; | 2184 | handle->cur++; |
2218 | return count; | 2185 | return PAGE_SIZE; |
2219 | } | 2186 | } |
2220 | 2187 | ||
2221 | /** | 2188 | /** |
@@ -2230,7 +2197,7 @@ void snapshot_write_finalize(struct snapshot_handle *handle) | |||
2230 | { | 2197 | { |
2231 | copy_last_highmem_page(); | 2198 | copy_last_highmem_page(); |
2232 | /* Free only if we have loaded the image entirely */ | 2199 | /* Free only if we have loaded the image entirely */ |
2233 | if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { | 2200 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { |
2234 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); | 2201 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); |
2235 | free_highmem_data(); | 2202 | free_highmem_data(); |
2236 | } | 2203 | } |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 66824d71983a..b0bb21778391 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
@@ -29,6 +29,40 @@ | |||
29 | 29 | ||
30 | #define SWSUSP_SIG "S1SUSPEND" | 30 | #define SWSUSP_SIG "S1SUSPEND" |
31 | 31 | ||
32 | /* | ||
33 | * The swap map is a data structure used for keeping track of each page | ||
34 | * written to a swap partition. It consists of many swap_map_page | ||
35 | * structures that contain each an array of MAP_PAGE_SIZE swap entries. | ||
36 | * These structures are stored on the swap and linked together with the | ||
37 | * help of the .next_swap member. | ||
38 | * | ||
39 | * The swap map is created during suspend. The swap map pages are | ||
40 | * allocated and populated one at a time, so we only need one memory | ||
41 | * page to set up the entire structure. | ||
42 | * | ||
43 | * During resume we also only need to use one swap_map_page structure | ||
44 | * at a time. | ||
45 | */ | ||
46 | |||
47 | #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) | ||
48 | |||
49 | struct swap_map_page { | ||
50 | sector_t entries[MAP_PAGE_ENTRIES]; | ||
51 | sector_t next_swap; | ||
52 | }; | ||
53 | |||
54 | /** | ||
55 | * The swap_map_handle structure is used for handling swap in | ||
56 | * a file-alike way | ||
57 | */ | ||
58 | |||
59 | struct swap_map_handle { | ||
60 | struct swap_map_page *cur; | ||
61 | sector_t cur_swap; | ||
62 | sector_t first_sector; | ||
63 | unsigned int k; | ||
64 | }; | ||
65 | |||
32 | struct swsusp_header { | 66 | struct swsusp_header { |
33 | char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)]; | 67 | char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)]; |
34 | sector_t image; | 68 | sector_t image; |
@@ -145,110 +179,24 @@ int swsusp_swap_in_use(void) | |||
145 | */ | 179 | */ |
146 | 180 | ||
147 | static unsigned short root_swap = 0xffff; | 181 | static unsigned short root_swap = 0xffff; |
148 | static struct block_device *resume_bdev; | 182 | struct block_device *hib_resume_bdev; |
149 | |||
150 | /** | ||
151 | * submit - submit BIO request. | ||
152 | * @rw: READ or WRITE. | ||
153 | * @off physical offset of page. | ||
154 | * @page: page we're reading or writing. | ||
155 | * @bio_chain: list of pending biod (for async reading) | ||
156 | * | ||
157 | * Straight from the textbook - allocate and initialize the bio. | ||
158 | * If we're reading, make sure the page is marked as dirty. | ||
159 | * Then submit it and, if @bio_chain == NULL, wait. | ||
160 | */ | ||
161 | static int submit(int rw, pgoff_t page_off, struct page *page, | ||
162 | struct bio **bio_chain) | ||
163 | { | ||
164 | const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | ||
165 | struct bio *bio; | ||
166 | |||
167 | bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); | ||
168 | bio->bi_sector = page_off * (PAGE_SIZE >> 9); | ||
169 | bio->bi_bdev = resume_bdev; | ||
170 | bio->bi_end_io = end_swap_bio_read; | ||
171 | |||
172 | if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { | ||
173 | printk(KERN_ERR "PM: Adding page to bio failed at %ld\n", | ||
174 | page_off); | ||
175 | bio_put(bio); | ||
176 | return -EFAULT; | ||
177 | } | ||
178 | |||
179 | lock_page(page); | ||
180 | bio_get(bio); | ||
181 | |||
182 | if (bio_chain == NULL) { | ||
183 | submit_bio(bio_rw, bio); | ||
184 | wait_on_page_locked(page); | ||
185 | if (rw == READ) | ||
186 | bio_set_pages_dirty(bio); | ||
187 | bio_put(bio); | ||
188 | } else { | ||
189 | if (rw == READ) | ||
190 | get_page(page); /* These pages are freed later */ | ||
191 | bio->bi_private = *bio_chain; | ||
192 | *bio_chain = bio; | ||
193 | submit_bio(bio_rw, bio); | ||
194 | } | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | static int bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
199 | { | ||
200 | return submit(READ, page_off, virt_to_page(addr), bio_chain); | ||
201 | } | ||
202 | |||
203 | static int bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) | ||
204 | { | ||
205 | return submit(WRITE, page_off, virt_to_page(addr), bio_chain); | ||
206 | } | ||
207 | |||
208 | static int wait_on_bio_chain(struct bio **bio_chain) | ||
209 | { | ||
210 | struct bio *bio; | ||
211 | struct bio *next_bio; | ||
212 | int ret = 0; | ||
213 | |||
214 | if (bio_chain == NULL) | ||
215 | return 0; | ||
216 | |||
217 | bio = *bio_chain; | ||
218 | if (bio == NULL) | ||
219 | return 0; | ||
220 | while (bio) { | ||
221 | struct page *page; | ||
222 | |||
223 | next_bio = bio->bi_private; | ||
224 | page = bio->bi_io_vec[0].bv_page; | ||
225 | wait_on_page_locked(page); | ||
226 | if (!PageUptodate(page) || PageError(page)) | ||
227 | ret = -EIO; | ||
228 | put_page(page); | ||
229 | bio_put(bio); | ||
230 | bio = next_bio; | ||
231 | } | ||
232 | *bio_chain = NULL; | ||
233 | return ret; | ||
234 | } | ||
235 | 183 | ||
236 | /* | 184 | /* |
237 | * Saving part | 185 | * Saving part |
238 | */ | 186 | */ |
239 | 187 | ||
240 | static int mark_swapfiles(sector_t start, unsigned int flags) | 188 | static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) |
241 | { | 189 | { |
242 | int error; | 190 | int error; |
243 | 191 | ||
244 | bio_read_page(swsusp_resume_block, swsusp_header, NULL); | 192 | hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL); |
245 | if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || | 193 | if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || |
246 | !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { | 194 | !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { |
247 | memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); | 195 | memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); |
248 | memcpy(swsusp_header->sig,SWSUSP_SIG, 10); | 196 | memcpy(swsusp_header->sig,SWSUSP_SIG, 10); |
249 | swsusp_header->image = start; | 197 | swsusp_header->image = handle->first_sector; |
250 | swsusp_header->flags = flags; | 198 | swsusp_header->flags = flags; |
251 | error = bio_write_page(swsusp_resume_block, | 199 | error = hib_bio_write_page(swsusp_resume_block, |
252 | swsusp_header, NULL); | 200 | swsusp_header, NULL); |
253 | } else { | 201 | } else { |
254 | printk(KERN_ERR "PM: Swap header not found!\n"); | 202 | printk(KERN_ERR "PM: Swap header not found!\n"); |
@@ -260,25 +208,26 @@ static int mark_swapfiles(sector_t start, unsigned int flags) | |||
260 | /** | 208 | /** |
261 | * swsusp_swap_check - check if the resume device is a swap device | 209 | * swsusp_swap_check - check if the resume device is a swap device |
262 | * and get its index (if so) | 210 | * and get its index (if so) |
211 | * | ||
212 | * This is called before saving image | ||
263 | */ | 213 | */ |
264 | 214 | static int swsusp_swap_check(void) | |
265 | static int swsusp_swap_check(void) /* This is called before saving image */ | ||
266 | { | 215 | { |
267 | int res; | 216 | int res; |
268 | 217 | ||
269 | res = swap_type_of(swsusp_resume_device, swsusp_resume_block, | 218 | res = swap_type_of(swsusp_resume_device, swsusp_resume_block, |
270 | &resume_bdev); | 219 | &hib_resume_bdev); |
271 | if (res < 0) | 220 | if (res < 0) |
272 | return res; | 221 | return res; |
273 | 222 | ||
274 | root_swap = res; | 223 | root_swap = res; |
275 | res = blkdev_get(resume_bdev, FMODE_WRITE); | 224 | res = blkdev_get(hib_resume_bdev, FMODE_WRITE); |
276 | if (res) | 225 | if (res) |
277 | return res; | 226 | return res; |
278 | 227 | ||
279 | res = set_blocksize(resume_bdev, PAGE_SIZE); | 228 | res = set_blocksize(hib_resume_bdev, PAGE_SIZE); |
280 | if (res < 0) | 229 | if (res < 0) |
281 | blkdev_put(resume_bdev, FMODE_WRITE); | 230 | blkdev_put(hib_resume_bdev, FMODE_WRITE); |
282 | 231 | ||
283 | return res; | 232 | return res; |
284 | } | 233 | } |
@@ -309,42 +258,9 @@ static int write_page(void *buf, sector_t offset, struct bio **bio_chain) | |||
309 | } else { | 258 | } else { |
310 | src = buf; | 259 | src = buf; |
311 | } | 260 | } |
312 | return bio_write_page(offset, src, bio_chain); | 261 | return hib_bio_write_page(offset, src, bio_chain); |
313 | } | 262 | } |
314 | 263 | ||
315 | /* | ||
316 | * The swap map is a data structure used for keeping track of each page | ||
317 | * written to a swap partition. It consists of many swap_map_page | ||
318 | * structures that contain each an array of MAP_PAGE_SIZE swap entries. | ||
319 | * These structures are stored on the swap and linked together with the | ||
320 | * help of the .next_swap member. | ||
321 | * | ||
322 | * The swap map is created during suspend. The swap map pages are | ||
323 | * allocated and populated one at a time, so we only need one memory | ||
324 | * page to set up the entire structure. | ||
325 | * | ||
326 | * During resume we also only need to use one swap_map_page structure | ||
327 | * at a time. | ||
328 | */ | ||
329 | |||
330 | #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) | ||
331 | |||
332 | struct swap_map_page { | ||
333 | sector_t entries[MAP_PAGE_ENTRIES]; | ||
334 | sector_t next_swap; | ||
335 | }; | ||
336 | |||
337 | /** | ||
338 | * The swap_map_handle structure is used for handling swap in | ||
339 | * a file-alike way | ||
340 | */ | ||
341 | |||
342 | struct swap_map_handle { | ||
343 | struct swap_map_page *cur; | ||
344 | sector_t cur_swap; | ||
345 | unsigned int k; | ||
346 | }; | ||
347 | |||
348 | static void release_swap_writer(struct swap_map_handle *handle) | 264 | static void release_swap_writer(struct swap_map_handle *handle) |
349 | { | 265 | { |
350 | if (handle->cur) | 266 | if (handle->cur) |
@@ -354,16 +270,33 @@ static void release_swap_writer(struct swap_map_handle *handle) | |||
354 | 270 | ||
355 | static int get_swap_writer(struct swap_map_handle *handle) | 271 | static int get_swap_writer(struct swap_map_handle *handle) |
356 | { | 272 | { |
273 | int ret; | ||
274 | |||
275 | ret = swsusp_swap_check(); | ||
276 | if (ret) { | ||
277 | if (ret != -ENOSPC) | ||
278 | printk(KERN_ERR "PM: Cannot find swap device, try " | ||
279 | "swapon -a.\n"); | ||
280 | return ret; | ||
281 | } | ||
357 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); | 282 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); |
358 | if (!handle->cur) | 283 | if (!handle->cur) { |
359 | return -ENOMEM; | 284 | ret = -ENOMEM; |
285 | goto err_close; | ||
286 | } | ||
360 | handle->cur_swap = alloc_swapdev_block(root_swap); | 287 | handle->cur_swap = alloc_swapdev_block(root_swap); |
361 | if (!handle->cur_swap) { | 288 | if (!handle->cur_swap) { |
362 | release_swap_writer(handle); | 289 | ret = -ENOSPC; |
363 | return -ENOSPC; | 290 | goto err_rel; |
364 | } | 291 | } |
365 | handle->k = 0; | 292 | handle->k = 0; |
293 | handle->first_sector = handle->cur_swap; | ||
366 | return 0; | 294 | return 0; |
295 | err_rel: | ||
296 | release_swap_writer(handle); | ||
297 | err_close: | ||
298 | swsusp_close(FMODE_WRITE); | ||
299 | return ret; | ||
367 | } | 300 | } |
368 | 301 | ||
369 | static int swap_write_page(struct swap_map_handle *handle, void *buf, | 302 | static int swap_write_page(struct swap_map_handle *handle, void *buf, |
@@ -380,7 +313,7 @@ static int swap_write_page(struct swap_map_handle *handle, void *buf, | |||
380 | return error; | 313 | return error; |
381 | handle->cur->entries[handle->k++] = offset; | 314 | handle->cur->entries[handle->k++] = offset; |
382 | if (handle->k >= MAP_PAGE_ENTRIES) { | 315 | if (handle->k >= MAP_PAGE_ENTRIES) { |
383 | error = wait_on_bio_chain(bio_chain); | 316 | error = hib_wait_on_bio_chain(bio_chain); |
384 | if (error) | 317 | if (error) |
385 | goto out; | 318 | goto out; |
386 | offset = alloc_swapdev_block(root_swap); | 319 | offset = alloc_swapdev_block(root_swap); |
@@ -406,6 +339,24 @@ static int flush_swap_writer(struct swap_map_handle *handle) | |||
