aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/acct.c2
-rw-r--r--kernel/auditsc.c9
-rw-r--r--kernel/cgroup.c9
-rw-r--r--kernel/compat.c111
-rw-r--r--kernel/cpu.c24
-rw-r--r--kernel/cpuset.c351
-rw-r--r--kernel/dma-coherent.c2
-rw-r--r--kernel/dma.c2
-rw-r--r--kernel/exit.c40
-rw-r--r--kernel/fork.c97
-rw-r--r--kernel/hrtimer.c110
-rw-r--r--kernel/irq/manage.c9
-rw-r--r--kernel/itimer.c33
-rw-r--r--kernel/kallsyms.c1
-rw-r--r--kernel/kexec.c8
-rw-r--r--kernel/kgdb.c13
-rw-r--r--kernel/kmod.c67
-rw-r--r--kernel/kprobes.c2
-rw-r--r--kernel/ksysfs.c35
-rw-r--r--kernel/module.c56
-rw-r--r--kernel/panic.c67
-rw-r--r--kernel/posix-cpu-timers.c512
-rw-r--r--kernel/posix-timers.c155
-rw-r--r--kernel/power/disk.c11
-rw-r--r--kernel/power/main.c7
-rw-r--r--kernel/power/user.c10
-rw-r--r--kernel/printk.c42
-rw-r--r--kernel/profile.c41
-rw-r--r--kernel/rcuclassic.c337
-rw-r--r--kernel/rcupreempt.c8
-rw-r--r--kernel/rcupreempt_trace.c7
-rw-r--r--kernel/resource.c150
-rw-r--r--kernel/sched.c427
-rw-r--r--kernel/sched_clock.c6
-rw-r--r--kernel/sched_debug.c2
-rw-r--r--kernel/sched_fair.c235
-rw-r--r--kernel/sched_features.h1
-rw-r--r--kernel/sched_idletask.c6
-rw-r--r--kernel/sched_rt.c62
-rw-r--r--kernel/sched_stats.h86
-rw-r--r--kernel/signal.c8
-rw-r--r--kernel/softirq.c152
-rw-r--r--kernel/softlockup.c2
-rw-r--r--kernel/sys.c113
-rw-r--r--kernel/sys_ni.c6
-rw-r--r--kernel/sysctl.c123
-rw-r--r--kernel/time/Kconfig1
-rw-r--r--kernel/time/clockevents.c15
-rw-r--r--kernel/time/clocksource.c3
-rw-r--r--kernel/time/jiffies.c1
-rw-r--r--kernel/time/ntp.c2
-rw-r--r--kernel/time/tick-broadcast.c112
-rw-r--r--kernel/time/tick-common.c15
-rw-r--r--kernel/time/tick-internal.h13
-rw-r--r--kernel/time/tick-oneshot.c44
-rw-r--r--kernel/time/tick-sched.c119
-rw-r--r--kernel/time/timekeeping.c113
-rw-r--r--kernel/time/timer_list.c20
-rw-r--r--kernel/timer.c12
-rw-r--r--kernel/trace/trace_sysprof.c2
-rw-r--r--kernel/user.c4
-rw-r--r--kernel/utsname_sysctl.c5
-rw-r--r--kernel/wait.c14
-rw-r--r--kernel/workqueue.c2
64 files changed, 2542 insertions, 1512 deletions
diff --git a/kernel/acct.c b/kernel/acct.c
index dd68b9059418..f6006a60df5d 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -548,7 +548,7 @@ static void do_acct_process(struct bsd_acct_struct *acct,
548#endif 548#endif
549 549
550 spin_lock_irq(&current->sighand->siglock); 550 spin_lock_irq(&current->sighand->siglock);
551 tty = current->signal->tty; 551 tty = current->signal->tty; /* Safe as we hold the siglock */
552 ac.ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0; 552 ac.ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0;
553 ac.ac_utime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_utime))); 553 ac.ac_utime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_utime)));
554 ac.ac_stime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_stime))); 554 ac.ac_stime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_stime)));
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index 59cedfb040e7..cf5bc2f5f9c3 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -246,8 +246,8 @@ static int audit_match_perm(struct audit_context *ctx, int mask)
246 unsigned n; 246 unsigned n;
247 if (unlikely(!ctx)) 247 if (unlikely(!ctx))
248 return 0; 248 return 0;
249
250 n = ctx->major; 249 n = ctx->major;
250
251 switch (audit_classify_syscall(ctx->arch, n)) { 251 switch (audit_classify_syscall(ctx->arch, n)) {
252 case 0: /* native */ 252 case 0: /* native */
253 if ((mask & AUDIT_PERM_WRITE) && 253 if ((mask & AUDIT_PERM_WRITE) &&
@@ -1204,13 +1204,13 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts
1204 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1204 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1205 context->return_code); 1205 context->return_code);
1206 1206
1207 mutex_lock(&tty_mutex); 1207 spin_lock_irq(&tsk->sighand->siglock);
1208 read_lock(&tasklist_lock);
1209 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1208 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1210 tty = tsk->signal->tty->name; 1209 tty = tsk->signal->tty->name;
1211 else 1210 else
1212 tty = "(none)"; 1211 tty = "(none)";
1213 read_unlock(&tasklist_lock); 1212 spin_unlock_irq(&tsk->sighand->siglock);
1213
1214 audit_log_format(ab, 1214 audit_log_format(ab,
1215 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1215 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1216 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1216 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
@@ -1230,7 +1230,6 @@ static void audit_log_exit(struct audit_context *context, struct task_struct *ts
1230 context->egid, context->sgid, context->fsgid, tty, 1230 context->egid, context->sgid, context->fsgid, tty,
1231 tsk->sessionid); 1231 tsk->sessionid);
1232 1232
1233 mutex_unlock(&tty_mutex);
1234 1233
1235 audit_log_task_info(ab, tsk); 1234 audit_log_task_info(ab, tsk);
1236 if (context->filterkey) { 1235 if (context->filterkey) {
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 13932abde159..8c6e1c17e6d3 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -2735,21 +2735,24 @@ void cgroup_fork_callbacks(struct task_struct *child)
2735 * Called on every change to mm->owner. mm_init_owner() does not 2735 * Called on every change to mm->owner. mm_init_owner() does not
2736 * invoke this routine, since it assigns the mm->owner the first time 2736 * invoke this routine, since it assigns the mm->owner the first time
2737 * and does not change it. 2737 * and does not change it.
2738 *
2739 * The callbacks are invoked with mmap_sem held in read mode.
2738 */ 2740 */
2739void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new) 2741void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2740{ 2742{
2741 struct cgroup *oldcgrp, *newcgrp; 2743 struct cgroup *oldcgrp, *newcgrp = NULL;
2742 2744
2743 if (need_mm_owner_callback) { 2745 if (need_mm_owner_callback) {
2744 int i; 2746 int i;
2745 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 2747 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2746 struct cgroup_subsys *ss = subsys[i]; 2748 struct cgroup_subsys *ss = subsys[i];
2747 oldcgrp = task_cgroup(old, ss->subsys_id); 2749 oldcgrp = task_cgroup(old, ss->subsys_id);
2748 newcgrp = task_cgroup(new, ss->subsys_id); 2750 if (new)
2751 newcgrp = task_cgroup(new, ss->subsys_id);
2749 if (oldcgrp == newcgrp) 2752 if (oldcgrp == newcgrp)
2750 continue; 2753 continue;
2751 if (ss->mm_owner_changed) 2754 if (ss->mm_owner_changed)
2752 ss->mm_owner_changed(ss, oldcgrp, newcgrp); 2755 ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
2753 } 2756 }
2754 } 2757 }
2755} 2758}
diff --git a/kernel/compat.c b/kernel/compat.c
index 32c254a8ab9a..8eafe3eb50d9 100644
--- a/kernel/compat.c
+++ b/kernel/compat.c
@@ -23,9 +23,68 @@
23#include <linux/timex.h> 23#include <linux/timex.h>
24#include <linux/migrate.h> 24#include <linux/migrate.h>
25#include <linux/posix-timers.h> 25#include <linux/posix-timers.h>
26#include <linux/times.h>
26 27
27#include <asm/uaccess.h> 28#include <asm/uaccess.h>
28 29
30/*
31 * Note that the native side is already converted to a timespec, because
32 * that's what we want anyway.
33 */
34static int compat_get_timeval(struct timespec *o,
35 struct compat_timeval __user *i)
36{
37 long usec;
38
39 if (get_user(o->tv_sec, &i->tv_sec) ||
40 get_user(usec, &i->tv_usec))
41 return -EFAULT;
42 o->tv_nsec = usec * 1000;
43 return 0;
44}
45
46static int compat_put_timeval(struct compat_timeval __user *o,
47 struct timeval *i)
48{
49 return (put_user(i->tv_sec, &o->tv_sec) ||
50 put_user(i->tv_usec, &o->tv_usec)) ? -EFAULT : 0;
51}
52
53asmlinkage long compat_sys_gettimeofday(struct compat_timeval __user *tv,
54 struct timezone __user *tz)
55{
56 if (tv) {
57 struct timeval ktv;
58 do_gettimeofday(&ktv);
59 if (compat_put_timeval(tv, &ktv))
60 return -EFAULT;
61 }
62 if (tz) {
63 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
64 return -EFAULT;
65 }
66
67 return 0;
68}
69
70asmlinkage long compat_sys_settimeofday(struct compat_timeval __user *tv,
71 struct timezone __user *tz)
72{
73 struct timespec kts;
74 struct timezone ktz;
75
76 if (tv) {
77 if (compat_get_timeval(&kts, tv))
78 return -EFAULT;
79 }
80 if (tz) {
81 if (copy_from_user(&ktz, tz, sizeof(ktz)))
82 return -EFAULT;
83 }
84
85 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
86}
87
29int get_compat_timespec(struct timespec *ts, const struct compat_timespec __user *cts) 88int get_compat_timespec(struct timespec *ts, const struct compat_timespec __user *cts)
30{ 89{
31 return (!access_ok(VERIFY_READ, cts, sizeof(*cts)) || 90 return (!access_ok(VERIFY_READ, cts, sizeof(*cts)) ||
@@ -150,49 +209,23 @@ asmlinkage long compat_sys_setitimer(int which,
150 return 0; 209 return 0;
151} 210}
152 211
212static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
213{
214 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
215}
216
153asmlinkage long compat_sys_times(struct compat_tms __user *tbuf) 217asmlinkage long compat_sys_times(struct compat_tms __user *tbuf)
154{ 218{
155 /*
156 * In the SMP world we might just be unlucky and have one of
157 * the times increment as we use it. Since the value is an
158 * atomically safe type this is just fine. Conceptually its
159 * as if the syscall took an instant longer to occur.
160 */
161 if (tbuf) { 219 if (tbuf) {
220 struct tms tms;
162 struct compat_tms tmp; 221 struct compat_tms tmp;
163 struct task_struct *tsk = current; 222
164 struct task_struct *t; 223 do_sys_times(&tms);
165 cputime_t utime, stime, cutime, cstime; 224 /* Convert our struct tms to the compat version. */
166 225 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
167 read_lock(&tasklist_lock); 226 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
168 utime = tsk->signal->utime; 227 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
169 stime = tsk->signal->stime; 228 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
170 t = tsk;
171 do {
172 utime = cputime_add(utime, t->utime);
173 stime = cputime_add(stime, t->stime);
174 t = next_thread(t);
175 } while (t != tsk);
176
177 /*
178 * While we have tasklist_lock read-locked, no dying thread
179 * can be updating current->signal->[us]time. Instead,
180 * we got their counts included in the live thread loop.
181 * However, another thread can come in right now and
182 * do a wait call that updates current->signal->c[us]time.
183 * To make sure we always see that pair updated atomically,
184 * we take the siglock around fetching them.
185 */
186 spin_lock_irq(&tsk->sighand->siglock);
187 cutime = tsk->signal->cutime;
188 cstime = tsk->signal->cstime;
189 spin_unlock_irq(&tsk->sighand->siglock);
190 read_unlock(&tasklist_lock);
191
192 tmp.tms_utime = compat_jiffies_to_clock_t(cputime_to_jiffies(utime));
193 tmp.tms_stime = compat_jiffies_to_clock_t(cputime_to_jiffies(stime));
194 tmp.tms_cutime = compat_jiffies_to_clock_t(cputime_to_jiffies(cutime));
195 tmp.tms_cstime = compat_jiffies_to_clock_t(cputime_to_jiffies(cstime));
196 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 229 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
197 return -EFAULT; 230 return -EFAULT;
198 } 231 }
diff --git a/kernel/cpu.c b/kernel/cpu.c
index f17e9854c246..86d49045daed 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -199,13 +199,14 @@ static int __ref take_cpu_down(void *_param)
199 struct take_cpu_down_param *param = _param; 199 struct take_cpu_down_param *param = _param;
200 int err; 200 int err;
201 201
202 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
203 param->hcpu);
204 /* Ensure this CPU doesn't handle any more interrupts. */ 202 /* Ensure this CPU doesn't handle any more interrupts. */
205 err = __cpu_disable(); 203 err = __cpu_disable();
206 if (err < 0) 204 if (err < 0)
207 return err; 205 return err;
208 206
207 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
208 param->hcpu);
209
209 /* Force idle task to run as soon as we yield: it should 210 /* Force idle task to run as soon as we yield: it should
210 immediately notice cpu is offline and die quickly. */ 211 immediately notice cpu is offline and die quickly. */
211 sched_idle_next(); 212 sched_idle_next();
@@ -453,6 +454,25 @@ out:
453} 454}
454#endif /* CONFIG_PM_SLEEP_SMP */ 455#endif /* CONFIG_PM_SLEEP_SMP */
455 456
457/**
458 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
459 * @cpu: cpu that just started
460 *
461 * This function calls the cpu_chain notifiers with CPU_STARTING.
462 * It must be called by the arch code on the new cpu, before the new cpu
463 * enables interrupts and before the "boot" cpu returns from __cpu_up().
464 */
465void notify_cpu_starting(unsigned int cpu)
466{
467 unsigned long val = CPU_STARTING;
468
469#ifdef CONFIG_PM_SLEEP_SMP
470 if (cpu_isset(cpu, frozen_cpus))
471 val = CPU_STARTING_FROZEN;
472#endif /* CONFIG_PM_SLEEP_SMP */
473 raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
474}
475
456#endif /* CONFIG_SMP */ 476#endif /* CONFIG_SMP */
457 477
458/* 478/*
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index d5ab79cf516d..eab7bd6628e0 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -14,6 +14,8 @@
14 * 2003-10-22 Updates by Stephen Hemminger. 14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson. 15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups 16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
17 * 19 *
18 * This file is subject to the terms and conditions of the GNU General Public 20 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux 21 * License. See the file COPYING in the main directory of the Linux
@@ -236,9 +238,11 @@ static struct cpuset top_cpuset = {
236 238
237static DEFINE_MUTEX(callback_mutex); 239static DEFINE_MUTEX(callback_mutex);
238 240
239/* This is ugly, but preserves the userspace API for existing cpuset 241/*
242 * This is ugly, but preserves the userspace API for existing cpuset
240 * users. If someone tries to mount the "cpuset" filesystem, we 243 * users. If someone tries to mount the "cpuset" filesystem, we
241 * silently switch it to mount "cgroup" instead */ 244 * silently switch it to mount "cgroup" instead
245 */
242static int cpuset_get_sb(struct file_system_type *fs_type, 246static int cpuset_get_sb(struct file_system_type *fs_type,
243 int flags, const char *unused_dev_name, 247 int flags, const char *unused_dev_name,
244 void *data, struct vfsmount *mnt) 248 void *data, struct vfsmount *mnt)
@@ -473,10 +477,9 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
473} 477}
474 478
475/* 479/*
476 * Helper routine for rebuild_sched_domains(). 480 * Helper routine for generate_sched_domains().
477 * Do cpusets a, b have overlapping cpus_allowed masks? 481 * Do cpusets a, b have overlapping cpus_allowed masks?
478 */ 482 */
479
480static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 483static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
481{ 484{
482 return cpus_intersects(a->cpus_allowed, b->cpus_allowed); 485 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
@@ -518,26 +521,15 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
518} 521}
519 522
520/* 523/*
521 * rebuild_sched_domains() 524 * generate_sched_domains()
522 * 525 *
523 * This routine will be called to rebuild the scheduler's dynamic 526 * This function builds a partial partition of the systems CPUs
524 * sched domains: 527 * A 'partial partition' is a set of non-overlapping subsets whose
525 * - if the flag 'sched_load_balance' of any cpuset with non-empty 528 * union is a subset of that set.
526 * 'cpus' changes, 529 * The output of this function needs to be passed to kernel/sched.c
527 * - or if the 'cpus' allowed changes in any cpuset which has that 530 * partition_sched_domains() routine, which will rebuild the scheduler's
528 * flag enabled, 531 * load balancing domains (sched domains) as specified by that partial
529 * - or if the 'sched_relax_domain_level' of any cpuset which has 532 * partition.
530 * that flag enabled and with non-empty 'cpus' changes,
531 * - or if any cpuset with non-empty 'cpus' is removed,
532 * - or if a cpu gets offlined.
533 *
534 * This routine builds a partial partition of the systems CPUs
535 * (the set of non-overlappping cpumask_t's in the array 'part'
536 * below), and passes that partial partition to the kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the
538 * schedulers load balancing domains (sched domains) as specified
539 * by that partial partition. A 'partial partition' is a set of
540 * non-overlapping subsets whose union is a subset of that set.
541 * 533 *
542 * See "What is sched_load_balance" in Documentation/cpusets.txt 534 * See "What is sched_load_balance" in Documentation/cpusets.txt
543 * for a background explanation of this. 535 * for a background explanation of this.
@@ -547,13 +539,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
547 * domains when operating in the severe memory shortage situations 539 * domains when operating in the severe memory shortage situations
548 * that could cause allocation failures below. 540 * that could cause allocation failures below.
549 * 541 *
550 * Call with cgroup_mutex held. May take callback_mutex during 542 * Must be called with cgroup_lock held.
551 * call due to the kfifo_alloc() and kmalloc() calls. May nest
552 * a call to the get_online_cpus()/put_online_cpus() pair.
553 * Must not be called holding callback_mutex, because we must not
554 * call get_online_cpus() while holding callback_mutex. Elsewhere
555 * the kernel nests callback_mutex inside get_online_cpus() calls.
556 * So the reverse nesting would risk an ABBA deadlock.
557 * 543 *
558 * The three key local variables below are: 544 * The three key local variables below are:
559 * q - a linked-list queue of cpuset pointers, used to implement a 545 * q - a linked-list queue of cpuset pointers, used to implement a
@@ -588,10 +574,10 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
588 * element of the partition (one sched domain) to be passed to 574 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains(). 575 * partition_sched_domains().
590 */ 576 */
591 577static int generate_sched_domains(cpumask_t **domains,
592void rebuild_sched_domains(void) 578 struct sched_domain_attr **attributes)
593{ 579{
594 LIST_HEAD(q); /* queue of cpusets to be scanned*/ 580 LIST_HEAD(q); /* queue of cpusets to be scanned */
595 struct cpuset *cp; /* scans q */ 581 struct cpuset *cp; /* scans q */
596 struct cpuset **csa; /* array of all cpuset ptrs */ 582 struct cpuset **csa; /* array of all cpuset ptrs */
597 int csn; /* how many cpuset ptrs in csa so far */ 583 int csn; /* how many cpuset ptrs in csa so far */
@@ -601,23 +587,26 @@ void rebuild_sched_domains(void)
601 int ndoms; /* number of sched domains in result */ 587 int ndoms; /* number of sched domains in result */
602 int nslot; /* next empty doms[] cpumask_t slot */ 588 int nslot; /* next empty doms[] cpumask_t slot */
603 589
604 csa = NULL; 590 ndoms = 0;
605 doms = NULL; 591 doms = NULL;
606 dattr = NULL; 592 dattr = NULL;
593 csa = NULL;
607 594
608 /* Special case for the 99% of systems with one, full, sched domain */ 595 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) { 596 if (is_sched_load_balance(&top_cpuset)) {
610 ndoms = 1;
611 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 597 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
612 if (!doms) 598 if (!doms)
613 goto rebuild; 599 goto done;
600
614 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 601 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
615 if (dattr) { 602 if (dattr) {
616 *dattr = SD_ATTR_INIT; 603 *dattr = SD_ATTR_INIT;
617 update_domain_attr_tree(dattr, &top_cpuset); 604 update_domain_attr_tree(dattr, &top_cpuset);
618 } 605 }
619 *doms = top_cpuset.cpus_allowed; 606 *doms = top_cpuset.cpus_allowed;
620 goto rebuild; 607
608 ndoms = 1;
609 goto done;
621 } 610 }
622 611
623 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); 612 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
@@ -680,61 +669,141 @@ restart:
680 } 669 }
681 } 670 }
682 671
683 /* Convert <csn, csa> to <ndoms, doms> */ 672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
684 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL); 676 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
685 if (!doms) 677 if (!doms) {
686 goto rebuild; 678 ndoms = 0;
679 goto done;
680 }
681
682 /*
683 * The rest of the code, including the scheduler, can deal with
684 * dattr==NULL case. No need to abort if alloc fails.
685 */
687 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 686 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
688 687
689 for (nslot = 0, i = 0; i < csn; i++) { 688 for (nslot = 0, i = 0; i < csn; i++) {
690 struct cpuset *a = csa[i]; 689 struct cpuset *a = csa[i];
690 cpumask_t *dp;
691 int apn = a->pn; 691 int apn = a->pn;
692 692
693 if (apn >= 0) { 693 if (apn < 0) {
694 cpumask_t *dp = doms + nslot; 694 /* Skip completed partitions */
695 695 continue;
696 if (nslot == ndoms) { 696 }
697 static int warnings = 10; 697
698 if (warnings) { 698 dp = doms + nslot;
699 printk(KERN_WARNING 699
700 "rebuild_sched_domains confused:" 700 if (nslot == ndoms) {
701 " nslot %d, ndoms %d, csn %d, i %d," 701 static int warnings = 10;
702 " apn %d\n", 702 if (warnings) {
703 nslot, ndoms, csn, i, apn); 703 printk(KERN_WARNING
704 warnings--; 704 "rebuild_sched_domains confused:"
705 } 705 " nslot %d, ndoms %d, csn %d, i %d,"
706 continue; 706 " apn %d\n",
707 nslot, ndoms, csn, i, apn);
708 warnings--;
707 } 709 }
710 continue;
711 }
708 712
709 cpus_clear(*dp); 713 cpus_clear(*dp);
710 if (dattr) 714 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT; 715 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) { 716 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j]; 717 struct cpuset *b = csa[j];
714 718
715 if (apn == b->pn) { 719 if (apn == b->pn) {
716 cpus_or(*dp, *dp, b->cpus_allowed); 720 cpus_or(*dp, *dp, b->cpus_allowed);
717 b->pn = -1; 721 if (dattr)
718 if (dattr) 722 update_domain_attr_tree(dattr + nslot, b);
719 update_domain_attr_tree(dattr 723
720 + nslot, b); 724 /* Done with this partition */
721 } 725 b->pn = -1;
722 } 726 }
723 nslot++;
724 } 727 }
728 nslot++;
725 } 729 }
726 BUG_ON(nslot != ndoms); 730 BUG_ON(nslot != ndoms);
727 731
728rebuild: 732done:
729 /* Have scheduler rebuild sched domains */ 733 kfree(csa);
734
735 *domains = doms;
736 *attributes = dattr;
737 return ndoms;
738}
739
740/*
741 * Rebuild scheduler domains.
742 *
743 * Call with neither cgroup_mutex held nor within get_online_cpus().
744 * Takes both cgroup_mutex and get_online_cpus().
745 *
746 * Cannot be directly called from cpuset code handling changes
747 * to the cpuset pseudo-filesystem, because it cannot be called
748 * from code that already holds cgroup_mutex.
749 */
750static void do_rebuild_sched_domains(struct work_struct *unused)
751{
752 struct sched_domain_attr *attr;
753 cpumask_t *doms;
754 int ndoms;
755
730 get_online_cpus(); 756 get_online_cpus();
731 partition_sched_domains(ndoms, doms, dattr); 757
758 /* Generate domain masks and attrs */
759 cgroup_lock();
760 ndoms = generate_sched_domains(&doms, &attr);
761 cgroup_unlock();
762
763 /* Have scheduler rebuild the domains */
764 partition_sched_domains(ndoms, doms, attr);
765
732 put_online_cpus(); 766 put_online_cpus();
767}
733 768
734done: 769static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
735 kfree(csa); 770
736 /* Don't kfree(doms) -- partition_sched_domains() does that. */ 771/*
737 /* Don't kfree(dattr) -- partition_sched_domains() does that. */ 772 * Rebuild scheduler domains, asynchronously via workqueue.
773 *
774 * If the flag 'sched_load_balance' of any cpuset with non-empty
775 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
776 * which has that flag enabled, or if any cpuset with a non-empty
777 * 'cpus' is removed, then call this routine to rebuild the
778 * scheduler's dynamic sched domains.
779 *
780 * The rebuild_sched_domains() and partition_sched_domains()
781 * routines must nest cgroup_lock() inside get_online_cpus(),
782 * but such cpuset changes as these must nest that locking the
783 * other way, holding cgroup_lock() for much of the code.
784 *
785 * So in order to avoid an ABBA deadlock, the cpuset code handling
786 * these user changes delegates the actual sched domain rebuilding
787 * to a separate workqueue thread, which ends up processing the
788 * above do_rebuild_sched_domains() function.
789 */
790static void async_rebuild_sched_domains(void)
791{
792 schedule_work(&rebuild_sched_domains_work);
793}
794
795/*
796 * Accomplishes the same scheduler domain rebuild as the above
797 * async_rebuild_sched_domains(), however it directly calls the
798 * rebuild routine synchronously rather than calling it via an
799 * asynchronous work thread.
800 *
801 * This can only be called from code that is not holding
802 * cgroup_mutex (not nested in a cgroup_lock() call.)
803 */
804void rebuild_sched_domains(void)
805{
806 do_rebuild_sched_domains(NULL);
738} 807}
739 808
740/** 809/**
@@ -774,37 +843,25 @@ static void cpuset_change_cpumask(struct task_struct *tsk,
774/** 843/**
775 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 844 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
776 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 845 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
846 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
777 * 847 *
778 * Called with cgroup_mutex held 848 * Called with cgroup_mutex held
779 * 849 *
780 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, 850 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
781 * calling callback functions for each. 851 * calling callback functions for each.
782 * 852 *
783 * Return 0 if successful, -errno if not. 853 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
854 * if @heap != NULL.
784 */ 855 */
785static int update_tasks_cpumask(struct cpuset *cs) 856static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
786{ 857{
787 struct cgroup_scanner scan; 858 struct cgroup_scanner scan;
788 struct ptr_heap heap;
789 int retval;
790
791 /*
792 * cgroup_scan_tasks() will initialize heap->gt for us.
793 * heap_init() is still needed here for we should not change
794 * cs->cpus_allowed when heap_init() fails.
795 */
796 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
797 if (retval)
798 return retval;
799 859
800 scan.cg = cs->css.cgroup; 860 scan.cg = cs->css.cgroup;
801 scan.test_task = cpuset_test_cpumask; 861 scan.test_task = cpuset_test_cpumask;
802 scan.process_task = cpuset_change_cpumask; 862 scan.process_task = cpuset_change_cpumask;
803 scan.heap = &heap; 863 scan.heap = heap;
804 retval = cgroup_scan_tasks(&scan); 864 cgroup_scan_tasks(&scan);
805
806 heap_free(&heap);
807 return retval;
808} 865}
809 866
810/** 867/**
@@ -814,6 +871,7 @@ static int update_tasks_cpumask(struct cpuset *cs)
814 */ 871 */
815static int update_cpumask(struct cpuset *cs, const char *buf) 872static int update_cpumask(struct cpuset *cs, const char *buf)
816{ 873{
874 struct ptr_heap heap;
817 struct cpuset trialcs; 875 struct cpuset trialcs;
818 int retval; 876 int retval;
819 int is_load_balanced; 877 int is_load_balanced;
@@ -848,6 +906,10 @@ static int update_cpumask(struct cpuset *cs, const char *buf)
848 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed)) 906 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
849 return 0; 907 return 0;
850 908
909 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
910 if (retval)
911 return retval;
912
851 is_load_balanced = is_sched_load_balance(&trialcs); 913 is_load_balanced = is_sched_load_balance(&trialcs);
852 914
853 mutex_lock(&callback_mutex); 915 mutex_lock(&callback_mutex);
@@ -858,12 +920,12 @@ static int update_cpumask(struct cpuset *cs, const char *buf)
858 * Scan tasks in the cpuset, and update the cpumasks of any 920 * Scan tasks in the cpuset, and update the cpumasks of any
859 * that need an update. 921 * that need an update.
860 */ 922 */
861 retval = update_tasks_cpumask(cs); 923 update_tasks_cpumask(cs, &heap);
862 if (retval < 0) 924
863 return retval; 925 heap_free(&heap);
864 926
865 if (is_load_balanced) 927 if (is_load_balanced)
866 rebuild_sched_domains(); 928 async_rebuild_sched_domains();
867 return 0; 929 return 0;
868} 930}
869 931
@@ -1090,7 +1152,7 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1090 if (val != cs->relax_domain_level) { 1152 if (val != cs->relax_domain_level) {
1091 cs->relax_domain_level = val; 1153 cs->relax_domain_level = val;
1092 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) 1154 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1093 rebuild_sched_domains(); 1155 async_rebuild_sched_domains();
1094 } 1156 }
1095 1157
1096 return 0; 1158 return 0;
@@ -1131,7 +1193,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1131 mutex_unlock(&callback_mutex); 1193 mutex_unlock(&callback_mutex);
1132 1194
1133 if (cpus_nonempty && balance_flag_changed) 1195 if (cpus_nonempty && balance_flag_changed)
1134 rebuild_sched_domains(); 1196 async_rebuild_sched_domains();
1135 1197
1136 return 0; 1198 return 0;
1137} 1199}
@@ -1492,6 +1554,9 @@ static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1492 default: 1554 default:
1493 BUG(); 1555 BUG();
1494 } 1556 }
1557
1558 /* Unreachable but makes gcc happy */
1559 return 0;
1495} 1560}
1496 1561
1497static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) 1562static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
@@ -1504,6 +1569,9 @@ static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1504 default: 1569 default:
1505 BUG(); 1570 BUG();
1506 } 1571 }
1572
1573 /* Unrechable but makes gcc happy */
1574 return 0;
1507} 1575}
1508 1576
1509 1577
@@ -1692,15 +1760,9 @@ static struct cgroup_subsys_state *cpuset_create(
1692} 1760}
1693 1761
1694/* 1762/*
1695 * Locking note on the strange update_flag() call below:
1696 *
1697 * If the cpuset being removed has its flag 'sched_load_balance' 1763 * If the cpuset being removed has its flag 'sched_load_balance'
1698 * enabled, then simulate turning sched_load_balance off, which 1764 * enabled, then simulate turning sched_load_balance off, which
1699 * will call rebuild_sched_domains(). The get_online_cpus() 1765 * will call async_rebuild_sched_domains().
1700 * call in rebuild_sched_domains() must not be made while holding
1701 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1702 * get_online_cpus() calls. So the reverse nesting would risk an
1703 * ABBA deadlock.
1704 */ 1766 */
1705 1767
1706static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) 1768static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
@@ -1719,7 +1781,7 @@ static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1719struct cgroup_subsys cpuset_subsys = { 1781struct cgroup_subsys cpuset_subsys = {
1720 .name = "cpuset", 1782 .name = "cpuset",
1721 .create = cpuset_create, 1783 .create = cpuset_create,
1722 .destroy = cpuset_destroy, 1784 .destroy = cpuset_destroy,
1723 .can_attach = cpuset_can_attach, 1785 .can_attach = cpuset_can_attach,
1724 .attach = cpuset_attach, 1786 .attach = cpuset_attach,
1725 .populate = cpuset_populate, 1787 .populate = cpuset_populate,
@@ -1811,7 +1873,7 @@ static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1811} 1873}
1812 1874
1813/* 1875/*
1814 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs 1876 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1815 * or memory nodes, we need to walk over the cpuset hierarchy, 1877 * or memory nodes, we need to walk over the cpuset hierarchy,
1816 * removing that CPU or node from all cpusets. If this removes the 1878 * removing that CPU or node from all cpusets. If this removes the
1817 * last CPU or node from a cpuset, then move the tasks in the empty 1879 * last CPU or node from a cpuset, then move the tasks in the empty
@@ -1859,7 +1921,7 @@ static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1859 * that has tasks along with an empty 'mems'. But if we did see such 1921 * that has tasks along with an empty 'mems'. But if we did see such
1860 * a cpuset, we'd handle it just like we do if its 'cpus' was empty. 1922 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1861 */ 1923 */
1862static void scan_for_empty_cpusets(const struct cpuset *root) 1924static void scan_for_empty_cpusets(struct cpuset *root)
1863{ 1925{
1864 LIST_HEAD(queue); 1926 LIST_HEAD(queue);
1865 struct cpuset *cp; /* scans cpusets being updated */ 1927 struct cpuset *cp; /* scans cpusets being updated */
@@ -1896,42 +1958,13 @@ static void scan_for_empty_cpusets(const struct cpuset *root)
1896 nodes_empty(cp->mems_allowed)) 1958 nodes_empty(cp->mems_allowed))
1897 remove_tasks_in_empty_cpuset(cp); 1959 remove_tasks_in_empty_cpuset(cp);
1898 else { 1960 else {
1899 update_tasks_cpumask(cp); 1961 update_tasks_cpumask(cp, NULL);
1900 update_tasks_nodemask(cp, &oldmems); 1962 update_tasks_nodemask(cp, &oldmems);
1901 } 1963 }
1902 } 1964 }
1903} 1965}
1904 1966
1905/* 1967/*
1906 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1907 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1908 * track what's online after any CPU or memory node hotplug or unplug event.
1909 *
1910 * Since there are two callers of this routine, one for CPU hotplug
1911 * events and one for memory node hotplug events, we could have coded
1912 * two separate routines here. We code it as a single common routine
1913 * in order to minimize text size.
1914 */
1915
1916static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1917{
1918 cgroup_lock();
1919
1920 top_cpuset.cpus_allowed = cpu_online_map;
1921 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1922 scan_for_empty_cpusets(&top_cpuset);
1923
1924 /*
1925 * Scheduler destroys domains on hotplug events.
1926 * Rebuild them based on the current settings.
1927 */
1928 if (rebuild_sd)
1929 rebuild_sched_domains();
1930
1931 cgroup_unlock();
1932}
1933
1934/*
1935 * The top_cpuset tracks what CPUs and Memory Nodes are online, 1968 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1936 * period. This is necessary in order to make cpusets transparent 1969 * period. This is necessary in order to make cpusets transparent
1937 * (of no affect) on systems that are actively using CPU hotplug 1970 * (of no affect) on systems that are actively using CPU hotplug
@@ -1939,40 +1972,52 @@ static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1939 * 1972 *
1940 * This routine ensures that top_cpuset.cpus_allowed tracks 1973 * This routine ensures that top_cpuset.cpus_allowed tracks
1941 * cpu_online_map on each CPU hotplug (cpuhp) event. 1974 * cpu_online_map on each CPU hotplug (cpuhp) event.
1975 *
1976 * Called within get_online_cpus(). Needs to call cgroup_lock()
1977 * before calling generate_sched_domains().
1942 */ 1978 */
1943 1979static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
1944static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1945 unsigned long phase, void *unused_cpu) 1980 unsigned long phase, void *unused_cpu)
1946{ 1981{
1982 struct sched_domain_attr *attr;
1983 cpumask_t *doms;
1984 int ndoms;
1985
1947 switch (phase) { 1986 switch (phase) {
1948 case CPU_UP_CANCELED:
1949 case CPU_UP_CANCELED_FROZEN:
1950 case CPU_DOWN_FAILED:
1951 case CPU_DOWN_FAILED_FROZEN:
1952 case CPU_ONLINE: 1987 case CPU_ONLINE:
1953 case CPU_ONLINE_FROZEN: 1988 case CPU_ONLINE_FROZEN:
1954 case CPU_DEAD: 1989 case CPU_DEAD:
1955 case CPU_DEAD_FROZEN: 1990 case CPU_DEAD_FROZEN:
1956 common_cpu_mem_hotplug_unplug(1);
1957 break; 1991 break;
1992
1958 default: 1993 default:
1959 return NOTIFY_DONE; 1994 return NOTIFY_DONE;
1960 } 1995 }
1961 1996
1997 cgroup_lock();
1998 top_cpuset.cpus_allowed = cpu_online_map;
1999 scan_for_empty_cpusets(&top_cpuset);
2000 ndoms = generate_sched_domains(&doms, &attr);
2001 cgroup_unlock();
2002
2003 /* Have scheduler rebuild the domains */
2004 partition_sched_domains(ndoms, doms, attr);
2005
1962 return NOTIFY_OK; 2006 return NOTIFY_OK;
1963} 2007}
1964 2008
1965#ifdef CONFIG_MEMORY_HOTPLUG 2009#ifdef CONFIG_MEMORY_HOTPLUG
1966/* 2010/*
1967 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. 2011 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1968 * Call this routine anytime after you change 2012 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
1969 * node_states[N_HIGH_MEMORY]. 2013 * See also the previous routine cpuset_track_online_cpus().
1970 * See also the previous routine cpuset_handle_cpuhp().
1971 */ 2014 */
1972
1973void cpuset_track_online_nodes(void) 2015void cpuset_track_online_nodes(void)
1974{ 2016{
1975 common_cpu_mem_hotplug_unplug(0); 2017 cgroup_lock();
2018 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2019 scan_for_empty_cpusets(&top_cpuset);
2020 cgroup_unlock();
1976} 2021}
1977#endif 2022#endif
1978 2023
@@ -1987,7 +2032,7 @@ void __init cpuset_init_smp(void)
1987 top_cpuset.cpus_allowed = cpu_online_map; 2032 top_cpuset.cpus_allowed = cpu_online_map;
1988 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; 2033 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1989 2034
1990 hotcpu_notifier(cpuset_handle_cpuhp, 0); 2035 hotcpu_notifier(cpuset_track_online_cpus, 0);
1991} 2036}
1992 2037
1993/** 2038/**
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c
index c1d4d5b4c61c..f013a0c2e111 100644
--- a/kernel/dma-coherent.c
+++ b/kernel/dma-coherent.c
@@ -124,6 +124,7 @@ int dma_alloc_from_coherent(struct device *dev, ssize_t size,
124 } 124 }
125 return (mem != NULL); 125 return (mem != NULL);
126} 126}
127EXPORT_SYMBOL(dma_alloc_from_coherent);
127 128
128/** 129/**
129 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool 130 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
@@ -151,3 +152,4 @@ int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
151 } 152 }
152 return 0; 153 return 0;
153} 154}
155EXPORT_SYMBOL(dma_release_from_coherent);
diff --git a/kernel/dma.c b/kernel/dma.c
index d2c60a822790..f903189c5304 100644
--- a/kernel/dma.c
+++ b/kernel/dma.c
@@ -1,4 +1,4 @@
1/* $Id: dma.c,v 1.7 1994/12/28 03:35:33 root Exp root $ 1/*
2 * linux/kernel/dma.c: A DMA channel allocator. Inspired by linux/kernel/irq.c. 2 * linux/kernel/dma.c: A DMA channel allocator. Inspired by linux/kernel/irq.c.
3 * 3 *
4 * Written by Hennus Bergman, 1992. 4 * Written by Hennus Bergman, 1992.
diff --git a/kernel/exit.c b/kernel/exit.c
index 16395644a98f..059b38cae384 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -112,8 +112,6 @@ static void __exit_signal(struct task_struct *tsk)
112 * We won't ever get here for the group leader, since it 112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct. 113 * will have been the last reference on the signal_struct.
114 */ 114 */
115 sig->utime = cputime_add(sig->utime, task_utime(tsk));
116 sig->stime = cputime_add(sig->stime, task_stime(tsk));
117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
118 sig->min_flt += tsk->min_flt; 116 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt; 117 sig->maj_flt += tsk->maj_flt;
@@ -122,7 +120,6 @@ static void __exit_signal(struct task_struct *tsk)
122 sig->inblock += task_io_get_inblock(tsk); 120 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk); 121 sig->oublock += task_io_get_oublock(tsk);
124 task_io_accounting_add(&sig->ioac, &tsk->ioac); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 sig = NULL; /* Marker for below. */ 123 sig = NULL; /* Marker for below. */
127 } 124 }
128 125
@@ -583,8 +580,6 @@ mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
583 * If there are other users of the mm and the owner (us) is exiting 580 * If there are other users of the mm and the owner (us) is exiting
584 * we need to find a new owner to take on the responsibility. 581 * we need to find a new owner to take on the responsibility.
585 */ 582 */
586 if (!mm)
587 return 0;
588 if (atomic_read(&mm->mm_users) <= 1) 583 if (atomic_read(&mm->mm_users) <= 1)
589 return 0; 584 return 0;
590 if (mm->owner != p) 585 if (mm->owner != p)
@@ -627,29 +622,38 @@ retry:
627 } while_each_thread(g, c); 622 } while_each_thread(g, c);
628 623
629 read_unlock(&tasklist_lock); 624 read_unlock(&tasklist_lock);
625 /*
626 * We found no owner yet mm_users > 1: this implies that we are
627 * most likely racing with swapoff (try_to_unuse()) or /proc or
628 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
629 * so that subsystems can understand the callback and take action.