406 | return -EINVAL; | 339 | return -EINVAL; |
407 | } | 340 | } |
408 | 341 | ||
342 | static int swap_writer_finish(struct swap_map_handle *handle, | ||
343 | unsigned int flags, int error) | ||
344 | { | ||
345 | if (!error) { | ||
346 | flush_swap_writer(handle); | ||
347 | printk(KERN_INFO "PM: S"); | ||
348 | error = mark_swapfiles(handle, flags); | ||
349 | printk("|\n"); | ||
350 | } | ||
351 | |||
352 | if (error) | ||
353 | free_all_swap_pages(root_swap); | ||
354 | release_swap_writer(handle); | ||
355 | swsusp_close(FMODE_WRITE); | ||
356 | |||
357 | return error; | ||
358 | } | ||
359 | |||
409 | /** | 360 | /** |
410 | * save_image - save the suspend image data | 361 | * save_image - save the suspend image data |
411 | */ | 362 | */ |
@@ -431,7 +382,7 @@ static int save_image(struct swap_map_handle *handle, | |||
431 | bio = NULL; | 382 | bio = NULL; |
432 | do_gettimeofday(&start); | 383 | do_gettimeofday(&start); |
433 | while (1) { | 384 | while (1) { |
434 | ret = snapshot_read_next(snapshot, PAGE_SIZE); | 385 | ret = snapshot_read_next(snapshot); |
435 | if (ret <= 0) | 386 | if (ret <= 0) |
436 | break; | 387 | break; |
437 | ret = swap_write_page(handle, data_of(*snapshot), &bio); | 388 | ret = swap_write_page(handle, data_of(*snapshot), &bio); |
@@ -441,7 +392,7 @@ static int save_image(struct swap_map_handle *handle, | |||
441 | printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m); | 392 | printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m); |
442 | nr_pages++; | 393 | nr_pages++; |
443 | } | 394 | } |
444 | err2 = wait_on_bio_chain(&bio); | 395 | err2 = hib_wait_on_bio_chain(&bio); |
445 | do_gettimeofday(&stop); | 396 | do_gettimeofday(&stop); |
446 | if (!ret) | 397 | if (!ret) |
447 | ret = err2; | 398 | ret = err2; |
@@ -483,50 +434,34 @@ int swsusp_write(unsigned int flags) | |||
483 | struct swap_map_handle handle; | 434 | struct swap_map_handle handle; |
484 | struct snapshot_handle snapshot; | 435 | struct snapshot_handle snapshot; |
485 | struct swsusp_info *header; | 436 | struct swsusp_info *header; |
437 | unsigned long pages; | ||
486 | int error; | 438 | int error; |
487 | 439 | ||
488 | error = swsusp_swap_check(); | 440 | pages = snapshot_get_image_size(); |
441 | error = get_swap_writer(&handle); | ||
489 | if (error) { | 442 | if (error) { |
490 | printk(KERN_ERR "PM: Cannot find swap device, try " | 443 | printk(KERN_ERR "PM: Cannot get swap writer\n"); |
491 | "swapon -a.\n"); | ||
492 | return error; | 444 | return error; |
493 | } | 445 | } |
446 | if (!enough_swap(pages)) { | ||
447 | printk(KERN_ERR "PM: Not enough free swap\n"); | ||
448 | error = -ENOSPC; | ||
449 | goto out_finish; | ||
450 | } | ||
494 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | 451 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); |
495 | error = snapshot_read_next(&snapshot, PAGE_SIZE); | 452 | error = snapshot_read_next(&snapshot); |
496 | if (error < PAGE_SIZE) { | 453 | if (error < PAGE_SIZE) { |
497 | if (error >= 0) | 454 | if (error >= 0) |
498 | error = -EFAULT; | 455 | error = -EFAULT; |
499 | 456 | ||
500 | goto out; | 457 | goto out_finish; |
501 | } | 458 | } |
502 | header = (struct swsusp_info *)data_of(snapshot); | 459 | header = (struct swsusp_info *)data_of(snapshot); |
503 | if (!enough_swap(header->pages)) { | 460 | error = swap_write_page(&handle, header, NULL); |
504 | printk(KERN_ERR "PM: Not enough free swap\n"); | 461 | if (!error) |
505 | error = -ENOSPC; | 462 | error = save_image(&handle, &snapshot, pages - 1); |
506 | goto out; | 463 | out_finish: |
507 | } | 464 | error = swap_writer_finish(&handle, flags, error); |
508 | error = get_swap_writer(&handle); | ||
509 | if (!error) { | ||
510 | sector_t start = handle.cur_swap; | ||
511 | |||
512 | error = swap_write_page(&handle, header, NULL); | ||
513 | if (!error) | ||
514 | error = save_image(&handle, &snapshot, | ||
515 | header->pages - 1); | ||
516 | |||
517 | if (!error) { | ||
518 | flush_swap_writer(&handle); | ||
519 | printk(KERN_INFO "PM: S"); | ||
520 | error = mark_swapfiles(start, flags); | ||
521 | printk("|\n"); | ||
522 | } | ||
523 | } | ||
524 | if (error) | ||
525 | free_all_swap_pages(root_swap); | ||
526 | |||
527 | release_swap_writer(&handle); | ||
528 | out: | ||
529 | swsusp_close(FMODE_WRITE); | ||
530 | return error; | 465 | return error; |
531 | } | 466 | } |
532 | 467 | ||
@@ -542,18 +477,21 @@ static void release_swap_reader(struct swap_map_handle *handle) | |||
542 | handle->cur = NULL; | 477 | handle->cur = NULL; |
543 | } | 478 | } |
544 | 479 | ||
545 | static int get_swap_reader(struct swap_map_handle *handle, sector_t start) | 480 | static int get_swap_reader(struct swap_map_handle *handle, |
481 | unsigned int *flags_p) | ||
546 | { | 482 | { |
547 | int error; | 483 | int error; |
548 | 484 | ||
549 | if (!start) | 485 | *flags_p = swsusp_header->flags; |
486 | |||
487 | if (!swsusp_header->image) /* how can this happen? */ | ||
550 | return -EINVAL; | 488 | return -EINVAL; |
551 | 489 | ||
552 | handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH); | 490 | handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH); |
553 | if (!handle->cur) | 491 | if (!handle->cur) |
554 | return -ENOMEM; | 492 | return -ENOMEM; |
555 | 493 | ||
556 | error = bio_read_page(start, handle->cur, NULL); | 494 | error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL); |
557 | if (error) { | 495 | if (error) { |
558 | release_swap_reader(handle); | 496 | release_swap_reader(handle); |
559 | return error; | 497 | return error; |
@@ -573,21 +511,28 @@ static int swap_read_page(struct swap_map_handle *handle, void *buf, | |||
573 | offset = handle->cur->entries[handle->k]; | 511 | offset = handle->cur->entries[handle->k]; |
574 | if (!offset) | 512 | if (!offset) |
575 | return -EFAULT; | 513 | return -EFAULT; |
576 | error = bio_read_page(offset, buf, bio_chain); | 514 | error = hib_bio_read_page(offset, buf, bio_chain); |
577 | if (error) | 515 | if (error) |
578 | return error; | 516 | return error; |
579 | if (++handle->k >= MAP_PAGE_ENTRIES) { | 517 | if (++handle->k >= MAP_PAGE_ENTRIES) { |
580 | error = wait_on_bio_chain(bio_chain); | 518 | error = hib_wait_on_bio_chain(bio_chain); |
581 | handle->k = 0; | 519 | handle->k = 0; |
582 | offset = handle->cur->next_swap; | 520 | offset = handle->cur->next_swap; |
583 | if (!offset) | 521 | if (!offset) |
584 | release_swap_reader(handle); | 522 | release_swap_reader(handle); |
585 | else if (!error) | 523 | else if (!error) |
586 | error = bio_read_page(offset, handle->cur, NULL); | 524 | error = hib_bio_read_page(offset, handle->cur, NULL); |
587 | } | 525 | } |
588 | return error; | 526 | return error; |
589 | } | 527 | } |
590 | 528 | ||
529 | static int swap_reader_finish(struct swap_map_handle *handle) | ||
530 | { | ||
531 | release_swap_reader(handle); | ||
532 | |||
533 | return 0; | ||
534 | } | ||
535 | |||
591 | /** | 536 | /** |
592 | * load_image - load the image using the swap map handle | 537 | * load_image - load the image using the swap map handle |
593 | * @handle and the snapshot handle @snapshot | 538 | * @handle and the snapshot handle @snapshot |
@@ -615,21 +560,21 @@ static int load_image(struct swap_map_handle *handle, | |||
615 | bio = NULL; | 560 | bio = NULL; |
616 | do_gettimeofday(&start); | 561 | do_gettimeofday(&start); |
617 | for ( ; ; ) { | 562 | for ( ; ; ) { |
618 | error = snapshot_write_next(snapshot, PAGE_SIZE); | 563 | error = snapshot_write_next(snapshot); |
619 | if (error <= 0) | 564 | if (error <= 0) |
620 | break; | 565 | break; |
621 | error = swap_read_page(handle, data_of(*snapshot), &bio); | 566 | error = swap_read_page(handle, data_of(*snapshot), &bio); |
622 | if (error) | 567 | if (error) |
623 | break; | 568 | break; |
624 | if (snapshot->sync_read) | 569 | if (snapshot->sync_read) |
625 | error = wait_on_bio_chain(&bio); | 570 | error = hib_wait_on_bio_chain(&bio); |
626 | if (error) | 571 | if (error) |
627 | break; | 572 | break; |
628 | if (!(nr_pages % m)) | 573 | if (!(nr_pages % m)) |
629 | printk("\b\b\b\b%3d%%", nr_pages / m); | 574 | printk("\b\b\b\b%3d%%", nr_pages / m); |
630 | nr_pages++; | 575 | nr_pages++; |
631 | } | 576 | } |
632 | err2 = wait_on_bio_chain(&bio); | 577 | err2 = hib_wait_on_bio_chain(&bio); |
633 | do_gettimeofday(&stop); | 578 | do_gettimeofday(&stop); |
634 | if (!error) | 579 | if (!error) |
635 | error = err2; | 580 | error = err2; |
@@ -657,20 +602,20 @@ int swsusp_read(unsigned int *flags_p) | |||
657 | struct snapshot_handle snapshot; | 602 | struct snapshot_handle snapshot; |
658 | struct swsusp_info *header; | 603 | struct swsusp_info *header; |
659 | 604 | ||
660 | *flags_p = swsusp_header->flags; | ||
661 | |||
662 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | 605 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); |
663 | error = snapshot_write_next(&snapshot, PAGE_SIZE); | 606 | error = snapshot_write_next(&snapshot); |
664 | if (error < PAGE_SIZE) | 607 | if (error < PAGE_SIZE) |
665 | return error < 0 ? error : -EFAULT; | 608 | return error < 0 ? error : -EFAULT; |
666 | header = (struct swsusp_info *)data_of(snapshot); | 609 | header = (struct swsusp_info *)data_of(snapshot); |
667 | error = get_swap_reader(&handle, swsusp_header->image); | 610 | error = get_swap_reader(&handle, flags_p); |
611 | if (error) | ||
612 | goto end; | ||
668 | if (!error) | 613 | if (!error) |
669 | error = swap_read_page(&handle, header, NULL); | 614 | error = swap_read_page(&handle, header, NULL); |
670 | if (!error) | 615 | if (!error) |
671 | error = load_image(&handle, &snapshot, header->pages - 1); | 616 | error = load_image(&handle, &snapshot, header->pages - 1); |
672 | release_swap_reader(&handle); | 617 | swap_reader_finish(&handle); |
673 | 618 | end: | |
674 | if (!error) | 619 | if (!error) |
675 | pr_debug("PM: Image successfully loaded\n"); | 620 | pr_debug("PM: Image successfully loaded\n"); |
676 | else | 621 | else |
@@ -686,11 +631,11 @@ int swsusp_check(void) | |||
686 | { | 631 | { |
687 | int error; | 632 | int error; |
688 | 633 | ||
689 | resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); | 634 | hib_resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); |
690 | if (!IS_ERR(resume_bdev)) { | 635 | if (!IS_ERR(hib_resume_bdev)) { |
691 | set_blocksize(resume_bdev, PAGE_SIZE); | 636 | set_blocksize(hib_resume_bdev, PAGE_SIZE); |
692 | memset(swsusp_header, 0, PAGE_SIZE); | 637 | memset(swsusp_header, 0, PAGE_SIZE); |
693 | error = bio_read_page(swsusp_resume_block, | 638 | error = hib_bio_read_page(swsusp_resume_block, |
694 | swsusp_header, NULL); | 639 | swsusp_header, NULL); |
695 | if (error) | 640 | if (error) |
696 | goto put; | 641 | goto put; |
@@ -698,7 +643,7 @@ int swsusp_check(void) | |||
698 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { | 643 | if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { |
699 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); | 644 | memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); |
700 | /* Reset swap signature now */ | 645 | /* Reset swap signature now */ |
701 | error = bio_write_page(swsusp_resume_block, | 646 | error = hib_bio_write_page(swsusp_resume_block, |
702 | swsusp_header, NULL); | 647 | swsusp_header, NULL); |
703 | } else { | 648 | } else { |
704 | error = -EINVAL; | 649 | error = -EINVAL; |
@@ -706,11 +651,11 @@ int swsusp_check(void) | |||
706 | 651 | ||
707 | put: | 652 | put: |
708 | if (error) | 653 | if (error) |
709 | blkdev_put(resume_bdev, FMODE_READ); | 654 | blkdev_put(hib_resume_bdev, FMODE_READ); |
710 | else | 655 | else |
711 | pr_debug("PM: Signature found, resuming\n"); | 656 | pr_debug("PM: Signature found, resuming\n"); |
712 | } else { | 657 | } else { |
713 | error = PTR_ERR(resume_bdev); | 658 | error = PTR_ERR(hib_resume_bdev); |
714 | } | 659 | } |
715 | 660 | ||
716 | if (error) | 661 | if (error) |
@@ -725,12 +670,12 @@ put: | |||
725 | 670 | ||
726 | void swsusp_close(fmode_t mode) | 671 | void swsusp_close(fmode_t mode) |
727 | { | 672 | { |
728 | if (IS_ERR(resume_bdev)) { | 673 | if (IS_ERR(hib_resume_bdev)) { |
729 | pr_debug("PM: Image device not initialised\n"); | 674 | pr_debug("PM: Image device not initialised\n"); |
730 | return; | 675 | return; |
731 | } | 676 | } |
732 | 677 | ||
733 | blkdev_put(resume_bdev, mode); | 678 | blkdev_put(hib_resume_bdev, mode); |
734 | } | 679 | } |
735 | 680 | ||
736 | static int swsusp_header_init(void) | 681 | static int swsusp_header_init(void) |
diff --git a/kernel/power/user.c b/kernel/power/user.c index a8c96212bc1b..e819e17877ca 100644 --- a/kernel/power/user.c +++ b/kernel/power/user.c | |||
@@ -151,6 +151,7 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, | |||
151 | { | 151 | { |
152 | struct snapshot_data *data; | 152 | struct snapshot_data *data; |
153 | ssize_t res; | 153 | ssize_t res; |
154 | loff_t pg_offp = *offp & ~PAGE_MASK; | ||
154 | 155 | ||
155 | mutex_lock(&pm_mutex); | 156 | mutex_lock(&pm_mutex); |
156 | 157 | ||
@@ -159,14 +160,19 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, | |||
159 | res = -ENODATA; | 160 | res = -ENODATA; |
160 | goto Unlock; | 161 | goto Unlock; |
161 | } | 162 | } |
162 | res = snapshot_read_next(&data->handle, count); | 163 | if (!pg_offp) { /* on page boundary? */ |
163 | if (res > 0) { | 164 | res = snapshot_read_next(&data->handle); |
164 | if (copy_to_user(buf, data_of(data->handle), res)) | 165 | if (res <= 0) |
165 | res = -EFAULT; | 166 | goto Unlock; |
166 | else | 167 | } else { |
167 | *offp = data->handle.offset; | 168 | res = PAGE_SIZE - pg_offp; |
168 | } | 169 | } |
169 | 170 | ||
171 | res = simple_read_from_buffer(buf, count, &pg_offp, | ||
172 | data_of(data->handle), res); | ||
173 | if (res > 0) | ||
174 | *offp += res; | ||
175 | |||
170 | Unlock: | 176 | Unlock: |
171 | mutex_unlock(&pm_mutex); | 177 | mutex_unlock(&pm_mutex); |
172 | 178 | ||
@@ -178,18 +184,25 @@ static ssize_t snapshot_write(struct file *filp, const char __user *buf, | |||
178 | { | 184 | { |
179 | struct snapshot_data *data; | 185 | struct snapshot_data *data; |
180 | ssize_t res; | 186 | ssize_t res; |
187 | loff_t pg_offp = *offp & ~PAGE_MASK; | ||
181 | 188 | ||
182 | mutex_lock(&pm_mutex); | 189 | mutex_lock(&pm_mutex); |
183 | 190 | ||
184 | data = filp->private_data; | 191 | data = filp->private_data; |
185 | res = snapshot_write_next(&data->handle, count); | 192 | |
186 | if (res > 0) { | 193 | if (!pg_offp) { |
187 | if (copy_from_user(data_of(data->handle), buf, res)) | 194 | res = snapshot_write_next(&data->handle); |
188 | res = -EFAULT; | 195 | if (res <= 0) |
189 | else | 196 | goto unlock; |
190 | *offp = data->handle.offset; | 197 | } else { |
198 | res = PAGE_SIZE - pg_offp; | ||
191 | } | 199 | } |
192 | 200 | ||
201 | res = simple_write_to_buffer(data_of(data->handle), res, &pg_offp, | ||
202 | buf, count); | ||
203 | if (res > 0) | ||
204 | *offp += res; | ||
205 | unlock: | ||
193 | mutex_unlock(&pm_mutex); | 206 | mutex_unlock(&pm_mutex); |
194 | 207 | ||
195 | return res; | 208 | return res; |
diff --git a/kernel/printk.c b/kernel/printk.c index 75077ad0b537..444b770c9595 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/bootmem.h> | 33 | #include <linux/bootmem.h> |
34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
35 | #include <linux/kexec.h> | 35 | #include <linux/kexec.h> |
36 | #include <linux/kdb.h> | ||
36 | #include <linux/ratelimit.h> | 37 | #include <linux/ratelimit.h> |
37 | #include <linux/kmsg_dump.h> | 38 | #include <linux/kmsg_dump.h> |
38 | #include <linux/syslog.h> | 39 | #include <linux/syslog.h> |
@@ -413,6 +414,22 @@ SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) | |||
413 | return do_syslog(type, buf, len, SYSLOG_FROM_CALL); | 414 | return do_syslog(type, buf, len, SYSLOG_FROM_CALL); |
414 | } | 415 | } |
415 | 416 | ||
417 | #ifdef CONFIG_KGDB_KDB | ||
418 | /* kdb dmesg command needs access to the syslog buffer. do_syslog() | ||
419 | * uses locks so it cannot be used during debugging. Just tell kdb | ||
420 | * where the start and end of the physical and logical logs are. This | ||
421 | * is equivalent to do_syslog(3). | ||
422 | */ | ||
423 | void kdb_syslog_data(char *syslog_data[4]) | ||
424 | { | ||
425 | syslog_data[0] = log_buf; | ||
426 | syslog_data[1] = log_buf + log_buf_len; | ||
427 | syslog_data[2] = log_buf + log_end - | ||
428 | (logged_chars < log_buf_len ? logged_chars : log_buf_len); | ||
429 | syslog_data[3] = log_buf + log_end; | ||
430 | } | ||
431 | #endif /* CONFIG_KGDB_KDB */ | ||
432 | |||
416 | /* | 433 | /* |
417 | * Call the console drivers on a range of log_buf | 434 | * Call the console drivers on a range of log_buf |
418 | */ | 435 | */ |
@@ -586,6 +603,14 @@ asmlinkage int printk(const char *fmt, ...) | |||
586 | va_list args; | 603 | va_list args; |
587 | int r; | 604 | int r; |
588 | 605 | ||
606 | #ifdef CONFIG_KGDB_KDB | ||
607 | if (unlikely(kdb_trap_printk)) { | ||
608 | va_start(args, fmt); | ||
609 | r = vkdb_printf(fmt, args); | ||
610 | va_end(args); | ||
611 | return r; | ||
612 | } | ||
613 | #endif | ||
589 | va_start(args, fmt); | 614 | va_start(args, fmt); |
590 | r = vprintk(fmt, args); | 615 | r = vprintk(fmt, args); |
591 | va_end(args); | 616 | va_end(args); |
diff --git a/kernel/relay.c b/kernel/relay.c index 3d97f2821611..4268287148c1 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -1231,8 +1231,8 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1231 | size_t read_subbuf = read_start / subbuf_size; | 1231 | size_t read_subbuf = read_start / subbuf_size; |
1232 | size_t padding = rbuf->padding[read_subbuf]; | 1232 | size_t padding = rbuf->padding[read_subbuf]; |
1233 | size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; | 1233 | size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; |
1234 | struct page *pages[PIPE_BUFFERS]; | 1234 | struct page *pages[PIPE_DEF_BUFFERS]; |
1235 | struct partial_page partial[PIPE_BUFFERS]; | 1235 | struct partial_page partial[PIPE_DEF_BUFFERS]; |
1236 | struct splice_pipe_desc spd = { | 1236 | struct splice_pipe_desc spd = { |
1237 | .pages = pages, | 1237 | .pages = pages, |
1238 | .nr_pages = 0, | 1238 | .nr_pages = 0, |
@@ -1245,6 +1245,8 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1245 | 1245 | ||
1246 | if (rbuf->subbufs_produced == rbuf->subbufs_consumed) | 1246 | if (rbuf->subbufs_produced == rbuf->subbufs_consumed) |
1247 | return 0; | 1247 | return 0; |
1248 | if (splice_grow_spd(pipe, &spd)) | ||
1249 | return -ENOMEM; | ||
1248 | 1250 | ||
1249 | /* | 1251 | /* |
1250 | * Adjust read len, if longer than what is available | 1252 | * Adjust read len, if longer than what is available |
@@ -1255,7 +1257,7 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1255 | subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; | 1257 | subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; |
1256 | pidx = (read_start / PAGE_SIZE) % subbuf_pages; | 1258 | pidx = (read_start / PAGE_SIZE) % subbuf_pages; |
1257 | poff = read_start & ~PAGE_MASK; | 1259 | poff = read_start & ~PAGE_MASK; |
1258 | nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS); | 1260 | nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers); |
1259 | 1261 | ||
1260 | for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { | 1262 | for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { |
1261 | unsigned int this_len, this_end, private; | 1263 | unsigned int this_len, this_end, private; |
@@ -1289,16 +1291,19 @@ static ssize_t subbuf_splice_actor(struct file *in, | |||
1289 | } | 1291 | } |
1290 | } | 1292 | } |
1291 | 1293 | ||
1294 | ret = 0; | ||
1292 | if (!spd.nr_pages) | 1295 | if (!spd.nr_pages) |
1293 | return 0; | 1296 | goto out; |
1294 | 1297 | ||
1295 | ret = *nonpad_ret = splice_to_pipe(pipe, &spd); | 1298 | ret = *nonpad_ret = splice_to_pipe(pipe, &spd); |
1296 | if (ret < 0 || ret < total_len) | 1299 | if (ret < 0 || ret < total_len) |
1297 | return ret; | 1300 | goto out; |
1298 | 1301 | ||
1299 | if (read_start + ret == nonpad_end) | 1302 | if (read_start + ret == nonpad_end) |
1300 | ret += padding; | 1303 | ret += padding; |
1301 | 1304 | ||
1305 | out: | ||
1306 | splice_shrink_spd(pipe, &spd); | ||
1302 | return ret; | 1307 | return ret; |
1303 | } | 1308 | } |
1304 | 1309 | ||
diff --git a/kernel/sched.c b/kernel/sched.c index 1d93cd0ae4d3..054a6012de99 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -3851,6 +3851,7 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
3851 | { | 3851 | { |
3852 | __wake_up_common(q, mode, 1, 0, NULL); | 3852 | __wake_up_common(q, mode, 1, 0, NULL); |
3853 | } | 3853 | } |
3854 | EXPORT_SYMBOL_GPL(__wake_up_locked); | ||
3854 | 3855 | ||
3855 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | 3856 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
3856 | { | 3857 | { |
@@ -7758,9 +7759,9 @@ void normalize_rt_tasks(void) | |||
7758 | 7759 | ||
7759 | #endif /* CONFIG_MAGIC_SYSRQ */ | 7760 | #endif /* CONFIG_MAGIC_SYSRQ */ |
7760 | 7761 | ||
7761 | #ifdef CONFIG_IA64 | 7762 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
7762 | /* | 7763 | /* |
7763 | * These functions are only useful for the IA64 MCA handling. | 7764 | * These functions are only useful for the IA64 MCA handling, or kdb. |
7764 | * | 7765 | * |
7765 | * They can only be called when the whole system has been | 7766 | * They can only be called when the whole system has been |
7766 | * stopped - every CPU needs to be quiescent, and no scheduling | 7767 | * stopped - every CPU needs to be quiescent, and no scheduling |
@@ -7780,6 +7781,9 @@ struct task_struct *curr_task(int cpu) | |||
7780 | return cpu_curr(cpu); | 7781 | return cpu_curr(cpu); |
7781 | } | 7782 | } |
7782 | 7783 | ||
7784 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | ||
7785 | |||
7786 | #ifdef CONFIG_IA64 | ||
7783 | /** | 7787 | /** |
7784 | * set_curr_task - set the current task for a given cpu. | 7788 | * set_curr_task - set the current task for a given cpu. |
7785 | * @cpu: the processor in question. | 7789 | * @cpu: the processor in question. |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index 5b496132c28a..906a0f718cb3 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -41,6 +41,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
41 | return (unsigned long long)(jiffies - INITIAL_JIFFIES) | 41 | return (unsigned long long)(jiffies - INITIAL_JIFFIES) |
42 | * (NSEC_PER_SEC / HZ); | 42 | * (NSEC_PER_SEC / HZ); |
43 | } | 43 | } |
44 | EXPORT_SYMBOL_GPL(sched_clock); | ||
44 | 45 | ||
45 | static __read_mostly int sched_clock_running; | 46 | static __read_mostly int sched_clock_running; |
46 | 47 | ||
diff --git a/kernel/signal.c b/kernel/signal.c index dbd7fe073c55..825a3f24ad76 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -2735,3 +2735,43 @@ void __init signals_init(void) | |||
2735 | { | 2735 | { |
2736 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); | 2736 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); |
2737 | } | 2737 | } |
2738 | |||
2739 | #ifdef CONFIG_KGDB_KDB | ||
2740 | #include <linux/kdb.h> | ||
2741 | /* | ||
2742 | * kdb_send_sig_info - Allows kdb to send signals without exposing | ||
2743 | * signal internals. This function checks if the required locks are | ||
2744 | * available before calling the main signal code, to avoid kdb | ||
2745 | * deadlocks. | ||
2746 | */ | ||
2747 | void | ||
2748 | kdb_send_sig_info(struct task_struct *t, struct siginfo *info) | ||
2749 | { | ||
2750 | static struct task_struct *kdb_prev_t; | ||
2751 | int sig, new_t; | ||
2752 | if (!spin_trylock(&t->sighand->siglock)) { | ||
2753 | kdb_printf("Can't do kill command now.\n" | ||
2754 | "The sigmask lock is held somewhere else in " | ||
2755 | "kernel, try again later\n"); | ||
2756 | return; | ||
2757 | } | ||
2758 | spin_unlock(&t->sighand->siglock); | ||
2759 | new_t = kdb_prev_t != t; | ||
2760 | kdb_prev_t = t; | ||
2761 | if (t->state != TASK_RUNNING && new_t) { | ||
2762 | kdb_printf("Process is not RUNNING, sending a signal from " | ||
2763 | "kdb risks deadlock\n" | ||
2764 | "on the run queue locks. " | ||
2765 | "The signal has _not_ been sent.\n" | ||
2766 | "Reissue the kill command if you want to risk " | ||
2767 | "the deadlock.\n"); | ||
2768 | return; | ||
2769 | } | ||
2770 | sig = info->si_signo; | ||
2771 | if (send_sig_info(sig, info, t)) | ||
2772 | kdb_printf("Fail to deliver Signal %d to process %d.\n", | ||
2773 | sig, t->pid); | ||
2774 | else | ||
2775 | kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); | ||
2776 | } | ||
2777 | #endif /* CONFIG_KGDB_KDB */ | ||
diff --git a/kernel/sys.c b/kernel/sys.c index 7cb426a58965..0d36d889c74d 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -492,10 +492,6 @@ SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) | |||
492 | return -ENOMEM; | 492 | return -ENOMEM; |
493 | old = current_cred(); | 493 | old = current_cred(); |
494 | 494 | ||
495 | retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); | ||
496 | if (retval) | ||
497 | goto error; | ||
498 | |||
499 | retval = -EPERM; | 495 | retval = -EPERM; |