630 */
631 down_write(&mm->mmap_sem);
632 cgroup_mm_owner_callbacks(mm->owner, NULL);
633 mm->owner = NULL;
634 up_write(&mm->mmap_sem);
630 return; 635 return;
631 636
632assign_new_owner: 637assign_new_owner:
633 BUG_ON(c == p); 638 BUG_ON(c == p);
634 get_task_struct(c); 639 get_task_struct(c);
640 read_unlock(&tasklist_lock);
641 down_write(&mm->mmap_sem);
635 /* 642 /*
636 * The task_lock protects c->mm from changing. 643 * The task_lock protects c->mm from changing.
637 * We always want mm->owner->mm == mm 644 * We always want mm->owner->mm == mm
638 */ 645 */
639 task_lock(c); 646 task_lock(c);
640 /*
641 * Delay read_unlock() till we have the task_lock()
642 * to ensure that c does not slip away underneath us
643 */
644 read_unlock(&tasklist_lock);
645 if (c->mm != mm) { 647 if (c->mm != mm) {
646 task_unlock(c); 648 task_unlock(c);
649 up_write(&mm->mmap_sem);
647 put_task_struct(c); 650 put_task_struct(c);
648 goto retry; 651 goto retry;
649 } 652 }
650 cgroup_mm_owner_callbacks(mm->owner, c); 653 cgroup_mm_owner_callbacks(mm->owner, c);
651 mm->owner = c; 654 mm->owner = c;
652 task_unlock(c); 655 task_unlock(c);
656 up_write(&mm->mmap_sem);
653 put_task_struct(c); 657 put_task_struct(c);
654} 658}
655#endif /* CONFIG_MM_OWNER */ 659#endif /* CONFIG_MM_OWNER */
@@ -1294,6 +1298,7 @@ static int wait_task_zombie(struct task_struct *p, int options,
1294 if (likely(!traced)) { 1298 if (likely(!traced)) {
1295 struct signal_struct *psig; 1299 struct signal_struct *psig;
1296 struct signal_struct *sig; 1300 struct signal_struct *sig;
1301 struct task_cputime cputime;
1297 1302
1298 /* 1303 /*
1299 * The resource counters for the group leader are in its 1304 * The resource counters for the group leader are in its
@@ -1309,20 +1314,23 @@ static int wait_task_zombie(struct task_struct *p, int options,
1309 * need to protect the access to p->parent->signal fields, 1314 * need to protect the access to p->parent->signal fields,
1310 * as other threads in the parent group can be right 1315 * as other threads in the parent group can be right
1311 * here reaping other children at the same time. 1316 * here reaping other children at the same time.
1317 *
1318 * We use thread_group_cputime() to get times for the thread
1319 * group, which consolidates times for all threads in the
1320 * group including the group leader.
1312 */ 1321 */
1313 spin_lock_irq(&p->parent->sighand->siglock); 1322 spin_lock_irq(&p->parent->sighand->siglock);
1314 psig = p->parent->signal; 1323 psig = p->parent->signal;
1315 sig = p->signal; 1324 sig = p->signal;
1325 thread_group_cputime(p, &cputime);
1316 psig->cutime = 1326 psig->cutime =
1317 cputime_add(psig->cutime, 1327 cputime_add(psig->cutime,
1318 cputime_add(p->utime, 1328 cputime_add(cputime.utime,
1319 cputime_add(sig->utime, 1329 sig->cutime));
1320 sig->cutime)));
1321 psig->cstime = 1330 psig->cstime =
1322 cputime_add(psig->cstime, 1331 cputime_add(psig->cstime,
1323 cputime_add(p->stime, 1332 cputime_add(cputime.stime,
1324 cputime_add(sig->stime, 1333 sig->cstime));
1325 sig->cstime)));
1326 psig->cgtime = 1334 psig->cgtime =
1327 cputime_add(psig->cgtime, 1335 cputime_add(psig->cgtime,
1328 cputime_add(p->gtime, 1336 cputime_add(p->gtime,
diff --git a/kernel/fork.c b/kernel/fork.c
index 7ce2ebe84796..44e64d7ba29b 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -759,15 +759,44 @@ void __cleanup_sighand(struct sighand_struct *sighand)
759 kmem_cache_free(sighand_cachep, sighand); 759 kmem_cache_free(sighand_cachep, sighand);
760} 760}
761 761
762
763/*
764 * Initialize POSIX timer handling for a thread group.
765 */
766static void posix_cpu_timers_init_group(struct signal_struct *sig)
767{
768 /* Thread group counters. */
769 thread_group_cputime_init(sig);
770
771 /* Expiration times and increments. */
772 sig->it_virt_expires = cputime_zero;
773 sig->it_virt_incr = cputime_zero;
774 sig->it_prof_expires = cputime_zero;
775 sig->it_prof_incr = cputime_zero;
776
777 /* Cached expiration times. */
778 sig->cputime_expires.prof_exp = cputime_zero;
779 sig->cputime_expires.virt_exp = cputime_zero;
780 sig->cputime_expires.sched_exp = 0;
781
782 /* The timer lists. */
783 INIT_LIST_HEAD(&sig->cpu_timers[0]);
784 INIT_LIST_HEAD(&sig->cpu_timers[1]);
785 INIT_LIST_HEAD(&sig->cpu_timers[2]);
786}
787
762static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 788static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
763{ 789{
764 struct signal_struct *sig; 790 struct signal_struct *sig;
765 int ret; 791 int ret;
766 792
767 if (clone_flags & CLONE_THREAD) { 793 if (clone_flags & CLONE_THREAD) {
768 atomic_inc(&current->signal->count); 794 ret = thread_group_cputime_clone_thread(current);
769 atomic_inc(&current->signal->live); 795 if (likely(!ret)) {
770 return 0; 796 atomic_inc(&current->signal->count);
797 atomic_inc(&current->signal->live);
798 }
799 return ret;
771 } 800 }
772 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 801 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
773 tsk->signal = sig; 802 tsk->signal = sig;
@@ -795,39 +824,25 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
795 sig->it_real_incr.tv64 = 0; 824 sig->it_real_incr.tv64 = 0;
796 sig->real_timer.function = it_real_fn; 825 sig->real_timer.function = it_real_fn;
797 826
798 sig->it_virt_expires = cputime_zero;
799 sig->it_virt_incr = cputime_zero;
800 sig->it_prof_expires = cputime_zero;
801 sig->it_prof_incr = cputime_zero;
802
803 sig->leader = 0; /* session leadership doesn't inherit */ 827 sig->leader = 0; /* session leadership doesn't inherit */
804 sig->tty_old_pgrp = NULL; 828 sig->tty_old_pgrp = NULL;
829 sig->tty = NULL;
805 830
806 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 831 sig->cutime = sig->cstime = cputime_zero;
807 sig->gtime = cputime_zero; 832 sig->gtime = cputime_zero;
808 sig->cgtime = cputime_zero; 833 sig->cgtime = cputime_zero;
809 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 834 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
810 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 835 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
811 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 836 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
812 task_io_accounting_init(&sig->ioac); 837 task_io_accounting_init(&sig->ioac);
813 sig->sum_sched_runtime = 0;
814 INIT_LIST_HEAD(&sig->cpu_timers[0]);
815 INIT_LIST_HEAD(&sig->cpu_timers[1]);
816 INIT_LIST_HEAD(&sig->cpu_timers[2]);
817 taskstats_tgid_init(sig); 838 taskstats_tgid_init(sig);
818 839
819 task_lock(current->group_leader); 840 task_lock(current->group_leader);
820 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 841 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
821 task_unlock(current->group_leader); 842 task_unlock(current->group_leader);
822 843
823 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 844 posix_cpu_timers_init_group(sig);
824 /* 845
825 * New sole thread in the process gets an expiry time
826 * of the whole CPU time limit.
827 */
828 tsk->it_prof_expires =
829 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
830 }
831 acct_init_pacct(&sig->pacct); 846 acct_init_pacct(&sig->pacct);
832 847
833 tty_audit_fork(sig); 848 tty_audit_fork(sig);
@@ -837,7 +852,9 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
837 852
838void __cleanup_signal(struct signal_struct *sig) 853void __cleanup_signal(struct signal_struct *sig)
839{ 854{
855 thread_group_cputime_free(sig);
840 exit_thread_group_keys(sig); 856 exit_thread_group_keys(sig);
857 tty_kref_put(sig->tty);
841 kmem_cache_free(signal_cachep, sig); 858 kmem_cache_free(signal_cachep, sig);
842} 859}
843 860
@@ -886,6 +903,19 @@ void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
886#endif /* CONFIG_MM_OWNER */ 903#endif /* CONFIG_MM_OWNER */
887 904
888/* 905/*
906 * Initialize POSIX timer handling for a single task.
907 */
908static void posix_cpu_timers_init(struct task_struct *tsk)
909{
910 tsk->cputime_expires.prof_exp = cputime_zero;
911 tsk->cputime_expires.virt_exp = cputime_zero;
912 tsk->cputime_expires.sched_exp = 0;
913 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
914 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
915 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
916}
917
918/*
889 * This creates a new process as a copy of the old one, 919 * This creates a new process as a copy of the old one,
890 * but does not actually start it yet. 920 * but does not actually start it yet.
891 * 921 *
@@ -995,12 +1025,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
995 task_io_accounting_init(&p->ioac); 1025 task_io_accounting_init(&p->ioac);
996 acct_clear_integrals(p); 1026 acct_clear_integrals(p);
997 1027
998 p->it_virt_expires = cputime_zero; 1028 posix_cpu_timers_init(p);
999 p->it_prof_expires = cputime_zero;
1000 p->it_sched_expires = 0;
1001 INIT_LIST_HEAD(&p->cpu_timers[0]);
1002 INIT_LIST_HEAD(&p->cpu_timers[1]);
1003 INIT_LIST_HEAD(&p->cpu_timers[2]);
1004 1029
1005 p->lock_depth = -1; /* -1 = no lock */ 1030 p->lock_depth = -1; /* -1 = no lock */
1006 do_posix_clock_monotonic_gettime(&p->start_time); 1031 do_posix_clock_monotonic_gettime(&p->start_time);
@@ -1201,21 +1226,6 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1201 if (clone_flags & CLONE_THREAD) { 1226 if (clone_flags & CLONE_THREAD) {
1202 p->group_leader = current->group_leader; 1227 p->group_leader = current->group_leader;
1203 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1228 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1204
1205 if (!cputime_eq(current->signal->it_virt_expires,
1206 cputime_zero) ||
1207 !cputime_eq(current->signal->it_prof_expires,
1208 cputime_zero) ||
1209 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1210 !list_empty(&current->signal->cpu_timers[0]) ||
1211 !list_empty(&current->signal->cpu_timers[1]) ||
1212 !list_empty(&current->signal->cpu_timers[2])) {
1213 /*
1214 * Have child wake up on its first tick to check
1215 * for process CPU timers.
1216 */
1217 p->it_prof_expires = jiffies_to_cputime(1);
1218 }
1219 } 1229 }
1220 1230
1221 if (likely(p->pid)) { 1231 if (likely(p->pid)) {
@@ -1227,7 +1237,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1227 p->nsproxy->pid_ns->child_reaper = p; 1237 p->nsproxy->pid_ns->child_reaper = p;
1228 1238
1229 p->signal->leader_pid = pid; 1239 p->signal->leader_pid = pid;
1230 p->signal->tty = current->signal->tty; 1240 tty_kref_put(p->signal->tty);
1241 p->signal->tty = tty_kref_get(current->signal->tty);
1231 set_task_pgrp(p, task_pgrp_nr(current)); 1242 set_task_pgrp(p, task_pgrp_nr(current));
1232 set_task_session(p, task_session_nr(current)); 1243 set_task_session(p, task_session_nr(current));
1233 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1244 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index b8e4dce80a74..95978f48e039 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -672,13 +672,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
672 */ 672 */
673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART); 673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
674 return 1; 674 return 1;
675 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: 675 case HRTIMER_CB_IRQSAFE_PERCPU:
676 case HRTIMER_CB_IRQSAFE_UNLOCKED:
676 /* 677 /*
677 * This is solely for the sched tick emulation with 678 * This is solely for the sched tick emulation with
678 * dynamic tick support to ensure that we do not 679 * dynamic tick support to ensure that we do not
679 * restart the tick right on the edge and end up with 680 * restart the tick right on the edge and end up with
680 * the tick timer in the softirq ! The calling site 681 * the tick timer in the softirq ! The calling site
681 * takes care of this. 682 * takes care of this. Also used for hrtimer sleeper !
682 */ 683 */
683 debug_hrtimer_deactivate(timer); 684 debug_hrtimer_deactivate(timer);
684 return 1; 685 return 1;
@@ -1245,7 +1246,8 @@ static void __run_hrtimer(struct hrtimer *timer)
1245 timer_stats_account_hrtimer(timer); 1246 timer_stats_account_hrtimer(timer);
1246 1247
1247 fn = timer->function; 1248 fn = timer->function;
1248 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) { 1249 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1250 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
1249 /* 1251 /*
1250 * Used for scheduler timers, avoid lock inversion with 1252 * Used for scheduler timers, avoid lock inversion with
1251 * rq->lock and tasklist_lock. 1253 * rq->lock and tasklist_lock.
@@ -1401,9 +1403,7 @@ void hrtimer_run_queues(void)
1401 if (!base->first) 1403 if (!base->first)
1402 continue; 1404 continue;
1403 1405
1404 if (base->get_softirq_time) 1406 if (gettime) {
1405 base->softirq_time = base->get_softirq_time();
1406 else if (gettime) {
1407 hrtimer_get_softirq_time(cpu_base); 1407 hrtimer_get_softirq_time(cpu_base);
1408 gettime = 0; 1408 gettime = 0;
1409 } 1409 }
@@ -1452,7 +1452,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1452 sl->timer.function = hrtimer_wakeup; 1452 sl->timer.function = hrtimer_wakeup;
1453 sl->task = task; 1453 sl->task = task;
1454#ifdef CONFIG_HIGH_RES_TIMERS 1454#ifdef CONFIG_HIGH_RES_TIMERS
1455 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 1455 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1456#endif 1456#endif
1457} 1457}
1458 1458
@@ -1591,49 +1591,123 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
1591 1591
1592#ifdef CONFIG_HOTPLUG_CPU 1592#ifdef CONFIG_HOTPLUG_CPU
1593 1593
1594static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1594static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1595 struct hrtimer_clock_base *new_base) 1595 struct hrtimer_clock_base *new_base, int dcpu)
1596{ 1596{
1597 struct hrtimer *timer; 1597 struct hrtimer *timer;
1598 struct rb_node *node; 1598 struct rb_node *node;
1599 int raise = 0;
1599 1600
1600 while ((node = rb_first(&old_base->active))) { 1601 while ((node = rb_first(&old_base->active))) {
1601 timer = rb_entry(node, struct hrtimer, node); 1602 timer = rb_entry(node, struct hrtimer, node);
1602 BUG_ON(hrtimer_callback_running(timer)); 1603 BUG_ON(hrtimer_callback_running(timer));
1603 debug_hrtimer_deactivate(timer); 1604 debug_hrtimer_deactivate(timer);
1604 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); 1605
1606 /*
1607 * Should not happen. Per CPU timers should be
1608 * canceled _before_ the migration code is called
1609 */
1610 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
1611 __remove_hrtimer(timer, old_base,
1612 HRTIMER_STATE_INACTIVE, 0);
1613 WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
1614 timer, timer->function, dcpu);
1615 continue;
1616 }
1617
1618 /*
1619 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1620 * timer could be seen as !active and just vanish away
1621 * under us on another CPU
1622 */
1623 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1605 timer->base = new_base; 1624 timer->base = new_base;
1606 /* 1625 /*
1607 * Enqueue the timer. Allow reprogramming of the event device 1626 * Enqueue the timer. Allow reprogramming of the event device
1608 */ 1627 */
1609 enqueue_hrtimer(timer, new_base, 1); 1628 enqueue_hrtimer(timer, new_base, 1);
1629
1630#ifdef CONFIG_HIGH_RES_TIMERS
1631 /*
1632 * Happens with high res enabled when the timer was
1633 * already expired and the callback mode is
1634 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1635 * enqueue code does not move them to the soft irq
1636 * pending list for performance/latency reasons, but
1637 * in the migration state, we need to do that
1638 * otherwise we end up with a stale timer.
1639 */
1640 if (timer->state == HRTIMER_STATE_MIGRATE) {
1641 timer->state = HRTIMER_STATE_PENDING;
1642 list_add_tail(&timer->cb_entry,
1643 &new_base->cpu_base->cb_pending);
1644 raise = 1;
1645 }
1646#endif
1647 /* Clear the migration state bit */
1648 timer->state &= ~HRTIMER_STATE_MIGRATE;
1610 } 1649 }
1650 return raise;
1611} 1651}
1612 1652
1653#ifdef CONFIG_HIGH_RES_TIMERS
1654static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1655 struct hrtimer_cpu_base *new_base)
1656{
1657 struct hrtimer *timer;
1658 int raise = 0;
1659
1660 while (!list_empty(&old_base->cb_pending)) {
1661 timer = list_entry(old_base->cb_pending.next,
1662 struct hrtimer, cb_entry);
1663
1664 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1665 timer->base = &new_base->clock_base[timer->base->index];
1666 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1667 raise = 1;
1668 }
1669 return raise;
1670}
1671#else
1672static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1673 struct hrtimer_cpu_base *new_base)
1674{
1675 return 0;
1676}
1677#endif
1678
1613static void migrate_hrtimers(int cpu) 1679static void migrate_hrtimers(int cpu)
1614{ 1680{
1615 struct hrtimer_cpu_base *old_base, *new_base; 1681 struct hrtimer_cpu_base *old_base, *new_base;
1616 int i; 1682 int i, raise = 0;
1617 1683
1618 BUG_ON(cpu_online(cpu)); 1684 BUG_ON(cpu_online(cpu));
1619 old_base = &per_cpu(hrtimer_bases, cpu); 1685 old_base = &per_cpu(hrtimer_bases, cpu);
1620 new_base = &get_cpu_var(hrtimer_bases); 1686 new_base = &get_cpu_var(hrtimer_bases);
1621 1687
1622 tick_cancel_sched_timer(cpu); 1688 tick_cancel_sched_timer(cpu);
1623 1689 /*
1624 local_irq_disable(); 1690 * The caller is globally serialized and nobody else
1625 spin_lock(&new_base->lock); 1691 * takes two locks at once, deadlock is not possible.
1692 */
1693 spin_lock_irq(&new_base->lock);
1626 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1694 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1627 1695
1628 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1696 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629 migrate_hrtimer_list(&old_base->clock_base[i], 1697 if (migrate_hrtimer_list(&old_base->clock_base[i],
1630 &new_base->clock_base[i]); 1698 &new_base->clock_base[i], cpu))
1699 raise = 1;
1631 } 1700 }
1632 1701
1702 if (migrate_hrtimer_pending(old_base, new_base))
1703 raise = 1;
1704
1633 spin_unlock(&old_base->lock); 1705 spin_unlock(&old_base->lock);
1634 spin_unlock(&new_base->lock); 1706 spin_unlock_irq(&new_base->lock);
1635 local_irq_enable();
1636 put_cpu_var(hrtimer_bases); 1707 put_cpu_var(hrtimer_bases);
1708
1709 if (raise)
1710 hrtimer_raise_softirq();
1637} 1711}
1638#endif /* CONFIG_HOTPLUG_CPU */ 1712#endif /* CONFIG_HOTPLUG_CPU */
1639 1713
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 0314074fa232..60c49e324390 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -89,7 +89,14 @@ int irq_set_affinity(unsigned int irq, cpumask_t cpumask)
89 set_balance_irq_affinity(irq, cpumask); 89 set_balance_irq_affinity(irq, cpumask);
90 90
91#ifdef CONFIG_GENERIC_PENDING_IRQ 91#ifdef CONFIG_GENERIC_PENDING_IRQ
92 set_pending_irq(irq, cpumask); 92 if (desc->status & IRQ_MOVE_PCNTXT) {
93 unsigned long flags;
94
95 spin_lock_irqsave(&desc->lock, flags);
96 desc->chip->set_affinity(irq, cpumask);
97 spin_unlock_irqrestore(&desc->lock, flags);
98 } else
99 set_pending_irq(irq, cpumask);
93#else 100#else
94 desc->affinity = cpumask; 101 desc->affinity = cpumask;
95 desc->chip->set_affinity(irq, cpumask); 102 desc->chip->set_affinity(irq, cpumask);
diff --git a/kernel/itimer.c b/kernel/itimer.c
index ab982747d9bd..db7c358b9a02 100644
--- a/kernel/itimer.c
+++ b/kernel/itimer.c
@@ -55,17 +55,15 @@ int do_getitimer(int which, struct itimerval *value)
55 spin_unlock_irq(&tsk->sighand->siglock); 55 spin_unlock_irq(&tsk->sighand->siglock);
56 break; 56 break;
57 case ITIMER_VIRTUAL: 57 case ITIMER_VIRTUAL:
58 read_lock(&tasklist_lock);
59 spin_lock_irq(&tsk->sighand->siglock); 58 spin_lock_irq(&tsk->sighand->siglock);
60 cval = tsk->signal->it_virt_expires; 59 cval = tsk->signal->it_virt_expires;
61 cinterval = tsk->signal->it_virt_incr; 60 cinterval = tsk->signal->it_virt_incr;
62 if (!cputime_eq(cval, cputime_zero)) { 61 if (!cputime_eq(cval, cputime_zero)) {
63 struct task_struct *t = tsk; 62 struct task_cputime cputime;
64 cputime_t utime = tsk->signal->utime; 63 cputime_t utime;
65 do { 64
66 utime = cputime_add(utime, t->utime); 65 thread_group_cputime(tsk, &cputime);
67 t = next_thread(t); 66 utime = cputime.utime;
68 } while (t != tsk);
69 if (cputime_le(cval, utime)) { /* about to fire */ 67 if (cputime_le(cval, utime)) { /* about to fire */
70 cval = jiffies_to_cputime(1); 68 cval = jiffies_to_cputime(1);
71 } else { 69 } else {
@@ -73,25 +71,19 @@ int do_getitimer(int which, struct itimerval *value)
73 } 71 }
74 } 72 }
75 spin_unlock_irq(&tsk->sighand->siglock); 73 spin_unlock_irq(&tsk->sighand->siglock);
76 read_unlock(&tasklist_lock);
77 cputime_to_timeval(cval, &value->it_value); 74 cputime_to_timeval(cval, &value->it_value);
78 cputime_to_timeval(cinterval, &value->it_interval); 75 cputime_to_timeval(cinterval, &value->it_interval);
79 break; 76 break;
80 case ITIMER_PROF: 77 case ITIMER_PROF:
81 read_lock(&tasklist_lock);
82 spin_lock_irq(&tsk->sighand->siglock); 78 spin_lock_irq(&tsk->sighand->siglock);
83 cval = tsk->signal->it_prof_expires; 79 cval = tsk->signal->it_prof_expires;
84 cinterval = tsk->signal->it_prof_incr; 80 cinterval = tsk->signal->it_prof_incr;
85 if (!cputime_eq(cval, cputime_zero)) { 81 if (!cputime_eq(cval, cputime_zero)) {
86 struct task_struct *t = tsk; 82 struct task_cputime times;
87 cputime_t ptime = cputime_add(tsk->signal->utime, 83 cputime_t ptime;
88 tsk->signal->stime); 84
89 do { 85 thread_group_cputime(tsk, &times);
90 ptime = cputime_add(ptime, 86 ptime = cputime_add(times.utime, times.stime);
91 cputime_add(t->utime,
92 t->stime));
93 t = next_thread(t);
94 } while (t != tsk);
95 if (cputime_le(cval, ptime)) { /* about to fire */ 87 if (cputime_le(cval, ptime)) { /* about to fire */
96 cval = jiffies_to_cputime(1); 88 cval = jiffies_to_cputime(1);
97 } else { 89 } else {
@@ -99,7 +91,6 @@ int do_getitimer(int which, struct itimerval *value)
99 } 91 }
100 } 92 }
101 spin_unlock_irq(&tsk->sighand->siglock); 93 spin_unlock_irq(&tsk->sighand->siglock);
102 read_unlock(&tasklist_lock);
103 cputime_to_timeval(cval, &value->it_value); 94 cputime_to_timeval(cval, &value->it_value);
104 cputime_to_timeval(cinterval, &value->it_interval); 95 cputime_to_timeval(cinterval, &value->it_interval);
105 break; 96 break;
@@ -185,7 +176,6 @@ again:
185 case ITIMER_VIRTUAL: 176 case ITIMER_VIRTUAL:
186 nval = timeval_to_cputime(&value->it_value); 177 nval = timeval_to_cputime(&value->it_value);
187 ninterval = timeval_to_cputime(&value->it_interval); 178 ninterval = timeval_to_cputime(&value->it_interval);
188 read_lock(&tasklist_lock);
189 spin_lock_irq(&tsk->sighand->siglock); 179 spin_lock_irq(&tsk->sighand->siglock);
190 cval = tsk->signal->it_virt_expires; 180 cval = tsk->signal->it_virt_expires;
191 cinterval = tsk->signal->it_virt_incr; 181 cinterval = tsk->signal->it_virt_incr;
@@ -200,7 +190,6 @@ again:
200 tsk->signal->it_virt_expires = nval; 190 tsk->signal->it_virt_expires = nval;
201 tsk->signal->it_virt_incr = ninterval; 191 tsk->signal->it_virt_incr = ninterval;
202 spin_unlock_irq(&tsk->sighand->siglock); 192 spin_unlock_irq(&tsk->sighand->siglock);
203 read_unlock(&tasklist_lock);
204 if (ovalue) { 193 if (ovalue) {
205 cputime_to_timeval(cval, &ovalue->it_value); 194 cputime_to_timeval(cval, &ovalue->it_value);
206 cputime_to_timeval(cinterval, &ovalue->it_interval); 195 cputime_to_timeval(cinterval, &ovalue->it_interval);
@@ -209,7 +198,6 @@ again:
209 case ITIMER_PROF: 198 case ITIMER_PROF:
210 nval = timeval_to_cputime(&value->it_value); 199 nval = timeval_to_cputime(&value->it_value);
211 ninterval = timeval_to_cputime(&value->it_interval); 200 ninterval = timeval_to_cputime(&value->it_interval);
212 read_lock(&tasklist_lock);
213 spin_lock_irq(&tsk->sighand->siglock); 201 spin_lock_irq(&tsk->sighand->siglock);
214 cval = tsk->signal->it_prof_expires; 202 cval = tsk->signal->it_prof_expires;
215 cinterval = tsk->signal->it_prof_incr; 203 cinterval = tsk->signal->it_prof_incr;
@@ -224,7 +212,6 @@ again:
224 tsk->signal->it_prof_expires = nval; 212 tsk->signal->it_prof_expires = nval;
225 tsk->signal->it_prof_incr = ninterval; 213 tsk->signal->it_prof_incr = ninterval;
226 spin_unlock_irq(&tsk->sighand->siglock); 214 spin_unlock_irq(&tsk->sighand->siglock);
227 read_unlock(&tasklist_lock);
228 if (ovalue) { 215 if (ovalue) {
229 cputime_to_timeval(cval, &ovalue->it_value); 216 cputime_to_timeval(cval, &ovalue->it_value);
230 cputime_to_timeval(cinterval, &ovalue->it_interval); 217 cputime_to_timeval(cinterval, &ovalue->it_interval);
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c
index 38fc10ac7541..5072cf1685a2 100644
--- a/kernel/kallsyms.c
+++ b/kernel/kallsyms.c
@@ -260,7 +260,6 @@ const char *kallsyms_lookup(unsigned long addr,
260 /* see if it's in a module */ 260 /* see if it's in a module */
261 return module_address_lookup(addr, symbolsize, offset, modname, 261 return module_address_lookup(addr, symbolsize, offset, modname,
262 namebuf); 262 namebuf);
263 return NULL;
264} 263}
265 264
266int lookup_symbol_name(unsigned long addr, char *symname) 265int lookup_symbol_name(unsigned long addr, char *symname)
diff --git a/kernel/kexec.c b/kernel/kexec.c
index 59f3f0df35d4..aef265325cd3 100644
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -753,8 +753,14 @@ static struct page *kimage_alloc_page(struct kimage *image,
753 *old = addr | (*old & ~PAGE_MASK); 753 *old = addr | (*old & ~PAGE_MASK);
754 754
755 /* The old page I have found cannot be a 755 /* The old page I have found cannot be a
756 * destination page, so return it. 756 * destination page, so return it if it's
757 * gfp_flags honor the ones passed in.
757 */ 758 */
759 if (!(gfp_mask & __GFP_HIGHMEM) &&
760 PageHighMem(old_page)) {
761 kimage_free_pages(old_page);
762 continue;
763 }
758 addr = old_addr; 764 addr = old_addr;
759 page = old_page; 765 page = old_page;
760 break; 766 break;
diff --git a/kernel/kgdb.c b/kernel/kgdb.c
index eaa21fc9ad1d..e4dcfb2272a4 100644
--- a/kernel/kgdb.c
+++ b/kernel/kgdb.c
@@ -488,7 +488,7 @@ static int write_mem_msg(int binary)
488 if (err) 488 if (err)
489 return err; 489 return err;
490 if (CACHE_FLUSH_IS_SAFE) 490 if (CACHE_FLUSH_IS_SAFE)
491 flush_icache_range(addr, addr + length + 1); 491 flush_icache_range(addr, addr + length);
492 return 0; 492 return 0;
493 } 493 }
494 494
@@ -590,6 +590,7 @@ static void kgdb_wait(struct pt_regs *regs)
590 590
591 /* Signal the primary CPU that we are done: */ 591 /* Signal the primary CPU that we are done: */
592 atomic_set(&cpu_in_kgdb[cpu], 0); 592 atomic_set(&cpu_in_kgdb[cpu], 0);
593 touch_softlockup_watchdog();
593 clocksource_touch_watchdog(); 594 clocksource_touch_watchdog();
594 local_irq_restore(flags); 595 local_irq_restore(flags);
595} 596}
@@ -1432,6 +1433,7 @@ acquirelock:
1432 atomic_read(&kgdb_cpu_doing_single_step) != cpu) { 1433 atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1433 1434
1434 atomic_set(&kgdb_active, -1); 1435 atomic_set(&kgdb_active, -1);
1436 touch_softlockup_watchdog();
1435 clocksource_touch_watchdog(); 1437 clocksource_touch_watchdog();
1436 local_irq_restore(flags); 1438 local_irq_restore(flags);
1437 1439
@@ -1462,7 +1464,7 @@ acquirelock:
1462 * Get the passive CPU lock which will hold all the non-primary 1464 * Get the passive CPU lock which will hold all the non-primary
1463 * CPU in a spin state while the debugger is active 1465 * CPU in a spin state while the debugger is active
1464 */ 1466 */
1465 if (!kgdb_single_step || !kgdb_contthread) { 1467 if (!kgdb_single_step) {
1466 for (i = 0; i < NR_CPUS; i++) 1468 for (i = 0; i < NR_CPUS; i++)
1467 atomic_set(&passive_cpu_wait[i], 1); 1469 atomic_set(&passive_cpu_wait[i], 1);
1468 } 1470 }
@@ -1475,7 +1477,7 @@ acquirelock:
1475 1477
1476#ifdef CONFIG_SMP 1478#ifdef CONFIG_SMP
1477 /* Signal the other CPUs to enter kgdb_wait() */ 1479 /* Signal the other CPUs to enter kgdb_wait() */
1478 if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup) 1480 if ((!kgdb_single_step) && kgdb_do_roundup)
1479 kgdb_roundup_cpus(flags); 1481 kgdb_roundup_cpus(flags);
1480#endif 1482#endif
1481 1483
@@ -1494,7 +1496,7 @@ acquirelock:
1494 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); 1496 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1495 kgdb_deactivate_sw_breakpoints(); 1497 kgdb_deactivate_sw_breakpoints();
1496 kgdb_single_step = 0; 1498 kgdb_single_step = 0;
1497 kgdb_contthread = NULL; 1499 kgdb_contthread = current;
1498 exception_level = 0; 1500 exception_level = 0;
1499 1501
1500 /* Talk to debugger with gdbserial protocol */ 1502 /* Talk to debugger with gdbserial protocol */
@@ -1508,7 +1510,7 @@ acquirelock:
1508 kgdb_info[ks->cpu].task = NULL; 1510 kgdb_info[ks->cpu].task = NULL;
1509 atomic_set(&cpu_in_kgdb[ks->cpu], 0); 1511 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1510 1512
1511 if (!kgdb_single_step || !kgdb_contthread) { 1513 if (!kgdb_single_step) {
1512 for (i = NR_CPUS-1; i >= 0; i--) 1514 for (i = NR_CPUS-1; i >= 0; i--)
1513 atomic_set(&passive_cpu_wait[i], 0); 1515 atomic_set(&passive_cpu_wait[i], 0);
1514 /* 1516 /*
@@ -1524,6 +1526,7 @@ acquirelock:
1524kgdb_restore: 1526kgdb_restore:
1525 /* Free kgdb_active */ 1527 /* Free kgdb_active */
1526 atomic_set(&kgdb_active, -1); 1528 atomic_set(&kgdb_active, -1);
1529 touch_softlockup_watchdog();
1527 clocksource_touch_watchdog(); 1530 clocksource_touch_watchdog();
1528 local_irq_restore(flags); 1531 local_irq_restore(flags);
1529 1532
diff --git a/kernel/kmod.c b/kernel/kmod.c
index 2456d1a0befb..3d3c3ea3a023 100644
--- a/kernel/kmod.c
+++ b/kernel/kmod.c
@@ -113,7 +113,7 @@ int request_module(const char *fmt, ...)
113 return ret; 113 return ret;
114} 114}
115EXPORT_SYMBOL(request_module); 115EXPORT_SYMBOL(request_module);
116#endif /* CONFIG_KMOD */ 116#endif /* CONFIG_MODULES */
117 117
118struct subprocess_info { 118struct subprocess_info {
119 struct work_struct work; 119 struct work_struct work;
@@ -265,7 +265,7 @@ static void __call_usermodehelper(struct work_struct *work)
265 } 265 }
266} 266}
267 267
268#ifdef CONFIG_PM 268#ifdef CONFIG_PM_SLEEP
269/* 269/*
270 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY 270 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
271 * (used for preventing user land processes from being created after the user 271 * (used for preventing user land processes from being created after the user
@@ -288,39 +288,37 @@ static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
288 */ 288 */
289#define RUNNING_HELPERS_TIMEOUT (5 * HZ) 289#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
290 290
291static int usermodehelper_pm_callback(struct notifier_block *nfb, 291/**
292 unsigned long action, 292 * usermodehelper_disable - prevent new helpers from being started
293 void *ignored) 293 */
294int usermodehelper_disable(void)
294{ 295{
295 long retval; 296 long retval;
296 297
297 switch (action) { 298 usermodehelper_disabled = 1;
298 case PM_HIBERNATION_PREPARE: 299 smp_mb();
299 case PM_SUSPEND_PREPARE: 300 /*
300 usermodehelper_disabled = 1; 301 * From now on call_usermodehelper_exec() won't start any new
301 smp_mb(); 302 * helpers, so it is sufficient if running_helpers turns out to
302 /* 303 * be zero at one point (it may be increased later, but that
303 * From now on call_usermodehelper_exec() won't start any new 304 * doesn't matter).
304 * helpers, so it is sufficient if running_helpers turns out to 305 */
305 * be zero at one point (it may be increased later, but that 306 retval = wait_event_timeout(running_helpers_waitq,
306 * doesn't matter).
307 */
308 retval = wait_event_timeout(running_helpers_waitq,
309 atomic_read(&running_helpers) == 0, 307 atomic_read(&running_helpers) == 0,
310 RUNNING_HELPERS_TIMEOUT); 308 RUNNING_HELPERS_TIMEOUT);
311 if (retval) { 309 if (retval)
312 return NOTIFY_OK; 310 return 0;
313 } else {
314 usermodehelper_disabled = 0;
315 return NOTIFY_BAD;
316 }
317 case PM_POST_HIBERNATION:
318 case PM_POST_SUSPEND:
319 usermodehelper_disabled = 0;
320 return NOTIFY_OK;
321 }
322 311
323 return NOTIFY_DONE; 312 usermodehelper_disabled = 0;
313 return -EAGAIN;
314}
315
316/**
317 * usermodehelper_enable - allow new helpers to be started again
318 */
319void usermodehelper_enable(void)
320{
321 usermodehelper_disabled = 0;
324} 322}
325 323
326static void helper_lock(void) 324static void helper_lock(void)
@@ -334,18 +332,12 @@ static void helper_unlock(void)
334 if (atomic_dec_and_test(&running_helpers)) 332 if (atomic_dec_and_test(&running_helpers))
335 wake_up(&running_helpers_waitq); 333 wake_up(&running_helpers_waitq);
336} 334}
337 335#else /* CONFIG_PM_SLEEP */
338static void register_pm_notifier_callback(void)
339{
340 pm_notifier(usermodehelper_pm_callback, 0);
341}
342#else /* CONFIG_PM */
343#define usermodehelper_disabled 0 336#define usermodehelper_disabled 0
344 337
345static inline void helper_lock(void) {} 338static inline void helper_lock(void) {}
346static inline void helper_unlock(void) {} 339static inline void helper_unlock(void) {}
347static inline void register_pm_notifier_callback(void) {} 340#endif /* CONFIG_PM_SLEEP */
348#endif /* CONFIG_PM */
349 341
350/** 342/**
351 * call_usermodehelper_setup - prepare to call a usermode helper 343 * call_usermodehelper_setup - prepare to call a usermode helper
@@ -515,5 +507,4 @@ void __init usermodehelper_init(void)
515{ 507{
516 khelper_wq = create_singlethread_workqueue("khelper"); 508 khelper_wq = create_singlethread_workqueue("khelper");
517 BUG_ON(!khelper_wq); 509 BUG_ON(!khelper_wq);
518 register_pm_notifier_callback();
519} 510}
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index 75bc2cd9ebc6..8b57a2597f21 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -404,7 +404,7 @@ void kretprobe_hash_lock(struct task_struct *tsk,
404 spin_lock_irqsave(hlist_lock, *flags); 404 spin_lock_irqsave(hlist_lock, *flags);
405} 405}
406 406
407void kretprobe_table_lock(unsigned long hash, unsigned long *flags) 407static void kretprobe_table_lock(unsigned long hash, unsigned long *flags)
408{ 408{
409 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 409 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
410 spin_lock_irqsave(hlist_lock, *flags); 410 spin_lock_irqsave(hlist_lock, *flags);
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c
index e53bc30e9ba5..08dd8ed86c77 100644
--- a/kernel/ksysfs.c
+++ b/kernel/ksysfs.c
@@ -14,6 +14,7 @@
14#include <linux/module.h> 14#include <linux/module.h>
15#include <linux/init.h> 15#include <linux/init.h>
16#include <linux/kexec.h> 16#include <linux/kexec.h>
17#include <linux/profile.h>
17#include <linux/sched.h> 18#include <linux/sched.h>
18 19
19#define KERNEL_ATTR_RO(_name) \ 20#define KERNEL_ATTR_RO(_name) \
@@ -53,6 +54,37 @@ static ssize_t uevent_helper_store(struct kobject *kobj,
53KERNEL_ATTR_RW(uevent_helper); 54KERNEL_ATTR_RW(uevent_helper);
54#endif 55#endif
55 56
57#ifdef CONFIG_PROFILING
58static ssize_t profiling_show(struct kobject *kobj,
59 struct kobj_attribute *attr, char *buf)
60{
61 return sprintf(buf, "%d\n", prof_on);
62}
63static ssize_t profiling_store(struct kobject *kobj,
64 struct kobj_attribute *attr,
65 const char *buf, size_t count)
66{
67 int ret;
68
69 if (prof_on)
70 return -EEXIST;
71 /*
72 * This eventually calls into get_option() which
73 * has a ton of callers and is not const. It is
74 * easiest to cast it away here.