500 | if (rgid != (gid_t) -1) { | 496 | if (rgid != (gid_t) -1) { |
501 | if (old->gid == rgid || | 497 | if (old->gid == rgid || |
@@ -543,10 +539,6 @@ SYSCALL_DEFINE1(setgid, gid_t, gid) | |||
543 | return -ENOMEM; | 539 | return -ENOMEM; |
544 | old = current_cred(); | 540 | old = current_cred(); |
545 | 541 | ||
546 | retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); | ||
547 | if (retval) | ||
548 | goto error; | ||
549 | |||
550 | retval = -EPERM; | 542 | retval = -EPERM; |
551 | if (capable(CAP_SETGID)) | 543 | if (capable(CAP_SETGID)) |
552 | new->gid = new->egid = new->sgid = new->fsgid = gid; | 544 | new->gid = new->egid = new->sgid = new->fsgid = gid; |
@@ -610,10 +602,6 @@ SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) | |||
610 | return -ENOMEM; | 602 | return -ENOMEM; |
611 | old = current_cred(); | 603 | old = current_cred(); |
612 | 604 | ||
613 | retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); | ||
614 | if (retval) | ||
615 | goto error; | ||
616 | |||
617 | retval = -EPERM; | 605 | retval = -EPERM; |
618 | if (ruid != (uid_t) -1) { | 606 | if (ruid != (uid_t) -1) { |
619 | new->uid = ruid; | 607 | new->uid = ruid; |
@@ -675,10 +663,6 @@ SYSCALL_DEFINE1(setuid, uid_t, uid) | |||
675 | return -ENOMEM; | 663 | return -ENOMEM; |
676 | old = current_cred(); | 664 | old = current_cred(); |
677 | 665 | ||
678 | retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); | ||
679 | if (retval) | ||
680 | goto error; | ||
681 | |||
682 | retval = -EPERM; | 666 | retval = -EPERM; |
683 | if (capable(CAP_SETUID)) { | 667 | if (capable(CAP_SETUID)) { |
684 | new->suid = new->uid = uid; | 668 | new->suid = new->uid = uid; |
@@ -719,9 +703,6 @@ SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) | |||
719 | if (!new) | 703 | if (!new) |
720 | return -ENOMEM; | 704 | return -ENOMEM; |
721 | 705 | ||
722 | retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); | ||
723 | if (retval) | ||
724 | goto error; | ||
725 | old = current_cred(); | 706 | old = current_cred(); |
726 | 707 | ||
727 | retval = -EPERM; | 708 | retval = -EPERM; |
@@ -788,10 +769,6 @@ SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) | |||
788 | return -ENOMEM; | 769 | return -ENOMEM; |
789 | old = current_cred(); | 770 | old = current_cred(); |
790 | 771 | ||
791 | retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); | ||
792 | if (retval) | ||
793 | goto error; | ||
794 | |||
795 | retval = -EPERM; | 772 | retval = -EPERM; |
796 | if (!capable(CAP_SETGID)) { | 773 | if (!capable(CAP_SETGID)) { |
797 | if (rgid != (gid_t) -1 && rgid != old->gid && | 774 | if (rgid != (gid_t) -1 && rgid != old->gid && |
@@ -851,9 +828,6 @@ SYSCALL_DEFINE1(setfsuid, uid_t, uid) | |||
851 | old = current_cred(); | 828 | old = current_cred(); |
852 | old_fsuid = old->fsuid; | 829 | old_fsuid = old->fsuid; |
853 | 830 | ||
854 | if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0) | ||
855 | goto error; | ||
856 | |||
857 | if (uid == old->uid || uid == old->euid || | 831 | if (uid == old->uid || uid == old->euid || |
858 | uid == old->suid || uid == old->fsuid || | 832 | uid == old->suid || uid == old->fsuid || |
859 | capable(CAP_SETUID)) { | 833 | capable(CAP_SETUID)) { |
@@ -864,7 +838,6 @@ SYSCALL_DEFINE1(setfsuid, uid_t, uid) | |||
864 | } | 838 | } |
865 | } | 839 | } |
866 | 840 | ||
867 | error: | ||
868 | abort_creds(new); | 841 | abort_creds(new); |
869 | return old_fsuid; | 842 | return old_fsuid; |
870 | 843 | ||
@@ -888,9 +861,6 @@ SYSCALL_DEFINE1(setfsgid, gid_t, gid) | |||
888 | old = current_cred(); | 861 | old = current_cred(); |
889 | old_fsgid = old->fsgid; | 862 | old_fsgid = old->fsgid; |
890 | 863 | ||
891 | if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) | ||
892 | goto error; | ||
893 | |||
894 | if (gid == old->gid || gid == old->egid || | 864 | if (gid == old->gid || gid == old->egid || |
895 | gid == old->sgid || gid == old->fsgid || | 865 | gid == old->sgid || gid == old->fsgid || |
896 | capable(CAP_SETGID)) { | 866 | capable(CAP_SETGID)) { |
@@ -900,7 +870,6 @@ SYSCALL_DEFINE1(setfsgid, gid_t, gid) | |||
900 | } | 870 | } |
901 | } | 871 | } |
902 | 872 | ||
903 | error: | ||
904 | abort_creds(new); | 873 | abort_creds(new); |
905 | return old_fsgid; | 874 | return old_fsgid; |
906 | 875 | ||
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 8686b0f5fc12..4c93486b45d1 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -52,6 +52,7 @@ | |||
52 | #include <linux/slow-work.h> | 52 | #include <linux/slow-work.h> |
53 | #include <linux/perf_event.h> | 53 | #include <linux/perf_event.h> |
54 | #include <linux/kprobes.h> | 54 | #include <linux/kprobes.h> |
55 | #include <linux/pipe_fs_i.h> | ||
55 | 56 | ||
56 | #include <asm/uaccess.h> | 57 | #include <asm/uaccess.h> |
57 | #include <asm/processor.h> | 58 | #include <asm/processor.h> |
@@ -163,6 +164,27 @@ static int proc_taint(struct ctl_table *table, int write, | |||
163 | void __user *buffer, size_t *lenp, loff_t *ppos); | 164 | void __user *buffer, size_t *lenp, loff_t *ppos); |
164 | #endif | 165 | #endif |
165 | 166 | ||
167 | #ifdef CONFIG_MAGIC_SYSRQ | ||
168 | static int __sysrq_enabled; /* Note: sysrq code ises it's own private copy */ | ||
169 | |||
170 | static int sysrq_sysctl_handler(ctl_table *table, int write, | ||
171 | void __user *buffer, size_t *lenp, | ||
172 | loff_t *ppos) | ||
173 | { | ||
174 | int error; | ||
175 | |||
176 | error = proc_dointvec(table, write, buffer, lenp, ppos); | ||
177 | if (error) | ||
178 | return error; | ||
179 | |||
180 | if (write) | ||
181 | sysrq_toggle_support(__sysrq_enabled); | ||
182 | |||
183 | return 0; | ||
184 | } | ||
185 | |||
186 | #endif | ||
187 | |||
166 | static struct ctl_table root_table[]; | 188 | static struct ctl_table root_table[]; |
167 | static struct ctl_table_root sysctl_table_root; | 189 | static struct ctl_table_root sysctl_table_root; |
168 | static struct ctl_table_header root_table_header = { | 190 | static struct ctl_table_header root_table_header = { |
@@ -567,7 +589,7 @@ static struct ctl_table kern_table[] = { | |||
567 | .data = &__sysrq_enabled, | 589 | .data = &__sysrq_enabled, |
568 | .maxlen = sizeof (int), | 590 | .maxlen = sizeof (int), |
569 | .mode = 0644, | 591 | .mode = 0644, |
570 | .proc_handler = proc_dointvec, | 592 | .proc_handler = sysrq_sysctl_handler, |
571 | }, | 593 | }, |
572 | #endif | 594 | #endif |
573 | #ifdef CONFIG_PROC_SYSCTL | 595 | #ifdef CONFIG_PROC_SYSCTL |
@@ -621,7 +643,7 @@ static struct ctl_table kern_table[] = { | |||
621 | #endif | 643 | #endif |
622 | { | 644 | { |
623 | .procname = "userprocess_debug", | 645 | .procname = "userprocess_debug", |
624 | .data = &sysctl_userprocess_debug, | 646 | .data = &show_unhandled_signals, |
625 | .maxlen = sizeof(int), | 647 | .maxlen = sizeof(int), |
626 | .mode = 0644, | 648 | .mode = 0644, |
627 | .proc_handler = proc_dointvec, | 649 | .proc_handler = proc_dointvec, |
@@ -1423,6 +1445,14 @@ static struct ctl_table fs_table[] = { | |||
1423 | .child = binfmt_misc_table, | 1445 | .child = binfmt_misc_table, |
1424 | }, | 1446 | }, |
1425 | #endif | 1447 | #endif |
1448 | { | ||
1449 | .procname = "pipe-max-pages", | ||
1450 | .data = &pipe_max_pages, | ||
1451 | .maxlen = sizeof(int), | ||
1452 | .mode = 0644, | ||
1453 | .proc_handler = &proc_dointvec_minmax, | ||
1454 | .extra1 = &two, | ||
1455 | }, | ||
1426 | /* | 1456 | /* |
1427 | * NOTE: do not add new entries to this table unless you have read | 1457 | * NOTE: do not add new entries to this table unless you have read |
1428 | * Documentation/sysctl/ctl_unnumbered.txt | 1458 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -1431,7 +1461,8 @@ static struct ctl_table fs_table[] = { | |||
1431 | }; | 1461 | }; |
1432 | 1462 | ||
1433 | static struct ctl_table debug_table[] = { | 1463 | static struct ctl_table debug_table[] = { |
1434 | #if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) | 1464 | #if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) || \ |
1465 | defined(CONFIG_S390) | ||
1435 | { | 1466 | { |
1436 | .procname = "exception-trace", | 1467 | .procname = "exception-trace", |
1437 | .data = &show_unhandled_signals, | 1468 | .data = &show_unhandled_signals, |
@@ -2040,8 +2071,132 @@ int proc_dostring(struct ctl_table *table, int write, | |||
2040 | buffer, lenp, ppos); | 2071 | buffer, lenp, ppos); |
2041 | } | 2072 | } |
2042 | 2073 | ||
2074 | static size_t proc_skip_spaces(char **buf) | ||
2075 | { | ||
2076 | size_t ret; | ||
2077 | char *tmp = skip_spaces(*buf); | ||
2078 | ret = tmp - *buf; | ||
2079 | *buf = tmp; | ||
2080 | return ret; | ||
2081 | } | ||
2082 | |||
2083 | static void proc_skip_char(char **buf, size_t *size, const char v) | ||
2084 | { | ||
2085 | while (*size) { | ||
2086 | if (**buf != v) | ||
2087 | break; | ||
2088 | (*size)--; | ||
2089 | (*buf)++; | ||
2090 | } | ||
2091 | } | ||
2092 | |||
2093 | #define TMPBUFLEN 22 | ||
2094 | /** | ||
2095 | * proc_get_long - reads an ASCII formatted integer from a user buffer | ||
2096 | * | ||
2097 | * @buf: a kernel buffer | ||
2098 | * @size: size of the kernel buffer | ||
2099 | * @val: this is where the number will be stored | ||
2100 | * @neg: set to %TRUE if number is negative | ||
2101 | * @perm_tr: a vector which contains the allowed trailers | ||
2102 | * @perm_tr_len: size of the perm_tr vector | ||
2103 | * @tr: pointer to store the trailer character | ||
2104 | * | ||
2105 | * In case of success %0 is returned and @buf and @size are updated with | ||
2106 | * the amount of bytes read. If @tr is non-NULL and a trailing | ||
2107 | * character exists (size is non-zero after returning from this | ||
2108 | * function), @tr is updated with the trailing character. | ||
2109 | */ | ||
2110 | static int proc_get_long(char **buf, size_t *size, | ||
2111 | unsigned long *val, bool *neg, | ||
2112 | const char *perm_tr, unsigned perm_tr_len, char *tr) | ||
2113 | { | ||
2114 | int len; | ||
2115 | char *p, tmp[TMPBUFLEN]; | ||
2116 | |||
2117 | if (!*size) | ||
2118 | return -EINVAL; | ||
2119 | |||
2120 | len = *size; | ||
2121 | if (len > TMPBUFLEN - 1) | ||
2122 | len = TMPBUFLEN - 1; | ||
2123 | |||
2124 | memcpy(tmp, *buf, len); | ||
2125 | |||
2126 | tmp[len] = 0; | ||
2127 | p = tmp; | ||
2128 | if (*p == '-' && *size > 1) { | ||
2129 | *neg = true; | ||
2130 | p++; | ||
2131 | } else | ||
2132 | *neg = false; | ||
2133 | if (!isdigit(*p)) | ||
2134 | return -EINVAL; | ||
2135 | |||
2136 | *val = simple_strtoul(p, &p, 0); | ||
2137 | |||
2138 | len = p - tmp; | ||
2139 | |||
2140 | /* We don't know if the next char is whitespace thus we may accept | ||
2141 | * invalid integers (e.g. 1234...a) or two integers instead of one | ||
2142 | * (e.g. 123...1). So lets not allow such large numbers. */ | ||
2143 | if (len == TMPBUFLEN - 1) | ||
2144 | return -EINVAL; | ||
2145 | |||
2146 | if (len < *size && perm_tr_len && !memchr(perm_tr, *p, perm_tr_len)) | ||
2147 | return -EINVAL; | ||
2148 | |||
2149 | if (tr && (len < *size)) | ||
2150 | *tr = *p; | ||
2151 | |||
2152 | *buf += len; | ||
2153 | *size -= len; | ||
2154 | |||
2155 | return 0; | ||
2156 | } | ||
2157 | |||
2158 | /** | ||
2159 | * proc_put_long - converts an integer to a decimal ASCII formatted string | ||
2160 | * | ||
2161 | * @buf: the user buffer | ||
2162 | * @size: the size of the user buffer | ||
2163 | * @val: the integer to be converted | ||
2164 | * @neg: sign of the number, %TRUE for negative | ||
2165 | * | ||
2166 | * In case of success %0 is returned and @buf and @size are updated with | ||
2167 | * the amount of bytes written. | ||
2168 | */ | ||
2169 | static int proc_put_long(void __user **buf, size_t *size, unsigned long val, | ||
2170 | bool neg) | ||
2171 | { | ||
2172 | int len; | ||
2173 | char tmp[TMPBUFLEN], *p = tmp; | ||
2174 | |||
2175 | sprintf(p, "%s%lu", neg ? "-" : "", val); | ||
2176 | len = strlen(tmp); | ||
2177 | if (len > *size) | ||
2178 | len = *size; | ||
2179 | if (copy_to_user(*buf, tmp, len)) | ||
2180 | return -EFAULT; | ||
2181 | *size -= len; | ||
2182 | *buf += len; | ||
2183 | return 0; | ||
2184 | } | ||
2185 | #undef TMPBUFLEN | ||
2186 | |||
2187 | static int proc_put_char(void __user **buf, size_t *size, char c) | ||
2188 | { | ||
2189 | if (*size) { | ||
2190 | char __user **buffer = (char __user **)buf; | ||
2191 | if (put_user(c, *buffer)) | ||
2192 | return -EFAULT; | ||
2193 | (*size)--, (*buffer)++; | ||
2194 | *buf = *buffer; | ||
2195 | } | ||
2196 | return 0; | ||
2197 | } | ||
2043 | 2198 | ||
2044 | static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | 2199 | static int do_proc_dointvec_conv(bool *negp, unsigned long *lvalp, |
2045 | int *valp, | 2200 | int *valp, |
2046 | int write, void *data) | 2201 | int write, void *data) |
2047 | { | 2202 | { |
@@ -2050,33 +2205,31 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
2050 | } else { | 2205 | } else { |
2051 | int val = *valp; | 2206 | int val = *valp; |
2052 | if (val < 0) { | 2207 | if (val < 0) { |
2053 | *negp = -1; | 2208 | *negp = true; |
2054 | *lvalp = (unsigned long)-val; | 2209 | *lvalp = (unsigned long)-val; |
2055 | } else { | 2210 | } else { |
2056 | *negp = 0; | 2211 | *negp = false; |
2057 | *lvalp = (unsigned long)val; | 2212 | *lvalp = (unsigned long)val; |
2058 | } | 2213 | } |
2059 | } | 2214 | } |
2060 | return 0; | 2215 | return 0; |
2061 | } | 2216 | } |
2062 | 2217 | ||
2218 | static const char proc_wspace_sep[] = { ' ', '\t', '\n' }; | ||
2219 | |||
2063 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2220 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
2064 | int write, void __user *buffer, | 2221 | int write, void __user *buffer, |
2065 | size_t *lenp, loff_t *ppos, | 2222 | size_t *lenp, loff_t *ppos, |
2066 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2223 | int (*conv)(bool *negp, unsigned long *lvalp, int *valp, |
2067 | int write, void *data), | 2224 | int write, void *data), |
2068 | void *data) | 2225 | void *data) |
2069 | { | 2226 | { |
2070 | #define TMPBUFLEN 21 | 2227 | int *i, vleft, first = 1, err = 0; |
2071 | int *i, vleft, first = 1, neg; | 2228 | unsigned long page = 0; |
2072 | unsigned long lval; | 2229 | size_t left; |
2073 | size_t left, len; | 2230 | char *kbuf; |
2074 | 2231 | ||
2075 | char buf[TMPBUFLEN], *p; | 2232 | if (!tbl_data || !table->maxlen || !*lenp || (*ppos && !write)) { |
2076 | char __user *s = buffer; | ||
2077 | |||
2078 | if (!tbl_data || !table->maxlen || !*lenp || | ||
2079 | (*ppos && !write)) { | ||
2080 | *lenp = 0; | 2233 | *lenp = 0; |
2081 | return 0; | 2234 | return 0; |
2082 | } | 2235 | } |
@@ -2088,89 +2241,69 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
2088 | if (!conv) | 2241 | if (!conv) |
2089 | conv = do_proc_dointvec_conv; | 2242 | conv = do_proc_dointvec_conv; |
2090 | 2243 | ||
2244 | if (write) { | ||
2245 | if (left > PAGE_SIZE - 1) | ||
2246 | left = PAGE_SIZE - 1; | ||
2247 | page = __get_free_page(GFP_TEMPORARY); | ||
2248 | kbuf = (char *) page; | ||
2249 | if (!kbuf) | ||
2250 | return -ENOMEM; | ||
2251 | if (copy_from_user(kbuf, buffer, left)) { | ||
2252 | err = -EFAULT; | ||
2253 | goto free; | ||
2254 | } | ||
2255 | kbuf[left] = 0; | ||
2256 | } | ||
2257 | |||
2091 | for (; left && vleft--; i++, first=0) { | 2258 | for (; left && vleft--; i++, first=0) { |
2092 | if (write) { | 2259 | unsigned long lval; |
2093 | while (left) { | 2260 | bool neg; |
2094 | char c; | ||
2095 | if (get_user(c, s)) | ||
2096 | return -EFAULT; | ||
2097 | if (!isspace(c)) | ||
2098 | break; | ||
2099 | left--; | ||
2100 | s++; | ||
2101 | } | ||
2102 | if (!left) | ||
2103 | break; | ||
2104 | neg = 0; | ||
2105 | len = left; | ||
2106 | if (len > sizeof(buf) - 1) | ||
2107 | len = sizeof(buf) - 1; | ||
2108 | if (copy_from_user(buf, s, len)) | ||
2109 | return -EFAULT; | ||
2110 | buf[len] = 0; | ||
2111 | p = buf; | ||
2112 | if (*p == '-' && left > 1) { | ||
2113 | neg = 1; | ||
2114 | p++; | ||
2115 | } | ||
2116 | if (*p < '0' || *p > '9') | ||
2117 | break; | ||
2118 | 2261 | ||
2119 | lval = simple_strtoul(p, &p, 0); | 2262 | if (write) { |
2263 | left -= proc_skip_spaces(&kbuf); | ||
2120 | 2264 | ||
2121 | len = p-buf; | 2265 | err = proc_get_long(&kbuf, &left, &lval, &neg, |
2122 | if ((len < left) && *p && !isspace(*p)) | 2266 | proc_wspace_sep, |
2267 | sizeof(proc_wspace_sep), NULL); | ||
2268 | if (err) | ||
2123 | break; | 2269 | break; |
2124 | s += len; | 2270 | if (conv(&neg, &lval, i, 1, data)) { |
2125 | left -= len; | 2271 | err = -EINVAL; |
2126 | |||
2127 | if (conv(&neg, &lval, i, 1, data)) | ||
2128 | break; | 2272 | break; |
2273 | } | ||
2129 | } else { | 2274 | } else { |
2130 | p = buf; | 2275 | if (conv(&neg, &lval, i, 0, data)) { |
2276 | err = -EINVAL; | ||
2277 | break; | ||
2278 | } | ||
2131 | if (!first) | 2279 | if (!first) |
2132 | *p++ = '\t'; | 2280 | err = proc_put_char(&buffer, &left, '\t'); |
2133 | 2281 | if (err) | |
2134 | if (conv(&neg, &lval, i, 0, data)) | 2282 | break; |
2283 | err = proc_put_long(&buffer, &left, lval, neg); | ||
2284 | if (err) | ||
2135 | break; | 2285 | break; |
2136 | |||
2137 | sprintf(p, "%s%lu", neg ? "-" : "", lval); | ||
2138 | len = strlen(buf); | ||
2139 | if (len > left) | ||
2140 | len = left; | ||
2141 | if(copy_to_user(s, buf, len)) | ||
2142 | return -EFAULT; | ||
2143 | left -= len; | ||
2144 | s += len; | ||
2145 | } | 2286 | } |
2146 | } | 2287 | } |
2147 | 2288 | ||
2148 | if (!write && !first && left) { | 2289 | if (!write && !first && left && !err) |
2149 | if(put_user('\n', s)) | 2290 | err = proc_put_char(&buffer, &left, '\n'); |
2150 | return -EFAULT; | 2291 | if (write && !err) |
2151 | left--, s++; | 2292 | left -= proc_skip_spaces(&kbuf); |
2152 | } | 2293 | free: |
2153 | if (write) { | 2294 | if (write) { |
2154 | while (left) { | 2295 | free_page(page); |
2155 | char c; | 2296 | if (first) |
2156 | if (get_user(c, s++)) | 2297 | return err ? : -EINVAL; |
2157 | return -EFAULT; | ||
2158 | if (!isspace(c)) | ||
2159 | break; | ||
2160 | left--; | ||
2161 | } | ||
2162 | } | 2298 | } |
2163 | if (write && first) | ||
2164 | return -EINVAL; | ||
2165 | *lenp -= left; | 2299 | *lenp -= left; |
2166 | *ppos += *lenp; | 2300 | *ppos += *lenp; |
2167 | return 0; | 2301 | return err; |
2168 | #undef TMPBUFLEN | ||
2169 | } | 2302 | } |
2170 | 2303 | ||
2171 | static int do_proc_dointvec(struct ctl_table *table, int write, | 2304 | static int do_proc_dointvec(struct ctl_table *table, int write, |
2172 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2305 | void __user *buffer, size_t *lenp, loff_t *ppos, |
2173 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2306 | int (*conv)(bool *negp, unsigned long *lvalp, int *valp, |
2174 | int write, void *data), | 2307 | int write, void *data), |
2175 | void *data) | 2308 | void *data) |
2176 | { | 2309 | { |
@@ -2238,8 +2371,8 @@ struct do_proc_dointvec_minmax_conv_param { | |||
2238 | int *max; | 2371 | int *max; |
2239 | }; | 2372 | }; |
2240 | 2373 | ||
2241 | static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | 2374 | static int do_proc_dointvec_minmax_conv(bool *negp, unsigned long *lvalp, |
2242 | int *valp, | 2375 | int *valp, |
2243 | int write, void *data) | 2376 | int write, void *data) |
2244 | { | 2377 | { |
2245 | struct do_proc_dointvec_minmax_conv_param *param = data; | 2378 | struct do_proc_dointvec_minmax_conv_param *param = data; |
@@ -2252,10 +2385,10 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2252 | } else { | 2385 | } else { |
2253 | int val = *valp; | 2386 | int val = *valp; |
2254 | if (val < 0) { | 2387 | if (val < 0) { |
2255 | *negp = -1; | 2388 | *negp = true; |
2256 | *lvalp = (unsigned long)-val; | 2389 | *lvalp = (unsigned long)-val; |
2257 | } else { | 2390 | } else { |
2258 | *negp = 0; | 2391 | *negp = false; |
2259 | *lvalp = (unsigned long)val; | 2392 | *lvalp = (unsigned long)val; |
2260 | } | 2393 | } |
2261 | } | 2394 | } |
@@ -2295,102 +2428,78 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
2295 | unsigned long convmul, | 2428 | unsigned long convmul, |
2296 | unsigned long convdiv) | 2429 | unsigned long convdiv) |
2297 | { | 2430 | { |
2298 | #define TMPBUFLEN 21 | 2431 | unsigned long *i, *min, *max; |
2299 | unsigned long *i, *min, *max, val; | 2432 | int vleft, first = 1, err = 0; |
2300 | int vleft, first=1, neg; | 2433 | unsigned long page = 0; |
2301 | size_t len, left; | 2434 | size_t left; |
2302 | char buf[TMPBUFLEN], *p; | 2435 | char *kbuf; |
2303 | char __user *s = buffer; | 2436 | |
2304 | 2437 | if (!data || !table->maxlen || !*lenp || (*ppos && !write)) { | |
2305 | if (!data || !table->maxlen || !*lenp || | ||
2306 | (*ppos && !write)) { | ||
2307 | *lenp = 0; | 2438 | *lenp = 0; |
2308 | return 0; | 2439 | return 0; |
2309 | } | 2440 | } |
2310 | 2441 | ||
2311 | i = (unsigned long *) data; | 2442 | i = (unsigned long *) data; |
2312 | min = (unsigned long *) table->extra1; | 2443 | min = (unsigned long *) table->extra1; |
2313 | max = (unsigned long *) table->extra2; | 2444 | max = (unsigned long *) table->extra2; |
2314 | vleft = table->maxlen / sizeof(unsigned long); | 2445 | vleft = table->maxlen / sizeof(unsigned long); |
2315 | left = *lenp; | 2446 | left = *lenp; |
2316 | 2447 | ||
2448 | if (write) { | ||
2449 | if (left > PAGE_SIZE - 1) | ||
2450 | left = PAGE_SIZE - 1; | ||
2451 | page = __get_free_page(GFP_TEMPORARY); | ||
2452 | kbuf = (char *) page; | ||
2453 | if (!kbuf) | ||
2454 | return -ENOMEM; | ||
2455 | if (copy_from_user(kbuf, buffer, left)) { | ||
2456 | err = -EFAULT; | ||
2457 | goto free; | ||
2458 | } | ||
2459 | kbuf[left] = 0; | ||
2460 | } | ||
2461 | |||
2317 | for (; left && vleft--; i++, min++, max++, first=0) { | 2462 | for (; left && vleft--; i++, min++, max++, first=0) { |
2463 | unsigned long val; | ||
2464 | |||
2318 | if (write) { | 2465 | if (write) { |
2319 | while (left) { | 2466 | bool neg; |
2320 | char c; | 2467 | |
2321 | if (get_user(c, s)) | 2468 | left -= proc_skip_spaces(&kbuf); |
2322 | return -EFAULT; | 2469 | |
2323 | if (!isspace(c)) | 2470 | err = proc_get_long(&kbuf, &left, &val, &neg, |
2324 | break; | 2471 | proc_wspace_sep, |
2325 | left--; | 2472 | sizeof(proc_wspace_sep), NULL); |
2326 | s++; | 2473 | if (err) |
2327 | } | ||
2328 | if (!left) | ||
2329 | break; | ||
2330 | neg = 0; | ||
2331 | len = left; | ||
2332 | if (len > TMPBUFLEN-1) | ||
2333 | len = TMPBUFLEN-1; | ||
2334 | if (copy_from_user(buf, s, len)) | ||
2335 | return -EFAULT; | ||
2336 | buf[len] = 0; | ||
2337 | p = buf; | ||
2338 | if (*p == '-' && left > 1) { | ||
2339 | neg = 1; | ||
2340 | p++; | ||
2341 | } | ||
2342 | if (*p < '0' || *p > '9') | ||
2343 | break; | ||
2344 | val = simple_strtoul(p, &p, 0) * convmul / convdiv ; | ||
2345 | len = p-buf; | ||
2346 | if ((len < left) && *p && !isspace(*p)) | ||
2347 | break; | 2474 | break; |
2348 | if (neg) | 2475 | if (neg) |
2349 | val = -val; | ||
2350 | s += len; | ||
2351 | left -= len; | ||
2352 | |||
2353 | if(neg) | ||
2354 | continue; | 2476 | continue; |
2355 | if ((min && val < *min) || (max && val > *max)) | 2477 | if ((min && val < *min) || (max && val > *max)) |
2356 | continue; | 2478 | continue; |
2357 | *i = val; | 2479 | *i = val; |
2358 | } else { | 2480 | } else { |
2359 | p = buf; | 2481 | val = convdiv * (*i) / convmul; |
2360 | if (!first) | 2482 | if (!first) |
2361 | *p++ = '\t'; | 2483 | err = proc_put_char(&buffer, &left, '\t'); |
2362 | sprintf(p, "%lu", convdiv * (*i) / convmul); | 2484 | err = proc_put_long(&buffer, &left, val, false); |
2363 | len = strlen(buf); | 2485 | if (err) |
2364 | if (len > left) | 2486 | break; |
2365 | len = left; | ||
2366 | if(copy_to_user(s, buf, len)) | ||
2367 | return -EFAULT; | ||
2368 | left -= len; | ||
2369 | s += len; | ||
2370 | } | 2487 | } |
2371 | } | 2488 | } |
2372 | 2489 | ||
2373 | if (!write && !first && left) { | 2490 | if (!write && !first && left && !err) |
2374 | if(put_user('\n', s)) | 2491 | err = proc_put_char(&buffer, &left, '\n'); |
2375 | return -EFAULT; | 2492 | if (write && !err) |
2376 | left--, s++; | 2493 | left -= proc_skip_spaces(&kbuf); |
2377 | } | 2494 | free: |
2378 | if (write) { | 2495 | if (write) { |
2379 | while (left) { | 2496 | free_page(page); |
2380 | char c; | 2497 | if (first) |
2381 | if (get_user(c, s++)) | 2498 | return err ? : -EINVAL; |
2382 | return -EFAULT; | ||
2383 | if (!isspace(c)) | ||
2384 | break; | ||
2385 | left--; | ||
2386 | } | ||
2387 | } | 2499 | } |
2388 | if (write && first) | ||
2389 | return -EINVAL; | ||
2390 | *lenp -= left; | 2500 | *lenp -= left; |
2391 | *ppos += *lenp; | 2501 | *ppos += *lenp; |
2392 | return 0; | 2502 | return err; |
2393 | #undef TMPBUFLEN | ||
2394 | } | 2503 | } |
2395 | 2504 | ||
2396 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2505 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
@@ -2451,7 +2560,7 @@ int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | |||
2451 | } | 2560 | } |
2452 | 2561 | ||
2453 | 2562 | ||
2454 | static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | 2563 | static int do_proc_dointvec_jiffies_conv(bool *negp, unsigned long *lvalp, |