75 */
76 profile_setup((char *)buf);
77 ret = profile_init();
78 if (ret)
79 return ret;
80 ret = create_proc_profile();
81 if (ret)
82 return ret;
83 return count;
84}
85KERNEL_ATTR_RW(profiling);
86#endif
87
56#ifdef CONFIG_KEXEC 88#ifdef CONFIG_KEXEC
57static ssize_t kexec_loaded_show(struct kobject *kobj, 89static ssize_t kexec_loaded_show(struct kobject *kobj,
58 struct kobj_attribute *attr, char *buf) 90 struct kobj_attribute *attr, char *buf)
@@ -109,6 +141,9 @@ static struct attribute * kernel_attrs[] = {
109 &uevent_seqnum_attr.attr, 141 &uevent_seqnum_attr.attr,
110 &uevent_helper_attr.attr, 142 &uevent_helper_attr.attr,
111#endif 143#endif
144#ifdef CONFIG_PROFILING
145 &profiling_attr.attr,
146#endif
112#ifdef CONFIG_KEXEC 147#ifdef CONFIG_KEXEC
113 &kexec_loaded_attr.attr, 148 &kexec_loaded_attr.attr,
114 &kexec_crash_loaded_attr.attr, 149 &kexec_crash_loaded_attr.attr,
diff --git a/kernel/module.c b/kernel/module.c
index 9db11911e04b..25bc9ac9e226 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -100,7 +100,7 @@ static inline int strong_try_module_get(struct module *mod)
100static inline void add_taint_module(struct module *mod, unsigned flag) 100static inline void add_taint_module(struct module *mod, unsigned flag)
101{ 101{
102 add_taint(flag); 102 add_taint(flag);
103 mod->taints |= flag; 103 mod->taints |= (1U << flag);
104} 104}
105 105
106/* 106/*
@@ -784,6 +784,7 @@ sys_delete_module(const char __user *name_user, unsigned int flags)
784 mutex_lock(&module_mutex); 784 mutex_lock(&module_mutex);
785 /* Store the name of the last unloaded module for diagnostic purposes */ 785 /* Store the name of the last unloaded module for diagnostic purposes */
786 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); 786 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
787 unregister_dynamic_debug_module(mod->name);
787 free_module(mod); 788 free_module(mod);
788 789
789 out: 790 out:
@@ -923,7 +924,7 @@ static const char vermagic[] = VERMAGIC_STRING;
923static int try_to_force_load(struct module *mod, const char *symname) 924static int try_to_force_load(struct module *mod, const char *symname)
924{ 925{
925#ifdef CONFIG_MODULE_FORCE_LOAD 926#ifdef CONFIG_MODULE_FORCE_LOAD
926 if (!(tainted & TAINT_FORCED_MODULE)) 927 if (!test_taint(TAINT_FORCED_MODULE))
927 printk("%s: no version for \"%s\" found: kernel tainted.\n", 928 printk("%s: no version for \"%s\" found: kernel tainted.\n",
928 mod->name, symname); 929 mod->name, symname);
929 add_taint_module(mod, TAINT_FORCED_MODULE); 930 add_taint_module(mod, TAINT_FORCED_MODULE);
@@ -1033,7 +1034,7 @@ static unsigned long resolve_symbol(Elf_Shdr *sechdrs,
1033 const unsigned long *crc; 1034 const unsigned long *crc;
1034 1035
1035 ret = find_symbol(name, &owner, &crc, 1036 ret = find_symbol(name, &owner, &crc,
1036 !(mod->taints & TAINT_PROPRIETARY_MODULE), true); 1037 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1037 if (!IS_ERR_VALUE(ret)) { 1038 if (!IS_ERR_VALUE(ret)) {
1038 /* use_module can fail due to OOM, 1039 /* use_module can fail due to OOM,
1039 or module initialization or unloading */ 1040 or module initialization or unloading */
@@ -1173,7 +1174,7 @@ static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1173 while (i-- > 0) 1174 while (i-- > 0)
1174 sysfs_remove_bin_file(notes_attrs->dir, 1175 sysfs_remove_bin_file(notes_attrs->dir,
1175 &notes_attrs->attrs[i]); 1176 &notes_attrs->attrs[i]);
1176 kobject_del(notes_attrs->dir); 1177 kobject_put(notes_attrs->dir);
1177 } 1178 }
1178 kfree(notes_attrs); 1179 kfree(notes_attrs);
1179} 1180}
@@ -1634,7 +1635,7 @@ static void set_license(struct module *mod, const char *license)
1634 license = "unspecified"; 1635 license = "unspecified";
1635 1636
1636 if (!license_is_gpl_compatible(license)) { 1637 if (!license_is_gpl_compatible(license)) {
1637 if (!(tainted & TAINT_PROPRIETARY_MODULE)) 1638 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1638 printk(KERN_WARNING "%s: module license '%s' taints " 1639 printk(KERN_WARNING "%s: module license '%s' taints "
1639 "kernel.\n", mod->name, license); 1640 "kernel.\n", mod->name, license);
1640 add_taint_module(mod, TAINT_PROPRIETARY_MODULE); 1641 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
@@ -1783,6 +1784,33 @@ static inline void add_kallsyms(struct module *mod,
1783} 1784}
1784#endif /* CONFIG_KALLSYMS */ 1785#endif /* CONFIG_KALLSYMS */
1785 1786
1787#ifdef CONFIG_DYNAMIC_PRINTK_DEBUG
1788static void dynamic_printk_setup(Elf_Shdr *sechdrs, unsigned int verboseindex)
1789{
1790 struct mod_debug *debug_info;
1791 unsigned long pos, end;
1792 unsigned int num_verbose;
1793
1794 pos = sechdrs[verboseindex].sh_addr;
1795 num_verbose = sechdrs[verboseindex].sh_size /
1796 sizeof(struct mod_debug);
1797 end = pos + (num_verbose * sizeof(struct mod_debug));
1798
1799 for (; pos < end; pos += sizeof(struct mod_debug)) {
1800 debug_info = (struct mod_debug *)pos;
1801 register_dynamic_debug_module(debug_info->modname,
1802 debug_info->type, debug_info->logical_modname,
1803 debug_info->flag_names, debug_info->hash,
1804 debug_info->hash2);
1805 }
1806}
1807#else
1808static inline void dynamic_printk_setup(Elf_Shdr *sechdrs,
1809 unsigned int verboseindex)
1810{
1811}
1812#endif /* CONFIG_DYNAMIC_PRINTK_DEBUG */
1813
1786static void *module_alloc_update_bounds(unsigned long size) 1814static void *module_alloc_update_bounds(unsigned long size)
1787{ 1815{
1788 void *ret = module_alloc(size); 1816 void *ret = module_alloc(size);
@@ -1806,6 +1834,7 @@ static noinline struct module *load_module(void __user *umod,
1806 Elf_Ehdr *hdr; 1834 Elf_Ehdr *hdr;
1807 Elf_Shdr *sechdrs; 1835 Elf_Shdr *sechdrs;
1808 char *secstrings, *args, *modmagic, *strtab = NULL; 1836 char *secstrings, *args, *modmagic, *strtab = NULL;
1837 char *staging;
1809 unsigned int i; 1838 unsigned int i;
1810 unsigned int symindex = 0; 1839 unsigned int symindex = 0;
1811 unsigned int strindex = 0; 1840 unsigned int strindex = 0;
@@ -1831,6 +1860,7 @@ static noinline struct module *load_module(void __user *umod,
1831#endif 1860#endif
1832 unsigned int markersindex; 1861 unsigned int markersindex;
1833 unsigned int markersstringsindex; 1862 unsigned int markersstringsindex;
1863 unsigned int verboseindex;
1834 struct module *mod; 1864 struct module *mod;
1835 long err = 0; 1865 long err = 0;
1836 void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ 1866 void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */
@@ -1960,6 +1990,14 @@ static noinline struct module *load_module(void __user *umod,
1960 goto free_hdr; 1990 goto free_hdr;
1961 } 1991 }
1962 1992
1993 staging = get_modinfo(sechdrs, infoindex, "staging");
1994 if (staging) {
1995 add_taint_module(mod, TAINT_CRAP);
1996 printk(KERN_WARNING "%s: module is from the staging directory,"
1997 " the quality is unknown, you have been warned.\n",
1998 mod->name);
1999 }
2000
1963 /* Now copy in args */ 2001 /* Now copy in args */
1964 args = strndup_user(uargs, ~0UL >> 1); 2002 args = strndup_user(uargs, ~0UL >> 1);
1965 if (IS_ERR(args)) { 2003 if (IS_ERR(args)) {
@@ -2117,6 +2155,7 @@ static noinline struct module *load_module(void __user *umod,
2117 markersindex = find_sec(hdr, sechdrs, secstrings, "__markers"); 2155 markersindex = find_sec(hdr, sechdrs, secstrings, "__markers");
2118 markersstringsindex = find_sec(hdr, sechdrs, secstrings, 2156 markersstringsindex = find_sec(hdr, sechdrs, secstrings,
2119 "__markers_strings"); 2157 "__markers_strings");
2158 verboseindex = find_sec(hdr, sechdrs, secstrings, "__verbose");
2120 2159
2121 /* Now do relocations. */ 2160 /* Now do relocations. */
2122 for (i = 1; i < hdr->e_shnum; i++) { 2161 for (i = 1; i < hdr->e_shnum; i++) {
@@ -2167,6 +2206,7 @@ static noinline struct module *load_module(void __user *umod,
2167 marker_update_probe_range(mod->markers, 2206 marker_update_probe_range(mod->markers,
2168 mod->markers + mod->num_markers); 2207 mod->markers + mod->num_markers);
2169#endif 2208#endif
2209 dynamic_printk_setup(sechdrs, verboseindex);
2170 err = module_finalize(hdr, sechdrs, mod); 2210 err = module_finalize(hdr, sechdrs, mod);
2171 if (err < 0) 2211 if (err < 0)
2172 goto cleanup; 2212 goto cleanup;
@@ -2552,10 +2592,12 @@ static char *module_flags(struct module *mod, char *buf)
2552 mod->state == MODULE_STATE_GOING || 2592 mod->state == MODULE_STATE_GOING ||
2553 mod->state == MODULE_STATE_COMING) { 2593 mod->state == MODULE_STATE_COMING) {
2554 buf[bx++] = '('; 2594 buf[bx++] = '(';
2555 if (mod->taints & TAINT_PROPRIETARY_MODULE) 2595 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2556 buf[bx++] = 'P'; 2596 buf[bx++] = 'P';
2557 if (mod->taints & TAINT_FORCED_MODULE) 2597 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2558 buf[bx++] = 'F'; 2598 buf[bx++] = 'F';
2599 if (mod->taints & (1 << TAINT_CRAP))
2600 buf[bx++] = 'C';
2559 /* 2601 /*
2560 * TAINT_FORCED_RMMOD: could be added. 2602 * TAINT_FORCED_RMMOD: could be added.
2561 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't 2603 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
diff --git a/kernel/panic.c b/kernel/panic.c
index 12c5a0a6c89b..bda561ef3cdf 100644
--- a/kernel/panic.c
+++ b/kernel/panic.c
@@ -23,7 +23,7 @@
23#include <linux/kallsyms.h> 23#include <linux/kallsyms.h>
24 24
25int panic_on_oops; 25int panic_on_oops;
26int tainted; 26static unsigned long tainted_mask;
27static int pause_on_oops; 27static int pause_on_oops;
28static int pause_on_oops_flag; 28static int pause_on_oops_flag;
29static DEFINE_SPINLOCK(pause_on_oops_lock); 29static DEFINE_SPINLOCK(pause_on_oops_lock);
@@ -143,6 +143,27 @@ NORET_TYPE void panic(const char * fmt, ...)
143 143
144EXPORT_SYMBOL(panic); 144EXPORT_SYMBOL(panic);
145 145
146
147struct tnt {
148 u8 bit;
149 char true;
150 char false;
151};
152
153static const struct tnt tnts[] = {
154 { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
155 { TAINT_FORCED_MODULE, 'F', ' ' },
156 { TAINT_UNSAFE_SMP, 'S', ' ' },
157 { TAINT_FORCED_RMMOD, 'R', ' ' },
158 { TAINT_MACHINE_CHECK, 'M', ' ' },
159 { TAINT_BAD_PAGE, 'B', ' ' },
160 { TAINT_USER, 'U', ' ' },
161 { TAINT_DIE, 'D', ' ' },
162 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
163 { TAINT_WARN, 'W', ' ' },
164 { TAINT_CRAP, 'C', ' ' },
165};
166
146/** 167/**
147 * print_tainted - return a string to represent the kernel taint state. 168 * print_tainted - return a string to represent the kernel taint state.
148 * 169 *
@@ -155,35 +176,45 @@ EXPORT_SYMBOL(panic);
155 * 'U' - Userspace-defined naughtiness. 176 * 'U' - Userspace-defined naughtiness.
156 * 'A' - ACPI table overridden. 177 * 'A' - ACPI table overridden.
157 * 'W' - Taint on warning. 178 * 'W' - Taint on warning.
179 * 'C' - modules from drivers/staging are loaded.
158 * 180 *
159 * The string is overwritten by the next call to print_taint(). 181 * The string is overwritten by the next call to print_taint().
160 */ 182 */
161
162const char *print_tainted(void) 183const char *print_tainted(void)
163{ 184{
164 static char buf[20]; 185 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ") + 1];
165 if (tainted) { 186
166 snprintf(buf, sizeof(buf), "Tainted: %c%c%c%c%c%c%c%c%c%c", 187 if (tainted_mask) {
167 tainted & TAINT_PROPRIETARY_MODULE ? 'P' : 'G', 188 char *s;
168 tainted & TAINT_FORCED_MODULE ? 'F' : ' ', 189 int i;
169 tainted & TAINT_UNSAFE_SMP ? 'S' : ' ', 190
170 tainted & TAINT_FORCED_RMMOD ? 'R' : ' ', 191 s = buf + sprintf(buf, "Tainted: ");
171 tainted & TAINT_MACHINE_CHECK ? 'M' : ' ', 192 for (i = 0; i < ARRAY_SIZE(tnts); i++) {
172 tainted & TAINT_BAD_PAGE ? 'B' : ' ', 193 const struct tnt *t = &tnts[i];
173 tainted & TAINT_USER ? 'U' : ' ', 194 *s++ = test_bit(t->bit, &tainted_mask) ?
174 tainted & TAINT_DIE ? 'D' : ' ', 195 t->true : t->false;
175 tainted & TAINT_OVERRIDDEN_ACPI_TABLE ? 'A' : ' ', 196 }
176 tainted & TAINT_WARN ? 'W' : ' '); 197 *s = 0;
177 } 198 } else
178 else
179 snprintf(buf, sizeof(buf), "Not tainted"); 199 snprintf(buf, sizeof(buf), "Not tainted");
180 return(buf); 200 return(buf);
181} 201}
182 202
203int test_taint(unsigned flag)
204{
205 return test_bit(flag, &tainted_mask);
206}
207EXPORT_SYMBOL(test_taint);
208
209unsigned long get_taint(void)
210{
211 return tainted_mask;
212}
213
183void add_taint(unsigned flag) 214void add_taint(unsigned flag)
184{ 215{
185 debug_locks = 0; /* can't trust the integrity of the kernel anymore */ 216 debug_locks = 0; /* can't trust the integrity of the kernel anymore */
186 tainted |= flag; 217 set_bit(flag, &tainted_mask);
187} 218}
188EXPORT_SYMBOL(add_taint); 219EXPORT_SYMBOL(add_taint);
189 220
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index c42a03aef36f..153dcb2639c3 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -7,6 +7,93 @@
7#include <linux/errno.h> 7#include <linux/errno.h>
8#include <linux/math64.h> 8#include <linux/math64.h>
9#include <asm/uaccess.h> 9#include <asm/uaccess.h>
10#include <linux/kernel_stat.h>
11
12/*
13 * Allocate the thread_group_cputime structure appropriately and fill in the
14 * current values of the fields. Called from copy_signal() via
15 * thread_group_cputime_clone_thread() when adding a second or subsequent
16 * thread to a thread group. Assumes interrupts are enabled when called.
17 */
18int thread_group_cputime_alloc(struct task_struct *tsk)
19{
20 struct signal_struct *sig = tsk->signal;
21 struct task_cputime *cputime;
22
23 /*
24 * If we have multiple threads and we don't already have a
25 * per-CPU task_cputime struct (checked in the caller), allocate
26 * one and fill it in with the times accumulated so far. We may
27 * race with another thread so recheck after we pick up the sighand
28 * lock.
29 */
30 cputime = alloc_percpu(struct task_cputime);
31 if (cputime == NULL)
32 return -ENOMEM;
33 spin_lock_irq(&tsk->sighand->siglock);
34 if (sig->cputime.totals) {
35 spin_unlock_irq(&tsk->sighand->siglock);
36 free_percpu(cputime);
37 return 0;
38 }
39 sig->cputime.totals = cputime;
40 cputime = per_cpu_ptr(sig->cputime.totals, smp_processor_id());
41 cputime->utime = tsk->utime;
42 cputime->stime = tsk->stime;
43 cputime->sum_exec_runtime = tsk->se.sum_exec_runtime;
44 spin_unlock_irq(&tsk->sighand->siglock);
45 return 0;
46}
47
48/**
49 * thread_group_cputime - Sum the thread group time fields across all CPUs.
50 *
51 * @tsk: The task we use to identify the thread group.
52 * @times: task_cputime structure in which we return the summed fields.
53 *
54 * Walk the list of CPUs to sum the per-CPU time fields in the thread group
55 * time structure.
56 */
57void thread_group_cputime(
58 struct task_struct *tsk,
59 struct task_cputime *times)
60{
61 struct signal_struct *sig;
62 int i;
63 struct task_cputime *tot;
64
65 sig = tsk->signal;
66 if (unlikely(!sig) || !sig->cputime.totals) {
67 times->utime = tsk->utime;
68 times->stime = tsk->stime;
69 times->sum_exec_runtime = tsk->se.sum_exec_runtime;
70 return;
71 }
72 times->stime = times->utime = cputime_zero;
73 times->sum_exec_runtime = 0;
74 for_each_possible_cpu(i) {
75 tot = per_cpu_ptr(tsk->signal->cputime.totals, i);
76 times->utime = cputime_add(times->utime, tot->utime);
77 times->stime = cputime_add(times->stime, tot->stime);
78 times->sum_exec_runtime += tot->sum_exec_runtime;
79 }
80}
81
82/*
83 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
84 */
85void update_rlimit_cpu(unsigned long rlim_new)
86{
87 cputime_t cputime;
88
89 cputime = secs_to_cputime(rlim_new);
90 if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
91 cputime_lt(current->signal->it_prof_expires, cputime)) {
92 spin_lock_irq(&current->sighand->siglock);
93 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
94 spin_unlock_irq(&current->sighand->siglock);
95 }
96}
10 97
11static int check_clock(const clockid_t which_clock) 98static int check_clock(const clockid_t which_clock)
12{ 99{
@@ -158,10 +245,6 @@ static inline cputime_t virt_ticks(struct task_struct *p)
158{ 245{
159 return p->utime; 246 return p->utime;
160} 247}
161static inline unsigned long long sched_ns(struct task_struct *p)
162{
163 return task_sched_runtime(p);
164}
165 248
166int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 249int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
167{ 250{
@@ -211,7 +294,7 @@ static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
211 cpu->cpu = virt_ticks(p); 294 cpu->cpu = virt_ticks(p);
212 break; 295 break;
213 case CPUCLOCK_SCHED: 296 case CPUCLOCK_SCHED:
214 cpu->sched = sched_ns(p); 297 cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p);
215 break; 298 break;
216 } 299 }
217 return 0; 300 return 0;
@@ -220,59 +303,30 @@ static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
220/* 303/*
221 * Sample a process (thread group) clock for the given group_leader task. 304 * Sample a process (thread group) clock for the given group_leader task.
222 * Must be called with tasklist_lock held for reading. 305 * Must be called with tasklist_lock held for reading.
223 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
224 */ 306 */
225static int cpu_clock_sample_group_locked(unsigned int clock_idx, 307static int cpu_clock_sample_group(const clockid_t which_clock,
226 struct task_struct *p, 308 struct task_struct *p,
227 union cpu_time_count *cpu) 309 union cpu_time_count *cpu)
228{ 310{
229 struct task_struct *t = p; 311 struct task_cputime cputime;
230 switch (clock_idx) { 312
313 thread_group_cputime(p, &cputime);
314 switch (which_clock) {
231 default: 315 default:
232 return -EINVAL; 316 return -EINVAL;
233 case CPUCLOCK_PROF: 317 case CPUCLOCK_PROF:
234 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); 318 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
235 do {
236 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
237 t = next_thread(t);
238 } while (t != p);
239 break; 319 break;
240 case CPUCLOCK_VIRT: 320 case CPUCLOCK_VIRT:
241 cpu->cpu = p->signal->utime; 321 cpu->cpu = cputime.utime;
242 do {
243 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
244 t = next_thread(t);
245 } while (t != p);
246 break; 322 break;
247 case CPUCLOCK_SCHED: 323 case CPUCLOCK_SCHED:
248 cpu->sched = p->signal->sum_sched_runtime; 324 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
249 /* Add in each other live thread. */
250 while ((t = next_thread(t)) != p) {
251 cpu->sched += t->se.sum_exec_runtime;
252 }
253 cpu->sched += sched_ns(p);
254 break; 325 break;
255 } 326 }
256 return 0; 327 return 0;
257} 328}
258 329
259/*
260 * Sample a process (thread group) clock for the given group_leader task.
261 * Must be called with tasklist_lock held for reading.
262 */
263static int cpu_clock_sample_group(const clockid_t which_clock,
264 struct task_struct *p,
265 union cpu_time_count *cpu)
266{
267 int ret;
268 unsigned long flags;
269 spin_lock_irqsave(&p->sighand->siglock, flags);
270 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
271 cpu);
272 spin_unlock_irqrestore(&p->sighand->siglock, flags);
273 return ret;
274}
275
276 330
277int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 331int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
278{ 332{
@@ -471,80 +525,11 @@ void posix_cpu_timers_exit(struct task_struct *tsk)
471} 525}
472void posix_cpu_timers_exit_group(struct task_struct *tsk) 526void posix_cpu_timers_exit_group(struct task_struct *tsk)
473{ 527{
474 cleanup_timers(tsk->signal->cpu_timers, 528 struct task_cputime cputime;
475 cputime_add(tsk->utime, tsk->signal->utime),
476 cputime_add(tsk->stime, tsk->signal->stime),
477 tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
478}
479 529
480 530 thread_group_cputime(tsk, &cputime);
481/* 531 cleanup_timers(tsk->signal->cpu_timers,
482 * Set the expiry times of all the threads in the process so one of them 532 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
483 * will go off before the process cumulative expiry total is reached.
484 */
485static void process_timer_rebalance(struct task_struct *p,
486 unsigned int clock_idx,
487 union cpu_time_count expires,
488 union cpu_time_count val)
489{
490 cputime_t ticks, left;
491 unsigned long long ns, nsleft;
492 struct task_struct *t = p;
493 unsigned int nthreads = atomic_read(&p->signal->live);
494
495 if (!nthreads)
496 return;
497
498 switch (clock_idx) {
499 default:
500 BUG();
501 break;
502 case CPUCLOCK_PROF:
503 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
504 nthreads);
505 do {
506 if (likely(!(t->flags & PF_EXITING))) {
507 ticks = cputime_add(prof_ticks(t), left);
508 if (cputime_eq(t->it_prof_expires,
509 cputime_zero) ||
510 cputime_gt(t->it_prof_expires, ticks)) {
511 t->it_prof_expires = ticks;
512 }
513 }
514 t = next_thread(t);
515 } while (t != p);
516 break;
517 case CPUCLOCK_VIRT:
518 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
519 nthreads);
520 do {
521 if (likely(!(t->flags & PF_EXITING))) {
522 ticks = cputime_add(virt_ticks(t), left);
523 if (cputime_eq(t->it_virt_expires,
524 cputime_zero) ||
525 cputime_gt(t->it_virt_expires, ticks)) {
526 t->it_virt_expires = ticks;
527 }
528 }
529 t = next_thread(t);
530 } while (t != p);
531 break;
532 case CPUCLOCK_SCHED:
533 nsleft = expires.sched - val.sched;
534 do_div(nsleft, nthreads);
535 nsleft = max_t(unsigned long long, nsleft, 1);
536 do {
537 if (likely(!(t->flags & PF_EXITING))) {
538 ns = t->se.sum_exec_runtime + nsleft;
539 if (t->it_sched_expires == 0 ||
540 t->it_sched_expires > ns) {
541 t->it_sched_expires = ns;
542 }
543 }
544 t = next_thread(t);
545 } while (t != p);
546 break;
547 }
548} 533}
549 534
550static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) 535static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
@@ -608,29 +593,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
608 default: 593 default:
609 BUG(); 594 BUG();
610 case CPUCLOCK_PROF: 595 case CPUCLOCK_PROF:
611 if (cputime_eq(p->it_prof_expires, 596 if (cputime_eq(p->cputime_expires.prof_exp,
612 cputime_zero) || 597 cputime_zero) ||
613 cputime_gt(p->it_prof_expires, 598 cputime_gt(p->cputime_expires.prof_exp,
614 nt->expires.cpu)) 599 nt->expires.cpu))
615 p->it_prof_expires = nt->expires.cpu; 600 p->cputime_expires.prof_exp =
601 nt->expires.cpu;
616 break; 602 break;
617 case CPUCLOCK_VIRT: 603 case CPUCLOCK_VIRT:
618 if (cputime_eq(p->it_virt_expires, 604 if (cputime_eq(p->cputime_expires.virt_exp,
619 cputime_zero) || 605 cputime_zero) ||
620 cputime_gt(p->it_virt_expires, 606 cputime_gt(p->cputime_expires.virt_exp,
621 nt->expires.cpu)) 607 nt->expires.cpu))
622 p->it_virt_expires = nt->expires.cpu; 608 p->cputime_expires.virt_exp =
609 nt->expires.cpu;
623 break; 610 break;
624 case CPUCLOCK_SCHED: 611 case CPUCLOCK_SCHED:
625 if (p->it_sched_expires == 0 || 612 if (p->cputime_expires.sched_exp == 0 ||
626 p->it_sched_expires > nt->expires.sched) 613 p->cputime_expires.sched_exp >
627 p->it_sched_expires = nt->expires.sched; 614 nt->expires.sched)
615 p->cputime_expires.sched_exp =
616 nt->expires.sched;
628 break; 617 break;
629 } 618 }
630 } else { 619 } else {
631 /* 620 /*
632 * For a process timer, we must balance 621 * For a process timer, set the cached expiration time.
633 * all the live threads' expirations.
634 */ 622 */
635 switch (CPUCLOCK_WHICH(timer->it_clock)) { 623 switch (CPUCLOCK_WHICH(timer->it_clock)) {
636 default: 624 default:
@@ -641,7 +629,9 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
641 cputime_lt(p->signal->it_virt_expires, 629 cputime_lt(p->signal->it_virt_expires,
642 timer->it.cpu.expires.cpu)) 630 timer->it.cpu.expires.cpu))
643 break; 631 break;
644 goto rebalance; 632 p->signal->cputime_expires.virt_exp =
633 timer->it.cpu.expires.cpu;
634 break;
645 case CPUCLOCK_PROF: 635 case CPUCLOCK_PROF:
646 if (!cputime_eq(p->signal->it_prof_expires, 636 if (!cputime_eq(p->signal->it_prof_expires,
647 cputime_zero) && 637 cputime_zero) &&
@@ -652,13 +642,12 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
652 if (i != RLIM_INFINITY && 642 if (i != RLIM_INFINITY &&
653 i <= cputime_to_secs(timer->it.cpu.expires.cpu)) 643 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
654 break; 644 break;
655 goto rebalance; 645 p->signal->cputime_expires.prof_exp =
646 timer->it.cpu.expires.cpu;
647 break;
656 case CPUCLOCK_SCHED: 648 case CPUCLOCK_SCHED:
657 rebalance: 649 p->signal->cputime_expires.sched_exp =
658 process_timer_rebalance( 650 timer->it.cpu.expires.sched;
659 timer->it.cpu.task,
660 CPUCLOCK_WHICH(timer->it_clock),
661 timer->it.cpu.expires, now);
662 break; 651 break;
663 } 652 }
664 } 653 }
@@ -969,13 +958,13 @@ static void check_thread_timers(struct task_struct *tsk,
969 struct signal_struct *const sig = tsk->signal; 958 struct signal_struct *const sig = tsk->signal;
970 959
971 maxfire = 20; 960 maxfire = 20;
972 tsk->it_prof_expires = cputime_zero; 961 tsk->cputime_expires.prof_exp = cputime_zero;
973 while (!list_empty(timers)) { 962 while (!list_empty(timers)) {
974 struct cpu_timer_list *t = list_first_entry(timers, 963 struct cpu_timer_list *t = list_first_entry(timers,
975 struct cpu_timer_list, 964 struct cpu_timer_list,
976 entry); 965 entry);
977 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { 966 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
978 tsk->it_prof_expires = t->expires.cpu; 967 tsk->cputime_expires.prof_exp = t->expires.cpu;
979 break; 968 break;
980 } 969 }
981 t->firing = 1; 970 t->firing = 1;
@@ -984,13 +973,13 @@ static void check_thread_timers(struct task_struct *tsk,
984 973
985 ++timers; 974 ++timers;
986 maxfire = 20; 975 maxfire = 20;
987 tsk->it_virt_expires = cputime_zero; 976 tsk->cputime_expires.virt_exp = cputime_zero;
988 while (!list_empty(timers)) { 977 while (!list_empty(timers)) {
989 struct cpu_timer_list *t = list_first_entry(timers, 978 struct cpu_timer_list *t = list_first_entry(timers,
990 struct cpu_timer_list, 979 struct cpu_timer_list,
991 entry); 980 entry);
992 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { 981 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
993 tsk->it_virt_expires = t->expires.cpu; 982 tsk->cputime_expires.virt_exp = t->expires.cpu;
994 break; 983 break;
995 } 984 }
996 t->firing = 1; 985 t->firing = 1;
@@ -999,13 +988,13 @@ static void check_thread_timers(struct task_struct *tsk,
999 988
1000 ++timers; 989 ++timers;
1001 maxfire = 20; 990 maxfire = 20;
1002 tsk->it_sched_expires = 0; 991 tsk->cputime_expires.sched_exp = 0;
1003 while (!list_empty(timers)) { 992 while (!list_empty(timers)) {
1004 struct cpu_timer_list *t = list_first_entry(timers, 993 struct cpu_timer_list *t = list_first_entry(timers,
1005 struct cpu_timer_list, 994 struct cpu_timer_list,
1006 entry); 995 entry);
1007 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { 996 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1008 tsk->it_sched_expires = t->expires.sched; 997 tsk->cputime_expires.sched_exp = t->expires.sched;
1009 break; 998 break;
1010 } 999 }
1011 t->firing = 1; 1000 t->firing = 1;
@@ -1055,10 +1044,10 @@ static void check_process_timers(struct task_struct *tsk,
1055{ 1044{
1056 int maxfire; 1045 int maxfire;
1057 struct signal_struct *const sig = tsk->signal; 1046 struct signal_struct *const sig = tsk->signal;
1058 cputime_t utime, stime, ptime, virt_expires, prof_expires; 1047 cputime_t utime, ptime, virt_expires, prof_expires;
1059 unsigned long long sum_sched_runtime, sched_expires; 1048 unsigned long long sum_sched_runtime, sched_expires;
1060 struct task_struct *t;
1061 struct list_head *timers = sig->cpu_timers; 1049 struct list_head *timers = sig->cpu_timers;
1050 struct task_cputime cputime;
1062 1051
1063 /* 1052 /*
1064 * Don't sample the current process CPU clocks if there are no timers. 1053 * Don't sample the current process CPU clocks if there are no timers.
@@ -1074,18 +1063,10 @@ static void check_process_timers(struct task_struct *tsk,
1074 /* 1063 /*
1075 * Collect the current process totals. 1064 * Collect the current process totals.
1076 */ 1065 */
1077 utime = sig->utime; 1066 thread_group_cputime(tsk, &cputime);
1078 stime = sig->stime; 1067 utime = cputime.utime;
1079 sum_sched_runtime = sig->sum_sched_runtime; 1068 ptime = cputime_add(utime, cputime.stime);
1080 t = tsk; 1069 sum_sched_runtime = cputime.sum_exec_runtime;
1081 do {
1082 utime = cputime_add(utime, t->utime);
1083 stime = cputime_add(stime, t->stime);
1084 sum_sched_runtime += t->se.sum_exec_runtime;
1085 t = next_thread(t);
1086 } while (t != tsk);
1087 ptime = cputime_add(utime, stime);
1088
1089 maxfire = 20; 1070 maxfire = 20;
1090 prof_expires = cputime_zero; 1071 prof_expires = cputime_zero;
1091 while (!list_empty(timers)) { 1072 while (!list_empty(timers)) {
@@ -1193,60 +1174,18 @@ static void check_process_timers(struct task_struct *tsk,
1193 } 1174 }
1194 } 1175 }
1195 1176
1196 if (!cputime_eq(prof_expires, cputime_zero) || 1177 if (!cputime_eq(prof_expires, cputime_zero) &&
1197 !cputime_eq(virt_expires, cputime_zero) || 1178 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1198 sched_expires != 0) { 1179 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1199 /* 1180 sig->cputime_expires.prof_exp = prof_expires;
1200 * Rebalance the threads' expiry times for the remaining 1181 if (!cputime_eq(virt_expires, cputime_zero) &&
1201 * process CPU timers. 1182 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1202 */ 1183 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1203 1184 sig->cputime_expires.virt_exp = virt_expires;
1204 cputime_t prof_left, virt_left, ticks; 1185 if (sched_expires != 0 &&
1205 unsigned long long sched_left, sched; 1186 (sig->cputime_expires.sched_exp == 0 ||
1206 const unsigned int nthreads = atomic_read(&sig->live); 1187 sig->cputime_expires.sched_exp > sched_expires))
1207 1188 sig->cputime_expires.sched_exp = sched_expires;
1208 if (!nthreads)
1209 return;
1210
1211 prof_left = cputime_sub(prof_expires, utime);
1212 prof_left = cputime_sub(prof_left, stime);
1213 prof_left = cputime_div_non_zero(prof_left, nthreads);
1214 virt_left = cputime_sub(virt_expires, utime);
1215 virt_left = cputime_div_non_zero(virt_left, nthreads);
1216 if (sched_expires) {
1217 sched_left = sched_expires - sum_sched_runtime;
1218 do_div(sched_left, nthreads);
1219 sched_left = max_t(unsigned long long, sched_left, 1);
1220 } else {
1221 sched_left = 0;
1222 }
1223 t = tsk;
1224 do {
1225 if (unlikely(t->flags & PF_EXITING))
1226 continue;
1227
1228 ticks = cputime_add(cputime_add(t->utime, t->stime),
1229 prof_left);
1230 if (!cputime_eq(prof_expires, cputime_zero) &&
1231 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1232 cputime_gt(t->it_prof_expires, ticks))) {
1233 t->it_prof_expires = ticks;
1234 }
1235
1236 ticks = cputime_add(t->utime, virt_left);
1237 if (!cputime_eq(virt_expires, cputime_zero) &&
1238 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1239 cputime_gt(t->it_virt_expires, ticks))) {
1240 t->it_virt_expires = ticks;
1241 }
1242
1243 sched = t->se.sum_exec_runtime + sched_left;
1244 if (sched_expires && (t->it_sched_expires == 0 ||
1245 t->it_sched_expires > sched)) {
1246 t->it_sched_expires = sched;
1247 }
1248 } while ((t = next_thread(t)) != tsk);
1249 }
1250} 1189}
1251 1190
1252/* 1191/*
@@ -1314,6 +1253,86 @@ out:
1314 ++timer->it_requeue_pending; 1253 ++timer->it_requeue_pending;
1315} 1254}
1316 1255
1256/**
1257 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1258 *
1259 * @cputime: The struct to compare.
1260 *
1261 * Checks @cputime to see if all fields are zero. Returns true if all fields
1262 * are zero, false if any field is nonzero.
1263 */
1264static inline int task_cputime_zero(const struct task_cputime *cputime)
1265{
1266 if (cputime_eq(cputime->utime, cputime_zero) &&
1267 cputime_eq(cputime->stime, cputime_zero) &&
1268 cputime->sum_exec_runtime == 0)
1269 return 1;
1270 return 0;
1271}
1272
1273/**
1274 * task_cputime_expired - Compare two task_cputime entities.
1275 *
1276 * @sample: The task_cputime structure to be checked for expiration.
1277 * @expires: Expiration times, against which @sample will be checked.
1278 *
1279 * Checks @sample against @expires to see if any field of @sample has expired.
1280 * Returns true if any field of the former is greater than the corresponding
1281 * field of the latter if the latter field is set. Otherwise returns false.
1282 */
1283static inline int task_cputime_expired(const struct task_cputime *sample,
1284 const struct task_cputime *expires)
1285{
1286 if (!cputime_eq(expires->utime, cputime_zero) &&
1287 cputime_ge(sample->utime, expires->utime))
1288 return 1;
1289 if (!cputime_eq(expires->stime, cputime_zero) &&
1290 cputime_ge(cputime_add(sample->utime, sample->stime),
1291 expires->stime))
1292 return 1;
1293 if (expires->sum_exec_runtime != 0 &&
1294 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1295 return 1;
1296 return 0;
1297}
1298
1299/**
1300 * fastpath_timer_check - POSIX CPU timers fast path.
1301 *
1302 * @tsk: The task (thread) being checked.
1303 *
1304 * Check the task and thread group timers. If both are zero (there are no
1305 * timers set) return false. Otherwise snapshot the task and thread group
1306 * timers and compare them with the corresponding expiration times. Return
1307 * true if a timer has expired, else return false.
1308 */
1309static inline int fastpath_timer_check(struct task_struct *tsk)
1310{
1311 struct signal_struct *sig = tsk->signal;
1312
1313 if (unlikely(!sig))
1314 return 0;
1315
1316 if (!task_cputime_zero(&tsk->cputime_expires)) {
1317 struct task_cputime task_sample = {
1318 .utime = tsk->utime,
1319 .stime = tsk->stime,
1320 .sum_exec_runtime = tsk->se.sum_exec_runtime
1321 };
1322
1323 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1324 return 1;
1325 }
1326 if (!task_cputime_zero(&sig->cputime_expires)) {
1327 struct task_cputime group_sample;
1328
1329 thread_group_cputime(tsk, &group_sample);
1330 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1331 return 1;
1332 }
1333 return 0;
1334}
1335
1317/* 1336/*
1318 * This is called from the timer interrupt handler. The irq handler has 1337 * This is called from the timer interrupt handler. The irq handler has
1319 * already updated our counts. We need to check if any timers fire now. 1338 * already updated our counts. We need to check if any timers fire now.
@@ -1326,42 +1345,31 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1326 1345
1327 BUG_ON(!irqs_disabled()); 1346 BUG_ON(!irqs_disabled());
1328 1347
1329#define UNEXPIRED(clock) \ 1348 /*
1330 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ 1349 * The fast path checks that there are no expired thread or thread
1331 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) 1350 * group timers. If that's so, just return.
1332 1351 */
1333 if (UNEXPIRED(prof) && UNEXPIRED(virt) && 1352 if (!fastpath_timer_check(tsk))
1334 (tsk->it_sched_expires == 0 ||
1335 tsk->se.sum_exec_runtime < tsk->it_sched_expires))
1336 return; 1353 return;
1337 1354
1338#undef UNEXPIRED 1355 spin_lock(&tsk->sighand->siglock);
1339
1340 /* 1356 /*
1341 * Double-check with locks held. 1357 * Here we take off tsk->signal->cpu_timers[N] and
1358 * tsk->cpu_timers[N] all the timers that are firing, and
1359 * put them on the firing list.
1342 */ 1360 */
1343 read_lock(&tasklist_lock); 1361 check_thread_timers(tsk, &firing);
1344 if (likely(tsk->signal != NULL)) { 1362 check_process_timers(tsk, &firing);
1345 spin_lock(&tsk->sighand->siglock);
1346 1363
1347 /* 1364 /*
1348 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] 1365 * We must release these locks before taking any timer's lock.
1349 * all the timers that are firing, and put them on the firing list. 1366 * There is a potential race with timer deletion here, as the
1350 */ 1367 * siglock now protects our private firing list. We have set
1351 check_thread_timers(tsk, &firing); 1368 * the firing flag in each timer, so that a deletion attempt
1352 check_process_timers(tsk, &firing); 1369 * that gets the timer lock before we do will give it up and
1353 1370 * spin until we've taken care of that timer below.
1354 /* 1371 */
1355 * We must release these locks before taking any timer's lock. 1372 spin_unlock(&tsk->sighand->siglock);
1356 * There is a potential race with timer deletion here, as the
1357 * siglock now protects our private firing list. We have set
1358 * the firing flag in each timer, so that a deletion attempt
1359 * that gets the timer lock before we do will give it up and
1360 * spin until we've taken care of that timer below.
1361 */
1362 spin_unlock(&tsk->sighand->siglock);
1363 }
1364 read_unlock(&tasklist_lock);
1365 1373
1366 /* 1374 /*
1367 * Now that all the timers on our list have the firing flag, 1375 * Now that all the timers on our list have the firing flag,
@@ -1389,10 +1397,9 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1389 1397
1390/* 1398/*
1391 * Set one of the process-wide special case CPU timers. 1399 * Set one of the process-wide special case CPU timers.
1392 * The tasklist_lock and tsk->sighand->siglock must be held by the caller. 1400 * The tsk->sighand->siglock must be held by the caller.
1393 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is 1401 * The *newval argument is relative and we update it to be absolute, *oldval
1394 * absolute; non-null for ITIMER_*, where *newval is relative and we update 1402 * is absolute and we update it to be relative.
1395 * it to be absolute, *oldval is absolute and we update it to be relative.