2455 | int *valp, | 2564 | int *valp, |
2456 | int write, void *data) | 2565 | int write, void *data) |
2457 | { | 2566 | { |
@@ -2463,10 +2572,10 @@ static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2463 | int val = *valp; | 2572 | int val = *valp; |
2464 | unsigned long lval; | 2573 | unsigned long lval; |
2465 | if (val < 0) { | 2574 | if (val < 0) { |
2466 | *negp = -1; | 2575 | *negp = true; |
2467 | lval = (unsigned long)-val; | 2576 | lval = (unsigned long)-val; |
2468 | } else { | 2577 | } else { |
2469 | *negp = 0; | 2578 | *negp = false; |
2470 | lval = (unsigned long)val; | 2579 | lval = (unsigned long)val; |
2471 | } | 2580 | } |
2472 | *lvalp = lval / HZ; | 2581 | *lvalp = lval / HZ; |
@@ -2474,7 +2583,7 @@ static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2474 | return 0; | 2583 | return 0; |
2475 | } | 2584 | } |
2476 | 2585 | ||
2477 | static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | 2586 | static int do_proc_dointvec_userhz_jiffies_conv(bool *negp, unsigned long *lvalp, |
2478 | int *valp, | 2587 | int *valp, |
2479 | int write, void *data) | 2588 | int write, void *data) |
2480 | { | 2589 | { |
@@ -2486,10 +2595,10 @@ static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2486 | int val = *valp; | 2595 | int val = *valp; |
2487 | unsigned long lval; | 2596 | unsigned long lval; |
2488 | if (val < 0) { | 2597 | if (val < 0) { |
2489 | *negp = -1; | 2598 | *negp = true; |
2490 | lval = (unsigned long)-val; | 2599 | lval = (unsigned long)-val; |
2491 | } else { | 2600 | } else { |
2492 | *negp = 0; | 2601 | *negp = false; |
2493 | lval = (unsigned long)val; | 2602 | lval = (unsigned long)val; |
2494 | } | 2603 | } |
2495 | *lvalp = jiffies_to_clock_t(lval); | 2604 | *lvalp = jiffies_to_clock_t(lval); |
@@ -2497,7 +2606,7 @@ static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2497 | return 0; | 2606 | return 0; |
2498 | } | 2607 | } |
2499 | 2608 | ||
2500 | static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | 2609 | static int do_proc_dointvec_ms_jiffies_conv(bool *negp, unsigned long *lvalp, |
2501 | int *valp, | 2610 | int *valp, |
2502 | int write, void *data) | 2611 | int write, void *data) |
2503 | { | 2612 | { |
@@ -2507,10 +2616,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2507 | int val = *valp; | 2616 | int val = *valp; |
2508 | unsigned long lval; | 2617 | unsigned long lval; |
2509 | if (val < 0) { | 2618 | if (val < 0) { |
2510 | *negp = -1; | 2619 | *negp = true; |
2511 | lval = (unsigned long)-val; | 2620 | lval = (unsigned long)-val; |
2512 | } else { | 2621 | } else { |
2513 | *negp = 0; | 2622 | *negp = false; |
2514 | lval = (unsigned long)val; | 2623 | lval = (unsigned long)val; |
2515 | } | 2624 | } |
2516 | *lvalp = jiffies_to_msecs(lval); | 2625 | *lvalp = jiffies_to_msecs(lval); |
@@ -2607,6 +2716,157 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, | |||
2607 | return 0; | 2716 | return 0; |
2608 | } | 2717 | } |
2609 | 2718 | ||
2719 | /** | ||
2720 | * proc_do_large_bitmap - read/write from/to a large bitmap | ||
2721 | * @table: the sysctl table | ||
2722 | * @write: %TRUE if this is a write to the sysctl file | ||
2723 | * @buffer: the user buffer | ||
2724 | * @lenp: the size of the user buffer | ||
2725 | * @ppos: file position | ||
2726 | * | ||
2727 | * The bitmap is stored at table->data and the bitmap length (in bits) | ||
2728 | * in table->maxlen. | ||
2729 | * | ||
2730 | * We use a range comma separated format (e.g. 1,3-4,10-10) so that | ||
2731 | * large bitmaps may be represented in a compact manner. Writing into | ||
2732 | * the file will clear the bitmap then update it with the given input. | ||
2733 | * | ||
2734 | * Returns 0 on success. | ||
2735 | */ | ||
2736 | int proc_do_large_bitmap(struct ctl_table *table, int write, | ||
2737 | void __user *buffer, size_t *lenp, loff_t *ppos) | ||
2738 | { | ||
2739 | int err = 0; | ||
2740 | bool first = 1; | ||
2741 | size_t left = *lenp; | ||
2742 | unsigned long bitmap_len = table->maxlen; | ||
2743 | unsigned long *bitmap = (unsigned long *) table->data; | ||
2744 | unsigned long *tmp_bitmap = NULL; | ||
2745 | char tr_a[] = { '-', ',', '\n' }, tr_b[] = { ',', '\n', 0 }, c; | ||
2746 | |||
2747 | if (!bitmap_len || !left || (*ppos && !write)) { | ||
2748 | *lenp = 0; | ||
2749 | return 0; | ||
2750 | } | ||
2751 | |||
2752 | if (write) { | ||
2753 | unsigned long page = 0; | ||
2754 | char *kbuf; | ||
2755 | |||
2756 | if (left > PAGE_SIZE - 1) | ||
2757 | left = PAGE_SIZE - 1; | ||
2758 | |||
2759 | page = __get_free_page(GFP_TEMPORARY); | ||
2760 | kbuf = (char *) page; | ||
2761 | if (!kbuf) | ||
2762 | return -ENOMEM; | ||
2763 | if (copy_from_user(kbuf, buffer, left)) { | ||
2764 | free_page(page); | ||
2765 | return -EFAULT; | ||
2766 | } | ||
2767 | kbuf[left] = 0; | ||
2768 | |||
2769 | tmp_bitmap = kzalloc(BITS_TO_LONGS(bitmap_len) * sizeof(unsigned long), | ||
2770 | GFP_KERNEL); | ||
2771 | if (!tmp_bitmap) { | ||
2772 | free_page(page); | ||
2773 | return -ENOMEM; | ||
2774 | } | ||
2775 | proc_skip_char(&kbuf, &left, '\n'); | ||
2776 | while (!err && left) { | ||
2777 | unsigned long val_a, val_b; | ||
2778 | bool neg; | ||
2779 | |||
2780 | err = proc_get_long(&kbuf, &left, &val_a, &neg, tr_a, | ||
2781 | sizeof(tr_a), &c); | ||
2782 | if (err) | ||
2783 | break; | ||
2784 | if (val_a >= bitmap_len || neg) { | ||
2785 | err = -EINVAL; | ||
2786 | break; | ||
2787 | } | ||
2788 | |||
2789 | val_b = val_a; | ||
2790 | if (left) { | ||
2791 | kbuf++; | ||
2792 | left--; | ||
2793 | } | ||
2794 | |||
2795 | if (c == '-') { | ||
2796 | err = proc_get_long(&kbuf, &left, &val_b, | ||
2797 | &neg, tr_b, sizeof(tr_b), | ||
2798 | &c); | ||
2799 | if (err) | ||
2800 | break; | ||
2801 | if (val_b >= bitmap_len || neg || | ||
2802 | val_a > val_b) { | ||
2803 | err = -EINVAL; | ||
2804 | break; | ||
2805 | } | ||
2806 | if (left) { | ||
2807 | kbuf++; | ||
2808 | left--; | ||
2809 | } | ||
2810 | } | ||
2811 | |||
2812 | while (val_a <= val_b) | ||
2813 | set_bit(val_a++, tmp_bitmap); | ||
2814 | |||
2815 | first = 0; | ||
2816 | proc_skip_char(&kbuf, &left, '\n'); | ||
2817 | } | ||
2818 | free_page(page); | ||
2819 | } else { | ||
2820 | unsigned long bit_a, bit_b = 0; | ||
2821 | |||
2822 | while (left) { | ||
2823 | bit_a = find_next_bit(bitmap, bitmap_len, bit_b); | ||
2824 | if (bit_a >= bitmap_len) | ||
2825 | break; | ||
2826 | bit_b = find_next_zero_bit(bitmap, bitmap_len, | ||
2827 | bit_a + 1) - 1; | ||
2828 | |||
2829 | if (!first) { | ||
2830 | err = proc_put_char(&buffer, &left, ','); | ||
2831 | if (err) | ||
2832 | break; | ||
2833 | } | ||
2834 | err = proc_put_long(&buffer, &left, bit_a, false); | ||
2835 | if (err) | ||
2836 | break; | ||
2837 | if (bit_a != bit_b) { | ||
2838 | err = proc_put_char(&buffer, &left, '-'); | ||
2839 | if (err) | ||
2840 | break; | ||
2841 | err = proc_put_long(&buffer, &left, bit_b, false); | ||
2842 | if (err) | ||
2843 | break; | ||
2844 | } | ||
2845 | |||
2846 | first = 0; bit_b++; | ||
2847 | } | ||
2848 | if (!err) | ||
2849 | err = proc_put_char(&buffer, &left, '\n'); | ||
2850 | } | ||
2851 | |||
2852 | if (!err) { | ||
2853 | if (write) { | ||
2854 | if (*ppos) | ||
2855 | bitmap_or(bitmap, bitmap, tmp_bitmap, bitmap_len); | ||
2856 | else | ||
2857 | memcpy(bitmap, tmp_bitmap, | ||
2858 | BITS_TO_LONGS(bitmap_len) * sizeof(unsigned long)); | ||
2859 | } | ||
2860 | kfree(tmp_bitmap); | ||
2861 | *lenp -= left; | ||
2862 | *ppos += *lenp; | ||
2863 | return 0; | ||
2864 | } else { | ||
2865 | kfree(tmp_bitmap); | ||
2866 | return err; | ||
2867 | } | ||
2868 | } | ||
2869 | |||
2610 | #else /* CONFIG_PROC_FS */ | 2870 | #else /* CONFIG_PROC_FS */ |
2611 | 2871 | ||
2612 | int proc_dostring(struct ctl_table *table, int write, | 2872 | int proc_dostring(struct ctl_table *table, int write, |
diff --git a/kernel/sysctl_binary.c b/kernel/sysctl_binary.c index 59030570f5ca..937d31dc8566 100644 --- a/kernel/sysctl_binary.c +++ b/kernel/sysctl_binary.c | |||
@@ -224,7 +224,6 @@ static const struct bin_table bin_net_ipv4_route_table[] = { | |||
224 | { CTL_INT, NET_IPV4_ROUTE_MTU_EXPIRES, "mtu_expires" }, | 224 | { CTL_INT, NET_IPV4_ROUTE_MTU_EXPIRES, "mtu_expires" }, |
225 | { CTL_INT, NET_IPV4_ROUTE_MIN_PMTU, "min_pmtu" }, | 225 | { CTL_INT, NET_IPV4_ROUTE_MIN_PMTU, "min_pmtu" }, |
226 | { CTL_INT, NET_IPV4_ROUTE_MIN_ADVMSS, "min_adv_mss" }, | 226 | { CTL_INT, NET_IPV4_ROUTE_MIN_ADVMSS, "min_adv_mss" }, |
227 | { CTL_INT, NET_IPV4_ROUTE_SECRET_INTERVAL, "secret_interval" }, | ||
228 | {} | 227 | {} |
229 | }; | 228 | }; |
230 | 229 | ||
diff --git a/kernel/time.c b/kernel/time.c index 656dccfe1cbb..50612faa9baf 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -132,12 +132,11 @@ SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, | |||
132 | */ | 132 | */ |
133 | static inline void warp_clock(void) | 133 | static inline void warp_clock(void) |
134 | { | 134 | { |
135 | write_seqlock_irq(&xtime_lock); | 135 | struct timespec delta, adjust; |
136 | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 136 | delta.tv_sec = sys_tz.tz_minuteswest * 60; |
137 | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 137 | delta.tv_nsec = 0; |
138 | update_xtime_cache(0); | 138 | adjust = timespec_add_safe(current_kernel_time(), delta); |
139 | write_sequnlock_irq(&xtime_lock); | 139 | do_settimeofday(&adjust); |
140 | clock_was_set(); | ||
141 | } | 140 | } |
142 | 141 | ||
143 | /* | 142 | /* |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 1f5dde637457..f08e99c1d561 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -625,6 +625,54 @@ static void clocksource_enqueue(struct clocksource *cs) | |||
625 | list_add(&cs->list, entry); | 625 | list_add(&cs->list, entry); |
626 | } | 626 | } |
627 | 627 | ||
628 | |||
629 | /* | ||
630 | * Maximum time we expect to go between ticks. This includes idle | ||
631 | * tickless time. It provides the trade off between selecting a | ||
632 | * mult/shift pair that is very precise but can only handle a short | ||
633 | * period of time, vs. a mult/shift pair that can handle long periods | ||
634 | * of time but isn't as precise. | ||
635 | * | ||
636 | * This is a subsystem constant, and actual hardware limitations | ||
637 | * may override it (ie: clocksources that wrap every 3 seconds). | ||
638 | */ | ||
639 | #define MAX_UPDATE_LENGTH 5 /* Seconds */ | ||
640 | |||
641 | /** | ||
642 | * __clocksource_register_scale - Used to install new clocksources | ||
643 | * @t: clocksource to be registered | ||
644 | * @scale: Scale factor multiplied against freq to get clocksource hz | ||
645 | * @freq: clocksource frequency (cycles per second) divided by scale | ||
646 | * | ||
647 | * Returns -EBUSY if registration fails, zero otherwise. | ||
648 | * | ||
649 | * This *SHOULD NOT* be called directly! Please use the | ||
650 | * clocksource_register_hz() or clocksource_register_khz helper functions. | ||
651 | */ | ||
652 | int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) | ||
653 | { | ||
654 | |||
655 | /* | ||
656 | * Ideally we want to use some of the limits used in | ||
657 | * clocksource_max_deferment, to provide a more informed | ||
658 | * MAX_UPDATE_LENGTH. But for now this just gets the | ||
659 | * register interface working properly. | ||
660 | */ | ||
661 | clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, | ||
662 | NSEC_PER_SEC/scale, | ||
663 | MAX_UPDATE_LENGTH*scale); | ||
664 | cs->max_idle_ns = clocksource_max_deferment(cs); | ||
665 | |||
666 | mutex_lock(&clocksource_mutex); | ||
667 | clocksource_enqueue(cs); | ||
668 | clocksource_select(); | ||
669 | clocksource_enqueue_watchdog(cs); | ||
670 | mutex_unlock(&clocksource_mutex); | ||
671 | return 0; | ||
672 | } | ||
673 | EXPORT_SYMBOL_GPL(__clocksource_register_scale); | ||
674 | |||
675 | |||
628 | /** | 676 | /** |
629 | * clocksource_register - Used to install new clocksources | 677 | * clocksource_register - Used to install new clocksources |
630 | * @t: clocksource to be registered | 678 | * @t: clocksource to be registered |
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7c0f180d6e9d..c63116863a80 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -69,7 +69,7 @@ static s64 time_freq; | |||
69 | /* time at last adjustment (secs): */ | 69 | /* time at last adjustment (secs): */ |
70 | static long time_reftime; | 70 | static long time_reftime; |
71 | 71 | ||
72 | long time_adjust; | 72 | static long time_adjust; |
73 | 73 | ||
74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ | 74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
75 | static s64 ntp_tick_adj; | 75 | static s64 ntp_tick_adj; |
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index 39f6177fafac..caf8d4d4f5c8 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
@@ -165,13 +165,6 @@ struct timespec raw_time; | |||
165 | /* flag for if timekeeping is suspended */ | 165 | /* flag for if timekeeping is suspended */ |
166 | int __read_mostly timekeeping_suspended; | 166 | int __read_mostly timekeeping_suspended; |
167 | 167 | ||
168 | static struct timespec xtime_cache __attribute__ ((aligned (16))); | ||
169 | void update_xtime_cache(u64 nsec) | ||
170 | { | ||
171 | xtime_cache = xtime; | ||
172 | timespec_add_ns(&xtime_cache, nsec); | ||
173 | } | ||
174 | |||
175 | /* must hold xtime_lock */ | 168 | /* must hold xtime_lock */ |
176 | void timekeeping_leap_insert(int leapsecond) | 169 | void timekeeping_leap_insert(int leapsecond) |
177 | { | 170 | { |
@@ -332,8 +325,6 @@ int do_settimeofday(struct timespec *tv) | |||
332 | 325 | ||
333 | xtime = *tv; | 326 | xtime = *tv; |
334 | 327 | ||
335 | update_xtime_cache(0); | ||
336 | |||
337 | timekeeper.ntp_error = 0; | 328 | timekeeper.ntp_error = 0; |
338 | ntp_clear(); | 329 | ntp_clear(); |
339 | 330 | ||
@@ -559,7 +550,6 @@ void __init timekeeping_init(void) | |||
559 | } | 550 | } |
560 | set_normalized_timespec(&wall_to_monotonic, | 551 | set_normalized_timespec(&wall_to_monotonic, |
561 | -boot.tv_sec, -boot.tv_nsec); | 552 | -boot.tv_sec, -boot.tv_nsec); |
562 | update_xtime_cache(0); | ||
563 | total_sleep_time.tv_sec = 0; | 553 | total_sleep_time.tv_sec = 0; |
564 | total_sleep_time.tv_nsec = 0; | 554 | total_sleep_time.tv_nsec = 0; |
565 | write_sequnlock_irqrestore(&xtime_lock, flags); | 555 | write_sequnlock_irqrestore(&xtime_lock, flags); |
@@ -593,7 +583,6 @@ static int timekeeping_resume(struct sys_device *dev) | |||
593 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); | 583 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
594 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); | 584 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
595 | } | 585 | } |
596 | update_xtime_cache(0); | ||
597 | /* re-base the last cycle value */ | 586 | /* re-base the last cycle value */ |
598 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); | 587 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
599 | timekeeper.ntp_error = 0; | 588 | timekeeper.ntp_error = 0; |
@@ -788,7 +777,6 @@ void update_wall_time(void) | |||
788 | { | 777 | { |
789 | struct clocksource *clock; | 778 | struct clocksource *clock; |
790 | cycle_t offset; | 779 | cycle_t offset; |
791 | u64 nsecs; | ||
792 | int shift = 0, maxshift; | 780 | int shift = 0, maxshift; |
793 | 781 | ||
794 | /* Make sure we're fully resumed: */ | 782 | /* Make sure we're fully resumed: */ |
@@ -847,7 +835,9 @@ void update_wall_time(void) | |||
847 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; | 835 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
848 | } | 836 | } |
849 | 837 | ||
850 | /* store full nanoseconds into xtime after rounding it up and | 838 | |
839 | /* | ||
840 | * Store full nanoseconds into xtime after rounding it up and | ||
851 | * add the remainder to the error difference. | 841 | * add the remainder to the error difference. |
852 | */ | 842 | */ |
853 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; | 843 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
@@ -855,8 +845,15 @@ void update_wall_time(void) | |||
855 | timekeeper.ntp_error += timekeeper.xtime_nsec << | 845 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
856 | timekeeper.ntp_error_shift; | 846 | timekeeper.ntp_error_shift; |
857 | 847 | ||
858 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); | 848 | /* |
859 | update_xtime_cache(nsecs); | 849 | * Finally, make sure that after the rounding |
850 | * xtime.tv_nsec isn't larger then NSEC_PER_SEC | ||
851 | */ | ||
852 | if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) { | ||
853 | xtime.tv_nsec -= NSEC_PER_SEC; | ||
854 | xtime.tv_sec++; | ||
855 | second_overflow(); | ||
856 | } | ||
860 | 857 | ||
861 | /* check to see if there is a new clocksource to use */ | 858 | /* check to see if there is a new clocksource to use */ |
862 | update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); | 859 | update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult); |
@@ -896,13 +893,13 @@ EXPORT_SYMBOL_GPL(monotonic_to_bootbased); | |||
896 | 893 | ||
897 | unsigned long get_seconds(void) | 894 | unsigned long get_seconds(void) |
898 | { | 895 | { |
899 | return xtime_cache.tv_sec; | 896 | return xtime.tv_sec; |
900 | } | 897 | } |
901 | EXPORT_SYMBOL(get_seconds); | 898 | EXPORT_SYMBOL(get_seconds); |
902 | 899 | ||
903 | struct timespec __current_kernel_time(void) | 900 | struct timespec __current_kernel_time(void) |
904 | { | 901 | { |
905 | return xtime_cache; | 902 | return xtime; |
906 | } | 903 | } |
907 | 904 | ||
908 | struct timespec current_kernel_time(void) | 905 | struct timespec current_kernel_time(void) |
@@ -913,7 +910,7 @@ struct timespec current_kernel_time(void) | |||
913 | do { | 910 | do { |
914 | seq = read_seqbegin(&xtime_lock); | 911 | seq = read_seqbegin(&xtime_lock); |
915 | 912 | ||
916 | now = xtime_cache; | 913 | now = xtime; |
917 | } while (read_seqretry(&xtime_lock, seq)); | 914 | } while (read_seqretry(&xtime_lock, seq)); |
918 | 915 | ||
919 | return now; | 916 | return now; |
@@ -928,7 +925,7 @@ struct timespec get_monotonic_coarse(void) | |||
928 | do { | 925 | do { |
929 | seq = read_seqbegin(&xtime_lock); | 926 | seq = read_seqbegin(&xtime_lock); |
930 | 927 | ||
931 | now = xtime_cache; | 928 | now = xtime; |
932 | mono = wall_to_monotonic; | 929 | mono = wall_to_monotonic; |
933 | } while (read_seqretry(&xtime_lock, seq)); | 930 | } while (read_seqretry(&xtime_lock, seq)); |
934 | 931 | ||
diff --git a/kernel/timer.c b/kernel/timer.c index aeb6a54f2771..9199f3c52215 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -319,6 +319,24 @@ unsigned long round_jiffies_up_relative(unsigned long j) | |||
319 | } | 319 | } |
320 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | 320 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); |
321 | 321 | ||
322 | /** | ||
323 | * set_timer_slack - set the allowed slack for a timer | ||
324 | * @slack_hz: the amount of time (in jiffies) allowed for rounding | ||
325 | * | ||
326 | * Set the amount of time, in jiffies, that a certain timer has | ||
327 | * in terms of slack. By setting this value, the timer subsystem | ||
328 | * will schedule the actual timer somewhere between | ||
329 | * the time mod_timer() asks for, and that time plus the slack. | ||
330 | * | ||
331 | * By setting the slack to -1, a percentage of the delay is used | ||
332 | * instead. | ||
333 | */ | ||
334 | void set_timer_slack(struct timer_list *timer, int slack_hz) | ||
335 | { | ||
336 | timer->slack = slack_hz; | ||
337 | } | ||
338 | EXPORT_SYMBOL_GPL(set_timer_slack); | ||
339 | |||
322 | 340 | ||
323 | static inline void set_running_timer(struct tvec_base *base, | 341 | static inline void set_running_timer(struct tvec_base *base, |
324 | struct timer_list *timer) | 342 | struct timer_list *timer) |
@@ -550,6 +568,7 @@ static void __init_timer(struct timer_list *timer, | |||
550 | { | 568 | { |
551 | timer->entry.next = NULL; | 569 | timer->entry.next = NULL; |
552 | timer->base = __raw_get_cpu_var(tvec_bases); | 570 | timer->base = __raw_get_cpu_var(tvec_bases); |
571 | timer->slack = -1; | ||
553 | #ifdef CONFIG_TIMER_STATS | 572 | #ifdef CONFIG_TIMER_STATS |
554 | timer->start_site = NULL; | 573 | timer->start_site = NULL; |
555 | timer->start_pid = -1; | 574 | timer->start_pid = -1; |
@@ -715,6 +734,41 @@ int mod_timer_pending(struct timer_list *timer, unsigned long expires) | |||
715 | } | 734 | } |
716 | EXPORT_SYMBOL(mod_timer_pending); | 735 | EXPORT_SYMBOL(mod_timer_pending); |
717 | 736 | ||
737 | /* | ||
738 | * Decide where to put the timer while taking the slack into account | ||
739 | * | ||
740 | * Algorithm: | ||
741 | * 1) calculate the maximum (absolute) time | ||
742 | * 2) calculate the highest bit where the expires and new max are different | ||
743 | * 3) use this bit to make a mask | ||
744 | * 4) use the bitmask to round down the maximum time, so that all last | ||
745 | * bits are zeros | ||
746 | */ | ||
747 | static inline | ||
748 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | ||
749 | { | ||
750 | unsigned long expires_limit, mask; | ||
751 | int bit; | ||
752 | |||
753 | expires_limit = expires + timer->slack; | ||
754 | |||
755 | if (timer->slack < 0) /* auto slack: use 0.4% */ | ||
756 | expires_limit = expires + (expires - jiffies)/256; | ||
757 | |||
758 | mask = expires ^ expires_limit; | ||
759 | |||
760 | if (mask == 0) | ||
761 | return expires; | ||
762 | |||
763 | bit = find_last_bit(&mask, BITS_PER_LONG); | ||
764 | |||
765 | mask = (1 << bit) - 1; | ||
766 | |||
767 | expires_limit = expires_limit & ~(mask); | ||
768 | |||
769 | return expires_limit; | ||
770 | } | ||
771 | |||
718 | /** | 772 | /** |
719 | * mod_timer - modify a timer's timeout | 773 | * mod_timer - modify a timer's timeout |
720 | * @timer: the timer to be modified | 774 | * @timer: the timer to be modified |
@@ -745,6 +799,8 @@ int mod_timer(struct timer_list *timer, unsigned long expires) | |||
745 | if (timer_pending(timer) && timer->expires == expires) | 799 | if (timer_pending(timer) && timer->expires == expires) |
746 | return 1; | 800 | return 1; |
747 | 801 | ||
802 | expires = apply_slack(timer, expires); | ||
803 | |||
748 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); | 804 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
749 | } | 805 | } |
750 | EXPORT_SYMBOL(mod_timer); | 806 | EXPORT_SYMBOL(mod_timer); |
@@ -955,6 +1011,47 @@ static int cascade(struct tvec_base *base, struct tvec *tv, int index) | |||
955 | return index; | 1011 | return index; |
956 | } | 1012 | } |
957 | 1013 | ||
1014 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), | ||
1015 | unsigned long data) | ||
1016 | { | ||
1017 | int preempt_count = preempt_count(); | ||
1018 | |||
1019 | #ifdef CONFIG_LOCKDEP | ||
1020 | /* | ||
1021 | * It is permissible to free the timer from inside the | ||
1022 | * function that is called from it, this we need to take into | ||
1023 | * account for lockdep too. To avoid bogus "held lock freed" | ||
1024 | * warnings as well as problems when looking into | ||
1025 | * timer->lockdep_map, make a copy and use that here. | ||
1026 | */ | ||
1027 | struct lockdep_map lockdep_map = timer->lockdep_map; | ||
1028 | #endif | ||
1029 | /* | ||
1030 | * Couple the lock chain with the lock chain at | ||
1031 | * del_timer_sync() by acquiring the lock_map around the fn() | ||
1032 | * call here and in del_timer_sync(). | ||
1033 | */ | ||
1034 | lock_map_acquire(&lockdep_map); | ||
1035 | |||
1036 | trace_timer_expire_entry(timer); | ||
1037 | fn(data); | ||
1038 | trace_timer_expire_exit(timer); | ||
1039 | |||
1040 | lock_map_release(&lockdep_map); | ||
1041 | |||
1042 | if (preempt_count != preempt_count()) { | ||
1043 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", | ||
1044 | fn, preempt_count, preempt_count()); | ||
1045 | /* | ||
1046 | * Restore the preempt count. That gives us a decent | ||
1047 | * chance to survive and extract information. If the | ||
1048 | * callback kept a lock held, bad luck, but not worse | ||
1049 | * than the BUG() we had. | ||
1050 | */ | ||
1051 | preempt_count() = preempt_count; | ||
1052 | } | ||
1053 | } | ||
1054 | |||
958 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) | 1055 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
959 | 1056 | ||
960 | /** | 1057 | /** |
@@ -998,45 +1095,7 @@ static inline void __run_timers(struct tvec_base *base) | |||
998 | detach_timer(timer, 1); | 1095 | detach_timer(timer, 1); |
999 | 1096 | ||
1000 | spin_unlock_irq(&base->lock); | 1097 | spin_unlock_irq(&base->lock); |
1001 | { | 1098 | call_timer_fn(timer, fn, data); |
1002 | int preempt_count = preempt_count(); | ||
1003 | |||
1004 | #ifdef CONFIG_LOCKDEP | ||
1005 | /* | ||
1006 | * It is permissible to free the timer from | ||
1007 | * inside the function that is called from | ||
1008 | * it, this we need to take into account for | ||
1009 | * lockdep too. To avoid bogus "held lock | ||
1010 | * freed" warnings as well as problems when | ||
1011 | * looking into timer->lockdep_map, make a | ||
1012 | * copy and use that here. | ||
1013 | */ | ||