1396 */ 1403 */
1397void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1404void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1398 cputime_t *newval, cputime_t *oldval) 1405 cputime_t *newval, cputime_t *oldval)
@@ -1401,7 +1408,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1401 struct list_head *head; 1408 struct list_head *head;
1402 1409
1403 BUG_ON(clock_idx == CPUCLOCK_SCHED); 1410 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1404 cpu_clock_sample_group_locked(clock_idx, tsk, &now); 1411 cpu_clock_sample_group(clock_idx, tsk, &now);
1405 1412
1406 if (oldval) { 1413 if (oldval) {
1407 if (!cputime_eq(*oldval, cputime_zero)) { 1414 if (!cputime_eq(*oldval, cputime_zero)) {
@@ -1435,13 +1442,14 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1435 cputime_ge(list_first_entry(head, 1442 cputime_ge(list_first_entry(head,
1436 struct cpu_timer_list, entry)->expires.cpu, 1443 struct cpu_timer_list, entry)->expires.cpu,
1437 *newval)) { 1444 *newval)) {
1438 /* 1445 switch (clock_idx) {
1439 * Rejigger each thread's expiry time so that one will 1446 case CPUCLOCK_PROF:
1440 * notice before we hit the process-cumulative expiry time. 1447 tsk->signal->cputime_expires.prof_exp = *newval;
1441 */ 1448 break;
1442 union cpu_time_count expires = { .sched = 0 }; 1449 case CPUCLOCK_VIRT:
1443 expires.cpu = *newval; 1450 tsk->signal->cputime_expires.virt_exp = *newval;
1444 process_timer_rebalance(tsk, clock_idx, expires, now); 1451 break;
1452 }
1445 } 1453 }
1446} 1454}
1447 1455
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index e36d5798cbff..b931d7cedbfa 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -223,6 +223,15 @@ static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
223} 223}
224 224
225/* 225/*
226 * Get monotonic time for posix timers
227 */
228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
229{
230 getrawmonotonic(tp);
231 return 0;
232}
233
234/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;) 235 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */ 236 */
228static __init int init_posix_timers(void) 237static __init int init_posix_timers(void)
@@ -235,9 +244,15 @@ static __init int init_posix_timers(void)
235 .clock_get = posix_ktime_get_ts, 244 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime, 245 .clock_set = do_posix_clock_nosettime,
237 }; 246 };
247 struct k_clock clock_monotonic_raw = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
250 .clock_set = do_posix_clock_nosettime,
251 };
238 252
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime); 253 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); 254 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
255 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
241 256
242 posix_timers_cache = kmem_cache_create("posix_timers_cache", 257 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC, 258 sizeof (struct k_itimer), 0, SLAB_PANIC,
@@ -298,6 +313,7 @@ void do_schedule_next_timer(struct siginfo *info)
298 313
299int posix_timer_event(struct k_itimer *timr, int si_private) 314int posix_timer_event(struct k_itimer *timr, int si_private)
300{ 315{
316 int shared, ret;
301 /* 317 /*
302 * FIXME: if ->sigq is queued we can race with 318 * FIXME: if ->sigq is queued we can race with
303 * dequeue_signal()->do_schedule_next_timer(). 319 * dequeue_signal()->do_schedule_next_timer().
@@ -311,25 +327,10 @@ int posix_timer_event(struct k_itimer *timr, int si_private)
311 */ 327 */
312 timr->sigq->info.si_sys_private = si_private; 328 timr->sigq->info.si_sys_private = si_private;
313 329
314 timr->sigq->info.si_signo = timr->it_sigev_signo; 330 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
315 timr->sigq->info.si_code = SI_TIMER; 331 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
316 timr->sigq->info.si_tid = timr->it_id; 332 /* If we failed to send the signal the timer stops. */
317 timr->sigq->info.si_value = timr->it_sigev_value; 333 return ret > 0;
318
319 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
320 struct task_struct *leader;
321 int ret = send_sigqueue(timr->sigq, timr->it_process, 0);
322
323 if (likely(ret >= 0))
324 return ret;
325
326 timr->it_sigev_notify = SIGEV_SIGNAL;
327 leader = timr->it_process->group_leader;
328 put_task_struct(timr->it_process);
329 timr->it_process = leader;
330 }
331
332 return send_sigqueue(timr->sigq, timr->it_process, 1);
333} 334}
334EXPORT_SYMBOL_GPL(posix_timer_event); 335EXPORT_SYMBOL_GPL(posix_timer_event);
335 336
@@ -441,7 +442,7 @@ static struct k_itimer * alloc_posix_timer(void)
441 return tmr; 442 return tmr;
442 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 443 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
443 kmem_cache_free(posix_timers_cache, tmr); 444 kmem_cache_free(posix_timers_cache, tmr);
444 tmr = NULL; 445 return NULL;
445 } 446 }
446 memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); 447 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
447 return tmr; 448 return tmr;
@@ -468,11 +469,9 @@ sys_timer_create(const clockid_t which_clock,
468 struct sigevent __user *timer_event_spec, 469 struct sigevent __user *timer_event_spec,
469 timer_t __user * created_timer_id) 470 timer_t __user * created_timer_id)
470{ 471{
471 int error = 0; 472 struct k_itimer *new_timer;
472 struct k_itimer *new_timer = NULL; 473 int error, new_timer_id;
473 int new_timer_id; 474 struct task_struct *process;
474 struct task_struct *process = NULL;
475 unsigned long flags;
476 sigevent_t event; 475 sigevent_t event;
477 int it_id_set = IT_ID_NOT_SET; 476 int it_id_set = IT_ID_NOT_SET;
478 477
@@ -490,12 +489,11 @@ sys_timer_create(const clockid_t which_clock,
490 goto out; 489 goto out;
491 } 490 }
492 spin_lock_irq(&idr_lock); 491 spin_lock_irq(&idr_lock);
493 error = idr_get_new(&posix_timers_id, (void *) new_timer, 492 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
494 &new_timer_id);
495 spin_unlock_irq(&idr_lock); 493 spin_unlock_irq(&idr_lock);
496 if (error == -EAGAIN) 494 if (error) {
497 goto retry; 495 if (error == -EAGAIN)
498 else if (error) { 496 goto retry;
499 /* 497 /*
500 * Weird looking, but we return EAGAIN if the IDR is 498 * Weird looking, but we return EAGAIN if the IDR is
501 * full (proper POSIX return value for this) 499 * full (proper POSIX return value for this)
@@ -526,67 +524,43 @@ sys_timer_create(const clockid_t which_clock,
526 error = -EFAULT; 524 error = -EFAULT;
527 goto out; 525 goto out;
528 } 526 }
529 new_timer->it_sigev_notify = event.sigev_notify; 527 rcu_read_lock();
530 new_timer->it_sigev_signo = event.sigev_signo; 528 process = good_sigevent(&event);
531 new_timer->it_sigev_value = event.sigev_value; 529 if (process)
532 530 get_task_struct(process);
533 read_lock(&tasklist_lock); 531 rcu_read_unlock();
534 if ((process = good_sigevent(&event))) {
535 /*
536 * We may be setting up this process for another
537 * thread. It may be exiting. To catch this
538 * case the we check the PF_EXITING flag. If
539 * the flag is not set, the siglock will catch
540 * him before it is too late (in exit_itimers).
541 *
542 * The exec case is a bit more invloved but easy
543 * to code. If the process is in our thread
544 * group (and it must be or we would not allow
545 * it here) and is doing an exec, it will cause
546 * us to be killed. In this case it will wait
547 * for us to die which means we can finish this
548 * linkage with our last gasp. I.e. no code :)
549 */
550 spin_lock_irqsave(&process->sighand->siglock, flags);
551 if (!(process->flags & PF_EXITING)) {
552 new_timer->it_process = process;
553 list_add(&new_timer->list,
554 &process->signal->posix_timers);
555 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
556 get_task_struct(process);
557 spin_unlock_irqrestore(&process->sighand->siglock, flags);
558 } else {
559 spin_unlock_irqrestore(&process->sighand->siglock, flags);
560 process = NULL;
561 }
562 }
563 read_unlock(&tasklist_lock);
564 if (!process) { 532 if (!process) {
565 error = -EINVAL; 533 error = -EINVAL;
566 goto out; 534 goto out;
567 } 535 }
568 } else { 536 } else {
569 new_timer->it_sigev_notify = SIGEV_SIGNAL; 537 event.sigev_notify = SIGEV_SIGNAL;
570 new_timer->it_sigev_signo = SIGALRM; 538 event.sigev_signo = SIGALRM;
571 new_timer->it_sigev_value.sival_int = new_timer->it_id; 539 event.sigev_value.sival_int = new_timer->it_id;
572 process = current->group_leader; 540 process = current->group_leader;
573 spin_lock_irqsave(&process->sighand->siglock, flags); 541 get_task_struct(process);
574 new_timer->it_process = process;
575 list_add(&new_timer->list, &process->signal->posix_timers);
576 spin_unlock_irqrestore(&process->sighand->siglock, flags);
577 } 542 }
578 543
544 new_timer->it_sigev_notify = event.sigev_notify;
545 new_timer->sigq->info.si_signo = event.sigev_signo;
546 new_timer->sigq->info.si_value = event.sigev_value;
547 new_timer->sigq->info.si_tid = new_timer->it_id;
548 new_timer->sigq->info.si_code = SI_TIMER;
549
550 spin_lock_irq(&current->sighand->siglock);
551 new_timer->it_process = process;
552 list_add(&new_timer->list, &current->signal->posix_timers);
553 spin_unlock_irq(&current->sighand->siglock);
554
555 return 0;
579 /* 556 /*
580 * In the case of the timer belonging to another task, after 557 * In the case of the timer belonging to another task, after
581 * the task is unlocked, the timer is owned by the other task 558 * the task is unlocked, the timer is owned by the other task
582 * and may cease to exist at any time. Don't use or modify 559 * and may cease to exist at any time. Don't use or modify
583 * new_timer after the unlock call. 560 * new_timer after the unlock call.
584 */ 561 */
585
586out: 562out:
587 if (error) 563 release_posix_timer(new_timer, it_id_set);
588 release_posix_timer(new_timer, it_id_set);
589
590 return error; 564 return error;
591} 565}
592 566
@@ -597,7 +571,7 @@ out:
597 * the find to the timer lock. To avoid a dead lock, the timer id MUST 571 * the find to the timer lock. To avoid a dead lock, the timer id MUST
598 * be release with out holding the timer lock. 572 * be release with out holding the timer lock.
599 */ 573 */
600static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) 574static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
601{ 575{
602 struct k_itimer *timr; 576 struct k_itimer *timr;
603 /* 577 /*
@@ -605,23 +579,20 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
605 * flags part over to the timer lock. Must not let interrupts in 579 * flags part over to the timer lock. Must not let interrupts in
606 * while we are moving the lock. 580 * while we are moving the lock.
607 */ 581 */
608
609 spin_lock_irqsave(&idr_lock, *flags); 582 spin_lock_irqsave(&idr_lock, *flags);
610 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id); 583 timr = idr_find(&posix_timers_id, (int)timer_id);
611 if (timr) { 584 if (timr) {
612 spin_lock(&timr->it_lock); 585 spin_lock(&timr->it_lock);
613 586 if (timr->it_process &&
614 if ((timr->it_id != timer_id) || !(timr->it_process) || 587 same_thread_group(timr->it_process, current)) {
615 !same_thread_group(timr->it_process, current)) {
616 spin_unlock(&timr->it_lock);
617 spin_unlock_irqrestore(&idr_lock, *flags);
618 timr = NULL;
619 } else
620 spin_unlock(&idr_lock); 588 spin_unlock(&idr_lock);
621 } else 589 return timr;
622 spin_unlock_irqrestore(&idr_lock, *flags); 590 }
591 spin_unlock(&timr->it_lock);
592 }
593 spin_unlock_irqrestore(&idr_lock, *flags);
623 594
624 return timr; 595 return NULL;
625} 596}
626 597
627/* 598/*
@@ -862,8 +833,7 @@ retry_delete:
862 * This keeps any tasks waiting on the spin lock from thinking 833 * This keeps any tasks waiting on the spin lock from thinking
863 * they got something (see the lock code above). 834 * they got something (see the lock code above).
864 */ 835 */
865 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) 836 put_task_struct(timer->it_process);
866 put_task_struct(timer->it_process);
867 timer->it_process = NULL; 837 timer->it_process = NULL;
868 838
869 unlock_timer(timer, flags); 839 unlock_timer(timer, flags);
@@ -890,8 +860,7 @@ retry_delete:
890 * This keeps any tasks waiting on the spin lock from thinking 860 * This keeps any tasks waiting on the spin lock from thinking
891 * they got something (see the lock code above). 861 * they got something (see the lock code above).
892 */ 862 */
893 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) 863 put_task_struct(timer->it_process);
894 put_task_struct(timer->it_process);
895 timer->it_process = NULL; 864 timer->it_process = NULL;
896 865
897 unlock_timer(timer, flags); 866 unlock_timer(timer, flags);
diff --git a/kernel/power/disk.c b/kernel/power/disk.c
index bbd85c60f741..331f9836383f 100644
--- a/kernel/power/disk.c
+++ b/kernel/power/disk.c
@@ -14,6 +14,7 @@
14#include <linux/reboot.h> 14#include <linux/reboot.h>
15#include <linux/string.h> 15#include <linux/string.h>
16#include <linux/device.h> 16#include <linux/device.h>
17#include <linux/kmod.h>
17#include <linux/delay.h> 18#include <linux/delay.h>
18#include <linux/fs.h> 19#include <linux/fs.h>
19#include <linux/mount.h> 20#include <linux/mount.h>
@@ -520,6 +521,10 @@ int hibernate(void)
520 if (error) 521 if (error)
521 goto Exit; 522 goto Exit;
522 523
524 error = usermodehelper_disable();
525 if (error)
526 goto Exit;
527
523 /* Allocate memory management structures */ 528 /* Allocate memory management structures */
524 error = create_basic_memory_bitmaps(); 529 error = create_basic_memory_bitmaps();
525 if (error) 530 if (error)
@@ -558,6 +563,7 @@ int hibernate(void)
558 thaw_processes(); 563 thaw_processes();
559 Finish: 564 Finish:
560 free_basic_memory_bitmaps(); 565 free_basic_memory_bitmaps();
566 usermodehelper_enable();
561 Exit: 567 Exit:
562 pm_notifier_call_chain(PM_POST_HIBERNATION); 568 pm_notifier_call_chain(PM_POST_HIBERNATION);
563 pm_restore_console(); 569 pm_restore_console();
@@ -634,6 +640,10 @@ static int software_resume(void)
634 if (error) 640 if (error)
635 goto Finish; 641 goto Finish;
636 642
643 error = usermodehelper_disable();
644 if (error)
645 goto Finish;
646
637 error = create_basic_memory_bitmaps(); 647 error = create_basic_memory_bitmaps();
638 if (error) 648 if (error)
639 goto Finish; 649 goto Finish;
@@ -656,6 +666,7 @@ static int software_resume(void)
656 thaw_processes(); 666 thaw_processes();
657 Done: 667 Done:
658 free_basic_memory_bitmaps(); 668 free_basic_memory_bitmaps();
669 usermodehelper_enable();
659 Finish: 670 Finish:
660 pm_notifier_call_chain(PM_POST_RESTORE); 671 pm_notifier_call_chain(PM_POST_RESTORE);
661 pm_restore_console(); 672 pm_restore_console();
diff --git a/kernel/power/main.c b/kernel/power/main.c
index 540b16b68565..19122cf6d827 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -14,6 +14,7 @@
14#include <linux/string.h> 14#include <linux/string.h>
15#include <linux/delay.h> 15#include <linux/delay.h>
16#include <linux/errno.h> 16#include <linux/errno.h>
17#include <linux/kmod.h>
17#include <linux/init.h> 18#include <linux/init.h>
18#include <linux/console.h> 19#include <linux/console.h>
19#include <linux/cpu.h> 20#include <linux/cpu.h>
@@ -237,6 +238,10 @@ static int suspend_prepare(void)
237 if (error) 238 if (error)
238 goto Finish; 239 goto Finish;
239 240
241 error = usermodehelper_disable();
242 if (error)
243 goto Finish;
244
240 if (suspend_freeze_processes()) { 245 if (suspend_freeze_processes()) {
241 error = -EAGAIN; 246 error = -EAGAIN;
242 goto Thaw; 247 goto Thaw;
@@ -256,6 +261,7 @@ static int suspend_prepare(void)
256 261
257 Thaw: 262 Thaw:
258 suspend_thaw_processes(); 263 suspend_thaw_processes();
264 usermodehelper_enable();
259 Finish: 265 Finish:
260 pm_notifier_call_chain(PM_POST_SUSPEND); 266 pm_notifier_call_chain(PM_POST_SUSPEND);
261 pm_restore_console(); 267 pm_restore_console();
@@ -376,6 +382,7 @@ int suspend_devices_and_enter(suspend_state_t state)
376static void suspend_finish(void) 382static void suspend_finish(void)
377{ 383{
378 suspend_thaw_processes(); 384 suspend_thaw_processes();
385 usermodehelper_enable();
379 pm_notifier_call_chain(PM_POST_SUSPEND); 386 pm_notifier_call_chain(PM_POST_SUSPEND);
380 pm_restore_console(); 387 pm_restore_console();
381} 388}
diff --git a/kernel/power/user.c b/kernel/power/user.c
index a6332a313262..005b93d839ba 100644
--- a/kernel/power/user.c
+++ b/kernel/power/user.c
@@ -212,13 +212,20 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
212 case SNAPSHOT_FREEZE: 212 case SNAPSHOT_FREEZE:
213 if (data->frozen) 213 if (data->frozen)
214 break; 214 break;
215
215 printk("Syncing filesystems ... "); 216 printk("Syncing filesystems ... ");
216 sys_sync(); 217 sys_sync();
217 printk("done.\n"); 218 printk("done.\n");
218 219
219 error = freeze_processes(); 220 error = usermodehelper_disable();
220 if (error) 221 if (error)
222 break;
223
224 error = freeze_processes();
225 if (error) {
221 thaw_processes(); 226 thaw_processes();
227 usermodehelper_enable();
228 }
222 if (!error) 229 if (!error)
223 data->frozen = 1; 230 data->frozen = 1;
224 break; 231 break;
@@ -227,6 +234,7 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
227 if (!data->frozen || data->ready) 234 if (!data->frozen || data->ready)
228 break; 235 break;
229 thaw_processes(); 236 thaw_processes();
237 usermodehelper_enable();
230 data->frozen = 0; 238 data->frozen = 0;
231 break; 239 break;
232 240
diff --git a/kernel/printk.c b/kernel/printk.c
index b51b1567bb55..6341af77eb65 100644
--- a/kernel/printk.c
+++ b/kernel/printk.c
@@ -13,7 +13,7 @@
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com 14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock 15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton <andrewm@uow.edu.au> 16 * 01Mar01 Andrew Morton
17 */ 17 */
18 18
19#include <linux/kernel.h> 19#include <linux/kernel.h>
@@ -577,9 +577,6 @@ static int have_callable_console(void)
577 * @fmt: format string 577 * @fmt: format string
578 * 578 *
579 * This is printk(). It can be called from any context. We want it to work. 579 * This is printk(). It can be called from any context. We want it to work.
580 * Be aware of the fact that if oops_in_progress is not set, we might try to
581 * wake klogd up which could deadlock on runqueue lock if printk() is called
582 * from scheduler code.
583 * 580 *
584 * We try to grab the console_sem. If we succeed, it's easy - we log the output and 581 * We try to grab the console_sem. If we succeed, it's easy - we log the output and
585 * call the console drivers. If we fail to get the semaphore we place the output 582 * call the console drivers. If we fail to get the semaphore we place the output
@@ -593,6 +590,8 @@ static int have_callable_console(void)
593 * 590 *
594 * See also: 591 * See also:
595 * printf(3) 592 * printf(3)
593 *
594 * See the vsnprintf() documentation for format string extensions over C99.
596 */ 595 */
597 596
598asmlinkage int printk(const char *fmt, ...) 597asmlinkage int printk(const char *fmt, ...)
@@ -982,10 +981,25 @@ int is_console_locked(void)
982 return console_locked; 981 return console_locked;
983} 982}
984 983
985void wake_up_klogd(void) 984static DEFINE_PER_CPU(int, printk_pending);
985
986void printk_tick(void)
986{ 987{
987 if (!oops_in_progress && waitqueue_active(&log_wait)) 988 if (__get_cpu_var(printk_pending)) {
989 __get_cpu_var(printk_pending) = 0;
988 wake_up_interruptible(&log_wait); 990 wake_up_interruptible(&log_wait);
991 }
992}
993
994int printk_needs_cpu(int cpu)
995{
996 return per_cpu(printk_pending, cpu);
997}
998
999void wake_up_klogd(void)
1000{
1001 if (waitqueue_active(&log_wait))
1002 __raw_get_cpu_var(printk_pending) = 1;
989} 1003}
990 1004
991/** 1005/**
@@ -1291,22 +1305,6 @@ static int __init disable_boot_consoles(void)
1291} 1305}
1292late_initcall(disable_boot_consoles); 1306late_initcall(disable_boot_consoles);
1293 1307
1294/**
1295 * tty_write_message - write a message to a certain tty, not just the console.
1296 * @tty: the destination tty_struct
1297 * @msg: the message to write
1298 *
1299 * This is used for messages that need to be redirected to a specific tty.
1300 * We don't put it into the syslog queue right now maybe in the future if
1301 * really needed.
1302 */
1303void tty_write_message(struct tty_struct *tty, char *msg)
1304{
1305 if (tty && tty->ops->write)
1306 tty->ops->write(tty, msg, strlen(msg));
1307 return;
1308}
1309
1310#if defined CONFIG_PRINTK 1308#if defined CONFIG_PRINTK
1311 1309
1312/* 1310/*
diff --git a/kernel/profile.c b/kernel/profile.c
index cd26bed4cc26..a9e422df6bf6 100644
--- a/kernel/profile.c
+++ b/kernel/profile.c
@@ -22,6 +22,8 @@
22#include <linux/cpu.h> 22#include <linux/cpu.h>
23#include <linux/highmem.h> 23#include <linux/highmem.h>
24#include <linux/mutex.h> 24#include <linux/mutex.h>
25#include <linux/slab.h>
26#include <linux/vmalloc.h>
25#include <asm/sections.h> 27#include <asm/sections.h>
26#include <asm/irq_regs.h> 28#include <asm/irq_regs.h>
27#include <asm/ptrace.h> 29#include <asm/ptrace.h>
@@ -50,11 +52,11 @@ static DEFINE_PER_CPU(int, cpu_profile_flip);
50static DEFINE_MUTEX(profile_flip_mutex); 52static DEFINE_MUTEX(profile_flip_mutex);
51#endif /* CONFIG_SMP */ 53#endif /* CONFIG_SMP */
52 54
53static int __init profile_setup(char *str) 55int profile_setup(char *str)
54{ 56{
55 static char __initdata schedstr[] = "schedule"; 57 static char schedstr[] = "schedule";
56 static char __initdata sleepstr[] = "sleep"; 58 static char sleepstr[] = "sleep";
57 static char __initdata kvmstr[] = "kvm"; 59 static char kvmstr[] = "kvm";
58 int par; 60 int par;
59 61
60 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
@@ -100,14 +102,33 @@ static int __init profile_setup(char *str)
100__setup("profile=", profile_setup); 102__setup("profile=", profile_setup);
101 103
102 104
103void __init profile_init(void) 105int profile_init(void)
104{ 106{
107 int buffer_bytes;
105 if (!prof_on) 108 if (!prof_on)
106 return; 109 return 0;
107 110
108 /* only text is profiled */ 111 /* only text is profiled */
109 prof_len = (_etext - _stext) >> prof_shift; 112 prof_len = (_etext - _stext) >> prof_shift;
110 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 113 buffer_bytes = prof_len*sizeof(atomic_t);
114 if (!slab_is_available()) {
115 prof_buffer = alloc_bootmem(buffer_bytes);
116 return 0;
117 }
118
119 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
120 if (prof_buffer)
121 return 0;
122
123 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
124 if (prof_buffer)
125 return 0;
126
127 prof_buffer = vmalloc(buffer_bytes);
128 if (prof_buffer)
129 return 0;
130
131 return -ENOMEM;
111} 132}
112 133
113/* Profile event notifications */ 134/* Profile event notifications */
@@ -527,7 +548,7 @@ static void __init profile_nop(void *unused)
527{ 548{
528} 549}
529 550
530static int __init create_hash_tables(void) 551static int create_hash_tables(void)
531{ 552{
532 int cpu; 553 int cpu;
533 554
@@ -575,14 +596,14 @@ out_cleanup:
575#define create_hash_tables() ({ 0; }) 596#define create_hash_tables() ({ 0; })
576#endif 597#endif
577 598
578static int __init create_proc_profile(void) 599int create_proc_profile(void)
579{ 600{
580 struct proc_dir_entry *entry; 601 struct proc_dir_entry *entry;
581 602
582 if (!prof_on) 603 if (!prof_on)
583 return 0; 604 return 0;
584 if (create_hash_tables()) 605 if (create_hash_tables())
585 return -1; 606 return -ENOMEM;
586 entry = proc_create("profile", S_IWUSR | S_IRUGO, 607 entry = proc_create("profile", S_IWUSR | S_IRUGO,
587 NULL, &proc_profile_operations); 608 NULL, &proc_profile_operations);
588 if (!entry) 609 if (!entry)
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c
index aad93cdc9f68..37f72e551542 100644
--- a/kernel/rcuclassic.c
+++ b/kernel/rcuclassic.c
@@ -47,6 +47,7 @@
47#include <linux/notifier.h> 47#include <linux/notifier.h>
48#include <linux/cpu.h> 48#include <linux/cpu.h>
49#include <linux/mutex.h> 49#include <linux/mutex.h>
50#include <linux/time.h>
50 51
51#ifdef CONFIG_DEBUG_LOCK_ALLOC 52#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key; 53static struct lock_class_key rcu_lock_key;
@@ -60,12 +61,14 @@ EXPORT_SYMBOL_GPL(rcu_lock_map);
60static struct rcu_ctrlblk rcu_ctrlblk = { 61static struct rcu_ctrlblk rcu_ctrlblk = {
61 .cur = -300, 62 .cur = -300,
62 .completed = -300, 63 .completed = -300,
64 .pending = -300,
63 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), 65 .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock),
64 .cpumask = CPU_MASK_NONE, 66 .cpumask = CPU_MASK_NONE,
65}; 67};
66static struct rcu_ctrlblk rcu_bh_ctrlblk = { 68static struct rcu_ctrlblk rcu_bh_ctrlblk = {
67 .cur = -300, 69 .cur = -300,
68 .completed = -300, 70 .completed = -300,
71 .pending = -300,
69 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), 72 .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock),
70 .cpumask = CPU_MASK_NONE, 73 .cpumask = CPU_MASK_NONE,
71}; 74};
@@ -83,7 +86,10 @@ static void force_quiescent_state(struct rcu_data *rdp,
83{ 86{
84 int cpu; 87 int cpu;
85 cpumask_t cpumask; 88 cpumask_t cpumask;
89 unsigned long flags;
90
86 set_need_resched(); 91 set_need_resched();
92 spin_lock_irqsave(&rcp->lock, flags);
87 if (unlikely(!rcp->signaled)) { 93 if (unlikely(!rcp->signaled)) {
88 rcp->signaled = 1; 94 rcp->signaled = 1;
89 /* 95 /*
@@ -109,6 +115,7 @@ static void force_quiescent_state(struct rcu_data *rdp,
109 for_each_cpu_mask_nr(cpu, cpumask) 115 for_each_cpu_mask_nr(cpu, cpumask)
110 smp_send_reschedule(cpu); 116 smp_send_reschedule(cpu);
111 } 117 }
118 spin_unlock_irqrestore(&rcp->lock, flags);
112} 119}
113#else 120#else
114static inline void force_quiescent_state(struct rcu_data *rdp, 121static inline void force_quiescent_state(struct rcu_data *rdp,
@@ -118,6 +125,126 @@ static inline void force_quiescent_state(struct rcu_data *rdp,
118} 125}
119#endif 126#endif
120 127
128static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp,
129 struct rcu_data *rdp)
130{
131 long batch;
132
133 head->next = NULL;
134 smp_mb(); /* Read of rcu->cur must happen after any change by caller. */
135
136 /*
137 * Determine the batch number of this callback.
138 *
139 * Using ACCESS_ONCE to avoid the following error when gcc eliminates
140 * local variable "batch" and emits codes like this:
141 * 1) rdp->batch = rcp->cur + 1 # gets old value
142 * ......
143 * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value
144 * then [*nxttail[0], *nxttail[1]) may contain callbacks
145 * that batch# = rdp->batch, see the comment of struct rcu_data.
146 */
147 batch = ACCESS_ONCE(rcp->cur) + 1;
148
149 if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) {
150 /* process callbacks */
151 rdp->nxttail[0] = rdp->nxttail[1];
152 rdp->nxttail[1] = rdp->nxttail[2];
153 if (rcu_batch_after(batch - 1, rdp->batch))
154 rdp->nxttail[0] = rdp->nxttail[2];
155 }
156
157 rdp->batch = batch;
158 *rdp->nxttail[2] = head;
159 rdp->nxttail[2] = &head->next;
160
161 if (unlikely(++rdp->qlen > qhimark)) {
162 rdp->blimit = INT_MAX;
163 force_quiescent_state(rdp, &rcu_ctrlblk);
164 }
165}
166
167#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
168
169static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
170{
171 rcp->gp_start = jiffies;
172 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
173}
174
175static void print_other_cpu_stall(struct rcu_ctrlblk *rcp)
176{
177 int cpu;
178 long delta;
179 unsigned long flags;
180
181 /* Only let one CPU complain about others per time interval. */
182
183 spin_lock_irqsave(&rcp->lock, flags);
184 delta = jiffies - rcp->jiffies_stall;
185 if (delta < 2 || rcp->cur != rcp->completed) {
186 spin_unlock_irqrestore(&rcp->lock, flags);
187 return;
188 }
189 rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
190 spin_unlock_irqrestore(&rcp->lock, flags);
191
192 /* OK, time to rat on our buddy... */
193
194 printk(KERN_ERR "RCU detected CPU stalls:");
195 for_each_possible_cpu(cpu) {
196 if (cpu_isset(cpu, rcp->cpumask))
197 printk(" %d", cpu);
198 }
199 printk(" (detected by %d, t=%ld jiffies)\n",
200 smp_processor_id(), (long)(jiffies - rcp->gp_start));
201}
202
203static void print_cpu_stall(struct rcu_ctrlblk *rcp)
204{
205 unsigned long flags;
206
207 printk(KERN_ERR "RCU detected CPU %d stall (t=%lu/%lu jiffies)\n",
208 smp_processor_id(), jiffies,
209 jiffies - rcp->gp_start);
210 dump_stack();
211 spin_lock_irqsave(&rcp->lock, flags);
212 if ((long)(jiffies - rcp->jiffies_stall) >= 0)
213 rcp->jiffies_stall =
214 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
215 spin_unlock_irqrestore(&rcp->lock, flags);
216 set_need_resched(); /* kick ourselves to get things going. */
217}
218
219static void check_cpu_stall(struct rcu_ctrlblk *rcp)
220{
221 long delta;
222
223 delta = jiffies - rcp->jiffies_stall;
224 if (cpu_isset(smp_processor_id(), rcp->cpumask) && delta >= 0) {
225
226 /* We haven't checked in, so go dump stack. */
227 print_cpu_stall(rcp);
228
229 } else if (rcp->cur != rcp->completed && delta >= 2) {
230
231 /* They had two seconds to dump stack, so complain. */
232 print_other_cpu_stall(rcp);
233 }
234}
235
236#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
237
238static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp)
239{
240}
241
242static inline void check_cpu_stall(struct rcu_ctrlblk *rcp)
243{
244}
245
246#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
247
121/** 248/**
122 * call_rcu - Queue an RCU callback for invocation after a grace period. 249 * call_rcu - Queue an RCU callback for invocation after a grace period.
123 * @head: structure to be used for queueing the RCU updates. 250 * @head: structure to be used for queueing the RCU updates.
@@ -133,18 +260,10 @@ void call_rcu(struct rcu_head *head,
133 void (*func)(struct rcu_head *rcu)) 260 void (*func)(struct rcu_head *rcu))
134{ 261{
135 unsigned long flags; 262 unsigned long flags;
136 struct rcu_data *rdp;
137 263
138 head->func = func; 264 head->func = func;
139 head->next = NULL;
140 local_irq_save(flags); 265 local_irq_save(flags);
141 rdp = &__get_cpu_var(rcu_data); 266 __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data));
142 *rdp->nxttail = head;
143 rdp->nxttail = &head->next;
144 if (unlikely(++rdp->qlen > qhimark)) {
145 rdp->blimit = INT_MAX;
146 force_quiescent_state(rdp, &rcu_ctrlblk);
147 }
148 local_irq_restore(flags); 267 local_irq_restore(flags);
149} 268}
150EXPORT_SYMBOL_GPL(call_rcu); 269EXPORT_SYMBOL_GPL(call_rcu);
@@ -169,20 +288,10 @@ void call_rcu_bh(struct rcu_head *head,
169 void (*func)(struct rcu_head *rcu)) 288 void (*func)(struct rcu_head *rcu))
170{ 289{
171 unsigned long flags; 290 unsigned long flags;
172 struct rcu_data *rdp;
173 291
174 head->func = func; 292 head->func = func;
175 head->next = NULL;
176 local_irq_save(flags); 293 local_irq_save(flags);
177 rdp = &__get_cpu_var(rcu_bh_data); 294 __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
178 *rdp->nxttail = head;
179 rdp->nxttail = &head->next;
180
181 if (unlikely(++rdp->qlen > qhimark)) {
182 rdp->blimit = INT_MAX;
183 force_quiescent_state(rdp, &rcu_bh_ctrlblk);
184 }
185
186 local_irq_restore(flags); 295 local_irq_restore(flags);
187} 296}
188EXPORT_SYMBOL_GPL(call_rcu_bh); 297EXPORT_SYMBOL_GPL(call_rcu_bh);
@@ -211,12 +320,6 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
211static inline void raise_rcu_softirq(void) 320static inline void raise_rcu_softirq(void)
212{ 321{
213 raise_softirq(RCU_SOFTIRQ); 322 raise_softirq(RCU_SOFTIRQ);
214 /*
215 * The smp_mb() here is required to ensure that this cpu's
216 * __rcu_process_callbacks() reads the most recently updated
217 * value of rcu->cur.
218 */
219 smp_mb();
220} 323}
221 324
222/* 325/*
@@ -225,6 +328,7 @@ static inline void raise_rcu_softirq(void)
225 */ 328 */
226static void rcu_do_batch(struct rcu_data *rdp) 329static void rcu_do_batch(struct rcu_data *rdp)
227{ 330{
331 unsigned long flags;
228 struct rcu_head *next, *list; 332 struct rcu_head *next, *list;
229 int count = 0; 333 int count = 0;
230 334
@@ -239,9 +343,9 @@ static void rcu_do_batch(struct rcu_data *rdp)
239 } 343 }
240 rdp->donelist = list; 344 rdp->donelist = list;
241 345
242 local_irq_disable(); 346 local_irq_save(flags);
243 rdp->qlen -= count; 347 rdp->qlen -= count;
244 local_irq_enable(); 348 local_irq_restore(flags);
245 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) 349 if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark)
246 rdp->blimit = blimit; 350 rdp->blimit = blimit;
247 351
@@ -269,6 +373,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
269 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace 373 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
270 * period (if necessary). 374 * period (if necessary).
271 */ 375 */
376
272/* 377/*
273 * Register a new batch of callbacks, and start it up if there is currently no 378 * Register a new batch of callbacks, and start it up if there is currently no
274 * active batch and the batch to be registered has not already occurred. 379 * active batch and the batch to be registered has not already occurred.
@@ -276,15 +381,10 @@ static void rcu_do_batch(struct rcu_data *rdp)
276 */ 381 */
277static void rcu_start_batch(struct rcu_ctrlblk *rcp) 382static void rcu_start_batch(struct rcu_ctrlblk *rcp)
278{ 383{
279 if (rcp->next_pending && 384 if (rcp->cur != rcp->pending &&
280 rcp->completed == rcp->cur) { 385 rcp->completed == rcp->cur) {
281 rcp->next_pending = 0;
282 /*
283 * next_pending == 0 must be visible in
284 * __rcu_process_callbacks() before it can see new value of cur.
285 */
286 smp_wmb();
287 rcp->cur++; 386 rcp->cur++;
387 record_gp_stall_check_time(rcp);
288 388
289 /* 389 /*
290 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a 390 * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
@@ -322,6 +422,8 @@ static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
322static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, 422static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
323 struct rcu_data *rdp) 423 struct rcu_data *rdp)
324{ 424{
425 unsigned long flags;
426
325 if (rdp->quiescbatch != rcp->cur) { 427 if (rdp->quiescbatch != rcp->cur) {
326 /* start new grace period: */ 428 /* start new grace period: */
327 rdp->qs_pending = 1; 429 rdp->qs_pending = 1;
@@ -345,7 +447,7 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
345 return; 447 return;
346 rdp->qs_pending = 0; 448 rdp->qs_pending = 0;
347 449
348 spin_lock(&rcp->lock); 450 spin_lock_irqsave(&rcp->lock, flags);
349 /* 451 /*
350 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync 452 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
351 * during cpu startup. Ignore the quiescent state. 453 * during cpu startup. Ignore the quiescent state.
@@ -353,7 +455,7 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
353 if (likely(rdp->quiescbatch == rcp->cur)) 455 if (likely(rdp->quiescbatch == rcp->cur))
354 cpu_quiet(rdp->cpu, rcp); 456 cpu_quiet(rdp->cpu, rcp);
355 457
356 spin_unlock(&rcp->lock); 458 spin_unlock_irqrestore(&rcp->lock, flags);
357} 459}
358 460
359 461
@@ -364,33 +466,38 @@ static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
364 * which is dead and hence not processing interrupts. 466 * which is dead and hence not processing interrupts.
365 */ 467 */
366static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, 468static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
367 struct rcu_head **tail) 469 struct rcu_head **tail, long batch)
368{ 470{
369 local_irq_disable(); 471 unsigned long flags;
370 *this_rdp->nxttail = list; 472
371 if (list) 473 if (list) {
372 this_rdp->nxttail = tail; 474 local_irq_save(flags);
373 local_irq_enable(); 475 this_rdp->batch = batch;
476 *this_rdp->nxttail[2] = list;
477 this_rdp->nxttail[2] = tail;
478 local_irq_restore(flags);
479 }
374} 480}
375 481
376static void __rcu_offline_cpu(struct rcu_data *this_rdp, 482static void __rcu_offline_cpu(struct rcu_data *this_rdp,
377 struct rcu_ctrlblk *rcp, struct rcu_data *rdp) 483 struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
378{ 484{
379 /* if the cpu going offline owns the grace period 485 unsigned long flags;
486
487 /*
488 * if the cpu going offline owns the grace period
380 * we can block indefinitely waiting for it, so flush 489 * we can block indefinitely waiting for it, so flush
381 * it here 490 * it here
382 */ 491 */
383 spin_lock_bh(&rcp->lock); 492 spin_lock_irqsave(&rcp->lock, flags);
384 if (rcp->cur != rcp->completed) 493 if (rcp->cur != rcp->completed)
385 cpu_quiet(rdp->cpu, rcp); 494 cpu_quiet(rdp->cpu, rcp);
386 spin_unlock_bh(&rcp->lock); 495 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1);
387 rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail); 496 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1);
388 rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail); 497 spin_unlock(&rcp->lock);
389 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail);
390 498
391 local_irq_disable();
392 this_rdp->qlen += rdp->qlen; 499 this_rdp->qlen += rdp->qlen;
393 local_irq_enable(); 500 local_irq_restore(flags);
394} 501}
395 502
396static void rcu_offline_cpu(int cpu) 503static void rcu_offline_cpu(int cpu)
@@ -420,38 +527,52 @@ static void rcu_offline_cpu(int cpu)
420static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, 527static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
421 struct rcu_data *rdp) 528 struct rcu_data *rdp)
422{ 529{
423 if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) { 530 unsigned long flags;
424 *rdp->donetail = rdp->curlist; 531 long completed_snap;
425 rdp->donetail = rdp->curtail;
426 rdp->curlist = NULL;
427 rdp->curtail = &rdp->curlist;
428 }
429 532
430 if (rdp->nxtlist && !rdp->curlist) { 533 if (rdp->nxtlist) {
431 local_irq_disable(); 534 local_irq_save(flags);
432 rdp->curlist = rdp->nxtlist; 535 completed_snap = ACCESS_ONCE(rcp->completed);
433 rdp->curtail = rdp->nxttail;
434 rdp->nxtlist = NULL;
435 rdp->nxttail = &rdp->nxtlist;
436 local_irq_enable();
437 536
438 /* 537 /*
439 * start the next batch of callbacks 538 * move the other grace-period-completed entries to
539 * [rdp->nxtlist, *rdp->nxttail[0]) temporarily
440 */ 540 */
541 if (!rcu_batch_before(completed_snap, rdp->batch))
542 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2];
543 else if (!rcu_batch_before(completed_snap, rdp->batch - 1))
544 rdp->nxttail[0] = rdp->nxttail[1];
441 545
442 /* determine batch number */ 546 /*
443 rdp->batch = rcp->cur + 1; 547 * the grace period for entries in
444 /* see the comment and corresponding wmb() in 548 * [rdp->nxtlist, *rdp->nxttail[0]) has completed and
445 * the rcu_start_batch() 549 * move these entries to donelist
446 */ 550 */
447 smp_rmb(); 551 if (rdp->nxttail[0] != &rdp->nxtlist) {
552 *rdp->donetail = rdp->nxtlist;
553 rdp->donetail = rdp->nxttail[0];
554 rdp->nxtlist = *rdp->nxttail[0];
555 *rdp->donetail = NULL;
556
557 if (rdp->nxttail[1] == rdp->nxttail[0])
558 rdp->nxttail[1] = &rdp->nxtlist;
559 if (rdp->nxttail[2] == rdp->nxttail[0])
560 rdp->nxttail[2] = &rdp->nxtlist;
561 rdp->nxttail[0] = &rdp->nxtlist;
562 }
563
564 local_irq_restore(flags);
565
566 if (rcu_batch_after(rdp->batch, rcp->pending)) {
567 unsigned long flags2;
448 568
449 if (!rcp->next_pending) {
450 /* and start it/schedule start if it's a new batch */ 569 /* and start it/schedule start if it's a new batch */
451 spin_lock(&rcp->lock); 570 spin_lock_irqsave(&rcp->lock, flags2);
452 rcp->next_pending = 1; 571 if (rcu_batch_after(rdp->batch, rcp->pending)) {
453 rcu_start_batch(rcp); 572 rcp->pending = rdp->batch;
454 spin_unlock(&rcp->lock); 573 rcu_start_batch(rcp);
574 }
575 spin_unlock_irqrestore(&rcp->lock, flags2);
455 } 576 }
456 } 577 }
457 578
@@ -462,21 +583,53 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
462 583
463static void rcu_process_callbacks(struct softirq_action *unused) 584static void rcu_process_callbacks(struct softirq_action *unused)
464{ 585{
586 /*
587 * Memory references from any prior RCU read-side critical sections
588 * executed by the interrupted code must be see before any RCU
589 * grace-period manupulations below.
590 */
591
592 smp_mb(); /* See above block comment. */
593
465 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); 594 __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data));
466 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); 595 __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data));
596
597 /*
598 * Memory references from any later RCU read-side critical sections
599 * executed by the interrupted code must be see after any RCU
600 * grace-period manupulations above.
601 */
602
603 smp_mb(); /* See above block comment. */
467} 604}
468 605
469static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) 606static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
470{ 607{
471 /* This cpu has pending rcu entries and the grace period 608 /* Check for CPU stalls, if enabled. */
472 * for them has completed. 609 check_cpu_stall(rcp);
473 */
474 if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch))
475 return 1;
476 610
477 /* This cpu has no pending entries, but there are new entries */ 611 if (rdp->nxtlist) {
478 if (!rdp->curlist && rdp->nxtlist) 612 long completed_snap = ACCESS_ONCE(rcp->completed);
479 return 1; 613
614 /*
615 * This cpu has pending rcu entries and the grace period
616 * for them has completed.
617 */
618 if (!rcu_batch_before(completed_snap, rdp->batch))
619 return 1;
620 if (!rcu_batch_before(completed_snap, rdp->batch - 1) &&
621 rdp->nxttail[0] != rdp->nxttail[1])
622 return 1;
623 if (rdp->nxttail[0] != &rdp->nxtlist)
624 return 1;
625
626 /*
627 * This cpu has pending rcu entries and the new batch
628 * for then hasn't been started nor scheduled start
629 */
630 if (rcu_batch_after(rdp->batch, rcp->pending))
631 return 1;
632 }
480 633
481 /* This cpu has finished callbacks to invoke */ 634 /* This cpu has finished callbacks to invoke */
482 if (rdp->donelist) 635 if (rdp->donelist)
@@ -512,9 +665,15 @@ int rcu_needs_cpu(int cpu)
512 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 665 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
513 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); 666 struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu);
514 667
515 return (!!rdp->curlist || !!rdp_bh->curlist || rcu_pending(cpu)); 668 return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu);
516} 669}
517 670
671/*
672 * Top-level function driving RCU grace-period detection, normally
673 * invoked from the scheduler-clock interrupt. This function simply
674 * increments counters that are read only from softirq by this same
675 * CPU, so there are no memory barriers required.
676 */
518void rcu_check_callbacks(int cpu, int user) 677void rcu_check_callbacks(int cpu, int user)
519{ 678{
520 if (user || 679 if (user ||
@@ -558,14 +717,17 @@ void rcu_check_callbacks(int cpu, int user)
558static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, 717static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
559 struct rcu_data *rdp) 718 struct rcu_data *rdp)
560{ 719{
720 unsigned long flags;
721
722 spin_lock_irqsave(&rcp->lock, flags);
561 memset(rdp, 0, sizeof(*rdp)); 723 memset(rdp, 0, sizeof(*rdp));
562 rdp->curtail = &rdp->curlist; 724 rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist;
563 rdp->nxttail = &rdp->nxtlist;
564 rdp->donetail = &rdp->donelist; 725 rdp->donetail = &rdp->donelist;
565 rdp->quiescbatch = rcp->completed; 726 rdp->quiescbatch = rcp->completed;
566 rdp->qs_pending = 0; 727 rdp->qs_pending = 0;
567 rdp->cpu = cpu; 728 rdp->cpu = cpu;
568 rdp->blimit = blimit; 729 rdp->blimit = blimit;
730 spin_unlock_irqrestore(&rcp->lock, flags);
569} 731}
570 732
571static void __cpuinit rcu_online_cpu(int cpu) 733static void __cpuinit rcu_online_cpu(int cpu)
@@ -610,6 +772,9 @@ static struct notifier_block __cpuinitdata rcu_nb = {
610 */ 772 */
611void __init __rcu_init(void) 773void __init __rcu_init(void)
612{ 774{
775#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
776 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
777#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
613 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, 778 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
614 (void *)(long)smp_processor_id()); 779 (void *)(long)smp_processor_id());
615 /* Register notifier for non-boot CPUs */ 780 /* Register notifier for non-boot CPUs */
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c
index 27827931ca0d..ca4bbbe04aa4 100644
--- a/kernel/rcupreempt.c
+++ b/kernel/rcupreempt.c
@@ -59,14 +59,6 @@
59#include <linux/rcupreempt_trace.h> 59#include <linux/rcupreempt_trace.h>
60 60
61/* 61/*
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
66 */
67#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
68
69/*
70 * PREEMPT_RCU data structures. 62 * PREEMPT_RCU data structures.
71 */ 63 */
72 64
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c
index 5edf82c34bbc..35c2d3360ecf 100644
--- a/kernel/rcupreempt_trace.c
+++ b/kernel/rcupreempt_trace.c
@@ -308,11 +308,16 @@ out:
308 308
309static int __init rcupreempt_trace_init(void) 309static int __init rcupreempt_trace_init(void)
310{ 310{
311 int ret;
312
311 mutex_init(&rcupreempt_trace_mutex); 313 mutex_init(&rcupreempt_trace_mutex);
312 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL); 314 rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL);
313 if (!rcupreempt_trace_buf) 315 if (!rcupreempt_trace_buf)
314 return 1; 316 return 1;
315 return rcupreempt_debugfs_init(); 317 ret = rcupreempt_debugfs_init();
318 if (ret)
319 kfree(rcupreempt_trace_buf);
320 return ret;
316} 321}
317 322
318static void __exit rcupreempt_trace_cleanup(void) 323static void __exit rcupreempt_trace_cleanup(void)
diff --git a/kernel/resource.c b/kernel/resource.c
index 03d796c1b2e9..4089d12af6e0 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -38,10 +38,6 @@ EXPORT_SYMBOL(iomem_resource);
38 38
39static DEFINE_RWLOCK(resource_lock); 39static DEFINE_RWLOCK(resource_lock);
40 40
41#ifdef CONFIG_PROC_FS
42
43enum { MAX_IORES_LEVEL = 5 };
44
45static void *r_next(struct seq_file *m, void *v, loff_t *pos) 41static void *r_next(struct seq_file *m, void *v, loff_t *pos)
46{ 42{
47 struct resource *p = v; 43 struct resource *p = v;
@@ -53,6 +49,10 @@ static void *r_next(struct seq_file *m, void *v, loff_t *pos)
53 return p->sibling; 49 return p->sibling;
54} 50}
55 51
52#ifdef CONFIG_PROC_FS
53
54enum { MAX_IORES_LEVEL = 5 };
55
56static void *r_start(struct seq_file *m, loff_t *pos) 56static void *r_start(struct seq_file *m, loff_t *pos)
57 __acquires(resource_lock) 57 __acquires(resource_lock)
58{ 58{
@@ -516,6 +516,70 @@ int adjust_resource(struct resource *res, resource_size_t start, resource_size_t
516 return result; 516 return result;
517} 517}
518 518
519static void __init __reserve_region_with_split(struct resource *root,
520 resource_size_t start, resource_size_t end,
521 const char *name)
522{
523 struct resource *parent = root;
524 struct resource *conflict;
525 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
526
527 if (!res)
528 return;
529
530 res->name = name;
531 res->start = start;
532 res->end = end;
533 res->flags = IORESOURCE_BUSY;
534
535 for (;;) {
536 conflict = __request_resource(parent, res);
537 if (!conflict)
538 break;
539 if (conflict != parent) {
540 parent = conflict;
541 if (!(conflict->flags & IORESOURCE_BUSY))
542 continue;
543 }
544
545 /* Uhhuh, that didn't work out.. */
546 kfree(res);
547 res = NULL;
548 break;
549 }
550
551 if (!res) {
552 /* failed, split and try again */
553
554 /* conflict covered whole area */
555 if (conflict->start <= start && conflict->end >= end)
556 return;
557
558 if (conflict->start > start)
559 __reserve_region_with_split(root, start, conflict->start-1, name);
560 if (!(conflict->flags & IORESOURCE_BUSY)) {
561 resource_size_t common_start, common_end;
562
563 common_start = max(conflict->start, start);
564 common_end = min(conflict->end, end);
565 if (common_start < common_end)
566 __reserve_region_with_split(root, common_start, common_end, name);
567 }
568 if (conflict->end < end)
569 __reserve_region_with_split(root, conflict->end+1, end, name);
570 }
571
572}
573
574void reserve_region_with_split(struct resource *root,
575 resource_size_t start, resource_size_t end,
576 const char *name)
577{
578 write_lock(&resource_lock);
579 __reserve_region_with_split(root, start, end, name);
580 write_unlock(&resource_lock);
581}
582
519EXPORT_SYMBOL(adjust_resource); 583EXPORT_SYMBOL(adjust_resource);
520 584
521/** 585/**
@@ -562,33 +626,34 @@ struct resource * __request_region(struct resource *parent,
562{ 626{
563 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); 627 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
564 628
565 if (res) { 629 if (!res)
566 res->name = name; 630 return NULL;
567 res->start = start;
568 res->end = start + n - 1;
569 res->flags = IORESOURCE_BUSY;
570 631
571 write_lock(&resource_lock); 632 res->name = name;
633 res->start = start;
634 res->end = start + n - 1;
635 res->flags = IORESOURCE_BUSY;
572 636
573 for (;;) { 637 write_lock(&resource_lock);
574 struct resource *conflict;
575 638
576 conflict = __request_resource(parent, res); 639 for (;;) {
577 if (!conflict) 640 struct resource *conflict;
578 break;
579 if (conflict != parent) {
580 parent = conflict;
581 if (!(conflict->flags & IORESOURCE_BUSY))
582 continue;
583 }
584 641
585 /* Uhhuh, that didn't work out.. */ 642 conflict = __request_resource(parent, res);
586 kfree(res); 643 if (!conflict)
587 res = NULL;
588 break; 644 break;
645 if (conflict != parent) {
646 parent = conflict;
647 if (!(conflict->flags & IORESOURCE_BUSY))
648 continue;
589 } 649 }
590 write_unlock(&resource_lock); 650
651 /* Uhhuh, that didn't work out.. */
652 kfree(res);
653 res = NULL;
654 break;
591 } 655 }
656 write_unlock(&resource_lock);
592 return res; 657 return res;
593} 658}
594EXPORT_SYMBOL(__request_region); 659EXPORT_SYMBOL(__request_region);
@@ -763,3 +828,40 @@ static int __init reserve_setup(char *str)
763} 828}
764 829
765__setup("reserve=", reserve_setup); 830__setup("reserve=", reserve_setup);
831
832/*
833 * Check if the requested addr and size spans more than any slot in the
834 * iomem resource tree.
835 */
836int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
837{
838 struct resource *p = &iomem_resource;
839 int err = 0;
840 loff_t l;
841
842 read_lock(&resource_lock);
843 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
844 /*
845 * We can probably skip the resources without
846 * IORESOURCE_IO attribute?
847 */
848 if (p->start >= addr + size)
849 continue;
850 if (p->end < addr)
851 continue;
852 if (p->start <= addr && (p->end >= addr + size - 1))
853 continue;
854 printk(KERN_WARNING "resource map sanity check conflict: "
855 "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
856 (unsigned long long)addr,
857 (unsigned long long)(addr + size - 1),
858 (unsigned long long)p->start,
859 (unsigned long long)p->end,
860 p->name);
861 err = -1;
862 break;
863 }
864 read_unlock(&resource_lock);
865
866 return err;
867}
diff --git a/kernel/sched.c b/kernel/sched.c
index 1a5f73c1fcdc..09a8c15748f1 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -201,14 +201,19 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
201 hrtimer_init(&rt_b->rt_period_timer, 201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer; 203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
205}
206
207static inline int rt_bandwidth_enabled(void)
208{
209 return sysctl_sched_rt_runtime >= 0;
205} 210}
206 211
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{ 213{
209 ktime_t now; 214 ktime_t now;
210 215
211 if (rt_b->rt_runtime == RUNTIME_INF) 216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
212 return; 217 return;
213 218
214 if (hrtimer_active(&rt_b->rt_period_timer)) 219 if (hrtimer_active(&rt_b->rt_period_timer))
@@ -298,9 +303,9 @@ static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 303static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 304static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300#endif /* CONFIG_RT_GROUP_SCHED */ 305#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */ 306#else /* !CONFIG_USER_SCHED */
302#define root_task_group init_task_group 307#define root_task_group init_task_group
303#endif /* CONFIG_FAIR_GROUP_SCHED */ 308#endif /* CONFIG_USER_SCHED */
304 309
305/* task_group_lock serializes add/remove of task groups and also changes to 310/* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares. 311 * a task group's cpu shares.
@@ -604,9 +609,9 @@ struct rq {
604 609
605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606 611
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
608{ 613{
609 rq->curr->sched_class->check_preempt_curr(rq, p); 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
610} 615}
611 616
612static inline int cpu_of(struct rq *rq) 617static inline int cpu_of(struct rq *rq)
@@ -1087,7 +1092,7 @@ hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 return NOTIFY_DONE; 1092 return NOTIFY_DONE;
1088} 1093}
1089 1094
1090static void init_hrtick(void) 1095static __init void init_hrtick(void)
1091{ 1096{
1092 hotcpu_notifier(hotplug_hrtick, 0); 1097 hotcpu_notifier(hotplug_hrtick, 0);
1093} 1098}
@@ -1102,7 +1107,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); 1107 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103} 1108}
1104 1109
1105static void init_hrtick(void) 1110static inline void init_hrtick(void)
1106{ 1111{
1107} 1112}
1108#endif /* CONFIG_SMP */ 1113#endif /* CONFIG_SMP */
@@ -1119,9 +1124,9 @@ static void init_rq_hrtick(struct rq *rq)
1119 1124
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1125 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick; 1126 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 1127 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1123} 1128}
1124#else 1129#else /* CONFIG_SCHED_HRTICK */
1125static inline void hrtick_clear(struct rq *rq) 1130static inline void hrtick_clear(struct rq *rq)
1126{ 1131{
1127} 1132}
@@ -1133,7 +1138,7 @@ static inline void init_rq_hrtick(struct rq *rq)
1133static inline void init_hrtick(void) 1138static inline void init_hrtick(void)
1134{ 1139{
1135} 1140}
1136#endif 1141#endif /* CONFIG_SCHED_HRTICK */
1137 1142
1138/* 1143/*
1139 * resched_task - mark a task 'to be rescheduled now'. 1144 * resched_task - mark a task 'to be rescheduled now'.
@@ -1380,38 +1385,24 @@ static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380 update_load_sub(&rq->load, load); 1385 update_load_sub(&rq->load, load);
1381} 1386}
1382 1387
1383#ifdef CONFIG_SMP 1388#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1384static unsigned long source_load(int cpu, int type); 1389typedef int (*tg_visitor)(struct task_group *, void *);
1385static unsigned long target_load(int cpu, int type);
1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1390
1402/* 1391/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when 1392 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time. 1393 * leaving it for the final time.
1405 */ 1394 */
1406static void 1395static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408{ 1396{
1409 struct task_group *parent, *child; 1397 struct task_group *parent, *child;
1398 int ret;
1410 1399
1411 rcu_read_lock(); 1400 rcu_read_lock();
1412 parent = &root_task_group; 1401 parent = &root_task_group;
1413down: 1402down:
1414 (*down)(parent, cpu, sd); 1403 ret = (*down)(parent, data);
1404 if (ret)
1405 goto out_unlock;
1415 list_for_each_entry_rcu(child, &parent->children, siblings) { 1406 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child; 1407 parent = child;
1417 goto down; 1408 goto down;
@@ -1419,15 +1410,43 @@ down:
1419up: 1410up:
1420 continue; 1411 continue;
1421 } 1412 }
1422 (*up)(parent, cpu, sd); 1413 ret = (*up)(parent, data);
1414 if (ret)
1415 goto out_unlock;
1423 1416
1424 child = parent; 1417 child = parent;
1425 parent = parent->parent; 1418 parent = parent->parent;
1426 if (parent) 1419 if (parent)
1427 goto up; 1420 goto up;
1421out_unlock:
1428 rcu_read_unlock(); 1422 rcu_read_unlock();
1423
1424 return ret;
1429} 1425}
1430 1426
1427static int tg_nop(struct task_group *tg, void *data)
1428{
1429 return 0;
1430}
1431#endif
1432
1433#ifdef CONFIG_SMP
1434static unsigned long source_load(int cpu, int type);
1435static unsigned long target_load(int cpu, int type);
1436static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1437
1438static unsigned long cpu_avg_load_per_task(int cpu)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441
1442 if (rq->nr_running)
1443 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1444
1445 return rq->avg_load_per_task;
1446}
1447
1448#ifdef CONFIG_FAIR_GROUP_SCHED
1449
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1450static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432 1451
1433/* 1452/*
@@ -1486,11 +1505,11 @@ __update_group_shares_cpu(struct task_group *tg, int cpu,
1486 * This needs to be done in a bottom-up fashion because the rq weight of a 1505 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups. 1506 * parent group depends on the shares of its child groups.
1488 */ 1507 */
1489static void 1508static int tg_shares_up(struct task_group *tg, void *data)
1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491{ 1509{
1492 unsigned long rq_weight = 0; 1510 unsigned long rq_weight = 0;
1493 unsigned long shares = 0; 1511 unsigned long shares = 0;
1512 struct sched_domain *sd = data;
1494 int i; 1513 int i;
1495 1514
1496 for_each_cpu_mask(i, sd->span) { 1515 for_each_cpu_mask(i, sd->span) {
@@ -1515,6 +1534,8 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1515 __update_group_shares_cpu(tg, i, shares, rq_weight); 1534 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags); 1535 spin_unlock_irqrestore(&rq->lock, flags);
1517 } 1536 }
1537
1538 return 0;
1518} 1539}
1519 1540
1520/* 1541/*
@@ -1522,10 +1543,10 @@ tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1522 * This needs to be done in a top-down fashion because the load of a child 1543 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load. 1544 * group is a fraction of its parents load.
1524 */ 1545 */
1525static void 1546static int tg_load_down(struct task_group *tg, void *data)
1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527{ 1547{
1528 unsigned long load; 1548 unsigned long load;
1549 long cpu = (long)data;
1529 1550
1530 if (!tg->parent) { 1551 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight; 1552 load = cpu_rq(cpu)->load.weight;
@@ -1536,11 +1557,8 @@ tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1536 } 1557 }
1537 1558
1538 tg->cfs_rq[cpu]->h_load = load; 1559 tg->cfs_rq[cpu]->h_load = load;
1539}
1540 1560
1541static void 1561 return 0;
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543{
1544} 1562}
1545 1563
1546static void update_shares(struct sched_domain *sd) 1564static void update_shares(struct sched_domain *sd)
@@ -1550,7 +1568,7 @@ static void update_shares(struct sched_domain *sd)
1550 1568
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1569 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now; 1570 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd); 1571 walk_tg_tree(tg_nop, tg_shares_up, sd);
1554 } 1572 }
1555} 1573}
1556 1574
@@ -1561,9 +1579,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561 spin_lock(&rq->lock); 1579 spin_lock(&rq->lock);
1562} 1580}
1563 1581
1564static void update_h_load(int cpu) 1582static void update_h_load(long cpu)
1565{ 1583{
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL); 1584 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1567} 1585}
1568 1586
1569#else 1587#else
@@ -1921,11 +1939,8 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1921 running = task_running(rq, p); 1939 running = task_running(rq, p);
1922 on_rq = p->se.on_rq; 1940 on_rq = p->se.on_rq;
1923 ncsw = 0; 1941 ncsw = 0;
1924 if (!match_state || p->state == match_state) { 1942 if (!match_state || p->state == match_state)
1925 ncsw = p->nivcsw + p->nvcsw; 1943 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
1929 task_rq_unlock(rq, &flags); 1944 task_rq_unlock(rq, &flags);
1930 1945
1931 /* 1946 /*
@@ -2285,7 +2300,7 @@ out_running:
2285 trace_mark(kernel_sched_wakeup, 2300 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p", 2301 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr); 2302 p->pid, p->state, rq, p, rq->curr);
2288 check_preempt_curr(rq, p); 2303 check_preempt_curr(rq, p, sync);
2289 2304
2290 p->state = TASK_RUNNING; 2305 p->state = TASK_RUNNING;
2291#ifdef CONFIG_SMP 2306#ifdef CONFIG_SMP
@@ -2420,7 +2435,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2420 trace_mark(kernel_sched_wakeup_new, 2435 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p", 2436 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr); 2437 p->pid, p->state, rq, p, rq->curr);
2423 check_preempt_curr(rq, p); 2438 check_preempt_curr(rq, p, 0);
2424#ifdef CONFIG_SMP 2439#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up) 2440 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p); 2441 p->sched_class->task_wake_up(rq, p);
@@ -2880,7 +2895,7 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
2880 * Note that idle threads have a prio of MAX_PRIO, for this test 2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them. 2896 * to be always true for them.
2882 */ 2897 */
2883 check_preempt_curr(this_rq, p); 2898 check_preempt_curr(this_rq, p, 0);
2884} 2899}
2885 2900
2886/* 2901/*
@@ -4037,23 +4052,26 @@ DEFINE_PER_CPU(struct kernel_stat, kstat);
4037EXPORT_PER_CPU_SYMBOL(kstat); 4052EXPORT_PER_CPU_SYMBOL(kstat);
4038 4053
4039/* 4054/*
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock 4055 * Return any ns on the sched_clock that have not yet been banked in
4041 * that have not yet been banked in case the task is currently running. 4056 * @p in case that task is currently running.
4042 */ 4057 */
4043unsigned long long task_sched_runtime(struct task_struct *p) 4058unsigned long long task_delta_exec(struct task_struct *p)
4044{ 4059{
4045 unsigned long flags; 4060 unsigned long flags;
4046 u64 ns, delta_exec;
4047 struct rq *rq; 4061 struct rq *rq;
4062 u64 ns = 0;
4048 4063
4049 rq = task_rq_lock(p, &flags); 4064 rq = task_rq_lock(p, &flags);
4050 ns = p->se.sum_exec_runtime; 4065
4051 if (task_current(rq, p)) { 4066 if (task_current(rq, p)) {
4067 u64 delta_exec;
4068
4052 update_rq_clock(rq); 4069 update_rq_clock(rq);
4053 delta_exec = rq->clock - p->se.exec_start; 4070 delta_exec = rq->clock - p->se.exec_start;
4054 if ((s64)delta_exec > 0) 4071 if ((s64)delta_exec > 0)
4055 ns += delta_exec; 4072 ns = delta_exec;
4056 } 4073 }
4074
4057 task_rq_unlock(rq, &flags); 4075 task_rq_unlock(rq, &flags);
4058 4076
4059 return ns; 4077 return ns;
@@ -4070,6 +4088,7 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
4070 cputime64_t tmp; 4088 cputime64_t tmp;
4071 4089
4072 p->utime = cputime_add(p->utime, cputime); 4090 p->utime = cputime_add(p->utime, cputime);
4091 account_group_user_time(p, cputime);
4073 4092
4074 /* Add user time to cpustat. */ 4093 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime); 4094 tmp = cputime_to_cputime64(cputime);
@@ -4094,6 +4113,7 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime)
4094 tmp = cputime_to_cputime64(cputime); 4113 tmp = cputime_to_cputime64(cputime);
4095 4114
4096 p->utime = cputime_add(p->utime, cputime); 4115 p->utime = cputime_add(p->utime, cputime);
4116 account_group_user_time(p, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime); 4117 p->gtime = cputime_add(p->gtime, cputime);
4098 4118
4099 cpustat->user = cputime64_add(cpustat->user, tmp); 4119 cpustat->user = cputime64_add(cpustat->user, tmp);
@@ -4129,6 +4149,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
4129 } 4149 }
4130 4150
4131 p->stime = cputime_add(p->stime, cputime); 4151 p->stime = cputime_add(p->stime, cputime);
4152 account_group_system_time(p, cputime);
4132 4153
4133 /* Add system time to cpustat. */ 4154 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime); 4155 tmp = cputime_to_cputime64(cputime);
@@ -4170,6 +4191,7 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
4170 4191
4171 if (p == rq->idle) { 4192 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal); 4193 p->stime = cputime_add(p->stime, steal);
4194 account_group_system_time(p, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0) 4195 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp); 4196 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else 4197 else
@@ -4627,6 +4649,15 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4627} 4649}
4628EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 4650EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4629 4651
4652/**
4653 * complete: - signals a single thread waiting on this completion
4654 * @x: holds the state of this particular completion
4655 *
4656 * This will wake up a single thread waiting on this completion. Threads will be
4657 * awakened in the same order in which they were queued.
4658 *
4659 * See also complete_all(), wait_for_completion() and related routines.
4660 */
4630void complete(struct completion *x) 4661void complete(struct completion *x)
4631{ 4662{
4632 unsigned long flags; 4663 unsigned long flags;
@@ -4638,6 +4669,12 @@ void complete(struct completion *x)
4638} 4669}
4639EXPORT_SYMBOL(complete); 4670EXPORT_SYMBOL(complete);
4640 4671
4672/**
4673 * complete_all: - signals all threads waiting on this completion
4674 * @x: holds the state of this particular completion
4675 *
4676 * This will wake up all threads waiting on this particular completion event.
4677 */
4641void complete_all(struct completion *x) 4678void complete_all(struct completion *x)
4642{ 4679{
4643 unsigned long flags; 4680 unsigned long flags;
@@ -4658,10 +4695,7 @@ do_wait_for_common(struct completion *x, long timeout, int state)
4658 wait.flags |= WQ_FLAG_EXCLUSIVE; 4695 wait.flags |= WQ_FLAG_EXCLUSIVE;
4659 __add_wait_queue_tail(&x->wait, &wait); 4696 __add_wait_queue_tail(&x->wait, &wait);
4660 do { 4697 do {
4661 if ((state == TASK_INTERRUPTIBLE && 4698 if (signal_pending_state(state, current)) {
4662 signal_pending(current)) ||
4663 (state == TASK_KILLABLE &&
4664 fatal_signal_pending(current))) {
4665 timeout = -ERESTARTSYS; 4699 timeout = -ERESTARTSYS;
4666 break; 4700 break;
4667 } 4701 }
@@ -4689,12 +4723,31 @@ wait_for_common(struct completion *x, long timeout, int state)
4689 return timeout; 4723 return timeout;
4690} 4724}
4691 4725
4726/**
4727 * wait_for_completion: - waits for completion of a task
4728 * @x: holds the state of this particular completion
4729 *
4730 * This waits to be signaled for completion of a specific task. It is NOT
4731 * interruptible and there is no timeout.
4732 *
4733 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4734 * and interrupt capability. Also see complete().
4735 */
4692void __sched wait_for_completion(struct completion *x) 4736void __sched wait_for_completion(struct completion *x)
4693{ 4737{
4694 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 4738 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4695} 4739}
4696EXPORT_SYMBOL(wait_for_completion); 4740EXPORT_SYMBOL(wait_for_completion);
4697 4741
4742/**
4743 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4744 * @x: holds the state of this particular completion
4745 * @timeout: timeout value in jiffies
4746 *
4747 * This waits for either a completion of a specific task to be signaled or for a
4748 * specified timeout to expire. The timeout is in jiffies. It is not
4749 * interruptible.
4750 */
4698unsigned long __sched 4751unsigned long __sched
4699wait_for_completion_timeout(struct completion *x, unsigned long timeout) 4752wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4700{ 4753{
@@ -4702,6 +4755,13 @@ wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4702} 4755}
4703EXPORT_SYMBOL(wait_for_completion_timeout); 4756EXPORT_SYMBOL(wait_for_completion_timeout);
4704 4757
4758/**
4759 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4760 * @x: holds the state of this particular completion
4761 *
4762 * This waits for completion of a specific task to be signaled. It is
4763 * interruptible.
4764 */
4705int __sched wait_for_completion_interruptible(struct completion *x) 4765int __sched wait_for_completion_interruptible(struct completion *x)
4706{ 4766{
4707 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 4767 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
@@ -4711,6 +4771,14 @@ int __sched wait_for_completion_interruptible(struct completion *x)
4711} 4771}
4712EXPORT_SYMBOL(wait_for_completion_interruptible); 4772EXPORT_SYMBOL(wait_for_completion_interruptible);
4713 4773
4774/**
4775 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4776 * @x: holds the state of this particular completion
4777 * @timeout: timeout value in jiffies
4778 *
4779 * This waits for either a completion of a specific task to be signaled or for a
4780 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4781 */
4714unsigned long __sched 4782unsigned long __sched
4715wait_for_completion_interruptible_timeout(struct completion *x, 4783wait_for_completion_interruptible_timeout(struct completion *x,
4716 unsigned long timeout) 4784 unsigned long timeout)
@@ -4719,6 +4787,13 @@ wait_for_completion_interruptible_timeout(struct completion *x,
4719} 4787}
4720EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 4788EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4721 4789
4790/**
4791 * wait_for_completion_killable: - waits for completion of a task (killable)
4792 * @x: holds the state of this particular completion
4793 *
4794 * This waits to be signaled for completion of a specific task. It can be
4795 * interrupted by a kill signal.
4796 */
4722int __sched wait_for_completion_killable(struct completion *x) 4797int __sched wait_for_completion_killable(struct completion *x)
4723{ 4798{
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 4799 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
@@ -5121,7 +5196,8 @@ recheck:
5121 * Do not allow realtime tasks into groups that have no runtime 5196 * Do not allow realtime tasks into groups that have no runtime
5122 * assigned. 5197 * assigned.
5123 */ 5198 */
5124 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) 5199 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5200 task_group(p)->rt_bandwidth.rt_runtime == 0)
5125 return -EPERM; 5201 return -EPERM;
5126#endif 5202#endif
5127 5203
@@ -5957,7 +6033,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5957 set_task_cpu(p, dest_cpu); 6033 set_task_cpu(p, dest_cpu);
5958 if (on_rq) { 6034 if (on_rq) {
5959 activate_task(rq_dest, p, 0); 6035 activate_task(rq_dest, p, 0);
5960 check_preempt_curr(rq_dest, p); 6036 check_preempt_curr(rq_dest, p, 0);
5961 } 6037 }
5962done: 6038done:
5963 ret = 1; 6039 ret = 1;
@@ -6282,7 +6358,7 @@ set_table_entry(struct ctl_table *entry,
6282static struct ctl_table * 6358static struct ctl_table *
6283sd_alloc_ctl_domain_table(struct sched_domain *sd) 6359sd_alloc_ctl_domain_table(struct sched_domain *sd)
6284{ 6360{
6285 struct ctl_table *table = sd_alloc_ctl_entry(12); 6361 struct ctl_table *table = sd_alloc_ctl_entry(13);
6286 6362
6287 if (table == NULL) 6363 if (table == NULL)
6288 return NULL; 6364 return NULL;
@@ -6310,7 +6386,9 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
6310 sizeof(int), 0644, proc_dointvec_minmax); 6386 sizeof(int), 0644, proc_dointvec_minmax);
6311 set_table_entry(&table[10], "flags", &sd->flags, 6387 set_table_entry(&table[10], "flags", &sd->flags,
6312 sizeof(int), 0644, proc_dointvec_minmax); 6388 sizeof(int), 0644, proc_dointvec_minmax);
6313 /* &table[11] is terminator */ 6389 set_table_entry(&table[11], "name", sd->name,
6390 CORENAME_MAX_SIZE, 0444, proc_dostring);
6391 /* &table[12] is terminator */
6314 6392
6315 return table; 6393 return table;
6316} 6394}
@@ -7194,13 +7272,21 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 7272 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 */ 7273 */
7196 7274
7275#ifdef CONFIG_SCHED_DEBUG
7276# define SD_INIT_NAME(sd, type) sd->name = #type
7277#else
7278# define SD_INIT_NAME(sd, type) do { } while (0)
7279#endif
7280
7197#define SD_INIT(sd, type) sd_init_##type(sd) 7281#define SD_INIT(sd, type) sd_init_##type(sd)
7282
7198#define SD_INIT_FUNC(type) \ 7283#define SD_INIT_FUNC(type) \
7199static noinline void sd_init_##type(struct sched_domain *sd) \ 7284static noinline void sd_init_##type(struct sched_domain *sd) \
7200{ \ 7285{ \
7201 memset(sd, 0, sizeof(*sd)); \ 7286 memset(sd, 0, sizeof(*sd)); \
7202 *sd = SD_##type##_INIT; \ 7287 *sd = SD_##type##_INIT; \
7203 sd->level = SD_LV_##type; \ 7288 sd->level = SD_LV_##type; \
7289 SD_INIT_NAME(sd, type); \
7204} 7290}
7205 7291
7206SD_INIT_FUNC(CPU) 7292SD_INIT_FUNC(CPU)
@@ -7696,24 +7782,27 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7696 * and partition_sched_domains() will fallback to the single partition 7782 * and partition_sched_domains() will fallback to the single partition
7697 * 'fallback_doms', it also forces the domains to be rebuilt. 7783 * 'fallback_doms', it also forces the domains to be rebuilt.
7698 * 7784 *
7785 * If doms_new==NULL it will be replaced with cpu_online_map.
7786 * ndoms_new==0 is a special case for destroying existing domains.
7787 * It will not create the default domain.
7788 *
7699 * Call with hotplug lock held 7789 * Call with hotplug lock held
7700 */ 7790 */
7701void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 7791void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7702 struct sched_domain_attr *dattr_new) 7792 struct sched_domain_attr *dattr_new)
7703{ 7793{
7704 int i, j; 7794 int i, j, n;
7705 7795
7706 mutex_lock(&sched_domains_mutex); 7796 mutex_lock(&sched_domains_mutex);
7707 7797
7708 /* always unregister in case we don't destroy any domains */ 7798 /* always unregister in case we don't destroy any domains */
7709 unregister_sched_domain_sysctl(); 7799 unregister_sched_domain_sysctl();
7710 7800
7711 if (doms_new == NULL) 7801 n = doms_new ? ndoms_new : 0;
7712 ndoms_new = 0;
7713 7802
7714 /* Destroy deleted domains */ 7803 /* Destroy deleted domains */
7715 for (i = 0; i < ndoms_cur; i++) { 7804 for (i = 0; i < ndoms_cur; i++) {
7716 for (j = 0; j < ndoms_new; j++) { 7805 for (j = 0; j < n; j++) {
7717 if (cpus_equal(doms_cur[i], doms_new[j]) 7806 if (cpus_equal(doms_cur[i], doms_new[j])
7718 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7807 && dattrs_equal(dattr_cur, i, dattr_new, j))
7719 goto match1; 7808 goto match1;
@@ -7726,7 +7815,6 @@ match1:
7726 7815
7727 if (doms_new == NULL) { 7816 if (doms_new == NULL) {
7728 ndoms_cur = 0; 7817 ndoms_cur = 0;
7729 ndoms_new = 1;
7730 doms_new = &fallback_doms; 7818 doms_new = &fallback_doms;
7731 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7732 dattr_new = NULL; 7820 dattr_new = NULL;
@@ -7763,8 +7851,13 @@ match2:
7763int arch_reinit_sched_domains(void) 7851int arch_reinit_sched_domains(void)
7764{ 7852{
7765 get_online_cpus(); 7853 get_online_cpus();
7854
7855 /* Destroy domains first to force the rebuild */
7856 partition_sched_domains(0, NULL, NULL);
7857
7766 rebuild_sched_domains(); 7858 rebuild_sched_domains();
7767 put_online_cpus(); 7859 put_online_cpus();
7860
7768 return 0; 7861 return 0;
7769} 7862}
7770 7863
@@ -7848,7 +7941,7 @@ static int update_sched_domains(struct notifier_block *nfb,
7848 case CPU_ONLINE_FROZEN: 7941 case CPU_ONLINE_FROZEN:
7849 case CPU_DEAD: 7942 case CPU_DEAD:
7850 case CPU_DEAD_FROZEN: 7943 case CPU_DEAD_FROZEN:
7851 partition_sched_domains(0, NULL, NULL); 7944 partition_sched_domains(1, NULL, NULL);
7852 return NOTIFY_OK; 7945 return NOTIFY_OK;
7853 7946
7854 default: 7947 default:
@@ -8235,20 +8328,25 @@ void __might_sleep(char *file, int line)
8235#ifdef in_atomic 8328#ifdef in_atomic
8236 static unsigned long prev_jiffy; /* ratelimiting */ 8329 static unsigned long prev_jiffy; /* ratelimiting */
8237 8330
8238 if ((in_atomic() || irqs_disabled()) && 8331 if ((!in_atomic() && !irqs_disabled()) ||
8239 system_state == SYSTEM_RUNNING && !oops_in_progress) { 8332 system_state != SYSTEM_RUNNING || oops_in_progress)
8240 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8333 return;
8241 return; 8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8242 prev_jiffy = jiffies; 8335 return;
8243 printk(KERN_ERR "BUG: sleeping function called from invalid" 8336 prev_jiffy = jiffies;
8244 " context at %s:%d\n", file, line); 8337
8245 printk("in_atomic():%d, irqs_disabled():%d\n", 8338 printk(KERN_ERR
8246 in_atomic(), irqs_disabled()); 8339 "BUG: sleeping function called from invalid context at %s:%d\n",
8247 debug_show_held_locks(current); 8340 file, line);
8248 if (irqs_disabled()) 8341 printk(KERN_ERR
8249 print_irqtrace_events(current); 8342 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8250 dump_stack(); 8343 in_atomic(), irqs_disabled(),
8251 } 8344 current->pid, current->comm);
8345
8346 debug_show_held_locks(current);
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
8349 dump_stack();
8252#endif 8350#endif
8253} 8351}
8254EXPORT_SYMBOL(__might_sleep); 8352EXPORT_SYMBOL(__might_sleep);
@@ -8746,73 +8844,95 @@ static DEFINE_MUTEX(rt_constraints_mutex);
8746static unsigned long to_ratio(u64 period, u64 runtime) 8844static unsigned long to_ratio(u64 period, u64 runtime)
8747{ 8845{
8748 if (runtime == RUNTIME_INF) 8846 if (runtime == RUNTIME_INF)
8749 return 1ULL << 16; 8847 return 1ULL << 20;
8750 8848
8751 return div64_u64(runtime << 16, period); 8849 return div64_u64(runtime << 20, period);
8752} 8850}
8753 8851
8754#ifdef CONFIG_CGROUP_SCHED 8852/* Must be called with tasklist_lock held */
8755static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8853static inline int tg_has_rt_tasks(struct task_group *tg)
8756{ 8854{
8757 struct task_group *tgi, *parent = tg->parent; 8855 struct task_struct *g, *p;
8758 unsigned long total = 0;
8759 8856
8760 if (!parent) { 8857 do_each_thread(g, p) {
8761 if (global_rt_period() < period) 8858 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8762 return 0; 8859 return 1;
8860 } while_each_thread(g, p);
8763 8861
8764 return to_ratio(period, runtime) < 8862 return 0;
8765 to_ratio(global_rt_period(), global_rt_runtime()); 8863}
8766 }
8767 8864
8768 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period) 8865struct rt_schedulable_data {
8769 return 0; 8866 struct task_group *tg;
8867 u64 rt_period;
8868 u64 rt_runtime;
8869};
8770 8870
8771 rcu_read_lock(); 8871static int tg_schedulable(struct task_group *tg, void *data)
8772 list_for_each_entry_rcu(tgi, &parent->children, siblings) { 8872{
8773 if (tgi == tg) 8873 struct rt_schedulable_data *d = data;
8774 continue; 8874 struct task_group *child;
8875 unsigned long total, sum = 0;
8876 u64 period, runtime;
8877
8878 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8879 runtime = tg->rt_bandwidth.rt_runtime;
8775 8880
8776 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8881 if (tg == d->tg) {
8777 tgi->rt_bandwidth.rt_runtime); 8882 period = d->rt_period;
8883 runtime = d->rt_runtime;
8778 } 8884 }
8779 rcu_read_unlock();
8780 8885
8781 return total + to_ratio(period, runtime) <= 8886 /*
8782 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), 8887 * Cannot have more runtime than the period.
8783 parent->rt_bandwidth.rt_runtime); 8888 */
8784} 8889 if (runtime > period && runtime != RUNTIME_INF)
8785#elif defined CONFIG_USER_SCHED 8890 return -EINVAL;
8786static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8787{
8788 struct task_group *tgi;
8789 unsigned long total = 0;
8790 unsigned long global_ratio =
8791 to_ratio(global_rt_period(), global_rt_runtime());
8792 8891
8793 rcu_read_lock(); 8892 /*
8794 list_for_each_entry_rcu(tgi, &task_groups, list) { 8893 * Ensure we don't starve existing RT tasks.