1014 | struct lockdep_map lockdep_map = | ||
1015 | timer->lockdep_map; | ||
1016 | #endif | ||
1017 | /* | ||
1018 | * Couple the lock chain with the lock chain at | ||
1019 | * del_timer_sync() by acquiring the lock_map | ||
1020 | * around the fn() call here and in | ||
1021 | * del_timer_sync(). | ||
1022 | */ | ||
1023 | lock_map_acquire(&lockdep_map); | ||
1024 | |||
1025 | trace_timer_expire_entry(timer); | ||
1026 | fn(data); | ||
1027 | trace_timer_expire_exit(timer); | ||
1028 | |||
1029 | lock_map_release(&lockdep_map); | ||
1030 | |||
1031 | if (preempt_count != preempt_count()) { | ||
1032 | printk(KERN_ERR "huh, entered %p " | ||
1033 | "with preempt_count %08x, exited" | ||
1034 | " with %08x?\n", | ||
1035 | fn, preempt_count, | ||
1036 | preempt_count()); | ||
1037 | BUG(); | ||
1038 | } | ||
1039 | } | ||
1040 | spin_lock_irq(&base->lock); | 1099 | spin_lock_irq(&base->lock); |
1041 | } | 1100 | } |
1042 | } | 1101 | } |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 756d7283318b..8a76339a9e65 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -3309,12 +3309,12 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3309 | size_t len, | 3309 | size_t len, |
3310 | unsigned int flags) | 3310 | unsigned int flags) |
3311 | { | 3311 | { |
3312 | struct page *pages[PIPE_BUFFERS]; | 3312 | struct page *pages_def[PIPE_DEF_BUFFERS]; |
3313 | struct partial_page partial[PIPE_BUFFERS]; | 3313 | struct partial_page partial_def[PIPE_DEF_BUFFERS]; |
3314 | struct trace_iterator *iter = filp->private_data; | 3314 | struct trace_iterator *iter = filp->private_data; |
3315 | struct splice_pipe_desc spd = { | 3315 | struct splice_pipe_desc spd = { |
3316 | .pages = pages, | 3316 | .pages = pages_def, |
3317 | .partial = partial, | 3317 | .partial = partial_def, |
3318 | .nr_pages = 0, /* This gets updated below. */ | 3318 | .nr_pages = 0, /* This gets updated below. */ |
3319 | .flags = flags, | 3319 | .flags = flags, |
3320 | .ops = &tracing_pipe_buf_ops, | 3320 | .ops = &tracing_pipe_buf_ops, |
@@ -3325,6 +3325,9 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3325 | size_t rem; | 3325 | size_t rem; |
3326 | unsigned int i; | 3326 | unsigned int i; |
3327 | 3327 | ||
3328 | if (splice_grow_spd(pipe, &spd)) | ||
3329 | return -ENOMEM; | ||
3330 | |||
3328 | /* copy the tracer to avoid using a global lock all around */ | 3331 | /* copy the tracer to avoid using a global lock all around */ |
3329 | mutex_lock(&trace_types_lock); | 3332 | mutex_lock(&trace_types_lock); |
3330 | if (unlikely(old_tracer != current_trace && current_trace)) { | 3333 | if (unlikely(old_tracer != current_trace && current_trace)) { |
@@ -3355,23 +3358,23 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3355 | trace_access_lock(iter->cpu_file); | 3358 | trace_access_lock(iter->cpu_file); |
3356 | 3359 | ||
3357 | /* Fill as many pages as possible. */ | 3360 | /* Fill as many pages as possible. */ |
3358 | for (i = 0, rem = len; i < PIPE_BUFFERS && rem; i++) { | 3361 | for (i = 0, rem = len; i < pipe->buffers && rem; i++) { |
3359 | pages[i] = alloc_page(GFP_KERNEL); | 3362 | spd.pages[i] = alloc_page(GFP_KERNEL); |
3360 | if (!pages[i]) | 3363 | if (!spd.pages[i]) |
3361 | break; | 3364 | break; |
3362 | 3365 | ||
3363 | rem = tracing_fill_pipe_page(rem, iter); | 3366 | rem = tracing_fill_pipe_page(rem, iter); |
3364 | 3367 | ||
3365 | /* Copy the data into the page, so we can start over. */ | 3368 | /* Copy the data into the page, so we can start over. */ |
3366 | ret = trace_seq_to_buffer(&iter->seq, | 3369 | ret = trace_seq_to_buffer(&iter->seq, |
3367 | page_address(pages[i]), | 3370 | page_address(spd.pages[i]), |
3368 | iter->seq.len); | 3371 | iter->seq.len); |
3369 | if (ret < 0) { | 3372 | if (ret < 0) { |
3370 | __free_page(pages[i]); | 3373 | __free_page(spd.pages[i]); |
3371 | break; | 3374 | break; |
3372 | } | 3375 | } |
3373 | partial[i].offset = 0; | 3376 | spd.partial[i].offset = 0; |
3374 | partial[i].len = iter->seq.len; | 3377 | spd.partial[i].len = iter->seq.len; |
3375 | 3378 | ||
3376 | trace_seq_init(&iter->seq); | 3379 | trace_seq_init(&iter->seq); |
3377 | } | 3380 | } |
@@ -3382,12 +3385,14 @@ static ssize_t tracing_splice_read_pipe(struct file *filp, | |||
3382 | 3385 | ||
3383 | spd.nr_pages = i; | 3386 | spd.nr_pages = i; |
3384 | 3387 | ||
3385 | return splice_to_pipe(pipe, &spd); | 3388 | ret = splice_to_pipe(pipe, &spd); |
3389 | out: | ||
3390 | splice_shrink_spd(pipe, &spd); | ||
3391 | return ret; | ||
3386 | 3392 | ||
3387 | out_err: | 3393 | out_err: |
3388 | mutex_unlock(&iter->mutex); | 3394 | mutex_unlock(&iter->mutex); |
3389 | 3395 | goto out; | |
3390 | return ret; | ||
3391 | } | 3396 | } |
3392 | 3397 | ||
3393 | static ssize_t | 3398 | static ssize_t |
@@ -3786,11 +3791,11 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3786 | unsigned int flags) | 3791 | unsigned int flags) |
3787 | { | 3792 | { |
3788 | struct ftrace_buffer_info *info = file->private_data; | 3793 | struct ftrace_buffer_info *info = file->private_data; |
3789 | struct partial_page partial[PIPE_BUFFERS]; | 3794 | struct partial_page partial_def[PIPE_DEF_BUFFERS]; |
3790 | struct page *pages[PIPE_BUFFERS]; | 3795 | struct page *pages_def[PIPE_DEF_BUFFERS]; |
3791 | struct splice_pipe_desc spd = { | 3796 | struct splice_pipe_desc spd = { |
3792 | .pages = pages, | 3797 | .pages = pages_def, |
3793 | .partial = partial, | 3798 | .partial = partial_def, |
3794 | .flags = flags, | 3799 | .flags = flags, |
3795 | .ops = &buffer_pipe_buf_ops, | 3800 | .ops = &buffer_pipe_buf_ops, |
3796 | .spd_release = buffer_spd_release, | 3801 | .spd_release = buffer_spd_release, |
@@ -3799,22 +3804,28 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3799 | int entries, size, i; | 3804 | int entries, size, i; |
3800 | size_t ret; | 3805 | size_t ret; |
3801 | 3806 | ||
3807 | if (splice_grow_spd(pipe, &spd)) | ||
3808 | return -ENOMEM; | ||
3809 | |||
3802 | if (*ppos & (PAGE_SIZE - 1)) { | 3810 | if (*ppos & (PAGE_SIZE - 1)) { |
3803 | WARN_ONCE(1, "Ftrace: previous read must page-align\n"); | 3811 | WARN_ONCE(1, "Ftrace: previous read must page-align\n"); |
3804 | return -EINVAL; | 3812 | ret = -EINVAL; |
3813 | goto out; | ||
3805 | } | 3814 | } |
3806 | 3815 | ||
3807 | if (len & (PAGE_SIZE - 1)) { | 3816 | if (len & (PAGE_SIZE - 1)) { |
3808 | WARN_ONCE(1, "Ftrace: splice_read should page-align\n"); | 3817 | WARN_ONCE(1, "Ftrace: splice_read should page-align\n"); |
3809 | if (len < PAGE_SIZE) | 3818 | if (len < PAGE_SIZE) { |
3810 | return -EINVAL; | 3819 | ret = -EINVAL; |
3820 | goto out; | ||
3821 | } | ||
3811 | len &= PAGE_MASK; | 3822 | len &= PAGE_MASK; |
3812 | } | 3823 | } |
3813 | 3824 | ||
3814 | trace_access_lock(info->cpu); | 3825 | trace_access_lock(info->cpu); |
3815 | entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); | 3826 | entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); |
3816 | 3827 | ||
3817 | for (i = 0; i < PIPE_BUFFERS && len && entries; i++, len -= PAGE_SIZE) { | 3828 | for (i = 0; i < pipe->buffers && len && entries; i++, len -= PAGE_SIZE) { |
3818 | struct page *page; | 3829 | struct page *page; |
3819 | int r; | 3830 | int r; |
3820 | 3831 | ||
@@ -3869,11 +3880,12 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos, | |||
3869 | else | 3880 | else |
3870 | ret = 0; | 3881 | ret = 0; |
3871 | /* TODO: block */ | 3882 | /* TODO: block */ |
3872 | return ret; | 3883 | goto out; |
3873 | } | 3884 | } |
3874 | 3885 | ||
3875 | ret = splice_to_pipe(pipe, &spd); | 3886 | ret = splice_to_pipe(pipe, &spd); |
3876 | 3887 | splice_shrink_spd(pipe, &spd); | |
3888 | out: | ||
3877 | return ret; | 3889 | return ret; |
3878 | } | 3890 | } |
3879 | 3891 | ||
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index 2404c129a8c9..ab13d7008061 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
@@ -209,6 +209,7 @@ int trace_seq_putc(struct trace_seq *s, unsigned char c) | |||
209 | 209 | ||
210 | return 1; | 210 | return 1; |
211 | } | 211 | } |
212 | EXPORT_SYMBOL(trace_seq_putc); | ||
212 | 213 | ||
213 | int trace_seq_putmem(struct trace_seq *s, const void *mem, size_t len) | 214 | int trace_seq_putmem(struct trace_seq *s, const void *mem, size_t len) |
214 | { | 215 | { |
@@ -355,6 +356,21 @@ ftrace_print_symbols_seq(struct trace_seq *p, unsigned long val, | |||
355 | } | 356 | } |
356 | EXPORT_SYMBOL(ftrace_print_symbols_seq); | 357 | EXPORT_SYMBOL(ftrace_print_symbols_seq); |
357 | 358 | ||
359 | const char * | ||
360 | ftrace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int buf_len) | ||
361 | { | ||
362 | int i; | ||
363 | const char *ret = p->buffer + p->len; | ||
364 | |||
365 | for (i = 0; i < buf_len; i++) | ||
366 | trace_seq_printf(p, "%s%2.2x", i == 0 ? "" : " ", buf[i]); | ||
367 | |||
368 | trace_seq_putc(p, 0); | ||
369 | |||
370 | return ret; | ||
371 | } | ||
372 | EXPORT_SYMBOL(ftrace_print_hex_seq); | ||
373 | |||
358 | #ifdef CONFIG_KRETPROBES | 374 | #ifdef CONFIG_KRETPROBES |
359 | static inline const char *kretprobed(const char *name) | 375 | static inline const char *kretprobed(const char *name) |
360 | { | 376 | { |
diff --git a/kernel/user_namespace.c b/kernel/user_namespace.c index 076c7c8215b0..b2d70d38dff4 100644 --- a/kernel/user_namespace.c +++ b/kernel/user_namespace.c | |||
@@ -54,8 +54,8 @@ int create_user_ns(struct cred *new) | |||
54 | #endif | 54 | #endif |
55 | /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ | 55 | /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ |
56 | 56 | ||
57 | /* alloc_uid() incremented the userns refcount. Just set it to 1 */ | 57 | /* root_user holds a reference to ns, our reference can be dropped */ |
58 | kref_set(&ns->kref, 1); | 58 | put_user_ns(ns); |
59 | 59 | ||
60 | return 0; | 60 | return 0; |
61 | } | 61 | } |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 5bfb213984b2..77dabbf64b8f 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -229,6 +229,16 @@ static inline void set_wq_data(struct work_struct *work, | |||
229 | atomic_long_set(&work->data, new); | 229 | atomic_long_set(&work->data, new); |
230 | } | 230 | } |
231 | 231 | ||
232 | /* | ||
233 | * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued. | ||
234 | */ | ||
235 | static inline void clear_wq_data(struct work_struct *work) | ||
236 | { | ||
237 | unsigned long flags = *work_data_bits(work) & | ||
238 | (1UL << WORK_STRUCT_STATIC); | ||
239 | atomic_long_set(&work->data, flags); | ||
240 | } | ||
241 | |||
232 | static inline | 242 | static inline |
233 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 243 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) |
234 | { | 244 | { |
@@ -671,7 +681,7 @@ static int __cancel_work_timer(struct work_struct *work, | |||
671 | wait_on_work(work); | 681 | wait_on_work(work); |
672 | } while (unlikely(ret < 0)); | 682 | } while (unlikely(ret < 0)); |
673 | 683 | ||
674 | work_clear_pending(work); | 684 | clear_wq_data(work); |
675 | return ret; | 685 | return ret; |
676 | } | 686 | } |
677 | 687 | ||
@@ -845,6 +855,30 @@ int schedule_on_each_cpu(work_func_t func) | |||
845 | return 0; | 855 | return 0; |
846 | } | 856 | } |
847 | 857 | ||
858 | /** | ||
859 | * flush_scheduled_work - ensure that any scheduled work has run to completion. | ||
860 | * | ||
861 | * Forces execution of the kernel-global workqueue and blocks until its | ||
862 | * completion. | ||
863 | * | ||
864 | * Think twice before calling this function! It's very easy to get into | ||
865 | * trouble if you don't take great care. Either of the following situations | ||
866 | * will lead to deadlock: | ||
867 | * | ||
868 | * One of the work items currently on the workqueue needs to acquire | ||
869 | * a lock held by your code or its caller. | ||
870 | * | ||
871 | * Your code is running in the context of a work routine. | ||
872 | * | ||
873 | * They will be detected by lockdep when they occur, but the first might not | ||
874 | * occur very often. It depends on what work items are on the workqueue and | ||
875 | * what locks they need, which you have no control over. | ||
876 | * | ||
877 | * In most situations flushing the entire workqueue is overkill; you merely | ||
878 | * need to know that a particular work item isn't queued and isn't running. | ||
879 | * In such cases you should use cancel_delayed_work_sync() or | ||
880 | * cancel_work_sync() instead. | ||
881 | */ | ||
848 | void flush_scheduled_work(void) | 882 | void flush_scheduled_work(void) |
849 | { | 883 | { |
850 | flush_workqueue(keventd_wq); | 884 | flush_workqueue(keventd_wq); |