8795 if (tgi == tg) 8894 */
8796 continue; 8895 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8896 return -EBUSY;
8897
8898 total = to_ratio(period, runtime);
8899
8900 /*
8901 * Nobody can have more than the global setting allows.
8902 */
8903 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8904 return -EINVAL;
8797 8905
8798 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), 8906 /*
8799 tgi->rt_bandwidth.rt_runtime); 8907 * The sum of our children's runtime should not exceed our own.
8908 */
8909 list_for_each_entry_rcu(child, &tg->children, siblings) {
8910 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8911 runtime = child->rt_bandwidth.rt_runtime;
8912
8913 if (child == d->tg) {
8914 period = d->rt_period;
8915 runtime = d->rt_runtime;
8916 }
8917
8918 sum += to_ratio(period, runtime);
8800 } 8919 }
8801 rcu_read_unlock();
8802 8920
8803 return total + to_ratio(period, runtime) < global_ratio; 8921 if (sum > total)
8922 return -EINVAL;
8923
8924 return 0;
8804} 8925}
8805#endif
8806 8926
8807/* Must be called with tasklist_lock held */ 8927static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8808static inline int tg_has_rt_tasks(struct task_group *tg)
8809{ 8928{
8810 struct task_struct *g, *p; 8929 struct rt_schedulable_data data = {
8811 do_each_thread(g, p) { 8930 .tg = tg,
8812 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) 8931 .rt_period = period,
8813 return 1; 8932 .rt_runtime = runtime,
8814 } while_each_thread(g, p); 8933 };
8815 return 0; 8934
8935 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8816} 8936}
8817 8937
8818static int tg_set_bandwidth(struct task_group *tg, 8938static int tg_set_bandwidth(struct task_group *tg,
@@ -8822,14 +8942,9 @@ static int tg_set_bandwidth(struct task_group *tg,
8822 8942
8823 mutex_lock(&rt_constraints_mutex); 8943 mutex_lock(&rt_constraints_mutex);
8824 read_lock(&tasklist_lock); 8944 read_lock(&tasklist_lock);
8825 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) { 8945 err = __rt_schedulable(tg, rt_period, rt_runtime);
8826 err = -EBUSY; 8946 if (err)
8827 goto unlock;
8828 }
8829 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8830 err = -EINVAL;
8831 goto unlock; 8947 goto unlock;
8832 }
8833 8948
8834 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8949 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8835 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8950 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
@@ -8898,16 +9013,25 @@ long sched_group_rt_period(struct task_group *tg)
8898 9013
8899static int sched_rt_global_constraints(void) 9014static int sched_rt_global_constraints(void)
8900{ 9015{
8901 struct task_group *tg = &root_task_group; 9016 u64 runtime, period;
8902 u64 rt_runtime, rt_period;
8903 int ret = 0; 9017 int ret = 0;
8904 9018
8905 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 9019 if (sysctl_sched_rt_period <= 0)
8906 rt_runtime = tg->rt_bandwidth.rt_runtime; 9020 return -EINVAL;
9021
9022 runtime = global_rt_runtime();
9023 period = global_rt_period();
9024
9025 /*
9026 * Sanity check on the sysctl variables.
9027 */
9028 if (runtime > period && runtime != RUNTIME_INF)
9029 return -EINVAL;
8907 9030
8908 mutex_lock(&rt_constraints_mutex); 9031 mutex_lock(&rt_constraints_mutex);
8909 if (!__rt_schedulable(tg, rt_period, rt_runtime)) 9032 read_lock(&tasklist_lock);
8910 ret = -EINVAL; 9033 ret = __rt_schedulable(NULL, 0, 0);
9034 read_unlock(&tasklist_lock);
8911 mutex_unlock(&rt_constraints_mutex); 9035 mutex_unlock(&rt_constraints_mutex);
8912 9036
8913 return ret; 9037 return ret;
@@ -8918,6 +9042,9 @@ static int sched_rt_global_constraints(void)
8918 unsigned long flags; 9042 unsigned long flags;
8919 int i; 9043 int i;
8920 9044
9045 if (sysctl_sched_rt_period <= 0)
9046 return -EINVAL;
9047
8921 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 9048 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8922 for_each_possible_cpu(i) { 9049 for_each_possible_cpu(i) {
8923 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 9050 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
@@ -8978,7 +9105,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8978 9105
8979 if (!cgrp->parent) { 9106 if (!cgrp->parent) {
8980 /* This is early initialization for the top cgroup */ 9107 /* This is early initialization for the top cgroup */
8981 init_task_group.css.cgroup = cgrp;
8982 return &init_task_group.css; 9108 return &init_task_group.css;
8983 } 9109 }
8984 9110
@@ -8987,9 +9113,6 @@ cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8987 if (IS_ERR(tg)) 9113 if (IS_ERR(tg))
8988 return ERR_PTR(-ENOMEM); 9114 return ERR_PTR(-ENOMEM);
8989 9115
8990 /* Bind the cgroup to task_group object we just created */
8991 tg->css.cgroup = cgrp;
8992
8993 return &tg->css; 9116 return &tg->css;
8994} 9117}
8995 9118
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c
index e8ab096ddfe3..81787248b60f 100644
--- a/kernel/sched_clock.c
+++ b/kernel/sched_clock.c
@@ -118,13 +118,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
118 118
119 /* 119 /*
120 * scd->clock = clamp(scd->tick_gtod + delta, 120 * scd->clock = clamp(scd->tick_gtod + delta,
121 * max(scd->tick_gtod, scd->clock), 121 * max(scd->tick_gtod, scd->clock),
122 * scd->tick_gtod + TICK_NSEC); 122 * max(scd->clock, scd->tick_gtod + TICK_NSEC));
123 */ 123 */
124 124
125 clock = scd->tick_gtod + delta; 125 clock = scd->tick_gtod + delta;
126 min_clock = wrap_max(scd->tick_gtod, scd->clock); 126 min_clock = wrap_max(scd->tick_gtod, scd->clock);
127 max_clock = scd->tick_gtod + TICK_NSEC; 127 max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
128 128
129 clock = wrap_max(clock, min_clock); 129 clock = wrap_max(clock, min_clock);
130 clock = wrap_min(clock, max_clock); 130 clock = wrap_min(clock, max_clock);
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
index bbe6b31c3c56..ad958c1ec708 100644
--- a/kernel/sched_debug.c
+++ b/kernel/sched_debug.c
@@ -333,12 +333,10 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
333 unsigned long flags; 333 unsigned long flags;
334 int num_threads = 1; 334 int num_threads = 1;
335 335
336 rcu_read_lock();
337 if (lock_task_sighand(p, &flags)) { 336 if (lock_task_sighand(p, &flags)) {
338 num_threads = atomic_read(&p->signal->count); 337 num_threads = atomic_read(&p->signal->count);
339 unlock_task_sighand(p, &flags); 338 unlock_task_sighand(p, &flags);
340 } 339 }
341 rcu_read_unlock();
342 340
343 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads); 341 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
344 SEQ_printf(m, 342 SEQ_printf(m,
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index fb8994c6d4bb..f604dae71316 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -409,64 +409,6 @@ static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
409} 409}
410 410
411/* 411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
429
430 for_each_sched_entity(se) {
431 struct load_weight *se_lw = &se->load;
432 unsigned long rw = cfs_rq_of(se)->load.weight;
433
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
454 rw += lw.weight - se->load.weight;
455 } else
456#endif
457
458 if (se->load.weight < NICE_0_LOAD) {
459 se_lw = &lw;
460 rw += NICE_0_LOAD - se->load.weight;
461 }
462
463 delta = calc_delta_mine(delta, rw, se_lw);
464 }
465
466 return delta;
467}
468
469/*
470 * Update the current task's runtime statistics. Skip current tasks that 412 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class. 413 * are not in our scheduling class.
472 */ 414 */
@@ -507,6 +449,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
507 struct task_struct *curtask = task_of(curr); 449 struct task_struct *curtask = task_of(curr);
508 450
509 cpuacct_charge(curtask, delta_exec); 451 cpuacct_charge(curtask, delta_exec);
452 account_group_exec_runtime(curtask, delta_exec);
510 } 453 }
511} 454}
512 455
@@ -586,11 +529,12 @@ account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 update_load_add(&cfs_rq->load, se->load.weight); 529 update_load_add(&cfs_rq->load, se->load.weight);
587 if (!parent_entity(se)) 530 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight); 531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se)) 532 if (entity_is_task(se)) {
590 add_cfs_task_weight(cfs_rq, se->load.weight); 533 add_cfs_task_weight(cfs_rq, se->load.weight);
534 list_add(&se->group_node, &cfs_rq->tasks);
535 }
591 cfs_rq->nr_running++; 536 cfs_rq->nr_running++;
592 se->on_rq = 1; 537 se->on_rq = 1;
593 list_add(&se->group_node, &cfs_rq->tasks);
594} 538}
595 539
596static void 540static void
@@ -599,11 +543,12 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 update_load_sub(&cfs_rq->load, se->load.weight); 543 update_load_sub(&cfs_rq->load, se->load.weight);
600 if (!parent_entity(se)) 544 if (!parent_entity(se))
601 dec_cpu_load(rq_of(cfs_rq), se->load.weight); 545 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
602 if (entity_is_task(se)) 546 if (entity_is_task(se)) {
603 add_cfs_task_weight(cfs_rq, -se->load.weight); 547 add_cfs_task_weight(cfs_rq, -se->load.weight);
548 list_del_init(&se->group_node);
549 }
604 cfs_rq->nr_running--; 550 cfs_rq->nr_running--;
605 se->on_rq = 0; 551 se->on_rq = 0;
606 list_del_init(&se->group_node);
607} 552}
608 553
609static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 554static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
@@ -1085,7 +1030,6 @@ static long effective_load(struct task_group *tg, int cpu,
1085 long wl, long wg) 1030 long wl, long wg)
1086{ 1031{
1087 struct sched_entity *se = tg->se[cpu]; 1032 struct sched_entity *se = tg->se[cpu];
1088 long more_w;
1089 1033
1090 if (!tg->parent) 1034 if (!tg->parent)
1091 return wl; 1035 return wl;
@@ -1097,18 +1041,17 @@ static long effective_load(struct task_group *tg, int cpu,
1097 if (!wl && sched_feat(ASYM_EFF_LOAD)) 1041 if (!wl && sched_feat(ASYM_EFF_LOAD))
1098 return wl; 1042 return wl;
1099 1043
1100 /*
1101 * Instead of using this increment, also add the difference
1102 * between when the shares were last updated and now.
1103 */
1104 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1105 wl += more_w;
1106 wg += more_w;
1107
1108 for_each_sched_entity(se) { 1044 for_each_sched_entity(se) {
1109#define D(n) (likely(n) ? (n) : 1)
1110
1111 long S, rw, s, a, b; 1045 long S, rw, s, a, b;
1046 long more_w;
1047
1048 /*
1049 * Instead of using this increment, also add the difference
1050 * between when the shares were last updated and now.
1051 */
1052 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1053 wl += more_w;
1054 wg += more_w;
1112 1055
1113 S = se->my_q->tg->shares; 1056 S = se->my_q->tg->shares;
1114 s = se->my_q->shares; 1057 s = se->my_q->shares;
@@ -1117,7 +1060,11 @@ static long effective_load(struct task_group *tg, int cpu,
1117 a = S*(rw + wl); 1060 a = S*(rw + wl);
1118 b = S*rw + s*wg; 1061 b = S*rw + s*wg;
1119 1062
1120 wl = s*(a-b)/D(b); 1063 wl = s*(a-b);
1064
1065 if (likely(b))
1066 wl /= b;
1067
1121 /* 1068 /*
1122 * Assume the group is already running and will 1069 * Assume the group is already running and will
1123 * thus already be accounted for in the weight. 1070 * thus already be accounted for in the weight.
@@ -1126,7 +1073,6 @@ static long effective_load(struct task_group *tg, int cpu,
1126 * alter the group weight. 1073 * alter the group weight.
1127 */ 1074 */
1128 wg = 0; 1075 wg = 0;
1129#undef D
1130 } 1076 }
1131 1077
1132 return wl; 1078 return wl;
@@ -1143,7 +1089,7 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
1143#endif 1089#endif
1144 1090
1145static int 1091static int
1146wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, 1092wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1147 struct task_struct *p, int prev_cpu, int this_cpu, int sync, 1093 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1148 int idx, unsigned long load, unsigned long this_load, 1094 int idx, unsigned long load, unsigned long this_load,
1149 unsigned int imbalance) 1095 unsigned int imbalance)
@@ -1158,6 +1104,11 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1158 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) 1104 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1159 return 0; 1105 return 0;
1160 1106
1107 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1108 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1109 p->se.avg_overlap < sysctl_sched_migration_cost)
1110 sync = 1;
1111
1161 /* 1112 /*
1162 * If sync wakeup then subtract the (maximum possible) 1113 * If sync wakeup then subtract the (maximum possible)
1163 * effect of the currently running task from the load 1114 * effect of the currently running task from the load
@@ -1182,17 +1133,14 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1182 * a reasonable amount of time then attract this newly 1133 * a reasonable amount of time then attract this newly
1183 * woken task: 1134 * woken task:
1184 */ 1135 */
1185 if (sync && balanced) { 1136 if (sync && balanced)
1186 if (curr->se.avg_overlap < sysctl_sched_migration_cost && 1137 return 1;
1187 p->se.avg_overlap < sysctl_sched_migration_cost)
1188 return 1;
1189 }
1190 1138
1191 schedstat_inc(p, se.nr_wakeups_affine_attempts); 1139 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1192 tl_per_task = cpu_avg_load_per_task(this_cpu); 1140 tl_per_task = cpu_avg_load_per_task(this_cpu);
1193 1141
1194 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || 1142 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1195 balanced) { 1143 tl_per_task)) {
1196 /* 1144 /*
1197 * This domain has SD_WAKE_AFFINE and 1145 * This domain has SD_WAKE_AFFINE and
1198 * p is cache cold in this domain, and 1146 * p is cache cold in this domain, and
@@ -1211,16 +1159,17 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1211 struct sched_domain *sd, *this_sd = NULL; 1159 struct sched_domain *sd, *this_sd = NULL;
1212 int prev_cpu, this_cpu, new_cpu; 1160 int prev_cpu, this_cpu, new_cpu;
1213 unsigned long load, this_load; 1161 unsigned long load, this_load;
1214 struct rq *rq, *this_rq; 1162 struct rq *this_rq;
1215 unsigned int imbalance; 1163 unsigned int imbalance;
1216 int idx; 1164 int idx;
1217 1165
1218 prev_cpu = task_cpu(p); 1166 prev_cpu = task_cpu(p);
1219 rq = task_rq(p);
1220 this_cpu = smp_processor_id(); 1167 this_cpu = smp_processor_id();
1221 this_rq = cpu_rq(this_cpu); 1168 this_rq = cpu_rq(this_cpu);
1222 new_cpu = prev_cpu; 1169 new_cpu = prev_cpu;
1223 1170
1171 if (prev_cpu == this_cpu)
1172 goto out;
1224 /* 1173 /*
1225 * 'this_sd' is the first domain that both 1174 * 'this_sd' is the first domain that both
1226 * this_cpu and prev_cpu are present in: 1175 * this_cpu and prev_cpu are present in:
@@ -1248,13 +1197,10 @@ static int select_task_rq_fair(struct task_struct *p, int sync)
1248 load = source_load(prev_cpu, idx); 1197 load = source_load(prev_cpu, idx);
1249 this_load = target_load(this_cpu, idx); 1198 this_load = target_load(this_cpu, idx);
1250 1199
1251 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, 1200 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1252 load, this_load, imbalance)) 1201 load, this_load, imbalance))
1253 return this_cpu; 1202 return this_cpu;
1254 1203
1255 if (prev_cpu == this_cpu)
1256 goto out;
1257
1258 /* 1204 /*
1259 * Start passive balancing when half the imbalance_pct 1205 * Start passive balancing when half the imbalance_pct
1260 * limit is reached. 1206 * limit is reached.
@@ -1281,62 +1227,20 @@ static unsigned long wakeup_gran(struct sched_entity *se)
1281 * + nice tasks. 1227 * + nice tasks.
1282 */ 1228 */
1283 if (sched_feat(ASYM_GRAN)) 1229 if (sched_feat(ASYM_GRAN))
1284 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se); 1230 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1285 else
1286 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1287 1231
1288 return gran; 1232 return gran;
1289} 1233}
1290 1234
1291/* 1235/*
1292 * Should 'se' preempt 'curr'.
1293 *
1294 * |s1
1295 * |s2
1296 * |s3
1297 * g
1298 * |<--->|c
1299 *
1300 * w(c, s1) = -1
1301 * w(c, s2) = 0
1302 * w(c, s3) = 1
1303 *
1304 */
1305static int
1306wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1307{
1308 s64 gran, vdiff = curr->vruntime - se->vruntime;
1309
1310 if (vdiff < 0)
1311 return -1;
1312
1313 gran = wakeup_gran(curr);
1314 if (vdiff > gran)
1315 return 1;
1316
1317 return 0;
1318}
1319
1320/* return depth at which a sched entity is present in the hierarchy */
1321static inline int depth_se(struct sched_entity *se)
1322{
1323 int depth = 0;
1324
1325 for_each_sched_entity(se)
1326 depth++;
1327
1328 return depth;
1329}
1330
1331/*
1332 * Preempt the current task with a newly woken task if needed: 1236 * Preempt the current task with a newly woken task if needed:
1333 */ 1237 */
1334static void check_preempt_wakeup(struct rq *rq, struct task_struct *p) 1238static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1335{ 1239{
1336 struct task_struct *curr = rq->curr; 1240 struct task_struct *curr = rq->curr;
1337 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 1241 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1338 struct sched_entity *se = &curr->se, *pse = &p->se; 1242 struct sched_entity *se = &curr->se, *pse = &p->se;
1339 int se_depth, pse_depth; 1243 s64 delta_exec;
1340 1244
1341 if (unlikely(rt_prio(p->prio))) { 1245 if (unlikely(rt_prio(p->prio))) {
1342 update_rq_clock(rq); 1246 update_rq_clock(rq);
@@ -1351,6 +1255,13 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1351 cfs_rq_of(pse)->next = pse; 1255 cfs_rq_of(pse)->next = pse;
1352 1256
1353 /* 1257 /*
1258 * We can come here with TIF_NEED_RESCHED already set from new task
1259 * wake up path.
1260 */
1261 if (test_tsk_need_resched(curr))
1262 return;
1263
1264 /*
1354 * Batch tasks do not preempt (their preemption is driven by 1265 * Batch tasks do not preempt (their preemption is driven by
1355 * the tick): 1266 * the tick):
1356 */ 1267 */
@@ -1360,33 +1271,15 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1360 if (!sched_feat(WAKEUP_PREEMPT)) 1271 if (!sched_feat(WAKEUP_PREEMPT))
1361 return; 1272 return;
1362 1273
1363 /* 1274 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1364 * preemption test can be made between sibling entities who are in the 1275 (se->avg_overlap < sysctl_sched_migration_cost &&
1365 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 1276 pse->avg_overlap < sysctl_sched_migration_cost))) {
1366 * both tasks until we find their ancestors who are siblings of common 1277 resched_task(curr);
1367 * parent. 1278 return;
1368 */
1369
1370 /* First walk up until both entities are at same depth */
1371 se_depth = depth_se(se);
1372 pse_depth = depth_se(pse);
1373
1374 while (se_depth > pse_depth) {
1375 se_depth--;
1376 se = parent_entity(se);
1377 }
1378
1379 while (pse_depth > se_depth) {
1380 pse_depth--;
1381 pse = parent_entity(pse);
1382 }
1383
1384 while (!is_same_group(se, pse)) {
1385 se = parent_entity(se);
1386 pse = parent_entity(pse);
1387 } 1279 }
1388 1280
1389 if (wakeup_preempt_entity(se, pse) == 1) 1281 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1282 if (delta_exec > wakeup_gran(pse))
1390 resched_task(curr); 1283 resched_task(curr);
1391} 1284}
1392 1285
@@ -1445,19 +1338,9 @@ __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1445 if (next == &cfs_rq->tasks) 1338 if (next == &cfs_rq->tasks)
1446 return NULL; 1339 return NULL;
1447 1340
1448 /* Skip over entities that are not tasks */ 1341 se = list_entry(next, struct sched_entity, group_node);
1449 do { 1342 p = task_of(se);
1450 se = list_entry(next, struct sched_entity, group_node); 1343 cfs_rq->balance_iterator = next->next;
1451 next = next->next;
1452 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1453
1454 if (next == &cfs_rq->tasks)
1455 return NULL;
1456
1457 cfs_rq->balance_iterator = next;
1458
1459 if (entity_is_task(se))
1460 p = task_of(se);
1461 1344
1462 return p; 1345 return p;
1463} 1346}
@@ -1507,7 +1390,7 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1507 rcu_read_lock(); 1390 rcu_read_lock();
1508 update_h_load(busiest_cpu); 1391 update_h_load(busiest_cpu);
1509 1392
1510 list_for_each_entry(tg, &task_groups, list) { 1393 list_for_each_entry_rcu(tg, &task_groups, list) {
1511 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; 1394 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1512 unsigned long busiest_h_load = busiest_cfs_rq->h_load; 1395 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1513 unsigned long busiest_weight = busiest_cfs_rq->load.weight; 1396 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
@@ -1620,10 +1503,10 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
1620 * 'current' within the tree based on its new key value. 1503 * 'current' within the tree based on its new key value.
1621 */ 1504 */
1622 swap(curr->vruntime, se->vruntime); 1505 swap(curr->vruntime, se->vruntime);
1506 resched_task(rq->curr);
1623 } 1507 }
1624 1508
1625 enqueue_task_fair(rq, p, 0); 1509 enqueue_task_fair(rq, p, 0);
1626 resched_task(rq->curr);
1627} 1510}
1628 1511
1629/* 1512/*
@@ -1642,7 +1525,7 @@ static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1642 if (p->prio > oldprio) 1525 if (p->prio > oldprio)
1643 resched_task(rq->curr); 1526 resched_task(rq->curr);
1644 } else 1527 } else
1645 check_preempt_curr(rq, p); 1528 check_preempt_curr(rq, p, 0);
1646} 1529}
1647 1530
1648/* 1531/*
@@ -1659,7 +1542,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p,
1659 if (running) 1542 if (running)
1660 resched_task(rq->curr); 1543 resched_task(rq->curr);
1661 else 1544 else
1662 check_preempt_curr(rq, p); 1545 check_preempt_curr(rq, p, 0);
1663} 1546}
1664 1547
1665/* Account for a task changing its policy or group. 1548/* Account for a task changing its policy or group.
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
index 9353ca78154e..7c9e8f4a049f 100644
--- a/kernel/sched_features.h
+++ b/kernel/sched_features.h
@@ -11,3 +11,4 @@ SCHED_FEAT(ASYM_GRAN, 1)
11SCHED_FEAT(LB_BIAS, 1) 11SCHED_FEAT(LB_BIAS, 1)
12SCHED_FEAT(LB_WAKEUP_UPDATE, 1) 12SCHED_FEAT(LB_WAKEUP_UPDATE, 1)
13SCHED_FEAT(ASYM_EFF_LOAD, 1) 13SCHED_FEAT(ASYM_EFF_LOAD, 1)
14SCHED_FEAT(WAKEUP_OVERLAP, 0)
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index 3a4f92dbbe66..dec4ccabe2f5 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync)
14/* 14/*
15 * Idle tasks are unconditionally rescheduled: 15 * Idle tasks are unconditionally rescheduled:
16 */ 16 */
17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p) 17static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync)
18{ 18{
19 resched_task(rq->idle); 19 resched_task(rq->idle);
20} 20}
@@ -76,7 +76,7 @@ static void switched_to_idle(struct rq *rq, struct task_struct *p,
76 if (running) 76 if (running)
77 resched_task(rq->curr); 77 resched_task(rq->curr);
78 else 78 else
79 check_preempt_curr(rq, p); 79 check_preempt_curr(rq, p, 0);
80} 80}
81 81
82static void prio_changed_idle(struct rq *rq, struct task_struct *p, 82static void prio_changed_idle(struct rq *rq, struct task_struct *p,
@@ -93,7 +93,7 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p,
93 if (p->prio > oldprio) 93 if (p->prio > oldprio)
94 resched_task(rq->curr); 94 resched_task(rq->curr);
95 } else 95 } else
96 check_preempt_curr(rq, p); 96 check_preempt_curr(rq, p, 0);
97} 97}
98 98
99/* 99/*
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 552310798dad..b446dc87494f 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -102,12 +102,12 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102 102
103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104{ 104{
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
105 struct sched_rt_entity *rt_se = rt_rq->rt_se; 106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106 107
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { 108 if (rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 109 if (rt_se && !on_rt_rq(rt_se))
109 110 enqueue_rt_entity(rt_se);
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio) 111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr); 112 resched_task(curr);
113 } 113 }
@@ -231,6 +231,9 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
231#endif /* CONFIG_RT_GROUP_SCHED */ 231#endif /* CONFIG_RT_GROUP_SCHED */
232 232
233#ifdef CONFIG_SMP 233#ifdef CONFIG_SMP
234/*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
234static int do_balance_runtime(struct rt_rq *rt_rq) 237static int do_balance_runtime(struct rt_rq *rt_rq)
235{ 238{
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
@@ -250,9 +253,18 @@ static int do_balance_runtime(struct rt_rq *rt_rq)
250 continue; 253 continue;
251 254
252 spin_lock(&iter->rt_runtime_lock); 255 spin_lock(&iter->rt_runtime_lock);
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
253 if (iter->rt_runtime == RUNTIME_INF) 261 if (iter->rt_runtime == RUNTIME_INF)
254 goto next; 262 goto next;
255 263
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
256 diff = iter->rt_runtime - iter->rt_time; 268 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) { 269 if (diff > 0) {
258 diff = div_u64((u64)diff, weight); 270 diff = div_u64((u64)diff, weight);
@@ -274,6 +286,9 @@ next:
274 return more; 286 return more;
275} 287}
276 288
289/*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
277static void __disable_runtime(struct rq *rq) 292static void __disable_runtime(struct rq *rq)
278{ 293{
279 struct root_domain *rd = rq->rd; 294 struct root_domain *rd = rq->rd;
@@ -289,17 +304,33 @@ static void __disable_runtime(struct rq *rq)
289 304
290 spin_lock(&rt_b->rt_runtime_lock); 305 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock); 306 spin_lock(&rt_rq->rt_runtime_lock);
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
292 if (rt_rq->rt_runtime == RUNTIME_INF || 312 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime) 313 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced; 314 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock); 315 spin_unlock(&rt_rq->rt_runtime_lock);
296 316
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
297 want = rt_b->rt_runtime - rt_rq->rt_runtime; 322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298 323
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
299 for_each_cpu_mask(i, rd->span) { 327 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff; 329 s64 diff;
302 330
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
304 continue; 335 continue;
305 336
@@ -319,8 +350,16 @@ static void __disable_runtime(struct rq *rq)
319 } 350 }
320 351
321 spin_lock(&rt_rq->rt_runtime_lock); 352 spin_lock(&rt_rq->rt_runtime_lock);
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
322 BUG_ON(want); 357 BUG_ON(want);
323balanced: 358balanced:
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
324 rt_rq->rt_runtime = RUNTIME_INF; 363 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock); 364 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock); 365 spin_unlock(&rt_b->rt_runtime_lock);
@@ -343,6 +382,9 @@ static void __enable_runtime(struct rq *rq)
343 if (unlikely(!scheduler_running)) 382 if (unlikely(!scheduler_running))
344 return; 383 return;
345 384
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
346 for_each_leaf_rt_rq(rt_rq, rq) { 388 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348 390
@@ -350,6 +392,7 @@ static void __enable_runtime(struct rq *rq)
350 spin_lock(&rt_rq->rt_runtime_lock); 392 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime; 393 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0; 394 rt_rq->rt_time = 0;
395 rt_rq->rt_throttled = 0;
353 spin_unlock(&rt_rq->rt_runtime_lock); 396 spin_unlock(&rt_rq->rt_runtime_lock);
354 spin_unlock(&rt_b->rt_runtime_lock); 397 spin_unlock(&rt_b->rt_runtime_lock);
355 } 398 }
@@ -388,7 +431,7 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
388 int i, idle = 1; 431 int i, idle = 1;
389 cpumask_t span; 432 cpumask_t span;
390 433
391 if (rt_b->rt_runtime == RUNTIME_INF) 434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
392 return 1; 435 return 1;
393 436
394 span = sched_rt_period_mask(); 437 span = sched_rt_period_mask();
@@ -483,9 +526,14 @@ static void update_curr_rt(struct rq *rq)
483 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); 526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
484 527
485 curr->se.sum_exec_runtime += delta_exec; 528 curr->se.sum_exec_runtime += delta_exec;
529 account_group_exec_runtime(curr, delta_exec);
530
486 curr->se.exec_start = rq->clock; 531 curr->se.exec_start = rq->clock;
487 cpuacct_charge(curr, delta_exec); 532 cpuacct_charge(curr, delta_exec);
488 533
534 if (!rt_bandwidth_enabled())
535 return;
536
489 for_each_sched_rt_entity(rt_se) { 537 for_each_sched_rt_entity(rt_se) {
490 rt_rq = rt_rq_of_se(rt_se); 538 rt_rq = rt_rq_of_se(rt_se);
491 539
@@ -783,7 +831,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
783/* 831/*
784 * Preempt the current task with a newly woken task if needed: 832 * Preempt the current task with a newly woken task if needed:
785 */ 833 */
786static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) 834static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
787{ 835{
788 if (p->prio < rq->curr->prio) { 836 if (p->prio < rq->curr->prio) {
789 resched_task(rq->curr); 837 resched_task(rq->curr);
@@ -1412,7 +1460,7 @@ static void watchdog(struct rq *rq, struct task_struct *p)
1412 p->rt.timeout++; 1460 p->rt.timeout++;
1413 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1461 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1414 if (p->rt.timeout > next) 1462 if (p->rt.timeout > next)
1415 p->it_sched_expires = p->se.sum_exec_runtime; 1463 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1416 } 1464 }
1417} 1465}
1418 1466
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h
index 8385d43987e2..b8c156979cf2 100644
--- a/kernel/sched_stats.h
+++ b/kernel/sched_stats.h
@@ -270,3 +270,89 @@ sched_info_switch(struct task_struct *prev, struct task_struct *next)
270#define sched_info_switch(t, next) do { } while (0) 270#define sched_info_switch(t, next) do { } while (0)
271#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ 271#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
272 272
273/*
274 * The following are functions that support scheduler-internal time accounting.
275 * These functions are generally called at the timer tick. None of this depends
276 * on CONFIG_SCHEDSTATS.
277 */
278
279/**
280 * account_group_user_time - Maintain utime for a thread group.
281 *
282 * @tsk: Pointer to task structure.
283 * @cputime: Time value by which to increment the utime field of the
284 * thread_group_cputime structure.
285 *
286 * If thread group time is being maintained, get the structure for the
287 * running CPU and update the utime field there.
288 */
289static inline void account_group_user_time(struct task_struct *tsk,
290 cputime_t cputime)
291{
292 struct signal_struct *sig;
293
294 sig = tsk->signal;
295 if (unlikely(!sig))
296 return;
297 if (sig->cputime.totals) {
298 struct task_cputime *times;
299
300 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
301 times->utime = cputime_add(times->utime, cputime);
302 put_cpu_no_resched();
303 }
304}
305
306/**
307 * account_group_system_time - Maintain stime for a thread group.
308 *
309 * @tsk: Pointer to task structure.
310 * @cputime: Time value by which to increment the stime field of the
311 * thread_group_cputime structure.
312 *
313 * If thread group time is being maintained, get the structure for the
314 * running CPU and update the stime field there.
315 */
316static inline void account_group_system_time(struct task_struct *tsk,
317 cputime_t cputime)
318{
319 struct signal_struct *sig;
320
321 sig = tsk->signal;
322 if (unlikely(!sig))
323 return;
324 if (sig->cputime.totals) {
325 struct task_cputime *times;
326
327 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
328 times->stime = cputime_add(times->stime, cputime);
329 put_cpu_no_resched();
330 }
331}
332
333/**
334 * account_group_exec_runtime - Maintain exec runtime for a thread group.
335 *
336 * @tsk: Pointer to task structure.
337 * @ns: Time value by which to increment the sum_exec_runtime field
338 * of the thread_group_cputime structure.
339 *
340 * If thread group time is being maintained, get the structure for the
341 * running CPU and update the sum_exec_runtime field there.
342 */
343static inline void account_group_exec_runtime(struct task_struct *tsk,
344 unsigned long long ns)
345{
346 struct signal_struct *sig;
347
348 sig = tsk->signal;
349 if (unlikely(!sig))
350 return;
351 if (sig->cputime.totals) {
352 struct task_cputime *times;
353
354 times = per_cpu_ptr(sig->cputime.totals, get_cpu());
355 times->sum_exec_runtime += ns;
356 put_cpu_no_resched();
357 }
358}
diff --git a/kernel/signal.c b/kernel/signal.c
index e661b01d340f..6eea5826d618 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -1338,6 +1338,7 @@ int do_notify_parent(struct task_struct *tsk, int sig)
1338 struct siginfo info; 1338 struct siginfo info;
1339 unsigned long flags; 1339 unsigned long flags;
1340 struct sighand_struct *psig; 1340 struct sighand_struct *psig;
1341 struct task_cputime cputime;
1341 int ret = sig; 1342 int ret = sig;
1342 1343
1343 BUG_ON(sig == -1); 1344 BUG_ON(sig == -1);
@@ -1368,10 +1369,9 @@ int do_notify_parent(struct task_struct *tsk, int sig)
1368 1369
1369 info.si_uid = tsk->uid; 1370 info.si_uid = tsk->uid;
1370 1371
1371 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1372 thread_group_cputime(tsk, &cputime);
1372 tsk->signal->utime)); 1373 info.si_utime = cputime_to_jiffies(cputime.utime);
1373 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1374 info.si_stime = cputime_to_jiffies(cputime.stime);
1374 tsk->signal->stime));
1375 1375
1376 info.si_status = tsk->exit_code & 0x7f; 1376 info.si_status = tsk->exit_code & 0x7f;
1377 if (tsk->exit_code & 0x80) 1377 if (tsk->exit_code & 0x80)
diff --git a/kernel/softirq.c b/kernel/softirq.c
index c506f266a6b9..7110daeb9a90 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -6,6 +6,8 @@
6 * Distribute under GPLv2. 6 * Distribute under GPLv2.
7 * 7 *
8 * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903) 8 * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903)
9 *
10 * Remote softirq infrastructure is by Jens Axboe.
9 */ 11 */
10 12
11#include <linux/module.h> 13#include <linux/module.h>
@@ -46,7 +48,7 @@ irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned;
46EXPORT_SYMBOL(irq_stat); 48EXPORT_SYMBOL(irq_stat);
47#endif 49#endif
48 50
49static struct softirq_action softirq_vec[32] __cacheline_aligned_in_smp; 51static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp;
50 52
51static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); 53static DEFINE_PER_CPU(struct task_struct *, ksoftirqd);
52 54
@@ -205,7 +207,18 @@ restart:
205 207
206 do { 208 do {
207 if (pending & 1) { 209 if (pending & 1) {
210 int prev_count = preempt_count();
211
208 h->action(h); 212 h->action(h);
213
214 if (unlikely(prev_count != preempt_count())) {
215 printk(KERN_ERR "huh, entered softirq %td %p"
216 "with preempt_count %08x,"
217 " exited with %08x?\n", h - softirq_vec,
218 h->action, prev_count, preempt_count());
219 preempt_count() = prev_count;
220 }
221
209 rcu_bh_qsctr_inc(cpu); 222 rcu_bh_qsctr_inc(cpu);
210 } 223 }
211 h++; 224 h++;
@@ -254,16 +267,12 @@ asmlinkage void do_softirq(void)
254 */ 267 */
255void irq_enter(void) 268void irq_enter(void)
256{ 269{
257#ifdef CONFIG_NO_HZ
258 int cpu = smp_processor_id(); 270 int cpu = smp_processor_id();
271
259 if (idle_cpu(cpu) && !in_interrupt()) 272 if (idle_cpu(cpu) && !in_interrupt())
260 tick_nohz_stop_idle(cpu); 273 tick_check_idle(cpu);
261#endif 274
262 __irq_enter(); 275 __irq_enter();
263#ifdef CONFIG_NO_HZ
264 if (idle_cpu(cpu))
265 tick_nohz_update_jiffies();
266#endif
267} 276}
268 277
269#ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED 278#ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED
@@ -463,17 +472,144 @@ void tasklet_kill(struct tasklet_struct *t)
463 472
464EXPORT_SYMBOL(tasklet_kill); 473EXPORT_SYMBOL(tasklet_kill);
465 474
475DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list);
476EXPORT_PER_CPU_SYMBOL(softirq_work_list);
477
478static void __local_trigger(struct call_single_data *cp, int softirq)
479{
480 struct list_head *head = &__get_cpu_var(softirq_work_list[softirq]);
481
482 list_add_tail(&cp->list, head);
483
484 /* Trigger the softirq only if the list was previously empty. */
485 if (head->next == &cp->list)
486 raise_softirq_irqoff(softirq);
487}
488
489#ifdef CONFIG_USE_GENERIC_SMP_HELPERS
490static void remote_softirq_receive(void *data)
491{
492 struct call_single_data *cp = data;
493 unsigned long flags;
494 int softirq;
495
496 softirq = cp->priv;
497
498 local_irq_save(flags);
499 __local_trigger(cp, softirq);
500 local_irq_restore(flags);
501}
502
503static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
504{
505 if (cpu_online(cpu)) {
506 cp->func = remote_softirq_receive;
507 cp->info = cp;
508 cp->flags = 0;
509 cp->priv = softirq;
510
511 __smp_call_function_single(cpu, cp);
512 return 0;
513 }
514 return 1;
515}
516#else /* CONFIG_USE_GENERIC_SMP_HELPERS */
517static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
518{
519 return 1;
520}
521#endif
522
523/**
524 * __send_remote_softirq - try to schedule softirq work on a remote cpu
525 * @cp: private SMP call function data area
526 * @cpu: the remote cpu
527 * @this_cpu: the currently executing cpu
528 * @softirq: the softirq for the work
529 *
530 * Attempt to schedule softirq work on a remote cpu. If this cannot be
531 * done, the work is instead queued up on the local cpu.
532 *
533 * Interrupts must be disabled.
534 */
535void __send_remote_softirq(struct call_single_data *cp, int cpu, int this_cpu, int softirq)
536{
537 if (cpu == this_cpu || __try_remote_softirq(cp, cpu, softirq))
538 __local_trigger(cp, softirq);
539}
540EXPORT_SYMBOL(__send_remote_softirq);
541
542/**
543 * send_remote_softirq - try to schedule softirq work on a remote cpu
544 * @cp: private SMP call function data area
545 * @cpu: the remote cpu
546 * @softirq: the softirq for the work
547 *
548 * Like __send_remote_softirq except that disabling interrupts and
549 * computing the current cpu is done for the caller.
550 */
551void send_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
552{
553 unsigned long flags;
554 int this_cpu;
555
556 local_irq_save(flags);
557 this_cpu = smp_processor_id();
558 __send_remote_softirq(cp, cpu, this_cpu, softirq);
559 local_irq_restore(flags);
560}
561EXPORT_SYMBOL(send_remote_softirq);
562
563static int __cpuinit remote_softirq_cpu_notify(struct notifier_block *self,
564 unsigned long action, void *hcpu)
565{
566 /*
567 * If a CPU goes away, splice its entries to the current CPU
568 * and trigger a run of the softirq
569 */
570 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
571 int cpu = (unsigned long) hcpu;
572 int i;
573
574 local_irq_disable();
575 for (i = 0; i < NR_SOFTIRQS; i++) {
576 struct list_head *head = &per_cpu(softirq_work_list[i], cpu);
577 struct list_head *local_head;
578
579 if (list_empty(head))
580 continue;
581
582 local_head = &__get_cpu_var(softirq_work_list[i]);
583 list_splice_init(head, local_head);
584 raise_softirq_irqoff(i);
585 }
586 local_irq_enable();
587 }
588
589 return NOTIFY_OK;
590}
591
592static struct notifier_block __cpuinitdata remote_softirq_cpu_notifier = {
593 .notifier_call = remote_softirq_cpu_notify,
594};
595
466void __init softirq_init(void) 596void __init softirq_init(void)
467{ 597{
468 int cpu; 598 int cpu;
469 599
470 for_each_possible_cpu(cpu) { 600 for_each_possible_cpu(cpu) {
601 int i;
602
471 per_cpu(tasklet_vec, cpu).tail = 603 per_cpu(tasklet_vec, cpu).tail =
472 &per_cpu(tasklet_vec, cpu).head; 604 &per_cpu(tasklet_vec, cpu).head;
473 per_cpu(tasklet_hi_vec, cpu).tail = 605 per_cpu(tasklet_hi_vec, cpu).tail =
474 &per_cpu(tasklet_hi_vec, cpu).head; 606 &per_cpu(tasklet_hi_vec, cpu).head;
607 for (i = 0; i < NR_SOFTIRQS; i++)
608 INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu));
475 } 609 }
476 610
611 register_hotcpu_notifier(&remote_softirq_cpu_notifier);
612
477 open_softirq(TASKLET_SOFTIRQ, tasklet_action); 613 open_softirq(TASKLET_SOFTIRQ, tasklet_action);
478 open_softirq(HI_SOFTIRQ, tasklet_hi_action); 614 open_softirq(HI_SOFTIRQ, tasklet_hi_action);
479} 615}
diff --git a/kernel/softlockup.c b/kernel/softlockup.c
index cb838ee93a82..3953e4aed733 100644
--- a/kernel/softlockup.c
+++ b/kernel/softlockup.c
@@ -226,7 +226,7 @@ static void check_hung_uninterruptible_tasks(int this_cpu)
226 * If the system crashed already then all bets are off, 226 * If the system crashed already then all bets are off,
227 * do not report extra hung tasks: 227 * do not report extra hung tasks:
228 */ 228 */
229 if ((tainted & TAINT_DIE) || did_panic) 229 if (test_taint(TAINT_DIE) || did_panic)
230 return; 230 return;
231 231
232 read_lock(&tasklist_lock); 232 read_lock(&tasklist_lock);
diff --git a/kernel/sys.c b/kernel/sys.c
index 038a7bc0901d..53879cdae483 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -853,38 +853,28 @@ asmlinkage long sys_setfsgid(gid_t gid)
853 return old_fsgid; 853 return old_fsgid;
854} 854}
855 855
856void do_sys_times(struct tms *tms)
857{
858 struct task_cputime cputime;
859 cputime_t cutime, cstime;
860
861 spin_lock_irq(&current->sighand->siglock);
862 thread_group_cputime(current, &cputime);
863 cutime = current->signal->cutime;
864 cstime = current->signal->cstime;
865 spin_unlock_irq(&current->sighand->siglock);
866 tms->tms_utime = cputime_to_clock_t(cputime.utime);
867 tms->tms_stime = cputime_to_clock_t(cputime.stime);
868 tms->tms_cutime = cputime_to_clock_t(cutime);
869 tms->tms_cstime = cputime_to_clock_t(cstime);
870}
871
856asmlinkage long sys_times(struct tms __user * tbuf) 872asmlinkage long sys_times(struct tms __user * tbuf)
857{ 873{
858 /*
859 * In the SMP world we might just be unlucky and have one of
860 * the times increment as we use it. Since the value is an
861 * atomically safe type this is just fine. Conceptually its
862 * as if the syscall took an instant longer to occur.
863 */
864 if (tbuf) { 874 if (tbuf) {
865 struct tms tmp; 875 struct tms tmp;
866 struct task_struct *tsk = current; 876
867 struct task_struct *t; 877 do_sys_times(&tmp);
868 cputime_t utime, stime, cutime, cstime;
869
870 spin_lock_irq(&tsk->sighand->siglock);
871 utime = tsk->signal->utime;
872 stime = tsk->signal->stime;
873 t = tsk;
874 do {
875 utime = cputime_add(utime, t->utime);
876 stime = cputime_add(stime, t->stime);
877 t = next_thread(t);
878 } while (t != tsk);
879
880 cutime = tsk->signal->cutime;
881 cstime = tsk->signal->cstime;
882 spin_unlock_irq(&tsk->sighand->siglock);
883
884 tmp.tms_utime = cputime_to_clock_t(utime);
885 tmp.tms_stime = cputime_to_clock_t(stime);
886 tmp.tms_cutime = cputime_to_clock_t(cutime);
887 tmp.tms_cstime = cputime_to_clock_t(cstime);
888 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 878 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
889 return -EFAULT; 879 return -EFAULT;
890 } 880 }
@@ -1060,9 +1050,7 @@ asmlinkage long sys_setsid(void)
1060 group_leader->signal->leader = 1; 1050 group_leader->signal->leader = 1;
1061 __set_special_pids(sid); 1051 __set_special_pids(sid);
1062 1052
1063 spin_lock(&group_leader->sighand->siglock); 1053 proc_clear_tty(group_leader);
1064 group_leader->signal->tty = NULL;
1065 spin_unlock(&group_leader->sighand->siglock);
1066 1054
1067 err = session; 1055 err = session;
1068out: 1056out:
@@ -1351,8 +1339,10 @@ asmlinkage long sys_sethostname(char __user *name, int len)
1351 down_write(&uts_sem); 1339 down_write(&uts_sem);
1352 errno = -EFAULT; 1340 errno = -EFAULT;
1353 if (!copy_from_user(tmp, name, len)) { 1341 if (!copy_from_user(tmp, name, len)) {
1354 memcpy(utsname()->nodename, tmp, len); 1342 struct new_utsname *u = utsname();
1355 utsname()->nodename[len] = 0; 1343
1344 memcpy(u->nodename, tmp, len);
1345 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1356 errno = 0; 1346 errno = 0;
1357 } 1347 }
1358 up_write(&uts_sem); 1348 up_write(&uts_sem);
@@ -1364,15 +1354,17 @@ asmlinkage long sys_sethostname(char __user *name, int len)
1364asmlinkage long sys_gethostname(char __user *name, int len) 1354asmlinkage long sys_gethostname(char __user *name, int len)
1365{ 1355{
1366 int i, errno; 1356 int i, errno;
1357 struct new_utsname *u;
1367 1358
1368 if (len < 0) 1359 if (len < 0)
1369 return -EINVAL; 1360 return -EINVAL;
1370 down_read(&uts_sem); 1361 down_read(&uts_sem);
1371 i = 1 + strlen(utsname()->nodename); 1362 u = utsname();
1363 i = 1 + strlen(u->nodename);
1372 if (i > len) 1364 if (i > len)
1373 i = len; 1365 i = len;
1374 errno = 0; 1366 errno = 0;
1375 if (copy_to_user(name, utsname()->nodename, i)) 1367 if (copy_to_user(name, u->nodename, i))
1376 errno = -EFAULT; 1368 errno = -EFAULT;
1377 up_read(&uts_sem); 1369 up_read(&uts_sem);
1378 return errno; 1370 return errno;
@@ -1397,8 +1389,10 @@ asmlinkage long sys_setdomainname(char __user *name, int len)
1397 down_write(&uts_sem); 1389 down_write(&uts_sem);
1398 errno = -EFAULT; 1390 errno = -EFAULT;
1399 if (!copy_from_user(tmp, name, len)) { 1391 if (!copy_from_user(tmp, name, len)) {
1400 memcpy(utsname()->domainname, tmp, len); 1392 struct new_utsname *u = utsname();
1401 utsname()->domainname[len] = 0; 1393
1394 memcpy(u->domainname, tmp, len);
1395 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1402 errno = 0; 1396 errno = 0;
1403 } 1397 }
1404 up_write(&uts_sem); 1398 up_write(&uts_sem);
@@ -1445,21 +1439,28 @@ asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *r
1445asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1439asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1446{ 1440{
1447 struct rlimit new_rlim, *old_rlim; 1441 struct rlimit new_rlim, *old_rlim;
1448 unsigned long it_prof_secs;
1449 int retval; 1442 int retval;
1450 1443
1451 if (resource >= RLIM_NLIMITS) 1444 if (resource >= RLIM_NLIMITS)
1452 return -EINVAL; 1445 return -EINVAL;
1453 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1446 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1454 return -EFAULT; 1447 return -EFAULT;
1455 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1456 return -EINVAL;
1457 old_rlim = current->signal->rlim + resource; 1448 old_rlim = current->signal->rlim + resource;
1458 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1449 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1459 !capable(CAP_SYS_RESOURCE)) 1450 !capable(CAP_SYS_RESOURCE))
1460 return -EPERM; 1451 return -EPERM;
1461 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open) 1452
1462 return -EPERM; 1453 if (resource == RLIMIT_NOFILE) {
1454 if (new_rlim.rlim_max == RLIM_INFINITY)
1455 new_rlim.rlim_max = sysctl_nr_open;
1456 if (new_rlim.rlim_cur == RLIM_INFINITY)
1457 new_rlim.rlim_cur = sysctl_nr_open;
1458 if (new_rlim.rlim_max > sysctl_nr_open)
1459 return -EPERM;
1460 }
1461
1462 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1463 return -EINVAL;
1463 1464
1464 retval = security_task_setrlimit(resource, &new_rlim); 1465 retval = security_task_setrlimit(resource, &new_rlim);
1465 if (retval) 1466 if (retval)
@@ -1491,18 +1492,7 @@ asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1491 if (new_rlim.rlim_cur == RLIM_INFINITY) 1492 if (new_rlim.rlim_cur == RLIM_INFINITY)
1492 goto out; 1493 goto out;
1493 1494
1494 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1495 update_rlimit_cpu(new_rlim.rlim_cur);
1495 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1496 unsigned long rlim_cur = new_rlim.rlim_cur;
1497 cputime_t cputime;
1498
1499 cputime = secs_to_cputime(rlim_cur);
1500 read_lock(&tasklist_lock);
1501 spin_lock_irq(&current->sighand->siglock);
1502 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1503 spin_unlock_irq(&current->sighand->siglock);
1504 read_unlock(&tasklist_lock);
1505 }
1506out: 1496out:
1507 return 0; 1497 return 0;
1508} 1498}
@@ -1540,11 +1530,8 @@ out:
1540 * 1530 *
1541 */ 1531 */
1542 1532
1543static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r, 1533static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1544 cputime_t *utimep, cputime_t *stimep)
1545{ 1534{
1546 *utimep = cputime_add(*utimep, t->utime);
1547 *stimep = cputime_add(*stimep, t->stime);
1548 r->ru_nvcsw += t->nvcsw; 1535 r->ru_nvcsw += t->nvcsw;
1549 r->ru_nivcsw += t->nivcsw; 1536 r->ru_nivcsw += t->nivcsw;
1550 r->ru_minflt += t->min_flt; 1537 r->ru_minflt += t->min_flt;
@@ -1558,12 +1545,13 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1558 struct task_struct *t; 1545 struct task_struct *t;
1559 unsigned long flags; 1546 unsigned long flags;
1560 cputime_t utime, stime; 1547 cputime_t utime, stime;
1548 struct task_cputime cputime;
1561 1549
1562 memset((char *) r, 0, sizeof *r); 1550 memset((char *) r, 0, sizeof *r);
1563 utime = stime = cputime_zero; 1551 utime = stime = cputime_zero;
1564 1552
1565 if (who == RUSAGE_THREAD) { 1553 if (who == RUSAGE_THREAD) {
1566 accumulate_thread_rusage(p, r, &utime, &stime); 1554 accumulate_thread_rusage(p, r);
1567 goto out; 1555 goto out;
1568 } 1556 }
1569 1557
@@ -1586,8 +1574,9 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1586 break; 1574 break;
1587 1575
1588 case RUSAGE_SELF: 1576 case RUSAGE_SELF:
1589 utime = cputime_add(utime, p->signal->utime); 1577 thread_group_cputime(p, &cputime);
1590 stime = cputime_add(stime, p->signal->stime); 1578 utime = cputime_add(utime, cputime.utime);
1579 stime = cputime_add(stime, cputime.stime);
1591 r->ru_nvcsw += p->signal->nvcsw; 1580 r->ru_nvcsw += p->signal->nvcsw;
1592 r->ru_nivcsw += p->signal->nivcsw; 1581 r->ru_nivcsw += p->signal->nivcsw;
1593 r->ru_minflt += p->signal->min_flt; 1582 r->ru_minflt += p->signal->min_flt;
@@ -1596,7 +1585,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1596 r->ru_oublock += p->signal->oublock; 1585 r->ru_oublock += p->signal->oublock;
1597 t = p; 1586 t = p;
1598 do { 1587 do {
1599 accumulate_thread_rusage(t, r, &utime, &stime); 1588 accumulate_thread_rusage(t, r);
1600 t = next_thread(t); 1589 t = next_thread(t);
1601 } while (t != p); 1590 } while (t != p);
1602 break; 1591 break;
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c
index 08d6e1bb99ac..a77b27b11b04 100644
--- a/kernel/sys_ni.c
+++ b/kernel/sys_ni.c
@@ -125,6 +125,12 @@ cond_syscall(sys_vm86old);
125cond_syscall(sys_vm86); 125cond_syscall(sys_vm86);
126cond_syscall(compat_sys_ipc); 126cond_syscall(compat_sys_ipc);
127cond_syscall(compat_sys_sysctl); 127cond_syscall(compat_sys_sysctl);
128cond_syscall(sys_flock);
129cond_syscall(sys_io_setup);
130cond_syscall(sys_io_destroy);
131cond_syscall(sys_io_submit);
132cond_syscall(sys_io_cancel);
133cond_syscall(sys_io_getevents);
128 134
129/* arch-specific weak syscall entries */ 135/* arch-specific weak syscall entries */
130cond_syscall(sys_pciconfig_read); 136cond_syscall(sys_pciconfig_read);
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 50ec0886fa3d..617d41e4d6a0 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -80,7 +80,6 @@ extern int pid_max_min, pid_max_max;
80extern int sysctl_drop_caches; 80extern int sysctl_drop_caches;
81extern int percpu_pagelist_fraction; 81extern int percpu_pagelist_fraction;
82extern int compat_log; 82extern int compat_log;
83extern int maps_protect;
84extern int latencytop_enabled; 83extern int latencytop_enabled;
85extern int sysctl_nr_open_min, sysctl_nr_open_max; 84extern int sysctl_nr_open_min, sysctl_nr_open_max;
86#ifdef CONFIG_RCU_TORTURE_TEST 85#ifdef CONFIG_RCU_TORTURE_TEST
@@ -97,7 +96,7 @@ static int sixty = 60;
97static int neg_one = -1; 96static int neg_one = -1;
98#endif 97#endif
99 98
100#ifdef CONFIG_MMU 99#if defined(CONFIG_MMU) && defined(CONFIG_FILE_LOCKING)
101static int two = 2; 100static int two = 2;
102#endif 101#endif
103 102
@@ -118,10 +117,8 @@ extern char modprobe_path[];
118extern int sg_big_buff; 117extern int sg_big_buff;
119#endif 118#endif
120 119
121#ifdef __sparc__ 120#ifdef CONFIG_SPARC
122extern char reboot_command []; 121#include <asm/system.h>
123extern int stop_a_enabled;
124extern int scons_pwroff;
125#endif 122#endif
126 123
127#ifdef __hppa__ 124#ifdef __hppa__
@@ -152,7 +149,7 @@ extern int max_lock_depth;
152#ifdef CONFIG_PROC_SYSCTL 149#ifdef CONFIG_PROC_SYSCTL
153static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, 150static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp,
154 void __user *buffer, size_t *lenp, loff_t *ppos); 151 void __user *buffer, size_t *lenp, loff_t *ppos);
155static int proc_dointvec_taint(struct ctl_table *table, int write, struct file *filp, 152static int proc_taint(struct ctl_table *table, int write, struct file *filp,
156 void __user *buffer, size_t *lenp, loff_t *ppos); 153 void __user *buffer, size_t *lenp, loff_t *ppos);
157#endif 154#endif
158 155
@@ -382,10 +379,9 @@ static struct ctl_table kern_table[] = {
382#ifdef CONFIG_PROC_SYSCTL 379#ifdef CONFIG_PROC_SYSCTL
383 { 380 {
384 .procname = "tainted", 381 .procname = "tainted",
385 .data = &tainted, 382 .maxlen = sizeof(long),
386 .maxlen = sizeof(int),
387 .mode = 0644, 383 .mode = 0644,
388 .proc_handler = &proc_dointvec_taint, 384 .proc_handler = &proc_taint,
389 }, 385 },
390#endif 386#endif
391#ifdef CONFIG_LATENCYTOP 387#ifdef CONFIG_LATENCYTOP
@@ -415,7 +411,7 @@ static struct ctl_table kern_table[] = {
415 .mode = 0644, 411 .mode = 0644,
416 .proc_handler = &proc_dointvec, 412 .proc_handler = &proc_dointvec,
417 }, 413 },
418#ifdef __sparc__ 414#ifdef CONFIG_SPARC
419 { 415 {
420 .ctl_name = KERN_SPARC_REBOOT, 416 .ctl_name = KERN_SPARC_REBOOT,
421 .procname = "reboot-cmd", 417 .procname = "reboot-cmd",
@@ -810,16 +806,6 @@ static struct ctl_table kern_table[] = {
810 .proc_handler = &proc_dointvec, 806 .proc_handler = &proc_dointvec,
811 }, 807 },
812#endif 808#endif
813#ifdef CONFIG_PROC_FS
814 {
815 .ctl_name = CTL_UNNUMBERED,
816 .procname = "maps_protect",
817 .data = &maps_protect,
818 .maxlen = sizeof(int),
819 .mode = 0644,
820 .proc_handler = &proc_dointvec,
821 },
822#endif
823 { 809 {
824 .ctl_name = CTL_UNNUMBERED, 810 .ctl_name = CTL_UNNUMBERED,
825 .procname = "poweroff_cmd", 811 .procname = "poweroff_cmd",
@@ -1261,6 +1247,7 @@ static struct ctl_table fs_table[] = {
1261 .extra1 = &minolduid, 1247 .extra1 = &minolduid,
1262 .extra2 = &maxolduid, 1248 .extra2 = &maxolduid,
1263 }, 1249 },
1250#ifdef CONFIG_FILE_LOCKING
1264 { 1251 {
1265 .ctl_name = FS_LEASES, 1252 .ctl_name = FS_LEASES,
1266 .procname = "leases-enable", 1253 .procname = "leases-enable",
@@ -1269,6 +1256,7 @@ static struct ctl_table fs_table[] = {
1269 .mode = 0644, 1256 .mode = 0644,
1270 .proc_handler = &proc_dointvec, 1257 .proc_handler = &proc_dointvec,
1271 }, 1258 },
1259#endif
1272#ifdef CONFIG_DNOTIFY 1260#ifdef CONFIG_DNOTIFY
1273 { 1261 {
1274 .ctl_name = FS_DIR_NOTIFY, 1262 .ctl_name = FS_DIR_NOTIFY,
@@ -1280,6 +1268,7 @@ static struct ctl_table fs_table[] = {
1280 }, 1268 },
1281#endif 1269#endif
1282#ifdef CONFIG_MMU 1270#ifdef CONFIG_MMU
1271#ifdef CONFIG_FILE_LOCKING
1283 { 1272 {
1284 .ctl_name = FS_LEASE_TIME, 1273 .ctl_name = FS_LEASE_TIME,
1285 .procname = "lease-break-time", 1274 .procname = "lease-break-time",
@@ -1291,6 +1280,8 @@ static struct ctl_table fs_table[] = {
1291 .extra1 = &zero, 1280 .extra1 = &zero,
1292 .extra2 = &two, 1281 .extra2 = &two,
1293 }, 1282 },
1283#endif
1284#ifdef CONFIG_AIO
1294 { 1285 {
1295 .procname = "aio-nr", 1286 .procname = "aio-nr",
1296 .data = &aio_nr, 1287 .data = &aio_nr,
@@ -1305,6 +1296,7 @@ static struct ctl_table fs_table[] = {
1305 .mode = 0644, 1296 .mode = 0644,
1306 .proc_handler = &proc_doulongvec_minmax, 1297 .proc_handler = &proc_doulongvec_minmax,
1307 }, 1298 },
1299#endif /* CONFIG_AIO */
1308#ifdef CONFIG_INOTIFY_USER 1300#ifdef CONFIG_INOTIFY_USER
1309 { 1301 {
1310 .ctl_name = FS_INOTIFY, 1302 .ctl_name = FS_INOTIFY,
@@ -1510,7 +1502,6 @@ void register_sysctl_root(struct ctl_table_root *root)
1510/* Perform the actual read/write of a sysctl table entry. */ 1502/* Perform the actual read/write of a sysctl table entry. */
1511static int do_sysctl_strategy(struct ctl_table_root *root, 1503static int do_sysctl_strategy(struct ctl_table_root *root,
1512 struct ctl_table *table, 1504 struct ctl_table *table,
1513 int __user *name, int nlen,
1514 void __user *oldval, size_t __user *oldlenp, 1505 void __user *oldval, size_t __user *oldlenp,
1515 void __user *newval, size_t newlen) 1506 void __user *newval, size_t newlen)
1516{ 1507{
@@ -1524,8 +1515,7 @@ static int do_sysctl_strategy(struct ctl_table_root *root,
1524 return -EPERM; 1515 return -EPERM;
1525 1516
1526 if (table->strategy) { 1517 if (table->strategy) {
1527 rc = table->strategy(table, name, nlen, oldval, oldlenp, 1518 rc = table->strategy(table, oldval, oldlenp, newval, newlen);
1528 newval, newlen);
1529 if (rc < 0) 1519 if (rc < 0)
1530 return rc; 1520 return rc;
1531 if (rc > 0) 1521 if (rc > 0)
@@ -1535,8 +1525,7 @@ static int do_sysctl_strategy(struct ctl_table_root *root,
1535 /* If there is no strategy routine, or if the strategy returns 1525 /* If there is no strategy routine, or if the strategy returns
1536 * zero, proceed with automatic r/w */ 1526 * zero, proceed with automatic r/w */
1537 if (table->data && table->maxlen) { 1527 if (table->data && table->maxlen) {
1538 rc = sysctl_data(table, name, nlen, oldval, oldlenp, 1528 rc = sysctl_data(table, oldval, oldlenp, newval, newlen);
1539 newval, newlen);
1540 if (rc < 0) 1529 if (rc < 0)
1541 return rc; 1530 return rc;
1542 } 1531 }
@@ -1568,7 +1557,7 @@ repeat:
1568 table = table->child; 1557 table = table->child;
1569 goto repeat; 1558 goto repeat;
1570 } 1559 }
1571 error = do_sysctl_strategy(root, table, name, nlen, 1560 error = do_sysctl_strategy(root, table,
1572 oldval, oldlenp, 1561 oldval, oldlenp,
1573 newval, newlen); 1562 newval, newlen);
1574 return error; 1563 return error;
@@ -2237,49 +2226,39 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp,
2237 NULL,NULL); 2226 NULL,NULL);
2238} 2227}
2239 2228
2240#define OP_SET 0
2241#define OP_AND 1
2242#define OP_OR 2
2243
2244static int do_proc_dointvec_bset_conv(int *negp, unsigned long *lvalp,
2245 int *valp,
2246 int write, void *data)
2247{
2248 int op = *(int *)data;
2249 if (write) {
2250 int val = *negp ? -*lvalp : *lvalp;
2251 switch(op) {
2252 case OP_SET: *valp = val; break;
2253 case OP_AND: *valp &= val; break;
2254 case OP_OR: *valp |= val; break;
2255 }
2256 } else {
2257 int val = *valp;
2258 if (val < 0) {
2259 *negp = -1;
2260 *lvalp = (unsigned long)-val;
2261 } else {
2262 *negp = 0;
2263 *lvalp = (unsigned long)val;
2264 }
2265 }
2266 return 0;
2267}
2268
2269/* 2229/*
2270 * Taint values can only be increased 2230 * Taint values can only be increased
2231 * This means we can safely use a temporary.
2271 */ 2232 */
2272static int proc_dointvec_taint(struct ctl_table *table, int write, struct file *filp, 2233static int proc_taint(struct ctl_table *table, int write, struct file *filp,
2273 void __user *buffer, size_t *lenp, loff_t *ppos) 2234 void __user *buffer, size_t *lenp, loff_t *ppos)
2274{ 2235{
2275 int op; 2236 struct ctl_table t;
2237 unsigned long tmptaint = get_taint();
2238 int err;
2276 2239
2277 if (write && !capable(CAP_SYS_ADMIN)) 2240 if (write && !capable(CAP_SYS_ADMIN))
2278 return -EPERM; 2241 return -EPERM;
2279 2242
2280 op = OP_OR; 2243 t = *table;
2281 return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, 2244 t.data = &tmptaint;
2282 do_proc_dointvec_bset_conv,&op); 2245 err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos);
2246 if (err < 0)
2247 return err;
2248
2249 if (write) {
2250 /*
2251 * Poor man's atomic or. Not worth adding a primitive
2252 * to everyone's atomic.h for this
2253 */
2254 int i;
2255 for (i = 0; i < BITS_PER_LONG && tmptaint >> i; i++) {
2256 if ((tmptaint >> i) & 1)
2257 add_taint(i);
2258 }
2259 }
2260
2261 return err;
2283} 2262}
2284 2263
2285struct do_proc_dointvec_minmax_conv_param { 2264struct do_proc_dointvec_minmax_conv_param {
@@ -2727,7 +2706,7 @@ int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write,
2727 */ 2706 */
2728 2707
2729/* The generic sysctl data routine (used if no strategy routine supplied) */ 2708/* The generic sysctl data routine (used if no strategy routine supplied) */
2730int sysctl_data(struct ctl_table *table, int __user *name, int nlen, 2709int sysctl_data(struct ctl_table *table,
2731 void __user *oldval, size_t __user *oldlenp, 2710 void __user *oldval, size_t __user *oldlenp,
2732 void __user *newval, size_t newlen) 2711 void __user *newval, size_t newlen)
2733{ 2712{
@@ -2761,7 +2740,7 @@ int sysctl_data(struct ctl_table *table, int __user *name, int nlen,
2761} 2740}
2762 2741
2763/* The generic string strategy routine: */ 2742/* The generic string strategy routine: */
2764int sysctl_string(struct ctl_table *table, int __user *name, int nlen, 2743int sysctl_string(struct ctl_table *table,
2765 void __user *oldval, size_t __user *oldlenp, 2744 void __user *oldval, size_t __user *oldlenp,
2766 void __user *newval, size_t newlen) 2745 void __user *newval, size_t newlen)
2767{ 2746{
@@ -2807,7 +2786,7 @@ int sysctl_string(struct ctl_table *table, int __user *name, int nlen,
2807 * are between the minimum and maximum values given in the arrays 2786 * are between the minimum and maximum values given in the arrays
2808 * table->extra1 and table->extra2, respectively. 2787 * table->extra1 and table->extra2, respectively.
2809 */ 2788 */
2810int sysctl_intvec(struct ctl_table *table, int __user *name, int nlen, 2789int sysctl_intvec(struct ctl_table *table,
2811 void __user *oldval, size_t __user *oldlenp, 2790 void __user *oldval, size_t __user *oldlenp,
2812 void __user *newval, size_t newlen) 2791 void __user *newval, size_t newlen)
2813{ 2792{
@@ -2843,7 +2822,7 @@ int sysctl_intvec(struct ctl_table *table, int __user *name, int nlen,
2843} 2822}
2844 2823
2845/* Strategy function to convert jiffies to seconds */ 2824/* Strategy function to convert jiffies to seconds */
2846int sysctl_jiffies(struct ctl_table *table, int __user *name, int nlen, 2825int sysctl_jiffies(struct ctl_table *table,
2847 void __user *oldval, size_t __user *oldlenp, 2826 void __user *oldval, size_t __user *oldlenp,
2848 void __user *newval, size_t newlen) 2827 void __user *newval, size_t newlen)
2849{ 2828{
@@ -2877,7 +2856,7 @@ int sysctl_jiffies(struct ctl_table *table, int __user *name, int nlen,
2877} 2856}
2878 2857
2879/* Strategy function to convert jiffies to seconds */ 2858/* Strategy function to convert jiffies to seconds */
2880int sysctl_ms_jiffies(struct ctl_table *table, int __user *name, int nlen, 2859int sysctl_ms_jiffies(struct ctl_table *table,
2881 void __user *oldval, size_t __user *oldlenp, 2860 void __user *oldval, size_t __user *oldlenp,
2882 void __user *newval, size_t newlen) 2861 void __user *newval, size_t newlen)
2883{ 2862{
@@ -2932,35 +2911,35 @@ asmlinkage long sys_sysctl(struct __sysctl_args __user *args)
2932 return error; 2911 return error;
2933} 2912}
2934 2913
2935int sysctl_data(struct ctl_table *table, int __user *name, int nlen, 2914int sysctl_data(struct ctl_table *table,
2936 void __user *oldval, size_t __user *oldlenp, 2915 void __user *oldval, size_t __user *oldlenp,
2937 void __user *newval, size_t newlen) 2916 void __user *newval, size_t newlen)
2938{ 2917{
2939 return -ENOSYS; 2918 return -ENOSYS;
2940} 2919}
2941 2920
2942int sysctl_string(struct ctl_table *table, int __user *name, int nlen, 2921int sysctl_string(struct ctl_table *table,
2943 void __user *oldval, size_t __user *oldlenp, 2922 void __user *oldval, size_t __user *oldlenp,
2944 void __user *newval, size_t newlen) 2923 void __user *newval, size_t newlen)
2945{ 2924{
2946 return -ENOSYS; 2925 return -ENOSYS;
2947} 2926}
2948 2927
2949int sysctl_intvec(struct ctl_table *table, int __user *name, int nlen, 2928int sysctl_intvec(struct ctl_table *table,
2950 void __user *oldval, size_t __user *oldlenp, 2929 void __user *oldval, size_t __user *oldlenp,
2951 void __user *newval, size_t newlen) 2930 void __user *newval, size_t newlen)
2952{ 2931{
2953 return -ENOSYS; 2932 return -ENOSYS;
2954} 2933}
2955 2934
2956int sysctl_jiffies(struct ctl_table *table, int __user *name, int nlen, 2935int sysctl_jiffies(struct ctl_table *table,
2957 void __user *oldval, size_t __user *oldlenp, 2936 void __user *oldval, size_t __user *oldlenp,
2958 void __user *newval, size_t newlen) 2937 void __user *newval, size_t newlen)
2959{ 2938{
2960 return -ENOSYS; 2939 return -ENOSYS;
2961} 2940}
2962 2941
2963int sysctl_ms_jiffies(struct ctl_table *table, int __user *name, int nlen, 2942int sysctl_ms_jiffies(struct ctl_table *table,
2964 void __user *oldval, size_t __user *oldlenp, 2943 void __user *oldval, size_t __user *oldlenp,
2965 void __user *newval, size_t newlen) 2944 void __user *newval, size_t newlen)
2966{ 2945{
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
index 8d53106a0a92..95ed42951e0a 100644
--- a/kernel/time/Kconfig
+++ b/kernel/time/Kconfig
@@ -3,7 +3,6 @@
3# 3#
4config TICK_ONESHOT 4config TICK_ONESHOT
5 bool 5 bool
6 default n
7 6
8config NO_HZ 7config NO_HZ
9 bool "Tickless System (Dynamic Ticks)" 8 bool "Tickless System (Dynamic Ticks)"
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 3d1e3e1a1971..f8d968063cea 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -72,6 +72,16 @@ void clockevents_set_mode(struct clock_event_device *dev,
72} 72}
73 73
74/** 74/**
75 * clockevents_shutdown - shutdown the device and clear next_event
76 * @dev: device to shutdown
77 */
78void clockevents_shutdown(struct clock_event_device *dev)
79{
80 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
81 dev->next_event.tv64 = KTIME_MAX;
82}
83
84/**
75 * clockevents_program_event - Reprogram the clock event device. 85 * clockevents_program_event - Reprogram the clock event device.
76 * @expires: absolute expiry time (monotonic clock) 86 * @expires: absolute expiry time (monotonic clock)
77 * 87 *
@@ -177,7 +187,7 @@ void clockevents_register_device(struct clock_event_device *dev)
177/* 187/*
178 * Noop handler when we shut down an event device 188 * Noop handler when we shut down an event device
179 */ 189 */
180static void clockevents_handle_noop(struct clock_event_device *dev) 190void clockevents_handle_noop(struct clock_event_device *dev)
181{ 191{
182} 192}
183 193
@@ -199,7 +209,6 @@ void clockevents_exchange_device(struct clock_event_device *old,
199 * released list and do a notify add later. 209 * released list and do a notify add later.
200 */ 210 */
201 if (old) { 211 if (old) {
202 old->event_handler = clockevents_handle_noop;
203 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED); 212 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
204 list_del(&old->list); 213 list_del(&old->list);
205 list_add(&old->list, &clockevents_released); 214 list_add(&old->list, &clockevents_released);
@@ -207,7 +216,7 @@ void clockevents_exchange_device(struct clock_event_device *old,
207 216
208 if (new) { 217 if (new) {
209 BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED); 218 BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
210 clockevents_set_mode(new, CLOCK_EVT_MODE_SHUTDOWN); 219 clockevents_shutdown(new);
211 } 220 }
212 local_irq_restore(flags); 221 local_irq_restore(flags);
213} 222}
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 093d4acf993b..9ed2eec97526 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -325,6 +325,9 @@ int clocksource_register(struct clocksource *c)
325 unsigned long flags; 325 unsigned long flags;
326 int ret; 326 int ret;
327 327
328 /* save mult_orig on registration */
329 c->mult_orig = c->mult;
330
328 spin_lock_irqsave(&clocksource_lock, flags); 331 spin_lock_irqsave(&clocksource_lock, flags);
329 ret = clocksource_enqueue(c); 332 ret = clocksource_enqueue(c);
330 if (!ret) 333 if (!ret)
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c
index 4c256fdb8875..1ca99557e929 100644
--- a/kernel/time/jiffies.c
+++ b/kernel/time/jiffies.c
@@ -61,6 +61,7 @@ struct clocksource clocksource_jiffies = {
61 .read = jiffies_read, 61 .read = jiffies_read,
62 .mask = 0xffffffff, /*32bits*/ 62 .mask = 0xffffffff, /*32bits*/
63 .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ 63 .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
64 .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT,
64 .shift = JIFFIES_SHIFT, 65 .shift = JIFFIES_SHIFT,
65}; 66};
66 67
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index ddb0465a6baa..1a20715bfd6e 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -245,7 +245,7 @@ static void sync_cmos_clock(struct work_struct *work)
245 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) 245 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
246 fail = update_persistent_clock(now); 246 fail = update_persistent_clock(now);
247 247
248 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec; 248 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
249 if (next.tv_nsec <= 0) 249 if (next.tv_nsec <= 0)
250 next.tv_nsec += NSEC_PER_SEC; 250 next.tv_nsec += NSEC_PER_SEC;
251 251
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index 31463d370b94..f98a1b7b16e9 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -175,6 +175,8 @@ static void tick_do_periodic_broadcast(void)
175 */ 175 */
176static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 176static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177{ 177{
178 ktime_t next;
179
178 tick_do_periodic_broadcast(); 180 tick_do_periodic_broadcast();
179 181
180 /* 182 /*
@@ -185,10 +187,13 @@ static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
185 187
186 /* 188 /*
187 * Setup the next period for devices, which do not have 189 * Setup the next period for devices, which do not have
188 * periodic mode: 190 * periodic mode. We read dev->next_event first and add to it
191 * when the event alrady expired. clockevents_program_event()
192 * sets dev->next_event only when the event is really
193 * programmed to the device.
189 */ 194 */
190 for (;;) { 195 for (next = dev->next_event; ;) {
191 ktime_t next = ktime_add(dev->next_event, tick_period); 196 next = ktime_add(next, tick_period);
192 197
193 if (!clockevents_program_event(dev, next, ktime_get())) 198 if (!clockevents_program_event(dev, next, ktime_get()))
194 return; 199 return;
@@ -205,7 +210,7 @@ static void tick_do_broadcast_on_off(void *why)
205 struct clock_event_device *bc, *dev; 210 struct clock_event_device *bc, *dev;
206 struct tick_device *td; 211 struct tick_device *td;
207 unsigned long flags, *reason = why; 212 unsigned long flags, *reason = why;
208 int cpu; 213 int cpu, bc_stopped;
209 214
210 spin_lock_irqsave(&tick_broadcast_lock, flags); 215 spin_lock_irqsave(&tick_broadcast_lock, flags);
211 216
@@ -223,14 +228,16 @@ static void tick_do_broadcast_on_off(void *why)
223 if (!tick_device_is_functional(dev)) 228 if (!tick_device_is_functional(dev))
224 goto out; 229 goto out;
225 230
231 bc_stopped = cpus_empty(tick_broadcast_mask);
232
226 switch (*reason) { 233 switch (*reason) {
227 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 234 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
228 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
229 if (!cpu_isset(cpu, tick_broadcast_mask)) { 236 if (!cpu_isset(cpu, tick_broadcast_mask)) {
230 cpu_set(cpu, tick_broadcast_mask); 237 cpu_set(cpu, tick_broadcast_mask);
231 if (td->mode == TICKDEV_MODE_PERIODIC) 238 if (tick_broadcast_device.mode ==
232 clockevents_set_mode(dev, 239 TICKDEV_MODE_PERIODIC)
233 CLOCK_EVT_MODE_SHUTDOWN); 240 clockevents_shutdown(dev);
234 } 241 }
235 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 242 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
236 tick_broadcast_force = 1; 243 tick_broadcast_force = 1;
@@ -239,15 +246,17 @@ static void tick_do_broadcast_on_off(void *why)
239 if (!tick_broadcast_force && 246 if (!tick_broadcast_force &&
240 cpu_isset(cpu, tick_broadcast_mask)) { 247 cpu_isset(cpu, tick_broadcast_mask)) {
241 cpu_clear(cpu, tick_broadcast_mask); 248 cpu_clear(cpu, tick_broadcast_mask);
242 if (td->mode == TICKDEV_MODE_PERIODIC) 249 if (tick_broadcast_device.mode ==
250 TICKDEV_MODE_PERIODIC)
243 tick_setup_periodic(dev, 0); 251 tick_setup_periodic(dev, 0);
244 } 252 }
245 break; 253 break;
246 } 254 }
247 255
248 if (cpus_empty(tick_broadcast_mask)) 256 if (cpus_empty(tick_broadcast_mask)) {
249 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 257 if (!bc_stopped)
250 else { 258 clockevents_shutdown(bc);
259 } else if (bc_stopped) {
251 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 260 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
252 tick_broadcast_start_periodic(bc); 261 tick_broadcast_start_periodic(bc);
253 else 262 else
@@ -298,7 +307,7 @@ void tick_shutdown_broadcast(unsigned int *cpup)
298 307
299 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 308 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
300 if (bc && cpus_empty(tick_broadcast_mask)) 309 if (bc && cpus_empty(tick_broadcast_mask))
301 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 310 clockevents_shutdown(bc);
302 } 311 }
303 312
304 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 313 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
@@ -313,7 +322,7 @@ void tick_suspend_broadcast(void)
313 322
314 bc = tick_broadcast_device.evtdev; 323 bc = tick_broadcast_device.evtdev;
315 if (bc) 324 if (bc)
316 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 325 clockevents_shutdown(bc);
317 326
318 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 327 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
319} 328}
@@ -364,16 +373,8 @@ cpumask_t *tick_get_broadcast_oneshot_mask(void)
364static int tick_broadcast_set_event(ktime_t expires, int force) 373static int tick_broadcast_set_event(ktime_t expires, int force)
365{ 374{
366 struct clock_event_device *bc = tick_broadcast_device.evtdev; 375 struct clock_event_device *bc = tick_broadcast_device.evtdev;
367 ktime_t now = ktime_get(); 376
368 int res; 377 return tick_dev_program_event(bc, expires, force);
369
370 for(;;) {
371 res = clockevents_program_event(bc, expires, now);
372 if (!res || !force)
373 return res;
374 now = ktime_get();
375 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
376 }
377} 378}
378 379
379int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 380int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
@@ -383,6 +384,19 @@ int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
383} 384}
384 385
385/* 386/*
387 * Called from irq_enter() when idle was interrupted to reenable the
388 * per cpu device.
389 */
390void tick_check_oneshot_broadcast(int cpu)
391{
392 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
393 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
394
395 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
396 }
397}
398
399/*
386 * Handle oneshot mode broadcasting 400 * Handle oneshot mode broadcasting
387 */ 401 */
388static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 402static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
@@ -491,14 +505,52 @@ static void tick_broadcast_clear_oneshot(int cpu)
491 cpu_clear(cpu, tick_broadcast_oneshot_mask); 505 cpu_clear(cpu, tick_broadcast_oneshot_mask);
492} 506}
493 507
508static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
509{
510 struct tick_device *td;
511 int cpu;
512
513 for_each_cpu_mask_nr(cpu, *mask) {
514 td = &per_cpu(tick_cpu_device, cpu);
515 if (td->evtdev)
516 td->evtdev->next_event = expires;
517 }
518}
519
494/** 520/**
495 * tick_broadcast_setup_oneshot - setup the broadcast device 521 * tick_broadcast_setup_oneshot - setup the broadcast device
496 */ 522 */
497void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 523void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
498{ 524{
499 bc->event_handler = tick_handle_oneshot_broadcast; 525 /* Set it up only once ! */
500 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 526 if (bc->event_handler != tick_handle_oneshot_broadcast) {
501 bc->next_event.tv64 = KTIME_MAX; 527 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
528 int cpu = smp_processor_id();
529 cpumask_t mask;
530
531 bc->event_handler = tick_handle_oneshot_broadcast;
532 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533
534 /* Take the do_timer update */
535 tick_do_timer_cpu = cpu;
536
537 /*
538 * We must be careful here. There might be other CPUs
539 * waiting for periodic broadcast. We need to set the
540 * oneshot_mask bits for those and program the
541 * broadcast device to fire.
542 */
543 mask = tick_broadcast_mask;
544 cpu_clear(cpu, mask);
545 cpus_or(tick_broadcast_oneshot_mask,
546 tick_broadcast_oneshot_mask, mask);
547
548 if (was_periodic && !cpus_empty(mask)) {
549 tick_broadcast_init_next_event(&mask, tick_next_period);
550 tick_broadcast_set_event(tick_next_period, 1);
551 } else
552 bc->next_event.tv64 = KTIME_MAX;
553 }
502} 554}
503 555
504/* 556/*
@@ -538,4 +590,12 @@ void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
538 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 590 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
539} 591}
540 592
593/*
594 * Check, whether the broadcast device is in one shot mode
595 */
596int tick_broadcast_oneshot_active(void)
597{
598 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
599}
600
541#endif 601#endif
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index 80c4336f4188..df12434b43ca 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -33,7 +33,7 @@ DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
33 */ 33 */
34ktime_t tick_next_period; 34ktime_t tick_next_period;
35ktime_t tick_period; 35ktime_t tick_period;
36int tick_do_timer_cpu __read_mostly = -1; 36int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
37DEFINE_SPINLOCK(tick_device_lock); 37DEFINE_SPINLOCK(tick_device_lock);
38 38
39/* 39/*
@@ -109,7 +109,8 @@ void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
109 if (!tick_device_is_functional(dev)) 109 if (!tick_device_is_functional(dev))
110 return; 110 return;
111 111
112 if (dev->features & CLOCK_EVT_FEAT_PERIODIC) { 112 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
113 !tick_broadcast_oneshot_active()) {
113 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); 114 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
114 } else { 115 } else {
115 unsigned long seq; 116 unsigned long seq;
@@ -148,7 +149,7 @@ static void tick_setup_device(struct tick_device *td,
148 * If no cpu took the do_timer update, assign it to 149 * If no cpu took the do_timer update, assign it to
149 * this cpu: 150 * this cpu:
150 */ 151 */
151 if (tick_do_timer_cpu == -1) { 152 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
152 tick_do_timer_cpu = cpu; 153 tick_do_timer_cpu = cpu;
153 tick_next_period = ktime_get(); 154 tick_next_period = ktime_get();
154 tick_period = ktime_set(0, NSEC_PER_SEC / HZ); 155 tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
@@ -161,6 +162,7 @@ static void tick_setup_device(struct tick_device *td,
161 } else { 162 } else {
162 handler = td->evtdev->event_handler; 163 handler = td->evtdev->event_handler;
163 next_event = td->evtdev->next_event; 164 next_event = td->evtdev->next_event;
165 td->evtdev->event_handler = clockevents_handle_noop;
164 } 166 }
165 167
166 td->evtdev = newdev; 168 td->evtdev = newdev;
@@ -248,7 +250,7 @@ static int tick_check_new_device(struct clock_event_device *newdev)
248 * not give it back to the clockevents layer ! 250 * not give it back to the clockevents layer !
249 */ 251 */
250 if (tick_is_broadcast_device(curdev)) { 252 if (tick_is_broadcast_device(curdev)) {
251 clockevents_set_mode(curdev, CLOCK_EVT_MODE_SHUTDOWN); 253 clockevents_shutdown(curdev);
252 curdev = NULL; 254 curdev = NULL;
253 } 255 }
254 clockevents_exchange_device(curdev, newdev); 256 clockevents_exchange_device(curdev, newdev);
@@ -299,7 +301,8 @@ static void tick_shutdown(unsigned int *cpup)
299 if (*cpup == tick_do_timer_cpu) { 301 if (*cpup == tick_do_timer_cpu) {
300 int cpu = first_cpu(cpu_online_map); 302 int cpu = first_cpu(cpu_online_map);
301 303
302 tick_do_timer_cpu = (cpu != NR_CPUS) ? cpu : -1; 304 tick_do_timer_cpu = (cpu != NR_CPUS) ? cpu :
305 TICK_DO_TIMER_NONE;
303 } 306 }
304 spin_unlock_irqrestore(&tick_device_lock, flags); 307 spin_unlock_irqrestore(&tick_device_lock, flags);
305} 308}
@@ -310,7 +313,7 @@ static void tick_suspend(void)
310 unsigned long flags; 313 unsigned long flags;
311 314
312 spin_lock_irqsave(&tick_device_lock, flags); 315 spin_lock_irqsave(&tick_device_lock, flags);
313 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 316 clockevents_shutdown(td->evtdev);
314 spin_unlock_irqrestore(&tick_device_lock, flags); 317 spin_unlock_irqrestore(&tick_device_lock, flags);
315} 318}
316 319
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index f13f2b7f4fd4..b1c05bf75ee0 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -1,6 +1,10 @@
1/* 1/*
2 * tick internal variable and functions used by low/high res code 2 * tick internal variable and functions used by low/high res code
3 */ 3 */
4
5#define TICK_DO_TIMER_NONE -1
6#define TICK_DO_TIMER_BOOT -2
7
4DECLARE_PER_CPU(struct tick_device, tick_cpu_device); 8DECLARE_PER_CPU(struct tick_device, tick_cpu_device);
5extern spinlock_t tick_device_lock; 9extern spinlock_t tick_device_lock;
6extern ktime_t tick_next_period; 10extern ktime_t tick_next_period;
@@ -10,6 +14,8 @@ extern int tick_do_timer_cpu __read_mostly;
10extern void tick_setup_periodic(struct clock_event_device *dev, int broadcast); 14extern void tick_setup_periodic(struct clock_event_device *dev, int broadcast);
11extern void tick_handle_periodic(struct clock_event_device *dev); 15extern void tick_handle_periodic(struct clock_event_device *dev);
12 16
17extern void clockevents_shutdown(struct clock_event_device *dev);
18
13/* 19/*
14 * NO_HZ / high resolution timer shared code 20 * NO_HZ / high resolution timer shared code
15 */ 21 */
@@ -17,6 +23,8 @@ extern void tick_handle_periodic(struct clock_event_device *dev);
17extern void tick_setup_oneshot(struct clock_event_device *newdev, 23extern void tick_setup_oneshot(struct clock_event_device *newdev,
18 void (*handler)(struct clock_event_device *), 24 void (*handler)(struct clock_event_device *),
19 ktime_t nextevt); 25 ktime_t nextevt);
26extern int tick_dev_program_event(struct clock_event_device *dev,
27 ktime_t expires, int force);
20extern int tick_program_event(ktime_t expires, int force); 28extern int tick_program_event(ktime_t expires, int force);
21extern void tick_oneshot_notify(void); 29extern void tick_oneshot_notify(void);
22extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *)); 30extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *));
@@ -27,6 +35,8 @@ extern void tick_broadcast_oneshot_control(unsigned long reason);
27extern void tick_broadcast_switch_to_oneshot(void); 35extern void tick_broadcast_switch_to_oneshot(void);
28extern void tick_shutdown_broadcast_oneshot(unsigned int *cpup); 36extern void tick_shutdown_broadcast_oneshot(unsigned int *cpup);
29extern int tick_resume_broadcast_oneshot(struct clock_event_device *bc); 37extern int tick_resume_broadcast_oneshot(struct clock_event_device *bc);
38extern int tick_broadcast_oneshot_active(void);
39extern void tick_check_oneshot_broadcast(int cpu);
30# else /* BROADCAST */ 40# else /* BROADCAST */
31static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 41static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
32{ 42{
@@ -35,6 +45,8 @@ static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
35static inline void tick_broadcast_oneshot_control(unsigned long reason) { } 45static inline void tick_broadcast_oneshot_control(unsigned long reason) { }
36static inline void tick_broadcast_switch_to_oneshot(void) { } 46static inline void tick_broadcast_switch_to_oneshot(void) { }
37static inline void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { } 47static inline void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { }
48static inline int tick_broadcast_oneshot_active(void) { return 0; }
49static inline void tick_check_oneshot_broadcast(int cpu) { }
38# endif /* !BROADCAST */ 50# endif /* !BROADCAST */
39 51
40#else /* !ONESHOT */ 52#else /* !ONESHOT */
@@ -64,6 +76,7 @@ static inline int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
64{ 76{
65 return 0; 77 return 0;
66} 78}
79static inline int tick_broadcast_oneshot_active(void) { return 0; }
67#endif /* !TICK_ONESHOT */ 80#endif /* !TICK_ONESHOT */
68 81
69/* 82/*
diff --git a/kernel/time/tick-oneshot.c b/kernel/time/tick-oneshot.c
index 450c04935b66..2e8de678e767 100644
--- a/kernel/time/tick-oneshot.c
+++ b/kernel/time/tick-oneshot.c
@@ -23,24 +23,56 @@
23#include "tick-internal.h" 23#include "tick-internal.h"
24 24
25/** 25/**
26 * tick_program_event 26 * tick_program_event internal worker function
27 */ 27 */
28int tick_program_event(ktime_t expires, int force) 28int tick_dev_program_event(struct clock_event_device *dev, ktime_t expires,
29 int force)
29{ 30{
30 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
31 ktime_t now = ktime_get(); 31 ktime_t now = ktime_get();
32 int i;
32 33
33 while (1) { 34 for (i = 0;;) {
34 int ret = clockevents_program_event(dev, expires, now); 35 int ret = clockevents_program_event(dev, expires, now);
35 36
36 if (!ret || !force) 37 if (!ret || !force)
37 return ret; 38 return ret;
39
40 /*
41 * We tried 2 times to program the device with the given
42 * min_delta_ns. If that's not working then we double it
43 * and emit a warning.
44 */
45 if (++i > 2) {
46 /* Increase the min. delta and try again */
47 if (!dev->min_delta_ns)
48 dev->min_delta_ns = 5000;
49 else
50 dev->min_delta_ns += dev->min_delta_ns >> 1;
51
52 printk(KERN_WARNING
53 "CE: %s increasing min_delta_ns to %lu nsec\n",
54 dev->name ? dev->name : "?",
55 dev->min_delta_ns << 1);
56
57 i = 0;
58 }
59
38 now = ktime_get(); 60 now = ktime_get();
39 expires = ktime_add(now, ktime_set(0, dev->min_delta_ns)); 61 expires = ktime_add_ns(now, dev->min_delta_ns);
40 } 62 }
41} 63}
42 64
43/** 65/**
66 * tick_program_event
67 */
68int tick_program_event(ktime_t expires, int force)
69{
70 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
71
72 return tick_dev_program_event(dev, expires, force);
73}
74
75/**
44 * tick_resume_onshot - resume oneshot mode 76 * tick_resume_onshot - resume oneshot mode
45 */ 77 */
46void tick_resume_oneshot(void) 78void tick_resume_oneshot(void)
@@ -61,7 +93,7 @@ void tick_setup_oneshot(struct clock_event_device *newdev,
61{ 93{
62 newdev->event_handler = handler; 94 newdev->event_handler = handler;
63 clockevents_set_mode(newdev, CLOCK_EVT_MODE_ONESHOT); 95 clockevents_set_mode(newdev, CLOCK_EVT_MODE_ONESHOT);
64 clockevents_program_event(newdev, next_event, ktime_get()); 96 tick_dev_program_event(newdev, next_event, 1);
65} 97}
66 98
67/** 99/**
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index a87b0468568b..0581c11fe6c6 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -20,6 +20,7 @@
20#include <linux/profile.h> 20#include <linux/profile.h>
21#include <linux/sched.h> 21#include <linux/sched.h>
22#include <linux/tick.h> 22#include <linux/tick.h>
23#include <linux/module.h>
23 24
24#include <asm/irq_regs.h> 25#include <asm/irq_regs.h>
25 26
@@ -75,6 +76,9 @@ static void tick_do_update_jiffies64(ktime_t now)
75 incr * ticks); 76 incr * ticks);
76 } 77 }
77 do_timer(++ticks); 78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
78 } 82 }
79 write_sequnlock(&xtime_lock); 83 write_sequnlock(&xtime_lock);
80} 84}
@@ -151,7 +155,7 @@ void tick_nohz_update_jiffies(void)
151 touch_softlockup_watchdog(); 155 touch_softlockup_watchdog();
152} 156}
153 157
154void tick_nohz_stop_idle(int cpu) 158static void tick_nohz_stop_idle(int cpu)
155{ 159{
156 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
157 161
@@ -187,9 +191,17 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
187{ 191{
188 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
189 193
190 *last_update_time = ktime_to_us(ts->idle_lastupdate); 194 if (!tick_nohz_enabled)
195 return -1;
196
197 if (ts->idle_active)
198 *last_update_time = ktime_to_us(ts->idle_lastupdate);
199 else
200 *last_update_time = ktime_to_us(ktime_get());
201
191 return ktime_to_us(ts->idle_sleeptime); 202 return ktime_to_us(ts->idle_sleeptime);
192} 203}
204EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
193 205
194/** 206/**
195 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
@@ -221,7 +233,7 @@ void tick_nohz_stop_sched_tick(int inidle)
221 */ 233 */
222 if (unlikely(!cpu_online(cpu))) { 234 if (unlikely(!cpu_online(cpu))) {
223 if (cpu == tick_do_timer_cpu) 235 if (cpu == tick_do_timer_cpu)
224 tick_do_timer_cpu = -1; 236 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
225 } 237 }
226 238
227 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 239 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
@@ -258,7 +270,7 @@ void tick_nohz_stop_sched_tick(int inidle)
258 next_jiffies = get_next_timer_interrupt(last_jiffies); 270 next_jiffies = get_next_timer_interrupt(last_jiffies);
259 delta_jiffies = next_jiffies - last_jiffies; 271 delta_jiffies = next_jiffies - last_jiffies;
260 272
261 if (rcu_needs_cpu(cpu)) 273 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
262 delta_jiffies = 1; 274 delta_jiffies = 1;
263 /* 275 /*
264 * Do not stop the tick, if we are only one off 276 * Do not stop the tick, if we are only one off
@@ -303,7 +315,7 @@ void tick_nohz_stop_sched_tick(int inidle)
303 * invoked. 315 * invoked.
304 */ 316 */
305 if (cpu == tick_do_timer_cpu) 317 if (cpu == tick_do_timer_cpu)
306 tick_do_timer_cpu = -1; 318 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
307 319
308 ts->idle_sleeps++; 320 ts->idle_sleeps++;
309 321
@@ -365,6 +377,32 @@ ktime_t tick_nohz_get_sleep_length(void)
365 return ts->sleep_length; 377 return ts->sleep_length;
366} 378}
367 379
380static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
381{
382 hrtimer_cancel(&ts->sched_timer);
383 ts->sched_timer.expires = ts->idle_tick;
384
385 while (1) {
386 /* Forward the time to expire in the future */
387 hrtimer_forward(&ts->sched_timer, now, tick_period);
388
389 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
390 hrtimer_start(&ts->sched_timer,
391 ts->sched_timer.expires,
392 HRTIMER_MODE_ABS);
393 /* Check, if the timer was already in the past */
394 if (hrtimer_active(&ts->sched_timer))
395 break;
396 } else {
397 if (!tick_program_event(ts->sched_timer.expires, 0))
398 break;
399 }
400 /* Update jiffies and reread time */
401 tick_do_update_jiffies64(now);
402 now = ktime_get();
403 }
404}
405
368/** 406/**
369 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 407 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
370 * 408 *
@@ -418,28 +456,7 @@ void tick_nohz_restart_sched_tick(void)
418 */ 456 */
419 ts->tick_stopped = 0; 457 ts->tick_stopped = 0;
420 ts->idle_exittime = now; 458 ts->idle_exittime = now;
421 hrtimer_cancel(&ts->sched_timer); 459 tick_nohz_restart(ts, now);
422 ts->sched_timer.expires = ts->idle_tick;
423
424 while (1) {
425 /* Forward the time to expire in the future */
426 hrtimer_forward(&ts->sched_timer, now, tick_period);
427
428 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
429 hrtimer_start(&ts->sched_timer,
430 ts->sched_timer.expires,
431 HRTIMER_MODE_ABS);
432 /* Check, if the timer was already in the past */
433 if (hrtimer_active(&ts->sched_timer))
434 break;
435 } else {
436 if (!tick_program_event(ts->sched_timer.expires, 0))
437 break;
438 }
439 /* Update jiffies and reread time */
440 tick_do_update_jiffies64(now);
441 now = ktime_get();
442 }
443 local_irq_enable(); 460 local_irq_enable();
444} 461}
445 462
@@ -468,7 +485,7 @@ static void tick_nohz_handler(struct clock_event_device *dev)
468 * this duty, then the jiffies update is still serialized by 485 * this duty, then the jiffies update is still serialized by
469 * xtime_lock. 486 * xtime_lock.
470 */ 487 */
471 if (unlikely(tick_do_timer_cpu == -1)) 488 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
472 tick_do_timer_cpu = cpu; 489 tick_do_timer_cpu = cpu;
473 490
474 /* Check, if the jiffies need an update */ 491 /* Check, if the jiffies need an update */
@@ -491,10 +508,6 @@ static void tick_nohz_handler(struct clock_event_device *dev)
491 update_process_times(user_mode(regs)); 508 update_process_times(user_mode(regs));
492 profile_tick(CPU_PROFILING); 509 profile_tick(CPU_PROFILING);
493 510
494 /* Do not restart, when we are in the idle loop */
495 if (ts->tick_stopped)
496 return;
497
498 while (tick_nohz_reprogram(ts, now)) { 511 while (tick_nohz_reprogram(ts, now)) {
499 now = ktime_get(); 512 now = ktime_get();
500 tick_do_update_jiffies64(now); 513 tick_do_update_jiffies64(now);
@@ -540,6 +553,27 @@ static void tick_nohz_switch_to_nohz(void)
540 smp_processor_id()); 553 smp_processor_id());
541} 554}
542 555
556/*
557 * When NOHZ is enabled and the tick is stopped, we need to kick the
558 * tick timer from irq_enter() so that the jiffies update is kept
559 * alive during long running softirqs. That's ugly as hell, but
560 * correctness is key even if we need to fix the offending softirq in
561 * the first place.
562 *
563 * Note, this is different to tick_nohz_restart. We just kick the
564 * timer and do not touch the other magic bits which need to be done
565 * when idle is left.
566 */
567static void tick_nohz_kick_tick(int cpu)
568{
569 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
570
571 if (!ts->tick_stopped)
572 return;
573
574 tick_nohz_restart(ts, ktime_get());
575}
576
543#else 577#else
544 578
545static inline void tick_nohz_switch_to_nohz(void) { } 579static inline void tick_nohz_switch_to_nohz(void) { }
@@ -547,6 +581,19 @@ static inline void tick_nohz_switch_to_nohz(void) { }
547#endif /* NO_HZ */ 581#endif /* NO_HZ */
548 582
549/* 583/*
584 * Called from irq_enter to notify about the possible interruption of idle()
585 */
586void tick_check_idle(int cpu)
587{
588 tick_check_oneshot_broadcast(cpu);
589#ifdef CONFIG_NO_HZ
590 tick_nohz_stop_idle(cpu);
591 tick_nohz_update_jiffies();
592 tick_nohz_kick_tick(cpu);
593#endif
594}
595
596/*
550 * High resolution timer specific code 597 * High resolution timer specific code
551 */ 598 */
552#ifdef CONFIG_HIGH_RES_TIMERS 599#ifdef CONFIG_HIGH_RES_TIMERS
@@ -570,7 +617,7 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
570 * this duty, then the jiffies update is still serialized by 617 * this duty, then the jiffies update is still serialized by
571 * xtime_lock. 618 * xtime_lock.
572 */ 619 */
573 if (unlikely(tick_do_timer_cpu == -1)) 620 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
574 tick_do_timer_cpu = cpu; 621 tick_do_timer_cpu = cpu;
575#endif 622#endif
576 623
@@ -599,10 +646,6 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
599 profile_tick(CPU_PROFILING); 646 profile_tick(CPU_PROFILING);
600 } 647 }
601 648
602 /* Do not restart, when we are in the idle loop */
603 if (ts->tick_stopped)
604 return HRTIMER_NORESTART;
605
606 hrtimer_forward(timer, now, tick_period); 649 hrtimer_forward(timer, now, tick_period);
607 650
608 return HRTIMER_RESTART; 651 return HRTIMER_RESTART;
@@ -622,7 +665,7 @@ void tick_setup_sched_timer(void)
622 */ 665 */
623 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 666 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
624 ts->sched_timer.function = tick_sched_timer; 667 ts->sched_timer.function = tick_sched_timer;
625 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 668 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
626 669
627 /* Get the next period (per cpu) */ 670 /* Get the next period (per cpu) */
628 ts->sched_timer.expires = tick_init_jiffy_update(); 671 ts->sched_timer.expires = tick_init_jiffy_update();
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 5ecbfc39a268..e7acfb482a68 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -58,27 +58,26 @@ struct clocksource *clock;
58 58
59#ifdef CONFIG_GENERIC_TIME 59#ifdef CONFIG_GENERIC_TIME
60/** 60/**
61 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook 61 * clocksource_forward_now - update clock to the current time
62 * 62 *
63 * private function, must hold xtime_lock lock when being 63 * Forward the current clock to update its state since the last call to
64 * called. Returns the number of nanoseconds since the 64 * update_wall_time(). This is useful before significant clock changes,
65 * last call to update_wall_time() (adjusted by NTP scaling) 65 * as it avoids having to deal with this time offset explicitly.
66 */ 66 */
67static inline s64 __get_nsec_offset(void) 67static void clocksource_forward_now(void)
68{ 68{
69 cycle_t cycle_now, cycle_delta; 69 cycle_t cycle_now, cycle_delta;
70 s64 ns_offset; 70 s64 nsec;
71 71
72 /* read clocksource: */
73 cycle_now = clocksource_read(clock); 72 cycle_now = clocksource_read(clock);
74
75 /* calculate the delta since the last update_wall_time: */
76 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 73 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
74 clock->cycle_last = cycle_now;
77 75
78 /* convert to nanoseconds: */ 76 nsec = cyc2ns(clock, cycle_delta);
79 ns_offset = cyc2ns(clock, cycle_delta); 77 timespec_add_ns(&xtime, nsec);
80 78
81 return ns_offset; 79 nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
80 clock->raw_time.tv_nsec += nsec;
82} 81}
83 82
84/** 83/**
@@ -89,6 +88,7 @@ static inline s64 __get_nsec_offset(void)
89 */ 88 */
90void getnstimeofday(struct timespec *ts) 89void getnstimeofday(struct timespec *ts)
91{ 90{
91 cycle_t cycle_now, cycle_delta;
92 unsigned long seq; 92 unsigned long seq;
93 s64 nsecs; 93 s64 nsecs;
94 94
@@ -96,7 +96,15 @@ void getnstimeofday(struct timespec *ts)
96 seq = read_seqbegin(&xtime_lock); 96 seq = read_seqbegin(&xtime_lock);
97 97
98 *ts = xtime; 98 *ts = xtime;
99 nsecs = __get_nsec_offset(); 99
100 /* read clocksource: */
101 cycle_now = clocksource_read(clock);
102
103 /* calculate the delta since the last update_wall_time: */
104 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
105
106 /* convert to nanoseconds: */
107 nsecs = cyc2ns(clock, cycle_delta);
100 108
101 } while (read_seqretry(&xtime_lock, seq)); 109 } while (read_seqretry(&xtime_lock, seq));
102 110
@@ -129,22 +137,22 @@ EXPORT_SYMBOL(do_gettimeofday);
129 */ 137 */
130int do_settimeofday(struct timespec *tv) 138int do_settimeofday(struct timespec *tv)
131{ 139{
140 struct timespec ts_delta;
132 unsigned long flags; 141 unsigned long flags;
133 time_t wtm_sec, sec = tv->tv_sec;
134 long wtm_nsec, nsec = tv->tv_nsec;
135 142
136 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 143 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
137 return -EINVAL; 144 return -EINVAL;
138 145
139 write_seqlock_irqsave(&xtime_lock, flags); 146 write_seqlock_irqsave(&xtime_lock, flags);
140 147
141 nsec -= __get_nsec_offset(); 148 clocksource_forward_now();
149
150 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
151 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
152 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
142 153
143 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 154 xtime = *tv;
144 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
145 155
146 set_normalized_timespec(&xtime, sec, nsec);
147 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
148 update_xtime_cache(0); 156 update_xtime_cache(0);
149 157
150 clock->error = 0; 158 clock->error = 0;
@@ -170,22 +178,19 @@ EXPORT_SYMBOL(do_settimeofday);
170static void change_clocksource(void) 178static void change_clocksource(void)
171{ 179{
172 struct clocksource *new; 180 struct clocksource *new;
173 cycle_t now;
174 u64 nsec;
175 181
176 new = clocksource_get_next(); 182 new = clocksource_get_next();
177 183
178 if (clock == new) 184 if (clock == new)
179 return; 185 return;
180 186
181 new->cycle_last = 0; 187 clocksource_forward_now();
182 now = clocksource_read(new);
183 nsec = __get_nsec_offset();
184 timespec_add_ns(&xtime, nsec);
185 188
186 clock = new; 189 new->raw_time = clock->raw_time;
187 clock->cycle_last = now;
188 190
191 clock = new;
192 clock->cycle_last = 0;
193 clock->cycle_last = clocksource_read(new);
189 clock->error = 0; 194 clock->error = 0;
190 clock->xtime_nsec = 0; 195 clock->xtime_nsec = 0;
191 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); 196 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
@@ -200,11 +205,44 @@ static void change_clocksource(void)
200 */ 205 */
201} 206}
202#else 207#else
208static inline void clocksource_forward_now(void) { }
203static inline void change_clocksource(void) { } 209static inline void change_clocksource(void) { }
204static inline s64 __get_nsec_offset(void) { return 0; }
205#endif 210#endif
206 211
207/** 212/**
213 * getrawmonotonic - Returns the raw monotonic time in a timespec
214 * @ts: pointer to the timespec to be set
215 *
216 * Returns the raw monotonic time (completely un-modified by ntp)
217 */
218void getrawmonotonic(struct timespec *ts)
219{
220 unsigned long seq;
221 s64 nsecs;
222 cycle_t cycle_now, cycle_delta;
223
224 do {
225 seq = read_seqbegin(&xtime_lock);
226
227 /* read clocksource: */
228 cycle_now = clocksource_read(clock);
229
230 /* calculate the delta since the last update_wall_time: */
231 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
232
233 /* convert to nanoseconds: */
234 nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
235
236 *ts = clock->raw_time;
237
238 } while (read_seqretry(&xtime_lock, seq));
239
240 timespec_add_ns(ts, nsecs);
241}
242EXPORT_SYMBOL(getrawmonotonic);
243
244
245/**
208 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 246 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
209 */ 247 */
210int timekeeping_valid_for_hres(void) 248int timekeeping_valid_for_hres(void)
@@ -265,8 +303,6 @@ void __init timekeeping_init(void)
265static int timekeeping_suspended; 303static int timekeeping_suspended;
266/* time in seconds when suspend began */ 304/* time in seconds when suspend began */
267static unsigned long timekeeping_suspend_time; 305static unsigned long timekeeping_suspend_time;
268/* xtime offset when we went into suspend */
269static s64 timekeeping_suspend_nsecs;
270 306
271/** 307/**
272 * timekeeping_resume - Resumes the generic timekeeping subsystem. 308 * timekeeping_resume - Resumes the generic timekeeping subsystem.
@@ -292,8 +328,6 @@ static int timekeeping_resume(struct sys_device *dev)
292 wall_to_monotonic.tv_sec -= sleep_length; 328 wall_to_monotonic.tv_sec -= sleep_length;
293 total_sleep_time += sleep_length; 329 total_sleep_time += sleep_length;
294 } 330 }
295 /* Make sure that we have the correct xtime reference */
296 timespec_add_ns(&xtime, timekeeping_suspend_nsecs);
297 update_xtime_cache(0); 331 update_xtime_cache(0);
298 /* re-base the last cycle value */ 332 /* re-base the last cycle value */
299 clock->cycle_last = 0; 333 clock->cycle_last = 0;
@@ -319,8 +353,7 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
319 timekeeping_suspend_time = read_persistent_clock(); 353 timekeeping_suspend_time = read_persistent_clock();
320 354
321 write_seqlock_irqsave(&xtime_lock, flags); 355 write_seqlock_irqsave(&xtime_lock, flags);
322 /* Get the current xtime offset */ 356 clocksource_forward_now();
323 timekeeping_suspend_nsecs = __get_nsec_offset();
324 timekeeping_suspended = 1; 357 timekeeping_suspended = 1;
325 write_sequnlock_irqrestore(&xtime_lock, flags); 358 write_sequnlock_irqrestore(&xtime_lock, flags);
326 359
@@ -461,16 +494,22 @@ void update_wall_time(void)
461 */ 494 */
462 while (offset >= clock->cycle_interval) { 495 while (offset >= clock->cycle_interval) {
463 /* accumulate one interval */ 496 /* accumulate one interval */
464 clock->xtime_nsec += clock->xtime_interval;
465 clock->cycle_last += clock->cycle_interval;
466 offset -= clock->cycle_interval; 497 offset -= clock->cycle_interval;
498 clock->cycle_last += clock->cycle_interval;
467 499
500 clock->xtime_nsec += clock->xtime_interval;
468 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { 501 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
469 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; 502 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
470 xtime.tv_sec++; 503 xtime.tv_sec++;
471 second_overflow(); 504 second_overflow();
472 } 505 }
473 506
507 clock->raw_time.tv_nsec += clock->raw_interval;
508 if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) {
509 clock->raw_time.tv_nsec -= NSEC_PER_SEC;
510 clock->raw_time.tv_sec++;
511 }
512
474 /* accumulate error between NTP and clock interval */ 513 /* accumulate error between NTP and clock interval */
475 clock->error += tick_length; 514 clock->error += tick_length;
476 clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); 515 clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift);
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c
index a40e20fd0001..f6426911e35a 100644
--- a/kernel/time/timer_list.c
+++ b/kernel/time/timer_list.c
@@ -47,13 +47,14 @@ static void print_name_offset(struct seq_file *m, void *sym)
47} 47}
48 48
49static void 49static void
50print_timer(struct seq_file *m, struct hrtimer *timer, int idx, u64 now) 50print_timer(struct seq_file *m, struct hrtimer *taddr, struct hrtimer *timer,
51 int idx, u64 now)
51{ 52{
52#ifdef CONFIG_TIMER_STATS 53#ifdef CONFIG_TIMER_STATS
53 char tmp[TASK_COMM_LEN + 1]; 54 char tmp[TASK_COMM_LEN + 1];
54#endif 55#endif
55 SEQ_printf(m, " #%d: ", idx); 56 SEQ_printf(m, " #%d: ", idx);
56 print_name_offset(m, timer); 57 print_name_offset(m, taddr);
57 SEQ_printf(m, ", "); 58 SEQ_printf(m, ", ");
58 print_name_offset(m, timer->function); 59 print_name_offset(m, timer->function);
59 SEQ_printf(m, ", S:%02lx", timer->state); 60 SEQ_printf(m, ", S:%02lx", timer->state);
@@ -99,7 +100,7 @@ next_one:
99 tmp = *timer; 100 tmp = *timer;
100 spin_unlock_irqrestore(&base->cpu_base->lock, flags); 101 spin_unlock_irqrestore(&base->cpu_base->lock, flags);
101 102
102 print_timer(m, &tmp, i, now); 103 print_timer(m, timer, &tmp, i, now);
103 next++; 104 next++;
104 goto next_one; 105 goto next_one;
105 } 106 }
@@ -109,6 +110,7 @@ next_one:
109static void 110static void
110print_base(struct seq_file *m, struct hrtimer_clock_base *base, u64 now) 111print_base(struct seq_file *m, struct hrtimer_clock_base *base, u64 now)
111{ 112{
113 SEQ_printf(m, " .base: %p\n", base);
112 SEQ_printf(m, " .index: %d\n", 114 SEQ_printf(m, " .index: %d\n",
113 base->index); 115 base->index);
114 SEQ_printf(m, " .resolution: %Lu nsecs\n", 116 SEQ_printf(m, " .resolution: %Lu nsecs\n",
@@ -183,12 +185,16 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now)
183 185
184#ifdef CONFIG_GENERIC_CLOCKEVENTS 186#ifdef CONFIG_GENERIC_CLOCKEVENTS
185static void 187static void
186print_tickdevice(struct seq_file *m, struct tick_device *td) 188print_tickdevice(struct seq_file *m, struct tick_device *td, int cpu)
187{ 189{
188 struct clock_event_device *dev = td->evtdev; 190 struct clock_event_device *dev = td->evtdev;
189 191
190 SEQ_printf(m, "\n"); 192 SEQ_printf(m, "\n");
191 SEQ_printf(m, "Tick Device: mode: %d\n", td->mode); 193 SEQ_printf(m, "Tick Device: mode: %d\n", td->mode);
194 if (cpu < 0)
195 SEQ_printf(m, "Broadcast device\n");
196 else
197 SEQ_printf(m, "Per CPU device: %d\n", cpu);
192 198
193 SEQ_printf(m, "Clock Event Device: "); 199 SEQ_printf(m, "Clock Event Device: ");
194 if (!dev) { 200 if (!dev) {
@@ -222,7 +228,7 @@ static void timer_list_show_tickdevices(struct seq_file *m)
222 int cpu; 228 int cpu;
223 229
224#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 230#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
225 print_tickdevice(m, tick_get_broadcast_device()); 231 print_tickdevice(m, tick_get_broadcast_device(), -1);
226 SEQ_printf(m, "tick_broadcast_mask: %08lx\n", 232 SEQ_printf(m, "tick_broadcast_mask: %08lx\n",
227 tick_get_broadcast_mask()->bits[0]); 233 tick_get_broadcast_mask()->bits[0]);
228#ifdef CONFIG_TICK_ONESHOT 234#ifdef CONFIG_TICK_ONESHOT
@@ -232,7 +238,7 @@ static void timer_list_show_tickdevices(struct seq_file *m)
232 SEQ_printf(m, "\n"); 238 SEQ_printf(m, "\n");
233#endif 239#endif
234 for_each_online_cpu(cpu) 240 for_each_online_cpu(cpu)
235 print_tickdevice(m, tick_get_device(cpu)); 241 print_tickdevice(m, tick_get_device(cpu), cpu);
236 SEQ_printf(m, "\n"); 242 SEQ_printf(m, "\n");
237} 243}
238#else 244#else
@@ -244,7 +250,7 @@ static int timer_list_show(struct seq_file *m, void *v)
244 u64 now = ktime_to_ns(ktime_get()); 250 u64 now = ktime_to_ns(ktime_get());
245 int cpu; 251 int cpu;
246 252
247 SEQ_printf(m, "Timer List Version: v0.3\n"); 253 SEQ_printf(m, "Timer List Version: v0.4\n");
248 SEQ_printf(m, "HRTIMER_MAX_CLOCK_BASES: %d\n", HRTIMER_MAX_CLOCK_BASES); 254 SEQ_printf(m, "HRTIMER_MAX_CLOCK_BASES: %d\n", HRTIMER_MAX_CLOCK_BASES);
249 SEQ_printf(m, "now at %Ld nsecs\n", (unsigned long long)now); 255 SEQ_printf(m, "now at %Ld nsecs\n", (unsigned long long)now);
250 256
diff --git a/kernel/timer.c b/kernel/timer.c
index 03bc7f1f1593..56becf373c58 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -978,6 +978,7 @@ void update_process_times(int user_tick)
978 run_local_timers(); 978 run_local_timers();
979 if (rcu_pending(cpu)) 979 if (rcu_pending(cpu))
980 rcu_check_callbacks(cpu, user_tick); 980 rcu_check_callbacks(cpu, user_tick);
981 printk_tick();
981 scheduler_tick(); 982 scheduler_tick();
982 run_posix_cpu_timers(p); 983 run_posix_cpu_timers(p);
983} 984}
@@ -1435,9 +1436,11 @@ static void __cpuinit migrate_timers(int cpu)
1435 BUG_ON(cpu_online(cpu)); 1436 BUG_ON(cpu_online(cpu));
1436 old_base = per_cpu(tvec_bases, cpu); 1437 old_base = per_cpu(tvec_bases, cpu);
1437 new_base = get_cpu_var(tvec_bases); 1438 new_base = get_cpu_var(tvec_bases);
1438 1439 /*
1439 local_irq_disable(); 1440 * The caller is globally serialized and nobody else
1440 spin_lock(&new_base->lock); 1441 * takes two locks at once, deadlock is not possible.
1442 */
1443 spin_lock_irq(&new_base->lock);
1441 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1444 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1442 1445
1443 BUG_ON(old_base->running_timer); 1446 BUG_ON(old_base->running_timer);
@@ -1452,8 +1455,7 @@ static void __cpuinit migrate_timers(int cpu)
1452 } 1455 }
1453 1456
1454 spin_unlock(&old_base->lock); 1457 spin_unlock(&old_base->lock);
1455 spin_unlock(&new_base->lock); 1458 spin_unlock_irq(&new_base->lock);
1456 local_irq_enable();
1457 put_cpu_var(tvec_bases); 1459 put_cpu_var(tvec_bases);
1458} 1460}
1459#endif /* CONFIG_HOTPLUG_CPU */ 1461#endif /* CONFIG_HOTPLUG_CPU */
diff --git a/kernel/trace/trace_sysprof.c b/kernel/trace/trace_sysprof.c
index bb948e52ce20..db58fb66a135 100644
--- a/kernel/trace/trace_sysprof.c
+++ b/kernel/trace/trace_sysprof.c
@@ -202,7 +202,7 @@ static void start_stack_timer(int cpu)
202 202
203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 203 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
204 hrtimer->function = stack_trace_timer_fn; 204 hrtimer->function = stack_trace_timer_fn;
205 hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 205 hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
206 206
207 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL); 207 hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
208} 208}
diff --git a/kernel/user.c b/kernel/user.c
index 865ecf57a096..39d6159fae43 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -169,7 +169,7 @@ static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
169{ 169{
170 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 170 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
171 171
172 return sprintf(buf, "%lu\n", sched_group_rt_runtime(up->tg)); 172 return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
173} 173}
174 174
175static ssize_t cpu_rt_runtime_store(struct kobject *kobj, 175static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
@@ -180,7 +180,7 @@ static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
180 unsigned long rt_runtime; 180 unsigned long rt_runtime;
181 int rc; 181 int rc;
182 182
183 sscanf(buf, "%lu", &rt_runtime); 183 sscanf(buf, "%ld", &rt_runtime);
184 184
185 rc = sched_group_set_rt_runtime(up->tg, rt_runtime); 185 rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
186 186
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c
index 4ab9659d269e..3b34b3545936 100644
--- a/kernel/utsname_sysctl.c
+++ b/kernel/utsname_sysctl.c
@@ -60,7 +60,7 @@ static int proc_do_uts_string(ctl_table *table, int write, struct file *filp,
60 60
61#ifdef CONFIG_SYSCTL_SYSCALL 61#ifdef CONFIG_SYSCTL_SYSCALL
62/* The generic string strategy routine: */ 62/* The generic string strategy routine: */
63static int sysctl_uts_string(ctl_table *table, int __user *name, int nlen, 63static int sysctl_uts_string(ctl_table *table,
64 void __user *oldval, size_t __user *oldlenp, 64 void __user *oldval, size_t __user *oldlenp,
65 void __user *newval, size_t newlen) 65 void __user *newval, size_t newlen)
66{ 66{
@@ -69,8 +69,7 @@ static int sysctl_uts_string(ctl_table *table, int __user *name, int nlen,
69 write = newval && newlen; 69 write = newval && newlen;
70 memcpy(&uts_table, table, sizeof(uts_table)); 70 memcpy(&uts_table, table, sizeof(uts_table));
71 uts_table.data = get_uts(table, write); 71 uts_table.data = get_uts(table, write);
72 r = sysctl_string(&uts_table, name, nlen, 72 r = sysctl_string(&uts_table, oldval, oldlenp, newval, newlen);
73 oldval, oldlenp, newval, newlen);
74 put_uts(table, write, uts_table.data); 73 put_uts(table, write, uts_table.data);
75 return r; 74 return r;
76} 75}
diff --git a/kernel/wait.c b/kernel/wait.c
index c275c56cf2d3..cd87131f2fc2 100644
--- a/kernel/wait.c
+++ b/kernel/wait.c
@@ -72,12 +72,7 @@ prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
72 spin_lock_irqsave(&q->lock, flags); 72 spin_lock_irqsave(&q->lock, flags);
73 if (list_empty(&wait->task_list)) 73 if (list_empty(&wait->task_list))
74 __add_wait_queue(q, wait); 74 __add_wait_queue(q, wait);
75 /* 75 set_current_state(state);
76 * don't alter the task state if this is just going to
77 * queue an async wait queue callback
78 */
79 if (is_sync_wait(wait))
80 set_current_state(state);
81 spin_unlock_irqrestore(&q->lock, flags); 76 spin_unlock_irqrestore(&q->lock, flags);
82} 77}
83EXPORT_SYMBOL(prepare_to_wait); 78EXPORT_SYMBOL(prepare_to_wait);
@@ -91,12 +86,7 @@ prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
91 spin_lock_irqsave(&q->lock, flags); 86 spin_lock_irqsave(&q->lock, flags);
92 if (list_empty(&wait->task_list)) 87 if (list_empty(&wait->task_list))
93 __add_wait_queue_tail(q, wait); 88 __add_wait_queue_tail(q, wait);
94 /* 89 set_current_state(state);
95 * don't alter the task state if this is just going to
96 * queue an async wait queue callback
97 */
98 if (is_sync_wait(wait))
99 set_current_state(state);
100 spin_unlock_irqrestore(&q->lock, flags); 90 spin_unlock_irqrestore(&q->lock, flags);
101} 91}
102EXPORT_SYMBOL(prepare_to_wait_exclusive); 92EXPORT_SYMBOL(prepare_to_wait_exclusive);
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 4048e92aa04f..714afad46539 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -9,7 +9,7 @@
9 * Derived from the taskqueue/keventd code by: 9 * Derived from the taskqueue/keventd code by:
10 * 10 *
11 * David Woodhouse <dwmw2@infradead.org> 11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au> 12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu> 14 * Theodore Ts'o <tytso@mit.edu>
15 * 15 *